Sample records for ipsilateral anterior cingulate

  1. Ventral anterior cingulate cortex and social decision-making.

    PubMed

    Lockwood, Patricia L; Wittmann, Marco K

    2018-06-07

    Studies in the field of social neuroscience have recently made use of computational models of decision-making to provide new insights into how we learn about the self and others during social interactions. Importantly, these studies have increasingly drawn attention to brain areas outside of classical cortical "social brain" regions that may be critical for social processing. In particular, two portions of the ventral anterior cingulate cortex (vACC), subgenual anterior cingulate cortex and perigenual anterior cingulate cortex, have been linked to social and self learning signals, respectively. Here we discuss the emerging parallels between these studies. Uncovering the function of vACC during social interactions could provide important new avenues to understand social decision-making in health and disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Spindle neurons of the human anterior cingulate cortex

    NASA Technical Reports Server (NTRS)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  3. Reduced anterior cingulate glutamate in pediatric major depression: a magnetic resonance spectroscopy study.

    PubMed

    Rosenberg, David R; Macmaster, Frank P; Mirza, Yousha; Smith, Janet M; Easter, Phillip C; Banerjee, S Preeya; Bhandari, Rashmi; Boyd, Courtney; Lynch, Michelle; Rose, Michelle; Ivey, Jennifer; Villafuerte, Rosemond A; Moore, Gregory J; Renshaw, Perry

    2005-11-01

    Anterior cingulate cortex has been implicated in the pathogenesis of major depressive disorder (MDD). With single voxel proton magnetic resonance spectroscopy, we reported reductions in anterior cingulate glutamatergic concentrations (grouped value of glutamate and glutamine) in 14 pediatric MDD patients versus 14 case-matched healthy control subjects. These changes might reflect a change in glutamate, glutamine, or their combination. Fitting to individually quantify anterior cingulate glutamate and glutamine was performed in these subjects with a new basis set created from data acquired on a 1.5 Tesla General Electric Signa (GE Healthcare, Waukesha, Wisconsin) magnetic resonance imaging scanner with LCModel (Version 6.1-0; Max-Planck-Institute, Gottingen, Germany). Reduced anterior cingulate glutamate was observed in MDD patients versus control subjects (8.79 +/- 1.68 vs. 11.46 +/- 1.55, respectively, p = .0002; 23% decrease). Anterior cingulate glutamine did not differ significantly between patients with MDD and control subjects. These findings provide confirmatory evidence of anterior cingulate glutamate alterations in pediatric MDD.

  4. Reduced event-related current density in the anterior cingulate cortex in schizophrenia.

    PubMed

    Mulert, C; Gallinat, J; Pascual-Marqui, R; Dorn, H; Frick, K; Schlattmann, P; Mientus, S; Herrmann, W M; Winterer, G

    2001-04-01

    There is good evidence from neuroanatomic postmortem and functional imaging studies that dysfunction of the anterior cingulate cortex plays a prominent role in the pathophysiology of schizophrenia. So far, no electrophysiological localization study has been performed to investigate this deficit. We investigated 18 drug-free schizophrenic patients and 25 normal subjects with an auditory choice reaction task and measured event-related activity with 19 electrodes. Estimation of the current source density distribution in Talairach space was performed with low-resolution electromagnetic tomography (LORETA). In normals, we could differentiate between an early event-related potential peak of the N1 (90-100 ms) and a later N1 peak (120-130 ms). Subsequent current-density LORETA analysis in Talairach space showed increased activity in the auditory cortex area during the first N1 peak and increased activity in the anterior cingulate gyrus during the second N1 peak. No activation difference was observed in the auditory cortex between normals and patients with schizophrenia. However, schizophrenics showed significantly less anterior cingulate gyrus activation and slowed reaction times. Our results confirm previous findings of an electrical source in the anterior cingulate and an anterior cingulate dysfunction in schizophrenics. Our data also suggest that anterior cingulate function in schizophrenics is disturbed at a relatively early time point in the information-processing stream (100-140 ms poststimulus). Copyright 2001 Academic Press.

  5. Characterization of postsynaptic calcium signals in the pyramidal neurons of anterior cingulate cortex

    PubMed Central

    Li, Xu-Hui; Song, Qian; Chen, Tao; Zhuo, Min

    2017-01-01

    Calcium signaling is critical for synaptic transmission and plasticity. N-methyl-D-aspartic acid (NMDA) receptors play a key role in synaptic potentiation in the anterior cingulate cortex. Most previous studies of calcium signaling focus on hippocampal neurons, little is known about the activity-induced calcium signals in the anterior cingulate cortex. In the present study, we show that NMDA receptor-mediated postsynaptic calcium signals induced by different synaptic stimulation in anterior cingulate cortex pyramidal neurons. Single and multi-action potentials evoked significant suprathreshold Ca2+ increases in somas and spines. Both NMDA receptors and voltage-gated calcium channels contributed to this increase. Postsynaptic Ca2+signals were induced by puff-application of glutamate, and a NMDA receptor antagonist AP5 blocked these signals in both somas and spines. Finally, long-term potentiation inducing protocols triggered postsynaptic Ca2+ influx, and these influx were NMDA receptor dependent. Our results provide the first study of calcium signals in the anterior cingulate cortex and demonstrate that NMDA receptors play important roles in postsynaptic calcium signals in anterior cingulate cortex pyramidal neurons. PMID:28726541

  6. Neuropathic Pain Causes Pyramidal Neuronal Hyperactivity in the Anterior Cingulate Cortex.

    PubMed

    Zhao, Ruohe; Zhou, Hang; Huang, Lianyan; Xie, Zhongcong; Wang, Jing; Gan, Wen-Biao; Yang, Guang

    2018-01-01

    The anterior cingulate cortex (ACC) is thought to be important for acute pain perception as well as the development of chronic pain after peripheral nerve injury. Nevertheless, how ACC neurons respond to sensory stimulation under chronic pain states is not well understood. Here, we used an in vivo two-photon imaging technique to monitor the activity of individual neurons in the ACC of awake, head restrained mice. Calcium imaging in the dorsal ACC revealed robust somatic activity in layer 5 (L5) pyramidal neurons in response to peripheral noxious stimuli, and the degree of evoked activity was correlated with the intensity of noxious stimulation. Furthermore, the activation of ACC neurons occurred bilaterally upon noxious stimulation to either contralateral or ipsilateral hind paws. Notably, with nerve injury-induced neuropathic pain in one limb, L5 pyramidal neurons in both sides of the ACC showed enhanced activity in the absence or presence of pain stimuli. These results reveal hyperactivity of L5 pyramidal neurons in the bilateral ACC during the development of neuropathic pain.

  7. Anterior Cingulate Cortex γ-Aminobutyric Acid in Depressed Adolescents

    PubMed Central

    Gabbay, Vilma; Mao, Xiangling; Klein, Rachel G.; Ely, Benjamin A.; Babb, James S.; Panzer, Aviva M.; Alonso, Carmen M.; Shungu, Dikoma C.

    2013-01-01

    Context Anhedonia, a core symptom of major depressive disorder (MDD) and highly variable among adolescents with MDD, may involve alterations in the major inhibitory amino acid neurotransmitter system of γ-aminobutyric acid (GABA). Objective To test whether anterior cingulate cortex (ACC) GABA levels, measured by proton magnetic resonance spectroscopy, are decreased in adolescents with MDD. The associations of GABA alterations with the presence and severity of anhedonia were explored. Design Case-control, cross-sectional study using single-voxel proton magnetic resonance spectroscopy at 3 T. Setting Two clinical research divisions at 2 teaching hospitals. Participants Twenty psychotropic medication-free adolescents with MDD (10 anhedonic, 12 female, aged 12–19 years) with episode duration of 8 weeks or more and 21 control subjects group matched for sex and age. Main Outcome Measures Anterior cingulate cortex GABA levels expressed as ratios relative to unsuppressed voxel tissue water (w) and anhedonia scores expressed as a continuous variable. Results Compared with control subjects, adolescents with MDD had significantly decreased ACC GABA/w (t= 3.2; P<.003). When subjects with MDD were categorized based on the presence of anhedonia, only anhedonic patients had decreased GABA/w levels compared with control subjects (t=4.08; P<.001; PTukey<.001). Anterior cingulate cortex GABA/w levels were negatively correlated with anhedonia scores for the whole MDD group (r = −0.50; P = .02), as well as for the entire participant sample including the control subjects (r=−0.54; P<.001). Anterior cingulate cortex white matter was also significantly decreased in adolescents with MDD compared with controls (P=.04). Conclusions These findings suggest that GABA, the major inhibitory neurotransmitter in the brain, may be implicated in adolescent MDD and, more specifically, in those with anhedonia. In addition, use of a continuous rather than categorical scale of anhedonia, as in

  8. Diminished rostral anterior cingulate activity in response to threat-related events in posttraumatic stress disorder.

    PubMed

    Kim, Minue J; Chey, Jeanyung; Chung, Ain; Bae, Soojeong; Khang, Hyunsoo; Ham, Byungjoo; Yoon, Sujung J; Jeong, Do-Un; Lyoo, In Kyoon

    2008-03-01

    Previous brain imaging studies have reported hyperactivation of the amygdala and hypoactivation of the anterior cingulate in posttraumatic stress disorder (PTSD) patients, which is believed to be an underlying neural mechanism of the PTSD symptoms. The current study specifically focuses on the abnormal activity of the rostral anterior cingulate, using a paradigm which elicits an unexpected processing conflict caused by salient emotional stimuli. Twelve survivors (seven men and five women) of the Taegu subway fire in 2003, who later developed PTSD, agreed to participate in this study. Twelve healthy volunteers (seven men and five women) were recruited for comparison. Functional brain images of all participants were acquired using functional magnetic resonance imaging while performing a same-different judgment task, which was modified to elicit an unexpected emotional processing conflict. PTSD patients, compared to comparison subjects, showed a decreased rostral anterior cingulate functioning when exposed to situations which induce an unexpected emotional processing conflict. Moreover, PTSD symptom severity was negatively correlated to the level of decrease in the rostral anterior cingulate activity. The results of this study provide evidence that the rostral anterior cingulate functioning is impaired in PTSD patients during response-conflict situations that involve emotional stimuli.

  9. Anterior cingulate grey-matter deficits and cannabis use in first-episode schizophrenia.

    PubMed

    Szeszko, Philip R; Robinson, Delbert G; Sevy, Serge; Kumra, Sanjiv; Rupp, Claudia I; Betensky, Julia D; Lencz, Todd; Ashtari, Manzar; Kane, John M; Malhotra, Anil K; Gunduz-Bruce, Handan; Napolitano, Barbara; Bilder, Robert M

    2007-03-01

    Despite the high prevalence of cannabis use in schizophrenia, few studies have examined the potential relationship between cannabis exposure and brain structural abnormalities in schizophrenia. To investigate prefrontal grey and white matter regions in patients experiencing a first episode of schizophrenia with an additional diagnosis of cannabis use or dependence (n=20) compared with similar patients with no cannabis use (n=31) and healthy volunteers (n=56). Volumes of the superior frontal gyrus, anterior cingulate gyrus and orbital frontal lobe were outlined manually from contiguous magnetic resonance images and automatically segmented into grey and white matter. Patients who used cannabis had less anterior cingulate grey matter compared with both patients who did not use cannabis and healthy volunteers. A defect in the anterior cingulate is associated with a history of cannabis use among patients experiencing a first episode of schizophrenia and could have a role in poor decision-making and in choosing more risky outcomes.

  10. Anterior Cingulate Cortex in Schema Assimilation and Expression

    ERIC Educational Resources Information Center

    Wang, Szu-Han; Tse, Dorothy; Morris, Richard G. M.

    2012-01-01

    In humans and in animals, mental schemas can store information within an associative framework that enables rapid and efficient assimilation of new information. Using a hippocampal-dependent paired-associate task, we now report that the anterior cingulate cortex is part of a neocortical network of schema storage with NMDA receptor-mediated…

  11. Cognitive control and the anterior cingulate cortex: how conflicting stimuli affect attentional control in the rat

    PubMed Central

    Newman, Lori A.; Creer, David J.; McGaughy, Jill A.

    2014-01-01

    Converging evidence supports the hypothesis that the prefrontal cortex is critical for cognitive control. One prefrontal subregion, the anterior cingulate cortex, is hypothesized to be necessary to resolve response conflicts, disregard salient distractors and alter behavior in response to the generation of an error. These situations all involve goal-oriented monitoring of performance in order to effectively adjust cognitive processes. Several neuropsychological disorders, e.g., schizophrenia, attention deficit hyperactivity and obsessive compulsive disorder, are accompanied by morphological changes in the anterior cingulate cortex. These changes are hypothesized to underlie the impairments on tasks that require cognitive control found in these subjects. A novel conflict monitoring task was used to assess the effects on cognitive control of excitotoxic lesions to anterior cingulate cortex in rats. Prior to surgery all subjects showed improved accuracy on the second of two consecutive, incongruent trials. Lesions to the anterior cingulate cortex abolished this. Lesioned animals had difficulty in adjusting cognitive control on a trial-by-trial basis regardless of whether cognitive changes were increased or decreased. These results support a role for the anterior cingulate cortex in adjustments in cognitive control. PMID:25051488

  12. Subgenual anterior cingulate-insula resting-state connectivity as a neural correlate to trait and state stress resilience.

    PubMed

    Shao, Robin; Lau, Way K W; Leung, Mei-Kei; Lee, Tatia M C

    2018-07-01

    Accumulating evidence indicates important roles of the subgenual anterior cingulate cortex and rostral limbic regions such as the anterior insula, in regulating stress-related affective responses and negative affect states in general. However, research is lacking in simultaneously assessing the inter-relations between trait and state affective responses to stress, and the functional connectivity between the subgenual anterior cingulate and anterior insula. This preliminary research involved matched healthy participants with high (N = 10) and low (N = 10) self-reported trait stress resilience, and assessed their affective and subgenual anterior cingulate-anterior insula resting-state functional connectivity patterns before and after a psychosocial stress task. We found that while the low-resilience group displayed higher trait negative affect and perceived greater task-related stress, only the high-resilience group showed increase of negative affect, along with greater decrease of left subgenual anterior cingulate-right anterior insula connectivity, following stress induction. Moreover, the functional connectivity change mediated group difference in affect change following stress task. We speculate that the contingent increase of negative affect, and the associated temporary decoupling of subgenual anterior cingulate-insula circuitry, may represent a normative and adaptive stress response underpinned by adaptive and dynamic interplay between the default mode and salience networks. Such findings, if consolidated, have important implications for promoting stress resilience and reducing risk for stress-related affective disorders. Copyright © 2018. Published by Elsevier Inc.

  13. Behavioral conflict, anterior cingulate cortex, and experiment duration: implications of diverging data.

    PubMed

    Erickson, Kirk I; Milham, Michael P; Colcombe, Stanley J; Kramer, Arthur F; Banich, Marie T; Webb, Andrew; Cohen, Neal J

    2004-02-01

    We investigated the relationship between behavioral measures of conflict and the degree of activity in the anterior cingulate cortex (ACC). We reanalyzed an existing data set that employed the Stroop task using functional magnetic resonance imaging [Milham et al., Brain Cogn 2002;49:277-296]. Although we found no changes in the behavioral measures of conflict from the first to the second half of task performance, we found a reliable reduction in the activity of the anterior cingulate cortex. This result suggests the lack of a strong relationship between behavioral measurements of conflict and anterior cingulate activity. A concomitant increase in dorsolateral prefrontal cortex activity was also found, which may reflect a tradeoff in the neural substrates involved in supporting conflict resolution, detection, or monitoring processes. A second analysis of the data revealed that the duration of an experiment can dramatically affect interpretations of the results, including the roles in which particular regions are thought to play in cognition. These results are discussed in relation to current conceptions of ACC's role in attentional control. In addition, we discuss the implication of our results with current conceptions of conflict and of its instantiation in the brain. Hum. Brain Mapping 21:96-105, 2004. Copyright 2003 Wiley-Liss, Inc.

  14. The functional integration of the anterior cingulate cortex during conflict processing.

    PubMed

    Fan, Jin; Hof, Patrick R; Guise, Kevin G; Fossella, John A; Posner, Michael I

    2008-04-01

    Although functional activation of the anterior cingulate cortex (ACC) related to conflict processing has been studied extensively, the functional integration of the subdivisions of the ACC and other brain regions during conditions of conflict is still unclear. In this study, participants performed a task designed to elicit conflict processing by using flanker interference on target response while they were scanned using event-related functional magnetic resonance imaging. The physiological response of several brain regions in terms of an interaction between conflict processing and activity of the anterior rostral cingulate zone (RCZa) of the ACC, and the effective connectivity between this zone and other regions were examined using psychophysiological interaction analysis and dynamic causal modeling, respectively. There was significant integration of the RCZa with the caudal cingulate zone (CCZ) of the ACC and other brain regions such as the lateral prefrontal, primary, and supplementary motor areas above and beyond the main effect of conflict and baseline connectivity. The intrinsic connectivity from the RCZa to the CCZ was modulated by the context of conflict. These findings suggest that conflict processing is associated with the effective contribution of the RCZa to the neuronal activity of CCZ, as well as other cortical regions.

  15. Temporal filtering of reward signals in the dorsal anterior cingulate cortex during a mixed-strategy game

    PubMed Central

    Seo, Hyojung; Lee, Daeyeol

    2008-01-01

    The process of decision making in humans and other animals is adaptive and can be tuned through experience so as to optimize the outcomes of their choices in a dynamic environment. Previous studies have demonstrated that the anterior cingulate cortex plays an important role in updating the animal’s behavioral strategies when the action-outcome contingencies change. Moreover, neurons in the anterior cingulate cortex often encode the signals related to expected or actual reward. We investigated whether reward-related activity in the anterior cingulate cortex is affected by the animal’s previous reward history. This was tested in rhesus monkeys trained to make binary choices in a computer-simulated competitive zero-sum game. The animal’s choice behavior was relatively close to the optimal strategy, but also revealed small but systematic biases that are consistent with the use of a reinforcement learning algorithm. In addition, the activity of neurons in the dorsal anterior cingulate cortex that was related to the reward received by the animal in a given trial was often modulated by the rewards in the previous trials. Some of these neurons encoded the rate of rewards in previous trials, whereas others displayed activity modulations more closely related to the reward prediction errors. By contrast, signals related to the animal’s choices were only weakly represented in this cortical area. These results suggest that neurons in the dorsal anterior cingulate cortex might be involved in the subjective evaluation of choice outcomes based on the animal’s reward history. PMID:17670983

  16. A causal role for the anterior mid-cingulate cortex in negative affect and cognitive control.

    PubMed

    Tolomeo, Serenella; Christmas, David; Jentzsch, Ines; Johnston, Blair; Sprengelmeyer, Reiner; Matthews, Keith; Douglas Steele, J

    2016-06-01

    Converging evidence has linked the anterior mid-cingulate cortex to negative affect, pain and cognitive control. It has previously been proposed that this region uses information about punishment to control aversively motivated actions. Studies on the effects of lesions allow causal inferences about brain function; however, naturally occurring lesions in the anterior mid-cingulate cortex are rare. In two studies we therefore recruited 94 volunteers, comprising 15 patients with treatment-resistant depression who had received bilateral anterior cingulotomy, which consists of lesions made within the anterior mid-cingulate cortex, 20 patients with treatment-resistant depression who had not received surgery and 59 healthy control subjects. Using the Ekman 60 faces paradigm and two Stroop paradigms, we tested the hypothesis that patients who received anterior cingulotomy were impaired in recognizing negative facial affect expressions but not positive or neutral facial expressions, and impaired in Stroop cognitive control, with larger lesions being associated with more impairment. Consistent with this hypothesis, we found that larger volume lesions predicted more impairment in recognizing fear, disgust and anger, and no impairment in recognizing facial expressions of surprise or happiness. However, we found no impairment in recognizing expressions of sadness. Also consistent with the hypothesis, we found that larger volume lesions predicted impaired Stroop cognitive control. Notably, this relationship was only present when anterior mid-cingulate cortex lesion volume was defined as the overlap between cingulotomy lesion volume and Shackman's meta-analysis-derived binary masks for negative affect and cognitive control. Given substantial evidence from healthy subjects that the anterior mid-cingulate cortex is part of a network associated with the experience of negative affect and pain, engaging cognitive control processes for optimizing behaviour in the presence of such

  17. Anticipatory activation in the amygdala and anterior cingulate in generalized anxiety disorder and prediction of treatment response.

    PubMed

    Nitschke, Jack B; Sarinopoulos, Issidoros; Oathes, Desmond J; Johnstone, Tom; Whalen, Paul J; Davidson, Richard J; Kalin, Ned H

    2009-03-01

    The anticipation of adverse outcomes, or worry, is a cardinal symptom of generalized anxiety disorder. Prior work with healthy subjects has shown that anticipating aversive events recruits a network of brain regions, including the amygdala and anterior cingulate cortex. This study tested whether patients with generalized anxiety disorder have alterations in anticipatory amygdala function and whether anticipatory activity in the anterior cingulate cortex predicts treatment response. Functional magnetic resonance imaging (fMRI) was employed with 14 generalized anxiety disorder patients and 12 healthy comparison subjects matched for age, sex, and education. The event-related fMRI paradigm was composed of one warning cue that preceded aversive pictures and a second cue that preceded neutral pictures. Following the fMRI session, patients received 8 weeks of treatment with extended-release venlafaxine. Patients with generalized anxiety disorder showed greater anticipatory activity than healthy comparison subjects in the bilateral dorsal amygdala preceding both aversive and neutral pictures. Building on prior reports of pretreatment anterior cingulate cortex activity predicting treatment response, anticipatory activity in that area was associated with clinical outcome 8 weeks later following treatment with venlafaxine. Higher levels of pretreatment anterior cingulate cortex activity in anticipation of both aversive and neutral pictures were associated with greater reductions in anxiety and worry symptoms. These findings of heightened and indiscriminate amygdala responses to anticipatory signals in generalized anxiety disorder and of anterior cingulate cortex associations with treatment response provide neurobiological support for the role of anticipatory processes in the pathophysiology of generalized anxiety disorder.

  18. Anticipatory Activation in the Amygdala and Anterior Cingulate in Generalized Anxiety Disorder and Prediction of Treatment Response

    PubMed Central

    Nitschke, Jack B.; Sarinopoulos, Issidoros; Oathes, Desmond J.; Johnstone, Tom; Whalen, Paul J.; Davidson, Richard J.; Kalin, Ned H.

    2009-01-01

    Objective The anticipation of adverse outcomes, or worry, is a cardinal symptom of generalized anxiety disorder. Prior work with healthy subjects has shown that anticipating aversive events recruits a network of brain regions, including the amygdala and anterior cingulate cortex. This study tested whether patients with generalized anxiety disorder have alterations in anticipatory amygdala function and whether anticipatory activity in the anterior cingulate cortex predicts treatment response. Method Functional magnetic resonance imaging (fMRI) was employed with 14 generalized anxiety disorder patients and 12 healthy comparison subjects matched for age, sex, and education. The event-related fMRI paradigm was composed of one warning cue that preceded aversive pictures and a second cue that preceded neutral pictures. Following the fMRI session, patients received 8 weeks of treatment with extended-release venlafaxine. Results Patients with generalized anxiety disorder showed greater anticipatory activity than healthy comparison subjects in the bilateral dorsal amygdala preceding both aversive and neutral pictures. Building on prior reports of pretreatment anterior cingulate cortex activity predicting treatment response, anticipatory activity in that area was associated with clinical outcome 8 weeks later following treatment with venlafaxine. Higher levels of pretreatment anterior cingulate cortex activity in anticipation of both aversive and neutral pictures were associated with greater reductions in anxiety and worry symptoms. Conclusions These findings of heightened and indiscriminate amygdala responses to anticipatory signals in generalized anxiety disorder and of anterior cingulate cortex associations with treatment response provide neurobiological support for the role of anticipatory processes in the pathophysiology of generalized anxiety disorder. PMID:19122007

  19. Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder.

    PubMed

    Tripp, Adam; Oh, Hyunjung; Guilloux, Jean-Philippe; Martinowich, Keri; Lewis, David A; Sibille, Etienne

    2012-11-01

    The subgenual anterior cingulate cortex is implicated in the pathology and treatment response of major depressive disorder. Low levels of brain-derived neurotrophic factor (BDNF) and reduced markers for GABA function, including in the amygdala, are reported in major depression, but their contribution to subgenual anterior cingulate cortex dysfunction is not known. Using polymerase chain reaction, we first assessed the degree to which BDNF controls mRNA expression (defined as BDNF dependency) of 15 genes relating to GABA and neuropeptide functions in the cingulate cortex of mice with reduced BDNF function (BDNF-heterozygous [Bdnf(+/-)] mice and BDNF exon-IV knockout [Bdnf(KIV)] mice). Gene expression was then quantified in the subgenual anterior cingulate cortex of 51 postmortem subjects with major depressive disorder and comparison subjects (total subjects, N=102; 49% were women) and compared with previous amygdala results. Based on the results in Bdnf(+/-) and Bdnf(KIV) mice, genes were sorted into high, intermediate, and no BDNF dependency sets. In postmortem human subjects with major depression, BDNF receptor (TRKB) expression, but not BDNF, was reduced. Postmortem depressed subjects exhibited down-regulation in genes with high and intermediate BDNF dependency, including markers of dendritic targeting interneurons (SST, NPY, and CORT) and a GABA synthesizing enzyme (GAD2). Changes extended to BDNF-independent genes (PVALB and GAD1). Changes were greater in men (potentially because of low baseline expression in women), displayed notable differences from prior amygdala results, and were not explained by demographic or clinical factors other than sex. These parallel human/mouse analyses provide direct (low TRKB) and indirect (low expression of BDNF-dependent genes) evidence in support of decreased BDNF signaling in the subgenual anterior cingulate cortex in individuals with major depressive disorder, implicate dendritic targeting GABA neurons and GABA synthesis

  20. Cingulate Epilepsy

    PubMed Central

    Alkawadri, Rafeed; So, Norman K.; Van Ness, Paul C.; Alexopoulos, Andreas V.

    2016-01-01

    IMPORTANCE The literature on cingulate gyrus epilepsy in the magnetic resonance imaging era is limited to case reports and small case series. To our knowledge, this is the largest study of surgically confirmed epilepsy arising from the anterior or posterior cingulate region. OBJECTIVE To characterize the clinical and electrophysiological findings of epilepsies arising from the anterior and posterior cingulate gyrus. DESIGN, SETTING, AND PARTICIPANTS We studied consecutive cingulate gyrus epilepsy cases identified retrospectively from the Cleveland Clinic and University of Texas Southwestern Medical Center epilepsy databases from 1992 to 2009. Participants included 14 consecutive cases of cingulate gyrus epilepsies confirmed by restricted magnetic resonance image lesions and seizure freedom or marked improvement following lesionectomy. MAIN OUTCOMES AND MEASURES The main outcome measure was improvement in seizure frequency following surgery. The clinical, video electroencephalography, neuroimaging, pathology, and surgical outcome data were reviewed. RESULTS All 14 patients had cingulate epilepsy confirmed by restricted magnetic resonance image lesions and seizure freedom or marked improvement following lesionectomy. They were divided into 3 groups based on anatomical location of the lesion and corresponding seizure semiology. In the posterior cingulate group, all 4 patients had electroclinical findings suggestive of temporal origin of the epilepsy. The anterior cingulate cases were divided into a typical (Bancaud) group (6 cases with hypermotor seizures and infrequent generalization with the presence of fear, laughter, or severe interictal personality changes) and an atypical group (4 cases presenting with simple motor seizures and a tendency for more frequent generalization and less-favorable long-term surgical outcome). All atypical cases were associated with an underlying infiltrative astrocytoma. CONCLUSIONS AND RELEVANCE Posterior cingulate gyrus epilepsy may

  1. Proton magnetic resonance spectroscopy in obsessive-compulsive disorder: evidence for reduced neuronal integrity in the anterior cingulate.

