Science.gov

Sample records for ionizing particles interacting

  1. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  2. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  3. New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment

    DOE PAGESBeta

    Agnese, R.

    2016-02-17

    The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Our results are presented from the second CDMSlite run with an exposure of 70 kg days, which reached an energy threshold for electron recoils as low as 56 eV. Furthermore, a fiducialization cut reduces backgrounds below those previously reported by CDMSlite. Lastly, new parameter space for the WIMP-nucleon spin-independent cross section is excluded forWIMP masses between 1.6 and 5.5 GeV/c2.

  4. New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment

    NASA Astrophysics Data System (ADS)

    Agnese, R.; Anderson, A. J.; Aramaki, T.; Asai, M.; Baker, W.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Calkins, R.; Cerdeno, D. G.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Ghaith, M.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; Mandic, V.; Mast, N.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Rogers, H. E.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Underwood, R.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.; SuperCDMS Collaboration

    2016-02-01

    The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Results are presented from the second CDMSlite run with an exposure of 70 kg day, which reached an energy threshold for electron recoils as low as 56 eV. A fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded for WIMP masses between 1.6 and 5.5 GeV /c2 .

  5. New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment.

    PubMed

    Agnese, R; Anderson, A J; Aramaki, T; Asai, M; Baker, W; Balakishiyeva, D; Barker, D; Basu Thakur, R; Bauer, D A; Billard, J; Borgland, A; Bowles, M A; Brink, P L; Bunker, R; Cabrera, B; Caldwell, D O; Calkins, R; Cerdeno, D G; Chagani, H; Chen, Y; Cooley, J; Cornell, B; Cushman, P; Daal, M; Di Stefano, P C F; Doughty, T; Esteban, L; Fallows, S; Figueroa-Feliciano, E; Ghaith, M; Godfrey, G L; Golwala, S R; Hall, J; Harris, H R; Hofer, T; Holmgren, D; Hsu, L; Huber, M E; Jardin, D; Jastram, A; Kamaev, O; Kara, B; Kelsey, M H; Kennedy, A; Leder, A; Loer, B; Lopez Asamar, E; Lukens, P; Mahapatra, R; Mandic, V; Mast, N; Mirabolfathi, N; Moffatt, R A; Morales Mendoza, J D; Oser, S M; Page, K; Page, W A; Partridge, R; Pepin, M; Phipps, A; Prasad, K; Pyle, M; Qiu, H; Rau, W; Redl, P; Reisetter, A; Ricci, Y; Roberts, A; Rogers, H E; Saab, T; Sadoulet, B; Sander, J; Schneck, K; Schnee, R W; Scorza, S; Serfass, B; Shank, B; Speller, D; Toback, D; Underwood, R; Upadhyayula, S; Villano, A N; Welliver, B; Wilson, J S; Wright, D H; Yellin, S; Yen, J J; Young, B A; Zhang, J

    2016-02-19

    The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Results are presented from the second CDMSlite run with an exposure of 70 kg day, which reached an energy threshold for electron recoils as low as 56 eV. A fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded for WIMP masses between 1.6 and 5.5  GeV/c^{2}. PMID:26943526

  6. A search for weakly interacting dark matter particles with low temperature detectors capable of simultaneously measuring ionization and heat

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Andrew Harry

    1999-01-01

    The nature and extent of the mysterious ``dark matter'' has been one of the central puzzles in cosmology over the last decade. Current evidence suggests that the universe has a matter content of about 0.3 of the critical density. The theory of Big Bang nucleosynthesis allows only 20% of this matter to be made of protons and neutrons, hinting that the remaining 80% of the mass is in the form of a new elementary particle. One possibility is that this dark matter is made of the lightest neutralino suggested by supersymmetry, which should be stable and have a mass in the range 30-10000 GeV/c 2. These particles would have only weak interactions with ordinary matter, with the typical cross section for scattering on a nucleon below 10 -41 cm2. The particles would constitute a ``dark halo'' in our galaxy and could be discovered through their interactions with detectors on Earth. Since the typical interaction rate would be below 0.1 event/kg-day, the main experimental problem is to reduce the interference from environmental background radiation. The most troublesome interference comes from photons produced by the decay of radioactive elements present at trace levels in the detectors and other apparatus. One way to discriminate between signal events from WIMP- nucleus scattering and background events from photon interactions is to measure the ratio of ionization to heat deposited in a semiconductor detector. This differs by a factor of ~3 between the two cases. The Cryogenic Dark Matter Search (CDMS) experiment is based on the simultaneous measurement of ionization and phonons in germanium and silicon crystals cooled to 25 mK. This measurement allows >99% discrimination against photon interactions above 10 keV of deposited energy. We present data from two 165 g germanium detectors operated at the Stanford Underground Facility, with a total exposure equivalent to 6.4 kg-days. From this data set, we derive limits on the cross sections and masses of weakly interacting dark

  7. The collisional interaction of a beam of charged particles with a hydrogen target of arbitrary ionization level. [chromospheric heating during solar flares

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1978-01-01

    The classical theory of scattering under the Coulomb potential of both charged and neutral particles is used to derive formulae for the energy deposition rate and mean scattering of a beam of charged particles interacting with a cold hydrogen target of arbitrary ionization level as a function of the column density traversed by the beam. These general results hold for any form of stable injection energy spectrum, and their relevance to the existing literature on chromospheric heating during solar flares is discussed.

  8. A Search for Low-Mass Weakly Interacting Massive Particles Using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment

    SciTech Connect

    Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Cerdeno, D. G.; Chagani, H.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; Di Stefano, P. C.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, H. R.; Hertel, S. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Kiveni, M.; Koch, K.; Loer, B.; Lopez Asamar, E.; Mahapatra, R.; Mandic, V.; Martinez, C.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Moore, D. C.; Nadeau, P.; Nelson, R. H.; Page, K.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redi, P.; Reisetter, A.; Ricci, Y.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, Richard; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Villano, A. N.; Welliver, B.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2014-01-27

    SuperCDMS is an experiment designed to directly detect weakly interacting massive particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this Letter, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage-assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for ten live days at the Soudan Underground Laboratory. A low energy threshold of (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV/c2.

  9. Search for Low-Mass Weakly Interacting Massive Particles Using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment

    NASA Astrophysics Data System (ADS)

    Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Cerdeno, D. G.; Chagani, H.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hertel, S. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Kiveni, M.; Koch, K.; Loer, B.; Lopez Asamar, E.; Mahapatra, R.; Mandic, V.; Martinez, C.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Moore, D. C.; Nadeau, P.; Nelson, R. H.; Page, K.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Villano, A. N.; Welliver, B.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.; SuperCDMS Collaboration

    2014-01-01

    SuperCDMS is an experiment designed to directly detect weakly interacting massive particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this Letter, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage-assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for ten live days at the Soudan Underground Laboratory. A low energy threshold of 170 eVee (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV /c2.

  10. Ionization of Atoms by Slow Heavy Particles, Including Dark Matter

    NASA Astrophysics Data System (ADS)

    Roberts, B. M.; Flambaum, V. V.; Gribakin, G. F.

    2016-01-01

    Atoms and molecules can become ionized during the scattering of a slow, heavy particle off a bound electron. Such an interaction involving leptophilic weakly interacting massive particles (WIMPs) is a promising possible explanation for the anomalous 9 σ annual modulation in the DAMA dark matter direct detection experiment [R. Bernabei et al., Eur. Phys. J. C 73, 2648 (2013)]. We demonstrate the applicability of the Born approximation for such an interaction by showing its equivalence to the semiclassical adiabatic treatment of atomic ionization by slow-moving WIMPs. Conventional wisdom has it that the ionization probability for such a process should be exponentially small. We show, however, that due to nonanalytic, cusplike behavior of Coulomb functions close to the nucleus this suppression is removed, leading to an effective atomic structure enhancement. We also show that electron relativistic effects actually give the dominant contribution to such a process, enhancing the differential cross section by up to 1000 times.

  11. Ionization of Atoms by Slow Heavy Particles, Including Dark Matter.

    PubMed

    Roberts, B M; Flambaum, V V; Gribakin, G F

    2016-01-15

    Atoms and molecules can become ionized during the scattering of a slow, heavy particle off a bound electron. Such an interaction involving leptophilic weakly interacting massive particles (WIMPs) is a promising possible explanation for the anomalous 9σ annual modulation in the DAMA dark matter direct detection experiment [R. Bernabei et al., Eur. Phys. J. C 73, 2648 (2013)]. We demonstrate the applicability of the Born approximation for such an interaction by showing its equivalence to the semiclassical adiabatic treatment of atomic ionization by slow-moving WIMPs. Conventional wisdom has it that the ionization probability for such a process should be exponentially small. We show, however, that due to nonanalytic, cusplike behavior of Coulomb functions close to the nucleus this suppression is removed, leading to an effective atomic structure enhancement. We also show that electron relativistic effects actually give the dominant contribution to such a process, enhancing the differential cross section by up to 1000 times. PMID:26824537

  12. Numerical modeling of laser tunneling ionization in explicit particle-in-cell codes

    SciTech Connect

    Chen, M.; Cormier-Michel, E.; Geddes, C.G.R.; Bruhwiler, D.L.; Yu, L.L.; Esarey, E.; Schroeder, C.B.; Leemans, W.P.

    2013-03-01

    Methods for the calculation of laser tunneling ionization in explicit particle-in-cell codes used for modeling laser–plasma interactions are compared and validated against theoretical predictions. Improved accuracy is obtained by using the direct current form for the ionization rate. Multi level ionization in a single time step and energy conservation have been considered during the ionization process. The effects of grid resolution and number of macro-particles per cell are examined. Implementation of the ionization algorithm in two different particle-in-cell codes is compared for the case of ionization-based electron injection in a laser–plasma accelerator.

  13. Ionization of the atmosphere caused by energetic particles

    NASA Astrophysics Data System (ADS)

    Maik Wissing, Jan; Kallenrode, May-Britt

    Energetic particles from different sources are precipitating into the atmosphere, causing ionization and different chemical follow-ups. Focussing on low and mid-energies, this presentation will concentrate on the solar and magnetospheric particle spectrum, representing the particle forcing from the thermosphere down to the tropopause. While the precipitation of solar particles can be described in simple patterns, the magnetospheric precipitation is intensively modulated by the geomagnetic field, varying with latitude, longitude, geomagnetic disturbance, and MLT, ending up in a fluctuating auroral oval. Modeling the resulting ionization consequently is confronted with numerous challenges, ranging from sparse measurements (in-situ measuring satellites vs. global coverage), contaminated detectors, strong flux variation in space and time and finally the conversion of flux measurements into (3D) ionization profiles. This presentation will give an overview of the general setup, discuss main aspects in modeling particle precipitation and present some recent advances with the help of the Atmospheric Ionization Module OSnabrueck (AIMOS). AIMOS is based on a Geant4 Monte-Carlo Simulation for particle interactions with the atmosphere and in-situ particle measurements from the POES and GOES satellites.

  14. ALTERNATIVE IONIZATION METHODS FOR PARTICLE MASS SPECTROMETRY

    EPA Science Inventory

    The objective of this project is to enhance the capabilities of a real-time airborne particle mass spectrometer by implementing matrix-independent methods for sample ionization. The enhancements should result in improved sensitivity for trace substances and, more importantly, per...

  15. Interactive Terascale Particle Visualization

    NASA Technical Reports Server (NTRS)

    Ellsworth, David; Green, Bryan; Moran, Patrick

    2004-01-01

    This paper describes the methods used to produce an interactive visualization of a 2 TB computational fluid dynamics (CFD) data set using particle tracing (streaklines). We use the method introduced by Bruckschen et al. [2001] that pre-computes a large number of particles, stores them on disk using a space-filling curve ordering that minimizes seeks, and then retrieves and displays the particles according to the user's command. We describe how the particle computation can be performed using a PC cluster, how the algorithm can be adapted to work with a multi-block curvilinear mesh, and how the out-of-core visualization can be scaled to 296 billion particles while still achieving interactive performance on PG hardware. Compared to the earlier work, our data set size and total number of particles are an order of magnitude larger. We also describe a new compression technique that allows the lossless compression of the particles by 41% and speeds the particle retrieval by about 30%.

  16. ELEMENTARY PARTICLE INTERACTIONS

    SciTech Connect

    EFREMENKO, YURI; HANDLER, THOMAS; KAMYSHKOV, YURI; SIOPSIS, GEORGE; SPANIER, STEFAN

    2013-07-30

    The High-Energy Elementary Particle Interactions group at UT during the last three years worked on the following directions and projects: Collider-based Particle Physics; Neutrino Physics, particularly participation in “NOνA”, “Double Chooz”, and “KamLAND” neutrino experiments; and Theory, including Scattering amplitudes, Quark-gluon plasma; Holographic cosmology; Holographic superconductors; Charge density waves; Striped superconductors; and Holographic FFLO states.

  17. New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment [WIMP-Search Results from the Second CDMSlite Run

    DOE PAGESBeta

    Agnese, R.

    2016-02-01

    The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Our results are presented from the second CDMSlite run with an exposure of 70 kg days, which reached an energy threshold for electron recoils as low as 56 eV. Furthermore, a fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded forWIMP masses between 1.6 and 5.5 GeV/c2.

  18. Ionizing particle detection based on phononic crystals

    SciTech Connect

    Aly, Arafa H. E-mail: arafa.hussien@science.bsu.edu.eg; Mehaney, Ahmed; Eissa, Mostafa F.

    2015-08-14

    Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.

  19. Ionizing particle detection based on phononic crystals

    NASA Astrophysics Data System (ADS)

    Aly, Arafa H.; Mehaney, Ahmed; Eissa, Mostafa F.

    2015-08-01

    Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.

  20. New particles and interactions

    SciTech Connect

    Gilman, F.J.; Grannis, P.D.

    1984-04-01

    The Working Group on New Particles and Interactions met as a whole at the beginning and at the end of the Workshop. However, much of what was accomplished was done in five subgroups. These were devoted to: (1) new quarks and leptons; (2) technicolor; (3) supersymmetry; (4) rare decays and CP; and (5) substructure of quarks and leptons. Other aspects of new particles, e.g., Higgs, W', Z', fell to the Electroweak Working Group to consider. The central question of this Workshop of comparing anti pp (with L = 10/sup 32//cm/sup 2/-sec) with pp (with L = 10/sup 33//cm/sup 2/-sec) colliders carried through to all these subgroups. In addition there were several other aspects of hadron colliders which were considered: what does an increase in ..sqrt..s gain in cross section and resultant sensitivity to new physics versus an increase in luminosity; will polarized beams or the use of asymmetries be essential in finding new interactions; where and at what level do rate limitations due to triggering or detection systems play a role; and how and where will the detection of particles with short, but detectable, lifetimes be important. 25 references.

  1. The Analysis of Ionization Chambers Used for Detecting Smoke Particles

    NASA Astrophysics Data System (ADS)

    Turlej, Z. (Bish).

    Ionization type cells using a radioactive source of primary ions have been used as fire detectors for many years. They have proven sufficiently sensitive to give an alarm when exposed to the relatively small concentration of smoke particles that occur during the early stages of combustion when control of a fire is still possible. In this work the charging of smoke particles in ionization chambers such as typically employed in ionization smoke detectors are investigated theoretically and experimentally. The ionization chambers investigated in this work have parallel plate and spherical electrode geometries. In the absence of smoke particles, the ionization chambers were operated at some ambient electrode current, which depends upon the ion generation rate, the electrode geometries, the potential difference between the electrodes, and the thermodynamic properties of the gas within the chamber volume. When smoke particles are introduced into the ionization chamber they act as an additional sink for the ions, so that the ion current is reduced. The smoke particles in the experiment performed in this work were transferred from the particle generator to the volume surrounding the ionization chamber and allowed to diffuse inside the ionization chamber. An Aitken nuclei counter was employed to measure the concentration of smoke particles inside the ionization chamber. The electric current flowing through the ionization chamber was recorded as a function of time and concentration of the smoke particles inside the chamber. The current loss due to the particles present inside the chamber was calculated and compared with the experimental results. It was found that at the certain level of ambient electrode current, the current loss due to the smoke particles assumes a maximum value. This optimum operating electrode current was predicted by the mathematical model employed in this work. In the light of this model experimental ionization chambers of both parallel and spherical

  2. Parameterization of ionization induced in the atmosphere by precipitating particles

    NASA Astrophysics Data System (ADS)

    Artamonov, Anton; Usoskin, Ilya; Kovaltsov, Gennady

    We present a physical model to calculate ionization induced in the atmosphere by precipitating particles. This model is based on the Bethe-Bloch equation applied for precipitating particles such as: electrons, alpha-particles and protons. The energy range of precipitating particles is up to 5MeV and 80MeV/nuc respectively. This model provides an easy implementation with a robust realization of model calculations for a wide range of incident energies of precipitating particles. This method is limited to the upper-middle atmosphere. An ionization yield function [see, Usoskin and Kovaltsov, 2006; Usoskin, Kovaltsov, Mironova, 2010] can be also used in this model, making it possible to calculate the atmospheric ionization effect of precipitating particles for the entire atmosphere, dawn to the ground.

  3. INTERACTION OF MUON BEAM WITH PLASMA DEVELOPED DURING IONIZATION COOLING

    SciTech Connect

    S. Ahmed, D. Kaplan, T. Roberts, L. Spentzouris, K. Beard

    2012-07-01

    Particle-in-cell simulations involving the interaction of muon beam (peak density 10{sup 18} m{sup 3}) with Li plasma (ionized medium) of density 10{sup 16}-10{sup 22} m{sup -3} have been performed. This study aimed to understand the effects of plasma on an incoming beam in order to explore scenario developed during the process of ionization cooling. The computer code takes into account the self-consistent electromagnetic effects of beam interacting with plasma. This study shows that the beam can pass through the plasma of densities four order of magnitude higher than its peak density. The low density plasmas are wiped out by the beam, however, the resonance is observed for densities of similar order. Study reveals the signature of plasma wakefield acceleration.

  4. Validation of Cosmic Ray Ionization Model CORIMIA applied for solar energetic particles and Anomalous Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Asenovski, S.; Velinov, P.; Mateev, L.

    2016-02-01

    Based on the electromagnetic interaction between the cosmic ray (CR) and the atmospheric neutral constituents, CORIMIA (COsmic Ray Ionization Model) gives an estimation of the dynamical ionization condition of the lower ionosphere and middle atmosphere (about 30-120 km). Galactic Cosmic Rays (GCR), modified by solar wind and later by geomagnetic and atmospheric cut offs, produce ionization in the entire atmosphere. In this paper we show the GCR ionization in periods of solar minimum and maximum. Despite the considerably lower energies than GCR, Anomalous Cosmic Rays (ACR) contribute to the ionization state mostly over the polar regions and as we present here this contribution is comparable with those of GCR. Solar energetic particles (SEP), which differ vastly from one another for different solar events, can be responsible for significant ionization over the high latitude regions. Here we compare flows of SEP caused by two of the most powerful solar proton events at February 23, 1956 and January 20, 2005.

  5. LASER DESORPTION IONIZATION OF ULTRAFINE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line analysis of ultrafine aerosol particle in the 12 to 150 nm size range is performed by
    laser desorption/ionization. Particles are size selected with a differential mobility analyzer and then
    sent into a linear time-of-flight mass spectrometer where they are ablated w...

  6. Detailed Investigations of Interactions between Ionizing Radiation and Neutral Gases

    SciTech Connect

    Landers, Allen L

    2014-03-31

    We are investigating phenomena that stem from the many body dynamics associated with ionization of an atom or molecule by photon or charged particle. Our program is funded through the Department of Energy EPSCoR Laboratory Partnership Award in collaboration with Lawrence Berkeley National Laboratory. We are using variations on the well established COLTRIMS technique to measure ions and electrons ejected during these interactions. Photoionization measurements take place at the Advanced Light Source at LBNL as part of the ALS-COLTRIMS collaboration with the groups of Reinhard Dörner at Frankfurt and Ali Belkacem at LBNL. Additional experiments on charged particle impact are conducted locally at Auburn University where we are studying the dissociative molecular dynamics following interactions with either ions or electrons over a velocity range of 1 to 12 atomic units.

  7. Particle formation and interaction

    NASA Technical Reports Server (NTRS)

    Squyres, Steven; Corso, George J.; Griffiths, Lynn D.; Mackinnon, Ian D. R.; Marshall, John R.; Nuth, Joseph A., III; Werner, Brad; Wolfe, John

    1987-01-01

    A wide variety of experiments can be conducted on the Space Station that involve the physics of small particles of planetary significance. Processes of interest include nucleation and condensation of particles from a gas, aggregation of small particles into larger ones, and low velocity collisions of particles. All of these processes could be investigated with a general purpose facility on the Space Station. The microgravity environment would be necessary to perform many experiments, as they generally require that particles be suspended for periods substantially longer than are practical at 1 g. Only experiments relevant to planetary processes will be discussed in detail here, but it is important to stress that a particle facility will be useful to a wide variety of scientific disciplines, and can be used to address many scientific problems.

  8. The electrical conductivity of weakly ionized plasma containing dust particles

    NASA Astrophysics Data System (ADS)

    Li, Hui; Wu, Jian; Yuan, Chengxun; Zhou, Zhongxiang

    2016-07-01

    The effect of charged dust particle on the electrical conductivity of weakly ionized dusty plasma is investigated. It is shown that the additional collision provided by charged dust particles can significantly alter the electrical conductivity of electron-ion plasma. The numerical results indicated that these effects are mainly determined by dust radius, density as well as the charge numbers on dust surface. The obtained results will support an enhanced understanding of the electromagnetic wave propagation processes in dusty plasma.

  9. Interaction of Burning Metal Particles

    NASA Technical Reports Server (NTRS)

    Dreizin, Edward L.; Berman, Charles H.; Hoffmann, Vern K.

    1999-01-01

    Physical characteristics of the combustion of metal particle groups have been addressed in this research. The combustion behavior and interaction effects of multiple metal particles has been studied using a microgravity environment, which presents a unique opportunity to create an "aerosol" consisting of relatively large particles, i.e., 50-300 micrometer diameter. Combustion behavior of such an aerosol could be examined using methods adopted from well-developed single particle combustion research. The experiment included fluidizing relatively large (order of 100 micrometer diameter) uniform metal particles under microgravity and igniting such an "aerosol" using a hot wire igniter. The flame propagation and details of individual particle combustion and particle interaction have been studied using a high speed movie and video-imaging with cameras coupled with microscope lenses to resolve individual particles. Interference filters were used to separate characteristic metal and metal oxide radiation bands form the thermal black body radiation. Recorded flame images were digitized and employed to understand the processes occurring in the burning aerosol. The development of individual particle flames, merging or separation, and extinguishing as well as induced particle motion have been analyzed to identify the mechanisms governing these processes. Size distribution, morphology, and elemental compositions of combustion products were characterized and used to link the observed in this project aerosol combustion phenomena with the recently expanded mechanism of single metal particle combustion.

  10. Interaction of Burning Metal Particles

    NASA Technical Reports Server (NTRS)

    Dreizin, Edward L.; Berman, Charles H.; Hoffmann, Vern K.

    1999-01-01

    Physical characteristics of the combustion of metal particle groups have been addressed in this research. The combustion behavior and interaction effects of multiple metal particles has been studied using a microgravity environment, which presents a unique opportunity to create an "aerosol" consisting of relatively large particles, i.e., 50-300 m diameter. Combustion behavior of such an aerosol could be examined using methods adopted from well-developed single particle combustion research. The experiment included fluidizing relatively large (order of 100 m diameter) uniform metal particles under microgravity and igniting such an "aerosol" using a hot wire igniter. The flame propagation and details of individual particle combustion and particle interaction have been studied using a high speed movie and video-imaging with cameras coupled with microscope lenses to resolve individual particles. Interference filters were used to separate characteristic metal and metal oxide radiation bands from the thermal black body radiation. Recorded flame images were digitized and various image processing techniques including flame position tracking, color separation, and pixel by pixel image comparison were employed to understand the processes occurring in the burning aerosol. The development of individual particle flames, merging or separation, and extinguishment as well as induced particle motion have been analyzed to identify the mechanisms governing these processes. Size distribution, morphology, and elemental compositions of combustion products were characterized and used to link the observed in this project aerosol combustion phenomena with the recently expanded mechanism of single metal particle combustion.

  11. Positrons from accelerated particle interactions

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Lingenfelter, R. E.; Ramaty, R.

    1987-01-01

    Positron production from the decay of radioactive nuclei produced in nuclear interactions of accelerated particles is treated in detail. Laboratory data as well as theoretical considerations are used to construct energy-dependent cross sections for the production of a large number of radioactive positron emitters resulting from proton and alpha-particle interactions with ambient cosmic matter. Using these cross sections, positron production rates are calculated for a variety of energetic particle spectra, assuming solar abundances for both the energetic particles and the ambient medium. These results can be used for the study of astrophysical sites which emit annihilation radiation. In particular, the results have been applied to solar flares, where the observed 0.511 MeV line is shown to be due to positrons resulting from accelerated particle reactions.

  12. Particle interactions in microemulsion systems

    SciTech Connect

    Brouwer, W.M.; Nieuwenhuis, E.A.; Kops-Werkhoven, M.M.

    1983-03-01

    This study obtains information about the type of interactions between microemulsion particles as a function of their composition using time averaged and dynamic light scattering and sedimentation measurements and checks the consistency of the experimental data with respect to the generalized Einstein relation. Interactions between microemulsion particles are affected by the flexibility of the soap chains. The more flexible the soap chains, the lesser the attraction forces between the particles. The lack of consistency in the interaction behavior as obtained from different experimental techniques is an important observation, which leads to the conclusion that care should be taken in the determination of the interaction behavior in microemulsion systems from one or 2 experimental techniques. 24 referernces.

  13. Ionization equilibrium in a cluster plasma with strong interparticle interaction

    SciTech Connect

    Likal'ter, A.A.

    1987-07-01

    An expansion, accurate up to the Madelung term, is derived for the drop in the ionization potential (and pressure) due to the strong Coulomb interaction. The ionization limit, separating the free and bound electron states, is determined with the help of the percolation theory. The principle of no explicit dependence of the total thermodynamic functions of the plasma on the ionization limit is employed. This has the consequence that the region of thermodynamic stability is greatly expanded compared with other models.

  14. Elementary Particles and Weak Interactions

    DOE R&D Accomplishments Database

    Lee, T. D.; Yang, C. N.

    1957-01-01

    Some general patterns of interactions between various elementary particles are reviewed and some general questions concerning the symmetry properties of these particles are studied. Topics are included on the theta-tau puzzle, experimental limits on the validity of parity conservation, some general discussions on the consequences due to possible non-invariance under P, C, and T, various possible experimental tests on invariance under P, C, and T, a two-component theory of the neutrino, a possible law of conservation of leptons and the universal Fermi interactions, and time reversal invariance and Mach's principle. (M.H.R.)

  15. Multielectron transitions resulting from interactions between target and projectile electrons in ionizing collisions

    SciTech Connect

    Manson, S.T. ); DuBois, R.D. )

    1992-12-01

    Interactions between target and projectile electrons leading to ionization of one of the collision partners and simultaneous excitation of the other are investigated for fast clothed-particle--clothed-particle collisions. For H-atom impact, the first Born approximation is used to demonstrate that the low-energy-electron emission is dominated by electron-electron rather than by electron-nucleus interaction processes. For a broad class of structured particle collision systems, the electron-electron interaction is shown to play an important, non-neglibible, role. Doubly differential cross sections for energetic H-He collisions illustrate this point.

  16. Inelastic electron interaction (attachment/ionization) with deoxyribose

    NASA Astrophysics Data System (ADS)

    Ptasińska, S.; Denifl, S.; Scheier, P.; Märk, T. D.

    2004-05-01

    We have investigated experimentally the formation of anions and cations of deoxyribose sugar (C5H10O4) via inelastic electron interaction (attachment/ionization) using a monochromatic electron beam in combination with a quadrupole mass spectrometer. The ion yields were measured as a function of the incident electron energy between about 0 and 20 eV. As in the case of other biomolecules (nucleobases and amino acids), low energy electron attachment leads to destruction of the molecule via dissociative electron attachment reactions. In contrast to the previously investigated biomolecules dehydrogenation is not the predominant reaction channel for deoxyribose; the anion with the highest dissociative electron attachment (DEA) cross section of deoxyribose is formed by the release of neutral particles equal to two water molecules. Moreover, several of the DEA reactions proceed already with "zero energy" incident electrons. In addition, the fragmentation pattern of positively charged ions of deoxyribose also indicates strong decomposition of the molecule by incident electrons. For sugar the relative amount of fragment ions compared to that of the parent cation is about an order of magnitude larger than in the case of nucleobases. We determined an ionization energy value for C5H10O4+ of 10.51±0.11 eV, which is in good agreement with ab initio calculations. For the fragment ion C5H6O2+ we obtained a threshold energy lower than the ionization energy of the parent molecular ion. All of these results have important bearing for the question of what happens in exposure of living tissue to ionizing radiation. Energy deposition into irradiated cells produces electrons as the dominant secondary species. At an early time after irradiation these electrons exist as ballistic electrons with an initial energy distribution up to several tens of electron volts. It is just this energy regime for which we find in the present study rather characteristic differences in the outcome of electron

  17. Percolation of interaction diffusing particles

    NASA Technical Reports Server (NTRS)

    Selinger, Robin Blumberg; Stanley, H. Eugene

    1990-01-01

    The connectivity properties of systems of diffusing interacting particles with the blind and myopic diffusion rules are studied. It is found that the blind rule case is equivalent to the lattice gas with J = 0 in all dimensions. The connectivity properties of blind rule diffusion are described by random site percolation due to the fact that the density on neighboring sites is uncorrelated.

  18. Asymmetric particle fluxes from drifting ionization zones in sputtering magnetrons

    NASA Astrophysics Data System (ADS)

    Panjan, Matjaž; Franz, Robert; Anders, André

    2014-04-01

    Electron and ion fluxes from direct current and high-power impulse magnetron sputtering (dcMS and HiPIMS) plasmas were measured in the plane of the target surface. Biased collector probes and a particle energy and mass analyzer showed asymmetric emission of electrons and of singly and doubly charged ions. For both HiPIMS and dcMS discharges, higher fluxes of all types of particles were observed in the direction of the electrons' E × B drift. These results are put in the context with ionization zones that drift over the magnetron's racetrack. The measured currents of time-resolving collector probes suggest that a large fraction of the ion flux originates from drifting ionization zones, while energy-resolving mass spectrometry indicates that a large fraction of the ion energy is due to acceleration by an electric field. This supports the recently proposed hypothesis that each ionization zone is associated with a negative-positive-negative space charge structure, thereby producing an electric field that accelerates ions from the location where they were formed.

  19. Dielectrophoretic particle-particle interaction under AC electrohydrodynamic flow conditions.

    PubMed

    Lee, Doh-Hyoung; Yu, Chengjie; Papazoglou, Elisabeth; Farouk, Bakhtier; Noh, Hongseok M

    2011-09-01

    We used the Maxwell stress tensor method to understand dielectrophoretic particle-particle interactions and applied the results to the interpretation of particle behaviors under alternating current (AC) electrohydrodynamic conditions such as AC electroosmosis (ACEO) and electrothermal flow (ETF). Distinct particle behaviors were observed under ACEO and ETF. Diverse particle-particle interactions observed in experiments such as particle clustering, particles keeping a certain distance from each other, chain and disc formation and their rotation, are explained based on the numerical simulation data. The improved understanding of particle behaviors in AC electrohydrodynamic flows presented here will enable researchers to design better particle manipulation strategies for lab-on-a-chip applications. PMID:21823132

  20. Impact ionization experiments with porous cosmic dust particle analogs

    NASA Astrophysics Data System (ADS)

    Sterken, Veerle; Moragas-Klostermeyer, Georg; Hillier, Jon; Fielding, Lee; Lovett, Joseph; Armes, Steven; Fechler, Nina; Srama, Ralf; Bugiel, Sebastian; Hornung, Klaus

    2016-04-01

    Impact ionization experiments have been performed since more than 40 years for calibration of cosmic dust instruments using a linear Van de Graaff dust accelerator. Such an accelerator can accelerate conductive dust particles of sizes between ca. a few tens of microns, and a micron in size to speeds up to 80 km/s depending on particle size. Many different materials have been used for instrument calibration, from iron in the earlier days to carbon, metal-coated minerals and most recently, minerals coated with conductive polymers. While different materials with different densities have been used for instrument calibration, no comparative analysis has been made yet of compact particles versus porous or fluffy particles of the same material. Porous or fluffy particles are increasingly found to be present in the solar system, e.g. dust from comet 67P Churyumov-Gerasimenko or aggregate grains from the plumes of Enceladus and recently also indications were found for low-density interstellar dust (ISD) from ISD data and trajectory simulations. These recalibrations are thus relevant for estimations of the size distributions of interplanetary and interstellar dust. In this talk we report about the calibrations being performed at the Heidelberg dust accelerator facility for investigating the influence of particle density on the impact ionization charge after impact. We use the Cassini Cosmic Dust Analyser as an impact target. We then explain the experiment set-up, the preparation of the materials and the materials used. We elaborate on the technical challenges, and finally about the current status of the research at this stage. We conclude the talk with the relevance of the study, being the potential influence of such calibrations on the estimates of the mass distributions of interstellar and interplanetary dust.

  1. Detecting weakly interacting massive particles.

    NASA Astrophysics Data System (ADS)

    Drukier, A. K.; Gelmini, G. B.

    The growing synergy between astrophysics, particle physics, and low background experiments strengthens the possibility of detecting astrophysical non-baryonic matter. The idea of direct detection is that an incident, massive weakly interacting particle could collide with a nucleus and transfer an energy that could be measured. The present low levels of background achieved by the PNL/USC Ge detector represent a new technology which yields interesting bounds on Galactic cold dark matter and on light bosons emitted from the Sun. Further improvements require the development of cryogenic detectors. The authors analyse the practicality of such detectors, their optimalization and background suppression using the "annual modulation effect".

  2. Ratio of double to single ionization of helium: The relationship between ionization by photons and by bare charged particles

    SciTech Connect

    Manson, S.T. ); McGuire, J.H. )

    1995-01-01

    It is well known that cross sections for ionization of atoms by fast charged particles and by photons are related by the Bethe-Born theory. We employ this relationship to derive a corresponding relation for the ratio [ital R] of double to single ionization including the first two terms of the Bethe expansion. For sufficiently fast charged particles, where the second term can be ignored, the ratios as a function of [Delta][ital E]---the energies transferred to the atom by the projectile---for ionization by charged particles [ital R][sub [ital z

  3. Matter and Interactions: A Particle Physics Perspective

    ERIC Educational Resources Information Center

    Organtini, Giovanni

    2011-01-01

    In classical mechanics, matter and fields are completely separated; matter interacts with fields. For particle physicists this is not the case; both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this article we explain why particle physicists believe in…

  4. Ionization of the Earth's Upper Atmosphere in Large Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Wolff, E.; Burrows, J.; Kallenrode, M.; von Koenig, M.; Kuenzi, K. F.; Quack, M.

    2001-12-01

    Energetic charged particles ionize the upper terrestrial atmosphere. Sofar, chemical consequences of precipitating particles have been discussed for solar protons with energies up to a few hundred MeV. We present a refined model for the interaction of energetic particles with the atmosphere based on a Monte-Carlo simulation. The model includes higher energies and other particle species, such as energetic solar electrons. Results are presented for well-known solar events, such as July 14, 2000, and are extrapolated to extremely large events, such as Carrington's white light flare in 1859, which from ice cores has been identified ass the largest impulsive NO3 event in the interval 1561 -- 1994 (McCracken et al., 2001).

  5. Soft particles with anisotropic interactions

    NASA Astrophysics Data System (ADS)

    Schurtenberger, Peter

    Responsive colloids such as thermo- or pH-sensitive microgels are ideal model systems to investigate the relationship between the nature of interparticle interactions and the plethora of self-assembled structures that can form in colloidal suspensions. They allow for a variation of the form, strength and range of the interaction potential almost at will. While microgels have extensively been used as model systems to investigate various condensed matter problems such as glass formation, jamming or crystallization, they can also be used to study systems with anisotropic interactions. Here we show results from a systematic investigation of the influence of softness and anisotropy on the structural and dynamic properties of strongly interacting suspensions. We focus first on ionic microgels. Due to their large number of internal counterions they possess very large polarisabilities, and we can thus use external electrical ac fields to generate large dipolar contributions to the interparticle interaction potential. This leads to a number of new crystal phases, and we can trigger crystal-crystal phase transitions through the appropriate choice of the field strength. We then show that this approach can be extended to more complex particle shapes in an attempt to copy nature's well documented success in fabricating complex nanostructures such as virus shells via self assembly. European Research Council (ERC-339678-COMPASS).

  6. Interacting particle systems on graphs

    NASA Astrophysics Data System (ADS)

    Sood, Vishal

    In this dissertation, the dynamics of socially or biologically interacting populations are investigated. The individual members of the population are treated as particles that interact via links on a social or biological network represented as a graph. The effect of the structure of the graph on the properties of the interacting particle system is studied using statistical physics techniques. In the first chapter, the central concepts of graph theory and social and biological networks are presented. Next, interacting particle systems that are drawn from physics, mathematics and biology are discussed in the second chapter. In the third chapter, the random walk on a graph is studied. The mean time for a random walk to traverse between two arbitrary sites of a random graph is evaluated. Using an effective medium approximation it is found that the mean first-passage time between pairs of sites, as well as all moments of this first-passage time, are insensitive to the density of links in the graph. The inverse of the mean-first passage time varies non-monotonically with the density of links near the percolation transition of the random graph. Much of the behavior can be understood by simple heuristic arguments. Evolutionary dynamics, by which mutants overspread an otherwise uniform population on heterogeneous graphs, are studied in the fourth chapter. Such a process underlies' epidemic propagation, emergence of fads, social cooperation or invasion of an ecological niche by a new species. The first part of this chapter is devoted to neutral dynamics, in which the mutant genotype does not have a selective advantage over the resident genotype. The time to extinction of one of the two genotypes is derived. In the second part of this chapter, selective advantage or fitness is introduced such that the mutant genotype has a higher birth rate or a lower death rate. This selective advantage leads to a dynamical competition in which selection dominates for large populations

  7. Improved modeling of relativistic collisions and collisional ionization in particle-in-cell codes

    SciTech Connect

    Perez, F.; Gremillet, L.; Decoster, A.; Drouin, M.; Lefebvre, E.

    2012-08-15

    An improved Monte Carlo collisional scheme modeling both elastic and inelastic interactions has been implemented into the particle-in-cell code CALDER[E. Lefebvre et al., Nucl. Fusion 43, 629 (2003)]. Based on the technique proposed by Nanbu and Yonemura [J. Comput. Phys. 145, 639 (1998)] allowing to handle arbitrarily weighted macro-particles, this binary collision scheme uses a more compact and accurate relativistic formulation than the algorithm recently worked out by Sentoku and Kemp [J. Comput. Phys. 227, 6846 (2008)]. Our scheme is validated through several test cases, demonstrating, in particular, its capability of modeling the electrical resistivity and stopping power of a solid-density plasma over a broad parameter range. A relativistic collisional ionization scheme is developed within the same framework, and tested in several physical scenarios. Finally, our scheme is applied in a set of integrated particle-in-cell simulations of laser-driven fast electron transport.

  8. Test beam analysis of the effect of highly ionizing particles on the CMS Silicon Strip Tracker

    NASA Astrophysics Data System (ADS)

    De Filippis, N.; CMS Collaboration

    2004-09-01

    Highly ionizing particles (HIPs) created by nuclear interactions in the silicon sensors cause a large signal which can saturate the APV readout chip used in the CMS Silicon Tracker system. This phenomenon was studied in two different beam-tests performed at PSI and at the CERN X5 experimental areas in 2002. The probability of a HIP-like event to occur per incident pion was measured and the dependence of the APV capability to detect a MIP signal on the time required to recover from such an event is derived. From these results, the expected inefficiency of the CMS Tracker due to HIPS is inferred.

  9. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    DOE PAGESBeta

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; et al

    2014-10-22

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton (1H; 0.5 Gy, 1 GeV) and iron ion (56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initiallymore » improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.« less

  10. Cardiovascular risks associated with low dose ionizing particle radiation.

    PubMed

    Yan, Xinhua; Sasi, Sharath P; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; Rahimi, Layla; Morgan, James; Wilson, Paul F; Carrozza, Joseph; Walsh, Kenneth; Kishore, Raj; Goukassian, David A

    2014-01-01

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ((1)H; 0.5 Gy, 1 GeV) and iron ion ((56)Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in (56)Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, (56)Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy. PMID:25337914

  11. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    SciTech Connect

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; Rahimi, Layla; Morgan, James; Wilson, Paul F.; Carrozza, Joseph; Walsh, Kenneth; Kishore, Raj; Goukassian, David A.

    2014-10-22

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton (1H; 0.5 Gy, 1 GeV) and iron ion (56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.

  12. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    PubMed Central

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; Rahimi, Layla; Morgan, James; Wilson, Paul F.; Carrozza, Joseph; Walsh, Kenneth; Kishore, Raj; Goukassian, David A.

    2014-01-01

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton (1H; 0.5 Gy, 1 GeV) and iron ion (56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy. PMID:25337914

  13. Absolute negative mobility of interacting Brownian particles

    NASA Astrophysics Data System (ADS)

    Ou, Ya-li; Hu, Cai-tian; Wu, Jian-chun; Ai, Bao-quan

    2015-12-01

    Transport of interacting Brownian particles in a periodic potential is investigated in the presence of an ac force and a dc force. From Brownian dynamic simulations, we find that both the interaction between particles and the thermal fluctuations play key roles in the absolute negative mobility (the particle noisily moves backwards against a small constant bias). When no the interaction acts, there is only one region where the absolute negative mobility occurs. In the presence of the interaction, the absolute negative mobility may appear in multiple regions. The weak interaction can be helpful for the absolute negative mobility, while the strong interaction has a destructive impact on it.

  14. Ionization, Charging and Electric Field Effects on Cloud Particles in the CLOUD Experiment

    NASA Astrophysics Data System (ADS)

    Nichman, L.; Järvinen, E.; Wagner, R.; Dorsey, J.; Dias, A. M.; Ehrhart, S.; Kirkby, J.; Gallagher, M. W.; Saunders, C. P.

    2015-12-01

    Ice crystals and frozen droplets play an important role in atmospheric charging and electrification processes, particularly by collision and aggregation. The dynamics of charged particles in the atmosphere can be modulated by Galactic Cosmic Rays (GCR). High electric fields also affect the alignment of charged particles, allowing more time for interactions. The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN has the ability to conduct ionization, charging and high electric field experiments on liquid or ice clouds created in the chamber by adiabatic pressure reductions. A pion secondary beam from the CERN Proton Synchrotron is used to ionize the molecules in the chamber, and Ar+ Corona Ion Generator for Atmospheric Research (CIGAR) is used to inject unipolar charged ions directly into the chamber. A pressurized airgun provides rapid pressure shocks inside the chamber and induces charged ice nucleation. The cloud chamber is accompanied by a variety of analysing instruments e.g. a 3View Cloud Particle Imager (3V-CPI) coupled with an induction ring, a Scattering Intensity Measurements for the Optical detection of icE (SIMONE) and a Nano-aerosol and Air Ion Spectrometer (NAIS). Using adiabatic expansion and high electric fields we can replicate the ideal conditions for adhesion, sintering and interlocking between ice crystals. Charged cloud particles produced measurable variations in the total induced current pulse on the induction ring. The most influential factors comprised initial temperature, lapse rate and charging mechanism. The ions produced in the chamber may deposit onto larger particles and form dipoles during ice nucleation and growth. The small ion concentration was monitored by the NAIS during these runs. Possible short-term aggregates or alignment of particles were observed in-situ with the SIMONE. These and future chamber measurements of charging and aggregation could shed more light on the ambient conditions and dynamics for electrification

  15. Ratio of double to single ionization of He by photon and charged particle impact

    SciTech Connect

    Manson, S.T.

    1994-12-31

    The well-known relationship between ionization of atoms by fast charged particles and by photons, the Bethe-Born theory, is applied to the ratio of double ionization to single ionization of He, a process that has been under intense recent scrutiny. It is found that for sufficiently fast charged particles, this ratio for the single differential cross sections, differential in the energy transferred to the atom, {Delta}E, is equal to the photoionization ratio at a photon energy hv = {Delta}E, and this result is unmodified even for ionization by relativistic charged particles. In addition, a relation for the ratio of total charged particle impact ionization cross sections to the photoionization ratio is derived. The results are compared with recent experimental data and various discrepancies are uncovered. Possible sources of these discrepancies are discussed.

  16. (Effects of ionizing radiation on scintillators and other particle detectors)

    SciTech Connect

    Proudfoot, J.

    1992-01-01

    It is my task to summarise the great variety of topics (covering a refreshing mix of physics, chemistry and technology) presented at this conference, which has focused on the effects of ionising radiation on scintillators and other particle detectors. One of the reasons and the central interest of many of the participants was the use of such detectors in experiments at two future large hadron colliders: the Superconducting Super Collider to be operating outside of Dallas in the United States by the turn of the decade and its European counterpart the Large Hadron Collider to be operating outside of Geneva in Switzerland on a similar time scale. These accelerators are the apple of the high energy physicist's eye.'' Their goal is to uncover the elusive Higgs particle and thereby set the cornerstone in our current knowledge of elementary particle interactions. This is the Quest, and from this lofty height the presentations rapidly moved on to the specific questions of experimental science: how such an experiment is carried out; why radiation damage is an issue; how radiation damage affects detectors; which factors affect radiation damage characteristics; which factors are not affected by radiation damage; and how better detectors may be constructed. These were the substance of this conference.

  17. Experimental and theoretical analysis of bias ionization by α-particles in a nitrogen laser

    NASA Astrophysics Data System (ADS)

    Silva, R. R.; Vieira Mendes, L. A.; Tsui, K. H.; De Simone Zanon, R. A.; de Oliveira, A. L.; Fellows, C. E.

    2011-09-01

    Nitrogen laser performance with TE configuration and wedge electrodes is analyzed with background ionization in the laser discharge channel by α particles at a low exposition rate. With the bias ionization, the laser power presents two peaks as a function of gas pressure, with one at the normal low pressure, without bias ionization, and the other at high pressure generated by bias ionization. A simple theoretical model has been developed in a trial to understand this behavior. This model was first tested in later results for a TE configuration nitrogen laser, with flat electrodes, without and with bias ionization. It has been observed that due to the competition between electrode shielding by positively charged α particles and bulk ionization by impact, the laser energy is suppressed with pressure below 50 Torr and enhanced above it.

  18. Temperature dependence of particle-particle interactions in electrorheological fluids

    NASA Astrophysics Data System (ADS)

    Gonon, P.; Foulc, J.-N.

    2000-04-01

    We report on the temperature dependence of particle-particle interactions in electrorheological (ER) fluids for the temperature range 20-100 °C. The attraction force between polyamide spheres immersed in silicone oil is measured as a function of temperature. The force-temperature characteristic shows a broad maximum around 40 °C, corresponding to an increase of about 30% compared to the force measured at room temperature. In view of these results we proposed that the temperature dependence of the shear stress in ER fluids is directly related to the variation of the local particle-particle attraction forces. Data are discussed in light of models which were proposed in the literature to describe particle-particle interactions. At high electric fields "conduction models" could explain the observed temperature dependence through the variations of the oil breakdown field with temperature. However, limitations of such models are also clearly evidenced by data obtained at low electric fields.

  19. Hydrodynamic particle interactions in sheared microflows

    NASA Astrophysics Data System (ADS)

    Marin, Alvaro; Rossi, Massimiliano; Zurita-Gotor, Mauricio; Kähler, Christian J.

    2012-11-01

    Multiphase flows in micro-confined geometries are non-trivial problems: drops and particles introduce a high degree of complexity into the otherwise linear Stokes flows. Very recently, new mechanisms of instability have been identified in simulations in shear-flows of non-Brownian particle solutions (Zurita-Gotor et al., J. Fluid Mech. 592, 2007, and Phys. Rev. Lett. 108, 2012), which might be the cause for anomalous self-diffusion measured experimentally by Zarraga and Leighton (Phys. Fluids 14, 2002). Using a 3D particle tracking technique (Astigmatism-PTV), we perform experiments in a microconfined cone-plate couette flow with a dilute suspension of non-brownian particles. The A-PTV technique permits us to track individual particles trajectories revealing particle-particle hydrodynamic interactions. Our experiments show an abnormal dispersion in the velocity field and non-homogeneous particle distribution which can be related with the swapping mechanism (JFM 592, 2007; PRL 108, 2012).

  20. Picosecond transient absorption rise time for ultrafast tagging of the interaction of ionizing radiation with scintillating crystals in high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Auffray, E.; Buganov, O.; Fedorov, A.; Korjik, M.; Mechinsky, V.; Tikhomirov, A.; Vasil'ev, A.; Lecoq, P.

    2014-07-01

    Here we report the first results of a search of a signature for picosecond time stamps of the interaction between ionizing particles and transparent crystalline media. The induced absorption with sub-picosecond rise time observed in a cerium fluoride scintillation single crystal under UV excitation is directly associated with the ionization of Ce3+ atoms in CeF3 crystals, and the very fast occurrence thereof can be used to generate picosecond-precise time stamps corresponding to the interaction of ionizing particles with the crystal in high energy physics experiments.

  1. Investigation of plasma particle interactions with variable particle sizes

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell

    2015-11-01

    In dusty plasmas, the dust particles are subjected to many forces of different origins. Both the gas and plasma directly affect the dust particles through electric fields, neutral drag, ion drag and thermophoretic forces, while the particles themselves interact with one another through a screened coulomb potential, which can be influenced by flowing ions. Recently, micron sized particles have been used as probes to analyze the electric fields in the plasma directly. A proper analysis of the resulting data requires a full understanding of the manner in which these forces couple to the dust particles. In most cases each of the forces exhibit unique characteristics, many of which are partially dependent on the particle size. In this study, five different particle sizes are used to investigate the forces resident in the sheath above the lower electrode of a GEC RF reference cell. The particles are tracked using a high-speed camera, yielding two-dimensional force maps allowing the force on the particles to be described as a polynomial series. It will be shown that the data collected can be analyzed to reveal information about the origins of the various forces. Support from the NSF and the DOE (award numbers PHY-1262031 and PHY-1414523) is gratefully acknowledged.

  2. Interaction of rotavirus particles with liposomes.

    PubMed

    Nandi, P; Charpilienne, A; Cohen, J

    1992-06-01

    We have studied the interactions of purified viral particles with liposomes as a model to understand the mechanism of entry of rotavirus into the cell. Liposomes, made from pure as well as mixed lipids, that contained encapsulated self-quenching concentrations of the fluorophore carboxyfluorescein (CF) were used. Rotavirus-liposome interactions were studied from the fluorescence dequenching of CF resulting from its release to the bulk solution. Purified infectious double-shelled virus particles induced a concentration- and temperature-dependent release of CF. The rate and extent of CF release was maximum between pH 7.3 and 7.6. The removal of outer structural proteins VP4 and VP7 from virus, which results in the formation of single-shelled particles, prevented virus interaction with liposomes. Rotavirus particles with uncleaved VP4 did not interact with liposomes, but treatment in situ of these particles with trypsin restored the interaction with the liposomes and resulted in CF dequenching. Our data support the view that rotavirus enters the cell through direct penetration of the plasma membrane. In contrast, adenovirus, the only other nonenveloped virus studied by this method, shows the optimum rate of marker release from liposomes at around pH 6 (R. Blumenthal, P. S. Seth, M. C. Willingham, and I. Pastan, Biochemistry 25:2231-2237, 1986). The interaction between rotavirus and liposomes is sensitive to specific divalent metal ions, unlike the adenovirus-liposome interaction, which is independent of them. PMID:1316453

  3. Particle dynamics and particle-cell interaction in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Stamm, Matthew T.

    Particle-laden flow in a microchannel resulting in aggregation of microparticles was investigated to determine the dependence of the cluster growth rate on the following parameters: suspension void fraction, shear strain rate, and channel-height to particle-diameter ratio. The growth rate of an average cluster was found to increase linearly with suspension void fraction, and to obey a power-law relationships with shear strain rate as S 0.9 and channel-height to particle-diameter ratio as (h/d )--3.5. Ceramic liposomal nanoparticles and silica microparticles were functionalized with antibodies that act as targeting ligands. The bio-functionality and physical integrity of the cerasomes were characterized. Surface functionalization allows cerasomes to deliver drugs with selectivity and specificity that is not possible using standard liposomes. The functionalized particle-target cell binding process was characterized using BT-20 breast cancer cells. Two microfluidic systems were used; one with both species in suspension, the other with cells immobilized inside a microchannel and particle suspension as the mobile phase. Effects of incubation time, particle concentration, and shear strain rate on particle-cell binding were investigated. With both species in suspension, the particle-cell binding process was found to be reasonably well-described by a first-order model. Particle desorption and cellular loss of binding affinity in time were found to be negligible; cell-particle-cell interaction was identified as the limiting mechanism in particle-cell binding. Findings suggest that separation of a bound particle from a cell may be detrimental to cellular binding affinity. Cell-particle-cell interactions were prevented by immobilizing cells inside a microchannel. The initial stage of particle-cell binding was investigated and was again found to be reasonably well-described by a first-order model. For both systems, the time constant was found to be inversely proportional to

  4. The Particle Beam Optics Interactive Computer Laboratory

    SciTech Connect

    Gillespie, G.H.; Hill, B.W.; Brown, N.A.; Babcock, R.C.; Martono, H.; Carey, D.C. |

    1997-02-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab. {copyright} {ital 1997 American Institute of Physics.}

  5. The Particle Beam Optics Interactive Computer Laboratory

    NASA Astrophysics Data System (ADS)

    Gillespie, George H.; Hill, Barrey W.; Brown, Nathan A.; Babcock, R. Chris; Martono, Hendy; Carey, David C.

    1997-02-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab.

  6. Particle-Surface Interaction Model and Method of Determining Particle-Surface Interactions

    NASA Technical Reports Server (NTRS)

    Hughes, David W. (Inventor)

    2012-01-01

    A method and model of predicting particle-surface interactions with a surface, such as the surface of a spacecraft. The method includes the steps of: determining a trajectory path of a plurality of moving particles; predicting whether any of the moving particles will intersect a surface; predicting whether any of the particles will be captured by the surface and/or; predicting a reflected trajectory and velocity of particles reflected from the surface.

  7. Interactive methods for exploring particle simulation data

    SciTech Connect

    Co, Christopher S.; Friedman, Alex; Grote, David P.; Vay, Jean-Luc; Bethel, E. Wes; Joy, Kenneth I.

    2004-05-01

    In this work, we visualize high-dimensional particle simulation data using a suite of scatter plot-based visualizations coupled with interactive selection tools. We use traditional 2D and 3D projection scatter plots as well as a novel oriented disk rendering style to convey various information about the data. Interactive selection tools allow physicists to manually classify ''interesting'' sets of particles that are highlighted across multiple, linked views of the data. The power of our application is the ability to correspond new visual representations of the simulation data with traditional, well understood visualizations. This approach supports the interactive exploration of the high-dimensional space while promoting discovery of new particle behavior.

  8. Thermoelectricity of interacting particles: a numerical approach.

    PubMed

    Chen, Shunda; Wang, Jiao; Casati, Giulio; Benenti, Giuliano

    2015-09-01

    A method for computing the thermopower in interacting systems is proposed. This approach, which relies on Monte Carlo simulations, is illustrated first for a diatomic chain of hard-point elastically colliding particles and then in the case of a one-dimensional gas with (screened) Coulomb interparticle interaction. Numerical simulations up to N>10^{4} particles confirm the general theoretical arguments for momentum-conserving systems and show that the thermoelectric figure of merit increases linearly with the system size. PMID:26465458

  9. Ionizing radiation induces heritable disruption of epithelial cell interactions

    NASA Technical Reports Server (NTRS)

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Chatterjee, A. (Principal Investigator)

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.

  10. Ionizing radiation induces heritable disruption of epithelial cell interactions

    PubMed Central

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, β-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell–cell communication, aberrant cell–extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization. PMID:12960393

  11. Identifying uranium particles using fission tracks and microsampling individual particles for analysis using thermal ionization mass spectrometry.

    PubMed

    Esaka, Fumitaka; Suzuki, Daisuke; Magara, Masaaki

    2015-03-01

    The analysis of isotope ratios in individual particles found in the environment is important to clarify the origins of the particles. In particular, the analysis of uranium particles in environmental samples from nuclear facilities is useful for detecting undeclared nuclear activities related to the production of nuclear weapons. Thermal ionization mass spectrometry (TIMS) combined with a fission track technique is an efficient method for determining the isotope ratios of individual uranium particles, but has a drawback called "particle-mixing". When some uranium particles are measured as a single particle and an average isotope ratio for the particles is obtained, it is called "particle mixing". This may lead to erroneous conclusions in terms of the particle sources that are identified. In the present study, microsampling using a scanning electron microscope was added to the fission track-TIMS procedure. The analysis of a mixture of SRM 950a and CRM U100 reference materials containing uranium particles indicated that particle mixing was almost completely avoided using the proposed technique. The performance of the proposed method was sufficient for obtaining reliable data for the sources of individual particles to be identified reliably. PMID:25680068

  12. Internal waves interacting with particles in suspension

    NASA Astrophysics Data System (ADS)

    Micard, Diane

    2016-04-01

    Internal waves are produced as a consequence of the dynamic balance between buoy- ancy and gravity forces when a particle of fluid is vertically displaced in a stable stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves to propagate. Furthermore, these two environ- ments stock a vast amount of particles in suspension, which present a large spectrum of physical properties (size, density, shape), and can be organic, mineral or pollutant agents. Therefore, it is reasonable to expect that internal waves will have an active effect over the dynamics of these particles. In order to study the interaction of internal waves and suspended particles, an ide- alized experimental setup has been implemented. A linear stratification is produced in a 80×40×17 cm3 tank, in which two dimensional plane waves are created thanks to the inno- vative wave generator GOAL. In addition, a particle injector has been developed to produce a vertical column of particles within the fluid, displaying the same two-dimensional sym- metry as the waves. The particle injector allows to control the volumic fraction of particles and the size of the column. The presence of internal waves passing through the column of particles allowed to observe two main effects: The column oscillates around an equilibrium position (which is observed in both, the contours an the interior of the column), and the column is displaced as a whole. The column is displaced depending on the characteristics of the column, the gradient of the density, and the intensity and frequency of the wave. When displaced, the particles within the column are sucked towards the source of waves. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift generated by the wave over the time the particles stay in the wave beam before settling.

  13. Two interacting particles in a spherical pore

    NASA Astrophysics Data System (ADS)

    Urrutia, Ignacio; Castelletti, Gabriela

    2011-02-01

    In this work we analytically evaluate, for the first time, the exact canonical partition function for two interacting spherical particles into a spherical pore. The interaction with the spherical substrate and between particles is described by an attractive square-well and a square-shoulder potential. In addition, we obtain exact expressions for both the one particle and an averaged two particle density distribution. We develop a thermodynamic approach to few-body systems by introducing a method based on thermodynamic measures [I. Urrutia, J. Chem. Phys. 134, 104503 (2010)] for nonhard interaction potentials. This analysis enables us to obtain expressions for the pressure, the surface tension, and the equivalent magnitudes for the total and Gaussian curvatures. As a by-product, we solve systems composed of two particles outside a fixed spherical obstacle. We study the low density limit for a many-body system confined to a spherical cavity and a many-body system surrounding a spherical obstacle. From this analysis we derive the exact first order dependence of the surface tension and Tolman length. Our findings show that the Tolman length goes to zero in the case of a purely hard wall spherical substrate, but contains a zero order term in density for square-well and square-shoulder wall-fluid potentials. This suggests that any nonhard wall-fluid potential should produce a non-null zero order term in the Tolman length.

  14. Wave-particle Interactions In Rotating Mirrors

    SciTech Connect

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11

    Wave-particle interactions in E×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  15. Interaction of axions with relativistic spinning particles

    NASA Astrophysics Data System (ADS)

    Popov, V. A.; Balakin, A. B.

    2016-05-01

    We consider a covariant phenomenological model, which describes an interaction between a pseudoscalar (axion) field and massive spinning particles. The model extends the Bagrmann-Michel-Telegdy approach in application to the axion electrodynamics. We present some exact solutions and discuss them in the context of experimental tests of the model and axion detection.

  16. High energy interactions of cosmic ray particles

    NASA Technical Reports Server (NTRS)

    Jones, L. W.

    1986-01-01

    The highlights of seven sessions of the Conference dealing with high energy interactions of cosmic rays are discussed. High energy cross section measurements; particle production-models of experiments; nuclei and nuclear matter; nucleus-nucleus collision; searches for magnetic monopoles; and studies of nucleon decay are covered.

  17. Treatment of Electronic Energy Level Transition and Ionization Following the Particle-Based Chemistry Model

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark

    2010-01-01

    A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.

  18. Strong field ionization rates simulated with time-dependent configuration interaction and an absorbing potential

    SciTech Connect

    Krause, Pascal; Sonk, Jason A.; Schlegel, H. Bernhard

    2014-05-07

    Ionization rates of molecules have been modeled with time-dependent configuration interaction simulations using atom centered basis sets and a complex absorbing potential. The simulations agree with accurate grid-based calculations for the ionization of hydrogen atom as a function of field strength and for charge resonance enhanced ionization of H{sub 2}{sup +} as the bond is elongated. Unlike grid-based methods, the present approach can be applied to simulate electron dynamics and ionization in multi-electron polyatomic molecules. Calculations on HCl{sup +} and HCO{sup +} demonstrate that these systems also show charge resonance enhanced ionization as the bonds are stretched.

