Science.gov

Sample records for ionospheric plasma convection

  1. Strong interplanetary magnetic field By-related plasma convection in the ionosphere and cusp field-aligned currents under northward

    E-print Network

    California at Berkeley, University of

    Strong interplanetary magnetic field By-related plasma convection in the ionosphere and cusp field and the assimilative mapping of ionospheric electrodynamics (AMIE) model during a prolonged interval with large procedure provides a reasonably good description of plasma circulations in the ionosphere during

  2. Polar-cap plasma convection measurements and their relevance to the real-time modeling of the high-latitude ionosphere

    SciTech Connect

    Not Available

    1987-05-07

    Plasma-convection measurements, using Digisonde ionospheric sounders, were conducted. The plasma convection or ionospheric-drift measurements conducted at Thule and Qaanaaq during campaigns from Winter 1983/84 to present provide evidence, that antisunward convection dominates in the polar cap with velocities typical between 300 and 900 m.sec. Drift shears were observed during periods of arc-transition (quiet magnetic conditions). Observations of the plasma drift at Goose Bay show a drift reversal from westward to eastward around midnight CGLT. Observations at Argentia, typically a suboval/trough station, provide evidence under magnetically disturbed conditions for the midnight reversal of the antisunward flow pattern. However, the data are less consistent under magnetically quiet conditions. The proximity of the station to the boundary between corotating and convecting plasma may at times affect the consistency of the measurements. Recent theoretical calculations of electron density profiles within the high-latitude/polar-cap ionosphere demonstrate that the diurnal foF2 variation observed at Thule, is controlled by the plasma-convections pattern and the associated drift velocities. The model calculations for Bz < 0 and Bz. approx. 0 show factor 2 to 3 differences in Nmax over Thule, supporting the stated importance of convection pattern and velocity measurements for the modelling of the high-latitude ionosphere.

  3. Relationship of Topside Ionospheric Ion Outflows to Auroral Forms and Precipitation, Plasma Waves, and Convection Observed by Polar

    NASA Technical Reports Server (NTRS)

    Hirahara, M.; Horwitz, J. L.; Moore, T. E.; Germany, G. A.; Spann, J. F.; Peterson, W. K.; Shelley, E. G.; Chandler, M. O.; Giles, B. L.; Craven, P. D.; Pollock, C. J.; Gurnett, D. A.; Pickett, J. S.; Persoon, A. M.; Scudder, J. D.; Maynard, N. C.; Mozer, F. S.; Brittnacher, M. J.; Nagai, T.

    1998-01-01

    The POLAR satellite often observes upflowing ionospheric ions (UFIs) in and near the aurora] oval on southern perigee (approx. 5000 km altitude) passes. We present the UFI features observed by the thermal ion dynamics experiment (TIDE) and the toroidal imaging mass angle spectrograph (TIMAS) in the dusk-dawn sector under two different geomagnetic activity conditions in order to elicit their relationships with auroral forms, wave emissions, and convection pattern from additional POLAR instruments. During the active interval, the ultraviolet imager (UVI) observed a bright discrete aurora on the duskside after the substorm onset and then observed a small isolated aurora form and diffuse auroras on the dawnside during the recovery phase. The UFIs showed clear conic distributions when the plasma wave instrument (PWI) detected strong broadband wave emissions below approx. 10 kHz, while no significant auroral activities were observed by UVI. At higher latitudes, the low-energy UFI conics gradually changed to the polar wind component with decreasing intensity of the broadband emissions. V-shaped auroral kilometric radiation (AKR) signatures observed above -200 kHz by PWI coincided with the region where the discrete aurora and the UFI beams were detected. The latitude of these features was lower than that of the UFI conics. During the observations of the UFI beams and conics, the lower-frequency fluctuations observed by the electric field instrument were also enhanced, and the convection directions exhibited large fluctuations. It is evident that large electrostatic potential drops produced the precipitating electrons and discrete auroras, the UFI beams, and the AKR, which is also supported by the energetic plasma data from HYDRA. Since the intense broadband emissions were also observed with the UFIs, the ionospheric ions could be energized transversely before or during the parallel acceleration due to the potential drops.

  4. Ionospheric convection driven by NBZ currents

    NASA Technical Reports Server (NTRS)

    Rasmussen, C. E.; Schunk, R. W.

    1987-01-01

    Computer simulations of Birkeland currents and electric fields in the polar ionosphere during periods of northward IMF were conducted. When the IMF z component is northward, an additional current system, called the NBZ current system, is present in the polar cap. These simulations show the effect of the addition of NBZ currents on ionospheric convection, particularly in the polar cap. When the total current in the NBZ system is roughly 25 to 50 percent of the net region 1 and 2 currents, convection in the central portion of the polar cap reverses direction and turns sunward. This creates a pattern of four-cell convection with two small cells located in the polar cap, rotating in an opposite direction from the larger cells. When the Birkeland currents are fixed (constant current source), the electric field is reduced in regions of relatively high conductivity, which affects the pattern of ionospheric convection. Day-night asymmetries in conductivity change convection in such a way that the two polar-cap cells are located within the large dusk cell. When ionospheric convection is fixed (constant voltage source), Birkeland currents are increased in regions of relatively high conductivity. Ionospheric currents, which flow horizontally to close the Birkeland currents, are changed appreciably by the NBZ current system. The principal effect is an increase in ionospheric current in the polar cap.

  5. Convective cell generation by kinetic Alfven wave turbulence in the auroral ionosphere

    SciTech Connect

    Zhao, J. S.; Wu, D. J.; Yu, M. Y.; Lu, J. Y.

    2012-06-15

    Modulation of convective cells by kinetic Alfven wave (KAW) turbulence is investigated. The interaction is governed by a nonlinear dispersion relation for the convective cells. It is shown that KAW turbulence is disrupted by excitation of the large-scale convective motion through a resonant instability. Application of the results to the auroral ionosphere shows that cross-scale coupling of the KAW turbulence and convective cells plays an important role in the evolution of ionospheric plasma turbulence.

  6. Ionospheric convection driven by NBZ currents

    SciTech Connect

    Rasmussen, C.E.; Schunk, R.W.

    1987-05-01

    Computer simulations of Birkeland currents and electric fields in the polar ionosphere during periods of northward interplanetary magnetic field (IMF) were conducted. When the IMF z component is northward, an additional current system, called the NBZ current system, is present in the polar cap. These simulations show the effect of the addition of NBZ currents on ionospheric convection, particularly in the polar cap. When the total current in the NBZ system is roughly 25% to 50% of the net region 1 and 2 currents, convection in the central portion of the polar cap reverses direction and turns sunward. This creates a pattern of four-cell convection with two small cells located in the polar cap, rotating in an opposite direction from the larger cells. The effects of varying ionospheric conductivity were studied by considering both a constant voltage source and a constant current source. Conductivity gradients due to seasonal and local time variations in solar production were considered, as well as gradients due to electron precipitation. When the Birkeland currents are fixed (constant current source), the electric field is reduced in regions of relatively high conductivity, which affects the pattern of ionospheric convection. Day-night asymmetries in conductivity change convection in such a way that the two polar-cap cells are located within the large dusk cell. When ionospheric convection is fixed (constant voltage source), Birkeland currents are increased in regions of relatively high conductivity. Ionospheric currents, which flow horizontally to close the Birkeland currents, are changed appreciably by the NBZ current system. The principal effect is an increase in ionospheric current in the polar cap. Copyright American Geophysical Union 1987.

  7. SuperDARN observations of ionospheric convection and magnetospheric reconnection

    NASA Astrophysics Data System (ADS)

    Watanabe, Masakazu

    It is well known that the major driver of ionospheric convection is a sequence of reconnection in the magnetosphere that starts between the interplanetary magnetic field (IMF) and the geomagnetic field. One goal of the Super Dual Auroral Radar Network (SuperDARN) project is to assess the reconnection processes remotely from the measured global convection pattern. If one knows all the modes of reconnection that can occur in the magnetosphere and their ionospheric consequences, one can inversely determine the modes of reconnection from the observed ionospheric convection pattern. For this purpose, we have developed a catalogue of reconnection modes that can occur under steady-state IMF conditions and modeled the plasma flow that each reconnection mode stimulates in the ionosphere. This reconnection catalogue is applicable to any orientation of the IMF except when the IMF is parallel to the Earth's dipole axis. In general, there are sixteen types of reconnection. Usually, for given IMF conditions, only eight types occur, depending on the orientation of the IMF. In this presentation we show the modeling results and SuperDARN observations for the cases (1) when the dawn-dusk component of the IMF is dominant and (2) when the IMF is due northward but with significant dipole tilt. For each case, comparison of model predictions with observations shows good agreement. This study revealed some unfamiliar convection patterns that have caught but little attention of researchers. They include "exchange" cells and "split" crescent cells for IMF BY -dominated periods, and winter hemisphere "reciprocal" cells for due northward IMF with significant dipole tilt. In the presentation we focus on such convection patterns that are relatively new to the space science community.

  8. Ionospheric anomalous disturbance during the tropospheric strong convective weather

    NASA Astrophysics Data System (ADS)

    Cang, Zhongya; Cheng, Guangguang; Cheng, Guosheng

    2015-07-01

    Based on TBB data from Chinese FY-2 geostationary satellite, NCEP Reanalysis data and GPS-TEC data provided by IGS, by using sliding mean method, ionospheric anomalous disturbance during a typical convective weather was investigated. Results show that this severe convective weather was caused by a high-altitude cold eddy and a strong squall line. The ionospheric total electron content increased abnormally when convection occurred. The maximum increase of tested point was more than 6 TECU mainly at 8-12 UT of the day, and the peak time of the day lagged about 2 h than usual. Ionospheric anomalous region reached about 20 longitudes and 10 latitudes, and anomalous center was on the west side of the convective cloud, which may be related to the topographic effect of the Tibetan Plateau. Series of Case Studies further determine that convective weather can influence the ionospheric state. Furthermore, tropospheric vertical velocity was also analyzed to discuss the possible mechanisms of troposphere-ionosphere coupling.

  9. Radar Observations of Interhemispheric Ionospheric Convection Morphology Associated with Magnetotail Dynamics

    NASA Astrophysics Data System (ADS)

    Grocott, A.

    2014-12-01

    We discuss radar observations of the high-latitude ionospheric convection, in both the northern and southern hemispheres, in terms of the interplanetary magnetic field (IMF) orientation, prevailing geomagnetic conditions, and their associated timescales. Plasma velocity measurements, obtained by the Super Dual Auroral Radar Network (SuperDARN), have been used to derive patterns of the ionospheric electric potential in which interhemispheric asymmetries in the associated large-scale convection morphology are identified. In addition to the expected IMF BY-related asymmetries between the dusk and dawn convection cells, which tend to display the opposite sense in the two hemispheres, we find asymmetries related to magnetotail dynamics that exhibit a more complex behaviour. We attribute this to differences in the timescales required for the development of IMF-related asymmetries, and those associated with internal magnetospheric processes. We consider how the interplay between the magnetospheric regions involved determines the overall morphology of the system.

  10. Role of Ionospheric Plasmas in Earth's Magnetotail

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.

    2007-01-01

    This tutorial will summarize observations and theories indicating a prominent role of ionospheric plasma in the Earth's magnetotail. At the Global scale, I will argue that it is ionospheric plasma momentum and dynamic pressure that are responsible for the production of plasmoids, through the action of a transient near-Earth neutral or X-line, which serves to release excessive plasma pressure from the magnetotail field. Ionospheric plasma gains the momentum and energy to produce plasmoids and their related effects through its interaction with the solar wind, beginning at the dayside reconnection region and extending across the polar caps through the magnetotail lobes. This distant neutral line can be depicted as a feature much like that found in cometary magnetospheres, where disconnection limits the amount of IMF hung up on the cometary coma. On the other hand, the near-Earth neutral one can be seen as a feature unique to planets with an intrinsic magnetic field and internal source of plasma, the heating of which produces pressures too large to be restrained. Ionospheric plasmas also have other more local roles to play in the magnetotail. The circulation influences the composition of the plasma sheet, and the resultant wave environment, giving rise to reduced wave propagation speeds. Important heavy ion cyclotron resonances, and enhanced finite gyro-radius effects including non-adiabatic particle acceleration. At minimum, the presence of ionospheric plasma must influence the rate of reconnection via its enhanced mass density. Other non-MHD effects of ionospheric plasma presence are likely to be important but need much more investigation to be well understood. The MMS mission is designed to penetrate the subtle diffusion region physics that is involved, and its ability to observe ionospheric plasma involvement in reconnection will contribute significantly toward that goal.

  11. Ground-based studies of ionospheric convection associated with substorm expansion

    SciTech Connect

    Kamide, Y.; Richmond, A.D.; Emery, B.A.; Hutchins, C.F.; Ahn, B.H.

    1994-10-01

    The instantaneous patterns of electric fields and currents in the high-latitude ionosphere are deduced by combining satellite and radar measurements of the ionospheric drift velocity, along with ground-based magnetometer observations for October 25, 1981. For this purpose, an updated version of the assimilative mapping of ionospheric electrodynamics technique has been used. These global patterns are unobtainable from any single data set. The period under study was characterized by a relatively stable southward interplanetary magnetic field (IMF), so that the obtained electric field patterns do reflect, in genernal, the state of sustained and enhanced plasma convection in the magnetosphere. During one of the satellite passes, however, an intense westward electrojet caused by a substorm intruded into the satellite (DE 2) and radar (Chatanika, Alaska) field of view in the premidnight sector, providing a unique opportunity to differentiate the enhanced convection and substorm expansion fields. The distributions of the calculated electric potential for the epansion and maximum phases of the substorm show the first clear evidence of the coezistence of two physically different systems in the global convection pattern. The changes in the convection pattern during the substorm indicate that the large-scale potential distributions are indeed of general two-cell patterns representing the southward LMF status, but the night-morning cell has two positive peaks, one in the midnight sector and the other in the late morning hours, corresponding to the substorm expansion and the convection enhancement respectively.

  12. The relationship between ionospheric convection and magnetic activity

    SciTech Connect

    Shue, J.H.; Weimer, D.R. )

    1994-01-01

    In this paper, the authors show that there is a significant relationship between magnetic activity and the high-latitude ionospheric convection electric fields. In particular, when the westward electrojet is much stronger than the eastward electrojet, as occurs during magnetospheric substorms, the electric field patterns show subtle, but important, changes from the configurations that are obtained under more quiet conditions. The substorm differences are detected primarily near midnight, where there is an enhanced westward electric field associated with a penetration of the positive-potential, dawn convection cell into the negative, dusk convection cell. The peak value of the positive potential also increases during substorms and its location shifts closer to midnight, while the negative cell remains relatively constant. These results were obtained through the use of a procedure that uses electric field measurements from the DE 2 satellite to derive maps of the locations of the convection reversal boundaries, and functions for the distribution of the electric potential around these boundaries. This was accomplished for several sets of data that were grouped according to the interplanetary magnetic field and geomagnetic activity. Further refinements in the authors' analysis procedure are possible. The results could be used to produce more accurate maps of ionospheric convection. They also show that distortions of the electric field patterns near midnight are simply the result of polarization electric fields around conductivity enhancements. The distorted electric fields satisfy the condition that the ionospheric Hall current be divergence-free. 23 refs., 9 figs.

  13. SuperDARN convection and Sondrestrom plasma drift

    NASA Astrophysics Data System (ADS)

    Xu, L.; Koustov, A. V.; Thayer, J.; McCready, M. A.

    Plasma convection measurements by the Goose Bay and Stokkseyri SuperDARN radar pair and the Sondrestrom incoherent scatter radar are compared in three different ways, by looking at the line-of-sight (l-o-s) velocities, by comparing the SuperDARN vectors and corresponding Sondrestrom l-o-s velocities and by comparing the end products of the instruments, the convection maps. All three comparisons show overall reasonable agreement of the convection measurements though the data spread is significant and for some points a strong disagreement is obvious. The convection map comparison shows a tendency for the SuperDARN velocities to be often less than the Sondrestrom drifts for strong flows (velocities > 1000 m/s) and larger for weak flows (velocities < 500 m/s). On average, both effects do not exceed 35%. Data indicate that inconsistencies between the two data sets occur largely at times of fast temporal variations of the plasma drift and for strongly irregular flow ac-cording to the SuperDARN convection maps. These facts indicate that the observed discrepancies are in many cases a result of the different spatial and temporal resolutions of the instruments.Key words. Ionosphere (ionospheric irregularities; plasma convection; polar ionosphere)

  14. Evidence for Gravity Wave Seeding of Convective Ionosphere Storms Initiated by Deep Troposphere Convection

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.; Pfaff, R. F., Jr.; Dao, E. V.; Holzworth, R. H., II

    2014-12-01

    With the increase in solar activity, the Communications/Outage Forecast System satellite (C/NOFS) now goes below the F peak. As such, we now can study the development of Convective Ionospheric Storms (CIS) and, most importantly, large-scale seeding of the low growth-rate Rayleigh-Taylor (R-T) instability. Two mechanisms have been suggested for such seeding: the Collisional Kelvin-Helmholtz Instability (CKHI) and internal atmospheric gravity waves. A number of observations have shown that the spectrum of fully developed topside structures peaks at 600 km and extends to over 1000 km. These structures are exceedingly difficult to explain by CKHI. Here we show that sinusoidal plasma oscillations on the bottomside during daytime develop classical R-T structures on the nightside with the background 600 km structure still apparent. In two case studies, thunderstorm activity was observed east of the sinusoidal features in the two hours preceding the C/NOFS passes. Thus, we argue that convective tropospheric storms are a likely source of these sinusoidal features.

  15. Tropical convection, ionospheric potentials and global circuit variation

    NASA Technical Reports Server (NTRS)

    Markson, R.

    1986-01-01

    The ionospheric potential (VI), a measure of the earth's overall electric field intensity, correlates with the classic 'Carnegie curve' diurnal variation in electric field caused by the global distribution of thunderstorms. A comparison of VI variation with satellite images of high tropical cloud fields indicates that equatorial thunderstorms over the continents are dominant in maintaining the earth's electric field. VI time series obtained at just one location may provide a high-resolution measure of intense tropical convection.

  16. Ionospheric convection during the magnetic storm of 20-21 March 1991

    NASA Technical Reports Server (NTRS)

    Taylor, J. R.; Yeoman, T. K.; Lester, M.; Buonsanto, M. J.; Scali, J. L.; Ruohoniemi, J. M.; Kelly, J. D.

    1994-01-01

    We report on the response of high-latitude ionospheric convection during the magnetic storm of March 20-21 1990. IMP-8 measurements of solar wind plasma and interplanetary magnetic field (IMF), ionospheric convection flow measurements from the Wick and Goose Bay coherent radars, EISCAT, Millstone Hill and Sondrestorm incoherent radars and three digisondes at Millstone Hill, Goose Bay and Qaanaaq are presented. Two intervals of particular interest have been indentified. The first starts with a storm sudden commencement at 2243 UT on March 20 and includes the ionospheric activity in the following 7 h. The response time of the ionospheric convection to the southward tuning of the IMF in the dusk to midnight local times is found to be approximately half that measured in a similar study at comparable local times during more normal solar wind conditions. A subsequent reconfiguration of the nightside convection pattern was also observed, although it was not possible to distinguish between effects due to possible changes in B(sub y) and effects due to substorm activity. The second interval, 1200-2100 UT 21 March 1990, included a southward turning of the IMF which resulted in the B(sub z) component becoming -10 nT. The response time on the dayside to this change in the IMF at the magnetopause was approximately 15 min to 30 min which is a factor of approximately 2 greater than those previously measured at higher latitudes. A movement of the nightside flow reversal, possibly driven by current systems associated with the substorm expansion phases, was observed, implying that the nightside convection pattern can be dominated by substorm activity.

  17. Interhemispheric differences in ionospheric convection: Cluster EDI observations revisited

    NASA Astrophysics Data System (ADS)

    Förster, M.; Haaland, S.

    2015-07-01

    The interaction between the interplanetary magnetic field and the geomagnetic field sets up a large-scale circulation in the magnetosphere. This circulation is also reflected in the magnetically connected ionosphere. In this paper, we present a study of ionospheric convection based on Cluster Electron Drift Instrument (EDI) satellite measurements covering both hemispheres and obtained over a full solar cycle. The results from this study show that average flow patterns and polar cap potentials for a given orientation of the interplanetary magnetic field can be very different in the two hemispheres. In particular during southward directed interplanetary magnetic field conditions, and thus enhanced energy input from the solar wind, the measurements show that the southern polar cap has a higher cross polar cap potential. There are persistent north-south asymmetries, which cannot easily be explained by the influence of external drivers. These persistent asymmetries are primarily a result of the significant differences in the strength and configuration of the geomagnetic field between the Northern and Southern Hemispheres. Since the ionosphere is magnetically connected to the magnetosphere, this difference will also be reflected in the magnetosphere in the form of different feedback from the two hemispheres. Consequently, local ionospheric conditions and the geomagnetic field configuration are important for north-south asymmetries in large regions of geospace.

  18. Interhemispheric asymmetry of the high-latitude ionospheric convection pattern

    NASA Technical Reports Server (NTRS)

    Lu, G.; Richmond, A. D.; Emery, B. A.; Reiff, P. H.; Beaujardiere, O. De LA; Rich, F. J.; Denig, W. F.; Kroehl, H. W.; Lyons, L. R.; Ruohoiemi, J. M.

    1994-01-01

    The assimilative mapping of ionospheric electrodynamics technique has been used to derive the large-scale high-latitude ionospheric convection patterns simultaneously in both northern and southern hemispheres during the period of January 27 to 29, 1992. When the interplanetary magnetic field (IMF) B(sub z) component is negative, the convection patterns in the southern hemisphere are basically the mirror images of those in the northern hemisphere. The total cross-polar cap potential drops in the two hemispheres are similar. When B(sub z) is positive and absolute value of B(sub y) greater than B(sub z), the convection configurations are mainly determined by B(sub y) and they may appear as normal 'two-cell' patterns in both hemispheres much as one would expect under southward IMF conditions. However, there is a significant difference in the cross-polar-cap potential drop between the two hemispheres, with the potential drop in the southern (summer) hemisphere over 50% larger than that in the northern (winter) hemisphere. As the ratio of absolute value of B(sub y)/B(sub z) decreases (less than one), the convection configuration in the two hemispheres may be significantly different, with reverse convection in the southern hemisphere and weak but disturbed convection in the northern hemisphere. By comparing the convection patterns with the corresponding spectrograms of precipitating particles, we interpret the convection patterns in terms of the concept of merging cells, lobe cells, and viscous cells. Estimates of the ' merging cell' potential drops, that is, the potential ascribed to the opening of the dayside field lines, are usually comparable between the two hemispheres, as they should be. The 'lobe cell' provides a potential between 8.5 and 26 kV and can differ greatly between hemispheres, as predicted. Lobe cells can be significant even for southward IMF, if absolute value of B(sub y) greater than the absolute value of B(sub z). To estimate the potential drop of the 'viscous cells,' we assume that the low-latitude boundary layer is on closed field lines. We find that this potential drop varies from case to case, with a typical value of 10 kV. If the source of these cells is truly a viscous interaction at the flank of the magnetopause, the process is likely spatially and temporally varying rather than steady state.

  19. Direct measurements of the ionospheric convection variability near the cusp//throat

    E-print Network

    Shepherd, Simon

    -shaped convection cell and little additional Joule heating occurs in the convection throat. INDEX TERMS: 2411 heating rates in the upper atmosphere. General circulation models (GCM) of the thermosphere typicallyDirect measurements of the ionospheric convection variability near the cusp//throat S. G. Shepherd

  20. Interplanetary magnetic field effects on high latitude ionospheric convection

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.

    1985-01-01

    Relations between the electric field and the electric current in the ionosphere can be established on the basis of a system of mathematical and physical equations provided by the equations of current continuity and Ohm's law. For this reason, much of the synthesis of electric field and plasma velocity data in the F-region is made with the aid of similar data sets derived from field-aligned current and horizontal current measurements. During the past decade, the development of a self-consistent picture of the distribution and behavior of these measurements has proceeded almost in parallel. The present paper is concerned with the picture as it applies to the electric field and plasma drift velocity and its dependence on the interplanetary magnetic field. Attention is given to the southward interplanetary magnetic field and the northward interplanetary magnetic field.

  1. Magnetospheric and ionospheric plasmas; Proceedings of the Ninth Symposium and Topical Meeting, Graz, Austria, June 25-July 7, 1984

    SciTech Connect

    Schmerling, E.R.; Cowley, S.W.H.; Reiff, P.H.

    1985-01-01

    Papers are presented on the physics of the magnetosphere-ionosphere connection, with attention given to theory and modeling, auroras, plasma dynamics and irregularities, waves and electron beams, the dynamics of the thermosphere, and planetary plasmas. Plasma circulation in the magnetosphere is also discussed; consideration is given to observations of magnetospheric convection from low altitudes, the structure and properties of the earth's plasmasphere, and the circulation of energetic ions of terrestrial origin in the magnetosphere.

  2. Intense spreading of radar echoes from ionospheric plasmas

    E-print Network

    Dorfman, Seth E

    2005-01-01

    On December 25, 2004, a large-scale ionospheric plasma bubble was observed over Arecibo Observatory in Puerto Rico, inducing significant range spreading on ionograms. This phenomena may be explained by means of the E x B ...

  3. Ionospheric physics

    SciTech Connect

    Sojka, J.J. )

    1991-01-01

    Advances in all areas of ionospheric research are reviewed for the 1987-1990 time period. Consideration is given to the equatorial ionosphere, the midlatitude ionosphere and plasmasphere, the auroral ionosphere, the polar ionosphere and polar wind, ionospheric electrodynamic inputs, plasma waves and irregularities, active experiments, ionospheric forecasting, and coupling the ionosphere with other regions.

  4. Cassini measurements of cold plasma in the ionosphere of Titan.

    PubMed

    Wahlund, J E; Boström, R; Gustafsson, G; Gurnett, D A; Kurth, W S; Pedersen, A; Averkamp, T F; Hospodarsky, G B; Persoon, A M; Canu, P; Neubauer, F M; Dougherty, M K; Eriksson, A I; Morooka, M W; Gill, R; André, M; Eliasson, L; Müller-Wodarg, I

    2005-05-13

    The Cassini Radio and Plasma Wave Science (RPWS) Langmuir probe (LP) sensor observed the cold plasma environment around Titan during the first two flybys. The data show that conditions in Saturn's magnetosphere affect the structure and dynamics deep in the ionosphere of Titan. The maximum measured ionospheric electron number density reached 3800 per cubic centimeter near closest approach, and a complex chemistry was indicated. The electron temperature profiles are consistent with electron heat conduction from the hotter Titan wake. The ionospheric escape flux was estimated to be 10(25) ions per second. PMID:15894529

  5. Morphology of meteoric plasma layers in the ionosphere of Mars

    E-print Network

    Withers, Paul

    Morphology of meteoric plasma layers in the ionosphere of Mars as observed by the Mars Global Radio Science data #12;Meteoric Plasma Layer EUV layer X-ray layer Meteoric layer Layer at 90 km Observations · 71 meteoric plasma layers in 5600 MGS profiles 5217R00A 4353T31A 3176Q39A 0350E42B #12

  6. A quantitative deconstruction of the morphology of high-latitude ionospheric convection

    NASA Astrophysics Data System (ADS)

    Grocott, A.; Milan, S. E.; Imber, S. M.; Lester, M.; Yeoman, T. K.

    2012-05-01

    We present an analysis of ionospheric convection data derived from velocity measurements made by the Super Dual Auroral Radar Network (SuperDARN). Our analysis uses an established technique for combining the network data to produce maps of large-scale convection by fitting a spherical harmonic expansion of the ionospheric electric potential to the radar measurements. We discuss how the basis functions of the spherical harmonic expansion describe different characteristic elements of the ionospheric convection pattern and show how their associated coefficients can be used to quantify the morphology of the convection, much like the total transpolar voltage is used to quantify its strength, in relation to upstream interplanetary magnetic field conditions and associated magnetospheric activity. We find that ˜2/3 of the voltage associated with the typical convection pattern is described by a simple twin vortex basis function. The magnitude of the twin vortex is strongly dependent on IMF BZ and the degree of its (typically westward) rotation is weakly dependent on IMF BY. The remaining ˜1/3 of the total voltage is associated with deviations from the basic twin vortex pattern, introduced by the addition of other basis functions, such as IMF BY associated dusk-dawn asymmetries, nightside convection features associated with tail activity, and “reverse” high-latitude convection cells associated with intervals of IMF BZ > 0.

  7. Space plasma laboratory - Experiment in simulated ionospheric plasma

    NASA Technical Reports Server (NTRS)

    Konradi, A.; Garriott, O. K.; Bernstein, W.

    1978-01-01

    Several experiments with simulated ionospheric plasma were performed in the Johnson Space Center's large (17 m diameter x 27 m height) vacuum chamber. Two of these, the RF discharge and the electron-beam plasma discharge, are described here. The RF experiment involved measurement of the loading on a 5 m dipole and a 5 m loop antenna caused by the presence of a plasma. The results indicate that when the RF frequency is near the electron gyro frequency a self-sustained plasma discharge is set up and the real part of the complex antenna impedance increases. The beam-plasma experiment was carried out to study a discharge produced by an electron beam with an energy of about 1 keV when the electron beam was injected parallel to the ambient magnetic field. As the beam current was raised to a critical level, a spontaneous transition occurred whereby a luminous halo was formed around the electron beam indicating a sustained discharge.

  8. Modeling the observed proton aurora and ionospheric convection responses to changes in the IMF clock angle

    E-print Network

    Lockwood, Mike

    Modeling the observed proton aurora and ionospheric convection responses to changes in the IMF clock angle: 1. Persistence of cusp proton aurora K. Throp, M. Lockwood,1 B. S. Lanchester, and S. K employ a numerical model of cusp ion precipitation and proton aurora emission to fit variations

  9. Kinetic modeling of the Saturn ring-ionosphere plasma environment

    NASA Technical Reports Server (NTRS)

    Wilson, G. R.; Waite, J. H., Jr.

    1989-01-01

    A time-independent kinetic plasma model was developed on the basis of the Li et al. (1988) semikinetic plasma model and was used to study the interaction of the Saturnian ionosphere and ring plasma. The model includes the gravitational magnetic mirror and centripetal and ambipolar electric forces, and the effect of the mixing of two plasma populations. The results obtained indicate that the density, temperature, and composition of plasma near the rings changing in the direction from the inner C ring to the outer A ring, due to the fact that the predominant source of plasma changes from the ionosphere to the rings. The model results also suggest that the outflow of hydrogen from the ionosphere to the rings may be shut off for field lines passing through the outer B and A ring, due to the ambipolar electric field set up by the warm ring plasma trapped near the ring plane by the centipetal force. In these regions, there will be a net flux of O(+) ions from the rings to the ionosphere.

  10. The response of plasma density to breaking inertial gravity wave in the lower regions of ionosphere

    E-print Network

    Tang, Wenbo

    The response of plasma density to breaking inertial gravity wave in the lower regions of ionosphere Lagrangian dynamics for charged flows in the E-F regions of ionosphere Phys. Plasmas 20, 032305 (2013); 10.1063/1.4794735 Suprathermal plasma analyzer for the measurement of low-energy electron distribution in the ionosphere Rev. Sci

  11. Plasma effects of active ion beam injections in the ionosphere at rocket altitudes

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.; Cahill, L. J., Jr.; Kintner, P. M.; Moore, T. E.; Pollock, C. J.

    1992-01-01

    Data from ARCS rocket ion beam injection experiments are primarily discussed. There are three results from this series of active experiments that are of particular interest in space plasma physics. These are the transverse acceleration of ambient ions in the large beam volume, the scattering of beam ions near the release payload, and the possible acceleration of electrons very close to the plasma generator which produce intense high frequency waves. The ability of 100 ma ion beam injections into the upper E and F regions of the ionosphere to produce these phenomena appear to be related solely to the process by which the plasma release payload and the ion beam are neutralized. Since the electrons in the plasma release do not convect with the plasma ions, the neutralization of both the payload and beam must be accomplished by large field-aligned currents (milliamperes/square meter) which are very unstable to wave growth of various modes.

  12. Direct observations of the full Dungey convection cycle in the polar ionosphere for southward interplanetary magnetic field conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Q.-H.; Lockwood, M.; Foster, J. C.; Zhang, S.-R.; Zhang, B.-C.; McCrea, I. W.; Moen, J.; Lester, M.; Ruohoniemi, J. M.

    2015-06-01

    Tracking the formation and full evolution of polar cap ionization patches in the polar ionosphere, we directly observe the full Dungey convection cycle for southward interplanetary magnetic field (IMF) conditions. This enables us to study how the Dungey cycle influences the patches' evolution. The patches were initially segmented from the dayside storm enhanced density plume at the equatorward edge of the cusp, by the expansion and contraction of the polar cap boundary due to pulsed dayside magnetopause reconnection, as indicated by in situ Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. Convection led to the patches entering the polar cap and being transported antisunward, while being continuously monitored by the globally distributed arrays of GPS receivers and Super Dual Auroral Radar Network radars. Changes in convection over time resulted in the patches following a range of trajectories, each of which differed somewhat from the classical twin-cell convection streamlines. Pulsed nightside reconnection, occurring as part of the magnetospheric substorm cycle, modulated the exit of the patches from the polar cap, as confirmed by coordinated observations of the magnetometer at Tromsø and European Incoherent Scatter Tromsø UHF radar. After exiting the polar cap, the patches broke up into a number of plasma blobs and returned sunward in the auroral return flow of the dawn and/or dusk convection cell. The full circulation time was about 3 h.

  13. New Forms of Convection in Galaxy Cluster Plasmas

    E-print Network

    Wurtele, Jonathan

    New Forms of Convection in Galaxy Cluster Plasmas (i.e., how do galaxy clusters boil?) Eliot · Hot Plasma in Clusters of Galaxies · Hydrodynamic Convection (`normal' convection; e.g., the sun) · Convection induced by Anisotropic Thermal Conduction · new convective instabilities: the "MTI" & "HBI

  14. Contribution of low-energy ionospheric protons to the plasma sheet

    NASA Technical Reports Server (NTRS)

    Delcourt, D. C.; Moore, T. E.; Chappell, C. R.

    1994-01-01

    The magnetospheric transport of low-energy ionospheric ions is examined by means of three-dimensional particle codes. Emphasis is placed on the behavior of polar wind and cleft originating protons. It is demonstrated that, via nonadiabatic motion inside the neutral sheet, these ions can significantly contribute to the populations of the plasma sheet. The importance of this contribution is found to depend critically upon the dynamics of particles originating from the highest latitudes, as these possibly have access to the distant tail. Hence it is shown that polar wind H(+) expelled into the magnetosphere at very low energies (in the electron volt range) preferentially feed the plasma sheet during quiet times, experiencing accelerations up to several kiloelectron volts upon return into the inner magnetosphere. In contrast, during disturbed times, the intensifying magnetospheric convection confines this population to low L shells where it travels in a nearly adiabatic manner. As for the protons originating from the cleft fountain, the simulations reveal that they can be transported up to the vicinity of the distant neutral line in the nightside sector. Via interaction with the neutral sheet, these ionospheric ions are rapidly raised to the characteristic plasma sheet energy range. The density levels contributed by these populations are quite substantial when compared to those measured in situ. These simulations establish an active role of low-energy ionospheric ions in the overall magnetospheric dynamics.

  15. Plasma temperatures in Saturn's ionosphere Luke Moore,1

    E-print Network

    Mendillo, Michael

    Plasma temperatures in Saturn's ionosphere Luke Moore,1 Marina Galand,2 Ingo Mueller-Wodarg,2 Roger 21 October 2008. [1] We have calculated self-consistent electron and ion temperatures in Saturn observations and to examine the energy budget of Saturn's upper atmosphere. Electron temperatures

  16. Observations of ionospheric convection from the Wallops SuperDARN radar at middle latitudes

    NASA Astrophysics Data System (ADS)

    Baker, J. B. H.; Greenwald, R. A.; Ruohoniemi, J. M.; Oksavik, K.; Gjerloev, J. W.; Paxton, L. J.; Hairston, M. R.

    2007-01-01

    During geomagnetic storms the ability of the Super Dual Auroral Radar Network (SuperDARN) to measure ionospheric convection becomes limited when the radars suffer from absorption and the auroral disturbance expands equatorward of the radar sites. To overcome these shortcomings, it was decided to construct a SuperDARN radar at middle latitudes on the grounds of the NASA Wallops Flight Facility. This paper presents the first comprehensive analysis of Doppler measurements from the Wallops radar, which commenced operations in May 2005. Wallops measurements are compared with the Goose Bay radar during the onset of a geomagnetic storm on 31 August 2005: Goose Bay measured the onset of geomagnetic activity at high latitude while Wallops monitored the expansion of convection to middle latitudes. Average convection patterns binned by the Kp geomagnetic index are also presented. During weak-moderate geomagnetic activity (Kp ? 3) the Wallops radar observes ionospheric irregularities between 50° and 60° magnetic latitude drifting westward across much of the nightside. When these measurements are incorporated into the calculation of an average SuperDARN convection pattern, the streamlines of polar cap outflow on the nightside become kinked in a manner reminiscent of the Harang discontinuity. This morphology arises quite naturally when the two-cell convection at high latitudes merges with the prevailing westward convection at middle latitudes. During increased geomagnetic activity (Kp ? 3), Wallops is able to measure the expansion of auroral electric fields to middle latitudes and the average SuperDARN cross-polar cap potential is increased by 25%.

  17. Coupled Magnetotail-Ionosphere Asymmetries from Ionospheric Hall Conduction

    NASA Astrophysics Data System (ADS)

    Lotko, W.; Smith, R. H.; Zhang, B.; Ouellette, J.; Brambles, O.; Lyon, J.; Wiltberger, M. J.

    2014-12-01

    Fast convective transport in the plasma sheet is more prevalent in the premidnight (dusk) sector relative to postmidnight. Ionospheric convection exhibits related asymmetries - more flux typically circulates in the dusk cell than in the dawn cell, and the nightside convection pattern is rotated clockwise when viewed over the North Pole. We show, using global simulations of the solar wind-magnetosphere-ionosphere interaction, that the electrodynamic interaction between Earth's magnetosphere and ionosphere produces asymmetries resembling observed distributions in plasmasheet flows and ionospheric convection (Figure, center panel). The primary causal agent in the simulations is a meridional gradient in ionospheric Hall conductance which, through Cowling polarization, regulates the distributions of i) electrical currents flowing within and between the ionosphere and magnetotail and ii) the nightside reconnection rate and resulting dawn-dusk distribution of plasma sheet fast flows. The asymmetry disappears in the simulation when the Hall conductance is taken to be uniform (left panel), and it reverses when the conductance is artificially depleted at auroral latitudes (right panel). The coupling between meridional currents and electric fields in the ionosphere and axial currents and electric fields in the plasmasheet is demonstrated by a simple model for non-ideal coupling of field-aligned currents flowing between the plasma sheet and the region of enhanced ionospheric conductance straddling the nightside convection throat.

  18. Ionospheric plasma dynamics and instability caused by upward currents above thunderstorms

    NASA Astrophysics Data System (ADS)

    Kuo, C. L.; Lee, L. C.

    2015-04-01

    Thunderstorms are electric generators, which drive currents upwardly into the ionosphere. In this paper, we examine the effects of thunderstorm upward current on the ionosphere. We use a thunderstorm model to calculate the three-dimensional current flows in the atmosphere and to simulate the upward current above the thunderstorm with the tripole-charge structure. The upward current flows into the ionosphere, while the associated electric field causes the plasma E × B motion. The caused plasma motion redistributes the plasma density, leading to ionospheric density variations. In the nighttime ionosphere, the E × B motion may also cause the formation of plasma bubbles.

  19. Hemispheric Asymmetry of Ionospheric Convection and Joule Heating and Its Impact on the Thermospher

    NASA Astrophysics Data System (ADS)

    Lu, G.

    2014-12-01

    The Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure has proved to be a very useful tool to estimate the large-scale simultaneous distributions of ionospheric conductance, electric potential, and other related quantities by combining simultaneous measurements from satellites, radars, and ground magnetometers. In this paper we apply the AMIE procedure to compare the high-latitude ionospheric convection and Joule heating patterns between the northern and southern hemispheres and to investigate how the hemispheric asymmetry varies with different solar wind and IMF conditions. We also investigate the impact of the asymmetric high-latitude magnetospheric forcing on themospheric dynamics based on the coupled AMIE-TIMEGCM simulations as well as through intercomparison with observations.

  20. Conversion of ionospheric heater HF waves into electron acoustic waves in warm ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Lehtinen, N. G.; Inan, U. S.; Bunch, N. L.

    2012-12-01

    The Stanford full-wave method (StanfordFWM) was developed in order to calculate generation and propagation of electromagnetic waves in cold magnetized stratified plasmas. We generalize it by including the effects of electron temperature, by following a procedure analogous to that of [Budden and Jones, 1987, doi:10.1098/rspa.1987.0077]. The advantage of StanfordFWM is that it is intrinsically numerically stable against ``swamping'' by evanescent waves while in the method of Budden and Jones [1987] ``the problem of numerical swamping is severe ...'' The new method is used to calculate mode conversion between electron acoustic (Langmuir) and electromagnetic modes for propagation in a warm ionospheric plasma with a gradient of electron density and an arbitrary direction of the background geomagnetic field, in the vicinity of density corresponding to the plasma resonance. As a numerical check, we demonstrate good agreement with previous calculations of Budden and Jones [1987] obtained by a numerically-unstable full-wave method scheme; Mjolhus [1990, doi:10.1029/RS025i006p01321] obtained by the method of contour integration in the complex n-plane; and Kim et al [2008, doi:10.1063/1.2994719] using a numerical electron fluid simulation code. We demonstrate that under certain conditions the linear conversion of the ordinary HF electromagnetic waves radiated by an ionospheric heater into electron acoustic waves may be very efficient, with implications for the HF heating of the F-region of ionosphere.

  1. Application of nonlinear methods to the study of ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. A.; Mogilevsky, M. M.; Kozelov, B. V.

    2015-01-01

    Most of the processes taking place in the auroral region of Earth's ionosphere are reflected in a variety of dynamic forms of the aurora borealis. In order to study these processes it is necessary to consider temporary and spatial variations of the characteristics of ionospheric plasma. Most traditional methods of classical physics are applicable mainly for stationary or quasi-stationary phenomena, but dynamic regimes, transients, fluctuations, selfsimilar scaling could be considered using the methods of nonlinear dynamics. Special interest is the development of the methods for describing the spatial structure and the temporal dynamics of auroral ionosphere based on the ideas of percolation theory and fractal geometry. The fractal characteristics (the Hausdorff fractal dimension and the index of connectivity) of Hall and Pedersen conductivities are used to the description of fractal patterns in the ionosphere. To obtain the self-consistent estimates of the parameters the Hausdorff fractal dimension and the index of connectivity in the auroral zone, an additional relation describing universal behavior of the fractal geometry of percolation at the critical threshold is applied. Also, it is shown that Tsallis statistics can be used to study auroral ionosphere

  2. Localized lower hybrid acceleration of ionospheric plasma

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Vago, J.; Chesney, S.; Arnoldy, R. L.; Lynch, K. A.; Pollock, C. J.; Moore, T. E.

    1992-01-01

    Observations of the transverse acceleration of ions in localized regions of intense lower hybrid waves at altitudes near 1000 km in the auroral ionosphere are reported. The acceleration regions are thin filaments with dimensions across geomagnetic field lines of about 50-100 m corresponding to 5-10 thermal ion gyroradii or one hot ion gyroradius. Within the acceleration region lower hybrid waves reach peak-to-peak amplitudes of 100-300 mV/m and ions are accelerated transversely with characteristic energies of the order of 10 eV. These observations are consistent with theories of lower hybrid wave collapse.

  3. Finite Larmor radius convection instability in the near-Earth plasma sheet

    NASA Astrophysics Data System (ADS)

    Kozlovsky, A.; Lyatsky, W.

    1999-02-01

    Violation of the frozen-in condition for the plasma sheet ions when the spatial scale of disturbance is of the order of the Larmor radius leads to the magnetospheric convection instability. This instability results in the separation of the convection plasma flow into jets with the spatial scale of the order of 1 km (from a few hundreds meters up to a few kilometers) at the ionosphere level. The instability develops in these regions of the plasma sheet where the contents of the hot ions in the unit magnetic flux tube vary with the distance from the Earth. This takes place at the boundaries of the plasma sheet. The instability has a large growth rate (up to 0.01 s-1). In the nighside plasma sheet region the developing structures are stretched approximately along the auroral oval.

  4. Plasma motion in the Venus ionosphere: Transition to supersonic flow

    SciTech Connect

    Whitten, R.C.; Barnes, A. ); McCormick, P.T. )

    1991-07-01

    A remarkable feature of the ionosphere of Venus is the presence of nightward supersonic flows at high altitude near the terminator. In general the steady flow of an ideal gas admits a subsonic-supersonic transition only in the presence of special conditions, such as a convergence of the flow followed by divergence, or external forces. In this paper, the authors show that the relatively high pressure dayside plasma wells up slowly, and at high altitude it is accelerated horizontally through a relatively constricted region near the terminator toward the low-density nightside. In effect, the plasma flows through a nozzle that is first converging, then diverging, permitting the transition to supersonic flow. Analysis of results from previously published models of the plasma flow in the upper ionosphere of Venus shows how such a nozzle is formed. The model plasma does indeed accelerate to supersonic speeds, reaching sonic speed just behind the terminator. The computed speeds prove to be close to those observed by the Pioneer Venus orbiter, and the ion transport rates are sufficient to produce and maintain the nightside ionosphere.

  5. The Relationship Between Convection Velocities in Simultaneous High-Latitude Ionospheres

    NASA Astrophysics Data System (ADS)

    Shepherd, S. G.; Murr, D. L.; Ruohoniemi, J. M.

    2007-12-01

    Depending on the dipole tilt angle of the Earth's magnetosphere, the northern and southern hemispheres can have dramatically different average conductances. Because the ionosphere provides a path through which magnetospheric field-aligned currents coupling the two regions close, it is expected that the electric field and current density would also exhibit asymmetric behavior between hemispheres that depend on the dipole tilt angle. Some magnetohydrodynamic models of the magnetosphere show that the ratio of the global hemispheric electric potential can be a factor of 2-4 for large dipole tilt angles. Statistical studies of ionospheric electric fields using ground-based radars and spacecraft also show that there is a seasonal dependence of the global ionospheric potential but that the difference is at most ~20%. Here we use merged line-of-sight velocity vectors obtained simultaneously in both hemispheres from the SuperDARN network of HF radars to investigate the relationship of the convection velocity for conditions of varying hemispheric conductance. We find a marked difference in the hemispheric relationship of the simultaneous convection velocities between the dayside and the nightside ionospheres. Using a dataset consisting of seven years of SuperDARN merged velocities centered roughly on the most recent solar maximum, we show statistically that the ratio of velocities restricted to the dayside in the Summer hemisphere to those in the dayside Winter hemisphere depends only marginally on the dipole tilt angle and is at most a factor of ~1.2 for extreme tilt angles. The ratio of merged velocities restricted to the nightside, however, show a strong dependence on dipole tilt angle and can be as high as 2 for extreme tilt angles. The results are consistent with the notion that the dayside magnetosphere-ionosphere circuit behaves as if driven by a constant voltage source, whereas the nightside acts more like a circuit with a constant current source.

  6. Measuring ionospheric electron density using the plasma frequency probe

    NASA Technical Reports Server (NTRS)

    Jensen, Mark D.; Baker, Kay D.

    1992-01-01

    During the past decade, the plasma frequency probe (PFP) has evolved into an accurate, proven method of measuring electron density in the ionosphere above about 90 km. The instrument uses an electrically short antenna mounted on a sounding rocket that is immersed in the plasma and notes the frequency where the antenna impedance is large and nonreactive. This frequency is closely related to the plasma frequency, which is a direct function of free electron concentration. The probe uses phase-locked loop technology to follow a changing electron density. Several sections of the plasma frequency probe circuitry are unique, especially the voltage-controlled oscillator that uses both an electronically tuned capacitor and inductor to give the wide tuning range needed for electron density measurements. The results from two recent sounding rocket flights (Thunderstorm II and CRIT II) under vastly different plasma conditions demonstrate the capabilities of the PFP and show the importance of in situ electron density measurements of understanding plasma processes.

  7. Electron densities in the upper ionosphere of Mars from the excitation of electron plasma oscillations

    E-print Network

    Gurnett, Donald A.

    Electron densities in the upper ionosphere of Mars from the excitation of electron plasma to remote radio sounding of the ionosphere of Mars, the MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) instrument on the Mars Express spacecraft is also able to measure the in situ electron

  8. Vertical sheets of dense plasma in the topside Martian ionosphere E. Nielsen,1

    E-print Network

    Gurnett, Donald A.

    Vertical sheets of dense plasma in the topside Martian ionosphere E. Nielsen,1 X.-D. Wang,1 D. A-frequency radar, Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), on board the Mars Express spacecraft is used to sound electron densities in the topside Martian ionosphere. The radar records the delay

  9. Radio pumping of ionospheric plasma with orbital angular momentum.

    PubMed

    Leyser, T B; Norin, L; McCarrick, M; Pedersen, T R; Gustavsson, B

    2009-02-13

    Experimental results are presented of pumping ionospheric plasma with a radio wave carrying orbital angular momentum (OAM), using the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Optical emissions from the pumped plasma turbulence exhibit the characteristic ring-shaped morphology when the pump beam carries OAM. Features of stimulated electromagnetic emissions (SEE) that are attributed to cascading Langmuir turbulence are well developed for a regular beam but are significantly weaker for a ring-shaped OAM beam in which case upper hybrid turbulence dominates the SEE. PMID:19257597

  10. Final Progress Report for Ionospheric Dusty Plasma In the Laboratory [Smokey Plasma

    SciTech Connect

    Robertson, Scott

    2010-09-28

    Ionospheric Dusty Plasma in the Laboratory” is a research project with the purpose of finding and reproducing the characteristics of plasma in the polar mesosphere that is unusually cold (down to 140 K) and contains nanometer-sized dust particles. This final progress report summarizes results from four years of effort that include a final year with a no-cost extension.

  11. Self-focusing instability in ionospheric plasma with thermal conduction

    SciTech Connect

    Sodha, Mahendra Singh; Sharma, Ashutosh; Verma, M. P.; Faisal, Mohammad

    2007-05-15

    In this communication, an expression for the growth rate of self-focusing instability in the ionospheric plasma has been derived after taking finite thermal conduction into account. The instability arises on account of the depletion of electrons from regions where the irradiance of the perturbation is large. In contrast to earlier work, an appropriate energy balance equation for electrons and ions and the proper dependence of thermal conductivity on electron temperature have been used. The dependence of the growth rate of the filamentation instability on the background irradiation, thermal conductivity, and the wave number of transverse perturbation has been investigated. The mid-latitude daytime ionospheric model of Gurevich has been used for numerical computations, corresponding to a height of 200 km. The gradient of irradiance perturbations is assumed to be along the magnetic field of the Earth. The numerical results have been illustrated graphically and discussed.

  12. Ionospheric plasma drift and structure studies at high and mid-latitudes. Volume 1. Final report, October 1990-October 1993

    SciTech Connect

    Reinisch, B.W.; Scali, J.L.; Dozois, C.; Crowley, G.

    1993-12-01

    Ground-based observations of the high latitude ionosphere with Digisonde sounders at Quaanaaq, Sondrestrom, Goose Bay, Argentina and Millstone Hill provide a description of the patch structure and the convection pattern in the polar cap. Correlation analysis of observed F-region plasma drifts with the orientation of the interplanetary magnetic field (measured by IMP8) lead to a new technique of deducing the signs of Bz and By from the measured drifts. Real time calculation of the plasma drift was successfully introduced at one of the Digisonde stations (Sondrestrom) providing the possibility of determining the IMF components in real time. Analysis of mid-latitude trough observation shows large westward velocities in the trough region. Digisonde data from Quaanaaq and DMSP F8 and F9 satellite data showed the development of the ionospheric polar hole.

  13. Modeling of Plasma Irregularities in Expanding Ionospheric Dust Clouds

    NASA Astrophysics Data System (ADS)

    Fu, H.; Scales, W.; Mahmoudian, A.; Bordikar, M. R.

    2009-12-01

    Natural dust layers occur in the earth’s mesosphere (50km-85km). Plasma irregularities are associated with these natural dust layers that produce radar echoes. Recently, an Ionospheric sounding rocket experiment was performed to investigate the plasma irregularities in upper atmospheric dust layers. The Charged Aerosol Release Experiment (CARE) uses a rocket payload injection of particles in the ionosphere to determine the mechanisms for enhanced radar scatter from plasma irregularities embedded in artificial dusty plasma in space. A 2-D hybrid computational model is described that may be used to study a variety of irregularities in dusty space plasmas which may lead to radar echoes. In this model, the dust and ions are both treated with Particle-In-Cell method while the dust charge varies with time based on the standard dust Orbit Motion Limited charging model. A stochastic model is adopted to remove particle ions due to the dust charging process. Electrons are treated with a fluid model including the parallel dynamics of magnetic fields. Fourier spectral methods with a predictor-corrector time advance are used to solve it. This numerical model will be used to investigate the electrodynamics and several possible plasma irregularity generation mechanisms after the creation of an artificial dust layer. The first is the dust ion-acoustic instability due to the drift of dust relative to the plasma. The instability saturates by trapping some ions. The effects of dust radius and dust drift velocity on plasma irregularities will be analyzed further. Also, a shear- driven instability in expanding dusty clouds is investigated.

  14. A Miniature Sweeping Impedance Probe for Ionospheric Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Martin-Hidalgo, J.; Swenson, C.

    2013-12-01

    The impedance of a probe immersed in ionospheric plasma at radio frequencies is an important technique for determining absolute electron density. Building on 50 years of history in developing and flying RF probes for plasma diagnostics at Utah State, a new SIP (Sweeping Impedance Probe) design has been completed which will obtain qualitative improvement over previous instruments in terms of accuracy and sweep rate. This instrument will provide a continuous measurement of the plasma impedance magnitude and phase with an expected accuracy of 1% and 1 degree respectively over the 1 to 20 MHz range. This new SIP will be launched in January 2014 onboard the Auroral Spatial Structures Probe (ASSP) NASA sounding rocket mission using a short monopole probe. The rocket apogee of 600 km will allow the characterization of the plasma in the E and F layers at auroral latitudes and the study of short term and spatial variations along the high-altitude profile of the sounding rocket. Although this SIP design has been developed for a sounding rocket, it can be optimized and miniaturized for Cubesat's and included along other ionospheric diagnostic instruments such as double and Langmuir probes. This presentation is focused on the overall design of the instrument, the tests results for the ASSP instrument and conceptual designs for future CubeSat mission similar to the NSF DICE mission.

  15. CUTLASS Finland radar observations of the ionospheric signatures of flux transfer events and the resulting plasma flows

    NASA Astrophysics Data System (ADS)

    Provan, G.; Yeoman, T. K.; Milan, S. E.

    1998-11-01

    The CUTLASS Finland radar has been run in a two-beam special scan mode, which offered excellent temporal and spatial information on the flows in the high-latitude ionosphere. A detailed study of one day of this data revealed a convection reversal boundary (CRB) in the CUTLASS field of view (f.o.v) on the dayside, the direction of plasma flow either side of the boundary being typical of a dawn-cell convection pattern. Poleward of the CRB a number of pulsed transients are observed, seemingly moving away from the radar. These transients are identified here as the ionospheric signature of flux transfer events (FTEs). Equatorward of the CRB continuous backscatter was observed, believed to be due to the return flow on closed field lines. The two-beam scan offered a new and innovative opportunity to determine the size and velocity of the ionospheric signatures associated with flux transfer events and the related plasma flow pattern. The transient signature was found to have an azimuthal extent of 1900 +/- 900 km and an poleward extent of sim250 km. The motion of the transient features was in a predominantly westward azimuthal direction, at a velocity of 7.5 +/- 3 km.

  16. Mapping high-latitude plasma convection with coherent HF radars

    NASA Technical Reports Server (NTRS)

    Ruohoniemi, J. M.; Greenwald, R. A.; Baker, K. B.; Villain, J.-P.; Hanuise, C.

    1989-01-01

    Several methods developed for mapping high-latitude plasma convection with a high-latitude HF radar are described, which utilize coherent backscatter from electron density irregularities at F-region altitudes to observe convective plasma motion. Several examples of two-dimensional convection-velocity maps are presented, showing instances of L-shell-aligned flow in the dusk sector, the reversal of convection near magnetic midnight, and counterstreaming in the dayside cleft.

  17. Are plasma depletions in Saturn's ionosphere a signature of time-dependent water input?

    E-print Network

    Mendillo, Michael

    Are plasma depletions in Saturn's ionosphere a signature of time- dependent water input? Luke Moore the presence of numerous ``ionospheric holes'', or plasma depletions, in Saturn's upper atmosphere that cannot the introduction of spacecraft exhaust products (e.g., H2O) into the atmosphere. Using a new model of Saturn

  18. Electric Field Double Probe Measurements for Ionospheric Space Plasma Experiments

    NASA Technical Reports Server (NTRS)

    Pfaff, R.

    1999-01-01

    Double probes represent a well-proven technique for gathering high quality DC and AC electric field measurements in a variety of space plasma regimes including the magnetosphere, ionosphere, and mesosphere. Such experiments have been successfully flown on a variety of spacecraft including sounding rockets and satellites. Typical instrument designs involve a series of trades, depending on the science objectives, type of platform (e.g., spinning or 3-axis stabilized), expected plasma regime where the measurements will be made, available telemetry, budget, etc. In general, ionospheric DC electric field instruments that achieve accuracies of 0.1 mV/m or better, place spherical sensors at large distances (10m or more) from the spacecraft body in order to extend well beyond the spacecraft wake and sheath and to achieve large signal-to-noise ratios for DC and long wavelength measurements. Additional sets of sensors inboard of the primary, outermost sensors provide useful additional information, both for diagnostics of the plasma contact potentials, which particularly enhance the DC electric field measurements on non-spinning spacecraft, and for wavelength and phase velocity measurements that use the spaced receiver or "interferometer" technique. Accurate attitude knowledge enables B times V contributions to be subtracted from the measured potentials, and permits the measured components to be rotated into meaningful geophysical reference frames. We review the measurement technique for both DC and wave electric field measurements in the ionosphere discussing recent advances involving high resolution burst memories, multiple baseline double probes, new sensor surface materials, biasing techniques, and other considerations.

  19. Plasma bubbles in the topside ionosphere: solar activity dependence

    NASA Astrophysics Data System (ADS)

    Sidorova, L.

    2009-04-01

    The present study deals with the He+ density depletions, observed during a high solar activity at the topside ionosphere heights. There are the indications that plasma bubbles, produced by Rayleigh-Taylor instability at the bottomside of ionosphere, could rise up to the topside ionosphere and plasmasphere. Maryama and Matuura (1984), using ISS-b spacecraft data (high solar activity - F10.7=200, 1978-80), have seen the plasma bubbles in Ne density over equator at 1100 km heights in 46 cases in 1700 passes (3%). However, there is distinctly another picture in He+ density depletions according to ISS-b spacecraft data for the same period. They occur in the topside ionosphere over low- and middle- latitudinal regions (L=1.3-3) in 11% of the cases (Karpachev, Sidorova, 2002; Sidorova, 2004, 2007). The detailed study of the He+ density depletion characteristics was done. It was noted that the He+ density depletions are mostly seen in the evening-night sector (18-05 LT) from October till May. It was like to the peculiarities of the Equatorial Spread-F (ESF), usually associated with plasma bubble. The monthly mean He+ density depletion statistics, plotted in LT versus month, was compared with the similar plots for ESF statistics, obtained by Abdu and colleagues (2000) from ground-based ionograms over Brazilian regions for the period of the same solar activity. It was revealed good enough correlation (R=0.67). Also depletion values as function of LT were compared with the vertical plasma drift velocity variations, obtained for the same period from AE-E spacecraft and IS radar (Jicamarca) data. Striking similarity in development dynamics was revealed for the different seasons. It was concluded, that the He+ density depletions should be considered as originating from equatorial plasma bubbles. It seems the plasma bubbles, reaching the topside ionosphere altitudes, are mostly seen not in electron density but in He+ density as depletions. According to publications, many cases of the He+ density depletions were revealed on OGO-4, OGO-6, Oreol-1 and DE-2 spacecraft data. The most of these cases occur during high and maximal solar activity periods, when the He+ density layer is very well developed at the topside ionosphere heights (Wilford et al., 2003). Using the model of the plasma bubble formation as suggested by Woodman and La Hoz (1976), it was shown that the topside plasma bubbles, seen in He+ density, are rather typical phenomena for the topside ionosphere for high solar activity epoch. REFERENCE Abdu, M.A., J.H.A. Sobral, I.S. Batista, Equatorial spread F statistics in the american longitudes: some problems relevant to ESF description in the IRI scheme, Adv. Space Res., vol. 25, pp. 113-124, 2000. Karpachev, A.T. and L.N. Sidorova, Occurrence probability of the light ion trough and subtrough in ??+ density on season and local time, Adv. Space Res., vol. 29, pp. 999-1008, 2002. Maryama, T. and N. Matuura, Longitudinal variability of annual changes in activity of equatorial spread F and plasma bubbles, J. Geophys. Res., 89(A12), 10,903-10,912, 1984. Sidorova, L.N., He+ density topside modeling based on ISS-b satellite data, Adv. Space Res., vol. 33, pp. 850-854, 2004. Sidorova, L.N., Plasma bubble phenomenon in the topside ionosphere, Adv. Space Res., Special issue (COSPAR), doi: 10.1016/j.asr.2007.03.067, 2007. Wilford, C.R., R.J. Moffett, J.M. Rees, G.J. Bailey, Comparison of the He+ layer observed over Arecibo during solar maximum and solar minimum with CTIP model results, J. Geophys. Res., vol. 108, A12, pp. 1452, doi:10.1029/2003JA009940, 2003. Woodman, R.F. and C. La Hoz, Radar observations of F-region equatorial irregularities, J. Geophys. Res., vol. 81, pp. 5447-5466, 1976.

  20. Ionospheric plasma density-electric field turbulence from observation on satellites, Its generation and possible connection with seismicity

    NASA Astrophysics Data System (ADS)

    Molchanov, O. A.; Akentieva, O. S.; Afonin, V. V.; Mareev, E. A.; Fedorov, E.

    2003-04-01

    Basing on plasma density data from Cosmos-900 satellite we analyze spatial distribution of ionospheric turbulence in a form k-b, where k is wave number and b is fractal number. In this case spatial scales (L ˜ k-1 ) are from 15 km to 300 km at satellite height h=400-520 km. Depending on season, local time and seismic activity vary in interval 1.3-1.9. Then we consider slope of spatial distribution for electric field turbulence observed on a board of IK-24 satellite (h=500-700 km, L ˜ 1 m). Supposing simple connection between power spectrum density of the plasma and electric field we find =1.2-1.7. Remembering that from Aureol-3 observation (Cerisier et al., 1985; h˜ 600 km, L = 7-700 m), =1.7-1.9 both for plasma density and electric field variations, we conclude that the ionospheric turbulence is united process in a large interval of scales and b-dependence is similar to classic Kolmogorov`s turbulence b=5/3. In theoretical explanation we suppose the following: a) ionospheric turbulence (IT) is sustained by energy input from atmospheric gravity waves (AGW) with horizontal wavelengths 100-500 km; b) IT corresponds a slow convective eigenmode, which excites in a presence of neutral wind in the ionosphere; c) IT develops to smaller scales in the same manner as for the classic turbulence; d) IT generates inside ionosphere at the heights 100-250 km and then penetrates to the higher altitudes. On this way it is possible to expect some seismic influence if to suggest a change of AGW pumping during strong seismic shocks or before them.

  1. Measuring ionospheric electron density using the plasma frequency probe

    SciTech Connect

    Jensen, M.D.; Baker, K.D. )

    1992-02-01

    During the past decade, the plasma frequency probe (PFP) has evolved into an accurate, proven method of measuring electron density in the ionosphere above about 90 km. The instrument uses an electrically short antenna mounted on a sounding rocket that is immersed in the plasma and notes the frequency where the antenna impedance is large and nonreactive. This frequency is closely related to the plasma frequency, which is a direct function of free electron concentration. The probe uses phase-locked loop technology to follow a changing electron density. Several sections of the plasma frequency probe circuitry are unique, especially the voltage-controlled oscillator that uses both an electronically tuned capacitor and inductor to give the wide tuning range needed for electron density measurements. The results from two recent sounding rocket flights (Thunderstorm II and CRIT II) under vastly different plasma conditions demonstrate the capabilities of the PFP and show the importance of in situ electron density measurements of understanding plasma processes. 9 refs.

  2. The interplanetary electric field, cleft currents and plasma convection in the polar caps

    NASA Technical Reports Server (NTRS)

    Banks, P. M.; Clauer, C. R.; Araki, T.; St. Maurice, J. P.; Foster, J. C.

    1984-01-01

    The relationship between the pattern of plasma convection in the polar cleft and the dynamics of the interplanetary electric field (IEF) is examined theoretically. It is shown that owing to the geometrical properties of the magnetosphere, the East-West component of the IEF will drive field-aligned currents which connect to the ionosphere at points lying on either side of noon, while currents associated with the North-South component of the IEF will connect the two polar caps as sheet currents, also centered at 12 MLT. In order to describe the consequences of the Interplanetary Magnetic Field (IMF) effects upon high-latitude electric fields and convection patterns, a series of numerical simulations was carried out. The simulations were based on a solution to the steady-state equation of current continuity in a height-integrated ionospheric current. The simulations demonstrate that a simple hydrodynamical model can account for the narrow 'throats' of strong dayside antisunward convection observed during periods of southward interplanetary IMF drift, as well as the sunward convection observed during periods of strongly northward IMF drift.

  3. Effects of convection electric field on upwelling and escape of ionospheric O(+)

    NASA Technical Reports Server (NTRS)

    Cladis, J. B.; Chiu, Yam T.; Peterson, William K.

    1992-01-01

    A Monte Carlo code is used to explore the full effects of the convection electric field on distributions of upflowing O(+) ions from the cusp/cleft ionosphere. Trajectories of individual ions/neutrals are computed as they undergo multiple charge-exchange collisions. In the ion state, the trajectories are computed in realistic models of the magnetic field and the convection, corotation, and ambipolar electric fields. The effects of ion-ion collisions are included, and the trajectories are computed with and without simultaneous stochastic heating perpendicular to the magnetic field by a realistic model of broadband, low frequency waves. In the neutral state, ballistic trajectories in the gravitational field are computed. The initial conditions of the ions, in addition to ambipolar electric field and the number densities and temperatures of O(+), H(+), and electrons as a function of height in the cusp/cleft region were obtained from the results of Gombosi and Killeen (1987), who used a hydrodynamic code to simulate the time-dependent frictional-heating effects in a magnetic tube during its motion though the convection throat. The distribution of the ion fluxes as a function of height are constructed from the case histories.

  4. On the relationship between auroral absorption, electrojet currents and plasma convection

    NASA Astrophysics Data System (ADS)

    Kellerman, A. C.; Makarevich, R. A.; Honary, F.; Hansen, T. L.

    2009-02-01

    In this study, the relationship between auroral absorption, electrojet currents, and ionospheric plasma convection velocity is investigated using a series of new methods where temporal correlations are calculated and analysed for different events and MLT sectors. We employ cosmic noise absorption (CNA) observations obtained by the Imaging Riometer for Ionospheric Studies (IRIS) system in Kilpisjärvi, Finland, plasma convection measurements by the European Incoherent Scatter (EISCAT) radar, and estimates of the electrojet currents derived from the Tromsø magnetometer data. The IRIS absorption and EISCAT plasma convection measurements are used as a proxy for the particle precipitation component of the Hall conductance and ionospheric electric field, respectively. It is shown that the electrojet currents are affected by both enhanced conductance and electric field but with the relative importance of these two factors varying with magnetic local time (MLT). The correlation between the current and electric field (absorption) is the highest at 12:00-15:00 MLT (00:00-03:00 MLT). It is demonstrated that the electric-field-dominant region is asymmetric with respect to magnetic-noon-midnight meridian extending from 09:00 to 21:00 MLT. This may be related to the recently reported absence of mirror-symmetry between the effects of positive and negative IMF By on the high-latitude plasma convection pattern. The conductivity-dominant region is somewhat wider than previously thought extending from 21:00 to 09:00 MLT with correlation slowly declining from midnight towards the morning, which is interpreted as being in part due to high-energy electron clouds gradually depleting and drifting from midnight towards the morning sector. The conductivity-dominant region is further investigated using the extensive IRIS riometer and Tromsø magnetometer datasets with results showing a distinct seasonal dependence. The region of high current-absorption correlation extends from 21:00 to 06:00 MLT near both equinoxes, however, it is narrower and rotated towards the morning (02:00-07:00 MLT) in summer, while in winter the correlation shows much greater variability with MLT. During periods of high current-electric-field correlation, the relationship between electric field and absorption can be described as an inverse proportionality, which can be explained by limitation of the electrojet current by the magnetospheric generator. Possible cases of electron heating absorption are also investigated with absorption showing no obvious dependence on the ion velocity or electron temperature.

  5. Grid-Sphere Electrodes for Contact with Ionospheric Plasma

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.; Poe, Garrett D.

    2010-01-01

    Grid-sphere electrodes have been proposed for use on the positively biased end of electrodynamic space tethers. A grid-sphere electrode is fabricated by embedding a wire mesh in a thin film from which a spherical balloon is formed. The grid-sphere electrode would be deployed from compact stowage by inflating the balloon in space. The thin-film material used to inflate the balloon is formulated to vaporize when exposed to the space environment. This would leave the bare metallic spherical grid electrode attached to the tether, which would present a small cross-sectional area (essentially, the geometric wire shadow area only) to incident neutral atoms and molecules. Most of the neutral particles, which produce dynamic drag when they impact a surface, would pass unimpeded through the open grid spaces. However, partly as a result of buildup of a space charge inside the grid-sphere, and partially, the result of magnetic field effects, the electrode would act almost like a solid surface with respect to the flux of electrons. The net result would be that grid-sphere electrodes would introduce minimal aerodynamic drag, yet have effective electrical-contact surface areas large enough to collect multiampere currents from the ionospheric plasma that are needed for operation of electrodynamic tethers. The vaporizable-balloon concept could also be applied to the deployment of large radio antennas in outer space.