    PubMed

    Tükel, Raşit; Aydın, Kubilay; Ertekin, Erhan; Özyıldırım, Seda Şahin; Taravari, Vedat

    2014-12-30

    Neuroimaging studies have suggested that dysfunction of the cortico-striatal-thalamo-cortical (CSTC) circuit is a key pathophysiologic feature of obsessive-compulsive disorder (OCD). Several studies using proton magnetic resonance spectroscopy ((1)H MRS) have found abnormal neural metabolite concentrations among OCD patients. The aim of this study was to investigate the metabolic integrity of the anterior cingulate, caudate and putamen in OCD. In the present study, 32 unmedicated patients with OCD, including 23 who were drug-naïve, were compared using MRS with 32 healthy controls. Metabolite levels of N-acetylaspartate (NAA), choline (Cho) and myo-inositol (mI) were measured in terms of their ratios to creatine (Cr). The ratio of NAA/Cr was significantly lower in OCD patients than in healthy controls in the anterior cingulate. There was a tendency for levels of NAA/Cr to be lower in the caudate and the putamen in patients with OCD compared with healthy controls. NAA/Cr ratios were negatively correlated with the total scores on the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) in the anterior cingulate in patients with OCD. Our results support the significance and biochemical involvement of the anterior cingulate cortex (ACC) in the pathophysiology of OCD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Deterioration of pre-existing hemiparesis due to injury of the ipsilateral anterior corticospinal tract.

    PubMed

    Jang, Sung Ho; Kwon, Hyeok Gyu

    2013-05-29

    The anterior corticospinal tract (CST) has been suggested as one of the ipsilateral motor pathways, which contribute to motor recovery following stroke. In this study, we report on a patient who showed deterioration of pre-existing hemiparesis due to an injury of the ipsilateral anterior CST following a pontine infarct, as evaluated by diffusion tensor tractography (DTT). A 55-year-old male patient showed quadriparesis after the onset of an infarct in the right pontine basis. He had history of an infarct in the left middle cerebral artery territory 7 years ago. Consequently, he showed right hemiparesis before onset of the right pontine infarct. Following this, his right hemiparesis deteriorated whereas his left hemiparesis newly developed. The DTTs for whole CST of the right hemisphere in the patient and both hemispheres in control subjects descended through the known CST pathway. By contrast, the DTT for the left whole CST of the patient showed a complete injury finding. The DTTs for the anterior CST of control subjects passed through the known pathway of the CST from cerebral cortex to medulla and terminated in the anterior funiculus of the upper cervical cord. However, the DTT for right anterior CST in the patient showed discontinuation below the right pontine infarct. It appeared that the deterioration of the pre-existing right hemiparesis was ascribed to an injury of the right anterior CST due to the right pontine infarct.

  3. Ipsilateral hemiparesis and contralateral lower limb paresis caused by anterior cerebral artery territory infarct

    PubMed Central

    Xu, Yongfeng; Liu, Lan

    2016-01-01

    Ipsilateral hemiparesis is rare after a supratentorial stroke, and the role of reorganization in the motor areas of unaffected hemisphere is important for the rehabilitation of the stroke patients. In this study, we present a patient who had a subclinical remote infarct in the right pons developed ipsilateral hemiparesis and contralateral lower limb paresis caused by a new infarct in the left anterior cerebral artery territory. Our case suggests that the motor areas of the unaffected hemisphere might be reorganized after stroke, which is important for the rehabilitation of stroke patients. PMID:27356659

  4. Ipsilateral hemiparesis and contralateral lower limb paresis caused by anterior cerebral artery territory infarct.

    PubMed

    Xu, Yongfeng; Liu, Lan

    2016-07-01

    Ipsilateral hemiparesis is rare after a supratentorial stroke, and the role of reorganization in the motor areas of unaffected hemisphere is important for the rehabilitation of the stroke patients. In this study, we present a patient who had a subclinical remote infarct in the right pons developed ipsilateral hemiparesis and contralateral lower limb paresis caused by a new infarct in the left anterior cerebral artery territory. Our case suggests that the motor areas of the unaffected hemisphere might be reorganized after stroke, which is important for the rehabilitation of stroke patients.

  5. Illusory Obesity Triggers Body Dissatisfaction Responses in the Insula and Anterior Cingulate Cortex

    PubMed Central

    Preston, Catherine; Ehrsson, H. Henrik

    2016-01-01

    In today's Western society, concerns regarding body size and negative feelings toward one's body are all too common. However, little is known about the neural mechanisms underlying negative feelings toward the body and how they relate to body perception and eating-disorder pathology. Here, we used multisensory illusions to elicit illusory ownership of obese and slim bodies during functional magnetic resonance imaging. The results implicate the anterior insula and the anterior cingulate cortex in the development of negative feelings toward the body through functional interactions with the posterior parietal cortex, which mediates perceived obesity. Moreover, cingulate neural responses were modulated by nonclinical eating-disorder psychopathology and were attenuated in females. These results reveal how perceptual and affective body representations interact in the human brain and may help explain the neurobiological underpinnings of eating-disorder vulnerability in women. PMID:27733537

  6. Cognitive Functioning after Medial Frontal Lobe Damage Including the Anterior Cingulate Cortex: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Baird, Amee; Dewar, Bonnie-Kate; Critchley, Hugo; Gilbert, Sam J.; Dolan, Raymond J.; Cipolotti, Lisa

    2006-01-01

    Two patients with medial frontal lobe damage involving the anterior cingulate cortex (ACC) performed a range of cognitive tasks, including tests of executive function and anterior attention. Both patients lesions extended beyond the ACC, therefore caution needs to be exerted in ascribing observed deficits to the ACC alone. Patient performance was…

  7. Errors without Conflict: Implications for Performance Monitoring Theories of Anterior Cingulate Cortex

    ERIC Educational Resources Information Center

    van Veen, V.; Holroyd, C.B.; Cohen, J.D.; Stenger, V.A.; Carter, C.S.

    2004-01-01

    Recent theories of the neural basis of performance monitoring have emphasized a central role for the anterior cingulate cortex (ACC). Replicating an earlier event-related potential (ERP) study, which showed an error feedback negativity that was modeled as having an ACC generator, we used event-related fMRI to investigate whether the ACC would…

  8. Increased Task Demand during Spatial Memory Testing Recruits the Anterior Cingulate Cortex

    ERIC Educational Resources Information Center

    Carr, Joshua K.; Fournier, Neil M.; Lehmann, Hugo

    2016-01-01

    We examined whether increasing retrieval difficulty in a spatial memory task would promote the recruitment of the anterior cingulate cortex (ACC) similar to what is typically observed during remote memory retrieval. Rats were trained on the hidden platform version of the Morris Water Task and tested three or 30 d later. Retrieval difficulty was…

  9. Response Monitoring, Repetitive Behaviour and Anterior Cingulate Abnormalities in Autism Spectrum Disorders (ASD)

    ERIC Educational Resources Information Center

    Thakkar, Katharine N.; Polli, Frida E.; Joseph, Robert M.; Tuch, David S.; Hadjikhani, Nouchine; Barton, Jason J. S.; Manoach, Dara S.

    2008-01-01

    Autism spectrum disorders (ASD) are characterized by inflexible and repetitive behaviour. Response monitoring involves evaluating the consequences of behaviour and making adjustments to optimize outcomes. Deficiencies in this function, and abnormalities in the anterior cingulate cortex (ACC) on which it relies, have been reported as contributing…

  10. Anterior Cingulate Glutamate Levels Related to Clinical Status Following Treatment in First-Episode Schizophrenia

    PubMed Central

    Egerton, Alice; Brugger, Stefan; Raffin, Marie; Barker, Gareth J; Lythgoe, David J; McGuire, Philip K; Stone, James M

    2012-01-01

    Many patients with schizophrenia show a limited symptomatic response to treatment with dopaminergic antipsychotics. This may reflect the additional involvement of non-dopaminergic neurochemical dysfunction in the pathophysiology of the disorder. We tested the hypothesis that brain glutamate levels would differ between patients with first-episode psychosis who were symptomatic compared with those with minimal symptoms following antipsychotic treatment. Proton magnetic resonance spectroscopy (1H-MRS) spectra were acquired at 3 Tesla in the anterior cingulate cortex and left thalamus in 15 patients with first-episode psychosis in symptomatic remission, and 17 patients with first-episode psychosis who were still symptomatic following at least one course of antipsychotic treatment. Metabolite levels were estimated in ratio to creatine (Cr) using LCModel. Levels of glutamate/Cr in the anterior cingulate cortex were significantly higher in patients who were still symptomatic than in those in remission (T(30)=3.02; P=0.005). Across the entire sample, higher levels of glutamate/Cr in the anterior cingulate cortex were associated with a greater severity of negative symptoms (r=0.42; P=0.017) and a lower level of global functioning (r=−0.47; P=0.007). These findings suggest that clinical status following antipsychotic treatment in schizophrenia is linked to glutamate dysfunction. Treatment with compounds acting on the glutamatergic system might therefore be beneficial in patients who respond poorly to dopaminergic antipsychotics. PMID:22763619

  11. Anterior Cingulate Volumetric Alterations in Treatment-Naive Adults with ADHD: A Pilot Study

    ERIC Educational Resources Information Center

    Makris, Nikos; Seidman, Larry J.; Valera, Eve M.; Biederman, Joseph; Monuteaux, Michael C.; Kennedy, David N.; Caviness, Verne S., Jr.; Bush, George; Crum, Katherine; Brown, Ariel B.; Faraone, Stephen V.

    2010-01-01

    Objective: We sought to examine preliminary results of brain alterations in anterior cingulate cortex (ACC) in treatment-naive adults with ADHD. The ACC is a central brain node for the integration of cognitive control and allocation of attention, affect and drive. Thus its anatomical alteration may give rise to impulsivity, hyperactivity and…

  12. Reduced Anterior Cingulate Glutamatergic Concentrations in Childhood Ocd and Major Depression Versus Healthy Controls

    ERIC Educational Resources Information Center

    Rosenberg, David R.; Mirza, Yousha; Russell, Aileen; Tang, Jennifer; Smith, Janet M.; Banerjee, Preeya S.; Bhandari, Rashmi; Rose, Michelle; Ivey, Jennifer; Boyd, Courtney; Moore, Gregory J.

    2004-01-01

    Objective: To examine in vivo glutamatergic neurochemical alterations in the anterior cingulate cortex of pediatric patients with obsessive-compulsive disorder (OCD) without major depressive disorder (MDD) versus pediatric patients with MDD without OCD and healthy controls. Method: Single-voxel proton magnetic resonance spectroscopic examinations…

  13. Choline, myo-inositol and mood in bipolar disorder: a proton magnetic resonance spectroscopic imaging study of the anterior cingulate cortex.

    PubMed

    Moore, C M; Breeze, J L; Gruber, S A; Babb, S M; Frederick, B B; Villafuerte, R A; Stoll, A L; Hennen, J; Yurgelun-Todd, D A; Cohen, B M; Renshaw, P F

    2000-09-01

    Alterations in choline and myo-inositol metabolism have been noted in bipolar disorder, and the therapeutic efficacy of lithium in mania may be related to these effects. We wished to determine the relationship between anterior cingulate cortex choline and myo-inositol levels, assessed using proton magnetic resonance spectroscopic imaging (MRSI), and mood state in subjects with bipolar disorder. Serial assessments of anterior cingulate cortex choline and myo-inositol metabolism were performed in nine subjects with bipolar disorder, taking either lithium or valproate, and 14 controls. Each bipolar subject was examined between one and four times (3.1 +/- 1.3). On the occasion of each examination, standardized ratings of both depression and mania were recorded. In the left cingulate cortex, the bipolar subjects' depression ratings correlated positively with MRSI measures of Cho/Cr-PCr. In the right cingulate cortex, the Cho/Cr-PCr ratio was significantly higher in subjects with bipolar disorder compared with control subjects. In addition, bipolar subjects not taking antidepressants had a significantly higher right cingulate cortex Cho/Cr-PCr ratio compared with patients taking antidepressants or controls. No clinical or drug-related changes were observed for the Ino/Cr-PCr ratio. The results of this study suggest that bipolar disorder is associated with alterations in the metabolism of cytosolic, choline-containing compounds in the anterior cingulate cortex. As this resonance arises primarily from phosphocholine and glycerophosphocholine, both of which are metabolites of phosphatidylcholine, these results are consistent with impaired intraneuronal signaling mechanisms.

  14. Mirth and laughter elicited by electrical stimulation of the human anterior cingulate cortex.

    PubMed

    Caruana, Fausto; Avanzini, Pietro; Gozzo, Francesca; Francione, Stefano; Cardinale, Francesco; Rizzolatti, Giacomo

    2015-10-01

    Laughter is a complex motor behavior that, typically, expresses mirth. Despite its fundamental role in social life, knowledge about the neural basis of laughter is very limited and mostly based on a few electrical stimulation (ES) studies carried out in epileptic patients. In these studies laughter was elicited from temporal areas where it was accompanied by mirth and from frontal areas plus an anterior cingulate case where laughter without mirth was observed. On the basis of these findings, it has been proposed a dichotomy between temporal lobe areas processing the emotional content of laughter and anterior cingulate cortex (ACC) and motor areas responsible of laughter production. The present study is aimed to understand the role of ACC in laughter. We report the effects of stimulation of 10 rostral, pregenual ACC (pACC) patients in which the ES elicited laughter. In half of the patients ES elicited a clear burst of laughter with mirth, while in the other half mirth was not evident. This large dataset allow us to offer a more reliable picture of the functional contribute of this region in laughter, and to precisely localize it in the cingulate cortex. We conclude that the pACC is involved in both the motor and the affective components of emotions, and challenge the validity of a sharp dichotomy between motor and emotional centers for laughing. Finally, we suggest a possible anatomical network for the production of positive emotional expressions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Motivation of extended behaviors by anterior cingulate cortex.

    PubMed

    Holroyd, Clay B; Yeung, Nick

    2012-02-01

    Intense research interest over the past decade has yielded diverse and often discrepant theories about the function of anterior cingulate cortex (ACC). In particular, a dichotomy has emerged between neuropsychological theories suggesting a primary role for ACC in motivating or 'energizing' behavior, and neuroimaging-inspired theories emphasizing its contribution to cognitive control and reinforcement learning. To reconcile these views, we propose that ACC supports the selection and maintenance of 'options' - extended, context-specific sequences of behavior directed toward particular goals - that are learned through a process of hierarchical reinforcement learning. This theory accounts for ACC activity in relation to learning and control while simultaneously explaining the effects of ACC damage as disrupting the motivational context supporting the production of goal-directed action sequences. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Cumulative adversity and smaller gray matter volume in medial prefrontal, anterior cingulate, and insula regions.

    PubMed

    Ansell, Emily B; Rando, Kenneth; Tuit, Keri; Guarnaccia, Joseph; Sinha, Rajita

    2012-07-01

    Cumulative adversity and stress are associated with risk of psychiatric disorders. While basic science studies show repeated and chronic stress effects on prefrontal and limbic neurons, human studies examining cumulative stress and effects on brain morphology are rare. Thus, we assessed whether cumulative adversity is associated with differences in gray matter volume, particularly in regions regulating emotion, self-control, and top-down processing in a community sample. One hundred three healthy community participants, aged 18 to 48 and 68% male, completed interview assessment of cumulative adversity and a structural magnetic resonance imaging protocol. Whole-brain voxel-based-morphometry analysis was performed adjusting for age, gender, and total intracranial volume. Cumulative adversity was associated with smaller volume in medial prefrontal cortex (PFC), insular cortex, and subgenual anterior cingulate regions (familywise error corrected, p < .001). Recent stressful life events were associated with smaller volume in two clusters: the medial PFC and the right insula. Life trauma was associated with smaller volume in the medial PFC, anterior cingulate, and subgenual regions. The interaction of greater subjective chronic stress and greater cumulative life events was associated with smaller volume in the orbitofrontal cortex, insula, and anterior and subgenual cingulate regions. Current results demonstrate that increasing cumulative exposure to adverse life events is associated with smaller gray matter volume in key prefrontal and limbic regions involved in stress, emotion and reward regulation, and impulse control. These differences found in community participants may serve to mediate vulnerability to depression, addiction, and other stress-related psychopathology. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Cumulative Adversity and Smaller Gray Matter Volume in Medial Prefrontal, Anterior Cingulate, and Insula Regions

    PubMed Central

    Ansell, Emily B.; Rando, Kenneth; Tuit, Keri; Guarnaccia, Joseph; Sinha, Rajita

    2012-01-01

    Background Cumulative adversity and stress are associated with risk of psychiatric disorders. While basic science studies show repeated and chronic stress effects on prefrontal and limbic neurons, human studies examining cumulative stress and effects on brain morphology are rare. Thus, we assessed whether cumulative adversity is associated with differences in gray matter volume, particularly in regions regulating emotion, self-control, and top-down processing in a community sample. Methods One hundred three healthy community participants, aged 18 to 48 and 68% male, completed interview assessment of cumulative adversity and a structural magnetic resonance imaging protocol. Whole-brain voxel-based-morphometry analysis was performed adjusting for age, gender, and total intracranial volume. Results Cumulative adversity was associated with smaller volume in medial prefrontal cortex (PFC), insular cortex, and subgenual anterior cingulate regions (familywise error corrected, p <.001). Recent stressful life events were associated with smaller volume in two clusters: the medial PFC and the right insula. Life trauma was associated with smaller volume in the medial PFC, anterior cingulate, and subgenual regions. The interaction of greater subjective chronic stress and greater cumulative life events was associated with smaller volume in the orbitofrontal cortex, insula, and anterior and subgenual cingulate regions. Conclusions Current results demonstrate that increasing cumulative exposure to adverse life events is associated with smaller gray matter volume in key prefrontal and limbic regions involved in stress, emotion and reward regulation, and impulse control. These differences found in community participants may serve to mediate vulnerability to depression, addiction, and other stress-related psychopathology. PMID:22218286

  18. Outward current produced by somatostatin (SRIF) in rat anterior cingulate pyramidal cells in vitro

    PubMed Central

    Hicks, G A; Feniuk, W; Humphrey, P P A

    1998-01-01

    A high density of receptors for somatostatin (SRIF) exists in the anterior cingulate cortex but their function is unknown. Whole-cell patch clamp recordings were made from visualized deep layer pyramidal cells of the rat anterior cingulate cortex contained in isolated brain slices to investigate the putative effects of SRIF and to identify the receptor subtype(s) involved.SRIF (1–1000 nM) produced a concentration-dependent outward current which was associated with an increased membrane conductance, was sensitive to Ba2+ (300 μM–1 mM), and was absent in the presence of a maximal concentration of the GABAB receptor agonist, baclofen (100 μM). These observations suggest the outward current was carried by K+ ions.SRIF analogues also elicited outward currents with a rank potency order of (EC50, nM): octreotide (1.8)>BIM-23027 (3.7)>SRIF (20)=L-362,855 (20). BIM-23056 was without agonist or antagonist activity. Responses to L-362,855 were unlike those to the other agonists since they were sustained for the duration of the application.The sst2 receptor antagonist, L-Tyr8Cyanamid 154806 (1 μM), had no effect alone but partially reversed responses to submaximal concentrations of SRIF (100 nM, 44±6% reversal) and L-362,855 (100 nM, 70±6% reversal) and fully reversed the response to BIM-23027 (10 nM). In contrast, L-Tyr8Cyanamid 154806 did not antagonize the response to baclofen (10 μM).We conclude that SRIF activates a K+ conductance in anterior cingulate pyramidal neurones via an action predominantly at sst2 receptors. PMID:9630367

  19. Dopamine D1 Receptors in the Anterior Cingulate Cortex Regulate Effort-Based Decision Making

    ERIC Educational Resources Information Center

    Schweimer, Judith; Hauber, Wolfgang

    2006-01-01

    The anterior cingulate cortex (ACC) has been implicated in encoding whether or not an action is worth performing in view of the expected benefit and the cost of performing the action. Dopamine input to the ACC may be critical for this form of effort-based decision making; however, the role of distinct ACC dopamine receptors is yet unknown.…

  20. Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey

    NASA Technical Reports Server (NTRS)

    Nimchinsky, E. A.; Hof, P. R.; Young, W. G.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1996-01-01

    The primate cingulate gyrus contains multiple cortical areas that can be distinguished by several neurochemical features, including the distribution of neurofilament protein-enriched pyramidal neurons. In addition, connectivity and functional properties indicate that there are multiple motor areas in the cortex lining the cingulate sulcus. These motor areas were targeted for analysis of potential interactions among regional specialization, connectivity, and cellular characteristics such as neurochemical profile and morphology. Specifically, intracortical injections of retrogradely transported dyes and intracellular injection were combined with immunocytochemistry to investigate neurons projecting from the cingulate motor areas to the putative forelimb region of the primary motor cortex, area M1. Two separate groups of neurons projecting to area M1 emanated from the cingulate sulcus, one anterior and one posterior, both of which furnished commissural and ipsilateral connections with area M1. The primary difference between the two populations was laminar origin, with the anterior projection originating largely in deep layers, and the posterior projection taking origin equally in superficial and deep layers. With regard to cellular morphology, the anterior projection exhibited more morphologic diversity than the posterior projection. Commissural projections from both anterior and posterior fields originated largely in layer VI. Neurofilament protein distribution was a reliable tool for localizing the two projections and for discriminating between them. Comparable proportions of the two sets of projection neurons contained neurofilament protein, although the density and distribution of the total population of neurofilament protein-enriched neurons was very different in the two subareas of origin. Within a projection, the participating neurons exhibited a high degree of morphologic heterogeneity, and no correlation was observed between somatodendritic morphology and

  1. The effects of stimulation of the anterior cingulate gyrus in cats with freedom of movement

    NASA Technical Reports Server (NTRS)

    Dapres, G.; Cadilhac, J.; Passouant, P.

    1980-01-01

    Stimuli of varying strength, frequency and duration were applied to the anterior cingulate gyrus in unanesthetized cats with freedom of movement. The motor, vegetative and electrical effects of these stimuli, although inconstant, lead to a consideration of the role of this structure in the extrapyramidal control of motricity.

  2. Emotional processing in anterior cingulate and medial prefrontal cortex

    PubMed Central

    Etkin, Amit; Egner, Tobias; Kalisch, Raffael

    2010-01-01

    Negative emotional stimuli activate a broad network, including the medial prefrontal (mPFC) and anterior cingulate (ACC) cortices. An early influential view dichotomized these regions into dorsal-caudal “cognitive” and ventral-rostral “affective” subdivisions. In this review, we examine a wealth of recent research on negative emotions in animals and humans, using the example of fear/anxiety, and conclude that, contrary to the traditional dichotomy, both subdivisions make key contributions to emotional processing. Specifically, dorsal-caudal regions of the ACC/mPFC are involved in appraisal and expression of negative emotion, while ventral-rostral portions of the ACC/mPFC have a regulatory role with respect to limbic regions involved in generating emotional responses. Moreover, this new framework is broadly consistent with emerging data on other negative and positive emotions. PMID:21167765

  3. PROBING HUMAN AND MONKEY ANTERIOR CINGULATE CORTEX IN VARIABLE ENVIRONMENTS

    PubMed Central

    Walton, Mark E.; Mars, Rogier B.

    2008-01-01

    Previous research has identified the anterior cingulate cortex (ACC) as an important node in the neural network underlying decision making in primates. Decision making can, however, be studied under large variety of circumstances, ranging from the standard well-controlled lab situation to more natural, stochastic settings during which multiple agents interact. Here, we illustrate how these different varieties of decision making studied can influence theories of ACC function in monkeys. Converging evidence from unit recordings and lesions studies now suggest that the ACC is important for interpreting outcome information according to the current task context to guide future action selection. We then apply this framework to the study of human ACC function and discuss its potential implications. PMID:18189014

  4. Scopolamine into the anterior cingulate cortex diminishes nociception in a neuropathic pain model in the rat: an interruption of 'nociception-related memory acquisition'?

    PubMed

    Ortega-Legaspi, J Manuel; López-Avila, Alberto; Coffeen, Ulises; del Angel, Rosendo; Pellicer, Francisco

    2003-01-01

    The cingulate cortex plays a key role in the affective component related to pain perception. This structure receives cholinergic projections and also plays a role in memory processing. Therefore, we propose that the cholinergic system in the anterior cingulate cortex is involved in the nociceptive memory process. We used scopolamine (10 microg in 0.25 mircrol/saline) microinjected into the anterior cingulate cortex, either before thermonociception followed by a sciatic denervation, between thermonociception and denervation or after both procedures (n=10 each). The vehicle group (saline solution 0.9%, n=14) was microinjected before thermonociception. Chronic nociception was measured by the autotomy score, which onset and incidence were also determined. Group scopolamine-thermonociception-denervation (STD) presented the lowest autotomy score as compared to vehicle and group thermonociception-denervation-scopolamine (TDS) (vehicle vs. STD, p=0.002, STD vs. TDS, p=0.001). Group thermonociception-scopolamine-denervation (TSD) showed a diminished autotomy score when compared to TDS (p=0.053). STD group showed a delay in the onset of AB as compared to the rest of the groups. Group TSD presented a significative delay (p=0.048) in AB onset when compared to group TDS. There were no differences in the incidence between groups. The results show that nociception-related memory processed in the anterior cingulate cortex is susceptible of being modified by the cholinergic transmission blockade. When scopolamine is microinjected prior to the nociceptive stimuli, nociception-related memory acquisition is prevented. The evidence obtained in this study shows the role of the anterior cingulate cortex in the acquisition of nociception-related memory.

  5. Amygdala Reactivity and Anterior Cingulate Habituation Predict Posttraumatic Stress Disorder Symptom Maintenance After Acute Civilian Trauma.

    PubMed

    Stevens, Jennifer S; Kim, Ye Ji; Galatzer-Levy, Isaac R; Reddy, Renuka; Ely, Timothy D; Nemeroff, Charles B; Hudak, Lauren A; Jovanovic, Tanja; Rothbaum, Barbara O; Ressler, Kerry J

    2017-06-15

    Studies suggest that exaggerated amygdala reactivity is a vulnerability factor for posttraumatic stress disorder (PTSD); however, our understanding is limited by a paucity of prospective, longitudinal studies. Recent studies in healthy samples indicate that, relative to reactivity, habituation is a more reliable biomarker of individual differences in amygdala function. We investigated reactivity of the amygdala and cortical areas to repeated threat presentations in a prospective study of PTSD. Participants were recruited from the emergency department of a large level I trauma center within 24 hours of trauma. PTSD symptoms were assessed at baseline and approximately 1, 3, 6, and 12 months after trauma. Growth curve modeling was used to estimate symptom recovery trajectories. Thirty-one individuals participated in functional magnetic resonance imaging around the 1-month assessment, passively viewing fearful and neutral face stimuli. Reactivity (fearful > neutral) and habituation to fearful faces was examined. Amygdala reactivity, but not habituation, 5 to 12 weeks after trauma was positively associated with the PTSD symptom intercept and predicted symptoms at 12 months after trauma. Habituation in the ventral anterior cingulate cortex was positively associated with the slope of PTSD symptoms, such that decreases in ventral anterior cingulate cortex activation over repeated presentations of fearful stimuli predicted increasing symptoms. Findings point to neural signatures of risk for maintaining PTSD symptoms after trauma exposure. Specifically, chronic symptoms were predicted by amygdala hyperreactivity, and poor recovery was predicted by a failure to maintain ventral anterior cingulate cortex activation in response to fearful stimuli. The importance of identifying patients at risk after trauma exposure is discussed. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Involvement of the Rat Anterior Cingulate Cortex in Control of Instrumental Responses Guided by Reward Expectancy

    ERIC Educational Resources Information Center

    Schweimer, Judith; Hauber, Wolfgang

    2005-01-01

    The anterior cingulate cortex (ACC) plays a critical role in stimulus-reinforcement learning and reward-guided selection of actions. Here we conducted a series of experiments to further elucidate the role of the ACC in instrumental behavior involving effort-based decision-making and instrumental learning guided by reward-predictive stimuli. In…

  7. A Proton Magnetic Resonance Spectroscopic Study in Autism Spectrum Disorder Using a 3-Tesla Clinical Magnetic Resonance Imaging (MRI) System: The Anterior Cingulate Cortex and the Left Cerebellum.