  19. Solar energetic particle interactions with the Venusian atmosphere

    NASA Astrophysics Data System (ADS)

    Plainaki, Christina; Paschalis, Pavlos; Grassi, Davide; Mavromichalaki, Helen; Andriopoulou, Maria

    2016-07-01

    In the context of planetary space weather, we estimate the ion production rates in the Venusian atmosphere due to the interactions of solar energetic particles (SEPs) with gas. The assumed concept for our estimations is based on two cases of SEP events, previously observed in near-Earth space: the event in October 1989 and the event in May 2012. For both cases, we assume that the directional properties of the flux and the interplanetary magnetic field configuration would have allowed the SEPs' arrival at Venus and their penetration to the planet's atmosphere. For the event in May 2012, we consider the solar particle properties (integrated flux and rigidity spectrum) obtained by the Neutron Monitor Based Anisotropic GLE Pure Power Law (NMBANGLE PPOLA) model (Plainaki et al., 2010, 2014) applied previously for the Earth case and scaled to the distance of Venus from the Sun. For the simulation of the actual cascade in the Venusian atmosphere initiated by the incoming particle fluxes, we apply the DYASTIMA code, a Monte Carlo (MC) application based on the Geant4 software (Paschalis et al., 2014). Our predictions are afterwards compared to other estimations derived from previous studies and discussed. Finally, we discuss the differences between the nominal ionization profile due to galactic cosmic-ray-atmosphere interactions and the profile during periods of intense solar activity, and we show the importance of understanding space weather conditions on Venus in the context of future mission preparation and data interpretation.

  20. Hydrodynamic interaction between particles near elastic interfaces

    NASA Astrophysics Data System (ADS)

    Daddi-Moussa-Ider, Abdallah; Gekle, Stephan

    2016-07-01

    We present an analytical calculation of the hydrodynamic interaction between two spherical particles near an elastic interface such as a cell membrane. The theory predicts the frequency dependent self- and pair-mobilities accounting for the finite particle size up to the 5th order in the ratio between particle diameter and wall distance as well as between diameter and interparticle distance. We find that particle motion towards a membrane with pure bending resistance always leads to mutual repulsion similar as in the well-known case of a hard-wall. In the vicinity of a membrane with shearing resistance, however, we observe an attractive interaction in a certain parameter range which is in contrast to the behavior near a hard wall. This attraction might facilitate surface chemical reactions. Furthermore, we show that there exists a frequency range in which the pair-mobility for perpendicular motion exceeds its bulk value, leading to short-lived superdiffusive behavior. Using the analytical particle mobilities we compute collective and relative diffusion coefficients. The appropriateness of the approximations in our analytical results is demonstrated by corresponding boundary integral simulations which are in excellent agreement with the theoretical predictions.

  1. Hydrodynamic interaction between particles near elastic interfaces.

    PubMed

    Daddi-Moussa-Ider, Abdallah; Gekle, Stephan

    2016-07-01

    We present an analytical calculation of the hydrodynamic interaction between two spherical particles near an elastic interface such as a cell membrane. The theory predicts the frequency dependent self- and pair-mobilities accounting for the finite particle size up to the 5th order in the ratio between particle diameter and wall distance as well as between diameter and interparticle distance. We find that particle motion towards a membrane with pure bending resistance always leads to mutual repulsion similar as in the well-known case of a hard-wall. In the vicinity of a membrane with shearing resistance, however, we observe an attractive interaction in a certain parameter range which is in contrast to the behavior near a hard wall. This attraction might facilitate surface chemical reactions. Furthermore, we show that there exists a frequency range in which the pair-mobility for perpendicular motion exceeds its bulk value, leading to short-lived superdiffusive behavior. Using the analytical particle mobilities we compute collective and relative diffusion coefficients. The appropriateness of the approximations in our analytical results is demonstrated by corresponding boundary integral simulations which are in excellent agreement with the theoretical predictions. PMID:27394123

  2. Nighttime ionization by energetic particles at Wallops Island in the altitude region 120 to 200 km

    NASA Technical Reports Server (NTRS)

    Voss, H. D.; Smith, L. G.

    1979-01-01

    Five Nike Apache rockets, each including an energetic particle spectrometer and an electron density-electron temperature experiment, have been launched from Wallops Island (L = 2.6) near midnight under varying geomagnetic conditions. On the most recent of these (5 January 1978) an additional spectrometer with a broom magnet, and a 391.4 nm photometer were flown. The data from this flight indicate that the energetic particle flux consists predominantly of protons, neutral hydrogen and possibly other energetic nuclei. The energy spectrum becomes much softer and the flux more intense with increasing Kp for 10-100 keV. The pitch angle distribution at 180 km is asymmetrical with a peak at 90 deg indicating that the majority of particles are near their mirroring altitude. Ionization rates are calculated based on the measured energy spectrum and mirror height distribution. The resulting ionization rate profile is found to be nearly constant with altitude in the region 120 to 200 km. The measured energetic particle flux and calculated ionization rate from the five flights are found to vary with magnetic activity (based on the Kp and Dst indexes) in the same way as the independently derived ionization rates deduced from the electron density profile.

  3. Current models of the intensely ionizing particle environment in space

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    1988-01-01

    The Cosmic Ray Effects on MicroElectronics (CREME) model that is currently in use to estimate single event effect rates in spacecraft is described. The CREME model provides a description of the radiation environment in interplanetary space near the orbit of the earth that contains no major deficiencies. The accuracy of the galactic cosmic ray model is limited by the uncertainties in solar modulation. The model for solar energetic particles could be improved by making use of all the data that has been collected on solar energetic particle events. There remain major uncertainties about the environment within the earth's magnetosphere, because of the uncertainties over the charge states of the heavy ions in the anomalous component and solar flares, and because of trapped heavy ions. The present CREME model is valid only at 1 AU, but it could be extended to other parts of the heliosphere. There is considerable data on the radiation environment from 0.2 to 35 AU in the ecliptic plane. This data could be used to extend the CREME model.

  4. Search for lightly ionizing particles using CDMS-II data and fabrication of CDMS detectors with improved homogeneity in properties

    SciTech Connect

    Prasad, Kunj Bihari

    2013-12-01

    Fundamental particles are always observed to carry charges which are integral multiples of one-third charge of electron, e/3. While this is a well established experimental fact, the theoretical understanding for the charge quantization phenomenon is lacking. On the other hand, there exist numerous theoretical models that naturally allow for existence of particles with fractional electromagnetic charge. These particles, if existing, hint towards existence of physics beyond the standard model. Multiple high energy, optical, cosmological and astrophysical considerations restrict the allowable mass-charge parameter space for these fractional charges. Still, a huge unexplored region remains. The Cryogenic Dark Matter Search (CDMS-II), located at Soudan mines in northern Minnesota, employs germanium and silicon crystals to perform direct searches for a leading candidate to dark matter called Weakly Interacting Massive Particles (WIMPs). Alternately, the low detection threshold allows search for fractional electromagnetic-charged particles, or Lightly Ionizing Particles (LIPs), moving at relativistic speed. Background rejection is obtained by requiring that the magnitude and location of energy deposited in each detector be consistent with corresponding \\signatures" resulting from the passage of a fractionally charged particle. In this dissertation, the CDMS-II data is analyzed to search for LIPs, with an expected background of 0.078 0.078 events. No candidate events are observed, allowing exclusion of new parameter space for charges between e/6 and e/200.

  5. a Conduction Model Describing Particle-Particle Interaction in the Case of Surface Conducting Particles

    NASA Astrophysics Data System (ADS)

    Gonon, P.; Foulc, J.-N.; Atten, P.

    We propose an analytical conduction model describing particle-particle interactions for the case of electrorheological fluids based on surface conducting particles. The system consisting of two contacting spheres immersed in a dielectric liquid is modeled by a distributed impedances network, from which we derive analytical expressions for the potential at the spheres surface, for the electric field in the liquid phase, and finally for the interaction force. The theoretical interaction force is compared with experimental results obtained on insulating spheres coated with a thin conducting polyaniline film. A good agreement is found between the theory and experiment.

  6. Energetics of Mixed Phase Cloud Particle Interactions

    NASA Astrophysics Data System (ADS)

    Vidaurre, G.; Hallett, J.

    2005-12-01

    The ratio of the kinetic to surface energy of a crystal or a drop on impact gives a measure of the available energy for break-up and splash. Such a break-up process may influence particle collision and also particle observations at aircraft speed. The detail physical processes of the impact determines how the kinetic energy is distributed: 1) part retained by bouncing particles, 2) to create new surfaces during break-up, 3) to dislocate or melt part of the crystal, and 4) converted to thermal energy through viscous dissipation of deforming liquid or displacing air on impact. Extensive break-up of 2% of the crystal or melting of 6% is enough to explain the crystal kinetic energy losses during the encounter at aircraft speed. Ice crystals from convective and stratiform clouds and continental clouds were collected in formvar solution by continuous replicator and also were video-recorded following impact on optical flat of a Cloudscope. Particle sizes were classified in bins, the expected number of fragments being given by an exponential function for ice particles with effective diameter between 5 μm and 2500 μm, and 70% standard deviation. Regions of crystals broken into a few fragments account for 0.6% of the kinetic energy loss; in other parts severe break-up makes it impossible to measure the fracture length. Knowledge regarding ice and water interaction in Mixed-Phase clouds and also with the aircraft instruments provides basic underpinning for characterization of ice particle impact. Further, detail of the fracture process may also be of importance in relation to electrical properties of the particle after impaction or break-up. These conclusions are of major operational importance for prediction of the icing process itself, having implications for both aircraft icing and particle measurement instrumentation.

  7. Oblique propagation, wave particle interaction and particle distribution function

    NASA Astrophysics Data System (ADS)

    Osmane, Adnane; Hamza, A. M.; Meziane, Karim

    Recent results from the Cluster mission have stimulated theoretical investigations and simulations to explain ion distribution functions observed in the quasi-perp bow shock. High-time resolution observations have revealed distributions of gyrating ions that are gyrophase-bunched. When not produced at the shock, such distributions are believed to be resulting from interactions between field-aligned beams and low frequency beamdriven waves . The Conventional models used to account for such distributions assume that the waves are purely transverse, and that they propagate parallel to the ambient magnetic eld. However observations indicate that these waves are propagating obliquely with respect to the ambient magnetic eld [Meziane et al., 2001]. A theoretical investigation of the non-relativistic wave-particle interaction in a background magnetic eld with the electromagnetic wave propagating obliquely has been addressed previously, resulting in a dynamical system describing the wave interaction with a single ion in the absence of dissipation mechanisms. [Hamza et al., 2005] This dynamical system has been numerically integrated to construct the ion distribution functions by seeding the particles with di erent initial conditions. We compute the particle orbits and simulate the time evolution of the distribution functions based on Liouville's theorem of phase space density conservation. It will be shown that the trapping which is due to the oblique propagation of the wave, gives an explanation for gyrophase-bunching and unstable distributions in velocity space which could trigger instabilities such as firehose and mirror. Therefore this exercise provide insights on the particle dynamics and onset of waves away from the shock. Meziane, K., C. Mazelle, R.P. Lin, D. LeQueau, D.E. Larson, G.K. Parks, R.P. Lepping (2001), Three dimensional observations of gyrating ions distributions far upstream from the Earth's bow shock and their association with low-frequency waves, J

  8. Interaction vertex for classical spinning particles

    NASA Astrophysics Data System (ADS)

    Rempel, Trevor; Freidel, Laurent

    2016-08-01

    We consider a model of the classical spinning particle in which the coadjoint orbits of the Poincaré group are parametrized by two pairs of canonically conjugate four-vectors, one representing the standard position and momentum variables, and the other encoding the spinning degrees of freedom. This "dual phase space model" is shown to be a consistent theory of both massive and massless particles and allows for coupling to background fields such as electromagnetism. The on-shell action is derived and shown to be a sum of two terms, one associated with motion in spacetime, and the other with motion in "spin space." Interactions between spinning particles are studied, and a necessary and sufficient condition for consistency of a three-point vertex is established.

  9. Magnetospheric dynamics and wave-particle interactions

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Russell, C. T.

    1976-01-01

    It has been demonstrated that two general classes of wave-particle interactions are of great importance for magnetospheric dynamics. Electromagnetic and electrostatic plasma instabilities give rise to relatively narrow-banded spontaneous emissions (e.g., ELF hiss, chorus, three-halves noise, ion cyclotron and ion-plasma-frequency turbulence) that can scatter trapped particles into the loss cone, leading to modified pitch-angle distributions, stable trapping limits, diffuse aurora, proton precipitation events, etc. The current-driven plasma instabilities give rise to impulsive ion acoustic or Buneman mode turbulence that provides very effective energy transfer (via the anomalous conductivity mechanism) at the bow shock and in regions where strong field-aligned currents are observed. We review these interactions and identify significant open questions that must be investigated during the IMS.

  10. (Research in elementary particles and interactions). [1992

    SciTech Connect

    Adair, R.; Sandweiss, J.; Schmidt, M.

    1992-05-01

    Research of the Yale University groups in the areas of elementary particles and their interactions are outlined. Work on the following topics is reported: development of CDF trigger system; SSC detector development; study of heavy flavors at TPL; search for composite objects produced in relativistic heavy-ion collisions; high-energy polarized lepton-nucleon scattering; rare K{sup +} decays; unpolarized high-energy muon scattering; muon anomalous magnetic moment; theoretical high-energy physics including gauge theories, symmetry breaking, string theory, and gravitation theory; study of e{sup +}e{sup {minus}} interactions with the SLD detector at SLAC; and the production and decay of particles containing charm and beauty quarks.

  11. COLLISIONLESS SHOCKS IN A PARTIALLY IONIZED MEDIUM. I. NEUTRAL RETURN FLUX AND ITS EFFECTS ON ACCELERATION OF TEST PARTICLES

    SciTech Connect

    Blasi, P.; Morlino, G.; Bandiera, R.; Amato, E.; Caprioli, D.

    2012-08-20

    A collisionless shock may be strongly modified by the presence of neutral atoms through the processes of charge exchange between ions and neutrals and ionization of the latter. These two processes lead to exchange of energy and momentum between charged and neutral particles both upstream and downstream of the shock. In particular, neutrals that suffer a charge exchange downstream with shock-heated ions generate high-velocity neutrals that have a finite probability of returning upstream. These neutrals might then deposit heat in the upstream plasma through ionization and charge exchange, thereby reducing the fluid Mach number. A consequence of this phenomenon, which we refer to as the neutral return flux, is a reduction of the shock compression factor and the formation of a shock precursor upstream. The scale length of the precursor is determined by the ionization and charge-exchange interaction lengths of fast neutrals moving toward upstream infinity. In the case of a shock propagating in the interstellar medium, the effects of ion-neutral interactions are especially important for shock velocities <3000 km s{sup -1}. Such propagation velocities are common among shocks associated with supernova remnants, the primary candidate sources for the acceleration of Galactic cosmic rays. We then investigate the effects of the return flux of neutrals on the spectrum of test particles accelerated at the shock. We find that, for shocks slower than {approx}3000 km s{sup -1}, the particle energy spectrum steepens appreciably with respect to the naive expectation for a strong shock, namely, {proportional_to}E{sup -2}.

  12. Calibration of impact ionization dust detectors with porous or fluffy dust particles

    NASA Astrophysics Data System (ADS)

    Sterken, V. J.; Moragas-Klostermeyer, G.; Hillier, J. K.; Bugiel, S.; Srama, R.; Armes, S. P.; Fielding; L. A.; Lovett, J. R.; Grün, E.

    2013-07-01

    Impact ionization instruments like the ones flying on Cassini, Galileo, Helios and Ulysses have been calibrated using compact particles made of conductive materials like iron, or of minerals (like Olivine, Orthopyroxene, Magnetite, Pyrite) coated with a thin layer of conductive material. These calibrations were performed by shooting cosmic dust analogues with hypervelocity speeds from 1 to 80 km/s onto the flight spares of these instruments, using the Van de Graaff dust accelerator facility in Heidelberg. Here, we perform first measurements with Cassini CDA of the influence of the density of these dust particles on the resulting signal by, for a given impact speed, comparing signals from micron-sized particles made of compact PPy-coated silica to those from (PPy-coated) hollow silica spheres. The degree of impact ionization depends on the ratio of the densities of the target material and the impactor material and hence, different signals may result from impacts with diffe! rent density or porosity.

  13. Convective Polymer Depletion on Pair Particle Interactions

    NASA Astrophysics Data System (ADS)

    Fan, Tai-Hsi; Taniguchi, Takashi; Tuinier, Remco

    2011-11-01

    Understanding transport, reaction, aggregation, and viscoelastic properties of colloid-polymer mixture is of great importance in food, biomedical, and pharmaceutical sciences. In non-adsorbing polymer solutions, colloidal particles tend to aggregate due to the depletion-induced osmotic or entropic force. Our early development for the relative mobility of pair particles assumed that polymer reorganization around the particles is much faster than particle's diffusive time, so that the coupling of diffusive and convective effects can be neglected. Here we present a nonequilibrium two-fluid (polymer and solvent) model to resolve the convective depletion effect. The theoretical framework is based on ground state approximation and accounts for the coupling of fluid flow and polymer transport to better describe pair particle interactions. The momentum and polymer transport, chemical potential, and local viscosity and osmotic pressure are simultaneously solved by numerical approximation. This investigation is essential for predicting the demixing kinetics in the pairwise regime for colloid-polymer mixtures. This work is supported by NSF CMMI 0952646.

  14. Interaction energy and closest approach of moving charged particles on a plasma and neutral gas background

    NASA Astrophysics Data System (ADS)

    Øien, Alf H.

    2012-02-01

    Electric interaction between two negatively charged particles of different sizes on a mixed background of positive, negative, and neutral particles is complex and has relevance both to dusty plasmas and to transports in ionized fluids in general. We consider particularly effects during interaction that particle velocity and neutrals in the background may have on the well-known “dressing” and electric shielding that is due to the charged part of the background and how the interaction energy is modified because of this. Without such effects earlier works show the interaction becomes attractive when the distance between the two particles is a bit larger than the Debye length. We use a model where one of the two interacting particles has a radius much larger than the Debye length and the other a radius shorter than the Debye length. Then, the complex interaction may be more easily determined for particle separation up to a few Debye lengths. We consider the larger particle as stationary while the smaller may move. We find quite simple analytic expressions for the dressed particle interaction energy over the whole range of speed of the incoming smaller particle, assumed coming head on the larger particle, and the whole range of neutral particle densities. We also derive a distance of closest approach of small and large particles for all such parameter values. This distance is important for excluded volume estimations for moving small charged particles in media populated by large charged particles on a background as described above, and hence, important for determining the speed of flow of the smaller particles through such media.

  15. Energetic particles and ionization in the nighttime middle and low latitude ionosphere

    NASA Technical Reports Server (NTRS)

    Voss, H. D.; Smith, L. G.

    1977-01-01

    Seven Nike Apache rockets, each equipped with an energetic particle spectrometer (12 E 80 keV) and electron-density experiments, were launched from Wallops Island, Virginia and Chilca, Peru, under varying geomagnetic conditions near midnight. At Wallops Island the energetic particle flux (E 40 keV) is found to be strongly dependent on Kp. The pitch-angle distribution is asymmetrical about a peak at 90 D signifying a predominately quasi-trapped flux and explaining the linear increase of count rate with altitute in the altitude region 120 to 200 km. The height-averaged ionization rates derived from the electron-density profiles are consistent with the rates calculated from the observed total particle flux for magnetic index Kp 3. In the region 90 to 110 km it is found that the nighttime ionization is primarily a result of Ly-beta radiation from the geocorona and interplanetary hydrogen for even very disturbed conditions. Below 90 km during rather disturbed conditions energetic electrons can be a significant ionization source. Two energetic particle precipitation zones have been identified at midlatitudes.

  16. Alfvén ionization in an MHD-gas interactions code

    NASA Astrophysics Data System (ADS)

    Wilson, A. D.; Diver, D. A.

    2016-07-01

    A numerical model of partially ionized plasmas is developed in order to capture their evolving ionization fractions as a result of Alfvén ionization (AI). The mechanism of, and the parameter regime necessary for, AI is discussed and an expression for the AI rate based on fluid parameters, from a gas-MHD model, is derived. This AI term is added to an existing MHD-gas interactions' code, and the result is a linear, 2D, two-fluid model that includes momentum transfer between charged and neutral species as well as an ionization rate that depends on the velocity fields of both fluids. The dynamics of waves propagating through such a partially ionized plasma are investigated, and it is found that AI has a significant influence on the fluid dynamics as well as both the local and global ionization fraction.

  17. Identifying Carbohydrate Ligands of a Norovirus P Particle using a Catch and Release Electrospray Ionization Mass Spectrometry Assay

    NASA Astrophysics Data System (ADS)

    Han, Ling; Kitova, Elena N.; Tan, Ming; Jiang, Xi; Klassen, John S.

    2014-01-01

    Noroviruses (NoVs), the major cause of epidemic acute gastroenteritis, recognize human histo-blood group antigens (HBGAs), which are present as free oligosaccharides in bodily fluid or glycolipids and glycoproteins on the surfaces of cells. The subviral P particle formed by the protruding (P) domain of the NoV capsid protein serves as a useful model for the study NoV-HBGA interactions. Here, we demonstrate the application of a catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay for screening carbohydrate libraries against the P particle to rapidly identify NoV ligands and potential inhibitors. Carbohydrate libraries of 50 and 146 compounds, which included 18 and 24 analogs of HBGA receptors, respectively, were screened against the P particle of VA387, a member of the predominant GII.4 NoVs. Deprotonated ions corresponding to the P particle bound to carbohydrates were isolated and subjected to collision-induced dissociation to release the ligands in their deprotonated forms. The released ligands were identified by ion mobility separation followed by mass analysis. All 13 and 16 HBGA ligands with intrinsic affinities >500 M-1 were identified in the 50 and the 146 compound libraries, respectively. Furthermore, screening revealed interactions with a series of oligosaccharides with structures found in the cell wall of mycobacteria and human milk. The affinities of these newly discovered ligands are comparable to those of the HBGA receptors, as estimated from the relative abundance of released ligand ions.

  18. Baryogenesis for weakly interacting massive particles

    NASA Astrophysics Data System (ADS)

    Cui, Yanou; Sundrum, Raman

    2013-06-01

    We propose a robust, unified framework, in which the similar baryon and dark matter cosmic abundances both arise from the physics of weakly interacting massive particles (WIMPs), with the rough quantitative success of the so-called “WIMP miracle.” In particular the baryon asymmetry arises from the decay of a metastable WIMP after its thermal freeze-out at or below the weak scale. A minimal model and its embedding in R-parity violating supersymmetry are studied as examples. The new mechanism saves R-parity violating supersymmetry from the potential crisis of washing out primordial baryon asymmetry. Phenomenological implications for the LHC and precision tests are discussed.

  19. (Interaction of charged particles with matter)

    SciTech Connect

    Crawford, O.H.

    1990-12-05

    This report covers the activity of the traveler participating in a workshop entitled The 13th Werner Brandt Workshop on the Interaction of Charged Particles with Solids and conducting collaborative research with two physicists at Tokyo University. The Werner Brandt Workshops are organized by members of the traveler's group, led by Dr. R. H. Ritchie, with advice from an international committee. The traveler participated in planning for the next in the series of workshops, which will be held in or near the traveler's home base. Oak Ridge, Tennessee, in early 1992. He interacted with scientists from Japan, Spain, USSR, Israel, and other countries, initiated plans for a new collaboration with a Japanese scientist, and renewed existing collaborations, At Tokyo University, the traveler performed collaborative research with Professors Y. Yamazaki and K. Komaki on two topics of importance to the traveler's programs with the Department of Energy (DOE).

  20. Dynamics of two interacting active Janus particles

    NASA Astrophysics Data System (ADS)

    Bayati, Parvin; Najafi, Ali

    2016-04-01

    Starting from a microscopic model for a spherically symmetric active Janus particle, we study the interactions between two such active motors. The ambient fluid mediates a long range hydrodynamic interaction between two motors. This interaction has both direct and indirect hydrodynamic contributions. The direct contribution is due to the propagation of fluid flow that originated from a moving motor and affects the motion of the other motor. The indirect contribution emerges from the re-distribution of the ionic concentrations in the presence of both motors. Electric force exerted on the fluid from this ionic solution enhances the flow pattern and subsequently changes the motion of both motors. By formulating a perturbation method for very far separated motors, we derive analytic results for the translation and rotational dynamics of the motors. We show that the overall interaction at the leading order modifies the translational and rotational speeds of motors which scale as O (" separators=" [ 1 / D ] 3 ) and O (" separators=" [ 1 / D ] 4 ) with their separation, respectively. Our findings open up the way for studying the collective dynamics of synthetic micro-motors.

  1. Entropic Ratchet transport of interacting active Brownian particles

    SciTech Connect

    Ai, Bao-Quan; He, Ya-Feng; Zhong, Wei-Rong

    2014-11-21

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.

  2. Planckian Interacting Massive Particles as Dark Matter

    NASA Astrophysics Data System (ADS)

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S.

    2016-03-01

    The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01 Mp is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.

  3. Planckian Interacting Massive Particles as Dark Matter.

    PubMed

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S

    2016-03-11

    The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01M_{p} is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter. PMID:27015472

  4. Critical Casimir interactions between Janus particles.

    PubMed

    Labbé-Laurent, M; Dietrich, S

    2016-08-21

    Recently there has been strong experimental and theoretical interest in studying the self-assembly and the phase behavior of patchy and Janus particles, which form colloidal suspensions. Although in this quest a variety of effective interactions have been proposed and used in order to achieve a directed assembly, the critical Casimir effect stands out as being particularly suitable in this respect because it provides both attractive and repulsive interactions as well as the potential of a sensitive temperature control of their strength. Specifically, we have calculated the critical Casimir force between a single Janus particle and a laterally homogeneous substrate as well as a substrate with a chemical step. We have used the Derjaguin approximation and compared it with results from full mean field theory. A modification of the Derjaguin approximation turns out to be generally reliable. Based on this approach we have derived the effective force and the effective potential between two Janus cylinders as well as between two Janus spheres. PMID:27444691

  5. Measurement of Few Body Interactions in Tri-Atomic Molecular Dissociation into Three Charged Particles

    NASA Astrophysics Data System (ADS)

    Mueller, Dennis; Jordon-Thaden, Brandon; Weise, Lisa; Jaecks, Duane

    2010-03-01

    Threshold ionization of atoms by electron impact remains an area of interest. Near threshold, where the total energy of the system is approximately zero, the motion of charged particles is highly correlated. Similarly, near threshold dissociation into three or more charges particles is involve highly correlated motion as the particles slowly move apart under the influence of the long-range Coulomb interaction. We will present a novel approach to gain insight into these interactions, where no simplifying approximations such as placing one of the particles near the center-of-mass, is theoretically viable. In these triple coincidence experiments, the final state momenta of all particles are measured with sub-meV resolution sufficient to resolve rovibrational levels. This allows us to determine the initial state of the tri-atomic molecular ion.

  6. 337 nm matrix-assisted laser desorption/ionization of single aerosol particles.

    PubMed

    He, L; Murray, K K

    1999-09-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectra were obtained from single particles injected directly into a time-of-flight mass spectrometer. Aerosol particles were generated at atmospheric pressure using a piezoelectric single-particle generator or a pneumatic nebulizer and introduced into the mass spectrometer through a series of narrow-bore tubes. Particles were detected by light scattering that was used to trigger a 337 nm pulsed nitrogen laser and the ions produced by laser desorption were mass separated in a two-stage reflectron time-of-flight mass spectrometer. MALDI mass spectra of single particles containing bradykinin, angiotensin II, gramicidin S, vitamin B(12) or gramicidin D were obtained at mass resolutions greater than 400 FWHM. For the piezoelectric particle generator, the efficiency of particle delivery was estimated to be approximately 0.02%, and 50 pmol of sample were consumed for each mass spectrum. For the pneumatic nebulizer, mass spectra could be obtained from single particles containing less than 100 amol of analyte, although the sample consumption for a typical mass spectrum was over 400 pmol. PMID:10491586

  7. Particle Acceleration in Shock-Shock Interaction

    NASA Astrophysics Data System (ADS)

    Nakanotani, Masaru; Matsukiyo, Shuichi; Hada, Tohru

    2015-04-01

    Collisionless shock waves play a crucial role in producing high energy particles. One of the most plausible acceleration mechanisms is the first order Fermi acceleration in which non-thermal particles statistically gain energy while scattered by MHD turbulence both upstream and downstream of a shock. Indeed, X-ray emission from energetic particles accelerated at supernova remnant shocks is often observed [e.g., Uchiyama et al., 2007]. Most of the previous studies on shock acceleration assume the presence of a single shock. In space, however, two shocks frequently come close to or even collide with each other. For instance, it is observed that a CME (coronal mass ejection) driven shock collides with the earth's bow shock [Hietala et al., 2011], or interplanetary shocks pass through the heliospheric termination shock [Lu et al., 1999]. Colliding shocks are observed also in high power laser experiments [Morita et al., 2013]. It is expected that shock-shock interactions efficiently produce high energy particles. A previous work using hybrid simulation [Cargill et al., 1986] reports efficient ion acceleration when supercritical two shocks collide. In the hybrid simulation, however, the electron dynamics cannot be resolved so that electron acceleration cannot be discussed in principle. Here, we perform one-dimensional full Particle-in-Cell (PIC) simulations to examine colliding two symmetric oblique shocks and the associated electron acceleration. In particular, the following three points are discussed in detail. 1. Energetic electrons are observed upstream of the two shocks before their collision. These energetic electrons are efficiently accelerated through multiple reflections at the two shocks (Fermi acceleration). 2. The reflected electrons excite large amplitude upstream waves. Electron beam cyclotron instability [Hasegawa, 1975] and electron fire hose instability [Li et al., 2000] appear to occur. 3. The large amplitude waves can scatters energetic electrons in

  8. Ionization states of helium in He-3-rich solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Klecker, B.; Hovestadt, D.; Moebius, E.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.

    1983-01-01

    Results of a systematic study of the ionic charge state of helium in the energy range 0.6-1.0 MeV/nucleon for He-3-rich solar energetic particle events during the time period August 1978 to October 1979 are reported. The data have been obtained with the Max-Planck-Institut/University of Maryland experiment on ISEE-3. Whereas for solar energetic particle events with no enrichment of He-3 relative to He-4 surprisingly large abundances of singly ionized helium have been reported recently, He-3-rich solar energetic particle events do not show significant abundances of He-3(+). This result is consistent with current theories explaining large compositional anomalies by mass per charge dependent selective heating of the minor ion species.

  9. DNA-nuclear matrix interactions and ionizing radiation sensitivity

    SciTech Connect

    Schwartz, J.L. Chicago Univ., IL . Dept. of Radiation and Cellular Oncology); Vaughan, A.T.M. . Dept. of Radiotherapy)

    1993-01-01

    The association between inherent ionizing radiation sensitivity and DNA supercoil unwinding in mammalian cells suggests that the DNA-nuclear matrix attachment region (MAR) plays an important role in radiation response. In radioresistant cells, the MAR structure may exist in a more stable, open configuration, limiting DNA unwinding following strand break induction and maintaining DNA ends in close proximity for more rapid and accurate rejoining. In addition, the open configuration at these matrix attachment sites may serve to facilitate rapid DNA processing of breaks by providing (1) sites for repair proteins to collect and (2) energy to drive enzymatic reactions.

  10. DNA-nuclear matrix interactions and ionizing radiation sensitivity

    SciTech Connect

    Schwartz, J.L. |; Vaughan, A.T.M.

    1993-03-01

    The association between inherent ionizing radiation sensitivity and DNA supercoil unwinding in mammalian cells suggests that the DNA-nuclear matrix attachment region (MAR) plays an important role in radiation response. In radioresistant cells, the MAR structure may exist in a more stable, open configuration, limiting DNA unwinding following strand break induction and maintaining DNA ends in close proximity for more rapid and accurate rejoining. In addition, the open configuration at these matrix attachment sites may serve to facilitate rapid DNA processing of breaks by providing (1) sites for repair proteins to collect and (2) energy to drive enzymatic reactions.

  11. Particle-in-cell simulations of the critical ionization velocity effect in finite size clouds

    SciTech Connect

    Moghaddam-Taaheri, E.; Lu, G.; Nishikawa, K.I.

    1994-04-01

    The critical ionization velocity (CIV) mechanism in a finite size cloud is studied with a series of electrostatic particle-in-cell simulations. It is observed that an initial seed ionization, produced by non-CIV mechanisms, generates a cross-field ion beam which excites a modified beam-plasma instability (MBPI) with frequency in the range of the lower hybrid frequency. The excited waves accelerate electrons along the magnetic field up to the ion drift energy that exceeds the ionization energy of the neutral atoms. The heated electrons in turn enhance the ion beam by electron-neutral impact ionization, which established a positive feedback loop in maintaining the CIV process. It is also found that the efficiency of the CIV mechanism depends on the finite size of the gas cloud in the following ways: (1) Along the ambient magnetic field the finite size of the cloud, L{parallel}, restricts the growth of the fastest growing mode, with a wavelength {lambda}{sub m{parallel}}, of the MBPI. (2) Momentum coupling between the cloud and the ambient plasma via the Alfven waves occurs as a result of the finite size of the cloud in the direction perpendicular to both the ambient magnetic field and the neutral drift. (3) The transverse charge separation field across the cloud was found to result in the modulation of the beam velocity which reduces the parallel heating of electrons and increases the transverse acceleration of electrons. (4) Some energetic electrons are lost from the cloud along the magnetic field at a rate characterized by the acoustic velocity, instead of the electron thermal velocity. It is also shown that a factor of 4 increase in the ambient plasma density, increases the CIV ionization yield by almost 2 orders of magnitude at the end of a typical run. The simulation results are used to interpret various chemical release experiments in space. 68 refs., 22 figs., 4 tabs.

  12. Femtosecond laser ablation particle introduction to a liquid sampling-atmospheric pressure glow discharge ionization source

    SciTech Connect

    Carado, Anthony J.; Quarles, C. Derrick; Duffin, Andrew M.; Barinaga, Charles J.; Russo, Richard E.; Marcus, R. Kenneth; Eiden, Gregory C.; Koppenaal, David W.

    2012-01-01

    This work describes the use of a compact, liquid sampling – atmospheric pressure glow discharge (LS-APGD) ionization source to ionize metal particles within a laser ablation aerosol. Mass analysis was performed with a Thermo Scientific Exactive Mass Spectrometer which utilizes an orbitrap mass analyzer capable of producing mass resolution exceeding M/ΔM > 160,000. The LS-APGD source generates a low-power plasma between the surface of an electrolytic solution flowing at several µl min-1 through a fused silica capillary and a counter electrode consisting of a stainless steel capillary employed to deliver the laser ablation particles into the plasma. Sample particles of approximately 100 nm were generated with an Applied Spectra femtosecond laser located remotely and transported through 25 meters of polyurethane tubing by means of argon carrier gas. Samples consisted of an oxygen free copper shard, a disk of solder, and a one-cent U.S. coin. Analyte signal onset was readily detectable relative to the background signal produced by the carrier gas alone. The high mass resolution capability of the orbitrap mass spectrometer was demonstrated on the solder sample with resolution exceeding 90,000 for Pb and 160,000 for Cu. In addition, results from a laser ablation depth-profiling experiment of a one cent coin revealed retention of the relative locations of the ~10 µm copper cladding and zinc rich bulk layers.

  13. Investigation of nonthermal particle effects on ionization dynamics in high current density ion beam transport experiments

    NASA Astrophysics Data System (ADS)

    Chung, H. K.; MacFarlane, J. J.; Wang, P.; Moses, G. A.; Bailey, J. E.; Olson, C. L.; Welch, D. R.

    1997-01-01

    Light ion inertial fusion experiments require the presence of a moderate density background gas in the transport region to provide charge and current neutralization for a high current density ion beam. In this article, we investigate the effects of nonthermal particles such as beam ions or non-Maxwellian electron distributions on the ionization dynamics of the background gas. In particular, we focus on the case of Li beams being transported in an argon gas. Nonthermal particles as well as thermal electrons are included in time-dependent collisional-radiative calculations to determine time-dependent atomic level populations and charge state distributions in a beam-produced plasma. We also briefly discuss the effects of beam ions and energetic electrons on the visible and vacuum ultraviolet (VUV) spectral regions. It is found that the mean charge state of the gas, and hence the electron density, is significantly increased by collisions with energetic particles. This higher ionization significantly impacts the VUV spectral region, where numerous resonance lines occur. On the other hand, the visible spectrum tends to be less affected because the closely spaced excited states are populated by lower energy thermal electrons.

  14. Pseudopotentials of the particles interactions in complex plasmas

    SciTech Connect

    Ramazanov, T. S.; Moldabekov, Zh. A.; Dzhumagulova, K. N.; Muratov, M. M.

    2011-10-15

    This article discusses the effective interaction potentials in a complex dusty plasma. The interaction of electrons with atoms and the interaction between dusty particles are studied by the method of the dielectric response function. In the effective interaction, potential between electron and atom the quantum effects of diffraction were taken into account. On the curve of the interaction potential between dust particles under certain conditions the oscillations can be observed.

  15. Laser desorption ionization of small molecules assisted by tungsten oxide and rhenium oxide particles.

    PubMed

    Bernier, Matthew C; Wysocki, Vicki H; Dagan, Shai

    2015-07-01

    Inorganic metal oxides have shown potential as matrices for assisting in laser desorption ionization with advantages over the aromatic acids typically used. Rhenium and tungsten oxides are attractive options due to their high work functions and relative chemical inertness. In this work, it is shown that ReO3 and WO3 , in microparticle (μP) powder forms, can efficiently facilitate ionization of various types of small molecules and provide minimized background contamination at analyte concentrations below 1 ng/µL. This study shows that untreated inorganic WO3 and ReO3 particles are valid matrix options for detection of protonatable, radical, and precharged species under laser desorption ionization. Qualitatively, the WO3 μP showed improved detection of apigenin, sodiated glucose, and precharged analyte choline, while the ReO3 μP allowed better detection of protonated cocaine, quinuclidine, ametryn, and radical ions of polyaromatic hydrocarbons at detection levels as low as 50 pg/µL. For thermometer ion survival yield experiments, it was also shown that the ReO3 powder was significantly softer than α-cyano-4-hydroxycinnaminic acid. Furthermore, it provided higher intensities of cocaine and polyaromatic hydrocarbons, at laser flux values equal to those used with α-cyano-4-hydroxycinnaminic acid. PMID:26349643

  16. Charge Identification of Highly Ionizing Particles in Desensitized Nuclear Emulsion Using High Speed Read-Out System

    SciTech Connect

    Toshito, T.; Kodama, K.; Yusa, K.; Ozaki, M.; Amako, K.; Kameoka, S.; Murakami, K.; Sasaki, T.; Aoki, S.; Ban, T.; Fukuda, T.; Naganawa, N.; Nakamura, T.; Natsume, M.; Niwa, K.; Takahashi, S.; Kanazawa, M.; Kanematsu, N.; Komori, M.; Sato, S.; Asai, M.; /Nagoya U. /Aichi U. of Education /Gunma U., Maebashi /JAXA, Sagamihara /KEK, Tsukuba /Kobe U. /Chiba, Natl. Inst. Rad. Sci. /SLAC /Toho U.

    2006-05-10

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290 MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsion film to highly ionizing particles.

  17. Algorithm for Computing Particle/Surface Interactions

    NASA Technical Reports Server (NTRS)

    Hughes, David W.

    2009-01-01

    An algorithm has been devised for predicting the behaviors of sparsely spatially distributed particles impinging on a solid surface in a rarefied atmosphere. Under the stated conditions, prior particle-transport models in which (1) dense distributions of particles are treated as continuum fluids; or (2) sparse distributions of particles are considered to be suspended in and to diffuse through fluid streams are not valid.

  18. Lattice-Boltzmann simulation of laser interaction with weakly ionized helium plasmas

    SciTech Connect

    Li Huayu; Ki, Hyungson

    2010-07-15

    This paper presents a lattice Boltzmann method for laser interaction with weakly ionized plasmas considering electron impact ionization and three-body recombination. To simulate with physical properties of plasmas, the authors' previous work on the rescaling of variables is employed and the electromagnetic fields are calculated from the Maxwell equations by using the finite-difference time-domain method. To calculate temperature fields, energy equations are derived separately from the Boltzmann equations. In this way, we attempt to solve the full governing equations for plasma dynamics. With the developed model, the continuous-wave CO{sub 2} laser interaction with helium is simulated successfully.

  19. Chemical compositions of black carbon particle cores and coatings via soot particle aerosol mass spectrometry with photoionization and electron ionization.

    PubMed

    Canagaratna, Manjula R; Massoli, Paola; Browne, Eleanor C; Franklin, Jonathan P; Wilson, Kevin R; Onasch, Timothy B; Kirchstetter, Thomas W; Fortner, Edward C; Kolb, Charles E; Jayne, John T; Kroll, Jesse H; Worsnop, Douglas R

    2015-05-14

    Black carbon is an important constituent of atmospheric aerosol particle matter (PM) with significant effects on the global radiation budget and on human health. The soot particle aerosol mass spectrometer (SP-AMS) has been developed and deployed for real-time ambient measurements of refractory carbon particles. In the SP-AMS, black carbon or metallic particles are vaporized through absorption of 1064 nm light from a CW Nd:YAG laser. This scheme allows for continuous "soft" vaporization of both core and coating materials. The main focus of this work is to characterize the extent to which this vaporization scheme provides enhanced chemical composition information about aerosol particles. This information is difficult to extract from standard SP-AMS mass spectra because they are complicated by extensive fragmentation from the harsh 70 eV EI ionization scheme that is typically used in these instruments. Thus, in this work synchotron-generated vacuum ultraviolet (VUV) light in the 8-14 eV range is used to measure VUV-SP-AMS spectra with minimal fragmentation. VUV-SP-AMS spectra of commercially available carbon black, fullerene black, and laboratory generated flame soots were obtained. Small carbon cluster cations (C(+)-C5(+)) were found to dominate the VUV-SP-AMS spectra of all the samples, indicating that the corresponding neutral clusters are key products of the SP vaporization process. Intercomparisons of carbon cluster ratios observed in VUV-SP-AMS and SP-AMS spectra are used to confirm spectral features that could be used to distinguish between different types of refractory carbon particles. VUV-SP-AMS spectra of oxidized organic species adsorbed on absorbing cores are also examined and found to display less thermally induced decomposition and fragmentation than spectra obtained with thermal vaporization at 200 °C (the minimum temperature needed to quantitatively vaporize ambient oxidized organic aerosol with a continuously heated surface). The particle cores

  20. Numerical studies of wall-plasma interactions and ionization phenomena in an ablative pulsed plasma thruster

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Zeng, Guangshang; Tang, Haibin; Huang, Yuping; Liu, Xiangyang

    2016-07-01

    Wall-plasma interactions excited by ablation controlled arcs are very critical physical processes in pulsed plasma thrusters (PPTs). Their effects on the ionization processes of ablated vapor into discharge plasma directly determine PPT performances. To reveal the physics governing the ionization phenomena in PPT discharge, a modified model taking into account the pyrolysis effect of heated polytetrafluoroethylene propellant on the wall-plasma interactions was developed. The feasibility of the modified model was analyzed by creating a one-dimensional simulation of a rectangular ablative PPT. The wall-plasma interaction results based on this modified model were found to be more realistic than for the unmodified model; this reflects the dynamic changes of the inflow parameters during discharge in our model. Furthermore, the temporal and spatial variations of the different plasma species in the discharge chamber were numerically studied. The numerical studies showed that polytetrafluoroethylene plasma was mainly composed of monovalent ions; carbon and fluorine ions were concentrated in the upstream and downstream discharge chamber, respectively. The results based on this modified model were in good agreement with the experimental formation times of the various plasma species. A large number of short-lived and highly ionized carbon and fluorine species (divalent and trivalent ions) were created during initial discharge. These highly ionized species reached their peak density earlier than the singly ionized species.

  1. Ionized van-der-Waals systems: Structure and interactions

    SciTech Connect

    Zuelicke, L.

    1996-12-31

    Ions of molecular systems with internal interactions partly of van-der-Waals type differ significantly from their neutral parent species in binding, structure and dynamics. Theoretical knowledge is still rather scarce. The paper discusses some recent advances from theoretical work in the field concerning (i) electronic and geometric structure of triatomic rare-gas containing cations like Ar{sub 3}{sup +} and ArHCI{sup +}, in ground and excited electronic states; (ii) potential energy surfaces for the interaction of H{sup +} or H{sup -} with diatomic molecules, in ground and excited electronic states; (iii) some features of the dynamics of these systems.

  2. Direct numerical simulation of AC dielectrophoretic particle-particle interactive motions.

    PubMed

    Ai, Ye; Zeng, Zhenping; Qian, Shizhi

    2014-03-01

    Under an AC electric field, individual particles in close proximity induce spatially non-uniform electric field around each other, accordingly resulting in mutual dielectrophoretic (DEP) forces on these particles. The resulting attractive DEP particle-particle interaction could assemble individual colloidal particles or biological cells into regular patterns, which has become a promising bottom-up fabrication technique for bio-composite materials and microscopic functional structures. In this study, we developed a transient multiphysics model under the thin electric double layer (EDL) assumption, in which the fluid flow field, AC electric field and motion of finite-size particles are simultaneously solved using an Arbitrary Lagrangian-Eulerian (ALE) numerical approach. Numerical simulations show that negative DEP particle-particle interaction always tends to attract particles and form a chain parallel to the applied electric field. Particles usually accelerate at the first stage of the attractive motion due to an increase in the DEP interactive force, however, decelerate until stationary at the second stage due to a faster increase in the repulsive hydrodynamic force. Identical particles move at the same speed during the interactive motion. In contrast, smaller particles move faster than bigger particles during the attractive motion. The developed model explains the basic mechanism of AC DEP-based particle assembly technique and provides a versatile tool to design microfluidic devices for AC DEP-based particle or cell manipulation. PMID:24407661

  3. Mass spectra of organic and inorganic dust particles measured by an impact ionization mass analyzer instrument

    NASA Astrophysics Data System (ADS)

    Salter, J. G.; Sternovsky, Z.; Srama, R.; Postberg, F.; Kempf, S.; Armes, S. P.; Gruen, E.; Horanyi, M.; Drake, K.; Westphal, A.

    2009-12-01

    The composition of individual cosmic dust particles can be measured in-situ using existing techniques and instrumentations. The dust particle impacting on a solid surface with hypervelocity (> 1 km/s) is vaporized and partially ionized. The generated ions are extracted and analyzed using time-of-flight methods. Laboratory calibration measurements are possible at the dust accelerator facility in Heidelberg, Germany. The accelerator is limited to using conductive dust that was limited in the past to Fe, Al or graphite samples. In the recent years, however, dust samples of organic materials and inorganic minerals of cosmic interest were developed that are suitable for application in the accelerator. This is achieved by coating micron and submicron sized dust particles by conductive polymers. Here we present the comparison of spectra measured using organic and inorganic dust samples (polystyrene, poly-[bis(4-vinylthiophenyl)sulphide], Phyrotite). The particles were accelerated to speeds between 3 and 35 km/s. Depending on the projectile type and the impact speed, both aliphatic and aromatic molecular ions and cluster species were identified in the mass spectra with masses up to 400 Daltons. Clusters resulting from the target material (silver) and mixed clusters of target and projectile species were also observed. These fundamental studies are expected to enhance our understanding of cometary, interplanetary and interstellar dust grains, which travel at similar hyper-velocities and are known to contain both aliphatic and aromatic organic compounds.

  4. Spark bubble interaction with a suspended particle

    NASA Astrophysics Data System (ADS)

    Ohl, Siew-Wan; Wu, Di Wei; Klaseboer, Evert; Cheong Khoo, Boo

    2015-12-01

    Cavitation bubble collapse is influenced by nearby surfaces or objects. A bubble near a rigid surface will move towards the surface and collapse with a high speed jet. When a hard particle is suspended near a bubble generated by electric spark, the bubble expands and collapses moving the particle. We found that within a limit of stand-off distance, the particle is propelled away from the bubble as it collapses. At a slightly larger stand-off distance, the bubble collapse causes the particle to move towards the bubble initially before moving away. The bubble does not move the particle if it is placed far away. This conclusion is important for applications such as drug delivery in which the particle is to be propelled away from the collapsing bubble.

  5. Effect of particle interactions on thermoremanent magnetization

    NASA Astrophysics Data System (ADS)

    Newell, A. J.; Niemerg, M.; Bates, D.

    2013-12-01

    Paleomagnetism has a dizzying array of protocols for determining the strength of the Earth's magnetic field in the past from measurements of the magnetic memory in rocks. Some, such as variants of the Thellier-Thellier method, try to isolate the signal from an "ideal" fraction of magnetic minerals, discarding the contribution of "non-ideal" minerals; others, like the multi-specimen method, try to glean useful information from all of the minerals. The "ideal" remanence carriers behave like single-domain (SD) magnets with uniaxial anisotropy, and their behavior is predicted by Louis Néel's theory of thermoremanent magnetization (TRM). Non-ideal carriers are not at all well understood, but every paleointensity method relies on assumptions about their nature to either remove their signal or make use of it. One way to explore the boundary between ideal and non-ideal is to look at the behavior of SD magnets as they are brought increasingly close together, thus increasing the strength of the magnetostatic coupling between them. Magnetostatic coupling greatly increases the complexity of such a system. Instead of just two stable states, many must be found. Instead of one energy barrier, there is a network of connections between stable states over energy barriers. Instead of one rate for the relaxation of a system towards equilibrium, there are several. It is particularly difficult to find the transition states at the top of the energy barriers. We have developed software that does all of the above. A method from algebraic geometry called homotopy continuation is used to find all stable states and transition states. The software can track changes in these states with magnetic field, temperature, or other external variables. We use it to model TRM acquisition in small systems of interacting particles, and examine its behavior under various paleointensity tests.

  6. Effects of a Relativistic Electron Beam Interaction with the Upper Atmosphere: Ionization, X-Rays, and Optical Emissions

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Nicolls, M. J.; Sanchez, E. R.; Lehtinen, N. G.; Neilson, J.

    2014-12-01

    An artificial beam of relativistic (0.5--10 MeV) electrons has been proposed as an active experiment in the ionosphere and magnetosphere, with applications to magnetic field-line tracing, studies of wave-particle interactions, and beam-atmosphere interactions. The beam-atmosphere interaction, while a scientific endeavor of its own, also provides key diagnostics for other experiments. We present results of Monte Carlo simulations of the interaction of a beam of relativistic electrons with the upper atmosphere as they are injected downwards from a notional high altitude (thermospheric / ionospheric) injection platform. The beam parameters, defined by realistic parameters of a compact linear accelerator, are used to create a distribution of thousands of electrons. Each electron is injected downwards from 300 km altitude towards the dense atmosphere, where it undergoes elastic and inelastic collisions, leading to secondary ionization, optical emissions, and X-rays via bremsstrahlung. Here we describe the Monte Carlo model and present calculations of diagnostic outputs, including optical emissions, X-ray fluxes, secondary ionization, and backscattered energetic electron fluxes. Optical emissions are propagated to the ground through the lower atmosphere, including the effects of atmospheric absorption and scattering, to estimate the brightness of the emission column for a given beam current and energy. Similarly, X-ray fluxes are propagated to hypothetical detectors on balloons and satellites, taking into account Compton scattering and photoabsorption. Secondary ionization is used to estimate the radar signal returns from various ground-based radar facilities. Finally, simulated backscattered electron fluxes are measured at the injection location. The simulation results show that for realizable accelerator parameters, each of these diagnostics should be readily detectable by appropriate instruments.

  7. Surface electrical properties of coal particles on interaction with polyelectrolytes

    SciTech Connect

    Evmenova, G.L.

    2006-07-15

    The paper presents experimental data obtained in determining an electrokinetic potential of coal particles during their interaction with coagulation and flocculation agents. It is established that flocculation agents allow decreasing electrokinetic potential of mineral particles up to the values that promote aggregation of the particles thereby enabling the control over the stability of coal dispersions.

  8. Multipole expansion in plasmas: Effective interaction potentials between compound particles

    NASA Astrophysics Data System (ADS)

    Ramazanov, T. S.; Moldabekov, Zh. A.; Gabdullin, M. T.

    2016-05-01

    In this paper, the multipole expansion method is used to determine effective interaction potentials between particles in both classical dusty plasma and dense quantum plasma. In particular, formulas for interactions of dipole-dipole and charge-dipole pairs in a classical nondegenerate plasma as well as in degenerate quantum and semiclassical plasmas were derived. The potentials describe interactions between atoms, atoms and charged particles, dust particles in the complex plasma, atoms and electrons in the degenerate plasma, and metals. Correctness of the results obtained from the multipole expansion is confirmed by their agreement with the results based on other methods of statistical physics and dielectric response function. It is shown that the method of multipole expansion can be used to derive effective interaction potentials of compound particles, if the effect of the medium on the potential of individual particles comprising compound particles is known.

  9. Forest canopy interactions with nucleation mode particles

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Hornsby, K. E.; Novick, K. A.

    2014-07-01

    Forests play a key role in removal of particles from the atmosphere but may also significantly contribute to formation and growth of ultrafine particles. Ultrafine particle size distributions through a deciduous forest canopy indicate substantial capture of nucleation mode particles by the foliage. Concentrations decline with depth into the canopy, such that nucleation mode number concentrations at the bottom of the canopy are an average of 16% lower than those at the top. However, growth rates of nucleation mode particles (diameters 6-30 nm) are invariant with height within the canopy, which implies that the semi-volatile gases contributing to their growth are comparatively well-mixed through the canopy. Growth rates of nucleation mode particles during a meteorological drought year (2012) were substantially lower than during a meteorologically normal year with high soil water potential (2013). This may reflect suppression of actual BVOC emissions by drought and thus reduced production of condensable products (and thus particle growth) during the drought-affected vegetation season. This hypothesis is supported by evidence that growth rates during the normal year exhibit a positive correlation with emissions of biogenic volatile organic compounds (BVOC) modeled based on observed forest composition, leaf area index, temperature and PAR, but particle growth rates during the drought-affected vegetation season are not correlated with modeled BVOC emissions. These data thus provide direct evidence for the importance of canopy capture in atmospheric particle budgets and indirect evidence that drought-stress in forests may reduce BVOC emissions and limit growth of nucleation mode particles to climate-relevant sizes.

  10. Energy exchange in systems of particles with nonreciprocal interaction

    NASA Astrophysics Data System (ADS)

    Vaulina, O. S.; Lisina, I. I.; Lisin, E. A.

    2015-10-01

    A model is proposed to describe the sources of additional kinetic energy and its redistribution in systems of particles with a nonreciprocal interaction. The proposed model is shown to explain the qualitative specific features of the dust particle dynamics in the sheath region of an RF discharge. Prominence is given to the systems of particles with a quasi-dipole-dipole interaction, which is similar to the interaction induced by the ion focusing effects that occur in experiments on a laboratory dusty plasma, and with the shadow interaction caused by thermophoretic forces and Le Sage's forces.

  11. Energy exchange in systems of particles with nonreciprocal interaction

    SciTech Connect

    Vaulina, O. S.; Lisina, I. I. Lisin, E. A.

    2015-10-15

    A model is proposed to describe the sources of additional kinetic energy and its redistribution in systems of particles with a nonreciprocal interaction. The proposed model is shown to explain the qualitative specific features of the dust particle dynamics in the sheath region of an RF discharge. Prominence is given to the systems of particles with a quasi-dipole–dipole interaction, which is similar to the interaction induced by the ion focusing effects that occur in experiments on a laboratory dusty plasma, and with the shadow interaction caused by thermophoretic forces and Le Sage’s forces.

  12. Interaction of small spherical particles in confined cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Lev, B. I.; Fukuda, Jun-ichi; Tovkach, O. M.; Chernyshuk, S. B.

    2014-01-01

    The theory of the elastic interaction of spherical colloidal particles immersed into a confined cholesteric liquid crystal is proposed. The case of weak anchoring on the particle surfaces is considered. We derive a general expression for the energy of the interaction between small spherical particles (with diameter much smaller than the cholesteric pitch) suspended in a cholesteric confined by two parallel planes. The resulting form of the interaction energy has a more complex spatial pattern and energy versus distance dependence than that in nematic colloids. The absence of translational symmetry related to helical periodicity and local nematic ordering in cholesteric liquid crystals manifest themselves in the complex nature of the interaction maps.

  13. Studies of the interactions of ionizing radiations with communications materials

    SciTech Connect

    Ashley, J.C.; Williams, M.W.

    1982-01-01

    Various models were developed for calculating the energy loss per unit length, or stopping power, and the inelastic mean free path for electrons in a material. We have included both organic materials such as polyethylene and inorganic materials such as SiO/sub 2/. In each case, the calculated values of stopping power and mean free path have been compared with experimental values where available and, in the case of mean free paths for organic materials, with those predicted from our universal formula. In addition the various models for stopping power and mean free path have been compared with each other. Measurements have been made of electron attenuation lengths (approx. = electron mean free paths) as a function of incident electron energy for electrons in amorphous carbon films, as a direct check on the values predicted by our universal formula for electron mean free paths in solid organic insulators. A theory has been developed to describe charged-particle track structure in nonmetallic solids, as the track evolves in time and space. Work has continued in the field of microdosimetry with the calculation of the energy densities deposited by high-energy photons as a function of depth in traversing a SiO/sub 2/ slab sandwiched between two slabs of Si.

  14. Computation of axisymmetric and ionized hypersonic flows using particle and continuum methods

    NASA Technical Reports Server (NTRS)

    Boyd, Iain D.; Gokcen, Tahir

    1994-01-01

    Comparisons between particle and continuum simulations of hypersonic near-continuum flows are presented. The particle approach employs the direct simulation Monte Carlo (DSMC) method, and the continuum approach solves the appropriate equations of fluid flow. Both simulations have thermochemistry models for air implemented including ionization. A new axisymmetric DSMC code that is efficiently vectorized is developed for this study. In this DSMC code, particular attention is paid to matching the relaxation rates employed in the continuum approach. This investigation represents a continuum of a previous study that considered thermochemical relaxation in one-dimensional shock waves of nitrogen. Comparison of the particle and continuum methods is first made for an axisymmetric blunt-body flow of air at 7 km/s. Very good agreement is obtained for the two solutions. The two techniques also compare well for a one-dimensional shock wave in air at 10 km/s. In both applications, the results are found to be sensitive to various aspects of the chemistry model employed.

  15. Computation of axisymmetric and ionized flows using particle and continuum methods

    NASA Technical Reports Server (NTRS)

    Boyd, Iain D.; Gokcen, Tahir

    1993-01-01

    Comparisons between particle and continuum simulations of hypersonic near-continuum flows are presented. The particle approach employs the direct simulation Monte Carlo method (DSMC), and the continuum approach solves the Euler equations. Both simulations have thermochemistry models for air implemented including ionization. A new axisymmetric DSMC code which is efficiently vectorized is developed for this study. In this DSMC code, particular attention is paid to matching the relaxation rates employed in the continuum approach. This investigation represents a continuation of a previous study which considered thermochemical relaxation in one-dimensional shock waves of nitrogen. Comparison of the particle and continuum methods is first made for an axisymmetric blunt-body flow of air at 7 km/s. Very good agreement is obtained for the two solutions. The two techniques also compare well for a one-dimensional shock wave in air at 10 km/s. In both applications, the results are found to be sensitive to various aspects of the chemistry models employed.

  16. Anomalous abundances of solar energetic particles and coronal gas: Coulomb effects and First Ionization Potential (FIP) ordering

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1985-01-01

    The first ionization potential (FIP) ordering of elemental abundances in solar energetic particles and in the corona which can both be explained Coulomb effects is discussed. Solar energetic particles (SEP) and coronal gas have anomalous abundances relative to the photosphere. The anomalies are similar in both cases: which led to the conclusion that SEP acceleration is not selective, but merely preserves the source abundances. It is argued that SEP acceleration can be selective, because identical selectivity operates to determine the coronal abundances. The abundance anomalies are ordered by first ionization potential (FIP).

  17. Search for metastable heavy charged particles with large ionization energy loss in p p collisions at √{s }=13 TeV using the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Duguid, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kentaro, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zwalinski, L.; Atlas Collaboration

    2016-06-01

    This paper presents a search for massive charged long-lived particles produced in p p collisions at √{s }=13 TeV at the LHC using the ATLAS experiment. The data set used corresponds to an integrated luminosity of 3.2 fb-1. Many extensions of the Standard Model predict the existence of massive charged long-lived particles, such as R -hadrons. These massive particles are expected to be produced with a velocity significantly below the speed of light, and therefore to have a specific ionization higher than any Standard Model particle of unit charge at high momenta. The Pixel subsystem of the ATLAS detector is used to measure the ionization energy loss of reconstructed charged particles and to search for such highly ionizing particles. The search presented here has much greater sensitivity than a similar search performed using the ATLAS detector in the √{s }=8 TeV data set, thanks to the increase in expected signal cross section due to the higher center-of-mass energy of collisions, to an upgraded detector with a new silicon layer close to the interaction point, and to analysis improvements. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on R -hadron production cross sections and masses are set. Gluino R -hadrons with lifetimes above 0.4 ns and decaying to q q ¯ plus a 100 GeV neutralino are excluded at the 95% confidence level, with lower mass limit ranging between 740 and 1590 GeV. In the case of stable R -hadrons the lower mass limit at the 95% confidence level is 1570 GeV.