  6. The response of plasma density to breaking inertial gravity wave in the lower regions of ionosphere

    SciTech Connect

    Tang, Wenbo Mahalov, Alex

    2014-04-15

    We present a three-dimensional numerical study for the E and lower F region ionosphere coupled with the neutral atmosphere dynamics. This model is developed based on a previous ionospheric model that examines the transport patterns of plasma density given a prescribed neutral atmospheric flow. Inclusion of neutral dynamics in the model allows us to examine the charge-neutral interactions over the full evolution cycle of an inertial gravity wave when the background flow spins up from rest, saturates and eventually breaks. Using Lagrangian analyses, we show the mixing patterns of the ionospheric responses and the formation of ionospheric layers. The corresponding plasma density in this flow develops complex wave structures and small-scale patches during the gravity wave breaking event.

  7. Titan's Topside Ionospheric Composition: Cassini Plasma Spectrometer Ion Mass Spectrometer Measurements

    NASA Astrophysics Data System (ADS)

    Sittler, EC; Hartle, RE; Ali, A.; Cooper, JF; Lipatov, AS; Simpson, DG; Sarantos, M.; Chornay, DJ; Smith, HT

    2015-10-01

    We present ion composition measurements of Titan's topside ionosphere using T15 Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) measurements. The IMS is able to make measurements of Titan's ionosphere due to ionospheric outflows as originally reported by [1] for the T9 flyby. This allows one to take advantage of the unique capabilities of the CAPS IMS which measures both the mass-per-charge (M/Q) of the ions and the fragments of the ions produced inside the sensor such as carbon, nitrogen and oxygen fragments. Specific attention will be given to such ions as NH4+, N+, O+, CH4+, CxHy+, and HCNH+ ions as examples.

  8. Phenomena associated with complex (dusty) plasmas in the ionosphere during high-speed meteor showers

    SciTech Connect

    Kopnin, S. I.; Popel, S. I.; Yu, M. Y.

    2009-06-15

    Formation of dusty plasmas in the Earth's ionosphere at 80-120 km altitudes during high-speed meteor showers and its detectable manifestations are discussed. Emphasis is given to ground-based observations such as detection of low-frequency (<50 Hz) ionospheric radio noise, ground-based observations of infrasonic waves, and amplification of the intensity of green radiation at 557.7 nm from a layer at the 110-120 km altitude in the lower ionosphere. The physical processes responsible for these manifestations are considered.

  9. Ionospheric convection response to slow, strong variations in a Northward interplanetary magnetic field: A case study for January 14, 1988

    NASA Technical Reports Server (NTRS)

    Knipp, D. J.; Emery, B. A.; Richmond, A. D.; Crooker, N. U.; Hairston, M. R.; Cumnock, J. A.; Denig, W. F.; Rich, F. J.; De La Beaujardiere, O.; Ruohoniemi, J. M.

    1993-01-01

    We analyze ionospheric convection patterns over the polar regions during the passage of an interplanetary magnetic cloud on January 14, 1988, when the interplanetary magnetic field (IMF) rotated slowly in direction and had a large amplitude. Using the assimilative mapping of ionospheric electrodynamics (AMIE) procedure, we combine simultaneous observations of ionspheric drifts and magnetic perturbations from many different instruments into consistent patterns of high-latitude electrodynamics, focusing on the period of northward IMF. By combining satellite data with ground-based observations, we have generated one of the most comprehensive data sets yet assembled and used it to produce convection maps for both hemispheres. We present evidence that a lobe convection cell was embedded within normal merging convection during a period when the IMF B(sub y) and B(sub z) components were large and positive. As the IMF became predominantly northward, a strong reversed convection pattern (afternoon-to-morning potential drop of around 100 kV) appeared in the southern (summer) polar cap, while convection in the northern (winter) hemisphere became weak and disordered with a dawn-to-dust potential drop of the order of 30 kV. These patterns persisted for about 3 hours, until the IMF rotated significantly toward the west. We interpret this behavior in terms of a recently proposed merging model for northward IMF under solstice conditions, for which lobe field lines from the hemisphere tilted toward the Sun (summer hemisphere) drape over the dayside magnetosphere, producing reverse convection in the summer hemisphere and impeding direct contact between the solar wind and field lines connected to the winter polar cap. The positive IMF B(sub x) component present at this time could have contributed to the observed hemispheric asymmetry. Reverse convection in the summer hemisphere broke down rapidly after the ratio absolute value of B(sub y)/B(sub z) exceeded unity, while convection in the winter hemisphere strengthened. A dominant dawn-to-dusk potential drop was established in both hemispheres when the magnitude of B(sub y) exceeded that of B(sub z) with potential drops of the order of 100 kV, even while B(sub z) remained northward. The latter transition to southward B(sub z) produced a gradual intensification of the convection, but a greater qualitative change occurred at the transition through absolute value of B(sub y)/B(sub z) = 1 than at at the transition through B(sub z) = 0. The various convection patterns we derive under northward IMF conditions illustrate all possibilities previously discussed in the literature: nearly single-cell and multicell, distorted and symmetric, ordered and unordered, and sunward and antisunward.

  10. The Role of the Ionosphere in Providing Plasma to the Terrestrial Magnetosphere—An Historical Overview

    NASA Astrophysics Data System (ADS)

    Chappell, Charles R.

    2015-10-01

    Through the more than half century of space exploration, the perception and recognition of the fundamental role of the ionospheric plasma in populating the Earth's magnetosphere has evolved dramatically. A brief history of this evolution in thinking is presented. Both theory and measurements have unveiled a surprising new understanding of this important ionosphere-magnetosphere mass coupling process. The highlights of the mystery surrounding the difficulty in measuring this largely invisible low energy plasma are also discussed. This mystery has been solved through the development of instrumentation capable of measuring these low energy positively-charged outflowing ions in the presence of positive spacecraft potentials. This has led to a significant new understanding of the ionospheric plasma as a significant driver of magnetospheric plasma content and dynamics.

  11. Whistler wave-induced ionospheric plasma turbulence: Source mechanisms and remote sensing

    NASA Astrophysics Data System (ADS)

    Pradipta, R.; Rooker, L. A.; Whitehurst, L. N.; Lee, M. C.; Ross, L. M.; Sulzer, M. P.; Gonzalez, S.; Tepley, C.; Aponte, N.; See, B. Z.; Hu, K. P.

    2013-10-01

    We report a series of experiments conducted at Arecibo Observatory in the past, aimed at the investigation of 40.75 kHz whistler wave interactions with ionospheric plasmas and the inner radiation belts at L=1.35. The whistler waves are launched from a Naval transmitter (code-named NAU) operating in Aguadilla, Puerto Rico at the frequency and power of 40.75 kHz and 100 kW, respectively. Arecibo radar, CADI, and optical instruments were used to monitor the background ionospheric conditions and detect the induced ionospheric plasma effects. Four-wave interaction processes produced by whistler waves in the ionosphere can excite lower hybrid waves, which can accelerate ionospheric electrons. Furthermore, whistler waves propagating into the magnetosphere can trigger precipitation of energetic electrons from the radiation belts. Radar and optical measurements can distinguish wave-wave and wave-particle interaction processes occurring at different altitudes. Electron acceleration by different mechanisms can be verified from the radar measurements of plasma lines. To facilitate the coupling of NAU-launched 40.75 kHz whistler waves into the ionosphere, we can rely on naturally occurring spread F irregularities to serve as ionospheric ducts. We can also use HF wave-created ducts/artificial waveguides, as demonstrated in our earlier Arecibo experiments and recent Gakona experiments at HAARP. The newly constructed Arecibo HF heater will be employed in our future experiments, which can extend the study of whistler wave interactions with the ionosphere and the magnetosphere/radiation belts as well as the whistler wave conjugate propagation between Arecibo and Puerto Madryn, Argentina.

  12. Dependence of the ionospheric convection pattern on the conductivity and the southward IMF. Ph.D. Thesis

    SciTech Connect

    Shue, J.

    1993-12-31

    Electric field measurements from the DE-2 satellite were used to determine the location of the convection reversal boundary and the potential around this boundary under a combination of interplanetary magnetic field (IMF) and auroral electrojet conditions. The electric potential is obtained by the integration of the electric fields. The convection reversal boundary is defined in this study as where the potential has its absolute maximum and minimum values. The data were sorted into 18 categories according to two levels of the negative IMF B(sub z), three ranges of IMF B(sub y), and two substorm phases. The data were fit with both continuous and discontinuous boundaries to get a functional representation of boundary potentials and locations. A simple model is constructed by solving Laplace`s equation in order to illustrate the obtained boundary potentials and locations. The results show that the enhanced electric field in the midnight sector is associated with an intense westward electrojet current. It can also be seen that the convection reversal boundary is found to be discontinuous near midnight. The discontinuous convection reversal boundary on the dayside is related to the merging near dayside cusp region. The discontinuous convection reversal boundary on the nightside is related to the conductivity enhancement. The intrusion of the dawn cell into the dusk cell is due to nonuniformity of the Hall conductivity in the ionosphere. Another model is constructed by solving the current continuity equation with field-aligned current and nonuniform conductivity added. It can be found that a secondary convection reversal, which is detached from the dusk-cell convection reversal, appears in the evening-midnight sector within the polar cap when the IMF B(sub y) is positive and the conductivity is nonuniform. This convection reversal is attributed to the B x V dynamo.

  13. Plasma waves and transversely accelerated ions in the terrestrial ionosphere

    NASA Technical Reports Server (NTRS)

    Kintner, Paul M.

    1992-01-01

    Developments in measuring the physical mechanisms responsible for strongly driven transverse ion acceleration in the ionosphere are reviewed. Lower-hybrid waves and ion Bernstein waves can be associated very closely with transversely accelerated ions in the auroral ionosphere. In a recent development, very intense and localized lower-hybrid waves have been observed to produce transversely accelerated ions with characteristic energies of 10 eV. The case for current-driven electrostatic oxygen cyclotron waves producing transversely accelerated ions is less compelling.

  14. Remote detection of the maximum altitude of equatorial ionospheric plasma bubbles

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1981-01-01

    Nearly 200 post-sunset low-altitude passes of the Alouette 2 and ISIS 1 satellites near the dip equator are studied in order to find the maximum ionospheric plasma bubble altitudes, which are determined by calculating the apex altitude of the magnetic field line passing through the satellite when it is immersed in a bubble. The calculations are made only upon the observation of conjugate hemisphere ionospheric echoes, which result from ducted HF sounder signals that are guided along field-aligned irregularities within the plasma depletion. The maximum bubble altitudes corresponding to the three longitude sectors centered on zero deg, 75 deg W, and 105 deg E, are found to often exceed 1000 km, but seldom 3000 km. The electron density depletions within these field-aligned bubbles, as measured at the point of satellite encounter with the topside ionosphere, are generally less than a factor of two but may exceed a factor of ten.

  15. Correlation between the global occurrences of ionospheric irregularities and deep atmospheric convective clouds in the intertropical convergence zone (ITCZ)

    NASA Astrophysics Data System (ADS)

    Su, Shin-Yi; Wu, Chung Lung; Liu, Chao Han

    2014-12-01

    To study the seeding mechanism of ionospheric irregularity occurrences, a correlation study has been carried out between the global monthly/latitudinal (m/l) distributions of irregularity occurrences and the deep atmospheric convective clouds in the intertropical convergence zone (ITCZ) indicated by the outgoing longwave radiation (OLR) measurements. Seven longitude sectors - the African, Indian, West Pacific, Central Pacific, East Pacific, South American, and Atlantic sectors - are selected to study the correlations between the two distributions. The results indicate that good correlations exist only in the South American sector and to some extent in the African sector. For the other five sectors, no correlations are found in the m/l distributions between the irregularities and OLRs. This implies that the gravity wave induced in the ITCZ cannot be the sole seeding agent for the Rayleigh-Taylor (RT) instability in the global irregularity occurrences every season. We suspect that the post-sunset ionospheric electrodynamic perturbations could be the prevailing seeds for the RT instability globally year long. Together with the favorable post-sunset ionospheric condition, the global m/l distributions of irregularity occurrences could be adequately explained.

  16. Yosemite Conference on Ionospheric Plasma in the Magnetosphere: Sources, Mechanisms and Consequences, meeting report

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Burch, J. L.; Klumpar, D. M.; Moore, T. E.; Waite, J. H., Jr.

    1987-01-01

    The sixth biennial Yosemite topical conference and the first as a Chapman Conference was held on February 3 to 6, 1986. Due to the recent changes in our perception of the dynamics of the ionospheric/magnetospheric system, it was deemed timely to bring researchers together to discuss and contrast the relative importance of solar versus terrestrial sources of magnetospheric plasma. Although the solar wind was once thought to dominate the supply of plasma in the Earth's magnetosphere, it is now thought that the Earth's ionosphere is a significant contributor. Polar wind and other large volume outflows of plasma have been seen at relatively high altitudes over the polar cap and are now being correlated with outflows found in the magnetotail. The auroral ion fountain and cleft ion fountain are examples of ionospheric sources of plasma in the magnetosphere, observed by the Dynamics Explorer 1 (DE 1) spacecraft. The conference was organized into six sessions: four consisting of prepared oral presentations, one poster session, and one session for open forum discussion. The first three oral sessions dealt separately with the three major topics of the conference, i.e., the sources, mechanisms, and consequences of ionospheric plasma in the magnetosphere. A special session of invited oral presentations was held to discuss extraterrestrial ionospheric/magnetospheric plasma processes. The poster session was extended over two evenings during which presenters discussed their papers on a one-on-one basis. The last session of the conferences was reserved for open discussions of those topics or ideas considered most interesting or controversial.

  17. Modeling of the Convection and Interaction of Ring Current, Plasmaspheric and Plasma Sheet Plasmas in the Inner Magnetosphere

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Chen, Sheng-Hsien; Buzulukova, Natalia; Glocer, Alex

    2010-01-01

    Distinctive sources of ions reside in the plasmasphere, plasmasheet, and ring current regions at discrete energies constitute the major plasma populations in the inner/middle magnetosphere. They contribute to the electrodynamics of the ionosphere-magnetosphere system as important carriers of the global current system, in triggering; geomagnetic storm and substorms, as well as critical components of plasma instabilities such as reconnection and Kelvin-Helmholtz instability at the magnetospheric boundaries. Our preliminary analysis of in-situ measurements shoves the complexity of the plasmas pitch angle distributions at particularly the cold and warm plasmas, vary dramatically at different local times and radial distances from the Earth in response to changes in solar wind condition and Dst index. Using an MHD-ring current coupled code, we model the convection and interaction of cold, warm and energetic ions of plasmaspheric, plasmasheet, and ring current origins in the inner magnetosphere. We compare our simulation results with in-situ and remotely sensed measurements from recent instrumentation on Geotail, Cluster, THEMIS, and TWINS spacecraft.

  18. Formation of artificial plasma disturbances in the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Bakhmet'eva, N. V.; Frolov, V. L.; Vyakhirev, V. D.; Kalinina, E. E.; Bolotin, I. A.; Akchurin, A. D.; Zykov, E. Yu.

    2012-06-01

    We present the results of experiments on sounding the disturbed ionospheric region produced by the high-power RF radiation of the "Sura" heating facility, which were performed simultaneously at two observation points. One point is located on the territory of the heating facility the other, and the other, at the observatory of Kazan State University (the "Observatory" point) in 170 km to the East from the facility. The experiments were aimed at studying the mechanism of formation of artificial disturbances in the lower ionosphere in the case of reflection of a high-power wave in the F region and determining the parameters of the signals of backscattering from artificial electron density irregularities which are formed as a result of ionospheric perturbations. The ionosphere was modified by a high-power RF O-mode wave, which was emitted by the transmitters of the "Sura" facility, in sessions several seconds or minutes long. The disturbed region was sounded using the vertical-sounding technique at the "Vasil'sursk" laboratory by the partial-reflection facility at a frequency of 2.95 MHz, and by the modified ionospheric station "Tsiklon" at ten frequencies ranged from 2 to 6.5 MHz at the "Observatory" point. At the same time, vertical-sounding ionograms were recorded in the usual regime. At the reception points, simultaneous changes in the amplitudes of the vertical-sounding signals and the aspect backscattering signals were recorded. These records correlate with the periods of operation of the heating facility. The characteristics and dynamics of the signals are discussed.

  19. Ionosphere Plasma State Determination in Low Earth Orbit from International Space Station Plasma Monitor

    NASA Technical Reports Server (NTRS)

    Kramer, Leonard

    2014-01-01

    A plasma diagnostic package is deployed on the International Space Station (ISS). The system - a Floating Potential Measurement Unit (FPMU) - is used by NASA to monitor the electrical floating potential of the vehicle to assure astronaut safety during extravehicular activity. However, data from the unit also reflects the ionosphere state and seems to represent an unutilized scientific resource in the form of an archive of scientific plasma state data. The unit comprises a Floating Potential probe and two Langmuir probes. There is also an unused but active plasma impedance probe. The data, at one second cadence, are collected, typically for a two week period surrounding extravehicular activity events. Data is also collected any time a visiting vehicle docks with ISS and also when any large solar events occur. The telemetry system is unusual because the package is mounted on a television camera stanchion and its data is impressed on a video signal that is transmitted to the ground and streamed by internet to two off center laboratory locations. The data quality has in the past been challenged by weaknesses in the integrated ground station and distribution systems. These issues, since mid-2010, have been largely resolved and the ground stations have been upgraded. Downstream data reduction has been developed using physics based modeling of the electron and ion collecting character in the plasma. Recursive algorithms determine plasma density and temperature from the raw Langmuir probe current voltage sweeps and this is made available in real time for situational awareness. The purpose of this paper is to describe and record the algorithm for data reduction and to show that the Floating probe and Langmuir probes are capable of providing long term plasma state measurement in the ionosphere. Geophysical features such as the Appleton anomaly and high latitude modulation at the edge of the Auroral zones are regularly observed in the nearly circular, 51 deg inclined, 400 km altitude ISS orbit. Evidence of waves in the ion collection current data is seen in geographic zones known to exhibit the spread-F phenomenon. An anomaly in the current collection characteristic of the cylindrical probe appears also too be organized by the geomagnetic field.

  20. SuperDARN-derived plasma convection: Comparison with other data and application to field-aligned current measurements

    NASA Astrophysics Data System (ADS)

    Xu, Liang

    In this thesis, several aspects of the SuperDARN HF radar observations at high latitudes are investigated in cooperation with measurements performed by three other instruments, the Sondrestrom incoherent scatter radar, the ion drift meter onboard of the DMSP satellite and the CADI ionosonde. The first issue under investigation was consistency of plasma convection data provided by these instruments. First, routine measurements by the Goose Bay and Stokkseyri SuperDARN radar pair ("merge" velocity estimates) were compared with the Sondrestrom incoherent scatter radar data. Three different levels of assessment were used; by looking at the line-of-sight velocities, by comparing the SuperDARN vectors and corresponding Sondrestrom line-of-sight velocities and by comparing the end products of the instruments, the convection maps. All three comparisons showed overall reasonable agreement of the convection measurements though the data spread was significant and for some points a strong disagreement was obvious. Importantly, the convection map comparison showed a tendency for the SuperDARN velocities to be often less than the Sondrestrom drifts for strong flows (velocities > 1000 m/s) and larger for weak flows (velocities < 500 m/s). The second issue under investigation was the configuration of the ionospheric plasma convection and field-aligned currents (FACs) in the dayside ionosphere at small IMF B2 and By. By merging SuperDARN convection data for a number of events, it was found that convection tends to be compressed to the poleward edge of the polar cap with a noticeable decrease of the flow velociity inside the central polar cap for this condition. Also, for individual events, existence of three sheets of FACs was illustrated. FACs had similar appearance as region 1, region 2, and region 0 currents known from satellite magnetometer observations for the disturbed magnetosphere. Spatially, sheets of region 1 FACs were co-located with a line separating the plasma flow of different directions (shear) in a convection patterns. Region 2 and region 0 currents were observed equatorward and northward of region 1 currents, respectively. (Abstract shortened by UMI.)

  1. Convective transport in laser target plasmas

    SciTech Connect

    Brackbill, J.U.; Colombant, D.; Grandjouan, N.

    1982-01-01

    The role of guiding-center corrections in convective transport of electron energy is examined with a simple numerical model. At 10/sup 16/W cm/sup -2/ with a 60-..mu..m spot and a 10.6-..mu..m wavelength laser, the Righi-Leduc term is observed to have little effect on transport in a calculation with the thermal flux limited to the free-streaming value.

  2. 34th EPS Plasma Physics, Warsaw, Poland, 2--7 July, 2007 Nonlinear physics of the ionosphere

    E-print Network

    34th EPS Plasma Physics, Warsaw, Poland, 2--7 July, 2007 Nonlinear physics of the ionosphere Space Centre, Växjö #12;Bo Thidé 34th EPS Plasma Physics, Warsaw, Poland, 2--7 July, 20072 Space plasma diagnostic. #12;Bo Thidé 34th EPS Plasma Physics, Warsaw, Poland, 2--7 July, 20073 Secondary radiation

  3. SuperDARN convection and Sondrestrom plasma drift

    NASA Astrophysics Data System (ADS)

    Xu, L.; Koustov, A. V.; Thayer, J.; McCready, M. A.

    2001-07-01

    Plasma convection measurements by the Goose Bay and Stokkseyri SuperDARN radar pair and the Sondrestrom incoherent scatter radar are compared in three different ways, by looking at the line-of-sight (l-o-s) velocities, by comparing the SuperDARN vectors and corresponding Sondrestrom l-o-s velocities and by comparing the end products of the instruments, the convection maps. All three comparisons show overall reasonable agreement of the convection measurements though the data spread is significant and for some points a strong disagreement is obvious. The convection map comparison shows a tendency for the SuperDARN velocities to be often less than the Sondrestrom drifts for strong flows (velocities > 1000 m/s) and larger for weak flows (velocities < 500 m/s). On average, both effects do not exceed 35%. Data indicate that inconsistencies between the two data sets occur largely at times of fast temporal variations of the plasma drift and for strongly irregular flow ac-cording to the SuperDARN convection maps. These facts indicate that the observed discrepancies are in many cases a result of the different spatial and temporal resolutions of the instruments.

  4. Seasonal trends of nighttime plasma density enhancements in the topside ionosphere

    NASA Astrophysics Data System (ADS)

    Slominska, Ewa; Blecki, Jan; Lebreton, Jean-Pierre; Parrot, Michel; Slominski, Jan

    2014-08-01

    In situ registrations of electron density from the Langmuir probe on board Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions satellite are used to study spatial and temporal evolution of nighttime plasma density enhancements (NPDEs). The study introduces the normalized density difference index INDD in order to provide global estimates of the phenomenon. In the validation test, in situ data are compared with synthetic data set generated with the International Reference Ionosphere model. We find signatures of two most common examples of NPDEs, the Weddell Sea Anomaly (WSA) and midlatitude nighttime summer anomaly (MSNA) with proposed index, in the topside ionosphere. The study provides evidence that the occurrence of the WSA and MSNA is not limited to the local summer conditions. Analyzed annual trend of INDD and in particular spatial pattern obtained during equinoxes suggest that mechanisms governing the behavior of the equatorial ionosphere cannot be neglected in the explanation of the development of NPDEs.

  5. Plasma irregularities in the D-region ionosphere in association with sprite streamer initiation.

    PubMed

    Qin, Jianqi; Pasko, Victor P; McHarg, Matthew G; Stenbaek-Nielsen, Hans C

    2014-01-01

    Sprites are spectacular optical emissions in the mesosphere induced by transient lightning electric fields above thunderstorms. Although the streamer nature of sprites has been generally accepted, how these filamentary plasmas are initiated remains a subject of active research. Here we present observational and modelling results showing solid evidence of pre-existing plasma irregularities in association with streamer initiation in the D-region ionosphere. The video observations show that before streamer initiation, kilometre-scale spatial structures descend rapidly with the overall diffuse emissions of the sprite halo, but slow down and stop to form the stationary glow in the vicinity of the streamer onset, from where streamers suddenly emerge. The modelling results reproduce the sub-millisecond halo dynamics and demonstrate that the descending halo structures are optical manifestations of the pre-existing plasma irregularities, which might have been produced by thunderstorm or meteor effects on the D-region ionosphere. PMID:24806314

  6. Dust Acoustic Solitons in the Dusty Plasma of the Earth's Ionosphere

    SciTech Connect

    Kopnin, S.I.; Kosarev, I.N.; Popel, S.I.; Yu, M.Y.

    2005-03-15

    Stratified structures that are observed at heights of 80-95 km in the lower part of the Earth's ionosphere are known as noctilucent clouds and polar mesosphere summer echoes. These structures are thought to be associated with the presence of vast amounts of charged dust or aerosols. The layers in the lower ionosphere where there are substantial amounts of dust are called the dusty ionosphere. The dust grains can carry a positive or a negative charge, depending on their constituent materials. As a rule, the grains are ice crystals, which may contain metallic inclusions. A grain with a sufficiently large metallic content can acquire a positive charge. Crystals of pure ice are charged negatively. The distribution of the dust grains over their charges has a profound impact on the ionizational and other properties of dust structures in the dusty ionosphere. In the present paper, a study is made of the effect of the sign of the dust charge on the properties of dust acoustic solitons propagating in the dusty ionosphere. It is shown that, when the dust charge is positive, dust acoustic solitons correspond to a hill in the electron density and a well in the ion density. When the dust is charged negatively, the situation is opposite. These differences in the properties of dust acoustic solitons can be used to diagnose the plasmas of noctilucent clouds and polar mesosphere summer echoes.

  7. Turbulent convective flows in the solar photospheric plasma

    NASA Astrophysics Data System (ADS)

    Caroli, A.; Giannattasio, F.; Fanfoni, M.; Del Moro, D.; Consolini, G.; Berrilli, F.

    2015-10-01

    > The origin of the 22-year solar magnetic cycle lies below the photosphere where multiscale plasma motions, due to turbulent convection, produce magnetic fields. The most powerful intensity and velocity signals are associated with convection cells, called granules, with a scale of typically 1 Mm and a lifetime of a few minutes. Small-scale magnetic elements (SMEs), ubiquitous on the solar photosphere, are passively transported by associated plasma flows. This advection makes their traces very suitable for defining the convective regime of the photosphere. Therefore the solar photosphere offers an exceptional opportunity to investigate convective motions, associated with compressible, stratified, magnetic, rotating and large Rayleigh number stellar plasmas. The magnetograms used here come from a Hinode/SOT uninterrupted 25-hour sequence of spectropolarimetric images. The mean-square displacement of SMEs has been modelled with a power law with spectral index . We found for times up to and for times up to . An alternative way to investigate the advective-diffusive motion of SMEs is to look at the evolution of the two-dimensional probability distribution function (PDF) for the displacements. Although at very short time scales the PDFs are affected by pixel resolution, for times shorter than the PDFs seem to broaden symmetrically with time. In contrast, at longer times a multi-peaked feature of the PDFs emerges, which suggests the non-trivial nature of the diffusion-advection process of magnetic elements. A Voronoi distribution analysis shows that the observed small-scale distribution of SMEs involves the complex details of highly nonlinear small-scale interactions of turbulent convective flows detected in solar photospheric plasma.

  8. HF radar observations of the high-latitude ionospheric convection pattern in the morning sector for northward IMF and motion of the convection reversal boundary

    NASA Astrophysics Data System (ADS)

    Rash, J. P. S.; Rodger, A. S.; Pinnock, M.

    1999-07-01

    Observations of plasma convection in the morning sector (0000 to 0600 magnetic local time (MLT)) during a period of northward IMF (Bz=+5 to +10 nT) on September 11, 1991, made with the conjugate HF radars at Goose Bay and Halley and supplemented by DMSP plasma flow data, are described. There are several interesting features of the data: the period over which large (>500 m/s) plasma flow velocities are maintained while the IMF is northward; the range of latitudes over which the convection is observed; and the short timescale responses to changes in IMF conditions. The period was characterized by several strong (+/-10 nT) reversals of IMF By and an absence of substorm activity, as seen in geostationary satellite particle data. The effects of these By reversals and the motion of the convection reversal boundary (CRB, the boundary between eastward flow at lower latitudes and westward flow at higher latitudes) are examined. A significant crosscorrelation is found between IMF By and the latitude of the CRB. The observed short time delays and other features are consistent with convection driven by lobe cell merging.

  9. Could global warming affect space weather? : case studies of intense ionospheric plasma turbulence associated with natural heat sources

    E-print Network

    Pradipta, Rezy

    2007-01-01

    We report on observations of a series of highly-structured ionospheric plasma turbulence over Arecibo on the nights of 22/23 and 23/24 July, 2006. Incoherent scatter measurements by Arecibo radar, airglow measurements using ...

  10. Lunar atmospheric tidal effects in the plasma drifts observed by the Low-Latitude Ionospheric Sensor Network

    NASA Astrophysics Data System (ADS)

    Eccles, Vince; Rice, Donald D.; Sojka, Jan J.; Valladares, Cesar E.; Bullett, Terence; Chau, Jorge L.

    2011-07-01

    Data from the Low-Latitude Ionospheric Sensor Network are used to examine ionospheric electrodynamics during quiet, low solar conditions from September to November 2009. The ground-based magnetometers and the Jicamarca Vertical Incidence Pulsed Ionospheric Radar ionosonde in the Peruvian Sector are used to identify the neutral winds and plasma drifts that control the large-scale plasma structure of the ionosphere. It is observed that the solar- and lunar-driven semidiurnal tides have a significant influence on the background electrodynamics during this period of extreme solar minimum. The lunar tidal influence of the ionosphere electrodynamics is a large component of the variation of the vertical drift during the geophysically quiet study period. A significant portion, though not all, of the variation through the lunar month can be attributed to the lunar semidiurnal tide.

  11. Radar probing of ionospheric plasmas precisely confirms linear kinetic plasma theory (Hannes Alfvén Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Farley, Donald

    2010-05-01

    In 1958 W. E. Gordon first suggested that huge radars could probe the ionosphere via scattering from independent electrons, even though the radar cross section of a single electron is only 10-28 m2. This suggestion quickly led to the construction of two enormous radars in the early 1960s, one near Lima, Peru, and one near Arecibo, Puerto Rico. It soon became apparent that the theory of this scatter was more complicated than originally envisaged by Gordon. Although the new theory was more complicated, it was much richer: by measuring the detailed shape of the Doppler frequency spectrum (or alternatively the signal autocorrelation function, the ACF), a radar researcher could determine many, if not most, of the parameters of interest of the plasma. There is now a substantial network of major radar facilities scattered from the magnetic equator (Peru) to the high arctic latitudes (Svalbard and Resolute Bay), all doing important ionospheric research. The history of what is now called Incoherent Scatter (even though it is not truly incoherent) is fascinating, and I will touch on a few highlights. The sophisticated radar and data processing techniques that have been developed are also impressive. In this talk, however, I want to focus mainly on the details of the theory and on how the radar observations have confirmed the predictions of classical linear plasma kinetic theory to an amazingly high degree of precision, far higher than has any other technique that I am aware of. The theory can be, and has been, developed from two very different points of view. One starts with 'dressed particles,' or Coulomb 'clouds' around ions and electrons moving with a Maxwellian velocity distribution; the second starts by considering all the charged particles to be made up of a spectrum of density plane waves and then invokes a generalized version of the Nyquist Noise Theorem to calculate the thermal amplitudes of the waves. Both approaches give exactly the same results, results that allow us to predict exactly the scattered power and Doppler spectrum for any given set of plasma parameters (e.g., electron and ion temperatures, ionic composition, mean drifts and currents, the geomagnetic field, and particle collisions). So far, these predictions have not failed, although in recent years we have had to resort to numerical simulations to do a proper calculation of electron Coulomb collisions when the radar beam is pointed very nearly perpendicular to the magnetic field. This is because no analytic way has yet been found to properly apply the Fokker-Planck Coulomb collision model to the scattering process. Of course the theory predicts the spectrum, given all the plasma parameters, when what we really want to do in ionospheric research is the inverse, namely find the parameters, given the radar data. This inverse process can be quite difficult to do optimally if there are too many unknown parameters. Statistical inverse theory can require enormous computing power, but progress is being made.

  12. Intermediate scale plasma density irregularities in the polar ionosphere inferred from radio occultation

    NASA Astrophysics Data System (ADS)

    Shume, E. B.; Komjathy, A.; Langley, R. B.; Verkhoglyadova, O. P.; Butala, M.; Mannucci, A. J.

    2014-12-01

    In this research, we report intermediate scale plasma density irregularities in the high-latitude ionosphere inferred from high-resolution radio occultation (RO) measurements in the CASSIOPE (CAScade Smallsat and IOnospheric Polar Explorer) - GPS (Global Positioning System) satellites radio link. The high inclination of the CASSIOPE satellite and high rate of signal receptionby the occultation antenna of the GPS Attitude, Positioning and Profiling (GAP) instrument on the Enhanced Polar Outflow Probe platform on CASSIOPE enable a high temporal and spatial resolution investigation of the dynamics of the polar ionosphere, magnetosphere-ionospherecoupling, solar wind effects, etc. with unprecedented details compared to that possible in the past. We have carried out high spatial resolution analysis in altitude and geomagnetic latitude of scintillation-producing plasma density irregularities in the polar ionosphere. Intermediate scale, scintillation-producing plasma density irregularities, which corresponds to 2 to 40 km spatial scales were inferred by applying multi-scale spectral analysis on the RO phase delay measurements. Using our multi-scale spectral analysis approach and Polar Operational Environmental Satellites (POES) and Defense Meteorological Satellite Program (DMSP) observations, we infer that the irregularity scales and phase scintillations have distinct features in the auroral oval and polar cap regions. In specific terms, we found that large length scales and and more intense phase scintillations are prevalent in the auroral oval compared to the polar cap region. Hence, the irregularity scales and phase scintillation characteristics are a function of the solar wind and the magnetospheric forcing. Multi-scale analysis may become a powerful diagnostic tool for characterizing how the ionosphere is dynamically driven by these factors.

  13. Recent and planned observations of thermal plasma in magnetosphere-ionosphere coupling using thermal plasma imaging

    NASA Astrophysics Data System (ADS)

    Knudsen, David

    Thermal plasma imaging (TPI) is a technique developed over the past fifteen years, beginnning with the Freja Cold Plasma Analyzer. TPI generates high-resolution, 2-D (angle/energy) representations of charged particle distribution functions in the thermal (0-20 eV) or suprathermal (0-200 eV) energy ranges. This talk will review results from a series of sub-orbital flights of TPI instruments, and will preview capabilities and studies planned for the ePOP Suprathermal Electron Imager and the Swarm Electric Field Instruments. The enhanced Polar Outflow Probe, planned for launch in 2009, will study polar ion outflow and the mechanisms that cause it, including ambipolar electric fields driven by photoelectrons and/or soft electron precipitation. The Swarm EFIs are TPI-based instruments that will measure electric fields through ion drifts during a four-year mission that will begin in 2010. These measurements combined with Swarm's precision magnetic field measurements will provide an unprecedented view of electrodynamic coupling and energy transfer between the ionosphere, thermosphere and magnetosphere.

  14. Development of techniques for the use of DMSP (Defense Meteorology Satellite Program) SSIE (Topside Ionospheric Plasma Monitor) data in the AWS (Air Weather Service) 4D ionosphere model

    NASA Astrophysics Data System (ADS)

    Secan, James A.

    1985-04-01

    Techniques for improved use of topside ionosphere observations within the Air Weather Service 4D ionosphere model system are investigated. Topside observations are available at the Air Force Global Weather Center from the Topside Ionospheric Plasma Monitor (SSIE) on the Block 5D DMSP satellites. The investigations cover three study areas: (1) improvements to the topside ionospheric electron density profile model used within the 4D model; (2) improvements to the ionospheric data preprocessors in the 4D model system; and (3) improvements to the 4D model. Results are presented for tasks completed during the second year of the project. A parameterization of the topside electron density profile was developed based on a two component diffusive equilibrium representation of the ionosphere. This topside model can use the entire data set from the SSIE sensor to specify the profile or, if some data are unavailable, it will use an empirical model of the height O(+) to H(+) transition height to construct the profile. A method was developed for generating grids of the 840km electron density from observations along an orbit track, and a computer program was written to test the method. This program was also used to investigate joint analyses of N sub e (840) and Total Electron Content observations.

  15. Boundary location of Mars nightside ionospheric plasma in term of the electron density

    NASA Astrophysics Data System (ADS)

    Morooka, Michiko W.; Andersson, Laila; Ergun, Bob; Fowler, Christopher; Woodson, Adam; Weber, Tristan; Delory, Greg; Andrews, David; Edberg, Niklas; Eriksson, Anders; Michell, David; Connerney, Jack; Gruesbeck, Jacob; Halekas, Jasper

    2015-11-01

    Photo-ionized Mars atmosphere is forming an ionosphere and shielding the solar wind with creating barriers of bow shock. Inside the bow shock ionospheric plasma interact with solar wind plasma and result different boundaries. A question is how far the ionospheric plasma can stand off the solar wind.On the dayside, in-situ data set from Mars magnetosphere missions often observed the sharp gradient of the thermal plasma flux and ion composition change as well as the drop off of the magnetic fluctuation simultaneously as a outer boundary of the ionospheric plasma and an obstacle to the solar wind. Several models have constructed the shape of the boundary based on the statistical observations [e.g., Trotignon et al., 2006; Edberg et al., 2008].On the nightside, plasma instrument onboard Phobos 2 observed the particles and magnetic field characteristics similar to the dayside. However, the number of data is still too few to understand the general location of boundaries. We will present the characteristics of the nightside magnetospheric boundary region in term of the electron density. MAVEN Langmuir probe measurement (LPW) can estimate the electron density using the spacecraft environment. As MAVEN pass from the bow shock and sheath region into the magnetosphere the electron density often show a sharp gradient (the density jumps two orders of magnitudes in a few seconds). Comparing this to the data from particle instrument, the sharp electron density gradient was often associated with the transition of the characteristic energy of ions.Several hundreds of boundaries crossing by MAVEN allow us to investigate the statistical view of the boundary. We searched for a large electron density gradient as an indicator of the plasma boundary to identify the location of the ionospheric/solar wind plasma boundary. The results show that the many of the nightside boundaries locates close to the tail region of Mars forming elliptical shape of boundary. We will provide the empirical model of this boundary location and discuss the influence of solar wind.

  16. Linking Plasma Conditions in the Magnetosphere with Ionospheric Signatures

    NASA Technical Reports Server (NTRS)

    Rastaetter, Lutz; Kozyra, Janet; Kuznetsova, Maria M.; Berrios, David H.

    2012-01-01

    Modeling of the full magnetosphere, ring current and ionosphere system has become an indispensable tool in analyzing the series of events that occur during geomagnetic storms. The CCMC has a full model suite available for the magnetosphere, together with visualization tools that allow a user to perform a large variety of analyses. The January, 21, 2005 storm was a moderate-size storm that has been found to feature a large penetration electric field and unusually large polar caps (low-latitude precipitation patterns) that are otherwise found in super storms. Based on simulations runs at CCMC we can outline the likely causes of this behavior. Using visualization tools available to the online user we compare results from different magnetosphere models and present connections found between features in the magnetosphere and the ionosphere that are connected magnetically. The range of magnetic mappings found with different models can be compared with statistical models (Tsyganenko) and the model's fidelity can be verified with observations from low earth orbiting satellites such as DMSP and TIMED.

  17. Bounds on current collection from the far field by plasma clouds in the ionosphere

    NASA Technical Reports Server (NTRS)

    Hastings, D. E.; Blandino, J.

    1989-01-01

    Plasma clouds can enhance the collection of current to a charged body in the ionosphere in two ways. The first is by providing a large collection area for ionospheric electrons to be collected. The second is by ionization of neutral gas in the vicinity of the plasma cloud. The collection of electrons across a magnetic field is examined, and it is shown that the effective collection area is limited to the region of the cloud where the magnetic field effects are overwhelmed by the electric field effects from the charged body. Upper and lower bounds are obtained for the radius of the core region where the electric field influence dominates. From these, upper and lower bounds are obtained for the current collection.

  18. Processes accompanying the charging of dust grains in the ionospheric plasma

    SciTech Connect

    Kopnin, S. I.; Morzhakova, A. A.; Popel, S. I.; Shukla, P. K.

    2011-08-15

    The influence of the neutral component of the dusty ionospheric plasma on the process of dust grain charging is analyzed. Microscopic ion fluxes onto a dust grain are calculated with allowance for the interaction with the neutral components of the ionospheric plasma for both negatively and positively charged dust grains. For the latter case, which takes place in the presence of intense UV or X-ray solar radiation, the electron heating caused by the photoelectric effect is also investigated. It is found that the efficiency of electron heating depends on the density of neutral particles. The altitudes at which these effects appreciably influence the charging of different types of nano- and microscale dust grains are determined. It is shown that these effects should be taken into account in describing noctilucent clouds, polar mesosphere summer echoes, and physical phenomena involving grains of meteoric origin.

  19. Processes accompanying the charging of dust grains in the ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Kopnin, S. I.; Morzhakova, A. A.; Popel, S. I.; Shukla, P. K.

    2011-08-01

    The influence of the neutral component of the dusty ionospheric plasma on the process of dust grain charging is analyzed. Microscopic ion fluxes onto a dust grain are calculated with allowance for the interaction with the neutral components of the ionospheric plasma for both negatively and positively charged dust grains. For the latter case, which takes place in the presence of intense UV or X-ray solar radiation, the electron heating caused by the photoelectric effect is also investigated. It is found that the efficiency of electron heating depends on the density of neutral particles. The altitudes at which these effects appreciably influence the charging of different types of nano- and microscale dust grains are determined. It is shown that these effects should be taken into account in describing noctilucent clouds, polar mesosphere summer echoes, and physical phenomena involving grains of meteoric origin.

  20. Space weather. Ionospheric control of magnetotail reconnection.

    PubMed

    Lotko, William; Smith, Ryan H; Zhang, Binzheng; Ouellette, Jeremy E; Brambles, Oliver J; Lyon, John G

    2014-07-11

    Observed distributions of high-speed plasma flows at distances of 10 to 30 Earth radii (R(E)) in Earth's magnetotail neutral sheet are highly skewed toward the premidnight sector. The flows are a product of the magnetic reconnection process that converts magnetic energy stored in the magnetotail into plasma kinetic and thermal energy. We show, using global numerical simulations, that the electrodynamic interaction between Earth's magnetosphere and ionosphere produces an asymmetry consistent with observed distributions in nightside reconnection and plasmasheet flows and in accompanying ionospheric convection. The primary causal agent is the meridional gradient in the ionospheric Hall conductance which, through the Cowling effect, regulates the distribution of electrical currents flowing within and between the ionosphere and magnetotail. PMID:25013068

  1. Understanding Substorms from the Auroral Ionosphere to the Distant Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Parks, G. K.; Brittnacher, M.; Chen, L.; Chua, D.; Elsen, R.; Fillingim, M.; McCarthy, M.; Wilber, M.; Germany, G.; Spann, J.; Lin, R. P.

    1998-01-01

    The global polar UVI images have been correlated with observations from the ground, ionosphere, geomagnetic tail between 10-20 earth radii and the interplanetary space. One of the objectives of our study is to better understand the connection among many complex phenomena occurring close to Earth and those in the near--earth plasma sheet. We have examined the details of how the auroral and polar cap boundaries at different local times behave in relation to variations occurring in the solar wind, ionosphere and plasma sheet during substorms. We have also compared locations of boundaries deduced from images to electron flux "boundaries" observed by polar orbiting spacecraft. Our results indicate that the ionospheric dynamics is important and polar cap and auroral oval boundaries expand and contract in a complicated but systematic way. These variations are correlated to solar wind parameters and growth and recovery phenomena in the plasma sheet. These results can be interpreted in terms of directly driven and/or unloading substorm processes.

  2. Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow

    SciTech Connect

    Haerendel, G.; Eccles, J.V.; Cakir, S. )

    1992-02-01

    Companion papers in this series present (1) the role of equatorial E region postsunset ionosphere, (2) the origin of horizontal plasma shear flow in the postsunset equatorial ionosphere (this paper), (3) the Colored Bubbles experiments results, and (4) computer simulations of artificial initiation of plasma density depletions (bubbles) in the equatorial ionosphere. Within this paper, equations describing the time evolution of the equatorial ionosphere are developed using flux tube integrated and flux tube weighted quantities which model the chemistry, dynamics, and electrodynamics of the equatorial ionosphere. The resulting two-dimensional set of equations can be used to investigate equatorial ionosphere. The resulting two-dimensional set of equations can be used to investigate equatorial electric fields neglecting small-scale phenomena ({lambda} < 1 km). An immediate result derived from the integrated current equations is an equation describing the physics of the shear in the horizontal flow of the equatorial plasma during the evening hours. The profile of the horizontal flow has three important contributing terms relating to the neutral wind dynamo, Hall conduction, and the equatorial electrojet current divergence. Using a one-dimensional model of the velocity shear equation and the integrated ionosphere transport equations, a time history of the development of the shear feature during postsunset hours is presented. The one-dimensional model results are compared to the velocity shear measurements from the Colored Bubbles experiments.

  3. A method to derive maps of ionospheric conductances, currents, and convection from the Swarm multisatellite mission

    NASA Astrophysics Data System (ADS)

    Amm, O.; Vanhamäki, H.; Kauristie, K.; Stolle, C.; Christiansen, F.; Haagmans, R.; Masson, A.; Taylor, M. G. G. T.; Floberghagen, R.; Escoubet, C. P.

    2015-04-01

    The European Space Agency (ESA) Swarm spacecraft mission is the first multisatellite ionospheric mission with two low-orbiting spacecraft that are flying in parallel at a distance of ~100-140 km, thus allowing derivation of spatial gradients of ionospheric parameters not only along the orbits but also in the direction perpendicular to them. A third satellite with a higher orbit regularly crosses the paths of the lower spacecraft. Using the Swarm magnetic and electric field instruments, we present a novel technique that allows derivation of two-dimensional (2-D) maps of ionospheric conductances, currents, and electric field in the area between the trajectories of the two lower spacecraft, and even to some extent outside of it. This technique is based on Spherical Elementary Current Systems. We present test cases of modeled situations from which we calculate virtual Swarm data and show that the technique is able to reconstruct the model electric field, horizontal currents, and conductances with a very good accuracy. Larger errors arise for the reconstruction of the 2-D field-aligned currents (FAC), especially in the area outside of the spacecraft orbits. However, even in this case the general pattern of FAC is recovered, and the magnitudes are valid in an integrated sense. Finally, using an MHD model run, we show how our technique allows estimation of the ionosphere-magnetosphere coupling parameter K, if conjugate observations of the magnetospheric magnetic and electric field are available. In the case of a magnetospheric multisatellite mission (e.g., the ESA Cluster mission) several K estimates at nearby points can be generated.

  4. Theoretical study of the ionospheric plasma cave in the equatorial ionization anomaly region

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Tsung; Lin, C. H.; Chen, C. H.; Liu, J. Y.; Huba, J. D.; Chang, L. C.; Liu, H.-L.; Lin, J. T.; Rajesh, P. K.

    2014-12-01

    This paper investigates the physical mechanism of an unusual equatorial electron density structure, plasma cave, located underneath the equatorial ionization anomaly by using theoretical simulations. The simulation results provide important new understanding of the dynamics of the equatorial ionosphere. It has been suggested previously that unusual E>?×B>? drifts might be responsible for the observed plasma cave structure, but model simulations in this paper suggest that the more likely cause is latitudinal meridional neutral wind variations. The neutral winds are featured by two divergent wind regions at off-equator latitudes and a convergent wind region around the magnetic equator, resulting in plasma divergences and convergence, respectively, to form the plasma caves structure. The tidal-decomposition analysis further suggests that the cave related meridional neutral winds and the intensity of plasma cave are highly associated with the migrating terdiurnal tidal component of the neutral winds.

  5. Features of terrestrial plasma transport

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chandler, M. O.; Chappell, C. R.; Pollock, C. J.; Waite, J. H., Jr.

    1989-01-01

    Research concerning the transport and distribution of ionospheric plasma in the magnetosphere are reviewed, stressing the dichotomy in explanations given for the low plasma densities outside the plasmasphere. The convection/hot solar plasma model and the convection/loss model are considered. Observations of global ionospheric outflows are compared with theoretical studies. It is suggested that there is a need for a hybrid model of magnetospheric plasma in which terrestrial plasma is both lost into the solar wind and energized and trapped within the magnetosphere, inflating the geomagnetic field and excluding cold plasma from conjugate regions.

  6. Kinetic modeling of O(+) upflows resulting from E x B convection heating in the high-latitude F region ionosphere

    NASA Technical Reports Server (NTRS)

    Wilson, G. R.

    1994-01-01

    We report here the results of modeling work aimed at understanding the development of ionospheric O(+) field-aligned upflows that develop in response to high-latitude E x B drift induced frictional heating. The model used is a collisional semikinetic model which includes ion-neutral resonant charge exchange and polarization collisions as well as Coulomb self-collisions. It also includes the process of chemical removal of O(+) as well as all of the macroscopic forces: ambipolar electric, gravity, magnetic mirror, and centripetal. Model results show the development of several types of non-Maxwellian velocity distributions including toroids at low altitude, distributions with large heat flow in the perpendicular component at intermediate altitudes, and distributions with a separate upflowing population or upward superthermal tail at high altitudes. Whenever the convection electric field increases from a small value (less than 25 mV/m) to a large value (100-200 mV/m) in 6 min or less large upflows develop with parallel drift speeds which peak (below 1000 km) at values between 500 m/s and 2 km/s, parallel fluxes which peak between 6.0 x 10(exp 8) and 3.2 x 10(exp 9)/sq cm/s, and parallel per particle heat flows which peak between 8.0 x 10(exp -9) and 8.0 x 10(exp -8) ergs cm/s. The higher values in these ranges occur for a cooler neutral atmosphere, with a larger convection electric field that is turned on quickly. The model produces field-aligned O(+) flow speeds that are larger than those produced by a 20-moment generalized transport model but smaller then those produced by an isotropic hydrodynamic model for comparable values of the convection turn on times. The model results compare favorably with some topside satellite and radar data.

  7. HF Propagation Effects Caused by an Artificial Plasma Cloud in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Joshi, D. R.; Groves, K. M.; McNeil, W. J.; Caton, R. G.; Parris, R. T.; Pedersen, T. R.; Cannon, P. S.; Angling, M. J.; Jackson-Booth, N. K.

    2014-12-01

    In a campaign carried out by the NASA sounding rocket team, the Air Force Research Laboratory (AFRL) launched two sounding rockets in the Kwajalein Atoll, Marshall Islands, in May 2013 known as the Metal Oxide Space Cloud (MOSC) experiment to study the interactions of artificial ionization and the background plasma and measure the effects on high frequency (HF) radio wave propagation. The rockets released samarium metal vapor in the lower F-region of the ionosphere that ionized forming a plasma cloud that persisted for tens of minutes to hours in the post-sunset period. Data from the experiments has been analyzed to understand the impacts of the artificial ionization on HF radio wave propagation. Swept frequency HF links transiting the artificial ionization region were employed to produce oblique ionograms that clearly showed the effects of the samarium cloud. Ray tracing has been used to successfully model the effects of the ionized cloud. Comparisons between observations and modeled results will be presented, including model output using the International Reference Ionosphere (IRI), the Parameterized Ionospheric Model (PIM) and PIM constrained by electron density profiles measured with the ALTAIR radar at Kwajalein. Observations and modeling confirm that the cloud acted as a divergent lens refracting energy away from direct propagation paths and scattering energy at large angles relative to the initial propagation direction. The results confirm that even small amounts of ionized material injected in the upper atmosphere can result in significant changes to the natural propagation environment.

  8. Ionized Plasma and Neutral Gas Coupling in the Sun's Chromosphere and Earth's Ionosphere/Thermosphere

    NASA Astrophysics Data System (ADS)

    Leake, J. E.; DeVore, C. R.; Thayer, J. P.; Burns, A. G.; Crowley, G.; Gilbert, H. R.; Huba, J. D.; Krall, J.; Linton, M. G.; Lukin, V. S.; Wang, W.

    2014-11-01

    We review physical processes of ionized plasma and neutral gas coupling in the weakly ionized, stratified, electromagnetically-permeated regions of the Sun's chromosphere and Earth's ionosphere/thermosphere. Using representative models for each environment we derive fundamental descriptions of the coupling of the constituent parts to each other and to the electric and magnetic fields, and we examine the variation in magnetization of the components. Using these descriptions we compare related phenomena in the two environments, and discuss electric currents, energy transfer and dissipation. We present examples of physical processes that occur in both atmospheres, the descriptions of which have previously been conducted in contrasting paradigms, that serve as examples of how the chromospheric and ionospheric communities can further collaborate. We also suggest future collaborative studies that will help improve our understanding of these two different atmospheres, which while sharing many similarities, also exhibit large disparities in key quantities.

  9. Wallops HF Radar Observations of Penetrating Electric Fields and Plasma Structuring in the Mid-Latitude Ionosphere

    NASA Astrophysics Data System (ADS)

    Greenwald, R. A.; Ruohoniemi, J. M.; Baker, J.

    2004-12-01

    The Earth's high-latitude ionosphere is subject to strong electric fields of magnetospheric origin that drive drifts of ionospheric plasma to speeds of kilometers per second. Such dramatic effects are usually absent from the ionosphere at mid- and low-latitudes and, consequently, the impact of large electric fields on plasma processes at sub-auroral latitudes has received less scientific attention. This has started to change with the realization that major space weather disturbances enable electric fields to penetrate into the mid- and low-latitude ionospheres and cause a variety of plasma disturbances that adversely impact the performance of technological systems. Understanding the onset and evolution of penetrating electric fields and their impact on mid-latitude ionospheric structure is a top priority for the U.S. National Space Weather Program and the NASA Living With a Star Initiative. In this paper, we describe a new HF radar, located at Wallops Island, Virgina, that was recently developed as a joint project of GSFC/Wallops Flight Facility and JHU/APL. The radar is based on the design of radars in the high-latitude SuperDARN network and will be used to study the penetration of high-latitude electric fields into the mid-latitude ionosphere and to characterize the impact of these fields on the generation of ionospheric plasma structure and small-scale irregularities. The radar was only recently put into observation so we will concentrate on initial observations of electric-field penetration and associated ionospheric structuring. Our observations will be discussed in the context of higher-latitude measurements with SuperDARN.

  10. Magnetosphere of Uranus: plasma sources, convection, and field configuration

    SciTech Connect

    Voigt, G.; Hill, T.W.; Dessler, A.J.

    1983-03-01

    At the time of the Voyager 2 flyby of Uranus, the planetary rotational axis will be roughly antiparallel to the solar wind flow. If Uranus has a magnetic dipole moment that is approximately aligned with its spin axis, and if the heliospheric shock has not been encountered, we will have the rare opportunity to observe a ''pole-on'' magnetosphere as discussed qualitatively by Siscoe. Qualitative arguments based on analogy with Earth, Jupiter, and Saturn suggest that the magnetosphere of Uranus may lack a source of plasma adequate to produce significant internal currents, internal convection, and associated effects. In order to provide a test of this hypothesis with the forthcoming Voyager measurements, we have constructed a class of approximately self-consistent quantitative magnetohydrostatic equilibrium configurations for a pole-on magnetosphere with variable plasma pressure parameters. Given a few simplifying assumptions, the geometries of the magnetic field and of the tail current sheet can be computed for a given distribution of trapped plasma pressure. The configurations have a single funnel-shaped polar cusp that points directly into the solar wind and a cylindrical tail plasma sheet whose currents close within the tail rather than on the tail magnetopause, and whose length depends on the rate of decrease of thermal plasma pressure down the tail. Interconnection between magnetospheric and interplanetary fields results in a highly asymmetric tail-field configuration. These features were predicted qualtitatively by Siscoe; the quantitative models presented here may be useful in the interpretation of Voyager encounter results.

  11. Dawn and dusk sector comparisons of small-scale irregularities, convection, and particle precipitation in the high-latitude ionosphere

    E-print Network

    Shepherd, Simon

    precipitation in the high-latitude ionosphere Raymond A. Greenwald, Simon G. Shepherd,1 Thomas S. Sotirelis, J September 2002. [1] Small-scale ionospheric irregularities and auroral precipitation are common features of the auroral ionosphere, but their spatial association has not been examined on global scales. In this paper

  12. Ionospheric Convection in the Postnoon Auroral Oval: SuperDARN and Polar UVI Observations

    NASA Technical Reports Server (NTRS)

    Kozlovsky, A.; Koustov, A.; Lyatsky, W.; Kangas, J.; Parks, G.; Chua, D.

    2002-01-01

    Super Dual Auroral Radar Network (SuperDARN) observations, ultraviolet imaging from the Polar satellite (UVI), and particle precipitation data from DMSP satellites have been used to investigate the electrodynamics of the postnoon auroral oval in the Northern hemisphere. We show that: (1) For negative IMF By, the convection reversal (CR) was co-located with the maximum of auroral luminosity, but during positive IMF By the convection reversal was poleward of the auroral oval up to several degrees in latitude; (2) Postnoon auroral oval was associated with a large-scale upward field-aligned current (FAC) of the order of 6x10(exp -7). A m(exp -2) in magnitude (the FAC was inferred from the SuperDARN and UVI data). For negative IMF By, maximum of the auroral intensity coincides in latitude with the maximum of the upward field-aligned current. However, for positive IMF By. the maximum of the upward FAC was shifted to the poleward edge of the auroral oval; (3) In response to the IMF By turning from positive to negative, the maximum of the auroral luminosity did not change its position noticeably, but the position of the convection reversal changed considerably from 80-81 degs to about 76 degs MLAT, and the maximum of FAC moved from 77-78 degs to about 76 degs MLAT. Thus, after IMF By turns negative, both the FAC maximum and CR tend to coincide with the auroral maximum; (4) The IMF Bz positive deflection was followed by a decrease in both field-aligned current intensity and auroral luminosity. However, the decrease in the auroral luminosity lags behind the FAC decrease by about 12 min. Firstly, these observations allow us to suggest that the IMF By-related electric field can penetrate into the closed magnetosphere and produce convection and FAC changes in the region of the postnoon auroral oval. Secondly, we suggest that the interchange instability is a promising mechanism for the postnoon auroras.

  13. UCB current detector experiment on Swedish auroral payloads. [ionospheric current and plasma flow measurements

    NASA Technical Reports Server (NTRS)

    Mozer, F.

    1974-01-01

    A split Langmuir probe has been developed to make in situ measurements of ionospheric current density and plasma bulk flow. The probe consists of two conducting elements that are separated by a thin insulator that shield each other over a 2 pi solid angle, and that are simultaneously swept from negative to positive with respect to the plasma. By measuring the current to each plate and the difference current between plates, information is obtained on the plasma's current density, bulk flow, electron temperature, and density. The instrument was successfully flown twice on sounding rockets into auroral events. Measurement data indicate that the total auroral current configuration is composed of several alternating east and west electrojets associated with several alternating up and down Birkeland currents.

  14. Suprathermal plasma analyzer for the measurement of low-energy electron distribution in the ionosphere.

    PubMed

    Shimoyama, M; Oyama, K-I; Abe, T; Yau, A W

    2011-07-01

    It is commonly believed that an energy transfer from thermal to suprathermal electrons (ionosphere. However, observation of electron energy spectrum in this energy range is quite limited because of technical difficulties of measurement. We have developed an instrument to measure electron energy distribution from thermal to suprathermal energy continuously with high-energy resolution of about 0.15 eV. The measurement principle is based on the combination of a retarding potential analyzer with a channel electron multiplier (CEM) and the Druyvesteyn method, which derives energy distribution from the current-voltage characteristics. The capability of detecting plasma space potential enables absolute calibration of electron energy. The instrument with a small vacuum pump, which is required for the CEM to work in low-vacuum region, was first successfully tested by a sounding rocket S-310-37 in the ionospheric E region. The instrument is expected to provide new opportunities to measure energy distribution of thermal and non-thermal electrons in low-density plasma, where a Langmuir probe cannot measure electron temperature because of low plasma density. PMID:21806205

  15. Suprathermal plasma analyzer for the measurement of low-energy electron distribution in the ionosphere

    SciTech Connect

    Shimoyama, M.; Yau, A. W.; Oyama, K.-I.; Abe, T.

    2011-07-15

    It is commonly believed that an energy transfer from thermal to suprathermal electrons (ionosphere. However, observation of electron energy spectrum in this energy range is quite limited because of technical difficulties of measurement. We have developed an instrument to measure electron energy distribution from thermal to suprathermal energy continuously with high-energy resolution of about 0.15 eV. The measurement principle is based on the combination of a retarding potential analyzer with a channel electron multiplier (CEM) and the Druyvesteyn method, which derives energy distribution from the current-voltage characteristics. The capability of detecting plasma space potential enables absolute calibration of electron energy. The instrument with a small vacuum pump, which is required for the CEM to work in low-vacuum region, was first successfully tested by a sounding rocket S-310-37 in the ionospheric E region. The instrument is expected to provide new opportunities to measure energy distribution of thermal and non-thermal electrons in low-density plasma, where a Langmuir probe cannot measure electron temperature because of low plasma density.

  16. Observations of the plasma environment during an active ionospheric ion beam injection experiment

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.; Pollock, C. J.; Cahill, L. J., Jr.; Erlandson, R. E.; Kintner, P. M.

    1990-01-01

    Several sounding rocket flights have been used to clarify the electrodynamics of neutral beam releases of Ar ions in the upper ionosphere, by varying the Ar's point of release with respect to the diagnostic payload. A volume of 10-m radius centered on the Ar release payload is measured for broadband wave activity; the superthermal neutralizing beam electrons become magnetized in this volume for across-field plasma releases, and ambient electrons are accelerated to energies of several hundred eV. This is speculated to be due to wave turbulence rather than payload-neutralization.

  17. Real-time tracking and targeting computations and rocket vehicle aeroballistics for the PLACES ionospheric plasma test series

    SciTech Connect

    Rollstin, L.R.; Wyatt, F.V.

    1982-02-01

    The PLACES ionospheric plasma test series investigated the effect of a structured ionosphere plasma (similar to that produced by a high-altitude nuclear explosion) on satellite navigation and communication systems, and provided in situ measurements of the plasma. This report discusses the aeroballistic characteristics of the PLACES Terrier-Tomahawk 9 rocket systems, including barium/barium-nitrate carriers, beacon vehicles (for plasma-occultation experiments), and probe vehicles (for in situ plasma measurement). The drifting-plasma tracking and the beacon and probe-vehicle targeting procedures are presented with vehicle flight test and experimental results. The test series consisted of four separate barium releases (each on a different day), two beacon vehicle launches, and one probe vehicle launch. The PLACES test series was sponsored by the Defense Nuclear Agency (DNA).

  18. Ionospheric outflows as possible source of the low-energy plasma flux tubes controlling the dimension of pulsating auroral patches

    NASA Astrophysics Data System (ADS)

    Liang, J.; Donovan, E.; Nishimura, T.; Yang, B.; Angelopoulos, V.

    2014-12-01

    Conjunctive observations of low-Earth-orbit satellites and optical auroral imagers have indicated that, a majority of pulsating auroral patches (PAPs) are associated with low-energy ion (LEI) precipitation structures with core energies ranging from several tens of eV up to a few hundred eV. This result is consistent with a long-standing proposal that the PAPs connect to flux tubes filled with enhanced "cold" plasma. To further explore the origin and generation mechanism of those LEI structures, we investigate a few THEMIS events when the in-situ probes are conceived as conjugate to PAPs, judging by an apparent correlation between the in-situ whistler-mode chorus and the oscillation of the PAP luminosity [Nishimura et al., 2011]. We notice a common existence of LEI structures from THEMIS in-situ data during those conjugacy event intervals. Such LEI structures are always strongly field-aligned, with core energies ranging from several tens of eV up to a few hundred eV, and often exhibit distinct energy dispersion features. Contingent upon the energy range and time, the pitch-angle distribution of the LEI structures can be either heavily biased toward parallel direction, or biased toward anti-parallel direction, or roughly symmetric between parallel and anti-parallel directions. The above observations allude to the ion outflows from the ionosphere as a plausible origin of the observed LEI structures. To check the above notion, we perform particle simulations assuming that the low-energy ions originate from the ion outflows in topside ionosphere and bounce between hemispheres while convecting with EXB drift. The simulation results can reproduce some of the basic observable features of the LEI structures, such as the energy dispersion and the variation of pitch-angle distribution versus time and energy. Combining the results from low-Earth-orbit satellites observations, THEMIS in-situ observations, and simulations, we propose that the ion outflows into the magnetosphere can fill the flux tubes with low-energy plasma structure which, along with coherent dimension of the whistler-mode chorus and high-energy electron precipitation, control the spatial size of the PAP.

  19. Recent observations of beam plasma interactions in the ionosphere and a comparison with laboratory studies of the beam plasma discharge

    NASA Technical Reports Server (NTRS)

    Bernstein, W.; Kellogg, P. J.; Monson, S. J.; Holzworth, R. H.; Whalen, B. A.

    1982-01-01

    Experimental results from an electron beam injection rocket flight (27:010 AE) launched into an active aurora are summarized. The rocket carried an accelerator which injected programmed electron beams of less than 100 ma at 2 and 4 kV into the ionospheric plasma over the altitude range 120-240 km. A major objective of the experiment was the study of beam-plasma interactions and the possible identification of the ignition of the beam-plasma discharge (BPD) which had been intensively studied in the laboratory. A qualitative assessment of the data indicates that BPD ignition was produced by both 10 ma and Im beams at 2 and 4 kV. Many of the observed characteristics are similar to the BPD characteristics observed in the laboratory.

  20. Development of beam-plasma instability during the injection a low-energy electron beam into the ionospheric plasma

    SciTech Connect

    Baranets, N. V.; Sobolev, Ya. P.; Ciobanu, M.; Vojta, J.; Smilauer, J.; Klos, Z.; Rothkaehl, H.; Kiraga, A.; Kudela, K.; Matisin, J.; Afonin, V. V.; Ryabov, B. S.; Isaev, N. V.

    2007-12-15

    Results are presented from an active experiment on the injection of charged particle beams into the ionospheric plasma. The experiment was carried out in 1992 onboard the Intercosmos-25 satellite and the Magion-3 daughter satellite (APEX). A specific feature of this experiment was that both the ion and electron beams were injected upward, in the same direction along the magnetic field. The most interesting results are the excitation of HF and VLF-LF waves and the generation of fast charged particle flows, which were recorded on both satellites.

  1. Dynamics of three-dimensional plasma clouds with coupling to the background ionosphere

    NASA Technical Reports Server (NTRS)

    Ma, T.-Z.; Schunk, R. W.

    1994-01-01

    A three-dimensional, time-dependent model with a two-grid system was developed to study the expansion of a plasma cloud in the F region and topside ionosphere. The model maintains an adequate resolution for the released cloud motion and its interaction with the immediate environment, and it includes the effect due to the coupling with the distant part of the ionosphere (i.e., E region). Simulations were performed using realistic background ionospheric density profiles in both the E and F regions. The results show that the cloud coupling to the underlying E region affects the perpendicular cloud motion the most. The distant coupling acts to reduce the perturbation potential and perpendicular velocity and delays or eliminates the striations. These simulation results are consistent with simple analytical approximations. The simulation results also show that the distant coupling has a very small effect on 'localized' phenomena, such as the cloud expansion along the B RIGHT ARROW field and the electrostatic snowplow. The cloud-induced electric potential is attenuated in the lower E region. The electrons flow along the B RIGHT ARROW field, carrying the current to the E region and back to the cloud. The current closure is demonstrated in three dimensions for the first time for such a problem. The perpendicular current flowing through the plasma cloud is closed by the field-aligned electron current and the background perpendicular (mainly Pedersen) current in both the E and F regions. The 'image cloud' formation in t he E region is also clearly demonstrated. The variation of the density change in the 'image cloud' along the B RIGHT ARROW field and the features of the image cloud are shown.

  2. Self-Consistent Magnetosphere-Ionosphere Coupling and Associated Plasma Energization Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Magnetosphere-Ionosphere (MI) coupling and associated with this process electron and ion energization processes have interested scientists for decades and, in spite of experimental and theoretical research efforts, are still ones of the least well known dynamic processes in space plasma physics. The reason for this is that the numerous physical processes associated with MI coupling occur over multiple spatial lengths and temporal scales. One typical example of MI coupling is large scale ring current (RC) electrodynamic coupling that includes calculation of the magnetospheric electric field that is consistent with the ring current (RC) distribution. A general scheme for numerical simulation of such large-scale magnetosphere-ionosphere coupling processes has been presented earlier in many works. The mathematical formulation of these models are based on "modified frozen-in flux theorem" for an ensemble of adiabatically drifting particles in the magnetosphere. By tracking the flow of particles through the inner magnetosphere, the bounce-averaged phase space density of the hot ions and electrons can be reconstructed and the magnetospheric electric field can be calculated such that it is consistent with the particle distribution in the magnetosphere. The new a self-consistent ring current model has been developed that couples electron and ion magnetospheric dynamics with calculation of electric field. Two new features were taken into account in addition to the RC ions, we solve an electron kinetic equation in our model, self-consistently including these results in the solution. Second, using different analytical relationships, we calculate the height integrated ionospheric conductances as the function of precipitated high energy magnetospheric electrons and ions as produced by our model. This results in fundamental changes to the electric potential pattern in the inner magnetosphere, with a smaller Alfven boundary than previous potential formulations would predict but one consistent with recent satellite observations. This leads to deeper penetration of the plasma sheet ions and electrons into the inner magnetosphere and more effective ring current ions and electron energization.

  3. Magnetospheric interaction with Triton's ionosphere

    NASA Technical Reports Server (NTRS)

    Strobel, Darrell F.; Cheng, Andrew F.; Summers, Michael E.; Strickland, Douglas J.