    PubMed

    Ito, Hiromichi; Mori, Kenji; Harada, Masafumi; Hisaoka, Sonoka; Toda, Yoshihiro; Mori, Tatsuo; Goji, Aya; Abe, Yoko; Miyazaki, Masahito; Kagami, Shoji

    2017-07-01

    The pathophysiology of autism spectrum disorder (ASD) is not fully understood. We used proton magnetic resonance spectroscopy to investigate metabolite concentration ratios in the anterior cingulate cortex and left cerebellum in ASD. In the ACC and left cerebellum studies, the ASD group and intelligence quotient- and age-matched control group consisted of 112 and 114 subjects and 65 and 45 subjects, respectively. In the ASD group, γ-aminobutyric acid (GABA)+/ creatine/phosphocreatine (Cr) was significantly decreased in the anterior cingulate cortex, and glutamate (Glu)/Cr was significantly increased and GABA+/Cr was significantly decreased in the left cerebellum compared to those in the control group. In addition, both groups showed negative correlations between Glu/Cr and GABA+/Cr in the left cerebellum, and positive correlations between GABA+/Cr in the anterior cingulate cortex and left cerebellum. ASD subjects have hypoGABAergic alterations in the anterior cingulate cortex and hyperglutamatergic/hypoGABAergic alterations in the left cerebellum.

  8. Pica in a Child with Anterior Cingulate Gyrus Oligodendroglioma: Case Report.

    PubMed

    Rangwala, Shivani D; Tobin, Matthew K; Birk, Daniel M; Butts, Jonathan T; Nikas, Dimitrios C; Hahn, Yoon S

    2017-01-01

    The anterior cingulate gyrus (ACG) is a continued focus of research as its exact role in brain function and vast connections with other anatomical locations is not fully understood. A review of the literature illustrates the role the ACG likely plays in cognitive and emotional processing, as well as a modulating role in motor function and goal-oriented behaviors. While lesions of the cingulate gyrus are rare, each new case broadens our understanding of its role in cognitive neuroscience and higher order processing. The authors present the case of an 8-year-old boy with a 1-month history of staring spells, agitated personality, and hyperphagia notable for the consumption of paper, who was found to have a 3-cm tumor in the left ACG. Following surgical resection of the tumor, his aggressive behavior and pica were ameliorated and the patient made an uneventful recovery, with no evidence of recurrence over the last 6 years since surgical resection. Here we discuss a unique behavioral presentation of pica, along with a review of the current literature, to illustrate functions of the ACG relevant to the location of the lesion. © 2017 S. Karger AG, Basel.

  9. The Role of the Dorsal Anterior Cingulate in Evaluating Behavior for Achieving Gains and Avoiding Losses

    ERIC Educational Resources Information Center

    Magno, Elena; Simoes-Franklin, Cristina; Robertson, Ian H.; Garavan, Hugh

    2009-01-01

    Effective goal-directed behavior relies on a network of regions including anterior cingulate cortex and ventral striatum to learn from negative outcomes in order to improve performance. We employed fMRI to determine if this frontal-striatal system is also involved in instances of behavior that do not presume negative circumstances. Participants…

  10. Reduced Error-Related Activation in Two Anterior Cingulate Circuits Is Related to Impaired Performance in Schizophrenia

    ERIC Educational Resources Information Center

    Polli, Frida E.; Barton, Jason J. S.; Thakkar, Katharine N.; Greve, Douglas N.; Goff, Donald C.; Rauch, Scott L.; Manoach, Dara S.

    2008-01-01

    To perform well on any challenging task, it is necessary to evaluate your performance so that you can learn from errors. Recent theoretical and experimental work suggests that the neural sequellae of error commission in a dorsal anterior cingulate circuit index a type of contingency- or reinforcement-based learning, while activation in a rostral…

  11. A Magnetic Resonance Spectroscopy Study of the Anterior Cingulate Cortex In Youth with Emotional Dysregulation

    PubMed Central

    Wozniak, Janet; Gönenç, Atilla; Biederman, Joseph; Moore, Constance; Joshi, Gagan; Georgiopoulos, Anna; Hammerness, Paul; McKillop, Hannah; Lukas, Scot E.; Henin, Aude

    2017-01-01

    Background The main aim of this study was to use proton Magnetic Resonance Spectroscopy (MRS) to identify brain biomarkers for emotional dysregulation in youth as measured by subscales of the Child Behavior Checklist (CBCL). Methods We measured glutamate (Glu) concentrations in the anterior cingulated cortex (ACC) of 37 pediatric subjects (aged 6-17 years) using high field (4.0 Tesla) proton Magnetic Resonance Spectroscopy (MRS). Subjects were grouped based on combined T scores on three subscales (Anxiety/Depression, Aggression and Attention) of the CBCL previously associated with deficits in the regulation of emotion. Subjects were stratified into those with high (>180) (N=10) and low (<180) (N=27) scores. Limitations Limitations include small sample size, wide age range studied, focus on Anterior Cingulate Cortex (ACC) only, and that some subjects received psychopharmacological treatments. Results We found a statistically significant correlation between Glu levels in the ACC and CBCL dysregulation profile scores among subjects with high dysregulation profile scores. Conclusions These results suggest that glutamatergic dysregulation in the ACC may represent a useful biomarker of emotional dysregulation in youth. Further investigation into the causality, time line and utility as a predictive metric is warranted. PMID:22652930

  12. An Herbal Nasal Drop Enhanced Frontal and Anterior Cingulate Cortex Activity

    PubMed Central

    Chan, Agnes S.; Cheung, Mei-chun; Sze, Sophia L.; Leung, Winnie W.; Shi, Dejian

    2011-01-01

    The present study examined the neuro-electrophysiological activity of the brain associated with the application of a herbal remedy developed by a Shaolin monk based upon the Chan healing principle of clearing the orifices (i.e., the nasal cavities). A repeated-measures design was used. Fourteen normal adults were administered herbal remedy and saline solution intranasally on separate sessions. Two intervals of eyes-closed resting EEG data were obtained individually before and after each administration. Results showed that only the herbal remedy but not the saline solution induced elevation in cordance, an index correlated with cerebral perfusion, in the anterior brain region. In addition, the activity of the anterior cingulate cortex (ACC), as examined by the LORETA analysis, was also increased after the application of the herbal remedy but not saline solution. The present study provided some preliminary evidence suggesting that the herbal nasal drop enhanced the activity of the frontal lobe and ACC. Implications for the potential clinical application of the herbal remedy to treat patients with frontal lobe disorders were discussed. PMID:19996154

  13. Anterior cingulate serotonin 1B receptor binding is associated with emotional response inhibition.

    PubMed

    da Cunha-Bang, Sofi; Hjordt, Liv Vadskjær; Dam, Vibeke Høyrup; Stenbæk, Dea Siggaard; Sestoft, Dorte; Knudsen, Gitte M

    2017-09-01

    Serotonin has a well-established role in emotional processing and is a key neurotransmitter in impulsive aggression, presumably by facilitating response inhibition and regulating subcortical reactivity to aversive stimuli. In this study 44 men, of whom 19 were violent offenders and 25 were non-offender controls, completed an emotional Go/NoGo task requiring inhibition of prepotent motor responses to emotional facial expressions. We also measured cerebral serotonin 1B receptor (5-HT 1B R) binding with [ 11 C]AZ10419369 positron emission tomography within regions of the frontal cortex. We hypothesized that 5-HT 1B R would be positively associated with false alarms (failures to inhibit nogo responses) in the context of aversive (angry and fearful) facial expressions. Across groups, we found that frontal cortex 5-HT 1B R binding was positively correlated with false alarms when angry faces were go stimuli and neutral faces were nogo stimuli (p = 0.05, corrected alpha = 0.0125), but not with false alarms for non-emotional stimuli (failures to inhibit geometric figures). A posthoc analysis revealed the strongest association in anterior cingulate cortex (p = 0.006). In summary, 5-HT 1B Rs in the anterior cingulate are involved in withholding a prepotent response in the context of angry faces. Our findings suggest that serotonin modulates response inhibition in the context of certain emotional stimuli. Copyright © 2017. Published by Elsevier Ltd.

  14. Pedophilic sex offenders are characterised by reduced GABA concentration in dorsal anterior cingulate cortex.

    PubMed

    Ristow, Inka; Li, Meng; Colic, Lejla; Marr, Vanessa; Födisch, Carina; von Düring, Felicia; Schiltz, Kolja; Drumkova, Krasimira; Witzel, Joachim; Walter, Henrik; Beier, Klaus; Kruger, Tillmann H C; Ponseti, Jorge; Schiffer, Boris; Walter, Martin

    2018-01-01

    A pedophilic disorder is characterised by abnormal sexual urges towards prepubescent children. Child abusive behavior is frequently a result of lack of behavioral inhibition and current treatment options entail, next to suppressing unchangeable sexual orientation, measures to increase cognitive and attentional control. We tested, if in brain regions subserving attentional control of behavior and perception of salient stimuli, such inhibition deficit can be observed also on the level of inhibitory neurotransmitters. We measured GABA concentration in the dorsal anterior cingulate cortex (dACC) and in a control region, the pregenual anterior cingulate cortex (pgACC) in pedophilic sex offenders ( N  = 13) and matched controls ( N  = 13) using a 7 Tesla STEAM magnetic resonance spectroscopy (MRS). In dACC but not in the control region pedophilic sex offenders showed reduced GABA/Cr concentrations compared to healthy controls. The reduction was robust after controlling for potential influence of age and gray matter proportion within the MRS voxel ( p  < 0.04). Importantly, reduced GABA/Cr in patients was correlated with lower self-control measured with the Barratt Impulsiveness Scale (p = 0.028, r = -0.689). In a region related to cognitive control and salience mapping, pedophilic sex offenders showed reduction of the inhibitory neurotransmitter GABA which may be seen as a neuronal correlate of inhibition and behavioral control.

  15. Antidepressant Effects of Electroconvulsive Therapy Correlate With Subgenual Anterior Cingulate Activity and Connectivity in Depression

    PubMed Central

    Liu, Yi; Du, Lian; Li, Yongmei; Liu, Haixia; Zhao, Wenjing; Liu, Dan; Zeng, Jinkun; Li, Xingbao; Fu, Yixiao; Qiu, Haitang; Li, Xirong; Qiu, Tian; Hu, Hua; Meng, Huaqing; Luo, Qinghua

    2015-01-01

    Abstract The mechanisms underlying the effects of electroconvulsive therapy (ECT) in major depressive disorder (MDD) are not fully understood. Resting-state functional magnetic resonance imaging (rs-fMRI) is a new tool to study the effects of brain stimulation interventions, particularly ECT. The authors aim to investigate the mechanisms of ECT in MDD by rs-fMRI. They used rs-fMRI to measure functional changes in the brain of first-episode, treatment-naive MDD patients (n = 23) immediately before and then following 8 ECT sessions (brief-pulse square-wave apparatus, bitemporal). They also computed voxel-wise amplitude of low-frequency fluctuation (ALFF) as a measure of regional brain activity and selected the left subgenual anterior cingulate cortex (sgACC) to evaluate functional connectivity between the sgACC and other brain regions. Increased regional brain activity measured by ALFF mainly in the left sgACC following ECT. Functional connectivity of the left sgACC increased in the ipsilateral parahippocampal gyrus, pregenual ACC, contralateral middle temporal pole, and orbitofrontal cortex. Importantly, reduction in depressive symptoms were negatively correlated with increased ALFF in the left sgACC and left hippocampus, and with distant functional connectivity between the left sgACC and contralateral middle temporal pole. That is, across subjects, as depression improved, regional brain activity in sgACC and its functional connectivity increased in the brain. Eight ECT sessions in MDD patients modulated activity in the sgACC and its networks. The antidepressant effects of ECT were negatively correlated with sgACC brain activity and connectivity. These findings suggest that sgACC-associated prefrontal-limbic structures are associated with the therapeutic effects of ECT in MDD. PMID:26559309

  16. Bilingualism tunes the anterior cingulate cortex for conflict monitoring.

    PubMed

    Abutalebi, Jubin; Della Rosa, Pasquale Anthony; Green, David W; Hernandez, Mireia; Scifo, Paola; Keim, Roland; Cappa, Stefano F; Costa, Albert

    2012-09-01

    Monitoring and controlling 2 language systems is fundamental to language use in bilinguals. Here, we reveal in a combined functional (event-related functional magnetic resonance imaging) and structural neuroimaging (voxel-based morphometry) study that dorsal anterior cingulate cortex (ACC), a structure tightly bound to domain-general executive control functions, is a common locus for language control and resolving nonverbal conflict. We also show an experience-dependent effect in the same region: Bilinguals use this structure more efficiently than monolinguals to monitor nonlinguistic cognitive conflicts. They adapted better to conflicting situations showing less ACC activity while outperforming monolinguals. Importantly, for bilinguals, brain activity in the ACC, as well as behavioral measures, also correlated positively with local gray matter volume. These results suggest that early learning and lifelong practice of 2 languages exert a strong impact upon human neocortical development. The bilingual brain adapts better to resolve cognitive conflicts in domain-general cognitive tasks.

  17. Role of the Anterior Cingulate Cortex in the Retrieval of Novel Object Recognition Memory after a Long Delay

    ERIC Educational Resources Information Center

    Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin C. F.; Cassaday, Helen J.

    2017-01-01

    Previous in vivo electrophysiological studies suggest that the anterior cingulate cortex (ACgx) is an important substrate of novel object recognition (NOR) memory. However, intervention studies are needed to confirm this conclusion and permanent lesion studies cannot distinguish effects on encoding and retrieval. The interval between encoding and…

  18. Sexual attraction enhances glutamate transmission in mammalian anterior cingulate cortex

    PubMed Central

    Wu, Long-Jun; Kim, Susan S; Li, Xiangyao; Zhang, Fuxing; Zhuo, Min

    2009-01-01

    Functional human brain imaging studies have indicated the essential role of cortical regions, such as the anterior cingulate cortex (ACC), in romantic love and sex. However, the neurobiological basis of how the ACC neurons are activated and engaged in sexual attraction remains unknown. Using transgenic mice in which the expression of green fluorescent protein (GFP) is controlled by the promoter of the activity-dependent gene c-fos, we found that ACC pyramidal neurons are activated by sexual attraction. The presynaptic glutamate release to the activated neurons is increased and pharmacological inhibition of neuronal activities in the ACC reduced the interest of male mice to female mice. Our results present direct evidence of the critical role of the ACC in sexual attraction, and long-term increases in glutamate mediated excitatory transmission may contribute to sexual attraction between male and female mice. PMID:19419552

  19. Hyperlexia and ambient echolalia in a case of cerebral infarction of the left anterior cingulate cortex and corpus callosum.

    PubMed

    Suzuki, Tadashi; Itoh, Shouichi; Hayashi, Mototaka; Kouno, Masako; Takeda, Katsuhiko

    2009-10-01

    We report the case of a 69-year-old woman with cerebral infarction in the left anterior cingulate cortex and corpus callosum. She showed hyperlexia, which was a distinctive reading phenomenon, as well as ambient echolalia. Clinical features also included complex disorders such as visual groping, compulsive manipulation of tools, and callosal disconnection syndrome. She read words written on the cover of a book and repeated words emanating from unrelated conversations around her or from hospital announcements. The combination of these two features due to a focal lesion has never been reported previously. The supplementary motor area may control the execution of established subroutines according to external and internal inputs. Hyperlexia as well as the compulsive manipulation of tools could be interpreted as faulty inhibition of preexisting essentially intact motor subroutines by damage to the anterior cingulate cortex reciprocally interconnected with the supplementary motor area.

  20. Involvement of the Anterior Cingulate Cortex in Formation, Consolidation, and Reconsolidation of Recent and Remote Contextual Fear Memory

    ERIC Educational Resources Information Center

    Einarsson, Einar O.; Nader, Karim

    2012-01-01

    It has been suggested that memories become more stable and less susceptible to the disruption of reconsolidation over weeks after learning. Here, we test this by targeting the anterior cingulate cortex (ACC) and test its involvement in the formation, consolidation, and reconsolidation of recent and remote contextual fear memory. We found that…

  1. Anterior Cingulate Cortex and Cognitive Control: Neuropsychological and Electrophysiological Findings in Two Patients with Lesions to Dorsomedial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Lovstad, M.; Funderud, I.; Meling, T.; Kramer, U. M.; Voytek, B.; Due-Tonnessen, P.; Endestad, T.; Lindgren, M.; Knight, R. T.; Solbakk, A. K.

    2012-01-01

    Whereas neuroimaging studies of healthy subjects have demonstrated an association between the anterior cingulate cortex (ACC) and cognitive control functions, including response monitoring and error detection, lesion studies are sparse and have produced mixed results. Due to largely normal behavioral test results in two patients with medial…

  2. Decreased cerebral blood flow of the right anterior cingulate cortex in long-term and short-term abstinent methamphetamine users.

    PubMed

    Hwang, Jaeuk; Lyoo, In Kyoon; Kim, Seog Ju; Sung, Young Hoon; Bae, Soojeong; Cho, Sung-Nam; Lee, Ho Young; Lee, Dong Soo; Renshaw, Perry F

    2006-04-28

    The aim of the current study was to explore changes of relative regional cerebral blood flow (rCBF) in short-term and long-term abstinent methamphetamine (MA) users. Relative rCBF in 40 abstinent MA users and 23 healthy comparison subjects was compared by the technetium-99m-hexamethyl-propylene amine oxime ((99m)Tc-HMPAO) single photon emission computed tomography (SPECT). Relative rCBF in areas that were found to differ significantly was also compared in groups of MA users with short-term (<6 months) and long-term (>or=6 months) abstinence. MA users showed decreased relative rCBF in the right anterior cingulate cortex (Brodmann area 32) relative to healthy comparison subjects. Long-term abstinent MA users had significantly greater rCBF than short-term abstinent MA users. We report that abstinent MA users have decreased rCBF in the anterior cingulate cortex with smaller relative decreases in subjects with prolonged abstinence.

  3. Anterior cingulate activation is related to a positivity bias and emotional stability in successful aging.

    PubMed

    Brassen, Stefanie; Gamer, Matthias; Büchel, Christian

    2011-07-15

    Behavioral studies consistently reported an increased preference for positive experiences in older adults. The socio-emotional selectivity theory explains this positivity effect with a motivated goal shift in emotion regulation, which probably depends on available cognitive resources. The present study investigates the neurobiological mechanism underlying this hypothesis. Functional magnetic resonance imaging data were acquired in 21 older and 22 young subjects while performing a spatial-cueing paradigm that manipulates attentional load on emotional face distracters. We focused our analyses on the anterior cingulate cortex as a key structure of cognitive control of emotion. Elderly subjects showed a specifically increased distractibility by happy faces when more attentional resources were available for face processing. This effect was paralleled by an increased engagement of the rostral anterior cingulate cortex, and this frontal engagement was significantly correlated with emotional stability. The current study highlights how the brain might mediate the tendency to preferentially engage in positive information processing in healthy aging. The finding of a resource-dependency of this positivity effect suggests demanding self-regulating processes that are related to emotional well-being. These findings are of particular relevance regarding implications for the understanding, treatment, and prevention of nonsuccessful aging like highly prevalent late-life depression. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Kainate-induced network activity in the anterior cingulate cortex.

    PubMed

    Shinozaki, R; Hojo, Y; Mukai, H; Hashizume, M; Murakoshi, T

    2016-06-14

    Anterior cingulate cortex (ACC) plays a pivotal role in higher order processing of cognition, attention and emotion. The network oscillation is considered an essential means for integration of these CNS functions. The oscillation power and coherence among related areas are often dis-regulated in several psychiatric and pathological conditions with a hemispheric asymmetric manner. Here we describe the network-based activity of field potentials recorded from the superficial layer of the mouse ACC in vitro using submerged type recordings. A short activation by kainic acid administration to the preparation induced populational activities ranging over several frequency bands including theta (3-8Hz), alpha (8-12Hz), beta (13-30Hz), low gamma (30-50Hz) and high gamma (50-80Hz). These responses were repeatable and totally abolished by tetrodotoxin, and greatly diminished by inhibitors of ionotropic and metabotropic glutamate receptors, GABAA receptor or gap-junctions. These observations suggest that the kainate-induced network activity can be a useful model of the network oscillation in the ACC circuit. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Neural encoding of competitive effort in the anterior cingulate cortex.

    PubMed

    Hillman, Kristin L; Bilkey, David K

    2012-09-01

    In social environments, animals often compete to obtain limited resources. Strategically electing to work against another animal represents a cost-benefit decision. Is the resource worth an investment of competitive effort? The anterior cingulate cortex (ACC) has been implicated in cost-benefit decision-making, but its role in competitive effort has not been examined. We recorded ACC neurons in freely moving rats as they performed a competitive foraging choice task. When at least one of the two choice options demanded competitive effort, the majority of ACC neurons exhibited heightened and differential firing between the goal trajectories. Inter- and intrasession manipulations revealed that differential firing was not attributable to effort or reward in isolation; instead ACC encoding patterns appeared to indicate net utility assessments of available choice options. Our findings suggest that the ACC is important for encoding competitive effort, a cost-benefit domain that has received little neural-level investigation despite its predominance in nature.

  6. Conflict processing in the anterior cingulate cortex constrains response priming.

    PubMed

    Pastötter, Bernhard; Hanslmayr, Simon; Bäuml, Karl-Heinz T

    2010-05-01

    A prominent function of the anterior cingulate cortex (ACC) is to process conflict between competing response options. In this study, we investigated the role of conflict processing in a response-priming task in which manual responses were either validly or invalidly cued. Examining electrophysiological measurements of oscillatory brain activity on the source level, we found response priming to be related to a beta power decrease in the premotor cortex and conflict processing to be linked to a theta power increase in the ACC. In particular, correlation of oscillatory brain activities in the ACC and the premotor cortex showed that conflict processing reduces response priming by slowing response time in valid trials and lowering response errors in invalid trials. This relationship emerged on a between subjects level as well as within subjects, on a single trial level. These findings suggest that conflict processing in the ACC constrains the automatic priming process. 2010 Elsevier Inc. All rights reserved.

  7. Low serotonin1B receptor binding potential in the anterior cingulate cortex in drug-free patients with recurrent major depressive disorder.

    PubMed

    Tiger, Mikael; Farde, Lars; Rück, Christian; Varrone, Andrea; Forsberg, Anton; Lindefors, Nils; Halldin, Christer; Lundberg, Johan

    2016-07-30

    The pathophysiology of major depressive disorder (MDD) is not fully understood and the diagnosis is largely based on history and clinical examination. So far, several lines of preclinical data and a single imaging study implicate a role for the serotonin1B (5-HT1B) receptor subtype. We sought to study 5-HT1B receptor binding in brain regions of reported relevance in patients with MDD. Subjects were examined at the Karolinska Institutet PET centre using positron emission tomography (PET) and the 5-HT1B receptor selective radioligand [(11)C]AZ10419369. Ten drug-free patients with recurrent MDD and ten control subjects matched for age and sex were examined. The main outcome measure was [(11)C]AZ10419369 binding in brain regions of reported relevance in the pathophysiology of MDD. The [(11)C]AZ10419369 binding potential was significantly lower in the MDD group compared with the healthy control group in the anterior cingulate cortex (20% between-group difference), the subgenual prefrontal cortex (17% between-group difference), and in the hippocampus (32% between-group difference). The low anterior cingulate [(11)C]AZ10419369 binding potential in patients with recurrent MDD positions 5-HT1B receptor binding in this region as a putative biomarker for MDD and corroborate a role of the anterior cingulate cortex and associated areas in the pathophysiology of recurrent MDD. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. A meta-analysis of the anterior cingulate contribution to social pain

    PubMed Central

    Lemogne, Cedric; Hinfray, Sophie; Huguet, Pascal; Grynszpan, Ouriel; Tartour, Eric; George, Nathalie; Fossati, Philippe

    2015-01-01

    Many functional magnetic resonance imaging studies have explored the neural correlates of social pain that results from social threat, exclusion, rejection, loss or negative evaluation. Although activations have consistently been reported within the anterior cingulate cortex (ACC), it remains unclear which ACC subdivision is particularly involved. To provide a quantitative estimation of the specific involvement of ACC subdivisions in social pain, we conducted a voxel-based meta-analysis. The literature search identified 46 articles that included 940 subjects, the majority of which used the cyberball task. Significant likelihoods of activation were found in both the ventral and dorsal ACC for both social pain elicitation and self-reported distress during social pain. Self-reported distress involved more specifically the subgenual and pregenual ACC than social pain-related contrasts. The cyberball task involved the anterior midcingulate cortex to a lesser extent than other experimental tasks. During social pain, children exhibited subgenual activations to a greater extent than adults. Finally, the ventro-dorsal gradient of ACC activations in cyberball studies was related to the length of exclusion phases. The present meta-analysis contributes to a better understanding of the role of ACC subdivisions in social pain, and it could be of particular importance for guiding future studies of social pain and its neural underpinnings. PMID:25140048

  9. Differential functional connectivity of rostral anterior cingulate cortex during emotional interference

    PubMed Central

    Szekely, Akos; Silton, Rebecca L.; Heller, Wendy; Miller, Gregory A.

    2017-01-01

    Abstract The rostral-ventral subdivision of the anterior cingulate cortex (rACC) plays a key role in the regulation of emotional processing. Although rACC has strong anatomical connections with anterior insular cortex (AIC), amygdala, prefrontal cortex and striatal brain regions, it is unclear whether the functional connectivity of rACC with these regions changes when regulating emotional processing. Furthermore, it is not known whether this connectivity changes with deficits in emotion regulation seen in different kinds of anxiety and depression. To address these questions regarding rACC functional connectivity, non-patients high in self-reported anxious apprehension (AP), anxious arousal (AR), anhedonic depression (AD) or none (CON) indicated the ink color of pleasant, neutral and unpleasant words during functional magnetic resonance imaging. While ignoring task-irrelevant unpleasant words, AD and CON showed an increase in the functional connectivity of rACC with AIC, putamen, caudate and ventral pallidum. There was a decrease in this connectivity in AP and AR, with AP showing greater reduction than AR. These findings provide support for the role of rACC in integrating interoceptive, emotional and cognitive functions via interactions with insula and striatal regions during effective emotion regulation in healthy individuals and a failure of this integration that may be specific to anxiety, particularly AP. PMID:27998997

  10. Risk prediction and aversion by anterior cingulate cortex.

    PubMed

    Brown, Joshua W; Braver, Todd S

    2007-12-01

    The recently proposed error-likelihood hypothesis suggests that anterior cingulate cortex (ACC) and surrounding areas will become active in proportion to the perceived likelihood of an error. The hypothesis was originally derived from a computational model prediction. The same computational model now makes a further prediction that ACC will be sensitive not only to predicted error likelihood, but also to the predicted magnitude of the consequences, should an error occur. The product of error likelihood and predicted error consequence magnitude collectively defines the general "expected risk" of a given behavior in a manner analogous but orthogonal to subjective expected utility theory. New fMRI results from an incentivechange signal task now replicate the error-likelihood effect, validate the further predictions of the computational model, and suggest why some segments of the population may fail to show an error-likelihood effect. In particular, error-likelihood effects and expected risk effects in general indicate greater sensitivity to earlier predictors of errors and are seen in risk-averse but not risk-tolerant individuals. Taken together, the results are consistent with an expected risk model of ACC and suggest that ACC may generally contribute to cognitive control by recruiting brain activity to avoid risk.

  11. Risky decision making and the anterior cingulate cortex in abstinent drug abusers and nonusers.

    PubMed

    Fishbein, Diana H; Eldreth, Diana L; Hyde, Christopher; Matochik, John A; London, Edythe D; Contoreggi, Carlo; Kurian, Varughese; Kimes, Alane S; Breeden, Andrew; Grant, Steven

    2005-04-01

    Risky decision making is a hallmark behavioral phenotype of drug abuse; thus, an understanding of its biological bases may inform efforts to develop therapies for addictive disorders. A neurocognitive task that measures this function (Rogers Decision-Making Task; RDMT) was paired with measures of regional cerebral perfusion to identify brain regions that may underlie deficits in risky decision making in drug abusers. Subjects were abstinent drug abusers (> or =3 months) and healthy controls who underwent positron emission tomography scans with H(2)(15)O. Drug abusers showed greater risk taking and heightened sensitivity to rewards than control subjects. Both drug abusers and controls exhibited significant activations in a widespread network of brain regions, primarily in the frontal cortex, previously implicated in decision-making tasks. The only significant group difference in brain activation, however, was found in the left pregenual anterior cingulate cortex, with drug abusers exhibiting less task-related activation than control subjects. There were no significant correlations between neural activity and task performance within the control group. In the drug abuse group, on the other hand, increased risky choices on the RDMT negatively correlated with activation in the right hippocampus, left anterior cingulate gyrus, left medial orbitofrontal cortex, and left parietal lobule, and positively correlated with activation in the right insula. Drug abuse severity was related positively to right medial orbitofrontal activity. Attenuated activation of the pregenual ACC in the drug abusers relative to the controls during performance on the RDMT may underlie the abusers' tendency to choose risky outcomes.