  18. Laser Desorption Ionization of small molecules assisted by Tungsten oxide and Rhenium oxide particles

    PubMed Central

    Bernier, Matthew; Wysocki, Vicki; Dagan, Shai

    2015-01-01

    Inorganic metal oxides have shown potential as matrices for assisting in laser desorption ionization (LDI) with advantages over the aromatic acids typically used. Rhenium and tungsten oxides are an attractive option due to their high work functions and relative chemical inertness. In this work, it is shown that ReO3 and WO3, in microparticle (μP) powder forms, can efficiently ionize various types of small molecules and provide minimized background contamination at analyte concentrations below 1 ng/μL. This study shows that untreated inorganic WO3 and ReO3 particles are valid matrix options for detection of protonatable, radical, and precharged species under LDI. Qualitatively, the WO3 μP showed an improved detection of apigenin, sodiated glucose, and the precharged analyte choline, while the ReO3 μP allowed detection of protonated cocaine, quinuclidine, ametryn, and radical ions of polyaromatic hydrocarbons at detection levels as low as 50 pg/μL. For thermometer ion survival yield experiments, it was also shown that the ReO3 powder was significantly softer than CCA. Furthermore, it provided higher intensities of cocaine and polyaromatic hydrocarbons, at laser flux values equal to that used with CCA. PMID:26349643

  19. Energy-Dependent Ionization States of Shock-Accelerated Particles in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.; Ng, C. K.; Tylka, A. J.

    2000-01-01

    We examine the range of possible energy dependence of the ionization states of ions that are shock-accelerated from the ambient plasma of the solar corona. If acceleration begins in a region of moderate density, sufficiently low in the corona, ions above about 0.1 MeV/amu approach an equilibrium charge state that depends primarily upon their speed and only weakly on the plasma temperature. We suggest that the large variations of the charge states with energy for ions such as Si and Fe observed in the 1997 November 6 event are consistent with stripping in moderately dense coronal. plasma during shock acceleration. In the large solar-particle events studied previously, acceleration occurs sufficiently high in the corona that even Fe ions up to 600 MeV/amu are not stripped of electrons.

  20. Forest canopy interactions with nucleation mode particles

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Hornsby, K. E.; Novick, K. A.

    2014-11-01

    Ultrafine particle size distributions through a deciduous forest canopy indicate that nucleation mode particle concentrations decline with depth into the canopy, such that number concentrations at the bottom of the canopy are an average of 16% lower than those at the top. However, growth rates of nucleation mode particles (diameters 6-30 nm) are invariant with height within the canopy, which implies that the semi-volatile gases contributing to their growth are comparatively well-mixed through the canopy. Growth rates of nucleation mode particles during a meteorological drought year (2012) were substantially lower than during a meteorologically normal year with high soil water potential (2013). This may reflect suppression of actual biogenic volatile organic compound (BVOC) emissions by drought and thus a reduction in the production of condensable products during the drought-affected vegetation season. This hypothesis is supported by evidence that growth rates during the normal year exhibit a positive correlation with emissions of BVOC modeled on observed forest composition, leaf area index, temperature and photosynthetically active radiation (PAR), but particle growth rates during the drought-affected vegetation season are not correlated with modeled BVOC emissions. These data thus provide indirect evidence that drought stress in forests may reduce BVOC emissions and limit growth of nucleation mode particles to climate-relevant sizes.

  1. Particle-particle interactions in electrorheological fluids based on surface conducting particles

    NASA Astrophysics Data System (ADS)

    Gonon, P.; Foulc, J.-N.; Atten, P.; Boissy, C.

    1999-12-01

    We develop a simple, analytical conduction model for the case of electrorheological fluids based on surface conducting particles. By modeling two contacting spheres in a dielectric liquid by a distributed impedances network we derive analytical expressions for the potential and current at the spheres surface, and for the electric field and the current in the liquid phase. The knowledge of the electric field in the dielectric liquid allows us to calculate the interparticle interaction force as a function of the applied voltage. The theoretical interaction force is compared with experimental results obtained on insulating spheres coated with a thin conducting polyaniline film. We find a good agreement between the theory and experiment. The materials properties which govern the response of the system are outlined. In this regard, the product of the liquid conductivity by the sheet resistance of the surface coating appears as a key parameter. Some applications of this model for the practical design of electrorheological fluids are given.

  2. Waves, particles, and interactions in reduced dimensions

    NASA Astrophysics Data System (ADS)

    Zhang, Yiming

    This thesis presents a set of experiments that study the interplay between the wave-particle duality of electrons and the interaction effects in systems of reduced dimensions. Both dc transport and measurements of current noise have been employed in the studies; in particular, techniques for efficiently measuring current noise have been developed specifically for these experiments. The first four experiments study current noise auto- and cross correlations in various mesoscopic devices, including quantum point contacts, single and double quantum dots, and graphene devices. In quantum point contacts, shot noise at zero magnetic field exhibits an asymmetry related to the 0.7 structure in conductance. The asymmetry in noise evolves smoothly into the symmetric signature of spin-resolved electron transmission at high field. Comparison to a phenomenological model with density-dependent level splitting yields good quantitative agreement. Additionally, a device-specific contribution to the finite-bias noise, particularly visible on conductance plateaus where shot noise vanishes, agrees with a model of bias-dependent electron heating. In a three-lead single quantum dot and a capacitively coupled double quantum dot, sign reversal of noise cross correlations have been observed in the Coulomb blockade regime, and found to be tunable by gate voltages and source-drain bias. In the limit of weak output tunneling, cross correlations in the three-lead dot are found to be proportional to the two-lead noise in excess of the Poissonian value. These results can be reproduced with master equation calculations that include multi-level transport in the single dot, and inter-dot charging energy in the double dot. Shot noise measurements in single-layer graphene devices reveal a Fano factor independent of carrier type and density, device geometry, and the presence of a p-n junction. This result contrasts with theory for ballistic graphene sheets and junctions, suggesting that the transport

  3. Significance of Wave-Particle Interaction Analyzer for direct measurement of nonlinear wave-particle interactions

    NASA Astrophysics Data System (ADS)

    Katoh, Y.; Kitahara, M.; Kojima, H.; Omura, Y.; Kasahara, S.; Hirahara, M.; Miyoshi, Y.; Seki, K.; Asamura, K.; Takashima, T.

    2012-12-01

    We study the statistical significance of the Wave Particle Interaction Analyzer (WPIA) for measurement of the energy transfer process between energetic electrons and whistler-mode chorus emissions in the Earth's inner magnetosphere. The WPIA measures a relative phase angle between the wave vector and velocity vector of each particle and computes an inner product W(t), while W(t) is equivalent to the variation of the kinetic energy of energetic electrons interacting with plasma waves. The WPIA measurements will be realized by the Software-type WPIA in the SPRINT-B/ERG satellite mission. In the present study, we evaluate the feasibility of WPIA by applying the WPIA analysis to the simulation results on whistler-mode chorus generation. We compute W(t) of a wave electric field observed at a fixed point assumed in the simulation system and a velocity vector of each energetic electron passing through the assumed point. By integrating W(t) in time, we obtain significant values of W_{int} in the kinetic energy and pitch angle ranges as expected from the evolution of chorus emissions in the simulation result. The statistical significance of the obtained W_{int} is evaluated by calculating the standard deviation σ_W of W_{int}. We show that W_{int} greater than σ_W is obtained in the velocity phase space corresponding to the wave generation and acceleration of relativistic electrons. We conduct another analysis of a distribution of energetic electrons in the wave phase space using the same dataset of the simulation results. We clarify that the deviation of the distribution in the wave phase space is found in the velocity phase space corresponding to the large W_{int} values, which is consistent with formation of nonlinear resonant currents assumed in the generation mechanism of chorus emissions. The present study suggests that the statistical significance of the WPIA can be evaluated by calculating σ_W of W_{int}, and reveals the feasibility of the WPIA, which will be on

  4. Optimization of microchannel plate multipliers for tracking minimum-ionizing particles

    SciTech Connect

    Oba, K.; Rehak, P.; Potter, D.

    1981-01-01

    The progress in development of special Microchannel Plates for particle tracking is reported. The requirements of (1) high spatial resolution; (2) high density of information; and (3) rate capability were found to be satisfied in a thick Microchannel Plate with a CsI coating operating in a focusing magnetic field. The measurements of the Microchannel Plate detection efficiency, gain and noise are presented for several detectors. The pictures of the passage and interaction of the high energy charged particles inside the detector are shown.

  5. Mean-field approach for diffusion of interacting particles.

    PubMed

    Suárez, G; Hoyuelos, M; Mártin, H

    2015-12-01

    A nonlinear Fokker-Planck equation is obtained in the continuous limit of a one-dimensional lattice with an energy landscape of wells and barriers. Interaction is possible among particles in the same energy well. A parameter γ, related to the barrier's heights, is introduced. Its value is determinant for the functional dependence of the mobility and diffusion coefficient on particle concentration, but has no influence on the equilibrium solution. A relation between the mean-field potential and the microscopic interaction energy is derived. The results are illustrated with classical particles with interactions that reproduce fermion and boson statistics. PMID:26764643

  6. Improved hydrogen ionization rate in enhanced glow discharge plasma immersion ion implantation by enlarging the interaction path using an insulating tube

    SciTech Connect

    Wang Zhuo; Zhu Ying; Li Liuhe; He Fushun; Dun Dandan; Li Fen; Lu Qiuyuan; Fu, Ricky K. Y.; Chu, Paul K.

    2011-02-15

    A small pointed hollow anode and large tabular cathode are used in enhanced glow discharge plasma immersion ion implantation (EGD-PIII). Electrons are repelled from the substrate by the electric field formed by the negative voltage pulses and concentrate in the vicinity of the anode to enhance the self-glow discharge process. To extend the application of EGD-PIII to plasma gases with low ionization rates, an insulating tube is used to increase the interaction path for electrons and neutrals in order to enhance the discharge near the anode. Results obtained from numerical simulation based on the particle-in-cell code, finite element method, and experiments show that this configuration enhances the ionization rate and subsequent ion implant fluence. The process is especially suitable for gases that have low ionization rates such as hydrogen and helium.

  7. Particle interaction measurements using laser tweezers optical trapping.

    SciTech Connect

    Koehler, Timothy P.; Brinker, C. Jeffrey; Brotherton, Christopher M.; Grillet, Anne M.; Molecke, Ryan A.

    2008-08-01

    Laser tweezers optical trapping provides a unique noninvasive capability to trap and manipulate particles in solution at the focal point of a laser beam passed through a microscope objective. Additionally, combined with image analysis, interaction forces between colloidal particles can be quantitatively measured. By looking at the displacement of particles within the laser trap due to the presence of a neighboring particle or looking at the relative diffusion of two particles held near each other by optical traps, interparticle interaction forces ranging from pico- to femto-Newtons can be measured. Understanding interaction forces is critical for predicting the behavior of particle dispersions including dispersion stability and flow rheology. Using a new analysis method proposed by Sainis, Germain, and Dufresne, we can simultaneously calculate the interparticle velocity and particle diffusivity which allows direct calculation of the interparticle potential for the particles. By applying this versatile tool, we measure difference in interactions between various phospholipid bilayers that have been coated onto silica spheres as a new type of solid supported liposome. We measure bilayer interactions of several cell membrane lipids under various environmental conditions such as pH and ionic strength and compare the results with those obtained for empty liposomes. These results provide insight into the role of bilayer fluctuations in liposome fusion, which is of fundamental interest to liposome based drug delivery schemes.

  8. Continuum modeling of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions.

    PubMed

    Ley, Mikkel W H; Bruus, Henrik

    2016-03-23

    A continuum model is established for numerical studies of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions. A suspension of microparticles placed in a microfluidic channel and influenced by an external force, is described by a continuous particle-concentration field coupled to the continuity and Navier-Stokes equation for the solution. The hydrodynamic interactions are accounted for through the concentration dependence of the suspension viscosity, of the single-particle mobility, and of the momentum transfer from the particles to the suspension. The model is applied on a magnetophoretic and an acoustophoretic system, respectively, and based on the results, we illustrate three main points: (1) for relative particle-to-fluid volume fractions greater than 0.01, the hydrodynamic interaction effects become important through a decreased particle mobility and an increased suspension viscosity. (2) At these high particle concentrations, particle-induced flow rolls occur, which can lead to significant deviations of the advective particle transport relative to that of dilute suspensions. (3) Which interaction mechanism that dominates, depends on the specific flow geometry and the specific external force acting on the particles. PMID:26948344

  9. Particle dynamics in fluids with random interactions.

    PubMed

    Shagolsem, Lenin S; Rabin, Yitzhak

    2016-05-21

    We study the dynamics of particles in a multi-component 2d Lennard-Jones (LJ) fluid in the limiting case where all the particles are different (APD). The equilibrium properties of this APD system were studied in our earlier work [L. S. Shagolsem et al., J. Chem. Phys. 142, 051104 (2015).]. We use molecular dynamics simulations to investigate the statistical properties of particle trajectories in a temperature range covering both the fluid and the solid-fluid coexistence region. We calculate the mean-square displacement as well as displacement, angle, and waiting time distributions, and compare the results with those for one-component LJ fluid. As temperature is lowered, the dynamics of the APD system becomes increasingly complex, as the intrinsic difference between the particles is amplified by neighborhood identity ordering and by the inhomogeneous character of the solid-fluid coexistence region. The ramifications of our results for the analysis of protein tracking experiments in living cells are discussed. PMID:27208955

  10. Particle dynamics in fluids with random interactions

    NASA Astrophysics Data System (ADS)

    Shagolsem, Lenin S.; Rabin, Yitzhak

    2016-05-01

    We study the dynamics of particles in a multi-component 2d Lennard-Jones (LJ) fluid in the limiting case where all the particles are different (APD). The equilibrium properties of this APD system were studied in our earlier work [L. S. Shagolsem et al., J. Chem. Phys. 142, 051104 (2015).]. We use molecular dynamics simulations to investigate the statistical properties of particle trajectories in a temperature range covering both the fluid and the solid-fluid coexistence region. We calculate the mean-square displacement as well as displacement, angle, and waiting time distributions, and compare the results with those for one-component LJ fluid. As temperature is lowered, the dynamics of the APD system becomes increasingly complex, as the intrinsic difference between the particles is amplified by neighborhood identity ordering and by the inhomogeneous character of the solid-fluid coexistence region. The ramifications of our results for the analysis of protein tracking experiments in living cells are discussed.

  11. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  12. Dust particle charge screening in the dry-air plasma produced by an external ionization source

    SciTech Connect

    Derbenev, I. N.; Filippov, A. V.

    2015-08-15

    The ionic composition of the plasma produced by an external ionization source in dry air at atmospheric pressure and room temperature and the screening of the electric field of a dust particle in such a plasma have been investigated. The point sink model based on the diffusion-drift approximation has been used to solve the screening problem. We have established that the main species of ions in the plasma under consideration are O{sub 4}{sup +}, O{sub 2}{sup -}, and O{sub 4}{sup -} and that the dust particle potential distribution is described by a superposition of four exponentials with four different constants. We show that the first constant coincides with the inverse Debye length, the second is described by the inverse ambipolar diffusion length of the positive and negative plasma components in the characteristic time of their recombination, the third is determined by the conversion of negative ions, and the fourth is determined by the attachment and recombination of electrons and diatomic ions.

  13. DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.

    2005-01-01

    Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.

  14. Interactions of non-spherical particles in simple flows

    NASA Astrophysics Data System (ADS)

    Niazi, Mehdi; Brandt, Luca; Costa, Pedro; Breugem, Wim-Paul

    2015-11-01

    The behavior of particles in a flow affects the global transport and rheological properties of the mixture. In recent years much effort has been therefore devoted to the development of an efficient method for the direct numerical simulation (DNS) of the motion of spherical rigid particles immersed in an incompressible fluid. However, the literature on non-spherical particle suspensions is quite scarce despite the fact that these are more frequent. We develop a numerical algorithm to simulate finite-size spheroid particles in shear flows to gain new understanding of the flow of particle suspensions. In particular, we wish to understand the role of inertia and its effect on the flow behavior. For this purpose, DNS simulations with a direct-forcing immersed boundary method are used, with collision and lubrication models for particle-particle and particle-wall interactions. We will discuss pair interactions, relative motion and rotation, of two sedimenting spheroids and show that the interaction time increases significantly for non-spherical particles. More interestingly, we show that the particles are attracted to each other from larger lateral displacements. This has important implications for collision kernels. This work was supported by the European Research Council Grant No. ERC-2013-CoG-616186, TRITOS, and by the Swedish Research Council (VR).

  15. Improved cosmic ray ionization model for the system lower ionosphere-middle atmosphere. Determination of approximation energy interval characteristics for the particle penetration

    NASA Astrophysics Data System (ADS)

    Velinov, Peter; Mateev, Lachezar

    The effects of galactic and solar cosmic rays (CRs) in the middle atmosphere are considered in this work. We take into account the CR modulation by solar wind and the anomalous CR component also. In fact, CRs determine the electric conductivity in the middle atmosphere and influence the electric processes in it in this way. CRs introduce solar variability in the terrestrial atmosphere and ozonosphere -because they are modulated by solar wind. A new analytical approach for CR ionization by protons and nuclei with charge Z in the lower ionosphere and the middle atmosphere is developed in this paper. For this purpose, the ionization losses (dE/dh) for the energetic charged particles according to the Bohr-Bethe-Bloch formula are approximated in three different energy intervals. More accurate expressions for CR energy decrease E(h) and electron production rate profiles q(h) are derived. The obtained formulas allow comparatively easy computer programming. q(h) is determined by the solution of a 3D integral with account of geomagnetic cut-off rigidity. The integrand in q(h) gives the possibility for application of adequate numerical methods -in this case Gauss quadrature and Romberg extrapolation, for the solution of the mathematical problem. Computations for CR ionization in the middle atmosphere are made. The contributions of the different approximation energy intervals are presented. In this way the process of interaction of CR particles with the upper and middle atmosphere are described much more realistically. The full CR composition is taken into account: protons, helium (alpha-particles), light L, medium M, heavy H and very heavy VH group of nuclei. The computations are made for different geomagnetic cut-off rigidities R in the altitude interval 35-120 km. The COSPAR International Reference Atmosphere CIRA'86 is applied in the computer program for the neutral density and scale height values. The proposed improved CR ionization model will contribute to the

  16. Controlling chaos in wave-particle interactions.

    PubMed

    de Sousa, M C; Caldas, I L; Rizzato, F B; Pakter, R; Steffens, F M

    2012-07-01

    We analyze the behavior of a relativistic particle moving under the influence of a uniform magnetic field and a stationary electrostatic wave. We work with a set of pulsed waves that allows us to obtain an exact map for the system. We also use a method of control for near-integrable Hamiltonians that consists of the addition of a small and simple control term to the system. This control term creates invariant tori in phase space that prevent chaos from spreading to large regions, making the controlled dynamics more regular. We show numerically that the control term just slightly modifies the system but is able to drastically reduce chaos with a low additional cost of energy. Moreover, we discuss how the control of chaos and the consequent recovery of regular trajectories in phase space are useful to improve regular particle acceleration. PMID:23005517

  17. Cosmological constraints on the properties of weakly interacting massive particles

    SciTech Connect

    Steigman, G.; Turner, M.S.

    1984-10-01

    Considerations of the age and density of, as well as the evolution of structure in, the Universe lead to constraints on the masses and lifetimes of weakly interacting massive particles (WIMPs). 26 references.

  18. INTERACTIONS OF SILICA PARTICLES IN DRINKING WATER TREATMENT PROCESSES

    EPA Science Inventory

    EPA Identifier: U915331
    Title: Interactions of Silica Particles in Drinking Water Treatment Processes
    Fellow (Principal Investigator): Christina L. Clarkson
    Institution: Virginia Polytechnic Institute and State University
    EPA GRANT R...

  19. Dust particles interaction with plasma jet

    SciTech Connect

    Ticos, C. M.; Jepu, I.; Lungu, C. P.; Chiru, P.; Zaroschi, V.

    2009-11-10

    The flow of plasma and particularly the flow of ions play an important role in dusty plasmas. Here we present some instances in laboratory experiments where the ion flow is essential in establishing dust dynamics in strongly or weakly coupled dust particles. The formation of ion wake potential and its effect on the dynamics of dust crystals, or the ion drag force exerted on micron size dust grains are some of the phenomena observed in the presented experiments.

  20. Particle-in-cell simulations of the critical ionization velocity effect in finite size clouds

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Lu, G.; Goertz, C. K.; Nishikawa, K. - I.

    1994-01-01

    The critical ionization velocity (CIV) mechanism in a finite size cloud is studied with a series of electrostatic particle-in-cell simulations. It is observed that an initial seed ionization, produced by non-CIV mechanisms, generates a cross-field ion beam which excites a modified beam-plasma instability (MBPI) with frequency in the range of the lower hybrid frequency. The excited waves accelerate electrons along the magnetic field up to the ion drift energy that exceeds the ionization energy of the neutral atoms. The heated electrons in turn enhance the ion beam by electron-neutral impact ionization, which establishes a positive feedback loop in maintaining the CIV process. It is also found that the efficiency of the CIV mechanism depends on the finite size of the gas cloud in the following ways: (1) Along the ambient magnetic field the finite size of the cloud, L (sub parallel), restricts the growth of the fastest growing mode, with a wavelength lambda (sub m parallel), of the MBPI. The parallel electron heating at wave saturation scales approximately as (L (sub parallel)/lambda (sub m parallel)) (exp 1/2); (2) Momentum coupling between the cloud and the ambient plasma via the Alfven waves occurs as a result of the finite size of the cloud in the direction perpendicular to both the ambient magnetic field and the neutral drift. This reduces exponentially with time the relative drift between the ambient plasma and the neutrals. The timescale is inversely proportional to the Alfven velocity. (3) The transvers e charge separation field across the cloud was found to result in the modulation of the beam velocity which reduces the parallel heating of electrons and increases the transverse acceleration of electrons. (4) Some energetic electrons are lost from the cloud along the magnetic field at a rate characterized by the acoustic velocity, instead of the electron thermal velocity. The loss of energetic electrons from the cloud seems to be larger in the direction of

  1. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    SciTech Connect

    Bross, David H.; Parmar, Payal; Peterson, Kirk A.

    2015-11-14

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set limit using new all-electron correlation consistent basis sets. The latter was carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons has been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. The final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV) and thus more reliable than the current experimental values of IP{sub 3} through IP{sub 6}.

  2. Fundamental Particles and Interactions. A Wall Chart of Modern Physics.

    ERIC Educational Resources Information Center

    Achor, William T.; And Others

    1988-01-01

    Discusses a wall chart, "The Standard Model of Fundamental Particles and Interactions," for use in introductory physics courses at either high school or college level. Describes the chart development process, introduction and terminology of particle physics, components of the chart, and suggestions for using the chart, booklet, and software. (YP)

  3. Effective field theory of thermal Casimir interactions between anisotropic particles

    NASA Astrophysics Data System (ADS)

    Haussman, Robert C.; Deserno, Markus

    2014-06-01

    We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies.

  4. Effective field theory of thermal Casimir interactions between anisotropic particles.

    PubMed

    Haussman, Robert C; Deserno, Markus

    2014-06-01

    We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies. PMID:25019720

  5. Origin of particle accumulation structures in liquid bridges: Particle-boundary-interactions versus inertia

    NASA Astrophysics Data System (ADS)

    Muldoon, Frank H.; Kuhlmann, Hendrik C.

    2016-07-01

    The formation of particle-accumulation structures in the flow in a cylindrical liquid bridge driven by the thermocapillary effect is studied with the aim of determining the physical mechanism which forms the structures. The flow is modeled using the incompressible Navier-Stokes and energy equations with the assumption of constant fluid properties except for surface tension, which is assumed to depend linearly on temperature. Different models for the motion of small non-interacting spherical particles at low concentration are employed, taking into account particle inertia due to density differences between fluid and particles and the restricted particle motion near the boundaries of the flow domain. Attention is focused on differences in formation time between particle-accumulation structures arising as a result of inertial effects only, particle-boundary-interaction effects only, and a combination of the two.

  6. Particle Interactions in DNA-laden Flows

    SciTech Connect

    Bybee, M D; Miller, G H; Trebotich, D

    2005-12-20

    Microfluidic devices are becoming state-of-the-art in many significant applications including pathogen detection, continuous monitoring, and drug delivery. Numerical algorithms which can simulate flows of complex fluids within these devices are needed for their development and optimization. A method is being developed at LLNL by Trebotich et. al. [30] for simulations of DNA-laden flows in complex microscale geometries such as packed bed reactors and pillar chips. In this method an incompressible Newtonian fluid is discretized with Cartesian grid embedded boundary methods, and the DNA is represented by a bead-rod polymer model. The fluid and polymer are coupled through a body force. In its current state, polymer-surface interactions are treated as elastic collisions between beads and surface, and polymer-polymer interactions are neglected. Implementation of polymer-polymer interactions is the main objective of this work. It is achieved by two methods: (1) a rigid constraint whereby rods elastically bounce off one another, and (2) a smooth potential acting between rods. In addition, a smooth potential is also implemented for the polymer-surface interactions. Background information will also be presented as well as related work by other researchers.

  7. Theoretical and observational analysis of individual ionizing particle effects in biological tissue

    SciTech Connect

    Nelson, A.C.

    1980-11-01

    The microstructural damage to living tissue caused by heavy ion radiation was studied. Preliminary tests on rat corneal tissue, rat cerebellar tissue grown in culture, and rat retinal tissue indicated that the best assay for heavy ion damage is the rat cornea. The corneal tissue of the living rat was exposed to beams of carbon at 474 MeV/amu, neon at 8.5 MeV/amu, argon at 8.5 MeV/amu, silicon at 530 MeV/amu, iron at 500 MeV/amu, and iron at 600 MeV/amu. X-rays were also used on corneas to compare with the heavy ion irradiated corneas. Scanning electron microscopy revealed lesions with circular symmetry on the external plasma membranes of corneal epithelium which were irradiated with heavy ions, but similar lesions were not observed on the plasma membranes of x-ray irradiated or non-irradiated control samples. These data verify the special way in which heavy ions interact with matter: each ion interacts coulombically with electrons all along its trajectory to generate a track. The dose from heavy ion radiation is not distributed homogeneously on a tissue microstructural scale but is concentrated along the individual particle track. Even along a single particle track the dose is discontinuous except at the Bragg peak when the LET is maximum. Micrographs of heavy-ion-irradiated corneas demonstrated two significant correlations with the heavy ion beam: (1) the number of plasma membrane lesions per unit area was correlated with the particle fluence, and (2) the diameter of the lesions were linearly related to the energy loss or LET of the individual particle. These observations corroborate what has already been suggested theoretically about heavy ion tracks and what has been shown experimentally. But the new data indicate that particle tracks occur in biological tissues as well, and that a single heavy ion is responsible for each membrane lesion. (ERB)

  8. Shock interaction with a deformable particle: Direct numerical simulation and point-particle modeling

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Haselbacher, A.; Balachandar, S.; Najjar, F. M.; Stewart, D. S.

    2013-01-01

    The interaction of shock waves with deformable particles is an important fundamental problem. In some applications, e.g., the detonation of explosives loaded with metal particles, the pressure behind the shock wave can be significantly larger than the yield strength of the particle material. This means that particles can deform severely during their interaction with the shock wave. The experimental and theoretical studies of shock interaction with deformable particles (SIDP) are extremely challenging because of its highly transient nature. As a result, no accurate model exists yet that can be used in simulations. The objective of this paper is to develop a simple point-particle model that accurately captures the unsteady force and heat-transfer in SIDP. In the development of this model, we build on earlier models by Ling et al. (Int. J. Multiphase Flow 37, 1026-1044 (2011)) for the unsteady force and heat-transfer contributions for rigid particles. Insights gained from direct numerical simulations (DNS) guide the extension of these models to deforming particles. Results obtained with the extended model for the interaction of a deforming particle with a shock wave and a Chapman-Jouguet detonation wave compare well with DNS results and therefore offer significant improvements over standard models.

  9. Field ionization model implemented in Particle In Cell code and applied to laser-accelerated carbon ions

    SciTech Connect

    Nuter, R.; Gremillet, L.; Lefebvre, E.; Levy, A.; Ceccotti, T.; Martin, P.

    2011-03-15

    A novel numerical modeling of field ionization in PIC (Particle In Cell) codes is presented. Based on the quasistatic approximation of the ADK (Ammosov Delone Krainov) theory and implemented through a Monte Carlo scheme, this model allows for multiple ionization processes. Two-dimensional PIC simulations are performed to analyze the cut-off energies of the laser-accelerated carbon ions measured on the UHI 10 Saclay facility. The influence of the target and the hydrocarbon pollutant composition on laser-accelerated carbon ion energies is demonstrated.

  10. Interaction between two spherical particles in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun-Ichi; Stark, Holger; Yoneya, Makoto; Yokoyama, Hiroshi

    2004-04-01

    We numerically investigate the interaction between two spherical particles in a nematic liquid crystal mediated by elastic distortions in the orientational order. We pay attention to the cases where two particles with equal radii R0 impose rigid normal anchoring on their surfaces and carry a pointlike topological defect referred to as a hyperbolic hedgehog. To describe the geometry of our system, we use bispherical coordinates, which prove useful in the implementation of boundary conditions at the particle surfaces and at infinity. We adopt the Landau de Gennes continuum theory in terms of a second-rank tensor order parameter Qij for the description of the orientational order of a nematic liquid crystal. We also utilize an adaptive mesh refinement scheme that has proven to be an efficient way of dealing with topological defects whose core size is much smaller than the particle size. When the two “dipoles,” composed of a particle and a hyperbolic hedgehog, are in parallel directions, the two-particle interaction potential is attractive for large interparticle distances D and proportional to D-3 as expected from the form of the dipole-dipole interaction, until the well-defined potential minimum at D≃2.46 R0 is reached. For the antiparallel configuration with no hedgehogs between the two particles, the interaction potential is repulsive and behaves as D-2 for D≲10 R0 , which is stronger than the dipole-dipole repulsion ( ˜ D-3 ) expected theoretically as an asymptotic behavior for large D .

  11. Potential Energy Curves and Collisions Integrals of Air Components. 2; Interactions Involving Ionized Atoms

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances in scattering calculations with an emphasis on the accuracy that is obtainable. Results for interactions of the atoms and ionized atoms of nitrogen and oxygen will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  12. Cell and Particle Interactions and Aggregation During Electrophoretic Motion

    NASA Technical Reports Server (NTRS)

    Wang, Hua; Zeng, Shulin; Loewenberg, Michael; Todd, Paul; Davis, Robert H.

    1996-01-01

    The stability and pairwise aggregation rates of small spherical particles under the collective effects of buoyancy-driven motion and electrophoretic migration are analyzed. The particles are assumed to be non-Brownian, with thin double-layers and different zeta potentials. The particle aggregation rates may be enhanced or reduced, respectively, by parallel and antiparallel alignments of the buoyancy-driven and electrophoretic velocities. For antiparallel alignments, with the buoyancy-driven relative velocity exceeding the electrophoretic relative velocity between two widely-separated particles, there is a 'collision-forbidden region' in parameter space due to hydrodynamic interactions; thus, the suspension becomes stable against aggregation.

  13. Conformal invariance in noncommutative geometry and mutually interacting Snyder particles

    NASA Astrophysics Data System (ADS)

    Pramanik, Souvik; Ghosh, Subir; Pal, Probir

    2014-11-01

    A system of relativistic Snyder particles with mutual two-body interaction that lives in a noncommutative Snyder geometry is studied. The underlying novel symplectic structure is a coupled and extended version of (single-particle) Snyder algebra. In a recent work by Casalbuoni and Gomis [Phys. Rev. D 90, 026001 (2014)], a system of interacting conventional particles (in commutative spacetime) was studied with special emphasis on its conformal invariance. Proceeding along the same lines, we have shown that our interacting Snyder particle model is also conformally invariant. Moreover, the conformal Killing vectors have been constructed. Our main emphasis is on the Hamiltonian analysis of the conformal symmetry generators. We demonstrate that the Lorentz algebra remains undeformed, but validity of the full conformal algebra requires further restrictions.

  14. Multidimensional stationary probability distribution for interacting active particles.

    PubMed

    Maggi, Claudio; Marconi, Umberto Marini Bettolo; Gnan, Nicoletta; Di Leonardo, Roberto

    2015-01-01

    We derive the stationary probability distribution for a non-equilibrium system composed by an arbitrary number of degrees of freedom that are subject to Gaussian colored noise and a conservative potential. This is based on a multidimensional version of the Unified Colored Noise Approximation. By comparing theory with numerical simulations we demonstrate that the theoretical probability density quantitatively describes the accumulation of active particles around repulsive obstacles. In particular, for two particles with repulsive interactions, the probability of close contact decreases when one of the two particle is pinned. Moreover, in the case of isotropic confining potentials, the radial density profile shows a non trivial scaling with radius. Finally we show that the theory well approximates the "pressure" generated by the active particles allowing to derive an equation of state for a system of non-interacting colored noise-driven particles. PMID:26021260

  15. Single particle density of trapped interacting quantum gases

    SciTech Connect

    Bala, Renu; Bosse, J.; Pathak, K. N.

    2015-05-15

    An expression for single particle density for trapped interacting gases has been obtained in first order of interaction using Green’s function method. Results are easily simplified for homogeneous quantum gases and are found to agree with famous results obtained by Huang-Yang-Luttinger and Lee-Yang.

  16. Renormalisation group analysis of supersymmetric particle interactions

    NASA Astrophysics Data System (ADS)

    Box, Andrew D.

    In the Minimal Supersymmetric Standard Model (MSSM), there are numerous sources of flavour-violation in addition to the usual Kobayashi-Maskawa mixing matrix of the Standard Model. We reexamine the renormalisation group equations (RGEs) with a view to investigating flavour effects in a supersymmetric theory with an arbitrary flavour structure at some high scale. To incorporate (two-loop sized) threshold effects in the one-loop RGEs, we calculate the beta-functions using a sequence of (non-supersymmetric) effective theories with heavy particles decoupled at the scale of their mass, keeping track of the fact that many couplings (such as gauge and gaugino couplings) which are equal in an exact supersymmetric theory may no longer be equal once the supersymmetry (SUSY) is broken. We find that this splitting, which is ignored in the literature, may be larger than two-loop terms that are included. In addition, gaugino couplings develop flavour structure that is absent without including decoupling effects. A program (to be incorporated into ISAJET) has been developed, which includes flavour-violating couplings of superparticles and solves the two-loop threshold RGEs subject to specified high scale inputs. The weak scale flavour structure derived in this way can be applied to the study of flavour-changing decays of SUSY particles. As an illustration, we revisit the branching ratio of the flavour-violating decay of the top squark. We find that, in the minimal supergravity (mSUGRA) class of models, previous estimates for the width of this decay have been too large by a factor 10 -- 25. However, this decay rate is sensitive to the flavour structure of the high scale boundary conditions. We analyse the consequences of introducing non-universality in the high scale soft SUSY-breaking mass matrices and find that under these conditions the partial width can be altered by a large amount.

  17. Cross sections and rate coefficients for inelastic interactions of heavy particles

    NASA Technical Reports Server (NTRS)

    Kunc, J. A.; Soon, W. H.

    1991-01-01

    The existing analytical inelastic cross-sections for direct atom-atom ionizing collisions of Firsov (1959), Fleischmann et al. (1972), and Drawin (1968) are discussed. General analytical expressions for direct ionization cross-sections in atom-atom collisions are derived. The main advantage of the present cross-sections is their generality, simplicity, and overall accuracy, which is acceptable in most applications and is better than the overall accuracy of the cross-sections of Firsov, Fleischmann et al., and Drawin. The atom-atom interaction is considered as a superposition of all the pairwise interactions between the test particle and all the electrons of the outer nl shell of the target atom. Such a picture of atom-atom collision is acceptable at low- and medium-impact energies because then the electrons of the outer shell of the target atom are most likely the ones that get ionized. At high-impact energy, the picture becomes inaccurate because of strong overlapping of the atomic shells.

  18. Dissipative Particle Dynamics interaction parameters from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Sepehr, Fatemeh; Paddison, Stephen J.

    2016-02-01

    Dissipative Particle Dynamics (DPD) is a commonly employed coarse-grained method to model complex systems. Presented here is a pragmatic approach to connect atomic-scale information to the meso-scale interactions defined between the DPD particles or beads. Specifically, electronic structure calculations were utilized for the calculation of the DPD pair-wise interaction parameters. An implicit treatment of the electrostatic interactions for charged beads is introduced. The method is successfully applied to derive the parameters for a hydrated perfluorosulfonic acid ionomer with absorbed vanadium cations.

  19. Physicochemical Properties of 'Particle Brush'-Based Materials: Using Polymer Graft Modification to Tailor Particle Interactions

    NASA Astrophysics Data System (ADS)

    Schmitt, Michael D.

    The advent of surface-initiated controlled radical polymerization techniques has allowed a new class of hybrid polymer-grafted nanoparticles, known as eparticle brushes,f to be realized. By grafting polymers from the surface, interactions between particles can be tuned using the precise control over graft architecture (i.e. chain length, dispersity, particle size, and grafting density) afforded by controlled radical polymerizations. Previously, a transition from particle-like to polymer-like interactions in small particles with increasing graft length has been observed. In the limit of long graft lengths, the polymer chains impart new interactions between particles, such as entanglements. These results outline a rich, but largely unexplored parameter space. The present thesis further elucidates the extent to which polymer graft modification facilitates new interaction types between particles and the dependence of those interactions on chain conformation. Specifically, the mechanical properties, processability, phase separation, and vibrational modes of particle brushes are examined. A dependence of the mechanical properties of particle brush assemblies on particle size is accurately captured by accounting for differences in chain conformation between particles of different sizes using a simple scaling model. Further tailoring of mechanical characteristics in weak particle brush assemblies can be achieved using appropriate homopolymer additives to form two-component systems. Improved mechanical properties are accompanied by a significant enhancement in particle processability that allows application of previously unusable processing methods. Considering more complex systems, mesoscale phase separation of nanoparticles is demonstrated for the first time by blending of particle brushes with different graft polymers. Polymer graft modification is seen to not only strengthen and introduce new interactions, but also tune particle properties. Vibrational modes of

  20. Simulation of wave packet tunneling of interacting identical particles

    NASA Astrophysics Data System (ADS)

    Lozovik, Yu. E.; Filinov, A. V.; Arkhipov, A. S.

    2003-02-01

    We demonstrate a different method of simulation of nonstationary quantum processes, considering the tunneling of two interacting identical particles, represented by wave packets. The used method of quantum molecular dynamics (WMD) is based on the Wigner representation of quantum mechanics. In the context of this method ensembles of classical trajectories are used to solve quantum Wigner-Liouville equation. These classical trajectories obey Hamiltonian-like equations, where the effective potential consists of the usual classical term and the quantum term, which depends on the Wigner function and its derivatives. The quantum term is calculated using local distribution of trajectories in phase space, therefore, classical trajectories are not independent, contrary to classical molecular dynamics. The developed WMD method takes into account the influence of exchange and interaction between particles. The role of direct and exchange interactions in tunneling is analyzed. The tunneling times for interacting particles are calculated.

  1. Energetic particle acceleration at corotating interaction regions: Ulysses results

    SciTech Connect

    Desai, M.I.; Marsden, R.G.; Sanderson, T.R.; Gosling, J.T.

    1997-07-01

    We present here statistical properties of energetic ions (tilde 1 MeV) accelerated by corotating interaction regions observed at the Ulysses spacecraft. We have correlated the tilde 1 MeV proton intensity measured near the trailing edges of the interaction regions with their compression ratio. We interpret our results in terms of the plasma conditions experienced at Ulysses and identify a likely source of the low energy seed particles accelerated at the interaction regions.

  2. Two-particle and single-particle spin-dependent interactions in topological insulators

    NASA Astrophysics Data System (ADS)

    Radu, Marius; Lyanda-Geller, Yuli

    2014-03-01

    We derive single-particle and two-particle interaction Hamiltonians describing physics of two-dimensional topological insulators based on HgTe-CdTe quantum well structures by using k . p theory and extended Kane model. We include contributions from upper conduction band with orbital states of p-symmetry that bring about the terms describing lack of inversion symmetry in host semiconductors. Single-particle Hamiltonian and two-particle Hamiltonian contain important spin-dependent diagonal and off-diagonal terms. We demonstrate how these terms affect spin currents, interference effects in conductance such as weak localization and anti-localization, and contribute to spin relaxation and dephasing. The spin-dependent interaction terms couple orbital motion of one particle with evolution of spin of the other particle. Such particle-particle interactions do not conserve spin and lower the symmetry of exchange interactions, leading, e.g., to Dzyaloshinskii-Moriya exchange term. Support of Purdue Center for Topological Materials is gratefully acknowledged.

  3. Electrophoretic interactions and aggregation of colloidal biological particles

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.; Nichols, Scott C.; Loewenberg, Michael; Todd, Paul

    1994-01-01

    The separation of cells or particles from solution has traditionally been accomplished with centrifuges or by sedimentation; however, many particles have specific densities close to unity, making buoyancy-driven motion slow or negligible, but most cells and particles carry surface charges, making them ideal for electrophoretic separation. Both buoyancy-driven and electrophoretic separation may be influenced by hydrodynamic interactions and aggregation of neighboring particles. Aggregation by electrophoresis was analyzed for two non-Brownian particles with different zeta potentials and thin double layers migrating through a viscous fluid. The results indicate that the initial rate of electrophoretically-driven aggregation may exceed that of buoyancy-driven aggregation, even under conditions in which buoyancy-driven relative motion of noninteracting particles is dominant.

  4. Biological effects of low doses of ionizing radiations: Particle tracks in radiobiology

    NASA Astrophysics Data System (ADS)

    Katz, Robert; Hofmann, Werner

    1982-12-01

    A radiation field is made up of a tangle of particle tracks, from the primary particle and secondary and higher generation electron interaction, well isolated at low doses and with multiple intersections in cell nuclei at high doses. Low dose effects in multicellular systems are therefore the sum of individual track structures. Until we can state with confidence the structure of a particle track in biological matter for all end-points of interest, at least as well as we can for nuclear emulsions, our knowledge of low dose effects should be regarded as uncertain and inadequate. In this context "track structure" means the response of physical and biological systems along the path of the particle, and depends on the observed end-point as well as on the identity of the particle. For mammalian cell killing and a few other biological end-points track and experimental radiosensitivity parameters allow as to construct schematic models. If we take a particle track to consist of a sequence of inactivated cells strung along the path of a particle, neither electrons nor protons leave a track in a compact mammalian cell structure. At most there is an occasional killed cell at the end of the range of a proton or an electron where the particle stops in the nucleus of a cell, with probability less than 0.3 for a proton, and less than 0.01 for an electron. The variety of potential targets whose size may be compared to the measured inactivation cross-section and the lack of a fully consistent theory of RBE make it possible to decide, from this information alone, whether cell killing is an individual (1-hit) or cooperative (many-hit) phenomenon, especilally for electrons. a siilar analysis of epidemiological data for cancer induction leads to probabilities and action cross-sections so low as to make a linear extrapolation implausible. In assigning quality factors at highest LET values we should consider that heavy ions inactive cells, so that neither mutation nor transformation can

  5. Evidence of strong projectile-target-core interaction in single ionization of neon by electron impact

    SciTech Connect

    Yan, S.; Zhang, P.; Xu, S.; Ma, X.; Zhang, S. F.; Zhu, X. L.; Feng, W. T.; Liu, H. P.

    2010-11-15

    The momentum distributions of recoil ions were measured in the single ionization of neon by electron impact at incident energies between 80 and 2300 eV. It was found that there are a noticeable number of recoil ions carrying large momenta, and the relative contributions of these ions becomes more pronounced with the further decrease of incident electron energy. These observed behaviors indicate that there is a strong projectile-target-core interaction in the single-ionization reaction. By comparing our results with those of electron-neon elastic scattering, we concluded that the elastic scattering of the projectile electron on the target core plays an important role at low and intermediate collision energies.

  6. Interaction of Strain and Nuclear Spins in Silicon: Quadrupolar Effects on Ionized Donors

    NASA Astrophysics Data System (ADS)

    Franke, David P.; Hrubesch, Florian M.; Künzl, Markus; Becker, Hans-Werner; Itoh, Kohei M.; Stutzmann, Martin; Hoehne, Felix; Dreher, Lukas; Brandt, Martin S.

    2015-07-01

    The nuclear spins of ionized donors in silicon have become an interesting quantum resource due to their very long coherence times. Their perfect isolation, however, comes at a price, since the absence of the donor electron makes the nuclear spin difficult to control. We demonstrate that the quadrupolar interaction allows us to effectively tune the nuclear magnetic resonance of ionized arsenic donors in silicon via strain and determine the two nonzero elements of the S tensor linking strain and electric field gradients in this material to S11=1.5 ×1022 V /m2 and S44=6 ×1022 V /m2 . We find a stronger benefit of dynamical decoupling on the coherence properties of transitions subject to first-order quadrupole shifts than on those subject to only second-order shifts and discuss applications of quadrupole physics including mechanical driving of magnetic resonance, cooling of mechanical resonators, and strain-mediated spin coupling.

  7. Studying bubble-particle interactions by zeta potential distribution analysis.

    PubMed

    Wu, Chendi; Wang, Louxiang; Harbottle, David; Masliyah, Jacob; Xu, Zhenghe

    2015-07-01

    Over a decade ago, Xu and Masliyah pioneered an approach to characterize the interactions between particles in dynamic environments of multicomponent systems by measuring zeta potential distributions of individual components and their mixtures. Using a Zetaphoremeter, the measured zeta potential distributions of individual components and their mixtures were used to determine the conditions of preferential attachment in multicomponent particle suspensions. The technique has been applied to study the attachment of nano-sized silica and alumina particles to sub-micron size bubbles in solutions with and without the addition of surface active agents (SDS, DAH and DF250). The degree of attachment between gas bubbles and particles is shown to be a function of the interaction energy governed by the dispersion, electrostatic double layer and hydrophobic forces. Under certain chemical conditions, the attachment of nano-particles to sub-micron size bubbles is shown to be enhanced by in-situ gas nucleation induced by hydrodynamic cavitation for the weakly interacting systems, where mixing of the two individual components results in negligible attachment. Preferential interaction in complex tertiary particle systems demonstrated strong attachment between micron-sized alumina and gas bubbles, with little attachment between micron-sized alumina and silica, possibly due to instability of the aggregates in the shear flow environment. PMID:25731913

  8. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    NASA Astrophysics Data System (ADS)

    Lipkens, Bart; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.

    2015-10-01

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of

  9. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    SciTech Connect

    Lipkens, Bart; Ilinskii, Yurii A. Zabolotskaya, Evgenia A.

    2015-10-28

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of

  10. A field-ionization neutral detector - FIND. [neutral particle mass spectrometer

    NASA Technical Reports Server (NTRS)

    Curtis, C. C.; Hsieh, K. C.; Fan, C. Y.; Swanson, L. W.

    1975-01-01

    The field ionization neutral detector FIND operates according to the following principle: Neutral atoms are attracted toward the field ionization tips since they are polarized by the electric field of the tips. The atoms are singly ionized and repelled by the positive potential of the tips toward the detector situated behind a grid at ground potential. The ions deposit in the detector their kinetic energies, typically 26 keV, corresponding to the potential difference between the ionization region and the detector. Laboratory results show that FIND can have the resolution, sensitivities and durability required to perform in situ measurements of neutral H and He fluxes in interplanetary space, cometary halos and exospheres.

  11. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.

    PubMed

    Di Martino, Piera; Joiris, Etienne; Martelli, Sante

    2004-09-01

    The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The

  12. Particle-surface interactions in chemical mechanical polishing

    SciTech Connect

    Dugger, M.T.; Adkins, C.L.J.; Resnick, P.J.; Jeon, J.S.; Raghavan, S.

    1996-10-01

    Material removal in chemical mechanical polishing (CMP) occurs by a pressure accentuated chemical attack of the surface. The polishing slurry typically consists of abrasive particles and reactive chemicals that may or may not include an oxidant. Post-CMP cleaning processes must remove both the ionic contaminants and any remaining polishing slurry particles. Central to the effectiveness of a clean is the use of conditions that will minimize the binding force between the residual particles and the wafer surface. The morphology and composition of the particle, the surface from which it must be removed, and the environment surrounding the wafer will determine the magnitude of forces that hold a particle to the wafer surface. At the Sandia/SEMATECH Center for Contamination Free Manufacturing, two techniques--atomic force microscopy (AFM) and electrokinetic deposition--are being used to explore these interactions for CMP of both oxide and tungsten surfaces. A basic understanding of particle-surface interaction forces and how they are affected by the chemical/physical environment of the particle and surface is the objective of this task. Modification of the binding forces between particles and wafer surfaces may be used to maximize post-CMP cleaning effectiveness.

  13. Gas-Particle Interactions in a Microgravity Flow Cell

    NASA Technical Reports Server (NTRS)

    Louge, Michel; Jenkins, James

    1999-01-01

    We are developing a microgravity flow cell in which to study the interaction of a flowing gas with relatively massive particles that collide with each other and with the moving boundaries of the cell. The absence of gravity makes possible the independent control of the relative motion of the boundaries and the flow of the gas. The cell will permit gas-particle interactions to be studied over the entire range of flow conditions over which the mixture is not turbulent. Within this range, we shall characterize the viscous dissipation of the energy of the particle fluctuations, measure the influence of particle-phase viscosity on the pressure drop along the cell, and observe the development of localized inhomogeneities that are likely to be associated with the onset of clusters. These measurements and observations should contribute to an understanding of the essential physics of pneumatic transport.

  14. Spherical Particle Interaction with Flowing Plasma: Computational Discoveries

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.

    2005-10-01

    The fundamental problem of the interaction of an isolated ion-absorbing sphere with a flowing collisionless plasma has been solved comprehensively for the first time, using a particle in cell code (SCEPTIC). Its results show the extent to which prior approximations affect such parameters as the particle charge, potential, ion-flux, drag, and wake structure. Several qualitatively new discoveries have been made, including: the substantial accuracy of the OML value of potential, but inaccuracy of the particle charge; reversal of the direction of asymmetry of the flux to the sphere; the rise of the ion drag force above prior analytic estimates by a factor of 2; the absence of extended oscillatory wakes, in contradiction of prior analytic predictions. These results constitute the basis for many of the dynamic parameters of dust particle interactions with the plasma and with each other.

  15. Interaction measurement of particles bound to a lipid membrane

    NASA Astrophysics Data System (ADS)

    Sarfati, Raphael; Dufresne, Eric

    2015-03-01

    The local shape and dynamics of the plasma membrane play important roles in many cellular processes. Local membrane deformations are often mediated by the adsorption of proteins (notably from the BAR family), and their subsequent self-assembly. The emerging hypothesis is that self-assembly arises from long-range interactions of individual proteins through the membrane's deformation field. We study these interactions in a model system of micron-sized colloidal particles adsorbed onto a lipid bilayer. We use fluorescent microscopy, optical tweezers and particle tracking to measure dissipative and conservative forces as a function of the separation between the particles. We find that particles are driven together with forces of order 100 fN and remain bound in a potential well with a stiffness of order 100 fN/micron.

  16. Transient bimodality in interacting particle systems

    SciTech Connect

    Calderoni, P.; Pellegrinotti, A.; Presutti, E.; Vares, M.E. )

    1989-05-01

    The authors consider a system of spins which have values {plus minus} 1 and evolve according to a jump Markov process whose generator is the sum of two generators, one describing a spin-flip Glauber process, the other a Kawasaki (stirring) evolution. It was proven elsewhere that if the Kawasaki dynamics is speeded up by a factor {var epsilon}{sup {minus}2}, then, in the limit {var epsilon} {yields} 0 (continuum limit), propagation of chaos holds and the local magnetization solves a reaction-diffusion equation. They choose the parameters of the Glauber interaction so that the potential of the reaction term in the reaction-diffusion equation is a double-well potential with quartic maximum at the origin. They assume further that for each {var epsilon} the system is in a finite interval of Z with {var epsilon}{sup {minus}1} sites and periodic boundary conditions. They specify the initial measure as the product measure with 0 spin average, thus obtaining, in the continuum limit, a constant magnetic profile equal to 0, which is a stationary unstable solution to the reaction-diffusion equation. They prove that at times of the order {var epsilon}{sup {minus}1/2} propagation of chaos does not hold any more and, in the limit as {var epsilon} {yields} 0, the state becomes a nontrivial superposition of Bernoulli measures with parameters corresponding to the minima of the reaction potential. The coefficients of such a superposition depend on time (on the scale {var epsilon}{sup {minus}1/2}) and at large times (on this scale) the coefficient of the term corresponding to the initial magnetization vanishes (transient bimodality). This differs from what was observed by De Masi, Presutti, and Vares, who considered a reaction potential with quadratic maximum and no bimodal effect was seen, as predicted by Broggi, Lugiato, and Colombo.

  17. Particle-fluid interactions in rotor-generated vortex flows

    NASA Astrophysics Data System (ADS)

    Rauleder, Jürgen; Leishman, J. Gordon

    2014-03-01

    An investigation was made into the particle-laden turbulent flow produced by a rotor hovering in ground effect over a mobile sediment bed. Measurements of the two-phase flow were made using time-resolved particle image velocimetry and particle tracking velocimetry as the rotor wake and its embedded vorticity approached and interacted with the sediment bed. Mobilized particles of 45-63 μm diameter (estimated to have a particle Reynolds number of <30 and a Stokes number of about 60) were individually identified and tracked in the resulting flow, with the objective of relating any changes in the vortical flow and turbulence characteristics of the carrier flow phase to the action of the dispersed particle phase. It was observed that, in general, a two-way coupling between the flow phases was produced near the ground, and in some cases, the coupling was very significant. Specifically, it was shown that the uplifted particles altered the carrier flow near the sediment bed, leading to an earlier distortion of the external flow induced by the blade tip vortices and to the accelerated diffusion of the vorticity they contained. The uplifted particles were also seen to modify the overall turbulence field, and when sufficient particle concentrations built up, the particles began to attenuate the turbulence levels. Even in regions with lower particle concentrations, turbulence was found to be attenuated by the indirect action of the particles because of the distortions made to the tip vortices, which were otherwise a significant source of turbulence production. After the tip vortices had diffused further downstream, the uplifted particles were also found to increase the anisotropy of turbulence in the flow.

  18. Local wave particle resonant interaction causing energetic particle prompt loss in DIII-D plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, R. B.; Fu, G. Y.; White, R. B.; Wang, X. G.

    2015-11-01

    A new wave particle resonance mechanism is found explaining the first-orbit prompt neutral beam-ion losses induced by shear Alfvén Eigenmodes (AEs) in the DIII-D tokamak. Because of the large banana width, a typical trapped beam ion can only interact locally with a core localised Alfvén Eigenmode for a fraction of its orbit, i.e. part of its inner leg of the banana orbit. These trapped beam ions can experience substantial radial kick within one bounce as long as the phases of the wave seen by the particles are nearly constant during this local interaction. A wave particle resonant condition is found based on the locally averaged particle orbit frequencies over the interaction part of the particle orbit. It is further found that the frequency width of the local resonance is quite large because the interaction time is short. This implies that particles over a considerable region of phase space can interact effectively with the localised AEs and experience large radial kicks within one bounce orbit. The radial kick size is found numerically and analytically to scale linearly in AE amplitude and is about 5 cm for typical experimental parameters. These results are consistent with experimental measurement.

  19. [Effects of ionizing radiation on scintillators and other particle detectors]. Conference summary

    SciTech Connect

    Proudfoot, J.

    1992-09-01

    It is my task to summarise the great variety of topics (covering a refreshing mix of physics, chemistry and technology) presented at this conference, which has focused on the effects of ionising radiation on scintillators and other particle detectors. One of the reasons and the central interest of many of the participants was the use of such detectors in experiments at two future large hadron colliders: the Superconducting Super Collider to be operating outside of Dallas in the United States by the turn of the decade and its European counterpart the Large Hadron Collider to be operating outside of Geneva in Switzerland on a similar time scale. These accelerators are the ``apple of the high energy physicist`s eye.`` Their goal is to uncover the elusive Higgs particle and thereby set the cornerstone in our current knowledge of elementary particle interactions. This is the Quest, and from this lofty height the presentations rapidly moved on to the specific questions of experimental science: how such an experiment is carried out; why radiation damage is an issue; how radiation damage affects detectors; which factors affect radiation damage characteristics; which factors are not affected by radiation damage; and how better detectors may be constructed. These were the substance of this conference.

  20. Azimuthal structures of produced particles in heavy-ion interactions

    SciTech Connect

    Vokal, S. Orlova, G. I.; Lehocka, S.

    2009-02-15

    The angular structures of particles produced in {sup 208}Pb at 158 A GeV/c and {sup 197}Au at 11.6 A GeV/c induced interactions with Ag(Br) nuclei in emulsion detector have been investigated. Nonstatistical well-ordered ring-like structures of produced particles in azimuthal plane of a collision have been found, and their parameters have been determined.

  1. Particle-Turbulence Interaction Model for Aluminum Combustion

    NASA Astrophysics Data System (ADS)

    Sinha, Neeraj; Calhoon, William; Tomes, Jeremy

    2011-06-01

    Particle-turbulence interactions will have a substantial impact on the performance of thermobaric explosives that rely on the particle combustion for secondary heat release. Modeling these interactions from a fundamental perspective is very difficult and intractable for large-scale problems of practical interest. Alternatively, these interactions may be modeled from a macroscopic perspective that seeks to account for the probability distribution function (PDF) of variables within the modeled laminar burning rate for the particulates. Such a formulation would account for the first order effect of turbulent fluctuations on the burning rate within a computationally affordable model. This paper will describe the development of such a model for aluminum particle combustion in both the diffusion and kinetic burning regimes. This formulation is based on an assumed PDF method that may be parameterized into a database that may be deployed within a flow solver. As a result, the formulation is computational efficient and affordable for large-scale simulations.

  2. The impact of surface properties on particle-interface interactions

    NASA Astrophysics Data System (ADS)

    Wang, Anna; Kaz, David; McGorty, Ryan; Manoharan, Vinothan N.

    2013-03-01

    The propensity for particles to bind to oil-water interfaces was first noted by Ramsden and Pickering over a century ago, and has been attributed to the huge reduction in surface energy when a particle breaches an oil-water interface and straddles it at its equilibrium height. Since then materials on a variety of length scales have been fabricated using particles at interfaces, from Pickering emulsions to Janus particles. In these applications, it is simply assumed that the particle sits at its hugely energetically favourable equilibrium position. However, it was recently shown that the relaxation of particles towards their equilibrium position is logarithmic in time and could take months, much longer than typical experiments. Here we investigate how surface charge and particle 'hairiness' impact the interaction between micron-sized particles and oil-water interfaces, and explore a molecular kinetic theory model to help understand these results. We use digital holographic microscopy to track micron-sized particles as they approach an oil-water interface with a resolution of 2 nm in all three dimensions at up to thousands of frames per second.

  3. Simulation of hydrodynamically interacting particles confined by a spherical cavity

    NASA Astrophysics Data System (ADS)

    Aponte-Rivera, Christian; Zia, Roseanna N.

    2016-06-01

    We present a theoretical framework to model the behavior of a concentrated colloidal dispersion confined inside a spherical cavity. Prior attempts to model such behavior were limited to a single enclosed particle and attempts to enlarge such models to two or more particles have seen limited success owing to the challenges of accurately modeling many-body and singular hydrodynamic interactions. To overcome these difficulties, we have developed a set of hydrodynamic mobility functions that couple particle motion with hydrodynamic traction moments that, when inverted and combined with near-field resistance functions, form a complete coupling tensor that accurately captures both the far-field and near-field physics and is valid for an arbitrary number of spherical particles enclosed by a spherical cavity of arbitrary relative size a /R , where a and R are the particle and cavity size, respectively. This framework is then utilized to study the effect of spherical confinement on the self- and entrained motion of the colloids, for a range of particle-to-cavity size ratios. The self-motion of a finite-size enclosed particle is studied first, recovering prior results published in the literature: The hydrodynamic mobility of the particle is greatest at the center of the cavity and decays as (a /R ) /(1 -y2) , where y is the particle distance to the cavity center. Near the cavity wall, the no-slip surfaces couple strongly and mobility along the cavity radius vanishes as ξ ≡R -(a +y ) , where y is center-to-center distance from particle to cavity. Corresponding motion transverse to the cavity radius vanishes as [ln(1/ξ ) ] -1. The effect of confinement on entrainment of a particle in the flow created by the motion of others is also studied, where we find that confinement exerts a qualitative effect on the strength and anisotropy of entrainment of a passive particle dragged by the flow of a forced particle. As expected, entrainment strength decays with increased distance

  4. Trapping of interacting propelled colloidal particles in inhomogeneous media.

    PubMed

    Magiera, Martin P; Brendel, Lothar

    2015-07-01

    A trapping mechanism for propelled colloidal particles based on an inhomogeneous drive is presented and studied by means of computer simulations. In experiments this method can be realized using photophoretic Janus particles driven by a light source, which is partially blocked by a shading mask. This leads to an accumulation of particles in the passive part. An equation for an accumulation parameter is derived using the effective inhomogeneous diffusion constant generated by the inhomogeneous drive. The impact of particle interaction on the trapping mechanism is studied, as well as the interplay between passivity-induced trapping and the emergent self-clustering of systems containing a high density of active particles. The combination of both effects makes the clusters more controllable for applications. PMID:26274159

  5. Trapping of interacting propelled colloidal particles in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Magiera, Martin P.; Brendel, Lothar

    2015-07-01

    A trapping mechanism for propelled colloidal particles based on an inhomogeneous drive is presented and studied by means of computer simulations. In experiments this method can be realized using photophoretic Janus particles driven by a light source, which is partially blocked by a shading mask. This leads to an accumulation of particles in the passive part. An equation for an accumulation parameter is derived using the effective inhomogeneous diffusion constant generated by the inhomogeneous drive. The impact of particle interaction on the trapping mechanism is studied, as well as the interplay between passivity-induced trapping and the emergent self-clustering of systems containing a high density of active particles. The combination of both effects makes the clusters more controllable for applications.