    1990-01-01

    The large electron densities measured by the Voyager radio occultation experiment are attributed to the precipitation of magnetospheric electrons with energy above 10 keV. Because the ionospheric electric Pedersen conductivity of Triton is about 10,000-20,000 mho and the Alfven conductance is about 3.5 mho, direct convective flow of plasma into the essentially infinitely conducting ionosphere is negligible. Magnetospheric electrons are transported to Triton's ionopause by curvature drift as a result of weak magnetic field line draping in a sub-Alfvenic plasma interaction with Triton. At the ionopause energetic electrons have a high probability of elastic and inelastic scattering and precipitate into the upper atmosphere. The average power dissipation is estimated to be about (2 - 3) x 10 to the 8th W.

  4. A simulation study on the impact of altitudinal dependent vertical plasma drift on the equatorial ionosphere in the evening

    NASA Astrophysics Data System (ADS)

    Qian, Cheng; Lei, Jiuhou; Wang, Wenbin

    2015-04-01

    We carry out a simulation study on the impact of altitudinal dependent plasma drift on the equatorial ionosphere in the evening, under geomagnetically quiet conditions. Our study used the vertical plasma drift velocity data measured by an incoherent scatter radar at Jicamarca (11.95°S, 76.87°W). The data covered the local sunset period on 15 and 16 November 2004. The plasma drift had significant altitudinal variations in the vertical component, which is perpendicular to the magnetic field. We employed SAMI2 (SAMI2 is another model of the ionosphere) to evaluate the effect of the altitude-dependent ion drift on the equatorial ionosphere. Three types of plasma drift velocity inputs were used in our simulations. The first input is calculated from an empirical model, the second is a height-averaged drift obtained from the observed drift velocity, and the third one corresponds to the observed altitudinal dependent drift data. A strong equatorial ionization anomaly occurred in the results of all numerical experiments. Additional layers (F3 layers) in electron densities over the equatorial F region and "arch" latitudinal structures extending to lower middle latitudes were seen in the simulations driven by the observed altitudinal dependent drift. We further show that neutral winds do not have a significant effect on the simulated F3 layers. The results of our numerical experiments suggest that the simulated additional ionospheric layers and arch structures are associated with the altitudinal gradients in the vertical plasma drift velocity.

  5. Does the Precipitation of Solar Wind Plasma Cause the Ionospheric Upwellings Detected by MARSIS on the Dayside of Mars?

    NASA Astrophysics Data System (ADS)

    Dieval, C.; Morgan, D. D.; Andrews, D. J.; Duru, F.; Gurnett, D. A.

    2014-12-01

    The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) onboard the Mars Express spacecraft possesses an ionospheric mode, which is used for local and remote sounding measurements of the Martian topside ionosphere. Ideally, the sounding pulse transmitted by MARSIS gives a vertical reflection from the horizontally stratified ionosphere, down to the ionospheric peak. In practice, this is usually the case, however oblique reflections are also detected. These oblique reflections are often found in regions where the remanent crustal magnetic field is nearly vertical and the sources of reflections are often at a higher apparent altitude than the surrounding ionosphere for the same electron density level. There are recurring observations of such ionospheric upwellings during repeated passes of Mars Express above certain regions over time periods of tens of days. An increased ionospheric scale height seems to create these plasma bulges. A possible cause is a localized heating of the neutral atmosphere due to the entrance of solar wind plasma through the magnetic cusps. We test this explanation by using in situ measurements of electron energy distributions made by the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) onboard Mars Express. The statistical study considers dayside oblique echoes (solar zenith angle ? 90°) with spacecraft altitude ?1100 km, for orbits with sufficient MARSIS data coverage and corresponding to a criterion of repetitive passes above a given region. We keep only oblique echoes which are no further below than 10 km in apparent altitude compared to the surrounding ionosphere (most of the cases), to ensure the echoes most likely come from near the vertical direction, at the time of closest approach. Finally we take the oblique echoes with simultaneous ASPERA-3 data, with short time intervals (up to 2 minutes) before and after the time of closest approach. This leaves 761 oblique echoes. The intervals are then manually checked for the fraction of electron spectra having features typical of the magnetosheath and magnetic pileup region, such as differential energy flux intensity at energies >50 eV. The results are a classification of the oblique echoes into: solar wind only, no solar wind and mixing of both, which we can use to characterize the generation of ionospheric bulges.

  6. Effect of self-consistent magnetic field on plasma sheet penetration to the inner magnetosphere under enhanced convection: RCM simulations combined with force-balance magnetic field solver

    NASA Astrophysics Data System (ADS)

    Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R. A.

    2010-12-01

    Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere-ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM) to investigate how the earthward penetration of convection electric field, and therefore plasma sheet population, depends on plasma sheet boundary conditions. Outer boundary conditions at r ~20 RE are a function of MLT and interplanetary conditions based on 11 years of Geotail data. In the previous simulations, Tsyganenko 96 magnetic field model (T96) was used so force balance between plasma pressure and magnetic fields was not maintained. We have now integrated the RCM with a magnetic field solver (Liu et al., 2006) to obtain the required force balance in the equatorial plane. We have run the self-consistent simulations under enhanced convection with different boundary conditions in which we kept different parameters (flux tube particle content, plasma pressure, plasma beta, or magnetic fields) at the outer boundary to be MLT-dependent but time independent. Different boundary conditions result in qualitatively similar plasma sheet profiles. The results show that magnetic field has a dawn dusk asymmetry with field lines being more stretched in the pre-midnight sector, due to relatively higher plasma pressure there. The asymmetry in the magnetic fields in turn affects the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. In comparison with results using the T96, plasma transport under self-consistent magnetic field results in proton and electron plasma sheet inner edges that are located in higher latitudes, weaker pressure gradients, and more efficient shielding of the near-Earth convection electric field (since auroral conductance is also confined to higher latitudes). We are currently evaluating the simulated plasma sheet properties by comparing them with statistical results obtained from Geotail and THEMIS observations.

  7. Plasma expansion characteristics of ionized clouds in the ionosphere - Macroscopic formulation

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Szuszczewicz, E. P.

    1991-01-01

    A macroscopic plasma expansion model, based on a numerical solution of the type-dependent nonlinear coupled continuity and momentum equations for background O(+) ions and several released ion species, was used to examine plasma expansion characteristics of ionized clouds in the ionosphere. Information is obtained on Ba(+), Li(+), and Ba(+) - Li(+) clouds; different cloud sizes (Gaussian half widths of 0.1, 0.5, and 1 km); cloud/background ion density ratios covering two orders of magnitude; electron/ion temperature ratios of 1, 5, and 10; and several cloud-background relative velocities along B (0, 1, 2, 4, 6, and 8 km/sec). The macroscopic expansion features obtained were found to be in general agreement with those obtained from the small-scale numerical simulations.

  8. The Skylab barium plasma injection experiments. I - Convection observations

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Davis, T. N.; Peek, H. M.

    1976-01-01

    Two barium-plasma injection experiments were carried out during magnetically active periods in conjunction with the Skylab 3 mission. The high-explosive shaped charges were launched near dawn on November 27 and December 4, 1973, UT. In both cases, the AE index was near 400 gammas, and extensive pulsating auroras covered the sky. The first experiment, Skylab Alpha, occurred in the waning phase of a 1000-gamma substorm, and the second, Skylab Beta, occurred in the expansive phase of an 800-gamma substorm. In both, the convection was generally magnetically eastward, with 100-km-level electric fields near 40 mV/m. However, in the Alpha experiment the observed orientation of the barium flux tube fit theoretical field lines having no parallel current, but the Beta flux-tube orientation indicated a substantial upward parallel sheet current.

  9. New ISTP Solar Max: A Multi-Spacecraft Study of the Flow of Ionospheric Plasma

    NASA Technical Reports Server (NTRS)

    Chappell, Charles R.

    2003-01-01

    The unique instrumentation on the Polar satellite combined with the simultaneous measurement of different parts of the magnetosphere with multiple satellites make possible the study of magnetospheric processes in a special way. In particular, the study of the ionospheric supply of plasma to the magnetosphere can by accomplished to give important results on the plasmas which drive the dynamics of the magnetosphere. This study concentrated on the period of September to December, 2001 in which the Polar orbit had precessed to the point that the line of apsides was near the equatorial plane. This unique orbital configuration enabled the TIDE instrument to measure outflowing ions across the polar cap and then transit the magnetotail lobes and observe the dramatic change in plasma characteristics as the satellite entered the plasma sheet. Contact was made with investigators on the Cluster and Geotail satellite missions and corresponding time frames were studied in the data. There were two approximate conjunctions between Polar and Geotail and data were compared to look for features which might be related. The higher energy concentration of the Geotail instrument made direct comparisons with TIDE difficult, and the Cluster measurements did not surface any cases that corresponded closely in space and time. There were, however, many interesting aspects of the Polar orbits which permitted the observation of the changing ionospheric outflowing plasma characteristics. As in earlier measurements, the ionospheric plasma could be seen flowing up the magnetic field lines out of the northern and southern polar caps. Its energy suggested a polar wind origin energized by the centrifugal acceleration of flow through the polar cusp. The roughly 10eV ions then moved out into the lobes of the magnetotail where they could be seen flowing toward the plasma sheet in both the northern and southern magnetotail lobes. There was also a double field-aligned region of warm ions observed just outside the plasmasphere, stretching toward the auroral zone and inner plasma sheet boundary. Upon entering the plasma sheet, the plasma energy jumped from 10 s of eV to greater than 1 keV. The single field aligned flows transitioned to highly variable spatially choppy energized ion distributions with a variety of pitch angle configurations. This pattern was quite repeatable in all of the Polar orbits that were examined and are compatible with the source of ions being the polar wind which is then energized to 10 s of eV by the centrifugal acceleration. These modestly energized polar wind ions are then carried to the magnetotail where they are substantially energized by the curvature drift-induced movement across the cross-tail potential of the magnetotail. This latter drift energizes the ions to the energies typically found in the plasma sheet. Subsequent drift and energization can cause the ions to become part of the ring current. The results of this study were presented at the Spring AGU meeting in 2002 and the GEM meeting in June 2003. They are the foundation for a paper that has been submitted by Matthew Huddleston to the Journal of Geophysical Research in December 2003. This work was part of the thesis that Matthew completed in finishing his Ph.D. in Physics at Vanderbilt University.

  10. The Ionospheric Convection and Birkeland Current Response to an Impulse in the Interplanetary Magnetic Field BY Component

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Eriksson, S.; Korth, H.; Baker, J. B.; Hairston, M. R.; Heinselman, C. J.; Anderson, B. J.

    2013-05-01

    When the interplanetary magnetic field (IMF) is dawnward or duskward, magnetic merging between the IMF and the geomagnetic field occurs near the cusp on the dayside flanks of the magnetosphere. During these intervals, sunward flow channels on open field lines with velocities in excess of 2 km/s are generated in the polar ionosphere, which can deposit large amounts of energy into the cusp-region thermosphere. In this study, we analyze an interval on 5 April 2010 where there was a strong dawnward impulse in the IMF, followed by a gradual decay in IMF magnitude at constant clock angle. Data from ground based radars and the DMSP spacecraft were assimilated to investigate the global convection pattern during this interval, and data from the Active Magnetospheric and Planetary Electrodynamics Response Experiment (AMPERE) were used to investigate the associated Field-Aligned Current (FAC) system. Additionally, data from AMPERE and the Sondrestrom Incoherent Scatter Radar were used to investigate the time response of the flow channel and its associated FAC pair. We find that there is a delay of approximately 1.25 hours between the arrival of the dawnward IMF impulse at the magnetopause and the speed of the flow channel and strength of the FACs flanking it. In addition to correlation between the dawnward component of the IMF and the flanking FAC strength, we also find that there is inverse correlation between the flanking FAC strength and both the SYM-H index and Solar Wind Alfvenic Mach Number. No statistically significant correlation is found between the flanking FAC strength and solar wind dynamic pressure.

  11. Theory and Observations of Plasma Waves Excited Space Shuttle OMS Burns in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Pfaff, R. F.; Schuck, P. W.; Hunton, D. E.; Hairston, M. R.

    2010-12-01

    Measurements of artificial plasma turbulence were obtained during two Shuttle Exhaust Ionospheric Turbulence Experiments (SEITE) conducted during the flights of the Space Shuttle (STS-127 and STS-129). Based on computer modeling at the NRL PPD and Laboratory for Computational Physics & Fluid Dynamics (LCP), two dedicated burns of the Space Shuttle Orbital Maneuver Subsystem (OMS) engines were scheduled to produce 200 to 240 kg exhaust clouds that passed over the Air Force Research Laboratory (AFRL) Communications, Navigation, and Outage Forecast System (C/NOFS) satellite. This operation required the coordination by the DoD Space Test Program (STP), the NASA Flight Dynamics Officer (FDO), the C/NOFS payload operations, and the C/NOFS instrument principal investigators. The first SEITE mission used exhaust from a 12 Second OMS burn to deposit 1 Giga-Joules of energy into the upper atmosphere at a range of 230 km from C/NOFS. The burn was timed so C/NOFS could fly though the center of the exhaust cloud at a range of 87 km above the orbit of the Space Shuttle. The first SEITE experiment is important because is provided plume detection by ionospheric plasma and electric field probes for direct sampling of irregularities that can scatter radar signals. Three types of waves were detected by C/NOFS during and after the first SEITE burn. With the ignition and termination of the pair of OMS engines, whistler mode signals were recorded at C/NOFS. Six seconds after ignition, a large amplitude electromagnetic pulse reached the satellite. This has been identified as a fast magnetosonic wave propagating across magnetic field lines to reach the electric field (VEFI) sensors on the satellite. Thirty seconds after the burn, the exhaust cloud reach C/NOFS and engulfed the satellite providing very strong electric field turbulence along with enhancements in electron and ion densities. Kinetic modeling has been used to track the electric field turbulence to an unstable velocity distribution produced after the supersonic exhaust molecules charge exchanged with ambient oxygen ions. Based on the success of the first SEITE mission, a second dedicated burn of the OMS engine was scheduled to intercept the C/NOFS satellite, this time at an initial range of 430 km. The trajectory of this exhaust cloud was not centered on the satellite so the turbulent edge was sampled by the C/NOFS instruments. The electromagnetic pulse and the in situ plasma turbulence was recorded during the second SEITE experiment. A comparison of the data from the two OMS burns shows that a wide range of plasma waves are consistently produced with rocket engines are fired in the ionosphere.

  12. Asymmetric Ionospheric Outflow Observed at the Dayside Magnetopause

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Zhang, H.; Zong, Q.; Sibeck, D. G.; Wang, Y.; Glassmeier, K. H.; Reme, H.

    2014-12-01

    An important source of the terrestrial magnetospheric plasma is cold plasma from the polar ionosphere. The ionospheric ion outflows have been rarely observed at the dayside magnetopause. We investigate the source and the behaviors of the cold ions observed by the Cluster spacecraft measurements. The pitch angle distributions (0°-75°) of the cold ions observed by both C1 and C3 at the dayside magnetopause indicate that these cold ions are ionospheric outflows coming from the southern hemisphere. The cold ions (< 200 eV) fluxes are modulated by the ULF wave electric field. The cold ions move perpendicular to the magnetic field due to the enhanced convection electric field when they are close to the magnetic reconnection region. Two different populations (possibly H+ and He+) were observed in the magnetosphere. Our results suggest that the ionospheric outflows can be transported to the dayside magnetopause and may play an important role in the dynamics of this region.

  13. The collective gyration of a heavy ion cloud in a magnetized plasma. [in earth ionosphere

    NASA Technical Reports Server (NTRS)

    Brenning, N.; Swenson, C.; Kelley, M. C.; Providakes, J.; Torbert, R.

    1992-01-01

    Results are reported from the ionospheric barium injection experiments CRIT I and CRIT II, during both of which a long-duration oscillation was observed with a frequency close to the gyrofrequency of barium and a time duration of about 1 sec. A model for the phenomenon which was proposed for CRIT I is compared to the results from CRIT II, which made a much more complete set of measurements. The model follows the motion of a low-beta ion cloud through a larger ambient plasma. As the ions move across the magnetic field, the space charge is continuously neutralized by magnetic-field aligned electron currents from the ambient ionosphere, drawn by the divergence in the perpendicular electric field. These currents yield a perturbation of the magnetic field related to the electric perturbation by Delta-E/Delta-B is approximately equal to V sub A. The possibility of extending the model to the active region, where the ions are produced in this type of self-ionizing injection experiments, is discussed.

  14. Enhanced nonlinear interaction of powerful electromagnetic waves with ionospheric plasma near the second electron gyroharmonic

    SciTech Connect

    Istomin, Ya. N.; Leyser, T. B.

    2013-05-15

    Plasma experiments in which a powerful electromagnetic pump wave is transmitted into the ionosphere from the ground give access to a rich range of phenomena, including gyroharmonic effects when the pump frequency is near an harmonic of the ionospheric electron gyrofrequency. For pump frequencies close to the second gyroharmonic, experiments show a strong enhancement, as observed in radar scatter from pump-induced geomagnetic field-aligned density striations and optical emissions. This is in contrast to the case at the third harmonic and higher at which most of the effects are instead suppressed. We show theoretically that electrostatic oscillations can be localized in density inhomogeneities associated with small scale striations. The localized field is a mixture of the electron Bernstein and upper hybrid modes when the pump frequency is near the second gyroharmonic. The coupling of the modes is enabled by a symmetry feature of the linear electron Bernstein and upper hybrid dispersion properties that occur only near the second gyroharmonic. Electron acceleration inside the density inhomogeneities by localized azimuthal electrostatic oscillations is more efficient near the second gyroharmonic than at higher frequencies, consistent with the observed enhancements.

  15. The thresholds of ionospheric plasma instabilities pumped by high-frequency radio waves at EISCAT

    NASA Astrophysics Data System (ADS)

    Bryers, C. J.; Kosch, M. J.; Senior, A.; Rietveld, M. T.; Yeoman, T. K.

    2013-11-01

    We test the existing theories regarding the thresholds for the parametric decay instability (PDI), the oscillating two-steam instability (OTSI), and the thermal parametric instability (TPI) using the European Incoherent Scatter (EISCAT) facility's ionospheric heater. In these processes, the pump wave can couple to various electrostatic waves in the F layer ionosphere, which can be observed using the EISCAT UHF radar (PDI and OTSI) or by HF radar (TPI). On 19 October 2012, the heater power was stepped from ˜0.5 MW to ˜100 MW effective radiated power in seven steps using a 1 min on, 1 min off cycle. We use an electric field model, taking into account D region absorption, to compare theory with our observations. In all three cases, we find good agreement. In addition, the growth of striations formed during the TPI causes anomalous absorption of the heater wave, which we observe as decreased UHF ion line and plasma line backscatter power. We show evidence that heating for a prolonged period of time reduces the UHF ion line intensity throughout the experiment.

  16. Ionospheric and Atmospheric Outflow from Mars: Identification of Major Plasma Energization Mechanisms

    NASA Astrophysics Data System (ADS)

    Andre, M.; Barabash, S.; Blomberg, L. G.; Wahlund, J.-E.; Modolo, R.; Stenberg, G.; Vaivads, A.

    The escape of the upper ionized atmosphere of Mars has an impact on the evolution of the planet A number of escape processes have been suggested to explain the removal of volatiles such as H 2 O and CO 2 from the surface and atmosphere of Mars The upper Martian atmosphere is in the plasma state due to ionization by solar UV radiation and associated secondary electrons and the impacts of accelerated charged particles Mars has no significant internal magnetic field that globally protects its atmosphere In situ observations by the ESA Mars Express spacecraft together with earlier observations show an ion outflow that on geological time-scales can be very significant Recent observations also show that the solar wind can reach down to low altitudes of a few hundred kilometers However very few in situ observations are available to identify the plasma energization mechanisms causing the outflow of ionospheric ions Different processes have been suggested to explain the energization of the planetary ions including direct solar wind momentum transfer acceleration by an externally applied solar wind electric field and different types of wave activity at low altitude We discuss how a small but complete plasma instrument package with instruments to observe ions electrons and electric and magnetic fields up to reasonably high frequencies can be used to identify various energization mechanisms Such an instrument package has been suggested for the Mars Orbiting Plasma Surveyor MOPS spacecraft

  17. The 10 sheath-accelerated electrons and ions. [atmospheric models of plasma sheaths and ionospheric electron density

    NASA Technical Reports Server (NTRS)

    Shawhan, S. D.

    1975-01-01

    A model is presented that suggests that plasma sheaths form between the ionospheric plasma moving with Io and the ambient plasma corotating with Jupiter. Potentials across these sheaths could be as high as 580 kV which is the motional emf across Io's ionosphere. Electrons and ions can be accelerated across these sheaths. The sheaths may exist at the top of the Io ionosphere with characteristic thicknesses of 1/4 kilometers. The model is consistent with the Pioneer observations of 0.15 MeV electrons at the inner edge of Io's L-shell and the enhanced number density of low-energy protons at the outer edge. Ion sputtering of the Io surface is discussed and may explain the presence of atomic hydrogen and sodium in the vicinity of Io. Also these accelerated particles may be important to the formation of the Io ionosphere. High electron flux which may lead to decametric radio emissions, Jovian atmospheric heating and optical and X-ray emissions is also discussed.

  18. Numerical Modeling of High Frequency Electromagnetic Wave Propagation through Ionospheric Plasma with Randomly Distributed Flute Vortices

    NASA Astrophysics Data System (ADS)

    Caplinger, J.; Sotnikov, V. I.; Wallerstein, A. J.

    2014-12-01

    A three dimensional numerical ray-tracing algorithm based on a Hamilton-Jacobi geometric optics approximation is used to analyze propagation of high frequency (HF) electromagnetic waves through a plasma with randomly distributed vortex structures having a spatial dependence in the plane perpendicular to earth's magnetic field. This spatial dependence in density is elongated and uniform along the magnetic field lines. Similar vortex structures may appear in the equatorial spread F region and in the Auroral zone of the ionosphere. The diffusion coefficient associated with wave vector deflection from a propagation path can be approximated by measuring the average deflection angle of the beam of rays. Then, the beam broadening can be described statistically using the Fokker-Planck equation. Visualizations of the ray propagation through generated density structures along with estimated and analytically calculated diffusion coefficients will be presented.

  19. Cold streams of ionospheric oxygen in the plasma sheet during the CDAW-6 event of March 22, 1979

    NASA Technical Reports Server (NTRS)

    Orsini, S.; Amata, E.; Candidi, M.; Balsiger, H.; Stokholm, M.; Huang, C. Y.; Lennartsson, W.; Lindqvist, P. A.

    1983-01-01

    During magnetospheric substorm events, the plasma and ion composition experiments in the ISEE-1 and 2 satellites detected cold ionospheric O+ streams, moving tailwards in the near Earth magnetotail. Flow is parallel to the magnetic field lines, with drift velocity in agreement with the electric field topology obtained by mapping the model ionospheric field along the magnetic field lines. Fluctuations of the flow velocity of the streams can be related to magnetotail movements. Oscillations of the flow direction and speed with periods ranging from 5 to 10 min that suggest the presence of waves are observed. The streams are observed at all distances between 15 and 6 Re from the Earth. When averaged over 360 deg, the streams show up as a low energy peak, superimposed on the distribution of isotropic plasma sheet ions. This double-peak structure of the energy spectrum seems typical of the disturbed plasma sheet.

  20. Cold streams of ionospheric oxygen in the plasma sheet during the CDAW 6 event of March 22, 1979

    NASA Technical Reports Server (NTRS)

    Orsini, S.; Amata, E.; Candidi, M.; Balsiger, H.; Stokholm, M.; Huang, C.; Lennartsson, W.; Lindqvist, P.-A.

    1985-01-01

    During magnetospheric substorm events, the plasma and ion composition experiments in the ISEE-1 and 2 satellites detected cold ionospheric O+ streams, moving tailwards in the near earth magnetotail. Flow is parallel to the magnetic field lines, with drift velocity in agreement with the electric field topology obtained by mapping the model ionospheric field along the magnetic field lines. Fluctuations of the flow velocity of the streams can be related to magnetotail movements. Oscillations of the flow direction and speed with periods ranging from 5 to 10 min that suggest the presence of waves are observed. The streams are observed at all distances between 15 and 6 Re from the earth. When averaged over 360 deg, the streams show up as a low energy peak, superimposed on the distribution of isotropic plasma sheet ions. This double-peak structure of the energy spectrum seems typical of the disturbed plasma sheet.

  1. Chirped dissipative ion-cyclotron solitons in the Earth's low-altitude ionospheric plasma with two ion species

    SciTech Connect

    Kovaleva, I. Kh.

    2013-03-15

    Conditions for the excitation of small-scale nonlinear ion-cyclotron gradient-drift dissipative structures in cold ionospheric plasma are considered. The solution for the wave electric field in this structure in the form of a chirped soliton satisfying the equation of the Ginzburg-Landau type is derived in the electrostatic approach. The dissipative structure as a whole represents the chirped soliton accompanied by the comoving quasineutral plasma hump. The possibility of the excitation of two modes of this type (the high- and low-frequency ones) in plasma containing light and heavy ion impurities is considered. The role of electromagnetic corrections and the possible contribution introduced by these structures to the transport processes in the ionosphere are discussed.

  2. Electron velocity distributions and plasma waves associated with the injection of an electron beam into the ionosphere

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Paterson, W. R.; Kurth, W. S.; Ashour-Abdalla, M.; Schriver, D.

    1989-01-01

    An electron beam was injected into earth's ionosphere on August 1, 1985, during the flight of the Space Shuttle Challenger as part of the objectives of the Spacelab 2 mission. In the wake of the Space Shuttle a magnetically aligned sheet of electrons returning from the direction of propagation of the beam was detected with the free-flying Plasma Diagnostics Package. The thickness of this sheet of returning electrons was about 20 m. Large intensifications of broadband electrostatic noise were also observed within this sheet of electrons. A numerical simulation of the interaction of the electron beam with the ambient ionospheric plasmas is employed to show that the electron beam excites electron plasma oscillations and that it is possible for the ion acoustic instability to provide a returning flux of hot electrons by means of quasi-linear diffusion.

  3. Dynamics of plasma density perturbations in the upper ionosphere and the magnetosphere under the action of powerful HF radio waves

    NASA Astrophysics Data System (ADS)

    Borisov, N.; Ryabova, N.; Ruzhin, Yu.

    2015-11-01

    Dynamics of the density perturbations of the main plasma components (electrons, oxygen and hydrogen ions) in the upper ionosphere and the magnetosphere under the action of powerful HF radio waves is discussed theoretically and numerically. For finite heating pulse and different effective powers the variations of the density perturbations in time at various heights are investigated. We argue that due to collisionless damping the magnetospheric duct along the whole field line is not formed. Instead positive and negative perturbations of the main plasma components propagating with the attenuation in the magnetosphere with two different speeds are predicted. Utilization of pulsed heating provides significant information concerning plasma perturbations in the upper ionosphere and the magnetosphere.

  4. The relative importance of dayside and nightside reconnection on the ionospheric convection system during sudden enhancements of solar wind dynamic pressure: OpenGGCM-CTIM results

    NASA Astrophysics Data System (ADS)

    Connor, H. K.; Zesta, E.; Ober, D. M.; Raeder, J.

    2013-12-01

    Recent studies have shown that sudden enhancement of solar wind dynamic pressure (Psw) is a significant driver of energy transfer to the magnetosphere-ionosphere (MI) system, generating strong responses such as increase in the cross polar cap potential (CPCP), reduction of the polar cap area, expansion of the auroral oval, etc. This study investigates where, when, and how solar wind energy is deposited into the MI system during sudden solar wind dynamic pressure enhancement, like shocks. We analyze three unique events that occurred during strongly southward, near-zero Bz, and northward IMF by simulating the MI responses with the OpenGGCM-CTIM coupled magnetosphere-ionosphere model. We examine the behavior of dayside and nightside reconnection, and quantify their respective contribution to CPCP, a proxy of ionospheric flow convection. The dayside and nightside reconnection rates (Rd and Rn) are defined to be the open flux per unit time crossing the dayside and nightside open-closed field line boundaries. The relative contributions to CPCP are estimated by fitting the reconnection rates and the modeled CPCP to a widely used linear equation, CPCP = CdRd + CnRn + viscosity, where the correlation coefficients of dayside and nightside reconnection rates Cd and Cn define the quantitative contribution of each merging rate. The model results reproduce the CPCP increase at the arrival of the Psw enhancement, showing good agreement with the observations of Defense Meteorological Satellite Program (DMSP) spacecraft and predictions from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) technique. For all three events, the dayside reconnection reacts first, increasing its rate right after the Psw increase. The nightside reconnection intensifies about 10-20 minutes later due to the solar wind propagation to the magnetotail. For southward IMF, dayside reconnection contributes to the CPCP increase twice as much as the nightside one, while for northward IMF, nightside reconnection dominates.

  5. Radial convection of finite ion temperature, high amplitude plasma blobs

    NASA Astrophysics Data System (ADS)

    Wiesenberger, M.; Madsen, J.; Kendl, A.

    2014-09-01

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line with conditions found in tokamak scrape-off-layers (SOL) regions. Varying the ion temperature, the initial blob width, and the initial amplitude, we found an FLR dominated regime where the blob behavior is significantly different from what is predicted by cold-ion models. The transition to this regime is very well described by the ratio of the ion gyroradius to the characteristic gradient scale length of the blob. We compare the global gyrofluid model with a partly linearized local model. For low ion temperatures, we find that simulations of the global model show more coherent blobs with an increased cross-field transport compared to blobs simulated with the local model. The maximal blob amplitude is significantly higher in the global simulations than in the local ones. When the ion temperature is comparable to the electron temperature, global blob simulations show a reduced blob coherence and a decreased cross-field transport in comparison with local blob simulations.

  6. Radial convection of finite ion temperature, high amplitude plasma blobs

    SciTech Connect

    Wiesenberger, M. Kendl, A.; Madsen, J.

    2014-09-15

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line with conditions found in tokamak scrape-off-layers (SOL) regions. Varying the ion temperature, the initial blob width, and the initial amplitude, we found an FLR dominated regime where the blob behavior is significantly different from what is predicted by cold-ion models. The transition to this regime is very well described by the ratio of the ion gyroradius to the characteristic gradient scale length of the blob. We compare the global gyrofluid model with a partly linearized local model. For low ion temperatures, we find that simulations of the global model show more coherent blobs with an increased cross-field transport compared to blobs simulated with the local model. The maximal blob amplitude is significantly higher in the global simulations than in the local ones. When the ion temperature is comparable to the electron temperature, global blob simulations show a reduced blob coherence and a decreased cross-field transport in comparison with local blob simulations.

  7. Comments on absolute and convective instabilities. [plasma radiation

    NASA Technical Reports Server (NTRS)

    Ram, A. K.; Bers, A.

    1992-01-01

    The paper puts into question the tenability of a critique by Oscarsson and Roennmark (1986) regarding the theory of absolute and convective instabilities. The space-time evolution of instabilities is reviewed with attention given to the two categories of time-asymptotic evolution. It is mentioned that the notion of time-asymptotics does not simply refer to t approaching infinity and that the evolution of the arbitrary initial perturbation at t = 0 is obtained by convolving the Green's function. The examples used in the previous critique describe instabilities that evolve in time only and are concluded to be nongeneric for continuous media, and the corresponding treatment of a time-asymptotic limit is characterized by imprecision. The original authors respond by suggesting that nondispersive waves are physically legitimate as in common plasma-wave modes and Alfven waves and can be described by their dispersion relation. A dispersive term is added to the relation so that it can be applied to ion-acoustic waves and other phenomena.

  8. Mechanisms of Ionospheric Mass Escape

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Khazanov, G. V.

    2010-01-01

    The dependence of ionospheric O+ escape flux on electromagnetic energy flux and electron precipitation into the ionosphere is derived for a hypothetical ambipolar pick-up process, powered the relative motion of plasmas and neutral upper atmosphere, and by electron precipitation, at heights where the ions are magnetized but influenced by photo-ionization, collisions with gas atoms, ambipolar and centrifugal acceleration. Ion pick-up by the convection electric field produces "ring-beam" or toroidal velocity distributions, as inferred from direct plasma measurements, from observations of the associated waves, and from the spectra of incoherent radar echoes. Ring-beams are unstable to plasma wave growth, resulting in rapid relaxation via transverse velocity diffusion, into transversely accelerated ion populations. Ion escape is substantially facilitated by the ambipolar potential, but is only weakly affected by centrifugal acceleration. If, as cited simulations suggest, ion ring beams relax into non-thermal velocity distributions with characteristic speed equal to the local ion-neutral flow speed, a generalized "Jeans escape" calculation shows that the escape flux of ionospheric O+ increases with Poynting flux and with precipitating electron density in rough agreement with observations.

  9. Study of plasma natural convection induced by electron beam in atmosphere [

    SciTech Connect

    Deng, Yongfeng Han, Xianwei; Tan, Yonghua

    2014-06-15

    Using high-energy electron beams to ionize air is an effective way to produce a large-size plasma in the atmosphere. In particular, with a steady-state high power generator, some unique phenomena can be achieved, including natural convection of the plasma. The characteristics of this convection are studied both experimentally and numerically. The results show that an asymmetrical temperature field develops with magnitudes that vary from 295?K to 389?K at a pressure of 100?Torr. Natural convection is greatly enhanced under 760?Torr. Nevertheless, plasma transport is negligible in this convection flow field and only the plasma core tends to move upward. Parameter analysis is performed to discern influencing factors on this phenomenon. The beam current, reflecting the Rayleigh number Ra effect, correlates with convection intensity, which indicates that energy deposition is the underlying key factor in determining such convections. Finally, natural convection is concluded to be an intrinsic property of the electron beam when focused into dense air, and can be achieved by carefully adjusting equipment operations parameters.

  10. A simple quantitative model of plasma flows and currents in Saturn's polar ionosphere

    NASA Astrophysics Data System (ADS)

    Cowley, S. W. H.; Bunce, E. J.; O'Rourke, J. M.

    2004-05-01

    We propose a simple illustrative axisymmetric model of the plasma flows and currents that occur in Saturn's polar ionosphere which are due to both internal magnetospheric plasma processes and the solar wind interaction. The features of the model are based on previous physical discussion, guided quantitatively by both Voyager plasma observations on closed field lines and remote-sensing IR Doppler observations on open field lines. With increasing latitude the flow features represented include a region poleward of ˜25° colatitude where the angular velocities decrease continuously from rigid corotation to ˜60% of rigid corotation due to plasma production from internal sources in the central magnetosphere, a narrow band of higher but still subcorotating angular velocities mapping to Dungey cycle return flow and Vasyliunas cycle flow regions in the outer closed field magnetosphere, and, finally, a region of low angular velocities, ˜30% of rigid corotation, on open field lines in the polar cap. We show that these flows require a four-region pattern of field-aligned currents. With increasing latitude, these consist of regions of upward and downward current on closed field lines peaking at a few tens of nanoamperes per square meter (for an effective ionospheric Pedersen conductivity of 1 mho), a narrow ring of upward field-aligned current across the open-closed field line boundary of order 100 nA m-2, and distributed downward currents on open field lines of order 10 nA m-2. Of the upward currents, only that at the open-closed field line boundary is of sufficient intensity to require significant acceleration of magnetospheric electrons, resulting in total precipitating electron powers of ˜0.03-0.06 TW, together with auroral UV emissions of a few tens of kilorayleighs. The latter emissions occur in a ring of a few hundred kilometers latitudinal width at ˜13° colatitude, which we thus associate with Saturn's main auroral oval. We also estimate similar powers in unaccelerated electron precipitation on closed field lines equatorward of the boundary, leading to distributed "diffuse" UV emissions of a fraction of a kilorayleigh. However, by far the most important energy input to the polar upper atmosphere is due to Joule heating by the ionospheric Pedersen currents, which we estimate as typically several milliwatts per square meter poleward of ˜20° colatitude. The overall Joule powers are estimated to be ˜2.5 TW on both open and closed field lines in each hemisphere (for a conductivity of ˜1 mho and no slippage of the neutral atmosphere), thus representing a very significant energy input to Saturn's thermosphere, more than an order of magnitude larger than the globally averaged solar input. Joule heating is thus likely to make a significant contribution to an explanation of why Saturn's thermosphere is observed to be hot, ˜400-600 K, compared with less than ˜200 K expected on the basis of solar heating alone.

  11. Ionosphere plasma electron parameters from radio frequency sweeping impedance probe measurements

    NASA Astrophysics Data System (ADS)

    Spencer, E.; Patra, S.

    2015-09-01

    In this work we will describe the technique of using an RF sweeping impedance probe (SIP) to measure the AC impedance of an electrically short monopole immersed in a plasma. We analyze the SIP measurements which are taken from the payload of the Storms sounding rocket, launched from Wallops Island, Virginia, in 2007. The scientific objective of the Storms mission was to concentrate on whether density irregularities observed in midlatitude spread F could arise from ionospheric coupling to terrestrial weather. As such, independent measurements of the electron density profile are crucial. Since the inherent nature of the SIP technique makes it relatively insensitive to errors introduced through spacecraft charging, probe contamination, and other DC effects, it is an ideal instrument to employ under disturbed plasma conditions. The instrument measures both the magnitude and phase of the AC impedance from 100 kHz to 20 MHz in 128 frequency steps, performing 45,776 sweeps over the entire flight. From these measurements we infer both the absolute electron density ne and the electron neutral collision frequencies ?en throughout the flight trajectory. The SIP data can be approximately analyzed using a fluid formulation and thin sheath approximation particularly at altitudes below 200 km, which allows us to match the measurements to quasi-static analytical formulas. At about 265 km on the upleg, the magnitude data transitioned to a highly damped response with increasing altitude. The phase data, on the other hand, continued to indicate increased plasma density and reduced collisionality as expected. For a large portion of the flight, the payload of the Storms mission exhibited an uncontrolled coning motion, making the local magnetic field orientation with respect to the dipole difficult to decipher. Despite these difficulties, we were able to obtain robust estimates of the electron density profile, using the phase information from each sweep. In addition, the electron neutral collision frequency obtained from matching to phase data alone was on the correct order of magnitude with respect to Naval Research Laboratory Mass Spectrometer Incoherent Scatter-Extended model values in the ionosphere between 100 km and 150 km.

  12. Statistical investigation of the noise added to a model of the effect of solar activities on the plasma of the ionosphere using DEMETER satellite data

    NASA Astrophysics Data System (ADS)

    Sharzehei, Mahmoud; Masnadi-Shirazi, M. A.; Golbahar-Haghighi, Sh.

    2015-08-01

    Although a relation between ionospheric anomalies and occurrence of strong earthquake has been studied for several decades, the issue of finding anomalies in ionospheric parameter before earthquakes has been always a matter of controversy among scientific community. In this way, the study of the ionosphere by satellite observers plays a significant role in assessing the feasibility of finding anomalies in ionospheric parameters as short-term precursors of earthquakes. Regardless of whether this assertion about ionospheric precursor is true or false, the ionosphere has been shown to be affected more by solar activities than other events such as seismic activities; thus, the modeling of ionospheric variation caused by solar activities is valuable in assessing the possibility of ionospheric precursors. One of the most famous satellites launched to investigate the ionospheric plasma perturbation associated with solar and seismic activities is the DEMETER, the French micro-satellite. To carry on such investigation, one of its payloads, the onboard IAP experiment, allows for the measurement of important plasma parameters including ion composition densities and their temperature. The current work presents a statistical distribution for the noise added to the proposed model describing the regular effect of solar activities on the ionospheric plasma above Iran during one half-orbit time of the DEMETER (~35 min) in the absence of an earthquake and a quiet time condition. The results of this study show that the proposed modeling noise statistically agrees with the Gaussian distribution; however, its variance may vary from one day to another. In other words, the noise is a non-stationary random process. The proposed model is then evaluated by a set of experimental data. The results of this evaluation show that the measured data follow the proposed model.

  13. Plasma heating, plasma flow and wave production around an electron beam injected into the ionosphere

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.; Erickson, K. N.

    1986-01-01

    A brief historical summary of the Minnesota ECHO series and other relevant electron beam experiments is given. The primary purpose of the ECHO experiments is the use of conjugate echoes as probes of the magnetosphere, but beam-plasma and wave studies were also made. The measurement of quasi-dc electric fields and ion streaming during the ECHO 6 experiment has given a pattern for the plasma flow in the hot plasma region extending to 60m radius about the ECHO 6 electron beam. The sheath and potential well caused by ion orbits is discussed with the aid of a model which fits the observations. ELF wave production in the plasma sheath around the beam is briefly discussed. The new ECHO 7 mission to be launched from the Poker Flat range in November 1987 is described.

  14. Equatorial transport of Saturn's ionosphere as driven by a dust-ring current system

    SciTech Connect

    Ip, W.; Mendis, D.A.

    1983-03-01

    The diurnal modulation of the dust ring current of Saturn's D-ring causes field-aligned Birkeland currents ot flow near the dawn and dusk terminators and close across the mid-latitude ionosphere. One consequence of this current system is the establishment of a global convection pattern in the equatorial outer ionosphere. Outward motion of the dayside ionosheric plasma as well as the corresponding absorption effect of the inner ring system might be one physical cause of the depletion of the ionospheric content of Saturn.

  15. Convective plasma stability consistent with MHD equilibrium in magnetic confinement systems with a decreasing field

    SciTech Connect

    Tsventoukh, M. M.

    2010-10-15

    A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as {beta} {approx} 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field than those obtained with the simplest MHD description.

  16. Numerical modeling of the polar F region ionosphere taking into account the solar wind conditions

    NASA Astrophysics Data System (ADS)

    Uvarov, V. M.; Lukianova, R. Yu.

    2015-12-01

    The numerical model predicts the 3-D distribution of electron density over the high-latitude F region ionosphere in the altitudes between 130 and 600 km. The distinctive feature of the model is an analytical representation of the electric potential distribution over the high-latitude ionospheric shell which continuously evolving with the solar wind parameters, season and universal time. In this approach the convection electric field is directly related to the field-aligned currents of magnetospheric origin which are controlled by the solar wind. The time-dependent ion continuity and momentum equations are solved as a function of altitude within a convecting and corotating plasma flux tube. Modeling results show that the polar ionosphere F region responds strongly to the change in the IMF polarity and the solar zenith angle. Large-scale ionospheric irregularities are reproduced in details.

  17. Ionosphere. [of Jupiter

    NASA Technical Reports Server (NTRS)

    Strobel, D. F.; Atreya, S. K.

    1983-01-01

    The original interest in an ionosphere on Jupiter was generated by the discovery of strong radio-frequency emissions at approximately 20 MHz which were thought to be plasma frequencies associated with Jupiter's ionosphere. The ionosphere of Jupiter provides a means to couple the magnetosphere to the atmosphere by virtue of its high conductivity and collisional interaction with the neutral atmosphere. The Pioneer and Voyager have provided direct measurements of profiles of electron concentration at selected locations on Jupiter. Attention is given to basic principles regarding the characteristics of the Jovian ionosphere, the ionization sources, aspects of ion recombination, ion chemistry, observations of Jupiter's ionosphere, the structure of Jupiter's upper atmosphere, and questions of ionospheric modeling. On the basis of the Pioneer and Voyager observations it appears that Jupiter's ionosphere and thermosphere undergo significant solar cycle changes.

  18. A multi-instrument case study of high-latitude ionospheric GNSS scintillation due to drifting plasma irregularities

    NASA Astrophysics Data System (ADS)

    van der Meeren, C.; Oksavik, K.; Moen, J. I.; Romano, V.

    2013-12-01

    For this study, GPS receiver scintillation and Total Electron Content (TEC) data from high-latitude locations on Svalbard have been combined with several other data sets, including the EISCAT Svalbard Radar (ESR) and allsky cameras, to perform a multi-instrument case study of high-latitude GPS ionospheric scintillations in relation to drifting plasma irregularities at night over Svalbard on 31 October 2011. Scintillations are rapid amplitude and phase fluctuations of electromagnetic signals. GNSS-based systems may be disturbed by ionospheric plasma irregularities and structures such as plasma patches (areas of enhanced electron density in the polar cap) and plasma gradients. When the GNSS radio signals propagate through such areas, in particular gradients, the signals experience scintillations that at best increases positioning errors and at worst may break the receiver's signal lock, potentially resulting in the GNSS receiver losing track of its position. Due to the importance of many GNSS applications, it is desirable to study the scintillation environment to understand the limitations of the GNSS systems. We find scintillation mainly localised to plasma gradients, with predominantly phase scintillation at the leading edge of patches and both phase and amplitude scintillation at the trailing edge. A single edge may also contain different scintillation types at different locations.

  19. Mechanisms underlying the prereversal enhancement of the vertical plasma drift in the low-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Eccles, J. V.; St. Maurice, J. P.; Schunk, R. W.

    2015-06-01

    The evening prereversal enhancement (PRE) of the vertical plasma drift has important consequences for the Appleton density anomaly and the stability of the nighttime ionosphere. Simplified simulations were used to review the three competing theories of the PRE origin, to explore their relative importance, and to indentify their interdependence. The mechanisms involved in the generation and climatology of the PRE are, first, a curl-free electric field response to rapid changes in the vertical electric field associated with the nighttime F region dynamo; second, a divergence of Hall currents in the E region away from the magnetic equator; and, third, the moderating effect of the large Cowling conductivities in the equatorial E region. The simulations indicate that the equatorial Cowling conductivity creates an important current path that limits the other two mechanisms prior to equatorial sunset and releases them after equatorial sunset. The curl-free mechanism is the dominant mechanism when the terminator and magnetic meridian are aligned in part due to the accelerating F region zonal wind. When the solar terminator is not aligned with the magnetic meridian, there is an interaction involving all three mechanisms contributing to the magnitude and timing of the PRE. Finally, the altitude profile of the PRE decays more quickly with altitude when the curl-free mechanism dominates as compared to when the Hall current mechanism dominates.

  20. Estimation of Ionospheric Conductivity Based on the Measurements by Superdarn

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Ah; An, Byung-Ho; Yi, Yu

    2002-06-01

    The ionosphere plays an important role in the electrodynamics of space environment. In particular, the information on the ionospheric conductivity distribution is indispensable in understanding the electrodynamics of the magnetosphere and ionosphere coupling study. To meet such a requirement, several attempts have been made to estimate the conductivity distribution over the polar ionosphere. As one of such attempts we compare the ionospheric plasma convection patterns obtained from the Super Dual Auroral Radar Network (SuperDARN), from which the electric field distribution is estimated, and the simultaneously measured ground magnetic disturbance. Specifically, the electric field measured from the Goose Bay and Stokkseyri radars and magnetic disturbance data obtained from the west coast chain of Greenland are compared. In order to estimate ionospheric conductivity distribution with these information, the overhead infinite sheet current approximation is employed. As expected, the Hall conductance, height-integrated conductivity, shows a wide enhancement along the center of the auroral electrojet. However, Pedersen conductance shows negative values over a wide portion of the auroral oval region, a physically unacceptable situation. To alleviate this problem, the effect of the field-aligned current is taken into account. As a result, the region with negative Pedersen conductance disappears significantly, suggesting that the effect of the field-aligned current should be taken into account, when one wants to estimate ionospheric conductance based on ground magnetic disturbance and electric field measurements by radars.

  1. Convective stimulated Brillouin scattering of obliquely incident laser light in laser plasmas

    SciTech Connect

    Gupta, G.P.; Sinha, B.K.

    1997-07-01

    Convective stimulated Brillouin scattering (SBS) in the directly backward direction of the obliquely incident laser light in an expanding and inhomogeneous laser plasma is studied. Accounting for the thermal motion of both electrons and ions of the plasma in the dispersion relation of the ion-acoustic wave, the expression of the convective SBS gain coefficient is derived in the weak coupling limit. The behavior of the gain with the angle of incidence of the laser irradiation in a laser-produced CH plasma is investigated by considering various plasma and laser conditions in light of the reported laser-plasma experiment with the 0.35 {mu}m laser irradiating the CH target. The results are observed to be significantly different from those for normal incidence. {copyright} {ital 1997 American Institute of Physics.}

  2. Relationship of the interplanetary electric field to the high-latitude ionospheric electric field and currents Observations and model simulation

    NASA Technical Reports Server (NTRS)

    Clauer, C. R.; Banks, P. M.

    1986-01-01

    The electrical coupling between the solar wind, magnetosphere, and ionosphere is studied. The coupling is analyzed using observations of high-latitude ion convection measured by the Sondre Stromfjord radar in Greenland and a computer simulation. The computer simulation calculates the ionospheric electric potential distribution for a given configuration of field-aligned currents and conductivity distribution. The technique for measuring F-region in velocities at high time resolution over a large range of latitudes is described. Variations in the currents on ionospheric plasma convection are examined using a model of field-aligned currents linking the solar wind with the dayside, high-latitude ionosphere. The data reveal that high-latitude ionospheric convection patterns, electric fields, and field-aligned currents are dependent on IMF orientation; it is observed that the electric field, which drives the F-region plasma curve, responds within about 14 minutes to IMF variations in the magnetopause. Comparisons of the simulated plasma convection with the ion velocity measurements reveal good correlation between the data.

  3. A New Paradigm for Ionosphere-Thermosphere-Mesosphere Physics

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, Tim

    2015-04-01

    The ionosphere-thermosphere-mesosphere system is predominantly a neutral atmosphere domain with a fairly small fraction, less than 1%, that is ionized, similar in some ways to the chromosphere. Neutral dynamics and composition therefore play an important role in influencing and controlling the ionospheric plasma density and creating structure. Neutral thermospheric dynamics is driven from both above and below. Absorption of solar extreme ultraviolet radiation drives a global circulation, and magnetosphere/ionosphere plasma convection can accelerate neutral winds in excess of 1 km/s through collisions, and raise gas temperature by hundreds of degrees Kelvin by frictional dissipation. During extreme events these solar and magnetospheric sources dominate the ITM system, and understanding the plethora of physical processes that ensue has been the focus for more than 50 years. However, the bulk of solar energy reaching Earth penetrates well into the lower atmosphere and to the surface. Even if only a small fraction of this large energy reservoir can reach above 100 km it can have a significant impact on the ITM system and its variability. The main dynamic coupling and transfer of energy from below is largely through atmospheric waves, particularly tides (waves with harmonics of the 24 hour solar day), and gravity waves from the multitude of sources in the lower atmosphere. We now appreciate that dynamical changes and warmings in the stratosphere from changes in planetary wave activity can lead to a 50% change in electron content in the ionosphere, and which can actually be forecast days in advance. Tropospheric convection over continental landmass imprints a longitude structure on the ionosphere. Convective adjustment, extreme weather, wind shear, airflow over mountains, are some of the many sources of gravity waves activity that can grow in amplitude as they propagate into the thermosphere where they modulate and tilt the ionosphere. The ITM system is dynamic and variable even during apparently quiescent times, and understanding this new range of physical processes has created a new paradigm.

  4. The electrodynamics of the low-latitude ionosphere during and after the prereversal enhancement of the vertical plasma drift

    NASA Astrophysics Data System (ADS)

    Eccles, J. V.

    2010-12-01

    The prereversal enhancement of the vertical plasma drift in the low-latitude ionosphere helps determine the structure and stability post-sunset ionosphere. The current system of the prereversal enhancement and its underlying causes have been examined by Haerendel and Eccles [1992, JGR]. They proposed the equatorial electrojet as the controlling load on the unbalanced F region dynamo current near the E region sunset. This paper examines the low-latitude current system during and after the prereversal enhancement of the vertical plasma drift (Figure). After the reversal, the equatorial electrojet again provides the load path for the F region dynamo, but only briefly near the reversal. The bottom panel of the Figure shows a current As the ionosphere descends under the westward electric field, the F region itself becomes the primary path of current to feed the current continuity demands of the F region dynamo vertical current. A rapid reversal of the zonal electric field to the west ensures a rapid descent of the F region into the neutral atmosphere to increase the lower F region conductivity to carry a westward current toward the early evening F region dynamo unbalance current demands after the reversal. Modeling studies are presented to demonstrate the F region current closure for the nighttime F region dynamo. The white current flow lines show counter clockwise current flow with current magnitude proportional to the density of the lines. The black current flow lines show clockwise flow, but the contour line density represents a lower current by 5 times. The greyscale plots underneath the current flow lines are of field-line-integrated quantities: Hall conductivity (bottom panel), Pedersen conductivity (middle panel), and electron density (top panel) -- all in log values. The vertical plasma drift is plotted with a black line over the 2 day period.

  5. Dominance of convective heat transport in the core of TFTR (Tokamak Fusion Test Reactor) supershot plasmas

    SciTech Connect

    Kissick, M.W.; Efthimion, P.C.; Mansfield, D.K.; Callen, J.D.; Bush, C.E.; Park, H.K.; Schivell, J.; Synakowski, E.J.; Taylor, G.

    1993-08-01

    Using perturbations in electron density and temperature induced by small Helium gas puffs in TFTR (Tokamak Fusion Test Reactor) the dominance of convective heat transport in the core (r/a < 0.4) of supershot plasmas has been demonstrated in a new way. The TRANSP transport code was used to calculate the time-dependent particle and heat fluxes. Perturbations in the calculated convective and total electron heat fluxes were compared. They demonstrate that the conductive component decreases moving into the supershot core, and the convective component dominates in the supershot core. These results suggest a different transport drive in the supershot core compared to that in the rest of the supershot plasma.

  6. Structure of the Martian Ionosphere: MAVEN STATIC First Results

    NASA Astrophysics Data System (ADS)

    McFadden, James P.; Livi, Roberto; Luhmann, Janet; Connerney, Jack; Mitchell, David L.; Mazelle, Christian; Andersson, Laila; Jakosky, Bruce

    2015-04-01

    The Suprathermal And Thermal Ion Composition (STATIC) sensor on the MAVEN spacecraft provides the first detailed look at the Martian ionosphere and its interface to the solar wind. STATIC measures ion composition, density, temperature, and flows in the deep ionosphere (<180 km), resolving the cold O2+ dominated plasma whose temperature is often less than 0.02 eV. The nightside ionosphere has shown a remarkable amount of structure with sharp gradients in both density and composition on horizontal scale sizes of ~10 km. During deep-dip excursions to ~125 km in eclipse, STATIC observed tenuous heavy ions in with M/Q of ~55-60 and ~85-90 amu/e. STATIC has captured the transition to a warmer, mixed ionosphere between 200 and 500 km altitudes where comparable amounts of O2+, O+, and H+ are observed. STATIC also resolves more tenuous concentrations of CO2+, H2+, H3+, He+, C+, and O++ at these intermediate altitudes. In addition to measuring cold ionospheric plasma, STATIC measures the heating and acceleration of cold ions to escape velocities at the solar wind interface. Counter-streaming ion beams are observed in these heating regions, along with significant convection flows and velocity-dispersed ion signatures. Draped magnetic field capture of cold ionospheric plasma is directly observed as a loss mechanism where dense beams of ions are accelerated down the magnetotail along the current sheet. This talk will focus on the low and intermediate altitude observations by STATIC which reveal a wealth of ionospheric structure and plasma dynamics that play a role in atmospheric loss.

  7. Convective Cell Formation in a Z-Pinch Plasma Science and Fusion Center

    E-print Network

    Convective Cell Formation in a Z-Pinch J. Kesner Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139 PSFC Report PSFC/JA-02-27 Abstract Closed field line confinement experiment we would expect some variation of the heating in the symmetry coordinate [the axial (z) coordinate

  8. Reduction of Raman scattering in a plasma to convective levels using induced spatial incoherence

    SciTech Connect

    Obenschain, S.P.; Pawley, C.J.; Mostovych, A.N.; Stamper, J.A.; Gardner, J.H.; Schmitt, A.J.; Bodner, S.E.

    1989-02-13

    We present measurements of the Raman backscatter produced by laser-plasma interaction where the laser focal profile was smoothed by induced spatial incoherence (ISI). The Raman backscatter with the ISI beam is much smaller than that with an ordinary beam. The onset of Raman backscattering with ISI followed the predictions of a convective gain model to within 30% in intensity.

  9. Diversion of plasma due to high pressure in the inner magnetosphere during steady magnetospheric convection

    E-print Network

    California at Berkeley, University of

    Diversion of plasma due to high pressure in the inner magnetosphere during steady magnetospheric; revised 18 March 2012; accepted 19 March 2012; published 3 May 2012. [1] Steady magnetospheric convection (SMC) events in the Earth's magnetosphere are thought to result from balancing the rate of opening flux

  10. Irregularities in ionospheric plasma clouds: Their evolution and effect on radio communication

    NASA Astrophysics Data System (ADS)

    Vesecky, J. F.; Chamberlain, J. W.; Cornwall, J. M.; Hammer, D. A.; Perkins, F. W.

    1980-09-01

    Both satellite radio communications, which travel through the Earth's ionosphere, and high frequency (HF) sky wave circuits, which use the ionosphere as a refracting medium, can be strongly affected by radio wave scintillation. High altitude nuclear explosions cause scintillation (by strongly disturbing the ionosphere) and thus severely degrade satellite radio communications over a large region. Since further atmospheric nuclear tests are banned, a thorough understanding of the physics involved in both the disturbed ionosphere and its interaction with radio waves is necessary in order to design radio communications systems which will operate satisfactorily in a nuclear environment. During the 1980 JASON Summer Study we addressed some aspects of the evolution of ionospheric irregularities following a high altitude nuclear explosion--the radio wave propagation theory being apparently well understood for the satellite link case. In particular, we have worked on irregularity evolution at late times (approx. hours) after an explosion and the impact of early time irregularity structure on late time evolution. We also raise the question of scintillation effects on HF sky wave communications.

  11. Laser-sustained plasma in forced argon convective flow. Part 1. Experimental studies

    SciTech Connect

    Welle, R.; Keefer, D.; Peters, C.

    1987-08-01

    The results of an experimental investigation of the properties of laser-sustained plasmas in argon at forced convective flow speeds of 0.4-4.5 m/s are reported in this paper. At these speeds, the incident flow rate has a significant effect on the shape, size and position of the plasma, which in turn affect the power absorption, thermal radiation, and total energy conversion efficiency of the plasma. In addition to the incident flow rate, the focusing geometry, chamber pressure, and laser power were varied as parameters in the experiments. The thermal conversion efficiency was found to range 9-38%, depending on the various parameters.

  12. A method for determining the drift velocity of plasma depletions in the equatorial ionosphere using far-ultraviolet spacecraft observations

    NASA Astrophysics Data System (ADS)

    Park, S. H.; England, S. L.; Immel, T. J.; Frey, H. U.; Mende, S. B.

    2007-11-01

    The Far-Ultraviolet Imager (IMAGE-FUV) on board the NASA IMAGE satellite has been used to observe plasma depletions in the nightside equatorial ionosphere. Observations from periods around spacecraft apogee, during which equatorial regions are visible for several hours, have allowed the velocity of these plasma depletions to be determined. A new method for determining the velocity of these depletions using an image analysis technique, Tracking Of Airglow Depletions (TOAD), has been developed. TOAD allows the objective identification and tracking of depletions. The automation of this process has also allowed for the tracking of a greater number of depletions than previously achieved without requiring any human input, which shows that TOAD is suitable for use with large data sets and for future routine monitoring of the ionosphere from space. Furthermore, this automation allows the drift velocities of each bubble to be determined as a function of magnetic latitude, which will give us the capability of retrieving geophysically important parameters such as the electric field, which are believed to vary rapidly with magnetic latitude.

  13. On the Relative Importance of Convection and Temperature on the Behavior of the Ionosphere in North American during January 6-12, 1997

    NASA Technical Reports Server (NTRS)

    Richards, P. G.; Buonsanto, M. J.; Reinisch, B. W.; Holt, J.; Fennelly, J. A.; Scali, J. L.; Comfort, R. H.; Germany, G. A.; Spann, J.; Brittnacher, M.

    1999-01-01

    Measurements from a network of digisondes and an incoherent scatter radar In Eastern North American For January 6-12, 1997 have been compared with the Field Line Interhemispheric Plasma (FLIP) model which now includes the effects of electric field convective. With the exception of Bermuda, the model reproduces the daytime electron density very well most of the time. As is typical behavior for winter solar minimum on magnetically undisturbed nights, the measurements at Millstone Hill show high electron temperatures before midnight followed by a rapid decay, which is accompanied by a pronounced density enhancement in the early morning hours. The FLIP model reproduces the nighttime density enhancement well, provided the model is constrained to follow the topside electron temperature and the flux tube is full. Similar density enhancements are seen at Goose Bay, Wallops Island and Bermuda. However, the peak height variation and auroral images indicate the density enhancements at Goose Bay are most likely due to particle precipitation. Contrary to previously published work we find that the nighttime density variation at Millstone Hill is driven by the temperature behavior and not the other way around. Thus, in both the data and model, the overall nighttime density is lowered and the enhancement does not occur if the temperature remains high all night. Our calculations show that convections of plasma from higher magnetic latitudes does not cause the observed density maximum but it may enhance the density maximum if over-full flux tubes are convected over the station. On the other had, convection of flux tubes with high temperatures and depleted densities may prevent the density maximum from occurring. Despite the success in modeling the nighttime density enhancements, there remain two unresolved problems. First, the measured density decays much faster than the modeled density near sunset at Millstone Hill and Goose Bay though not at lower latitude stations. Second, we cannot fully explain the large temperatures before midnight nor the sudden decay near midnight.

  14. On the plasma sheet dependence on solar wind and substorms and its role in magnetosphere-ionosphere coupling

    NASA Astrophysics Data System (ADS)

    Sergeev, V. A.; Dmitrieva, N. P.; Stepanov, N. A.; Sormakov, D. A.; Angelopoulos, V.; Runov, A. V.

    2015-12-01

    Recently, it was argued that Hall conductivity and peak intensity of equivalent ionospheric currents are sensitive to the amount of field-aligned acceleration of plasma sheet (PS) electrons, which in turn depends on the plasma sheet parameters T e and N e (electron temperature and density) proportionally to the quantity eTN = ( T e)1/2/ N e. Here we extend these studies using data from six tail seasons of THEMIS observations to show statistically that the behavior of these PS electron parameters, measured in the middle of the nightside plasma sheet at ~10 RE distance, depends in a very different way on two basic processes: the solar wind state and substorms. We confirm previous work that slow/dense (fast/tenuous) solar wind provides cold/dense (hot/tenuous) plasma sheet conditions. However, we find that electron temperature and pressure parameters ( T e and P e) behave differently from the proton ones ( T p and P p), indicating a strong decoupling between temperature variations of auroral protons and electrons in the central plasma sheet (CPS): electrons are more sensitive to the substorm-related acceleration in the magnetotail than protons. Our superposed epoch study of plasma sheet parameter variations during substorms as well as our analysis of plasma acceleration at dipolarization fronts shows that during the substorm expansion phase a new (accelerated and plasma-depleted) population comes into the inner CPS with the flow bursts, showing an average increase of electron temperature and eTN parameter roughly by a factor of 2 above its background values for both cold/dense and hot/tenuous plasma sheet states. Preferential electron heating in the flow bursts is also statistically confirmed.

  15. Nonlinear dynamics of the 3D FMS and Alfven wave beams propagating in plasma of ionosphere and magnetosphere

    NASA Astrophysics Data System (ADS)

    Belashov, Vasily

    We study the formation, structure, stability and dynamics of the multidimensional soliton-like beam structures forming on the low-frequency branch of oscillation in the ionospheric and magnetospheric plasma for cases when beta=4pinT/B(2) <<1 and beta>1. In first case with the conditions omega>{k_{yz}}(2,) v_{x}$<plasma parameters and the angle Theta=(B,k) [2]. In another case the dynamics of the finite-amplitude Alfvén waves propagating in the ionosphere and magnetosphere near-to-parallel to the field B is described by the 3D derivative nonlinear Schrödinger (3-DNLS) equation for the magnetic field of the wave h=(B_{y}+iB_{z})/2B/1-beta/ [3]. To study the stability of multidimensional solitons in both cases we use the method developed in [2] and investigated the Hamiltonian bounding with its deformation conserving momentum by solving the corresponding variation problem. To study evolution of solitons and their collision dynamics the proper equations were being integrated numerically using the codes specially developed and described in detail in [3]. As a result, we have obtained that in both cases for a single solitons on a level with wave spreading and collapse the formation of multidimensional solitons can be observed. These results may be interpreted in terms of self-focusing phenomenon for the FMS and Alfvén waves’ beam as stationary beam formation, scattering and self-focusing of wave beam. The soliton collisions on a level with known elastic interaction can lead to formation of complex structures including the multisoliton bound states. For all cases the problem of multidimensional soliton dynamics in the ionospheric and magnetospheric plasma including all stages of their evolution and collision dynamics is investigated in detail. References 1. Karpman V.I., Belashov V.Yu. Physics Letters, 1991, V. 154A, N 3/4, P. 131. 2. Belashov V.Yu. Plasma Phys. And Contr. Fusion, 1994, V. 36, P. 1661. 3. Belashov V.Yu., Vladimirov S.V., Solitary Waves in Dispersive Complex Media. Theory, Simulation, Applications. Springer-Verlag GmbH & Co. KG, 2005, 305 p.

  16. In situ measurements of ionospheric plasma turbulence over five frequency decades: Heritage flight of the Plasma Local Anomalous Noise Experiment (PLANE)

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Enloe, C. L.; McHarg, M. G.

    2013-12-01

    Observations of ionospheric plasma density and frequency-dependent broadband plasma turbulence made during the heritage flight of the Plasma Local Anomalous Noise Experiment (PLANE) are presented. Rather than record high frequency time series data, the experiment was designed to record Power Spectral Distributions (PSDs) in five decadal frequency bins with upper limits ranging from 1.0 Hz to 10 kHz. Additionally, PLANE was designed distinguish turbulence in the ambient plasma from that local to the spacecraft. The instrument consists of two retarding potential analyzers (RPAs) connected together via a feedback loop to force one analyzer into the I-V trace retardation region at all times. Fluctuations in this measurement are believed to be ambient only as the RPA's voltage would be too high for locally turbulent plasma to surmount the potential barrier, which is nominally at ram energy. The instrument requires pointing along the spacecraft's ram velocity vector to make this measurement, thus requiring stabilization in pitch and yaw. During PLANE's heritage flight, though the satellite's attitude control system failed early in the mission, plasma data were collected during opportune times in which the instrument rotated into and out of the ram. Observations of plasma density and PSDs of high frequency plasma turbulence were recorded on several occasions. Additionally, a plasma source onboard the satellite was used to generate artificial plasma turbulence, and the PLANE data observed periodic structure presumably associated with the rotation of the spacecraft during these source firings. A brief comparison with other high frequency in situ plasma instruments is presented.

  17. Convective cell formation in a levitated dipole Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

    E-print Network

    Garnier, Darren T.

    Convective cell formation in a levitated dipole J. Kesner Plasma Science and Fusion Center cells. Using a ``drift'' fluid model, it is shown that such flow patterns can represent an appropriate of convective cells in closed field line configurations that lack magnetic shear.4­6 Thus, in a dipole

  18. Electric Field Observations of Plasma Convection, Shear, Alfven Waves, and other Phenomena Observed on Sounding Rockets in the Cusp and Boundary Layer

    NASA Technical Reports Server (NTRS)

    Pfaff, R. F.

    2009-01-01

    On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.

  19. Ionospheric vertical plasma drift and electron density response during total solar eclipses at equatorial/low latitude

    NASA Astrophysics Data System (ADS)

    Adekoya, B. J.; Chukwuma, V. U.; Reinisch, B. W.

    2015-09-01

    The response of the vertical plasma drift (Vz) and the electron density (NmF2) during different solar eclipses was investigated. The diurnal values of the direct scaled measurement of F2 peak height and the one derived from M(3000) F2 data, acquired over an equatorial/low-latitude stations, have been used to determine the vertical plasma drift. The ionosphere during a solar eclipse is significantly affected by the E × B vertical drift; the large depletion of electron density at low altitudes can be transported to high altitudes through the plasma vertical drift. The loss in ionization density during the eclipse phase decreases the electron density, which was accompanied by rapid increase in hmF2. This deviation in the NmF2 during eclipse compared to control days can be related to the increase in the loss rate due to recombination, as a result of reduction in thermal energy. However, the maximum reduction in NmF2 is not synchronous with the time of maximum totality but some minutes later. The differences in the solar epochs may contribute to the observed relative changes in the ionospheric F2 region behavior during the eclipse window. Lastly, it is very difficult to separate the influence of magnetic disturbances from solar eclipse. The deviation in NmF2 is higher during magnetic disturbed days than the quiet day. The reverse is the case for hmF2 observation. However, the NmF2 variation increases with an increase in solar activity.

  20. Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving

    NASA Astrophysics Data System (ADS)

    Bristow, W. A.; Amata, E.; Spaleta, J.; Marcucci, M. F.

    2015-06-01

    Convection observations from the Southern Hemisphere Super Dual Auroral Radar Network are presented and examined for their relationship to solar wind and interplanetary magnetic field (IMF) conditions, restricted to periods of steady IMF. Analysis is concentrated on two specific regions, the central polar cap and the dayside throat region. An example time series is discussed in detail with specific examples of apparent direct control of the convection velocity by the solar wind driver. Closer examination, however, shows that there is variability in the flows that cannot be explained by the driving. Scatterplots and histograms of observations from all periods in the year 2013 that met the selection criteria are given and their dependence on solar wind driving is examined. It is found that on average the flow velocity depends on the square root of the rate of flux entry to the polar cap. It is also found that there is a large level of variability that is not strongly related to the solar wind driving.

  1. Electric Field and Plasma Density Observations of Irregularities and Plasma Instabilities in the Low Latitude Ionosphere Gathered by the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F.; Freudenreich, H.; Rowland, D.; Klenzing, J.; Liebrecht, C.

    2012-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set which includes detailed measurements of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations gathered on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The talk focuses on occasions where the ionosphere F-peak has been elevated above the C/NOFS satellite perigee of 400 km as solar activity has increased. In particular, during the equinox periods of 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set: The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second result is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is near or below the F-peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. and are believed to cause scintillations of VHF radiowaves. We interpret these new observations in terms of fundamental plasma instabilities associated with the unstable, nighttime equatorial ionosphere.

  2. The ‘churning mode’ of plasma convection in the tokamak divertor region

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Cohen, R. H.; Farmer, W. A.; Rognlien, T. D.; Umansky, M. V.