  12. Segregated and integrated coding of reward and punishment in the cingulate cortex.

    PubMed

    Fujiwara, Juri; Tobler, Philippe N; Taira, Masato; Iijima, Toshio; Tsutsui, Ken-Ichiro

    2009-06-01

    Reward and punishment have opposite affective value but are both processed by the cingulate cortex. However, it is unclear whether the positive and negative affective values of monetary reward and punishment are processed by separate or common subregions of the cingulate cortex. We performed a functional magnetic resonance imaging study using a free-choice task and compared cingulate activations for different levels of monetary gain and loss. Gain-specific activation (increasing activation for increasing gain, but no activation change in relation to loss) occurred mainly in the anterior part of the anterior cingulate and in the posterior cingulate cortex. Conversely, loss-specific activation (increasing activation for increasing loss, but no activation change in relation to gain) occurred between these areas, in the middle and posterior part of the anterior cingulate. Integrated coding of gain and loss (increasing activation throughout the full range, from biggest loss to biggest gain) occurred in the dorsal part of the anterior cingulate, at the border with the medial prefrontal cortex. Finally, unspecific activation increases to both gains and losses (increasing activation to increasing gains and increasing losses, possibly reflecting attention) occurred in dorsal and middle regions of the cingulate cortex. Together, these results suggest separate and common coding of monetary reward and punishment in distinct subregions of the cingulate cortex. Further meta-analysis suggested that the presently found reward- and punishment-specific areas overlapped with those processing positive and negative emotions, respectively.

  13. Post-Learning Infusion of Anisomycin into the Anterior Cingulate Cortex Impairs Instrumental Acquisition through an Effect on Reinforcer Valuation

    ERIC Educational Resources Information Center

    Jonkman, Sietse; Everitt, Barry J.

    2009-01-01

    The integrity of the rodent anterior cingulate cortex (ACC) is essential for various aspects of instrumental behavior, but it is not clear if the ACC is important for the acquisition of a simple instrumental response. Here, it was demonstrated that post-session infusions of anisomycin into the rat ACC completely prevented the acquisition of…

  14. Dorsal Anterior Cingulate Lactate and Glutathione Levels in Euthymic Bipolar I Disorder: 1H-MRS Study.

    PubMed

    Soeiro-de-Souza, Márcio Gerhardt; Pastorello, Bruno F; Leite, Cláudia da Costa; Henning, Anke; Moreno, Ricardo A; Garcia Otaduy, Maria Concepción

    2016-08-01

    Oxidative stress and mitochondrial dysfunction are 2 closely integrated processes implicated in the physiopathology of bipolar disorder. Advanced proton magnetic resonance spectroscopy techniques enable the measurement of levels of lactate, the main marker of mitochondrial dysfunction, and glutathione, the predominant brain antioxidant. The objective of this study was to measure brain lactate and glutathione levels in bipolar disorder and healthy controls. Eighty-eight individuals (50 bipolar disorder and 38 healthy controls) underwent 3T proton magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (2x2x4.5cm(3)) using a 2-D JPRESS sequence. Lactate and glutathione were quantified using the ProFit software program. Bipolar disorder patients had higher dorsal anterior cingulate cortex lactate levels compared with controls. Glutathione levels did not differ between euthymic bipolar disorder and controls. There was a positive correlation between lactate and glutathione levels specific to bipolar disorder. No influence of medications on metabolites was observed. This is the most extensive magnetic resonance spectroscopy study of lactate and glutathione in bipolar disorder to date, and results indicated that euthymic bipolar disorder patients had higher levels of lactate, which might be an indication of altered mitochondrial function. Moreover, lactate levels correlated with glutathione levels, indicating a compensatory mechanism regardless of bipolar disorder diagnosis. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  15. Dorsal Anterior Cingulate Lactate and Glutathione Levels in Euthymic Bipolar I Disorder: 1H-MRS Study

    PubMed Central

    Pastorello, Bruno F.; Leite, Cláudia da Costa; Henning, Anke; Moreno, Ricardo A.; Garcia Otaduy, Maria Concepción

    2016-01-01

    Objective: Oxidative stress and mitochondrial dysfunction are 2 closely integrated processes implicated in the physiopathology of bipolar disorder. Advanced proton magnetic resonance spectroscopy techniques enable the measurement of levels of lactate, the main marker of mitochondrial dysfunction, and glutathione, the predominant brain antioxidant. The objective of this study was to measure brain lactate and glutathione levels in bipolar disorder and healthy controls. Methods: Eighty-eight individuals (50 bipolar disorder and 38 healthy controls) underwent 3T proton magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (2x2x4.5cm3) using a 2-D JPRESS sequence. Lactate and glutathione were quantified using the ProFit software program. Results: Bipolar disorder patients had higher dorsal anterior cingulate cortex lactate levels compared with controls. Glutathione levels did not differ between euthymic bipolar disorder and controls. There was a positive correlation between lactate and glutathione levels specific to bipolar disorder. No influence of medications on metabolites was observed. Conclusion: This is the most extensive magnetic resonance spectroscopy study of lactate and glutathione in bipolar disorder to date, and results indicated that euthymic bipolar disorder patients had higher levels of lactate, which might be an indication of altered mitochondrial function. Moreover, lactate levels correlated with glutathione levels, indicating a compensatory mechanism regardless of bipolar disorder diagnosis. PMID:27207914

  16. Smaller amygdala volume and reduced anterior cingulate gray matter density associated with history of post-traumatic stress disorder.

    PubMed

    Rogers, Mark A; Yamasue, Hidenori; Abe, Osamu; Yamada, Haruyasu; Ohtani, Toshiyuki; Iwanami, Akira; Aoki, Shigeki; Kato, Nobumasa; Kasai, Kiyoto

    2009-12-30

    Although post-traumatic stress disorder (PTSD) may be seen to represent a failure to extinguish learned fear, significant aspects of the pathophysiology relevant to this hypothesis remain unknown. Both the amygdala and hippocampus are necessary for fear extinction occur, and thus both regions may be abnormal in PTSD. Twenty-five people who experienced the Tokyo subway sarin attack in 1995, nine who later developed PTSD and 16 who did not, underwent magnetic resonance imaging (MRI) with manual tracing to determine bilateral amygdala and hippocampus volumes. At the time of scanning, one had PTSD and eight had a history of PTSD. Results indicated that the group with a history of PTSD had significantly smaller mean bilateral amygdala volume than did the group that did not develop PTSD. Furthermore, left amygdala volume showed a significant negative correlation with severity of PTSD symptomatology as well as reduced gray matter density in the left anterior cingulate cortex. To our knowledge, this is the first observation of an association between PTSD and amygdala volume. Furthermore the apparent interplay between amygdala and anterior cingulate cortex represents support at the level of gross brain morphology for the theory of PTSD as a failure of fear extinction.

  17. Subliminal versus supraliminal stimuli activate neural responses in anterior cingulate cortex, fusiform gyrus and insula: a meta-analysis of fMRI studies.

    PubMed

    Meneguzzo, Paolo; Tsakiris, Manos; Schioth, Helgi B; Stein, Dan J; Brooks, Samantha J

    2014-01-01

    Non-conscious neural activation may underlie various psychological functions in health and disorder. However, the neural substrates of non-conscious processing have not been entirely elucidated. Examining the differential effects of arousing stimuli that are consciously, versus unconsciously perceived will improve our knowledge of neural circuitry involved in non-conscious perception. Here we conduct preliminary analyses of neural activation in studies that have used both subliminal and supraliminal presentation of the same stimulus. We use Activation Likelihood Estimation (ALE) to examine functional Magnetic Resonance Imaging (fMRI) studies that uniquely present the same stimuli subliminally and supraliminally to healthy participants during functional magnetic resonance imaging (fMRI). We included a total of 193 foci from 9 studies representing subliminal stimulation and 315 foci from 10 studies representing supraliminal stimulation. The anterior cingulate cortex is significantly activated during both subliminal and supraliminal stimulus presentation. Subliminal stimuli are linked to significantly increased activation in the right fusiform gyrus and right insula. Supraliminal stimuli show significantly increased activation in the left rostral anterior cingulate. Non-conscious processing of arousing stimuli may involve primary visual areas and may also recruit the insula, a brain area involved in eventual interoceptive awareness. The anterior cingulate is perhaps a key brain region for the integration of conscious and non-conscious processing. These preliminary data provide candidate brain regions for further study in to the neural correlates of conscious experience.

  18. Double dissociation of value computations in orbitofrontal and anterior cingulate neurons

    PubMed Central

    Kennerley, Steven W.; Behrens, Timothy E. J.; Wallis, Jonathan D.

    2011-01-01

    Damage to prefrontal cortex (PFC) impairs decision-making, but the underlying value computations that might cause such impairments remain unclear. Here we report that value computations are doubly dissociable within PFC neurons. While many PFC neurons encoded chosen value, they used opponent encoding schemes such that averaging the neuronal population eliminated value coding. However, a special population of neurons in anterior cingulate cortex (ACC) - but not orbitofrontal cortex (OFC) - multiplex chosen value across decision parameters using a unified encoding scheme, and encoded reward prediction errors. In contrast, neurons in OFC - but not ACC - encoded chosen value relative to the recent history of choice values. Together, these results suggest complementary valuation processes across PFC areas: OFC neurons dynamically evaluate current choices relative to recent choice values, while ACC neurons encode choice predictions and prediction errors using a common valuation currency reflecting the integration of multiple decision parameters. PMID:22037498

  19. Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism.

    PubMed

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Yoshimura, Shinpei; Yamawaki, Sigeto; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2010-12-01

    According to sociometer theory, self-esteem serves as a barometer of the extent to which individuals are socially included or excluded by others. We hypothesized that trait self-esteem would be related to social pain responsiveness, and we used functional magnetic resonance imaging to experimentally investigate this potential relationship. Participants (n = 26) performed a cyberball task, a computerized game of catch during which the participants were excluded from the game. Participants then rated the degree of social pain experienced during both inclusion in and exclusion from the game. Individuals with lower trait self-esteem reported increased social pain relative to individuals with higher trait self-esteem, and such individuals also demonstrated a greater degree of dorsal anterior cingulate cortex activation. A psychophysiological interaction analysis revealed a positive connectivity between the dorsal anterior cingulate and prefrontal cortices for the lower trait self-esteem group, and a corresponding negative connectivity for the higher trait self-esteem group. Heightened dorsal anterior cortex activity and a corresponding connection with the prefrontal cortex might be one possible explanation for the greater levels of social pain observed experienced by individuals with low trait self-esteem.

  20. Inflexible Functional Connectivity of the Dorsal Anterior Cingulate Cortex in Adolescent Major Depressive Disorder.

    PubMed

    Ho, Tiffany C; Sacchet, Matthew D; Connolly, Colm G; Margulies, Daniel S; Tymofiyeva, Olga; Paulus, Martin P; Simmons, Alan N; Gotlib, Ian H; Yang, Tony T

    2017-11-01

    Recent evidence suggests that anterior cingulate cortex (ACC) maturation during adolescence contributes to or underlies the development of major depressive disorder (MDD) during this sensitive period. The ACC is a structure that sits at the intersection of several task-positive networks (eg, central executive network, CEN), which are still developing during adolescence. While recent work using seed-based approaches indicate that depressed adolescents show limited task-evoked vs resting-state connectivity (termed 'inflexibility') between the ACC and task-negative networks, no study has used network-based approaches to investigate inflexibility of the ACC in task-positive networks to understand adolescent MDD. Here, we used graph theory to compare flexibility of network-level topology in eight subregions of the ACC (spanning three task-positive networks) in 42 unmedicated adolescents with MDD and 53 well-matched healthy controls. All participants underwent fMRI scanning during resting state and a response inhibition task that robustly engages task-positive networks. Relative to controls, depressed adolescents were characterized by inflexibility in local efficiency of a key ACC node in the CEN: right dorsal anterior cingulate cortex/medial frontal gyrus (R dACC/MFG). Furthermore, individual differences in flexibility of local efficiency of R dACC/MFG significantly predicted inhibition performance, consistent with current literature demonstrating that flexible network organization affords successful cognitive control. Finally, reduced local efficiency of dACC/MFG during the task was significantly associated with an earlier age of depression onset, consistent with prior work suggesting that MDD may alter functional network development. Our results support a neurodevelopmental hypothesis of MDD wherein dysfunctional self-regulation is potentially reflected by altered ACC maturation.

  1. A meta-analysis of the anterior cingulate contribution to social pain.

    PubMed

    Rotge, Jean-Yves; Lemogne, Cedric; Hinfray, Sophie; Huguet, Pascal; Grynszpan, Ouriel; Tartour, Eric; George, Nathalie; Fossati, Philippe

    2015-01-01

    Many functional magnetic resonance imaging studies have explored the neural correlates of social pain that results from social threat, exclusion, rejection, loss or negative evaluation. Although activations have consistently been reported within the anterior cingulate cortex (ACC), it remains unclear which ACC subdivision is particularly involved. To provide a quantitative estimation of the specific involvement of ACC subdivisions in social pain, we conducted a voxel-based meta-analysis. The literature search identified 46 articles that included 940 subjects, the majority of which used the cyberball task. Significant likelihoods of activation were found in both the ventral and dorsal ACC for both social pain elicitation and self-reported distress during social pain. Self-reported distress involved more specifically the subgenual and pregenual ACC than social pain-related contrasts. The cyberball task involved the anterior midcingulate cortex to a lesser extent than other experimental tasks. During social pain, children exhibited subgenual activations to a greater extent than adults. Finally, the ventro-dorsal gradient of ACC activations in cyberball studies was related to the length of exclusion phases. The present meta-analysis contributes to a better understanding of the role of ACC subdivisions in social pain, and it could be of particular importance for guiding future studies of social pain and its neural underpinnings. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Differential functional connectivity of rostral anterior cingulate cortex during emotional interference.

    PubMed

    Szekely, Akos; Silton, Rebecca L; Heller, Wendy; Miller, Gregory A; Mohanty, Aprajita

    2017-03-01

    The rostral-ventral subdivision of the anterior cingulate cortex (rACC) plays a key role in the regulation of emotional processing. Although rACC has strong anatomical connections with anterior insular cortex (AIC), amygdala, prefrontal cortex and striatal brain regions, it is unclear whether the functional connectivity of rACC with these regions changes when regulating emotional processing. Furthermore, it is not known whether this connectivity changes with deficits in emotion regulation seen in different kinds of anxiety and depression. To address these questions regarding rACC functional connectivity, non-patients high in self-reported anxious apprehension (AP), anxious arousal (AR), anhedonic depression (AD) or none (CON) indicated the ink color of pleasant, neutral and unpleasant words during functional magnetic resonance imaging. While ignoring task-irrelevant unpleasant words, AD and CON showed an increase in the functional connectivity of rACC with AIC, putamen, caudate and ventral pallidum. There was a decrease in this connectivity in AP and AR, with AP showing greater reduction than AR. These findings provide support for the role of rACC in integrating interoceptive, emotional and cognitive functions via interactions with insula and striatal regions during effective emotion regulation in healthy individuals and a failure of this integration that may be specific to anxiety, particularly AP. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Correlates of decisional dynamics in the dorsal anterior cingulate cortex

    PubMed Central

    Hayden, Benjamin Y.

    2017-01-01

    We hypothesized that during binary economic choice, decision makers use the first option they attend as a default to which they compare the second. To test this idea, we recorded activity of neurons in the dorsal anterior cingulate cortex (dACC) of macaques choosing between gambles presented asynchronously. We find that ensemble encoding of the value of the first offer includes both choice-dependent and choice-independent aspects, as if reflecting a partial decision. That is, its responses are neither entirely pre- nor post-decisional. In contrast, coding of the value of the second offer is entirely decision dependent (i.e., post-decisional). This result holds even when offer-value encodings are compared within the same time period. Additionally, we see no evidence for 2 pools of neurons linked to the 2 offers; instead, all comparison appears to occur within a single functionally homogenous pool of task-selective neurons. These observations suggest that economic choices reflect a context-dependent evaluation of attended options. Moreover, they raise the possibility that value representations reflect, to some extent, a tentative commitment to a choice. PMID:29141002

  4. Neurons in Anterior Cingulate Cortex Multiplex Information about Reward and Action

    PubMed Central

    Hayden, Benjamin Y.; Platt, Michael L.

    2010-01-01

    The dorsal anterior cingulate cortex (dACC) is thought to play a critical role in forming associations between rewards and actions. Currently available physiological data, however, remain inconclusive regarding the question of whether dACC neurons carry information linking particular actions to reward or, instead, encode abstract reward information independent of specific actions. Here we show that firing rates of a majority of dACC neurons in a population studied in an eight-option variably rewarded choice task were sensitive to both saccade direction and reward value. Furthermore, the influences of reward and saccade direction on neuronal activity were roughly equal in magnitude over the range of rewards tested and were statistically independent. Our results indicate that dACC neurons multiplex information about both reward and action, endorsing the idea that this area links motivational outcomes to behavior and undermining the notion that its neurons solely contribute to reward processing in the abstract. PMID:20203193

  5. The effect of regulatory mode on procrastination: Bi-stable parahippocampus connectivity with dorsal anterior cingulate and anterior prefrontal cortex.

    PubMed

    Zhang, Chenyan; Ni, Yan; Feng, Tingyong

    2017-06-30

    Previous research has elucidated that procrastination can be influenced by regulatory mode orientations. However, the neural mechanism of regulatory modes affecting procrastination is not well understood. To address this question, we employed resting-state functional magnetic resonance imaging (RS-fMRI) to test the influence of two regulatory modes (assessment and locomotion) on procrastination. The behavioral results showed that procrastination was positively correlated with assessment orientation but negatively correlated with locomotion orientation. Neuroimaging results indicated that the functional connectivity between parahippocampal cortex (PHC) and dorsal anterior cingulate (dACC) was negatively correlated with assessment scores, while the functional connectivity between anterior prefrontal cortex (aPFC) and parahippocampal cortex (PHC) was negatively correlated with locomotion scores. Critically, mediation analysis showed that the different effects of two distinct regulatory modes on procrastination were mediated by PHC-dACC and aPFC-PHC functional connectivity respectively. These results suggested that people's procrastination could be predicted by regulatory mode orientations, which is mediated by PHC connectivity with dACC and aPFC respectively. The present study extends our knowledge on procrastination and provides neural mechanism for understanding the link between regulatory mode orientations and procrastination. Copyright © 2017. Published by Elsevier B.V.

  6. Inactivation of the Anterior Cingulate Cortex Impairs Extinction of Rabbit Jaw Movement Conditioning and Prevents Extinction-Related Inhibition of Hippocampal Activity

    ERIC Educational Resources Information Center

    Griffin, Amy L.; Berry, Stephen D.

    2004-01-01

    Although past research has highlighted the involvement of limbic structures such as the anterior cingulate cortex (ACC) and hippocampus in learning, few have addressed the nature of their interaction. The current study of rabbit jaw movement conditioning used a combination of reversible lesions and electrophysiology to examine the involvement of…

  7. Reward-based contextual learning supported by anterior cingulate cortex.

    PubMed

    Umemoto, Akina; HajiHosseini, Azadeh; Yates, Michael E; Holroyd, Clay B

    2017-06-01

    The anterior cingulate cortex (ACC) is commonly associated with cognitive control and decision making, but its specific function is highly debated. To explore a recent theory that the ACC learns the reward values of task contexts (Holroyd & McClure in Psychological Review, 122, 54-83, 2015; Holroyd & Yeung in Trends in Cognitive Sciences, 16, 122-128, 2012), we recorded the event-related brain potentials (ERPs) from participants as they played a novel gambling task. The participants were first required to select from among three games in one "virtual casino," and subsequently they were required to select from among three different games in a different virtual casino; unbeknownst to them, the payoffs for the games were higher in one casino than in the other. Analysis of the reward positivity, an ERP component believed to reflect reward-related signals carried to the ACC by the midbrain dopamine system, revealed that the ACC is sensitive to differences in the reward values associated with both the casinos and the games inside the casinos, indicating that participants learned the values of the contexts in which rewards were delivered. These results highlight the importance of the ACC in learning the reward values of task contexts in order to guide action selection.

  8. Anterior cingulate dysfunction during choice anticipation in schizophrenia.

    PubMed

    Quintana, Javier; Wong, Tiffany; Ortiz-Portillo, Elena; Marder, Stephen R; Mazziotta, John C

    2004-12-15

    The anterior cingulate cortex (ACGC) participates in selective attention, working memory (WM), anticipation, and behavioral monitoring. Subjects with schizophrenia exhibit deficits in these mechanisms during selective attention and WM tasks. However, ACGC dysfunctions have not been specifically investigated during behavioral anticipation, whose deficits may relate to salient schizophrenic features such as foresight abnormalities and impaired social functioning and behavior. We thus studied ACGC function in relation to two aspects of WM, remembering information and anticipating responses, in control and schizophrenic subjects. We measured brain activation in eight subjects with schizophrenia and eight healthy volunteers using functional magnetic resonance imaging. All subjects performed stimulus-response delay tasks with color dots or facial expression diagrams as cues and either 50% or 100% response predictability, which emphasized demands on remembering the cues or anticipating the response for correct performance, respectively. We found a double dissociation of ACGC activation between subject groups and task type. In controls, the ACGC became intensely activated during response anticipation (more extensively and bilaterally when the cues were colors than when they were facial diagrams) but remained at resting activity levels during remembering. In schizophrenic patients, significant ACGC activation was seen only when remembering a percept (more extensively and bilaterally when it was a facial diagram than when it was a color) but not when anticipating a response. These results reveal an ACGC dysfunction during choice anticipation in schizophrenia and suggest that it might underlie the foresight deficits seen in schizophrenic patients.

  9. Coordinated Interaction between Hippocampal Sharp-Wave Ripples and Anterior Cingulate Unit Activity

    PubMed Central

    2016-01-01

    Hippocampal–cortical interaction during sleep promotes transformation of memory for long-term storage in the cortex. In particular, hippocampal sharp-wave ripple-associated neural activation is important for this transformation during slow-wave sleep. The anterior cingulate cortex (ACC) has been shown to be crucial for expression and likely storage of long-term memory. However, little is known about how ACC activity is influenced by hippocampal ripple activity during sleep. We report here about coordinated interactions between hippocampal ripple activity and ACC neural firings. By recording from the ACC and hippocampal CA1 simultaneously in mice, we found that almost all ACC neurons showed increased activity before hippocampal ripple activity; moreover, a subpopulation (17%) displayed a further activation immediately after ripple activity. This postripple activation of ACC neurons correlated positively with ripple amplitude, and the same neurons were excited upon electrical stimulation of the CA1. Interestingly, the preripple activation of ACC neurons was present during the sleep state, but not during the awake state. These results suggest intimate interactions between hippocampal sharp-wave ripples and ACC neurons in a state-dependent manner. Importantly, sharp-wave ripples and associated activation appear to regulate activity of a small population of ACC neurons, a process that may play a critical role in memory consolidation. SIGNIFICANCE STATEMENT The hippocampus communicates with the cortex for memory transformation. Memories of previous experiences become less dependent on the hippocampus and increasingly dependent on cortical areas, such as the anterior cingulate cortex (ACC). However, little evidence is available to directly support this hippocampus-to-cortex information transduction hypothesis of memory consolidation. Here we show that a subpopulation of ACC neurons becomes active just after hippocampal ripple activity, and that electrical stimulation of

  10. Nicotine-induced activation of caudate and anterior cingulate cortex in response to errors in schizophrenia.

    PubMed

    Moran, Lauren V; Stoeckel, Luke E; Wang, Kristina; Caine, Carolyn E; Villafuerte, Rosemond; Calderon, Vanessa; Baker, Justin T; Ongur, Dost; Janes, Amy C; Evins, A Eden; Pizzagalli, Diego A

    2018-03-01

    Nicotine improves attention and processing speed in individuals with schizophrenia. Few studies have investigated the effects of nicotine on cognitive control. Prior functional magnetic resonance imaging (fMRI) research demonstrates blunted activation of dorsal anterior cingulate cortex (dACC) and rostral anterior cingulate cortex (rACC) in response to error and decreased post-error slowing in schizophrenia. Participants with schizophrenia (n = 13) and healthy controls (n = 12) participated in a randomized, placebo-controlled, crossover study of the effects of transdermal nicotine on cognitive control. For each drug condition, participants underwent fMRI while performing the stop signal task where participants attempt to inhibit prepotent responses to "go (motor activation)" signals when an occasional "stop (motor inhibition)" signal appears. Error processing was evaluated by comparing "stop error" trials (failed response inhibition) to "go" trials. Resting-state fMRI data were collected prior to the task. Participants with schizophrenia had increased nicotine-induced activation of right caudate in response to errors compared to controls (DRUG × GROUP effect: p corrected  < 0.05). Both groups had significant nicotine-induced activation of dACC and rACC in response to errors. Using right caudate activation to errors as a seed for resting-state functional connectivity analysis, relative to controls, participants with schizophrenia had significantly decreased connectivity between the right caudate and dACC/bilateral dorsolateral prefrontal cortices. In sum, we replicated prior findings of decreased post-error slowing in schizophrenia and found that nicotine was associated with more adaptive (i.e., increased) post-error reaction time (RT). This proof-of-concept pilot study suggests a role for nicotinic agents in targeting cognitive control deficits in schizophrenia.

  11. Abnormalities in the Anterior Cingulate Cortex Associated with Attentional and Inhibitory Control Deficits: A Neurophysiological Study on Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Chan, Agnes S.; Han, Yvonne M. Y.; Leung, Winnie Wing-man; Leung, Connie; Wong, Virginia C. N.; Cheung, Mei-chun

    2011-01-01

    Previous studies showed that the anterior cingulate cortex (ACC) is activated when individuals engage in attention and inhibitory control tasks. The present study examined whether ACC activity is associated with behavioral performance of the two tasks. Twenty normal and 20 children with autism spectrum disorders (ASDs) were subjected to…

  12. A functional dissociation of conflict processing within anterior cingulate cortex.

    PubMed

    Kim, Chobok; Kroger, James K; Kim, Jeounghoon

    2011-02-01

    Goal-directed behavior requires cognitive control to regulate the occurrence of conflict. The dorsal anterior cingulate cortex (dACC) has been suggested in detecting response conflict during various conflict tasks. Recent findings, however, have indicated not only that two distinct subregions of dACC are involved in conflict processing but also that the conflict occurs at both perceptual and response levels. In this study, we sought to examine whether perceptual and response conflicts are functionally dissociated in dACC. Thirteen healthy subjects performed a version of the Stroop task during functional magnetic resonance imaging (fMRI) scanning. We identified a functional dissociation of the caudal dACC (cdACC) and the rostral dACC (rdACC) in their responses to different sources of conflict. The cdACC was selectively engaged in perceptual conflict whereas the rdACC was more active in response conflict. Further, the dorsolateral prefrontal cortex (DLPFC) was coactivated not with cdACC but with rdACC. We suggest that cdACC plays an important role in regulative processing of perceptual conflict whereas rdACC is involved in detecting response conflict. Copyright © 2010 Wiley-Liss, Inc.