  6. Light scattering and dynamics of interacting Brownian particles

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Tang, H. T.

    1982-01-01

    The relative motions of interacting Brownian particles in liquids may be described as radial diffusion in an effective potential of the mean force. By using a harmonic approximation for the effective potential, the intermediate scattering function may also be evaluated. For polystyrene spheres of 250 A mean radius in aqueous environment at 0.00125 g/cu cm concentration, the results for the calculated mean square displacement are in qualitative agreement with experimental data from photon correlation spectroscopy. Because of the interactions, the functions deviate considerably from the exponential forms for the free particles.

  7. Nonlinearly interacting trapped particle solitons in collisionless plasmas

    NASA Astrophysics Data System (ADS)

    Mandal, Debraj; Sharma, Devendra

    2016-02-01

    The formulation of collective waves in collisionless plasmas is complicated by the kinetic effects produced by the resonant particles, capable of responding to the smallest of the amplitude disturbance. The dispersive plasma manifests this response by generating coherent nonlinear structures associated with phase-space vortices, or holes, at very small amplitudes. The nonlinear interaction between solitary electron phase-space holes is studied in the electron acoustic regime of a collisionless plasma using Vlasov simulations. Evolution of the analytic trapped particle solitary solutions is examined, observing them propagate stably, preserve their identity across strong mutual interactions in adiabatic processes, and display close correspondence with observable processes in nature.

  8. Gas-particle interaction in detonation spraying systems

    NASA Astrophysics Data System (ADS)

    Kadyrov, E.

    1996-06-01

    A model is developed to describe dynamic interaction of particles with the carrier gas during detonation spraying. Equations of mass, energy, and momentum conservation are integrated numerically for the two-phase particle-gas flow with the Hugoniot boundary conditions at the detonation wave front. Velocity and temperature of the sprayed powder and the gas parameters are calculated self-consistently, taking into account effects of friction and cooling of the gas in the vicinity of the gun barrel and effects of particle-gas interaction on the parameters of the gas phase. Calculations are performed for tungsten carbide particles of 30 μm diam and a 1.8 m long detonation gun using a stoichiometric mixture of oxygen and propane. Distributions of gas and particle parameters along the barrel are calculated for various moments of time. Tungsten carbide particles of 30 μm reach an exit velocity of 1278 m/s and a temperature of 1950 K. Exit particle velocity is a nonmonotonic function of the loading distance, L, with a distinct maximum at L = 75 cm. The proposed model can be applied to a broad range of problems related to detonation coating technology and allows evaluation of the effectiveness of various designs and optimization of operational parameters of detonation spraying systems.

  9. Ionizing Particle Radiation as a Modulator of Endogenous Bone Marrow Cell Reprogramming: Implications for Hematological Cancers

    PubMed Central

    Muralidharan, Sujatha; Sasi, Sharath P.; Zuriaga, Maria A.; Hirschi, Karen K.; Porada, Christopher D.; Coleman, Matthew A.; Walsh, Kenneth X.; Yan, Xinhua; Goukassian, David A.

    2015-01-01

    Exposure of individuals to ionizing radiation (IR), as in the case of astronauts exploring space or radiotherapy cancer patients, increases their risk of developing secondary cancers and other health-related problems. Bone marrow (BM), the site in the body where hematopoietic stem cell (HSC) self-renewal and differentiation to mature blood cells occurs, is extremely sensitive to low-dose IR, including irradiation by high-charge and high-energy particles. Low-dose IR induces DNA damage and persistent oxidative stress in the BM hematopoietic cells. Inefficient DNA repair processes in HSC and early hematopoietic progenitors can lead to an accumulation of mutations whereas long-lasting oxidative stress can impair hematopoiesis itself, thereby causing long-term damage to hematopoietic cells in the BM niche. We report here that low-dose 1H- and 56Fe-IR significantly decreased the hematopoietic early and late multipotent progenitor (E- and L-MPP, respectively) cell numbers in mouse BM over a period of up to 10 months after exposure. Both 1H- and 56Fe-IR increased the expression of pluripotent stem cell markers Sox2, Nanog, and Oct4 in L-MPPs and 10 months post-IR exposure. We postulate that low doses of 1H- and 56Fe-IR may induce endogenous cellular reprogramming of BM hematopoietic progenitor cells to assume a more primitive pluripotent phenotype and that IR-induced oxidative DNA damage may lead to mutations in these BM progenitors. This could then be propagated to successive cell lineages. Persistent impairment of BM progenitor cell populations can disrupt hematopoietic homeostasis and lead to hematologic disorders, and these findings warrant further mechanistic studies into the effects of low-dose IR on the functional capacity of BM-derived hematopoietic cells including their self-renewal and pluripotency. PMID:26528440

  10. Ionizing Particle Radiation as a Modulator of Endogenous Bone Marrow Cell Reprogramming: Implications for Hematological Cancers.

    PubMed

    Muralidharan, Sujatha; Sasi, Sharath P; Zuriaga, Maria A; Hirschi, Karen K; Porada, Christopher D; Coleman, Matthew A; Walsh, Kenneth X; Yan, Xinhua; Goukassian, David A

    2015-01-01

    Exposure of individuals to ionizing radiation (IR), as in the case of astronauts exploring space or radiotherapy cancer patients, increases their risk of developing secondary cancers and other health-related problems. Bone marrow (BM), the site in the body where hematopoietic stem cell (HSC) self-renewal and differentiation to mature blood cells occurs, is extremely sensitive to low-dose IR, including irradiation by high-charge and high-energy particles. Low-dose IR induces DNA damage and persistent oxidative stress in the BM hematopoietic cells. Inefficient DNA repair processes in HSC and early hematopoietic progenitors can lead to an accumulation of mutations whereas long-lasting oxidative stress can impair hematopoiesis itself, thereby causing long-term damage to hematopoietic cells in the BM niche. We report here that low-dose (1)H- and (56)Fe-IR significantly decreased the hematopoietic early and late multipotent progenitor (E- and L-MPP, respectively) cell numbers in mouse BM over a period of up to 10 months after exposure. Both (1)H- and (56)Fe-IR increased the expression of pluripotent stem cell markers Sox2, Nanog, and Oct4 in L-MPPs and 10 months post-IR exposure. We postulate that low doses of (1)H- and (56)Fe-IR may induce endogenous cellular reprogramming of BM hematopoietic progenitor cells to assume a more primitive pluripotent phenotype and that IR-induced oxidative DNA damage may lead to mutations in these BM progenitors. This could then be propagated to successive cell lineages. Persistent impairment of BM progenitor cell populations can disrupt hematopoietic homeostasis and lead to hematologic disorders, and these findings warrant further mechanistic studies into the effects of low-dose IR on the functional capacity of BM-derived hematopoietic cells including their self-renewal and pluripotency. PMID:26528440

  11. Phase-space analysis for ionization processes in the laser-atom interaction using Gabor transformation

    NASA Astrophysics Data System (ADS)

    Shu, X. F.; Liu, S. B.; Song, H. Y.

    2016-04-01

    In this paper, the ionization processes during laser-atom interaction are investigated in phase-space using Gabor transformation. Based on the time-dependent Schrödinger equation (TDSE), the depletion of the whole system caused by the mask function is taken into consideration in calculating the plasma density. We obtain the momentum distribution via the Gabor transformation of the escaping portions of the time-dependent wave packet at the detector-like points on the interior boundaries from which the kinetic energies carried by the escaping portions are calculated.

  12. Interactive Learning Module Improves Resident Knowledge of Risks of Ionizing Radiation Exposure From Medical Imaging.

    PubMed

    Sheng, Alexander Y; Breaud, Alan H; Schneider, Jeffrey I; Kadom, Nadja; Mitchell, Patricia M; Linden, Judith A

    2016-01-01

    Physician awareness of the risks of ionizing radiation exposure related to medical imaging is poor. Effective educational interventions informing physicians of such risk, especially in emergency medicine (EM), are lacking. The SIEVERT (Suboptimal Ionizing Radiation Exposure Education - A Void in Emergency Medicine Residency Training) learning module was designed to improve provider knowledge of the risks of radiation exposure from medical imaging and comfort in communicating these risks to patients. The 1-hour module consists of introductory lecture, interactive discussion, and role-playing scenarios. In this pilot study, we assessed the educational effect using unmatched, anonymous preintervention and postintervention questionnaires that assessed fund of knowledge, participant self-reported imaging ordering practices in several clinical scenarios, and trainee comfort level in discussing radiation risks with patients. All 25 EM resident participants completed the preintervention questionnaire, and 22 completed the postintervention questionnaire within 4 hours after participation. Correct responses on the 14-question learning assessment increased from 6.32 (standard deviation = 2.36) preintervention to 12.23 (standard deviation = 1.85) post-intervention. Overall, 24% of residents were comfortable with discussing the risks of ionizing radiation exposure with patients preintervention, whereas 41% felt comfortable postintervention. Participants ordered fewer computed tomography scans in 2 of the 4 clinical scenarios after attending the educational intervention. There was improvement in EM residents' knowledge regarding the risks of ionizing radiation exposure from medical imaging, and increased participant self-reported comfort levels in the discussion of these risks with patients after the 1-hour SIEVERT learning module. PMID:26657346

  13. Particle-wafer interactions in semiaqueous silicon cleaning systems

    NASA Astrophysics Data System (ADS)

    Hupka, Lukasz

    During the semiconductor chip manufacturing process, a silicon wafer goes through a number of cycles in both hydrophilic and hydrophobic environments. As silicon chips become more sophisticated, the manufacturing process becomes more involved and new challenges are imposed by size reduction, increase in the aspect ratio and the formation of multilayer structures. Wafer cleaning processes emerge several times in one manufacturing cycle. By rule of thumb, it is necessary to remove wafer contamination by particles which are half of a feature size. This is an enormous challenge, keeping in mind that currently wafer structures are of nanometer size. The cleaning procedures which worked for the last 40 years are becoming ineffective and obsolete. The industry calls for more efficient cleaning procedures in terms of particle contamination removal, and at the same time less aggressive procedures to prevent damage/dissolution of the fragile and narrow wafer structures. Atomic Force Microscopy (AFM), besides being an imaging tool with nano resolution, proves to be an indispensable instrument to characterize interaction forces, lateral forces, and adhesion between micron and submicron contaminant particles and the wafer surfaces both in air and liquid. Using the AFM colloidal probe technique interaction forces were measured between a contaminant particle and a wafer surface. These measurements were done for the silica---silica hydrophilic system and for the silanated silica---silanated silica hydrophobic system. The influence of the nonaqueous component in semiconductor wafer cleaning solution on interaction forces was also investigated under both hydrophilic and hydrophobic conditions. In addition the effect of particle size on the interaction forces as well as particle removal rate under both conditions is addressed. While force/radius normalization of measured interaction forces works great for hydrophilic systems, it was found to significantly underestimate the influence

  14. Gyroresonant wave-particle interactions in a dynamic magnetosphere

    NASA Technical Reports Server (NTRS)

    Gail, W. B.; Inan, U. S.; Helliwell, R. A.; Carpenter, D. L.

    1990-01-01

    The response of the interaction mechanism to time-dependent perturbations in the magnetic field was examined using the global field compressions that occur during sudden commencements. This study was performed to assess the effect of nonequilibrium or dynamic magnetospheric processes on wave-particle interactions (WPI). It is shown that current theories of gyroresonant WPI, when modified to include a time-dependent magnetic field, can be used to predict the properties of WPI in a dynamic magnetospheric environment.

  15. Theory and modeling of particles with DNA-mediated interactions

    NASA Astrophysics Data System (ADS)

    Licata, Nicholas A.

    2008-05-01

    In recent years significant attention has been attracted to proposals which utilize DNA for nanotechnological applications. Potential applications of these ideas range from the programmable self-assembly of colloidal crystals, to biosensors and nanoparticle based drug delivery platforms. In Chapter I we introduce the system, which generically consists of colloidal particles functionalized with specially designed DNA markers. The sequence of bases on the DNA markers determines the particle type. Due to the hybridization between complementary single-stranded DNA, specific, type-dependent interactions can be introduced between particles by choosing the appropriate DNA marker sequences. In Chapter II we develop a statistical mechanical description of the aggregation and melting behavior of particles with DNA-mediated interactions. In Chapter III a model is proposed to describe the dynamical departure and diffusion of particles which form reversible key-lock connections. In Chapter IV we propose a method to self-assemble nanoparticle clusters using DNA scaffolds. A natural extension is discussed in Chapter V, the programmable self-assembly of nanoparticle clusters where the desired cluster geometry is encoded using DNA-mediated interactions. In Chapter VI we consider a nanoparticle based drug delivery platform for targeted, cell specific chemotherapy. In Chapter VII we present prospects for future research: the connection between DNA-mediated colloidal crystallization and jamming, and the inverse problem in self-assembly.

  16. Effect of finite particle interaction time in granular systems

    SciTech Connect

    Zhang, D.Z.; Rauenzahn, R.M.

    1998-07-01

    Almost all previously published theoretical papers that propose constitutive relations for granular flows use some form of kinetic theory, which neglects effects of finite particle interaction time and multiparticle interactions. In dense systems, these effects contain essential physics and determine the evolution of the stress system in granular flows. In this paper, the authors shall demonstrate the importance of these effects and study the behavior of the granular stress in a dense system. The particle interaction time is a random variable in a granular system, and they show that its probability distribution obeys an exponential law. The temporal decay of this probability represents the destruction of contacts between particles and is related to the relaxation of the collisional stress in a granular system. By considering the balance between creation and destruction of contacts, they derive a constitutive relation for collisional stress. Depending on the form of the model chosen to approximate forces developed during particle interactions, the constitutive relation can predict either viscoelastic or viscoplastic behavior of the collisional stress. Numerical simulations are performed to verify the theoretical findings and to study further the properties of dense granular systems.

  17. Higgs particles interacting via a scalar Dark Matter field

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Yajnavalkya; Darewych, Jurij

    2016-07-01

    We study a system of two Higgs particles, interacting via a scalar Dark Matter mediating field. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the two-body equations are used to examine the existence of Higgs bound states.

  18. The Energetic Particles in Shock-ICME Interaction Structures

    NASA Astrophysics Data System (ADS)

    Shen, C.

    2015-12-01

    Previous results show that the energetic particles intensity will decreased in the ICMEs. But, in the year of 2008, Shen et al. reported a definite case that the intensity of solar energetic particles (SEP) in the shock-MC interaction structure increase greatly. They further found that such enhancement is the main cause of the largest SEP event in solar cycle 23. The questions remained are: Did all the shock-ICME(MC) structure cause the enhancement of the SEP intensity? If not, why it only happened in some events? Is there any other mechanism which can make the energetic particle intensity in ICME enhanced? To answer these questions, the SEP signatures in all ICMEs including the shock-ICME interaction structures from 1996 to 2014 are studied detail. It is found that the SEP intensities enhanced in about half of the shock-ICME interaction events. Meanwhile, large fraction of energetic particles intensity enhanced ICMEs are interacted with shocks. To find the possible condition and physical mechanismof such enhancement, the parameters of the shock, ICME(MC) and etc. are detailed analyzed.

  19. Bounds on halo-particle interactions from interstellar calorimetry

    NASA Technical Reports Server (NTRS)

    Chivukula, Sekhar R.; Cohen, Andrew G.; Dimopoulos, Savas; Walker, Terry P.

    1990-01-01

    It is shown that the existence of neutral interstellar clouds constrains the interaction of any particulate dark-matter candidate with atomic hydrogen to be quite small. Even for a halo particle of mass 1 PeV (10 to the 6 GeV), it is shown that the cross section with hydrogen must be smaller than the typical atomic cross section that is expected for a positively charged particle bound to an electron. The argument presented is that if the clouds are in equilibrium, then the rate at which energy is deposited by collisions with dark-matter particles must be smaller than the rate at which the cloud can cool. This argument is used to constrain the interaction cross section of dark matter with hydrogen. Remarks are made on the general viability of charged dark matter. Comments are also made on a bound which derives from the dynamical stability of the halo.

  20. Distinct mechanisms of the inhibition of vasculogenesis by different species of ionizing particles

    PubMed Central

    Grabham, Peter; Sharma, Preety; Bigelow, Alan; Geard, Charles

    2014-01-01

    The human vasculature includes a vast network of microcapillaries networking the body and is a major target for non-carcinogenic effects of space radiation in the body. The brain microvascular system is crucial to healthy functioning of the brain and its pathology is not only a primary event in a range of neurodegenerative diseases but also an important influencing factor in many others. The vasculature is maintained by angiogenesis regenerating vessels as they are needed, this is particularly relevant if the blood–brain barrier is damaged by agents such as space radiation, thereby creating the need for angiogenic regeneration. The resulting lack of vasculature due to the inhibition of re-growth of vessels can, in turn, lead to a negative feedback loop and further pathologies. Using three-dimensional human vessel cultures with human umbilical vein and brain microvascular endothelial cells, we have developed assays that determine at what stage angiogenesis is inhibited by ionizing radiation. The relative biological effect of high linear energy transfer (LET) 1 GeV Fe ions compared with low LET 1 GeV protons is only one for developing vessels but greater than four for mature vessels. This action of low LET protons on developing vessels was surprisingly effective (50% inhibition with 40 cGy exposure) and together with the effect of high LET ions may represent a significant hazard in the space environment. The morphology of developing vessels 5 days after exposure showed significant differences that suggest distinct mechanisms of inhibition. Cells exposed to protons failed to make connections with other cells. Conversely, cells exposed to Fe ions extended cellular processes and made connections to other cells but did not develop a central lumen. The microtubule and actin cytoskeletons showed differences indicating that motility at the extending tips of endothelial cells is inhibited by protons but not Fe ions. Actin-rich protrusive structures that contain bundled and

  1. Toward a theory of the initiation of cancer by ionizing radiation: track structure analysis for electrons and alpha particles in water

    SciTech Connect

    Pagnamenta, A.; Marshall, J.H.

    1980-01-01

    Following a method of Kim differential cross sections have been constructed in analytical form for the ionization of water by electrons and alpha particles. By generalizing Wideroe's bookkeeping mmethod the number of higher order delta rays were found. (ACR)

  2. Exchange distortion and postcollision interaction for intermediate-energy electron-impact ionization of argon

    SciTech Connect

    Prideaux, A.; Madison, D.H.; Bartschat, K.

    2005-09-15

    Measurements of fully differential cross sections for electron impact ionization of atoms have been performed for over 30 years. However, only within the last ten years has agreement between experiment and theory been achieved for ionization of hydrogen and helium. For the heavier inert gases, reasonably good agreement between experiment and theory has only been achieved for high incident energies while serious discrepancies are common for intermediate and low incident energies. It is believed that a major source of the problem stems from an improper/inadequate treatment of exchange distortion (ED) and the effects of post-collision interactions (PCIs). In this paper, two different methods for including ED are examined--one based upon the R matrix (close-coupling) approach and one originating from the single-configuration Hartree-Fock approach. In general, these two methods predict significant, but different, ED effects. The importance of PCI is studied by including the final-state Coulomb interaction directly in the final-state wave function. This procedure guarantees that PCI effects will be included to all orders of perturbation theory. For intermediate energies, PCI is an important effect and leads to an overall improvement in the agreement between experiment and theory.

  3. A Transition-State Interaction Shifts Nucleobase Ionization Toward Neutrality to Facilitate Small Ribozyme Catalysis

    PubMed Central

    Liberman, Joseph A.; Guo, Man; Jenkins, Jermaine L.; Krucinska, Jolanta; Chen, Yuanyuan; Carey, Paul R.; Wedekind, Joseph E.

    2012-01-01

    One mechanism by which ribozymes can accelerate biological reactions is by adopting folds that favorably perturb nucleobase ionization. Herein we used Raman crystallography to directly measure pKa values for the Ade38 N1-imino group of a hairpin ribozyme in distinct conformational states. A transition-state analogue gave a pKa value of 6.27 ± 0.05, which agrees strikingly well with values measured by pH-rate analyses. To identify the chemical attributes that contribute to the shifted pKa we determined crystal structures of hairpin ribozyme variants containing single-atom substitutions at the active site and measured their respective Ade38 N1 pKa values. This approach led to the identification of a single interaction in the transition-state conformation that elevates the base pKa >0.8 log units relative to the precatalytic state. The agreement of the microscopic and macroscopic pKa values and the accompanying structural analysis support a mechanism in which Ade38 N1(H)+ functions as a general acid in phosphodiester bond cleavage. Overall the results quantify the contribution of a single electrostatic interaction to base ionization, which has broad relevance for understanding how RNA structure can control chemical reactivity. PMID:22989273

  4. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    SciTech Connect

    Bross, David H.; Parmar, Payal; Peterson, Kirk A.

    2015-11-12

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set (CBS) limit using new all-electron correlation consistent basis sets. The latter were carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons have been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. As a result, the final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV), and thus more reliable than the current experimental values of IP3 through IP6.

  5. Exchange distortion and postcollision interaction for intermediate-energy electron-impact ionization of argon

    NASA Astrophysics Data System (ADS)

    Prideaux, A.; Madison, D. H.; Bartschat, K.

    2005-09-01

    Measurements of fully differential cross sections for electron impact ionization of atoms have been performed for over 30 years. However, only within the last ten years has agreement between experiment and theory been achieved for ionization of hydrogen and helium. For the heavier inert gases, reasonably good agreement between experiment and theory has only been achieved for high incident energies while serious discrepancies are common for intermediate and low incident energies. It is believed that a major source of the problem stems from an improper/inadequate treatment of exchange distortion (ED) and the effects of post-collision interactions (PCIs). In this paper, two different methods for including ED are examined—one based upon the R matrix (close-coupling) approach and one originating from the single-configuration Hartree-Fock approach. In general, these two methods predict significant, but different, ED effects. The importance of PCI is studied by including the final-state Coulomb interaction directly in the final-state wave function. This procedure guarantees that PCI effects will be included to all orders of perturbation theory. For intermediate energies, PCI is an important effect and leads to an overall improvement in the agreement between experiment and theory.

  6. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    DOE PAGESBeta

    Bross, David H.; Parmar, Payal; Peterson, Kirk A.

    2015-11-12

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set (CBS) limit using new all-electron correlation consistent basis sets. The latter were carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons have been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. As amore » result, the final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV), and thus more reliable than the current experimental values of IP3 through IP6.« less

  7. Interaction of nanosilver particles with human lymphocyte cells

    NASA Astrophysics Data System (ADS)

    Zhornik, Alena; Baranova, Ludmila; Volotovski, Igor; Chizhik, Sergey; Drozd, Elizaveta; Sudas, Margarita; Buu Ngo, Quoc; Chau Nguyen, Hoai; Huynh, Thi Ha; Hien Dao, Trong

    2015-01-01

    The damaging effects of nanoparticles were hypothesized to be the oxidative stress caused by the formation of reactive oxygen species and initiation of inflammatory reactions. In this context a study on the effects of nanosilver particles on the formation of reactive oxygen species in human lymphocyte culture was carried out. The obtained results showed that fluorescence intensity considerably increased after cells had interacted with nanosilver particles of varying concentrations, indicating the formation of reactive oxygen species and their accumulation in lymphocyte cells. Morphological study of the lymphocyte cells under the effects of nanosilver particles showed that the change in morphology depends on the concentration and size of nanosilver particles: for a size ≤20 nm the lymphocyte cell significantly shrank with pronounced differences in the morphological structure of the cell membrane, but for a size ≥200 nm no change was observed.

  8. Density Waves in Systems of Non-Interacting Particles

    NASA Astrophysics Data System (ADS)

    Kolmes, E. J.; Geyko, V. I.; Fisch, N. J.

    2015-11-01

    Under certain conditions, systems of non-interacting particles can give rise to density waves. In general, these waves do not require any particular perturbations in the initial density or velocity distributions, but they do tend to be strongly dependent on the boundary conditions of the system; one of the simplest examples is a collection of non-interacting particles bouncing in a constant gravitational field. A wide variety of different potentials can produce density waves, which change in both shape and behavior as the potential changes. We examine the structure and origin of these waves numerically and analytically. We also analyze the sensitivity of these waves to changes in different parameters of the system, including the effects of interparticle interactions on these structures. Strong interparticle interactions tend to disrupt the structure that develops in the non-interacting-particle case. We discuss possible experimental consequences of these phenomena. This work was supported by the U.S. Defense Threat Reduction Agency, and by the NNSA SSAA Program through DOE Research Grant No. DE-FG52-08NA28553.

  9. Simultaneous Eye Tracking and Blink Detection with Interactive Particle Filters

    NASA Astrophysics Data System (ADS)

    Wu, Junwen; Trivedi, Mohan M.

    2007-12-01

    We present a system that simultaneously tracks eyes and detects eye blinks. Two interactive particle filters are used for this purpose, one for the closed eyes and the other one for the open eyes. Each particle filter is used to track the eye locations as well as the scales of the eye subjects. The set of particles that gives higher confidence is defined as the primary set and the other one is defined as the secondary set. The eye location is estimated by the primary particle filter, and whether the eye status is open or closed is also decided by the label of the primary particle filter. When a new frame comes, the secondary particle filter is reinitialized according to the estimates from the primary particle filter. We use autoregression models for describing the state transition and a classification-based model for measuring the observation. Tensor subspace analysis is used for feature extraction which is followed by a logistic regression model to give the posterior estimation. The performance is carefully evaluated from two aspects: the blink detection rate and the tracking accuracy. The blink detection rate is evaluated using videos from varying scenarios, and the tracking accuracy is given by comparing with the benchmark data obtained using the Vicon motion capturing system. The setup for obtaining benchmark data for tracking accuracy evaluation is presented and experimental results are shown. Extensive experimental evaluations validate the capability of the algorithm.

  10. Time dilation in relativistic two-particle interactions

    SciTech Connect

    Shields, B. T.; Morris, M. C.; Ware, M. R.; Su, Q.; Grobe, R.; Stefanovich, E. V.

    2010-11-15

    We study the orbits of two interacting particles described by a fully relativistic classical mechanical Hamiltonian. We use two sets of initial conditions. In the first set (dynamics 1) the system's center of mass is at rest. In the second set (dynamics 2) the center of mass evolves with velocity V. If dynamics 1 is observed from a reference frame moving with velocity -V, the principle of relativity requires that all observables must be identical to those of dynamics 2 seen from the laboratory frame. Our numerical simulations demonstrate that kinematic Lorentz space-time transformations fail to transform particle observables between the two frames. This is explained as a result of the inevitable interaction dependence of the boost generator in the instant form of relativistic dynamics. Despite general inaccuracies of the Lorentz formulas, the orbital periods are correctly predicted by the Einstein's time dilation factor for all interaction strengths.

  11. How to model the interaction of charged Janus particles

    NASA Astrophysics Data System (ADS)

    Hieronimus, Reint; Raschke, Simon; Heuer, Andreas

    2016-08-01

    We analyze the interaction of charged Janus particles including screening effects. The explicit interaction is mapped via a least square method on a variable number n of systematically generated tensors that reflect the angular dependence of the potential. For n = 2 we show that the interaction is equivalent to a model previously described by Erdmann, Kröger, and Hess (EKH). Interestingly, this mapping is for n = 2 not able to capture the subtleties of the interaction for small screening lengths. Rather, a larger number of tensors has to be used. We find that the characteristics of the Janus type interaction plays an important role for the aggregation behavior. We obtained cluster structures up to the size of 13 particles for n = 2 and 36 and screening lengths κ-1 = 0.1 and 1.0 via Monte Carlo simulations. The influence of the screening length is analyzed and the structures are compared to results for an electrostatic-type potential and for the multipole-expanded Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. We find that a dipole-like potential (EKH or dipole DLVO approximation) is not able to sufficiently reproduce the anisotropy effects of the potential. Instead, a higher order expansion has to be used to obtain cluster structures that are compatible with experimental observations. The resulting minimum-energy clusters are compared to those of sticky hard sphere systems. Janus particles with a short-range screened interaction resemble sticky hard sphere clusters for all considered particle numbers, whereas for long-range screening even very small clusters are structurally different.

  12. Chromatic patchy particles: Effects of specific interactions on liquid structure.

    PubMed

    Vasilyev, Oleg A; Klumov, Boris A; Tkachenko, Alexei V

    2015-07-01

    We study the structural and thermodynamic properties of patchy particle liquids, with a special focus on the role of "color," i.e., specific interactions between individual patches. A possible experimental realization of such "chromatic" interactions is by decorating the particle patches with single-stranded DNA linkers. The complementarity of the linkers can promote selective bond formation between predetermined pairs of patches. By using MD simulations, we compare the local connectivity, the bond orientation order, and other structural properties of the aggregates formed by the "colored" and "colorless" systems. The analysis is done for spherical particles with two different patch arrangements (tetrahedral and cubic). It is found that the aggregated (liquid) phase of the "colorless" patchy particles is better connected, denser and typically has stronger local order than the corresponding "colored" one. This, in turn, makes the colored liquid less stable thermodynamically. Specifically, we predict that in a typical case the chromatic interactions should increase the relative stability of the crystalline phase with respect to the disordered liquid, thus expanding its region in the phase diagram. PMID:26274163

  13. Chromatic patchy particles: Effects of specific interactions on liquid structure

    SciTech Connect

    Vasilyev, Oleg A.; Tkachenko, Alexei V.; Klumov, Boris A.

    2015-07-13

    We study the structural and thermodynamic properties of patchy particle liquids, with a special focus on the role of “color,” i.e., specific interactions between individual patches. A possible experimental realization of such “chromatic” interactions is by decorating the particle patches with single-stranded DNA linkers. The complementarity of the linkers can promote selective bond formation between predetermined pairs of patches. By using MD simulations, we compare the local connectivity, the bond orientation order, and other structural properties of the aggregates formed by the “colored” and “colorless” systems. The analysis is done for spherical particles with two different patch arrangements (tetrahedral and cubic). It is found that the aggregated (liquid) phase of the “colorless” patchy particles is better connected, denser and typically has stronger local order than the corresponding “colored” one. This, in turn, makes the colored liquid less stable thermodynamically. Specifically, we predict that in a typical case the chromatic interactions should increase the relative stability of the crystalline phase with respect to the disordered liquid, thus expanding its region in the phase diagram.

  14. Chromatic patchy particles: Effects of specific interactions on liquid structure

    DOE PAGESBeta

    Vasilyev, Oleg A.; Tkachenko, Alexei V.; Klumov, Boris A.

    2015-07-13

    We study the structural and thermodynamic properties of patchy particle liquids, with a special focus on the role of “color,” i.e., specific interactions between individual patches. A possible experimental realization of such “chromatic” interactions is by decorating the particle patches with single-stranded DNA linkers. The complementarity of the linkers can promote selective bond formation between predetermined pairs of patches. By using MD simulations, we compare the local connectivity, the bond orientation order, and other structural properties of the aggregates formed by the “colored” and “colorless” systems. The analysis is done for spherical particles with two different patch arrangements (tetrahedral andmore » cubic). It is found that the aggregated (liquid) phase of the “colorless” patchy particles is better connected, denser and typically has stronger local order than the corresponding “colored” one. This, in turn, makes the colored liquid less stable thermodynamically. Specifically, we predict that in a typical case the chromatic interactions should increase the relative stability of the crystalline phase with respect to the disordered liquid, thus expanding its region in the phase diagram.« less

  15. Particle Simulations for Electron Beam-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Guo-cheng; G, Zhou C.; Li, Yang; Cao, Jin-bin; J, Cao B.; Wang, Xue-yi; X, Wang Y.

    1998-12-01

    The computer simulations of high-frequency instabilities excited by the high density electron beam and their nonlinear effect are presented. One-dimensional electromagnetic particle simulations are performed with different values of the electron beam-to-plasma density ratio. The results show that for the high electron beam-to-background plasma density ratio, all the Langmuir waves and two electromagnetic waves with left-hand and right-hand circular polarizations (i.e., the "L-O mode" and the "R-X mode") propagating parallel to the magnetic field can be generated and the maximum values of wave electric fields are nearly the same. The electron beam and background plasma are diffused and a part of energetic background electrons are obviously accelerated by the wave-particle interactions. The heating of the beam and background plasma is mainly due to the electrostatic (Langmuir) wave-particle interactions, but the accelerations of a part of energetic background electrons may be mainly due to the electromagnetic wave-particle interactions.

  16. Electrostatic interactions between charged dielectric particles in an electrolyte solution.

    PubMed

    Derbenev, Ivan N; Filippov, Anatoly V; Stace, Anthony J; Besley, Elena

    2016-08-28

    Theory is developed to address a significant problem of how two charged dielectric particles interact in the presence of a polarizable medium that is a dilute solution of a strong electrolyte. The electrostatic force is defined by characteristic parameters for the interacting particles (charge, radius, and dielectric constant) and for the medium (permittivity and Debye length), and is expressed in the form of a converging infinite series. The limiting case of weak screening and large inter-particle separation is considered, which corresponds to small (macro)ions that carry constant charge. The theory yields a solution in the limit of monopole and dipole terms that agrees exactly with existing analytical expressions, which are generally used to describe ion-ion and ion-molecular interactions in a medium. Results from the theory are compared with DLVO theory and with experimental measurements for the electrostatic force between two PMMA particles contained in a nonpolar solvent (hexadecane) with an added charge control agent. PMID:27586900

  17. Diffusion and Subdiffusion of Interacting Particles on Comblike Structures

    NASA Astrophysics Data System (ADS)

    Bénichou, O.; Illien, P.; Oshanin, G.; Sarracino, A.; Voituriez, R.

    2015-11-01

    We study the dynamics of a tracer particle (TP) on a comb lattice populated by randomly moving hard-core particles in the dense limit. We first consider the case where the TP is constrained to move on the backbone of the comb only. In the limit of high density of the particles, we present exact analytical results for the cumulants of the TP position, showing a subdiffusive behavior ˜t3 /4. At longer times, a second regime is observed where standard diffusion is recovered, with a surprising nonanalytical dependence of the diffusion coefficient on the particle density. When the TP is allowed to visit the teeth of the comb, based on a mean-field-like continuous time random walk description, we unveil a rich and complex scenario with several successive subdiffusive regimes, resulting from the coupling between the geometrical constraints of the comb lattice and particle interactions. In this case, remarkably, the presence of hard-core interactions asymptotically speeds up the TP motion along the backbone of the structure.

  18. Interaction forces between waterborne bacteria and activated carbon particles.

    PubMed

    Busscher, Henk J; Dijkstra, Rene J B; Langworthy, Don E; Collias, Dimitris I; Bjorkquist, David W; Mitchell, Michael D; Van der Mei, Henny C

    2008-06-01

    Activated carbons remove waterborne bacteria from potable water systems through attractive Lifshitz-van der Waals forces despite electrostatic repulsion between negatively charged cells and carbon surfaces. In this paper we quantify the interaction forces between bacteria with negatively and positively charged, mesoporous wood-based carbons, as well as with a microporous coconut carbon. To this end, we glued carbon particles to the cantilever of an atomic force microscope and measured the interaction forces upon approach and retraction of thus made tips. Waterborne Raoultella terrigena and Escherichia coli adhered weakly (1-2 nN) to different activated carbon particles, and the main difference between the activated carbons was the percentage of curves with attractive sites revealed upon traversing of a carbon particle through the bacterial EPS layer. The percentage of curves showing adhesion forces upon retraction varied between 21% and 69%, and was highest for R. terrigena with positively charged carbon (66%) and a coconut carbon (69%). Macroscopic bacterial removal by the mesoporous carbon particles increased with increasing percentages of attractive sites revealed upon traversing a carbon particle through the outer bacterial surface layer. PMID:18405910

  19. Magnetic microswimmers: Controlling particle approach through magnetic and hydrodynamic interaction

    NASA Astrophysics Data System (ADS)

    Meshkati, Farshad; Cheang, U. Kei; Kim, Minjun; Fu, Henry

    2015-11-01

    We investigate magnetic microswimmers actuated by a rotating magnetic field that may be useful for drug delivery, micro-surgery, or diagnostics in human body. For modular swimmers, assembly and disassembly requires understanding the interactions between the swimmer and other modules in the fluid. Here, we discuss possible mechanisms for a frequency-dependent attraction/repulsion between a three-bead, achiral swimmer and other magnetic particles, which represent modular assembly elements. We first investigate the hydrodynamic interaction between a swimmer and nearby particle by studying the Lagrangian trajectories in the vicinity of the swimmer. Then we show that the magnetic forces can be attractive or repulsive depending on the spatial arrangement of the swimmer and particle, with a magnitude that decreases with increasing frequency. Combining magnetic and hydrodynamic effects allows us to understand the overall behavior of magnetic particles near the swimmer. Interestingly, we find that the frequency of rotation can be used to control when the particle can closely approach the swimmer, with potential application to assembly.

  20. Numerical investigation of fluid-particle interactions for embolic stroke

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debanjan; Padilla, Jose; Shadden, Shawn C.

    2016-04-01

    Roughly one-third of all strokes are caused by an embolus traveling to a cerebral artery and blocking blood flow in the brain. The objective of this study is to gain a detailed understanding of the dynamics of embolic particles within arteries. Patient computed tomography image is used to construct a three-dimensional model of the carotid bifurcation. An idealized carotid bifurcation model of same vessel diameters was also constructed for comparison. Blood flow velocities and embolic particle trajectories are resolved using a coupled Euler-Lagrange approach. Blood is modeled as a Newtonian fluid, discretized using the finite volume method, with physiologically appropriate inflow and outflow boundary conditions. The embolus trajectory is modeled using Lagrangian particle equations accounting for embolus interaction with blood as well as vessel wall. Both one- and two-way fluid-particle coupling are considered, the latter being implemented using momentum sources augmented to the discretized flow equations. It was observed that for small-to-moderate particle sizes (relative to vessel diameters), the estimated particle distribution ratio—with and without the inclusion of two-way fluid-particle momentum exchange—were found to be similar. The maximum observed differences in distribution ratio with and without the coupling were found to be higher for the idealized bifurcation model. Additionally, the distribution was found to be reasonably matching the volumetric flow distribution for the idealized model, while a notable deviation from volumetric flow was observed in the anatomical model. It was also observed from an analysis of particle path lines that particle interaction with helical flow, characteristic of anatomical vasculature models, could play a prominent role in transport of embolic particle. The results indicate therefore that flow helicity could be an important hemodynamic indicator for analysis of embolus particle transport. Additionally, in the presence

  1. Electrohydrodynamic interaction of spherical particles under Quincke rotation.

    PubMed

    Das, Debasish; Saintillan, David

    2013-04-01

    Weakly conducting dielectric particles suspended in a dielectric liquid of higher conductivity can undergo a transition to spontaneous sustained rotation when placed in a sufficiently strong dc electric field. This phenomenon of Quincke rotation has interesting implications for the rheology of these suspensions, whose effective viscosity can be controlled and reduced by application of an external field. While previous models based on the rotation of isolated particles have provided accurate estimates for this viscosity reduction in dilute suspensions, discrepancies have been reported in more concentrated systems where particle-particle interactions are likely significant. Motivated by this observation, we extend the classic description of Quincke rotation based on the Taylor-Melcher leaky dielectric model to account for pair electrohydrodynamic interactions between two identical spheres using the method of reflections. A coupled system of evolution equations for the dipole moments and angular velocities of the spheres is derived that accounts for electric dipole-dipole interactions and hydrodynamic rotlet interactions up to order O(R(-5)), where R is the separation distance between the spheres. A linear stability analysis of this system shows that interactions modify the value of the critical electric field for the onset of Quincke rotation: both electric and hydrodynamic interactions can either stabilize or destabilize the system depending on the orientation of the spheres, but the leading effect of interactions on the onset of rotation is hydrodynamic. We also analyze the dynamics in the nonlinear regime by performing numerical simulations of the governing equations. In the case of a pair of spheres that are fixed in space, we find that particle rotations always synchronize in magnitude at long times, though the directions of rotation of the spheres need not be the same. The steady-state angular velocity magnitude depends on the configuration of the spheres and

  2. Interactive visualization of particle beams for accelerator design

    SciTech Connect

    Wilson, Brett; Ma, Kwan-Liu; Qiang, Ji; Ryne, Robert

    2002-01-15

    We describe a hybrid data-representation and rendering technique for visualizing large-scale particle data generated from numerical modeling of beam dynamics. The basis of the technique is mixing volume rendering and point rendering according to particle density distribution, visibility, and the user's instruction. A hierarchical representation of the data is created on a parallel computer, allowing real-time partitioning into high-density areas for volume rendering, and low-density areas for point rendering. This allows the beam to be interactively visualized while preserving the fine structure usually visible only with slow point based rendering techniques.

  3. The PHOCUS Project: Particle Interactions in the Polar Summer Mesosphere

    NASA Astrophysics Data System (ADS)

    Gumbel, J.; Hedin, J.; Khaplanov, M.

    2012-12-01

    On the morning of July 21, 2011, the PHOCUS sounding rocket was launched from Esrange, Sweden, into strong noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE) observed by the Esrange lidar and the ESRAD MST radar. The aim of the PHOCUS project (Particles, Hydrogen and Oxygen Chemistry in the Upper Summer mesosphere) is to study mesospheric particles (ice and meteoric smoke) and their interaction with their neutral and charged environment. Starting out from first ideas in 2005, PHOCUS has developed into a comprehensive venture that connects to a number of new and renewed scientific questions. Interactions of interest comprise the charging and nucleation of particles, the relationship between meteoric smoke and ice, and the influence of these particles on gas-phase chemistry. This presentation gives an overview of the campaign and scientific results. The backbone of the campaign was a sounding rocket with 18 instruments from 8 scientific groups in Sweden, Norway, Germany, Austria and the USA. Atmospheric composition and ice particle properties were probed by a set of optical instruments from Stockholm University, in collaboration with the University in Trondheim. Exciting new instrument developments concerned microwave radiometers for in situ measurements of water vapour at 183 and 558 GHz by Chalmers University of Technology. Charged particles were probed by impact detectors from the University of Colorado, the University of Tromsø and the Leibniz Institute of Atmospheric Physics (IAP), complemented by direct particle sampling from Stockholm University. The neutral and charged background state of the atmosphere was quantified by the Technical University Graz, IAP, and the Norwegian Defence Research Establishment. Important ground-based instrumentation included the Esrange lidar, the ESRAD MST radar, the SkiYMET meteor radar and EISCAT.

  4. Electrokinetic particle-electrode interactions at high frequencies

    NASA Astrophysics Data System (ADS)

    Yariv, Ehud; Schnitzer, Ory

    2013-01-01

    We provide a macroscale description of electrokinetic particle-electrode interactions at high frequencies, where chemical reactions at the electrodes are negligible. Using a thin-double-layer approximation, our starting point is the set of macroscale equations governing the “bounded” configuration comprising of a particle suspended between two electrodes, wherein the electrodes are governed by a capacitive charging condition and the imposed voltage is expressed as an integral constraint. In the large-cell limit the bounded model is transformed into an effectively equivalent “unbounded” model describing the interaction between the particle and a single electrode, where the imposed-voltage condition is manifested in a uniform field at infinity together with a Robin-type condition applying at the electrode. This condition, together with the standard no-flux condition applying at the particle surface, leads to a linear problem governing the electric potential in the fluid domain in which the dimensionless frequency ω of the applied voltage appears as a governing parameter. In the high-frequency limit ω≫1 the flow is dominated by electro-osmotic slip at the particle surface, the contribution of electrode electro-osmosis being O(ω-2) small. That simplification allows for a convenient analytical investigation of the prevailing case where the clearance between the particle and the adjacent electrode is small. Use of tangent-sphere coordinates allows to calculate the electric and flows fields as integral Hankel transforms. At large distances from the particle, along the electrode, both fields decay with the fourth power of distance.

  5. Effects of High-Energy Ionizing Particles on the Si:As Mid-Infrared Detector Array on Board the AKARI Satellite

    NASA Astrophysics Data System (ADS)

    Mouri, A.; Kaneda, H.; Ishihara, D.; Oyabu, S.; Yamagishi, M.; Mori, T.; Onaka, T.; Wada, T.; Kataza, H.

    2011-05-01

    We evaluate the effects of high-energy ionizing particles on the Si:As impurity band conduction (IBC) mid-infrared detector on board AKARI, the Japanese infrared astronomical satellite. IBC-type detectors are known to be little influenced by ionizing radiation. However, we find that the detector is significantly affected by in-orbit ionizing radiation even after spikes induced by ionizing particles are removed. The effects are described as changes mostly in the offset of detector output, but not in the gain. We conclude that the changes in the offset are caused mainly by increase in dark current. We establish a method to correct these ionizing radiation effects. The method is essential to improve the quality and to increase the sky coverage of the AKARI mid-infrared all-sky-survey map.

  6. Experimental studies of wave-particle interactions in space using particle correlators: results and future developments

    NASA Astrophysics Data System (ADS)

    Gough, M.; Buckley, A.; Carozzi, T.; Beloff, N.

    The technique of particle correlation measures directly electron modulations that result from naturally occurring and actively stimulated wave-particle interactions in space plasmas. In the past this technique has been used for studies of beam-plasma interactions, caused by both natural auroral electron beams via sounding rockets and by artificially generated electron beams on Shuttle missions: TSS-1/-TSS -1R. It has also been applied to studies of how electrons become energised by waves injected from in-situ transmitters (OEDIPUS-C). All four ESA Cluster-II spacecraft launched in 2000 to study the outer magnetosphere, cusp, and bow shock were implemented with electron correlators. Here the prevalent broader band wave-particle interactions have been more difficult to extract. However, the application of new statistical algorithms has permitted these correlators to provide a novel insight into turbulence occurring and also provided an independent means whereby electron count rates can be corrected for detector saturation effects. Present work involves technical improvements to both sensor design and correlator implementation that enable many electron energy-angle combinations to be simultaneously monitored for wave-particle interactions. A b oad energy -angler range spectrograph connected to a multi-channel, multi-frequency range FPGA implemented array of correlators is scheduled to fly early 2004. Neural network techniques previously flown on TSS -1 , TSS-1R, and statistical tests developed for Cluster-II will be used on-board to select data to be transmitted.

  7. Anomalous temperature relaxation and particle transport in a strongly non-unifrom, fully in ionized Plasma in a stromg mangnetic field

    NASA Astrophysics Data System (ADS)

    Øien, Alf H.

    1995-02-01

    In classical kinetic and transport theory for a fully ionized plasma in a magnetic field, collision integrals from a uniform theory without fields are used. When the magnetic field is so strong that electrons may gyrate during electron—electron and electron—ion interactions, the form of the collision integrals will be modified. Another modification will stem from strong non-uniformities transverse to the magnetic field B. Using collision terms that explicitly incorporate these effects, we derive in particular the temperature relaxation between electrons and ions and the particle transport transverse to the magnetic field. In both cases collisions between gyrating electrons, which move along the magnetic field, and non-gyrating ions, which move in arbitrary directions at a distance transverse to B from the electrons larger than the electron Larmor radius but smaller than the Debye length, give rise to enhancement factors in the corresponding classical expressions of order In (mion/mel).

  8. Interaction with the lower ionosphere of electromagnetic pulses from lightning - Heating, attachment, and ionization

    NASA Technical Reports Server (NTRS)

    Taranenko, Y. N.; Inan, U. S.; Bell, T. F.

    1993-01-01

    A Boltzmann formulation of the electron distribution function and Maxwell's equations for the EM fields are used to simulate the interaction of lightning radiated EM pulses with the lower ionosphere. Ionization and dissociative attachment induced by the heated electrons cause significant changes in the local electron density, N(e). Due to 'slow' field changes of typical lightning EM pulses over time scales of tens of microsec, the distribution function follows the quasi-equilibrium solution of the Boltzmann equation in the altitude range of interest (70 to 100 km). The EM pulse is simulated as a planar 100 microsec long single period oscillation of a 10 kHz wave injected at 70 km. Under nighttime conditions, individual pulses of intensity 10-20 V/m (normalized to 100 km horizontal distance) produce changes in N(e) of 1-30 percent while a sequence of pulses leads to strong modification of N(e) at altitudes less than 95 km. The N(e) changes produce a 'sharpening' of the lower ionospheric boundary by causing a reduction in electron density at 75-85 km (due to attachment) and a substantial increase at 85-95 km (due to ionization) (e.g., the scale height decreases by a factor of about 2 at about 85 km for a single 20 V/m EM pulse). No substantial N(e) changes occur during daytime.

  9. Characterization of the interactions within fine particle mixtures in highly concentrated suspensions for advanced particle processing.

    PubMed

    Otsuki, Akira; Bryant, Gary

    2015-12-01

    This paper aims to summarize recent investigations into the dispersion of fine particles, and the characterization of their interactions, in concentrated suspensions. This summary will provide a better understanding of the current status of this research, and will provide useful feedback for advanced particle processing. Such processes include the fabrication of functional nanostructures and the sustainable beneficiation of complex ores. For example, there has been increasing demand for complex ore utilization due to the noticeable decrease in the accessibility of high grade and easily extractable ores. In order to maintain the sustainable use of mineral resources, the effective beneficiation of complex ores is urgently required. It can be successfully achieved only with selective particle/mineral dispersion/liberation and the assistance of mineralogical and particle characterization. PMID:26298173

  10. A mechanistic interpretation of the resonant wave-particle interaction

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas M.

    2016-05-01

    This paper provides a simple mechanistic interpretation of the resonant wave-particle interaction of Landau. For the simple case of a Langmuir wave in a Vlasov plasma, the non-resonant electrons satisfy an oscillator equation that is driven resonantly by the bare electric field from the resonant electrons, and in the case of wave damping, this complex driver field is of a phase to reduce the oscillation amplitude. The wave-particle resonant interaction also occurs in waves governed by 2D E × B drift dynamics, such as a diocotron wave. In this case, the bare electric field from the resonant electrons causes E × B drift motion back in the core plasma, reducing the amplitude of the wave.

  11. [Research in elementary particles and interactions]. Technical progress report

    SciTech Connect

    Adair, R.; Sandweiss, J.; Schmidt, M.

    1992-05-01

    Research of the Yale University groups in the areas of elementary particles and their interactions are outlined. Work on the following topics is reported: development of CDF trigger system; SSC detector development; study of heavy flavors at TPL; search for composite objects produced in relativistic heavy-ion collisions; high-energy polarized lepton-nucleon scattering; rare K{sup +} decays; unpolarized high-energy muon scattering; muon anomalous magnetic moment; theoretical high-energy physics including gauge theories, symmetry breaking, string theory, and gravitation theory; study of e{sup +}e{sup {minus}} interactions with the SLD detector at SLAC; and the production and decay of particles containing charm and beauty quarks.

  12. Interfacial interactions between plastic particles in plastics flotation.

    PubMed

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation. PMID:26337962

  13. Strange particle production in neutrino-neon charged current interactions

    SciTech Connect

    Plano, R.; Baker, N.J.; Connolly, P.L.; Kahn, S.A.; Murtagh, M.J.; Palmer, R.B.; Samios, N.P.; Tanaka, M.; Baltay, C.; Bregman, M.

    1986-01-01

    Neutral strange particle production in charged-current muon-neutrino interactions have been studied in the Fermilab 15-foot neon bubble chamber. Associated production is expected to be the major source of strange particles in charged-current neutrino interactions. sigma-neutral and xi-minus production by neutrinos was observed. The dependence on various leptonic and hadronic variables is investigated. A fit to single and associated production of s, s/anti-s, and c quarks is described based on the number of single and double strange particle production events. Inclusive neutral strange particle decays (V/sup 0/) production rates as a fraction of all charged-current events are measured and are tabulated. The lambda/K ratio is found to be 0.39 +- 0.04 and the fraction of lambda coming from sigma-neutral is (16 +- 5)%. The single- and double V/sup 0/ production was used to determine the associated s anti-s production rate and single s-quark production rate. 13 refs., 7 figs., 3 tabs. (LEW)

  14. Dynamics of a suspension of interacting yolk-shell particles

    SciTech Connect

    Sánchez Díaz, L. E.; Cortes-Morales, E. C.; Li, X.; Chen, Wei-Ren; Medina-Noyola, M.

    2014-12-01

    In this work we study the self-diusion properties of a liquid of hollow spherical particles (shells) bearing a smaller solid sphere in their interior (yolks). We model this system using purely repulsive hard-body interactions between all (shell and yolk) particles, but assume the presence of a background ideal solvent such that all the particles execute free Brownian motion between collisions, characterized by short-time self-diusion coecients D0 s for the shells and D0 y for the yolks. Using a softened version of these interparticle potentials we perform Brownian dynamics simulations to determine the mean squared displacement and intermediate scattering function of the yolk-shell complex. These results can be understood in terms of a set of eective Langevin equations for the N interacting shell particles, pre-averaged over the yolks' degrees of freedom, from which an approximate self-consistent description of the simulated self-diusion properties can be derived. Here we compare the theoretical and simulated results between them, and with the results for the same system in the absence of yolks. We nd that the yolks, which have no eect on the shell-shell static structure, in uence the dynamic properties in a predictable manner, fully captured by the theory.

  15. Dynamics of a suspension of interacting yolk-shell particles

    DOE PAGESBeta

    Sánchez Díaz, L. E.; Cortes-Morales, E. C.; Li, X.; Chen, Wei-Ren; Medina-Noyola, M.

    2014-12-01

    In this work we study the self-diusion properties of a liquid of hollow spherical particles (shells) bearing a smaller solid sphere in their interior (yolks). We model this system using purely repulsive hard-body interactions between all (shell and yolk) particles, but assume the presence of a background ideal solvent such that all the particles execute free Brownian motion between collisions, characterized by short-time self-diusion coecients D0 s for the shells and D0 y for the yolks. Using a softened version of these interparticle potentials we perform Brownian dynamics simulations to determine the mean squared displacement and intermediate scattering function ofmore » the yolk-shell complex. These results can be understood in terms of a set of eective Langevin equations for the N interacting shell particles, pre-averaged over the yolks' degrees of freedom, from which an approximate self-consistent description of the simulated self-diusion properties can be derived. Here we compare the theoretical and simulated results between them, and with the results for the same system in the absence of yolks. We nd that the yolks, which have no eect on the shell-shell static structure, in uence the dynamic properties in a predictable manner, fully captured by the theory.« less

  16. Alpha particle heating at comet-solar wind interaction regions

    NASA Technical Reports Server (NTRS)

    Sharma, A. S.; Papadopoulos, K.

    1995-01-01

    The satellite observations at comet Halley have shown strong heating of solar wind alpha particles over an extended region dominated by high-intensity, low-frequency turbulence. These waves are excited by the water group pickup ions and can energize the solar wind plasma by different heating processes. The alpha particle heating by the Landau damping of kinetic Alfven waves and the transit time damping of low-frequency hydromagnetic waves in this region of high plasma beta are studied in this paper. The Alfven wave heating was shown to be the dominant mechanism for the observed proton heating, but it is found to be insufficient to account for the observed alpha particle heating. The transit time damping due to the interaction of the ions with the electric fields associated with the magnetic field compressions of magnetohydrodynamic waves is found to heat the alpha particles preferentially over the protons. Comparison of the calculated heating times for the transit time damping with the observations from comet Halley shows good agreement. These processes contribute to the thermalization of the solar wind by the conversion of its directed energy into the thermal energy in the transition region at comet-solar wind interaction.

  17. Nuclear and particle physics aspects of hyperon and antinucleon interactions

    SciTech Connect

    Dover, C.B.

    1984-01-01

    A discussion is given of hyperon (Y) and antinucleon (anti N) interactions with nucleons and nuclei, emphasizing some of the future prospects for nuclear structure and elementary particle physics studies at LEAR or a future kaon factory. The topics addressed include: (1) production and decay of strange dibaryons; (2) spectroscopy of strangeness S = -2 many body systems; (3) N anti N annihilation mechanisms; and (4) inelastic anti N-nucleus scattering and spin-flip excitations in nuclei. 36 references.

  18. Modeling and simulation of interactions of transient ionizing radiation with electronics

    SciTech Connect

    Ishaque, A.N.; Howard, J.W.; Becker, M.; Block, R.C.

    1988-01-01

    Electronic devices frequently are designed to withstand environments in which transient ionizing radiation may be present. Devices so designed must be tested to determine whether they indeed can withstand such radiation. Electron linear accelerators, including Rensselaer Polytechnic Institute's (RPI) Linac, are used for such testing. To understand the interactions that take place, it is desirable to model and simulate the phenomena involved. At RPI, there is an ongoing effort in modeling and simulation to complement and support the experimental program at the Linac. Modeling and simulation at RPI is directed toward predicting the types of radiation effects that occur when transient measurements are made at the RPI Linac. The combination of device and circuit modeling provides both insight and confidence in the merits of the models developed.

  19. Theoretical study of γ-aminobutyric acid conformers: Intramolecular interactions and ionization energies

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Dong; Wang, Mei-Ting; Meng, Ju

    2014-10-01

    Allowing for all combinations of internal single-bond rotamers, 1,296 unique trial structures of γ-Aminobutyric acid (GABA) are obtained. All of these structures are optimized at the M06-2X level of theory and a total of 68 local minimal conformers are found. The nine low-lying conformers are used for further studies. According to the calculated relative Gibbs free energies at M06-2X level of theory, we find that the dispersion is important for the relative energy of GABA. The intramolecular hydrogen bonds and hyperconjugative interaction and their effects on the conformational stability are studied. The results show that both of them have great influence on the conformers. The vertical ionization energies (VIE) are calculated and match the experimental data well. The results show that the neutral GABA in the gas phase is a multi-conformer system and at least four conformations exist.

  20. Valence ionized states of iron pentacarbonyl and eta5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy.

    PubMed

    Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi

    2010-02-28

    Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS. PMID:20192297

  1. Search for new, long-lived, charged particles using ionization in the ATLAS Pixel Detector

    NASA Astrophysics Data System (ADS)

    Axen, Bradley; Atlas Collaboration

    2016-03-01

    Several extensions of the Standard Model predict the existence of charged, very massive, and long-lived particles. Because of their high masses these particles would propagate non-relativistically through the ATLAS pixel detector and are therefore be identifiable through a measurement of large specific energy loss. Measuring heavy, long-lived particles through their track parameters in the pixel detector allows sensitivity to particles with lifetimes in the nanosecond range and above. This search presents an inner detector driven method for identifying such particles in proton-proton collisions at 13 TeV with the 2015 dataset corresponding to an integrated luminosity of 3.5 pb-1.

  2. Enhanced fluctuations of interacting particles confined in a box

    NASA Astrophysics Data System (ADS)

    Delfau, Jean-Baptiste; Coste, Christophe; Saint Jean, Michel

    2012-04-01

    We study the position fluctuations of interacting particles aligned in a finite cell that avoid any crossing in equilibrium with a thermal bath. The focus is put on the influence of the confining force directed along the cell length. We show that the system may be modeled as a 1D chain of particles with identical masses, linked with linear springs of varying spring constants. The confining force may be accounted for by linear springs linked to the walls. When the confining force range is increased toward the inside of the chain, a paradoxical behavior is exhibited. The outermost particles fluctuations are enhanced, whereas those of the inner particles are reduced. A minimum of fluctuations is observed at a distance of the cell extremities that scales linearly with the confining force range. Those features are in very good agreement with the model. Moreover, the simulations exhibit an asymmetry in their fluctuations which is an anharmonic effect. It is characterized by the measurement of the skewness, which is found to be strictly positive for the outer particles when the confining force is short ranged.