    2014-08-01

    The churning mode can arise in a toroidally-symmetric plasma where it causes convection in the vicinity of the poloidal magnetic field null. The mode is driven by the toroidal curvature of magnetic field lines coupled with a pressure gradient. The toroidal equilibrium conditions cannot be satisfied easily in the virtual absence of the poloidal field (PF)—hence the onset of this mode, which ‘churns’ the plasma around the PF null without perturbing the strong toroidal field. We find the conditions under which this mode can be excited in magnetic configurations with first-, second-, and third-order PF nulls (i.e., in the geometry of standard, snowflake and cloverleaf divertors). The size of the affected zone in second- and third-order-null divertors is much larger than in a standard first-order-null divertor. The proposed phenomenological theory allows one to evaluate observable characteristics of the mode, in particular the frequency and amplitude of the PF perturbations. The mode spreads the tokamak heat exhaust between multiple divertor legs and may lead to a broadening of the plasma width in each leg. The mode causes much more intense plasma convection in the poloidal plane than the classical plasma drifts.

  3. Ionospheric incoherent scatter results; Proceedings of Workshop V of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Astrophysics Data System (ADS)

    Ganguly, S.

    Papers are presented on ionospheric incoherent scatter, covering topics such as F- and E- region studies by incoherent scatter radar, multiradar mapping of auroral convection, the Global Ionospheric Simultaneous Measurements of Substorms experiment, studies of the auroral ionosphere conductances, and ion flows and heating at a contracting polar-cap boundary. Other topics include the use of EISCAT radar and the Viking satellite data to study auroral electron acceleration, EISCAT measurements of pulsating aurora, observations of large field-aligned flows of thermal plasma in the auroral ionosphere, observations of atmospheric gravity waves with incoherent scatter radar, and observations of tidal modes in the lower thermosphere. Also, articles are presented on incoherent scatter spectra from non-Maxwellian plasma, radar observations of nonthermal plasmas, observations of non-Maxwellian ion velocity distributions in the auroral F-region, the effect of unresolved electrojet microstructure on measurements of irregularity drift velocity in auroral radar backscatter, and optimization of incoherent scatter measurements.

  4. The plasma environment, charge state, and currents of Saturn's C and D rings

    NASA Technical Reports Server (NTRS)

    Wilson, G. R.

    1991-01-01

    The charge state and associated currents of Saturn's C an D rings are studied by modeling the flow of ionospheric plasma from the mid- to low-latitude ionosphere to the vicinity of the rings. It is found that the plasma density near the C and D rings, at a given radial location, will experience a one to two order of magnitude diurnal variation. The surface charge density (SCD) of these rings can show significant radial and azimuthal variations due mainly to variation in the plasma density. The SCD also depends on structural features of the rings such as thickness and the nature of the particle size distribution. The associated azimuthal currents carried by these rings also show large diurnal variations resulting in field-aligned currents which close in the ionosphere. The resulting ionospheric electric field will probably not produce a significant amount of plasma convection in the topside ionosphere and inner plasmasphere.

  5. Local empirical model of ionospheric plasma density derived from Digisonde measurements at Irkutsk

    NASA Astrophysics Data System (ADS)

    Ratovsky, K. G.; Oinats, A. V.

    2011-04-01

    Ionogram data from routine ionospheric observations in Irkutsk, Russia using a DPS-4 Digisonde sounder were hand-scaled for the 6-year period from December 2002 to December 2008 to derive a local empirical model of the electron density distribution in the bottomside ionosphere that provides a comprehensive description of the diurnal, seasonal, and solar activity variations of the major ionospheric characteristics. The paper describes the technique for building the local empirical model and the results of comparing its diurnal, seasonal, and solar activity specifications with the standard IRI-2007 climatological model for the same period of time, and retrospective observational data from the Millstone Hill incoherent scatter radar (1976-2002) and a collocated Digisonde (1989-1990, 1998-2004). Reasoning for the observed differences between the three datasets is then provided in terms of background physical phenomena. Primary focus of the paper is the behavior of three F 2 layer characteristics: the F 2 peak density ( N m F 2), the peak height ( h m F 2) and the bottomside thickness ( B 0).

  6. Ionospheric plasma cloud dynamics via regularized contour dynamics. I - Stability and nonliner evolution of one-contour models

    NASA Astrophysics Data System (ADS)

    Overman, E. A., II; Zabusky, N. J.; Ossakow, S. L.

    1983-04-01

    An ionospheric plasma cloud is modeled by piecewise-constant ion density regions, accomplishing regularization by means of a tangential diffusion operator modeling aspects of the diffusion operator in two dimensions, in order to study liner stability and nonlinear evolution. A complete linear stability analysis of a circular cloud indicates that a single mode exc itation cascades downward in number with increasing amplitude, due to symmetry-breaking by the electric field. A simple rescaling demonstrates that clouds with large cloud ion density/ambient ion density ratio values evolve more slowly, and appear more dissipative. Nonlinear regime calculations show the experimentally observed 'backside' striations, and a secondary structure arises on the sides of the primary striations at long times.

  7. The Response of the Thermosphere and Ionosphere to Magnetospheric Forcing

    NASA Astrophysics Data System (ADS)

    Rees, D.; Fuller-Rowell, T. J.

    1989-06-01

    During the past six years, rapid advances in three observational techniques (ground-based radars, optical interferometers and satellite-borne instruments) have provided a means of observing a wide range of spectacular interactions between the coupled magnetosphere, ionosphere and thermosphere system. Perhaps the most fundamental gain has come from the combined data-sets from the NASA Dynamics Explorer (DE) Satellites. These have unambiguously described the global nature of thermospheric flows, and their response to magnetospheric forcing. The DE spacecraft have also described, at the same time, the magnetospheric particle precipitation and convective electric fields which force the polar thermosphere and ionosphere. The response of the thermosphere to magnetospheric forcing is far more complex than merely the rare excitation of 1 km s-1 wind speeds and strong heating; the heating causes large-scale convection and advection within the thermosphere. These large winds grossly change the compositional structure of the upper thermosphere at high and middle latitudes during major geomagnetic disturbances. Some of the major seasonal and geomagnetic storm-related anomalies of the ionosphere are directly attributable to the gross wind-induced changes of thermospheric composition; the mid-latitude ionospheric storm `negative phase', however, is yet to be fully understood. The combination of very strong polar wind velocities and rapid plasma convection forced by magnetospheric electric fields strongly and rapidly modify F-region plasma distributions generated by the combination of local solar and auroral ionization sources. Until recently, however, it has been difficult to interpret the observed complex spatial and time-dependent structures and motions of the thermosphere and ionosphere because of their strong and nonlinear coupling. It has recently been possible to complete a numerical and computational merging of the University College London (UCL) global thermospheric model and the Sheffield University ionospheric model. This has produced a self-consistent coupled thermospheric--ionospheric model, which has become a valuable diagnostic tool for examining thermospheric--ionospheric interactions in the polar regions. In particular, it is possible to examine the effects of induced winds, ion transport, and the seasonal and diurnal U.T. variations of solar heating and photoionization within the polar regions. Polar and high-latitude plasma density structure at F-region altitudes can be seen to be strongly controlled by U.T., and by season, even for constant solar and geomagnetic activity. In the winter, the F-region polar plasma density is generally dominated by the effects of transport of plasma from the dayside (sunlit cusp). In the summer polar region, however, an increase in the proportion of molecular to atomic species, created by the global seasonal circulation and augmented by the geomagnetic forcing, controls the plasma composition and generally depresses plasma densities at all U.Ts. A number of these complex effects can be seen in data obtained from ground-based radars, Fabry--Perot interferometers and in the combined DE data-sets. Several of these observations will be used, in combination with simulations using the UCL--Sheffield coupled model, to illustrate the major features of large-scale thermosphere--ionosphere interactions in response to geomagnetic forcing. The past decade has seen a major improvement in the quality and quantity of experimental data available to study the thermosphere and ionosphere and their response to magnetospheric forcing. Earlier, large measured changes of individual parameters were difficult to place in a global or large-scale perspective. However, a clear picture of the distinction between the solar and geomagnetic forcing processes has emerged from the combined data-sets available from spacecraft such as the Dynamics Explorers, and from ground-based radar and optical observations of the polar thermosphere. A first experimental view of the strong coupling between the thermosphere and ionosp

  8. Response of the ionosphere thermosphere system to magnetospheric processes

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Zhu, L.

    2008-12-01

    The magnetosphere-ionosphere-thermosphere system at high latitudes is strongly coupled via electric fields, particle precipitation, plasma and neutral outflows, and field-aligned currents. Although the climatology of the coupled system is fairly well established, our understanding of the variability of the disturbed state (weather) is rudimentary. This variability is associated with magnetic storms and substorms, nonlinear processes that operate over a range of spatial scales, time delays, and feedback mechanisms between the different domains. The variability and resultant structure of the ionosphere can appear in the form of propagating plasma patches and polar wind jets, pulsing ion and neutral polar winds, auroral and boundary blobs, and ionization channels associated with polar cap arcs, discrete auroral arcs, and storm-enhanced densities (SEDs). The variability and structure of the thermosphere can appear in the form of propagating atmospheric holes, neutral gas fountains, neutral density patches, and transient neutral jets. In addition, during periods of enhanced plasma convection, the neutral winds can become supersonic in relatively narrow regions of the polar cap. The spatial structure in the ionosphere-thermosphere system not only affects the local environment, but the cumulative effect of multiple structures may affect the global circulation and energy balance. A focused topical review of recent results in our modeling the variability and structure of the high-latitude ionosphere-thermosphere system is presented. This review was given at the Greenland Space Science Symposium (May 2007).

  9. Variability of the ionospheric plasma density, NmF2, and of Total Electron Content, TEC, over equatorial and low latitude region in Brazil during solar minimum activity

    NASA Astrophysics Data System (ADS)

    Candido, Claudia; Batista, Inez S.; Negreti, Patricia M. S.; Klausner, Virginia

    The recent solar minimum period was unusually deep and prolonged, which opened a window to observe the ionospheric behavior under unprecedented low solar activity conditions. This work is part of a multi-instrumental effort to investigate the equatorial and low latitude ionosphere over Brazilian sector during low solar activity. We present a study of the ionospheric plasma densities variations through ionosondes measurements and dual frequency GPS receivers (L1= 1275.4 MHz, L2 = 1227.6 MHz) for two equatorial stations, Sao Luis (3° S, 45º W) e Fortaleza (4° S, 39.5° W), and for a station close to the south crest of the equatorial ionization anomaly region, Cachoeira Paulista (23º S, 45º W). From ionosondes we extract the plasma critical frequency foF2 which is related to F2 region peak electron density, NmF2, by the relationship: NmF2 = 1.24 x 104 (foF2)2, and the F2 layer peak height, hmF2. From GPS receivers we used the quantity VTEC (Vertical total electron content). We analyzed the seasonal and local time variations of NmF2 and VTEC, as well as the differences between two solar minima, 2008-2009 and 1996. We observe that the ionospheric plasma densities were lower in 2008-2009 than in 1996 for both regions. In addition, we observe that the lowest plasma densities persisted longer during 2008/2009 than in 1996, especially for nighttime periods. Finally, we applied the wavelet technique to investigate the impact of some distinct time scales drivers on the ionosphere, such as the wave activity from below that seems have been better observed and appreciated during this unusual solar quiescence.

  10. Plasma Density and Electro-Magnetic Field Perturbations Hf-Induced in the Outer Ionosphere: Review of Experimental Results

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir; Rauch, Jean-Louis; Parrot, Michel; Rapoport, Victor; Shorokhova, Elena

    In the report we consider features of plasma density and electro-magnetic field perturbations induced in the Earth’s outer ionosphere by modification of F _{2} region by O-mode powerful HF radio waves radiated by the SURA heating facility. Experiments presented were carried out in 2005 - 2010. Plasma density perturbations were detected at altitudes of about of 700 km by instruments onboard the French DEMETER satellite when it intersected the disturbed magnetic flux tube. The formation of artificial HF-induced plasma density ducts in the outer ionosphere is a central discovery, which was made during the SURA-DEMETER experiments [1,2]. Analysis of experimental data available makes it possible to formulate ducts features and point out the conditions under which the formation of such ducts takes place. 1. Under night conditions ducts are characterized by the increased plasma density in the range from 20% to 80% relatively to its background value. As this takes place, the excess in the plasma ion component is due to O (+) ions dominating at altitudes of about 700 km, whereas the densities of lower mass H (+) and He ({+) } ions typically decrease by a percentage amount that is much more the relative increase in the density of O (+) ions. The duct formation was never observed under daytime conditions. According to [3] the HF-induced ducts were observed by ionosphere pumping in morning and evening hours but in these cases their intensity was no more than a few percentages. 2. The size of the ducts along the satellite orbits is of about 80 - 100 km. It is a reason why such ducts can be observed only if the minimal distance between the satellite and the center of the heated flux tube is less than 50 km. 3. The formation of ducts is observed only if the effective radiated power is more than 40 MW. For the SURA facility, to heat the ionosphere at higher efficiency due to the “magnetic-zenith effect”, the HF beam is often inclined by 12 - 16(°) southward. 4. The pump wave frequency should be no less than 0.5 - 0.7 MHz below the F _{2} layer critical frequency f _{0F2}. In the opposed case the penetration of the radiated power behind the F _{2} ionospheric layer can take place [4]. 5. Strong variations of the electron temperature are observed inside the ducts, at the same time the ion temperature is unchanged. 6. A feature of the ducts is the presence of strong electro-magnetic field fluctuations in a frequency range from a few Hz to tens of kHz [1,5]. 7. It was revealed that the formation of the ducts in the outer ionosphere can stimulate the precipitation of energetic electrons with E ? 100 keV from the Earth’s radiation belts [6]. The work was supported by RFBR grants (## 12-05-00312, 13-02-12074, 13-02-12241) and by the scientific program “Geophysics”. References: 1. Rapoport V.O., V.L. Frolov, G.P. Komrakov, et al. // Radiophysics and Quantum Electronics, 2007. Vol. 50(8), p. 645. 2. Frolov V.L., V.O. Rapoport, G.P. Komrakov, et. al. // JETP Letters, 2008. Vol. 88, No. 12, p. 790. 3. Frolov V.L., I.A. Bolotin, V.O. Rapoport, et. al. // XXIV All-Russian conference “Radio Wave Propagation”. Irkutsk, 2014 (submitted for publication). 4. Frolov V.L., N.A. Mityakov, E.A. Shorokhova, M. Parrot. // Radiophysics and Quantum Electronics, 2013. Vol. 56(6), p. 325. 5. Rapoport V.O., V.L. Frolov, S.V. Polyakov, et al. // J. Geophys. Res., 2010. Vol. 115, A10322, doi:10.1029/2010JA015484. 6. Markov G.A., A.S. Belov, V.L. Frolov, et al. // JETPh, 2010. Vol. 138, No. 6(12), p. 1037.

  11. C/NOFS satellite observations of equatorial ionospheric plasma structures supported by multiple ground-based diagnostics in October 2008

    NASA Astrophysics Data System (ADS)

    Nishioka, M.; Basu, Su.; Basu, S.; Valladares, C. E.; Sheehan, R. E.; Roddy, P. A.; Groves, K. M.

    2011-10-01

    In early October 2008, the C/NOFS satellite orbited near the magnetic equator at its perigee altitude of ˜400 km at dusk in the Peruvian sector. This provided an ideal opportunity for a comparison, under the current very low solar flux condition, of equatorial ionospheric disturbances observed with the Communication/Navigation Outage Forecasting System (C/NOFS) in situ measurements and ground-based observations available near Jicamarca Observatory. The primary objective was the comparison of plasma density disturbances measured by a Planar Langmuir Probe (PLP) instrument on the C/NOFS satellite with VHF scintillation activity at Ancon near Jicamarca for this period. Here we discuss in detail two extreme cases: one in which severe in situ disturbances were accompanied by mild scintillation on a particular day, namely, 10 October while there was little in situ disturbance with strong scintillation on 5 October. This apparent contradiction was diagnosed further by a latitudinal ground-based GPS network at Peruvian longitudes, a Digisonde, and the incoherent scatter radar (ISR) at Jicamarca. The crucial distinction was provided by the behavior of the equatorial ionization anomaly (EIA). The EIA was well-developed on the day having severe in situ disturbances (10 Oct). This led to lower equatorial plasma density and total electron content (TEC) at the equator and consequently reduced the scintillations detected at Ancon. On the other hand, on the day with severe scintillations (5 Oct), the EIA was not so well developed as on 10 October, leading to relatively higher equatorial plasma density and TEC. Consequently the severe scintillations at Ancon were likely caused by ionospheric structure located below the altitude of C/NOFS. The NRL SAMI2 model was utilized to gain a greater understanding of the role of neutral winds and electric fields in reproducing the TEC as a function of latitude for both classes of irregularities. Spectral studies with high resolution in situ PLP data were also performed. The power law spectra within the plasma bubbles showed two slopes: the low frequency slope being ˜-5/3 and the high frequency ˜-5 with a break around ? = 70 m. This particular type of two-slope spectra may be related to the extremely low solar activity and its impact on ion composition and temperature.

  12. Ionospheric Response to Flux Transfer Events at the Earth's Magnetopause

    NASA Astrophysics Data System (ADS)

    Pitout, F.; Blelly, P. L.

    2003-06-01

    Flux transfer events (FTE) are thought to be the manifestation of the pulsed reconnection process by which interplanetary magnetic field lines and Earth's magnetic field lines merge. They are observed at the magnetopause as bipolar signatures in the magnetic field component perpendicular to the magnetopause (normal component) as the distorted newly reconnected field lines get dragged by the magnetic tension and the solar wind. FTEs are also observed in the ionosphere by ground-based instrumentations. Optical instruments commonly record poleward moving auroral forms in the red line (630nm) corresponding to low-energy electron precipitation. SuperDARN radars observe the convection associated to FTEs as enhanced flow channels. The EISCAT radars on the Svalbard archipelago have revealed the transient and impulsive nature of the ionosphere under the polar cusp for southward IMF. We have performed a simulation of the ionospheric footprint of a FTE by including the Southwood model of FTE in the TRANSCAR model of ionosphere. We can trace the evolution of an open flux tube and the behaviour and dynamics of the surrounding ionospheric plasma. We particularly focus on the signature of the two areas of return flow on both side of the FTE footprint. Those return flow may actually be responsible of some of the structures observed by Incoherent Scatter radars such as the Eiscat Svalbard Radar (ESR). We then compare our simulations with observations and finally discuss the pros and cons of the Southwood model of FTE.

  13. Planetary waves in rotating ionosphere

    SciTech Connect

    Khantadze, A. G.; Jandieri, V. G.; Jandieri, G. V.

    2008-06-15

    The problem of propagation of ultralong planetary waves in the Earth's upper atmosphere is considered. A new exact solution to the MHD equations for the ionosphere is obtained in spherical coordinates with allowance for the geomagnetic field and Earth's rotation. A general dispersion relation is derived for planetary waves in the ionospheric E and F regions, and the characteristic features of their propagation in a weakly ionized ionospheric plasma are discussed.

  14. Planetary/Kelvin wave modulation of the equatorial ionospheric evening vertical plasma drift and the post sunset spread F developments

    NASA Astrophysics Data System (ADS)

    Abdu, Mangalathayil A.; Sobral, José; Gurubaran, Subramanian; Brum, Christiano Marques Garnett; Batista, Inez S.; Valentin Bageston, José; Batista, Paulo

    2012-07-01

    Recent studies have shown that the evening prereversal enhancement in the equatorial ionospheric zonal electric field /vertical plasma drift (PRE) and hence post sunset spread F irregularity (ESF) generation are significantly modified by Planetary waves of a few-day (2-, 5-, 7-day) periodicity, although many specific details of which remain to be investigated. Thus the widely observed day to day/short terms variability in the PRE and ESF developments originate not only from the variable forcing (in the form of disturbance electric fields) from magnetosphere, as is well known, but a large part of it arises also from forcing by upward propagating wave from lower atmosphere. In this paper we have analyzed the PRE vertical drifts measured by an equatorial Digisonde (Fortaleza), and the mesospheric zonal and meridional winds as measured by two meteor radars operated at an equatorial site (Sao Joao de Cariri) and a low latitude sites (Cachoeira Paulista), in Brazil, together with mesospheric winds as measured by MF radar at an equatorial site (Tirunelveli) in India. The comparison of these results show the presence of oscillations of around 3 and 5-7 days of periodicities in the evening vertical drift as well as in the mesospheric wind field simultaneously in the Brazilian and Indian longitudes, which are shown to be produced by eastward propagating Equatorial Kelvin wave as well as by westward propagating planetary waves. The effects of these waves on the development of the ESF/plasma bubble irregularities are also studied.

  15. High latitude field aligned light ion flows in the topside ionosphere deduced from ion composition and plasma temperatures

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Hoegy, W. R.; Chen, T. C.

    1993-01-01

    Using a comprehensive ionospheric data set comprised of all available ion composition and plasma temperature measurements from satellites, the vertical distributions of ion composition and plasma temperatures are defined from middle latitudes up into the polar cap for summer conditions for altitudes below about 1200 km. These data are sufficient to allow a numerical estimation of the latitudinal variation of the light ion outflows from within the plasmasphere to the polar wind regions. The altitude at which significant light ion outflow begins is found to be lower during solar minimum conditions than during solar maximum. The H(+) outward speeds are of the order of 1 km/s near 1100 km during solar maximum but attain several km/s speeds for solar minimum. He(+) shows a similar altitude development of flow but attains polar cap speeds much less than 1 km/s at altitudes below 1100 km, particularly under solar maximum conditions. Outward flows are also found in the topside F-region for noontime magnetic flux tubes within the plasmasphere.

  16. Studies of the auroral ionosphere with the MITHRAS. Final report, October 1982-October 1985

    SciTech Connect

    Foster, J.C.

    1986-06-26

    The extensive MITHRAS radar data set was the object of extensive analyses the processes and characteristics of the auroral-latitude ionosphere and thermosphere: 1) High-Latitude Electrodynamics: Ionospheric response to substorms at widely separated local times was investigated. 2) Ionospheric Plasma Transport: The effects of plasma convection on the formation of the midlatitude trough were studied utilizing the wide spatial field of view of the Millstone radar. 3) Convection Snapshots: Simultaneous data from spaced instruments were combined to produce 'snapshots' of the polar and auroral convection pattern. 4) Comparisons with Models: 5) Data Bases Studies and Empirical Models: The extensive data set which resulted from the MITHRAS experimental program was incorporated into a multi-instrument, common format data base. 6) Azimuth Scan Experiments: Analysis of the complex data during MITHRAS azimuth scanning experiments resulted in the capability of mapping the convection electric field within the extended field of the radar. 7) Thermosphere and Exosphere: The diurnal variation of exospheric temperature over 30 degrees of latitude around Millstone Hill was investigated using MITHRAS elevation scan data.

  17. Intermittent convective transport carried by propagating electromagnetic filamentary structures in nonuniformly magnetized plasma

    NASA Astrophysics Data System (ADS)

    Xu, G. S.; Naulin, V.; Fundamenski, W.; Rasmussen, J. Juul; Nielsen, A. H.; Wan, B. N.

    2010-02-01

    Drift-Alfvén vortex filaments associated with electromagnetic turbulence were recently identified in reversed field pinch devices. Similar propagating filamentary structures were observed in the Earth magnetosheath, magnetospheric cusp and Saturn's magnetosheath by spacecrafts. The characteristics of these structures closely resemble those of the so-called mesoscale coherent structures, prevailing in fusion plasmas, known as "blobs" and "edge localized mode filaments" in the boundary region, and propagating avalanchelike events in the core region. In this paper the fundamental dynamics of drift-Alfvén vortex filaments in a nonuniformly and strongly magnetized plasma are revisited. We systemize the Lagrangian-invariant-based method. Six Lagrangian invariants are employed to describe structure motion and the resultant convective transport, namely, magnetic flux, background magnetic energy, specific entropy, total energy, magnetic momentum, and angular momentum. The perpendicular vortex motions and the kinetic shear Alfvén waves are coupled through the parallel current and Ampere's law, leading to field line bending. On the timescale of interchange motion ??, a thermal expansion force in the direction of curvature radius of the magnetic field overcomes the resultant force of magnetic tension and push plasma filament to accelerate in the direction of curvature radius resulting from plasma inertial response, reacted to satisfy quasineutrality. During this process the internal energy stored in the background pressure gradient is converted into the kinetic energy of convective motion and the magnetic energy of field line bending through reversible pressure-volume work as a result of the plasma compressibility in an inhomogeneous magnetic field. On the timescale of parallel acoustic response ?????, part of the filament's energy is transferred into the kinetic energy of parallel flow. On the dissipation timescale ?d???, the kinetic energy and magnetic energy are eventually dissipated, which is accompanied by entropy production, and in this process the structure loses its coherence, but it has already traveled a distance in the radial direction. In this way the propagating filamentary structures induce intermittent convective transports of particles, heat, and momentum across the magnetic field. It is suggested that the phenomena of profile consistency, or resilience, and the underlying anomalous pinch effects of particles, heat, and momentum in the fusion plasmas can be interpreted in terms of the ballistic motion of these solitary electromagnetic filamentary structures.

  18. Intermittent convective transport carried by propagating electromagnetic filamentary structures in nonuniformly magnetized plasma

    SciTech Connect

    Xu, G. S.; Naulin, V.; Rasmussen, J. Juul; Nielsen, A. H.; Fundamenski, W.; Wan, B. N.

    2010-02-15

    Drift-Alfven vortex filaments associated with electromagnetic turbulence were recently identified in reversed field pinch devices. Similar propagating filamentary structures were observed in the Earth magnetosheath, magnetospheric cusp and Saturn's magnetosheath by spacecrafts. The characteristics of these structures closely resemble those of the so-called mesoscale coherent structures, prevailing in fusion plasmas, known as 'blobs' and 'edge localized mode filaments' in the boundary region, and propagating avalanchelike events in the core region. In this paper the fundamental dynamics of drift-Alfven vortex filaments in a nonuniformly and strongly magnetized plasma are revisited. We systemize the Lagrangian-invariant-based method. Six Lagrangian invariants are employed to describe structure motion and the resultant convective transport, namely, magnetic flux, background magnetic energy, specific entropy, total energy, magnetic momentum, and angular momentum. The perpendicular vortex motions and the kinetic shear Alfven waves are coupled through the parallel current and Ampere's law, leading to field line bending. On the timescale of interchange motion tau{sub perpendicular}, a thermal expansion force in the direction of curvature radius of the magnetic field overcomes the resultant force of magnetic tension and push plasma filament to accelerate in the direction of curvature radius resulting from plasma inertial response, reacted to satisfy quasineutrality. During this process the internal energy stored in the background pressure gradient is converted into the kinetic energy of convective motion and the magnetic energy of field line bending through reversible pressure-volume work as a result of the plasma compressibility in an inhomogeneous magnetic field. On the timescale of parallel acoustic response tau{sub ||}>>tau{sub perpendicular}, part of the filament's energy is transferred into the kinetic energy of parallel flow. On the dissipation timescale tau{sub d}>>tau{sub perpendicular}, the kinetic energy and magnetic energy are eventually dissipated, which is accompanied by entropy production, and in this process the structure loses its coherence, but it has already traveled a distance in the radial direction. In this way the propagating filamentary structures induce intermittent convective transports of particles, heat, and momentum across the magnetic field. It is suggested that the phenomena of profile consistency, or resilience, and the underlying anomalous pinch effects of particles, heat, and momentum in the fusion plasmas can be interpreted in terms of the ballistic motion of these solitary electromagnetic filamentary structures.

  19. A diagnostic tool for the study of stochastic properties of density striations excited by powerful electromagnetic waves in the ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Puchkov, V. A.

    2013-11-01

    Powerful electromagnetic waves illuminating the ionospheric plasma generate small-scale density irregularities elongated in the direction of the geomagnetic field. Stochastic motion of these irregularities results in fluctuations of HF radio signals backscattered by the illuminated region. Observations of the full wave form of the radio signals make it possible to reconstruct the distribution function of the irregularities over their velocities. An experiment with such a reconstruction is proposed.

  20. Numerical model of the highlatitude ionosphere taking into account the solar wind parameters

    NASA Astrophysics Data System (ADS)

    Uvarov, Viacheslav Mikhailovich; Lukianova, Renata

    The high latitude ionosphere is driven by both magnetospheric and solar UV inputs and, therefore, quite variable and poor predictable. Empirical models are unable to describe these complex dependencies while physics-based mathematical models are more successful in reproducing the plasma density features. In this contribution we present a numerical model of the polar ionosphere. The three-dimensional model covers the E-region, F-region and topside poleward of 40° latitude in the altitude range from 90 km to 650 km. The main output is an electron density distribution at a specified times and under a specified solar wind conditions. The model consists of two blocks: calculation the convection electric field and calculation of the ionospheric plasma parameters. The convection block includes an analytical representation of the large-scale convection patterns and their dependence on the interplanetary magnetic field (IMF) orientation. The density distributions of O+ and generalized ion species are obtained from a numerical solution of the appropriate continuity equations as a function of height. The empirical model is used to calculate the thermospheric temperature, composition, and density. Flux tubes of plasma are followed as they convect and corotate through a moving neutral atmosphere during many hours. The offset between the geomagnetic and geographic poles are also taken into account. Model simulations for different IMF conditions, solar cycle, season, universal time (UT) and magnetic activity were used to elucidate the evolution of the high latitude ionospheric morphological features. The global features such as the tongue of ionization, plasma cavity, polar and auroral peaks are well reproduced and quantified. Model electron density profiles are compared with observations using the EISCAT incoherent scatter radar and ionosonde.

  1. High-order stimulated ionospheric diffuse plasma resonances - Significance for magnetospheric emissions

    NASA Astrophysics Data System (ADS)

    Benson, Robert F.; Osherovich, Vladimir A.

    1992-12-01

    The paper presents Alouette 2/ISIS 1 data which furnish evidence for the stimulation of high-order D(n) resonances (n greater than 4) by topside sounders, confirming the prediction of Osherovich (1990) based on an analogy with naturally occurring narrowband magnetospheric emissions. The results indicate that observations of stimulated ionospheric emissions and naturally occurring magnetospheric emissions can be used as complementary data sets to address such fundamental questions as the nature of the excitation mechanism for these emissions and the nature of the waves (i.e., whether the waves predominantly electrostatic or with a significant magnetic component present), and the question of the dominance among the Dn, Dn(+), and Dn(-) resonances and the conditions required for all three to be present at the same time.

  2. Plasma modifications induced by an X-mode HF heater wave in the high latitude F region of the ionosphere

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Yeoman, T. K.; Rietveld, M. T.; Häggström, I.; Ivanova, I. M.

    2013-12-01

    We presented experimental results of strong plasma modifications induced by X-mode powerful HF radio waves injected towards the magnetic zenith into the high latitude F region of the ionosphere. The experiments were conducted in 2009-2011 using the EISCAT Heating facility, UHF incoherent scatter radar and the EISCAT ionosonde at Tromsø, Norway; and the CUTLASS SuperDARN HF coherent radar at Hankasalmi, Finland. The results showed that the X-mode HF pump wave can generate strong small-scale artificial field aligned irregularities (AFAIs) in the F region of the high-latitude ionosphere. These irregularities, with spatial scales across the geomagnetic field of the order of 9-15 m, were excited when the heater frequency (fH) was above the ordinary-mode critical frequency (foF2) by 0.1-1.2 MHz. It was found that the X-mode AFAIs appeared between 10 s and 4 min after the heater is turned on. Their decay time varied over a wide range between 3 min and 30 min. The excitation of X-mode AFAIs was accompanied by electron temperature (Te) enhancements and an increase in the electron density (Ne) depending on the effective radiated power (ERP). Under ERPs of about 75-180 MW the Te enhances up to 50% above the background level and an increase in Ne of up to 30% were observed. Dramatic changes in the Te and Ne behavior occurred at effective radiated powers of about 370-840 MW, when the Ne and Te values increased up to 100% above the background ones. It was found that AFAIs, Ne and Te enhancements occurred, when the extraordinary-mode critical frequency (fxF2) lied in the frequency range fH-fce/2?fxF2?fH+fce/2, where fce is the electron gyrofrequency. The strong Ne enhancements were observed only in the magnetic field-aligned direction in a wide altitude range up to the upper limit of the UHF radar measurements. In addition, the maximum value of Ne is about 50 km higher than the Te enhancement peak. Such electron density enhancements (artificial ducts) cannot be explained by temperature-dependent reaction rates. They can be attributed to HF-induced ionization production by accelerated electrons. The possible mechanisms for plasma modifications induced by powerful X-mode HF radio waves were discussed.

  3. Determining the electron energy distribution near the plasma potential in the earth's ionosphere

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.; Hays, P. B.; Cutler, J. R.; Dobbs, M. E.

    1981-01-01

    A determination of the plasma potential using an electrostatic analyzer is described in which the potential difference between the instrument slit system and surrounding plasma is minimized. Data obtained from rocket-borne instrumentation demonstrate the viability of this technique for electron fluxes between thermal energies (about 0.5 V) and suprathermal energies (many volts).

  4. Stimulated Electromagnetic Emission Indicator of Glow Plasma Discharges from Ionospheric HF Wave Transmissions with HAARP

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Scales, W.; Briczinski, S. J.; Fu, H.; Mahmoudian, A.; Samimi, A.

    2012-12-01

    High power radio waves resonantly interact with to accelerate electrons for production of artificial aurora and plasma clouds. These plasma clouds are formed when the HF frequency is tuned near a harmonic of the electron cyclotron frequency. At a narrow band resonance, large electrostatic fields are produced below the F-layer and the neutral atmosphere breaks down with a glow plasma discharge. The conditions for this resonance are given by matching the pump wave frequency and wave-number with the sum of daughter frequencies and wave-numbers for several plasma modes. The most likely plasma mode that accelerates the electrons is the electron Bernstein wave in conjunction with an ion acoustic wave. Both upper hybrid and whistler mode waves are also possible sources of electron acceleration. To determine the plasma process for electron acceleration, stimulated electromagnetic emissions are measured using ground receivers in a north-south chain from the HAARP site. Recent observations have shown that broad band spectral lines downshifted from the HF pump frequency are observed when artificial plasma clouds are formed. For HF transmissions are the 2nd, 3rd, and 4th gyro harmonic, the downshifted indicators are found 500 Hz, 20 kHz, and 140 kHz, respectively, from the pump frequency. This Indicator Mode (IM) anticipates that a plasma layer will be formed before it is recorded with an ionosonde or optical imager.

  5. Ionospheric storms on Mars: Impact of the corotating interaction region

    E-print Network

    Gurnett, Donald A.

    Ionospheric storms on Mars: Impact of the corotating interaction region E. Dubinin,1 M. Fraenz,1 J) on Mars cause strong perturbations in the martian induced magnetosphere and ionosphere. The magnetic plasma from the ionosphere. The topside martian ionosphere becomes very fragmented consisting

  6. Ionospheric erosion by Alfven waves C. C. Chaston,1

    E-print Network

    Bonnell, John W.

    Ionospheric erosion by Alfve´n waves C. C. Chaston,1 V. Genot,2 J. W. Bonnell,1 C. W. Carlson,1 J oval showing the erosion of ionospheric plasmas from the topside ionosphere by the action of Alfve), Ionospheric erosion by Alfve´n waves, J. Geophys. Res., 111, A03206, doi:10.1029/2005JA011367. 1. Introduction

  7. Branches of electrostatic turbulence inside solitary plasma structures in the auroral ionosphere

    SciTech Connect

    Golovchanskaya, Irina V.; Kozelov, Boris V.; Chernyshov, Alexander A.; Mogilevsky, Mikhail M.; Ilyasov, Askar A.

    2014-08-15

    The excitation of electrostatic turbulence inside space-observed solitary structures is a central topic of this exposition. Three representative solitary structures observed in the topside auroral ionosphere as large-amplitude nonlinear signatures in the electric field and magnetic-field-aligned current on the transverse scales of ?10{sup 2}–10{sup 3}?m are evaluated by the theories of electrostatic wave generation in inhomogeneous background configurations. A quantitative analysis shows that the structures are, in general, effective in destabilizing the inhomogeneous energy-density-driven (IEDD) waves, as well as of the ion acoustic waves modified by a shear in the parallel drift of ions. It is demonstrated that the dominating branch of the electrostatic turbulence is determined by the interplay of various driving sources inside a particular solitary structure. The sources do not generally act in unison, so that their common effect may be inhibiting for excitation of electrostatic waves of a certain type. In the presence of large magnetic-field-aligned current, which is not correlated to the inhomogeneous electric field inside the structure, the ion-acoustic branch becomes dominating. In other cases, the IEDD instability is more central.

  8. Observation of wake-induced plasma waves around an ionospheric sounding rocket

    NASA Astrophysics Data System (ADS)

    Endo, K.; Kumamoto, A.; Katoh, Y.

    2015-06-01

    Plasma waves generated around the plasma wake of a supersonically moving rocket are studied using data from an impedance probe and a wave receiver installed on the sounding rocket S-520-26. These instruments were used to measure the electron number density and plasma waves at 260 ms intervals, which allows four to five measurements per rotation. During the flight of the S-520-26, three types of plasma waves were observed: short-wavelength electrostatic waves such as electrostatic electron cyclotron harmonic waves, upper hybrid resonance mode waves, and whistler mode waves, assuming that the observed waves are produced in the near wake of the rocket. The wave generation mechanisms are discussed by calculating the linear growth rates of electrostatic waves; positive growth rates are obtained with the assumption of an anisotropic electron distribution function having a beam component or temperature anisotropy. We revealed the spatial distribution of the wave activity around the rocket and its relationship with the wake structure by analysis of the spin-phase dependence of the waves and the observed electron number density. The spin-phase dependence suggests that there are localized hot plasmas around the wake structure that can induce various types of plasma instability.

  9. Adiabatic Betatron deceleration of ionospheric charged particles: a new explanation for (i) the rapid outflow of ionospheric O ions, and for (ii) the increase of plasma mass density observed in magnetospheric flux tubes during main phases of geomagnetic s

    NASA Astrophysics Data System (ADS)

    Lemaire, Joseph; Pierrard, Viviane; Darrouzet, Fabien

    2013-04-01

    Using European arrays of magnetometers and the cross-phase analysis to determine magnetic field line resonance frequencies, it has been found by Kale et al. (2009) that the plasma mass density within plasmaspheric flux tubes increased rapidly after the SSC of the Hallowe'en 2003 geomagnetic storms. These observations tend to confirm other independent experimental results, suggesting that heavy ion up-flow from the ionosphere is responsible for the observed plasma density increases during main phases of geomagnetic storms. The aim of our contribution is to point out that, during main phases, reversible Betatron effect induced by the increase of the southward Dst-magnetic field component (|? Bz|), diminishes slightly the perpendicular kinetic energy (W?) of charged particles spiraling along field lines. Furthermore, due to the conservation of the first adiabatic invariant (? = Wm/ Bm) the mirror points of all ionospheric ions and electrons are lifted up to higher altitudes i.e. where the mirror point magnetic field (Bm) is slightly smaller. Note that the change of the mirror point altitude is given by: ? hm = -1/3 (RE + hm) ? Bm / Bm. It is independent of the ion species and it does not depend of their kinetic energy. The change of kinetic energy is determined by: ? Wm = Wm ? Bm / Bm. Both of these equations have been verified numerically by Lemaire et al. (2005; doi: 10.1016/S0273-1177(03)00099-1) using trajectory calculations in a simple time-dependant B-field model: i.e. the Earth's magnetic dipole, plus an increasing southward B-field component: i.e. the Dst magnetic field whose intensity becomes more and more negative during the main phase of magnetic storms. They showed that a variation of Bz (or Dst) by more than - 50 nT significantly increases the mirror point altitudes by more than 100 km which is about equal to scale height of the plasma density in the topside ionosphere where particles are almost collisionless (see Fig. 2 in Lemaire et al., 2005). From these theoretical results we infer that all ionospheric electrons and ions species (including the O+ ions) experience an outward flow along geomagnetic field lines whose angle of dip is not too large. Since above 500 km altitude the various ions densities decrease almost exponentially with altitude with characteristic scale heights (Hions) of the order of 100 km or less, the main phase uplift of all mirror points increases the local mass density all along these field lines. This changes the plasmaspheric concentrations of the O+ ions as well as of others heavy ions in the topside ionosphere and plasmasphere. We will outline experimental tests to check this new hypothesis and physical mechanism to enhance the plasma mass density during the main phases of geomagnetic storms. A subsequent decrease of the plasma ion mass density is expected following the geomagnetic storm event, due to inverse Betatron effect during the recovery phase, and due to the effect of gravity pulling the heavier ions back to lower altitudes.

  10. Overlapping ionospheric and surface echoes observed by the Mars Express radar sounder near the Martian terminator

    E-print Network

    Gurnett, Donald A.

    Overlapping ionospheric and surface echoes observed by the Mars Express radar sounder near Express spacecraft occasionally show ionospheric and surface echoes that overlap in frequency ionospheric plasma frequency, respectively. In this paper we show that such overlapping echoes are only

  11. The solar cycle variations of plasma parameters and their correlations at topside ionosphere from DEMETER during 2005-2010

    NASA Astrophysics Data System (ADS)

    Zhang, Xuemin; Shen, Xuhui; Yuan, Guiping

    2015-10-01

    Based on the IAP (Instrument d'Analyse du Plasma) observing data onboard DEMETER satellite, the solar cycle variations in ion density (Ni), ion composition [O+, H+, He+] and ion temperature (Ti) were analyzed respectively in local daytime 10:30 and nighttime 22:30 during 2005-2010 during the 23rd/24th solar cycles, which would greatly contribute to the research of the topside ionospheric physics during this extremely low solar minimum. Based on analyzing the solar cycle variations of these plasma parameters, it was found that longitude-averaged Ni, [O+] and daytime Ti presented positive correlation with solar flux, while [H+], nighttime Ti and [He+] varied negatively to reach their maxima at the solar minimum. Furthermore, [O+], as the main composition at the altitude of DEMETER of 660 km, showed typical seasonal variation and close relationship with sub-solar dynamics. Daytime [He+] was the most complex component, showing negative variation with solar activity at low latitudes over Southern Hemisphere and positive correlation at middle latitudes over Northern Hemisphere. The correlation of Ni and Ti in local daytime was dependent on season over two hemispheres, and the results illustrated negative correlation at low latitudes, and positive correlation at middle latitudes especially over Southern Hemisphere in solstitial seasons. While [H+] presented anti-correlation, especially the peak values with Ti valleys at 0-20°N in each year, which all might be related to the thermal diffusion and relative drift among different ions. Furthermore, the asymmetrical features of Ni over two hemispheres in solar minimum were widely revealed at different longitude sectors, latitudes and local times, which might be explained by the concentration of neutral oxygen, neutral winds, and also the lower atmospheric dynamics.

  12. A study of the cleft region using synoptic ionospheric plasma data obtained by the polar orbiting satellites Aeros-B and Isis-2

    NASA Technical Reports Server (NTRS)

    Kist, R.; Klumpar, D.

    1980-01-01

    The concentrations of O(+) and NO(+) in the dayside high-latitude cleft region of the ionosphere are investigated based on synoptic particle and plasma measurements obtained by the polar orbiting Aeros-B and Isis-2 satellites. At a time when the orbital planes of the satellites are almost at right angles to each other, three maxima in ion temperature are observed, with two of them accompanied by an increased electron temperature and electron density irregularities, and the density of the molecular ions NO(+) and O2(+) is found to increase at the expense of O(+) density. Results are discussed in terms of a theory relating perpendicular electric fields to oxygen atom reaction rates. Systematic analysis of the Aeros data base reveals 14 additional instances of O(+) to NO(+) conversion, with a large variety of forms and structures reflecting the complex structure and dynamics of the high-latitude dayside ionosphere.

  13. Response of ions of ionospheric origin to storm time substorms: Coordinated observations over the ionosphere

    E-print Network

    Carlson, Charles W.

    Response of ions of ionospheric origin to storm time substorms: Coordinated observations over the ionosphere and in the plasma sheet M. Nose´,1 S. Taguchi,2 S. P. Christon,3 M. R. Collier,4 T. E. Moore,4 C 2009; published 12 May 2009. [1] We investigate variations of ion flux over the ionosphere

  14. Observations of Substorms from the Auroral Ionosphere to the Distant Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Parks, G.; Brittnacher, M.; Chen, L.; Chua, D.; Elsen, R.; Fillingim, M.; McCarthy, M.; Germany, G.; Spann, J.

    1998-01-01

    We have been studying how substorms work by examining the global polar Ultraviolet Imager (UVI) images in correlation with observations from the ground, interplanetary space and the geomagnetic tail between 10-20 earth radii. One of the objectives of our study is to better understand the connection among many complex phenomena going on close to Earth and those in the distant plasma sheet. We have studied, for example, how the aurora[ and polar cap boundaries at different local times behave in relation to variations observed in the solar wind and plasma sheet during substorms. Preliminary results indicate that the polar cap and auroral oval boundaries expand and contract in a complicated but systematic way. These variations are correlated to solar wind parameters, and thinning and recovery phenomena in the plasma sheet. These results will be presented and interpreted in terms of directly driven and/or unloading substorm processes.

  15. Global Ionosphere Radio Observatory

    NASA Astrophysics Data System (ADS)

    Galkin, I. A.; Reinisch, B. W.; Huang, X. A.

    2014-12-01

    The Global Ionosphere Radio Observatory (GIRO) comprises a network of ground-based high-frequency vertical sounding sensors, ionosondes, with instrument installations in 27 countries and a central Lowell GIRO Data Center (LGDC) for data acquisition and assimilation, including 46 real-time data streams as of August 2014. The LGDC implemented a suite of technologies for post-processing, modeling, analysis, and dissemination of the acquired and derived data products, including: (1) IRI-based Real-time Assimilative Model, "IRTAM", that builds and publishes every 15-minutes an updated "global weather" map of the peak density and height in the ionosphere, as well as a map of deviations from the classic IRI climate; (2) Global Assimilative Model of Bottomside Ionosphere Timelines (GAMBIT) Database and Explorer holding 15 years worth of IRTAM computed maps at 15 minute cadence;. (3) 17+ million ionograms and matching ionogram-derived records of URSI-standard ionospheric characteristics and vertical profiles of electron density; (4) 10+ million records of the Doppler Skymaps showing spatial distributions over the GIRO locations and plasma drifts; (5) Data and software for Traveling Ionospheric Disturbance (TID) diagnostics; and (6) HR2006 ray tracing software mated to the "realistic" IRTAM ionosphere. In cooperation with the URSI Ionosonde Network Advisory Group (INAG), the LGDC promotes cooperative agreements with the ionosonde observatories of the world to accept and process real-time data of HF radio monitoring of the ionosphere, and to promote a variety of investigations that benefit from the global-scale, prompt, detailed, and accurate descriptions of the ionospheric variability.

  16. Characterizing ISS Charging Environments with On-Board Ionospheric Plasma Measurements

    NASA Technical Reports Server (NTRS)

    Minow, Jospeh I.; Craven, Paul D.; Coffey, Victoria N.; Schneider, Todd A.; Vaughn, Jason A.; Wright Jr, Kenneth; Parker, Paul D.; Mikatarian, Ronald R.; Kramer, Leonard; Hartman, William A.; Alred, John W.; Koontz, Steven L.

    2008-01-01

    Charging of the International Space Station (ISS) is dominated by interactions of the biased United States (US) 160 volt solar arrays with the relatively high density, low temperature plasma environment in low Earth orbit. Conducting surfaces on the vehicle structure charge negative relative to the ambient plasma environment because ISS structure is grounded to the negative end of the US solar arrays. Transient charging peaks reaching potentials of some tens of volts negative controlled by photovoltaic array current collection typically occur at orbital sunrise and sunset as well as near orbital noon. In addition, surface potentials across the vehicle structure vary due to an induced v x B (dot) L voltage generated by the high speed motion of the conducting structure across the Earth's magnetic field. Induced voltages in low Earth orbit are typically only approx.0.4 volts/meter but the approx.100 meter scale dimensions of the ISS yield maximum induced potential variations ofapprox.40 volts across the vehicle. Induced voltages are variable due to the orientation of the vehicle structure and orbital velocity vector with respect to the orientation of the Earth's magnetic field along the ISS orbit. In order to address the need to better understand the ISS spacecraft potential and plasma environments, NASA funded development and construction of the Floating Potential Measurement Unit (FPMU) which was deployed on an ISS starboard truss arm in August 2006. The suite of FPMU instruments includes two Langmuir probes, a plasma impedance probe, and a potential probe for use in in-situ monitoring of electron temperatures and densities and the vehicle potential relative to the plasma environment. This presentation will describe the use of the FPMU to better characterize interactions of the ISS with the space environment, changes in ISS charging as the vehicle configuration is modified during ISS construction, and contributions of FPMU vehicle potential and plasma environment measurements to investigations of on-orbit anomalies in ISS systems.

  17. Real-Time Ionospheric Plasma Density Estimates in the Polar Cap using Simultaneous Dual Frequency Doppler Measurements at the SuperDARN McMurdo Radar

    NASA Astrophysics Data System (ADS)

    Spaleta, J.; Bristow, W. A.

    2012-12-01

    SuperDARN radars estimate plasma drift velocities from the Doppler shift observed on signals scattered from field-aligned density irregularities. The radars operate in the range of 8 MHz to 20 MHz and have ray paths covering a wide range of elevation angles, in order to maximize the range over which the scattering conditions are satisfied. Upward-propagating electromagnetic signals in this frequency range can be significantly refracted by the ionospheric plasma. The propagation paths of the refracted signals are bent earthward and at some point along this refracted path propagate perpendicular to the local magnetic field and scatter on the field-aligned density irregularities. The refraction results from gradients of the index of refraction in the ionospheric plasma. The index inside the ionosphere is lower than its free-space value, which depresses the measured line of sight velocity relative to the actual velocity of the plasma. One way to account for the depression of the measured velocity is to estimate the index of refraction in the scattering region by making multiple velocities measurements at different operating frequencies. Together with the appropriate plasma dispersion relations, multiple frequency measurements can be used to construct relations for the index of refraction, plasma density and the line of sight velocity correction factor as functions of frequency weighted measured velocity differences. Recent studies have used frequency-switching events spanning many days during traditional SuperDARN radar operation to build a statistical estimate for index of refraction, which is insensitive to the real-time spatial dynamics of the ionosphere. This statistical approach has motivated the development of a new mode of radar operation that provides simultaneous dual frequency measurements in order to resolve the temporal and spatial dynamics of the index of refraction calculations. Newly-developed multi-channel capabilities available in the SuperDARN radar control software now allow simultaneous dual frequency measurements at the McMurdo radar. This simultaneous dual frequency capability makes it possible, for the first time, to calculate real-time spatially resolved index of refraction and velocity correction factors across the radar field of view. Selected findings from the first several months of simultaneous dual frequency operation at the McMurdo SuperDARN radar will be presented.

  18. Transmission of Stormtime Electric Field and Currents to the Mid-Equatorial Latitude Ionosphere in the Magnetosphere-Ionosphere-Ground Circuit

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Hashimoto, K. K.; Ebihara, Y.; Nishimura, Y.; Tomizawa, I.; Nishitani, N.; Nagatsuma, T.

    2014-12-01

    Three kinds of dynamos are activated in the magnetosphere during geomagnetic storms, which supply the electric field and currents to the mid-equatorial ionosphere. At the onset of the storm, the solar wind shock activates the dynamo of the dawn-to-dusk electric field and Region-1 field-aligned currents for several to ten min, which transmit to the equatorial ionosphere and intensify the equatorial electrojet (EEJ). During the storm main phase, the southward interplanetary magnetic field (IMF) activates the dynamo of the dawn-to-dusk electric field and the R1 FACs for several hours, which develop the ring current and intensify the EEJ. During the storm recovery phase, on the other hand, the electric field and currents reverse their direction, prohibit the ring current from developing and cause the counterelectrojet in the equatorial ionosphere (CEJ). The CEJs are often observed even during the storm main phase under the relatively constant southward IMF. The long-lasting CEJs are superimposed by large amplitude impulsive/irregular CEJs. We have detected the stormtime electric fields in midlatitude with the SuperDARN radar and HF Doppler sounder in Japan during the stormtime CEJs. The long-lasting CEJs should be caused by the thermospheric wind dynamo (disturbance dynamo), but the impulsive/irregular CEJs are found to be caused by substorms as well as by convection reductions. The transmission of the electric field and currents from the magnetospheric dynamos to the mid-equatorial latitude ionosphere is explained by means of the magnetosphere-ionosphere-ground (MIG) transmission line developed by Kikuchi [JGR 2014]. The Poynting flux is transmitted to the polar ionosphere by the Alfven waves in the magnetosphere-ionosphere (MI) transmission line and by the TM0 (TEM) mode waves to the mid-equatorial ionosphere in the Earth-ionosphere waveguide (ionosphere-ground (IG) transmission line). A fraction of the Poynting flux in the IG transmission line leaks into the ionosphere, driving the ionospheric currents in the E-region and motion of plasma in the F-region. Thus, the midlatitude electric field and equatorial currents are well correlated.

  19. Mesospheric gravity waves and ionospheric plasma bubbles observed during the COPEX campaign

    NASA Astrophysics Data System (ADS)

    Paulino, I.; Takahashi, H.; Medeiros, A. F.; Wrasse, C. M.; Buriti, R. A.; Sobral, J. H. A.; Gobbi, D.

    2011-07-01

    During the Conjugate Point Experiment (COPEX) campaign performed at Boa Vista (2.80?N;60.70?W, dip angle21.7?N) from October to December 2002, 15 medium-scale gravity waves in the OHNIR airglow images were observed. Using a Keogram image analysis, we estimate their parameters. Most of the waves propagate to Northwest, indicating that their main sources are Southeast of Boa Vista. Quasi-simultaneous plasma bubble activities in the OI 630 nm images were observed in seven cases. The distances between the bubble depletions have a linear relationship with the wavelengths of the gravity waves observed in the mesosphere, which suggests a direct contribution of the mesospheric medium-scale gravity waves in seeding the equatorial plasma bubbles.

  20. Radar soundings of the ionosphere of Mars.

    PubMed

    Gurnett, D A; Kirchner, D L; Huff, R L; Morgan, D D; Persoon, A M; Averkamp, T F; Duru, F; Nielsen, E; Safaeinili, A; Plaut, J J; Picardi, G

    2005-12-23

    We report the first radar soundings of the ionosphere of Mars with the MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) instrument on board the orbiting Mars Express spacecraft. Several types of ionospheric echoes are observed, ranging from vertical echoes caused by specular reflection from the horizontally stratified ionosphere to a wide variety of oblique and diffuse echoes. The oblique echoes are believed to arise mainly from ionospheric structures associated with the complex crustal magnetic fields of Mars. Echoes at the electron plasma frequency and the cyclotron period also provide measurements of the local electron density and magnetic field strength. PMID:16319123

  1. Cold plasma heating in the plasma sheet boundary layer - Theory and simulations

    NASA Technical Reports Server (NTRS)

    Schriver, David; Ashour-Abdalla, Maha

    1990-01-01

    Satellite observations in recent years have confirmed that the plasma sheet boundary layer is a permanent feature of the earth's magnetotail located between the lobe and central plasma sheet during both quiet and active magnetic periods. Distinct features of the boundary layer include field aligned ion beams and intense electrostatic emissions known as broadband electrostatic noise. Since the plasma sheet boundary layer is a spatial feature of the magnetotail, within it will occur thermal mixing of the resident warm boundary layer plasma with inflowing (convecting) cold ionospheric plasma. A theoretical study involving linear theory and nonlinear numerical particle simulations is presented which examines ion beam instabilities in the presence of a thermally mixed hot and cold background plasma. It is found that the free energy in the ion beams can heat the cool ionospheric plasma to ambient plasma sheet boundary layer temperatures via broadband electrostatic noise. These results, along with recent observational reports that ionospheric outflow can account for measured plasma sheet densities, suggest that the ionospheric role in plasma sheet dynamics and content may be as large as the solar wind.

  2. Plasma instabilities in the high- and low-latitude E region induced by high-power radio waves. Interim report

    SciTech Connect

    Chaturvedi, P.K.; Ossakow, S.L.

    1990-09-14

    The effect of a high frequency (HF) powerful pump wave on high and low latitude E-region low frequency plasma instabilities is theoretically considered. The growth rates and threshold criteria are calculated for the electrojet associated (Farley-Buneman, gradient-drift) and higher altitude high latitude parallel-current associated (ion-acoustic, ion cyclotron, current convective) instabilities. The results are discussed in the context of present ionospheric modification (heating) experiments, for the high and low latitude ionosphere.

  3. Radar interferometry: A new technique for studying plasma turbulence in the ionosphere

    SciTech Connect

    Farley, D.T.; Ierkic, H.M.; Fejer, B.G.

    1981-03-01

    A new radar interferometer technique has been developed and used successfully at the Jicamarca Radio Observatory in Peru to study the strong nighttime plasma turbulence in the equatorial electrojet. The technique represents a major step forward in radar probing of turbulent irregularities such as (but not limited to) those in the electrojet. In many situations it provides far more information than previous Doppler measurements. We form the cross spectrum of the backscattered signals received from approximately overhead on two antennas, separated in this case along an east-west baseline, as well as the individual power spectra. From the phase of the cross spectrum at different Doppler frequencies we can determine the individual positions of plasma wave packets propagating vertically with different velocities, and we find, for example, that oppositely propagating waves always come from distinctly separated regions. The data allow us to study the eddy structure within the electrojet in far more detail than hitherto possible, and by using the irregularity patches as tracers and following their east-west motion, we can obtain a vertical profile of drift velocity. Our first observations of this sort have shown that at night the vertical Doppler velocity at times may substantially exceed the mean horizontal velocity of the patch and the small horizontal velocity near the top and bottom of the layer may actually be westward when the main motion is eastward.

  4. A Modeling Study of the Latitudinal Variations in the Nighttime Plasma Temperatures of the Equatorial Topside Ionosphere During Northern Winter at Solar Maximum

    NASA Technical Reports Server (NTRS)

    Bailey, G. J.; Denton, M. H.; Heelis, R. A.; Venkatraman, S.

    2000-01-01

    Latitudinal variations in the nighttime plasma temperatures of the equatorial topside ionosphere during northern winter at solar maximum have been examined by using values modelled by SUPIM (Sheffield University Plasmasphere Ionosphere Model) and observations made by the DMSP F10 satellite at 21.00 LT near 800 km altitude. The modelled values confirm that the crests observed near 15 deg latitude in the winter hemisphere are due to adiabatic heating and the troughs observed near the magnetic equator are due to adiabatic cooling as plasma is transported along the magnetic field lines from the summer hemisphere to the winter hemisphere. The modelled values also confirm that the interhemispheric plasma transport needed to produce the required adiabatic heating/cooling can be induced by F-region neutral winds. It is shown that the longitudinal variations in the observed troughs and crests arise mainly from the longitudinal variations in the magnetic meridional wind. At longitudes where the magnetic declination angle is positive the eastward geographic zonal wind combines with the northward (summer hemisphere to winter hemisphere) geographic meridional wind to enhance the northward magnetic meridional wind. This leads to deeper troughs and enhanced crests. At longitudes where the magnetic declination angle is negative the eastward geographic zonal wind opposes the northward geographic meridional wind and the trough depth and crest values are reduced. The characteristic features of the troughs and crests depend, in a complicated manner, on the field-aligned flow of plasma, thermal conduction, and inter-gas heat transfer. At the latitudes of the troughs/crests, the low/high plasma temperatures lead to increased/decreased plasma concentrations.

  5. Estimating along-track plasma drift speed from electron density measurements by the three Swarm satellites

    NASA Astrophysics Data System (ADS)

    Park, J.; Lühr, H.; Stolle, C.; Malhotra, G.; Baker, J. B. H.; Buchert, S.; Gill, R.

    2015-07-01

    Plasma convection in the high-latitude ionosphere provides important information about magnetosphere-ionosphere-thermosphere coupling. In this study we estimate the along-track component of plasma convection within and around the polar cap, using electron density profiles measured by the three Swarm satellites. The velocity values estimated from the two different satellite pairs agree with each other. In both hemispheres the estimated velocity is generally anti-sunward, especially for higher speeds. The obtained velocity is in qualitative agreement with Super Dual Auroral Radar Network data. Our method can supplement currently available instruments for ionospheric plasma velocity measurements, especially in cases where these traditional instruments suffer from their inherent limitations. Also, the method can be generalized to other satellite constellations carrying electron density probes.

  6. Coordinated ESR-Reimei observations of the cusp ionosphere

    NASA Astrophysics Data System (ADS)

    Pitout, F.; Ogawa, Y.; Ebihara, Y.; Asamura, K.; Hirahara, M.; Seki, K.

    2010-12-01

    The polar cusp, being the region where the magnetosheath plasma has a direct access to the magnetosphere and the polar ionosphere, is an interesting region to study, not only to understand how the coupling between the solar wind and the magnetosphere works, but also because at its footprint, interesting ionospheric phenomena occur: complex local electrodynamics, particle heating and outflow, etc. To study those phenomena, we have selected a few Reimei satellite overflights of the EISCAT Svalbard Radar (ESR) in the cusp region. These conjunctions allow us to directly compare precipitating magnetosheath particles and their effects on the dayside polar ionosphere. We present preliminary results of two of those conjunctions. The first case is characterized by an unusually strong zonal convection speed measured by the ESR at 08:25 UT on September 28, 2007. This strong plasma flow is believed to increase the ion temperature through frictional heating with the neutrals and drive ion outflow. However, we do not allays see very high ion temperature in our case, suggesting that Joule heating is not the unique source of ion outflow. In the second case around 08:11 UT on October 18, 2007, the conjunction occurs when the ESR is at the equatorward boundary of the cusp. Yet, the soft-electron precipitation is rather weak and as well as the electron temperature measured by the ESR. An interesting feature is that the particle sensor onboard Reimei observes a discontinuous cusp that we explain by the changes in the IMF orientation (given by Themis).

  7. Polar BEAR ionospheric experiments - a pre-launch overview. Technical report, 1 March-31 October 1985

    SciTech Connect

    Fremouw, E.J.

    1986-05-09

    Polar BEAR (Polar BEacon and Auroral Research) will carry three ionospheric experiments: (1) a beacon functionally identical to that on HiLat, (2) a three-axis vector magnetometer for detecting the satellite's attitude, and (3) an improved imager, the Auroral/Ionospheric Remote Sensor (AIRS). In addition to providing images of the aurorae and airglow at four visual and vacuum-ultraviolet wavelengths, AIRS will function as an ultraviolet spectrophotometer. Using AIRS in its imaging mode and receiving stations it will be possible to obtain images of essentially the entire auroral oval in broad daylight as well as in darkness. Polar BEAR is scheduled for launch into a nearly circular orbit near 1000-km altitude and 82 inclination. That orbit will afford a broad view for AIRS and many opportunities for coordinated observations of (1) scintillation using the beacons on both HiLat and Polar BEAR, (2) major current systems flowing between the ionosphere and magnetosphere using the magnetometers on both satellites, and (3) energetic electron precipitation and ambient plasma convection at 800 km altitude as recorded with HiLat's electron spectrometer and thermal-plasma monitor. These observations should contribute to further understanding of plasma instrumental to the development of density irregularities in the highly dynamic high-latitude ionosphere.

  8. Ion densities in Titan's ionosphere, multi-instrument case study

    NASA Astrophysics Data System (ADS)

    Shebanits, O.; Wahlund, J.-E.; Edberg, N. J. T.; Crary, F. J.; Wellbrock, A.; Coates, A. J.; Andrews, D. J.; Vigren, E.; Mandt, K. E.; Waite, J. H., Jr.

    2015-10-01

    The Cassini s/c in-situ plasma measurements of Titan's ionosphere by Radio and Plasma Wave Science (RPWS) Langmuir Probe (LP), Cassini Plasma Spectrometer (CAPS) Electron (ELS) and Ion Beam (IBS) are combined for selected flybys (T16, T29, T40& T56) to further constrain plasma parameters of ionosphere at altitudes 880-1400 km.

  9. Waves generated in the vicinity of an argon plasma gun in the ionosphere

    NASA Technical Reports Server (NTRS)

    Cahill, L. J., Jr.; Arnoldy, R. L.; Lysak, R. L.; Peria, W.; Lynch, K. A.

    1993-01-01

    Wave and particle observations were made in the close vicinity of an argon plasma gun carned to over 600 km altitude on a sounding rocket. The gun was carned on a subpayload, separated from the main payload early in the flight. Twelve-second argon ion ejections were energized alternately with a peak energy of 100 or 200 eV. They produced waves, with multiple harmonics, in the range of ion cyclotron waves, 10 to 1000 Hz at rocket altitudes. Many of these waves could not be identified as corresponding to the cyclotron frequencies of any of the ions, argon or ambient, known to be present. In addition, the wave frequencies were observed to rise and fall and to change abruptly during a 12-s gun operation. The wave amplitudes, near a few hundred Hertz, were of the order of O. 1 V/m. Some of the waves may be ion-ion hybrid waves. Changes in ion populations were observed at the main payload and at the subpayload during gun operations. A gun-related, field-aligned, electron population also appeared.

  10. A method for determining the drift velocity of plasma depletions in the equatorial ionosphere using far-ultraviolet spacecraft observations: initial results

    NASA Astrophysics Data System (ADS)

    England, S. L.; Immel, T. J.; Park, S. H.; Frey, H. U.; Mende, S. B.

    2007-12-01

    The Far-Ultraviolet Imager (IMAGE-FUV) on-board the NASA IMAGE satellite has been used to observe plasma depletions in the nightside equatorial ionosphere. Observations from periods around spacecraft apogee, during which equatorial regions are visible for several hours, have allowed the velocity of these plasma depletions to be determined. A new method for determining the velocity of these depletions using an image analysis technique, Tracking Of Airglow Depletions (TOAD), has been developed. TOAD allows the objective identification and tracking of depletions. The automation of this process has also allowed for the tracking of a greater number of depletions than previously achieved without requiring any human input, which shows that TOAD is suitable for use with large data sets and for future routine monitoring of the ionosphere from space. Furthermore, this allows the drift velocities of each depletion to be determined as a function of magnetic latitude as well as local time. Previous ground-based airglow observations from a small number of locations have indicated that the drift velocities of depletions may vary rapidly with magnetic latitude. Here we shall present the first results from TOAD of this shear in drift velocities from our global sample of depletion drift velocities.

  11. Meteoric layers in planetary ionospheres

    E-print Network

    Withers, Paul

    ;Sporadic E layer at Earth Sporadic E = Dense layers of plasma at E-region altitudes that aren't related) #12;Making narrow layers on Earth Mechanism for producing narrow layers of metal ion plasma by windMeteoric layers in planetary ionospheres Paul Withers Boston University Abstract SA11B-1919 withers

  12. Cross-B convection of artificially created, negative-ion clouds and plasma depressions - Low-speed flow

    NASA Technical Reports Server (NTRS)

    Bernhardt, Paul A.

    1988-01-01

    A negative-ion, positive-ion plasma produced by the release of an electron attachment chemical into the F region becomes electrically polarized by collisions with neutrals moving across magnetic field lines. The resulting electric field causes E x B drift of the two ion species and the residual electrons. The cross-field flow of the modified ionosphere is computed using a two-dimensional numerical simulation which includes electron attachment and mutual neutralization chemistry, self-consistent electric fields, and three-species plasma transport. The velocity of the plasma is initially in the direction of the neutral wind because the negative-ion cloud is a Pedersen conductivity enhancement. As the positive and negative ions react, the Pedersen conductivity becomes depressed below the ambient value and the velocity of the plasma reverses direction. A plasma hole remains after the positive and negative ions have mutually neutralized. The E x B gradient drift instability produces irregularities on the upwind edge of the hole.

  13. Electron thermal effect on linear and nonlinear coupled Shukla-Varma and convective cell modes in dust-contaminated magnetoplasma

    SciTech Connect

    Masood, W.; Mirza, Arshad M.

    2010-11-15

    Linear and nonlinear properties of coupled Shukla-Varma (SV) and convective cell modes in the presence of electron thermal effects are studied in a nonuniform magnetoplasma composed of electrons, ions, and extremely massive and negatively charged immobile dust grains. In the linear case, the modified dispersion relation is given and, in the nonlinear case, stationary solutions of the nonlinear equations that govern the dynamics of coupled SV and convective cell modes are obtained. It is found that electrostatic dipolar and vortex street type solutions can appear in such a plasma. The relevance of the present investigation with regard to the Earth's mesosphere as well as in ionospheric plasmas is also pointed out.

  14. Persistent Longitudinal Variations of Plasma Density and DC Electric Fields in the Low Latitude Ionosphere Observed with Probes on the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Rowland, D.; Liebrecht, C.; Bromund, K.; Roddy, P.

    2010-01-01

    Continuous measurements using in situ probes on consecutive orbits of the C/N0FS satellite reveal that the plasma density is persistently organized by longitude, in both day and night conditions and at all locations within the satellite orbit, defined by its perigee and apogee of 401 km and 867 km, respectively, and its inclination of 13 degrees. Typical variations are a factor of 2 or 3 compared to mean values. Furthermore, simultaneous observations of DC electric fields and their associated E x B drifts in the low latitude ionosphere also reveal that their amplitudes are also strongly organized by longitude in a similar fashion. The drift variations with longitude are particularly pronounced in the meridional component perpendicular to the magnetic field although they are also present in the zonal component as well. The longitudes of the peak meridional drift and density values are significantly out of phase with respect to each other. Time constants for the plasma accumulation at higher altitudes with respect to the vertical drift velocity must be taken into account in order to properly interpret the detailed comparisons of the phase relationship of the plasma density and plasma velocity variations. Although for a given period corresponding to that of several days, typically one longitude region dominates the structuring of the plasma density and plasma drift data, there is also evidence for variations organized about multiple longitudes at the same time. Statistical averages will be shown that suggest a tidal "wave 4" structuring is present in both the plasma drift and plasma density data. We interpret the apparent association of the modulation of the E x B drifts with longitude as well as that of the ambient plasma density as a manifestation of tidal forces at work in the low latitude upper atmosphere. The observations demonstrate how the high duty cycle of the C/NOFS observations and its unique orbit expose fundamental processes at work in the low latitude, inner regions of geospace.

  15. Beam-plasma generators of stochastic microwave oscillations used for plasma heating in fusion and plasma-chemistry devices and ionospheric investigations

    NASA Astrophysics Data System (ADS)

    Mitin, Leonid A.; Perevodchikov, Vladimir I.; Shapiro, A. L.; Zavjalov, M. A.; Bliokh, Yury P.; Fainberg, Ya. B.