  13. Neuronal encoding of subjective value in dorsal and ventral anterior cingulate cortex

    PubMed Central

    Cai, Xinying; Padoa-Schioppa, Camillo

    2012-01-01

    We examined the activity of individual cells in the primate anterior cingulate cortex during an economic choice task. In the experiments, monkeys chose between different juices offered in variables amounts and subjective values were inferred from the animals’ choices. We analyzed neuronal firing rates in relation to a large number of behaviorally relevant variables. We report three main results. First, there were robust differences between the dorsal bank (ACCd) and the ventral bank (ACCv) of the cingulate sulcus. Specifically, neurons in ACCd but not in ACCv were modulated by the movement direction. Furthermore, neurons in ACCd were most active prior to movement initiation whereas neurons in ACCv were most active after juice delivery. Second, neurons in both areas encoded the identity and the subjective value of the juice chosen by the animal. In contrast, neither region encoded the value of individual offers. Third, the population of value-encoding neurons in both ACCd and ACCv underwent range adaptation. With respect to economic choice, it is interesting to compare these areas with the orbitofrontal cortex (OFC), previously examined. While neurons in OFC encoded both pre-decision and post-decision variables, neurons in ACCd and ACCv only encoded post-decision variables. Moreover, the encoding of chosen value in ACCd and ACCv trailed that found in OFC. These observations indicate that economic decisions (value comparisons) take place upstream of ACCd and ACCv. The coexistence of choice outcome and movement signals in ACCd suggests that this area constitutes a getaway through which the choice system informs motor systems. PMID:22423100

  14. Reduced Activation in Right Lateral Prefrontal Cortex and Anterior Cingulate Gyrus in Medication-Naive Adolescents with Attention Deficit Hyperactivity Disorder during Time Discrimination

    ERIC Educational Resources Information Center

    Smith, Anna B.; Taylor, Eric; Brammer, Michael; Halari, Rozmin; Rubia, Katya

    2008-01-01

    Background: Patients with attention deficit hyperactivity disorder (ADHD) under-perform when discriminating between durations differing by several hundred milliseconds. This function involves right prefrontal and anterior cingulate (AC) brain regions, which are structurally and functionally compromised in this patient group during executive tasks.…

  15. Amitriptyline reduces rectal pain related activation of the anterior cingulate cortex in patients with irritable bowel syndrome.

    PubMed

    Morgan, V; Pickens, D; Gautam, S; Kessler, R; Mertz, H

    2005-05-01

    Irritable bowel syndrome (IBS) is a disorder of intestinal hypersensitivity and altered motility, exacerbated by stress. Functional magnetic resonance imaging (fMRI) during painful rectal distension in IBS has demonstrated greater activation of the anterior cingulate cortex (ACC), an area relevant to pain and emotions. Tricyclic antidepressants are effective for IBS. The aim of this study was to determine if low dose amitriptyline reduces ACC activation during painful rectal distension in IBS to confer clinical benefits. Secondary aims were to identify other brain regions altered by amitriptyline, and to determine if reductions in cerebral activation are greater during mental stress. Nineteen women with painful IBS were randomised to amitriptyline 50 mg or placebo for one month and then crossed over to the alternate treatment after washout. Cerebral activation during rectal distension was compared between placebo and amitriptyline groups by fMRI. Distensions were performed alternately during auditory stress and relaxing music. Rectal pain induced significant activation of the perigenual ACC, right insula, and right prefrontal cortex. Amitriptyline was associated with reduced pain related cerebral activations in the perigenual ACC and the left posterior parietal cortex, but only during stress. The tricyclic antidepressant amitriptyline reduces brain activation during pain in the perigenual (limbic) anterior cingulated cortex and parietal association cortex. These reductions are only seen during stress. Amitriptyline is likely to work in the central nervous system rather than peripherally to blunt pain and other symptoms exacerbated by stress in IBS.

  16. Ultrastructural Alterations of Von Economo Neurons in the Anterior Cingulate Cortex in Schizophrenia.

    PubMed

    Krause, Martin; Theiss, Carsten; Brüne, Martin

    2017-11-01

    Von Economo neurons (VENs) are large bipolar projection neurons mainly located in layer Vb of anterior cingulate cortex (ACC) and anterior insula. Both regions are involved in cognitive and emotional procedures and are functionally and anatomically altered in schizophrenia. Although the detailed function of VEN remains unclear, it has been suggested that these neurons are involved in the pathomechanism of schizophrenia. Here, we were interested in the question whether or not the VEN of schizophrenia patients would show abnormalities at the ultrastructural level. Accordingly, we examined the amount of lysosomal aggregations of the VEN in post-mortem tissue of patients with schizophrenia, bipolar disorder and psychologically unaffected individuals, and compared the findings with aggregations in adjacent pyramidal cells in layer Vb of the ACC. VEN of patients with schizophrenia, and to a lesser degree individuals with bipolar disorder contained significantly more lysosomal aggregations compared with tissue from unaffected controls. Specifically, the larger amount of lysosomal aggregations in schizophrenia seemed to be selective for VEN, with no differences occurring in pyramidal cells. These findings may indicate that the VEN of schizophrenia patients are selectively vulnerable to neuronal damage. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:2017-2024, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. 7 Tesla magnetic resonance imaging of caudal anterior cingulate and posterior cingulate cortex atrophy in patients with trigeminal neuralgia.

    PubMed

    Moon, Hyeong Cheol; Park, Chan-A; Jeon, Yeong-Jae; You, Soon Tae; Baek, Hyun Man; Lee, Youn Joo; Cho, Chul Beom; Cheong, Chae Joon; Park, Young Seok

    2018-05-16

    The cingulate cortex (CC) is a brain region that plays a key role in pain processing, but CC abnormalities are not unclear in patients with trigeminal neuralgia (TN). The purpose of this study was to determine the central causal mechanisms of TN and the surrounding brain structure in healthy controls and patients with TN using 7 Tesla (T) magnetic resonance imaging (MRI). Whole-brain parcellation in gray matter volume and thickness was assessed in 15 patients with TN and 16 healthy controls matched for sex, age, and regional variability using T1-weighted imaging. Regions of interest (ROIs) were measured in rostral anterior CC (rACC), caudal anterior CC (cACC) and posterior CC (PCC). We also investigated associations between gray matter volume or thickness and clinical symptoms, such as pain duration, Barrow Neurologic Institute (BNI) scores, offender vessel, and medications, in patients with TN. The cACC and PCC exhibited gray matter atrophy and reduced thickness between the TN and control groups. However, the rACC did not. Cortical volumes were negatively correlated with pain duration in transverse and inferior temporal areas, and thickness was also negatively correlated with pain duration in superior frontal and parietal areas. The cACC and PCC gray matter atrophy occurred in the patients with TN, and pain duration was associated with frontal, parietal, and temporal cortical regions. These results suggest that the cACC, PCC but not the rACC are associated with central pain mechanisms in TN. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Brain-heart coupling at the P300 latency is linked to anterior cingulate cortex and insula--a cardio-electroencephalographic covariance tracing study.

    PubMed

    Panitz, Christian; Wacker, Jan; Stemmler, Gerhard; Mueller, Erik M

    2013-09-01

    Prior work on the coupling of cortical and cardiac responses to feedback demonstrated that feedback-evoked single-trial EEG magnitudes 300 ms post-stimulus predict the degree of subsequent cardiac acceleration. The main goal of the current study was to explore the neural sources of this phenomenon using (a) independent component analysis in conjunction with dipole fitting and (b) low resolution electromagnetic tomography (LORETA) in N=14 participants who performed a gambling task with feedback presented after each trial. It was shown that independent components localized near anterior cingulate cortex produced robust within-subjects correlations with feedback-evoked heart-period, suggesting that anterior cingulate cortex activity 300ms after feedback presentation predicts the strength of subsequent cardiac acceleration. Moreover, interindividual differences in evoked left insular cortex LORETA-estimated activity at around 300ms moderated within-subjects EEG-heart period correlations. These results suggest that key regions of central autonomic control are involved in cortico-cardiac coupling evoked by feedback stimuli. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The role of the mesolimbic dopamine system in the formation of blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex during high-frequency stimulation of the rat perforant pathway.

    PubMed

    Helbing, Cornelia; Brocka, Marta; Scherf, Thomas; Lippert, Michael T; Angenstein, Frank

    2016-12-01

    Several human functional magnetic resonance imaging studies point to an activation of the mesolimbic dopamine system during reward, addiction and learning. We previously found activation of the mesolimbic system in response to continuous but not to discontinuous perforant pathway stimulation in an experimental model that we now used to investigate the role of dopamine release for the formation of functional magnetic resonance imaging responses. The two stimulation protocols elicited blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Inhibition of dopamine D 1/5 receptors abolished the formation of functional magnetic resonance imaging responses in the medial prefrontal/anterior cingulate cortex during continuous but not during discontinuous pulse stimulations, i.e. only when the mesolimbic system was activated. Direct electrical or optogenetic stimulation of the ventral tegmental area caused strong dopamine release but only electrical stimulation triggered significant blood-oxygen level-dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. These functional magnetic resonance imaging responses were not affected by the D 1/5 receptor antagonist SCH23390 but reduced by the N-methyl-D-aspartate receptor antagonist MK801. Therefore, glutamatergic ventral tegmental area neurons are already sufficient to trigger blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Although dopamine release alone does not affect blood-oxygen-level dependent responses it can act as a switch, permitting the formation of blood-oxygen-level dependent responses. © The Author(s) 2015.

  20. Lateral supraorbital approach to ipsilateral PCA-P1 and ICA-PCoA aneurysms

    PubMed Central

    Goehre, Felix; Jahromi, Behnam Rezai; Elsharkawy, Ahmed; Lehto, Hanna; Shekhtman, Oleg; Andrade-Barazarte, Hugo; Munoz, Francisco; Hijazy, Ferzat; Makhkamov, Makhkam; Hernesniemi, Juha

    2015-01-01

    Background: Aneurysms of the posterior cerebral artery (PCA) are rare and often associated with anterior circulation aneurysms. The lateral supraorbital approach allows for a very fast and safe approach to the ipsilateral lesions Circle of Willis. A technical note on the successful clip occlusion of two aneurysms in the anterior and posterior Circle of Willis via this less invasive approach has not been published before. The objective of this technical note is to describe the simultaneous microsurgical clip occlusion of an ipsilateral PCA-P1 and an internal carotid artery - posterior communicating artery (ICA-PCoA) aneurysm via the lateral supraorbital approach. Case Description: The authors present a technical report of successful clip occlusions of ipsilateral located PCA-P1 and ICA-PCoA aneurysms. A 59-year-old female patient was diagnosed with a PCA-P1 and an ipsilateral ICA-PCoA aneurysm by computed tomography angiography (CTA) after an ischemic stroke secondary to a contralateral ICA dissection. The patient underwent microsurgical clipping after a lateral supraorbital craniotomy. The intraoperative indocyanine green (ICG) videoangiography and the postoperative CTA showed a complete occlusion of both aneurysms; the parent vessels (ICA and PCA) were patent. The patient presents postoperative no new neurologic deficit. Conclusion: The lateral supraorbital approach is suitable for the simultaneous microsurgical treatment of proximal anterior circulation and ipsilateral proximal PCA aneurysms. Compared to endovascular treatment, direct visual control of brainstem perforators is possible. PMID:26060600

  1. Lateral supraorbital approach to ipsilateral PCA-P1 and ICA-PCoA aneurysms.

    PubMed

    Goehre, Felix; Jahromi, Behnam Rezai; Elsharkawy, Ahmed; Lehto, Hanna; Shekhtman, Oleg; Andrade-Barazarte, Hugo; Munoz, Francisco; Hijazy, Ferzat; Makhkamov, Makhkam; Hernesniemi, Juha

    2015-01-01

    Aneurysms of the posterior cerebral artery (PCA) are rare and often associated with anterior circulation aneurysms. The lateral supraorbital approach allows for a very fast and safe approach to the ipsilateral lesions Circle of Willis. A technical note on the successful clip occlusion of two aneurysms in the anterior and posterior Circle of Willis via this less invasive approach has not been published before. The objective of this technical note is to describe the simultaneous microsurgical clip occlusion of an ipsilateral PCA-P1 and an internal carotid artery - posterior communicating artery (ICA-PCoA) aneurysm via the lateral supraorbital approach. The authors present a technical report of successful clip occlusions of ipsilateral located PCA-P1 and ICA-PCoA aneurysms. A 59-year-old female patient was diagnosed with a PCA-P1 and an ipsilateral ICA-PCoA aneurysm by computed tomography angiography (CTA) after an ischemic stroke secondary to a contralateral ICA dissection. The patient underwent microsurgical clipping after a lateral supraorbital craniotomy. The intraoperative indocyanine green (ICG) videoangiography and the postoperative CTA showed a complete occlusion of both aneurysms; the parent vessels (ICA and PCA) were patent. The patient presents postoperative no new neurologic deficit. The lateral supraorbital approach is suitable for the simultaneous microsurgical treatment of proximal anterior circulation and ipsilateral proximal PCA aneurysms. Compared to endovascular treatment, direct visual control of brainstem perforators is possible.

  2. Macro and micro structures in the dorsal anterior cingulate cortex contribute to individual differences in self-monitoring.

    PubMed

    Yang, Junyi; Tian, Xue; Wei, Dongtao; Liu, Huijuan; Zhang, Qinglin; Wang, Kangcheng; Chen, Qunlin; Qiu, Jiang

    2016-06-01

    Individual differences in self-monitoring, which are the capability to adjust behavior to adapt to social situations, influence a wide range of social behaviors. However, understanding of focal differences in brain structures related to individual self-monitoring is minimal, particularly when micro and macro structures are considered simultaneously. The present study investigates the relationship between self-monitoring and brain structure in a relatively large sample of young adults. Voxel-based morphometry (VBM) revealed a significant positive correlation between self-monitoring and gray matter volume in the dorsal cingulate anterior cortex (dACC), dorsal lateral prefrontal cortex (DLPFC), and bilateral ventral striatum (VS). Further analysis revealed a significant negative correlation between self-monitoring and white matter (WM) integrity, as indexed by fractional anisotropy (FA) in the anterior cingulum (ACG) bundle. Moreover, there was a significant positive correlation between self-monitoring and mean radius diffusion (RD). These results shed light on the structural neural basis of variation in self-monitoring.

  3. Anterior Cingulate Engagement in a Foraging Context Reflects Choice Difficulty, Not Foraging Value

    PubMed Central

    Shenhav, Amitai; Straccia, Mark A.; Cohen, Jonathan D.; Botvinick, Matthew M.

    2014-01-01

    Previous theories predict that human dorsal anterior cingulate (dACC) should respond to decision difficulty. An alternative theory has been recently advanced which proposes that dACC evolved to represent the value of “non-default,” foraging behavior, calling into question its role in choice difficulty. However, this new theory does not take into account that choosing whether or not to pursue foraging-like behavior can also be more difficult than simply resorting to a “default.” The results of two neuroimaging experiments show that dACC is only associated with foraging value when foraging value is confounded with choice difficulty; when the two are dissociated, dACC engagement is only explained by choice difficulty, and not the value of foraging. In addition to refuting this new theory, our studies help to formalize a fundamental connection between choice difficulty and foraging-like decisions, while also prescribing a solution for a common pitfall in studies of reward-based decision making. PMID:25064851

  4. Computational Models of Anterior Cingulate Cortex: At the Crossroads between Prediction and Effort.

    PubMed

    Vassena, Eliana; Holroyd, Clay B; Alexander, William H

    2017-01-01

    In the last two decades the anterior cingulate cortex (ACC) has become one of the most investigated areas of the brain. Extensive neuroimaging evidence suggests countless functions for this region, ranging from conflict and error coding, to social cognition, pain and effortful control. In response to this burgeoning amount of data, a proliferation of computational models has tried to characterize the neurocognitive architecture of ACC. Early seminal models provided a computational explanation for a relatively circumscribed set of empirical findings, mainly accounting for EEG and fMRI evidence. More recent models have focused on ACC's contribution to effortful control. In parallel to these developments, several proposals attempted to explain within a single computational framework a wider variety of empirical findings that span different cognitive processes and experimental modalities. Here we critically evaluate these modeling attempts, highlighting the continued need to reconcile the array of disparate ACC observations within a coherent, unifying framework.

  5. Theta–gamma coordination between anterior cingulate and prefrontal cortex indexes correct attention shifts

    PubMed Central

    Voloh, Benjamin; Valiante, Taufik A.; Everling, Stefan; Womelsdorf, Thilo

    2015-01-01

    Anterior cingulate and lateral prefrontal cortex (ACC/PFC) are believed to coordinate activity to flexibly prioritize the processing of goal-relevant over irrelevant information. This between-area coordination may be realized by common low-frequency excitability changes synchronizing segregated high-frequency activations. We tested this coordination hypothesis by recording in macaque ACC/PFC during the covert utilization of attention cues. We found robust increases of 5–10 Hz (theta) to 35–55 Hz (gamma) phase–amplitude correlation between ACC and PFC during successful attention shifts but not before errors. Cortical sites providing theta phases (i) showed a prominent cue-induced phase reset, (ii) were more likely in ACC than PFC, and (iii) hosted neurons with burst firing events that synchronized to distant gamma activity. These findings suggest that interareal theta–gamma correlations could follow mechanistically from a cue-triggered reactivation of rule memory that synchronizes theta across ACC/PFC. PMID:26100868

  6. Effects of ipsilateral anterior thigh soft tissue stretching on passive unilateral straight-leg raise.

    PubMed

    Clark, S; Christiansen, A; Hellman, D F; Hugunin, J W; Hurst, K M

    1999-01-01

    Randomized 3-group pretest-posttest with blind assessment of outcome. The purpose of this study was to examine the effect of sagittal plane hold-relax exercise applied to the ipsilateral anterior thigh, and prone positioning on passive unilateral straight-leg raise measurements. Straight-leg raising has been viewed as a measurement for hamstring muscle length, but literature suggests that other structures may affect this measurement. Sixty subjects (45 men, 15 women) qualified for inclusion into the study based on a straight-leg raise measurement of < or = 65 degrees. Subjects were randomly assigned to one of three groups: control, static stretch, or sagittal plane hold-relax exercise. Pretest and posttest straight-leg raise measurements of the right lower extremity were performed for each subject. A 1-way ANOVA of the change scores showed a significant difference between groups. A Tukey post hoc analysis of the change scores showed that both treatment groups' means differed significantly from the control group and from each other, with the sagittal plane hold-relax group exhibiting the largest change (mean of 7.8 degrees +/- 2.8 degrees). The results of this study show that sagittal plane hold-relax exercise and passive prone results of this study show that sagittal plane hold-relax and passive prone positioning can significantly increase straight-leg raise range of motion, however the sagittal plane hold-relax stretching of the anterior thigh is more effective than passive prone positioning.

  7. Anterior cingulate cortex and intuitive bias detection during number conservation.

    PubMed

    Simon, Grégory; Lubin, Amélie; Houdé, Olivier; De Neys, Wim

    2015-01-01

    Children's number conservation is often biased by misleading intuitions but the precise nature of these conservation errors is not clear. A key question is whether children detect that their erroneous conservation judgment is unwarranted. The present study reanalyzed available fMRI data to test the implication of the anterior cingulate cortex (ACC) in this detection process. We extracted mean BOLD (Blood Oxygen Level Dependent) signal values in an independently defined ACC region of interest (ROI) during presentation of classic and control number conservation problems. In classic trials, an intuitively cued visuospatial response conflicted with the correct conservation response, whereas this conflict was not present in the control trials. Results showed that ACC activation increased when solving the classic conservation problems. Critically, this increase did not differ between participants who solved the classic problems correctly (i.e., so-called conservers) and incorrectly (i.e., so-called non-conservers). Additional control analyses of inferior and lateral prefrontal ROIs showed that the group of conservers did show stronger activation in the right inferior frontal gyrus and right lateral middle frontal gyrus. In line with recent behavioral findings, these data lend credence to the hypothesis that even non-conserving children detect the biased nature of their judgment. The key difference between conservers and non-conservers seems to lie in a differential recruitment of inferior and lateral prefrontal regions associated with inhibitory control.

  8. The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans.

    PubMed

    Allman, John M; Tetreault, Nicole A; Hakeem, Atiya Y; Manaye, Kebreten F; Semendeferi, Katerina; Erwin, Joseph M; Park, Soyoung; Goubert, Virginie; Hof, Patrick R

    2010-06-01

    The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex in great apes and humans, but not other primates. We performed stereological counts of the VENs in FI and LA (limbic anterior, a component of anterior cingulate cortex) in great apes and in humans. The VENs are more numerous in humans than in apes, although one gorilla approached the lower end of the human range. We also examined the ontological development of the VENs in FI and LA in humans. The VENs first appear in small numbers in the 36th week post-conception, are rare at birth, and increase in number during the first 8 months after birth. There are significantly more VENs in the right hemisphere than in the left in FI and LA in postnatal brains of apes and humans. This asymmetry in VEN numbers may be related to asymmetries in the autonomic nervous system. The activity of the inferior anterior insula, which contains FI, is related to physiological changes in the body, decision-making, error recognition, and awareness. The VENs appear to be projection neurons, although their targets are unknown. We made a preliminary study of the connections of FI cortex based on diffusion tensor imaging in the brain of a gorilla. The VEN-containing regions connect to the frontal pole as well as to other parts of frontal and insular cortex, the septum, and the amygdala. It is likely that the VENs in FI are projecting to some or all of these structures and relaying information related to autonomic control, decision-making, or awareness. The VENs selectively express the bombesin peptides neuromedin B (NMB) and gastrin releasing peptide (GRP) which are also expressed in another population of closely related neurons, the fork cells. NMB and GRP signal satiety. The genes for NMB and GRP are expressed selectively in small populations of neurons in the insular cortex in mice. These populations may be related to the VEN and fork cells and may be involved in the regulation

  9. Encoding of Vicarious Reward Prediction in Anterior Cingulate Cortex and Relationship with Trait Empathy

    PubMed Central

    Apps, Matthew A.J.; Roiser, Jonathan P.; Viding, Essi

    2015-01-01

    Empathy—the capacity to understand and resonate with the experiences of others—can depend on the ability to predict when others are likely to receive rewards. However, although a plethora of research has examined the neural basis of predictions about the likelihood of receiving rewards ourselves, very little is known about the mechanisms that underpin variability in vicarious reward prediction. Human neuroimaging and nonhuman primate studies suggest that a subregion of the anterior cingulate cortex in the gyrus (ACCg) is engaged when others receive rewards. Does the ACCg show specialization for processing predictions about others' rewards and not one's own and does this specialization vary with empathic abilities? We examined hemodynamic responses in the human brain time-locked to cues that were predictive of a high or low probability of a reward either for the subject themselves or another person. We found that the ACCg robustly signaled the likelihood of a reward being delivered to another. In addition, ACCg response significantly covaried with trait emotion contagion, a necessary foundation for empathizing with other individuals. In individuals high in emotion contagion, the ACCg was specialized for processing others' rewards exclusively, but for those low in emotion contagion, this region also responded to information about the subject's own rewards. Our results are the first to show that the ACCg signals probabilistic predictions about rewards for other people and that the substantial individual variability in the degree to which the ACCg is specialized for processing others' rewards is related to trait empathy. SIGNIFICANCE STATEMENT Successfully cooperating, competing, or empathizing with others can depend on our ability to predict when others are going to get something rewarding. Although many studies have examined how the brain processes rewards we will get ourselves, very little is known about vicarious reward processing. Here, we show that a

  10. Glutamine and Glutamate Levels in Children and Adolescents with Bipolar Disorder: A 4.0-T Proton Magnetic Resonance Spectroscopy Study of the Anterior Cingulate Cortex

    ERIC Educational Resources Information Center

    Moore, Constance M.; Frazier, Jean A.; Glod, Carol A.; Breeze, Janis L.; Dieterich, Megan; Finn, Chelsea T.; deB. Frederick, Blaise; Renshaw, Perry F.

    2007-01-01

    Objective: The purpose of this study was to use proton magnetic resonance spectroscopy, at 4.0 T, to explore the glutamine and glutamate levels in the anterior cingulate cortex of children and adolescents with bipolar disorder (BPD; medicated and unmedicated) and healthy comparison subjects (HCSs). We hypothesized that unmedicated children with…

  11. Dissociating medial frontal and posterior cingulate activity during self-reflection.

    PubMed

    Johnson, Marcia K; Raye, Carol L; Mitchell, Karen J; Touryan, Sharon R; Greene, Erich J; Nolen-Hoeksema, Susan

    2006-06-01

    Motivationally significant agendas guide perception, thought and behaviour, helping one to define a 'self' and to regulate interactions with the environment. To investigate neural correlates of thinking about such agendas, we asked participants to think about their hopes and aspirations (promotion focus) or their duties and obligations (prevention focus) during functional magnetic resonance imaging and compared these self-reflection conditions with a distraction condition in which participants thought about non-self-relevant items. Self-reflection resulted in greater activity than distraction in dorsomedial frontal/anterior cingulate cortex and posterior cingulate cortex/precuneus, consistent with previous findings of activity in these areas during self-relevant thought. For additional medial areas, we report new evidence of a double dissociation of function between medial prefrontal/anterior cingulate cortex, which showed relatively greater activity to thinking about hopes and aspirations, and posterior cingulate cortex/precuneus, which showed relatively greater activity to thinking about duties and obligations. One possibility is that activity in medial prefrontal cortex is associated with instrumental or agentic self-reflection, whereas posterior medial cortex is associated with experiential self-reflection. Another, not necessarily mutually exclusive, possibility is that medial prefrontal cortex is associated with a more inward-directed focus, while posterior cingulate is associated with a more outward-directed, social or contextual focus.

  12. Dissociating medial frontal and posterior cingulate activity during self-reflection

    PubMed Central

    Johnson, Marcia K.; Raye, Carol L.; Mitchell, Karen J.; Touryan, Sharon R.; Greene, Erich J.; Nolen-Hoeksema, Susan

    2006-01-01

    Motivationally significant agendas guide perception, thought and behaviour, helping one to define a ‘self’ and to regulate interactions with the environment. To investigate neural correlates of thinking about such agendas, we asked participants to think about their hopes and aspirations (promotion focus) or their duties and obligations (prevention focus) during functional magnetic resonance imaging and compared these self-reflection conditions with a distraction condition in which participants thought about non-self-relevant items. Self-reflection resulted in greater activity than distraction in dorsomedial frontal/anterior cingulate cortex and posterior cingulate cortex/precuneus, consistent with previous findings of activity in these areas during self-relevant thought. For additional medial areas, we report new evidence of a double dissociation of function between medial prefrontal/anterior cingulate cortex, which showed relatively greater activity to thinking about hopes and aspirations, and posterior cingulate cortex/precuneus, which showed relatively greater activity to thinking about duties and obligations. One possibility is that activity in medial prefrontal cortex is associated with instrumental or agentic self-reflection, whereas posterior medial cortex is associated with experiential self-reflection. Another, not necessarily mutually exclusive, possibility is that medial prefrontal cortex is associated with a more inward-directed focus, while posterior cingulate is associated with a more outward-directed, social or contextual focus. PMID:18574518

  13. Dissociating response conflict and error likelihood in anterior cingulate cortex.

    PubMed

    Yeung, Nick; Nieuwenhuis, Sander

    2009-11-18

    Neuroimaging studies consistently report activity in anterior cingulate cortex (ACC) in conditions of high cognitive demand, leading to the view that ACC plays a crucial role in the control of cognitive processes. According to one prominent theory, the sensitivity of ACC to task difficulty reflects its role in monitoring for the occurrence of competition, or "conflict," between responses to signal the need for increased cognitive control. However, a contrasting theory proposes that ACC is the recipient rather than source of monitoring signals, and that ACC activity observed in relation to task demand reflects the role of this region in learning about the likelihood of errors. Response conflict and error likelihood are typically confounded, making the theories difficult to distinguish empirically. The present research therefore used detailed computational simulations to derive contrasting predictions regarding ACC activity and error rate as a function of response speed. The simulations demonstrated a clear dissociation between conflict and error likelihood: fast response trials are associated with low conflict but high error likelihood, whereas slow response trials show the opposite pattern. Using the N2 component as an index of ACC activity, an EEG study demonstrated that when conflict and error likelihood are dissociated in this way, ACC activity tracks conflict and is negatively correlated with error likelihood. These findings support the conflict-monitoring theory and suggest that, in speeded decision tasks, ACC activity reflects current task demands rather than the retrospective coding of past performance.