  3. Colloidal Particles and Liquid Interfaces: A Spectrum of Interactions

    NASA Astrophysics Data System (ADS)

    Kaz, David Martin

    Young's law predicts that a colloidal sphere in equilibrium with a liquid interface will straddle the two fluids, its height above the interface defined by an equilibrium contact angle. This equilibrium analysis has been used to explain why colloids often bind to liquid interfaces, an effect first observed a century ago by Ramsden and Pickering and later exploited in a wide range of material processes, including emulsification, water purification, mineral recovery, encapsulation, and the making of nanostructured materials. But little is known about the dynamics of binding, or any aspect of the interaction between a particle and an interface outside of equilibrium. This thesis explores the spectrum of particle-interface interactions, from non-binding to non-adsorptive binding and finally adsorptive binding and the relaxation toward equilibrium that ensues. Chapter 2 reviews the importance of interfacial particles in materials science, and serves as a partial motivation for the work presented here. Chapter 3 describes the apparatus and experimental procedures employed in the acquisition of our data, with a short review of experiments that led to the current set. Special attention is paid to the optical apparatus and the custom sample cells we designed. Chapter 4 deals with non-adsorptive interactions between colloidal particles and liquid interfaces. A theoretical discussion founded on (but not wedded to) classical DLVO theory is presented before the results of our experiments are analyzed. It is shown that particle-interface interactions may be purely repulsive or contain an attractive component that results in binding to the interface that is not associated with breach. In chapter 5 the adsorption of polystyrene microspheres to a water-oil interface is shown to be characterized by a sudden breach and an unexpectedly slow relaxation. Particles do not reach equilibrium even after 100 seconds, and the relaxation appears logarithmic in time, suggesting that complete

  4. Surface charge features of kaolinite particles and their interactions

    NASA Astrophysics Data System (ADS)

    Gupta, Vishal

    Kaolinite is both a blessing and a curse. As an important industrial mineral commodity, kaolinite clays are extensively used in the paper, ceramic, paint, plastic and rubber industries. In all these applications the wettability, aggregation, dispersion, flotation and thickening of kaolinite particles are affected by its crystal structure and surface properties. It is therefore the objective of this research to investigate selected physical and surface chemical properties of kaolinite, specifically the surface charge of kaolinite particles. A pool of advanced analytical techniques such as XRD, XRF, SEM, AFM, FTIR and ISS were utilized to investigate the morphological and surface chemistry features of kaolinite. Surface force measurements revealed that the silica tetrahedral face of kaolinite is negatively charged at pH>4, whereas the alumina octahedral face of kaolinite is positively charged at pH<6, and negatively charged at pH>8. Based on electrophoresis measurements, the apparent iso-electric point for kaolinite particles was determined to be less than pH 3. In contrast, the point of zero charge was determined to be pH 4.5 by titration techniques, which corresponds to the iso-electric point of between pH 4 and 5 as determined by surface force measurements. Results from kaolinite particle interactions indicate that the silica face--alumina face interaction is dominant for kaolinite particle aggregation at low and intermediate pH values, which explains the maximum shear yield stress at pH 5-5.5. Lattice resolution images reveal the hexagonal lattice structure of these two face surfaces of kaolinite. Analysis of the silica face of kaolinite showed that the center of the hexagonal ring of oxygen atoms is vacant, whereas the alumina face showed that the hexagonal surface lattice ring of hydroxyls surround another hydroxyl in the center of the ring. High resolution transmission electron microscopy investigation of kaolinite has indicated that kaolinite is indeed

  5. Ionization processes in the ultrashort, intense laser field interaction with large clusters

    NASA Astrophysics Data System (ADS)

    Shokri, B.; Niknam, A. R.; Smirnov, M.

    2004-03-01

    Multiple ionization of large clusters when they are irradiated by an intense ultrashort laser pulse is investigated. Different mechanisms, responsible for cluster ionization, are investigated. It is found that the ionization of large clusters, irradiated by a strong intense ultrashort laser pulse, is realized by means of the surface thermoemission.

  6. Three-Dimensional Electromagnetic Monte Carlo Particle-in-Cell Simulations of Critical Ionization Velocity Experiments in Space

    NASA Technical Reports Server (NTRS)

    Wang, J.; Biasca, R.; Liewer, P. C.

    1996-01-01

    Although the existence of the critical ionization velocity (CIV) is known from laboratory experiments, no agreement has been reached as to whether CIV exists in the natural space environment. In this paper we move towards more realistic models of CIV and present the first fully three-dimensional, electromagnetic particle-in-cell Monte-Carlo collision (PIC-MCC) simulations of typical space-based CIV experiments. In our model, the released neutral gas is taken to be a spherical cloud traveling across a magnetized ambient plasma. Simulations are performed for neutral clouds with various sizes and densities. The effects of the cloud parameters on ionization yield, wave energy growth, electron heating, momentum coupling, and the three-dimensional structure of the newly ionized plasma are discussed. The simulations suggest that the quantitative characteristics of momentum transfers among the ion beam, neutral cloud, and plasma waves is the key indicator of whether CIV can occur in space. The missing factors in space-based CIV experiments may be the conditions necessary for a continuous enhancement of the beam ion momentum. For a typical shaped charge release experiment, favorable CIV conditions may exist only in a very narrow, intermediate spatial region some distance from the release point due to the effects of the cloud density and size. When CIV does occur, the newly ionized plasma from the cloud forms a very complex structure due to the combined forces from the geomagnetic field, the motion induced emf, and the polarization. Hence the detection of CIV also critically depends on the sensor location.

  7. Model-independent analyses of dark-matter particle interactions

    DOE PAGESBeta

    Anand, Nikhil; Fitzpatrick, A. Liam; Haxton, W. C.

    2015-03-24

    A model-independent treatment of dark-matter particle elastic scattering has been developed, yielding the most general interaction for WIMP-nucleon low-energy scattering, and the resulting amplitude has been embedded into the nucleus, taking into account the selection rules imposed by parity and time-reversal. One finds that, in contrast to the usual spin-independent/spin-dependent (SI/SD) formulation, the resulting cross section contains six independent nuclear response functions, three of which are associated with possible velocity-dependent interactions. We find that current experiments are four orders of magnitude more sensitive to derivative couplings than is apparent in the standard SI/SD treatment, which necessarily associated such interactions withmore » cross sections proportional to v2T ~ 10⁻⁶, where vT is the WIMP velocity relative to the center of mass of the nuclear target.« less

  8. Model-independent analyses of dark-matter particle interactions

    SciTech Connect

    Anand, Nikhil; Fitzpatrick, A. Liam; Haxton, W. C.

    2015-03-24

    A model-independent treatment of dark-matter particle elastic scattering has been developed, yielding the most general interaction for WIMP-nucleon low-energy scattering, and the resulting amplitude has been embedded into the nucleus, taking into account the selection rules imposed by parity and time-reversal. One finds that, in contrast to the usual spin-independent/spin-dependent (SI/SD) formulation, the resulting cross section contains six independent nuclear response functions, three of which are associated with possible velocity-dependent interactions. We find that current experiments are four orders of magnitude more sensitive to derivative couplings than is apparent in the standard SI/SD treatment, which necessarily associated such interactions with cross sections proportional to v2T ~ 10⁻⁶, where vT is the WIMP velocity relative to the center of mass of the nuclear target.

  9. SPLASH: An Interactive Visualization Tool for Smoothed Particle Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Price, Daniel J.

    2011-03-01

    SPLASH (formerly SUPERSPHPLOT) is a visualization tool for output from (astrophysical) simulations using the Smoothed Particle Hydrodynamics (SPH) method in one, two and three dimensions. It is written in Fortran 90 and utilises the PGPLOT graphics subroutine library to do the actual plotting. It is based around a command-line menu structure but utilises the interactive capabilities of PGPLOT to manipulate data interactively in the plotting window. SPLASH is a fully interactive program; visualizations can be changed rapidly at the touch of a button (e.g. zooming, rotating, shifting cross section positions etc). Data is read directly from the code dump format giving rapid access to results and the visualization is advanced forwards and backwards through timesteps by single keystrokes. SPLASH uses the SPH kernel to render plots of not only density but other physical quantities, giving a smooth representation of the data.

  10. Ionization Cross Sections of Hydrogen-like Atoms under Heavy Particle Impact

    NASA Astrophysics Data System (ADS)

    Das, R.; Sahoo, S.; Roy, K.

    Cross sections for the ionization of hydrogen-like ions (He+, Li2+, Be3+, B4+, C5+) by impact of bare ions are determined in the energy range of 10 to 2000 keV/amu, using a continuum state wave function which incorporates the distortion due to the Coulomb fields of both the projectile and the residual target. Total and differential cross sections are calculated and compared with other existing theoretical findings as well as with experimental data.

  11. First direct limits on lightly ionizing particles with electric charge less than e/6.

    PubMed

    Agnese, R; Anderson, A J; Balakishiyeva, D; Basu Thakur, R; Bauer, D A; Billard, J; Borgland, A; Bowles, M A; Brandt, D; Brink, P L; Bunker, R; Cabrera, B; Caldwell, D O; Cerdeno, D G; Chagani, H; Chen, Y; Cooley, J; Cornell, B; Crewdson, C H; Cushman, P; Daal, M; Di Stefano, P C F; Doughty, T; Esteban, L; Fallows, S; Figueroa-Feliciano, E; Godfrey, G L; Golwala, S R; Hall, J; Harris, H R; Hertel, S A; Hofer, T; Holmgren, D; Hsu, L; Huber, M E; Jastram, A; Kamaev, O; Kara, B; Kelsey, M H; Kennedy, A; Kiveni, M; Koch, K; Leder, A; Loer, B; Lopez Asamar, E; Mahapatra, R; Mandic, V; Martinez, C; McCarthy, K A; Mirabolfathi, N; Moffatt, R A; Moore, D C; Nelson, H; Nelson, R H; Ogburn, R W; Page, K; Page, W A; Partridge, R; Pepin, M; Phipps, A; Prasad, K; Pyle, M; Qiu, H; Rau, W; Redl, P; Reisetter, A; Ricci, Y; Rogers, H E; Saab, T; Sadoulet, B; Sander, J; Schneck, K; Schnee, R W; Scorza, S; Serfass, B; Shank, B; Speller, D; Upadhyayula, S; Villano, A N; Welliver, B; Wright, D H; Yellin, S; Yen, J J; Young, B A; Zhang, J

    2015-03-20

    While the standard model of particle physics does not include free particles with fractional charge, experimental searches have not ruled out their existence. We report results from the Cryogenic Dark Matter Search (CDMS II) experiment that give the first direct-detection limits for cosmogenically produced relativistic particles with electric charge lower than e/6. A search for tracks in the six stacked detectors of each of two of the CDMS II towers finds no candidates, thereby excluding new parameter space for particles with electric charges between e/6 and e/200. PMID:25839256

  12. First Direct Limits on Lightly Ionizing Particles with Electric Charge Less than e/6

    DOE PAGESBeta

    Agnese, R.; Anderson, A. J.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brandt, D.; Brink, P. L.; et al

    2015-03-18

    While the Standard Model of particle physics does not include free particles with fractional charge, experimental searches have not ruled out their existence. We report results from the Cryogenic Dark Matter Search (CDMS II) experiment that give the first direct-detection limits for cosmogenically- produced relativistic particles with electric charge lower than e/6. A search for tracks in the six stacked detectors of each of two of the CDMS II towers found no candidates, thereby excluding new parameter space for particles with electric charges between e/6 and e/200.

  13. Theory and modeling of particles with DNA-mediated interactions

    NASA Astrophysics Data System (ADS)

    Licata, Nicholas A.

    In recent years significant attention has been attracted to proposals which utilize DNA for nanotechnological applications. Potential applications of these ideas range from the programmable self-assembly of colloidal crystals, to biosensors and nanoparticle based drug delivery platforms. In Chapter I we introduce the system, which generically consists of colloidal particles functionalized with specially designed DNA markers. The sequence of bases on the DNA markers determines the particle type. Due to the hybridization between complementary single-stranded DNA, specific, type-dependent interactions can be introduced between particles by choosing the appropriate DNA marker sequences. In Chapter II we develop a statistical mechanical description of the aggregation and melting behavior of particles with DNA-mediated interactions. A quantitative comparison between the theory and experiments is made by calculating the experimentally observed melting profile. In Chapter III a model is proposed to describe the dynamical departure and diffusion of particles which form reversible key-lock connections. The model predicts a crossover from localized to diffusive behavior. The random walk statistics for the particles' in plane diffusion is discussed. The lateral motion is analogous to dispersive transport in disordered semiconductors, ranging from standard diffusion with a renormalized diffusion coefficient to anomalous, subdiffusive behavior. In Chapter IV we propose a method to self-assemble nanoparticle clusters using DNA scaffolds. An optimal concentration ratio is determined for the experimental implementation of our self-assembly proposal. A natural extension is discussed in Chapter V, the programmable self-assembly of nanoparticle clusters where the desired cluster geometry is encoded using DNA-mediated interactions. We determine the probability that the system self-assembles the desired cluster geometry, and discuss the connections to jamming in granular and colloidal

  14. Colloids exposed to random potential energy landscapes: From particle number density to particle-potential and particle-particle interactions

    NASA Astrophysics Data System (ADS)

    Bewerunge, Jörg; Sengupta, Ankush; Capellmann, Ronja F.; Platten, Florian; Sengupta, Surajit; Egelhaaf, Stefan U.

    2016-07-01

    Colloidal particles were exposed to a random potential energy landscape that has been created optically via a speckle pattern. The mean particle density as well as the potential roughness, i.e., the disorder strength, were varied. The local probability density of the particles as well as its main characteristics were determined. For the first time, the disorder-averaged pair density correlation function g(1)(r) and an analogue of the Edwards-Anderson order parameter g(2)(r), which quantifies the correlation of the mean local density among disorder realisations, were measured experimentally and shown to be consistent with replica liquid state theory results.

  15. Colloids exposed to random potential energy landscapes: From particle number density to particle-potential and particle-particle interactions.

    PubMed

    Bewerunge, Jörg; Sengupta, Ankush; Capellmann, Ronja F; Platten, Florian; Sengupta, Surajit; Egelhaaf, Stefan U

    2016-07-28

    Colloidal particles were exposed to a random potential energy landscape that has been created optically via a speckle pattern. The mean particle density as well as the potential roughness, i.e., the disorder strength, were varied. The local probability density of the particles as well as its main characteristics were determined. For the first time, the disorder-averaged pair density correlation function g((1))(r) and an analogue of the Edwards-Anderson order parameter g((2))(r), which quantifies the correlation of the mean local density among disorder realisations, were measured experimentally and shown to be consistent with replica liquid state theory results. PMID:27475395

  16. Local wave particle resonant interaction causing energetic particle prompt loss in DIII-D plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Ruibin; Fu, Guoyong; White, Roscoe

    2014-10-01

    A new resonance mechanism is introduced to explain the observed first-orbit prompt beam ion losses induced by RSAE in the D3D tokamak. Because of large banana width and localized radial structure, some trapped beam ions can only interact with RSAE on the inner legs of their banana orbits. A beam ion can interact resonantly with the RSAE when the mode phase is nearly constant within the local interaction region. We identify this strong local wave particle interaction as local resonance. The local resonance condition is determined by the local poloidal and toroidal velocity of beam ions and can be written as < - m . θ + n . ϕ >gc - ω = 0 , where < > denotes local time average within the interaction region and gc stands for guiding center coordinates. A full orbit test particle code FOST confirms the local resonance theory. Both the linear scaling with the mode amplitude and the frequency of the loss signals detected by FILD on D3D as well as the measured fast ion radial kick size can be well explained by this local resonance theory and simulation.

  17. Search for weakly interacting massive particles with the Cryogenic Dark Matter Search experiment

    NASA Astrophysics Data System (ADS)

    Saab, Tarek

    From individual galaxies, to clusters of galaxies, to in between the cushions of your sofa, Dark Matter appears to be pervasive on every scale. With increasing accuracy, recent astrophysical measurements, from a variety of experiments, are arriving at the following cosmological model: a flat cosmology (Ωk = 0) with matter and energy densities contributing roughly 1/3 and 2/3 (Ωm = 0.35, ΩΛ = 0.65). Of the matter contribution, it appears that only ≈10% (Ωb ≈ 0.04) is attributable to baryons. Astrophysical measurements constrain the remaining matter to be non-realtivistic, interacting primarily gravitationally. Various theoretical models for such Dark Matter exist. A leading candidate for the non-baryonic matter are Weakly Interacting Massive Particles (dubbed WIMPS). These particles, and their relic density may be naturally explained within the framework of Super-Symmetry theories. Super-Symmetry also offers predictions as to the scattering rates of WIMPS with baryonic matter allowing for the design and tailoring of experiments that search specifically for the WIMPs. The Cryogenic Dark Matter Search experiment is searching for evidence of WIMP interactions in crystals of Ge and Si. Using cryogenic detector technology to measure both the phonon and ionization response to a particle recoil the CDMS detectors are able to discriminate between electron and nuclear recoils, thus reducing the large rates of electron recoil backgrounds to levels with which a Dark Matter search is not only feasible, but far-reaching. This thesis will describe in some detail the physical principles behind the CDMS detector technology, highlighting the final step in the evolution of the detector design and characterization techniques. In addition, data from a 100 day long exposure of the current run at the Stanford Underground Facility will be presented, with focus given to detector performance as well as to the implications on allowable WIMP mass-cross- section parameter space.

  18. Interaction of imaginary-charge-carrying dyon with particles

    SciTech Connect

    Nguyen Vien Tho

    2008-06-15

    By analytic continuation from a SU(2) gauge field solution, Wu and Yang [Phys. Rev. 13, 3233 (1976)] obtained a static and sourceless solution of gauge theory for the group SL(2,C) [also for SO(3,1)]. This field configuration resembles a dyon that carries an imaginary charge. We present here a scheme that allows us to derive consistently the equations describing the interaction between the Lorentz gauge field and particles in the classical limit. They look like Wong's equations in which gauge field components and color charges are complex. The complex charges and complex gauge field components can be understood as auxiliary concepts, while the equations of motion of particles in the outer space as well as kinematical and dynamical characteristics of the motion are real. The obtained equations are applied to investigate the case of particles in the mentioned dyon field configuration. The expressions of total energy and angular momentum, as integrals of motion of particles, are derived. The equations of motion allow planar motions, for which an analytic description of orbits is carried out.

  19. Interaction of imaginary-charge-carrying dyon with particles

    NASA Astrophysics Data System (ADS)

    Tho, Nguyen Vien

    2008-06-01

    By analytic continuation from a SU(2) gauge field solution, Wu and Yang [Phys. Rev. 13, 3233 (1976)] obtained a static and sourceless solution of gauge theory for the group SL(2,C) [also for SO(3,1)]. This field configuration resembles a dyon that carries an imaginary charge. We present here a scheme that allows us to derive consistently the equations describing the interaction between the Lorentz gauge field and particles in the classical limit. They look like Wong's equations in which gauge field components and color charges are complex. The complex charges and complex gauge field components can be understood as auxiliary concepts, while the equations of motion of particles in the outer space as well as kinematical and dynamical characteristics of the motion are real. The obtained equations are applied to investigate the case of particles in the mentioned dyon field configuration. The expressions of total energy and angular momentum, as integrals of motion of particles, are derived. The equations of motion allow planar motions, for which an analytic description of orbits is carried out.

  20. Wave-particle interaction and peculiarities of propagation and emission of accelerated particles in solar flares

    NASA Astrophysics Data System (ADS)

    Stepanov, A. V.; Tsap, Yu. T.

    2006-08-01

    Consequences of wave-particle interaction in the propagation and emission of accelerated particles in solar flares are considered. i. Strong diffusion energetic particles on small-scale waves (Trakhtengerts 1984) gives time delays of gamma ray line emission vs hard X-ray emission when electron and protons are accelerated simultaneously. ii. Anomalous propagation of relativistic electrons along the flare loop with velocity of 30 times less compared with light velocity (Yokoyama et al 2002) is explained in terms of the collective effects of interaction of electrons with plasma turbulence. A cloud of high-energetic electrons responsible for microwave emission generates whistler waves and a turbulent "wall" in the loop is formed. The electrons undergo strong resonant scattering and the emission front propagates with the wave phase velocity, which is much lower than particle velocity. iii. Absence of linear polarization (≤ 0.07%) in Hα emission of some flares (Bianda et al 2005) is interpreted in terms of pitch-angle scattering of proton beams on small-scale Alfven waves. References Bianda M., Benz F.O., Stenflo J.O. et al 2005, A&A, 434, 1183 Trakhtengerts V.Yu. 1984, Relaxation of Plasma with Anisotropic Velocity Distribution, in A.A.Galeev and R.N.Sudan (eds.) Basic Plasma Physics II, North-Holland Physics Publishing Yokoyama T., Nakajima H., Shibasaki K, et al. 2002, ApJ, 576, L87

  1. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy

    NASA Astrophysics Data System (ADS)

    Pacakova, B.; Mantlikova, A.; Niznansky, D.; Kubickova, S.; Vejpravova, J.

    2016-05-01

    Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly-crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole–dipole interaction energy ({{E}\\text{d-\\text{d}}} ) scaled with each other and increased with increasing {{≤ft({{d}\\text{XRD}}/r\\right)}3} , where d XRD was the NP diameter and r was the interparticle distance. Our results are in excellent agreement with Monte-Carlo simulations of the particle growth. Moreover, we demonstrated that the contribution of {{E}\\text{d-\\text{d}}} acting as an additional energetic barrier to the superspin reversal or as an average static field did not sufficiently explain how the concentrated NP systems responded to an external magnetic field. Alternations in the blocking temperature and coercivity of our NP systems accounted for reformed relaxations of the NP superspins and modified effective anisotropy energy of the interacting NPs. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of the energy barrier influenced by interparticle interactions.

  2. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy.

    PubMed

    Pacakova, B; Mantlikova, A; Niznansky, D; Kubickova, S; Vejpravova, J

    2016-05-25

    Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly-crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole-dipole interaction energy ([Formula: see text]) scaled with each other and increased with increasing [Formula: see text], where d XRD was the NP diameter and r was the interparticle distance. Our results are in excellent agreement with Monte-Carlo simulations of the particle growth. Moreover, we demonstrated that the contribution of [Formula: see text] acting as an additional energetic barrier to the superspin reversal or as an average static field did not sufficiently explain how the concentrated NP systems responded to an external magnetic field. Alternations in the blocking temperature and coercivity of our NP systems accounted for reformed relaxations of the NP superspins and modified effective anisotropy energy of the interacting NPs. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of the energy barrier influenced by interparticle interactions. PMID:27122013

  3. Quantum dynamics and topological excitations in interacting dipolar particles

    NASA Astrophysics Data System (ADS)

    Rey, Ana

    2016-05-01

    Dipole-dipole interactions, long-range and anisotropic interactions that arise due to the virtual exchange of photons, are of fundamental importance in optical physics, and are enabling a range of new quantum technologies including quantum networks and optical lattice atomic clocks. In this talk I will first discuss how arrays of dipolar particles with a simple J = 0- J = 1 internal level structure can naturally host topological and chiral excitations including Weyl quasi-particles. Weyl fermions were first predicted to exist in the context of high energy physics but only recently have been observed in solid state systems. I will discuss a proposal of using Mott insulators of Sr atoms to observe and probe the Weyl excitation spectrum and its non-trivial chirality. Finally I will report on a recent experiment done at JILA which validates the underlying microscopic model that predicts the existence of these excitations. The experiment measured the collective emission from a coherently driven gas of ultracold 88 Sr atoms and observed a highly directional and anisotropic emission intensity and a substantial broadening of the atomic spectral lines. All of the measurements are well reproduced by the theoretical model. These investigations open the door for the exploration of novel quantum many-body systems involving strongly interacting atoms and photons, and are useful guides for further developments of optical atomic clocks and other applications involving dense atomic ensembles. AFOSR, MURI-AFOSR, ARO,NSF-PHY-1521080, JILA-NSF-PFC-1125844.

  4. Wave-particle interactions in the magnetosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Coroniti, F. V.; Scarf, F. L.

    1991-01-01

    The Voyager 2 encounter of Uranus has provided observations of plasma waves in and near the magnetosphere. These data, while the first from Uranus, will also be the only direct information on wave-particle interactions at this planet for many years to come. The observations include electrostatic waves upstream of the bow shock, turbulence in the shock Bernstein emissions and whistler mode waves in the magnetosphere, broadband electrostatic noise in the magnetotail, and a number of the other types of plasma waves which have yet to be clearly identified. Each of these types of waves exist in a plasma environment which both supports the growth of the waves and is modified by interactions with the waves. Wave-particle interactions provide the channels through which the waves can accelerate, scatter, or thermalize the plasmas. The most spectacular example in the case of Uranus is the extremely intense whistler mode activity in the inner magnetosphere which is the source of strong pitch angle diffusion. The resulting electron precipitation is sufficient to produce the auroral emissions observed by Voyager. The strong diffusion, however, presents the problem of supplying electrons in the range of 5 to 40 keV in order to support the losses to the atmosphere.

  5. Wave-particle interactions in the magnetosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.; Coroniti, F. V.

    1988-01-01

    The Voyager 2 encounter of Uranus has provided observations of plasma waves in and near the magnetosphere. These data, while the first from Uranus, will also be the only direct information on wave-particle interactions at this planet for many years to come. The observations include electrostatic waves upstream of the bow shock, turbulence in the shock, Bernstein emissions and whistler mode waves in the magnetosphere, broadband electrostatic noise in the magnetotail, and a number of the other types of plasma waves which have yet to be clearly identified. Each of these types of waves exist in a plasma environment which both supports the growth of the waves and is modified by interactions with the waves. Wave-particle interactions provide the channels through which the waves can accelerate, scatter, or thermalize the plasmas. The most spectacular example in the case of Uranus is the extremely intense whistler mode activity in the inner magnetosphere which is the source of strong pitch angle diffusion. The resulting electron precipitation is sufficient to produce the auroral emissions observed by Voyager. The strong diffusion, however, presents the problem of supplying electrons in the range of 5 to 40 keV in order to support the losses to the atmosphere.

  6. Wave-particle interactions in the magnetosphere of Uranus

    SciTech Connect

    Kurth, W.S.; Gurnett, D.A.; Scarf, F.L.; Coroniti, F.V.

    1988-07-01

    The Voyager 2 encounter of Uranus has provided observations of plasma waves in and near the magnetosphere. These data, while the first from Uranus, will also be the only direct information on wave-particle interactions at this planet for many years to come. The observations include electrostatic waves upstream of the bow shock, turbulence in the shock, Bernstein emissions and whistler mode waves in the magnetosphere, broadband electrostatic noise in the magnetotail, and a number of the other types of plasma waves which have yet to be clearly identified. Each of these types of waves exist in a plasma environment which both supports the growth of the waves and is modified by interactions with the waves. Wave-particle interactions provide the channels through which the waves can accelerate, scatter, or thermalize the plasmas. The most spectacular example in the case of Uranus is the extremely intense whistler mode activity in the inner magnetosphere which is the source of strong pitch angle diffusion. The resulting electron precipitation is sufficient to produce the auroral emissions observed by Voyager. The strong diffusion, however, presents the problem of supplying electrons in the range of 5 to 40 keV in order to support the losses to the atmosphere.

  7. Cosmological consequences of gravitationally interacting Planck-mass particles

    SciTech Connect

    Srivastava, A.M.

    1987-10-15

    The existence of Planck-mass particles (called geons) in pure gravity is suggested by the work of Friedman and Sorkin. These particles are very peculiar in the sense that they interact only gravitationally. In this paper we show that the existence of Planck-mass unstable geons may have many physically interesting implications. In particular we propose a scenario in which we show the possibility of formation of heavy black holes (with present number density equal to the galactic number density) which will have the capability of providing seeds for the galaxy formation. In this scenario lighter black holes provide the missing mass in the galactic halos. Also in this scenario the early geon-dominated era dilutes grand-unified-theory monopoles sufficiently providing a noninflationary solution to the monopole problem. Unfortunately, however, this scenario is in conflict with the standard calculations of helium synthesis and baryon excess. A scenario consistent with helium synthesis is briefly discussed.

  8. Erosion processes due to energetic particle-surface interaction

    SciTech Connect

    Schmid, K.; Roth, J.

    2010-05-20

    The interaction of the fast particles from the hot plasma of a magnetic confinement fusion experiment with the first wall is one of the most challenging problems toward the realization of a fusion power plant. The erosion of the first wall by the fast particles leads to life time limitations and the radiative cooling of the plasma by the eroded impurity species lowers the energy confinement. Apart from these obvious consequences also the trapping of large quantities of the fuelling species (deuterium and tritium) in re-deposited layers of the eroded species poses a problem due to accumulation of large radiative inventories and plasma fuelling inefficiency. The source of all these challenges is the erosion of first wall components due to physical sputtering, chemical erosion and radiation enhanced sublimation. This paper will give an overview about the physical principles behind these erosion channels.

  9. Resonant wave-particle interactions modified by intrinsic Alfvenic turbulence

    SciTech Connect

    Wu, C. S.; Lee, K. H.; Wang, C. B.; Wu, D. J.

    2012-08-15

    The concept of wave-particle interactions via resonance is well discussed in plasma physics. This paper shows that intrinsic Alfven waves can qualitatively modify the physics discussed in conventional linear plasma kinetic theories. It turns out that preexisting Alfven waves can affect particle motion along the ambient magnetic field and, moreover, the ensuing force field is periodic in time. As a result, the meaning of the usual Landau and cyclotron resonance conditions becomes questionable. It turns out that this effect leads us to find a new electromagnetic instability. In such a process intrinsic Alfven waves not only modify the unperturbed distribution function but also result in a different type of cyclotron resonance which is affected by the level of turbulence. This instability might enable us to better our understanding of the observed radio emission processes in the solar atmosphere.

  10. Study of the Interaction of Fluxes of Annihilating Particles

    NASA Astrophysics Data System (ADS)

    Nazarov, A. A.; Feropontova, N. M.

    2015-12-01

    A study of interacting particle fluxes in the form of an infinite linear queueing system with positive and negative requests is presented for different types of such systems. For the first class of systems with exponential service a stationary probability distribution of the number of positive requests in the system has been found. For the second class of systems, for the case of arbitrary service, the study is performed by the method of asymptotic analysis. Asymptotic equivalence of the systems under consideration is demonstrated.

  11. Interaction of RNA polymerase II with acetylated nucleosomal core particles

    SciTech Connect

    Pineiro, M.; Gonzalez, P.J.; Hernandez, F.; Palacian, E. )

    1991-05-31

    Chemical acetylation of nucleosomal cores is accompanied by an increase in their efficiency as in vitro transcription templates. Low amounts of acetic anhydride cause preferential modification of the amino-terminal tails of core histones. Modification of these domains, which causes moderate structural effects, is apparently correlated with the observed stimulation of RNA synthesis. In contrast, extensive modification of the globular regions of core histones, which is accompanied by a large structural relaxation of the particle, causes little additional effect on transcription. Acetylation of the amino-terminal domains of histones might stimulate transcription by changing the interaction of the histone tails with components of the transcriptional machinery.

  12. Reduced quasilinear models for energetic particles interaction with Alfvenic eigenmodes

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy

    The Line Broadened Quasilinear (LBQ) and the 1.5D reduced models are able to predict the effect of Alfvenic eigenmodes' interaction with energetic particles in burning plasmas. This interaction can result in energetic-particle losses that can damage the first wall, deteriorate the plasma performance, and even prevent ignition. The 1.5D model assumes a broad spectrum of overlapping modes and, based on analytic expressions for the growth and damping rates, calculates the pressure profiles that the energetic particles relax to upon interacting with the modes. 1.5D is validated with DIII-D experiments and predicted neutron losses consistent with observation. The model is employed to predict alpha-particle fusion-product losses in a large-scale operational parameter-space for burning plasmas. The LBQ model captures the interaction both in the regime of isolated modes as well as in the conventional regime of overlapping modes. Rules were established that allow quasilinear equations to replicate the expected steady-state saturation levels of isolated modes. The fitting formula is improved and the model is benchmarked with a Vlasov code, BOT. The saturation levels are accurately predicted and the mode evolution is well-replicated in the case of steady-state evolution where the collisions are high enough that coherent structures do not form. When the collisionality is low, oscillatory behavior can occur. LBQ can also exhibit non-steady behavior, but the onset of oscillations occurs for much higher collisional rates in BOT than in LBQ. For certain parameters of low collisionality, hole-clump creation and frequency chirping can occur which are not captured by the LBQ model. Also, there are cases of non-steady evolution without chirping which is possible for LBQ to study. However the results are inconclusive since the periods and amplitudes of the oscillations in the mode evolution are not well-replicated. If multiple modes exist, they can grow to the point of overlap which

  13. Physical interactions of charged particles for radiotherapy and space applications.

    PubMed

    Zeitlin, Cary

    2012-11-01

    In this paper, the basic physics by which energetic charged particles deposit energy in matter is reviewed. Energetic charged particles are used for radiotherapy and are encountered in spaceflight, where they pose a health risk to astronauts. They interact with matter through nuclear and electromagnetic forces. Deposition of energy occurs mostly along the trajectory of the incoming particle, but depending on the type of incident particle and its energy, there is some nonzero probability for energy deposition relatively far from the nominal trajectory, either due to long-ranged knock-on electrons (sometimes called delta rays) or from the products of nuclear fragmentation, including neutrons. In the therapy setting, dose localization is of paramount importance, and the deposition of energy outside nominal treatment volumes complicates planning and increases the risk of secondary cancers as well as noncancer effects in normal tissue. Statistical effects are also important and will be discussed. In contrast to radiation therapy patients, astronauts in space receive comparatively small whole-body radiation doses from energetic charged particles and associated secondary radiation. A unique aspect of space radiation exposures is the high-energy heavy-ion component of the dose. This is not present in terrestrial exposures except in carbon-ion radiotherapy. Designers of space missions must limit exposures to keep risk within acceptable limits. These limits are, at present, defined for low-Earth orbit, but not for deep-space missions outside the geomagnetosphere. Most of the uncertainty in risk assessment for such missions comes from the lack of understanding of the biological effectiveness of the heavy-ion component, with a smaller component due to uncertainties in transport physics and dosimetry. These same uncertainties are also critical in the therapy setting. PMID:23032883

  14. Secondary neutral mass spectrometry (SNMS)-recent methodical progress and applications to fundamental studies in particle/surface interaction

    NASA Astrophysics Data System (ADS)

    Oechsner, Hans

    1995-05-01

    Recent instrumental developments of the conventional secondary neutral mass spectrometry (SNMS) technique based on electron gas post-ionization are described with regard to its application to non-conducting samples and its implementation in a novel secondary neutral microprobe. The use of molecular SNMS signals for quantitative surface analysis, and a standard free technique for absolute depth calibration from the mass spectrometric signals are discussed and elucidated by appropriate examples. Finally, some applications of electron gas SNMS to fundamental studies on low energy particle/surface interaction are presented.

  15. Measurement of Charged Particle Interactions in Spacecraft and Planetary Habitat Shielding Materials

    NASA Technical Reports Server (NTRS)

    Zeitlin, Cary J.; Heilbronn, Lawrence H.; Miller, Jack; Wilson, John W.; Singleterry, Robert C., Jr.

    2003-01-01

    Accurate models of health risks to astronauts on long-duration missions outside the geomagnetosphere will require a full understanding of the radiation environment inside a spacecraft or planetary habitat. This in turn requires detailed knowledge of the flux of incident particles and their propagation through matter, including the nuclear interactions of heavy ions that are a part of the Galactic Cosmic Radiation (GCR). The most important ions are likely to be iron, silicon, oxygen, and carbon. Transport of heavy ions through complex shielding materials including self-shielding of tissue modifies the radiation field at points of interest (e.g., at the blood-forming organs). The incident flux is changed by two types of interactions: (1) ionization energy loss, which results in reduced particle velocity and higher LET (Linear Energy Transfer); and (2) nuclear interactions that fragment the incident nuclei into less massive ions. Ionization energy loss is well understood, nuclear interactions less so. Thus studies of nuclear fragmentation at GCR-like energies are needed to fill the large gaps that currently exist in the database. These can be done at only a few accelerator facilities where appropriate beams are available. Here we report results from experiments performed at the Brookhaven National Laboratory s Alternating Gradient Synchrotron (AGS) and the Heavy Ion Medical Accelerator in Chiba, Japan (HIMAC). Recent efforts have focused on extracting charge-changing and fragment production cross sections from silicon beams at 400, 600, and 1200 MeV/nucleon. Some energy dependence is observed in the fragment production cross sections, and as in other data sets the production of fragments with even charge numbers is enhanced relative to those with odd charge numbers. These data are compared to the NASA-LaRC model NUCFRG2. The charge-changing cross section data are compared to recent calculations using an improved model due to Tripathi, which accurately predicts the

  16. Strong interactive massive particles from a strong coupled theory

    SciTech Connect

    Khlopov, Maxim Yu.; Kouvaris, Chris

    2008-03-15

    Minimal walking technicolor models can provide a nontrivial solution for cosmological dark matter, if the lightest technibaryon is doubly charged. Technibaryon asymmetry generated in the early Universe is related to baryon asymmetry, and it is possible to create an excess of techniparticles with charge (-2). These excessive techniparticles are all captured by {sup 4}He, creating techni-O-helium tOHe atoms, as soon as {sup 4}He is formed in big bang nucleosynthesis. The interaction of techni-O-helium with nuclei opens new paths to the creation of heavy nuclei in big bang nucleosynthesis. Because of the large mass of technibaryons, the tOHe ''atomic'' gas decouples from the baryonic matter and plays the role of dark matter in large scale structure formation, while structures in small scales are suppressed. Nuclear interactions with matter slow down cosmic techni-O-helium in the Earth below the threshold of underground dark matter detectors, thus escaping severe cryogenic dark matter search constraints. On the other hand, these nuclear interactions are not sufficiently strong to exclude this form of strongly interactive massive particles by constraints from the XQC experiment. Experimental tests of this hypothesis are possible in the search for tOHe in balloon-borne experiments (or on the ground) and for its charged techniparticle constituents in cosmic rays and accelerators. The tOHe atoms can cause cold nuclear transformations in matter and might form anomalous isotopes, offering possible ways to exclude (or prove?) their existence.

  17. Quantum chaos and thermalization in isolated systems of interacting particles

    NASA Astrophysics Data System (ADS)

    Borgonovi, F.; Izrailev, F. M.; Santos, L. F.; Zelevinsky, V. G.

    2016-04-01

    This review is devoted to the problem of thermalization in a small isolated conglomerate of interacting constituents. A variety of physically important systems of intensive current interest belong to this category: complex atoms, molecules (including biological molecules), nuclei, small devices of condensed matter and quantum optics on nano- and micro-scale, cold atoms in optical lattices, ion traps. Physical implementations of quantum computers, where there are many interacting qubits, also fall into this group. Statistical regularities come into play through inter-particle interactions, which have two fundamental components: mean field, that along with external conditions, forms the regular component of the dynamics, and residual interactions responsible for the complex structure of the actual stationary states. At sufficiently high level density, the stationary states become exceedingly complicated superpositions of simple quasiparticle excitations. At this stage, regularities typical of quantum chaos emerge and bring in signatures of thermalization. We describe all the stages and the results of the processes leading to thermalization, using analytical and massive numerical examples for realistic atomic, nuclear, and spin systems, as well as for models with random parameters. The structure of stationary states, strength functions of simple configurations, and concepts of entropy and temperature in application to isolated mesoscopic systems are discussed in detail. We conclude with a schematic discussion of the time evolution of such systems to equilibrium.

  18. Early annihilation and diffuse backgrounds in models of weakly interacting massive particles in which the cross section for pair annihilation is enhanced by 1/upsilon.

    PubMed

    Kamionkowski, Marc; Profumo, Stefano

    2008-12-31

    Recent studies have considered modifications to the standard weakly interacting massive particle scenario in which the pair annihilation cross section (times relative velocity v) is enhanced by a factor 1/upsilon to approximately 10(-3) in the Galaxy, enough to explain several puzzling Galactic radiation signals. We show that in these scenarios a burst of weakly interacting massive particle annihilation occurs in the first collapsed dark-matter halos. We show that severe constraints to the annihilation cross section derive from measurements of the diffuse extragalactic radiation and from ionization and heating of the intergalactic medium. PMID:19437633

  19. Particle size and particle-particle interactions on tensile properties and reinforcement of corn flour particles in natural rubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Renewable corn flour has a significant reinforcement effect in natural rubber. The corn flour was hydrolyzed and microfluidized to reduce its particle size. Greater than 90% of the hydrolyzed corn flour had an average size of ~300 nm, a reduction of 33 times compared to unhydrolyzed corn flour. Comp...

  20. Specific interaction between negative atmospheric ions and organic compounds in atmospheric pressure corona discharge ionization mass spectrometry.

    PubMed

    Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo

    2012-06-01

    The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion. PMID:22528201

  1. Development of 1D Particle-in-Cell Code and Simulation of Plasma-Wall Interactions

    NASA Astrophysics Data System (ADS)

    Rose, Laura P.

    This thesis discusses the development of a 1D particle-in-cell (PIC) code and the analysis of plasma-wall interactions. The 1D code (Plasma and Wall Simulation -- PAWS) is a kinetic simulation of plasma done by treating both electrons and ions as particles. The goal of this thesis is to study near wall plasma interaction to better understand the mechanism that occurs in this region. The main focus of this investigation is the effects that secondary electrons have on the sheath profile. The 1D code is modeled using the PIC method. Treating both the electrons and ions as macroparticles the field is solved on each node and weighted to each macro particle. A pre-ionized plasma was loaded into the domain and the velocities of particles were sampled from the Maxwellian distribution. An important part of this code is the boundary conditions at the wall. If a particle hits the wall a secondary electron may be produced based on the incident energy. To study the sheath profile the simulations were run for various cases. Varying background neutral gas densities were run with the 2D code and compared to experimental values. Different wall materials were simulated to show their effects of SEE. In addition different SEE yields were run, including one study with very high SEE yields to show the presence of a space charge limited sheath. Wall roughness was also studied with the 1D code using random angles of incidence. In addition to the 1D code, an external 2D code was also used to investigate wall roughness without secondary electrons. The roughness profiles where created upon investigation of wall roughness inside Hall Thrusters based off of studies done on lifetime erosion of the inner and outer walls of these devices. The 2D code, Starfish[33], is a general 2D axisymmetric/Cartesian code for modeling a wide a range of plasma and rarefied gas problems. These results show that higher SEE yield produces a smaller sheath profile and that wall roughness produces a lower SEE yield

  2. Ionizing radiation induced catalysis on metal oxide particles. 1998 annual progress report

    SciTech Connect

    Fryberger, T.; Chambers, S.A.; Daschbach, J.L.; Henderson, M.A.; Peden, C.H.F.; Su, Y.; Wang, Y.

    1998-06-01

    'High-level radioactive waste storage tanks within DOE sites contain significant amounts of organic components (solid and liquid phases) in the form of solvents, extractants, complexing agents, process chemicals, cleaning agents and a variety of miscellaneous compounds. These organics pose several safety and pretreatment concerns, particularly for the Hanford tank waste. Remediation technologies are needed that significantly reduce the amounts of problem organics without resulting in toxic or flammable gas emissions, and without requiring thermal treatments. These restrictions pose serious technological barriers for current organic destruction methods which utilize oxidation achieved by thermal or chemical activation. This project focuses on using ionizing radiation (a,b,g) to catalytically destroy organics over oxide materials through reduction/oxidation (redox) chemistry resulting from electron-hole (e{sup -}/h{sup +}) pair generation. Conceptually this process is an extension of visible and near-UV photocatalytic processes known to occur at the interfaces of narrow bandgap semiconductors in both solution and gas phases. In these processes, an electron is excited across the energy gap between the filled and empty states in the semiconductor. The excited electron does reductive chemistry and the hole (where the electron was excited from) does oxidative chemistry. The energy separation between the hole and the excited electron reflects the redox capability of the e{sup -}/h{sup +} pair, and is dictated by the energy of the absorbed photon and the bandgap of the material. The use of ionizing radiation overcomes optical transparency limitations associated with visible and near-UV illumination (g-rays penetrate much farther into a solution than UV/Vis light), and permits the use of wider bandgap materials (such as ZrO{sub 2}) which possess potentially greater redox capabilities than those with narrow bandgap materials. Experiments have been aimed at understanding the

  3. Particle emission angle determination in Frisch grid ionization chambers by electron drift-time measurements

    NASA Astrophysics Data System (ADS)

    Göök, A.; Chernykh, M.; Enders, J.; Oberstedt, A.; Oberstedt, S.

    2010-09-01

    The double kinetic energy measurement of fission fragments with a double-sided Frisch grid ionization chamber allows a careful determination of the emission angle, which is essential in order to apply appropriate energy-loss corrections. We present a drift-time method, which uses the time that free electrons need to drift from the location of their creation, e.g. by a fission fragment in the counting gas, to the grid, before inducing a signal on the anode. Such a measurement leaves energy and angular information fully decoupled. We demonstrate the applicability of the drift-time method for the example of the 234,238U (γ,f) reactions performed at the superconducting Darmstadt electron linear accelerator. The angular resolutions achieved with this method are comparable to those obtained with other methods.

  4. Fitted empirical reference cross sections for K-shell ionization by alpha particles

    SciTech Connect

    Paul, H.; Bolik, O. )

    1993-05-01

    On the basis of the authors' collection of experimental x-ray and Auger production cross-section data for H and He ions, a table is presented of best-fitted cross sections for K-shell vacancy production (direct ionization plus electron capture) by [sup 4]He ions on all elements from [sub 6]C to [sub 92]U. Experimental values are first converted (if necessary) to vacancy production cross sections using fluorescence yields with an approximate correction for the effect of multiple ionization. These values are then normalized, i.e., divided, by an improved version (due to Benka et al.) of the ECPSSR theory by Brandt and Lapicki, to which a correction for electron capture by the projectile (following Lapicki and McDaniel) has been added. Since is has been found empirically that the normalized cross sections (which describe the deviation of theory from experiment), at a certain scaled projectile speed, depend only on the ratio of projectile and target atomic numbers, the data for both He and H ions can be used as input. The normalized values are averaged, fitted by a polynomial, and multiplied by theory to produce best reference cross sections. Discrepant data sets are rejected using a statistical criterion which compares the deviations found to the errors stated in the original publications. The error assigned to the cross section consists of a calculated random contribution and an estimated systematic contribution that describes the limitations of the method. A list of the experimental input data (for [sup 1]H, [sup 2]H, [sup 3]He, and [sup 4]He projectiles) and a table showing the consistency or inconsistency of these data are also given. 30 refs., 2 figs., 1 tab.

  5. Some phenomena in space plasmas attributed to wave-particle interactions

    NASA Technical Reports Server (NTRS)

    Wu, Ching-Sheng

    1990-01-01

    Three different wave-particle interaction processes are investigated: (1) the pickup of newborn ions by the solar wind, (2) the cyclotron maser mechanism, and (3) a special wave-particle interaction process which generalizes the conventional concept of the wave-particle interaction process. It is demonstrated on the basis of these three cases that wave-particle interactions can play an indispendable role in certain physical phenomena associated with space plasmas, whose nature is such as to preclude conventional hydrodynamic characterization. Wave-particle interactions can also generate such anomalous transport processes as spatial diffusion, anomalous heating, absorptions of radiation, etc., which also have significant consequence in space plasmas.

  6. On the interaction between radon progeny and particles generated by electronic and traditional cigarettes

    NASA Astrophysics Data System (ADS)

    Vargas Trassierra, C.; Cardellini, F.; Buonanno, G.; De Felice, P.

    2015-04-01

    During their entire lives, people are exposed to the pollutants present in indoor air. Recently, Electronic Nicotine Delivery Systems, mainly known as electronic cigarettes, have been widely commercialized: they deliver particles into the lungs of the users but a "second-hand smoke" has yet to be associated to this indoor source. On the other hand, the naturally-occurring radioactive gas, i.e. radon, represents a significant risk for lung cancer, and the cumulative action of these two agents could be worse than the agents separately would. In order to deepen the interaction between radon progeny and second-hand aerosol from different types of cigarettes, a designed experimental study was carried out by generating aerosol from e-cigarette vaping as well as from second-hand traditional smoke inside a walk-in radon chamber at the National Institute of Ionizing Radiation Metrology (INMRI) of Italy. In this chamber, the radon present in air comes naturally from the floor and ambient conditions are controlled. To characterize the sidestream smoke emitted by cigarettes, condensation particle counters and scanning mobility particle sizer were used. Radon concentration in the air was measured through an Alphaguard ionization chamber, whereas the measurement of radon decay product in the air was performed with the Tracelab BWLM Plus-2S Radon daughter Monitor. It was found an increase of the Potential Alpha-Energy Concentration (PAEC) due to the radon decay products attached to aerosol for higher particle number concentrations. This varied from 7.47 ± 0.34 MeV L-1 to 12.6 ± 0.26 MeV L-1 (69%) for the e-cigarette. In the case of traditional cigarette and at the same radon concentration, the increase was from 14.1 ± 0.43 MeV L-1 to 18.6 ± 0.19 MeV L-1 (31%). The equilibrium factor increases, varying from 23.4% ± 1.11% to 29.5% ± 0.26% and from 30.9% ± 1.0% to 38.1 ± 0.88 for the e-cigarette and traditional cigarette, respectively. These growths still continue for long

  7. Raman scattering investigation of VOCs in interaction with ice particles

    NASA Astrophysics Data System (ADS)

    Facq, Sébastien; Oancea, Adriana; Focsa, Cristian; Chazallon, Bertrand

    2010-05-01

    Cirrus clouds that form in the Earth's upper troposphere (UT) are known to play a significant role in the radiation budget and climate [1]. These clouds that cover about 35% of the Earth's surface [2] are mainly composed of small ice particles that can provide surfaces for trace gas interactions [3]. Volatile Organic Compounds (VOCs) are present in relative high abundance in the UT [4][5]. They promote substantial sources of free OH radicals that are responsible for driving photochemical cycles in the atmosphere. Their presence can both influence the oxidizing capacity and the ozone budget of the atmosphere. VOCs can interact with ice particles via different trapping processes (adsorption, diffusion, freezing, and co-deposition, i.e., incorporation of trace gases during growing ice conditions) which can result in the perturbation of the chemistry and photochemistry of the UT. Knowledge of the incorporation processes of VOCs in ice particles is important in order to understand and predict their impact on the ice particles structure and reactivity and more generally on the cirrus cloud formation. This proceeds via the in-situ characterization of the ice condensed phase in a pressure and temperature range of the UT. An important mechanism of UT cirrus cloud formation is the heterogeneous ice freezing process. In this study, we examine and characterize the interaction of a VOC, i.e., ethanol (EtOH) with ice particles during freezing. Vibrational spectra of water O-H and EtOH C-H spectral regions are analysed using confocal micro-Raman spectroscopy. Information at the molecular level on the surface structure can be derived from accompanying changes observed in band shapes and vibrational mode frequencies. Depending of the EtOH content, different crystalline phases have been identified and compared to hydrates previously reported for the EtOH-water system. Particular attention is paid on the effect of EtOH aqueous solutions cooling rate and droplet sizes on the phases

  8. Photofragmentation, state interaction, and energetics of Rydberg and ion-pair states: Resonance enhanced multiphoton ionization of HI

    SciTech Connect

    Hróðmarsson, Helgi Rafn; Wang, Huasheng; Kvaran, Ágúst

    2014-06-28

    Mass resolved resonance enhanced multiphoton ionization data for hydrogen iodide (HI), for two-photon resonance excitation to Rydberg and ion-pair states in the 69 600–72 400 cm{sup −1} region were recorded and analyzed. Spectral perturbations due to homogeneous and heterogeneous interactions between Rydberg and ion-pair states, showing as deformations in line-positions, line-intensities, and line-widths, were focused on. Parameters relevant to photodissociation processes, state interaction strengths and spectroscopic parameters for deperturbed states were derived. Overall interaction and dynamical schemes to describe the observations are proposed.

  9. New self-consistent simulation tools for the modeling of particle beam/plasma interaction with its environment.

    NASA Astrophysics Data System (ADS)

    Vay, J.-L.; Cohen, R. H.; Stoltz, P. H.; Verboncoeur, J. P.

    2005-10-01

    We have completed the first round of development of a new self-consistent 3-D simulation tool to study the interaction of intense charged particle beams with the environment in a particle accelerator; i.e. interactions with walls, electron clouds and background gas. The new capability is built around the 3-D PIC accelerator/plasma code WARP, with additional functionalities: (a) generation of secondary electrons and desorbed gas from ion and electron impact*, (b) tracking dynamics of neutrals and interactions with a beam through ionization of neutrals and/or beam particles, (c) bridging time scales between electron and ion motion in a space-and-time varying magnetic field with a novel particle mover***. We will present the new functionalities together with tests of the new mover on "textbook" cases and comparisons of the new capabilities with experiments**. * P. Stoltz, this conference, ** A.W. Molvik et al., P. Seidl et al., this conference, ***R. Cohen, POP, 12, 056708 (2005).

  10. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an inorganic particle matrix for small molecule analysis

    PubMed

    Kinumi; Saisu; Takayama; Niwa

    2000-03-01

    Fine metal or metal oxide powder as an alternative to conventional organic matrices in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has been utilized successfully for lower molecular mass analytes, poly(ethylene glycol) 200 (PEG 200) and methyl stearate. Eleven kinds of particle, Al, Mn, Mo, Si, Sn, SnO2, TiO2, W, WO3, Zn and ZnO, were evaluated. The analyte was mixed with a metal or metal oxide powder (inorganic matrix) with particle diameter of tens of micrometers and liquid dispersant, followed by application to the sample target. Using a commercial MALDI-TOFMS instrument equipped with an internal 337 nm pulsed nitrogen laser, the analytes, PEG 200 and methyl stearate, were ionized as the alkali metal ion adducted molecules [M+Na]+ or [M+K]+ when the inorganic matrices Mn, Mo, Si, Sn, TiO2, W, WO3, Zn or ZnO were used. In the case of an Al matrix, PEG 200 was ionized as [M+K]+, whereas methyl stearate was ionized as [M+H]+ and [M+Al]+. These particles have potential as the matrix for MALDI. During our examination, however, only SnO2 particles did not ionize either PEG 200 or methyl stearate. Based on our protocol, when TiO2 powder was suspended with liquid paraffin, PEG 200 and methyl stearate gave their MALDI-TOF mass spectra with the lowest background noise and highest intensity. TiO2 powder seemed to be a broad potential matrix for low molecular mass polar or non-polar analytes. The results suggested that bulk particles caused rapid heating/vaporization processes and ionized analyte molecules under irradiation with a pulsed UV laser. The present method can be readily applied to obtain the low background noise MALDI-TOF mass spectra of small-sized compounds. PMID:10767772

  11. Threshold separation distance for attractive interaction between dust particles

    SciTech Connect

    Jabdaraghi, R. Najafi; Sobhanian, S.

    2008-09-07

    Interaction between dust grains in a dusty plasma could be both repulsive and attractive. The Coulomb interaction between two negatively charged dust particulates and the electrostatic force between them are repulsive, while the shadowing force affecting them is attractive. We show in this paper that in some experimental conditions, there is some grain separation zone for which the attractive shadowing force is larger than the repulsive forces between them. In experimental conditions, for the grains separation distance r = 0.4 cm the shadowing force is almost equal to the electrostatic force between them and for r>0.4 cm the shadowing force exceeds the electrostatic force. So the resultant interaction force will be attractive. The possibility of dust crystal formation in this zone and also the motion of dust particles in the resultant potential of the form V = -(a/r)+(b/r{sup 2}) will be discussed. This form of potential comes from the combination electrostatic (F{sub es} (c/r{sup 3})) and shadowing (F{sub shadow} = -(d/r{sup 2})) forces.

  12. Foamy Virus Protein-Nucleic Acid Interactions during Particle Morphogenesis.

    PubMed

    Hamann, Martin V; Lindemann, Dirk

    2016-01-01

    Compared with orthoretroviruses, our understanding of the molecular and cellular replication mechanism of foamy viruses (FVs), a subfamily of retroviruses, is less advanced. The FV replication cycle differs in several key aspects from orthoretroviruses, which leaves established retroviral models debatable for FVs. Here, we review the general aspect of the FV protein-nucleic acid interactions during virus morphogenesis. We provide a summary of the current knowledge of the FV genome structure and essential sequence motifs required for RNA encapsidation as well as Gag and Pol binding in combination with details about the Gag and Pol biosynthesis. This leads us to address open questions in FV RNA engagement, binding and packaging. Based on recent findings, we propose to shift the point of view from individual glycine-arginine-rich motifs having functions in RNA interactions towards envisioning the FV Gag C-terminus as a general RNA binding protein module. We encourage further investigating a potential new retroviral RNA packaging mechanism, which seems more complex in terms of the components that need to be gathered to form an infectious particle. Additional molecular insights into retroviral protein-nucleic acid interactions help us to develop safer, more specific and more efficient vectors in an era of booming genome engineering and gene therapy approaches. PMID:27589786

  13. Quantifying Protein-Fatty Acid Interactions Using Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Lan; Kitova, Elena N.; Klassen, John S.

    2011-02-01

    The application of the direct electrospray ionization mass spectrometry (ESI-MS) assay to quantify interactions between bovine β-lactoglobulin (Lg) and a series of fatty acids (FA), CH3(CH2)xCOOH, where x = 6 (caprylic acid, CpA), 8 (capric acid, CA), 10 (lauric acid, LA), 12 (myristic acid, MA), 14 (palmitic acid, PA) and 16 (stearic acid, SA), is described. Control ESI-MS binding measurements performed on the Lg-PA interaction revealed that both the protonated and deprotonated gas phase ions of the (Lg + PA) complex are prone to dissociate in the ion source, which leads to artificially small association constants ( K a ). The addition of imidazole, a stabilizing solution additive, at high concentration (10 mM) increased the relative abundance of (Lg + PA) complex measured by ESI-MS in both positive and negative ion modes. The K a value measured in negative ion mode and using sampling conditions that minimize in-source dissociation is in good agreement with a value determined using a competitive fluorescence assay. The K a values measured by ESI-MS for the Lg interactions with MA and SA are also consistent with values expected based on the fluorescence measurements. However, the K a values measured using optimal sampling conditions in positive ion mode are significantly lower than those measured in negative ion mode for all of the FAs investigated. It is concluded that the protonated gaseous ions of the (Lg + FA) complexes are kinetically less stable than the deprotonated ions. In-source dissociation was significant for the complexes of Lg with the shorter FAs (CpA, CA, and LA) in both modes and, in the case of CpA, no binding could be detected by ESI-MS. The affinities of Lg for CpA, CA, and LA determined using the reference ligand ESI-MS assay, a method for quantifying labile protein-ligand complexes that are prone to in-source dissociation, were found to be in good agreement with reported values.

  14. Wave "Coherency" and Implications for Wave-Particle Interactions

    NASA Astrophysics Data System (ADS)

    Tsurutani, Bruce; Lakhina, Gurbax; Remya, Banhu; Lee, Lou

    2016-04-01

    Wave "coherency" was introduced in 2009 by Tsurutani et al. (JGR, doi:10.1029/2008JA013353, 2009) to describe the waves detected in the ~10 to 100 ms duration subelements which are the fundamental components of ~0.1 to 0.5 s chorus "elements". In this talk we will show examples of what we mean by coherency and quasicoherency for: electromagnetic whistler mode chorus, electromagnetic ion cyclotron waves and plasmaspheric hiss waves. We will show how to measure coherency/quasicoherency quantitatively. This will be important for modeling purposes. Perhaps even more important is how coherent waves affect wave-particle interactions. Specific wave examples will be used to show that the pitch angle scattering rate for energetic electrons is roughly 3 orders of magnitude faster than Kennel-Petschek diffusion (which assumes incoherent waves).

  15. Enhanced ionization of the Martian nightside ionosphere during solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Nemec, F.; Morgan, D. D.; Dieval, C.; Gurnett, D. A.; Futaana, Y.

    2013-12-01

    The nightside ionosphere of Mars is highly variable and very irregular, controlled to a great extent by the configuration of the crustal magnetic fields. The ionospheric reflections observed by the MARSIS radar sounder on board the Mars Express spacecraft in this region are typically oblique (reflection by a distant feature), so that they cannot be used to determine the peak altitude precisely. Nevertheless, the peak electron density can be in principle readily determined. However, in more than 90% of measurements the peak electron densities are too low to be detected. We focus on the time intervals of solar energetic particle (SEP) events. One may expect high energy particle precipitation into the nightside ionosphere to increase the electron density there. Thus, comparison of characteristics between SEP/no-SEP time intervals is important to understand the formation mechanism of the nightside ionosphere. The time intervals of SEP events are determined using the increase in the background counts recorded by the ion sensor (IMA) of the ASPERA-3 particle instrument on board Mars Express. Then we use MARSIS measurements to determine how much the nightside ionosphere is enhanced during these time intervals. We show that the peak electron densities during these periods are large enough to be detected in more than 30% of measurements, while the reflections from the ground almost entirely disappear, indicating that the nightside electron densities are tremendously increased as compared to the normal nightside conditions. The influence of various parameters on the formation of the nightside ionosphere is thoroughly discussed.

  16. Particle acceleration at corotating interaction regions in the heliosphere

    SciTech Connect

    Tsubouchi, K.

    2014-11-01

    Hybrid simulations are performed to investigate the dynamics of both solar wind protons and interplanetary pickup ions (PUIs) around the corotating interaction region (CIR). The one-dimensional system is applied in order to focus on processes in the direction of CIR propagation. The CIR is bounded by forward and reverse shocks, which are responsible for particle acceleration. The effective acceleration of solar wind protons takes place when the reverse shock (fast wind side) favors a quasi-parallel regime. The diffusive process accounts for this acceleration, and particles can gain energy in a suprathermal range (on the order of 10 keV). In contrast, the PUI acceleration around the shock differs from the conventional model in which the motional electric field along the shock surface accelerates particles. Owing to their large gyroradius, PUIs can gyrate between the upstream and downstream, several proton inertial lengths away from the shock. This 'cross-shock' gyration results in a net velocity increase in the field-aligned component, indicating that the magnetic mirror force is responsible for acceleration. The PUIs that remain in the vicinity of the shock for a long duration (tens of gyroperiods) gain much energy and are reflected back toward the upstream. These reflected energetic PUIs move back and forth along the magnetic field between a pair of CIRs that are magnetically connected. The PUIs are repeatedly accelerated in each reflection, leading to a maximum energy gain close to 100 keV. This mechanism can be evaluated in terms of 'preacceleration' for the generation of anomalous cosmic rays.