    1996-10-01

    The results of theoretical and experimental investigations of generator of stochastic microwave power based on beam- plasma inertial feedback amplifier is discussed to use stochastic oscillation for heating of plasma. The efficiency of heating of plasma in the region of low-frequency resonance in the geometry of `Tokomak' is considered theoretically. It is shown, that the temp of heating is proportional the power multiplied by spectra width of noiselike signal.

  16. Ionosphere research

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A report is presented on on-going research projects in ionospheric studies. The topics discussed are planetary atmospheres, E and F region, D region, mass spectrometer measurements, direct measurements and atmospheric reactions.

  17. Ionospheric research

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Data from research on ionospheric D, E, and F, regions are reported. Wave propagation, mass spectrometer measurements, and atmospheric reactions of HO2 with NO and NO2 and NH2 with NO and O2 are summarized.

  18. Experimentally investigate ionospheric depletion chemicals in artificially created ionosphere

    SciTech Connect

    Liu Yu; Cao Jinxiang; Wang Jian; Zheng Zhe; Xu Liang; Du Yinchang

    2012-09-15

    A new approach for investigating ionosphere chemical depletion in the laboratory is introduced. Air glow discharge plasma closely resembling the ionosphere in both composition and chemical reactions is used as the artificially created ionosphere. The ionospheric depletion experiment is accomplished by releasing chemicals such as SF{sub 6}, CCl{sub 2}F{sub 2}, and CO{sub 2} into the model discharge. The evolution of the electron density is investigated by varying the plasma pressure and input power. It is found that the negative ion (SF{sub 6}{sup -}, CCl{sub 2}F{sub 2}{sup -}) intermediary species provide larger reduction of the electron density than the positive ion (CO{sub 2}{sup +}) intermediary species. The negative ion intermediary species are also more efficient in producing ionospheric holes because of their fast reaction rates. Airglow enhancement attributed to SF{sub 6} and CO{sub 2} releases agrees well with the published data. Compared to the traditional methods, the new scheme is simpler to use, both in the release of chemicals and in the electron density measurements. It is therefore more efficient for investigating the release of chemicals in the ionosphere.

  19. Diurnal transport effects on the F-region plasma at Chatanika under quiet and disturbed conditions

    NASA Technical Reports Server (NTRS)

    Murdin, J.; Sojka, J. J.; Schunk, R. W.

    1984-01-01

    High latitude ionospheric model predictions are compared with the diurnal variations of plasma convection velocities and electron densities observed at Chatanika, Alaska, on geomagnetically quiet and disturbed days near equinox. Since the time-dependent variation of the magnetospheric electric field was not known, plasma drift velocities and ion densities are calculated for two different convection-precipitation models, each of which corresponds to a different level of magnetic activity. Model calculations for the magnetically quiet day produced plasma drift velocities and electron densities that were in good agreement, both qualitatively and quantitatively, with the measurements. The two models have demonstrated the relative sensitivity of the high latitude ionosphere to different combinations of magnetospheric convection and induced vertical drifts associated with thermospheric winds.

  20. Microwave heating of the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Meltz, G.; Nighan, W. L.

    1980-01-01

    Changes in the properties of the lower ionosphere due to ohmic heating of the plasma by the solar power satellite (SPS) microwave power beam are considered. The development of a predictive model of the underdense interaction of an electromagnetic beam and the lower ionosphere is described. The extent to which the Platteville and Arecibo experiments simulate SPS conditions is considered.

  1. Observations of the Ionospheric Wave Disturbances Using the Kharkov Incoherent Scatter Radar upon RF Heating of the Near-Earth Plasma

    NASA Astrophysics Data System (ADS)

    Chernogor, L. F.; Panasenko, S. V.; Frolov, V. L.; Domnin, I. F.

    2015-07-01

    Characteristics of the wave disturbances of the ionospheric electron number density were measured using the Kharkov incoherent scatter radar. The disturbance generation accompanied the SURA heating of the near-Earth plasma by high-power periodic radiation. The distance between the heater and the radar was about 960 km. The possibility of generating ionospheric wave disturbances with a period of 20 to 30 min in the internal gravity wave range was confirmed. The disturbance propagation velocity was near 320-400 m/s, and the relative amplitude of the electron density variation was 1-10%. The wave disturbances appeared in the altitude range 145-235 km. Aperiodic bursts of the electron number density with a relative amplitude of up to 5-10% were detected after the first switch-ons of periodic radiation in the 30-min heating — 30-min pause regime at altitudes of 145 to 310 km. The observation results generally conform to the synchronous observation data obtained using the Kharkov vertical-sounding Doppler radar and a network of ionosondes.

  2. Magnetospheric disturbances associated with the 13 December 2006 solar flare and their ionospheric effects over North-East Asia

    NASA Astrophysics Data System (ADS)

    Zolotukhina, N.; Polekh, N.; Kurkin, V.; Pirog, O.; Samsonov, S.; Moiseyev, A.

    2012-03-01

    We present an observational study of magnetospheric and ionospheric disturbances during the December 2006 intense magnetic storm associated with the 4?/?3.4 class solar flare. To perform the study we utilize the ground data from North-East Asian ionospheric and magnetic observatories (60-72°N, 88-152°E) and in situ measurements from LANL, GOES, Geotail and ACE satellites. The comparative analysis of ionospheric, magnetospheric and heliospheric disturbances shows that the interaction of the magnetosphere with heavily compressed solar wind and interplanetary magnetic field caused the initial phase of the magnetic storm. It was accompanied by the intense sporadic E and F2 layers and the total black-out in the nocturnal subauroral ionosphere. During the storm main phase, LANL-97A, LANL 1994_084, LANL 1989-046 and GOES_11 satellites registered a compression of the dayside magnetosphere up to their orbits. In the morning-noon sector the compression was accompanied by an absence of reflections from ionosphere over subauroral ionospheric station Zhigansk (66.8°N, 123.3°E), and a drastic decrease in the F2 layer critical frequency (foF2) up to 54% of the quite one over subauroral Yakutsk station (62°N, 129.7°E). At the end of the main phase, these stations registered a sharp foF2 increase in the afternoon sector. At Yakutsk the peak foF2 was 1.9 time higher than the undisturbed one. The mentioned ionospheric disturbances occurred simultaneously with changes in the temperature, density and temperature anisotropy of particles at geosynchronous orbit, registered by the LANL-97A satellite nearby the meridian of ionospheric and magnetic measurements. The whole complex of disturbances may be caused by radial displacement of the main magnetospheric domains (magnetopause, cusp/cleft, plasma sheet) with respect to the observation points, caused by changes in the solar wind dynamic pressure, the field of magnetospheric convection, and rotation of the Earth.

  3. On the Symmetry of Ionospheric Polar Cap Patch Exits Around Magnetic Midnight

    NASA Astrophysics Data System (ADS)

    Moen, J. I.; Hosokawa, K.; Gulbrandsen, N.; Clausen, L.

    2014-12-01

    We present continuous observations of polar cap patches exiting the polar cap ionosphere into the night time auoral oval. Satellite images of the auroral oval and all-sky camera observations of 630.0 nm airglow patches superimposed onto SuperDARN convection maps, reveals a detailed picture on how patches exiting the polar cap and return to the dayside at night, on both the dusk convection cell and the dawn convection cell. We also present eight years of statistics demonstrating that the MLT distribution of patch exits are marginally affected by the IMF BY polarity 3-4 hours around midnight. Synthesizing our observations with previous results there are two, possibly related, explanations to why patches populate both convection cells almost symmetrically. i) Intake of patch material occur on both convection cells for both IMF BY polarities. ii) According to the patch formation model by Lockwood and Carlson et al. [1992] the excitation of flow associated with transient dayside reconnection produces cigar-shaped patches stretching across both the morning and the evening convection cells. Applying the dynamic polar cap flow model by Cowley and Lockwood [1992], we suggest that dawn-dusk elongated patches may be torn apart at night when they are grabbed by transient tail reconnection. The associated twin cell flow disturbance expanding from the reconnection region will divert plasma towards dawn and dusk. This may explain the observed exits on both convection cells.

  4. Physical Processes for Driving Ionospheric Outflows in Global Simulations

    NASA Technical Reports Server (NTRS)

    Moore, Thomas Earle; Strangeway, Robert J.

    2009-01-01

    We review and assess the importance of processes thought to drive ionospheric outflows, linking them as appropriate to the solar wind and interplanetary magnetic field, and to the spatial and temporal distribution of their magnetospheric internal responses. These begin with the diffuse effects of photoionization and thermal equilibrium of the ionospheric topside, enhancing Jeans' escape, with ambipolar diffusion and acceleration. Auroral outflows begin with dayside reconnexion and resultant field-aligned currents and driven convection. These produce plasmaspheric plumes, collisional heating and wave-particle interactions, centrifugal acceleration, and auroral acceleration by parallel electric fields, including enhanced ambipolar fields from electron heating by precipitating particles. Observations and simulations show that solar wind energy dissipation into the atmosphere is concentrated by the geomagnetic field into auroral regions with an amplification factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Internal plasmas thus enable electromagnetic driving via coupling to the plasma, neutral gas and by extension, the entire body " We assess the Importance of each of these processes in terms of local escape flux production as well as global outflow, and suggest methods for their implementation within multispecies global simulation codes. We complete 'he survey with an assessment of outstanding obstacles to this objective.

  5. Earth Planets Space, 64, 113120, 2012 Upper ionosphere of Mars is not axially symmetrical

    E-print Network

    Gurnett, Donald A.

    Earth Planets Space, 64, 113­120, 2012 Upper ionosphere of Mars is not axially symmetrical E ionosphere (h 400 km) is strongly azimuthally asymmetrical. There are several factors, e.g., the crustal to formation of ionospheric swells and valleys. It is shown that expansion of the ionospheric plasma along

  6. Ion Escape from the Ionosphere of Titan

    NASA Technical Reports Server (NTRS)

    Hartle, R.; Sittler, E.; Lipatov, A.

    2008-01-01

    Ions have been observed to flow away from Titan along its induced magnetic tail by the Plasma Science Instrument (PLS) on Voyager 1 and the Cassini Plasma Spectrometer (CAPS) on Cassini. In both cases, the ions have been inferred to be of ionospheric origin. Recent plasma measurements made at another unmagnetized body, Venus, have also observed similar flow in its magnetic tail. Much earlier, the possibility of such flow was inferred when ionospheric measurements made from the Pioneer Venus Orbiter (PVO) were used to derive upward flow and acceleration of H(+), D(+) and O(+) within the nightside ionosphere of Venus. The measurements revealed that the polarization electric field in the ionosphere produced the principal upward force on these light ions. The resulting vertical flow of H(+) and D(+) was found to be the dominant escape mechanism of hydrogen and deuterium, corresponding to loss rates consistent with large oceans in early Venus. Other electrodynamic forces were unimportant because the plasma beta in the nightside ionosphere of Venus is much greater than one. Although the plasma beta is also greater than one on Titan, ion acceleration is expected to be more complex, especially because the subsolar point and the subflow points can be 180 degrees apart. Following what we learned at Venus, upward acceleration of light ions by the polarization electric field opposing gravity in the ionosphere of Titan will be described. Additional electrodynamic forces resulting from the interaction of Saturn's magnetosphere with Titan's ionosphere will be examined using a recent hybrid model.

  7. Topside Ionospheric Sounder for CubeSats

    NASA Astrophysics Data System (ADS)

    Swenson, C.; Pratt, J.; Fish, C. S.; Winkler, C.; Pilinski, M.; Azeem, I.; Crowley, G.; Jeppesen, M.; Martineau, R.

    2014-12-01

    This presentation will outline the design of a Topside Ionospheric Sounder (TIS) for CubeSats. In the same way that an ionosonde measures the ionospheric profile from the ground, a Topside Sounder measures the ionospheric profile from a location above the F-region peak. The TIS will address the need for increased space situational awareness and environmental monitoring by estimating electron density profiles in the topside of the ionosphere. The TIS will measure topside electron density profiles for plasma frequencies ranging from 0.89 MHz to 28.4 MHz below the satellite altitude. The precision of the measurement will be 5% or 10,000 p/cm^3. The TIS average power consumption will be below 10 W and a mass of less than 10 kg, so it is appropriate for a 6U Cubesat (or multiple of that size). The sounder will operate via a transmitted frequency sweep across the desired plasma frequencies which, upon reception, can be differenced to determine range and density information of the topside ionosphere. The velocity of the spacecraft necessitates careful balancing of range resolution and frequency knowledge requirements as well as novel processing techniques to correctly associate the return signal with the correct plasma frequency. TIS is being designed to provide a low cost, low mass spacecraft that can provide accurate topside profiles of the ionospheric electron density in order to further understanding of ionospheric structure and dynamic processes in the ionosphere.

  8. MarsCAT: Mars Array of ionospheric Research Satellites using the CubeSat Ambipolar Thruster

    NASA Astrophysics Data System (ADS)

    Bering, Edgar Andrew; Pinsky, Lawrence S.; Li, Liming; Jackson, David; Chen, Ji; Reed, Helen; Moldwin, Mark; Kasper, Justin; Sheehan, J. P.; Forbes, James Richard; Heine, Thomas; Case, Anthony; Stevens, Michael; Sibeck, David G.

    2015-11-01

    The MarsCAT (Mars Array of ionospheric Research Satellites using the CubeSat Ambipolar Thruster) Mission is a two 6U CubeSat mission to study the ionosphere of Mars proposed for the NASA SIMPLeX opportunity. The mission will investigate the plasma and magnetic structure of the Martian ionosphere, including transient plasma structures, magnetic field structure and dynamics, and energetic particle activity. The transit plan calls for a piggy back ride with Mars 2020 using a CAT burn for MOI, the first demonstration of CubeSat propulsion for interplanetary travel. MarsCAT will make correlated multipoint studies of the ionosphere and magnetic field of Mars. Specifically, the two spacecraft will make in situ observations of the plasma density, temperature, and convection in the ionosphere of Mars. They will also make total electron content measurements along the line of sight between the two spacecraft and simultaneous 3-axis local magnetic field measurements in two locations. Additionally, MarsCAT will demonstrate the performance of new CubeSat telemetry antennas designed at the University of Houston that are designed to be low profile, rugged, and with a higher gain than conventional monopole (whip) antennas. The two MarsCAT CubeSats will have five science instruments: a 3-axis DC magnetometer, adouble-Langmuir probe, a Faraday cup, a solid state energetic particle detector (Science Enhancement Option), and interspacecraft total electron content radio occulation experiment. The MarsCAT spacecraft will be solar powered and equipped with a CAT thruster that can provide up to 4.8 km/s of delta-V, which is sufficient to achieve Mars orbit using the Mars 2020 piggyback. They have an active attitude control system, using a sun sensor and flight-proven star tracker for determination, and momentum wheels for 3-axis attitude control.

  9. Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets

    NASA Astrophysics Data System (ADS)

    Lindsay, Alexander; Anderson, Carly; Slikboer, Elmar; Shannon, Steven; Graves, David

    2015-10-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 ? m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results from this study include the presence of a 10 K temperature drop in the gas boundary layer adjacent to the interface that arises from convective cooling. Though the temperature magnitudes may vary among atmospheric discharge types (different amounts of plasma-gas heating), this relative difference between gas and liquid bulk temperatures is expected to be present for any system in which convection is significant. Accounting for the resulting difference between gas and liquid bulk temperatures has a significant impact on reaction kinetics; factor of two changes in terminal aqueous species concentrations like H2O2, NO2- , and NO3- are observed in this study if the effect of evaporative cooling is not included.

  10. Low- and mid-latitude ionospheric electric fields during the January 1984 GISMOS campaign

    NASA Technical Reports Server (NTRS)

    Fejer, B. G.; Kelley, M. C.; Senior, C.; De La Beaujardiere, O.; Lepping, R.

    1990-01-01

    The electrical coupling between the high-, middle-, and low-latitude ionospheres during January 17-19, 1984 is examined, using interplanetary and high-latitude magnetic field data together with F region plasma drift measurements from the EISCAT, Sondre Stromfjord, Millstone Hill, Saint-Santin, Arecibo, and Jicamarca incoherent scatter radars. The penetration both the zonal and meridional electric field components of high-latitude origin into the low-latitude and the equatorial ionospheres are studied. The observations in the postmidnight sector are used to compare the longitudinal variations of the zonal perturbation electric field with predictions made from global convection models. The results show that the meridional electric field perturbations are considerably more attenuated with decreasing latitude than the zonal fluctuations. It is concluded that variations in the meridional electric field at low latitudes are largely due to dynamo effects.

  11. Kinetic and thermodynamic properties of a convecting plasma in a two-dimensional dipole field

    NASA Technical Reports Server (NTRS)

    Huang, T. S.; Birmingham, T. J.

    1994-01-01

    Charged particle guiding center motion is considered in the magnetic field of a two-dimensional ('line') dipole on which is superimposed a small, static, perpendicular electric field. The parallel equation of motion is that of a simple harmonic oscillator for cos theta, the cosine of magnetic colatitude theta. Equations for the perpendicular electric and magnetic drifts are derived as well as their bounce-averaged forms. The latter are solved to yield a bounce-averaged guiding center trajectory, which is the same as that obtained from conversation of magnetic moment mu, longitudinal invariant J, and total (kinetic plus electrostatic) energy K. The algebraic simplicity of the trajectory equations is also manifest in the forms of the invariants. An interesting result is that guiding centers drift in such a way that they preserve the values of their equatorial pitch angles and (equivalently) mirror latitudes. The most general Maxwellian form of the equilibrium one-particle distribution function f is constructed from the invariants, and spatially varying density and pressure moments, parallel and perpendicular to the magnetic field, are identified. Much of the paper deals with the more restricted problem in which f is specified as a bi-Maxwellian over a straight line of finite length in the equatorial plane of the dipole and perpendicular to field lines. This might be thought of as specifying a cross-tail ion injection source; our formalism then describes the subsequent spatial development. The distribution away from the source is a scaled bi-Maxwellian but one that is cut off at large and small kinetic energies, which depend on position. Density and pressure components are reduced from the values they would have if the total content of individual flux tubes convected intact. The equatorial and meridional variations of density and pressure components are examined and compared systematically for the isotropic and highly anisotropic situations. There appears to be little qualitative difference due to anisotropy. An anisotropy measure is defined, and its spatial variation determined as a signature of possible MHD instability. Extreme values are found, larger than at the source, but the plasma beta in such regions is probably so low as to render the effect inconsequential energetically. Finally, the possible consequence of 'nonadia- batic' pressure profiles on electrostatic interchanges is considered, and a boundary delineating stabilizing and destabilizing regions determined.

  12. A test of the magnetospheric source of traveling convection vortices

    NASA Astrophysics Data System (ADS)

    Lam, M. M.; Rodger, A. S.

    2004-02-01

    Traveling convection vortices (TCVs) are a powerful tool for probing the nature of the coupling between the solar wind, the magnetosphere, and the ionosphere. There is no reliable model of the plasma concentration in the magnetosphere, resulting in uncertainties about the factors controlling the scale size, the motion, and the numbers of field-aligned currents associated with TCV events. There is also uncertainty about whether TCV generation is current driven, voltage driven, or even driven by some more complex source. We use conjugate ground-based magnetometer data from the Greenland magnetometer chain and Antarctica to test the nature of the magnetospheric source of 18 TCV events associated with changes in the magnetopause dynamic pressure. This is achieved by statistically comparing two groups of TCV events: for one group the conjugate ionospheres are of similar conductivity, and for the other group the conductivities of the conjugate ionospheres differ by an order of magnitude. Statistically, we find that conjugate TCV events are of similar intensity in both hemispheres regardless of any difference in conductivity between the two hemispheres. We propose that this is evidence in favor of a constant current source for TCVs where the amplitude of a TCV is controlled by the local plasma concentration, the magnetic field strength, and the acceleration of the plasma.

  13. Impact of ns-DBD plasma actuation on the boundary layer transition using convective heat transfer measurements

    NASA Astrophysics Data System (ADS)

    Ullmer, Dirk; Peschke, Philip; Terzis, Alexandros; Ott, Peter; Weigand, Bernhard

    2015-09-01

    This paper demonstrates that the impact of nanosecond pulsed dielectric barrier discharge (ns-DBD) actuators on the structure of the boundary layer can be investigated using quantitative convective heat transfer measurements. For the experiments, the flow over a flat plate with a C4 leading edge thickness distribution was examined at low speed incompressible flow (6.6-11.5 m s-1). An ns-DBD plasma actuator was mounted 5?mm downstream of the leading edge and several experiments were conducted giving particular emphasis on the effect of actuation frequency and the freestream velocity. Local heat transfer distributions were measured using the transient liquid crystal technique with and without plasma activated. As a result, any effect of plasma on the structure of the boundary layer is interpreted by local heat transfer coefficient distributions which are compared with laminar and turbulent boundary layer correlations. The heat transfer results, which are also confirmed by hot-wire measurements, show the considerable effect of the actuation frequency on the location of the transition point elucidating that liquid crystal thermography is a promising method for investigating plasma-flow interactions very close to the wall. Additionally, the hot-wire measurements indicate possible velocity oscillations in the near wall flow due to plasma activation.

  14. Disturbance Effects Seen in the Midlatitude Ionosphere with SuperDARN

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.; Baker, J. B. H.; Bristow, W. A.; Shepherd, S. G.; Miller, E. S.

    2014-12-01

    With the construction of the first midlatitude SuperDARN radar at NASA Wallops Flight Facility in 2005 it quickly became apparent that much activity can be observed in the midlatitude ionosphere even outside of large storm intervals. Over the last five years a chain of SuperDARN radars has been deployed at midlatitudes under the NSF Mid-Sized Infrastructure program that extends across the western hemisphere as far as east Asia. The new radars are providing unprecedented large-scale views of disturbance effects such as the storm-time expansion of auroral flows, subauroral polarization streams (SAPS), and travelling ionospheric disturbances (TIDs). When combined with large-scale mapping of GPS/TEC it is possible to observe directly the generation of plasma structures such as storm-enhanced density features (SEDs), tongues of ionization (TOIs), and polar cap patches, and to understand their dependence on the dynamic convection pattern reaching to the mid-latitude region. One unexpected result is the observation of backscatter from irregularities distributed throughout the quiet-time nightside subauroral ionosphere. This phenomenon gives us views of electric fields that are conjugate to the inner magnetosphere and also reveals the occurrence of large transients in the quiet-time subauroral electric fields. In this talk we summarize over the effects identified to date and discuss the insights gained in understanding the disturbed midlatitude ionosphere.

  15. Comparisons of DC Electric Field Measurements in the Ionosphere and Inner Magnetosphere Using Measurements from the SuperDARN Radars and the Van Allen Probes EFW Instrument

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J.; Kunduri, B.; Wygant, J. R.; Thaller, S. A.; Baker, J. B.; de Larquier, S.; Erickson, P. J.; Foster, J. C.; Clausen, L.; Wilder, F. D.; Shepherd, S. G.; Bristow, W. A.

    2013-12-01

    The SuperDARN radars cover large geographical regions in both hemispheres and provide excellent opportunities for making measurements of ionospheric convection in magnetically connected regions. The ionospheric footpoints of the Van Allen Probes when traced along magnetic field lines often fall into the fields-of-view of the new mid-latitude radars. The most favorable conjunctions take place on the nightside in the North American sector when the radars commonly observe subauroral plasma drifts that are conjugate to the plasma boundary layer. The ionospheric electric fields exhibit structure and variability over wide ranges of spatial and temporal scales. The ground-based observations can be compared with measurements of dc electric fields at the positions of the Van Allen Probes spacecraft using data from the Electric Fields and Waves (EFW) instrument for insight into the coupling between the magnetosphere and ionosphere and the dependencies on scale lengths. In this talk we report on a survey of conjunctive periods and describe the extent to which the dc electric fields are found to be conjugate between the inner magnetosphere and ionosphere. We discuss the implications of apparent non conjugacy in terms of coupling across various scale lengths, uncertainties in the field line mapping, and the effects of possible field-aligned potential drops.

  16. Ionospheric contribution to Saturn's inner plasmasphere Luke Moore and Michael Mendillo

    E-print Network

    Mendillo, Michael

    Ionospheric contribution to Saturn's inner plasmasphere Luke Moore and Michael Mendillo Center-dimensional Saturn thermosphere-ionosphere model are extended above the plasma exobase using the formalism on plasma in a rotating dipole field. The parameter space of ionospheric contributions to Saturn's inner

  17. Results of the first statistical study of pioneer Venus orbiter plasma observations in the distant Venus tail: Evidence for a hemispheric asymmetry in the pickup of ionospheric ions

    SciTech Connect

    Intriligator, D.S. )

    1989-02-01

    Pioneer Venus Orbiter plasma and magnetometer observations from the first nine tail seasons of crossings of the Venus wake are used to study ion pickup in the far wake of an unmagnetized object embedded in the solar wind. This first statistical study treats all of the plasma spectra containing pickup ions in the vicinity of the Venus tail. The author finds a hemispheric asymmetry in the pickup of ionospheric ions, with approximately four times more O{sup +} events observed in the northern magnetic hemisphere (where Z{double prime} > O), i.e., the induced electric field points outward, (away from the ionopause boundary) than in the southern (Z{double prime} < O) magnetic hemisphere. Out of a total of 167 large O{sup +} events, 125, or 75%, occurred in the northern hemisphere when position is calculated in terms of Venus radii and 129 or 77% occurred in the northern hemisphere when position is expressed in gyroradii. This hemisphere asymmetry in ion pickup is consistent with the prediction of the Cloutier et al. (1974) mass loading model for Venusian ions above the ionopause boundary.

  18. Ionospheric redistribution during geomagnetic storms

    PubMed Central

    Immel, T J; Mannucci, A J

    2013-01-01

    [1]The abundance of plasma in the daytime ionosphere is often seen to grow greatly during geomagnetic storms. Recent reports suggest that the magnitude of the plasma density enhancement depends on the UT of storm onset. This possibility is investigated over a 7year period using global maps of ionospheric total electron content (TEC) produced at the Jet Propulsion Laboratory. The analysis confirms that the American sector exhibits, on average, larger storm time enhancement in ionospheric plasma content, up to 50% in the afternoon middle-latitude region and 30% in the vicinity of the high-latitude auroral cusp, with largest effect in the Southern Hemisphere. We investigate whether this effect is related to the magnitude of the causative magnetic storms. Using the same advanced Dst index employed to sort the TEC maps into quiet and active (Dstionospheric storm response on the measured strength of the terrestrial ring current, possibly connected through UT-dependent modulation of ion outflow. PMID:26167429

  19. Ionospheric control of the magnetospheric configuration: Thermospheric neutral winds

    E-print Network

    De Zeeuw, Darren L.

    of typically a few hours owing to inertia of the neutrals. In turn, the neutrals, through the ionospheric wind dynamo mechanism, can generate an electric field that has a tendency towards causing the ions to move the magneto- spheric convection. The inertia of the neutrals can help maintain ion convection even when

  20. Current-driven plasma waves in the Versatile Toroidal Facility (VTF)

    SciTech Connect

    Moriarty, D.T.; Lee, M.C.; Riddolls, R.J.; Murphy, S.M.; Rowlands, M.J.

    1995-12-31

    The authors have been conducting laboratory experiments to investigate plasma turbulence that can affect the propagation of electromagnetic waves. This work is aimed at simulating the ionospheric plasma turbulence and cross-checking the radar experiments at Arecibo, Puerto Rico. The large toroidal plasma device, called the Versatile Toroidal Facility (VTF), can produce a radially inhomogeneous plasma imposed in a helically shaped magnetic field. VTF plasma has a sharp density gradient and an intense magnetic field-aligned current, simulating well the plasma environment in the auroral ionosphere. A broad spectrum of plasma waves can be exited in VTF by the injected microwaves and electron beams. In this paper, the authors discuss the excitation of low-frequency plasma waves driven by electric currents, including ion acoustic waves and current-convective modes. A good agreement has been found between the experimental results and the theories developed for the VTF plasmas. However, their experimental results are quite different from those obtained in the rocket/space shuttle experiments. The difference in the laboratory experiments and space experiments arise form two facts. One is that the plasma inhomogeneity does not play a significant role in the space experiments. The other is that the electron beam injected in the space experiments does not produce a drifting Maxwellian plasma as seen in the VTF plasmas. The contrast between the VTF experiments and the active space experiments show that VTF can adequately simulate the ionospheric plasma turbulence and complement the rocket/space shuttle experiments.

  1. A dynamical model of highlatitude convection derived from SuperDARN plasma drift measurements

    E-print Network

    Shepherd, Simon

    sufficient spatial coverage to define the complete pattern of convection. In these cases, an empirical model; Ruohoniemi et al., 2002; Lester et al., 2006] have led to the use of the IMF clock angle, the IMF transverse incoherent backscatter radars [Foster et al., 1986; Holt et al., 1987; Zhang et al., 2007] and coherent

  2. Ionospheric modification by rocket effluents. Final report

    SciTech Connect

    Bernhardt, P.A.; Price, K.M.; da Rosa, A.V.

    1980-06-01

    This report describes experimental and theoretical studies related to ionospheric disturbances produced by rocket exhaust vapors. The purpose of our research was to estimate the ionospheric effects of the rocket launches which will be required to place the Satellite Power System (SPS) in operation. During the past year, we have developed computational tools for numerical simulation of ionospheric changes produced by the injection of rocket exhaust vapors. The theoretical work has dealt with (1) the limitations imposed by condensation phenomena in rocket exhaust; (2) complete modeling of the ionospheric depletion process including neutral gas dynamics, plasma physics, chemistry and thermal processes; and (3) the influence of the modified ionosphere on radio wave propagation. We are also reporting on electron content measurements made during the launch of HEAO-C on Sept. 20, 1979. We conclude by suggesting future experiments and areas for future research.

  3. submitted to Journal of Geophysical Research 2013JA018867 Estimating the Effects of Ionospheric Plasma on Solar-Wind/Magnetosphere

    E-print Network

    Lotko, William

    Plasma on Solar-Wind/Magnetosphere Coupling Via Mass Loading of Dayside Reconnection: Ion Laboratory Abstract: Estimates are calculated for the storm-time reduction of solar- wind/magnetosphere coupling by the mass density m of the magnetospheric plasma. Based on the application of the Cassak

  4. Electron and Ion Acceleration in the Unstable Auroral Ionosphere C. C. Chaston1,, J. W. Bonnell1

    E-print Network

    Bonnell, John W.

    Electron and Ion Acceleration in the Unstable Auroral Ionosphere C. C. Chaston1,Ã, J. W. Bonnell1 the ionosphere to secondary Alfve´ n waves via the well known ionospheric feedback instability. From spacecraft observations by others. 1. Introduction Observations of plasmas above the auroral ionosphere invariably contain

  5. A two-dimensional theory of plasma contactor clouds used in the ionosphere with an electrodynamic tether

    NASA Technical Reports Server (NTRS)

    Hastings, D. E.; Gatsonis, N. A.; Rivas, D. A.

    1988-01-01

    Plasma contactors have been proposed as a means of making good electrical contact between biased surfaces such as found at the ends of an electrodynamic tether and the space environment. A plasma contactor is a plasma source which emits a plasma cloud which facilitates the electrical connection. The physics of this plasma cloud is investigated for contactors used as electron collectors and it is shown that contactor clouds in space will consist of a spherical core possibly containing a shock wave. Outside of the core the cloud will expand anisotropically across the magnetic field leading to a turbulent cigar shape structure along the field. This outer region is itself divided into two regions by the ion response to the electric field. A two-dimensional theory of the motion of the cloud across the magnetic field is developed. The current voltage characteristic of an Argon plasma contactor cloud is estimated for several ion currents in the range of 1-100 Amperes. It is shown that small ion current contactors are more efficient than large ion current contactors. This suggests that if a plasma contactor is used on an electrodynamic tether then a miltiple tether array will be more efficient than a single tether.

  6. Earthquake-Ionosphere Coupling Processes

    NASA Astrophysics Data System (ADS)

    Kamogawa, Masashi

    After a giant earthquake (EQ), acoustic and gravity waves are excited by the displacement of land and sea surface, propagate through atmosphere, and then reach thermosphere, which causes ionospheric disturbances. This phenomenon was detected first by ionosonde and by HF Doppler sounderin the 1964 M9.2 Great Alaskan EQ. Developing Global Positioning System (GPS), seismogenic ionospheric disturbance detected by total electron content (TEC) measurement has been reported. A value of TEC is estimated by the phase difference between two different carrier frequencies through the propagation in the dispersive ionospheric plasma. The variation of TEC is mostly similar to that of F-region plasma. Acoustic-gravity waves triggered by an earthquake [Heki and Ping, EPSL, 2005; Liu et al., JGR, 2010] and a tsunami [Artu et al., GJI, 2005; Liu et al., JGR, 2006; Rolland, GRL, 2010] disturb the ionosphere and travel in the ionosphere. Besides the traveling ionospheric disturbances, ionospheric disturbances excited by Rayleigh waves [Ducic et al, GRL, 2003; Liu et al., GRL, 2006] as well as post-seismic 4-minute monoperiodic atmospheric resonances [Choosakul et al., JGR, 2009] have been observed after the large earthquakes. Since GPS Earth Observation Network System (GEONET) with more than 1200 GPS receiving points in Japan is a dense GPS network, seismogenic ionospheric disturbance is spatially observed. In particular, the seismogenic ionospheric disturbance caused by the M9.0 off the Pacific coast of Tohoku EQ (henceforth the Tohoku EQ) on 11 March 2011 was clearly observed. Approximately 9 minutes after the mainshock, acoustic waves which propagated radially emitted from the tsunami source area were observed through the TEC measurement (e. g., Liu et al. [JGR, 2011]). Moreover, there was a depression of TEC lasting for several tens of minutes after a huge earthquake, which was a large-scale phenomenon extending to a radius of a few hundred kilometers. This TEC depression may be an ionospheric phenomenon attributed to tsunami, termed tsunamigenic ionospheric hole (TIH) [Kakinami and Kamogwa et al., GRL, 2012]. After the TEC depression accompanying a monoperiodic variation with approximately 4-minute period as an acoustic resonance between the ionosphere and the solid earth, the TIH gradually recovered. In addition, geomagnetic pulsations with the periods of 150, 180 and 210 seconds were observed on the ground in Japan approximately 5 minutes after the mainshock. Since the variation with the period of 180 seconds was simultaneously detected at the magnetic conjugate of points of Japan, namely Australia, field aligned currents along the magnetic field line were excited. The field aligned currents might be excited due to E and F region dynamo current caused by acoustic waves originating from the tsunami. This result implies that a large earthquake generates seismogenic field aligned currents. Furthermore, monoperiodical geomagnetic oscillation pointing to the epicenter of which velocity corresponds to Rayleigh waves occurs. This may occur due to seismogenic arc-current in E region. Removing such magnetic oscillations from the observed data, clear tsunami dynamo effect was found. This result implies that a large EQ generates seismogenic field aligned currents, seismogenic arc-current and tsunami dynamo current which disturb geomagnetic field. Thus, we found the complex coupling process between a large EQ and an ionosphere from the results of Tohoku EQ.

  7. Computer study of convection of weakly ionized plasma in a nonuniform magnetic field.

    NASA Technical Reports Server (NTRS)

    Shiau, J. N.

    1972-01-01

    A weakly ionized plasma in a strong and nonuniform magnetic field exhibits an instability analogous to the flute instability in a fully ionized plasma. The instability sets in at a critical magnetic field. To study the final state of the plasma after the onset of the instability, the plasma equations are integrated numerically assuming a certain initial spectrum of small disturbances. In the regime studied, numerical results indicate a final steadily oscillating state consisting of a single finite amplitude mode together with a time-independent modification of the original equilibrium. These results agree with the analytic results obtained by Simon in the slightly supercritical regime. As the magnetic field is increased further, the wavelength of the final oscillation becomes nonunique. There exists a subinterval in the unstable wave band. Final stable oscillation with a wavelength in this subinterval can be established if the initial disturbance has a sufficiently strong component at the particular wavelength.

  8. IMF-By dependence of transient ionospheric flow perturbation associated with sudden impulses: SuperDARN observations

    NASA Astrophysics Data System (ADS)

    Hori, Tomoaki; Shinbori, Atsuki; Fujita, Shigeru; Nishitani, Nozomu

    2015-12-01

    A statistical study using a large dataset of Super Dual Auroral Radar Network (SuperDARN) observations is conducted for transient ionospheric plasma flows associated with sudden impulses (SI) recorded on ground magnetic field. The global structure of twin vortex-like ionospheric flows is found to be consistent with the twin vortices of ionospheric Hall current deduced by the past geomagnetic field observations. An interesting feature, which is focused on in this study, is that the flow structures show a dawn-dusk asymmetry depending on the combination of the polarity of SI and interplanetary magnetic field (IMF)-By. Detailed statistics of the SuperDARN observations reveal that the dawn-dusk asymmetry of flow vortices due to IMF-By appears during negative SIs, while such asymmetric characteristics are not seen during positive SIs. On the basis of the upstream observations, we suggest that this particular dawn-dusk asymmetry is caused by the interaction between the pre-existing round convection cell and a pair of the transient convection vortices associated with SIs.

  9. Ionospheric plasma flow about a system of electrically biased flat plates. M.S. Thesis - Cleveland State Univ. Final Report

    NASA Technical Reports Server (NTRS)

    Herr, Joel L.

    1993-01-01

    The steady state interaction of two electrically biased parallel plates immersed in a flowing plasma characteristic of low earth orbit is studied numerically. Fluid equations are developed to describe the motion of the cold positively charged plasma ions, and are solved using finite-differences in two dimensions on a Cartesian grid. The behavior of the plasma electrons is assumed to be described by the Maxwell-Boltzmann distribution. Results are compared to an analytical and a particle simulation technique for a simplified flow geometry consisting of a single semi-infinite negatively biased plate. Comparison of the extent of the electrical disturbance into the flowing plasma and the magnitude of the current collected by the plate is very good. The interaction of two equally biased parallel plates is studied as a function of applied potential. The separation distance at which the current collected by either plate decreases by five and twenty percent is determined as a function of applied potential. The percent decreases were based on a non-interacting case. The decrease in overall current is caused by a decrease in ionic density in the region between the plates. As the separation between the plates decreases, the plates collect the ions at a faster rate than they are supplied to the middle region by the oncoming plasma flow. The docking of spacecraft in orbit is simulated by moving two plates of unequal potential toward one another in a quasi-static manner. One plate is held at a large negative potential while the other floats electrically in the resulting potential field. It is found that the floating plate does not charge continuously negative as it approaches the other more negatively biased plate. Instead, it charges more and then less negative as ionic current decreases and then increases respectively upon approach. When the two plates come into contact, it is expected that the electrically floating plate will charge rapidly negative to a potential near that of the other plate.

  10. Role of stochasticity in turbulence and convective intermittent transport at the scrape off layer of Ohmic plasma in QUEST

    SciTech Connect

    Banerjee, Santanu Ishiguro, M.; Tashima, S.; Mishra, K.; Zushi, H.; Hanada, K.; Nakamura, K.; Idei, H.; Hasegawa, M.; Fujisawa, A.; Nagashima, Y.; Matsuoka, K.; Nishino, N.; Liu, H. Q.

    2014-07-15

    Statistical features of fluctuations are investigated using the fast camera imaging technique in the scrape of layer (SOL) of electron cyclotron resonance heated Ohmic plasma. Fluctuations in the SOL towards low field side are dominated by coherent convective structures (blobs). Two dimensional structures of the higher order moments (skewness s and kurtosis k) representing the shape of probability density function (PDF) are studied. s and k are seen to be functions of the magnetic field lines. s and k are consistently higher towards the bottom half of the vessel in the SOL showing the blob trajectory along the field lines from the top towards bottom of the vessel. Parabolic relation (k=As{sup 2}+C) is observed between s and k near the plasma boundary, featuring steep density gradient region and at the far SOL. The coefficient A, obtained experimentally, indicates a shift of prominence from pure drift-wave instabilities towards fully developed turbulence. Numerical coefficients characterizing the Pearson system are derived which demonstrates the progressive deviation of the PDF from Gaussian towards gamma from the density gradient region, towards the far SOL. Based on a simple stochastic differential equation, a direct correspondence between the multiplicative noise amplitude, increased intermittency, and hence change in PDF is discussed.

  11. Formation of polar ionospheric tongue of ionization during minor geomagnetic disturbed conditions

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Nakamura, Takuji; Liu, Libo; Wang, Wenbin; Balan, Nanan; Nishiyama, Takanori; Hairston, Marc R.; Thomas, E. G.

    2015-08-01

    Previous investigations of ionospheric storm-enhanced density (SED) and tongue of ionization (TOI) focused mostly on the behavior of TOI during intense geomagnetic storms. Little attention has been paid to the spatial and temporal variations of TOI during weak to moderate geomagnetic disturbed conditions. In this paper we investigate the source and development of TOI during a moderate geomagnetic storm on 14 October 2012. Multi-instrumental observations including GPS total electron content (TEC), Defense Meteorological Satellite Program (DMSP) in situ measured total ion concentration and ion drift velocity, SuperDARN measured polar ion convection patterns, and electron density profiles from the Poker Flat Incoherent Scatter Radar (PFISR) have been utilized in the current analysis. GPS TEC maps show salient TOI structures persisting for about 5 h over high latitudes of North America on 14 October 2012 in the later recovery phase of the storm when the magnitudes of IMF By and Bz were less than 5 nT. The PFISR electron density profiles indicate that the extra ionization for TEC enhancements mainly occurred in the topside ionosphere with no obvious changes in the bottomside ionosphere and vertical plasma drifts. Additionally, there were no signatures of penetration electric fields in the equatorial electrojet data and upward ion drifts at high latitudes. At the same time, strong subauroral polarization streams with ion drift speeds exceeding 2.5 km/s carried sunward fluxes and migrated toward lower latitudes for about 5° based on the DMSP cross-track drift measurements. Based on those measurements, we postulate that the combined effects of initial build-up of ionization at midlatitudes through daytime production of ionization and equatorward (or less poleward than normal daytime) neutral wind reducing downward diffusion along the inclined filed lines, and an expanded polar ion convection pattern and its associated horizontal plasma transport are important in the formation of the TOI.

  12. Dynamical and magnetic field time constants for Titan's ionosphere: Empirical estimates and comparisons with Venus

    E-print Network

    California at Berkeley, University of

    Dynamical and magnetic field time constants for Titan's ionosphere: Empirical estimates August 2010. [1] Plasma in Titan's ionosphere flows in response to forcing from thermal pressure to the ionospheric dynamics by using data from Cassini instruments to estimate pressures, flow speeds, and time

  13. TOMOGRAPHY OF PLASMA FLOWS IN THE UPPER SOLAR CONVECTION ZONE USING TIME-DISTANCE INVERSION COMBINING RIDGE AND PHASE-SPEED FILTERING

    SciTech Connect

    Svanda, Michal

    2013-09-20

    The consistency of time-distance inversions for horizontal components of the plasma flow on supergranular scales in the upper solar convection zone is checked by comparing the results derived using two k-{omega} filtering procedures-ridge filtering and phase-speed filtering-commonly used in time-distance helioseismology. I show that both approaches result in similar flow estimates when finite-frequency sensitivity kernels are used. I further demonstrate that the performance of the inversion improves (in terms of a simultaneously better averaging kernel and a lower noise level) when the two approaches are combined together in one inversion. Using the combined inversion, I invert for horizontal flows in the upper 10 Mm of the solar convection zone. The flows connected with supergranulation seem to be coherent only for the top {approx}5 Mm; deeper down there is a hint of change of the convection scales toward structures larger than supergranules.

  14. 25 Years of Ionospheric Modification with the Space Shuttle

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.

    2011-12-01

    The ionosphere is a low temperature (0.1 eV) plasma layer that surrounds the Earth and affects a wide range of radio systems that involve communications, navigation, and radar. The unmodified ionosphere is in an equilibrium state defined by the balance of production, transport and loss of plasma. The modified ionosphere responds to neutral gas injections with (1) the generation and propagation of plasma waves and (2) the production of plasma irregularities. A single 10 second burn of the on-orbit engines on the Space Shuttle injects 1 GJoule of energy into the upper atmosphere. Injection of hypersonic exhaust vapors from rocket engines pushes the ionosphere out of its equilibrium to yield 20 eV ion beams, launch both neutral and plasma waves, and trigger several instability processes. A wide range of optical emissions, plasma density fluctuations, enhanced temperatures, and changes in composition may be detected during these experiments. Multiple sensors such as instrumented satellites, ground radars, and ground optical instruments are used to determine the extent and lifetime for ionospheric modification. This presentation will focus on experimental data and theoretical discussions of the Space Shuttle Orbital Maneuver Subsystem (OMS) Engines used to modify the upper atmosphere from 1985 to the present. Artificial disturbances in the ionosphere produced by OMS burns have two applications. First, the artificial modification of the ionosphere can provide some control on the radio propagation environment. Second, the man-made disturbances are being produced as proxies to natural disturbances.

  15. Effects of modeled ionospheric conductance and electron loss on self-consistent ring current simulations during the 5-7 April 2010 storm

    NASA Astrophysics Data System (ADS)

    Chen, Margaret W.; Lemon, Colby L.; Guild, Timothy B.; Keesee, Amy M.; Lui, Anthony; Goldstein, Jerry; Rodriguez, Juan V.; Anderson, Phillip C.

    2015-07-01

    We investigate the effects of different ionospheric conductance and electron loss models on ring current dynamics during the large magnetic storm of 5-7 April 2010 using the magnetically and electrically self-consistent Rice Convection Model-Equilibrium (RCM-E). The time-varying RCM-E proton distribution boundary conditions are specified using a combination of TWINS 1 and 2 ion temperature maps and in situ THEMIS and GOES spectral measurements in the plasma sheet. With strong electron pitch-angle diffusion, the simulated equatorial ring current electron pressure is weak with (1) uniform conductance or (2) conductance based on parameters from the International Reference Ionosphere 2007 and the feedback of simulated precipitating electrons. With the Chen and Schulz electron loss model that includes strong diffusion in the plasma sheet and weak diffusion in the plasmasphere, the stormtime equatorial RCM-E electron pressure is enhanced in the inner magnetosphere from midnight through dawn to the dayside. The enhancement extends to lower geocentric distance with uniform conductance than with the more realistic ionospheric conductance model due to electric field shielding effects. Electron losses affect not only the simulated electron pressures, but through magnetospheric-ionospheric coupling, the redistributed electric and magnetic fields affect the ring current proton transport. The simulations reproduced features observed by in situ magnetic field and proton flux data, and TWINS global ENA observations. The simulated stormtime ring current energization can vary significantly depending on the ionospheric conductance and electron loss model used. Thus, it is important to incorporate realistic descriptions of ionospheric conductance and electron losses in inner magnetospheric models.

  16. On a possible seismomagnetic effect in the topside ionosphere

    NASA Astrophysics Data System (ADS)

    Hegai, V. V.; Kim, V. P.; Liu, J. Y.

    2015-10-01

    In this paper we present the results of the computation of the electric and magnetic fields produced in the ionosphere by the near-earth seismogenic disturbance in the vertical atmospheric electrostatic field under different ionospheric conditions. It is shown that in the nighttime ionosphere during solar minimum and inside large-scale plasma bubbles, the magnitude of the transverse electric field can attain ?0.2 and 1.0 mV/m, respectively. The seismomagnetic effect with the magnitude of ?13 pT is predicted in the topside daytime and nighttime ionosphere at any solar activity.

  17. Plasma instabilities in the high-latitude E region induced by high-power radio waves

    SciTech Connect

    Chaturvedi, P.K.; Ossakow, S.L. )

    1990-09-01

    The effect of a high-frequency powerful pump wave on high-latitude E region low-frequency plasma instabilities is theoretically considered. The growth rates and threshold criteria are calculated for instabilities associated with the electrojet (Farley-Buneman, gradient drift) and with higher-altitude parallel currents (ion acoustic, ion cyclotron, current convective). The results are discussed in the context of present ionospheric modification (heating) experiments.

  18. Magnetosphere sawtooth oscillations induced by ionospheric outflow.

    PubMed

    Brambles, O J; Lotko, W; Zhang, B; Wiltberger, M; Lyon, J; Strangeway, R J

    2011-06-01

    The sawtooth mode of convection of Earth's magnetosphere is a 2- to 4-hour planetary-scale oscillation powered by the solar wind-magnetosphere-ionosphere (SW-M-I) interaction. Using global simulations of geospace, we have shown that ionospheric O(+) outflows can generate sawtooth oscillations. As the outflowing ions fill the inner magnetosphere, their pressure distends the nightside magnetic field. When the outflow fluence exceeds a threshold, magnetic field tension cannot confine the accumulating fluid; an O(+)-rich plasmoid is ejected, and the field dipolarizes. Below the threshold, the magnetosphere undergoes quasi-steady convection. Repetition and the sawtooth period are controlled by the strength of the SW-M-I interaction, which regulates the outflow fluence. PMID:21636770

  19. Planetary atmospheres and ionospheres...

    E-print Network

    Withers, Paul

    Planetary atmospheres and ionospheres... How does a solar energetic particle event disrupt the ionosphere of Mars? Paul Withers withers@bu.edu BU Astronomy Symposium Boston, MA 2011.10.14 #12;What's going on? Katy Fallows ­ How does the lower ionosphere of Mars work? Zach Girazian ­ How does the main

  20. Ionospheric Correction Using Tomography

    E-print Network

    Stanford University

    Ionospheric Correction Using Tomography Andrew J. Hansen Todd Walter Per Enge Stanford University to the ight crew within six seconds. The ionosphere is the foremost impedi- ment to satisfying for estimat- ing the ionosphere in real-time. Previous research has established a connection between

  1. Observations of the magnetosphere and ionosphere by Dynamics Explorer satellite. VI - Observations of magnetospheric plasma waves by the DE-1

    NASA Astrophysics Data System (ADS)

    Ondoh, Tadanori; Nakamura, Yoshikatsu; Watanabe, Shigeaki; Aikyo, Kazuhiro; Sato, Masaki

    1987-12-01

    The results of the spectrum analyses of plasma wave electric field (650 Hz to 10 kHz) received from the DE-1 at the Kashima station (Japan) are discussed. The characteristics of chorus, narrow-band hiss, and whistler and ELF hiss observed in the plasmasphere by the DE-1 were found to be approximately the same as those of the corresponding radio emissions observed by the ISIS-1 and ISIS-2 satellites. Electron densities of 0.8-1.1/cu cm were estimated from the upper limit frequency of auroral hiss in the nightside high-latitude magnetosphere. DE-1 data on the lower limit frequency of the Z-mode waves suggest that the geomagnetic field lines in the nightside magnetosphere extend toward the geomagnetic tail. In the low latitudes of the nightside outer radiation zone, electrostatic bursts associated with narrow-band hiss around 1 kHz and those without whistler-mode waves were observed.

  2. By-controlled convection and field-aligned currents near midnight auroral oval for northward interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Taguchi, S.; Sugiura, M.; Iyemori, T.; Winningham, J. D.; Slavin, J. A.

    1994-01-01

    Using the Dynamics Explorer (DE) 2 magnetic and electric field and plasma data, B(sub y)- controlled convection and field-aligned currents in the midnight sector for northward interplanetary magnetic field (IMF) are examined. The results of an analysis of the electric field data show that when IMF is stable and when its magnitude is large, a coherent B(sub y)-controlled convection exists near the midnight auroral oval in the ionosphere having adequate conductivities. When B(sub y) is negative, the convection consists of a westward (eastward) plasma flow at the lower latitudes and an eastward (westward) plasma flow at the higher latitudes in the midnight sector in the northern (southern) ionosphere. When B(sub y) is positive, the flow directions are reversed. The distribution of the field-aligned currents associated with the B(sub y)-controlled convection, in most cases, shows a three-sheet structure. In accordance with the convection the directions of the three sheets are dependent on the sign of B(sub y). The location of disappearance of the precipitating intense electrons having energies of a few keV is close to the convection reversal surface. However, the more detailed relationship between the electron precipitation boundary and the convection reversal surface depends on the case. In some cases the precipitating electrons extend beyond the convection reversal surface, and in others the poleward boundary terminates at a latitude lower than the reversal surface. Previous studies suggest that the poleward boundary of the electrons having energies of a few keV is not necessarily coincident with an open/closed bounary. Thus the open/closed boundary may be at a latitude higher than the poleward boundary of the electron precipitation, or it may be at a latitude lower than the poleward boundary of the electron precipitation. We discuss relationships between the open/closed boundary and the convection reversal surface. When as a possible choice we adopt a view that the open/closed boundary agrees with the convection reversal surface, we can explain qualitatively the configuration of the B(sub y)-controlled convection on the open and close field line regions by proposing a mapping modified in accordance with IMF B(sub y).

  3. Monitoring and modeling Hong Kong ionosphere using regional GPS networks

    NASA Astrophysics Data System (ADS)

    Gao, Shan

    The ionosphere is the region from 90 km to 2000 km altitude, where the solar radiation produces partially ionized plasma of different gas components. Knowledge of ionospheric electronic density and its variation is essential for a wide range of applications, such as radio and telecommunications, satellite tracking, earth observation from space, and satellite navigation. This research aims at monitoring detailed low latitude structures of the ionosphere using Hong Kong GPS network. In this study, the distribution characteristics of ionospheric TEC and disturbances are investigated and researched. It is shown that in Hong Kong, there is a two-dimensional peak along local solar time and latitude for the TEC distribution due to the solar radiation and equatorial ionospheric anomaly. The peak values appear around geographic latitude 22° north and the local solar time 2pm. On both sides of the peak, there exist large TEC slopes. Therefore, even with short baselines (i.e. <10 km), ionospheric delays cannot be eliminated by double difference technique. Ionospheric disturbances happen frequently in Hong Kong, with the severe ones mainly concentrating at geographic latitude 22° north and the local solar time 10pm. Both ionospheric TEC values and disturbances reach their seasonal maximum around the equinoxes. With the aids of PPP technique and satellite difference widelane technique, ionospheric modeling equation is reformed with less unknown parameters, which support the stable and precise estimation of ionospheric VTEC along with the constant biases within a short and peace period. On this basis, a new localized ionospheric modeling technique, which models ionospheric VTEC along the satellite track on the assumed ionospheric shell for each satellite with a short piecewise modeling period, is proposed for precise ionospheric TEC modeling, especially in low latitude regions where the ionosphere is active. The numerical results demonstrate that the new model has a several centimeters modeling accuracy about ionospheric vertical delay, which is normally better than the traditional ionospheric model, and is able to support GPS precise positioning (e.g. the single frequency centimeter-level PPP and the millimeter-level DD positioning for 10 km baseline) in Hong Kong. Ionospheric disturbances have strong effects on GPS receiver performances. During periods of ionospheric disturbances, GPS measurement noise level (both pseudorange and carrier phase) increases dramatically, up to several decimeters, and the receivers frequently loss satellite signal lock, which have significant impacts on UPS applications in low latitudes.

  4. Convective Raman amplification of light pulses causing kinetic inflation in inertial fusion plasmas

    SciTech Connect

    Ellis, I. N.; Strozzi, D. J.; Williams, E. A.; Winjum, B. J.; Tsung, F. S.; Mori, W. B.; Fahlen, J. E.; Grismayer, T.

    2012-11-15

    We perform 1D particle-in-cell (PIC) simulations using OSIRIS, which model a short-duration ({approx}500{omega}{sub 0}{sup -1} FWHM) scattered light seed pulse in the presence of a constant counter-propagating pump laser with an intensity far below the absolute instability threshold. The seed undergoes linear convective Raman amplification and dominates over fluctuations due to particle discreteness. Our simulation results are in good agreement with results from a coupled-mode solver when we take into account special relativity and the use of finite size PIC simulation particles. We present linear gain spectra including both effects. Extending the PIC simulations past when the seed exits the simulation domain reveals bursts of large-amplitude scattering in many cases, which does not occur in simulations without the seed pulse. These bursts can have amplitudes several times greater than the amplified seed pulse, and we demonstrate that this large-amplitude scattering is the result of kinetic inflation by examining trapped particle orbits. This large-amplitude scattering is caused by the seed modifying the distribution function earlier in the simulation. We perform some simulations with longer duration seeds, which lead to parts of the seeds undergoing kinetic inflation and reaching amplitudes several times more than the steady-state linear theory results. Simulations with continuous seeds demonstrate that the onset of inflation depends on seed wavelength and incident intensity, and we observe oscillations in the reflectivity at a frequency equal to the difference between the seed frequency and the frequency at which the inflationary stimulated Raman scattering grows.

  5. Emission of whistler waves from an ionospheric tether

    E-print Network

    Takiguchi, Yu

    2009-01-01

    In this thesis, we analyze how electromagnetic waves propagate in ionosphere around the earth which is magnetized plasma. We calculate the electromagnetic wave field made by a dipole antenna at an arbitrary observation ...

  6. The plasma environment of Uranus

    NASA Technical Reports Server (NTRS)

    Belcher, J. W.; Mcnutt, R. L., Jr.; Richardson, J. D.; Selesnick, R. S.; Sittler, E. C., Jr.; Bagenal, F.

    1991-01-01

    An overview of the observational results on the plasma environment at Uranus is given, and the implications of these observations for magnetospheric physics at Uranus are discussed. During the Voyager 2 encounter with Uranus, an extended magnetosphere filled with a tenuous plasma was detected. This low-energy plasma was found to consist of protons and electrons, with no significant heavy ion contribution, and with a density in the regions sampled by the spacecraft of at most three electrons per cubic centimeter. The plasma electrons and ions exhibit both a thermal component (with temperatures of tens of eV) and a hot component (with temperatures of a few keV). The thermal ion component is observed both inside and outside an L-shell value near 5, whereas the hot ion and electron component is excluded from the region inside of that L-shell. The source of the thermal component of the plasma is either the planetary ionosphere or the neutral hydrogen corona surrounding Uranus, whereas the hot component is convected in from the magnetotail, with probably an ionospheric source.

  7. HAARP-Induced Ionospheric Ducts

    SciTech Connect

    Milikh, Gennady; Vartanyan, Aram

    2011-01-04

    It is well known that strong electron heating by a powerful HF-facility can lead to the formation of electron and ion density perturbations that stretch along the magnetic field line. Those density perturbations can serve as ducts for ELF waves, both of natural and artificial origin. This paper presents observations of the plasma density perturbations caused by the HF-heating of the ionosphere by the HAARP facility. The low orbit satellite DEMETER was used as a diagnostic tool to measure the electron and ion temperature and density along the satellite orbit overflying close to the magnetic zenith of the HF-heater. Those observations will be then checked against the theoretical model of duct formation due to HF-heating of the ionosphere. The model is based on the modified SAMI2 code, and is validated by comparison with well documented experiments.

  8. Global Dayside Ionospheric Uplift and Enhancement Associated with Interplanetary Electric Fields

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce; Mannucci, Anthony; Iijima, Byron; Abdu, Mangalathayil Ali; Sobral, Jose Humberto A.; Gonzalez, Walter; Guarnieri, Fernando; Tsuda, Toshitaka; Saito, Akinori; Yumoto, Kiyohumi; Fejer, Bela; Fuller-Rowell, Timothy J.; Kozyra, Janet; Foster, John C.; Coster, Anthea; Vasyliunas, Vytenis M.

    2004-01-01

    The interplanetary shock/electric field event of 5-6 November 2001 is analyzed using ACE interplanetary data. The consequential ionospheric effects are studied using GPS receiver data from the CHAMP and SAC-C satellites and altimeter data from the TOPEX/ Poseidon satellite. Data from 100 ground-based GPS receivers as well as Brazilian Digisonde and Pacific sector magnetometer data are also used. The dawn-to-dusk interplanetary electric field was initially 33 mV/m just after the forward shock (IMF BZ = -48 nT) and later reached a peak value of 54 mV/m 1 hour and 40 min later (BZ = -78 nT). The electric field was 45 mV/m (BZ = -65 nT) 2 hours after the shock. This electric field generated a magnetic storm of intensity DST = -275 nT. The dayside satellite GPS receiver data plus ground-based GPS data indicate that the entire equatorial and midlatitude (up to +/-50(deg) magnetic latitude (MLAT)) dayside ionosphere was uplifted, significantly increasing the electron content (and densities) at altitudes greater than 430 km (CHAMP orbital altitude). This uplift peaked 2 1/2 hours after the shock passage. The effect of the uplift on the ionospheric total electron content (TEC) lasted for 4 to 5 hours. Our hypothesis is that the interplanetary electric field ''promptly penetrated'' to the ionosphere, and the dayside plasma was convected (by E x B) to higher altitudes. Plasma upward transport/convergence led to a 55-60% increase in equatorial ionospheric TEC to values above 430 km (at 1930 LT). This transport/convergence plus photoionization of atmospheric neutrals at lower altitudes caused a 21% TEC increase in equatorial ionospheric TEC at 1400 LT (from ground-based measurements). During the intense electric field interval, there was a sharp plasma ''shoulder'' detected at midlatitudes by the GPS receiver and altimeter satellites. This shoulder moves equatorward from -54(deg) to -37(deg) MLAT during the development of the main phase of the magnetic storm. We presume this to be an ionospheric signature of the plasmapause and its motion. The total TEC increase of this shoulder is 80%. Part of this increase may be due to a "superfountain effect." The dayside ionospheric TEC above 430 km decreased to values 45% lower than quiet day values 7 to 9 hours after the beginning of the electric field event. The total equatorial ionospheric TEC decrease was 16%. This decrease occurred both at midlatitudes and at the equator. We presume that thermospheric winds and neutral composition changes produced by the storm-time Joule heating, disturbance dynamo electric fields, and electric fields at auroral and subauroral latitudes are responsible for these decreases.

  9. Formation and detection of high latitude ionospheric irregularities

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Buchau, J.; Carlson, H. C., Jr.; Klobuchar, J. A.; Weber, E. J.

    1985-01-01

    Measurements of Total Electron Content (TEC) and airglow variations show that large scale plasma patches appearing in the high-latitude ionsophere have irregular structures evidenced by the satellite phase and amplitude scintillations. Whistler waves, intense quasi-DC electric field, and atmospheric gravity waves can become potential sources of various plamsa instabilities. The role of thermal effects in generating ionospheric irregularities by these sources is discussed. Meter-scale irregularities in the ionospheric E and F regions can be excited parametrically with lower hybrid waves by intense whistler waves. Ohmic dissipation of Pedersen current in the electron gas is able to create ionospheric F region irregularities in plasma blobs or plasma patches (i.e., high ambient plasma density environment) with broad scale lengths ranging from tens of meters to a few kilometers. Through the neutral-charged particle collisions, gravity waves can excite large-scale (less than tens of kilometers) ionospheric irregularities simultaneously with forced ion acoustic modes in the E region. The large-scale ionospheric density fluctuations produced in the E region can extend subsequently alogn the earth's magnetic field to the F region and the topside ionospheric regions. These mechanisms characterized by various thermal effects can contribute additively with other processes to the formation of ionospheric irregularities in the high latitude region.

  10. Ionospheric response to the sustained high geomagnetic activity during the March '89 great storm

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Schunk, R. W.; Denig, W. F.

    1994-01-01

    A simulation was conducted to model the high-latitude ionospheric to the sustaied level of high geomagnetic activity for the great magnetic storm period of March 13-14, 1989. The geomagnetic and solar activity indices and the Defense Meterological Satellite Program (DMSP) F8 and F9 satellite data for particle precipitation and high-latitude convection were used as inputs to a time-dependent ionospheric model (TDIM). The results of the TDIM were compared to both DMSP plasma density data and ground-based total electron content (TEC) measurements for the great storm period as well as with earlier storm observations. The comparisons show that the overall structure of the high-latitude ionosphere was dominated by an increased convection speed within the polar cap that led to increased ion temperatures. In turn, this enhanced the NO(+) density, raised the atomic-to-molecular ion transition height to over 300 km, decreased N(sub m)F(sub 2), increased h(sub m)F(sub 2), and in places either increased n(sub e) at 800 km or slightly decreased it. The morphology of the ionosphere under these extreme conditions was considerably different than that modeled for less distributed intervals. These differences included the character of the dayside tongue of ionization that no longer extended deep into the polar cap. Instead, as a result of the ion heating and consequent reduction in N(sub m)F(sub 2), a large polar hole occupied much of the polar region. This polar hole extended beyond the auroral oval and merged with the night sector midatitude trough. The limitaions associated with the applicability of the TDIM to the geomagnetic conditions present on March 13 and 14 are discussed. The primary limitations of the TDIM derive from the limited temporal resolution of the model input parameters and the lack of suitably dynamic thermospheric specification for the great storm conditions. These limitations leads to midlatitude ionospheric storm phases that do no follow those observed.

  11. Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System: A UnifiedApproach for Studying Hot and Cold Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Karimabadi, H.; Omelchenko, Y.; Schunk, R. W.; Barakat, A. R.; Gardner, L. C.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.

    2013-12-01

    The Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is complex; it varies on a wide range in spatial and temporal scales, exhibits relatively thin ion-scale boundaries (e.g., bow shock, magnetopause, magnetotail), contains hot and cold particle populations, and the particle distribution functions are typically non-Maxwellian. The existing space weather frameworks are based on global fluid models and therefore cannot address many important issues concerning particle, momentum, and energy coupling in the system. To remedy this situation, we have formed a multi-disciplinary team to create a new kinetic modeling framework. The new framework will include kinetic electron and ion formulations for the ionosphere, plasmasphere, and polar wind domains, and kinetic ions and fluid electrons for the magnetosphere. The proposed methodology is expected to lead to breakthroughs in studying numerous problems/issues, including the self-consistent formation of the ring current, the self-consistent formation of ion scale turbulence and waves, the calculation of appropriate reconnection rates, the effect that multiple species and ion outflows from the ionosphere have on the development and evolution of storms/substorms, among others. The presentation will focus on the current state and capabilities of the global kinetic models that form the framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind Model.

  12. Ionospheric disturbance overview

    NASA Technical Reports Server (NTRS)

    Rush, C. M.

    1980-01-01

    A program of research and exploratory development was undertaken to assess the potential impact of Satellite Power System operation on the ionosphere. The program relies on the utilization of ground-based ionospheric heating facilities in order to simulate the ionospheric heating that will come from the Satellite Power System. Thus far, the experimental program directed toward assessing telecommunications impacts has received the most attention, and little impact was observed on VLF, LF, and MF operations.

  13. Uplift of Ionospheric Oxygen Ions During Extreme Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Huba, Joseph; Lakhina, Gurbax S.

    2013-01-01

    Research reported earlier in literature was conducted relating to estimation of the ionospheric electrical field, which may have occurred during the September 1859 Carrington geomagnetic storm event, with regard to modern-day consequences. In this research, the NRL SAMI2 ionospheric code has been modified and applied the estimated electric field to the dayside ionosphere. The modeling was done at 15-minute time increments to track the general ionospheric changes. Although it has been known that magnetospheric electric fields get down into the ionosphere, it has been only in the last ten years that scientists have discovered that intense magnetic storm electric fields do also. On the dayside, these dawn-to-dusk directed electric fields lift the plasma (electrons and ions) up to higher altitudes and latitudes. As plasma is removed from lower altitudes, solar UV creates new plasma, so the total plasma in the ionosphere is increased several-fold. Thus, this complex process creates super-dense plasmas at high altitudes (from 700 to 1,000 km and higher).

  14. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE PAGESBeta

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wavemore »disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.« less

  15. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    SciTech Connect

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.

  16. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    NASA Astrophysics Data System (ADS)

    Lay, Erin H.; Shao, Xuan-Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-01

    Acoustic waves with periods of 2-4 min and gravity waves with periods of 6-16 min have been detected at ionospheric heights (250-350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May-July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.

  17. The plasma environment, charge state, and currents of Saturn's C and D rings

    SciTech Connect

    Wilson, G.R. )

    1991-06-01

    The plasma environment of the Saturnian C and D rings is investigated by modeling the flow of ionospheric plasma from the mid- to low-latitude ionosphere to the vicinity of the rings. The model used is time-dependent and kinetic and incorporates the gravitational, centripetal, magnetic mirror and ambipolar electric forces. It was found that the plasma density near the C and D rings, at a given radial location, will experience a one to two order of magnitude diurnal variation. With a knowledge of the plasma density and temperature near these rings their charge state is investigated by use of a dust cloud charging model. The associated azimuthal currents are also found. Results show that the surface charge density of the C and D rings can show significant radial and azimuthal variations, due mainly to variations in the plasma density. In addition to its plasma density and temperature dependence the surface charge density will also depend on structural features of the rings such as the ring thickness and the nature of the particle size distribution. Its magnitude may vary over seven decades. The associated azimuthal currents carried by these rings will also show large diurnal variations resulting in field-aligned currents which close in the ionosphere as shown by Ip and Mendis (1983). However, the resulting ionospheric electric fields will probably not produce a significant amount of plasma convection in the topside ionosphere and inner plasmasphere as proposed by these authors, due in part to the level of the currents as well as the height-integrated Pedersen conductivities at the local times where the currents close.

  18. Magnetosphere-Ionosphere Coupling Processes in the Ionospheric Trough Region During Substorms

    NASA Astrophysics Data System (ADS)

    Zou, S.; Moldwin, M.; Nicolls, M. J.; Ridley, A. J.; Coster, A. J.; Yizengaw, E.; Lyons, L. R.; Donovan, E.

    2013-12-01

    The ionospheric troughs are regions of remarkable electron density depression at the subauroral and auroral latitudes, and are categorized into the mid-latitude trough or high-latitude trough, depending on their relative location to the auroral oval. Substorms are one fundamental element of geomagnetic activity, during which structured field-aligned currents (FACs) and convection flows develop in the subauroral and auroral ionosphere. The auroral/trough region is expected to experience severe electron density variations during substorms. Accurate specification of the trough dynamics during substorms and understanding its relationship with the structured FACs and convection flows are of important practical purpose, including providing observational foundations for assessing the attendant impact on navigation and communication. In addition, troughs are important since they map to magnetospheric boundaries allowing the remote sensing of magnetosphere-ionosphere coupling processes. In this talk, we discuss the dynamics of the mid-latitude and high-latitude troughs during substorms based on multi-instrument observations. Using GPS total electron content (TEC) data, we characterize the location and width of the mid-latitude trough through the substorm lifecycle and compare them with existing trough empirical models. Using a combination of incoherent scattering radar (ISR), GPS TEC, auroral imager and a data assimilative model, we investigate the relationship between the high-latitude trough and FACs as well as convection flows. The high-latitude trough is found to be collocated with a counter-clockwise convection flow vortex east of the Harang reversal region, and downward FACs as part of the substorm current system are suggested to be responsible for the high-latitude trough formation. In addition, complex ionospheric electron temperature within the high-latitude trough is found, i.e., increase in the E region while decrease in the F region. We discuss possible processes responsible for this complex temperature change, such as ion composition change and/or presence of downward FACs.