  14. Differentiating a network of executive attention: LORETA neurofeedback in anterior cingulate and dorsolateral prefrontal cortices.

    PubMed

    Cannon, Rex; Congedo, Marco; Lubar, Joel; Hutchens, Teresa

    2009-01-01

    This study examines the differential effects of space-specific neuro-operant learning, utilizing low-resolution electromagnetic tomographic (LORETA) neurofeedback in three regions of training (ROTs), namely, the anterior cingulate gyrus (AC) and right and left dorsolateral prefrontal cortices (RPFC and LPFC respectively). This study was conducted with 14 nonclinical students with a mean age of 22. We utilized electrophysiological measurements and subtests of the WAIS-III for premeasures and postmeasures. The data indicate that the AC shares a significant association with the RPFC and LPFC; however, each of the ROTs exhibits different cortical effects in all frequencies when trained exclusively. LORETA neurofeedback (LNFB) appears to enhance the functioning and strengthening of networks of cortical units physiologically related to each ROT; moreover, significant changes are mapped for each frequency domain, showing the associations within this possible attentional network.

  15. The dorsal anterior cingulate cortex is selective for pain: Results from large-scale reverse inference

    PubMed Central

    Lieberman, Matthew D.; Eisenberger, Naomi I.

    2015-01-01

    Dorsal anterior cingulate cortex (dACC) activation is commonly observed in studies of pain, executive control, conflict monitoring, and salience processing, making it difficult to interpret the dACC’s specific psychological function. Using Neurosynth, an automated brainmapping database [of over 10,000 functional MRI (fMRI) studies], we performed quantitative reverse inference analyses to explore the best general psychological account of the dACC function P(Ψ process|dACC activity). Results clearly indicated that the best psychological description of dACC function was related to pain processing—not executive, conflict, or salience processing. We conclude by considering that physical pain may be an instance of a broader class of survival-relevant goals monitored by the dACC, in contrast to more arbitrary temporary goals, which may be monitored by the supplementary motor area. PMID:26582792

  16. Habitual action video game players display increased cortical thickness in the dorsal anterior cingulate cortex.

    PubMed

    Benady-Chorney, Jessica; Yau, Yvonne; Zeighami, Yashar; Bohbot, Veronique D; West, Greg L

    2018-03-21

    Action video game players (aVGPs) display increased performance in attention-based tasks and enhanced procedural motor learning. In parallel, the anterior cingulate cortex (ACC) is centrally implicated in specific types of reward-based learning and attentional control, the execution or inhibition of motor commands, and error detection. These processes are hypothesized to support aVGP in-game performance and enhanced learning though in-game feedback. We, therefore, tested the hypothesis that habitual aVGPs would display increased cortical thickness compared with nonvideo game players (nonVGPs). Results showed that the aVGP group (n=17) displayed significantly higher levels of cortical thickness specifically in the dorsal ACC compared with the nonVGP group (n=16). Results are discussed in the context of previous findings examining video game experience, attention/performance, and responses to affective components such as pain and fear.

  17. Voluntary modulation of anterior cingulate response to negative feedback.

    PubMed

    Shane, Matthew S; Weywadt, Christina R

    2014-01-01

    Anterior cingulate and medial frontal cortex (dACC/mFC) response to negative feedback represents the actions of a generalized error-monitoring system critical for the management of goal-directed behavior. Magnitude of dACC/mFC response to negative feedback correlates with levels of post-feedback behavioral change, and with proficiency of operant learning processes. With this in mind, it follows that an ability to alter dACC/mFC response to negative feedback may lead to representative changes in operant learning proficiency. To this end, the present study investigated the extent to which healthy individuals would show modulation of their dACC/mFC response when instructed to try to either maximize or minimize their neural response to the presentation of contingent negative feedback. Participants performed multiple runs of a standard time-estimation task, during which they received feedback regarding their ability to accurately estimate a one-second duration. On Watch runs, participants were simply instructed to try to estimate as closely as possible the one second duration. On Increase and Decrease runs, participants performed the same task, but were instructed to "try to increase [decrease] their brain's response every time they received negative feedback". Results indicated that participants showed changes in dACC/mFC response under these differing instructional conditions: dACC/mFC activity following negative feedback was higher in the Increase condition, and dACC activity trended lower in the Decrease condition, compared to the Watch condition. Moreover, dACC activity correlated with post-feedback performance adjustments, and these adjustments were highest in the Increase condition. Potential implications for neuromodulation and facilitated learning are discussed.

  18. Transient alcohol craving suppression by rTMS of dorsal anterior cingulate: an fMRI and LORETA EEG study.

    PubMed

    De Ridder, Dirk; Vanneste, Sven; Kovacs, Silvia; Sunaert, Stefan; Dom, Geert

    2011-05-27

    It has recently become clear that alcohol addiction might be related to a brain dysfunction, in which a genetic background and environmental factors shape brain mechanisms involved with alcohol consumption. Craving, a major component determining relapses in alcohol abuse has been linked to abnormal activity in the orbitofrontal cortex, dorsal anterior cingulated cortex (dACC) and amygdala. We report the results of a patient who underwent rTMS targeting the dACC using a double cone coil in an attempt to suppress very severe intractable alcohol craving. Functional imaging studies consisting of fMRI and resting state EEG were performed before rTMS, after successful rTMS and after unsuccessful rTMS with relapse. Craving was associated with EEG beta activity and connectivity between the dACC and PCC in the patient in comparison to a healthy population, which disappeared after successful rTMS. Cue induced worsening of craving pre-rTMS activated the ACC-vmPFC and PCC on fMRI, as well as the nucleus accumbens area, and lateral frontoparietal areas. The nucleus accumbens, ACC-vmPFC and PCC activation disappeared on fMRI following successful rTMS. Relapse was associated with recurrence of ACC and PCC EEG activity, but in gamma band, in comparison to a healthy population. On fMRI nucleus accumbens, ACC and PCC activation returned to the initial activation pattern. A pathophysiological approach is described to suppress alcohol craving temporarily by rTMS directed at the anterior cingulate. Linking functional imaging changes to craving intensity suggests this approach warrants further exploration. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Anterior cingulate taste activation predicts ad libitum intake of sweet and savory drinks in healthy, normal-weight men.

    PubMed

    Spetter, Maartje S; de Graaf, Cees; Viergever, Max A; Smeets, Paul A M

    2012-04-01

    After food consumption, the motivation to eat (wanting) decreases and associated brain reward responses change. Wanting-related brain responses and how these are affected by consumption of specific foods are ill documented. Moreover, the predictive value of food-induced brain responses for subsequent consumption has not been assessed. We aimed to determine the effects of consumption of sweet and savory foods on taste activation in the brain and to assess how far taste activation can predict subsequent ad libitum intake. Fifteen healthy men (age: 27 ± 2 y, BMI: 22.0 ± 1.5 kg/m2) participated in a randomized crossover trial. After a >3-h fast, participants were scanned with the use of functional MRI before and after consumption of a sweet or savory preload (0.35 L fruit or tomato juice) on two occasions. After the scans, the preload juice was consumed ad libitum. During scanning, participants tasted the juices and rated their pleasantness. Striatal taste activation decreased after juice consumption, independent of pleasantness. Sweet and savory taste activation were not differentially affected by consumption. Anterior cingulate taste activation predicted subsequent ad libitum intake of sweet (r = -0.78; P < 0.001(uncorrected)) as well as savory juice (r = -0.70; P < 0.001(uncorrected)). In conclusion, we showed how taste activation of brain reward areas changes following food consumption. These changes may be associated with the food's physiological relevance. Further, the results suggest that anterior cingulate taste activation reflects food-specific satiety. This extends our understanding of the representation of food specific-appetite in the brain and shows that neuroimaging may provide objective and more accurate measures of food motivation than self-report measures.

  20. Elevated Glutamatergic Compounds in Pregenual Anterior Cingulate in Pediatric Autism Spectrum Disorder Demonstrated by 1H MRS and 1H MRSI

    PubMed Central

    Bejjani, Anthony; O'Neill, Joseph; Kim, John A.; Frew, Andrew J.; Yee, Victor W.; Ly, Ronald; Kitchen, Christina; Salamon, Noriko; McCracken, James T.; Toga, Arthur W.; Alger, Jeffry R.; Levitt, Jennifer G.

    2012-01-01

    Recent research in autism spectrum disorder (ASD) has aroused interest in anterior cingulate cortex and in the neurometabolite glutamate. We report two studies of pregenual anterior cingulate cortex (pACC) in pediatric ASD. First, we acquired in vivo single-voxel proton magnetic resonance spectroscopy (1H MRS) in 8 children with ASD and 10 typically developing controls who were well matched for age, but with fewer males and higher IQ. In the ASD group in midline pACC, we found mean 17.7% elevation of glutamate + glutamine (Glx) (p<0.05) and 21.2% (p<0.001) decrement in creatine + phosphocreatine (Cr). We then performed a larger (26 subjects with ASD, 16 controls) follow-up study in samples now matched for age, gender, and IQ using proton magnetic resonance spectroscopic imaging (1H MRSI). Higher spatial resolution enabled bilateral pACC acquisition. Significant effects were restricted to right pACC where Glx (9.5%, p<0.05), Cr (6.7%, p<0.05), and N-acetyl-aspartate + N-acetyl-aspartyl-glutamate (10.2%, p<0.01) in the ASD sample were elevated above control. These two independent studies suggest hyperglutamatergia and other neurometabolic abnormalities in pACC in ASD, with possible right-lateralization. The hyperglutamatergic state may reflect an imbalance of excitation over inhibition in the brain as proposed in recent neurodevelopmental models of ASD. PMID:22848344

  1. Implications of Starvation-Induced Change in Right Dorsal Anterior Cingulate Volume in Anorexia Nervosa

    PubMed Central

    McCormick, Laurie M.; Keel, Pamela K.; Brumm, Michael C.; Bowers, Wayne; Swayze, Victor; Andersen, Arnold; Andreasen, Nancy

    2013-01-01

    Objective Converging evidence suggests a role for the anterior cingulate cortex (ACC) in the pathophysiology of anorexia nervosa (AN). This study sought to determine whether ACC volume was affected by starvation in active AN and, if so, whether this had any clinical significance. Method Eighteen patients with active AN and age- and gender-matched normal controls underwent magnetic resonance imaging (MRI). Sixteen patients (89%) with AN had intelligence quotients (IQ) testing at intake, 14 (78%) had repeat MRIs after weight normalization, and 10 (56%) had outcome data at 1-year post-hospitalization. Results Right dorsal ACC volume was significantly reduced in active AN patients versus controls and was correlated with lower performance IQ. While ACC normalization occurred with weight restoration, smaller change in right dorsal ACC volume prospectively predicted relapse after treatment. Conclusion Reduced right dorsal ACC volume during active AN relates to deficits in perceptual organization and conceptual reasoning. The degree of right dorsal ACC normalization during treatment is related to outcome. PMID:18473337

  2. Implications of starvation-induced change in right dorsal anterior cingulate volume in anorexia nervosa.

    PubMed

    McCormick, Laurie M; Keel, Pamela K; Brumm, Michael C; Bowers, Wayne; Swayze, Victor; Andersen, Arnold; Andreasen, Nancy

    2008-11-01

    Converging evidence suggests a role for the anterior cingulate cortex (ACC) in the pathophysiology of anorexia nervosa (AN). This study sought to determine whether ACC volume was affected by starvation in active AN and, if so, whether this had any clinical significance. Eighteen patients with active AN and age- and gender-matched normal controls underwent magnetic resonance imaging (MRI). Sixteen patients (89%) with AN had intelligence quotients (IQ) testing at intake, 14 (78%) had repeat MRIs after weight normalization, and 10 (56%) had outcome data at 1-year posthospitalization. Right dorsal ACC volume was significantly reduced in active AN patients versus controls and was correlated with lower performance IQ. While ACC normalization occurred with weight restoration, smaller change in right dorsal ACC volume prospectively predicted relapse after treatment. Reduced right dorsal ACC volume during active AN relates to deficits in perceptual organization and conceptual reasoning. The degree of right dorsal ACC normalization during treatment is related to outcome.

  3. Ventromedial prefrontal and anterior cingulate cortex adopt choice and default reference frames during sequential multialternative choice

    PubMed Central

    Boorman, Erie D; Rushworth, Matthew F; Behrens, Tim E

    2013-01-01

    Although damage to medial frontal cortex causes profound decision-making impairments, it has been difficult to pinpoint the relative contributions of key anatomical subdivisions. Here we use fMRI to examine the contributions of human ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortex (dACC) during sequential choices between multiple alternatives – two key features of choices made in ecological settings. By carefully constructing options whose current value at any given decision was dissociable from their longer-term value, we were able to examine choices in current and long-term frames of reference. We present evidence showing that activity at choice and feedback in vmPFC and dACC was tied to the current choice and the best long-term option, respectively. vmPFC, mid-cingulate, and PCC encoded the relative value between the chosen and next-best option at each sequential decision, whereas dACC encoded the relative value of adapting choices from the option with the highest value in the longer-term. Furthermore, at feedback we identify temporally dissociable effects that predict repetition of the current choice and adaptation away from the long-term best option in vmPFC and dACC, respectively. These functional dissociations at choice and feedback suggest that sequential choices are subject to competing cortical mechanisms. PMID:23392656

  4. Increased anterior cingulate cortex response precedes behavioural adaptation in anorexia nervosa

    PubMed Central

    Geisler, Daniel; Ritschel, Franziska; King, Joseph A.; Bernardoni, Fabio; Seidel, Maria; Boehm, Ilka; Runge, Franziska; Goschke, Thomas; Roessner, Veit; Smolka, Michael N.; Ehrlich, Stefan

    2017-01-01

    Patients with anorexia nervosa (AN) are characterised by increased self-control, cognitive rigidity and impairments in set-shifting, but the underlying neural mechanisms are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to elucidate the neural correlates of behavioural adaptation to changes in reward contingencies in young acutely ill AN patients. Thirty-six adolescent/young adult, non-chronic female AN patients and 36 age-matched healthy females completed a well-established probabilistic reversal learning task during fMRI. We analysed hemodynamic responses in empirically-defined regions of interest during positive feedback and negative feedback not followed/followed by behavioural adaptation and conducted functional connectivity analyses. Although overall task performance was comparable between groups, AN showed increased shifting after receiving negative feedback (lose-shift behaviour) and altered dorsal anterior cingulate cortex (dACC) responses as a function of feedback. Specifically, patients had increased dACC responses (which correlated with perfectionism) and task-related coupling with amygdala preceding behavioural adaption. Given the generally preserved task performance in young AN, elevated dACC responses specifically during behavioural adaption is suggestive of increased monitoring for the need to adjust performance strategies. Higher dACC-amygdala coupling and increased adaptation after negative feedback underlines this interpretation and could be related to intolerance of uncertainty which has been suggested for AN. PMID:28198813

  5. Role of right pregenual anterior cingulate cortex in self-conscious emotional reactivity

    PubMed Central

    Sollberger, Marc; Seeley, William W.; Rankin, Katherine P.; Ascher, Elizabeth A.; Rosen, Howard J.; Miller, Bruce L.; Levenson, Robert W.

    2013-01-01

    Self-conscious emotions such as embarrassment arise when one’s actions fail to meet salient social expectations and are accompanied by marked physiological and behavioral activation. We investigated the neural correlates of self-conscious emotional reactivity in 27 patients with behavioral variant frontotemporal dementia (bvFTD), a neurodegenerative disease that disrupts self-conscious emotion and targets brain regions critical for emotional functioning early in the disease course, and in 33 healthy older controls. Subjects participated in an embarrassing karaoke task in which they watched a video clip of themselves singing. They also watched a sad film clip; these data were used to control for non-self-conscious emotional reactivity in response to audiovisual stimuli. Using Freesurfer to quantify regional brain volumes from structural magnetic resonance imaging, right pregenual anterior cingulate cortex (pACC) gray matter volume was the only brain region that was a significant predictor of self-conscious emotion. Smaller pACC volume was associated with attenuated physiological and behavioral self-conscious emotional reactivity, and this relationship was not specific to diagnosis. We argue that these results reflect the significant role that right pACC plays in the visceromotor responding that accompanies self-conscious emotion and that neurodegeneration in this region may underlie the self-conscious emotional decline seen in bvFTD. PMID:22345371

  6. Role of right pregenual anterior cingulate cortex in self-conscious emotional reactivity.

    PubMed

    Sturm, Virginia E; Sollberger, Marc; Seeley, William W; Rankin, Katherine P; Ascher, Elizabeth A; Rosen, Howard J; Miller, Bruce L; Levenson, Robert W

    2013-04-01

    Self-conscious emotions such as embarrassment arise when one's actions fail to meet salient social expectations and are accompanied by marked physiological and behavioral activation. We investigated the neural correlates of self-conscious emotional reactivity in 27 patients with behavioral variant frontotemporal dementia (bvFTD), a neurodegenerative disease that disrupts self-conscious emotion and targets brain regions critical for emotional functioning early in the disease course, and in 33 healthy older controls. Subjects participated in an embarrassing karaoke task in which they watched a video clip of themselves singing. They also watched a sad film clip; these data were used to control for non-self-conscious emotional reactivity in response to audiovisual stimuli. Using Freesurfer to quantify regional brain volumes from structural magnetic resonance imaging, right pregenual anterior cingulate cortex (pACC) gray matter volume was the only brain region that was a significant predictor of self-conscious emotion. Smaller pACC volume was associated with attenuated physiological and behavioral self-conscious emotional reactivity, and this relationship was not specific to diagnosis. We argue that these results reflect the significant role that right pACC plays in the visceromotor responding that accompanies self-conscious emotion and that neurodegeneration in this region may underlie the self-conscious emotional decline seen in bvFTD.

  7. Competition between learned reward and error outcome predictions in anterior cingulate cortex.

    PubMed

    Alexander, William H; Brown, Joshua W

    2010-02-15

    The anterior cingulate cortex (ACC) is implicated in performance monitoring and cognitive control. Non-human primate studies of ACC show prominent reward signals, but these are elusive in human studies, which instead show mainly conflict and error effects. Here we demonstrate distinct appetitive and aversive activity in human ACC. The error likelihood hypothesis suggests that ACC activity increases in proportion to the likelihood of an error, and ACC is also sensitive to the consequence magnitude of the predicted error. Previous work further showed that error likelihood effects reach a ceiling as the potential consequences of an error increase, possibly due to reductions in the average reward. We explored this issue by independently manipulating reward magnitude of task responses and error likelihood while controlling for potential error consequences in an Incentive Change Signal Task. The fMRI results ruled out a modulatory effect of expected reward on error likelihood effects in favor of a competition effect between expected reward and error likelihood. Dynamic causal modeling showed that error likelihood and expected reward signals are intrinsic to the ACC rather than received from elsewhere. These findings agree with interpretations of ACC activity as signaling both perceptions of risk and predicted reward. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Abulia following penetrating brain injury during endoscopic sinus surgery with disruption of the anterior cingulate circuit: case report.

    PubMed

    Grunsfeld, Alexander A; Login, Ivan S

    2006-01-23

    It is common knowledge that the frontal lobes mediate complex human behavior and that damage to these regions can cause executive dysfunction, apathy, disinhibition and personality changes. However, it is less well known that subcortical structures such as the caudate and thalamus are part of functionally segregated fronto-subcortical circuits, that can also alter behavior after injury. CASE PRESENTATION We present a 57 year old woman who suffered penetrating brain injury during endoscopic sinus surgery causing right basal ganglia injury which resulted in an abulic syndrome. Abulia does not result solely from cortical injury but can occur after disruption anywhere in the anterior cingulate circuit--in the case of our patient, most prominently at the right caudate.

  9. Motivation and Affective Judgments Differentially Recruit Neurons in the Primate Dorsolateral Prefrontal and Anterior Cingulate Cortex

    PubMed Central

    Amemori, Ken-ichi; Amemori, Satoko

    2015-01-01

    The judgment of whether to accept or to reject an offer is determined by positive and negative affect related to the offer, but affect also induces motivational responses. Rewarding and aversive cues influence the firing rates of many neurons in primate prefrontal and cingulate neocortical regions, but it still is unclear whether neurons in these regions are related to affective judgment or to motivation. To address this issue, we recorded simultaneously the neuronal spike activities of single units in the dorsolateral prefrontal cortex (dlPFC) and the anterior cingulate cortex (ACC) of macaque monkeys as they performed approach–avoidance (Ap–Av) and approach–approach (Ap–Ap) decision-making tasks that can behaviorally dissociate affective judgment and motivation. Notably, neurons having activity correlated with motivational condition could be distinguished from neurons having activity related to affective judgment, especially in the Ap–Av task. Although many neurons in both regions exhibited similar, selective patterns of task-related activity, we found a larger proportion of neurons activated in low motivational conditions in the dlPFC than in the ACC, and the onset of this activity was significantly earlier in the dlPFC than in the ACC. Furthermore, the temporal onsets of affective judgment represented by neuronal activities were significantly slower in the low motivational conditions than in the other conditions. These findings suggest that motivation and affective judgment both recruit dlPFC and ACC neurons but with differential degrees of involvement and timing. PMID:25653353

  10. Anatomical and functional overlap within the insula and anterior cingulate cortex during interoception and phobic symptom provocation.

    PubMed

    Caseras, Xavier; Murphy, Kevin; Mataix-Cols, David; López-Solà, Marina; Soriano-Mas, Carles; Ortriz, Hector; Pujol, Jesus; Torrubia, Rafael

    2013-05-01

    The anterior insula and the dorsal anterior cingulate cortex (ACC) are regarded as key brain structures associated with the integration of perceived phobic characteristics of external stimuli and the perception of ones own body responses that leads to emotional feelings. To test to what extent the activity in these two brain structures anatomically and functionally overlap during phobic reactions and interoception, we submitted the same group of phobic participants (n = 29; either spider or blood-injection-injury (BII) phobics) and controls (n = 17) to both type of experimental paradigms. Results showed that there was a clear anatomical overlap in the Blood Oxygen Level-Dependent (BOLD) responses within the anterior insula and ACC elicited during phobic symptom provocation and during interoceptive awareness. The activity within these two brain structures also showed to be correlated in the spider phobia group, but not in the BII phobic participants. Our results seem to support the idea that the activity within these two brain areas would be associated with the integration of perceived stimuli characteristics and bodily responses that lead to what we label as "fear." However, that seems not to be the case in BII phobia, where more research is needed in order to clarify to what extent that could be associated with the idiosyncratic physiological response that these patients present in front of phobic stimuli (i.e., drop in heart rate and blood pressure). Copyright © 2011 Wiley Periodicals, Inc.

  11. Perceptual load modulates anterior cingulate cortex response to threat distractors in generalized social anxiety disorder.

    PubMed

    Wheaton, Michael G; Fitzgerald, Daniel A; Phan, K Luan; Klumpp, Heide

    2014-09-01

    Generalized social anxiety disorder (gSAD) is associated with impoverished anterior cingulate cortex (ACC) engagement during attentional control. Attentional Control Theory proposes such deficiencies may be offset when demands on resources are increased to execute goals. To test the hypothesis attentional demands affect ACC response 23 patients with gSAD and 24 matched controls performed an fMRI task involving a target letter in a string of identical targets (low load) or a target letter in a mixed letter string (high load) superimposed on fearful, angry, and neutral face distractors. Regardless of load condition, groups were similar in accuracy and reaction time. Under low load gSAD patients showed deficient rostral ACC recruitment to fearful (vs. neutral) distractors. For high load, increased activation to fearful (vs. neutral) distractors was observed in gSAD suggesting a compensatory function. Results remained after controlling for group differences in depression level. Findings indicate perceptual demand modulates ACC in gSAD. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Glutamatergic and Resting-State Functional Connectivity Correlates of Severity in Major Depression – The Role of Pregenual Anterior Cingulate Cortex and Anterior Insula

    PubMed Central

    Horn, Dorothea I.; Yu, Chunshui; Steiner, Johann; Buchmann, Julia; Kaufmann, Joern; Osoba, Annemarie; Eckert, Ulf; Zierhut, Kathrin C.; Schiltz, Kolja; He, Huiguang; Biswal, Bharat; Bogerts, Bernhard; Walter, Martin

    2010-01-01

    Glutamatergic mechanisms and resting-state functional connectivity alterations have been recently described as factors contributing to major depressive disorder (MDD). Furthermore, the pregenual anterior cingulate cortex (pgACC) seems to play an important role for major depressive symptoms such as anhedonia and impaired emotion processing. We investigated 22 MDD patients and 22 healthy subjects using a combined magnetic resonance spectroscopy (MRS) and resting-state functional magnetic resonance imaging (fMRI) approach. Severity of depression was rated using the 21-item Hamilton depression scale (HAMD) and patients were divided into severely and mildly depressed subgroups according to HAMD scores. Because of their hypothesized role in depression we investigated the functional connectivity between pgACC and left anterior insular cortex (AI). The sum of Glutamate and Glutamine (Glx) in the pgACC, but not in left AI, predicted the resting-state functional connectivity between the two regions exclusively in depressed patients. Furthermore, functional connectivity between these regions was significantly altered in the subgroup of severely depressed patients (HAMD > 15) compared to healthy subjects and mildly depressed patients. Similarly the Glx ratios, relative to Creatine, in the pgACC were lowest in severely depressed patients. These findings support the involvement of glutamatergic mechanisms in severe MDD which are related to the functional connectivity between pgACC and AI and depression severity. PMID:20700385

  13. Ipsilateral fracture dislocation of the shoulder and elbow: A case report and literature review

    PubMed Central

    Behr, Ian; Blint, Andy; Trenhaile, Scott

    2013-01-01

    Ipsilateral dislocation of the shoulder and elbow is an uncommon injury. A literature review identified nine previously described cases. We are reporting a unique case of ipsilateral posterior shoulder dislocation and anterior elbow dislocation along with concomitant intra-articular fractures of both joints. This is the first report describing this combination of injuries. Successful treatment generally occurs with closed reduction of ipsilateral shoulder and elbow dislocations, usually reducing the elbow first. When combined with a fracture at one or both locations, closed reduction of the dislocations in conjunction with appropriate fracture management can result in a positive functional outcome. PMID:26403884

  14. Age-related changes in anterior cingulate cortex glutamate in schizophrenia: A (1)H MRS Study at 7 Tesla.

    PubMed

    Brandt, Allison S; Unschuld, Paul G; Pradhan, Subechhya; Lim, Issel Anne L; Churchill, Gregory; Harris, Ashley D; Hua, Jun; Barker, Peter B; Ross, Christopher A; van Zijl, Peter C M; Edden, Richard A E; Margolis, Russell L

    2016-04-01

    The extent of age-related changes in glutamate and other neurometabolites in the anterior cingulate cortex (ACC) in individuals with schizophrenia remain unclear. Magnetic resonance spectroscopy (MRS) at 7 T, which yields precise measurements of various metabolites and can distinguish glutamate from glutamine, was used to determine levels of ACC glutamate and other metabolites in 24 individuals with schizophrenia and 24 matched controls. Multiple regression analysis revealed that ACC glutamate decreased with age in patients but not controls. No changes were detected in levels of glutamine, N-acetylaspartate, N-acetylaspartylglutamic acid, myo-inositol, GABA, glutathione, total creatine, and total choline. These results suggest that age may be an important modifier of ACC glutamate in schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Abulia following penetrating brain injury during endoscopic sinus surgery with disruption of the anterior cingulate circuit: Case report

    PubMed Central

    Grunsfeld, Alexander A; Login, Ivan S

    2006-01-01

    Background It is common knowledge that the frontal lobes mediate complex human behavior and that damage to these regions can cause executive dysfunction, apathy, disinhibition and personality changes. However, it is less well known that subcortical structures such as the caudate and thalamus are part of functionally segregated fronto-subcortical circuits, that can also alter behavior after injury. Case presentation We present a 57 year old woman who suffered penetrating brain injury during endoscopic sinus surgery causing right basal ganglia injury which resulted in an abulic syndrome. Conclusion Abulia does not result solely from cortical injury but can occur after disruption anywhere in the anterior cingulate circuit – in the case of our patient, most prominently at the right caudate. PMID:16430769

  16. Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging

    PubMed Central

    Cui, Long-Biao; Liu, Jian; Wang, Liu-Xian; Li, Chen; Xi, Yi-Bin; Guo, Fan; Wang, Hua-Ning; Zhang, Lin-Chuan; Liu, Wen-Ming; He, Hong; Tian, Ping; Yin, Hong; Lu, Hongbing

    2015-01-01

    Understanding the neural basis of schizophrenia (SZ) is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), hippocampus, and medial prefrontal cortex (MPFC) have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI). Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs) were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM) to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA) in addition to classical inference (t-test). In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, spectral DCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions. PMID:26578933

  17. The role of the anterior cingulate cortex in women's sexual decision making.

    PubMed

    Rupp, Heather A; James, Thomas W; Ketterson, Ellen D; Sengelaub, Dale R; Janssen, Erick; Heiman, Julia R

    2009-01-02

    Women's sexual decision making is a complex process balancing the potential rewards of conception and pleasure against the risks of possible low paternal care or sexually transmitted infection. Although neural processes underlying social decision making are suggested to overlap with those involved in economic decision making, the neural systems associated with women's sexual decision making are unknown. Using fMRI, we measured the brain activation of 12 women while they viewed photos of men's faces. Face stimuli were accompanied by information regarding each man's potential risk as a sexual partner, indicated by a written description of the man's number of previous sexual partners and frequency of condom use. Participants were asked to evaluate how likely they would be to have sex with the man depicted. Women reported that they would be more likely to have sex with low compared to high risk men. Stimuli depicting low risk men also elicited stronger activation in the anterior cingulate cortex (ACC), midbrain, and intraparietal sulcus, possibly reflecting an influence of sexual risk on women's attraction, arousal, and attention during their sexual decision making. Activation in the ACC was positively correlated with women's subjective evaluations of sex likelihood and response times during their evaluations of high, but not low risk men. These findings provide evidence that neural systems involved in sexual decision making in women overlap with those described previously to underlie nonsexual decision making.