  17. Magnetic interaction of Janus magnetic particles suspended in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Seong, Yujin; Kang, Tae Gon; Hulsen, Martien A.; den Toonder, Jaap M. J.; Anderson, Patrick D.

    2016-02-01

    We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and nonmagnetic sides. A direct numerical scheme is employed to solve the magnetic particulate flow in the Stokes flow regime. Upon applying the magnetic field, contrary to isotropic paramagnetic particles, a single Janus particle can rotate due to the magnetic torque created by the magnetic anisotropy of the particle. In a two-particle problem, the orientation of each particle is found to be an additional factor that affects the critical angle separating the nature of magnetic interaction. Using multiparticle problems, we show that the orientation of the particles has a significant influence on the dynamics of the particles, the fluid flow induced by the actuated particles, and the final conformation of the particles. Straight and staggered chain structures observed experimentally can be reproduced numerically in a multiple particle problem.

  18. The effect of particle-particle interaction forces on the flow properties of silica slurries

    SciTech Connect

    Harbottle, David; Fairweather, Michael; Biggs, Simon; Rhodes, Dominic

    2007-07-01

    Preliminary work has been completed to investigate the effect of particle-particle interaction forces on the flow properties of silica slurries. Classically hydro-transport studies have focused on the flow of coarse granular material in Newtonian fluids. However, with current economical and environmental pressures, the need to increase solid loadings in pipe flow has lead to studies that examine non-Newtonian fluid dynamics. The flow characteristics of non-Newtonian slurries can be greatly influenced through controlling the solution chemistry. Here we present data on an 'ideal' slurry where the particle size and shape is controlled together with the solution chemistry. We have investigated the effect of adsorbed cations on the stability of a suspension, the packing nature of a sediment and the frictional forces to be overcome during re-slurrying. A significant change in the criteria assessed was observed as the electrolyte concentration was increased from 0.1 mM to 1 M. In relation to industrial processes, such delicate control of the slurry chemistry can greatly influence the optimum operating conditions of non-Newtonian pipe flows. (authors)

  19. Interaction of Escherichia coli and Soil Particles in Runoff

    PubMed Central

    Muirhead, Richard William; Collins, Robert Peter; Bremer, Philip James

    2006-01-01

    A laboratory-scale model system was developed to investigate the transport mechanisms involved in the horizontal movement of bacteria in overland flow across saturated soils. A suspension of Escherichia coli and bromide tracer was added to the model system, and the bromide concentration and number of attached and unattached E. coli cells in the overland flow were measured over time. Analysis of the breakthrough curves indicated that the E. coli and bromide were transported together, presumably by the same mechanism. This implied that the E. coli was transported by advection with the flowing water. Overland-flow transport of E. coli could be significantly reduced if the cells were preattached to large soil particles (>45 μm). However, when unattached cells were inoculated into the system, the E. coli appeared to attach predominantly to small particles (<2 μm) and hence remained unattenuated during transport. These results imply that in runoff generated by saturation-excess conditions, bacteria are rapidly transported across the surface and have little opportunity to interact with the soil matrix. PMID:16672484

  20. Wave "Coherency" and Implications for Wave-Particle Interactions

    NASA Astrophysics Data System (ADS)

    Tsurutani, Bruce; Singh Lakhina, Gurbax; Bhanu, Remya; Lee, Lou-Chuang

    2016-07-01

    Wave "coherency" was introduced in 2009 by Tsurutani et al. (JGR, doi:10.1029/2008JA013353, 2009) to describe the waves detected in the ~10 to 100 ms duration subelements which are the fundamental components of ~0.1 to 0.5 s chorus "elements". In this talk we will show examples of what we mean by coherency, quasi-coherency and incoherency for a variety of magnetospheric plasma waves. We will show how to measure coherency/quasicoherency quantitatively for electromagnetic whistler mode chorus, electromagnetic ion cyclotron (EMIC) waves, plasmaspheric hiss and linearly polarized magnetosonic waves. If plasma waves are coherent, their interactions with resonant particles will be substantially different. Specific examples will be used to show that the pitch angle scattering rates for energetic charged particles is roughly 3 orders of magnitude faster than the Kennel-Petschek diffusion (which assumes incoherent waves) rate. We feel that this mechanism is the only one that can explain ~ 0.1- 0.5 s bremsstrahlung x-ray microbursts.

  1. Design and calibration of a rocket-borne electron spectrometer for investigation of particle ionization in the nighttime midlatitude E region

    NASA Technical Reports Server (NTRS)

    Voss, H. D.; Smith, L. G.

    1974-01-01

    An explanation was developed for the formation, near midnight at midlatitudes, of a broad electron density layer extending approximately from 120 to 180 km and usually referred to as the intermediate E layer. The responsible mechanism is believed to be the converging vertical ion drifts resulting from winds of the solar semidiurnal tide. Numerical solutions of the continuity equation appropriate to the intermediate layer is described for particular models of ion drift, diffusion coefficents, and ionization production. Analysis of rocket observations of the layer show that the ionization rate is highly correlated with the planetary geomagnetic index, K sub p. Particle flux measurements support the idea that energetic electrons are the principal source of this ionization. A semiconductor spectrometer experiment for investigation of the particle flux, spectrum, and angular properties was designed and successfully flown on a Nike Apache rocket. A detailed description of the theory, design, and calibration of the experiment and some preliminary results presented.

  2. Coupled electrostatic and material surface stresses yield anomalous particle interactions and deformation

    NASA Astrophysics Data System (ADS)

    Kemp, B. A.; Nikolayev, I.; Sheppard, C. J.

    2016-04-01

    Like-charges repel, and opposite charges attract. This fundamental tenet is a result of Coulomb's law. However, the electrostatic interactions between dielectric particles remain topical due to observations of like-charged particle attraction and the self-assembly of colloidal systems. Here, we show, using both an approximate description and an exact solution of Maxwell's equations, that nonlinear charged particle forces result even for linear material systems and can be responsible for anomalous electrostatic interactions such as like-charged particle attraction and oppositely charged particle repulsion. Furthermore, these electrostatic interactions and the deformation of such particles have fundamental implications for our understanding of macroscopic electrodynamics.

  3. Possible interaction between ionizing radiation, smoking, and gender in the causation of meningioma.

    PubMed

    Flint-Richter, Pazit; Mandelzweig, Lori; Oberman, Bernice; Sadetzki, Siegal

    2011-03-01

    Data on the association between smoking and meningioma are inconsistent. The aim of this study was to assess the role of smoking in radiation- and non-radiation-related meningiomas. The study was designed as a 4-group case-control study, balanced for irradiation, including 160 irradiated meningioma case patients, 145 irradiated control subjects, 82 nonirradiated case patients, and 135 nonirradiated control subjects. The sources of these groups included a cohort of individuals who underwent radiotherapy (mean dose, 1.5 Gy to the brain) during childhood for treatment of tinea capitis, claims filed for radiation damage in the framework of a compensation law, and the Israel Cancer Registry. All tests of statistical significance were 2-sided. A statistically significantly elevated risk of meningioma was found among men who had ever smoked, compared with those who were never smokers (odds ratio [OR], 2.13; 95% confidence interval [CI], 1.09-4.15), increasing with smoking pack-years from 1.67 to 2.69 for <10 to >20 pack-years, respectively. Among women, an interaction between radiation and smoking was observed, expressed by a significant protective effect for meningioma (OR, 0.32; 95% CI, 0.14-0.77), with a strong dose-response association (P < .01) in non-irradiated women and a nonsignificant increased risk of meningioma among those who were irradiated (OR, 1.23; 95% CI, 0.68-2.23). Variation in the association between smoking and meningioma may be explained by effects of distinct host factors, such as past exposure to ionizing radiation and/or hormonal factors. PMID:21339193

  4. Application of single-particle laser desorption/ionization time-of-flight mass spectrometry for detection of polycyclic aromatic hydrocarbons from soot particles originating from an industrial combustion process.

    PubMed

    Zimmermann, R; Ferge, T; Gälli, M; Karlsson, R

    2003-01-01

    Combustion-related soot particles were sampled in situ from the stoker system of a 0.5 MW incineration pilot plant (feeding material was wood) at two different heights over the feed bed in the third air supply zone. The collected particles were re-aerosolized by a powder-dispersing unit and analyzed by a single-particle laser desorption/ionization (LDI) time-of-flight mass spectrometer (aerosol-time-of-flight mass spectrometry, ATOFMS). The ATOFMS instrument characterizes particles according to their aerodynamic size (laser velocimetry) and chemical composition (LDI mass spectrometry). Chemical species from the particles are laser desorbed/ionized by 266 nm Nd:YAG laser pulses. ATOFMS results on individual 'real world' particles in general give information on the bulk inorganic composition. Organic compounds, which are of much lower concentrations, commonly are not detectable. However, recent off-line laser microprobe mass spectrometric (LMMS) experiments on bulk soot aerosol samples have emphasized that organic compounds can be desorbed and ionized without fragmentation in LDI experiments from black carbonaceous matrices. This paper reports the successful transfer of the off-line results to on-line analysis of airborne soot particles by ATOFMS. The detection of polycyclic aromatic hydrocarbons from soot particles is addressed in detail. The results are interpreted in the context of the recent LMMS results. Furthermore, their relevance with respect to possible applications in on-line monitoring of combustion processes is discussed. PMID:12672141

  5. Calculating the Annihilation Rate of Weakly Interacting Massive Particles

    NASA Astrophysics Data System (ADS)

    Baumgart, Matthew; Rothstein, Ira Z.; Vaidya, Varun

    2015-05-01

    We develop a formalism that allows one to systematically calculate the weakly interacting massive particle (WIMP) annihilation rate into gamma rays whose energy far exceeds the weak scale. A factorization theorem is presented which separates the radiative corrections stemming from initial-state potential interactions from loops involving the final state. This separation allows us to go beyond the fixed order calculation, which is polluted by large infrared logarithms. For the case of Majorana WIMPs transforming in the adjoint representation of SU(2), we present the result for the resummed rate at leading double-log accuracy in terms of two initial-state partial-wave matrix elements and one hard matching coefficient. For a given model, one may calculate the cross section by finding the tree level matching coefficient and determining the value of a local four-fermion operator. The effects of resummation can be as large as 100% for a 20 TeV WIMP. However, for lighter WIMP masses relevant for the thermal relic scenario, leading-log resummation modifies the Sudakov factors only at the 10% level. Furthermore, given comparably sized Sommerfeld factors, the total effect of radiative corrections on the semi-inclusive photon annihilation rate is found to be percent level. The generalization of the formalism to other types of WIMPs is discussed.

  6. Nonperturbative overproduction of axionlike particles via derivative interactions

    NASA Astrophysics Data System (ADS)

    Mazumdar, Anupam; Qutub, Saleh

    2016-02-01

    Axionlike particles (ALPs) are quite generic in many scenarios for physics beyond the Standard Model. They are pseudoscalar Nambu-Goldstone bosons that appear once any global U (1 ) symmetry is broken spontaneously. The ALPs can gain mass from various nonperturbative quantum effects, such as anomalies or instantons. ALPs can couple to the matter sector including a scalar condensate such as inflaton or moduli field via derivative interactions, which are suppressed by the axion decay constant, fχ . Although weakly interacting, the ALPs can be produced abundantly from the coherent oscillations of a homogeneous condensate. In this paper we will study such a scenario where the ALPs can be produced abundantly, and in some cases can even overclose the Universe via odd- and even-dimensional operators, as long as fχ/ΦI≪1 , where ΦI denotes the initial amplitude of the coherent oscillations of the scalar condensate, ϕ . We will briefly mention how such dangerous overproduction would affect dark matter and dark radiation abundances in the Universe.

  7. Calculating the annihilation rate of weakly interacting massive particles.

    PubMed

    Baumgart, Matthew; Rothstein, Ira Z; Vaidya, Varun

    2015-05-29

    We develop a formalism that allows one to systematically calculate the weakly interacting massive particle (WIMP) annihilation rate into gamma rays whose energy far exceeds the weak scale. A factorization theorem is presented which separates the radiative corrections stemming from initial-state potential interactions from loops involving the final state. This separation allows us to go beyond the fixed order calculation, which is polluted by large infrared logarithms. For the case of Majorana WIMPs transforming in the adjoint representation of SU(2), we present the result for the resummed rate at leading double-log accuracy in terms of two initial-state partial-wave matrix elements and one hard matching coefficient. For a given model, one may calculate the cross section by finding the tree level matching coefficient and determining the value of a local four-fermion operator. The effects of resummation can be as large as 100% for a 20 TeV WIMP. However, for lighter WIMP masses relevant for the thermal relic scenario, leading-log resummation modifies the Sudakov factors only at the 10% level. Furthermore, given comparably sized Sommerfeld factors, the total effect of radiative corrections on the semi-inclusive photon annihilation rate is found to be percent level. The generalization of the formalism to other types of WIMPs is discussed. PMID:26066424

  8. Particle swarm optimization with scale-free interactions.

    PubMed

    Liu, Chen; Du, Wen-Bo; Wang, Wen-Xu

    2014-01-01

    The particle swarm optimization (PSO) algorithm, in which individuals collaborate with their interacted neighbors like bird flocking to search for the optima, has been successfully applied in a wide range of fields pertaining to searching and convergence. Here we employ the scale-free network to represent the inter-individual interactions in the population, named SF-PSO. In contrast to the traditional PSO with fully-connected topology or regular topology, the scale-free topology used in SF-PSO incorporates the diversity of individuals in searching and information dissemination ability, leading to a quite different optimization process. Systematic results with respect to several standard test functions demonstrate that SF-PSO gives rise to a better balance between the convergence speed and the optimum quality, accounting for its much better performance than that of the traditional PSO algorithms. We further explore the dynamical searching process microscopically, finding that the cooperation of hub nodes and non-hub nodes play a crucial role in optimizing the convergence process. Our work may have implications in computational intelligence and complex networks. PMID:24859007

  9. Particle Swarm Optimization with Scale-Free Interactions

    PubMed Central

    Liu, Chen; Du, Wen-Bo; Wang, Wen-Xu

    2014-01-01

    The particle swarm optimization (PSO) algorithm, in which individuals collaborate with their interacted neighbors like bird flocking to search for the optima, has been successfully applied in a wide range of fields pertaining to searching and convergence. Here we employ the scale-free network to represent the inter-individual interactions in the population, named SF-PSO. In contrast to the traditional PSO with fully-connected topology or regular topology, the scale-free topology used in SF-PSO incorporates the diversity of individuals in searching and information dissemination ability, leading to a quite different optimization process. Systematic results with respect to several standard test functions demonstrate that SF-PSO gives rise to a better balance between the convergence speed and the optimum quality, accounting for its much better performance than that of the traditional PSO algorithms. We further explore the dynamical searching process microscopically, finding that the cooperation of hub nodes and non-hub nodes play a crucial role in optimizing the convergence process. Our work may have implications in computational intelligence and complex networks. PMID:24859007

  10. Aerosol mass spectrometry: particle-vaporizer interactions and their consequences for the measurements

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.-M.; Faber, P.; Borrmann, S.

    2015-09-01

    The Aerodyne aerosol mass spectrometer (AMS) is a frequently used instrument for on-line measurement of the ambient sub-micron aerosol composition. With the help of calibrations and a number of assumptions on the flash vaporization and electron impact ionization processes, this instrument provides robust quantitative information on various non-refractory ambient aerosol components. However, when measuring close to certain anthropogenic or marine sources of semi-refractory aerosols, several of these assumptions may not be met and measurement results might easily be incorrectly interpreted if not carefully analyzed for unique ions, isotope patterns, and potential slow vaporization associated with semi-refractory species. Here we discuss various aspects of the interaction of aerosol particles with the AMS tungsten vaporizer and the consequences for the measurement results: semi-refractory components - i.e., components that vaporize but do not flash-vaporize at the vaporizer and ionizer temperatures, like metal halides (e.g., chlorides, bromides or iodides of Al, Ba, Cd, Cu, Fe, Hg, K, Na, Pb, Sr, Zn) - can be measured semi-quantitatively despite their relatively slow vaporization from the vaporizer. Even though non-refractory components (e.g., NH4NO3 or (NH4)2SO4) vaporize quickly, under certain conditions their differences in vaporization kinetics can result in undesired biases in ion collection efficiency in thresholded measurements. Chemical reactions with oxygen from the aerosol flow can have an influence on the mass spectra for certain components (e.g., organic species). Finally, chemical reactions of the aerosol with the vaporizer surface can result in additional signals in the mass spectra (e.g., WO2Cl2-related signals from particulate Cl) and in conditioning or contamination of the vaporizer, with potential memory effects influencing the mass spectra of subsequent measurements. Laboratory experiments that investigate these particle-vaporizer interactions are

  11. Aerosol mass spectrometry: particle-vaporizer interactions and their consequences for the measurements

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.-M.; Faber, P.; Borrmann, S.

    2015-04-01

    The Aerodyne Aerosol Mass Spectrometer (AMS) is a frequently used instrument for on-line measurement of the ambient sub-micron aerosol composition. With the help of calibrations and a number of assumptions on the flash vaporization and electron impact ionization processes this instrument provides robust quantitative information on various ambient aerosol components. However, when measuring close to certain anthropogenic sources or in marine environments, several of these assumptions may not be met and measurement results might easily be misinterpreted. Here we discuss various aspects of the interaction of aerosol particles with the AMS tungsten vaporizer and the consequences for the measurement results: semi-refractory components, i.e. components that vaporize but do not flash vaporize at the vaporizer and ionizer temperatures, like metal halides (e.g. chlorides, bromides or iodides of Al, Ba, Cd, Cu, Fe, Hg, K, Na, Pb, Sr, Zn) can be measured semi-quantitatively despite their relatively slow vaporization from the vaporizer. Even though non-refractory components (e.g. NH4NO3 or (NH4)2SO4) vaporize quickly, their differences in vaporization kinetics can result in undesired biases in ion collection efficiency in the measurements. Chemical reactions with water vapor and oxygen from the aerosol flow can have an influence on the mass spectra for certain components (e.g. NH4NO3, (NH4)2SO4, organic species). Finally, chemical reactions of the aerosol with the vaporizer surface can result in additional signals in the mass spectra (e.g. WO2C2-related signals from particulate Cl) and in conditioning or contamination of the vaporizer with potential memory effects influencing the mass spectra of subsequent measurements. Laboratory experiments that investigate these particle-vaporizer interactions are presented and are discussed together with field results showing that measurements of typical continental or urban aerosols are not significantly affected while laboratory

  12. The eye (and brain) as ionizing particle detector? First results from the ALTEA - space experiment

    NASA Astrophysics Data System (ADS)

    Narici, Livio

    The first part of ALTEA-Space experiments have been performed on the ISS (USLab) between August 2006 and July 2007. The ALTEA hardware features 6 particle telescopes each with 6 striped 8 x 16 cm2 silicon planes arranged alternately in the x and y direction. These detectors are hold by helmet shaped holder. ALTEA features also a light tight visual stimulation unit, a 32 channel EEG cap and electronics, a 3-buttons pushbutton. Two different experiment modalities were run: DOSI and CNSM. The former is the study of the radiation environment of the USLab, and results from these measurements are mostly covered by other papers in this conference; the latter is the study of the electrophysiological activity in coincidence with particle traveling through the eye/brain of the astronaut, with specific reference to the observed light flashes. In this paper we will present first results from these measurements and discuss, within this panorama, the amount of the measured radiation in the brain/eye. Seven CNSM sessions have been performed (on three astronauts), with a total of 20 light flashes perceived. Comparisons with previous measurements in Low Earth Orbit and during the flights to the Moon will be also shown

  13. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential

    SciTech Connect

    Krause, Pascal; Schlegel, H. Bernhard

    2014-11-07

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10{sup 14} W/cm{sup 2} to 3.5 × 10{sup 14} W/cm{sup 2}. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  14. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential.

    PubMed

    Krause, Pascal; Schlegel, H Bernhard

    2014-11-01

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10(14) W/cm(2) to 3.5 × 10(14) W/cm(2). Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length. PMID:25381499

  15. Analysis of particle-particle interactions in fluidized catalytic cracking units: Effects of collisions, agglomeration, and vaporization

    SciTech Connect

    Kruis, F.E.; Terguer, V.; Lede, J.

    1996-12-31

    A theoretical background is developed for the understanding of the role of particulate interactions in three-phase reactors resulting from turbulent motion, with special application to the Fluid Catalytic Cracking unit. The characteristic times between two collisions in a mixture of catalyst particles and liquid droplets in a gas, the strength of aggregates and efficiency of particle collisions are discussed. A new model has been developed to describe the interaction process between a hot particle, e.g. a catalyst: particle, and a liquid droplet. The vaporization from the droplet surface results in a overpressure in the film around the droplet, thus preventing the droplets and catalysts particles touching each other (similar to the so-called Leidenfrost: phenomenon). A balance of the relevant forces in combination with the heat balance permits the calculation of both the time-dependent distance between the particle and the droplet and the diameter of the evaporating droplet. 10 refs.

  16. Experimental Studies of Elementary Particle Interactions at High Energies

    SciTech Connect

    Goulianos, Konstantin

    2013-07-31

    This is the final report of a program of research on ``Experimental Studies of Elementary Particle Interactions at High Energies'' of the High Energy Physics (HEP) group of The Rockefeller University. The research was carried out using the Collider Detector at Fermilab (CDF) and the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN. Three faculty members, two research associates, and two postdoctoral associates participated in this project. At CDF, we studied proton-antiproton collisions at an energy of 1.96 TeV. We focused on diffractive interactions, in which the colliding antiproton loses a small fraction of its momentum, typically less than 1%, while the proton is excited into a high mass state retaining its quantum numbers. The study of such collisions provides insight into the nature of the diffractive exchange, conventionally referred to as Pomeron exchange. In studies of W and Z production, we found results that point to a QCD-based interpretation of the diffractive exchange, as predicted in a data-driven phenomenology developed within the Rockefeller HEP group. At CMS, we worked on diffraction, supersymmetry (SUSY), dark matter, large extra dimensions, and statistical applications to data analysis projects. In diffraction, we extended our CDF studies to higher energies working on two fronts: measurement of the single/double diffraction and of the rapidity gap cross sections at 7 TeV, and development of a simulation of diffractive processes along the lines of our successful model used at CDF. Working with the PYTHIA8 Monte Carlo simulation authors, we implemented our model as a PYTHIA8-MBR option in PYTHIA8 and used it in our data analysis. Preliminary results indicate good agreement. We searched for SUSY by measuring parameters in the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM) and found results which, combined with other experimental constraints and theoretical considerations, indicate that the

  17. Study of dust particle charging in weakly ionized inert gases taking into account the nonlocality of the electron energy distribution function

    SciTech Connect

    Filippov, A. V. Dyatko, N. A.; Kostenko, A. S.

    2014-11-15

    The charging of dust particles in weakly ionized inert gases at atmospheric pressure has been investigated. The conditions under which the gas is ionized by an external source, a beam of fast electrons, are considered. The electron energy distribution function in argon, krypton, and xenon has been calculated for three rates of gas ionization by fast electrons: 10{sup 13}, 10{sup 14}, and 10{sup 15} cm{sup −1}. A model of dust particle charging with allowance for the nonlocal formation of the electron energy distribution function in the region of strong plasma quasi-neutrality violation around the dust particle is described. The nonlocality is taken into account in an approximation where the distribution function is a function of only the total electron energy. Comparative calculations of the dust particle charge with and without allowance for the nonlocality of the electron energy distribution function have been performed. Allowance for the nonlocality is shown to lead to a noticeable increase in the dust particle charge due to the influence of the group of hot electrons from the tail of the distribution function. It has been established that the screening constant virtually coincides with the smallest screening constant determined according to the asymptotic theory of screening with the electron transport and recombination coefficients in an unperturbed plasma.

  18. Lubrication analysis of interacting rigid cylindrical particles in confined shear flow

    SciTech Connect

    Cardinaels, R.; Stone, H. A.

    2015-07-15

    Lubrication analysis is used to determine analytical expressions for the elements of the resistance matrix describing the interaction of two rigid cylindrical particles in two-dimensional shear flow in a symmetrically confined channel geometry. The developed model is valid for non-Brownian particles in a low-Reynolds-number flow between two sliding plates with thin gaps between the two particles and also between the particles and the walls. Using this analytical model, a comprehensive overview of the dynamics of interacting cylindrical particles in shear flow is presented. With only hydrodynamic interactions, rigid particles undergo a reversible interaction with no cross-streamline migration, irrespective of the confinement value. However, the interaction time of the particle pair substantially increases with confinement, and at the same time, the minimum distance between the particle surfaces during the interaction substantially decreases with confinement. By combining our purely hydrodynamic model with a simple on/off non-hydrodynamic attractive particle interaction force, the effects of confinement on particle aggregation are qualitatively mapped out in an aggregation diagram. The latter shows that the range of initial relative particle positions for which aggregation occurs is increased substantially due to geometrical confinement. The interacting particle pair exhibits tangential and normal lubrication forces on the sliding plates, which will contribute to the rheology of confined suspensions in shear flow. Due to the combined effects of the confining walls and the particle interaction, the particle velocities and resulting forces both tangential and perpendicular to the walls exhibit a non-monotonic evolution as a function of the orientation angle of the particle pair. However, by incorporating appropriate scalings of the forces, velocities, and doublet orientation angle with the minimum free fraction of the gap height and the plate speed, master curves for

  19. Lubrication analysis of interacting rigid cylindrical particles in confined shear flow

    NASA Astrophysics Data System (ADS)

    Cardinaels, R.; Stone, H. A.

    2015-07-01

    Lubrication analysis is used to determine analytical expressions for the elements of the resistance matrix describing the interaction of two rigid cylindrical particles in two-dimensional shear flow in a symmetrically confined channel geometry. The developed model is valid for non-Brownian particles in a low-Reynolds-number flow between two sliding plates with thin gaps between the two particles and also between the particles and the walls. Using this analytical model, a comprehensive overview of the dynamics of interacting cylindrical particles in shear flow is presented. With only hydrodynamic interactions, rigid particles undergo a reversible interaction with no cross-streamline migration, irrespective of the confinement value. However, the interaction time of the particle pair substantially increases with confinement, and at the same time, the minimum distance between the particle surfaces during the interaction substantially decreases with confinement. By combining our purely hydrodynamic model with a simple on/off non-hydrodynamic attractive particle interaction force, the effects of confinement on particle aggregation are qualitatively mapped out in an aggregation diagram. The latter shows that the range of initial relative particle positions for which aggregation occurs is increased substantially due to geometrical confinement. The interacting particle pair exhibits tangential and normal lubrication forces on the sliding plates, which will contribute to the rheology of confined suspensions in shear flow. Due to the combined effects of the confining walls and the particle interaction, the particle velocities and resulting forces both tangential and perpendicular to the walls exhibit a non-monotonic evolution as a function of the orientation angle of the particle pair. However, by incorporating appropriate scalings of the forces, velocities, and doublet orientation angle with the minimum free fraction of the gap height and the plate speed, master curves for

  20. Simultaneous determination of the quantity and isotopic ratios of uranium in individual micro-particles by isotope dilution thermal ionization mass spectrometry (ID-TIMS).

    PubMed

    Park, Jong-Ho; Choi, Eun-Ju

    2016-11-01

    A method to determine the quantity and isotopic ratios of uranium in individual micro-particles simultaneously by isotope dilution thermal ionization mass spectrometry (ID-TIMS) has been developed. This method consists of sequential sample and spike loading, ID-TIMS for isotopic measurement, and application of a series of mathematical procedures to remove the contribution of uranium in the spike. The homogeneity of evaporation and ionization of uranium content was confirmed by the consistent ratio of n((233)U)/n((238)U) determined by TIMS measurements. Verification of the method was performed using U030 solution droplets and U030 particles. Good agreements of resulting uranium quantity, n((235)U)/n((238)U), and n((236)U)/n((238)U) with the estimated or certified values showed the validity of this newly developed method for particle analysis when simultaneous determination of the quantity and isotopic ratios of uranium is required. PMID:27591656

  1. Resonance ionization mass spectrometry of ion beam sputtered neutrals for element- and isotope-selective analysis of plutonium in micro-particles.

    PubMed

    Erdmann, N; Kratz, J-V; Trautmann, N; Passler, G

    2009-11-01

    Micro-particles containing actinides are of interest for risk assessments of contaminated areas, nuclear forensic analyses, and IAEA as well as Euratom safeguards programs. For their analysis, secondary ion mass spectrometry (SIMS) has been established as the state-of-the-art standard technique. In the case of actinide mixtures within the particles, however, SIMS suffers from isobaric interferences (e.g., (238)U/(238)Pu, (241)Am/(241)Pu). This can be eliminated by applying resonance ionization mass spectrometry which is based on stepwise resonant excitation and ionization of atoms with laser light, followed by mass spectrometric detection of the produced ions, combining high elemental selectivity with the analysis of isotopic compositions. This paper describes the instrumental modifications for coupling a commercial time-of-flight (TOF)-SIMS apparatus with three-step resonant post-ionization of the sputtered neutrals using a high-repetition-rate (kHz) Nd:YAG laser pumped tunable titanium:sapphire laser system. Spatially resolved ion images obtained from actinide-containing particles in TOF-SIMS mode demonstrate the capability for isotopic and spatial resolution. Results from three-step resonant post-ionization of bulk Gd and Pu samples successfully demonstrate the high elemental selectivity of this process. PMID:19557397

  2. Ionization-assisted relativistic electron generation with monoenergetic features from laser thin foil interaction

    SciTech Connect

    Glazyrin, I. V.; Karpeev, A. V.; Kotova, O. G.; Bychenkov, V. Yu.; Fedosejevs, R.; Rozmus, W.

    2012-07-11

    The concept of ionization-induced injection into the laser pulse to produce quasi-monoenergetic bunches of electrons from ultra-thin solid dense targets is analyzed. When the laser pulse propagates through semi-transparent foil the electrons from inner atom shells remain bound during the rise time of the laser pulse and are ionized by the laser intensity near its maximum amplitude, which satisfies the best injection condition for subsequent acceleration. It was found that a bunch of quasimonoenergetic electrons from inner atom shells moves co-directionally with laser pulse and acquire energy {approx}m{sub e}c{sup 2}a{sup 2}/2.

  3. Interactions of charged dust particles in clouds of charges

    NASA Astrophysics Data System (ADS)

    Gundienkov, Vladimir; Yakovlenko, Sergey

    2004-03-01

    Two charged dust particles inside a cloud of charges are considered as Debye atoms forming a Debye molecule. Cassini coordinates are used for the numerical solution of the Poisson-Boltzmann equation for the charged cloud. The electric force acting on a dust particle by the other dust particle was determined by integrating the electrostatic pressure on the surface of the dust particle. It is shown that attractive forces appear when the following two conditions are satisfied. First, the average distance between dust particles should be approximately equal to two Debye radii. Second, attraction takes place when similar charges are concentrated predominantly on the dust particles. If the particles carry a small fraction of total charge of the same polarity, repulsion between the particles takes place at all distances. We apply our results to the experiments with thermoemission plasma and to the experiments with nuclear-pumped plasma.

  4. Wave-Particle Interactions in the Turbulent Plasmaspheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Mishin, Evgeny

    2015-11-01

    A wealth of wave activity around the plasmasphere's boundary enhances during substorm injection events. A turbulent plasmaspheric boundary layer forms initially near the pre-substorm plasmapause due to interactions between the injected and plasmaspheric populations. The free energy for plasma instabilities driving lower hybrid/fast magnetosonic turbulence and broadband hiss-like VLF waves come from substorm-injected hot plasma particles impacting the cold plasmasphere. In particular, the hot electron diamagnetic drift and the highly anisotropic hot ion distribution drive the modified two-stream and ion-ring instabilities in the entry layer and the central part, respectively. The diamagnetic drift of hot ions dominates near the inner edge. Enhanced plasma turbulence leads to heating of the cold plasma and to acceleration of suprathermal electron tails, thereby enhancing the downward heat transport and concomitant heating of the ionospheric electrons. Broadband, hiss-like VLF waves have amplitudes sufficient to provide rapid precipitation of the radiation belt electrons thereby shaping the outer radiation belt boundary. In addition, the hot ions penetrating inside the plasmasphere satisfy the orbit chaotization condition and become demagnetized. These results can also be helpful for understanding impulsive penetration at the magnetopause. Supported by the Air Force Office of Scientific Research.

  5. The interactions between surfactants and vesicles: Dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Kuei-Chun; Lin, Chun-Min; Tsao, Heng-Kwong; Sheng, Yu-Jane

    2009-06-01

    The interactions between surfactants and vesicles formed by double-tail amphiphiles are investigated by the dissipative particle dynamics. As the surfactant concentration is increased, vesicle solubilization can be generally described by the three-stage hypothesis including vesicular region, vesicle-micelle coexistence, and mixed micellar region. We study the partition of surfactants between the bilayer phase and the aqueous phase where a higher value of K indicates that more surfactant molecules are incorporated in the bilayer. It is found that ln(K-1) is proportional to the hydrophile-lipophile balance (HLB), which depicts the degree of hydrophilicity associated with a surfactant. As the overall hydrophilicity of surfactants increases, i.e., higher HLB, K declines and vice versa. When the amounts of surfactants reach a critical point, the solubilization begins and the coexistence of vesicles and mixed micelles is observed. Further increase in the surfactant concentration results in total collapse of the vesicle. Consistent with experimental observations, the three stages are identified through the vesicle size-surfactant concentration relation. Our simulations clearly demonstrate the process of the vesicle solubilization and confirm the validity of the three-stage hypothesis.

  6. Consistent thermodynamic framework for interacting particles by neglecting thermal noise.

    PubMed

    Nobre, Fernando D; Curado, Evaldo M F; Souza, Andre M C; Andrade, Roberto F S

    2015-02-01

    An effective temperature θ, conjugated to a generalized entropy s(q), was introduced recently for a system of interacting particles. Since θ presents values much higher than those of typical room temperatures T≪θ, the thermal noise can be neglected (T/θ≃0) in these systems. Moreover, the consistency of this definition, as well as of a form analogous to the first law of thermodynamics, du=θds(q)+δW, were verified lately by means of a Carnot cycle, whose efficiency was shown to present the usual form, η=1-(θ(2)/θ(1)). Herein we explore further the heat contribution δQ=θds(q) by proposing a way for a heat exchange between two such systems, as well as its associated thermal equilibrium. As a consequence, the zeroth principle is also established. Moreover, we consolidate the first-law proposal by following the usual procedure for obtaining different potentials, i.e., applying Legendre transformations for distinct pairs of independent variables. From these potentials we derive the equation of state, Maxwell relations, and define response functions. All results presented are shown to be consistent with those of standard thermodynamics for T>0. PMID:25768486

  7. Interactions of energetic particles and clusters with solids

    SciTech Connect

    Averback, R.S.; Hsieh, Horngming . Dept. of Materials Science and Engineering); Diaz de la Rubia, T. ); Benedek, R. )

    1990-12-01

    Ion beams are being applied for surface modifications of materials in a variety of different ways: ion implantation, ion beam mixing, sputtering, and particle or cluster beam-assisted deposition. Fundamental to all of these processes is the deposition of a large amount of energy, generally some keV's, in a localized area. This can lead to the production of defects, atomic mixing, disordering and in some cases, amorphization. Recent results of molecular dynamics computer simulations of energetic displacement cascades in Cu and Ni with energies up to 5 keV suggest that thermal spikes play an important role in these processes. Specifically, it will be shown that many aspects of defect production, atomic mixing and cascade collapse'' can be understood as a consequence of local melting of the cascade core. Included in this discussion will be the possible role of electron-phonon coupling in thermal spike dynamics. The interaction of energetic clusters of atoms with solid surfaces has also been studied by molecular dynamics simulations. this process is of interest because a large amount of energy can be deposited in a small region and possibly without creating point defects in the substrate or implanting cluster atoms. The simulations reveal that the dynamics of the collision process are strongly dependent on cluster size and energy. Different regimes where defect production, local melting and plastic flow dominate will be discussed. 43 refs., 7 figs.

  8. Random particle methods applied to broadband fan interaction noise

    NASA Astrophysics Data System (ADS)

    Dieste, M.; Gabard, G.

    2012-10-01

    Predicting broadband fan noise is key to reduce noise emissions from aircraft and wind turbines. Complete CFD simulations of broadband fan noise generation remain too expensive to be used routinely for engineering design. A more efficient approach consists in synthesizing a turbulent velocity field that captures the main features of the exact solution. This synthetic turbulence is then used in a noise source model. This paper concentrates on predicting broadband fan noise interaction (also called leading edge noise) and demonstrates that a random particle mesh method (RPM) is well suited for simulating this source mechanism. The linearized Euler equations are used to describe sound generation and propagation. In this work, the definition of the filter kernel is generalized to include non-Gaussian filters that can directly follow more realistic energy spectra such as the ones developed by Liepmann and von Kármán. The velocity correlation and energy spectrum of the turbulence are found to be well captured by the RPM. The acoustic predictions are successfully validated against Amiet's analytical solution for a flat plate in a turbulent stream. A standard Langevin equation is used to model temporal decorrelation, but the presence of numerical issues leads to the introduction and validation of a second-order Langevin model.

  9. Consistent thermodynamic framework for interacting particles by neglecting thermal noise

    NASA Astrophysics Data System (ADS)

    Nobre, Fernando D.; Curado, Evaldo M. F.; Souza, Andre M. C.; Andrade, Roberto F. S.

    2015-02-01

    An effective temperature θ , conjugated to a generalized entropy sq, was introduced recently for a system of interacting particles. Since θ presents values much higher than those of typical room temperatures T ≪θ , the thermal noise can be neglected (T /θ ≃0 ) in these systems. Moreover, the consistency of this definition, as well as of a form analogous to the first law of thermodynamics, d u =θ d sq+δ W , were verified lately by means of a Carnot cycle, whose efficiency was shown to present the usual form, η =1 -(θ2/θ1) . Herein we explore further the heat contribution δ Q =θ d sq by proposing a way for a heat exchange between two such systems, as well as its associated thermal equilibrium. As a consequence, the zeroth principle is also established. Moreover, we consolidate the first-law proposal by following the usual procedure for obtaining different potentials, i.e., applying Legendre transformations for distinct pairs of independent variables. From these potentials we derive the equation of state, Maxwell relations, and define response functions. All results presented are shown to be consistent with those of standard thermodynamics for T >0 .

  10. Effects of corotating interaction regions on Ulysses high energy particles

    SciTech Connect

    Droege, W.; Kunow, H.; Heber, B.; Mueller-Mellin, R.; Sierks, H.; Wibberenz, G.; Raviart, A.; Ducros, R.; Ferrando, P.; Rastoin, C.; Gosling, J.T.

    1996-07-01

    We investigate the intensity variation of low energy ({approximately}6{endash}23MeV/N) heliospheric ions and of galactic protons (250{endash}2200 MeV) observed by the Kiel Electron Telescope onboard the Ulysses spacecraft associated with Corotating Interaction Regions (CIR) from mid-1992 to end of June 1995. This period covers Ulysses{close_quote} transit to high southern latitudes, the south polar pass, return to the solar equator and ascent to the north pole up to 70{degree}. We find that the flux of high energy protons exhibits a periodicity of about 26 days with a relative intensity variation of 10{percent}. At latitudes below {approximately}50{degree} the recurrent variations of galactic protons are in coincidence with the passage of CIRs and enhancements of low energies protons and alpha particles which are accelerated at the shocks of the CIRs. The modulation of galactic protons is observed up to high southern latitudes, where the signatures of a CIR are no longer visible in plasma or magnetic field data. The periodicity does not depend on latitude and its phase apparently remains constant during Ulysses{close_quote} pass over the south pole as well as through the solar equator. {copyright} {ital 1996 American Institute of Physics.}

  11. Effects of corotating interaction regions on Ulysses high energy particles

    SciTech Connect

    Droege, W.; Kunow, H.; Heber, B.; Mueller-Mellin, R.; Sierks, H.; Wibberenz, G.; Raviart, A.; Ducros, R.; Ferrando, P.; Rastoin, C.; Paizis, C.; Gosling, J. T.

    1996-07-20

    We investigate the intensity variation of low energy ({approx}6-23 MeV/N) heliospheric ions and of galactic protons (250-2200 MeV) observed by the Kiel Electron Telescope onboard the Ulysses spacecraft associated with Corotating Interaction Regions (CIR) from mid-1992 to end of June 1995. This period covers Ulysses' transit to high southern latitudes, the south polar pass, return to the solar equator and ascent to the north pole up to 70 deg. We find that the flux of high energy protons exhibits a periodicity of about 26 days with a relative intensity variation of 10%. At latitudes below {approx}50 deg. the recurrent variations of galactic protons are in coincidence with the passage of CIRs and enhancements of low energies protons and alpha particles which are accelerated at the shocks of the CIRs. The modulation of galactic protons is observed up to high southern latitudes, where the signatures of a CIR are no longer visible in plasma or magnetic field data. The periodicity does not depend on latitude and its phase apparently remains constant during Ulysses' pass over the south pole as well as through the solar equator.

  12. Low energy charged particles interacting with amorphous solid water layers

    SciTech Connect

    Horowitz, Yonatan; Asscher, Micha

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 {mu}A) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 {+-} 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  13. Studies of interactions between elementary particles and nuclei

    NASA Astrophysics Data System (ADS)

    Fortney, L. R.; Goshaw, A. T.; Walker, W. D.

    1990-08-01

    This report discusses the following research: Particle production in proton-antiproton collision at (radical)s = 1.8 TeV; SSC subsystems R and D; the solenoid detector collaboration particle nucleus collisions; task expenditure statement. Hadroproduction using 300 GeV particle beams Fermilab; hadroproduction of beauty Fermilab; and vector meson photo production.

  14. A coarse grained stochastic particle interacting system for tropical convection

    NASA Astrophysics Data System (ADS)

    Khouider, B.

    2012-12-01

    Climate models (GCMs) fail to represent adequately the variability associated with organized convection in the tropics. This deficiency is believed to hinder medium and long range weather forecasts, over weeks to months. GCMs use very complex sub-grid models, known as cumulus parameterizations, to represent the effects of clouds and convection as well as other unresolved processes. Cumulus parameterizations are intrinsically deterministic and are typically based on the quasi-equilibrium theory, which assumes that convection instantaneously consumes the atmospheric instability produced by radiation. In this talk, I will discuss a stochastic model for organized tropical convection based on a particle interacting system defined on a microscopic lattice. An order parameter is assumed to take the values 0,1,2,3 at a any given lattice site according to whether it is a clear site or it is occupied by a cloud of a one of the three types: congestus, deep, or stratiform, following intuitive rules motivated by recent satellite observations and various field campaigns conducted over the Indian Ocean and Western Pacific. The microscopic Markov process is coarse-grained systematically to obtain a multidimensional birth-death process with immigration, following earlier work done by Katsoulakis, Majda, and Vlachos (JCP 2003) for the case of the Ising model where the order parameter takes the values 0 and 1. The coarse grained birth-death process is a stochastic model, intermediate between the microscopic lattice model and the deterministic mean field limit, that is used to represent the sub-grid scale variability of the underlying physical process (here the cloud cover) with a negligible computational overhead and yet permits both local interactions between lattice sites and two-way interactions between the cloud cover and the large-scale climate dynamics. The new systematic coarse-graining, developed here for the multivalued order parameter, provides a unifying framework

  15. Determination of Isoflavone Content in SRM 3238 Using Liquid Chromatography-Particle Beam/Electron Ionization Mass Spectrometry

    PubMed Central

    Zhang, Lynn X.; Burdette, Carolyn Q.; Phillips, Melissa M.; Rimmer, Catherine A.; Marcus, R. Kenneth

    2016-01-01

    The characterization of marker components in botanical materials is a challenging task and the increased consumption of botanicals and dietary supplements demands a greater understanding of the associated health benefits and risks. In order to successfully acquire and compare clinical results and correlate health trends, accurate, precise, and validated methods of analysis must be developed. Presented here is the development of a quantitative method for the determination of soy isoflavones (daidzin, glycitin, genistin, daidzein, and genistein) using liquid chromatography-particle beam/electron ionization mass spectrometry (LC-PB/EIMS). An internal standard (IS) approach for quantitation using 7-hydroxy-4-chromone as the IS compound was employed, with response factors for each individual isoflavone obtained from calibrant solutions. The results from this method were compared with the certified and reference values for NIST SRM 3238 Soy-Containing Solid Oral Dosage Form to demonstrate that the method was in control. Results obtained using LC-PB/EIMS were consistent with the NIST certified or reference values and their uncertainties for all five isoflavones, demonstrating that the LC-PB/EIMS approach is both accurate and precise when used for the determination of the target isoflavones in soy-containing dietary supplement finished products, while simultaneously providing structural information. PMID:26651559

  16. Determination of Isoflavone Content in SRM 3238 Using Liquid Chromatography-Particle Beam/Electron Ionization Mass Spectrometry.

    PubMed

    Zhang, Lynn X; Burdette, Carolyn Q; Phillips, Melissa M; Rimmer, Catherine A; Marcus, R Kenneth

    2015-01-01

    The characterization of marker components in botanical materials is a challenging task, and the increased consumption of botanicals and dietary supplements demands a greater understanding of the associated health benefits and risks. In order to successfully acquire and compare clinical results and correlate health trends, accurate, precise, and validated methods of analysis must be developed. Presented here is the development of a quantitative method for the determination of soy isoflavones (daidzin, glycitin, genistin, daidzein, and genistein) using LC-particle beam/electron ionization-MS (LC-PB/EIMS). An internal standard (IS) approach for quantitation with 7-hydroxy-4- chromone as the IS compound was used, with response factors for each individual isoflavone obtained from calibrant solutions. The results from this method were compared with the certified and reference values for National Institute of Standards and Technology (NIST) SRM 3238 Soy-Containing Solid Oral Dosage Form to demonstrate that the method was in control. Results obtained using LC-PB/EIMS were consistent with the NIST certified or reference values and their uncertainties for all five isoflavones, demonstrating that the LC-PB/EIMS approach is both accurate and precise when used for the determination of the target isoflavones in soy-containing dietary supplement finished products while simultaneously providing structural information. PMID:26651559

  17. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size.

    PubMed

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-01-01

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process. PMID:27104527

  18. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size

    PubMed Central

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-01-01

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of −0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process. PMID:27104527

  19. Effect of the Mo/ller interaction on electron-impact ionization of high-Z hydrogenlike ions

    NASA Astrophysics Data System (ADS)

    Moores, D. L.; Reed, K. J.

    1995-01-01

    We have investigated the effects of the Mo/ller interaction in relativistic distorted-wave calculations of cross sections for electron-impact ionization of high-Z hydrogenlike ions. We found that the Mo/ller interaction significantly increases the cross section for hydrogenlike uranium, and brings our calculated results into very good agreement with experimental results reported by Marrs, Elliott, and Knapp [Phys. Rev. Lett. 72, 4082 (1994)]. We found similar increases in the cross sections for other hydrogenlike ions. Our results also show that these effects become important at much lower collision energy than previously reported [D. L. Moores and M. S. Pindzola, Phys. Rev. A 41, 3603 (1990)]. With the Mo/ller interaction included, our cross sections for these ions are in good agreement with preliminary results obtained in recent experiments on the electron-beam ion trap (EBIT).

  20. Effect of the Moller interaction on electron-impact ionization of high-[ital Z] hydrogenlike ions

    SciTech Connect

    Moores, D.L. ); Reed, K.J. )

    1995-01-01

    We have investigated the effects of the Moller interaction in relativistic distorted-wave calculations of cross sections for electron-impact ionization of high-[ital Z] hydrogenlike ions. We found that the Moller interaction significantly increases the cross section for hydrogenlike uranium, and brings our calculated results into very good agreement with experimental results reported by Marrs, Elliott, and Knapp [Phys. Rev. Lett. [bold 72], 4082 (1994)]. We found similar increases in the cross sections for other hydrogenlike ions. Our results also show that these effects become important at much lower collision energy than previously reported [D. L. Moores and M. S. Pindzola, Phys. Rev. A [bold 41], 3603 (1990)]. With the Moller interaction included, our cross sections for these ions are in good agreement with preliminary results obtained in recent experiments on the electron-beam ion trap (EBIT).

  1. A Massively Parallel Particle Code for Rarefied Ionized and Neutral Gas Flows in Earth and Planetary Atmospheres, Ionospheres and Magnetospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    2004-01-01

    In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important.

  2. Particle-jet interactions in an MHD second stage combustor

    SciTech Connect

    Lottes, S.A.; Chang, S.L.

    1992-07-01

    An Argonne two-phase combustion flow computer code is used to simulate reacting flows to aid in the development of an advanced combustor for magnetohydrodynamic power generation. The combustion code is a general hydrodynamics computer code for two-phase, two- dimensional, steady state, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for multiple gas species and particles. The combustion code includes turbulence, integral combustion, and particle evaporation submodels. A recently developed integral combustion submodel makes calculations more efficient and more stable while still preserving the major physical effects of the complex combustion processes. The combustor under investigation is a magnetohydrodynamic second stage combustor in which opposed jets of oxidizer are injected into a confined cross-stream of hot coal gas flow following a first stage swirl combustor. The simulation is intended to enhance the understanding the of seed particle evaporation in the combustor and evaluate the effects of combustor operating conditions on seed particle evaporation and vapor dispersion, which directly affect overall magnetohydrodynamic power generation. Computation results show that oxidizer jet angle and particle size may greatly affect particle evaporation and vapor dispersion. At a jet angle about 130 degrees, particle evaporation rate is the highest because of the highest average gas temperature. As particle size increases beyond 10 microns in diameter, the effects of particle size on wall deposition rate, evaporation delay, and downstream seed vapor dispersion become more pronounced. 16 refs., 10 figs.

  3. Microscale Simulations of Shock Interaction with Large Assembly of Particles for Developing Point-Particle Models

    NASA Astrophysics Data System (ADS)

    Thakur, Siddharth; Neal, Chris; Mehta, Yash; Sridharan, Prashanth; Jackson, Tom; Balachandar, S.; University of Florida Team

    2015-06-01

    Micrsoscale simulations are being conducted for developing point-particle models that are needed for macroscale simulations of explosive dispersal of particles. These particle models are required to compute instantaneous force and heat transfer between particles and surroundings. A strategy for a sequence of microscale simulations has been devised for systematic development of hybrid surrogate models that are applicable at conditions representative of explosive dispersal. The microscale simulations examine particle force dependence on: Mach number, Reynolds number, and volume fraction (particle arrangements such as cubic, face-centered cubic, body-centered cubic and random). Future plans include investigation of sequences of fully-resolved microscale simulations consisting of an array of particles subjected to more realistic time-dependent flows that progressively better approximate the problem of explosive dispersal. Additionally, effects of particle shape, size, and number as well as the transient particle deformation dependence on parameters including: (a) particle material, (b) medium material, (c) multiple particles, (d) incoming shock pressure and speed, (e) medium to particle impedance ratio, (f) particle shape and orientation to shock, etc. are being investigated.

  4. Lieb-Thirring inequality for a model of particles with point interactions

    SciTech Connect

    Frank, Rupert L.; Seiringer, Robert

    2012-09-15

    We consider a model of quantum-mechanical particles interacting via point interactions of infinite scattering length. In the case of fermions we prove a Lieb-Thirring inequality for the energy, i.e., we show that the energy is bounded from below by a constant times the integral of the particle density to the power (5/3).

  5. Some Basic Concepts of Wave-Particle Interactions in Collisionless Plasmas

    NASA Technical Reports Server (NTRS)

    Lakhina, Gurbax S.; Tsurutani, Bruce T.

    1997-01-01

    The physical concepts of wave-particle interactions in a collisionless plasma are developed from first principles. Using the Lorentz force, starting with the concepts of gyromotion, particle mirroring and the loss-cone, normal and anomalous cyclotron resonant interactions, pitch-angle scattering, and cross-field diffusion are developed.

  6. Dynamic cross correlation studies of wave particle interactions in ULF phenomena

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1979-01-01

    Magnetic field observations made by satellites in the earth's magnetic field reveal a wide variety of ULF waves. These waves interact with the ambient particle populations in complex ways, causing modulation of the observed particle fluxes. This modulation is found to be a function of species, pitch angle, energy and time. The characteristics of this modulation provide information concerning the wave mode and interaction process. One important characteristic of wave-particle interactions is the phase of the particle flux modulation relative to the magnetic field variations. To display this phase as a function of time a dynamic cross spectrum program has been developed. The program produces contour maps in the frequency time plane of the cross correlation coefficient between any particle flux time series and the magnetic field vector. This program has been utilized in several studies of ULF wave-particle interactions at synchronous orbit.

  7. Chaotic delocalization of two interacting particles in the classical Harper model

    NASA Astrophysics Data System (ADS)

    Shepelyansky, Dima L.

    2016-06-01

    We study the problem of two interacting particles in the classical Harper model in the regime when one-particle motion is absolutely bounded inside one cell of periodic potential. The interaction between particles breaks integrability of classical motion leading to emergence of Hamiltonian dynamical chaos. At moderate interactions and certain energies above the mobility edge this chaos leads to a chaotic propulsion of two particles with their diffusive spreading over the whole space both in one and two dimensions. At the same time the distance between particles remains bounded by one or two periodic cells demonstrating appearance of new composite quasi-particles called chaons. The effect of chaotic delocalization of chaons is shown to be rather general being present for Coulomb and short range interactions. It is argued that such delocalized chaons can be observed in experiments with cold atoms and ions in optical lattices.

  8. Accurate predictions of dielectrophoretic force and torque on particles with strong mutual field, particle, and wall interactions

    NASA Astrophysics Data System (ADS)

    Liu, Qianlong; Reifsnider, Kenneth

    2012-11-01

    The basis of dielectrophoresis (DEP) is the prediction of the force and torque on particles. The classical approach to the prediction is based on the effective moment method, which, however, is an approximate approach, assumes infinitesimal particles. Therefore, it is well-known that for finite-sized particles, the DEP approximation is inaccurate as the mutual field, particle, wall interactions become strong, a situation presently attracting extensive research for practical significant applications. In the present talk, we provide accurate calculations of the force and torque on the particles from first principles, by directly resolving the local geometry and properties and accurately accounting for the mutual interactions for finite-sized particles with both dielectric polarization and conduction in a sinusoidally steady-state electric field. Since the approach has a significant advantage, compared to other numerical methods, to efficiently simulate many closely packed particles, it provides an important, unique, and accurate technique to investigate complex DEP phenomena, for example heterogeneous mixtures containing particle chains, nanoparticle assembly, biological cells, non-spherical effects, etc. This study was supported by the Department of Energy under funding for an EFRC (the HeteroFoaM Center), grant no. DE-SC0001061.

  9. Cellular interactions of surface modified nanoporous silicon particles

    NASA Astrophysics Data System (ADS)

    Bimbo, Luis M.; Sarparanta, Mirkka; Mäkilä, Ermei; Laaksonen, Timo; Laaksonen, Päivi; Salonen, Jarno; Linder, Markus B.; Hirvonen, Jouni; Airaksinen, Anu J.; Santos, Hélder A.

    2012-05-01

    In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, 125I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi nanoparticles incubated in pH 7.4, which renders the particles the possibility for further track-imaging applications. The results highlight the potential of HFBII coating for improving wettability, increasing biocompatibility and possible intestinal association of PSi nanoparticulates for drug delivery applications.In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, 125I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi

  10. Quasilinear Model for Energetic Particles Interacting with TAE Modes

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2010-11-01

    TAE instabilities are thought to be a major source of Energetic Particle transport which could set limits on operational scenarios, especially for burning plasmas, and causes damage to the first wall. The quasilinear model proposed by Berk et al.ootnotetextH. L. Berk et al, Nucl. Fusion, 35:1661, 1995. relies on diffusion mechanisms for particle dynamics to captures the evolution of the energetic particle distribution function and the associated mode amplitude. Using the bump-on-tail as a paradigm, we analyze the dynamics near the resonances for accurate diffusion coefficient representation. We verify the model to get the predicted single mode saturation levels and benchmark the case of multimode overlap against particle codes. Using the TAE mode structures computed by the ideal MHD code NOVA, we generalize this method to relax energetic particles' profiles in the full 3D phase space.

  11. Cell and Particle Interactions and Aggregation During Electrophoretic Motion

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.

    2000-01-01

    The objectives of this research were (i) to perform experiments for observing and quantifying electrophoretic aggregation, (ii) to develop a theoretical description to appropriately analyze and compare with the experimental results, (iii) to study the combined effects of electrophoretic and gravitational aggregation of large particles, and the combined effects of electrophoretic and Brownian aggregation of small particles, and (iv) to perform a preliminary design of a potential future flight experiment involving electrophoretic aggregation. Electrophoresis refers to the motion of charged particles, droplets or molecules in response to an applied electric field. Electrophoresis is commonly used for analysis and separation of biological particles or molecules. When particles have different surface charge densities or potentials, they will migrate at different velocities in an electric field. This differential migration leads to the possibility that they will collide and aggregate, thereby preventing separation.

  12. Interaction of Energetic Particles with Discontinuities Upstream of Strong Shocks

    NASA Astrophysics Data System (ADS)

    Malkov, Mikhail; Diamond, Patrick

    2008-11-01

    Acceleration of particles in strong astrophysical shocks is known to be accompanied and promoted by a number of instabilities which are driven by the particles themselves. One of them is an acoustic (also known as Drury's) instability driven by the pressure gradient of accelerated particles upstream. The generated sound waves naturally steepen into shocks thus forming a shocktrain. Similar magnetoacoustic or Alfven type structures may be driven by pick-up ions, for example. We consider the solutions of kinetic equation for accelerated particles within the shocktrain. The accelerated particles are assumed to be coupled to the flow by an intensive pitch-angle scattering on the self-generated Alfven waves. The implications for acceleration and confinement of cosmic rays in this shock environment will be discussed.

  13. Relationship between the cohesion of guest particles on the flow behaviour of interactive mixtures.

    PubMed

    Mangal, Sharad; Gengenbach, Thomas; Millington-Smith, Doug; Armstrong, Brian; Morton, David A V; Larson, Ian

    2016-05-01

    In this study, we aimed to investigate the effects cohesion of small surface-engineered guest binder particles on the flow behaviour of interactive mixtures. Polyvinylpyrrolidone (PVP) - a model pharmaceutical binder - was spray-dried with varying l-leucine feed concentrations to create small surface-engineered binder particles with varying cohesion. These spray-dried formulations were characterised by their particle size distribution, morphology and cohesion. Interactive mixtures were produced by blending these spray-dried formulations with paracetamol. The resultant blends were visualised under scanning electron microscope to confirm formation of interactive mixtures. Surface coverage of paracetamol by guest particles as well as the flow behaviour of these mixtures were examined. The flow performance of interactive mixtures was evaluated using measurements of conditioned bulk density, basic flowability energy, aeration energy and compressibility. With higher feed l-leucine concentrations, the surface roughness of small binder particles increased, while their cohesion decreased. Visual inspection of the SEM images of the blends indicated that the guest particles adhered to the surface of paracetamol resulting in effective formation of interactive mixtures. These images also showed that the low-cohesion guest particles were better de-agglomerated that consequently formed a more homogeneous interactive mixture with paracetamol compared with high-cohesion formulations. The flow performance of interactive mixtures changed as a function of the cohesion of the guest particles. Interactive mixtures with low-cohesion guest binder particles showed notably improved bulk flow performance compared with those containing high-cohesion guest binder particles. Thus, our study suggests that the cohesion of guest particles dictates the flow performance of interactive mixtures. PMID:26972416

  14. Aliphatic and aromatic amines in atmospheric aerosol particles: comparison of three ionization techniques in liquid chromatography-mass spectrometry and method development.

    PubMed

    Ruiz-Jiménez, José; Hautala, Sanna; Parshintsev, Jevgeni; Laitinen, Totti; Hartonen, Kari; Petäjä, Tuukka; Kulmala, Markku; Riekkola, Marja-Liisa

    2012-08-15

    A complete methodology was developed for the determination of ten aliphatic and nine aromatic amines in atmospheric aerosol particles. Before the liquid chromatography - tandem mass spectrometric separation and determination, the derivatization reaction of the analytes using dansyl chloride was accelerated by ultrasounds. From three different ionization techniques studied electrospray ionization was superior in terms of sensitivity, linearity, repeatability and reproducibility over atmospheric pressure chemical ionization and photoionization for the target analytes. The method developed was validated for the gas phase, 30 nm and total suspended atmospheric aerosol particles. The method quantification limits ranged between 1.8 and 71.7 pg. The accuracy and the potential matrix effects were evaluated using a standard addition methodology. Recoveries from 92.1% to 109.1%, the repeatability from 0.6% to 8.4% and the reproducibility from 2.3% to 9.8% were obtained. The reliability of the methodology was proved by the statistical evaluation. Finally, the developed methodology was applied to the determination of the target analytes in eight size separated ultrafine particulate (Dp=30±4 nm) samples and in eight total suspended particulate samples collected at the SMEAR II station. The mean concentrations for aliphatic amines were between 0.01 and 42.67 ng m(-3) and for aromatic amines between 0.02 and 1.70 ng m(-3). Thirteen amines were quantified for the first time in 30 nm aerosol particles. PMID:22841047

  15. High-Resolution Electrospray Ionization Mass Spectrometry Analysis of Water- Soluble Organic Aerosols Collected with a Particle into Liquid Sampler

    SciTech Connect

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2010-10-01

    This work demonstrates the utility of a particle-into-liquid sampler (PILS) a technique traditionally used for identification of inorganic ions present in ambient or laboratory aerosols for the analysis of water soluble organic aerosol (OA) using high resolution electrospray ionization mass spectrometry (HR ESI-MS). Secondary organic aerosol (SOA) was produced from 0.5 ppm mixing ratios of limonene and ozone in a 5 m3 Teflon chamber. SOA was collected simultaneously using a traditional filter sampler and a PILS. The filter samples were later extracted with either water or acetonitrile, while the aqueous PILS samples were analyzed directly. In terms of peak intensities, types of detectable compounds, average O:C ratios, and organic mass to organic carbon ratios, the resulting high resolution mass spectra were essentially identical for the PILS and filter based samples. SOA compounds extracted from both filter/acetonitrile extraction and PILS/water extraction accounted for >95% of the total ion current in ESI mass spectra. This similarity was attributed to high solubility of limonene SOA in water. In contrast, significant differences in detected ions and peak abundances were observed for pine needle biomass burning organic aerosol (BBOA) collected with PILS and filter sampling. The water soluble fraction of BBOA is considerably smaller than for SOA, and a number of unique peaks were detectable only by the filter/acetonitrile method. The combination of PILS collection with HR-ESI-MS analysis offers a new approach for molecular analysis of the water-soluble organic fraction in biogenic SOA, aged photochemical smog, and BBOA.