  19. Three-dimensional structure of the seismo-electromagnetic ionospheric electron density disturbances

    E-print Network

    Karpov, M I; Zolotov, O V

    2012-01-01

    The paper presents the three-dimensional structure of the ionospheric electron density disturbances triggered by the vertical electric currents flowing between the Earth and ionosphere over the faults before the strong earthquakes. The results were obtained using the global numerical Earth's Upper Atmosphere Model (UAM). The vertical electric currents flowing between the Earth and ionosphere over the faults were used as lower boundary conditions for the UAM electric potential equation. The UAM calculated 3D structure of the ionospheric electron density disturbances demonstrates an importance of all three ionospheric plasma drift directions (movements) - vertical, meridional and zonal but not only vertical one.

  20. Saturn: atmosphere, ionosphere, and magnetosphere.

    PubMed

    Gombosi, Tamas I; Ingersoll, Andrew P

    2010-03-19

    The Cassini spacecraft has been in orbit around Saturn since 30 June 2004, yielding a wealth of data about the Saturn system. This review focuses on the atmosphere and magnetosphere and briefly outlines the state of our knowledge after the Cassini prime mission. The mission has addressed a host of fundamental questions: What processes control the physics, chemistry, and dynamics of the atmosphere? Where does the magnetospheric plasma come from? What are the physical processes coupling the ionosphere and magnetosphere? And, what are the rotation rates of Saturn's atmosphere and magnetosphere? PMID:20299587

  1. Waves in Space Plasmas Program

    NASA Technical Reports Server (NTRS)

    Fredricks, R. W.; Taylor, W. W. L.

    1981-01-01

    The Waves in Space Plasmas (WISP) program is a joint international effort involving instrumentation to be designed and fabricated by funding from NASA and the National Research Council of Canada. The instrumentation, with a tentatively planned payload for 1986, can be used to perturb the plasma with radio waves to solve problems in ionospheric, atmospheric, magnetospheric, and plasma physics. Among the ionospheric and plasma phenomena to be investigated using WISP instrumentation are VLF wave-particle interactions; ELF/VLF propagation; traveling ionospheric disturbances and gravity wave coupling; equatorial plasma bubble phenomena; plasma wave physics such as mode-coupling, dispersion, and instabilities; and plasma physics of the antenna-plasma interactions.

  2. Plasma Interactions in Titan's Ionosphere

    E-print Network

    Richard, Matthew

    2013-05-31

    [Gold, 1959] following the discovery of the Van Allen Belts. The term “magnetosphere” is defined as the region of space around a central object within which the object’s magnetic field has a dominant influence on the dynamics of the local medium... species within the atmosphere into a homogeneous mixture [Schunk and Nagy, 2009]. This scale height represents the altitude range at which the density of a species decreases by a factor of e, which affects the distance that solar photons can penetrate...

  3. Solar wind interaction with the ionosphere of Venus inferred from radio scintillation measurements

    SciTech Connect

    Woo, R.; Sjogren, W.L.; Kliore, A.J. ); Luhmann, J.G. ); Brace, L.H. )

    1989-02-01

    This paper presents the first S-band (2.3 GHz) radio scintillations observed in the ionosphere of Venus and discovered when the Pioneer Venus Orbiter spacecraft traversed the ionosphere of Venus. In situ plasma measurements as well as propagation calculations confirm that the scintillations are caused by electron density irregularities in the topside ionosphere of Venus below the ionopause. While these topside plasma irregularities have not been studied before, simultaneous magnetic field measurements presented here reveal that they are associated with the penetration of large-scale magnetic fields in the ionosphere. Previous studies based on extensive magnetic field measurements have shown that the presence of large-scale magnetic fields occurs in the subsolar region when the solar wind dynamic pressure exceeds the ionospheric plasma pressure. As with the large-scale magnetic fields, the disturbed plasma and resulting scintillations are therefore a manifestation of high-dynamic solar wind interaction with the ionosphere. Since the scintillations only occur in the subsolar region of Venus, the global morphology of ionospheric scintillations at Venus is different from that of the terrestrial ionosphere, where scintillations are observed in both polar and equatorial regions, with peaks occurring during nighttime. This difference apparently stems from the fact that Venus is not a magnetic planet. The authors also demonstrate that the disturbed plasma produced by the high-dynamic solar wind interaction can be remotely sensed by scintillations during radio occultation measurements, that is, when the spacecraft is outside the ionosphere.

  4. Wenchuan Earthquake Ionospheric Precursors: Modeling and Experiment

    NASA Astrophysics Data System (ADS)

    Klimenko, Maxim; Klimenko, Vladimir; Zhao, Biqiang; Pulinets, Sergej; Zakharenkova, Irina; Bryukhanov, Valerij

    Early it was shown, that for strong middle-latitude earthquakes the effects in Total Electron Content (TEC) and in critical frequency of F2-layer (foF2) look like local changes in electron concentration which maxima are located in immediate proximity from epicenter area. Pre-cursory effects of strong near-equatorial earthquakes might be in the form of deepening and widening of electron concentration minimum over the magnetic equator and displacement of equatorial ionization anomaly crests. The problems of physical explanation of possible forma-tion mechanisms of the seismo-ionospheric effects are under discussion now. In Namgaladze et al., 2009 it has been come out with the assumption, that the most probable formation mech-anism of TEC disturbed areas, observable prior strong earthquakes, is the vertical transport of the F2-region ionospheric plasma under the zonal electric field action. The geomagnetic conjugacy of the earthquake ionospheric precursors and effects in equatorial anomaly which development is controlled by zonal electric field are strong arguments in favor of this hypoth-esis. Besides, the analysis of model calculation results with use of the Global Self-consistent Model of the Thermosphere, Ionosphere, Protonosphere (GSM TIP) in Namgaladze et al., 2009 testifies in favor of this hypothesis. There is a question how such electric fields can arise in the ionosphere prior to earthquakes? Now it is not answer to this question. Therefore, for understanding of formation mechanisms of earthquake ionospheric precursors it is necessary to understand the physics of lithosphere-atmosphere-ionosphere coupling prior to earthquake. Many researchers tried to solve this problem. However, until now there is not common opinion concerning to the lithosphere-atmosphere-ionosphere coupling prior to earthquake. Some ba-sic hypotheses for the explanation of this mechanism have been offered: the Internal Gravity Waves (IGWs) of seismogenic origin with the period 1-3 hours, the IGWs with the period from several minutes up to tens minutes, the seismogenic electric field with amplitude from units up to tens mV/m, the abnormal electromagnetic fields and emissions. However, the appearance of local large-scale seismo-ionospheric anomalies in TEC and foF2 it is possible to explain only by two of the mentioned mechanisms: an atmospheric electric field and/or small-scale IGWs. In this study, we present the numerical calculation results for reproduction of observed changes in the ionosphere prior to strong Wenchuan earthquake. This earthquake has been fixed on 12 May 2008. The geomagnetic activity indices for the period on 1-13 May were low. The calcu-lations of Wenchuan earthquake ionospheric precursors were carried out with use of the GSM TIP model. In calculations, the small-scale IGWs and/or the penetration of vertical electric field are considered as the formation mechanisms of earthquake ionospheric precursors. It was carried out the comparison of calculation results with experimental data of TEC and foF2 at various stations, located in China and nearby areas. The obtained results confirm the proposed mechanisms of seismo-ionospheric effect formation by small-scale IGWs and the penetration of the seismogenic vertical electric field from the atmosphere into the ionosphere. References Namgaladze A.A., Klimenko M.V., Klimenko V.V. and Zakharenkova I.E. Physical Mechanism and Mathematical Simulation of Ionosphere Earthquake Precursors Observed in Total Electron Content. Geomagnetism and Aeronomy, 2009, Vol. 49, 252-262.

  5. Resolute Bay Incoherent Scatter Radar observations of plasma structures in the vicinity of polar holes

    NASA Astrophysics Data System (ADS)

    Makarevich, Roman A.; Lamarche, L. J.; Nicolls, M. J.

    2015-09-01

    The Resolute Bay Incoherent Scatter Radar North (RISR-N) data collected between January 2012 and June 2013 are employed to identify and analyze 14 events with significant plasma density depressions (Ne<4 × 1010 m-3) in the winter polar cap ionosphere. The RISR-N observations near a magnetic latitude (MLAT) of 85°N refer to the region poleward of the previously identified polar hole-auroral cavity region 70°-80° MLAT where extremely low densities (down to 2 × 108 m-3 near 300 km in altitude) are found at times. Multipoint observations by RISR-N are also characterized by multiple series of propagating local density enhancements (plasma structures) both well outside and in the vicinity of polar holes. A superposed epoch analysis of plasma density and convection reveals that the density depressions tend to reach their minimum near the reversal of the meridional convection component. The wavelet analysis of plasma density time series shows that the wave power is enhanced within the depressions and tends to peak near the density minimum. The plasma structures are more elongated at mesoscales (>150 km), with no apparent differences between structure shapes outside and inside low-density regions. The structure propagation velocity is perpendicular to its elongation direction and consistent with that of the large-scale plasma convection. The observations indicate that large-scale density depressions can form under a variety of convection conditions and that plasma structuring processes outside the depressions may be responsible for their partial filling.

  6. Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances

    SciTech Connect

    Fejer, B.G.; Scherliess, L.

    1995-04-01

    The authors use extensive radar measurements of F region vertical plasma drifts and auroral electrojet indices to determine the storm time dependence of equatorial zonal electric fields. These disturbance drifts result from the prompt penetration of high latitude electric fields and from the dynamo action of storm time winds which produce the largest perturbations a few hours after the onset of magnetic activity. The signatures of the equatorial disturbance electric fields change significantly depending on the relative contributions of these two components. The prompt electric field responses, with lifetimes of about one hour, are in excellent agreement with results from global convection models. The electric fields generated by storm time winds have longer lifetimes, amplitudes proportional to the energy input into the high latitude ionosphere, and a daily variation which follows closely the disturbance dynamo pattern of Blanc and Richmond. The storm wind driven electric fields are responsible for the larger amplitudes and longer lifetimes of the drift perturbations following sudden decreases in convection compared to those associated with sudden convection enhancements. 14 refs., 6 figs., 1 tab.

  7. International reference ionosphere 1990

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter; Rawer, K.; Bossy, L.; Kutiev, I.; Oyama, K.-I.; Leitinger, R.; Kazimirovsky, E.

    1990-01-01

    The International Reference Ionosphere 1990 (IRI-90) is described. IRI described monthly averages of the electron density, electron temperature, ion temperature, and ion composition in the altitude range from 50 to 1000 km for magnetically quiet conditions in the non-auroral ionosphere. The most important improvements and new developments are summarized.

  8. Positive and negative ionospheric storms occurring during the 15 May 2005 geomagnetic superstorm

    NASA Astrophysics Data System (ADS)

    Horvath, Ildiko; Lovell, Brian C.

    2015-09-01

    This study focuses on the 15 May 2005 geomagnetic superstorm and aims to investigate the global variation of positive and negative storm phases and their development. Observations are provided by a series of global total electron content maps and multi-instrument line plots. Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe) simulations are also employed. Results reveal some sunward streaming plumes of storm-enhanced density (SED) over Asia and a well-developed midlatitude trough over North America forming isolated positive and negative storms, respectively. The simultaneous development of positive and negative storms over North America is also shown. Then, some enhanced auroral ionizations maintained by strong equatorward neutral winds appeared in the depleted nighttime ionosphere. Meanwhile, the northern nighttime polar region became significantly depleted as the SED plume plasma could not progress further than the dayside cusp. Oppositely, a polar tongue of ionization (TOI) developed in the daytime southern polar region. According to CTIP simulations, solar heating locally maximized (minimized) over the southern (northern) magnetic pole. Furthermore, strong upward surges of molecular-rich air created O/N2 decreases both in the auroral zone and in the trough region, while some SED-related downward surges produced O/N2 increases. From these results we conclude for the time period studied that (1) composition changes contributed to the formation of positive and negative storms, (2) strengthening polar convection and increasing solar heating of the polar cap supported polar TOI development, and (3) a weaker polar convection and minimized solar heating of the polar cap aided the depletion of polar plasma.

  9. Characteristics of High Latitude Ionosphere Scintillations

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2012-12-01

    As we enter a new solar maximum period, global navigation satellite systems (GNSS) receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to characterize scintillation signal parameters and ionosphere irregularities. While there are numerous GPS receivers deployed around the globe to monitor ionosphere scintillations, most of them are commercial receivers whose signal processing mechanisms are not designed to operate under ionosphere scintillation. As a result, they may distort scintillation signal parameters or lose lock of satellite signals under strong scintillations. Since 2008, we have established and continuously improved a unique GNSS receiver array at HAARP, Alaska. The array contains high ends commercial receivers and custom RF front ends which can be automatically triggered to collect high quality GPS and GLONASS satellite signals during controlled heating experiments and natural scintillation events. Custom designed receiver signal tracking algorithms aim to preserve true scintillation signatures are used to process the raw RF samples. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array since its inception have been analyzed to characterize high latitude scintillation phenomena. Daily, seasonal, and solar events dependency of scintillation occurrence, spectral contents of scintillation activities, and plasma drifts derived from these measurements will be presented. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  10. Electrostatic potential in the auroral ionosphere derived from Chatanika radar observations

    SciTech Connect

    Foster, J.C.; Banks, P.M.; Doupnik, J.R.

    1982-09-01

    A technique is described for determining the latitudinal variation of the electrostatic potential associated with the ionospheric convection electric fields. Using the north-south electric field component derived from radar convection velocity experiments, the integral of Exd1 is taken northward along the magnetic meridian, starting at low latitudes. The radar data consiste of up to 40 independent measurements of plasma convection spanning 15/sup 0/ of invariant latitude centered on Chatanika, Alaska (65 /sup 0/..lambda..), with half-hour temporal resolution. It has been found that (1) the electric field contributions to the potential at and below 60 /sup 0/..lambda.. are small under most circumstances and (2) the latitudinal variation of the potential is smooth and regular, permitting the potentials to be contoured across local time. It is found from the experiments that the potential often varies uniformly over 10 /sup 0/ latitude at dawn and dusk. Electric fields of 50 mV/m are common. It is also noted that the latitude of the greatest negative potential in the premidnight sector coincides with the Harang discontinuity in ionspheric currents. The potentials calculated from the measured plasma drifts exhibit a regular local time variation. Equipotential contours derived from the latitude-local time potential field obtained with the long-duration radar experiments, while not providing a snapshot of the instantaneous pattern, elucidate the large-scale diurnal variation of the electrostatic potential at auroral latitudes. From such contours it is found that a two-cell convection pattern with varying degrees of asymmetry is consistently present at auroral latitudes, that a cross-polar cap potential drop of 70--120 kV is present in moderately disturbed conditions, and that substorms perturb the potential pattern at all local times.

  11. Exploring the ionosphere of Mars

    E-print Network

    Withers, Paul

    Exploring the ionosphere of Mars Paul Withers Boston University (withers@bu.edu) UK NAM St. Andrews and ionosphere of Mars NASA #12;www.nineplanets.org Mars in context Let's focus here 0.5 x R-Earth Carbon dioxide ionosphere Withers (2010) The ionosphere of Mars #12;How does the system work? Chemistry, dynamics

  12. Energetic particle precipitation into the high-latitude ionosphere and the auroral electrojets. 3. Characteristics of electron precipitation into the morning-sector auroral oval

    SciTech Connect

    Rostoker, G.; Kamide, Y.; Winningham, J.D.

    1985-08-01

    Data from the University of Alberta meridian line of magnetometers are utilized to define the poleward and equatorward borders of the westward electrojet in the morning sector. Soft-particle spectrometer data from the Isis 2 polar orbiting satellite are organized in the framework of the westward electrojet for cases where the satellite orbital path took it close to the meridian line of magnetometers. The results suggest that the Harang discontinuity does not signify any significant asymmetry in convection drift paths in the magnetosphere and that asymmetries noted in ionospheric current flow and auroral luminosity are due solely to asymmetries in the energies to which electrons may be accelerated in the morning compared to the evening sector. A model of plasma convective flow in the magnetosphere is presented which is consistent with the observations reported in this paper.

  13. Determination of vertical plasma drift and meridional wind using the Sheffield University Plasmasphere Ionosphere Model and ionospheric data at equatorial and low latitudes in Brazil: Summer solar minimum and maximum conditions

    NASA Astrophysics Data System (ADS)

    Souza, J. R.; Abdu, M. A.; Batista, I. S.; Bailey, G. J.

    2000-06-01

    The F region critical frequency f0F2 and peak height hmF2, measured simultaneously at the equatorial location Fortaleza (4°S, 38°W, magneticlatitude=3.5°S) and at the low-latitude location Cachoeira Paulista (22°S, 45°W, magnetic latitude=15°S), are compared with their values calculated by the Sheffield University Plasmasphere-Ionosphere Model (SUPIM) to determine the vertical (E×B) drift velocity at the equator and the magnetic meridional wind velocity over the two locations. The calculated and observed values of f0F2 are then matched at both Fortaleza and Cachoeira Paulista to obtain the magnetic meridional winds over their respective conjugate locations. To account for the observed f0F2 diurnal variation pattern over Cachoeira Paulista, it was found necessary to include a small source of ionization, attributable to energetic particle precipitation in the South Atlantic anomaly region. The vertical drift velocity and magnetic meridional wind velocity derived for summer months during both solar minimum and solar maximum are compared with their values given by other published models. While the diurnal variation of the modeled vertical drift velocity shows general agreement with the values based on Jicamarca radar measurements (the exception being during the sunset-midnight period at solar maximum and between 2000-2300 LT at solar minimum), the magnetic meridional wind shows significant differences with respect to the Horizontal Wind Model 1990 (HWM90) [Hedin et al., 1991] during both solar minimum and solar maximum at Fortaleza and at locations conjugate to Fortaleza and Cachoeira Paulista.

  14. Ionosphere and atmosphere of the moon in the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Daily, W. D.; Barker, W. A.; Parkin, C. W.; Clark, M.; Dyal, P.

    1977-01-01

    The paper presents calculations of the densities and energies of the various constituents of the lunar ionosphere during the time that the moon is in the geomagnetic tail; the surface concentrations of neon and argon are calculated from a theoretical model to be 3,900 and 1,700, respectively. It is found that a hydrostatic model of the ionospheric plasma is inadequate because the gravitational potential energy of the plasma is considerably smaller than its thermal energy. A hydrodynamic model, comparable to that used to describe the solar wind, is developed to obtain plasma densities and flow velocities as functions of altitude. The electromagnetic properties of the quiescent ionosphere are then investigated, and it is concluded that plasma effects on lunar induction can be neglected for quiescent conditions in the geomagnetic tail lobes.

  15. Highly Structured Plasma Density and Associated Electric and Magnetic Field Irregularities at Sub-Auroral, Middle, and Low Latitudes in the Topside Ionosphere Observed with the DEMETER and DMSP Satellites

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F.; Liebrecht, C; Berthelier, Jean-Jacques; Parrot, M.; Lebreton, Jean-Pierre

    2007-01-01

    Detailed observations of the plasma structure and irregularities that characterize the topside ionosphere at sub-auroral, middle, and low-latitudes are gathered with probes on the DEMETER and DMSP satellites. In particular, we present DEMETER observations near 700 km altitude that reveal: (1) the electric field irregularities and density depletions at mid-latitudes are remarkably similar to those associated with equatorial spread-F at low latitudes; (2) the mid-latitude density structures contain both depletions and enhancements with scale lengths along the spacecraft trajectory that typically vary from 10's to 100's of km; (3) in some cases, ELF magnetic field irregularities are observed in association with the electric field irregularities on the walls of the plasma density structures and appear to be related to finely-structured spatial currents and/or Alfven waves; (4) during severe geomagnetic storms, broad regions of nightside plasma density structures are typically present, in some instances extending from the equator to the subauroral regions; and (5) intense, broadband electric and magnetic field irregularities are observed at sub-auroral latitudes during geomagnetic storm periods that are typically associated with the trough region. Data from successive DEMETER orbits during storm periods in both the daytime and nighttime illustrate how enhancements of both the ambient plasma density, as well as sub-auroral and mid-latitude density structures, correlate and evolve with changes in the Dst. The DEMETER data are compared with near simultaneous observations gathered by the DMSP satellites near 840 km. The observations are related to theories of sub-auroral and mid-latitude plasma density structuring during geomagnetic storms and penetration electric fields and are highly germane to understanding space weather effects regarding disruption of communication and navigation signals in the near-space environment.

  16. A Study of Uranian Magnetospheric Convection.

    NASA Astrophysics Data System (ADS)

    Ye, Gang

    In order to understand and explain the low-energy plasma structures observed by the PLS experiment on Voyager 2 in the Uranian inner magnetosphere, an analytic and self -consistent model of a time-dependent solar-wind driven convection system at Uranus has been developed in the corotating coordinate system. Many important results of this model agree with the observations very well. Because of the unusual orientation of the planetary rotation and magnetic dipole axes, magnetic merging on the dayside magnetopause varies as a function of planetary spin, in response to the changing orientation of the planetary magnetic field relative to the upstream interplanetary magnetic field, which is assumed to have a fixed direction for many planetary rotations. Therefore the magnitude of the solar-wind driven convection electric field varies sinusoidally in time with the 17.2 hr planetary spin period, even though the field direction is fixed in the corotating frame in a direction analogous to the dawn-to-dusk direction in the Earth's magnetosphere. By assuming conservation of the first adiabatic invariant we find that the "hot" (few keV) protons observed by the PLS experiment in the inner magnetosphere may be convected Sunward from a pick-up source provided by electron impact ionization of the neutral torus of the outermost satellite Oberon. Under the time-dependent convection field this hot plasma forms a ring-current shielding layer in the region L = 5 ~ 7, similar to an Alfven layer because the hot plasma convection timescale (~20 days) is much larger than the 17.2 hr period of variation of the convection field. Inside of the shielding layer the time-averaged electric field is much smaller than the time average of the imposed field. The sinusoidal oscillation of the imposed electric field, however, is not significantly shielded by the shielding layer because the shielding timescale (~30 hr) is longer than the 17.2 hr oscillation period. A fraction of the hot plasma is therefore able to penetrate the shielding layer to form a trapped ring-current population. This trapped ring-current population is sufficiently long-lived to undergo charge-exchange and inelastic collisions with the widely distributed neutral hydrogen corona, resulting in the energy degradation of the "hot" component and the simultaneous appearance of the "intermediate" (few 100 eV) and "warm" (few 10 eV) components evident in the PLS results in the region between L = 5 and L = 7. The region 2 Birkeland current system, in our model, is concentrated near the region of the ring-current shielding layer. By analogy with the Earth's magnetosphere, the lower boundary of the Uranian aurora is predicted by mapping the location of the shielding layer in the magnetic equatorial plane along the magnetospheric magnetic field lines onto the Uranian ionosphere.

  17. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  18. Survey of the ionospheric disturbances related with large seismic events in multi-satellite ionospheric observations

    NASA Astrophysics Data System (ADS)

    Ryu, K.; Chae, J.; Lee, E.; Kil, H.

    2013-12-01

    We survey the ionospheric disturbances in the plasma and electro-magnetic wave measurements during the simultaneous observation period of DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions), CHAMP (CHAllenging Minisatellite Payload) and DMSP(Defense Meteorological Satellite Program) missions. The multi-satellite observation around three large earthquakes that occurred between 2004 and 2005 were investigated. The observational evidences of the earth-quake precursory phenomena and the recent progress of physical modeling of the ionospheric disturbances caused by the coupling of the stressed rock, Earth surface charges, atmosphere, and ionosphere system are reviewed. Then, we focus on identifying the precursory disturbances from the well-studied plasma disturbances in the ionosphere, which are known to originate from various physical mechanism other than the seismic activities. Electron density/temperature, ion density/temperature, and electro-magnetic field/wave data measured by various instruments equipped in the satellites were analyzed in finding specific examples of anomaly caused by large seismic activities. Finally, the possibility of forecasting or predicting large earthquakes using the plasma measurements of LEO (low earth orbit) satellites will be discussed.

  19. The upper ionospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Majeed, Tariq; Mcconnell, John C.

    1991-01-01

    The electron-density profiles of Jupiter's and Saturn's ionospheres are modeled with a 1D chemical diffusive model incorporating measured parameters of the neutral atmospheric structure. The Voyager RSS ion-density data are modeled by accounting for ion chemistry, the H3(+) recombination-rate coefficient, and H2O chemistry. Electron-density peaks for both ionospheres are 900-1000 km lower in the model than the measured values, and the role of vibrational excitation of H2 is discussed in converting H(+) to H2(+) and H3(+). Vertical ion flow is also considered which can maintain the plasma peaks under the conditions of electrical fields or horizontal neutral winds. An assumed influx of H2O molecules of a specific quantity is theorized to reproduce the measured values on Saturn when combined with a vertical plasma drift.

  20. Estimation of ionospheric electrodynamic parameters using ionospheric conductance deduced from Bremsstrahlung X ray image data

    SciTech Connect

    Ahn, B.H. ); Kroehl, H.W. ); Kamide, Y. ); Gorney, D.J. )

    1989-03-01

    Various ionospheric electrodynamic parameters for the period July 23-24, 1983, are calculated by using ground magnetic records from a total of 88 stations in the northern hemisphere. Several important conclusions of this study are as follows: (1) the poleward portion of the westward electrojet in the morning sector is dominated by the electric field, while its equatorward portion is dominated by the ionospheric conductance; (2) during a quiet or moderately disturbed period, the major electric potential pattern is roughly circumscribed by the auroral zone conductance belt with the subauroral zone being a substantially lower electric field region; (3) the global pattern of the equivalent current system resembles the electrical potential distribution during summer conditions; (4) the electric potential distribution consists generally of a smooth and well-defined two-cell convection pattern without any significantly localized structure; (5) a sunward convection flow is clearly identified over the polar cap region during strongly northward IMF periods; (6) during strongly northward IMF periods, significant currents and Joule dissipation are observed in the polar cap region, indicating that the magnetosphere is far from its ground state; (7) the regions of intense Joule heating are generally confined to relatively narrow belts along the auroral electrojets, with the major heating region in the westward electrojet region shifted poleward and the one in the eastward electrojet region shifted equatorward; (8) the presently available statistical conductance models can be used, as a first approximation, to study global-scale polar ionospheric electrodynamics.

  1. Modeling Ionospheric Electrodynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Huba, J. D.

    2009-12-01

    We present modeling results of ionospheric electrodynamics using the 3D NRL ionosphere model SAMI3. Recently, SAMI3 has been upgraded to solve the potential equation that determines the electrostatic potential from the ionospheric conductances (Pedersen and Hall) and drivers: neutral wind, gravity, and parallel current systems. We present results showing the impact of different neutral wind models (e.g., HWM93, HWM07, TIMEGCM) on the dynamics of the low- to mid-latitude ionosphere, as well as the Region 1 and 2 current systems. We point out issues and concerns with obtaining an accurate specification of the global electric field within the context of existing models.(with J. Krall, G. Joyce, S. Slinker, and G. Crowley). Research supported by NASA and ONR

  2. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  3. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H. JR.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, magnetohyrodynamic (MHD) plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  4. Inertial Currents in Isotropic Plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1993-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MED plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  5. Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere

    NASA Astrophysics Data System (ADS)

    Azeem, Irfan; Yue, Jia; Hoffmann, Lars; Miller, Steven D.; Straka, William C.; Crowley, Geoff

    2015-10-01

    In this paper, we present near-simultaneous observations of a gravity wave (GW) event in the stratosphere, mesosphere, and ionosphere over the South Central United States and track it from its convective source region in the troposphere to the ionosphere, where it appears as a traveling ionospheric disturbance (TID). On 4 April 2014 concentric GW ring patterns were seen at stratospheric heights in close proximity to a convective storm over North Texas in the Atmospheric Infrared Sounder data on board the NASA Aqua satellite. Concentric GWs of similar orientation and epicenter were also observed in mesospheric nightglow measurements of the Day/Night Band of the Visible/Infrared Imaging Radiometer Suite on the Suomi National Polar-orbiting Partnership satellite. Concentric TIDs were seen in total electron content data derived from ground-based GPS receivers distributed throughout the U.S. These new multisensor observations of TIDs and atmospheric GWs can provide a unique perspective on ionosphere-atmosphere coupling.

  6. Dayside Ionospheric Superfountain

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Verkhoglyadova, Olga P.; Mannucci, Anthony J.

    2010-01-01

    The Dayside Ionospheric Super-fountain modified SAMI2 code predicts the uplift, given storm-time electric fields, of the dayside near-equatorial ionosphere to heights of over 800 kilometers during magnetic storm intervals. This software is a simple 2D code developed over many years at the Naval Research Laboratory, and has importance relating to accuracy of GPS positioning, and for satellite drag.

  7. Convective radial energy flux due to resonant magnetic perturbations and magnetic curvature at the tokamak plasma edge

    E-print Network

    Marcus, F A; Fuhr, G; Monnier, A; Benkadda, S

    2014-01-01

    With the resonant magnetic perturbations (RMPs) consolidating as an important tool to control the transport barrier relaxation, the mechanism on how they work is still a subject to be clearly understood. In this work we investigate the equilibrium states in the presence of RMPs for a reduced MHD model using 3D electromagnetic fluid numerical code (EMEDGE3D) with a single harmonic RMP (single magnetic island chain) and multiple harmonics RMPs in cylindrical and toroidal geometry. Two different equilibrium states were found in the presence of the RMPs with different characteristics for each of the geometries used. For the cylindrical geometry in the presence of a single RMP, the equilibrium state is characterized by a strong convective radial thermal flux and the generation of a mean poloidal velocity shear. In contrast, for toroidal geometry the thermal flux is dominated by the magnetic flutter. For multiple RMPs, the high amplitude of the convective flux and poloidal rotation are basically the same in cylindr...

  8. Yakov Alpert: Sputnik-1 and the first satellite ionospheric experiment

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. D.; Sinelnikov, V. M.; Alpert, S. N.

    2015-06-01

    The world first scientific space experiment was carried out in 1957 during the flight of the First Artificial Earth Satellite (AES) - Sputnik-1. It was an ionospheric experiment performed at IZMIRAN under the direction of Prof. Ya.L. Alpert (1911-2010). The sunrise and sunset variations in the AES radio signal were recorded to determine the distribution of electron density in the topside ionosphere (above the maximum). The experiment demonstrated the capabilities of the satellite radio beacon method, which is now very important and widely used for studying the ionosphere. The paper describes the history and results of that experiment as well as the contribution of Ya.L. Alpert to ionospheric research. Ya.L. Alpert was one of the most famous and influential radiophysicists, the author of many fundamental studies and a number of classic books on the theory of propagation of electromagnetic waves, interaction of artificial bodies with ionospheric plasma, ionospheric radio scattering, and the use of satellite radio beacon methods for studying the ionosphere. We give in the paper some extracts from Ya.L. Alpert's research notes. They include the history of the publication of the results from recordings of the Sputnik-1 transmitter signals, and described the method of data analysis. The first scientific publication based on Sputnik-1 data is given in the abbreviated summary. At the end of the paper there is an outline of Ya.L. Alpert's scientific biography.

  9. First tsunami gravity wave detection in ionospheric radio occultation data

    DOE PAGESBeta

    Coïsson, Pierdavide; Lognonné, Philippe; Walwer, Damian; Rolland, Lucie M.

    2015-05-09

    After the 11 March 2011 earthquake and tsunami off the coast of Tohoku, the ionospheric signature of the displacements induced in the overlying atmosphere has been observed by ground stations in various regions of the Pacific Ocean. We analyze here the data of radio occultation satellites, detecting the tsunami-driven gravity wave for the first time using a fully space-based ionospheric observation system. One satellite of the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) recorded an occultation in the region above the tsunami 2.5 h after the earthquake. The ionosphere was sounded from top to bottom, thus providing themore »vertical structure of the gravity wave excited by the tsunami propagation, observed as oscillations of the ionospheric Total Electron Content (TEC). The observed vertical wavelength was about 50 km, with maximum amplitude exceeding 1 total electron content unit when the occultation reached 200 km height. We compared the observations with synthetic data obtained by summation of the tsunami-coupled gravity normal modes of the Earth/Ocean/atmosphere system, which models the associated motion of the ionosphere plasma. These results provide experimental constraints on the attenuation of the gravity wave with altitude due to atmosphere viscosity, improving the understanding of the propagation of tsunami-driven gravity waves in the upper atmosphere. They demonstrate that the amplitude of the tsunami can be estimated to within 20% by the recorded ionospheric data.« less

  10. First tsunami gravity wave detection in ionospheric radio occultation data

    SciTech Connect

    Coïsson, Pierdavide; Lognonné, Philippe; Walwer, Damian; Rolland, Lucie M.

    2015-05-09

    After the 11 March 2011 earthquake and tsunami off the coast of Tohoku, the ionospheric signature of the displacements induced in the overlying atmosphere has been observed by ground stations in various regions of the Pacific Ocean. We analyze here the data of radio occultation satellites, detecting the tsunami-driven gravity wave for the first time using a fully space-based ionospheric observation system. One satellite of the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) recorded an occultation in the region above the tsunami 2.5 h after the earthquake. The ionosphere was sounded from top to bottom, thus providing the vertical structure of the gravity wave excited by the tsunami propagation, observed as oscillations of the ionospheric Total Electron Content (TEC). The observed vertical wavelength was about 50 km, with maximum amplitude exceeding 1 total electron content unit when the occultation reached 200 km height. We compared the observations with synthetic data obtained by summation of the tsunami-coupled gravity normal modes of the Earth/Ocean/atmosphere system, which models the associated motion of the ionosphere plasma. These results provide experimental constraints on the attenuation of the gravity wave with altitude due to atmosphere viscosity, improving the understanding of the propagation of tsunami-driven gravity waves in the upper atmosphere. They demonstrate that the amplitude of the tsunami can be estimated to within 20% by the recorded ionospheric data.

  11. Sputnik 1 and the First Satellite Ionospheric Experiment

    NASA Astrophysics Data System (ADS)

    Sinelnikov, Vyacheslav; Kuznetsov, Vladimir; Alpert, Svetlana

    The world's first scientific space experiment was carried out in 1957 during the flight of the first Artificial Earth Satellite (AES) - Sputnik 1. It was an ionospheric experiment performed at IZMIRAN under the direction of Prof. Ya.L.Alpert (1911-2010). The sunrise and sunset variations in the AES radio signal were recorded in order to determine the distribution of electron density in the topside ionosphere (above the maximum). The experiment demonstrated the capabilities of the satellite radio beacon method, which is now very important and widely used for studying the ionosphere. Our report submitted to the COSPAR General Assembly in Russia describes the history and results of that experiment, as well as some other contributions by Ya.L.Alpert to ionospheric research. Yakov L.Alpert was one of the most famous and influential radiophysicists of his time, the author of many fundamental studies and of a number of classic books on the theory of propagation of electromagnetic waves, interaction of artificial bodies with ionospheric plasmas, ionospheric radio scattering, and the use of satellite radio beacon methods for studying the ionosphere.

  12. Convective radial energy flux due to resonant magnetic perturbations and magnetic curvature at the tokamak plasma edge

    SciTech Connect

    Marcus, F. A.; Beyer, P.; Fuhr, G.; Monnier, A.; Benkadda, S.

    2014-08-15

    With the resonant magnetic perturbations (RMPs) consolidating as an important tool to control the transport barrier relaxation, the mechanism on how they work is still a subject to be clearly understood. In this work, we investigate the equilibrium states in the presence of RMPs for a reduced MHD model using 3D electromagnetic fluid numerical code with a single harmonic RMP (single magnetic island chain) and multiple harmonics RMPs in cylindrical and toroidal geometry. Two different equilibrium states were found in the presence of the RMPs with different characteristics for each of the geometries used. For the cylindrical geometry in the presence of a single RMP, the equilibrium state is characterized by a strong convective radial thermal flux and the generation of a mean poloidal velocity shear. In contrast, for toroidal geometry, the thermal flux is dominated by the magnetic flutter. For multiple RMPs, the high amplitude of the convective flux and poloidal rotation are basically the same in cylindrical geometry, but in toroidal geometry the convective thermal flux and the poloidal rotation appear only with the islands overlapping of the linear coupling between neighbouring poloidal wavenumbers m, m – 1, and m?+?1.

  13. Convective radial energy flux due to resonant magnetic perturbations and magnetic curvature at the tokamak plasma edge

    NASA Astrophysics Data System (ADS)

    Marcus, F. A.; Beyer, P.; Fuhr, G.; Monnier, A.; Benkadda, S.

    2014-08-01

    With the resonant magnetic perturbations (RMPs) consolidating as an important tool to control the transport barrier relaxation, the mechanism on how they work is still a subject to be clearly understood. In this work, we investigate the equilibrium states in the presence of RMPs for a reduced MHD model using 3D electromagnetic fluid numerical code with a single harmonic RMP (single magnetic island chain) and multiple harmonics RMPs in cylindrical and toroidal geometry. Two different equilibrium states were found in the presence of the RMPs with different characteristics for each of the geometries used. For the cylindrical geometry in the presence of a single RMP, the equilibrium state is characterized by a strong convective radial thermal flux and the generation of a mean poloidal velocity shear. In contrast, for toroidal geometry, the thermal flux is dominated by the magnetic flutter. For multiple RMPs, the high amplitude of the convective flux and poloidal rotation are basically the same in cylindrical geometry, but in toroidal geometry the convective thermal flux and the poloidal rotation appear only with the islands overlapping of the linear coupling between neighbouring poloidal wavenumbers m, m - 1, and m + 1.

  14. The Flow of Plasma in the Solar-Terrestrial Environment

    NASA Technical Reports Server (NTRS)

    Schunk, Robert W.; Sojka, Jan J.; Barakat, Abdallah R.; Demars, Howard G.; Zhu, Lie

    2005-01-01

    The overall goal of our NASA theory research is to trace the flow of mass, momentum, and energy through the magnetosphere-ionosphere-atmosphere system taking into account the coupling, time delays, and feedback mechanisms that are characteristic of the system. Our approach is to model the magnetosphere-ionosphere-atmosphere (M-I-A) system in a self-consistent quantitative manner using unique global models that allow us to study the coupling between the different regions on a range of spatial and temporal scales. The uniqueness of our global models stems from their high spatial and temporal resolutions, the physical processes included, and the numerical techniques employed. Currently, we have time-dependent global models of the ionosphere, thermosphere, polar wind, plasmasphere, and electrodynamics. It is now becoming clear that a significant fraction of the flow of mass, momentum, and energy in the M-I-A system occurs on relatively small spatial scales. Therefore, an important aspect of our NASA Theory program concerns the effect that mesoscale (100-l000 km) density structures have on the macroscopic flows in the ionosphere, thermosphere, and polar wind. The structures can be created either by structured magnetospheric inputs (i.e., structured electric field, precipitation, or Birkeland current patterns) or by time variations of these inputs due to geomagnetic storms and substorms. Some of the mesoscale structures of interest include sun-aligned polar cap arcs, propagating plasma patches, traveling convection vortices, subauroral ion drift (SAID) channels, gravity waves, and the polar hole.

  15. Structure and dynamics of the solar wind/ionosphere interface on Mars: MEX-ASPERA-3 and MEX-MARSIS observations

    E-print Network

    Gurnett, Donald A.

    Structure and dynamics of the solar wind/ionosphere interface on Mars: MEX-ASPERA-3 and MEX; published 10 June 2008. [1] The measurements of the local plasma parameters of the ionospheric and solar test of the pressure balance across the solar wind/ ionosphere interface. The structure

  16. Titan's ionosphere: Model comparisons with Cassini Ta data T. E. Cravens,1

    E-print Network

    California at Berkeley, University of

    Titan's ionosphere: Model comparisons with Cassini Ta data T. E. Cravens,1 I. P. Robertson,1 J 2005. [1] On October 26, 2004, during its first encounter with Titan (Ta), the Cassini Orbiter moved of the main part of Titan's ionosphere were made by the Langmuir probe on the Cassini Radio and Plasma Wave

  17. Ultra-low-frequency electrodynamics of the magnetosphere-ionosphere interaction

    E-print Network

    Lotko, William

    Ultra-low-frequency electrodynamics of the magnetosphere-ionosphere interaction A. V. Streltsov than the fundamental eigenfrequency of the magnetosphere measured in the regions where the ionospheric Alfve´n waves in the highly inhomogeneous magnetospheric plasma and interaction between these waves

  18. Kinetic description of ionospheric dynamics in the three-fluid approximation

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.

    1975-01-01

    Conservation equations are developed in the three-fluid approximation for general application problems of ionospheric dynamics in the altitude region 90 km to 800 km for all geographic locations. These equations are applied to a detailed study of auroral E region neutral winds and their relationship to ionospheric plasma motions.

  19. Ionospheric Alfvén resonator response to remote earthquakes

    NASA Astrophysics Data System (ADS)

    Potapov, Alexander S.; Dovbnya, Boris V.; Tsegmed, Battuulai

    2010-05-01

    The ionospheric Alfvén resonances (IARs) are an interesting wave phenomenon well described in the literature. The IAR formation region is located between two bends of the plasma density profile: in the lower part of the ionospheric F region and at altitudes of about 1000-3000 km. In this region, Alfvén waves are entrapped and form standing waves. The quality factor of the resonator can attain a value of 5-10. We studied local IAR features using data of the Borok Geophysical Observatory (58°N, 38° E) and found that the ionospheric Alfvén resonances observed as geomagnetic pulsations at frequencies of a few hertz respond to remote seismic events. There are different kinds of the seismic wave effect on the IARs mode: sometimes the oscillations arise after an earthquake moment, in other cases they sharply decay, and sometimes they abruptly change their intensity. Among possible mechanisms of the earthquake action on the ionosphere acoustic and electromagnetic waves emerged by a seismic shock are discussed. The work was supported by the RFBR grants 09-05-00048 and 10-05-00661.

  20. Global Response to Local Ionospheric Mass Ejection

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Fok, M.-C.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.

    2010-01-01

    We revisit a reported "Ionospheric Mass Ejection" using prior event observations to guide a global simulation of local ionospheric outflows, global magnetospheric circulation, and plasma sheet pressurization, and comparing our results with the observed global response. Our simulation framework is based on test particle motions in the Lyon-Fedder-Mobarry (LFM) global circulation model electromagnetic fields. The inner magnetosphere is simulated with the Comprehensive Ring Current Model (CRCM) of Fok and Wolf, driven by the transpolar potential developed by the LFM magnetosphere, and includes an embedded plasmaspheric simulation. Global circulation is stimulated using the observed solar wind conditions for the period 24-25 Sept 1998. This period begins with the arrival of a Coronal Mass Ejection, initially with northward, but later with southward interplanetary magnetic field. Test particles are launched from the ionosphere with fluxes specified by local empirical relationships of outflow to electrodynamic and particle precipitation imposed by the MIlD simulation. Particles are tracked until they are lost from the system downstream or into the atmosphere, using the full equations of motion. Results are compared with the observed ring current and a simulation of polar and auroral wind outflows driven globally by solar wind dynamic pressure. We find good quantitative agreement with the observed ring current, and reasonable qualitative agreement with earlier simulation results, suggesting that the solar wind driven global simulation generates realistic energy dissipation in the ionosphere and that the Strangeway relations provide a realistic local outflow description.

  1. Gravity Wave Propagation into the Thermosphere from Deep Convection

    NASA Astrophysics Data System (ADS)

    Vadas, Sharon

    In this talk, we discuss the excitation and propagation of primary gravity waves from deep convective overshoot. We show that many of these fast waves can escape filtering in the lower atmosphere and propagate into the thermosphere. There, gravity waves dissipate, creating thermospheric body forces which rapidly accelerate the local fluid over spatial scales of 100-500 km. This acceleration process creates local "mean" winds which eventually dissipate, and excites upward and downward propagating gravity waves dubbed "secondary waves". Using our new compressible body force model, we calculate the secondary gravity wave spectrum excited by a typical thermospheric body force. We also show the spectrum of secondary waves near the bottomside of the F layer determined from a recent study involving convective overshoot from tropical storm Noel. We find that this secondary wave spectrum agrees well with a spectrum of scales from repeating equatorial plasma bubbles. Additionally, we show that these secondary waves can propagate 20-40 degrees (up to globally), depending on their periods, thereby creating ionospheric variability far from their sources. These secondary gravity waves are the fingerprints of this important but little-understood dynamical process in the thermosphere. Finally, we show that when deep convection occurs over many hours in a localized area, the induced mean winds are coherent because of the coherency of the tidal and planetary wave filtering over these times scales. These mean winds are large, up to 150 m/s in a study over Brazil. Because deep convection tends to have a daily cycle, these mean wind perturbations may manifest themselves as global-scale, migrating or non-migrating tides.

  2. Charged particles in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Tripathi, Sachchida

    2010-05-01

    Charged particles in Titan's ionosphere Marykutty Michael1, Sachchida Nand Tripathi1,2,3, Pratima Arya1 1Indian Institute of Technology Kanpur 2Oak Ridge Associated Universities 3NASA Goddard Space Flight Center Observations by two instruments onboard the Cassini spacecraft, Ion Neutral Mass Spectrometer (INMS) and CAssini Plasma Spectrometer (CAPS), revealed the existence of heavy hydrocarbon and nitrile species with masses of several thousand atomic mass units at altitudes of 950 - 1400 km in the atmosphere of Titan (Waite et al., 2007; Crary et al., 2009). Though these particles were believed to be molecules, they are most likely aerosols formed by the clumping of smaller molecules (Waite et al., 2009). These particles were estimated to have a density of 10-3 kg m-3 and a size of up to 256 nm. The existence of very heavy ions has also been observed by the CAPS components with a mass by charge ratio of up to 10000 (Coates et al., 2007, 2009; Sittler et al., 2009). The goal of this paper is to find out whether the so called heavy ions (or charged particles) are generated by the charge transfer of ions and electrons to the particles. The charging of these particles has been studied by using the charge balance equations that include positive ions, negative ions, electrons, neutral and charged particles. Information on the most abundant ion clusters are obtained from Vuitton et al., (2009) and Wilson and Atreya, (2004). Mass by charge ratio thus calculated will be compared with those observed by Coates et al. (2007). References: Coates AJ, et al., Discovery of heavy negative ions in Titan's ionosphere, Geophys. Res. Lett., 34:L22103, 2007. Coates AJ, et al., Heavy negative ions in titan's ionosphere: altitude and latitude dependence. Planet. Space Sci., doi:10.1016/j.pss.2009.05.009, 2009. Crary F.J., et al., Heavy ions, temperatures and winds in titan's ionosphere: Combined cassini caps and inms observations. Planet. Space Sci., doi:10.1016/j.pss.2009.09.006, 2009. Sittler,E.C. et al., Heavy ion formation in Titan's ionosphere: Magnetospheric introduction of free oxygen and a source of Titan's aerosols? Planet. Space Sci., doi:10.1016/j.pss.2009.07.017, 2009. Vuitton, V., Negative ion chemistry in Titan's upper atmosphere, Planet. Space Sci., doi:10.1016/j.pss.2009.04.004, 2009. Waite J.H, et al., The process of tholin formation in Titan's upper atmosphere. Science, doi: 10.1126/science.1139727, 316, 870, 2007. Waite JH, et al., High altitude production of Titan's aerosols, In Titan from Cassini-Huygens, edited by RH. Brown, J.P Lebreton, JH Waite, Springer, 2009. Wilson, E.H. and S. Atreya, Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere, J. Geophys. Res., 109, E06002, doi:10.1029/2003JE002181, 2004.

  3. All Ionospheres are not Alike: Reports from other Planets

    NASA Technical Reports Server (NTRS)

    Nagy, Andrew F.; Cravens, Thomas E.; Waite, H. J., Jr.

    1995-01-01

    Our understanding of planetary ionospheres made some progress during the last four years. Most of this progress was due to new and/or improved theoretical models, although some new data were also obtained by direct and remote sensing observations. The very basic processes such as ionization, chemical transformations and diffusive as well as convective transports are analogous in all ionospheres; the major differences are the result of factors such as different neutral atmospheres, intrinsic magnetic field strength, distance from the Sun, etc. Improving our understanding of any of the ionospheres in our solar system helps in elucidating the controlling physical and chemical processes in all of them. New measurements are needed to provide new impetus, as well as guidance, in advancing our understanding and we look forward to such information in the years ahead.

  4. Electrodynamics of solar wind-magnetosphere-ionosphere interactions

    NASA Technical Reports Server (NTRS)

    Kan, Joseph R.; Akasofu, Syun-Ichi

    1989-01-01

    The paper presents a coherent picture of fundamental physical processes in three basic elements of the solar-wind/magnetosphere/ionosphere coupling system: (1) the field-aligned potential structure which leads to the formation of auroral arcs, (2) the magnetosphere-ionosphere coupling which leads to the onset of magnetospheric substorms, and (3) the solar-wind/magnetosphere dynamo which supplies the power driving various magnetospheric processes. Process (1) is forced into existence by the loss-cone constriction effect when the upward field-aligned current density exceeds the loss-cone thermal flux limit. Substorm onset occurs when the ionosphere responds fully to the enhanced magnetospheric convection driven by the solar wind. Energy is transferred from the solar wind to the magnetosphere by a dynamo process, primarily on open field lines.

  5. Assimilative Model Bias Correction Schemes for Global Ionospheric Modeling

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Matsuo, T.; Maruyama, N.; Liu, J. G.

    2013-12-01

    The balance between plasma production, loss, and transport processes determines the distribution of the ionospheric plasma density, and states of the thermospheric parameters such as neutral wind, temperature, and composition have significant impacts on these processes. The discrepancy between the modeled and observed ionospheric plasma density often results from inaccurate specifications of the thermospheric drivers. Global observations of the thermospheric parameters remain scarce, while plasma density measurements become relatively abundant thanks to radio occultation missions such as the FORMOSAT-3/COMSIC (F3/C). The objective of this paper is to improve the global plasma density distribution in a physics-based ionosphere and plasmasphere model by objectively adjusting thermosphere winds by using the F3/C observations (particularly hmF2 and NmF2). In mid-latitudes, variations in the hmF2 are almost exclusively controlled by neutral winds along a geomagnetic field line, allowing us to infer winds from hmF2 observations during quiet solar conditions. The validity of this linearized relationship between hmF2 and meridional thermospheric wind variations is explored under the presence of electric fields with longitudinal dependence. Furthermore, we assess the improvement of the global plasma density obtained by driving the global ionosphere and plasmasphere model with the inferred winds.

  6. The Role of Thermospheric Winds in Magnetosphere-Ionosphere Coupling

    NASA Astrophysics Data System (ADS)

    Richmond, A. D.

    2002-12-01

    Thermospheric winds are forced primarily by non-uniform solar heating, by atmospheric tides and other waves coming from below, and by ion drag and Joule heating associated with high-latitude convection. The high-latitude ion drag above 120 km altitude tends to drive winds in the direction of the ionospheric convection, although inertia of the air and other forces prevent a tight coupling of the ion and neutral motions. The tendency for high-latitude winds to move in the direction of ion motion tends to reduce the effective conductance of the ionosphere as felt by the magnetosphere, with consequences for magnetosphere-ionosphere coupling. The inertia of the air can cause delayed ``flywheel'' effects, which can potentially help maintain magnetospheric convection after a sudden reduction in the strength of solar-wind/magnetosphere coupling. At low latitudes, the ionospheric electric fields associated with magnetospheric disturbances can have complex temporal behavior. The electric field that penetrates to the equator directly from the polar cap tends to enhance the regular quiet-day equatorial east-west electric field. In contrast, the equatorial east-west electric field produced by the ``shielding'' region-2 currents tends to act oppositely to the directly penetrating field, but with a time delay of tens of minutes. Disturbance thermospheric winds have an ionospheric dynamo effect that also tends to act oppositely to the directly penetrating field, but with a time delay of a few hours. The combined effects can lead to electric-field disturbances of either sign, including long-lasting ``overshielding'' disturbances that can reduce or even reverse the normal quiet-day equatorial east-west electric field.

  7. Ionospheric informatics and empirical modelling; Proceedings of Workshop XII of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Astrophysics Data System (ADS)

    Rawer, K.; Bradley, P. A.

    The present conference discusses topics in the fields of plasma densities, plasma mapping, plasma temperatures, ion composition and drift, and applications of the IRI spacecraft. Attention is given to an expression for the electron density profile below the F2 peak, aeronomical calculations of valley size in the ionosphere, a novel method for standardizing Langmuir-probe data, the mapping of the critical frequency of the F2 layer, and the ionospheric mapping significance of longitude features in topside sounder data. Also discussed are atmospheric gravity waves and ionospheric modeling, solar activity variations of ionospheric plasma temperatures, variations of He ion density from theoretical considerations, digital ionogram data, and oblique propagation studies.

  8. Imaging the Ionosphere Submitted by

    E-print Network

    Kassie, Endawoke Yizengaw

    Imaging the Ionosphere Submitted by Endawoke Yizengaw B.Sc. (Applied Physics), Addis Ababa.1. Project Overview 1 1.2. Discovery of the Ionosphere 3 1.3. How is the Ionosphere Formed? 6 1.3.1. Definition of the Ionospheric Regions (Structures) 7 1.3.1.1. D region 8 1.3.1.2. E region 8 1.3.1.3. F

  9. Topside equatorial ionospheric density, temperature, and composition under equinox, low solar flux conditions

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Milla, M. A.; Rodrigues, F. S.; Varney, R. H.; Huba, J. D.

    2015-05-01

    We present observations of the topside ionosphere made at the Jicamarca Radio Observatory in March and September 2013, made using a full-profile analysis approach. Recent updates to the methodology employed at Jicamarca are also described. Measurements of plasma number density, electron and ion temperatures, and hydrogen and helium ion fractions up to 1500 km altitude are presented for 3 days in March and September. The main features of the observations include a sawtooth-like diurnal variation in ht, the transition height where the O+ ion fraction falls to 50%, the appearance of weak He+ layers just below ht, and a dramatic increase in plasma temperature at dawn followed by a sharp temperature depression around local noon. These features are consistent from day to day and between March and September. Coupled Ion Neutral Dynamics Investigation data from the Communication Navigation Outage Forecast System satellite are used to help validate the March Jicamarca data. The SAMI2-PE model was able to recover many of the features of the topside observations, including the morphology of the plasma density profiles and the light-ion composition. The model, forced using convection speeds and meridional thermospheric winds based on climatological averages, did not reproduce the extreme temperature changes in the topside between sunrise and noon. Some possible causes of the discrepancies are discussed.

  10. Momentum, Heat, and Neutral Mass Transport in Convective Atmospheric Pressure Plasma-Liquid Systems and Implications for Aqueous Targets

    E-print Network

    Lindsay, Alexander; Slikboer, Elmar; Shannon, Steven; Graves, David

    2015-01-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 $\\mu$m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results fro...

  11. Research on the lunar ionosphere using dual-frequency radio occultation with a small VLBI antenna

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Wang, Na; Ping, Jinsong

    2015-04-01

    The Vstar in the Japanese lunar SELENE Radio Science experiment was occulted by virtue of the lunar ionosphere. Using the single sub-satellite and the S/X band coherent radio waves, dual-frequency measurements were acquired at a ground receiving station. In order to investigate the variation of ionospheric total electron content (TEC) surrounding the moon, the TEC, including the terrestrial ionosphere, the interplanetary plasma and lunar ionosphere, can be derived from the phase information of the observational data. We update the observation equation and algorithms, calculate the linear fitting trend of the lunar ionosphere from 60 to 30 km above the surface of the moon. The fitting trend is extended from 30 to 0 km above the surface of the moon. The lunar ionosphere is obtained by using the short time trend extrapolation method.

  12. Estimates of Horizontal Ionospheric Currents on the Dayside of Mars

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Lillis, R. J.; Brain, D. A.

    2014-12-01

    How the solar wind interacts with a planetary object depends upon the object's properties such as the presence of a magnetic field or an atmosphere. An unmagnetized object cannot stand-off the solar wind unless it possess a substantial atmosphere which can be ionized by solar radiation creating a conductive ionosphere. Currents can then be induced in the ionosphere; these currents act to cancel out the external solar wind magnetic field preventing it from reaching the surface. Here we present simple analytical calculations of such induced currents in the ionosphere of Mars. We consider currents in the ionospheric dynamo region which can be driven by thermospheric winds as well as currents driven by electric fields (i.e., plasma motion through the neutrals). We include in these estimates the effects of "equatorial-type" electrojets due to vertical conductivity gradients in the presence of horizontal magnetic fields. The direction of the external driver is important. Vertical neutral winds (or plasma motion) give rise to electrojets whereas horizontal winds (or plasma motion) lead to no net current. These results can give us insights into how external magnetic fields are effectively screened out by induced currents and how these induced currents can influence ionospheric dynamics around unmagnetized objects.

  13. Thermodynamic effect of the ion sound instability in the ionosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gombosi, T. I.; Gorbachev, O. A.; Trukhan, A. A.; Miller, R. H.

    1994-01-01

    During geomagnetic disturbances when the ring current interacts intensely with the plasmasphere, the plasma of this region undergoes a strong heating due to an ion cyclotron instability. This is followed by the transfer of heat along geomagnetic field lines from the heating region to the ionosphere. One of the results of this process is the formation of non-isothermal region (in which T(sub e) greater than 3.4 T(sub i) at ionospheric heights) caused by a rapid cooling the H(+) ions due to their resonant charge exchange with neutral hydrogen. Heat transfer from the top of the flux tube to the ionosphere is investigated using a hydrodynamic model for the ionosphere-plasmasphere coupling. Field-aligned currents, present in the topside ionosphere, are often accompanied by ion sound turbulence. The turbulence scatters electrons, increasing the total electron collision frequency through wave-particle effects. The influence of wave-particle interactions introduces an anomalous component to the total collision frequency, which modifies substantially the heat conduction coefficient of the plasma. As a result, the plasma is heated more intensely above than below this region of ion sound turbulence.

  14. Electric fields in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.

    1975-01-01

    F-region drift velocities, measured by incoherent-scatter radar were analyzed in terms of diurnal, seasonal, magnetic activity, and solar cycle effects. A comprehensive electric field model was developed that includes the effects of the E and F-region dynamos, magnetospheric sources, and ionospheric conductivities, for both the local and conjugate regions. The E-region dynamo dominates during the day but at night the F-region and convection are more important. This model provides much better agreement with observations of the F-region drifts than previous models. Results indicate that larger magnitudes occur at night, and that daily variation is dominated by the diurnal mode. Seasonal variations in conductivities and thermospheric winds indicate a reversal in direction in the early morning during winter from south to northward. On magnetic perturbed days and the drifts deviate rather strongly from the quiet days average, especially around 13 L.T. for the northward and 18 L.T. for the westward component.

  15. Ionospheric delay gradient monitoring for GBAS by GPS stations near Suvarnabhumi airport, Thailand

    NASA Astrophysics Data System (ADS)

    Rungraengwajiake, Sarawoot; Supnithi, Pornchai; Saito, Susumu; Siansawasdi, Nattapong; Saekow, Apitep

    2015-10-01

    Ground-based augmentation system (GBAS) is an important augmentation system that provides the differential corrections and integrity information from the reference stations to the aircrafts for precision approach and landing. It is known that the nonuniform ionospheric characteristics called "ionospheric delay gradient" can cause the errors in differential corrections degrading the accuracy and safety level if they are undetected by the reference stations. Since the characteristics of the ionosphere are different for each region, the ionospheric delay gradient observations in equatorial and low-latitude regions are necessary for developing the suitable ionospheric threat models. The purpose of this work is to analyze the ionospheric delay gradients observed by three GPS stations near Suvarnabhumi airport in Bangkok, Thailand, which is located in the low-latitude region. The ionospheric irregularities in this region are mainly caused by the plasma bubble, which usually occurs after sunset. The GPS data with plasma bubble occurrence during the September equinox 2011 and 2012 are therefore analyzed. In addition, the data analysis procedure utilizing the rate of total electron content change index for this region is proposed. The results show that the ionospheric delay gradients observed in the west-east direction appear higher than the south-north direction, varying from 28 to 178 mm/km during plasma bubble occurrences.

  16. Aspects of magnetosphere-ionosphere coupling in sawtooth substorms: a case study

    NASA Astrophysics Data System (ADS)

    Sandholt, P. E.; Farrugia, C. J.

    2014-10-01

    In a case study we report on repetitive substorm activity during storm time which was excited during Earth passage of an interplanetary coronal mass ejection (ICME) on 18 August 2003. Applying a combination of magnetosphere and ground observations during a favourable multi-spacecraft configuration in the plasma sheet (GOES-10 at geostationary altitude) and in the tail lobes (Geotail and Cluster-1), we monitor the temporal-spatial evolution of basic elements of the substorm current system. Emphasis is placed on activations of the large-scale substorm current wedge (SCW), spanning the 21:00-03:00 MLT sector of the near-Earth plasma sheet (GOES-10 data during the interval 06:00-12:00 UT), and magnetic perturbations in the tail lobes in relation to ground observations of auroral electrojets and convection in the polar cap ionosphere. The joint ground-satellite observations are interpreted in terms of sequential intensifications and expansions of the outer and inner current loops of the SCW and their respective associations with the westward electrojet centred near midnight (24:00 MLT) and the eastward electrojet observed at 14:00-15:00 MLT. Combined magnetic field observations across the tail lobe from Cluster and Geotail allow us to make estimates of enhancements of the cross-polar-cap potential (CPCP) amounting to ? 30-60 kV (lower limits), corresponding to monotonic increases of the PCN index by 1.5 to 3 mV m-1 from inductive electric field coupling in the magnetosphere-ionosphere (M-I) system during the initial transient phase of the substorm expansion.

  17. Planetary waves in the equatorial mesosphere and ionosphere measurements

    NASA Astrophysics Data System (ADS)

    Lima, L. M.; Araujo, L. R.; Takahashi, H.; Batista, P. P.; Batista, I. S.; Silva, M. F.

    2013-05-01

    Mesosphere-ionosphere coupling through signature of planetary waves is investigated from equatorial meteor wind, obtained at São João do Cariri-PB (7.4°S, 36.5°W), from four magnetometer data and from evening F region vertical plasma drift measurements, obtained by digital ionospheric sounder (DPS-4) at Fortaleza (3.9°S, 38.4°W). To examine the temporal variations in meteor winds, magnetometer data and in vertical plasma drifts we used the S-transform method. The spectral analysis shows distinct power spectrum with peaks with low-frequency oscillations, which are associated with planetary waves, mainly those with period near 2 days and 6-7 days. The presence of these periodic variations, in these three different types of data, suggests that ionosphere has been modulated by mesospheric oscillations with period of planetary waves.

  18. Broadband Meter-Wavelength Observations of Ionospheric Scintillation

    E-print Network

    Fallows, R A; McKay, D; Vierinen, J; Virtanen, I I; Postila, M; Ulich, Th; Enell, C-F; Kero, A; Iinatti, T; Lehtinen, M; Orispää, M; Raita, T; Roininen, L; Turunen, E; Brentjens, M; Ebbendorf, N; Gerbers, M; Grit, T; Gruppen, P; Meulman, H; Norden, M; de Reijer, J-P; Schoenmakers, A; Stuurwold, K

    2015-01-01

    Intensity scintillations of cosmic radio sources are used to study astrophysical plasmas like the ionosphere, the solar wind, and the interstellar medium. Normally these observations are relatively narrow band. With Low Frequency Array (LOFAR) technology at the Kilpisj\\"arvi Atmospheric Imaging Receiver Array (KAIRA) station in northern Finland we have observed scintillations over a 3 octave bandwidth. ``Parabolic arcs'', which were discovered in interstellar scintillations of pulsars, can provide precise estimates of the distance and velocity of the scattering plasma. Here we report the first observations of such arcs in the ionosphere and the first broad-band observations of arcs anywhere, raising hopes that study of the phenomenon may similarly improve the analysis of ionospheric scintillations. These observations were made of the strong natural radio source Cygnus-A and covered the entire 30-250\\,MHz band of KAIRA. Well-defined parabolic arcs were seen early in the observations, before transit, and disapp...

  19. Topside sounders as mobile ionospheric heaters

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    2006-01-01

    There is evidence that satellite-borne RF sounders can act as mobile ionospheric heaters in addition to performing topside sounding. The main objective of topside sounding is to use sounder-generated electromagnetic (em) waves to obtain ionospheric topside vertical electron-density (N(sub e) profiles. These profiles are obtained from mathematical inversions of the frequency vs. delay-time ionospheric reflection traces. In addition to these em reflection traces, a number of narrowband intense signals are observed starting at zero delay times after the transmitted pulses. Some of these signals, termed plasma resonances, appear at characteristic frequencies of the ambient medium such as at the electron cyclotron frequency f(sub ce), the harmonics nf(sub ce), the electron plasma frequency f(sub pe) and the upper-hybrid frequency f(sub uh), where (f(sub uh))(exp 2) = (f(sub ce))(exp 2) + (f(sub pe))(exp 2) . These signals have been attributed to the oblique echoes of sounder-generated electrostatic (es) waves. These resonances provide accurate in situ f(sub pe) and f(sub ce) values which, in turn, lead to accurate N(sub e) and [B] values where B is the ambient magnetic field. Resonances are also observed between the nf(sub ce) harmonics both above and below f(sub uh). The former, known as the Qn plasma resonances, are mainly attributed to the matching of the wave group velocity of sounder-generated (Bernstein-mode) es waves to the satellite velocity. The frequency spectrum of these waves in the magnetosphere can be used to detect non-Maxwellian electron velocity-distributions. In addition, these resonances also exhibit components that appear to be the result of plasma emissions stimulated by the sounder pulses. The plasma resonances observed between the nf(sub ce) harmonics and below f(sub uh), known as the Dn plasma resonances, are entirely attributed to such sounder-stimulated plasma emissions. There are other sounder-stimulated plasma phenomena that also fall into this category, e.g., ion affects on electron-resonant phenomena, proton-cyclotron echoes and N(sub e) field-aligned irregularities (FAI). Some of these phenomena are more pronounced when f(sub pe)/f(sub ce) approx. = n where n is an integer significantly greater than one. The observations suggest that the sounder-stimulated plasma phenomena are stimulated, or enhanced, on a time scale much less than one second. The purpose of this presentation is to review the above topics with particular emphasis on the sounder-stimulated plasma phenomena.

  20. The Ptolemaic Approach to Ionospheric Electrodynamics

    NASA Astrophysics Data System (ADS)

    Vasyliunas, V. M.

    2010-12-01

    The conventional treatment of ionospheric electrodynamics (as expounded in standard textbooks and tutorial publications) consists of a set of equations, plus verbal descriptions of the physical processes supposedly represented by the equations. Key assumptions underlying the equations are: electric field equal to the gradient of a potential, electric current driven by an Ohm's law (with both electric-field and neutral-wind terms), continuity of current then giving a second-order elliptic differential equation for calculating the potential; as a separate assumption, ion and electron bulk flows are determined by ExB drifts plus collision effects. The verbal descriptions are in several respects inconsistent with the equations; furthermore, both the descriptions and the equations are not compatible with the more rigorous physical understanding derived from the complete plasma and Maxwell's equations. The conventional ionospheric equations are applicable under restricted conditions, corresponding to a quasi-steady-state equilibrium limit, and are thus intrinsically incapable of answering questions about causal relations or dynamic developments. Within their limited range of applicability, however, the equations are in most cases adequate to explain the observations, despite the deficient treatment of plasma physics. (A historical precedent that comes to mind is that of astronomical theory at the time of Copernicus and for some decades afterwards, when the Ptolemaic scheme could explain the observations at least as well if not better than the Copernican. Some of the verbal descriptions in conventional ionospheric electrodynamics might be considered Ptolemaic also in the more literal sense of being formulated exclusively in terms of a fixed Earth.) I review the principal differences between the two approaches, point out some questions where the conventional ionospheric theory does not provide unambiguous answers even within its range of validity (e.g., topside and bottomside boundary conditions on electrodynamics), and illustrate with some simple examples of how a neutral-wind dynamo really develops.

  1. On formation of Global Cowling channel in the ionosphere and the generalized Ohm's Law

    NASA Astrophysics Data System (ADS)

    Yoshikawa, A.; Nakamizo, A.; Ohtani, S.

    2013-12-01

    Time-dependent generalized 3-fluids Ohm's law in the ionosphere is reconsidered. We explicitly show that difference between electric field and E.M.F. (Electro Motive Force, such as Lorentz force, friction force and pressure gradient force acting to electron fluid) become source for radiation of electromagnetic wave. In a spatiotemporal scale much slower than the electron plasma frequency and much larger than the electron inertial length, the electric field and E.M.F should converge to the same value. Thus the evolution of magnetic field in a time scale that we are interested in, is described by the Faraday's law driven by the E.M.F. After time scale that an inductive response is completing, the resultant electrostatic electric field distribution and associated current system is determined to satisfy the current conservation law with appropriate boundary conditions. Using this framework, possible mechanism for current closure from polar to equatorial ionosphere via global Cowling channel is discussed. The Cowling channel is formed by generation of secondary electric field in a cancelling process of accumulated charge caused by Hall current divergence. In our model, a global (primary) Hall current accompanied by two-cell type ionospheric convection induces polarization charge at the conductivity gradient region of dawn-dusk conductivity terminator and magnetic dip-equator. The secondary electric field accompanied by this induced charge generates the secondary Hall current flows along the dawn-side terminator line to the magnetic dip-equator. Resultantly, the global Cowling channel from polar to equatorial ionosphere via the terminator-line and magnetic-dip equator could be formed. Our model shows that enhancement of polar origin equatorial electrojet (EEJ) at morning side region, is due to the converging Hall current from polar to the dawn side dip-equator. Meanwhile, decaying of EEJ is due to the diverging Pedersen current from dusk-side dip-equator to the polar region. This mechanism can be applied to the EEJ disturbances accompanied by the solar wind variations such as DP2-type magnetic field disturbances and many phenomena associate the equatorial enhancement and/or depression of the geomagnetic field disturbances.