  18. Motivation and affective judgments differentially recruit neurons in the primate dorsolateral prefrontal and anterior cingulate cortex.

    PubMed

    Amemori, Ken-ichi; Amemori, Satoko; Graybiel, Ann M

    2015-02-04

    The judgment of whether to accept or to reject an offer is determined by positive and negative affect related to the offer, but affect also induces motivational responses. Rewarding and aversive cues influence the firing rates of many neurons in primate prefrontal and cingulate neocortical regions, but it still is unclear whether neurons in these regions are related to affective judgment or to motivation. To address this issue, we recorded simultaneously the neuronal spike activities of single units in the dorsolateral prefrontal cortex (dlPFC) and the anterior cingulate cortex (ACC) of macaque monkeys as they performed approach-avoidance (Ap-Av) and approach-approach (Ap-Ap) decision-making tasks that can behaviorally dissociate affective judgment and motivation. Notably, neurons having activity correlated with motivational condition could be distinguished from neurons having activity related to affective judgment, especially in the Ap-Av task. Although many neurons in both regions exhibited similar, selective patterns of task-related activity, we found a larger proportion of neurons activated in low motivational conditions in the dlPFC than in the ACC, and the onset of this activity was significantly earlier in the dlPFC than in the ACC. Furthermore, the temporal onsets of affective judgment represented by neuronal activities were significantly slower in the low motivational conditions than in the other conditions. These findings suggest that motivation and affective judgment both recruit dlPFC and ACC neurons but with differential degrees of involvement and timing. Copyright © 2015 the authors 0270-6474/15/351939-15$15.00/0.

  19. The role of the anterior cingulate cortex in the affective evaluation of conflict

    PubMed Central

    Braem, Senne; King, Joseph A.; Korb, Franziska M.; Krebs, Ruth M.; Notebaert, Wim; Egner, Tobias

    2017-01-01

    An influential theory of anterior cingulate cortex (ACC) function argues that this brain region plays a crucial role in the affective evaluation of performance monitoring and control demands. Specifically, control-demanding processes such as response conflict, are thought to be registered as aversive signals by the ACC, which in turn triggers processing adjustments to support avoidance-learning. In support of conflict being treated as an aversive event, recent behavioural studies demonstrated that incongruent (i.e., conflict-inducing) relative to congruent stimuli can speed up subsequent negative relative to positive affective picture processing. Here, we used functional magnetic resonance imaging (fMRI) to investigate directly whether ACC activity in response to negative versus positive pictures is modulated by preceding control demands, consisting of conflict and task-switching conditions. The results show that negative relative to positive pictures elicited higher ACC activation following congruent relative to incongruent trials, suggesting that the ACC’s response to negative (positive) pictures was indeed affectively primed by incongruent (congruent) trials. Interestingly, this pattern of results was observed on task repetitions, but disappeared on task alternations. Our findings support the proposal that conflict induces negative affect, and are the first to show that this affective signal is reflected in ACC activation. PMID:27575278

  20. The Anterior Cingulate Gyrus Signals the Net Value of Others' Rewards

    PubMed Central

    Ramnani, Narender

    2014-01-01

    Evaluating the costs and benefits of our own choices is central to most forms of decision-making and its mechanisms in the brain are becoming increasingly well understood. To interact successfully in social environments, it is also essential to monitor the rewards that others receive. Previous studies in nonhuman primates have found neurons in the anterior cingulate cortex (ACC) that signal the net value (benefit minus cost) of rewards that will be received oneself and also neurons that signal when a reward will be received by someone else. However, little is understood about the way in which the human brain engages in cost–benefit analyses during social interactions. Does the ACC signal the net value (the benefits minus the costs) of rewards that others will receive? Here, using fMRI, we examined activity time locked to cues that signaled the anticipated reward magnitude (benefit) to be gained and the level of effort (cost) to be incurred either by a subject themselves or by a social confederate. We investigated whether activity in the ACC covaries with the net value of rewards that someone else will receive when that person is required to exert effort for the reward. We show that, although activation in the sulcus of the ACC signaled the costs on all trials, gyral ACC (ACCg) activity varied parametrically only with the net value of rewards gained by others. These results suggest that the ACCg plays an important role in signaling cost–benefit information by signaling the value of others' rewards during social interactions. PMID:24790190

  1. Anterior cingulate cortex supports effort allocation towards a qualitatively preferred option.

    PubMed

    Hart, Evan E; Gerson, Julian O; Zoken, Yael; Garcia, Marisella; Izquierdo, Alicia

    2017-07-01

    The anterior cingulate cortex (ACC) is known to be involved in effortful choice, yet its role in cost-benefit evaluation of qualitatively different rewards (more/less preferred), beyond magnitude differences (larger/smaller), is poorly understood. Selecting between qualitatively different options is a decision type commonly faced by humans. Here, we assessed the role of ACC on a task that has primarily been used to probe striatal function in motivation. Rats were trained to stable performance on a progressive ratio schedule for sucrose pellets and were then given sham surgeries (control) or excitotoxic NMDA lesions of ACC. Subsequently, a choice was introduced: chow was concurrently available while animals could work for the preferred sucrose pellets. ACC lesions produced a significant decrease in lever presses for sucrose pellets compared to control, whereas chow consumption was unaffected. Lesions had no effect on sucrose pellet preference when both options were freely available. When laboratory chow was not concurrently available, ACC-lesioned rats exhibited similar lever pressing as controls. During a test under specific satiety for sucrose pellets, ACC-lesioned rats also showed intact devaluation effects. The effects of ACC lesions in our task are not mediated by decreased appetite, a change in food preference, a failure to update value or a learning deficit. Taken together, we found that ACC lesions decreased effort for a qualitatively preferred option. These results are discussed with reference to effects of striatal manipulations and our recent report of a role for basolateral amygdala in effortful choice. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. The role of the anterior cingulate cortex in emotional response inhibition.

    PubMed

    Albert, Jacobo; López-Martín, Sara; Tapia, Manuel; Montoya, Daniel; Carretié, Luis

    2012-09-01

    Although the involvement of the anterior cingulate cortex (ACC) in emotional response inhibition is well established, there are several outstanding issues about the nature of this involvement that are not well understood. The present study aimed to examine the precise contribution of the ACC to emotion-modulated response inhibition by capitalizing on fine temporal resolution of the event-related potentials (ERPs) and the recent advances in source localization. To this end, participants (N = 30) performed an indirect affective Go/Nogo task (i.e., unrelated to the emotional content of stimulation) that required the inhibition of a motor response to three types of visual stimuli: arousing negative (A-), neutral (N), and arousing positive (A+). Behavioral data revealed that participants made more commission errors to A+ than to N and A-. Electrophysiological data showed that a specific region of the ACC at the intersection of its dorsal and rostral subdivisions was significantly involved in the interaction between emotional processing and motor inhibition. Specifically, activity reflecting this interaction was observed in the P3 (but not in the N2) time range, and was greater during the inhibition of responses to A+ than to N and A-. Additionally, regression analyses showed that inhibition-related activity within this ACC region was associated with the emotional content of the stimuli (its activity increased as stimulus valence was more positive), and also with behavioral performance (both with reaction times and commission errors). The present results provide additional data for understanding how, when, and where emotion interacts with response inhibition within the ACC. Copyright © 2011 Wiley Periodicals, Inc.

  3. Spine growth in the anterior cingulate cortex is necessary for the consolidation of contextual fear memory

    PubMed Central

    Vetere, Gisella; Restivo, Leonardo; Cole, Christina J.; Ross, P. Joel; Ammassari-Teule, Martine; Josselyn, Sheena A.; Frankland, Paul W.

    2011-01-01

    Remodeling of cortical connectivity is thought to allow initially hippocampus-dependent memories to be expressed independently of the hippocampus at remote time points. Consistent with this, consolidation of a contextual fear memory is associated with dendritic spine growth in neurons of the anterior cingulate cortex (aCC). To directly test whether such cortical structural remodeling is necessary for memory consolidation, we disrupted spine growth in the aCC at different times following contextual fear conditioning in mice. We took advantage of previous studies showing that the transcription factor myocyte enhancer factor 2 (MEF2) negatively regulates spinogenesis both in vitro and in vivo. We found that increasing MEF2-dependent transcription in the aCC during a critical posttraining window (but not at later time points) blocked both the consolidation-associated dendritic spine growth and subsequent memory expression. Together, these data strengthen the causal link between cortical structural remodeling and memory consolidation and, further, identify MEF2 as a key regulator of these processes. PMID:21531906

  4. The political (and physiological) divide: Political orientation, performance monitoring, and the anterior cingulate response.

    PubMed

    Weissflog, Meghan; Choma, Becky L; Dywan, Jane; van Noordt, Stefon J R; Segalowitz, Sidney J

    2013-01-01

    Our goal was to test a model of sociopolitical attitudes that posits a relationship between individual differences in liberal versus conservative political orientation and differential levels of anterior cingulate cortex (ACC) responsivity. We recorded event-related potentials (ERPs) while participants who varied along a unidimensional liberal-conservative continuum engaged in a standard Go/NoGo task. We also measured component attitudes of political orientation in the form of traditionalism (degree of openness to social change) and egalitarianism (a preference for social equality). Generally, participants who reported a more liberal political orientation made fewer errors and produced larger ACC-generated ERPs (the error-related negativity, or ERN and the NoGo N2). This ACC activation, especially as indicated by a larger NoGo N2, was most strongly associated with greater preference for social equality. Performance accuracy, however, was most strongly associated with greater openness to social change. These data are consistent with a social neuroscience view that sociopolitical attitudes are related to aspects of neurophysiological responsivity. They also indicate that a bidimensional model of political orientation can enhance our interpretation of the nature of these associations.

  5. Abnormal object recall and anterior cingulate overactivation correlate with formal thought disorder in schizophrenia.

    PubMed

    Assaf, Michal; Rivkin, Paul R; Kuzu, Cheedem H; Calhoun, Vince D; Kraut, Michael A; Groth, Karyn M; Yassa, Michael A; Hart, John; Pearlson, Godfrey D

    2006-03-01

    The neural basis of formal thought disorder (FTD) is unknown. An influential theory is that FTD results from impaired semantic memory processing. We explored the neural correlates of semantic memory retrieval in schizophrenia using an imaging task assessing semantic object recall. Sixteen healthy control subjects and sixteen schizophrenia patients whose FTD symptoms were measured with the Thought Disorder Index completed a verbal object-recall task during functional magnetic resonance imaging. Participants viewed two words describing object features that either evoked (object recall) or did not evoke a semantic concept. Schizophrenia patients tended to overrecall objects for feature pairs that did not describe the same object. Functionally, rostral anterior cingulate cortex (ACC) activation in patients positively correlated with FTD severity during both correct recalled and overrecalled trials. Compared with control subjects, during object recalling, patients overactivated bilateral ACC, temporooccipital junctions, temporal poles and parahippocampi, right inferior frontal gyrus, and dorsolateral prefrontal cortex, but underactivated inferior parietal lobules. Our results support impaired semantic memory retrieval as underlying FTD pathophysiology. Schizophrenia patients showed abnormal activations of brain areas involved in semantic memory, verbal working memory, and initiation and suppression of conflicting responses, which were associated with semantic overrecall and FTD.

  6. Successful choice behavior is associated with distinct and coherent network states in anterior cingulate cortex

    PubMed Central

    Lapish, Christopher C.; Durstewitz, Daniel; Chandler, L. Judson; Seamans, Jeremy K.

    2008-01-01

    Successful decision making requires an ability to monitor contexts, actions, and outcomes. The anterior cingulate cortex (ACC) is thought to be critical for these functions, monitoring and guiding decisions especially in challenging situations involving conflict and errors. A number of different single-unit correlates have been observed in the ACC that reflect the diverse cognitive components involved. Yet how ACC neurons function as an integrated network is poorly understood. Here we show, using advanced population analysis of multiple single-unit recordings from the rat ACC during performance of an ecologically valid decision-making task, that ensembles of neurons move through different coherent and dissociable states as the cognitive requirements of the task change. This organization into distinct network patterns with respect to both firing-rate changes and correlations among units broke down during trials with numerous behavioral errors, especially at choice points of the task. These results point to an underlying functional organization into cell assemblies in the ACC that may monitor choices, outcomes, and task contexts, thus tracking the animal's progression through “task space.” PMID:18708525

  7. Role of the Perigenual Anterior Cingulate and Orbitofrontal Cortex in Contingency Learning in the Marmoset

    PubMed Central

    Jackson, Stacey A. W.; Horst, Nicole K.; Pears, Andrew; Robbins, Trevor W.; Roberts, Angela C.

    2016-01-01

    Two learning mechanisms contribute to decision-making: goal-directed actions and the “habit” system, by which action-outcome and stimulus-response associations are formed, respectively. Rodent lesion studies and human neuroimaging have implicated both the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC) in the neural basis of contingency learning, a critical component of goal-directed actions, though some published findings are conflicting. We sought to reconcile the existing literature by comparing the effects of excitotoxic lesions of the perigenual anterior cingulate cortex (pgACC), a region of the mPFC, and OFC on contingency learning in the marmoset monkey using a touchscreen-based paradigm, in which the contingent relationship between one of a pair of actions and its outcome was degraded selectively. Both the pgACC and OFC lesion groups were insensitive to the contingency degradation, whereas the control group demonstrated selectively higher performance of the nondegraded action when compared with the degraded action. These findings suggest the pgACC and OFC are both necessary for normal contingency learning and therefore goal-directed behavior. PMID:27130662

  8. Decision Making in the Balloon Analogue Risk Task (BART): Anterior Cingulate Cortex Signals Loss-Aversion but not the Infrequency of Risky Choices

    PubMed Central

    Fukunaga, Rena; Brown, Joshua W.; Bogg, Tim

    2012-01-01

    The inferior frontal gyrus/anterior insula (IFG/AI) and anterior cingulate cortex (ACC) are key regions involved in risk appraisal during decision making, but accounts of how these regions contribute to decision-making under risk remain contested. To help clarify the roles of these and other related regions, we used a modified version of the Balloon Analogue Risk Task (Lejuez et al., 2002) to distinguish between decision-making and feedback-related processes when participants decided to pursue a gain as the probability of loss increased parametrically. Specifically, we set out to test whether ACC and IFG/AI regions correspond to loss-aversion at the time of decision making in a way that is not confounded with either reward-seeking or infrequency effects. When participants chose to discontinue inflating the balloon (win option), we observed greater ACC and mainly bilateral IFG/AI activity at the time of decision as the probability of explosion increased, consistent with increased loss-aversion but inconsistent with an infrequency effect. In contrast, we found robust vmPFC activity when participants chose to continue inflating the balloon (risky option), consistent with reward-seeking. However, in the cingulate and mainly bilateral IFG regions, BOLD activation decreased when participants chose to inflate the balloon as the probability of explosion increased, findings consistent with a reduced loss-aversion signal. Our results highlight the existence of distinct reward-seeking and loss-averse signals during decision-making, as well as the importance of distinguishing decision and feedback signals. PMID:22707378

  9. Decision making in the Balloon Analogue Risk Task (BART): anterior cingulate cortex signals loss aversion but not the infrequency of risky choices.

    PubMed

    Fukunaga, Rena; Brown, Joshua W; Bogg, Tim

    2012-09-01

    The inferior frontal gyrus/anterior insula (IFG/AI) and anterior cingulate cortex (ACC) are key regions involved in risk appraisal during decision making, but accounts of how these regions contribute to decision making under risk remain contested. To help clarify the roles of these and other related regions, we used a modified version of the Balloon Analogue Risk Task (Lejuez et al., Journal of Experimental Psychology: Applied, 8, 75-84, 2002) to distinguish between decision-making and feedback-related processes when participants decided to pursue a gain as the probability of loss increased parametrically. Specifically, we set out to test whether the ACC and IFG/AI regions correspond to loss aversion at the time of decision making in a way that is not confounded with either reward-seeking or infrequency effects. When participants chose to discontinue inflating the balloon (win option), we observed greater ACC and mainly bilateral IFG/AI activity at the time of decision as the probability of explosion increased, consistent with increased loss aversion but inconsistent with an infrequency effect. In contrast, we found robust vmPFC activity when participants chose to continue inflating the balloon (risky option), consistent with reward seeking. However, in the cingulate and in mainly bilateral IFG regions, blood-oxygenation-level-dependent activation decreased when participants chose to inflate the balloon as the probability of explosion increased, findings that are consistent with a reduced loss aversion signal. Our results highlight the existence of distinct reward-seeking and loss-averse signals during decision making, as well as the importance of distinguishing between decision and feedback signals.

  10. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex

    PubMed Central

    Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo

    2015-01-01

    The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70–200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys’ behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators. PMID:26266537

  11. Anterior Cingulate Cortex Contributes to Alcohol Withdrawal- Induced and Socially Transferred Hyperalgesia.

    PubMed

    Smith, Monique L; Walcott, Andre T; Heinricher, Mary M; Ryabinin, Andrey E

    2017-01-01

    Pain is often described as a "biopsychosocial" process, yet social influences on pain and underlying neural mechanisms are only now receiving significant experimental attention. Expression of pain by one individual can be communicated to nearby individuals by auditory, visual, and olfactory cues. Conversely, the perception of another's pain can lead to physiological and behavioral changes in the observer, which can include induction of hyperalgesia in "bystanders" exposed to "primary" conspecifics in which hyperalgesia has been induced directly. The current studies were designed to investigate the neural mechanisms responsible for the social transfer of hyperalgesia in bystander mice housed and tested with primary mice in which hyperalgesia was induced using withdrawal (WD) from voluntary alcohol consumption. Male C57BL/6J mice undergoing WD from a two-bottle choice voluntary alcohol-drinking procedure served as the primary mice. Mice housed in the same room served as bystanders. Naïve, water-drinking controls were housed in a separate room. Immunohistochemical mapping identified significantly enhanced Fos immunoreactivity (Fos-ir) in the anterior cingulate cortex (ACC) and insula (INS) of bystander mice compared to naïve controls, and in the dorsal medial hypothalamus (DMH) of primary mice. Chemogenetic inactivation of the ACC but not primary somatosensory cortex reversed the expression of hyperalgesia in both primary and bystander mice. These studies point to an overlapping neural substrate for expression of socially transferred hyperalgesia and that expressed during alcohol WD.

  12. Memory reorganization following anterior temporal lobe resection: a longitudinal functional MRI study

    PubMed Central

    Bonelli, Silvia B.; Thompson, Pamela J.; Yogarajah, Mahinda; Powell, Robert H. W.; Samson, Rebecca S.; McEvoy, Andrew W.; Symms, Mark R.; Koepp, Matthias J.

    2013-01-01

    Anterior temporal lobe resection controls seizures in 50–60% of patients with intractable temporal lobe epilepsy but may impair memory function, typically verbal memory following left, and visual memory following right anterior temporal lobe resection. Functional reorganization can occur within the ipsilateral and contralateral hemispheres. We investigated the reorganization of memory function in patients with temporal lobe epilepsy before and after left or right anterior temporal lobe resection and the efficiency of postoperative memory networks. We studied 46 patients with unilateral medial temporal lobe epilepsy (25/26 left hippocampal sclerosis, 16/20 right hippocampal sclerosis) before and after anterior temporal lobe resection on a 3 T General Electric magnetic resonance imaging scanner. All subjects had neuropsychological testing and performed a functional magnetic resonance imaging memory encoding paradigm for words, pictures and faces, testing verbal and visual memory in a single scanning session, preoperatively and again 4 months after surgery. Event-related analysis revealed that patients with left temporal lobe epilepsy had greater activation in the left posterior medial temporal lobe when successfully encoding words postoperatively than preoperatively. Greater pre- than postoperative activation in the ipsilateral posterior medial temporal lobe for encoding words correlated with better verbal memory outcome after left anterior temporal lobe resection. In contrast, greater postoperative than preoperative activation in the ipsilateral posterior medial temporal lobe correlated with worse postoperative verbal memory performance. These postoperative effects were not observed for visual memory function after right anterior temporal lobe resection. Our findings provide evidence for effective preoperative reorganization of verbal memory function to the ipsilateral posterior medial temporal lobe due to the underlying disease, suggesting that it is the capacity

  13. Assessing the Molecular Genetics of the Development of Executive Attention in Children: Focus on Genetic Pathways Related to the Anterior Cingulate Cortex and Dopamine

    PubMed Central

    Brocki, Karin; Clerkin, Suzanne M.; Guise, Kevin G.; Fan, Jin; Fossella, John A.

    2009-01-01

    It is well-known that children show gradual and protracted improvement in an array of behaviors involved in the conscious control of thought and emotion. Non-invasive neuroimaging in developing populations has revealed many neural correlates of behavior, particularly in the developing cingulate cortex and fronto-striatal circuits. These brain regions, themselves, undergo protracted molecular and cellular change in the first two decades of human development and, as such, are ideal regions of interest for cognitive- and imaging-genetic studies that seek to link processes at the biochemical and synaptic levels to brain activity and behavior. We review our research to-date that employs both adult and child-friendly versions of the Attention Network Task (ANT) in an effort to begin to describe the role of specific genes in the assembly of a functional attention system. Presently, we constrain our predictions for genetic association studies by focusing on the role of the anterior cingulate cortex (ACC) and of dopamine in the development of executive attention. PMID:19344637

  14. Combat veterans with comorbid PTSD and mild TBI exhibit a greater inhibitory processing ERP from the dorsal anterior cingulate cortex.

    PubMed

    Shu, I-Wei; Onton, Julie A; O'Connell, Ryan M; Simmons, Alan N; Matthews, Scott C

    2014-10-30

    Posttraumatic stress disorder (PTSD) is common among combat personnel with mild traumatic brain injury (mTBI). While patients with either PTSD or mTBI share abnormal activation of multiple frontal brain areas, anterior cingulate cortex (ACC) activity during inhibitory processing may be particularly affected by PTSD. To further test this hypothesis, we recorded electroencephalography from 32 combat veterans with mTBI-17 of whom were also comorbid for PTSD (mTBI+PTSD) and 15 without PTSD (mTBI-only). Subjects performed the Stop Task, a validated inhibitory control task requiring inhibition of initiated motor responses. We observed a larger inhibitory processing eventrelated potential (ERP) in veterans with mTBI+PTSD, including greater N200 negativity. Furthermore, greater N200 negativity correlated with greater PTSD severity. This correlation was most dependent on contributions from the dorsal ACC. Support vector machine analysis demonstrated that N200 and P300 amplitudes objectively classified veterans into mTBI-only or mTBI+PTSD groups with 79.4% accuracy. Our results support a model where, in combat veterans with mTBI, larger ERPs from cingulate areas are associated with greater PTSD severity and likely related to difficulty controlling ongoing brain processes, including trauma-related thoughts and feelings. Published by Elsevier Ireland Ltd.

  15. Effect of Acupuncture on Functional Connectivity of Anterior Cingulate Cortex for Bell's Palsy Patients with Different Clinical Duration

    PubMed Central

    Wu, Hongli; Kan, Hongxing; Li, Chuanfu; Park, Kyungmo; Zhu, Yifang; Mohamed, Abdalla Z.; Xu, Chunsheng; Wu, Yuanyuan; Zhang, Wei

    2015-01-01

    Acupuncture is widely used in the treatment of Bell's palsy (BP) in many countries, but its underlying physiological mechanism remained controversial. In order to explore the potential mechanism, changes of functional connectivity (FC) of anterior cingulate gyrus (ACC) were investigated. We collected 20 healthy (control group) participants and 28 BP patients with different clinical duration accepted resting state functional MRI (rfMRI) scans before and after acupuncture, respectively. The FC of ACC before and after acupuncture was compared with paired t-test and the detailed results are presented in the paper. Our results showed that effects of the acupuncture on FC were closely related to clinical duration in patients with BP, which suggested that brain response to acupuncture was closely connected with the status of brain functional connectivity and implied that acupuncture plays a homeostatic role in the BP treatment. PMID:26161125

  16. Dopaminergic Modulation of Excitatory Transmission in the Anterior Cingulate Cortex of Adult Mice

    PubMed Central

    Darvish-Ghane, Soroush; Yamanaka, Manabu

    2016-01-01

    Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. Bath application of DA (50 μM) caused a significant, rapid and reversible inhibition of evoked EPSCs (eEPSC). This inhibitory effect is dose-related and was absent in lower concentration of DA (5 μM). Furthermore, selective postsynaptic application of GDP-β-S (1.6 mM) in the internal solution completely abolished the inhibitory effects of DA (50 μM). We also investigated modulation of spontaneous EPSCs (sEPSCs) and TTX sensitive, miniature EPSCs (mEPSCs) by DA. Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA. PMID:27317578

  17. Reinforcement learning signals in the anterior cingulate cortex code for others' false beliefs.

    PubMed

    Apps, M A J; Green, R; Ramnani, N

    2013-01-01

    The ability to recognise that another's belief is false is a hallmark of our capacity to understand others' mental states. It has been suggested that the computational and neural mechanisms that underpin learning about others' mental states may be similar to those that underpin first-person Reinforcement Learning (RL). In RL, unexpected decision-making outcomes constitute prediction errors (PE), which are coded for by neurons in the Anterior Cingulate Cortex (ACC). Does the ACC signal the PEs (false beliefs) of others about the outcomes of their decisions? We scanned subjects using fMRI while they monitored a third-person's decisions and similar responses made by a computer. The outcomes of the trials were manipulated, such that the actual outcome was unexpectedly different from the predicted outcome on 1/3 of trials. We examined activity time-locked to privileged information which indicated the actual outcomes only to subjects. Activity in the gyral ACC was found when the outcomes of the third-person's decisions were unexpectedly positive. Activity in the sulcal ACC was found when the third-person's or computer's outcomes were unexpectedly positive. We suggest that a property of the ACC is that it codes PEs, with a portion of the gyral ACC specialised for processing the PEs of others. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Emotion triggers executive attention: anterior cingulate cortex and amygdala responses to emotional words in a conflict task.