  16. Real-time gas and particle-phase organic acids measurement at a forest site using chemical ionization high-resolution time-of-flight mass spectrometry during BEACHON-RoMBAS

    NASA Astrophysics Data System (ADS)

    Yatavelli, L. R.; Stark, H.; Kimmel, J.; Cubison, M.; Day, D. A.; Jayne, J.; Thornton, J. A.; Worsnop, D. R.; Jimenez, J. L.

    2011-12-01

    We present measurement of organic acids in gas and aerosol particles conducted in a ponderosa pine forest during July and August 2011 as part of the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS; http://tinyurl.com/BEACHON-RoMBAS). The measurement technique is based on chemical ionization, high-resolution time-of-flight mass spectrometry and utilizes a Micro-Orifice Volatilization Impactor [MOVI-CI-HR-ToFMS; Yatavelli et al., AS&T, 2010] to collect sub-micron aerosol particles while simultaneously measuring the gas-phase composition. The collected particles are subsequently analyzed by temperature-programmed thermal desorption. The reagent ion chosen for this campaign is the acetate anion (CH3C(O)O-, m/z 59), which reacts selectively via proton transfer with compounds that are stronger gas-phase acids than acetic acid [Veres et al., IJMS, 2008]. Preliminary results show substantial particle-phase concentrations of biogenic oxidation products such as hydroxy-glutaric acid, pinic acid, pinonic acid, and hydroxy-pinonic acid along with numerous lower and higher molecular weight organic acids. Correlations of the organic acid concentrations with meteorological, gas and aerosol parameters measured by other instrumentation are investigated in order to understand the formation, transformation, and partitioning of gas and particle-phase organic acids in a forested environment dominated by terpenes.

  17. Direct isotope ratio analysis of individual uranium-plutonium mixed particles with various U/Pu ratios by thermal ionization mass spectrometry.

    PubMed

    Suzuki, Daisuke; Esaka, Fumitaka; Miyamoto, Yutaka; Magara, Masaaki

    2015-02-01

    Uranium and plutonium isotope ratios in individual uranium-plutonium (U-Pu) mixed particles with various U/Pu atomic ratios were analyzed without prior chemical separation by thermal ionization mass spectrometry (TIMS). Prior to measurement, micron-sized particles with U/Pu ratios of 1, 5, 10, 18, and 70 were produced from uranium and plutonium certified reference materials. In the TIMS analysis, the peaks of americium, plutonium, and uranium ion signals were successfully separated by continuously increasing the evaporation filament current. Consequently, the uranium and plutonium isotope ratios, except the (238)Pu/(239)Pu ratio, were successfully determined for the particles at all U/Pu ratios. This indicates that TIMS direct analysis allows for the measurement of individual U-Pu mixed particles without prior chemical separation. PMID:25479434

  18. The time-dependent generalized active space configuration interaction approach to correlated ionization dynamics of diatomic molecules

    NASA Astrophysics Data System (ADS)

    Bauch, S.; Larsson, H. R.; Hinz, C.; Bonitz, M.

    2016-03-01

    In this contribution, we review the time-dependent generalized-active-space configuration interaction (TD-GAS-CI) approach to the photoionization dynamics of atoms and molecules including electron correlation effects. It is based on the configuration interaction (CI) expansion of the many-body wave function and the restriction of the determinantal space to a reduced subspace. For its numerically efficient application to photoionization, a partially-rotated basis set is used which adopts features of a localized basis with a good reference description and a grid representation for escaping wave packets. After reviewing earlier applications of the theory, we address the strong-field ionization of a one-dimensional model of the four-electron LiH molecule using TD-GAS-CI and demonstrate the importance of electron-electron correlations in the ionization yield for different orientations of the molecule w.r.t the peak of the linearly polarized laser field. A pronounced orientation-dependent variation of the yield with the pulse duration and the level of considered electron-electron correlations is observed.

  19. Two-phase flow predictions of the turbulent flow in a combustion chamber including particle-particle interactions

    NASA Astrophysics Data System (ADS)

    Breuer, Michael; Alletto, Michael

    2011-12-01

    Relying on large-eddy simulation (LES) and an efficient algorithm to track a huge number of Lagrangian particles through turbulent flow fields in general complex 3D domains, the flow in a pipe and a model combustion chamber is tackled. The influence of particle-fluid (two-way coupling) as well as particle-particle interactions (four-way coupling) is investigated. The latter is modeled based on deterministic collision detection. First, the LES results of a particle-laden vertical pipe flow with a specular wall and a mass loading of 110% are evaluated based on DNS data from the literature. Second, the predicted LES data of a ring combustion chamber at two different mass loadings (22% and 110%) are analyzed and compared with experimental measurements.

  20. Search for a particle with a long interaction length. [particle mandela to explain anomalous energy spectra at mountain altitude

    NASA Technical Reports Server (NTRS)

    Barrowes, S. C.; Huggett, R. W.; Jones, W. V.; Levit, L. B.; Porter, L. G.

    1975-01-01

    A search has been carried out for a long-lived particle having an interaction length lambda sub m equals 300 to 2000 gm/sq cm in air. Such a particle, called the mandela, has been proposed to explain an anomalous energy spectrum of particles observed near sea level with a shallow spectrometer. Data taken at mountain altitude with a deep spectrometer has been examined for compatibility with the existence of the mandela. Although data tend to favor the mandela hypothesis the results are not conclusive and appear to be explainable by conventional means.

  1. A validation of a simple model for the calculation of the ionization energies in X-ray laser-cluster interactions

    SciTech Connect

    White, Jeff; Ackad, Edward

    2015-02-15

    The outer-ionization of an electron from a cluster is an unambiguous quantity, while the inner-ionization threshold is not, resulting in different microscopic quantum-classical hybrid models used in laser-cluster interactions. A simple local ionization threshold model for the change in the ionization energy is proposed and examined, for atoms and ions, at distances in between the initial configuration of the cluster to well into the cluster's disintegration. This model is compared with a full Hartree-Fock energy calculation which accounts for the electron correlation effects using the coupled cluster method with single and double excitations with perturbative triples (CCSD(T)). Good agreement is found between the two lending a strong theoretical support to works which rely on such models for the final and transient properties of the laser-cluster interaction.

  2. Electron-correlation effects in enhanced ionization of molecules: A time-dependent generalized-active-space configuration-interaction study

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Bauch, S.; Madsen, L. B.

    2015-12-01

    We numerically study models of H2 and LiH molecules, aligned collinearly with the linear polarization of the external field, to elucidate the possible role of correlation in the enhanced-ionization (EI) phenomena. Correlation is considered at different levels of approximation with the time-dependent generalized-active-space configuration-interaction method. The results of our studies show that enhanced ionization occurs in multielectron molecules and that correlation is important, and they also demonstrate significant deviations between the results of the single-active-electron approximation and more accurate configuration-interaction methods. We further investigate the role of low-lying excited states in the EI phenomena. With the inclusion of correlation we show strong carrier-envelope-phase effects in the enhanced ionization of the asymmetric heteronuclear LiH -like molecule. The correlated calculation shows an intriguing feature of crossover in enhanced ionization with two carrier-envelope phases at critical internuclear separation.

  3. Model Simulations of Medium Time Scale Ionization Due to Cosmic Rays and Solar Energetic Particles (GLE59 and GLE in the Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Mishev, Alexander; Velinov, Peter

    2016-07-01

    The galactic cosmic rays (GCR) and solar energetic particles (SEP) could cause an excess of ionization in the atmosphere, specifically in polar and sub-polar regions. This effect is observed mainly in the middle atmosphere. The ionization effect could be strong at short time scales during major ground level enhancements (GLE)s of GCR. However, for the aims of recent atmospheric physics and atmospheric chemistry studies, namely the influence on the minor constituents and aerosols, it is important to derive the medium time scale ionization effect at various altitudes above the sea level. GLE 70 on December of 13, 2006 is the third strongest event of the previous solar cycle 23. The ionization effect in the Earth atmosphere is obtained for various latitudes on the basis of a full Monte Carlo simulation of CR induced atmospheric cascade at several altitudes, namely 35 km, 25 km, 15 km and 8 km above the sea level. Here we adopt previously reported ion production rate profiles obtained with Monte Carlo simulation of atmospheric cascade performed with the CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron generators. A realistic winter atmospheric model is assumed. The 24-h ionization effect is computed for the sub-polar and polar regions, where it is expected to be the maximal effect of the planetary distribution on the Earth. Thus studied precipitation of energetic particles (GCR and SEP) is important and should be included in chemistry-climate models. Similar computations are performed for GLE 59 the so-called Bstille day event on 14 July 2000.

  4. Effective Semi-empirical Interaction Potential for Dusty Particles

    SciTech Connect

    Ramazanov, T. S.; Dzhumagulova, K. N.; Omarbakiyeva, Y. A.; Dosbolayev, M. K.; Jumabekov, A. N.

    2008-09-07

    The Poisson equation was numerically solved on the basis of the experimental correlation functions of dusty particles. Calculations were performed with real parameters of dusty plasma. Reconstructed potential has oscillated character; the minimums coincide to maximums of correlation functions.

  5. Approach to the unification of elementary particle interactions

    SciTech Connect

    Gaillard, M.K.

    1981-09-01

    The assumption that the grand unified theory (GUT) emerges as an effective theory describing bound states of N = 8 supergravity preons should determine the GUT particle spectrum and constrain their couplings. Analysis of the spectrum has led to some possibly encouraging indications. At the least, the particle content in scalars, vectors and fermions needed to reproduce SU(5) phenomenology can be found among the states of the EGMZ multiplet.

  6. Wave-particle interaction in the Faraday waves.

    PubMed

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2015-10-01

    Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa. PMID:26420468

  7. Microbial interactions lead to rapid micro-scale successions on model marine particles.

    PubMed

    Datta, Manoshi S; Sliwerska, Elzbieta; Gore, Jeff; Polz, Martin F; Cordero, Otto X

    2016-01-01

    In the ocean, organic particles harbour diverse bacterial communities, which collectively digest and recycle essential nutrients. Traits like motility and exo-enzyme production allow individual taxa to colonize and exploit particle resources, but it remains unclear how community dynamics emerge from these individual traits. Here we track the taxon and trait dynamics of bacteria attached to model marine particles and demonstrate that particle-attached communities undergo rapid, reproducible successions driven by ecological interactions. Motile, particle-degrading taxa are selected for during early successional stages. However, this selective pressure is later relaxed when secondary consumers invade, which are unable to use the particle resource but, instead, rely on carbon from primary degraders. This creates a trophic chain that shifts community metabolism away from the particle substrate. These results suggest that primary successions may shape particle-attached bacterial communities in the ocean and that rapid community-wide metabolic shifts could limit rates of marine particle degradation. PMID:27311813

  8. Microbial interactions lead to rapid micro-scale successions on model marine particles

    PubMed Central

    Datta, Manoshi S.; Sliwerska, Elzbieta; Gore, Jeff; Polz, Martin F.; Cordero, Otto X.

    2016-01-01

    In the ocean, organic particles harbour diverse bacterial communities, which collectively digest and recycle essential nutrients. Traits like motility and exo-enzyme production allow individual taxa to colonize and exploit particle resources, but it remains unclear how community dynamics emerge from these individual traits. Here we track the taxon and trait dynamics of bacteria attached to model marine particles and demonstrate that particle-attached communities undergo rapid, reproducible successions driven by ecological interactions. Motile, particle-degrading taxa are selected for during early successional stages. However, this selective pressure is later relaxed when secondary consumers invade, which are unable to use the particle resource but, instead, rely on carbon from primary degraders. This creates a trophic chain that shifts community metabolism away from the particle substrate. These results suggest that primary successions may shape particle-attached bacterial communities in the ocean and that rapid community-wide metabolic shifts could limit rates of marine particle degradation. PMID:27311813

  9. The interaction of melanin with ionizing and UVC radiations: Characterization of thymine damage

    SciTech Connect

    Huselton, C.A.

    1988-01-01

    These studies were undertaken to determine whether melanin could protect DNA against the harmful effects of ionizing or UVC radiations. A simple, in vitro, model system was developed to evaluate eumelanin (Sigma melanin) as a radioprotector of solutions of 0.1 mM thymine or thymidine exposed to 570Gy of ionizing radiation. Sigma melanin was compared to several amino acids, other biomolecules or to other forms of melanin. To investigate the role of melanin as a passive screen of UVC radiation, melanotic (I{sub 3}), amelanotic (AMEL) cells (both derived from a Cloudman S91 melanoma) and non-melanotic (EMT6) cells were labelled with radioactive dTHd and exposed to 0, 1, 5 or 10KJ/m{sup 2} of UVC. The DNA was extracted; the bases hydrolyzed with concentrated HCl. Thymine bases were separated by reverse phase HPLC. No difference in dimer content was observed between I{sub 3} and AMEL cells, but EMT6 cells had nearly twice the amount of dimer. Overall thymine degradation was more pronounced in I{sub 3} cells than in the other two cell lines, due to the production of non-dimer thymine damage. This damage was identified as thymine glycol by HPLC and mass spectrometry. Melanin, upon exposure to UVC, appears to enhance thymine damage by producing oxidative damage.

  10. Dipolar capillary interactions between tilted ellipsoidal particles adsorbed at fluid-fluid interfaces.

    PubMed

    Davies, Gary B; Botto, Lorenzo

    2015-10-28

    Capillary interactions have emerged as a tool for the directed assembly of particles adsorbed at fluid-fluid interfaces, and play a role in controlling the mechanical properties of emulsions and foams. In this paper, following Davies et al. [Adv. Mater., 2014, 26, 6715] investigation into the assembly of ellipsoidal particles at interfaces interacting via dipolar capillary interactions, we numerically investigate the interaction between tilted ellipsoidal particles adsorbed at a fluid-fluid interface as their aspect ratio, tilt angle, bond angle, and separation vary. High-resolution Surface Evolver simulations of ellipsoidal particle pairs in contact reveal an energy barrier between a metastable tip-tip configuration and a stable side-side configuration. The side-side configuration is the global energy minimum for all parameters we investigated. Lattice Boltzmann simulations of clusters of up to 12 ellipsoidal particles show novel highly symmetric flower-like and ring-like arrangements. PMID:26323324

  11. Acquiring Interactional Competence in a Study Abroad Context: Japanese Language Learners' Use of the Interactional Particle "ne"

    ERIC Educational Resources Information Center

    Masuda, Kyoko

    2011-01-01

    This study examines the development of interactional competence (Hall, 1993, 1995) by English-speaking learners of Japanese as a foreign language (JFL) in a study abroad setting, as indexed by their use of the interactionally significant particle "ne." The analysis is based on a comparison of (a) 6 sets of conversations between JFL learners and…

  12. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  13. Like-charge interactions between colloidal particles are asymmetric with respect to sign†

    PubMed Central

    Gomez, Esther W.; Clack, Nathan G.; Wu, Hung-Jen; Groves, Jay T.

    2014-01-01

    Two-dimensional dispersions of colloidal particles with a range of surface chemistries and electrostatic potentials are characterized under a series of solution ionic strengths. A combination of optical imaging techniques are employed to monitor both the colloid structure and the electrostatic surface potential of individual particles in situ. We find that like-charge multiparticle interactions can be tuned from exclusively repulsive to long-range attractive by changing the particle surface composition. This behavior is strongly asymmetric with respect to the sign of the surface potential. Collective long-range attractive interactions are only observed among negatively charged particles. PMID:25221611

  14. Noise, Bifurcations, and Modeling of Interacting Particle Systems

    PubMed Central

    Mier-y-Teran-Romero, Luis; Forgoston, Eric; Schwartz, Ira B.

    2011-01-01

    We consider the stochastic patterns of a system of communicating, or coupled, self-propelled particles in the presence of noise and communication time delay. For sufficiently large environmental noise, there exists a transition between a translating state and a rotating state with stationary center of mass. Time delayed communication creates a bifurcation pattern dependent on the coupling amplitude between particles. Using a mean field model in the large number limit, we show how the complete bifurcation unfolds in the presence of communication delay and coupling amplitude. Relative to the center of mass, the patterns can then be described as transitions between translation, rotation about a stationary point, or a rotating swarm, where the center of mass undergoes a Hopf bifurcation from steady state to a limit cycle. Examples of some of the stochastic patterns will be given for large numbers of particles. PMID:22124204

  15. Simulations of Energetic Particles Interacting with Dynamical Magnetic Turbulence

    NASA Astrophysics Data System (ADS)

    Hussein, M.; Shalchi, A.

    2016-02-01

    We explore the transport of energetic particles in interplanetary space by using test-particle simulations. In previous work such simulations have been performed by using either magnetostatic turbulence or undamped propagating plasma waves. In the current paper we simulate for the first time particle transport in dynamical turbulence. To do so we employ two models, namely the damping model of dynamical turbulence and the random sweeping model. We compute parallel and perpendicular diffusion coefficients and compare our numerical findings with solar wind observations. We show that good agreement can be found between simulations and the Palmer consensus range for both dynamical turbulence models if the ratio of turbulent magnetic field and mean field is δB/B0 = 0.5.

  16. Collisional interactions of ring particles - The ballistic transport process

    NASA Astrophysics Data System (ADS)

    Ip, W.-H.

    1983-05-01

    The role of variations in the size distribution, optical depth, and surface composition of Saturnian ring material in the dynamics of production and recycling of dust particles in the whole ring system is examined. A simple Monte Carlo model incorporating the ballistic motion of small dust particles ejected by meteoroid impact as well as the inelastic collision of the ejected particles with the ring plane is presented. It is found that the redistribution of the ejected matter depends on the optical depth variation across the ring system and the initial ejection speed, and hence the scale length of random walk on the ring plane. For small values of the scale length, the ejecta would accumulate at positions of sharp change in optical depth. On the basis of this result, it is conjectured that the double-peaked feature observed for a number of narrow ringlets may be generated in this manner also.

  17. Diffusion of interacting particles: light scattering study of microemulsions

    SciTech Connect

    Cazabat, A.M.; Langevin, D.

    1981-03-15

    The diffusion coefficient data obtained from light scattering experiments on water-in-oil microemulsions have been compared with existing theoretical treatments involving the interaction potential. The observed behavior deviates largely from hard sphere systems and independent information was obtained about the interaction potential to check the theories. This was achieved by measuring simultaneously the intensity and the correlation function of the scattered light. The intensity has been analyzed with a very simple model for interaction forces involving only 2 parameters: a hard sphere radius and the amplitude of a small perturbation added to hard sphere potential. This model allows for the variation of the diffusion coefficient at small volume fractions. Light scattering techniques are a very useful method for obtaining information about sizes and interactions in microemulsions. Some general conclusions have been made: droplet sizes depend mostly on the ratio of water to soap, and interactions on continuous phase polarity and alcohol chain length.

  18. Magnetic interaction of Janus magnetic particles suspended in a viscous fluid.

    PubMed

    Seong, Yujin; Kang, Tae Gon; Hulsen, Martien A; den Toonder, Jaap M J; Anderson, Patrick D

    2016-02-01

    We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and nonmagnetic sides. A direct numerical scheme is employed to solve the magnetic particulate flow in the Stokes flow regime. Upon applying the magnetic field, contrary to isotropic paramagnetic particles, a single Janus particle can rotate due to the magnetic torque created by the magnetic anisotropy of the particle. In a two-particle problem, the orientation of each particle is found to be an additional factor that affects the critical angle separating the nature of magnetic interaction. Using multiparticle problems, we show that the orientation of the particles has a significant influence on the dynamics of the particles, the fluid flow induced by the actuated particles, and the final conformation of the particles. Straight and staggered chain structures observed experimentally can be reproduced numerically in a multiple particle problem. PMID:26986377

  19. Charged and Neutral Particle Interactions on Aerospace Materials

    SciTech Connect

    Singleterry, R.C. Jr.; Thibeault, Sheila A.; Wilkins, Richard; Huff, Harold

    2002-07-01

    Various candidate aircraft and spacecraft materials were analyzed and compared in a neutron environment using the Monte Carlo N-Particle (MCNP) transport code and in Galactic Cosmic Ray (GCR) and Trapped environments using the HZETRN code. These candidate materials are being used in aerospace vehicles, have been tested in particle beams, or seemed reasonable to analyze in this manner before deciding to manufacture and test them. This analysis shows that hydrogen bearing materials are better than the metal alloys for reducing the number of reflected and transmitted particles. It also shows that neutrons above 1 MeV are reflected out of the face of the slab better when larger quantities of carbon are present in the material. If a neutron absorber is added to the material, fewer neutrons are transmitted through and reflected from the material. This analysis focused on combinations of scatterers and absorbers to optimize these reaction channels on the higher energy neutron component. The absorber addition did not substantially change the charged particle transmission from the value obtained for polyethylene. The ultimate goal of this type of analysis is the selection of a layered material or material type that will optimize dose, dose equivalent, and electronic error rates inside the vehicle (and outside the vehicle if necessary for the mission). This analysis focuses on how the different material types and additives behave in the atmospheric and space related particle fields. As a secondary issue, as the amount of hydrogen bearing materials increase, larger fluxes of thermal neutrons are expected. It has been observed experimentally that large thicknesses of hydrogen bearing materials increase the error rates per neutron that occurs in SRAM memory chips. This effect is still being investigated, but it has been narrowed down to the larger mean neutron energy produced by the hydrogen bearing material. (authors)

  20. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells

    PubMed Central

    Manda, Katrin; Glasow, Annegret; Paape, Daniel; Hildebrandt, Guido

    2012-01-01

    Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells. PMID:22937525

  1. Hydrodynamic interactions of spherical particles in Poiseuille flow between two parallel walls

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Bławzdziewicz, J.; Wajnryb, E.

    2006-05-01

    We study hydrodynamic interactions of spherical particles in incident Poiseuille flow in a channel with infinite planar walls. The particles are suspended in a Newtonian fluid, and creeping-flow conditions are assumed. Numerical results, obtained using our highly accurate Cartesian-representation algorithm [Physica A 356, 294 (2005)] are presented for a single sphere, two spheres, and arrays of many spheres. We consider the motion of freely suspended particles as well as the forces and torques acting on particles adsorbed at a wall. We find that the pair hydrodynamic interactions in this wall-bounded system have a complex dependence on the lateral interparticle distance due to the combined effects of the dissipation in the gap between the particle surfaces and the backflow associated with the presence of the walls. For immobile particle pairs we have examined the crossover between several far-field asymptotic regimes corresponding to different relations between the particle separation and the distances of the particles from the walls. We have also shown that the cumulative effect of the far-field flow substantially influences the force distribution in arrays of immobile spheres, and it affects trajectories of suspended particles. Therefore, the far-field contributions should be included in any reliable algorithm for evaluating many-particle hydrodynamic interactions in the parallel-wall geometry.

  2. Emergent Ultra-Long-Range Interactions Between Active Particles in Hybrid Active-Inactive Systems

    NASA Astrophysics Data System (ADS)

    Steimel, Joshua; Aragones, Juan; Hu, Helen; Qureshi, Naser; Alexander-Katz, Alfredo

    Particle-particle interactions determine the state of a system. Control over the range and magnitude of such interactions has been an active area of research for decades due to the fundamental challenges it poses in science and technology. Effective interactions between active particles have gathered much attention as they can lead to out-of-equilibrium cooperative states such as flocking. Inspired by nature, where active living cells coexist with lifeless, immobile objects and structures, here we study the effective interactions that appear in systems composed of active and passive mixtures of colloids. Our system is a two dimensional colloidal monolayer composed primarily of passive (inactive) colloids and a very small fraction of active (sinning) ferromagnetic colloids. We find an emergent ultra-long-range attractive interaction between active particles induced by the activity of the spinning particles and mediated by the elasticity of the passive medium. Interestingly, the appearance of such interaction depends on the spinning protocol and has a minimum actuation time scale below which no attraction is observed. Overall, these results clearly show that in the presence of elastic components, active particles can interact across very long distances without any chemical modification of the environment. Such a mechanism might potentially be important for some biological systems and can be harnessed for newer developments in synthetic active soft materials.

  3. Suspended load and bed-load transport of particle-laden gravity currents: the role of particle-bed interaction

    NASA Astrophysics Data System (ADS)

    Dufek, J.; Bergantz, G. W.

    2007-03-01

    The development of particle-enriched regions (bed-load) at the base of particle-laden gravity currents has been widely observed, yet the controls and relative partitioning of material into the bed-load is poorly understood. We examine particle-laden gravity currents whose initial mixture (particle and fluid) density is greater than the ambient fluid, but whose interstitial fluid density is less than the ambient fluid (such as occurs in pyroclastic flows produced during volcanic eruptions or when sediment-enriched river discharge enters the ocean, generating hyperpycnal turbidity currents). A multifluid numerical approach is employed to assess suspended load and bed-load transport in particle-laden gravity currents under varying boundary conditions. Particle-laden flows that traverse denser fluid (such as pyroclastic flows crossing water) have leaky boundaries that provide the conceptual framework to study suspended load in isolation from bed-load transport. We develop leaky and saltation boundary conditions to study the influence of flow substrate on the development of bed-load. Flows with saltating boundaries develop particle-enriched basal layers (bed-load) where momentum transfer is primarily a result of particle-particle collisions. The grain size distribution is more homogeneous in the bed-load and the saltation boundaries increase the run-out distance and residence time of particles in the flow by as much as 25% over leaky boundary conditions. Transport over a leaky substrate removes particles that reach the bottom boundary and only the suspended load remains. Particle transport to the boundary is proportional to the settling velocity of particles, and flow dilution results in shear and buoyancy instabilities at the upper interface of these flows. These instabilities entrain ambient fluid, and the continued dilution ultimately results in these currents becoming less dense than the ambient fluid. A unifying concept is energy dissipation due to particle

  4. 3D Plasma Clusters: Analysis of dynamical evolution and individual particle interaction

    SciTech Connect

    Antonova, T.; Thomas, H. M.; Morfill, G. E.; Annaratone, B. M.

    2008-09-07

    3D plasma clusters (up to 100 particles) have been built inside small (32 mm{sup 3}) plasma volume in gravity. It has been estimated that the external confinement has a negligible influence on the processes inside the clusters. At such conditions the analysis of dynamical evolution and individual particle interactions have shown that the binary interaction among particles in addition to the repelling Coulomb force exhibits also an attractive part. The tendency of the systems to approach the state with minimum energy by rearranging particles inside has been detected. The measured 63 particles' cluster vibrations are in close agreement with vibrations of a drop with surface tension. This indicates that even a 63 particle cluster already exhibits properties normally associated with the cooperative regime.

  5. Interaction of Particles with Recirculating Flow Regions inside Cavities of Inertial Microchannels

    NASA Astrophysics Data System (ADS)

    Haddadi, Hamed; di Carlo, Dino

    2015-11-01

    Confined inertial flow over cavities of a microfluidic device leads to formation of recirculating flow regions, i.e flow cells, inside cavities which can entrap particles from the free stream. Besides its significance as a fundamental problem in fluid mechanics of mixtures, understanding particle interaction with recirculating flow regions inside cavities is important in biomedical applications, such as Circulating Tumor Cell (CTC) separation and platelet deposition in arterial stenosis. In the present work, a lattice-Boltzmann model with resolved particle-corner interaction combined with microfluidic experiments enabled improved understanding of the particle exchange within flow cells in confined inertial flow. Formation of a limit cycle trajectory, observed in experiments and numerical simulations, is a key feature in particle accumulation. By varying the dimensions of the cavity and channel Reynolds number, The length and location of the limit cycle trajectory also varies, altering of the rate of particle exchange and level of accumulation with recirculating zones inside cavities.

  6. Interactions of Haptoglobin with Monomeric Globin Species: Insights from Molecular Modeling and Native Electrospray Ionization Mass Spectrometry.

    PubMed

    Fatunmbi, Ololade; Abzalimov, Rinat R; Savinov, Sergey N; Gershenson, Anne; Kaltashov, Igor A

    2016-03-29

    Haptoglobin (Hp) binds free hemoglobin (Hb) dimers to prevent negative consequences of Hb circulation in the extracellular environment. Although both monomeric Hb and myoglobin (Mb) species also present potential risks, their interactions with Hp have not been extensively studied. Mb is homologous to both the α- and β-chains of Hb and shares many conserved Hb/Hp interface residues, yet whether Hp binds Mb remains unclear. To address this, computational biology tools were used to predict the interactions required for Hp to bind monomeric globins, and the predicted association was tested using native electrospray ionization mass spectrometry (ESI-MS). The Hb/Hp crystal structure was used as the template to create molecular models of two Mb molecules bound to an Hp heterodimer (Mb2/Hp). Molecular modeling suggests that Mb can bind at the Hp α-chain binding site, where 73% of the globin/Hp interactions are conserved. By contrast, several ionic β-chain residues involved in complementary electrostatic interactions with Hp correspond to residues with the opposite charge in Mb, suggesting unfavorable electrostatic Hp/Mb interactions at the β-chain binding site. As shown by native ESI-MS, isolated monomeric Hbα subunits can form 2:1 complexes with Hp heterotetramers in the absence of Hb β-chains. Native ESI-MS also confirmed that Mb can bind to Hp heterotetramers in solution with stoichiometries of 1:1 and 2:1 at physiological pH and ionic strength. The affinity of Hp for Mb appears to be diminished relative to that of Hb α-chains. Our in silico experiments rationalize this change and demonstrate that molecular modeling of protein/protein interactions is a valuable aid for MS experiments. PMID:26937685

  7. Effects of field interactions upon particle creation in Robertson-Walker universes

    NASA Technical Reports Server (NTRS)

    Birrell, N. D.; Davies, P. C. W.; Ford, L. H.

    1980-01-01

    Particle creation due to field interactions in an expanding Robertson-Walker universe is investigated. A model in which pseudoscalar mesons and photons are created as a result of their mutual interaction is considered, and the energy density of created particles is calculated in model universes which undergo a bounce at some maximum curvature. The free-field creation of non-conformally coupled scalar particles and of gravitons is calculated in the same space-times. It is found that if the bounce occurs at a sufficiently early time the interacting particle creation will dominate. This result may be traced to the fact that the model interaction chosen introduces a length scale which is much larger than the Planck length.

  8. Elementary particle interactions. Progress report, October 1, 1991--September 30, 1992

    SciTech Connect

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.

    1992-10-01

    Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out.

  9. Elementary particle interactions. [Dept. of Physics and Astronomy, Univ. of Tennessee, Knoxville, Tennessee

    SciTech Connect

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.

    1992-10-01

    Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out.

  10. Dispersive approaches for three-particle final state interaction

    DOE PAGESBeta

    Guo, Peng; Danilkin, Igor V.; Szczepaniak, Adam P.

    2015-10-30

    In this work, we presented different representations of Khuri-Treiman equation, the advantage and disadvantage of each representations are discussed. With a scattering amplitude toy model, we also studied the sensitivity of solution of KT equation to left-hand cut of toy model and to the different approximate methods. At last, we give a brief discussion of Watson's theorem when three particles in final states are involved.

  11. Interaction Between Cytochrome c and the Hapten 2,4-Dinitro-fluorobenzene by Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Chu, Yan-qiu; Dai, Zhao-yun; Ding, Chuan-fan

    2008-06-01

    Allergic contact dermatitis is a delayed hypersensitivity reaction, which results from skin exposure to low molecular weight chemicals such as haptens. To clarify the pathogenic mechanism, electrospray ionization mass spectrometry (ESI-MS) and hydrogen/deuterium (H/D) exchange, as well as UV spectroscopy, were applied to determine the interaction between the model protein cytochrome c (cyt c) and the hapten 2,4-dinitro-fluorobenzene (DNFB). The ESI-MS results demonstrate that the conformation of cyt c can change from native folded state into partially unfolded state with the increase of DNFB. The equilibrium state H/D exchange followed by ESI-MS further confirms the above results. UV spectroscopy indicates that the strong-field coordination between iron of heme (prosthetic group) and His18 or Met80 of cyt c is not obviously affected by the hapten.

  12. Simulations of energetic particles interacting with nonlinear anisotropic dynamical turbulence

    NASA Astrophysics Data System (ADS)

    Heusen, M.; Shalchi, A.

    2016-09-01

    We investigate test-particle diffusion in dynamical turbulence based on a numerical approach presented before. For the turbulence we employ the nonlinear anisotropic dynamical turbulence model which takes into account wave propagation effects as well as damping effects. We compute numerically diffusion coefficients of energetic particles along and across the mean magnetic field. We focus on turbulence and particle parameters which should be relevant for the solar system and compare our findings with different interplanetary observations. We vary different parameters such as the dissipation range spectral index, the ratio of the turbulence bendover scales, and the magnetic field strength in order to explore the relevance of the different parameters. We show that the bendover scales as well as the magnetic field ratio have a strong influence on diffusion coefficients whereas the influence of the dissipation range spectral index is weak. The best agreement with solar wind observations can be found for equal bendover scales and a magnetic field ratio of δ B / B0 = 0.75.

  13. UHV studies of the interaction of CO with small supported metal particles, Ni/mica

    NASA Technical Reports Server (NTRS)

    Doering, D. L.; Poppa, H.; Dickinson, J. T.

    1982-01-01

    The interaction of carbon monoxide with small nickel (Ni) particles supported on UHV-cleaved mica was studied using flash thermal desorption, Auger electron spectroscopy, and transmission electron microscopy. Molecular desorption was accompanied by decomposition of CO at a rate strongly dependent on particle size. Recombination of surface-precipitated carbon with adsorbed oxygen was observed, and gas-induced morphological particle changes because of exposure to CO and O2 are analyzed in some detail.

  14. Interaction of a planar shock with a dense field of particles in a multiphase shock tube.

    SciTech Connect

    Castaneda, Jaime N.; Beresh, Steven Jay; Trott, Wayne Merle; Wagner, Justin L.; Kearney, Sean Patrick; Baer, Melvin R.; Pruett, Brian Owen Matthew

    2010-12-01

    A novel multiphase shock tube has been constructed to test the interaction of a planar shock wave with a dense gas-solid field of particles. The particle field is generated by a gravity-fed method that results in a spanwise curtain of 100-micron particles producing a volume fraction of about 15%. Interactions with incident shock Mach numbers of 1.67 and 1.95 are reported. High-speed schlieren imaging is used to reveal the complex wave structure associated with the interaction. After the impingement of the incident shock, transmitted and reflected shocks are observed, which lead to differences in flow properties across the streamwise dimension of the curtain. Tens of microseconds after the onset of the interaction, the particle field begins to propagate downstream, and disperse. The spread of the particle field, as a function of its position, is seen to be nearly identical for both Mach numbers. Immediately downstream of the curtain, the peak pressures associated with the Mach 1.67 and 1.95 interactions are about 35% and 45% greater than tests without particles, respectively. For both Mach numbers tested, the energy and momentum fluxes in the induced flow far downstream are reduced by about 30-40% by the presence of the particle field.

  15. Hydrodynamic interactions in metal rod-like particle suspensions due to induced charge electroosmosis

    SciTech Connect

    Rose, K A; Hoffman, B; Saintillan, D; Shaqfeh, E G; Santiago, J G

    2008-05-05

    We present a theoretical and experimental study of the role of hydrodynamic interactions on the motion and dispersion of metal rod-like particles in the presence of an externally applied electric field. In these systems, the electric field polarizes the particles and induces an electroosmosis flow relative to the surface of each particle. The simulations include the effect of the gravitational body force, buoyancy, far-field hydrodynamic interactions, near-field lubrication forces, and electric field interactions. The particles in the simulations and experiments were observed to experience repeated pairing interactions in which they come together axially with their ends approaching each other, slide past one another until their centers approach, and then push apart. These interactions were confirmed in measurements of particle orientations and velocities, pair distribution functions, and net dispersion of the suspension. For large electric fields, the pair distribution functions show accumulation and depletion regions consistent with many pairing events. For particle concentrations of 1e8 particles/mL and higher, dispersion within the suspension dramatically increases with increased field strength.

  16. Calculation of effective atomic number and electron density of essential biomolecules for electron, proton, alpha particle and multi-energetic photon interactions

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat; Onaran, Tayfur

    2015-07-01

    Effective atomic numbers (Zeff) and electron densities (Ne) of some essential biomolecules have been calculated for total electron interaction, total proton interaction and total alpha particle interaction using an interpolation method in the energy region 10 keV-1 GeV. Also, the spectrum weighted Zeff for multi-energetic photons has been calculated using Auto-Zeff program. Biomolecules consist of fatty acids, amino acids, carbohydrates and basic nucleotides of DNA and RNA. Variations of Zeff and Ne with kinetic energy of ionizing charged particles and effective photon energies of heterogeneous sources have been studied for the given materials. Significant variations in Zeff and Ne have been observed through the entire energy region for electron, proton and alpha particle interactions. Non-uniform variation has been observed for protons and alpha particles in low and intermediate energy regions, respectively. The maximum values of Zeff have found to be in higher energies for total electron interaction whereas maximum values have found to be in relatively low energies for total proton and total alpha particle interactions. When it comes to the multi-energetic photon sources, it has to be noted that the highest Zeff values were found at low energy region where photoelectric absorption is the pre-dominant interaction process. The lowest values of Zeff have been shown in biomolecules such as stearic acid, leucine, mannitol and thymine, which have highest H content in their groups. Variation in Ne seems to be more or less the same with the variation in Zeff for the given materials as expected.

  17. Inner-shell ionization of rotating linear molecules in the presence of spin-dependent interactions: Entanglement between a photoelectron and an auger electron

    NASA Astrophysics Data System (ADS)

    Ghosh, R.; Chandra, N.; Parida, S.

    2009-03-01

    This paper reports results of a theoretical study of angle- and spin-resolved photo-Auger electron coincident spectroscopy in the form of entanglement between these two particles emitted from a linear molecule. First, we develop an expression for a density matrix needed for studying spin-entanglement between a photoelectron and an Auger electron. In order to properly represent the molecular symmetries, nuclear rotation, and the spin-dependent interactions (SDIs), we have used symmetry adapted wavefunctions in Hund’s coupling scheme (a) for all the species participating in this two-step process. This expression shows that spin-entanglement in a photo-Auger electron pair in the presence of SDIs very strongly depends upon, among other things, polarization of the ionizing radia- tion, directions of motion and of spin polarization of two ejected electrons, and the dynamics of photoionization and of Auger decay. We have applied this expression, as an example, to a generic linear molecule in its J0, M0 = 0 state. This model calculation clearly brings out the salient features of the spin-entanglement of a photo-Auger electron pair in the presence of the SDIs.

  18. Interaction of free fatty acids with the erythrocyte membrane as affected by hyperthermia and ionizing radiation

    SciTech Connect

    Rybczynska, M.; Csordas, A. )

    1990-04-01

    The interference of hyperthermia and ionizing radiation, respectively, with the effects of capric (10:0), lauric (12:0), myristic (14:0), oleic (cis-18:1) and elaidic (trans-18:1) acids on the osmotic resistance of human erythrocytes was investigated. The results are summarized as follows: (A) not only at 37 degrees, but also at 42 and 47{degrees}C lauric acid (12:0) represents the minimum chain length for the biphasic behaviour of protecting against hypotonic hemolysis at a certain lower concentration range and hemolysis promotion at subsequent higher concentrations; (B) with increasing temperatures the protecting as well as the hemolytic effects occur at lower concentrations of the fatty acids; (C) the increase of temperature promotes the extent of hemolysis and reduces the extent of protection against hypotonic hemolysis; (D) Gamma-irradiation of erythrocytes selectively affects the concentration of oleic acid at which maximum protection against hypotonic hemolysis occurs, without altering the minimum concentration for 100% hemolysis.

  19. Low Reynolds Number Interactions between Colloidal Particles near the Entrance to a Cylindrical Pore.

    PubMed

    Ramachandran; Venkatesan; Tryggvason; Scott Fogler H

    2000-09-15

    The interaction between stable colloidal particles arriving at a pore entrance was studied using a numerical method for the case where the particle size is smaller than but of the same order as the pore size. The numerical method was adapted from a front-tracking technique developed for studying incompressible, multifluid flow by S. O. Unverdi and G. Tryggvason (J. Comp. Phys. 100, 25, 1992). The method is based on the finite difference solution of Navier-Stokes equation on a stationary, structured, Cartesian grid and the explicit representation of the particle-liquid interface using an unstructured grid that moves through the stationary grid. The simulations are in two dimensions, considering both deformable and nondeformable particles, and include interparticle colloidal interactions. The interparticle and particle-pore hydrodynamic interactions, which are very difficult to determine using existing analytical and semi-numerical, semi-analytical techniques in microhydrodynamics, are naturally accounted for in our numerical method and need not be explicity determined. Two- and three-particle motion toward a pore has been considered in our simulations. The simulations demonstrate how the competition between hydrodynamic forces and colloidal forces acting on particles dictate their flow behavior near the pore entrance. The predicted dependence of the particle flow behavior on the flow velocity and the ratio of pore size to particle size are qualitatively consistent with the experimental observations of V. Ramachandran and H. S. Fogler (J. Fluid Mech. 385, 129, 1999). Copyright 2000 Academic Press. PMID:10985810

  20. Communication: The origin of many-particle signals in nonlinear optical spectroscopy of non-interacting particles.

    PubMed

    Mukamel, Shaul

    2016-07-28

    Nonlinear spectroscopy signals detected by fluorescence from dilute samples of N non-interacting molecules are usually adequately described by simply multiplying the single molecule response by N. We show that signals that scale with higher powers of N are generated by the joint detection of several particles. This can be accomplished by phase sensitive detection such as phase cycling, photo-acoustic modulation, or by Hanbury-Brown Twiss photon coincidence. Such measurements can dissect the ensemble according to the number of excited particles. PMID:27475341

  1. Communication: The origin of many-particle signals in nonlinear optical spectroscopy of non-interacting particles

    NASA Astrophysics Data System (ADS)

    Mukamel, Shaul

    2016-07-01

    Nonlinear spectroscopy signals detected by fluorescence from dilute samples of N non-interacting molecules are usually adequately described by simply multiplying the single molecule response by N. We show that signals that scale with higher powers of N are generated by the joint detection of several particles. This can be accomplished by phase sensitive detection such as phase cycling, photo-acoustic modulation, or by Hanbury-Brown Twiss photon coincidence. Such measurements can dissect the ensemble according to the number of excited particles.

  2. Interactions of Intact Unfractionated Heparin with Its Client Proteins Can Be Probed Directly Using Native Electrospray Ionization Mass Spectrometry.

    PubMed

    Zhao, Yunlong; Abzalimov, Rinat R; Kaltashov, Igor A

    2016-02-01

    Heparin and related members of the glycosaminoglycan (GAG) family are highly polyanionic linear saccharides that play important roles in a variety of physiological processes ranging from blood coagulation to embryo- and oncogenesis, tissue regeneration, and immune response regulation. These diverse functions are executed via a variety of mechanisms, including protein sequestration, activation, and facilitation of their interactions with cell-surface receptors, but deciphering the specific molecular mechanisms is frequently impossible due to the extremely high degree of GAG heterogeneity. As a result, the vast majority of studies of heparin (or related GAGs) interactions with its client proteins use synthetically produced heparin mimetics with defined structure or short heparin fragments. In this work we use native electrospray ionization mass spectrometry (ESI MS) in combination with limited charge reduction in the gas phase to obtain meaningful information on noncovalent complexes formed by intact unfractionated heparin and antithrombin-III, interaction which is central to preventing blood clotting. Complexes of different stoichiometries are observed ranging from 1:1 to 1:3 (heparin/protein ratio). In addition to binding stoichiometry, the measurements allow the range of heparin chain lengths to be obtained for each complex and the contribution of each complex to the total ionic signal to be calculated. Incorporation of ion mobility measurements in the experimental workflow allows the total analysis time to be shortened very significantly and the charge state assignment for the charge-reduced species to be verified. The possibility to study interactions of intact unfractionated heparin with a client protein carried out directly by native ESI MS without the need to use relatively homogeneous surrogates demonstrated in this work opens up a host of new exciting opportunities and goes a long way toward ameliorating the persistent but outdated view of the

  3. Strange-particle production via the weak interaction

    SciTech Connect

    Adera, G. B.; Van Der Ventel, B. I. S.; Niekerk, D. D. van; Mart, T.

    2010-08-15

    The differential cross sections for the neutrino-induced weak charged current production of strange particles in the threshold energy region are presented. The general representation of the weak hadronic current is newly developed in terms of eighteen unknown invariant amplitudes to parametrize the hadron vertex. The Born-term approximation is used for the numerical calculations in the framework of the Cabibbo theory and SU(3) symmetry. For unpolarized octet baryons four processes are investigated, whereas in the case of polarized baryons only one process is chosen to study the sensitivity of the differential cross section to the various polarizations of the initial-state nucleon and the final-state hyperon.

  4. One-Dimensional Traps, Two-Body Interactions, Few-Body Symmetries. II. N Particles

    NASA Astrophysics Data System (ADS)

    Harshman, N. L.

    2016-01-01

    This is the second in a pair of articles that classify the configuration space and kinematic symmetry groups for N identical particles in one-dimensional traps experiencing Galilean-invariant two-body interactions. These symmetries explain degeneracies in the few-body spectrum and demonstrate how tuning the trap shape and the particle interactions can manipulate these degeneracies. The additional symmetries that emerge in the non-interacting limit and in the unitary limit of an infinitely strong contact interaction are sufficient to algebraically solve for the spectrum and degeneracy in terms of the one-particle observables. Symmetry also determines the degree to which the algebraic expressions for energy level shifts by weak interactions or nearly-unitary interactions are universal, i.e. independent of trap shape and details of the interaction. Identical fermions and bosons with and without spin are considered. This article analyzes the symmetries of N particles in asymmetric, symmetric, and harmonic traps; the prequel article treats the one, two and three particle cases.

  5. Emergent ultra-long-range interactions between active particles in hybrid active-inactive systems.

    PubMed

    Steimel, Joshua P; Aragones, Juan L; Hu, Helen; Qureshi, Naser; Alexander-Katz, Alfredo

    2016-04-26

    Particle-particle interactions determine the state of a system. Control over the range of such interactions as well as their magnitude has been an active area of research for decades due to the fundamental challenges it poses in science and technology. Very recently, effective interactions between active particles have gathered much attention as they can lead to out-of-equilibrium cooperative states such as flocking. Inspired by nature, where active living cells coexist with lifeless objects and structures, here we study the effective interactions that appear in systems composed of active and passive mixtures of colloids. Our systems are 2D colloidal monolayers composed primarily of passive (inactive) colloids, and a very small fraction of active (spinning) ferromagnetic colloids. We find an emergent ultra-long-range attractive interaction induced by the activity of the spinning particles and mediated by the elasticity of the passive medium. Interestingly, the appearance of such interaction depends on the spinning protocol and has a minimum actuation timescale below which no attraction is observed. Overall, these results clearly show that, in the presence of elastic components, active particles can interact across very long distances without any chemical modification of the environment. Such a mechanism might potentially be important for some biological systems and can be harnessed for newer developments in synthetic active soft materials. PMID:27071096

  6. NONRESONANT INTERACTION OF CHARGED ENERGETIC PARTICLES WITH LOW-FREQUENCY NONCOMPRESSIVE TURBULENCE: NUMERICAL SIMULATION

    SciTech Connect

    Ragot, B. R.

    2012-10-20

    A new method for simulating the three-dimensional dynamics of charged energetic particles in very broadband noncompressive magnetic turbulence is introduced. All scales within the primary inertial range of the turbulence observed in the solar wind near 1 AU are now included for the independent computations of both the particle dynamics and the turbulent magnetic field lines (MFLs). While previous theories of resonant particle pitch-angle (PA) scattering and transport in interplanetary magnetic fields had favored interpreting the observed depletions in the electron PA distributions (PADs) around 90 Degree-Sign PA as evidence of poor scattering at low PA cosines, the computed particle dynamics reveal a very different reality. The MFL directions now vary on many scales, and the PADs are depleted around 90 Degree-Sign PA due to nonresonant filtering of the particles that propagate at too large an angle to the local magnetic field. Rather than being too weak, the scattering through 90 Degree-Sign PA is actually so strong that the particles (electrons and protons/ions) are reflected and trapped in the turbulent magnetic fields. While the low-frequency nonresonant turbulence produces ubiquitous magnetic traps that only let through particles with the most field-aligned velocities, higher-frequency near-gyroscale turbulence, when present, enhances particle transport by allowing the particles to navigate between magnetic traps. Finally, visualizing both particle trajectories and MFLs in the very same turbulence reveals a powerful tool for understanding the effects of the turbulent fields on the particle dynamics and cross-field transport. Some cross-field-line scattering, strongly amplified by MFL dispersal, results in a strong cross-field scattering of the particles. From this visualization, it also appears that near-gyroscale turbulence, previously known as gyroresonant turbulence, does not resonantly interact with the particles. The interaction between particles and

  7. ON THE INTERACTION OF ADENINE WITH IONIZING RADIATION: MECHANISTICAL STUDIES AND ASTROBIOLOGICAL IMPLICATIONS

    SciTech Connect

    Evans, Nicholas L.; Ullrich, Susanne; Bennett, Chris J.; Kaiser, Ralf I.

    2011-04-01

    The molecular inventory available on the prebiotic Earth was likely derived from both terrestrial and extraterrestrial sources. A complete description of which extraterrestrial molecules may have seeded early Earth is therefore necessary to fully understand the prebiotic evolution which led to life. Galactic cosmic rays (GCRs) are expected to cause both the formation and destruction of important biomolecules-including nucleic acid bases such as adenine-in the interstellar medium within the ices condensed on interstellar grains. The interstellar ultraviolet (UV) component is expected to photochemically degrade gas-phase adenine on a short timescale of only several years. However, the destruction rate is expected to be significantly reduced when adenine is shielded in dense molecular clouds or even within the ices of interstellar grains. Here, biomolecule destruction by the energetic charged particle component of the GCR becomes important as it is not fully attenuated. Presented here are results on the destruction rate of the nucleobase adenine in the solid state at 10 K by energetic electrons, as generated in the track of cosmic ray particles as they penetrate ices. When both UV and energetic charged particle destructive processes are taken into account, the half-life of adenine within dense interstellar clouds is found to be {approx}6 Myr, which is on the order of a star-forming molecular cloud. We also discuss chemical reaction pathways within the ices to explain the production of observed species, including the formation of nitriles (R-C{identical_to}N), epoxides (C-O-C), and carbonyl functions (R-C=O).

  8. Production of neutrons from interactions of GCR-like particles

    NASA Technical Reports Server (NTRS)

    Heilbronn, L.; Frankel, K.; Holabird, K.; Zeitlin, C.; McMahan, M. A.; Rathbun, W.; Cronqvist, M.; Gong, W.; Madey, R.; Htun, M.; Elaasar, M.; Anderson, B. D.; Baldwin, A. R.; Jiang, J.; Keane, D.; Scott, A.; Shao, Y.; Watson, J. W.; Zhang, W. M.; Galonsky, A.; Ronningen, R.; Zecher, P.; Kruse, J.; Wang, J.; Miller, J. (Principal Investigator)

    1998-01-01

    In order to help assess the risk to astronauts due to the long-term exposure to the natural radiation environment in space, an understanding of how the primary radiation field is changed when passing through shielding and tissue materials must be obtained. One important aspect of the change in the primary radiation field after passing through shielding materials is the production of secondary particles from the breakup of the primary. Neutrons are an important component of the secondary particle field due to their relatively high biological weighting factors, and due to their relative abundance, especially behind thick shielding scenarios. Because of the complexity of the problem, the estimation of the risk from exposure to the secondary neutron field must be handled using calculational techniques. However, those calculations will need an extensive set of neutron cross section and thicktarget neutron yield data in order to make an accurate assessment of the risk. In this paper we briefly survey the existing neutron-production data sets that are applicable to the space radiation transport problem, and we point out how neutron production from protons is different than neutron production from heavy ions. We also make comparisons of one the heavy-ion data sets with Boltzmann-Uehling-Uhlenbeck (BUU) calculations.

  9. DEMOCRITUS: An adaptive particle in cell (PIC) code for object-plasma interactions

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni

    2011-06-01

    A new method for the simulation of plasma materials interactions is presented. The method is based on the particle in cell technique for the description of the plasma and on the immersed boundary method for the description of the interactions between materials and plasma particles. A technique to adapt the local number of particles and grid adaptation are used to reduce the truncation error and the noise of the simulations, to increase the accuracy per unit cost. In the present work, the computational method is verified against known results. Finally, the simulation method is applied to a number of specific examples of practical scientific and engineering interest.

  10. Two-dimensional Penning ionization electron spectroscopy of carbon disulfide: spectral assignments and anisotropic interactions with a He*(2 3S) metastable atom

    NASA Astrophysics Data System (ADS)

    Tian, Shan Xi; Kishimoto, Naoki; Ohno, Koichi

    2002-10-01

    Collision-energy-resolved Penning ionization electron spectra are measured for carbon disulfide (CS 2) by collision with a He*(2 3S) metastable atom. Assignments in Penning ionization electron spectrum are made on the basis of collision energy dependence of the partial ionization cross sections (CEDPICS). CEDPICS for the X2Π g, A2Π u, B2Σ u+ and C2Σ g+ states demonstrates that interactions for the He * access perpendicular to the molecular axis are more attractive than those for the collinear access, which is supported by the model calculations of the interaction potential energies. It is found that the perpendicular access plays an important role in a formation of the intermediate He ++CS 2- state.

  11. Towards a Revised Monte Carlo Neutral Particle Surface Interaction Model

    SciTech Connect

    D.P. Stotler

    2005-06-09

    The components of the neutral- and plasma-surface interaction model used in the Monte Carlo neutral transport code DEGAS 2 are reviewed. The idealized surfaces and processes handled by that model are inadequate for accurately simulating neutral transport behavior in present day and future fusion devices. We identify some of the physical processes missing from the model, such as mixed materials and implanted hydrogen, and make some suggestions for improving the model.

  12. Effect of long-range electrostatic interaction on pore clogging in viscous particle flow

    NASA Astrophysics Data System (ADS)

    Chen, Sheng; Yang, Mengmeng; Li, Shuiqing

    2015-11-01

    In this study, we implement the long-range electrostatic interactions (both Coulomb and dipole interactions) into the discrete-element method simulation of small adhesive particles to investigate their influence on the formation of clogging patterns at single-pore level. The relationship between microscopic interparticle forces and the macroscopic clogging quantities, i.e. the flow permeability and clogging structures, is established. Simulated results indicate that the early-stage capture of charged particles is enhanced by the attraction between these particles and their induced charge on the wall surface. However, further aggregation is suppressed by the repulsive Coulomb interaction between the deposited particles and the suspended ones. Meanwhile, the attraction among polarized particles causes the formation of long particle chains on the surface. These particles chains, bended by flow stress, enhance the bridging phenomenon that leads to a rapid pore clogging. Comparatively, the final clogging structures have lower volume fraction and higher flow permeability in contrast to the neutral case. The results suggest that the controlled charging or polarizing of particles provide a feasible way to tune the formation process and the final state of pore clogging. This work has been funded by the National Key Basic Research and Development Program (2013CB228506).

  13. UHV studies of the interaction of CO with small supported metal particles, Pd/mica

    NASA Technical Reports Server (NTRS)

    Doering, D. L.; Poppa, H.; Dickinson, J. T.

    1982-01-01

    The interaction of carbon monoxide with small palladium particles supported on UHV-cleaved and heat-treated single-crystal mica was studied. The Pd particles were characterized and tested using the techniques of flash thermal desorption, Auger electron spectroscopy, core electron energy loss spectroscopy, and transmission electron microscopy. Evidence is presented for CO decomposition on Pd particles during CO adsorption-desorption experiments. The rate of CO decomposition increased rapidly with diminishing particle size. Residual carbon from CO decomposition blocked CO adsorption and had a strong poisoning effect on the CO oxidation reaction.

  14. Emergence of Collective Motion in a Model of Interacting Brownian Particles

    NASA Astrophysics Data System (ADS)

    Dossetti, Victor; Sevilla, Francisco J.

    2015-07-01

    By studying a system of Brownian particles that interact among themselves only through a local velocity-alignment force that does not affect their speed, we show that self-propulsion is not a necessary feature for the flocking transition to take place as long as underdamped particle dynamics can be guaranteed. Moreover, the system transits from stationary phases close to thermal equilibrium, with no net flux of particles, to far-from-equilibrium ones exhibiting collective motion, phase coexistence, long-range order, and giant number fluctuations, features typically associated with ordered phases of models where self-propelled particles with overdamped dynamics are considered.

  15. Emergence of Collective Motion in a Model of Interacting Brownian Particles.

    PubMed

    Dossetti, Victor; Sevilla, Francisco J

    2015-07-31

    By studying a system of Brownian particles that interact among themselves only through a local velocity-alignment force that does not affect their speed, we show that self-propulsion is not a necessary feature for the flocking transition to take place as long as underdamped particle dynamics can be guaranteed. Moreover, the system transits from stationary phases close to thermal equilibrium, with no net flux of particles, to far-from-equilibrium ones exhibiting collective motion, phase coexistence, long-range order, and giant number fluctuations, features typically associated with ordered phases of models where self-propelled particles with overdamped dynamics are considered. PMID:26274444

  16. Oblique Propagation, Wave-Particle Interaction and Particle Distribution Functions in the Quasi-Perpendicular Bow Shock.

    NASA Astrophysics Data System (ADS)

    Osmane, A.; Hamza, A. M.; Meziane, K.

    2007-12-01

    Recent results from the Cluster mission have stimulated theoretical investigations and simulations to explain ion distribution functions observed in the quasi-perp bow shock. [Meziane et al., 2001] High-time resolution observations have revealed distributions of gyrating ions that are gyrophase-bunched. When not produced at the shock, such distributions are believed to be resulting from interactions between field-aligned beams and low frequency beam-driven waves (ω <Ømega) [Hamza et al., 2005] The Conventional models used to account for such distributions assume that the waves are purely transverse, and that they propagate parallel to the ambient magnetic field. However observations indicate that these waves are propagating obliquely (θ ≤ 30 ° ) with respect to the ambient magnetic field [Meziane et al., 2001]. A theoretical investigation of the non-relativistic wave-particle interaction in a background magnetic field with the electromagnetic wave propagating obliquely has been addressed previously, resulting in a dynamical system describing the wave interaction with a single ion in the absence of dissipation mechanisms. [Hamza et al., 2005] This dynamical system can be numerically integrated to construct the ion distribution functions by seeding the particles with different initial conditions. We compute the particle orbits and simulate the time evolution of the distribution functions based on Liouville's theorem of phase space density conservation. This exercise can then provide insights on the particle dynamics away from the shock. Meziane, K., C. Mazelle, R.P. Lin, D. LeQueau, D.E. Larson, G.K. Parks, R.P. Lepping (2001), Three dimensional observations of gyrating ions distributions far upstream from the Earth's bow shock and their association with low-frequency waves, J. Geophys. Res. 106, 5731 Hamza, A. M., K. Meziane, and C. Mazelle (2006), Oblique propagation and nonlinear wave particle processes, J. Geophys. Res., 111, A04104

  17. High-energy tail distributions and resonant wave particle interaction

    NASA Technical Reports Server (NTRS)

    Leubner, M. P.

    1983-01-01

    High-energy tail distributions (k distributions) are used as an alternative to a bi-Lorentzian distribution to study the influence of energetic protons on the right- and left-hand cyclotron modes in a hot two-temperature plasma. Although the parameters are chosen to be in a range appropriate to solar wind or magnetospheric configurations, the results apply not only to specific space plasmas. The presence of energetic particles significantly alters the behavior of the electromagnetic ion cyclotron modes, leading to a wide range of unstable frequencies and increased growth rates. From the strongly enhanced growth rates it can be concluded that high-energy tail distributions should not show major temperature anisotropies, which is consistent with observations.

  18. Semiclassical limit for Dirac particles interacting with a gravitational field

    NASA Astrophysics Data System (ADS)

    Silenko, Alexander J.; Teryaev, Oleg V.

    2005-03-01

    The behavior of a spin-1/2 particle in a weak static gravitational field is considered. The Dirac Hamiltonian is diagonalized by the Foldy-Wouthuysen transformation providing also the simple form for the momentum and spin polarization operators. The operator equations of momentum and spin motion are derived for a first time. Their semiclassical limit is analyzed. The dipole spin-gravity coupling in the previously found (another) Hamiltonian does not lead to any observable effects. The general agreement between the quantum and classical approaches is established, contrary to several recent claims. The expression for the gravitational Stern-Gerlach force is derived. The helicity evolution in the gravitational field and corresponding accelerated frame coincides, being the manifestation of the equivalence principle.