  2. Solitons and ionospheric heating

    NASA Technical Reports Server (NTRS)

    Weatherall, J. C.; Goldman, M. V.; Sheerin, J. P.; Nicholson, D. R.; Payne, G. L.; Hansen, P. J.

    1982-01-01

    It is noted that for parameters characterizing the Platteville ionospheric heating facility, the Langmuir wave evolution at the exact reflection point of the heater wave involves an oscillating two-stream instability followed by a collisionally damped three-dimensional soliton collapse. The result gives an alternative explanation for certain experimental observations.

  3. Cold ion escape from the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Fränz, M.; Dubinin, E.; Andrews, D.; Barabash, S.; Nilsson, H.; Fedorov, A.

    2015-12-01

    We here report on new measurements of the escape flux of oxygen ions from Mars by combining the observations of the ASPERA-3 and MARSIS experiments on board the European Mars Express spacecraft. We show that in previous estimates of the total heavy ion escape flow the contribution of the cold ionospheric outflow with energies below 10 eV has been underestimated. Both case studies and the derived flow pattern indicate that the cold plasma observed by MARSIS and the superthermal plasma observed by ASPERA-3 move with the same bulk speed in most regions of the Martian tail. We determine maps of the tailside heavy ion flux distribution derived from mean ion velocity distributions sampled over 7 years. If we assume that the superthermal bulk speed derived from these long time averages of the ion distribution function represent the total plasma bulk speed we derive the total tailside plasma flux. Assuming cylindrical symmetry we determine the mean total escape rate for the years 2007-2014 at 2.8 ± 0.4 × 1025 atoms / s which is in good agreement with model estimates. A possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside.

  4. Incoherent scatter radar observations of the ionosphere

    NASA Technical Reports Server (NTRS)

    Hagfors, Tor

    1989-01-01

    Incoherent scatter radar (ISR) has become the most powerful means of studying the ionosphere from the ground. Many of the ideas and methods underlying the troposphere and stratosphere (ST) radars have been taken over from ISR. Whereas the theory of refractive index fluctuations in the lower atmosphere, depending as it does on turbulence, is poorly understood, the theory of the refractivity fluctuations in the ionosphere, which depend on thermal fluctuations, is known in great detail. The underlying theory is one of the most successful theories in plasma physics, and allows for many detailed investigations of a number of parameters such as electron density, electron temperature, ion temperature, electron mean velocity, and ion mean velocity as well as parameters pertaining to composition, neutral density and others. Here, the author reviews the fundamental processes involved in the scattering from a plasma undergoing thermal or near thermal fluctuations in density. The fundamental scattering properties of the plasma to the physical parameters characterizing them from first principles. He does not discuss the observation process itself, as the observational principles are quite similar whether they are applied to a neutral gas or a fluctuating plasma.

  5. A Model of Callisto's Ionosphere

    NASA Astrophysics Data System (ADS)

    Hartkorn, O. A.; Saur, J.; Bloecker, A.; Strobel, D. F.; Simon, S.

    2014-12-01

    We develop a model of the ionosphere of Jupiter's moon Callisto, where we assume a stationary balance between sources and sinks of electrons and electron energy. Hence, effects of electron transport and electron energy transport are neglected. At Callisto, the production of electrons and electron energy is basically driven by photoionization, which is implemented using the EUVAC model for solar activity. Dissociative recombination is the main electron loss process, whereas electron energy loss is further driven by dissociation, electron impact ionization as well as vibrational and rotational excitations of neutral atmospheric particles. All these effects are incorporated within our model by considering the associated cross sections. The neutral atmosphere is assumed to be stationary and consists of molecular oxygen with a column density of 3 to 4 x 1020 m-2 (e.g. Kliore et al. (2002), Liang et al. (2005)). Our results can be compared to radio occultation observations of four Galileo spacecraft flybys reported by Kliore et al. (2002), which shows that this simple model can explain the general pattern of the observational data. Indeed, our results indicate that the detection of enhanced electron densities is very sensitive to the exact position of the tangential point of the radio occultation method. Our model shows that photoionization produces a strong asymmetry of the electron density distribution between day and night-side of the moon. Further, model results for the electron energy allow for an estimation of the day glow of Callisto's atmosphere. This can be compared to HST observations (Strobel et al. (2002)) in order to evaluate the density of the neutral oxygen atmosphere. Future studies imply the modeling of the modification of the ionospheric structure through interaction with upstreaming jovian magnetospheric plasma.

  6. A plasma flow velocity boundary at Mars from the disappearance of electron plasma oscillations

    E-print Network

    Gurnett, Donald A.

    echo due to vertical reflection from the horizontally stratified ionosphere is measured (Gurnett et al sounding mode, the sounder transmitter excites electrostatic electron plasma oscillations at the local

  7. Gas convection caused by electron pressure drop in the afterglow of a pulsed inductively coupled plasma discharge

    SciTech Connect

    Cunge, G.; Vempaire, D.; Sadeghi, N.

    2010-03-29

    Neutral depletion is an important phenomenon in high-density plasmas. We show that in pulsed discharges, the neutral depletion caused by the electron pressure P{sub e} plays an important role on radical transport. In the afterglow, P{sub e} drops rapidly by electron cooling. So, a neutral pressure gradient built up between the plasma bulk and the reactor walls, which forces the cold surrounding gas to move rapidly toward the reactor center. Measured drift velocity of Al atoms in the early afterglow of Cl{sub 2}/Ar discharge by time-resolved laser induced fluorescence is as high as 250 ms{sup -1}. This is accompanied by a rapid gas cooling.

  8. Viscous Forces in Velocity Boundary Layers around Planetary Ionospheres.

    PubMed

    Pérez-De-Tejada

    1999-11-01

    A discussion is presented to examine the role of viscous forces in the transport of solar wind momentum to the ionospheric plasma of weakly magnetized planets (Venus and Mars). Observational data are used to make a comparison of the Reynolds and Maxwell stresses that are operative in the interaction of the solar wind with local plasma (planetary ionospheres). Measurements show the presence of a velocity boundary layer formed around the flanks of the ionosphere where the shocked solar wind has reached super-Alfvénic speeds. It is found that the Reynolds stresses in the solar wind at that region can be larger than the Maxwell stresses and thus are necessary in the local acceleration of the ionospheric plasma. From an order-of-magnitude calculation of the Reynolds stresses, it is possible to derive values of the kinematic viscosity and the Reynolds number that are suitable to the gyrotropic motion of the solar wind particles across the boundary layer. The value of the kinematic viscosity is comparable to those inferred from studies of the transport of solar wind momentum to the earth's magnetosphere and thus suggest a common property of the solar wind around planetary obstacles. Similar conditions could also be applicable to velocity boundary layers formed in other plasma interaction problems in astrophysics. PMID:10511515

  9. Magnetospheres of Planets and Moons: Links to Their Ionospheres. (Invited)

    NASA Astrophysics Data System (ADS)

    Kivelson, M. G.

    2010-12-01

    The phrase “magnetosphere-ionosphere coupling” has become almost hackneyed in the terrestrial context, but plays an important role in the terrestrial system and must also be emphasized in the context of planetary- and moon-magnetospheres because the underlying principles are similar in all systems. This talk will introduce only two intriguing aspects of the coupling problem for planets and moons. In describing the first topic, we note that, especially for the gas giants Jupiter and Saturn, much of the evidence of magnetosphere-ionosphere coupling is obtained from auroral imaging. In images of Jupiter’s polar ionosphere, bright auroral spots are found to link magnetically to the moons Io, Europa and Ganymede. The spots give evidence of intense field-aligned currents generated near the equator in the interaction between the moons and the flowing plasma of Jupiter’s magnetosphere. The currents must penetrate through regions of impedance mismatch near the upper and lower boundaries of Jupiter’s equatorial plasma torus in order to close in the planetary ionosphere. There is some evidence that the signal propagates through the strong gradient of plasma density at the boundary of the plasma torus by converting into a striated structure that guides high frequency waves. As well, at Io, the interaction has been found to generate localized intense electron fluxes observed to flow along and antiparallel to the magnetic field near the equator. These bidirectional beams are probably accelerated by parallel electric fields near the ionospheric ends of the flux tube, but how the accelerated electrons reach the equator has not been explained. It seems likely that their presence there requires that the (parallel) electric fields in the Jovian ionosphere vary either temporally at high frequency or spatially on short transverse length scales. The full explanation has not yet been developed. As a second example of the role of magnetosphere-ionosphere coupling in planetary systems, we turn to an MHD simulation of the mini-magnetosphere of Ganymede carried out by X. Jia (2010). The significance of the ionosphere in the simulation is that, as the inner plasma boundary, it affects the flow and the dynamics of the entire system. The mathematical reason for the result is evident: differential equations have different solutions for different boundary conditions, but the dramatic changes that arise throughout the entire volume of the magnetosphere as the inner boundary condition is slightly modified may be both surprising and illuminating.

  10. A Campaign to Study Equatorial Ionospheric Phenomena over Guam

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Balthazor, R.; Dearborn, M.; Enloe, L.; Lawrence, T.; McHarg, M.; Petrash, D.; Reinisch, B. W.; Stuart, T.

    2007-05-01

    With the development of a series of ground-based and space-based experiments, the United States Air Force Academy (USAFA) is in the process of planning a campaign to investigate the relationship between equatorial ionospheric plasma dynamics and a variety of space weather effects, including: 1) ionospheric plasma turbulence in the F region, and 2) scintillation of radio signals at low latitudes. A Digisonde Portable Sounder DPS-4 will operate from the island of Guam (with a magnetic latitude of 5.6° N) and will provide measurements of ionospheric total electron content (TEC), vertical drifts of the bulk ionospheric plasma, and electron density profiles. Additionally, a dual-frequency GPS TEC/scintillation monitor will be located along the Guam magnetic meridian at a magnetic latitude of approximately 15° N. In campaign mode, we will combine these ground-based observations with those collected from space during USAFA's FalconSAT-3 and FalconSAT-5 low-earth orbit satellite missions, the first of which is scheduled to be active over a period of several months beginning in the 2007 calendar year. The satellite experiments are designed to characterize in situ irregularities in plasma density, and include measurements of bulk ion density and temperature, minority-to- majority ion mixing ratios, small scale (10 cm to 1 m) plasma turbulence, and ion distribution spectra in energy with sufficient resolution for observations of non-thermalized distributions that may be associated with velocity- space instabilities. Specific targets of investigation include: a) a comparison of plasma turbulence observed on- orbit with spread F on ionograms as measured with the Digisonde, b) a correlation between the vertical lifting of the ionospheric layer over Guam and the onset of radio scintillation activity along the Guam meridian at 15° N magnetic latitude, and c) a correlation between on-orbit turbulence and ionospheric scintillation at 15° N magnetic latitude. These relationships may provide further clues into understanding the trigger mechanisms responsible for instigating disturbances in the ionospheric plasma, thus resulting in a turbulent radio propagation medium that may cause outages of radio based communication and navigation systems.

  11. High-latitude space plasma physics

    NASA Astrophysics Data System (ADS)

    Hultqvist, B.; Hagfors, T.

    The physics of the high latitude ionosphere are discussed, taking into account the role of the auroral ionosphere in magnetospheric substorms, the characteristics of the polar cap at ionospheric levels and present understanding of the physical processes that give rise to these characteristics, the low altitude cleft, and incoherent-scatter radar measurements of electric field and plasma in the auroral ionosphere. High latitude magnetospheric physics above a few thousand kilometers are considered, giving attention to cold plasma distribution above a few thousand kilometers at high latitudes, the hot electrons in and above the auroral ionosphere, the composition of the ring current and the plasmasheet, present understanding and remaining questions concerning the Birkeland currents, high latitude electromagnetic plasma wave emission, and the effects of heavy ions on microscopic plasma physics. Aspects of solar wind influence on the high latitude ionosphere are also explored.

  12. Chemistry in the Thermosphere and Ionosphere.

    ERIC Educational Resources Information Center

    Roble, Raymond G.

    1986-01-01

    An informative review which summarizes information about chemical reactions in the thermosphere and ionosphere. Topics include thermal structure, ultraviolet radiation, ionospheric photochemistry, thermospheric photochemistry, chemical heating, thermospheric circulation, auroral processes and ionospheric interactions. Provides suggested followup…

  13. Influence of geomagnetic storms of September 26-30, 2011, on the ionosphere and HF radiowave propagation. I. Ionospheric effects

    NASA Astrophysics Data System (ADS)

    Klimenko, M. V.; Klimenko, V. V.; Bessarab, F. S.; Ratovsky, K. G.; Zakharenkova, I. E.; Nosikov, I. A.; Stepanov, A. E.; Kotova, D. S.; Vorobjev, V. G.; Yagodkina, O. I.

    2015-11-01

    Geomagnetic storm ionospheric effects observed at different latitudes and longitudes on September 26 and 28-30, 2011, are interpreted with the GSM TIP model. It has been justified that the results of this model can subsequently be used to calculate the HF radiowave ray tracing under quiet conditions and for the selected dates in September 2011. The model calculations are compared with observations of the ionospheric parameters performed by different radiophysical methods. The presented results confirm the classical mechanisms by which positive and negative ionospheric storms are formed during the main phase of a geomagnetic storm. At high latitudes, the electron density is mainly disturbed due to changes in the neutral composition of the thermosphere, resulting in an increase in the chemical loss rates, and the electromagnetic drift, which results in a substantial reconstruction of the high-latitude ionosphere owing to the horizontal plasma transfer. During the storm recovery phase at midlatitudes, electron density positive disturbances are formed in the daytime due to an increase in the n(O)/ n(N2) ratio; at the same time, negative effects in the electron density are formed at night as a result of plasma tube devastation. Comparison with the observations indicates that the presented model calculation results can be used to describe a medium for solving problems of radiowave propagation in the ionosphere during the storm main phase on September 26 and during the recovery phase on September 28-30, 2011.

  14. Wave Coupling in the Atmosphere-Ionosphere System (Invited)

    NASA Astrophysics Data System (ADS)

    Forbes, J. M.

    2013-12-01

    Within the last decade, a new realization has arrived on the scene of ionosphere-thermosphere (IT) science: terrestrial weather significantly influences space weather. The primary mechanism through which this occurs is the generation and propagation of waves of various spatial and temporal scales, including gravity waves, planetary waves and solar tides. Waves drive ionospheric variability through their influences on composition, the wind field, and through the generation of dynamo electric fields. Most of the relevant processes occur between about 100 and 200 km where observations are sparse. Outstanding questions include: How does the wave spectrum evolve with height, and what are the implications of wave-wave interactions and cross-scale coupling? How do waves of various scales dynamically interact with the ionospheric plasma? To what extent do waves determine the mean structure and circulation of the thermosphere? How do waves contribute to the transport of chemical constituents? How do magnetic disturbance and solar effects interact with responses to meteorological drivers? In this talk I will provide some further details on the above questions, and then outline observational strategies that will address them. The primary mechanism through which energy and momentum are transferred from the lower atmosphere to the upper atmosphere and ionosphere is through the generation and propagation of waves. In the ionosphere wind perturbations associated with the waves can redistribute ionospheric plasma, either through the electric fields generated via the dynamo mechanism, or directly by moving plasma along magnetic field lines. Modifications to neutral and ion chemistry by the waves are also possible.

  15. Theory of radar detection of solitons during ionospheric heating

    NASA Technical Reports Server (NTRS)

    Sheerin, J. P.; Nicholson, D. R.

    1983-01-01

    RF modifiers at some existing ionospheric-heating facilities are found to be sufficiently intense for the production of (collapsing) solitons. The detection of these solitons using Thomson radar is considered, and the problem of an electromagnetic wave scattering off a collection of collapsing solitons is treated. The cross section for the process is found to be relatively large, and an intense plasma-line backscatter is predicted. An explanation of the phenomenon of 'plasma-line overshoot' is suggested.

  16. Understanding Ionospheric Connections to Sun and Earth

    NASA Astrophysics Data System (ADS)

    Immel, Thomas J.; Rowland, Doug; England, Scott; Talaat, Elsayed; Jones, Sarah

    2015-04-01

    Earth's ionosphere is the dense plasma environment that dominates the boundary between our atmosphere and space. In contrast with long-standing understanding of the ionosphere as a phenomenon influenced by changes in solar radiation and solar wind, observations over the past decade have shown us that its large day-to-day variability likely originates with forcing from the lower atmosphere. This realization came with a combination of key observations utilizing pioneering measurement techniques, the emergence of sophisticated whole-atmosphere modeling approaches, and the development and application of innovative analysis techniques. The large and unexpected signatures in the ionosphere drove real ingenuity in the development of modeling and analysis techniques, in part for the lack of needed measurements of key aspects of Earth's space environment. Still, the causal links are incomplete and a significant effort is now being mounted to make these necessary measurements and build a more complete view of the coupled space-atmosphere system. Here we will review these efforts, including the upcoming NASA missions ICON and GOLD, and discuss recent results that offer further promise for future ground-breaking observations and discovery.

  17. The Tordo 1 polar cusp barium plasma injection experiment

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Davis, T. N.; Jeffries, R. A.; Roach, W. H.

    1978-01-01

    In January 1975, two barium plasma injection experiments were carried out with rockets launched into the upper atmosphere where field lines from the dayside cusp region intersect the ionosphere. The Tordo 1 experiment took place near the beginning of a worldwide magnetic storm. It became a polar cap experiment almost immediately as convection perpendicular to the magnetic field moved the fluorescent plasma jet away from the cusp across the polar cap in an antisunward direction. Convection across the polar cap with an average velocity of more than 1 km/s was observed for nearly 40 min until the barium flux tubes encountered large electron fields associated with a poleward bulge of the auroral oval near Greenland. Prior to the encounter with the aurora near Greenland there is evidence of upward acceleration of the barium ions while they were in the polar cap. The three-dimensional observations of the plasma orientation and motion give an insight into convection from the cusp region across the polar cap, the orientation of the polar cap magnetic field lines out to several earth radii, the causes of polar cap magnetic perturbations, and parallel acceleration processes.

  18. Natural hazards monitoring and forecast using the GNSS and other technologies of the ionosphere monitoring

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.; Davidenko, D.

    2013-12-01

    It is well established now that Atmosphere-Ionosphere Coupling is provided through the local changes of the Global Electric Circuit parameters. Main agent - is column conductivity, modulated mainly at the altitudes of the Global Boundary Layer. We demonstrate the ionospheric effects for different types of natural hazards including volcano eruptions, dusty storms from Western Africa, ionospheric effects from tropical hurricanes, multiple earthquakes. We consider the important role of air ionization from natural (natural ground radioactivity and galactic cosmic rays) and artificial sources (nuclear weapon tests in atmosphere and underground, nuclear power stations and other nuclear enterprises emergencies). We rise also important question that such effects of the ionosphere variability are not taken into account by any ionospheric model and their correct recognition is important not only from the point of view the disasters monitoring but for navigation itself because the magnitude of the ionospheric effects sometimes exceeds the effects from strong magnetic storms and other severe space weather conditions. Some effects like ionospheric effects from tropical hurricanes have more complex physical nature including the formation of streams of neutral atmosphere over the hurricane eye and formation of the strong positive plasma concentration anomaly at the altitude near 1000 km. Some plasma anomalies registered over the tropical depressions before hurricane formation give hope on predictive capabilities of plasma observations over the tropical depressions.

  19. Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Ballenthin, J. O.; Baumgardner, J. L.; Bhatt, A.; Boyd, I. D.; Burt, J. M.; Caton, R. G.; Coster, A.; Erickson, P. J.; Huba, J. D.; Earle, G. D.; Kaplan, C. R.; Foster, J. C.; Groves, K. M.; Haaser, R. A.; Heelis, R. A.; Hunton, D. E.; Hysell, D. L.; Klenzing, J. H.; Larsen, M. F.; Lind, F. D.; Pedersen, T. R.; Pfaff, R. F.; Stoneback, R. A.; Roddy, P. A.; Rodriguez, S. P.; San Antonio, G. S.; Schuck, P. W.; Siefring, C. L.; Selcher, C. A.; Smith, S. M.; Talaat, E. R.; Thomason, J. F.; Tsunoda, R. T.; Varney, R. H.

    2013-01-01

    On-orbit firings of both liquid and solid rocket motors provide localized disturbances to the plasma in the upper atmosphere. Large amounts of energy are deposited to ionosphere in the form of expanding exhaust vapors which change the composition and flow velocity. Charge exchange between the neutral exhaust molecules and the background ions (mainly O+) yields energetic ion beams. The rapidly moving pickup ions excite plasma instabilities and yield optical emissions after dissociative recombination with ambient electrons. Line-of-sight techniques for remote measurements rocket burn effects include direct observation of plume optical emissions with ground and satellite cameras, and plume scatter with UHF and higher frequency radars. Long range detection with HF radars is possible if the burns occur in the dense part of the ionosphere. The exhaust vapors initiate plasma turbulence in the ionosphere that can scatter HF radar waves launched from ground transmitters. Solid rocket motors provide particulates that become charged in the ionosphere and may excite dusty plasma instabilities. Hypersonic exhaust flow impacting the ionospheric plasma launches a low-frequency, electromagnetic pulse that is detectable using satellites with electric field booms. If the exhaust cloud itself passes over a satellite, in situ detectors measure increased ion-acoustic wave turbulence, enhanced neutral and plasma densities, elevated ion temperatures, and magnetic field perturbations. All of these techniques can be used for long range observations of plumes in the ionosphere. To demonstrate such long range measurements, several experiments were conducted by the Naval Research Laboratory including the Charged Aerosol Release Experiment, the Shuttle Ionospheric Modification with Pulsed Localized Exhaust experiments, and the Shuttle Exhaust Ionospheric Turbulence Experiments.

  20. Solar cycle modulation of Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Edberg, N. J. T.; Andrews, D. J.; Shebanits, O.; Ågren, K.; Wahlund, J.-E.; Opgenoorth, H. J.; Cravens, T. E.; Girazian, Z.

    2013-08-01

    During the six Cassini Titan flybys T83-T88 (May 2012 to November 2012) the electron density in the ionospheric peak region, as measured by the radio and plasma wave science instrument/Langmuir probe, has increased significantly, by 15-30%, compared to previous average. These measurements suggest that a long?term change has occurred in the ionosphere of Titan, likely caused by the rise to the new solar maximum with increased EUV fluxes. We compare measurements from TA, TB, and T5, from the declining phase of solar cycle 23 to the recent T83-T88 measurements during cycle 24, since the solar irradiances from those two intervals are comparable. The peak electron densities normalized to a common solar zenith angle Nnorm from those two groups of flybys are comparable but increased compared to the solar minimum flybys (T16-T71). The integrated solar irradiance over the wavelengths 1-80nm, i.e., the solar energy flux, Fe, correlates well with the observed ionospheric peak density values. Chapman layer theory predicts that Nnorm?Fek, with k=0.5. We find observationally that the exponent k=0.54±0.18. Hence, the observations are in good agreement with theory despite the fact that many assumptions in Chapman theory are violated. This is also in good agreement with a similar study by Girazian and Withers (2013) on the ionosphere of Mars. We use this power law to estimate the peak electron density at the subsolar point of Titan during solar maximum conditions and find it to be about 6500cm-3, i.e., 85-160% more than has been measured during the entire Cassini mission.

  1. Physical Model of Earthquake Ionospheric Precursors (Invited)

    NASA Astrophysics Data System (ADS)

    Namgaladze, A. A.

    2010-12-01

    The GPS derived ionospheric TEC (Total Electron Content) disturbances before earthquakes were discovered in the last years using global and regional TEC maps, TEC measurements over individual stations as well as measurements along individual GPS satellite passes. For strong mid-latitudinal earthquakes the seismo-ionospheric anomalies look like local TEC enhancements or decreases located in the vicinity of the forthcoming earthquake epicenter. Such structures are generated in the ionosphere for several days prior to the main shock. The amplitude of plasma modification reaches the value of 30-90% relative to the non-disturbed level. The zone of the anomaly maximum manifestation extends larger than 1500 km in latitude and 3500-4000 km in longitude. In case of strong low-latitudinal earthquakes there are effects related with the modification of the equatorial F2-region anomaly: deepening or filling of the ionospheric electron density trough over the magnetic equator. The possible physical mechanism which can cause such anomalies has been proposed. We consider that the most probable reason of the NmF2 and TEC disturbances observed before the earthquakes is the vertical drift of the F2-region ionospheric plasma under the influence of the zonal electric field of seismogenic origin related with the vertical transportation of the injected aerosols and radioactive particles. In the middle latitudes the upward electromagnetic drift, created by the eastward electric field, leads to the increase of the NmF2 and TEC due to the plasma transportation to the regions with lower concentration of the neutral molecules and, consequently, with lower loss rate of dominating ions O+ in the ion-molecular reactions. The electric field of the opposite direction (westward) creates the opposite - negative - effect in NmF2 and TEC. In the low latitude regions (near the geomagnetic equator) the increase of the eastward electric field leads to the deepening of the equatorial anomaly minimum (“trough” over the magnetic equator in the latitudinal distribution of electron concentration) due to the intensification of the fountain-effect. To check this hypothesis, the model calculations have been carried out with the use of the UAM (Upper Atmosphere Model) - the global numerical model of the Earth’s upper atmosphere. The electric potential distribution at the near-epicenter region boundary required for the electric field maintenance has been proposed. The upper atmosphere state, presumably foregone a strong earthquake, has been modeled by means of switching-on of additional sources of the electric field in the UAM electric potential equation which was solved numerically jointly with all other UAM equations (continuity, momentum and heat balance) for neutral and ionized gases. The efficiency of the proposed mechanism has been investigated by means of model calculations of the ionosphere response to the action of zonal electric field produced by seismogenic sources located at the middle and low latitudes. The results of the corresponding numerical model calculations of the electric field and its effects in the ionospheric F2-layer and plasmasphere have been presented. They have revealed a fine agreement with TEC anomalies observed before strong earthquakes at the middle and low latitudes both in spatial scales and in amplitude characteristics.

  2. Mesospheric, Thermospheric, and Ionospheric Responses to Acoustic and Gravity Waves Generated by Transient Forcing

    NASA Astrophysics Data System (ADS)

    Snively, J. B.; Zettergren, M. D.

    2014-12-01

    Strong acoustic waves with periods ~1-4 minutes have been confirmed to perturb the ionosphere following their generation by earthquakes [e.g., Garcia et al., GRL, 40(5), 2013] and volcanic eruption events [e.g., Heki, GRL, 33, L14303, 2006]. Clear acoustic and gravity wave signatures have also been reported in ionospheric data above strong tropospheric convection [Nishioka, GRL, 40(21), 2013], and prior modeling results suggest that convectively-generated acoustic waves with ~3-4 minute periods are readily detectable above their sources in TEC [Zettergren and Snively, GRL, 40(20), 2013]. These observations have provided quantitative insight into the coupling of processes occurring near Earth's surface with the upper atmosphere and ionosphere over short time-scales. Here, we investigate acoustic waves and short-period gravity waves generated by sources near ground level, and the observable responses of the mesosphere, lower-thermosphere, and ionosphere (MLTI) systems. Numerical simulations are performed using a nonlinear, compressible, atmospheric dynamics model, in cylindrically-axisymmetric coordinates, to investigate wave generation, upward propagation, steepening, and dissipation. Acoustic waves may produce observable signatures in the mesospheric hydroxyl airglow layer [e.g., Snively, GRL, 40(17), 2013], and can strongly perturb the lower-thermosphere and E- and F-region ionosphere, prior to the arrival of simultaneously-generated gravity waves. Using a coupled multi-fluid ionospheric model [Zettergren and Semeter, JGR, 117(A6), 2012], extended for mid and low latitudes using a 2D dipole magnetic field coordinate system [Zettergren and Snively, GRL, 40(20), 2013], we investigate its response to realistic acoustic wave perturbations. In particular, we demonstrate that the MLT and ionospheric responses are significantly and nonlinearly determined by the acoustic wave source geometry, spectrum, and amplitude, in addition to the local ambient state of the ionosphere.

  3. Cubesat-Based Dtv Receiver Constellation for Ionospheric Tomography

    NASA Astrophysics Data System (ADS)

    Bahcivan, H.; Leveque, K.; Doe, R. A.

    2013-12-01

    The Radio Aurora Explorer mission, funded by NSF's Space Weather and Atmospheric Research program, has demonstrated the utility of CubeSat-based radio receiver payloads for ionospheric research. RAX has primarily been an investigation of microphysics of meter-scale ionospheric structures; however, the data products are also suitable for research on ionospheric effects on radio propagation. To date, the spacecraft has acquired (1) ground-based UHF radar signals that are backscattered from meter-scale ionospheric irregularities, which have been used to measure the dispersion properties of meter-scale plasma waves and (2) ground-based signals, directly on the transmitter-spacecraft path, which have been used to measure radio propagation disturbances (scintillations). Herein we describe the application of a CubeSat constellation of UHF receivers to expand the latter research topic for global-scale ionospheric tomography. The enabling factor for this expansion is the worldwide availability of ground-based digital television (DTV) broadcast signals whose characteristics are optimal for scintillation analysis. A significant part of the populated world have transitioned, or soon to be transitioned, to DTV. The DTV signal has a standard format that contains a highly phase-stable pilot carrier that can be readily adapted for propagation diagnostics. A multi-frequency software-defined radar receiver, similar to the RAX payload, can measure these signals at a large number of pilot carrier frequencies to make radio ray and diffraction tomographic measurements of the ionosphere and the irregularities contained in it. A constellation of CubeSats, launched simultaneously, or in sequence over years, similar to DMSPs, can listen to the DTV stations, providing a vast and dense probing of the ionosphere. Each spacecraft can establish links to a preprogrammed list of DTV stations and cycle through them using time-division frequency multiplexing (TDFM) method. An on board program can sort the frequencies and de-trend the phase variations due to spacecraft motion. For a single channel and a spacecraft-DTV transmitter path scan, TEC can be determined from the incremental phase variations for each channel. Determination of the absolute TEC requires knowledge of the absolute phase, i.e., including the number of 2? cycles. The absolute TEC can be determined in the case of multi-channel transmissions from a single tower (most towers house multiple television stations). A CubeSat constellation using DTV transmissions as signals of opportunity is a composite instrument for frontier ionospheric research. It is a novel application of CubeSats to understand the ionospheric response to solar, magnetospheric and upper atmospheric forcing. Combined tomographic measurements of ionospheric density can be used to study the global-scale ionospheric circulation and small-scale ionospheric structures that cause scintillation of trans-ionospheric signals. The data can support a wide range of studies, including Sub-auroral Polarization Streams (SAPS), low latitude plasma instabilities and the generation of equatorial spread F bubbles, and the role of atmospheric waves and layers and sudden stratospheric warming (SSW) events in traveling ionospheric disturbances (TID).

  4. Study of nighttime Medium Scale Travelling Ionospheric Disturbances (MSTID's) in the ionospheric F-region using all-sky imager and digisonde data

    NASA Astrophysics Data System (ADS)

    Stefanello, M. B.; Machado, C. S.; Pimenta, A. A.; Schuch, N. J.

    2013-05-01

    The plasma irregularities are characterized by an abrupt variation in the ionospheric plasma density at F-region. The ionospheric irregularities may manifest as Travelling Ionospheric Disturbances (TID's), Plasma Bubbles, Blobs and Brightness Waves. Some irregularities can affect the propagation of electromagnetic waves in the ionosphere, interfering in the transmission of radio signals used in telecommunications and positioning systems such as GPS and satellite navigation. This work presents a study of nighttime Medium Scale Travelling Ionospheric Disturbances (MSTID's) using all-sky images in the OI 630.0 nm emission obtained with an all-sky imager installed at the Southern Space Observatory (29.4° S, 53.8° W) in São Martinho da Serra, RS. Also, data of a digisonde installed at Cachoeira Paulista Observatory (22.7° S, 45.0° W) and other at Falkland Islands (51.4° S, 57.5° W), were used in the present study. In this work we present events of MSTID's and the effects of the ionization on its propagation in the nighttime ionosphere.

  5. Hardware and software complex monitoring the Earth ionosphere

    NASA Astrophysics Data System (ADS)

    Smirnov, Vladimir; Smirnova, Elena; Skobelkin, Vladimir; Tynyankin, Sergey

    The complex structure of the propagation medium, as well as continuous change in time ionospheric plasma parameters affect the propagation of radio waves. Therefore, objectives of the study processes in the ionosphere associated with both the practical tasks of ensuring stable operation of radiocommunication systems and with no less important scientific - research tasks of monitoring near-Earth space. A promising approach to the control of the ionosphere based on the method of radio occultation and to identify the main ionospheric parameters ( total electron content of the critical frequency and height of the ionospheric layer F2) on the results of the reception and signal processing of satellite navigation systems GLONASS and GPS. To solve this problem the theory for solving the inverse problem of radio sounding of the ionosphere on the track satellite-the Earth developed. It based on the use of functional connections parameters probing signals and their propagation medium and the mathematical apparatus of solutions of Fredholm integral equations of the 1st kind, belonging to the class of inverse ill-posed problems of atmospheric refraction. On its basis the continuous monitoring technology designed for the reconstruction of the spatiotemporal structure of the ionosphere and solving operational control and the total electron content of the ionosphere by radio translucence method with using radio navigation satellite system GPS/GLONASS. Based on developed technology of continuous monitoring an automated hardware and software complex intended for determining the parameters of altitude distribution of the electron density of the ionosphere of the Earth designed. It uses the information of the navigation satellite system GPS/GLONASS and works in real time. Automated hardware-software system designed based on dual-frequency receiver firm NovAtel, operating signals navigation satellite systems GPS/GLONASS. The complex allows determine the parameters of the Earth's ionosphere by radio translucence method on track satellite - the Earth simultaneously 10-20 azimuthal directions over the territory, an area of about 3 million square km’s.

  6. Monitoring the ionospheric positioning error with a GNSS dense network

    NASA Astrophysics Data System (ADS)

    Wautelet, Gilles; Lejeune, Sandrine; Warnant, René

    2010-05-01

    Local variability in the ionospheric Total Electron Content (TEC) can seriously affect the accuracy of GNSS real-time applications. In relative positioning, users have to compute the vector (called baseline) linking their receiver to a reference station for which the position is accurately known. As long as the ionosphere remains quiet (i.e. a background ionosphere with no local disturbance), the accuracy of relative positioning using phase measurements is of a few cm. The SoDIPE-RTK software developed at the Royal Meteorological Institute of Belgium allows to compute the part of the positioning error only due to the ionosphere (referred later as "ionospheric error") for a given baseline. In practice, baselines considered in this paper are not larger than 40km in order to ensure a successful ambiguity resolution process for both L1 and L2 carriers. More precisely, data analysed in the frame of this work are baselines belonging to the Belgian GPS dense network called Active Geodetic Network (AGN). SoDIPE-RTK has been applied on the whole network during typical ionospheric conditions: quiet, active and stormy. Active conditions refer to disturbed ionosphere due to the occurrence of Traveling Ionospheric Disturbances (TID's) while stormy conditions are relative to extremely disturbed plasma during the occurrence of powerful geomagnetic storms. From this dataset, we extract some descriptive statistics like average, standard deviation, extrema... of the ionospheric error. As expected, this term is centimeter-level during quiet conditions while maximum values are reached during stormy conditions. For a 10km baseline, one can observe ionospheric errors of about 15cm during the occurrence of a winter medium-scale TID (MSTID) and up to 1m during geomagnetic storms. Moreover, the availability of a dense network allows to study the influence of baseline orientation on ionospheric error magnitude. We have analysed two specific cases of moving ionospheric structures: a winter MSTID and an "ionospheric wall" (TEC depletion) caused by an extreme geomagnetic storm. In both cases, equatorwards direction of propagation was clearly visible on polar plots. Indeed, baselines oriented parallel to the direction of propagation of disturbances are more affected by TEC gradients than others. SoDIPE-RTK is therefore a tool which allows not only to assess the effect of ionospheric disturbances on relative positioning but also to monitor propagation patterns of such disturbances while run through a GPS dense network. Finally, we propose a service dedicated to GNSS relative positioning users based on SoDIPE-RTK. Every 15 minutes, each AGN baseline is mapped in a given color ranging from green (quiet conditions) to red (extreme conditions). This easy-to-use application allows registered users to access to local information about current ionospheric conditions on the field.

  7. Propagation of whistler mode waves through the ionosphere

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Woodroffe, J. R.; Huba, J. D.

    2012-08-01

    We present results from numerical studies of whistler mode wave propagation in the Earth's ionosphere when artificially created plasma ducts are present. Using realistic density profiles from the SAMI2 ionospheric code, we solve the two-dimensional electron magnetohydrodynamics equations to study the trans-ionospheric propagation of artificially generated whistler waves at HAARP latitudes (L = 4.9). Both ducted and non-ducted propagation is considered, but only ducted whistlers are able to propagate without a significant reduction in wave amplitude. The conditions necessary for the trapping of waves in both high- and low-density ducts are discussed with particular attention paid to the practical accessibility of these parameter regimes.

  8. Report of the Ionosphere-Thermosphere-Mesosphere Panel

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, Edward P.; Killeen, Tim L.; Arnoldy, Roger L.; Brace, Larry H.; Christensen, Andrew B.; Fejer, B.; Heelis, Roderick A.; Keskinen, Michael J.; Maynard, Nelson C.; Mayr, Hans G.

    1991-01-01

    The scientific objectives and mission concept that emerged from the discussions of this panel are presented. The overall scientific theme of this report is the investigation of the ionosphere, thermosphere, and mesosphere (near Earth space environment) as a global, dynamic, and coupled system. Among the specific goals of this area of research are: (1) understanding the consequences of transition between turbulent and laminar flow and collisional and collisionless media; (2) understanding the thermospheric/mesospheric coupling due to gravity wave, tidal, and trace constituent transport processes; (3) understanding the electrodynamical coupling between the thermosphere/ionosphere and magnetosphere; (4) understanding the coupling processes between small scale plasma structures; and (5) determining the real-time evolution of the global ionosphere electric field in response to solar wind and magnetosphere coupling.

  9. A plasma generator utilizing the high intensity ASTROMAG magnets

    NASA Technical Reports Server (NTRS)

    Sullivan, James D.; Post, R. S.; Lane, B. G.; Tarrh, J. M.

    1986-01-01

    The magnet configuration for the proposed particle astrophysics magnet facility (ASTROMAG) on the space station includes a cusp magnetic field with an intensity of a few tesla. With these large magnets (or others) located in the outer ionosphere, many quite interesting and unique plasma physics experiments become possible. First there are studies utilizing the magnet alone to examine the supersonic, sub-Alfvenic interaction with the ambient medium; the scale length for the magnet perturbation is approx. 20 m. The magnetic field geometry when combined with the Earth's and their relative motion will give rise to a host of plasma phenomena: ring nulls, x-points, ion-acoustic and lower-hybrid shocks, electron heating (possible shuttle glow without a surface) launching of Alfvenwaves, etc. Second, active experiments are possible for a controlled study of fundamental plasma phenomena. A controlled variable species plasma can be made by using an RF ion source; use of two soft iron rings placed about the line cusp would give an adequate resonance zone (ECH or ICH) and a confining volume suitable for gas efficiency. The emanating plasma can be used to study free expansion of plasma along and across field lines (polar wind), plasma flows around the space platform, turbulent mixing in the wake region, long wavelength spectrum of convecting modes, plasma-dust interactions, etc.

  10. Titan's upper atmospheric structure and ionospheric composition

    NASA Astrophysics Data System (ADS)

    Westlake, Joseph H.

    This Dissertation investigates the density structure of the neutral upper atmosphere and the composition of the ionosphere of Titan through Cassini observations. The highly extended atmosphere of Titan consists primarily of N2, CH4, and H2. The focus is on data extracted from the Ion and Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) instruments onboard Cassini. The INMS, which is fundamentally a quadrupole mass spectrometer, measures the abundance of neutral and ion components with masses of 1--8 and 12--99 Da. The CAPS instrument consists of three subsystems of which the Ion Beam Spectrometer (CAPS-IBS) is used in this study to derive mass spectra of thermal ions up to 400 Da. in mass in Titan's ionosphere. From measurements of molecular nitrogen in Titan's upper atmosphere an atmospheric scale height is derived implying an effective temperature. From an analysis of 29 targeted flybys of Titan we find that the thermosphere is isothermal from an altitude of 1050 km to the exobase height with an average effective temperature of 153 K. The scale height, and hence the effective temperature, is found to be highly variable. We assess this variability against the relevant geospatial, solar, and magnetospheric parameters to determine which are highly correlated to the effective temperatures. Titan's thermospheric temperature is found to be controlled by variations in the magnetospheric plasma environment. No correlation is found to exist with respect to geospatial parameters (i.e., latitude or longitude) and anti-correlation is found with solar parameters implying that Titan's nightside is hotter than its dayside. Furthermore, Titan's thermosphere is found to respond to plasma forcings on timescales less than one Titan day. To investigate the composition of Titan's ionosphere we present a 1D photochemical model of Titan's dayside ionosphere constrained by Cassini measurements. We show that the production of the primary products of photoionization match the INMS data to within 20%. The major ions, CH+5,C2H+ 5 , and HCNH+, are discussed at length and an investigation of the processes controlling their modeled densities is presented. We then present the ion density profiles for the major hydrocarbons in the C3--C6 groups and the major nitrogen-containing ions up to the C4 group. We find that significant chemistry in the nitrogen containing hydrocarbons is missing from previous models and suggest pathways for the growth of these molecules. We also find that the chemistry of Titan's ionosphere is not necessarily dominated by proton exchange processes and that significant molecular growth should be expected through associative ion-molecule reactions. The composition of the ions observed by the Ion Beam Spectrometer (CAPS-IBS) are analyzed with a specific emphasis on those larger than benzene (C 6H6). The CAPS-IBS mass spectra are found to have several peaks corresponding to ions having up to 14 carbon atoms with significant densities and masses up to 400 Da. Fits to the high mass ion spectra determine that each observed peak grouping must contain more than one ion of substantial density possibly indicating some degree of nitrogen incorporation. We compare the high mass ion spectra to various laboratory experiments which have produced large hydrocarbons or tholins through plasma processing of N2, CH4, and various simple hydrocarbons. We conclude from these comparisons that it is likely that Titan's ionospheric chemistry proceeds to higher mass through the reactions of C2 hydrocarbons and nitrogen containing hydrocarbons. Density profiles of the C8--C13 groups are presented from the CAPS-IBS data which show a region of initiation at altitudes above 1050 km and below 1200 km followed by a stagnation and drop-off at the lowest altitudes. We present modeled density profiles of the ions in the C6 and larger groups using an empirical model.

  11. Global ionospheric response to the 2009 sudden stratospheric warming event using Ionospheric Data Assimilation Four-Dimensional (IDA4D) algorithm

    NASA Astrophysics Data System (ADS)

    Azeem, I.; Crowley, G.; Honniball, C.

    2015-05-01

    A data assimilation algorithm is used to delineate the time-dependent three-dimensional ionospheric response to the 2009 sudden stratospheric warming (SSW) event. We use the Ionospheric Data Assimilation Four-Dimensional (IDA4D) algorithm to study the global ionospheric response to the 2009 SSW. This is the first study to utilize global ionospheric measurements in a data assimilation framework to unambiguously characterize atmosphere-ionosphere coupling via tidal modifications during the 2009 SSW event. Model results reveal that the dominant mode of ionospheric variability during the 2009 SSW is driven by the enhancements in westward propagating semidiurnal tide with zonal wave number 1. The IDA4D results completely characterize the tidal perturbation during the 2009 SSW for the first time and show the global 3-D structure of the tide in total electron content (TEC) and electron density. The largest ionospheric responses were seen at low latitudes, where ionospheric plasma is extremely sensitive to the zonal electric field and susceptible to modifications by tidal winds in the lower thermosphere. The ionospheric response to the warming was characterized by an increase in TEC in the morning/early afternoon sector and a decrease during the late afternoon/evening period. The effects of coupling between the stratosphere and ionosphere were strongest between 220 km and 380 km. The IDA4D results also show a reversal of asymmetry in the equatorial ionization anomaly crests occurring several days after the peak of the 2009 SSW event. We suggest that this could be a result of the equatorial fountain effect being further modified by the summer-to-winter meridional neutral winds.

  12. Supergranular Convection

    NASA Astrophysics Data System (ADS)

    Udayashankar, Paniveni

    2015-12-01

    Observation of the Solar photosphere through high resolution instruments have long indicated that the surface of the Sun is not a tranquil, featureless surface but is beset with a granular appearance. These cellular velocity patterns are a visible manifestation of sub- photospheric convection currents which contribute substantially to the outward transport of energy from the deeper layers, thus maintaining the energy balance of the Sun as a whole.Convection is the chief mode of transport in the outer layers of all cool stars such as the Sun (Noyes,1982). Convection zone of thickness 30% of the Solar radius lies in the sub-photospheric layers of the Sun. Here the opacity is so large that heat flux transport is mainly by convection rather than by photon diffusion. Convection is revealed on four scales. On the scale of 1000 km, it is granulation and on the scale of 8-10 arcsec, it is Mesogranulation. The next hierarchial scale of convection , Supergranules are in the range of 30-40 arcsec. The largest reported manifestation of convection in the Sun are ‘Giant Cells’or ‘Giant Granules’, on a typical length scale of about 108 m.'Supergranules' is caused by the turbulence that extends deep into the convection zone. They have a typical lifetime of about 20hr with spicules marking their boundaries. Gas rises in the centre of the supergranules and then spreads out towards the boundary and descends.Broadly speaking supergranules are characterized by the three parameters namely the length L, the lifetime T and the horizontal flow velocity vh . The interrelationships amongst these parameters can shed light on the underlying convective processes and are in agreement with the Kolmogorov theory of turbulence as applied to large scale solar convection (Krishan et al .2002 ; Paniveni et. al. 2004, 2005, 2010).References:1) Noyes, R.W., The Sun, Our Star (Harvard University Press, 1982)2) Krishan, V., Paniveni U., Singh , J., Srikanth R., 2002, MNRAS, 334/1,2303) Paniveni , U., Krishan, V., Singh, J., Srikanth, R., 2004, MNRAS, 347, 1279-12814) Paniveni , U., Krishan, V., Singh, J., Srikanth, R., 2005, Solar Physics, 231, 1-105) Paniveni , U., Krishan, V., Singh, J., Srikanth, R., 2010, MNRAS, 402, Issue 1, 424-428

  13. Mass spectrometry in ionospheric research.

    PubMed

    Ferguson, Eldon E

    2007-01-01

    Mass spectrometry played a key role in the development of the understanding of the earth's ionosphere. Of primary importance was its use for in situ atmospheric measurements of the ion and neutral composition of the atmosphere. Mass spectrometry has also played an essential role in the laboratory measurement of critical ionospheric molecular processes. Examples of both are given. PMID:17099890

  14. Midlatitude Ionospheric Dynamics and Disturbances

    NASA Astrophysics Data System (ADS)

    Kintner, Paul M., Jr.; Coster, Anthea J.; Fuller-Rowell, Tim; Mannucci, Anthony J.; Mendillo, Michael; Heelis, Roderick

    Filling the need for a 20-year lag in substantial consideration of the midlatitude ionosphere, this volume focuses on work that takes advantage of GPS and UV imaging from satellites over the past decade, two methods that have profoundly transformed our understanding of this stratum of the atmosphere. Its interdisciplinary content brings together researchers of the solar wind, magnetosphere, ionosphere, thermosphere, polar and equatorial ionospheres, and space weather. Modeling and assimilative imaging of the ionosphere and thermosphere show for the first time the complex and global impact of midlatitude ionospheric storms. The editors invited the leading experts in the following areas to contribute the chapters herein: • Characterization of Midlatitude Storms • Electric Field Coupling From the Heliosphere and Inner Magnetosphere • Thermospheric Control of the Midlatitude IonosphereIonospheric Irregularities • Experimental Methods and New Techniques These themes were chosen to create a path for understanding the midlatitude ionosphere. They continue to be largely valid and represent a coherent division of the subject matter. They will be critical for understanding space weather during the upcoming solar maximum. This book was inspired by the Chapman Conference of the same name held January 2007.

  15. Global ionospheric dynamics and electrodynamics during geomagnetic storms (Invited)

    NASA Astrophysics Data System (ADS)

    Mannucci, A. J.; Tsurutani, B.; Verkhoglyadova, O. P.; Komjathy, A.; Butala, M. D.

    2013-12-01

    Globally distributed total electron content (TEC) data has become an important tool for exploring the consequences of storm-time electrodynamics. Magnetosphere-ionosphere coupling during the main phase is responsible for the largest ionospheric effects observed during geomagnetic storms, mediated by global scale electrodynamics. Recent research using case studies reveals a complex picture of M-I coupling and its relationship to interplanetary drivers such as the solar wind electric field. Periods of direct coupling exist where the solar wind electric field is strongly correlated with prompt penetration electric fields, observed as enhanced vertical plasma drifts or an enhanced electrojet in the daytime equatorial ionosphere. Periods of decoupling between low latitude electric fields and the solar wind electric field are also observed, but the factors distinguishing these two types of response have not been clearly identified. Recent studies during superstorms suggest a role for the transverse (y-component) of the interplanetary magnetic field, which affects magnetospheric current systems and therefore may affect M-I coupling, with significant ionospheric consequences. Observations of the global ionospheric response to a range of geomagnetic storm intensities are presented. Scientific understanding of the different factors that affect electrodynamic aspects of M-I coupling are discussed.

  16. Currents and Electrojets in the Ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Fillingim, Matthew O.; Lillis, Robert; Brain, D. A.

    2015-04-01

    How the solar wind interacts with a planetary object depends upon the object's properties such as the presence of a magnetic field or an atmosphere. An unmagnetized object cannot stand-off the solar wind unless it possess a substantial atmosphere which can be ionized by solar radiation creating a conductive ionosphere. Currents can then be induced in the ionosphere; these currents act to cancel out the external solar wind magnetic field preventing it from reaching the surface. Here we present simple analytical calculations of such induced currents in the ionosphere of Mars. We consider currents in the ionospheric dynamo region which can be driven by thermospheric winds as well as currents driven by electric fields (i.e., plasma motion through the neutrals). We include in these estimates the effects of "equatorial-type" electrojets due to vertical conductivity gradients in the presence of horizontal magnetic fields. In addition, we consider "auroral-type" electrojets due to horizontal conductivity gradients resulting from particle precipitation and/or large variations in the magnetic field strength near vertical cusps in strong crustal field regions. The direction of the external driver is important. In some cases, the secondary current adds to the primary current creating electrojets. In other cases, the secondary current can cancel or nearly cancel the primary current resulting in very weak net currents. These results can give us insights into how external magnetic fields are effectively screened out by induced currents and how these induced currents can influence ionospheric dynamics around unmagnetized objects.

  17. Asymmetric ionospheric outflow observed at the dayside magnetopause

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Zhang, H.; Zong, Q.-G.; Wang, Y.; Otto, A.; Rème, H.; Glassmeier, K.-H.

    2015-05-01

    An important source of the terrestrial magnetospheric plasma is the Earth's ionospheric outflows from the high-latitude regions of both hemispheres. The ionospheric ion outflows have rarely been observed at the dayside magnetopause. We report Cluster observations of the ionospheric ion outflows observed at the dayside magnetopause. The low-energy (up to 1.5 keV) electrons are detected with bidirectional pitch angle distributions indicating that the magnetic field lines are closed. The unidirectional cold ions (< 200 eV) are observed in the magnetosphere by both C1 and C3. The pitch angle distributions (0?-75?) of the cold ions (< 1 keV) at the dayside magnetopause indicate that these cold ions are the ionospheric outflows coming only from the Southern Hemisphere. The cold ions (< 200 eV) fluxes are modulated by the ULF wave electric field. Two different species (possibly H+ and He+) are observed in the magnetosphere. Our results suggest that the ionospheric outflows can directly reach the dayside magnetopause region and may participate in the reconnection process.

  18. Titan Ion Composition at Magnetosphere-Ionosphere Transition Region

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C.; Hartle, R. E.; Shappirio, M.; Simpson, D. J.; COoper, J. F.; Burger, M. H.; Johnson, R. E.; Bertucci, C.; Luhman, J. G.; Ledvina, S. A.; Szego, K.; Coates, A. J.; Young, D. T.

    2006-01-01

    Using Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) ion composition data, we will investigate the compositional changes at the transition region between Saturn's magnetospheric flow and Titan's upper ionosphere. It is this region where scavenging of Titan's upper ionosphere can occur, where it is then dragged away by the magnetospheric flow as cold plasma for Saturn's magnetosphere. This cold plasma may form plumes as originally proposed by (1) during the Voyager 1 epoch. This source of cold plasma may have a unique compositional signature such as methane group ions. Water group ions that are observed in Saturn's outer magnetosphere (2,3) are relatively hot and probably come from the inner magnetosphere where they are born from fast neutrals escaping Enceladus (4) and picked up in the outer magnetosphere as hot plasma (5). This scenario will be complicated by pickup methane ions within Titan's mass loading region, as originally predicted by (6) based on Voyager 1 data and observationally confirmed by (3,7) using CAPS IMS data. But, CH4(+) ions or their fragments can only be produced as pickup ions from Titan's exosphere which can extend beyond the transition region of concern here, while CH5(+) ions can be scavenged from Titan's ionosphere. We will investigate these possibilities.

  19. Detection of Ionospheric Alfven Resonator Signatures Onboard C/NOFS: Implications for IRI Modeling

    NASA Technical Reports Server (NTRS)

    Simoes, F.; Klenzing, J.; Ivanov, S.; Pfaff, R.; Rowland, D.; Bilitza, D.

    2011-01-01

    The 2008-2009 long-lasting solar minimum activity has been the one of its kind since the dawn of space age, offering exceptional conditions for investigating space weather in the near-Earth environment. First ever detection of Ionospheric Alfven Resonator (IAR) signatures in orbit offers new means for investigating ionospheric electrodynamics, namely MHD (MagnetoHydroDynamics) wave propagation, aeronomy processes, ionospheric dynamics, and Sun-Earth connection mechanisms at a local scale. Local and global plasma density heterogeneities in the ionosphere and magnetosphere allow for formation of waveguides and resonators where magnetosonic and shear Alfven waves propagate. The ionospheric magnetosonic waveguide results from complete magnetosonic wave reflection about the ionospheric F-region peak, where the Alfven index of refraction presents a maximum. MHD waves can also be partially trapped in the vertical direction between the lower boundary of the ionosphere and the magnetosphere, a resonance mechanism known as IAR. In this work we present C/NOFS (Communications/Navigation Outage Forecasting System) Extremely Low Frequency (ELF) electric field measurements related to IAR signatures, discuss the resonance and wave propagation mechanisms in the ionosphere, and address the electromagnetic inverse problem from which electron/ion distributions can be derived. These peculiar IAR electric field measurements provide new, complementary methodologies for inferring ionospheric electron and ion density profiles, and also contribute for the investigation of ionosphere dynamics and space weather monitoring. Specifically, IAR spectral signatures measured by C/NOFS contribute for improving the International Reference Ionosphere (IRI) model, namely electron density and ion composition.

  20. Scale Height variations with solar cycle in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Sanchez-Cano, Beatriz; Lester, Mark; Witasse, Olivier; Milan, Stephen E.; Hall, Benjamin E. S.; Cartacci, Marco; Radicella, Sandro M.; Blelly, Pierre-Louis

    2015-04-01

    The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board the Mars Express spacecraft has been probing the topside of the ionosphere of Mars since June 2005, covering currently almost one solar cycle. A good knowledge of the behaviour of the ionospheric variability for a whole solar period is essential since the ionosphere is strongly dependent on solar activity. Using part of this dataset, covering the years 2005 - 2012, differences in the shape of the topside electron density profiles have been observed. These variations seem to be linked to changes in the ionospheric temperature due to the solar cycle variation. In particular, Mars' ionospheric response to the extreme solar minimum between end-2007 and end-2009 followed a similar pattern to the response observed in the Earth's ionosphere, despite the large differences related to internal origin of the magnetic field between both planets. Plasma parameters such as the scale height as a function of altitude, the main peak characteristics (altitude, density), the total electron content (TEC), the temperatures, and the ionospheric thermal pressures show variations related to the solar cycle. The main changes in the topside ionosphere are detected during the period of very low solar minimum, when ionospheric cooling occurs. The effect on the scale height is analysed in detail. In contrast, a clear increase of the scale height is observed during the high solar activity period due to enhanced ionospheric heating. The scale height variation during the solar cycle has been empirically modelled. The results have been compared with other datasets such as radio-occultation and retarding potential analyser data from old missions, especially in low solar activity periods (e.g. Mariner 4, Viking 1 and 2 landers), as well as with numerical modelling.

  1. GROUP-C and LITES Experiments for Ionospheric Remote Sensing aboard the ISS

    NASA Astrophysics Data System (ADS)

    Budzien, S. A.; Stephan, A. W.; Chakrabarti, S.

    2013-12-01

    Ionospheric irregularities, also known as ionospheric bubbles, are transient features of the low and middle latitude ionosphere with important implications for operational systems. Understanding irregularity formation, development, and evolution is vital for efforts within NASA and DoD to forecast scintillation. Irregularity structures have been studied primarily using ground-based systems, though some spaced-based remote and in-situ sensing has been performed. An ionospheric observatory aboard the International Space Station (ISS) would provide new capability to study low- and mid-latitude ionospheric structures on a global scale. The GPS Radio Occultation and Ultraviolet Photometry Colocated (GROUPC) and the Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) experiments are being considered for flight aboard the Space Test Program Houston 5 (STP-H5) experiment pallet. By combining for the first time high-sensitivity in-track photometry with vertical ionospheric airglow spectrographic imagery, we demonstrate that high-fidelity optical tomographic reconstruction of bubbles can be performed from the ISS. Ground-based imagery can supplement the tomography by providing all-sky images of ionospheric structures (e.g. bubbles and TIDs) and of signatures of lower atmospheric dynamics, such as gravity waves, that may play a role in irregularity formation. The optical instrumentation can be augmented with additional sensors to provide measurements of scintillation and in situ plasma density, composition, and drifts.

  2. Influence of DE3 tide on the equinoctial asymmetry of the zonal mean ionospheric electron density

    NASA Astrophysics Data System (ADS)

    Ren, Zhipeng; Wan, Weixing; Xiong, Jiangang; Liu, Libo

    2014-12-01

    Through respectively adding September DE3 tide and March DE3 tide at the low boundary of Global Coupled Ionosphere-Thermosphere-Electrodynamics Model, Institute of Geology and Geophysics, Chinese Academy of Sciences (GCITEM-IGGCAS), we simulate the influence of DE3 tide on the equinoctial asymmetry of the zonal mean ionospheric electron density. The influence of DE3 tide on the equinoctial asymmetry of the zonal mean electron density varies with latitude, altitude, and solar activity level. Compared with the density driven by the September DE3 tide, the March DE3 tide mainly decreases the lower ionospheric zonal mean electron density and mainly increases the electron density at higher ionosphere. In the low-latitude ionosphere, DE3 tide drives an equatorial ionization anomaly (EIA) structure at higher ionosphere in the relative difference of zonal mean electron density, which suggests that DE3 tide affects the longitudinal mean equatorial vertical E × B plasma drifts. Although the lower ionospheric equinoctial asymmetry driven by DE3 tide mainly decreases with the increase of solar activity, the asymmetry at higher ionosphere mainly increases with solar activity. However, EIA in equinoctial asymmetry mainly decreases with the increase of solar activity.

  3. Observation of the Venus mantle, the boundary region between solar wind and ionosphere

    NASA Technical Reports Server (NTRS)

    Spenner, K.; Novak, V.; Knudsen, W. C.; Miller, K. L.; Russell, C. T.; Elphic, R. C.

    1980-01-01

    For three orbit paths of the Pioneer Venus orbiter the interaction between the solar wind and the Venusian ionosphere has been studied. Results of the retarding potential analyzer and the magnetometer are described for the boundary region between the solar wind and the planetary ionosphere. These are the first measurements that show that a transition region exists between the two plasmas of different origin. The observed magnetic field and current system producing it appear strong enough to stop the solar wind flow in front of the ionosphere and to separate the shocked solar wind from the ionosphere. The transition region between the ionosheath and the ionosphere is called the 'mantle'. The observed mantle electron energy spectra close to the ionopause show ionospheric character. With increasing height the number of electrons that have ionospheric energies decreases, and the number of electrons that have solar wind energies gradually increases toward the ionosheath boundary, where only solar wind energy spectra are observed. The mantle surrounds the frontside of the ionosphere and extends probably more than eight Venus radii downstream.

  4. Ionospheric Estimation and Integrity Threat Detection

    E-print Network

    Stanford University

    Ionospheric Estimation and Integrity Threat Detection Andrew J. Hansen Todd Walter Y.C. Chao Per is focused on ionospheric estimation using tomographic inversion and integrity monitoring of WAAS ionospheric currently focuses on the study of GPS dual-frequency measure- ment calibration, WAAS ionospheric modeling

  5. Structure and variability of the Venus ionosphere inferred from photoelectron measurements by Venus Express

    NASA Astrophysics Data System (ADS)

    Molaverdikhani, K.; Brain, D. A.; Futaana, Y.

    2012-12-01

    The ionosphere of an unmagnetized planet lies at the boundary between the collisional atmosphere and the passing solar wind. Atmospheric particles escaping from the planet either originate in or pass through the ionosphere. The extent and variability of the ionosphere is of interest for both plasma escape, and the dynamics of the neutral upper atmosphere. Photoelectrons are excellent tracers of ionospheric plasma. Produced via photoionization of atmospheric neutral particles by solar EUV and X-ray radiation, photoelectrons remain tightly bound to magnetic field lines passing through their location of origin. Spacecraft measurements of ionospheric photoelectrons therefore allow us to infer which regions of space around a planet are magnetically connected to the ionosphere. At Venus, the dominant neutral species at high altitudes (i.e. above 300km) are atomic oxygen and carbon dioxide. Using the Electron Spectrometer (ELS) on the Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) instrument package on Venus Express (VEX), previous case studies have reported the presence of ionospheric photoelectrons near Venus produced by solar HeII 30.4 nm photons. We aim to accomplish a comprehensive statistical survey of ionospheric photoelectrons, revealing the variability and extent of the ionosphere for different external conditions. We have developed and tested an automatic algorithm to detect the presence of photoelectrons in ASPERA-4 ELS measurements. The algorithm (filter) identifies ionospheric photoelectron distributions as a localized peak between 20 to 30 eV in electron energy spectrum. We have applied the filter to determine the distribution of photoelectron percentage of occurrence (photoelectron likelihood). The observations reveal increasing dayside ionospheric altitudes as solar zenith angle increases, followed by a sudden decrease at the terminator. Ionospheric photoelectrons are evident outside of the eclipse boundary on the night side tail of the planet to high altitudes. Increases in ionospheric altitude are correlated with increases in solar ionizing flux (i.e. EUV and soft x-ray). We present the characteristics of the measured photoelectron energy distributions, such as integrated flux, peak flux, width, and the measured energy of the peak, and we show how they vary temporally and spatially at Venus.

  6. {GUVI} Observations of Night Time Ionospheric Morphology

    NASA Astrophysics Data System (ADS)

    Swenson, C. M.; Christensen, A. B.; Walterscheid, R. J.; Paxton, L. J.; Meng, C. I.; Craven, J. D.; Meier, R. R.; Strickland, D. J.; Crowley, G.

    2002-05-01

    The TIMED spacecraft is currently mapping the nighttime Earth disk and limb with the Global Ultraviolet Imager (GUVI). Images are made in the OI 135.6 nm line which is excited by the recombination of O+ ions. The intensity in these disk images is related to the total electron content of the ionosphere and density profiles can be recovered from the limb scans. Prominent in these images are UV signatures of the Equatorial Anomaly that was first imaged by the DE-1 satellite. Data is currently available from essentially the same local time and is suitable for the study of the longitudinal dependence of the Anomalies. It is known that the Earth's ionosphere shows the occurrence large longitudinal and latitudinal variations in the F-region plasma density that change with season and solar cycle. These plasma density fluctuations occur over a very large range of scale sizes and have been observed by for about three decades by satellites [e.g., ISIS 2, ESRO-4, Atmosphere Explorers, Dynamics Explorer-2, San Marco II, DMSP, etc.]. Their morphology, origin, day-to-day variability, and predictability are still not well understood. The GUVI night data that gives insight into these largest scale structures will be discussed.

  7. Ground- and Space-Based Observations of Ionospheric Irregularities over Nigeria during Solar Minimum

    NASA Astrophysics Data System (ADS)

    Carrano, C. S.; Yizengaw, E.; Doherty, P. H.; Bridgwood, C. T.; Adeniyi, J. O.; Amaeshi, L. L.; Pedersen, T. R.; Groves, K. M.; Roddy, P. A.; Caton, R. G.

    2009-12-01

    Ionospheric irregularities and plasma turbulence can cause scintillation in the amplitude and phase of trans-ionospheric radio waves employed by satellite navigation and communication systems, leading to a degradation of system performance. Due to the relatively sparse distribution of ground-based ionospheric monitoring instruments in Africa, the climatology and morphology of ionospheric irregularities over Africa have not been adequately characterized. Boston College, Air Force Research Laboratory, and the Universities of Ilorin and Lagos in Nigeria have collaborated to operate two high-rate GPS receivers capable of monitoring both Total Electron Content (TEC) and scintillation intensity. We use GPS measurements collected from 2007-2009 to 1) identify ionospheric irregularities and quantify their spatial extent, 2) estimate the zonal drift velocity by cross-correlating TEC measurements between pairs of GPS satellites, 3) relate ionospheric irregularities to the occurrence of weak scintillation at the GPS L1 frequency, 4) characterize the strength of amplitude and phase scintillations in terms of their power spectral densities, and 5) use phase screen theory to predict the intensity of scintillation that would be observed by ionospheric monitoring sensors operating at lower frequencies. Measurements of plasma density and zonal drift from the C/NOFS satellite during passes over Nigeria are used to corroborate and complement these ground-based GPS observations.

  8. Solitons and ionospheric modification

    NASA Technical Reports Server (NTRS)

    Sheerin, J. P.; Nicholson, D. R.; Payne, G. L.; Hansen, P. J.; Weatherall, J. C.; Goldman, M. V.

    1982-01-01

    The possibility of Langmuir soliton formation and collapse during ionospheric modification is investigated. Parameters characterizing former facilities, existing facilities, and planned facilities are considered, using a combination of analytical and numerical techniques. At a spatial location corresponding to the exact classical reflection point of the modifier wave, the Langmuir wave evolution is found to be dominated by modulational instability followed by soliton formation and three-dimensional collapse. The earth's magnetic field is found to affect the shape of the collapsing soliton. These results provide an alternative explanation for some recent observations.

  9. Predictability limits in an ionospheric model for space weather forecasting

    NASA Astrophysics Data System (ADS)

    Klimas, A. J.; Vassiliadis, D.; Weigel, R. S.; Uritsky, V. M.

    2001-12-01

    The Electra model for the high-latitude ionosphere is parametrized with polar cap activity and solar wind key parameters. An early version of it, driven with real-time solar wind input from the ACE spacecraft produces regular real-time forecasts of the large-scale activity (see website address below). Prediction outputs include qualitative maps of activity, geomagnetic indices, and local ground magnetic and ionospheric electric fields. Prediction accuracy is determined primarily by the input, and type of model, and additionally by the initial conditions. We present three test cases: a) a Northward BZ interval characterized by low magnetic activity and reverse convection patterns; b) time-dependent enhanced convection, and c) two small-scale (-600 nT) substorm intervals. The model reproduces the large-scale spatial development of convection and magnetospheric substorms as well as the regional indices of geomagnetic activity. For those cases, the choice of the input sequence is much more important than the initial conditions. The local fields, however, are predicted less accurately. In that case the prediction error is additionally a function of local time and type of activity. >http://lep694.gsfc.nasa.gov/RTSM/People/vassi/rt/spatio.html

  10. The determination of time-stationary two-dimensional convection patterns with single-station radars

    NASA Technical Reports Server (NTRS)

    Freeman, M. P.; Ruohoniemi, J. M.; Greenwald, R. A.

    1991-01-01

    A critical examination of the accuracy of ionospheric vector velocity determinations, using realistic modeled flow patterns that are time-stationary but not spatially uniform, is presented. Under certain circumstances the actual and inferred flow fields are found to exhibit considerable discrepancy, sometimes not even agreeing in the sense of flow direction. It is shown that the natural curvature present in ionospheric convection on varying spatial scales can introduce significant error in the velocity estimate, particularly when the radius of curvature of the flow structure is less than or equal to the radar range to the scattering volume. It is argued that the ionospheric convection should be measured by bidirectional or multidirectional observations of a common ionospheric volume and that a synthesis of coherent and incoherent radar observations from different sites is preferable to multidirectional single-station observations using either radar alone.

  11. Kinetic response of ionospheric ions to onset of auroral electric fields

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Kan, J. R.

    1981-01-01

    Examination of the exact analytic solution of a kinetic model of collisional interaction of ionospheric fions with atmospheric neutrals in the Bhatnagar-Gross-Krook approximation, shows that the onset of intense auroral electric fields in the topside ionosphere can produce the following kinetic effects: (1) heat the bulk ionospheric ions to approximately 2 eV, thus driving them up to higher altitudes where they can be subjected to collisionless plasma processes; (2) produce a nonMaxwellian superthermal tail in the distribution function; and (3) cause the ion distribution function to be anisotropic with respect to the magnetic field with the perpendicular average thermal energy exceeding the parallel thermal energy.

  12. Kinetic response of ionospheric ions to onset of auroral electric fields

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Kan, J. R.

    1981-01-01

    By examining the exact analytic solution of a kinetic model of collisional interaction of ionospheric ions with atmospheric neutrals in the Bhatnagar-Gross-Krook approximation, we show that the onset of intense auroral electric fields in the topside ionosphere can produce the following kinetic effects: (1) heat the bulk ionospheric ions to approximately 2 eV, thus driving them up to higher altitudes where they can be subjected to collisionless plasma processes; (2) produce a non-Maxwellian superthermal tail in the distribution function; and (3) cause the ion distribution function to be anisotropic with respect to the magnetic field with the perpendicular average thermal energy exceeding the parallel thermal energy.

  13. Searching for seismo-ionospheric earthquakes precursors: Total Electron Content disturbances before 2005-2006 seismic events

    E-print Network

    Romanovskaya, Yu V; Zolotov, O V; Starikova, N A; Lopatiy, V Z

    2012-01-01

    During earthquakes preparation periods significant disturbances in the ionospheric plasma density are often observed. These anomalies are caused by lithosphere-atmosphere-ionosphere interaction, particularly by the seismic electric field penetrating from the ground surface into the ionosphere. The seismic electric field produces electromagnetic EB drift changing plasma density over the epicenter region and magnetically conjugated area. The paper is devoted to analysis of regular Global Positioning System observations and revelation of seismo-ionospheric precursors of earthquakes in Total Electron Content (TEC) of the ionosphere. Global and regional relative TEC disturbances maps (%) have been plotted for 2005-2006 M6, D<60 km seismic events and analyzed in order to determine general features of precursors. The obtained results agree with the recent published case-study investigations.

  14. Temporal evolution of whistler growth in a cold plasma injection experiment

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Palmadesso, P.; Fedder, J.

    1984-01-01

    The evolution of whistler mode turbulence and particle participation in a cold plasma release are studied experimentally as part of the Active Magnetospheric Particle Tracers Explorer (AMPTE) program. The investigation used a simple time dependent cold plasma density model, and an atypical ambient radiation belt was assumed. It is shown that a cold lithium injection in the AMPTE parameter range can give rise to whistler mode turbulence with significant gain to the wave amplitude in a single pass through a flux tube. Whistler mode growth results in the pitch angle diffusion of energetic electrons, which are in turn precipitated. The rate of power input into the ionosphere from these precipitating electrons is roughly estimated at 2 ergs per sq cm/s. It is found that this value of the precipitated power is large enough to continue producing a visible aurora until the injected plasma in the flux tube is lost or destroyed by magnetospheric convection or other processes.

  15. Features of steady magnetospheric convection

    SciTech Connect

    Yahnin, A.; Malkov, M.V.; Sergeev, V.A.; Pellinene, R.J.; Aulamo, O.; Vennerstroem, S.; Friis-Christensen, E.; Lassen, K.; Danielsen, C.; Craven, J.D.

    1994-03-01

    The large-scale patterns of ionospheric convection and particle precipitation are described during two intervals of steady magnetospheric convection (SMC) on November 24, 1981. The unique data set used in the analysis includes recordings from the worldwide network of magnetometers and all-sky cameras, global auroral images from the DE 1 spacecraft, and particle precipitation data from low-altitude NOAA 6 and NOAA 7 spacecraft. The data show that intense magnetospheric convection continued during more than 10 hours under the steady southward interplanetary magnetic field without any distinct substorm signatures. All data sets available confirmed the stable character of the large-scale magnetospheric configuration during this period. In particular, the magnetic flux threading the polar cap was stable (within 10%) during 3.5 hours of continued DE 1 observations. The dayside cusp was located at an unusually low latitude (70{degrees} CGL). The nightside auroral pattern consisted of two distinct regions. The diffuse aurora in the equatorward half of the expanded (10{degrees} wide) auroral oval was well-separated from the bright, active auroral forms found in the vicinity of the poleward boundary of the oval. The twin-vortex convection pattern had no signature of the Harang discontinuity; its nightside {open_quotes}convection throat{close_quotes} was spatially coincident with the poleward active auroras. This region of the auroral oval was identified as the primary site of the short-lived transient activations during the SMC intervals. The energetic particle observations show that the auroral oval was identified as the primary site of the short-lived transient activations during the SMC intervals. The energetic particle observations show that the auroral precipitation up to its high-latitude limit is on closed field lines and that particle acceleration up to > 30-keV energy starts close to this limit. 34 refs., 11 figs., 1 tab.

  16. Interplanetary Radio Transmission Through Serial Ionospheric and Material Barriers

    SciTech Connect

    Fields, David; Kennedy, Robert G; Roy, Kenneth I; Vacaliuc, Bogdan

    2013-01-01

    A usual first principle in planning radio astronomy observations from the earth is that monitoring must be carried out well above the ionospheric plasma cutoff frequency (~5 MHz). Before space probes existed, radio astronomy was almost entirely done above 6 MHz, and this value is considered a practical lower limit by most radio astronomers. Furthermore, daytime ionization (especially D-layer formation) places additional constraints on wave propagation, and waves of frequency below 10-20 MHz suffer significant attenuation. More careful calculations of wave propagation through the earth s ionosphere suggest that for certain conditions (primarily the presence of a magnetic field) there may be a transmission window well below this assumed limit. Indeed, for receiving extraterrestrial radiation below the ionospheric plasma cutoff frequency, a choice of VLF frequency appears optimal to minimize loss. The calculation, experimental validation, and conclusions are presented here. This work demonstrates the possibility of VLF transmission through the ionosphere and various subsequent material barriers. Implications include development of a new robust communications channel, communications with submerged or subterranean receivers / instruments on or offworld, and a new approach to SETI.

  17. Magnetosphere-Ionosphere Coupling Through E-region Turbulence 1: Energy Budget

    E-print Network

    Dimant, Y S

    2011-01-01

    During periods of intense geomagnetic activity, strong electric fields and currents penetrate from the magnetosphere into high-latitude ionosphere where they dissipate energy, form electrojets, and excite plasma instabilities in the E-region ionosphere. These instabilities give rise to plasma turbulence which induces non-linear currents and strong anomalous electron heating (AEH) as observed by radars. These two effects can increase the global ionospheric conductances. This paper analyzes the energy budget in the electrojet, while the companion paper applies this analysis to develop a model of anomalous conductivity and frictional heating useful in large-scale simulations and models of the geospace environment. Employing first principles, this paper proves for the general case an earlier conjecture that the source of energy for plasma turbulence and anomalous heating equals the work by external field on the non-linear current. Using a two-fluid model of an arbitrarily magnetized plasma and the quasilinear app...

  18. The ionosphere of Triton

    NASA Technical Reports Server (NTRS)

    Majeed, T.; Mcconnell, J. C.; Strobel, D. F.; Summers, M. E.

    1990-01-01

    A model of the atmospheric temperature structure and composition inferred from the Voyager (UVS) solar occultations was used together with a one-dimensional chemical diffusive model to interpret the Voyager Radio Science Spectrometer (RSS) ingress measurements of Triton's electron density. Although N2(+) is the major ion created, N(+) produced by dissociative ionization is the dominant ion. Reaction of thermospheric H2, produced by Lyman-alpha dissociation of CH4 in the lower atmosphere, is the major loss for N(+) ions and maintains these ions in PCSS below 600 km. Solar EUV ionization cannot generate electron densities at the magnitude measured by the RSS experiment and an additional ionization source about 3 x 10 to the 8th ions/sq cm per sec is required. The ionosphere may undergo a transition from PCSS to diffusive control if the N(+) ion production rates were greater than the H2 flux derived from CH4. In this case, the upward flowing H2 is totally converted to H by reaction with N(+) and the remaining N(+) ions recombine radiatively to create an ionosphere under diffusive control above the peak.

  19. Plasma Effects

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1983-01-01

    Radio communication with space probes requires sending signals through the Earth's ionosphere and usually the solar wind. During planetary flybys, the signal may also pass through the ionosphere of another planet. These ionized media can perturb the radio signal in a variety of ways. Examples of these perturbations are variations in the electrical length between the spacecraft and the ground station, Faraday rotation of linearly polarized signals, amplitude and phase scintillations, and spectral and angular broadening. These plasma effects can have undesirable influences on telemetry performance and thus need to be understood from a communications engineering viewpoint. The plasma effects are, however, useful from a scientific viewpoint, since the effects on the communications link can often be inverted to estimate the physical conditions in the plasma.

  20. The Venus-solar wind interaction: Is it purely ionospheric?

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Ma, Y. J.; Villarreal, M. N.; Wei, H. Y.; Zhang, T. L.

    2015-12-01

    The Venus solar wind interaction is often regarded as the prototypical example of an induced magnetosphere. Pioneer Venus Orbiter (PVO) observations during a period of moderate to strong solar EUV fluxes led to a fairly detailed picture in which the currents in the conducting ionosphere produce a nearly impenetrable obstacle to the incident magnetized plasma flow, resulting in a classical draped field magnetosheath region and a comet-like magnetotail. Inspired by the availability of Venus Express (VEX) observations from the north polar region, and their sometimes unexpected behavior, we reanalyzed the observed Venus wake magnetic fields in the altitude range ~150 to ~450 km to determine whether some signature of a weak planetary field could have been missed. Our results suggest the presence of a small (few nT) but persistent radial field direction bias in the deep nightside, low to mid-latitude range sampled on PVO. The bias has a hemispheric dependence, with the more positive (outward) fields in the south and the more negative (inward) fields in the north. However the VEX counterpart of these data, obtained just nightward of the north polar terminator, shows no significant bias. This observation raises several questions about our understanding of the fields at the surface of Venus. We investigate whether the PVO radial field bias could be the subtle signature of a weak global dipole with , higher by ~10× than the previously established upper limits. A weak dipole solar wind interaction model produces results in the center of the low altitude wake that compare favorably with the observed field bias seen by PVO; however, the lack of agreement with the higher latitude and VEX observations suggests other explanations need to be considered. For example, effects related to previously observed convection electric field-controlled hemispheric asymmetries provide a possible alternative, as are external fields that diffuse into and through the interior. This work points out the need for better understanding the features introduced by species-dependent plasma processes, and the role of the planet itself, in deciphering weakly magnetized planet interactions.

  1. Meteor induced ridge and trough formation and the structuring of the nighttime E-region ionosphere

    E-print Network

    Oppenheim, Meers

    Meteor induced ridge and trough formation and the structuring of the nighttime E-region ionosphere November 2006; published 28 December 2006. [1] When meteor-generated plasma trails diffuse, and they will also remove up to 90% of the plasma on each side of the ridge. We predict that meteor-induced density

  2. The Ionosphere and Ocean Altimetry

    NASA Technical Reports Server (NTRS)

    Lindqwister, Ulf J.

    1999-01-01

    The accuracy of satellite-based single-frequency radar ocean altimeters benefits from calibration of the total electron content (TEC) of the ionosphere below the satellite. Data from the global network of Global Positioning System (GPS) receivers provides timely, continuous, and globally well-distributed measurements of ionospheric electron content. We have created a daily automated process called Daily Global Ionospheric Map (Daily-GIM) whose primary purpose is to use global GPS data to provide ionospheric calibration data for the Geosat Follow-On (GFO) ocean altimeter. This process also produces an hourly time-series of global maps of the electron content of the ionosphere. This system is designed to deliver "quick-look" ionospheric calibrations within 24 hours with 90+% reliability and with a root-mean-square accuracy of 2 cm at 13.6 GHz. In addition we produce a second product within 72 hours which takes advantage of additional GPS data which were not available in time for the first process. The diagram shows an example of a comparison between TEC data from the Topographic Experiment (TOPEX) ocean altimeter and Daily-GIM. TEC are displayed in TEC units, TECU, where 5 TECU is 1 cm at 13.6 GHz. Data from a single TOPEX track is shown. Also shown is the Bent climatological model TEC for the track. Although the GFO satellite is not yet in its operational mode, we have been running Daily-GIM reliably (much better than 90%) with better than 2-cm accuracy (based on comparisons against TOPEX) for several months. When timely ephemeris files for the European Remote Sensing Satellite 2 (ERS-2) are available, daily ERS-2 altimeter ionospheric calibration files are produced. When GFO ephemeris files are made available to us, we produce GFO ionosphere calibration files. Users of these GFO ionosphere calibration files find they are a great improvement over the alternative International Reference Ionosphere 1995 (IRI-95) climatological model. In addition, the TOPEX orbit determination team at JPL has been using the global ionospheric maps to calibrate the single frequency GPS data from the TOPEX receiver, and report highly significant improvements in the ephemeris. The global ionospheric maps are delivered daily to the International GPS Service (IGS), making them available to the scientific community. Additional information is contained in the original.

  3. Modeling Convection

    ERIC Educational Resources Information Center

    Ebert, James R.; Elliott, Nancy A.; Hurteau, Laura; Schulz, Amanda

    2004-01-01

    Students must understand the fundamental process of convection before they can grasp a wide variety of Earth processes, many of which may seem abstract because of the scales on which they operate. Presentation of a very visual, concrete model prior to instruction on these topics may facilitate students' understanding of processes that are largely…

  4. Convection towers

    DOEpatents

    Prueitt, Melvin L. (Los Alamos, NM)

    1995-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  5. Convection towers

    DOEpatents

    Prueitt, Melvin L. (Los Alamos, NM)

    1996-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  6. Convection towers

    DOEpatents

    Prueitt, M.L.

    1996-01-16

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  7. Convection towers

    DOEpatents

    Prueitt, Melvin L. (Los Alamos, NM)

    1994-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  8. Convective equilibrium and mixing-length theory for stellarator reactors

    SciTech Connect

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    In high ..beta.. stellarator and tokamak reactors, the plasma pressure gradient in some regions of the plasma may exceed the critical pressure gradient set by ballooning instabilities. In these regions, convective cells break out to enhance the transport. As a result, the pressure gradient can rise only slightly above the critical gradient and the plasma is in another state of equilibrium - ''convective equilibrium'' - in these regions. Although the convective transport cannot be calculated precisely, it is shown that the density and temperature profiles in the convective region can still be estimated. A simple mixing-length theory, similar to that used for convection in stellar interiors, is introduced in this paper to provide a qualitative description of the convective cells and to show that the convective transport is highly efficient. A numerical example for obtaining the density and temperature profiles in a stellarator reactor is given.

  9. Ionospheric modification using relativistic electron beams

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.; Fraser-Smith, Anthony C.; Gilchrist, B. E.

    1990-01-01

    The recent development of comparatively small electron linear accelerators (linacs) now makes possible a new class of ionospheric modification experiments using beams of relativistic electrons. These experiments can potentially provide much new information about the interactions of natural relativistic electrons with other particles in the upper atmosphere, and it may also make possible new forms of ionization structures extending down from the lower ionosphere into the largely un-ionized upper atmosphere. The consequences of firing a pulsed 1 A, 5 Mev electron beam downwards into the upper atmosphere are investigated. If a small pitch angle with respect to the ambient geomagnetic field is selected, the beam produces a narrow column of substantial ionization extending down from the source altitude to altitudes of approximately 40 to 45 km. This column is immediately polarized by the natural middle atmosphere fair weather electric field and an increasingly large potential difference is established between the column and the surrounding atmosphere. In the regions between 40 to 60 km, this potential can amount to many tens of kilovolts and the associated electric field can be greater than the field required for breakdown and discharge. Under these conditions, it may be possible to initiate lightning discharges along the initial ionization channel. Filamentation may also occur at the lower end to drive further currents in the partially ionized gases of the stratosphere. Such discharges would derive their energy from the earth-ionosphere electrical system and would be sustained until plasma depletion and/or electric field reduction brought the discharge under control. It is likely that this artificially-triggered lightning would produce measurable low-frequency radiation.

  10. A Case Study of the Density Structure over a Vertical Magnetic Field Region in the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Duru, F.; Gurnett, D. A.; Morgan, D. D.; Dieval, C.; Pisa, D.; Lundin, R. N. A.

    2014-12-01

    One of the discoveries made by Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the Mars Express spacecraft is the existence of magnetically controlled structures in the ionosphere of Mars, which result in irregularities in the ionospheric electron density contours. These irregularities lead in turn to oblique echoes, which show up as hyperbola-shaped features on the plots of echo intensity measured by MARSIS as a function of altitude and universal time. The study of a hyperbola-shaped feature observed in a pass over an isolated region of strong crustal magnetic field shows that this kind of feature can be associated with a plasma cavity in the upper ionosphere and a corresponding density enhancement in the lower levels of the ionosphere. At the location where the hyperbola-shaped echo is observed, the electron and ion fluxes measured by ASPERA-3 at the location of the spacescraft are depleted and the local electron density from MARSIS shows a small decrease, as well. However, the peak ionospheric density obtained by MARSIS remote sounding shows a clear increase as Mars Express passes over the same region. We conclude that through the open magnetic field lines, the electrons are accelerated downward and ions are accelerated upward in a manner similar to the field-line driven auroral acceleration at Earth. This heating due to precipitating electrons causes a bulge at the altitude of the main ionosphere, which in turn leads to a hyperbola shaped echo, and loss of ionospheric plasma at high altitudes.

  11. Ionospheric scintillation studies

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Freemouw, E. J.

    1973-01-01

    The diffracted field of a monochromatic plane wave was characterized by two complex correlation functions. For a Gaussian complex field, these quantities suffice to completely define the statistics of the field. Thus, one can in principle calculate the statistics of any measurable quantity in terms of the model parameters. The best data fits were achieved for intensity statistics derived under the Gaussian statistics hypothesis. The signal structure that achieved the best fit was nearly invariant with scintillation level and irregularity source (ionosphere or solar wind). It was characterized by the fact that more than 80% of the scattered signal power is in phase quadrature with the undeviated or coherent signal component. Thus, the Gaussian-statistics hypothesis is both convenient and accurate for channel modeling work.

  12. Two-dimensional convective turbulence

    SciTech Connect

    Gruzinov, A.V.; Kukharkin, N.; Sudan, R.N.

    1996-02-01

    We show that 2D {bold E{times}B} ionospheric turbulence of the electron density in the equatorial electrojet is isomorphic to the viscous convection of an ordinary fluid in a porous medium due to temperature gradients. Numerical simulations reveal the strong anisotropy in the turbulence, which consists of rising hot bubbles and falling cool bubbles. These bubbles break up into fingers leading to the formation of stable shear flows. After reaching a quasisteady state, the omnidirectional energy spectrum approaches a {ital k}{sup {minus}2} behavior, rather than {ital k}{sup {minus}5/3} as expected from isotropic turbulence. Physical mechanisms that lead to anisotropy are analyzed. {copyright} {ital 1996 The American Physical Society.}

  13. Radar signal propagation through the ionosphere of Europa

    NASA Astrophysics Data System (ADS)

    Grima, Cyril; Blankenship, Donald D.; Schroeder, Dustin M.

    2015-11-01

    We review the current state of knowledge of the Europan plasma environment, its effects on radio wave propagation, and its impact on the performance and design of future radar sounders for the exploration of Europa's ice crust. The Europan ionosphere is produced in two independently-rotating hemispheres by photo-ionization of the neutral exosphere and interaction with the Io plasma torus, respectively. This combination is responsible for temporal and longitudinal ionospheric heterogeneities not well constrained by observations. When Europa's ionosphere is active, the maximum cut-off frequency is 1 MHz at the surface. The main impacts on radar signal propagation are dispersive phase shift and Faraday rotation, both a function of the total electron content (up to 4×1015 m-2) and the Jovian magnetic field strength at Europa (~420 nT). The severity of these impacts decrease with increasing center frequency and increase with altitude, latitude, and bandwidth. The 9 MHz channels on the Radar for Icy Moons Exploration (RIME) and proposed Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) will be sensitive to the Europan ionosphere. For these or similar radar sounders, the ionospheric signal distortion from dispersive phase shift can be corrected with existing techniques, which would also enable the estimation of the total electron content below the spacecraft. At 9 MHz, the Faraday fading is not expected to exceed 6 dB under the worst conditions. At lower frequencies, any active or passive radio probing of the ice shell exploration would be limited to frequencies above 1-8 MHz (depending on survey configuration) below which Faraday rotation angle would lead to signal fading and detection ambiguity. Radar instruments could be sensitive to neutrals and electrons added in the exosphere from any plume activity if present.

  14. The worldwide ionospheric data base

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    1989-01-01

    The worldwide ionospheric data base is scattered over the entire globe. Different data sets are held at different institutions in the U.S., U.S.S.R., Australia, Europe, and Asia. The World Data Centers on the different continents archive and distribute part of the huge data base; the scope and cross section of the individual data holdings depend on the regional and special interest of the center. An attempt is made to pull together all the strings that point toward different ionospheric data holdings. Requesters are provided with the information about what is available and where to get it. An attempt is also made to evaluate the reliability and compatibility of the different data sets based on the consensus in the ionospheric research community. The status and accuracy of the standard ionospheric models are also discussed because they may facilitate first order assessment of ionospheric effects. This is a first step toward an ionospheric data directory within the framework of NSSDC's master directory.

  15. High-Latitude Ionospheric Dynamics During Conditions of Northward IMF

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.

    1996-01-01

    In order to better understand the physical processes operating during conditions of northward interplanetary magnetic field (IMF), in situ measurements from the Dynamics Explorer-2 (low altitude) polar satellite and simultaneous observations from the auroral imager on the Dynamics Explorer-1 (high altitude) satellite were used to investigate the relationships between optical emissions, particle precipitation, and convective flows in the high-latitude ionosphere. Field aligned current and convective flow patterns during IMF north include polar cap arcs, the theta aurora or transpolar arc, and the 'horse-collar' aurora. The initial part of the study concentrated on the electrodynamics of auroral features in the horse-collar aurora, a contracted but thickened emission region in which the dawn and dusk portions can spread to very high latitudes, while the latter part focused on the evolution of one type of IMF north auroral pattern to another, specifically the quiet-time horse-collar pattern to a theta aurora.

  16. Observations and Simulations of the M-I Coupling of Bursty Convection

    NASA Technical Reports Server (NTRS)

    Sanchez, Ennio R.

    2001-01-01

    The ultimate aim of the project is to establish how much of the magnetotail's total potential is due to flow bursts and how much of this potential maps to the ionosphere. In order to quantify these contributions, we further developed a method to measure the total cross-polar cap potential and the total reconnection rate across the entire polar cap boundary. Then we applied the method to different solar wind-magnetosphere-ionosphere conditions that included substorm periods, storms, and steady magnetospheric convection (SMCs, also known as convection bays) periods. In the following section, we describe in more detail the activities during the second year of this grant.

  17. Convection towers

    DOEpatents

    Prueitt, M.L.

    1994-02-08

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

  18. Electrostatic and Electromagnetic Fluctuation in the Boundary Layer of Laboratory-Created Ionospheric Depletion

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Cao, J.; Xu, L.; Zhang, X.

    2014-12-01

    Ionospheric depletions have been frequently artificially-created in the past decades from releasing attachment chemicals[Mendillo and Forbes, 1978]. In the early phase of the ionospheric depletion, a boundary layer of width of electric scale length emerged and separated the ionosphere into two regions, the ambient plasmas and the negative ion plasmas. In the localized boundary layer, there exists sharp electron gradients and strong sheared flows, which have a pronounced effect on the nonlinear evolution of many plasma systems. Therefore, it reflects essential research significance to study the boundary layer processes in an ionospheric depletion. However, until now, few experiments have specially designed and conducted to characterize and study those boundary layer processes[ Liu et al., 2014]. In the work, We studied the evolution of boundary layer in laboratory-created ionospheric depletions. These experiments were performed in plasma conditions with key dimensionless parameters scaled to those of the ionosphere. These electrons depletions were produced by releasing attachment chemicals into pre-existing plasmas. These plasmas were separated into two regions by a boundary layer of width of electric scale length. In the modeling ionospheric hole, localized boundary layer, those fluctuations of the electron density , floating potential, and magnetic field were investigated varying with the plasma pressure and the partial pressure of released chemicals. These fluctuations were recorded by Langmuir probes and magnetic probes. We analyzed the fluctuation using digital spectral analysis techniques, and electrostatic and electromagnetic fluctuations in the lower hybrid range were observed. These modes may be electron-ion hybrid(EIH) and whistler mode, respectively. The possibility will be discussed in more detail during the presentation. Reference Liu, Y., J. Cao, L. Xu, X. Zhang, P. Wang, J. Wang, Y. Du, and Z. Zheng (2014a), Coherent structure generated in the boundary layer of a laboratory-created ionospheric depletion, Geophysical Research Letters, 41(5), 1413-1419, doi:10.1002/2014GL059211. Mendillo, M., and J. Forbes (1978), Artificially created holes in the ionosphere, Journalof Geophysical Research, 83 (A1), 151-163.

  19. DEMETER Observations of Ionospheric Heating by Powerful VLF Transmitters

    NASA Astrophysics Data System (ADS)

    Graf, K. L.; Bell, T. F.; Piddyachiy, D.; Inan, U. S.; Parrot, M.

    2010-12-01

    Recent DEMETER observations have shown that intense 19.8 kHz VLF signals from the powerful (1 MW) NWC transmitter in Australia can significantly heat the overlying ionosphere and produce significant changes in local electron density and temperature at 700 km altitude [Parrot et al., 2007]. These changes are accompanied by a unique plasma wave structure covering a 5 to 10 kHz band below the NWC signals. We extend the previous investigation to the powerful (1 MW) 24 kHz NAA VLF transmitter in Maine and show that similar heating effects take place in the ionosphere overlying NAA. However, the heating due to the NAA signals occurs at a much lower level than that due to the NWC signals. We show that this important difference arises because the ionospheric absorption rate for VLF waves depends upon the local inclination of the Earth's magnetic field. The magnetic inclination varies significantly between the locations of NWC and NAA, being approximately 45 and 67 degrees respectively. We also examine the plasma wave structure and the electron density and temperature near the conjugate point of NWC and show that although the plasma wave structure is very similar to the unique structure found over NWC, there are no significant perturbations of electron density or temperature near the conjugate point . This implies that the large scale changes in electron density observed over NWC do not extend along the Earth's magnetic field lines to the conjugate point.

  20. Cold Ion Escape from the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Fränz, M.; Dubinin, E.; Andrews, D.; Nilsson, H.; Barabash, S.; Fedorov, A.

    2015-10-01

    We here report on new measurements of the escape flux of oxygen ions from Mars by combining the observations of the ASPERA-3 and MARSIS experiments on board the European Mars Express spacecraft. We show that in previous estimates of the total heavy ion escape flow the contribution of the coldionospheric outflow with energies below 10 eV has been underestimated. Both case studies and the derived flow pattern indicate that the cold plasma observed by MARSIS and the superthermal plasma observed by ASPERA-3 move with the same bulk speed in most regions of the Martian tail. We determine maps of the tailside heavy ion flux distribution derived from mean ion velocity distributions sampled over 7 years. If we assume that the superthermal bulk speed derived from these long time averages of the ion distribution function represent the total plasma bulk speed we derive the total tailside plasma flux. Assuming cylindrical symmetry we determine the mean total escape rate for the years 2007 to 2014 at 2.9±0.2×10 25 atoms/s which is in good agreement with model estimates. In this talk we will also try to compare these results with more recent observations by the MAVEN spacecraft. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  1. The kinetic approach in magnetospheric plasma transport modeling

    NASA Technical Reports Server (NTRS)

    Horwitz, J. L.

    1988-01-01

    The need for a kinetic approach in magnetospheric plasma transport problems is reviewed, as are the trends in its recent applications. The need for kinetic modeling is particularly obvious when confronted with the astonishing variety of magnetospheric particle measurements that display compelling energy and pitch angle-related spatial and/or temporal dispersion, and various types of highly non-Maxwellian features in the distribution functions. Global problems in which the kinetic approach has recently been applied include solar wind plasma injection and dispersion over the cusp, substorm particle injection near synchronous orbit, synergistic energization of ionospheric ions into ring current populations by waves and induced electric field-driven convection, and ionospheric outflow from restricted source regions into the magnetosphere. Kinetic modeling can include efforts ranging from test-particle techniques to particle-in-cell studies, and this range is considered here. There are some areas where fluid and kinetic approaches have been combined or patched together, and these will be briefly discussed.

  2. Long-term Changes in Ionospheric F-layer Characteristics

    NASA Astrophysics Data System (ADS)

    Stamper, R.; Davis, C. J.; Blake, R. M.; Rishbeth, H.

    2006-12-01

    A study of ionospheric sounding data from Slough and Chilton, UK from 1935 to 2005, and from Stanley in the Falkland Islands between 1945 and 2005, revealed long-term and apparently systematic changes in the characteristics of the F1 and F2 layers. Specifically, the visibility of the critical frequency of the ionospheric F1 layer has changed with time, with the trends anti-correlated between the two hemispheres. The relative strengths of the semi-annual and annual variations in the critical frequency of the F2 layer also exhibit strong trends with similar hemispheric anti-correlation. Both effects are attributed to changes in composition driven by the variability in geomagnetic activity which controls the average latitudinal extent of the auroral ovals. The extent of the auroral ovals modulates the latitudinal extent of convection cells transporting molecular-rich air into the upper thermosphere. The anti-correlation between stations is harder to explain and may be due to the relative sensitivity of the ionosphere to changes in the position of the geomagnetic pole at each of the stations.

  3. MARSIS observations of the Martian nightside ionosphere dependence on solar wind conditions

    NASA Astrophysics Data System (ADS)

    Diéval, C.; Morgan, D. D.; N?mec, F.; Gurnett, D. A.

    2014-05-01

    Despite the absence of solar radiation on the Martian nightside, a weak, irregular, and variable ionosphere is produced there. The nightside ionosphere is thought to be maintained by two main sources: dayside-nightside plasma transport and electron precipitation. Observations by Mars Express (MEX) and Mars Global Surveyor (MGS) have shown that these plasma sources are either hindered or favored by the presence of strong crustal magnetic fields and that these effects are modulated by external parameters, such as the solar wind dynamic pressure and the orientation of the interplanetary magnetic field (IMF). These external drivers are expected to influence the supply of plasma to the nightside and thus the formation of the irregular nightside ionosphere. We here present a statistical study of the Martian ionosphere at solar zenith angle greater than 107° from November 2005 to May 2006, using remote measurements of ionospheric echoes with the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) radar sounder onboard MEX and using MGS-based proxies for the solar wind dynamic pressure and the IMF clock angle. We find that the peak densities increase with the dynamic pressure and also that cases of very high peak density are almost always associated with Westward IMF orientation. We find that, using MEX/ASPERA-3 electron data, these cases often seem to be linked to accelerated electrons. Plasma transport is known to be important in the near nightside. On the other hand, electron precipitation prevails when the dynamic pressure is high enough to compress the ionosphere and in vertical field regions where the IMF orientation matters.

  4. Oblique reflections in the Mars Express MARSIS data set: Stable density structures in the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Andrews, D. J.; André, M.; Opgenoorth, H. J.; Edberg, N. J. T.; Diéval, C.; Duru, F.; Gurnett, D. A.; Morgan, D.; Witasse, O.

    2014-05-01

    The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) onboard the European Space Agency's Mars Express (MEX) spacecraft routinely detects evidence of localized plasma density structures in the Martian dayside ionosphere. Such structures, likely taking the form of spatially extended elevations in the plasma density at a given altitude, give rise to oblique reflections in the Active Ionospheric Sounder data. These structures are likely related to the highly varied Martian crustal magnetic field. In this study we use the polar orbit of MEX to investigate the repeatability of the ionospheric structures producing these anomalous reflections, examining data taken in sequences of multiple orbits which pass over the same regions of the Martian surface under similar solar illuminations, within intervals lasting tens of days. Presenting three such examples, or case studies, we show for the first time that these oblique reflections are often incredibly stable, indicating that the underlying ionospheric structures are reliably reformed in the same locations and with qualitatively similar parameters. The visibility, or lack thereof, of a given oblique reflection on a single orbit can generally be attributed to variations in the crustal field within the ionosphere along the spacecraft trajectory. We show that, within these examples, oblique reflections are generally detected whenever the spacecraft passes over regions of intense near-radial crustal magnetic fields (i.e., with a "cusp-like" configuration). The apparent stability of these structures is an important feature that must be accounted for in models of their origin.

  5. Development and Implementation of an Empirical Ionosphere Variability Model

    NASA Technical Reports Server (NTRS)

    Minow, Joesph I.; Almond, Deborah (Technical Monitor)

    2002-01-01

    Spacecraft designers and operations support personnel involved in space environment analysis for low Earth orbit missions require ionospheric specification and forecast models that provide not only average ionospheric plasma parameters for a given set of geophysical conditions but the statistical variations about the mean as well. This presentation describes the development of a prototype empirical model intended for use with the International Reference Ionosphere (IRI) to provide ionospheric Ne and Te variability. We first describe the database of on-orbit observations from a variety of spacecraft and ground based radars over a wide range of latitudes and altitudes used to obtain estimates of the environment variability. Next, comparison of the observations with the IRI model provide estimates of the deviations from the average model as well as the range of possible values that may correspond to a given IRI output. Options for implementation of the statistical variations in software that can be run with the IRI model are described. Finally, we provide example applications including thrust estimates for tethered satellites and specification of sunrise Ne, Te conditions required to support spacecraft charging issues for satellites with high voltage solar arrays.

  6. Ionospheric bending correction for GNSS radio occultation signals

    NASA Astrophysics Data System (ADS)

    Hoque, M. M.; Jakowski, N.

    2011-12-01

    Ionospheric propagation effects on Global Navigation Satellite Systems (GNSS) signals are the most pronounced during radio occultation due to long ionospheric travel paths of the received signal on low Earth orbiting satellites. Inhomogeneous plasma distribution and anisotropy cause higher-order nonlinear refraction effects on GNSS signals which cannot be fully removed through a linear combination of dual-frequency observables. In this paper, higher-order ionospheric effects due to straight line of sight (LOS) propagation assumption such as the excess path length of the signal in addition to the LOS path and the total electron content difference between the curved path and the LOS path have been investigated for selected GPS-CHAMP occultation events. Based on simulation studies we have derived correction formulas for computing raypath bending effects as functions of signal frequency, tangential height of the raypath, ionospheric parameters such as the maximum ionization and total electron content. If these parameters are known, the proposed correction method is able to correct on an average about 65-80% bending errors of GNSS occultation signals.

  7. Vlasov Simulations of Ionospheric Heating Near Upper Hybrid Resonance

    NASA Astrophysics Data System (ADS)

    Najmi, A. C.; Eliasson, B. E.; Shao, X.; Milikh, G. M.; Papadopoulos, K.

    2014-12-01

    It is well-known that high-frequency (HF) heating of the ionosphere can excite field- aligned density striations (FAS) in the ionospheric plasma. Furthermore, in the neighborhood of various resonances, the pump wave can undergo parametric instabilities to produce a variety of electrostatic and electromagnetic waves. We have used a Vlasov simulation with 1-spatial dimension, 2-velocity dimensions, and 2-components of fields, to study the effects of ionospheric heating when the pump frequency is in the vicinity of the upper hybrid resonance, employing parameters currently available at ionospheric heaters such as HAARP. We have found that by seeding theplasma with a FAS of width ~20% of the simulation domain, ~10% depletion, and by applying a spatially uniform HF dipole pump electric field, the pump wave gives rise to a broad spectrum of density fluctuations as well as to upper hybrid and lower hybrid oscillating electric fields. We also observe collisionless bulk-heating of the electrons that varies non-linearly with the amplitude of the pump field.

  8. Ionospheric Research Issues for SBAS A White Paper SBAS Ionospheric Working Group

    E-print Network

    Boneh, Dan

    Ionospheric Research Issues for SBAS ­ A White Paper SBAS Ionospheric Working Group February 2003 OUTLINE Executive Summary 1. Introduction 2. Ionospheric Regions 2.1. Mid-latitude Regions 2.2. Equatorial and Scintillation Effects 4. Summary of Ionospheric Effects by Region and Phenomena 5. Mitigation Techniques Against

  9. The Space Weather Modeling System: An ESMF Compliant Solar Wind and Ionospheric Forecast System

    NASA Astrophysics Data System (ADS)

    Reich, J. P.; Fry, C. D.; Eccles, J. V.; Berman, L. M.; Sattler, M. P.

    2008-12-01

    Ionospheric storms can severely impact communications, navigation and surveillance systems. These ionospheric disturbances are driven by solar activity. A key challenge in space science is to understand the causes of the ionospheric response to solar forcing. Attempting to accurately forecast the time-dependent behavior of the ionosphere is the only way to truly test our understanding of the ionosphere. Space weather forecasters for the DoD face this challenge on a daily basis. The Air Force Weather Agency is meeting this challenge through the development of an operational Space Weather Modeling System (SWMS). The SWMS is a Battlespace Environments Institute (BEI) project that couples Earth system environmental models together under the Earth System Modeling Framework (ESMF). BEI is sponsored by the High Performance Computing (HPC) Modernization Office. The first two coupled components in SWMS are the Hakamada-Akasofu-Fry version 2 (HAFv2) solar wind model and the Global Assimilation of Ionospheric Measurements (GAIM) model. The HAFv2 model produces quantitative forecasts of solar wind parameters at Earth and elsewhere in the inner heliosphere. The Ionosphere Forecast Model (IFM) is the physics-based ionosphere model within GAIM. IFM provides highly representative specifications of plasma conditions in the global ionosphere. The one-way coupling of HAFv2 to IFM links the solar storm drivers to the ionospheric response. Predicted solar wind quantities are fed as inputs to IFM, which computes the solar wind energy deposition into the high latitude ionosphere, enabling GAIM to provide multi- day forecasts of ionospheric electron density, currents and upper atmosphere dynamics. The SWMS development is a structured project, moving from partial to full ESMF compliance. Bringing the HAFv2 and IFM models into the ESMF allows significant improvements in computational efficiency and data throughput. Modifying these computer codes for the HPC environment opens the door for other new capabilities. These include the ability to: 1) ingest diverse data sets at higher resolution and cadence; 2) use denser computational grids; and 3) perform ensemble forecasts. The HAFv2-IFM coupling provides the first operational, physics-based forecasts of the near-earth space environment that anticipate solar storm effects. The SWMS effort will shed light on our understanding of the underlying physics and ultimately lead to more accurate ionospheric forecasts to better support DoD missions

  10. Full-Scale Numerical Modeling of Turbulent Processes in the Earth's Ionosphere

    SciTech Connect

    Eliasson, B.; Stenflo, L.; Shukla, P. K.

    2008-10-15

    We present a full-scale simulation study of ionospheric turbulence by means of a generalized Zakharov model based on the separation of variables into high-frequency and slow time scales. The model includes realistic length scales of the ionospheric profile and of the electromagnetic and electrostatic fields, and uses ionospheric plasma parameters relevant for high-latitude radio facilities such as Eiscat and HAARP. A nested grid numerical method has been developed to resolve the different length-scales, while avoiding severe restrictions on the time step. The simulation demonstrates the parametric decay of the ordinary mode into Langmuir and ion-acoustic waves, followed by a Langmuir wave collapse and short-scale caviton formation, as observed in ionospheric heating experiments.

  11. International Symposium on Large-Scale Processes in the Ionospheric-Thermospheric System, Boulder, CO, Dec. 2-5, 1986, Proceedings

    NASA Astrophysics Data System (ADS)

    1987-12-01

    Papers are presented on the nighttime signatures of thermospheric winds as correlated with IMF parameters; the effect of electric fields on measurements of meridional neutral winds in the thermosphere; the longitudinal and latitudinal dependences of thermospheric winds; and an auroral model for the NCAR themospheric GCM. Consideration is also given to convection in the inner magnetosphere, ISIS 2 observations of the irregularity distributions during a low-latitude ionospheric disturbance event caused by the magnetospheric electrtic field, and the simulation of ionospheric electric fields and geomagnetic field variations by the ionospheric dynamo for different levels of solar activity.

  12. Origins of magnetospheric plasma

    SciTech Connect

    Moore, T.E. )

    1991-01-01

    A review is given of recent (1987-1990) progress in understanding of the origins of plasmas in the earth's magnetosphere. In counterpoint to the early supposition that geomagnetic phenomena are produced by energetic plasmas of solar origin, 1987 saw the publication of a provocative argument that accelerated ionospheric plasma could supply all magnetospheric auroral and ring current particles. Significant new developments of existing data sets, as well as the establishment of entirely new data sets, have improved the ability to identify plasma source regions and to track plasma through the magnetospheric system of boundary layers and reservoirs. These developments suggest that the boundary between ionospheric and solar plasmas, once taken to lie at the plasmapause, actually lies much nearer to the magnetopause. Defining this boundary as the surface where solar wind and ionosphere contribute equally to the plasma, it is referred to herein as the 'geopause'. It is now well established that the infusion of ionospheric O(+) plays a major role in the storm-time distention of the magnetotail and inflation of the inner magnetosphere. After more than two decades of observation and debate, the question remains whether magnetosheric are protons of solar or terrestrial origin. 161 refs.

  13. Ionospheric flows associated with a transpolar arc

    NASA Technical Reports Server (NTRS)

    Nielsen, E.; Craven, J. D.; Frank, L. A.; Heelis, R. A.

    1990-01-01

    Data on plasma flows associated with a transpolar arc are obtained by combining observations (on January 21, 1982) from the auroral imaging instruments aboard the DE 1 spacecraft with simultaneous observations of ionospheric electron drift velocities obtained with a ground-based coherent radar system and with an ion-drift meter on the DE 2 spacecraft at about 800-km altitude. The combined observations demonstrate that the electron-drift velocities within the transpolar arc at the intersection with the auroral oval on the nightside are directed equatorward into the oval and that the transpolar arc connects to the oval near the Harang discontinuity. It is also shown that the sunward flow along the transpolar arc is present near local noon.

  14. Ionospheric flows associated with a transpolar arc

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Craven, J. D.; Frank, L. A.; Heelis, R. A.

    1990-12-01

    Data on plasma flows associated with a transpolar arc are obtained by combining observations (on January 21, 1982) from the auroral imaging instruments aboard the DE 1 spacecraft with simultaneous observations of ionospheric electron drift velocities obtained with a ground-based coherent radar system and with an ion-drift meter on the DE 2 spacecraft at about 800-km altitude. The combined observations demonstrate that the electron-drift velocities within the transpolar arc at the intersection with the auroral oval on the nightside are directed equatorward into the oval and that the transpolar arc connects to the oval near the Harang discontinuity. It is also shown that the sunward flow along the transpolar arc is present near local noon.

  15. HF Radio Wave Production of Artificial Ionospheres

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert

    In 1993 it was predicted that artificial ionospheres would be produced by high power HF radio waves, once HF transmitters approached a GWatt ERP. When that threshold was very recently achieved, such production was indeed detected and published at two high latitude high power HF facilities. Here we review: the first-principles logic behind that prediction, which aspects of such production are critically dependent on magnetic latitude, and which aspects of such production depend only on physical parameters independent of latitude. These distinctions follow directly from decomposition of the problem of ionization production into its components of: radio-wave propagation, wave-particle interactions, electron transport, and quantitative elastic/inelastic cross-sections. We outline this analysis to show that, within the context of early observations, the production of ionization is inevitable, and only a question of competing instability thresholds, and scale of ionization production. This illustrates complimentary aeronomy and plasma physics to advance understanding of both.

  16. Using Remote Sensing as a Plasma Diagnostic: A Discussion of Techniques Being Used to Probe the Ionosphere in Order to Determine the Energy and Spectral Characteristics of Precipitating Electrons and Protons

    NASA Technical Reports Server (NTRS)

    Spann, J.; Parks, G.; Brittnacher, M.; Germany, G.; Mende, S.; Frey, H.; Chenette, D.; Schulz, M.; Petrinec, S.

    1999-01-01

    Spectrally resolved global images of the Earth from recent (and planned) missions are being (and will be) used to probe the ionosphere in order to determine the energy characteristics of precipitating electrons and protons. We describe the techniques that are being used, discuss the extent to which they are successful, and envision the approach that future space experiments should take in order to improve on current techniques.

  17. Delta function excitation of waves in the earth's ionosphere

    NASA Technical Reports Server (NTRS)

    Vidmar, R. J.; Crawford, F. W.; Harker, K. J.

    1983-01-01

    Excitation of the earth's ionosphere by delta function current sheets is considered, and the temporal and spatial evolution of wave packets is analyzed for a two-component collisional F2 layer. Approximations of an inverse Fourier-Laplace transform via saddle point methods provide plots of typical wave packets. These illustrate cold plasma wave theory and may be used as a diagnostic tool since it is possible to relate specific features, e.g., the frequency of a modulation envelope, to plasma parameters such as the electron cyclotron frequency. It is also possible to deduce the propagation path length and orientation of a remote radio beacon.

  18. Sambo-Geos - electric field measurements in the disturbed ionosphere and magnetosphere

    SciTech Connect

    Treilhou, J.P.; Kozelova, T.V.; Lazutin, L.L.; Petrov, V.G.; Zhulin, I.A.

    1985-01-01

    A comparison is made between measurements of the electric field in the ionosphere and the equatorial plane during the pre-onset and active phases of a substorm. During the pre-onset phase, the southward drift of the auroral arc and of the westward electrojet disagree with the velocity inferred from a convection electric field measured by a balloon and a satellite; possible explanations of the disagreement are examined. An enhancement of the convection electric field is recorded in the pre-onset phase which seems to trigger a polarization electric field in the ionosphere, which in turn drives the westward electrojet, in agreement with the model proposed by Coroniti and Kennel (1972). 6 references.

  19. Substorms and polar cap convection: the 10 January 2004 interplanetary CME case

    NASA Astrophysics Data System (ADS)

    Andalsvik, Y.; Sandholt, P. E.; Farrugia, C. J.

    2012-01-01

    The expansion-contraction model of Dungey cell plasma convection has two different convection sources, i.e. reconnections at the magnetopause and in the magnetotail. The spatial-temporal structure of the nightside source is not yet well understood. In this study we shall identify temporal variations in the winter polar cap convection structure during substorm activity under steady interplanetary conditions. Substorm activity (electrojets and particle precipitations) is monitored by excellent ground-satellite DMSP F15 conjunctions in the dusk-premidnight sector. We take advantage of the wide latitudinal coverage of the IMAGE chain of ground magnetometers in Svalbard - Scandinavia - Russia for the purpose of monitoring magnetic deflections associated with polar cap convection and substorm electrojets. These are augmented by direct observations of polar cap convection derived from SuperDARN radars and cross-track ion drift observations during traversals of polar cap along the dusk-dawn meridian by spacecraft DMSP F13. The interval we study is characterized by moderate, stable forcing of the magnetosphere-ionosphere system (EKL = 4.0-4.5 mV m-1; cross polar cap potential (CPCP), ? (Boyle) = 115 kV) during Earth passage of an interplanetary CME (ICME), choosing an 4-h interval where the magnetic field pointed continuously south-west (Bz < 0; By < 0). The combination of continuous monitoring of ground magnetic deflections and the F13 cross-track ion drift observations in the polar cap allows us to infer the temporal CPCP structure on time scales less than the ~10 min duration of F13 polar cap transits. We arrived at the following estimates of the dayside and nightside contributions to the CPCP (CPCP = CPCP/day + CPCP/night) under two intervals of substorm activity: CPCP/day ~110 kV; CPCP/night ~50 kV (45% CPCP increase during substorms). The temporal CPCP structure during one of the substorm cases resulted in a dawn-dusk convection asymmetry measured by DMSP F13 which is opposite to that expected from the prevailing negative By polarity of the ICME magnetic field, a clear indication of a nightside source.

  20. The International Reference Ionosphere - Climatological Standard for the Ionosphere

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    2006-01-01

    The International Reference Ionosphere (IRI) a joint project of URSI and COSPAR is the defacto standard for a climatological specification of ionospheric parameters. IRI is based on a wide range of ground and space data and has been steadily improved since its inception in 1969 with the ever-increasing volume of ionospheric data and with better mathematical descriptions of the observed global and temporal variation patterns. The IRI model has been validated with a large amount of data including data from the most recent ionospheric satellites (KOMPSAT, ROCSAT and TIMED) and data from global network of ionosondes. Several IRI teams are working on specific aspects of the IRI modeling effort including an improved representation of the topside ionosphere with a seamless transition to the plasmasphere, a new effort to represent the global variation of F2 peak parameters using the Neural Network (NN) technique, and the inclusion of several additional parameters in IRI, e.g., spread-F probability and ionospheric variability. Annual IRI workshops are the forum for discussions of these efforts and for all science activities related to IRI as well as applications of the IRI model in engineering and education. In this paper I will present a status report about the IRI effort with special emphasis on the presentations and results from the most recent IRI Workshops (Paris, 2004; Tortosa, 2005) and on the most important ongoing IRI activities. I will discuss the latest version of the IRI model, IRI-2006, highlighting the most recent changes and additions. Finally, the talk will review some of the applications of the IRI model with special emphasis on the use for radiowave propagation studies and communication purposes.

  1. Automated Ionospheric Front Velocity Estimation Algorithm for

    E-print Network

    Stanford University

    Automated Ionospheric Front Velocity Estimation Algorithm for Ground-Based Augmentation Systems, and Sigrid Close Stanford University ABSTRACT Ionospheric anomalies, which may occur during severe ionospheric storms, could pose integrity threats to Ground-based Augmentation System (GBAS) users [1], [2], [3

  2. Introduction to the Ionosphere Alan Aylward

    E-print Network

    Introduction to the Ionosphere Alan Aylward Atmospheric Physics Laboratory,UCL #12;Beginnings.... · The ionosphere is that part of the atmosphere where radio propagation is affected (even that is a fairly sounder: · The ionospheric sounder or ionosonde became the main tool of research into this for 20 years

  3. LWA Ionospheric Workshop Christopher Watts1

    E-print Network

    Ellingson, Steven W.

    LWA Ionospheric Workshop Christopher Watts1 and Kenneth Dymond2 with: Ronald Caton5 , Clayton Coker The LWA Ionospheric Workshop was held in parallel with the CEDAR workshop at the Eldorado Hotel on Sunday June 28, 2009. The purpose of the workshop was to bring together the ionospheric and astronomy

  4. Radar Soundings of the Ionosphere of Mars

    E-print Network

    Gurnett, Donald A.

    Radar Soundings of the Ionosphere of Mars D. A. Gurnett,1 * D. L. Kirchner,1 R. L. Huff,1 D. D4 We report the first radar soundings of the ionosphere of Mars with the MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) instrument on board the orbiting Mars Express spacecraft. Several types

  5. Ionosphere Weighted GPS Cycle Ambiguity Resolution1

    E-print Network

    Calgary, University of

    1 Ionosphere Weighted GPS Cycle Ambiguity Resolution1 George Chia Liu, Gérard Lachapelle Department approach to mitigate the high ionospheric effect has been either to reduce the inter-station separation or to form ionosphere-free observables. Neither is satisfactory: the first restricts the operating range

  6. Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages

    NASA Astrophysics Data System (ADS)

    Nichols, J. D.; Cowley, S. W. H.

    2005-03-01

    We consider the effect of field-aligned voltages on the magnetosphere-ionosphere coupling current system associated with the breakdown of rigid corotation of equatorial plasma in Jupiter's middle magnetosphere. Previous analyses have assumed perfect mapping of the electric field and flow along equipotential field lines between the equatorial plane and the ionosphere, whereas it has been shown that substantial field-aligned voltages must exist to drive the field-aligned currents associated with the main auroral oval. The effect of these field-aligned voltages is to decouple the flow of the equatorial and ionospheric plasma, such that their angular velocities are in general different from each other. In this paper we self-consistently include the field-aligned voltages in computing the plasma flows and currents in the system. A third order differential equation is derived for the ionospheric plasma angular velocity, and a power series solution obtained which reduces to previous solutions in the limit that the field-aligned voltage is small. Results are obtained to second order in the power series, and are compared to the original zeroth order results with no parallel voltage. We find that for system parameters appropriate to Jupiter the effect of the field-aligned voltages on the solutions is small, thus validating the results of previously-published analyses.

  7. Detection of severe storms through a tropospheric-ionospheric coupling mechanism

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1977-01-01

    Acoustic-gravity waves were detected by a ground-based ionospheric sounding array, and the location of the wave generation source was determined by a reverse group ray path computation. Computed sources of these waves were located near locations where tornadoes touched down from 2 to 4 hours later. It is suggested that the overshooting and ensuing collapse of convective turrets may be responsible for generating the acoustic-gravity waves observed.

  8. Ionospheric irregularities during a substorm event: Observations of ULF pulsations and GPS scintillations

    NASA Astrophysics Data System (ADS)

    Kim, H.; Clauer, C. R.; Deshpande, K.; Lessard, M. R.; Weatherwax, A. T.; Bust, G. S.; Crowley, G.; Humphreys, T. E.

    2014-07-01

    Plasma instability in the ionosphere is often observed as disturbances and distortions of the amplitude and phase of the radio signals, which are known as ionospheric scintillations. High-latitude ionospheric plasma, closely connected to the solar wind and magnetospheric dynamics, produces very dynamic and short-lived Global Positioning System (GPS) scintillations, making it challenging to characterize them. It is observed that scintillations in the high-latitude ionosphere occur frequently during geomagnetic storms and substorms. In addition, it is well known that Ultra Low Frequency (ULF) pulsations (Pi2 and Pi1B) are closely associated with substorm activity. This study reports simultaneous observations of Pi2 and Pi1B pulsations and GPS phase scintillations during a substorm using a newly designed Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP) installed at the South Pole. The magnetic field and GPS data from the instruments appear to be associated in terms of their temporal and spectral features. Moreover, the scintillation events were observed near the auroral latitudes where Pi1B pulsations are commonly detected. The temporal, spectral and spatial association between the scintillation and geomagnetic pulsation events suggests that the magnetic field perturbations and enhanced electric fields caused by substorm currents could contribute to the creation of plasma instability in the high-latitude ionosphere, leading to GPS scintillations.

  9. The role of the equatorial electrojet in the evening ionosphere

    SciTech Connect

    Haerendel, G.; Eccles, J.V. )

    1992-02-01

    This paper focuses on the role of the equatorial E region in the electrodynamics of the evening ionosphere. The influence and reaction of the electrojet current on the equatorial ionosphere at sunset is investigated using a field line integrated, one-dimensional, electrodynamic model. The one-dimensional, time-varying model predicts the divergence of the horizontal current of the equatorial electrojet for a given time variation of the horizontal electric field. The negative divergence of the horizontal current during the evening hours provides a net upward current out of the equatorial E region into the integrated ionosphere of higher equatorial altitudes. This upward current affects the vertical electric field magnitudes and subsequent horizontal plasma drifts of the overlying ionosphere. The model allows for chemical recombination and dynamic redistribution of ionization within the electrojet region under the assumption that the profile of the ionization density along a field lie is proportional to the chemical equilibrium profile. The eastward horizontal electric field and the net upward current during the 2 hours after sunset combine to lift the ionization out of the E region resulting in ionization densities less than the equilibrium values. As the ionization densities (conductivities) are reduced, the electrodynamics of the equatorial ionosphere is altered. This model of the equatorial electrojet current divergence can be used as a lower boundary to global, two-dimensional models of the equatorial electric fields. Finally, it is proposed that the equatorial electrojet current near sunset has a significant role in the determination of the postsunset enhancement of the horizontal electric field.

  10. Dynamic processes in the ionosphere during the geospace storm on 30 May and solar eclipse on 31 May 2003

    NASA Astrophysics Data System (ADS)

    Grigorenko, Ye. I.; Paziura, S. A.; Puliaiev, V. A.; Taran, V. I.; Chernogor, L. F.

    Some results of the F region and topside ionosphere response to the 29-31 May 2003 severe geomagnetic storm (maximum index Kp=8) are presented. The observations are carried out with the Kharkov incoherent scatter radar. Considerable storm effects in the ionosphere were revealed. Among them were deep electron density N depletion, uplifting in the peak height zmF2, unusual heating of plasma, decrease of relative concentration of hydrogen ions in the main phase of the storm, infringement of processes of the ionosphere-magnetosphere interaction. The geospace storm was also accompanied by generation of wave-like ionosphere disturbances. Some features of the ionosphere response to the 73% solar eclipse on 31 May 2003 occurred after sunrise during the recovery phase of the geomagnetic storm are considered. It is shown that, during the eclipse, short-time (2-3 h) reforming the ionosphere to night conditions takes place. The effects of magnetic disturbance, solar flare and the peculiarities of ionosphere behaviour during sunrise period, that were being imposed on the ionosphere response to the soalr eclipse, are also discussed.

  11. Substorm Onset by New Plasma Intrusion 4: SuperDARN-THEMIS ASI-POES Observations

    NASA Astrophysics Data System (ADS)

    Zou, S.; Nishimura, Y.; Lyons, L. R.; Mende, S. B.; Sofko, G. J.; Nishitani, N.; Hori, T.; Hosokawa, K.

    2009-12-01

    In a companion study, we found that substorm onsets are frequently preceded by equatorward extension of a north-south auroral structure from the polar cap boundary to the east-west pre-existing growth phase arc. It was suggested that this north-south auroral structure is associated with new and low entropy plasma, which enters the plasma sheet from the separatrix, moves earthward, and then turns around near the Harang reversal region where it leads to plasma instability responsible for onset. In this study, we superpose 2D convection flows obtained by the northern hemisphere SuperDARN radars with auroral images taken by the THEMIS ASI and study their mutual evolution. We find that equatorward flows near the eastern edge of the auroral Harang reversal enhance several minutes before onset and its front moves equatorward. These equatorward flows are then diverted azimuthally and a substorm onset occurs near the Harang reversal region. This enhanced equatorward flow is likely to be the ionospheric counterpart of the low entropy plasma channel in the equatorial plane. Further studies are needed to confirm the generality of this phenomenon. In addition, energetic particle precipitation measured by the NOAA POES spacecraft is studied in two cases when the spacecraft passed near the onset region at the onset time. In both cases, onsets were located just poleward of and quite close to the peak of the energetic proton precipitation and near the equatorward boundary of the energetic electron precipitations. This observation is consistent with previous results obtained from optical observations. Combined with the convection flow and auroral image observations, this gives a morphological mapping of the onset location and related low entropy channel between the magnetosphere and ionosphere.

  12. Electrodynamic model of atmospheric and ionospheric processes on the eve of an earthquake

    NASA Astrophysics Data System (ADS)

    Sorokin, V. M.; Ruzhin, Yu. Ya.

    2015-09-01

    Electric field generation and its accompanying phenomena in the atmosphere-ionosphere system have been intensively studied in recent years. This paper considers the results of these studies, which have served as the physical basis for the model of lithosphere-ionosphere coupling. According to our model, the intensive processes in the lower atmosphere and lithosphere have an electrodynamic effect on the ionospheric plasma. The model was used to conduct theoretical studies of plasma and electromagnetic effects accompanying the generation of conduction current in the global circuit. It has been shown that the electrodynamic model of the influence of seismic and meteorological processes on cosmic plasma can serve as a physical basis for a satellite system to monitor earthquake precursors and the catastrophic phase of typhoon development. The model makes it possible to couple the satellite data of electromagnetic and plasma measurements with electrophysical and meteorological characteristics of the lower atmosphere at the stage of earthquake preparation and typhoon initiation. The model suggests that the numerous effects in the cosmic plasma have a single source: a change in the conduction current flowing in the atmosphere-ionosphere circuit.

  13. Magnetospheric convection pattern and its implications

    NASA Technical Reports Server (NTRS)

    Zhu, Xiaoming

    1993-01-01

    When we use 14 months of the Fast Plasma Experiment ion velocity measurements, the mean magnetospheric circulation pattern is constructed. It is shown that the magnetospheric convection velocity is of the order tens of kilometers per second. The convection is largely restricted to the outer magnetosphere. During magnetically active periods the convection velocity increases and the convection boundary extends to the region closer to the Earth, indicating more magnetic field flux is being transported to the dayside magnetosphere. It is also shown that the convective flows tend to follow contours of constant unit flux volume as they move around the Earth, especially on the duskside of the magnetosphere. This helps to avoid the pressure balance inconsistency often found in two-dimensional magnetotail models.

  14. Satellite Radiotomography of Ionospheric Responces to Extra-Terrestrial Forcing

    NASA Astrophysics Data System (ADS)

    Kunitsyn, Viacheslav; Padokhin, Artem; Andreeva, Elena; Tereshchenko, Evgeny; Nesterov, Ivan; Vorontsov, Artem

    Our work addresses the study of the response of the atmosphere and ionosphere to a variety of external forcing such as solar flares and particle precipitation. Particle precipitation plays important role in the system of magnetosphere-ionosphere- atmosphere coupling during geomagnetic storms. Using radio tomographic imaging of the ionosphere based on navigational satellite systems (Parus/Transit and GPS/GLONASS) we present and discuss the examples illustrating ionospheric effects caused by particle precipitations detected by DMSP satellites. It is shown that the spatial structure of corpuscular ionization in the tomographic images is qualitatively close to latitudinal distribution of the precipitating particles. The distributions of ionospheric plasma observed during strong geomagnetic disturbances and particle precipitations have multiple extrema and wave-like structures with a spatial scale ranging from a few dozens to a few hundreds of kilometers; the characteristic sizes of latitudinal variations in the corresponding corpuscular flows widely vary from a few degrees to a few dozens degrees latitude. The obtained experimental results are in good agreement with the results of the numeric modelling of the AGW generation by volumetric sources. We also present the comparison of the effects of ionization of the ionosphere by a series of intense X-class solar flares during the 23rd and 24th solar cycles based on the data of satellite navigation and augumentation systems (GPS/GLONASS and SBAS). The analysis shows that the intensity of the ionospheric effects estimated from the variations in total electron content is barely related to the intensity of the X-ray flare for the X-class events. The amplitude of variations in the ionization of the upper atmosphere is mainly controlled by the intensity of variations in solar EUV radiation, which is not always correlated to the X-Ray radiation during flares. The authors acknowledge the support of the Russian Foundation for Basic Research (grants ? 13-05-01122, 14-05-31445, 14-05-00855, 14-05-10069), grants of the President of Russian Federation (MK-2670.2014.5) and Lomonosov Moscow State University Program of Development.

  15. Space plasma physics research

    NASA Technical Reports Server (NTRS)

    Comfort, Richard H.; Horwitz, James L.

    1993-01-01

    During the course of this grant, work was performed on a variety of topics and there were a number of significant accomplishments. A summary of these accomplishments is included. The topics studied include empirical model data base, data reduction for archiving, semikinetic modeling of low energy plasma in the inner terrestrial magnetosphere and ionosphere, O(+) outflows, equatorial plasma trough, and plasma wave ray-tracing studies. A list of publications and presentations which have resulted from this research is also included.

  16. A modified Monte Carlo model for the ionospheric heating rates

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Fontheim, E. G.; Robertson, S. C.

    1972-01-01

    A Monte Carlo method is adopted as a basis for the derivation of the photoelectron heat input into the ionospheric plasma. This approach is modified in an attempt to minimize the computation time. The heat input distributions are computed for arbitrarily small source elements that are spaced at distances apart corresponding to the photoelectron dissipation range. By means of a nonlinear interpolation procedure their individual heating rate distributions are utilized to produce synthetic ones that fill the gaps between the Monte Carlo generated distributions. By varying these gaps and the corresponding number of Monte Carlo runs the accuracy of the results is tested to verify the validity of this procedure. It is concluded that this model can reduce the computation time by more than a factor of three, thus improving the feasibility of including Monte Carlo calculations in self-consistent ionosphere models.

  17. Thermosphere-ionosphere coupling - An experiment in interactive modeling

    NASA Technical Reports Server (NTRS)

    Forbes, Jeffrey M.; Roble, Raymond G.

    1990-01-01

    Using the NCAR thermosphere general circulation model, a series of controlled experiments is performed to investigate the interactive coupling between ionospheric plasma densities and thermospheric neutral winds. The interaction is accomplished by parameterizing the F layer peak height, h(m)F2, in an empirical ionospheric model in terms of the meridional wind, v(south), and by forcing the h(m)F2 and the v(south) parameters to remain mutually coupled in a dynamical calculation. It was found that mutual coupling between forcing and meridional wind is weak during the daytime when the F layer exhibits a broad vertical structure. At night, when the F2 layer is more localized, the neutral dynamical structure is dependent on whether forcing is significantly above or below the altitude (about 275-300 km) at which ion drag effectively competes with viscosity in the neutral momentum balance.

  18. Impact of Tsunami-Generated Gravity Waves on the Ionosphere

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Drob, D. P.

    2014-12-01

    The NRL first-principles ionosphere model SAMI3 is used to study the ionospheric effects associated with tsunami-driven gravity waves. It is shown that gravity-wave induced variations in the neutral wind lead to plasma velocity variations both perpendicular and parallel to the geomagnetic field. Moreover, the electric field induced by the neutral wind perturbations can map to the conjugate hemisphere. Thus, electron density variations can be generated in both hemispheres which impact the total electron content (TEC) and 6300A airglow emission. It is found that the TEC exhibits variations +/- 0.15 TECU and the 6300A airglow emission variation is up to +/- 2.5% relative to the unperturbed background airglow. These results are consistent with observational data. Research supported by NRL Base Funds and ONR BRC program.

  19. Convective heater

    DOEpatents

    Thorogood, R.M.

    1983-12-27

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.

  20. Convective heater

    DOEpatents

    Thorogood, Robert M. (Macungie, PA)

    1986-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  1. Convective heater

    DOEpatents

    Thorogood, Robert M. (Macungie, PA)

    1983-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  2. Ionosphere TEC disturbances before strong earthquakes: observations, physics, modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Namgaladze, A. A.

    2013-12-01

    The phenomenon of the pre-earthquake ionospheric disturbances is discussed. A number of typical TEC (Total Electron Content) relative disturbances is presented for several recent strong earthquakes occurred in different ionospheric conditions. Stable typical TEC deviations from quiet background state are observed few days before the strong seismic events in the vicinity of the earthquake epicenter and treated as ionospheric earthquake precursors. They don't move away from the source in contrast to the disturbances related with geomagnetic activity. Sunlit ionosphere approach leads to reduction of the disturbances up to their full disappearance, and effects regenerate at night. The TEC disturbances often observed in the magnetically conjugated areas as well. At low latitudes they accompany with equatorial anomaly modifications. The hypothesis about the electromagnetic channel of the pre-earthquake ionospheric disturbances' creation is discussed. The lithosphere and ionosphere are coupled by the vertical external electric currents as a result of ionization of the near-Earth air layer and vertical transport of the charged particles through the atmosphere over the fault. The external electric current densities exceeding the regular fair-weather electric currents by several orders are required to produce stable long-living seismogenic electric fields such as observed by onboard measurements of the 'Intercosmos-Bulgaria 1300' satellite over the seismic active zones. The numerical calculation results using the Upper Atmosphere Model demonstrate the ability of the external electric currents with the densities of 10-8-10-9 A/m2 to produce such electric fields. The sumulations reproduce the basic features of typical pre-earthquake TEC relative disturbances. It is shown that the plasma ExB drift under the action of the seismogenic electric field leads to the changes of the F2 region electron number density and TEC. The upward drift velocity component enhances NmF2 and TEC and the downward component decreases it, while horizontal components redistribute plasma in the horizontal plane around the source. The UAM calculations also show that the external electric currents of the seismic origin generate the small disturbances of the neutral atmosphere with the characteristics of the internal gravity waves but they don't influence noticeably on the relative pre-earthquake TEC disturbances.

  3. Ionospheric parameter analysis techniques and anomaly identification in periods of ionospheric perturbations

    NASA Astrophysics Data System (ADS)

    Mandrikova, Oksana; Polozov, Yury; Fetisova Glushkova, Nadejda; Shevtsov, Boris

    In the present paper we suggest intellectual techniques intended for the analysis of ionospheric parameters. These techniques are directed at studying dynamic processes in the "magnetosphere-ionosphere" system during perturbations. Using the combination of the wavelet transform and neural networks, the authors have developed a technique of approximating the time variation of ionospheric parameters. This technique allows us to make data predictions and detect anomalies in the ionosphere. Multiscale component approximations of the critical frequency of the ionosphere layer F2 were constructed. These approximations can be presented in the following form: begin{center} c_{l,k+m} (t) = varphi_m(3) Bigl (sum_i omega(3_{mi}) varphi_i(2) Bigl (sum_j omega(2_{ij}) varphi_j(1) Bigl (sum_k omega(1_{jk}) c_{l,k} (t) Bigr ) Bigr ) Bigr ) , where c_{l,k} = bigl < f , Psi_{l,k} bigr > ; Psi_{l,k} (t) = 2(l/2) Psi (2(l) t - k) is the wavelet basis; omega(1_{jk}) are the weighting coefficients of the neuron j of the network input layer; omega(2_{ij}) are the weighting coefficients of the neuron i of the network hidden layer; omega(3_{mi}) are the weighting coefficients of the neuron m of the network output layer; varphi(1_j) (z) = varphi(2_i) (z) = (1)/(1+exp(-z))) ; varphi(3_m) (z) = x*z+y . The coefficients c_{l,k} can be found as a result of transforming the original function f into the space with the scale l . In order to obtain the approximations of the time variation of data, neural networks can be united in groups. In the paper we have suggested a multicomponent time variation model of ionospheric parameters, which makes it possible to perform the analysis of the ionospheric dynamic mode, receive predictions about parameter variations, and detect anomalies in periods of perturbations. The multicomponent model also allows us to fill missing values in critical frequency data taking into account diurnal and seasonal variations. Identification of the model is based on combining the wavelet transform with autoregressive integrated moving average methods. The general expression of the multicomponent model is f_0 (t) = sum_{mu = /line{1,M}} sum_{k = /line{1,N_1(mu}}) s_{l,k}(mu) (t) b_{l,k}(mu) (t) , where s_{l,k}(mu) (t) = sum_{q=1}(p_l(mu)) gamma_{l,q}(mu) w(mu_{l,k-q}) (t) - sum_{n=1}(h_l(mu)) theta_{l,n}(mu) alpha(mu_{l,k-n}) (t) is the estimated value of the mu -th component, p_l(mu) is the autoregressive model order of the mu -th component, gamma_{l,q}(mu) are the autoregressive parameters of the mu -th component, w_{l,k}(mu) (t) = nabla(nu(mu)) beta_{l,k}(mu) (t) , nu(mu) is the difference order of the mu -th component, beta_{l,k}(mu) are the decomposition coefficients of the mu -th component, h_l(mu) , theta_{l,k}(mu) are the model orders and moving average parameters of the mu -th component model, alpha(mu_{l,k}) are the residual errors of the mu -th component model, M is the number of characteristic components, N_l(mu) is the length of the mu -th component, b_{l,k}(mu) is the wavelet basis of the mu -th component, l is the scale. Using these techniques we have obtained the approximation of the ionospheric critical frequency time variation for regions located in Kamchatka and Magadan. The analysis of the quiet variation of the parameters was performed, the 5-hour prediction was made, and anomalies occurring in periods of increased solar activity and prior to strong earthquakes in Kamchatka were discovered in the ionosphere. The developed methods are useful for studying the proper