  19. Turbulence and wave particle interactions in solar-terrestrial plasmas

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.; Goldman, M. V.; Toomre, J.

    1985-01-01

    Activities in the following study areas are reported: (1) particle and wave processes in solar flares; (2) solar convection zone turbulence; and (3) solar radiation emission. To investigate the amplification of cyclotron maser radiation in solar flares, a radio frequency. (RF) heating model was developed for the corona surrounding the energy release site. Then nonlinear simulations of compressible convection display prominent penetration by plumes into regions of stable stratification at the base of the solar convection zone, leading to the excitation of internal gravity waves there. Lastly, linear saturation of electron-beam-driven Langmuir waves by ambient density fluctuations, nonlinear saturation by strong turbulence processes, and radiation emission mechanisms are examined. An additional section discusses solar magnetic fields and hydromagnetic waves in inhomogeneous media, and the effect of magnetic fields on stellar oscillation.

  20. (Experimental studies of elementary particle interactions at high energies)

    SciTech Connect

    Khuri, N.N.

    1990-01-01

    This report includes descriptions of the combined work of both Tasks B and B{sub 1} at Rockefeller University. Some highlights are worth stressing in this brief introduction. First, one should note the active involvement of two members of our group, Ren and Callaway, in understanding the problem of superconductivity, both high and low {Tc}. This reflects the broad reach of many, but perhaps not all, particle physicists. Second, spurred by the Rockefeller environment, some in our group are also looking at problems in biology. As for our main purpose, I would like to single out the results of Sanda and Morozumi on the {Delta}I = {1/2} rule, the work of Bitar, Ren and myself on a new approach to the path integral, S.Y. Pi's results on Chern-Simons non-relativistic quantum mechanics, and finally the work by Lee and collaborators on the origin of Fermion masses and mixing.

  1. Asymmetries between strange and antistrange particle production inpion-proton interactions

    SciTech Connect

    Gutierrez, T.D.; Vogt, R.

    2002-01-29

    Recent measurements of the asymmetries between Feynman x-distributions of strange and antistrange hadrons in {pi}{sup -}A interactions show a strong effect as a function of x{sub F}. We calculate strange hadron production in the context of the intrinsic model and make predictions for particle/antiparticle asymmetries in these interactions.

  2. A remark on different norms and analyticity for many-particle interactions

    NASA Astrophysics Data System (ADS)

    van Enter, A. C. D.; Fernández, R.

    1989-09-01

    We compare a recent result of Dobrushin and Martirosyan with previous results by Gallavotti and Miracle-Sole and by Israel and point out that the analytic behavior at high temperatures for many-particle interactions is different depending on whether the interactions are weighted with a lattice-gas or Ising norm or, on the other hand, with the supremum norm.

  3. Dynamic interaction potential and the scattering cross sections of the semiclassical plasma particles

    SciTech Connect

    Dzhumagulova, K. N.; Shalenov, E. O.; Gabdullina, G. L.

    2013-04-15

    The dynamic model of the charged particles interaction in non-ideal semiclassical plasma is presented. This model takes into account the quantum mechanical diffraction effect and the dynamic screening effect. On the basis of the dynamic interaction potential, the electron scattering cross sections are investigated. Comparison with the results obtained on the basis of other models and conclusions were made.

  4. Inspecting the Higgs for new weakly interacting particles

    NASA Astrophysics Data System (ADS)

    Cheung, Clifford; McDermott, Samuel D.; Zurek, Kathryn M.

    2013-04-01

    We explore new physics scenarios which are optimally probed through precision Higgs measurements rather than direct collider searches. Such theories consist of additional electroweak charged or singlet states which couple directly to or mix with the Higgs boson; particles of this kind may be weakly constrained by direct limits due to their meager production rates and soft decay products. We present a simplified framework which characterizes the effects of these states on Higgs physics by way of tree level mixing (with neutral scalars) and loop level modifications (from electrically charged states), all expressed in terms of three mixing angles and three loop parameters, respectively. The theory parameters are constrained and in some cases even fixed by ratios of Higgs production and decay rates. Our setup is simpler than a general effective operator analysis, in that we discard parameters irrelevant to Higgs observables while retaining complex correlations among measurements that arise due to the underlying mixing and radiative effects. We show that certain correlated observations are forbidden, e.g. a depleted ratio of Higgs production from gluon fusion versus vector boson fusion together with a depleted ratio of Higgs decays to boverline{b} versus WW. Moreover, we study the strong correlation between the Higgs decay rate to γγ and WW and how it can be violated in the presence of additional electrically charged particles. Our formalism maps straightforwardly onto a variety of new physics models, such as the NMSSM. We show, for example, that with a Higgsino of mass {m_{{χ_1^{± }}}}gtrsim 100 GeV and a singlet-Higgs coupling of λ = 0.7, the photon signal strength can deviate from the vector signal strength by up to ˜ 40 - 60% while depleting the vector signal strength by only 5 - 15% relative to the Standard Model.

  5. ARTICLES: Influence Factors on Particle Growth for On-line Aerosol Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Xia, Wei-wei; Ti, Ru-fang; Zhang, Zi-Iiang; Zheng, Hai-yang; Fang, Li

    2010-06-01

    An evaporation/condensation flow cell was developed and interfaced with the matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometer for on-line bioaerosol detection and characterization, which allows matrix addition by condensation onto the laboratory-generated bioaerosol particles. The final coated particle exiting from the condenser is then introduced into the aerodynamic particle sizer spectrometer or home-built aerosol laser time-of-flight mass spectrometer, and its aerodynamic size directly effects on the matrix-to-analyte molar ratio, which is very important for MALDI technique. In order to observe the protonated analyte molecular ion, and then determine the classification of biological aerosols, the matrix-to-analyte molar ratio must be appropriate. Four experimental parameters, including the temperature of the heated reservoir, the initial particle size, its number concentration, and the matrix material, were tested experimentally to analyze their influences on the final particle size. This technique represents an on-line system of detection that has the potential to provide rapid and reliable identification of airborne biological aerosols.

  6. Direct effects of ionizing radiation on integral membrane proteins. Noncovalent energy transfer requires specific interpeptide interactions

    SciTech Connect

    Jhun, E.; Jhun, B.H.; Jones, L.R.; Jung, C.Y. )

    1991-05-25

    The 12 transmembrane alpha helices (TMHs) of human erythrocyte glucose transporter were individually cut by pepsin digestion as membrane-bound 2.5-3.5-kDa peptide fragments. Radiation-induced chemical degradation of these fragments showed an average target size of 34 kDa. This is 10-12 x larger than the average size of an individual TMH, demonstrating that a significant energy transfer occurs among these TMHs in the absence of covalent linkage. Heating this TMH preparation at 100{degree}C for 15 min reduced the target size to 5 kDa or less, suggesting that the noncovalent energy transfer requires specific helix-helix interactions. Purified phospholamban, a small (6-kDa) integral membrane protein containing a single TMH, formed a pentameric assembly in sodium dodecyl sulfate. The chemical degradation target size of this phospholamban pentamer was 5-6 kDa, illustrating that not all integral membrane protein assemblies permit intersubunit energy transfer. These findings together with other published observations suggest strongly that significant noncovalent energy transfer can occur within the tertiary and quaternary structure of membrane proteins and that as yet undefined proper molecular interactions are required for such covalent energy transfer. Our results with pepsin-digested glucose transporter also illustrate the importance of the interhelical interaction as a predominating force in maintaining the tertiary structure of a transmembrane protein.

  7. Interaction of Charged Colloidal Particles at the Air-Water Interface.

    PubMed

    Girotto, Matheus; Dos Santos, Alexandre P; Levin, Yan

    2016-07-01

    We study, using Monte Carlo simulations, the interaction between charged colloidal particles confined to the air-water interface. The dependence of force on ionic strength and counterion valence is explored. For 1:1 electrolyte, we find that the electrostatic interaction at the interface is very close to the one observed in the bulk. On the other hand, for salts with multivalent counterions, an interface produces an enhanced attraction between like charged colloids. Finally, we explore the effect of induced surface charge at the air-water interface on the interaction between colloidal particles. PMID:26551757

  8. A FDR-Preserving Field Theory for Interacting Brownian Particles: One-Loop Theory and MCT

    SciTech Connect

    Kim, Bongsoo; Kawasaki, Kyozi

    2008-02-21

    We develop a field theoretical treatment of a model of interacting Brownian particles. We pay particlular attention to the requirement of the time reversal (TR) invariance and the flucutation-dissipation relationship (FDR). Previous field theoretical formulations were found to be inconsistent with this requirement. The method used in the present formulation is a modified version of the auxilliary field method due originally to Andreanov, Biroli and Lefevre (ABL). We recover the correct diffusion law when the interaction is dropped as well as the standard mode coupling equation in the one-loop order calculation for interacting Brownian particle systems.

  9. Effect of long-lived strongly interacting relic particles on big bang nucleosynthesis

    SciTech Connect

    Kusakabe, Motohiko; Kajino, Toshitaka; Yoshida, Takashi; Mathews, Grant J.

    2009-11-15

    It has been suggested that relic long-lived strongly interacting massive particles (SIMPs, or X particles) existed in the early universe. We study effects of such long-lived unstable SIMPs on big bang nucleosynthesis (BBN) assuming that such particles existed during the BBN epoch, but then decayed long before they could be detected. The interaction strength between an X particle and a nucleon is assumed to be similar to that between nucleons. We then calculate BBN in the presence of the unstable neutral charged X{sup 0} particles taking into account the capture of X{sup 0} particles by nuclei to form X nuclei. We also study the nuclear reactions and beta decays of X nuclei. We find that SIMPs form bound states with normal nuclei during a relatively early epoch of BBN. This leads to the production of heavy elements which remain attached to them. Constraints on the abundance of X{sup 0} particles during BBN are derived from observationally inferred limits on the primordial light element abundances. Particle models which predict long-lived colored particles with lifetimes longer than {approx}200 s are rejected based upon these constraints.

  10. A study of the non-covalent interaction between flavonoids and DNA triplexes by electrospray ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wan, Cuihong; Cui, Meng; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2009-06-01

    The binding interactions of 22 flavonoids (9 aglycones and 13 glycosides) with DNA triplexes were investigated using electrospray ionization mass spectrometry (ESI-MS). The results revealed that the hydroxyl positions of aglycones, the locations and numbers of saccharide, as well as the aglycone skeletons play roles in the triplex-binding properties of flavonoids. The presence of 3-OH, or 3'-OH, or replacement of 4'-OH with methoxy group in aglycones decreased the fraction of bound DNA sharply. Flavonoid glycosides exhibit higher binding affinities towards the DNA triplexes than their aglycone counterparts. Glycosylations of flavones at the 8-C position and isoflavones at the 7-O position show higher binding affinities than those on the other positions of ring A of aglycones. Glycosylation with a disaccharide on C3 position of flavonol results in higher binding affinity than that with monosaccharide. Flexibility of the ring B is favorable for its interaction with DNA triplex. According to sustained off-resonance irradiation collision-induced dissociation (SORI-CID) experiments, glycosylation and non-planarity of flavonoid aglycones lead to different dissociation pathways of the flavonoid/triplex complexes. The differences between dissociation patterns suggest different DNA-binding modes or DNA-binding affinities. Although the exact binding geometry of the flavonoid-triplex complexes cannot be specified, the results may be helpful for understanding the triplex-binding properties of flavonoids and give a clue to design of triplex-binding ligands.

  11. Evidence for the interaction of the IRS 16 wind with the ionized and molecular gas at the Galactic center

    NASA Technical Reports Server (NTRS)

    Yusef-Zadeh, Farhad; Wardle, Mark

    1993-01-01

    We present a number of high-resolution radio images showing evidence for the dynamical interaction of the outflow arising from the IRS 16 complex with the ionized gas associated with the Northern Arm of Sgr A West, and with the northwestern segment of the circumnuclear molecular disk which engulfs the inner few parsecs of the Galactic center. We suggest that the wind disturbs the dynamics of the Northern Arm within 0.1 pc of the center, is responsible for the waviness of the arm at larger distances, and is collimated by Sgr A West and the circumnuclear disk. The waviness is discussed in terms of the Rayleigh-Taylor instability induced by the ram pressure of the wind incident on the surface of the Northern Arm. Another consequence of this interaction is the strong mid-IR polarization of the Northern Arm in the vicinity of the IRS 16 complex which is explained as a result of the ram pressure of the wind compressing the gas and the magnetic field.

  12. Density waves in a system of non-interacting particles

    NASA Astrophysics Data System (ADS)

    Kolmes, E. J.; Geyko, V. I.; Fisch, N. J.

    2016-09-01

    An ensemble of non-interacting bouncing balls being acted on by a constant gravitational force, starting at rest from a uniform density distribution, will develop a structure of sharply peaked density waves. We describe these waves by computing the density profile of such a system analytically, and we find that the analytical results are in good agreement with numerical findings. We suggest that in a real system, these density waves could be used to produce measurements of the strength of a gravitational field.

  13. Quantum Phase Coherence in Mesoscopic Transport Devices with Two-Particle Interaction.

    PubMed

    Wang, Zhimei; Guo, Xiaofang; Xue, Haibin; Xue, Naitao; Liang, J-Q

    2015-01-01

    In this paper we demonstrate a new type of quantum phase coherence (QPC), which is generated by the two-body interaction. This conclusion is based on quantum master equation analysis for the full counting statistics of electron transport through two parallel quantum-dots with antiparallel magnetic fluxes in order to eliminate the Aharonov-Bohm interference of either single-particle or non-interacting two-particle wave functions. The interacting two-particle QPC is realized by the flux-dependent oscillation of the zero-frequency cumulants including the shot noise and skewness with a characteristic period. The accurately quantized peaks of cumulant spectrum may have technical applications to probe the two-body Coulomb interaction. PMID:26255858

  14. Quantum Phase Coherence in Mesoscopic Transport Devices with Two-Particle Interaction

    NASA Astrophysics Data System (ADS)

    Wang, Zhimei; Guo, Xiaofang; Xue, Haibin; Xue, Naitao; Liang, J.-Q.

    2015-08-01

    In this paper we demonstrate a new type of quantum phase coherence (QPC), which is generated by the two-body interaction. This conclusion is based on quantum master equation analysis for the full counting statistics of electron transport through two parallel quantum-dots with antiparallel magnetic fluxes in order to eliminate the Aharonov-Bohm interference of either single-particle or non-interacting two-particle wave functions. The interacting two-particle QPC is realized by the flux-dependent oscillation of the zero-frequency cumulants including the shot noise and skewness with a characteristic period. The accurately quantized peaks of cumulant spectrum may have technical applications to probe the two-body Coulomb interaction.

  15. Quantum Phase Coherence in Mesoscopic Transport Devices with Two-Particle Interaction

    PubMed Central

    Wang, Zhimei; Guo, Xiaofang; Xue, Haibin; Xue, Naitao; Liang, J.-Q.

    2015-01-01

    In this paper we demonstrate a new type of quantum phase coherence (QPC), which is generated by the two-body interaction. This conclusion is based on quantum master equation analysis for the full counting statistics of electron transport through two parallel quantum-dots with antiparallel magnetic fluxes in order to eliminate the Aharonov-Bohm interference of either single-particle or non-interacting two-particle wave functions. The interacting two-particle QPC is realized by the flux-dependent oscillation of the zero-frequency cumulants including the shot noise and skewness with a characteristic period. The accurately quantized peaks of cumulant spectrum may have technical applications to probe the two-body Coulomb interaction. PMID:26255858

  16. Regular versus chaotic dynamics in closed systems of interacting Fermi particles

    SciTech Connect

    Izrailev, F.M.; Castaneda-Mendoza, A.

    2005-07-08

    We discuss dynamical properties of strongly interacting Fermi-particles. Main attention is paid to the evolution of wave packets in the many-particle basis of non-interacting particles. Specifically, we analyze the time dependence of the return probability and the Shannon entropy of packets. We start with the model of two-body random interaction which allows us to obtain analytical expression for the time dependence of the above quantities. Analytical results are compared with numerical data obtained in direct simulation of the wave packet dynamics. To understand to what extent these results are generic, we have considered the spin model of a quantum computation with a non-random (dynamical) interaction between spins. We have found that the linear increase of the Shannon entropy observed in the two-body random model, occurs, under some conditions, in the dynamical model. Finally, we have analyzed the role of weak external perturbation taken in the form of static disorder.

  17. Particle-Surface Interaction Databases in ALADDIN Format

    DOE Data Explorer

    These databases are listed as recommended resources by CFADC. They represent older data and are not necessarily DOE-originated or funded. However, they are cited in the DOE Data Explorer because of their availability through a DOE Data Center. The citations for these databases are: 1) Energy Dependence of Ion-Induced Sputtering Yields of Monatomic Solids in the Low Energy Region. N. Matsunami, Y. Yamamura, N. Itoh, H. Tawara, T. Kawamura. Report IPPJ-AM-52, Institute of Plasma Physics (National Institute for Fusion Science), Nagoya, Japan (1987); 2) Energy Dependence of the Yields of Ion-Induced Sputtering of Monatomic Solids. N. Maksunami, Y. Yamaura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawer, K. Morita, R. Strimizu, H. Tawara. Report IPPJ-AM-32, Institute of Plasma Physics (National Institute for Fusion Science), Nagoya, Japan (1988); 3) Particle Reflection from Surfaces - A Recommended Data Base. E. W. Thomas, R. K. Janev and J. J. Smith. Report IAEA INDC(NDS)-249, July 1991; 4) Sputtering Data. W. Eckstein, C. Garcia-Rosales, J. Roth and W. Ottenberger. Max-Plank-Institute fur Plasmaphysik Report IPP9/82 (1993); 5) An Evaluated Database for Sputtering. E. W. Thomas, R. K. Janev, J. Botero, J. J. Smith and Y. Qiu. Report IAEA INDC(NDS)-287 (1993).

  18. Ambient gas/particle partitioning. 3. Estimating partition coefficients of apolar, polar, and ionizable organic compounds by their molecular structure.

    PubMed

    Arp, Hans Peter H; Gosses, Kai-Uwe

    2009-03-15

    Equilibrium gas/particle partitioning coefficients of terrestrial aerosols, Kip, are dependent on various intermolecular interactions that can be quantified by experimentally determined compound-specific descriptors. For many compounds of environmental interest, such as emerging contaminants and atmospheric phototransformation products, these compound-specific descriptors are unknown or immeasurable. Often, only the molecular structure is known. Here we present the ability of two computer programs to predict equilibrium partitioning to terrestrial aerosols solely on the basis of molecular structure: COSMOtherm and SPARC. The greatest hurdle with designing such an approach is to identify suitable molecular surrogates to represent the dominating sorbing phases, which for ambient terrestrial aerosols are the water insoluble organic matter (WIOM) phase and the mixed-aqueous phase. For the WI0M phase, hypothetical urban secondary organic aerosol structural units from Kalberer et al. Science 2004, 303, 1659-1662 were investigated as input surrogates, and for the mixed-aqueous phase mildly acidic water was used as a surrogate. Using a validation data set of more than 1400 experimentally determined Kip values for polar, apolar, and ionic compounds ranging over 9 orders of magnitude (including semivolatile compounds such as PCDD/Fs, pesticides, and PBDEs), SPARC and COSMOtherm were generally able to predict Kip values well within an order of magnitude over an ambient range of temperature and relative humidity. This is remarkable as these two models were not fitted or calibrated to any experimental data. As these models can be used for potentially any organic molecule, they are particularly recommended for environmental screening purposes and for use when experimental compound descriptor data are not available. PMID:19368193

  19. Emergent ultra–long-range interactions between active particles in hybrid active–inactive systems

    NASA Astrophysics Data System (ADS)

    Steimel, Joshua P.; Aragones, Juan L.; Hu, Helen; Qureshi, Naser

    2016-04-01

    Particle–particle interactions determine the state of a system. Control over the range of such interactions as well as their magnitude has been an active area of research for decades due to the fundamental challenges it poses in science and technology. Very recently, effective interactions between active particles have gathered much attention as they can lead to out-of-equilibrium cooperative states such as flocking. Inspired by nature, where active living cells coexist with lifeless objects and structures, here we study the effective interactions that appear in systems composed of active and passive mixtures of colloids. Our systems are 2D colloidal monolayers composed primarily of passive (inactive) colloids, and a very small fraction of active (spinning) ferromagnetic colloids. We find an emergent ultra–long-range attractive interaction induced by the activity of the spinning particles and mediated by the elasticity of the passive medium. Interestingly, the appearance of such interaction depends on the spinning protocol and has a minimum actuation timescale below which no attraction is observed. Overall, these results clearly show that, in the presence of elastic components, active particles can interact across very long distances without any chemical modification of the environment. Such a mechanism might potentially be important for some biological systems and can be harnessed for newer developments in synthetic active soft materials.

  20. An investigation of electrostatic interactions between organically functionalized silica particles, surfaces, and metal ions

    NASA Astrophysics Data System (ADS)

    Stahl, Sarah Margaret

    This research focuses on the electrostatic interactions between silica particles and either coated surfaces or metal ions. This work has two objectives: to begin a preliminary investigation into particle-surface systems that may be ideal for further investigation as a sensor and to investigate metal-ligand interactions for the potential use of metal ions to aid in the self assembly of silica particles. Silica particles with various organic functionalizations were synthesized from trialkoxysilane precursors using variations of the Stöber synthesis method, a well-known colloidal suspensions technique. The functional groups that were used in this work include mercaptopropyl (MPTMS), ethylenediamine (enTMOS), and aminopropyl groups (APTES). The aminopropyl functionalized particles were synthesized by varying the mol% of APTES in a tetraethoxyorthosilicate (TEOS) particle formulation. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were used to analyze the particles for size, shape, and composition. Silica particles with all three functionalizations were used for the particle-surface study, whereas only MPTMS particles were used in the metal-ligand study. The coatings used for the particle-surface study were synthesized using standard sol gel chemistry with trialkoxysilane precursors as well. The functional groups used in this study include methyl (MTMOS) and aminopropyl groups (TEOS/APTES). Sol gel coatings incorporating carboxy and ammonium groups were also investigated but were not suitable for further study. FTIR was used to analyze the MTMOS and TEOS/APTES coatings. The adsorption of the MPTMS particles onto TEOS/APTES coatings and enTMOS or TEOS/APTES particles onto MTMOS coatings over time was monitored using fluorescence spectroscopy. Since silica particles are not fluorescent in the visible light range, a fluorescent dye was incorporated into the particles, either rhodamine (MPTMS particles) or pyranine dye (enTMOS, TEOS

  1. Wave-particle interactions on the FAST satellite

    NASA Technical Reports Server (NTRS)

    Temerin, M. A.; Carlson, C. W.; Cattell, C. A.; Ergun, R. E.; Mcfadden, J. P.

    1990-01-01

    NASA's Fast Auroral Snapshot, or 'FAST' satellite, scheduled for launch in 1993, will investigate the plasma physics of the low altitude auroral zone from a 3500-km apogee polar orbit. FAST will give attention to wave, double-layer, and soliton production processes due to electrons and ions, as well as to wave-wave interactions, and the acceleration of electrons and ions by waves and electric fields. FAST will employ an intelligent data-handling system capacle of data acquisition at rates of up to 1 Mb/sec, in addition to a 1-Gbit solid-state memory. The data need be gathered for only a few minutes during passes through the auroral zone, since the most interesting auroral phenomena occur in such narrow regions as auroral arcs, electrostatic shocks, and superthermal electron bursts.

  2. Effects of corotating interaction regions on ULYSSES high energy particles

    SciTech Connect

    Droege, W.; Kunow, H.; Raviart, A.

    1995-09-01

    Since June 1992 the Kiel Electron Telescope on board ULYSSES measures variations of more than 10% in the fluxes of high energy H and He showing a periodicity of about 26 days in coincidence with the passage of corotating interaction regions. (CIR). At low energies MeV protons are accelerated at the shocks of the CIRs. These effects are observed up to high southern latitudes, where the signature of a CIR is no longer visible in plasma or magnetic field data. After passing over the south polar cap ULYSSES has now returned to the solar equator and climbs up to the north pole. In this paper we study the relative intensity variations with latitude and the latitude dependence at solar distances smaller than ever studied before.

  3. Experimental Investigation of the Wake-Mediated Interaction Forces Between Dust Particles in a Flowing Plasma

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg; Lisin, Evgeny; Statsenko, Konstantin; Hyde, Truell; Carmona, Jorge

    2015-11-01

    An anisotropic spatial dependence of the wake-mediated interaction forces between dust particles in a plasma flow was studied experimentally. The measurements were performed at CASPER for the vertically aligned chain self-organized from 11 microparticles inside a glass box placed on the lower electrode of a RF gas discharge chamber. The experiment was conducted in argon plasma at 137 mTorr and monodisperse MF particles having diameters of 8.93 microns were used. To recover the wake-mediated interaction forces we improved the method based on solving the inverse Langevin problem of the dynamics of many interacting particles. To determine 3D trajectories of the particles we used a stereoscopic video surveillance system. Spatial profiles of the forces with which upstream particles act on downstream ones and vice versa were obtained. The difference between the interparticle interaction forces in the opposite directions indicates its non-reciprocal nature and can be associated with the wake. The peak position of the wake-field and the space charge concentrated in it were evaluated by the force profile analysis. The data analysis and interaction force recovering in this work was supported by the Russian Science Foundation (O.F. Petrov, K.B. Stacenko, E.?.Lisin) through Grant No. 14-12-01440).

  4. Interactions of dicarboxylic porphyrins with membranes in relation to their ionization state.

    PubMed

    Brault, D; Vever-Bizet, C; Kuzelova, K

    1993-10-01

    The interactions of dicarboxylic porphyrins with membrane systems are discussed with particular emphasis on the effect of the charge of the porphyrin and the nature of the side-chains. The incorporation of hematoporphyrin or related dicarboxylic porphyrins within small unilamellar vesicles as membrane models is favored by a decrease of the pH in the range of physiological pH values. This effect might play an important role in the retention of porphyrins by tumors, which are more acidic than normal tissues. Kinetics studies also show that the partition of the porphyrin between the lipidic bilayer and the aqueous phase is governed by its release rate rather than by its incorporation rate. PMID:8271119

  5. Direct and indirect effects of ionizing radiation on grazer-phytoplankton interactions.

    PubMed

    Nascimento, Francisco J A; Bradshaw, Clare

    2016-05-01

    Risk assessment of exposure to radionuclides and radiation does not usually take into account the role of species interactions. We investigated how the transfer of carbon between a primary producer, Raphidocelis subcapitata, and a consumer, Daphnia magna, was affected by acute exposure to gamma radiation. In addition to unexposed controls, different treatments were used where: a) only D. magna (Z treatment); b) only R. subcapitata (P treatment) and c) both D. magna and R. subcapitata (ZP treatment) were exposed to one of three acute doses of gamma radiation (5, 50 and 100 Gy). We then compared differences among treatments for three endpoints: incorporation of carbon by D. magna, D. magna growth and R. subcapitata densities. Carbon incorporation was affected by which combination of species was irradiated and by the radiation dose. Densities of R. subcapitata at the end of the experiment were also affected by which species had been exposed to radiation. Carbon incorporation by D. magna was significantly lower in the Z treatment, indicating reduced grazing, an effect stronger with higher radiation doses, possibly due to direct effects of gamma radiation. Top-down indirect effects of this reduced grazing were also seen as R. subcapitata densities increased in the Z treatment due to decreased herbivory. The opposite pattern was observed in the P treatment where only R. subcapitata was exposed to gamma radiation, while the ZP treatment showed intermediate results for both endpoints. In the P treatments, carbon incorporation by D. magna was significantly higher than in the other treatments, suggesting a higher grazing pressure. This, together with direct effects of gamma radiation on R. subcapitata, probably significantly decreased phytoplankton densities in the P treatment. Our results highlight the importance of taking into account the role of species interactions when assessing the effects of exposure to gamma radiation in aquatic ecosystems. PMID:26913978

  6. Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions.

    PubMed

    Jin, Chao; Ren, Carolyn L; Emelko, Monica B

    2016-04-19

    It is widely believed that media surface roughness enhances particle deposition-numerous, but inconsistent, examples of this effect have been reported. Here, a new mathematical framework describing the effects of hydrodynamics and interaction forces on particle deposition on rough spherical collectors in absence of an energy barrier was developed and validated. In addition to quantifying DLVO force, the model includes improved descriptions of flow field profiles and hydrodynamic retardation functions. This work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Notably, the developed model's particle deposition predictions are in closer agreement with experimental observations than those from current models, demonstrating the importance of inclusion of roughness impacts in particle deposition description/simulation. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with nonsmooth collector surfaces. PMID:27007293

  7. The interaction of small metal particles with refractory oxide supports

    NASA Technical Reports Server (NTRS)

    Park, C.; Heinemann, K.

    1985-01-01

    Islands and continuous layers of Pd were grown in UHV on Mo and MoO subtrates. As-deposited Pd islands and layers exhibited bulk Pd adsorption properties for CO when the Pd had been deposited at RT and at thicknesses exceeding 3 ML. However, CO adsorption was drastically reduced upon annealing. This deactivation was interpreted in terms of substrate/support interaction involving the diffusion of substrate species toward the Pd surface, using AES, TPD, and work function measurement techniques. A study of the growth and annealing behavior of Pd on Mo(110) was made for thicknesses up to 12 monolayers and substrate temperatures up to 1300K, using AES, XPS, LEED, and work function measurements. At low tempertures Pd formed a monolayer without alloying. In thick layers (12 ML) annealed about 700 K, Mo diffusion into the Pd layer and alloying were noted. Such layers remained continuous up to 1100 K. Thinner Pd layers were less stable and started coalescing upon annealing to as little as 550 K. Significant changes in Pd Auger peak shape, as well as shifts of Pd core levels, were observed during layer growth and annealing.

  8. The Classical Theory of Light Colors: a Paradigm for Description of Particle Interactions

    NASA Astrophysics Data System (ADS)

    Mazilu, Nicolae; Agop, Maricel; Gatu, Irina; Iacob, Dan Dezideriu; Butuc, Irina; Ghizdovat, Vlad

    2016-06-01

    The color is an interaction property: of the interaction of light with matter. Classically speaking it is therefore akin to the forces. But while forces engendered the mechanical view of the world, the colors generated the optical view. One of the modern concepts of interaction between the fundamental particles of matter - the quantum chromodynamics - aims to fill the gap between mechanics and optics, in a specific description of strong interactions. We show here that this modern description of the particle interactions has ties with both the classical and quantum theories of light, regardless of the connection between forces and colors. In a word, the light is a universal model in the description of matter. The description involves classical Yang-Mills fields related to color.

  9. A model of the interaction of bubbles and solid particles under acoustic excitation

    NASA Astrophysics Data System (ADS)

    Hay, Todd Allen

    The Lagrangian formalism utilized by Ilinskii, Hamilton and Zabolotskaya [J. Acoust. Soc. Am. 121, 786-795 (2007)] to derive equations for the radial and translational motion of interacting bubbles is extended here to obtain a model for the dynamics of interacting bubbles and elastic particles. The bubbles and particles are assumed to be spherical but are otherwise free to pulsate and translate. The model is accurate to fifth order in terms of a nondimensional expansion parameter R/d, where R is a characteristic radius and d is a characteristic distance between neighboring bubbles or particles. The bubbles and particles may be of nonuniform size, the particles elastic or rigid, and external acoustic sources are included to an order consistent with the accuracy of the model. Although the liquid is assumed initially to be incompressible, corrections accounting for finite liquid compressibility are developed to first order in the acoustic Mach number for a cluster of bubbles and particles, and to second order in the acoustic Mach number for a single bubble. For a bubble-particle pair consideration is also given to truncation of the model at fifth order in R/d via automated derivation of the model equations to arbitrary order. Numerical simulation results are presented to demonstrate the effects of key parameters such as particle density and size, liquid compressibility, particle elasticity and model order on the dynamics of single bubbles, pairs of bubbles, bubble-particle pairs and clusters of bubbles and particles under both free response conditions and sinusoidal or shock wave excitation.

  10. Role of Polymer Segment-Particle Surface Interactions in Controlling Nanoparticle Dispersions in Concentrated Polymer Solutions

    SciTech Connect

    Kim, So Youn; Zukoski, Charles F.

    2014-09-24

    The microstructure of particles suspended in concentrated polymer solutions is examined with small-angle X-ray scattering and small-angle neutron scattering. Of interest are changes to long wavelength particle density fluctuations in ternary mixtures of silica nanoparticles suspended in concentrated solutions of poly(ethylene glycol). The results are understood in terms of application of the pseudo-two-component polymer reference interaction site model (PRISM) theory modified to account for solvent addition via effective contact strength of interfacial attraction, εpc, in an implicit manner. The combined experimental-theoretical study emphasizes the complex interactions between solvent, polymer, and particle surface that control particle miscibility but also demonstrate that these factors can all be understood in terms of variations of εpc.

  11. Wave-Particle Interactions with Whistlers: Comparison Between Particle-in-Cell and Quasi-Linear Simulations

    NASA Astrophysics Data System (ADS)

    Camporeale, E.; Zimbardo, G.

    2015-12-01

    We study the wave-particle interactions between lower band chorus whistlers and an anisotropic tenuous population of relativistic electrons. We present the first direct comparison of first-principle particle-in-cell (PIC) simulations with a quasi-linear diffusion code. In the PIC approach, the waves are self-consistently generated by the temperature anisotropy instability that quickly saturates and relaxes the system toward marginal stability. We show that the quasi-linear diffusion and PIC results have significant quantitative mismatch in regions of energy/pitch angle where the resonance condition is not satisfied. Moreover, for pitch angles close to the loss cone the diffusion code overestimates the scattering, particularly at low energies. This suggests that higher-order nonlinear theories should be taken in consideration in order to capture non-resonant interactions, resonance broadening, and to account for scattering at angles close to 90 degree. Finally, we show that pitch angle diffusion is enhanced during the linear wave growth phase, and it rapidly saturates well before a single bounce period. We discuss how the saturation is related to the fact that the domain in which the particles pitch angle diffuse is bounded, and to the well-known problem of 90 degree diffusion barrier.

  12. On the interaction of non-ionizing radiation with people. Technical report

    SciTech Connect

    Ruderman, M.A.; MacDonald, G.J.

    1980-03-01

    This report examines the physical basis for many of the thermal and non-thermal interactions between microwaves and the human body. Although a microwave beam incident on the human body dissipates, on the average, about the same amount of heat as does normal metabolism, it can actually dissipate considerably more heat in certain local regions of the body because of strong beam focusing effects (e.g., within the brain), flow of induced currents through small, constricted areas of the body (e.g., ankle, neck) and differences in electrical properties among body tissues. Since relatively large heat dissipation can occur on a local level, it would appear more rational to determine a maximum permissive radiation exposure in terms of maximum allowed dissipation in a specific sensitive part of the body rather than, as is presently done, in terms of external beam intensity (the present U.S. standard is 10 milliwatts/sq cm). For non-thermal processes, no special biological process or structure has been identified as likely to be especially sensitive to microwave fields or frequencies. The experimental results designed to explore the non-thermal effect of microwaves were studied. The results of all experiments purporting to demonstrate a significant non-thermal biological effect have been disputed; in fact, very few experiments in the entire field have ever been replicated -- a situation which should be rectified.

  13. Simulation of Alpha Particles in Rotating Plasma Interacting with a Stationary Ripple

    SciTech Connect

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11

    Superthermal ExB rotation can provide magnetohydrodynamic (MHD) stability and enhanced confinement to axisymmetric mirrors. However, the rotation speed has been limited by phenomena at end electrodes. A new prediction is that rotation might instead be produced using a magnetic ripple and alpha particle kinetic energy, in an extension of the alpha channeling concept. The interaction of alpha particles with the ripple results in visually interesting and practically useful orbits.

  14. Critical single domain grain sizes in chains of interacting greigite particles: Implications for magnetosome crystals

    NASA Astrophysics Data System (ADS)

    Muxworthy, Adrian R.; Williams, Wyn; Roberts, Andrew P.; Winklhofer, Michael; Chang, Liao; Pósfai, Mihály

    2013-12-01

    Magnetotactic bacteria contain chains of magnetically interacting crystals (magnetosomes), which aid navigation (magnetotaxis). To improve the efficiency of magnetotaxis, magnetosome crystals (which can consist of magnetite or greigite) should be magnetically stable single domain (SD) particles. Larger particles subdivide into nonuniform multidomain (MD) magnetic structures that produce weaker magnetic signals, while small SD particles become magnetically unstable due to thermal fluctuations and exhibit superparamagnetic (SP) behavior. In this study, we determined the stable SD range as a function of grain elongation and interparticle separation for chains of identical greigite grains using fundamental parameters recently determined for greigite. Interactions significantly increase the stable SD range. For example, for cube-shaped greigite grains the upper stable SD threshold size is increased from 107 nm for isolated grains to 204 nm for touching grains arranged in chains. The larger critical SD grain size for greigite means that, compared to magnetite magnetosomes, greigite magnetosomes can produce larger magnetic signals without the need for intergrain interactions.

  15. Wave-particle interactions induced by SEPAC on Spacelab 1 Wave observations

    NASA Technical Reports Server (NTRS)

    Taylor, W. W. L.; Obayashi, T.; Kawashima, N.; Sasaki, S.; Yanagisawa, M.; Burch, J. L.; Reasoner, D. L.; Roberts, W. T.

    1985-01-01

    Space experiments with particle accelerators (SEPAC) flew on Spacelab 1 in November and December 1983. SEPAC included an accelerator which emitted electrons into the ionospheric plasma with energies up to 5 keV and currents up to 300 mA. The SEPAC equipment also included an energetic plasma generator, a neutral gas generator, and an extensive array of diagnostics. The diagnostics included plasma wave detectors, and energetic electron analyzer, a photometer, a high sensitivity television camera, a Langmuir probe and a pressure gage. Twenty-eight experiments were performed during the mission to investigate beam-plasma interactions, electron beam dynamics, plasma beam propagation, and vehicle charging. The wave-particle interactions were monitored by the plasma wave instrumentation, by the energetic electron detector and by the optical detectors. All show evidence of wave-particle interactions, which are described in this paper.

  16. Biased impurity tunneling current emission spectrum in the presence of quasi-particle interaction

    NASA Astrophysics Data System (ADS)

    Maslova, N. S.; Arseyev, P. I.; Mantsevich, V. N.

    2016-09-01

    We performed theoretical investigations of the tunneling current noise spectra through single-level impurity in the presence of quasi-particle (electron-phonon) interaction by means of the non-equilibrium Green function formalism. We demonstrated a fundamental link between quantum noise in tunneling contact and light emission processes. We calculated tunneling current noise spectra through a single level impurity atom both in the presence and in the absence of quasi-particle interaction for a finite bias voltage and identified it as a source of experimentally observed light emission from bias STM contacts. The results turn out to be sensitive to the tunneling contact parameters. Our findings provide important insight into the nature of non-equilibrium electronic transport in tunneling junctions with quasi-particle interaction.

  17. Secondary Cosmic Ray Particles Due to GCR Interactions in the Earth's Atmosphere

    SciTech Connect

    Battistoni, G.; Cerutti, F.; Fasso, A.; Ferrari, A.; Garzelli, M.V.; Lantz, M.; Muraro, S. Pinsky, L.S.; Ranft, J.; Roesler, S.; Sala, P.R.; /Milan U. /INFN, Milan

    2009-06-16

    Primary GCR interact with the Earth's atmosphere originating atmospheric showers, thus giving rise to fluxes of secondary particles in the atmosphere. Electromagnetic and hadronic interactions interplay in the production of these particles, whose detection is performed by means of complementary techniques in different energy ranges and at different depths in the atmosphere, down to the Earth's surface. Monte Carlo codes are essential calculation tools which can describe the complexity of the physics of these phenomena, thus allowing the analysis of experimental data. However, these codes are affected by important uncertainties, concerning, in particular, hadronic physics at high energy. In this paper we shall report some results concerning inclusive particle fluxes and atmospheric shower properties as obtained using the FLUKA transport and interaction code. Some emphasis will also be given to the validation of the physics models of FLUKA involved in these calculations.

  18. Fluctuation-induced transport of two coupled particles: Effect of the interparticle interaction

    NASA Astrophysics Data System (ADS)

    Makhnovskii, Yurii A.; Rozenbaum, Viktor M.; Sheu, Sheh-Yi; Yang, Dah-Yen; Trakhtenberg, Leonid I.; Lin, Sheng Hsien

    2014-06-01

    We consider a system of two coupled particles fluctuating between two states, with different interparticle interaction potentials and particle friction coefficients. An external action drives the interstate transitions that induces reciprocating motion along the internal coordinate x (the interparticle distance). The system moves unidirectionally due to rectification of the internal motion by asymmetric friction fluctuations and thus operates as a dimeric motor that converts input energy into net movement. We focus on how the law of interaction between the particles affects the dimer transport and, in particular, the role of thermal noise in the motion inducing mechanism. It is argued that if the interaction potential behaves at large distances as xα, depending on the value of the exponent α, the thermal noise plays a constructive (α > 2), neutral (α = 2), or destructive (α < 2) role. In the case of α = 1, corresponding piecewise linear potential profiles, an exact solution is obtained and discussed in detail.

  19. Siple station experiments on wave-particle interactions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Helliwell, R. A.

    1979-01-01

    Natural and controlled whistler-mode signals have been used to study nonlinear mechanisms of wave growth and wave-wave interactions (WWI) in the magnetosphere; three general classes of WWI (triggering, suppression, and entrainment) are identified and interpreted in terms of a model based on cyclotron resonance interaction. This model is also used to estimate the wave field intensity associated with different types of WWI. A new type of triggered emission, the band-limited impulse (BLI) is interpreted in terms of the switching of phase-bunched currents. In addition, an experiment to find a threshold for the excitation of the coherent wave instability is discussed, and observed VLF wave-induced transient bursts of X-rays, light and E-region ionization enhancements are considered with regard to a step function wave interacting with all resonant electrons in a given energy range.

  20. Implicit Particle-in-Cell simulations of wave-particle interactions between electrons and whistler waves in the radiation belt

    NASA Astrophysics Data System (ADS)

    Camporeale, Enrico

    2014-05-01

    Whistler wave chorus are believed to play a crucial role in the radiation belt dynamics, possibly being responsible for the loss and acceleration of energetic electrons. For this reason, the mechanisms related to the formation and propagation of whistlers in the radiation belt have been intensively investigated during the last decade. It is now generally acknowledged, via observational and simulation studies, that the whistler waves generated close to the magnetic equator through linear temperature anisotropy instabilities undergo an amplitude amplification that is essentially regulated by nonlinear mechanisms. In this work we focus on the wave-particle interaction between electrons and whistler chorus by employing two-dimensional fully-kinetic Particle-in-Cell simulations. The magnetic field is assumed to form a magnetic bottle that captures the particle bouncing motions and mimics the Earth's magnetic dipole. The code employs a semi-implicit time stepping algorithm that, in this context, is shown to be important in order to achieve accurate results with realistic parameters. We analyze and discuss the pitch-angle/energy scattering of energetic particles and comment on the applicability of the quasi-linear diffusion paradigm.

  1. BioAerosol Mass Spectrometry: Reagentless Detection of Individual Airborne Spores and Other Bioagent Particles Based on Laser Desorption/Ionization Mass Spectrometry

    SciTech Connect

    Steele, P T

    2004-07-20

    Better devices are needed for the detection of aerosolized biological warfare agents. Advances in the ongoing development of one such device, the BioAerosol Mass Spectrometry (BAMS) system, are described here in detail. The system samples individual, micrometer-sized particles directly from the air and analyzes them in real-time without sample preparation or use of reagents. At the core of the BAMS system is a dual-polarity, single-particle mass spectrometer with a laser based desorption and ionization (DI) system. The mass spectra produced by early proof-of-concept instruments were highly variable and contained limited information to differentiate certain types of similar biological particles. The investigation of this variability and subsequent changes to the DI laser system are described. The modifications have reduced the observed variability and thereby increased the usable information content in the spectra. These improvements would have little value without software to analyze and identify the mass spectra. Important improvements have been made to the algorithms that initially processed and analyzed the data. Single particles can be identified with an impressive level of accuracy, but to obtain significant reductions in the overall false alarm rate of the BAMS instrument, alarm decisions must be made dynamically on the basis of multiple analyzed particles. A statistical model has been developed to make these decisions and the resulting performance of a hypothetical BAMS system is quantitatively predicted. The predictions indicate that a BAMS system, with reasonably attainable characteristics, can operate with a very low false alarm rate (orders of magnitude lower than some currently fielded biodetectors) while still being sensitive to small concentrations of biological particles in a large range of environments. Proof-of-concept instruments, incorporating some of the modifications described here, have already performed well in independent testing.

  2. Collision-energy-resolved Penning ionization electron spectroscopy of p-benzoquinone: Study of electronic structure and anisotropic interaction with He*(2 3S) metastable atoms

    NASA Astrophysics Data System (ADS)

    Kishimoto, Naoki; Okamura, Kohji; Ohno, Koichi

    2004-06-01

    Collision energy dependence of partial ionization cross sections (CEDPICS) of p-benzoquinone with He*(2 3S) metastable atoms indicates that interaction potentials between p-benzoquinone and He*(2 3S) are highly anisotropic in the studied collision energy range (100-250 meV). Attractive interactions were found around the C=O groups for in-plane and out-of-plane directions, while repulsive interactions were found around CH bonds and the benzenoid ring. Assignment of the first four ionic states of p-benzoquinone and an analogous methyl-substituted compound was examined with CEDPICS and anisotropic distributions of the corresponding two nonbonding oxygen orbitals (nO+,nO-) and two πCC orbitals (πCC+,πCC-). An extra band that shows negative CEDPICS was observed at ca. 7.2 eV in Penning ionization electron spectrum.

  3. Fluid-particle interaction in turbulent open channel flow with fully-resolved mobile beds

    NASA Astrophysics Data System (ADS)

    Vowinckel, Bernhard; Kempe, Tobias; Fröhlich, Jochen

    2014-10-01

    The paper presents Direct Numerical Simulations of an open channel flow laden with spherical particles at a bulk Reynolds number of 2941. The transport of thousands of mobile particles is simulated propagating over a rough bed which consists of immobile particles of the same size in hexagonal ordering. An Immersed Boundary Method is used for the numerical representation of the particles. With 22 points per diameter even the viscous scales of the flow are resolved at this Reynolds number. The reference run contains just as many fixed as mobile particles with a relative density slightly above the nominal threshold of incipient motion. Further runs were conducted with decreased mass loading and decreased Shields number together with a simulation containing only immobile particles. The variation of the parameters defining the mobile sediment yields a strong modification of particle-fluid as well as particle-particle interactions yielding different structures in space and time. This is assessed by means of appropriate statistical quantities addressing the continuous and the disperse phase. The results are in qualitative agreement with experimental observations at higher Reynolds number.

  4. The Particle Beam Optics Interactive Computer Laboratory for Personal Computers and Workstations

    NASA Astrophysics Data System (ADS)

    Gillespie, G. H.; Hill, B.; Brown, N.; Martono, H.; Moore, J.; Babcock, C.

    1997-05-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is a new software concept to aid both students and professionals in modeling charged particle beams and particle beam optical systems. The PBO Lab has been designed to run on several computer platforms and includes four key elements: a graphic user interface shell; (2) a knowledge database on electric and magnetic optics elements, including interactive tutorials on the physics of charged particle optics and on the technology used in particle optics hardware; (3) a graphic construction kit for users to interactively and visually construct optical beam lines; and (4) a set of charged particle optics computational engines that compute transport matrices, beam envelopes and trajectories, fit parameters to optical constraints, and carry out similar calculations for the graphically-defined beam lines. The primary computational engines in the first generation PBO Lab are the third-order TRANSPORT code, the multiple ray tracing program TURTLE, and a new first-order matrix code that includes an envelope space charge model with support for calculating single trajectories in the presence of the beam space charge. Progress on the PBO Lab development is described and a demonstration will be given.

  5. PARTICLE ACCELERATION IN SHOCK-SHOCK INTERACTION: MODEL TO DATA COMPARISON

    SciTech Connect

    Hietala, H.; Vainio, R.; Sandroos, A.

    2012-05-20

    Shock-shock interaction is a well-established particle acceleration mechanism in astrophysical and space plasmas, but difficult to study observationally. Recently, the interplanetary shock collision with the bow shock of the Earth on 1998 August 10 was identified as one of the rare events where detailed in situ observations of the different acceleration phases can be made. Due to the advantageous spacecraft and magnetic field configurations, in 2011, Hietala et al. were able to distinguish the seed population and its reacceleration at the bow shock, as well as the Fermi acceleration of particles trapped between the shocks. They also interpreted their results as being the first in situ evidence of the release of particles from the trap as the two shocks collided. In the present study we use a global 2.5D test-particle simulation to further study particle acceleration in this event. We concentrate on the last phases of the shock-shock interaction, when the shocks approach and pass through each other. The simulation results verify that the main features of the measurements can be explained by shock-shock interaction in this magnetic geometry, and are in agreement with the previous interpretation of particle release. Shock-shock collisions of this type occur commonly in many astrophysical locations such as stellar coronae, planetary and cometary bow shocks, and the distant heliosphere.

  6. Hydrophilic interaction liquid chromatography-electrospray ionization-tandem mass spectrometry of a complex mixture of native and oxidized phospholipids.

    PubMed

    Losito, I; Facchini, L; Diomede, S; Conte, E; Megli, F M; Cataldi, T R I; Palmisano, F

    2015-11-27

    A mixture of native and oxidized phospholipids (PLs), generated by the soybean lipoxygenase type V-catalyzed partial oxidation of a lipid extract obtained from human platelets, was analyzed by Hydrophilic Interaction Liquid Chromatography-ElectroSpray Ionization-Tandem Mass Spectrometry (HILIC-ESI-MS/MS). The complexity of the resulting mixture was remarkable, considering that the starting lipid extract, containing (as demonstrated in a previous study) about 130 native PLs, was enriched with enzymatically generated hydroperoxylated derivatives and chemically generated hydroxylated forms of PLs bearing polyunsaturated side chains. Nonetheless, the described analytical approach proved to be very powerful; indeed, focusing on phosphatidylcolines (PCs), the most abundant PL class in human platelets, about fifty different native/oxidized species could be identified in a single HILIC-ESI-MS/MS run. Low-energy collision induced dissociation tandem MS (CID-MS/MS) experiments on chromatographically separated species showed single neutral losses of H2O2 and H2O to be typical fragmentation pathways of hydroperoxylated PCs, whereas a single H2O loss was observed for hydroxylated ones. Moreover, diagnostic losses of n-hexanal or n-pentanol were exploited to recognize PCs hydroperoxylated on the last but five carbon atom of a ɷ-6 polyunsaturated side chain. Despite the low resolution of the 3D ion trap mass analyzer used, the described HILIC-ESI-MS/MS approach appears very promising for the identification of oxidized lipids in oxidatively stressed complex biological systems. PMID:26508677

  7. Copper-silver ionization at a US hospital: Interaction of treated drinking water with plumbing materials, aesthetics and other considerations.

    PubMed

    Triantafyllidou, Simoni; Lytle, Darren; Muhlen, Christy; Swertfeger, Jeff

    2016-10-01

    Tap water sampling and surface analysis of copper pipe/bathroom porcelain were performed to explore the fate of copper and silver during the first nine months of copper-silver ionization (CSI) applied to cold and hot water at a hospital in Cincinnati, Ohio. Ions dosed by CSI into the water at its point of entry to the hospital were inadvertently removed from hot water by a cation-exchange softener in one building (average removal of 72% copper and 51% silver). Copper at the tap was replenished from corrosion of the building's copper pipes but was typically unable to reach 200 μg/L in first-draw and flushed hot and cold water samples. Cold water lines had >20 μg/L silver at most of the taps that were sampled, which further increased after flushing. However, silver plating onto copper pipe surfaces (in the cold water line but particularly in the hot water line) prevented reaching 20 μg/L silver in cold and/or hot water of some taps. Aesthetically displeasing purple/grey stains in bathroom porcelain were attributed to chlorargyrite [AgCl(s)], an insoluble precipitate that formed when CSI-dosed Ag(+) ions combined with Cl(-) ions that were present in the incoming water. Overall, CSI aims to control Legionella bacteria in drinking water, but plumbing material interactions, aesthetics and other implications also deserve consideration to holistically evaluate in-building drinking water disinfection. PMID:27318299

  8. Fast particles-wave interaction in the Alfven frequency range on the Joint European Torus tokamak

    SciTech Connect

    Fasoli, A.; Borba, D.; Association EURATOM Breizman, B.; Gormezano, C.; Heeter, R. F.; Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 ; Juan, A.; Mantsinen, M.; Sharapov, S.; Testa, D.

    2000-05-01

    Wave-particle interaction phenomena in the Alfven Eigenmode (AE) frequency range are investigated at the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] using active and passive diagnostic methods. Fast particles are generated by neutral beam injection, ion cyclotron resonance heating, and fusion reactions. External antennas are used to excite stable AEs and measure fast particle drive and damping separately. Comparisons with numerical calculations lead to an identification of the different damping mechanisms. The use of the active AE diagnostic system to generate control signals based on the proximity to marginal stability limits for AE and low-frequency magnetohydrodynamic (MHD) modes is explored. Signatures of the different nonlinear regimes of fast particle driven AE instabilities predicted by theory are found in the measured spectra. The diagnostic use of AE measurements to get information both on the plasma bulk and the fast particle distribution is assessed. (c) 2000 American Institute of Physics.

  9. Inelastic Interactions of Proton with Emulsion Nuclei without Shower Particle Creation

    SciTech Connect

    Abdelsalam, A.; El-Nagdy, M. S.; Rashed, N.; Badawy, B. M.

    2007-02-14

    This paper presents exhaustively the general characteristics of the inelastic interactions of P, 4He and 7Li with emulsion nuclei distinguished without relativistic hadrons (ns = 0) in Lab. system. The dependence of these interactions on the projectile and target sizes is presented. It is found that, the probability of the events having (ns = 0) is dependent on projectile size and incident energy. The average no. of grey particles and black particles as well as the ratio / are displayed for different target size. The multiplicity distribution of different target fragments for the events having (ns = 0), ns {>=} 0 and those of complete destruction (Nh {>=} 28) are presented.

  10. Modified momentum exchange method for fluid-particle interactions in the lattice Boltzmann method.

    PubMed

    Hu, Yang; Li, Decai; Shu, Shi; Niu, Xiaodong

    2015-03-01

    In this paper, a modified momentum exchange method for fluid-particle interactions is proposed based on the finite-volume lattice Boltzmann method. The idea of the improvement is to remove the restriction that the boundary points must be set as the midpoints of the grid lines or the intersection of the grid lines with the solid boundaries. The particle surface is represented by a set of arc (area) elements, and the interior fluid is used which the geometric conservation law is naturally satisfied. The interactions between fluid and arc (area) elements of particle boundary are considered using the momentum exchange method, and the mass of the fluid particles which collide with an arc (area) element is obtained by means of numerical integration in the control volume. The fluid field is corrected with the help of the smooth kernel function. Moreover, a generalized explicit time marching scheme is introduced to resolve the motion of particle in the problems with the ratio of particle density to fluid density is close to or less than 1. Finally, some numerical case studies of particle sedimentation are carried out to validate the present method. The corresponding results have a good agreement with the previous literature, which strongly demonstrates the capability of the improved method. PMID:25871240

  11. Quantitative and qualitative examination of particle-particle interactions using colloidal probe nanoscopy.

    PubMed

    D'Sa, Dexter; Chan, Hak-Kim; Kim, Hae-Won; Chrzanowski, Wojciech

    2014-01-01

    Colloidal Probe Nanoscopy (CPN), the study of the nano-scale interactive forces between a specifically prepared colloidal probe and any chosen substrate using the Atomic Force Microscope (AFM), can provide key insights into physical interactions present within colloidal systems. Colloidal systems are widely existent in several applications including, pharmaceuticals, foods, paints, paper, soil and minerals, detergents, printing and much more.1-3 Furthermore, colloids can exist in many states such as emulsions, foams and suspensions. Using colloidal probe nanoscopy one can obtain key information on the adhesive properties, binding energies and even gain insight into the physical stability and coagulation kinetics of the colloids present within. Additionally, colloidal probe nanoscopy can be used with biological cells to aid in drug discovery and formulation development. In this paper we describe a method for conducting colloidal probe nanoscopy, discuss key factors that are important to consider during the measurement, and show that both quantitative and qualitative data that can be obtained from such measurements. PMID:25080136

  12. Quantitative and Qualitative Examination of Particle-particle Interactions Using Colloidal Probe Nanoscopy

    PubMed Central

    D'Sa, Dexter; Chan, Hak-Kim; Kim, Hae-Won; Chrzanowski, Wojciech

    2014-01-01

    Colloidal Probe Nanoscopy (CPN), the study of the nano-scale interactive forces between a specifically prepared colloidal probe and any chosen substrate using the Atomic Force Microscope (AFM), can provide key insights into physical interactions present within colloidal systems. Colloidal systems are widely existent in several applications including, pharmaceuticals, foods, paints, paper, soil and minerals, detergents, printing and much more.1-3 Furthermore, colloids can exist in many states such as emulsions, foams and suspensions. Using colloidal probe nanoscopy one can obtain key information on the adhesive properties, binding energies and even gain insight into the physical stability and coagulation kinetics of the colloids present within. Additionally, colloidal probe nanoscopy can be used with biological cells to aid in drug discovery and formulation development. In this paper we describe a method for conducting colloidal probe nanoscopy, discuss key factors that are important to consider during the measurement, and show that both quantitative and qualitative data that can be obtained from such measurements. PMID:25080136

  13. Lung macrophage-epithelial cell interactions amplify particle-mediated cytokine release.

    PubMed

    Tao, Florence; Kobzik, Lester

    2002-04-01

    Interactions between alveolar macrophages (AMs) and epithelial cells may promote inflammatory responses to air pollution particles. Normal rat AMs, the alveolar type II epithelial cell line RLE-6TN (RLE), or cocultures of both cell types were incubated with various particles (0-50 microg/ml) for 24 h, followed by assay of released TNF-alpha and MIP-2. The particles used included titanium dioxide (TiO2), alpha-quartz (SiO2), residual oil fly ash (ROFA), or urban air particles (UAP). For all particles, a dose-dependent increase in TNF-alpha and MIP-2 release was observed in AM+RLE co-cultures but not in RLE or AM monoculture. AM+RLE co-culture also synergistically enhanced basal levels of tumor necrosis factor (TNF)-alpha and macrophage inflammatory protein (MIP)-2. In contrast, when AMs were co-cultured with fibroblasts, basal and particle-induced TNF-alpha and MIP-2 were similar to levels found in AM monoculture. Particle uptake by AMs was similar in mono- or AM+RLE co-culture. Increased basal and particle-induced cytokine release were not observed when the AMs were physically separated from the RLE. This contact-dependent cytokine potentiation could not be blocked with anti-CD18/anti-CD54, arginine-glycine-aspartate (RGD) peptide, or heparin. We conclude that in vitro inflammatory responses to particles are amplified by contact-dependent interactions between AMs and epithelial cells. AM-epithelial co-culture may provide a useful model of in vivo particle effects. PMID:11919087

  14. Multiphoton ionization studies of metal atom-solvent interactions from thevan der Waals dimer to the mesoscopic scale

    NASA Astrophysics Data System (ADS)

    Spotts, James Michael

    A unified molecular-level description of solute-solvent interactions within condensed-phase systems has remained elusive despite recent advances towards the detailed understanding of the fundamental electrostatic interactions between the atomic and/or molecular moieties that compose a bulk system. Through the use of simplified cluster model systems such as those employing metal atoms solvated by a rare gas solvent, however, microscopic details pertaining to the intrinsic composite nature of the atomic orbital interactions can be effectively dissected away from the complexity inherent to condensed- phase systems. This thesis work presents a systematic spectroscopic investigation of Al/cdot Arn/ (n /leq 60) clusters generated by standard laser ablation techniques using 1/sp'UV + 1vis two-color and 2vis+1vis single-color resonance-enhanced multiphoton ionization (REMPI) in the vicinity of the Al(3d) gets Al(3p) atomic transitions. UV absorption spectra were collected for Al/cdot Arn cluster sizes corresponding to solvation within the first icosahedral solvation shell ( 1/leq n/leq12) as well as the second icosahedral solvation shell (13/leq n/leq 54). These spectra exhibited significant red-shifted absorption features whose absolute peak positions were noted to be highly sensitive to the degree of solvation. Such behavior was strongly suggestive of an aluminum atom surface binding site. Nevertheless, classical Monte Carlo simulations failed to reproduce the observed magnitude of the spectral shifts. Consequently, the underlying origin of this anomalous spectral behavior was believed to derive from electronic state mixing interactions between those states originating from the Al(3d) and Al(4p) electronic manifolds. Evidence for such a coupling was sought at the level of the diatomic AlċAr molecule using both 1/sp'UV+1vis and 2vis+1vis REMPI to characterize all electronic states arising from the Al(3d)ċAr and Al(4p)ċAr asymptotes. Strong evidence for state mixing was

  15. Laser stripping of hydrogen atoms by direct ionization

    DOE PAGESBeta

    Brunetti, E.; Becker, W.; Bryant, H. C.; Jaroszynski, D. A.; Chou, W.

    2015-05-08

    Direct i