    PubMed

    Kanske, Philipp; Kotz, Sonja A

    2011-02-01

    Coherent behavior depends on attentional control that detects and resolves conflict between opposing actions. The current functional magnetic resonance imaging study tested the hypothesis that emotion triggers attentional control to speed up conflict processing in particularly salient situations. Therefore, we presented emotionally negative and neutral words in a version of the flanker task. In response to conflict, we found activation of the dorsal anterior cingulate cortex (ACC) and of the amygdala for emotional stimuli. When emotion and conflict coincided, a region in the ventral ACC was activated, which resulted in faster conflict processing in reaction times. Emotion also increased functional connectivity between the ventral ACC and activation of the dorsal ACC and the amygdala in conflict trials. These data suggest that the ventral ACC integrates emotion and conflict and prioritizes the processing of conflict in emotional trials. This adaptive mechanism ensures rapid detection and resolution of conflict in potentially threatening situations signaled by emotional stimuli. Copyright © 2010 Wiley-Liss, Inc.

  19. Subgenual anterior cingulate cortex controls sadness-induced modulations of cognitive and emotional network hubs.

    PubMed

    Ramirez-Mahaluf, Juan P; Perramon, Joan; Otal, Begonya; Villoslada, Pablo; Compte, Albert

    2018-06-04

    The regulation of cognitive and emotional processes is critical for proper executive functions and social behavior, but its specific mechanisms remain unknown. Here, we addressed this issue by studying with functional magnetic resonance imaging the changes in network topology that underlie competitive interactions between emotional and cognitive networks in healthy participants. Our behavioral paradigm contrasted periods with high emotional and cognitive demands by including a sadness provocation task followed by a spatial working memory task. The sharp contrast between successive tasks was designed to enhance the separability of emotional and cognitive networks and reveal areas that regulate the flow of information between them (hubs). By applying graph analysis methods on functional connectivity between 20 regions of interest in 22 participants we identified two main brain network modules, one dorsal and one ventral, and their hub areas: the left dorsolateral prefrontal cortex (dlPFC) and the left medial frontal pole (mFP). These hub areas did not modulate their mutual functional connectivity following sadness but they did so through an interposed area, the subgenual anterior cingulate cortex (sACC). Our results identify dlPFC and mFP as areas regulating interactions between emotional and cognitive networks, and suggest that their modulation by sadness experience is mediated by sACC.

  20. Emotion speeds up conflict resolution: a new role for the ventral anterior cingulate cortex?

    PubMed

    Kanske, Philipp; Kotz, Sonja A

    2011-04-01

    It has been hypothesized that processing of conflict is facilitated by emotion. Emotional stimuli signal significance in a situation. Thus, when an emotional stimulus is task relevant, more resources may be devoted to conflict processing to reduce the time that an organism is unable to act. In the present electroencephalography and functional magnetic resonance imaging (fMRI) studies, we employed a conflict task and manipulated the emotional content and prosody of auditory target stimuli. In line with our hypothesis, reaction times revealed faster conflict resolution for emotional stimuli. Early stages of event-related potential conflict processing were modulated by emotion as indexed in an enhanced frontocentral negativity at 420 ms. FMRI yielded conflict activation in the dorsal anterior cingulate cortex (dACC), a crucial part of the executive control network. The right ventral ACC (vACC) was activated for conflict processing in emotional stimuli, suggesting that it is additionally activated for conflict processing in emotional stimuli. The amygdala was also activated by emotion. Furthermore, emotion increased functional connectivity between the vACC and activity in the amygdala and the dACC. The results support the hypothesis that emotion speeds up conflict processing and suggest a new role for the vACC in processing conflict in particularly significant situations signaled by emotion.

  1. The Mediodorsal Thalamus Drives Feedforward Inhibition in the Anterior Cingulate Cortex via Parvalbumin Interneurons

    PubMed Central

    Delevich, Kristen; Tucciarone, Jason; Huang, Z. Josh

    2015-01-01

    Although the medial prefrontal cortex (mPFC) is classically defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD), the nature of information transfer between MD and mPFC is poorly understood. In sensory thalamocortical pathways, thalamic recruitment of feedforward inhibition mediated by fast-spiking, putative parvalbumin-expressing (PV) interneurons is a key feature that enables cortical neurons to represent sensory stimuli with high temporal fidelity. Whether a similar circuit mechanism is in place for the projection from the MD (a higher-order thalamic nucleus that does not receive direct input from the periphery) to the mPFC is unknown. Here we show in mice that inputs from the MD drive disynaptic feedforward inhibition in the dorsal anterior cingulate cortex (dACC) subregion of the mPFC. In particular, we demonstrate that axons arising from MD neurons directly synapse onto and excite PV interneurons that in turn mediate feedforward inhibition of pyramidal neurons in layer 3 of the dACC. This feedforward inhibition in the dACC limits the time window during which pyramidal neurons integrate excitatory synaptic inputs and fire action potentials, but in a manner that allows for greater flexibility than in sensory cortex. These findings provide a foundation for understanding the role of MD-PFC circuit function in cognition. PMID:25855185

  2. Paroxysmal arousal in epilepsy associated with cingulate hyperperfusion.

    PubMed

    Vetrugno, R; Mascalchi, M; Vella, A; Della Nave, R; Provini, F; Plazzi, G; Volterrani, D; Bertelli, P; Vattimo, A; Lugaresi, E; Montagna, P

    2005-01-25

    A patient with nocturnal frontal lobe epilepsy characterized by paroxysmal motor attacks during sleep had brief paroxysmal arousals (PAs), complex episodes of nocturnal paroxysmal dystonia, and epileptic nocturnal wandering since childhood. Ictal SPECT during an episode of PA demonstrated increased blood flow in the right anterior cingulate gyrus and cerebellar cortex with hypoperfusion in the right temporal and frontal associative cortices.

  3. Role of the Perigenual Anterior Cingulate and Orbitofrontal Cortex in Contingency Learning in the Marmoset.

    PubMed

    Jackson, Stacey A W; Horst, Nicole K; Pears, Andrew; Robbins, Trevor W; Roberts, Angela C

    2016-07-01

    Two learning mechanisms contribute to decision-making: goal-directed actions and the "habit" system, by which action-outcome and stimulus-response associations are formed, respectively. Rodent lesion studies and human neuroimaging have implicated both the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC) in the neural basis of contingency learning, a critical component of goal-directed actions, though some published findings are conflicting. We sought to reconcile the existing literature by comparing the effects of excitotoxic lesions of the perigenual anterior cingulate cortex (pgACC), a region of the mPFC, and OFC on contingency learning in the marmoset monkey using a touchscreen-based paradigm, in which the contingent relationship between one of a pair of actions and its outcome was degraded selectively. Both the pgACC and OFC lesion groups were insensitive to the contingency degradation, whereas the control group demonstrated selectively higher performance of the nondegraded action when compared with the degraded action. These findings suggest the pgACC and OFC are both necessary for normal contingency learning and therefore goal-directed behavior. © The Author 2016. Published by Oxford University Press.

  4. Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupil-linked arousal

    PubMed Central

    Ebitz, R. Becket; Platt, Michael L.

    2014-01-01

    Summary Whether driving a car, shopping for food, or paying attention in a classroom of boisterous teenagers, it’s often hard to maintain focus on goals in the face of distraction. Brain imaging studies in humans implicate the dorsal anterior cingulate cortex (dACC) in regulating the conflict between goals and distractors. Here we show for the first time that single dACC neurons signal conflict between task goals and distractors in the rhesus macaque, particularly for biologically-relevant social stimuli. For some neurons, task conflict signals predicted subsequent changes in pupil size—a peripheral index of arousal linked to noradrenergic tone—associated with reduced distractor interference. dACC neurons also responded to errors and these signals predicted adjustments in pupil size. These findings provide the first neurophysiological endorsement of the hypothesis that dACC regulates conflict, in part, via modulation of pupil-linked processes such as arousal. PMID:25654259

  5. Treatment effects on insular and anterior cingulate cortex activation during classic and emotional Stroop interference in child abuse-related complex post-traumatic stress disorder.

    PubMed

    Thomaes, K; Dorrepaal, E; Draijer, N; de Ruiter, M B; Elzinga, B M; van Balkom, A J; Smit, J H; Veltman, D J

    2012-11-01

    Functional neuroimaging studies have shown increased Stroop interference coupled with altered anterior cingulate cortex (ACC) and insula activation in post-traumatic stress disorder (PTSD). These brain areas are associated with error detection and emotional arousal. There is some evidence that treatment can normalize these activation patterns. At baseline, we compared classic and emotional Stroop performance and blood oxygenation level-dependent responses (functional magnetic resonance imaging) of 29 child abuse-related complex PTSD patients with 22 non-trauma-exposed healthy controls. In 16 of these patients, we studied treatment effects of psycho-educational and cognitive behavioural stabilizing group treatment (experimental treatment; EXP) added to treatment as usual (TAU) versus TAU only, and correlations with clinical improvement. At baseline, complex PTSD patients showed a trend for increased left anterior insula and dorsal ACC activation in the classic Stroop task. Only EXP patients showed decreased dorsal ACC and left anterior insula activation after treatment. In the emotional Stroop contrasts, clinical improvement was associated with decreased dorsal ACC activation and decreased left anterior insula activation. We found further evidence that successful treatment in child abuse-related complex PTSD is associated with functional changes in the ACC and insula, which may be due to improved selective attention and lower emotional arousal, indicating greater cognitive control over PTSD symptoms.

  6. Posterior Orbitofrontal and Anterior Cingulate Pathways to the Amygdala Target Inhibitory and Excitatory Systems with Opposite Functions.

    PubMed

    Zikopoulos, Basilis; Höistad, Malin; John, Yohan; Barbas, Helen

    2017-05-17

    The bidirectional dialogue of the primate posterior orbitofrontal cortex (pOFC) with the amygdala is essential in cognitive-emotional functions. The pOFC also sends a uniquely one-way excitatory pathway to the amygdalar inhibitory intercalated masses (IM), which inhibit the medial part of the central amygdalar nucleus (CeM). Inhibition of IM has the opposite effect, allowing amygdalar activation of autonomic structures and emotional arousal. Using multiple labeling approaches to identify pathways and their postsynaptic sites in the amygdala in rhesus monkeys, we found that the anterior cingulate cortex innervated mostly the basolateral and CeM amygdalar nuclei, poised to activate CeM for autonomic arousal. By contrast, a pathway from pOFC to IM exceeded all other pathways to the amygdala by density and size and proportion of large and efficient terminals. Moreover, whereas pOFC terminals in IM innervated each of the three distinct classes of inhibitory neurons, most targeted neurons expressing dopamine- and cAMP-regulated phosphoprotein (DARPP-32+), known to be modulated by dopamine. The predominant pOFC innervation of DARPP-32+ neurons suggests activation of IM and inhibition of CeM, resulting in modulated autonomic function. By contrast, inhibition of DARPP-32 neurons in IM by high dopamine levels disinhibits CeM and triggers autonomic arousal. The findings provide a mechanism to help explain how a strong pOFC pathway, which is poised to moderate activity of CeM, through IM, can be undermined by the high level of dopamine during stress, resulting in collapse of potent inhibitory mechanisms in the amygdala and heightened autonomic drive, as seen in chronic anxiety disorders. SIGNIFICANCE STATEMENT The dialogue between prefrontal cortex and amygdala allows thoughts and emotions to influence actions. The posterior orbitofrontal cortex sends a powerful pathway that targets a special class of amygdalar intercalated mass (IM) inhibitory neurons, whose wiring may help

  7. Structural and functional associations of the rostral anterior cingulate cortex with subjective happiness.

    PubMed

    Matsunaga, Masahiro; Kawamichi, Hiroaki; Koike, Takahiko; Yoshihara, Kazufumi; Yoshida, Yumiko; Takahashi, Haruka K; Nakagawa, Eri; Sadato, Norihiro

    2016-07-01

    Happiness is one of the most fundamental human goals, which has led researchers to examine the source of individual happiness. Happiness has usually been discussed regarding two aspects (a temporary positive emotion and a trait-like long-term sense of being happy) that are interrelated; for example, individuals with a high level of trait-like subjective happiness tend to rate events as more pleasant. In this study, we hypothesized that the interaction between the two aspects of happiness could be explained by the interaction between structure and function in certain brain regions. Thus, we first assessed the association between gray matter density (GMD) of healthy participants and trait-like subjective happiness using voxel-based morphometry (VBM). Further, to assess the association between the GMD and brain function, we conducted functional magnetic resonance imaging (MRI) using the task of positive emotion induction (imagination of several emotional life events). VBM indicated that the subjective happiness was positively correlated with the GMD of the rostral anterior cingulate cortex (rACC). Functional MRI demonstrated that experimentally induced temporal happy feelings were positively correlated with subjective happiness level and rACC activity. The rACC response to positive events was also positively correlated with its GMD. These results provide convergent structural and functional evidence that the rACC is related to happiness and suggest that the interaction between structure and function in the rACC may explain the trait-state interaction in happiness. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Dorsal Anterior Cingulate Thickness Is Related to Alexithymia in Childhood Trauma-Related PTSD

    PubMed Central

    Demers, Lauren A.; Olson, Elizabeth A.; Crowley, David J.; Rauch, Scott L.; Rosso, Isabelle M.

    2015-01-01

    Alexithymia, or “no words for feelings”, is highly prevalent in samples with childhood maltreatment and posttraumatic stress disorder (PTSD). The dorsal anterior cingulate cortex (dACC) has been identified as a key region involved in alexithymia, early life trauma, and PTSD. Functional alterations in the dACC also have been associated with alexithymia in PTSD. This study examined whether dACC morphology is a neural correlate of alexithymia in child maltreatment-related PTSD. Sixteen adults with PTSD and a history of childhood sexual abuse, physical abuse, or exposure to domestic violence, and 24 healthy controls (HC) completed the Toronto Alexithymia Scale 20 (TAS–20) and underwent magnetic resonance imaging. Cortical thickness of the dACC was measured using FreeSurfer, and values were correlated with TAS–20 scores, controlling for sex and age, in both groups. Average TAS–20 score was significantly higher in the PTSD than the HC group. TAS–20 scores were significantly positively associated with dACC thickness only in the PTSD group. This association was strongest in the left hemisphere and for TAS–20 subscales that assess difficulty identifying and describing feelings. We found that increasing dACC gray matter thickness is a neural correlate of greater alexithymia in the context of PTSD with childhood maltreatment. While findings are correlational, they motivate further inquiry into the relationships between childhood adversity, emotional awareness and expression, and dACC morphologic development in trauma-related psychopathology. PMID:26439117

  9. Anterior Cingulate Glutamate Is Reduced by Acamprosate Treatment in Patients With Alcohol Dependence.

    PubMed

    Frye, Mark A; Hinton, David J; Karpyak, Victor M; Biernacka, Joanna M; Gunderson, Lee J; Feeder, Scott E; Choi, Doo-Sup; Port, John D

    2016-12-01

    Although the precise drug mechanism of action of acamprosate remains unclear, its antidipsotropic effect is mediated in part through glutamatergic neurotransmission. We evaluated the effect of 4 weeks of acamprosate treatment in a cohort of 13 subjects with alcohol dependence (confirmed by a structured interview, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision) on proton magnetic resonance spectroscopy glutamate levels in the midline anterior cingulate cortex (MACC). We compared levels of metabolites with a group of 16 healthy controls. The Pennsylvania Alcohol Craving Scale was used to assess craving intensity. At baseline, before treatment, the mean cerebrospinal fluid-corrected MACC glutamate (Glu) level was significantly elevated in subjects with alcohol dependence compared with controls (P = 0.004). Four weeks of acamprosate treatment reduced glutamate levels (P = 0.025), an effect that was not observed in subjects who did not take acamprosate. At baseline, there was a significant positive correlation between cravings, measured by the Pennsylvania Alcohol Craving Scale, and MACC (Glu) levels (P = 0.019). Overall, these data would suggest a normalizing effect of acamprosate on a hyperglutamatergic state observed in recently withdrawn patients with alcohol dependence and a positive association between MACC glutamate levels and craving intensity in early abstinence. Further research is needed to evaluate the use of these findings for clinical practice, including monitoring of craving intensity and individualized selection of treatment with antidipsotropic medications in subjects with alcohol dependence.

  10. Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production

    PubMed Central

    Piai, Vitória; Roelofs, Ardi; Acheson, Daniel J.; Takashima, Atsuko

    2013-01-01

    Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI); vocal color naming while ignoring distractors (Stroop); and manual object discrimination while ignoring spatial position (Simon task). All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex (ACC) that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus (STG). Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category) relative to incongruent (categorically related) and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the ACC, a region that is likely implementing domain-general attentional control. PMID:24368899

  11. Anterior cingulate cortex activity can be independent of response conflict in Stroop-like tasks.

    PubMed

    Roelofs, Ardi; van Turennout, Miranda; Coles, Michael G H

    2006-09-12

    Cognitive control includes the ability to formulate goals and plans of action and to follow these while facing distraction. Previous neuroimaging studies have shown that the presence of conflicting response alternatives in Stroop-like tasks increases activity in dorsal anterior cingulate cortex (ACC), suggesting that the ACC is involved in cognitive control. However, the exact nature of ACC function is still under debate. The prevailing conflict detection hypothesis maintains that the ACC is involved in performance monitoring. According to this view, ACC activity reflects the detection of response conflict and acts as a signal that engages regulative processes subserved by lateral prefrontal brain regions. Here, we provide evidence from functional MRI that challenges this view and favors an alternative view, according to which the ACC has a role in regulation itself. Using an arrow-word Stroop task, subjects responded to incongruent, congruent, and neutral stimuli. A critical prediction made by the conflict detection hypothesis is that ACC activity should be increased only when conflicting response alternatives are present. Our data show that ACC responses are larger for neutral than for congruent stimuli, in the absence of response conflict. This result demonstrates the engagement of the ACC in regulation itself. A computational model of Stroop-like performance instantiating a version of the regulative hypothesis is shown to account for our findings.

  12. An Examination of Rostral Anterior Cingulate Cortex Function and Neurochemistry in Obsessive–Compulsive Disorder

    PubMed Central

    Brennan, Brian P; Tkachenko, Olga; Schwab, Zachary J; Juelich, Richard J; Ryan, Erin M; Athey, Alison J; Pope, Harrison G; Jenike, Michael A; Baker, Justin T; Killgore, William DS; Hudson, James I; Jensen, J Eric; Rauch, Scott L

    2015-01-01

    The anterior cingulate cortex is implicated in the neurobiology of obsessive–compulsive disorder (OCD). However, few studies have examined functional and neurochemical abnormalities specifically in the rostral subdivision of the ACC (rACC) in OCD patients. We used functional magnetic resonance imaging (fMRI) during an emotional counting Stroop task and single-voxel J-resolved proton magnetic resonance spectroscopy (1H-MRS) in the rACC to examine the function and neurochemistry of the rACC in individuals with OCD and comparison individuals without OCD. Between-group differences in rACC activation and glutamine/glutamate ratio (Gln/Glu), Glu, and Gln levels, as well as associations between rACC activation, Gln/Glu, Glu, Gln, behavioral, and clinical measures were examined using linear regression. In a sample of 30 participants with OCD and 29 age- and sex-matched participants without OCD, participants with OCD displayed significantly reduced rACC deactivation compared with those without OCD in response to OCD-specific words versus neutral words on the emotional counting Stroop task. However, Gln/Glu, Glu, and Gln in the rACC did not differ between groups nor was there an association between reduced rACC deactivation and Gln/Glu, Glu, or Gln in the OCD group. Taken together, these findings strengthen the evidence for rACC dysfunction in OCD, but weigh against an underlying association with abnormal rACC glutamatergic neurotransmission. PMID:25662837

  13. Structural connectivity of the anterior cingulate in children with unilateral cerebral palsy due to white matter lesions

    PubMed Central

    Scheck, Simon M.; Pannek, Kerstin; Raffelt, David A.; Fiori, Simona; Boyd, Roslyn N.; Rose, Stephen E.

    2015-01-01

    In this work we investigate the structural connectivity of the anterior cingulate cortex (ACC) and its link with impaired executive function in children with unilateral cerebral palsy (UCP) due to periventricular white matter lesions. Fifty two children with UCP and 17 children with typical development participated in the study, and underwent diffusion and structural MRI. Five brain regions were identified for their high connectivity with the ACC using diffusion MRI fibre tractography: the superior frontal gyrus, medial orbitofrontal cortex, rostral middle frontal gyrus, precuneus and isthmus cingulate. Structural connectivity was assessed in pathways connecting these regions to the ACC using three diffusion MRI derived measures: fractional anisotropy (FA), mean diffusivity (MD) and apparent fibre density (AFD), and compared between participant groups. Furthermore we investigated correlations of these measures with executive function as assessed by the Flanker task. The ACC–precuneus tract had significantly different MD (p < 0.0001) and AFD (p = 0.0072) between groups, with post-hoc analysis showing significantly increased MD in the right hemisphere of children with left hemiparesis compared with controls. The ACC–superior frontal gyrus tract had significantly different FA (p = 0.0049) and MD (p = 0.0031) between groups. AFD in this tract (contralateral to side of hemiparesis; right hemisphere in controls) showed a significant relationship with Flanker task performance (p = 0.0045, β = −0.5856), suggesting that reduced connectivity correlates with executive dysfunction. Reduced structural integrity of ACC tracts appears to be important in UCP, in particular the connection to the superior frontal gyrus. Although damage to this area is heterogeneous it may be important in early identification of children with impaired executive function. PMID:26640762

  14. Preserved Self-Awareness following Extensive Bilateral Brain Damage to the Insula, Anterior Cingulate, and Medial Prefrontal Cortices

    PubMed Central

    Khalsa, Sahib S.; Damasio, Antonio; Tranel, Daniel; Landini, Gregory; Williford, Kenneth

    2012-01-01

    It has been proposed that self-awareness (SA), a multifaceted phenomenon central to human consciousness, depends critically on specific brain regions, namely the insular cortex, the anterior cingulate cortex (ACC), and the medial prefrontal cortex (mPFC). Such a proposal predicts that damage to these regions should disrupt or even abolish SA. We tested this prediction in a rare neurological patient with extensive bilateral brain damage encompassing the insula, ACC, mPFC, and the medial temporal lobes. In spite of severe amnesia, which partially affected his “autobiographical self”, the patient's SA remained fundamentally intact. His Core SA, including basic self-recognition and sense of self-agency, was preserved. His Extended SA and Introspective SA were also largely intact, as he has a stable self-concept and intact higher-order metacognitive abilities. The results suggest that the insular cortex, ACC and mPFC are not required for most aspects of SA. Our findings are compatible with the hypothesis that SA is likely to emerge from more distributed interactions among brain networks including those in the brainstem, thalamus, and posteromedial cortices. PMID:22927899

  15. Rostral anterior cingulate cortex activity and early symptom improvement during treatment for major depressive disorder

    PubMed Central

    Korb, Alexander S.; Hunter, Aimee M.; Cook, Ian A.; Leuchter, Andrew F.

    2011-01-01

    In treatment trials for Major Depressive Disorder (MDD), early symptom improvement is predictive of eventual clinical response. Clinical response may also be predicted by elevated pretreatment theta (4-7 Hz) current density in the rostral anterior cingulate (rACC) and medial orbitofrontal cortex (mOFC). We investigated the relationship between pretreatment EEG and early improvement in predicting clinical outcome in 72 MDD subjects across three placebo-controlled treatment trials. Subjects were randomized to receive fluoxetine, venlafaxine, or placebo. Theta current density in the rACC and mOFC was computed with Low-Resolution Brain Electromagnetic Tomography (LORETA). An ANCOVA, examining week 8 Hamilton Depression Rating Scale (HamD) percent change, showed a significant effect of week-2-HamD-percent-change, and a significant three-way interaction of week-2-HamD-percent-change × Treatment × rACC. Medication subjects with robust early improvement showed almost no relationship between rACC theta current density and final clinical outcome. However, in subjects with little early improvement, rACC activity showed a strong relationship with clinical outcome. The model examining mOFC showed a trend in the three-way interaction. A combination of pretreatment rACC activity and early symptom improvement may be useful for predicting treatment response. PMID:21546222

  16. Distinct Roles for the Anterior Cingulate and Dorsolateral Prefrontal Cortices During Conflict Between Abstract Rules.

    PubMed

    Boschin, Erica A; Brkic, Merima M; Simons, Jon S; Buckley, Mark J

    2017-01-01

    Distinct patterns of activity within the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (dlPFC) reported in neuroimaging studies during tasks involving conflict between competing responses have often been cited as evidence for their key contributions to conflict-monitoring and behavioral adaptation, respectively. However, supporting evidence from neuropsychological patients has been scarce and contradictory. We administered a well-studied analog of the Wisconsin Card Sorting Test, designed to elicit conflict between 2 abstract rules, to a cohort of 6 patients with damage to ACC or dlPFC. Patients who had sustained more significant damage to the ACC were not impaired either on a measure of "conflict cost" nor on measures of "conflict-induced behavioral adaptation." In contrast, damage to dlPFC did not affect the conflict cost measure but abolished the patients' ability to adapt their behavior following exposure to conflict, compared with controls. This pattern of results complements the findings from nonhuman primates with more circumscribed lesions to ACC or dlPFC on the same task and provides converging evidence that ACC is not necessary for performance when conflict is elicited between 2 abstract rules, whereas dlPFC plays a fundamental role in behavioral adaptation. © The Author 2016. Published by Oxford University Press.

  17. Helping behavior induced by empathic concern attenuates anterior cingulate activation in response to others' distress.

    PubMed

    Kawamichi, Hiroaki; Yoshihara, Kazufumi; Sugawara, Sho K; Matsunaga, Masahiro; Makita, Kai; Hamano, Yuki H; Tanabe, Hiroki C; Sadato, Norihiro

    2016-01-01

    Helping behavior is motivated by empathic concern for others in distress. Although empathic concern is pervasive in daily life, its neural mechanisms remain unclear. Empathic concern involves the suppression of the emotional response to others' distress, which occurs when individuals distance themselves emotionally from the distressed individual. We hypothesized that helping behavior induced by empathic concern, accompanied by perspective-taking, would attenuate the neural activation representing aversive feelings. We also predicted reward system activation due to the positive feeling resulting from helping behavior. Participant underwent functional magnetic resonance imaging while playing a virtual ball-toss game. In some blocks ("concern condition"), one player ("isolated player") did not receive ball-tosses from other players. In this condition, participants increased ball-tosses to the isolated player (helping behavior). Participants then evaluated the improved enjoyment of the isolated player resulting from their helping behavior. Anterior cingulate activation during the concern condition was attenuated by the evaluation of the effect of helping behavior. The right temporoparietal junction, which is involved in perspective-taking and the dorsal striatum, part of the reward system, were also activated during the concern condition. These results suggest that humans can attenuate affective arousal by anticipating the positive outcome of empathic concern through perspective-taking.

  18. Distinct Roles for the Anterior Cingulate and Dorsolateral Prefrontal Cortices During Conflict Between Abstract Rules

    PubMed Central

    Boschin, Erica A.; Brkic, Merima M.; Simons, Jon S.; Buckley, Mark J.

    2017-01-01

    Abstract Distinct patterns of activity within the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (dlPFC) reported in neuroimaging studies during tasks involving conflict between competing responses have often been cited as evidence for their key contributions to conflict-monitoring and behavioral adaptation, respectively. However, supporting evidence from neuropsychological patients has been scarce and contradictory. We administered a well-studied analog of the Wisconsin Card Sorting Test, designed to elicit conflict between 2 abstract rules, to a cohort of 6 patients with damage to ACC or dlPFC. Patients who had sustained more significant damage to the ACC were not impaired either on a measure of “conflict cost” nor on measures of “conflict-induced behavioral adaptation.” In contrast, damage to dlPFC did not affect the conflict cost measure but abolished the patients’ ability to adapt their behavior following exposure to conflict, compared with controls. This pattern of results complements the findings from nonhuman primates with more circumscribed lesions to ACC or dlPFC on the same task and provides converging evidence that ACC is not necessary for performance when conflict is elicited between 2 abstract rules, whereas dlPFC plays a fundamental role in behavioral adaptation. PMID:28365775

  19. NMDA and AMPA receptors in the anterior cingulate cortex mediates visceral pain in visceral hypersensitivity rats.

    PubMed

    Zhou, Lin; Huang, Junjing; Gao, Jun; Zhang, Guanpo; Jiang, Jinjin

    2014-02-01

    Several studies have shown that N-methyl-D-aspartate (NMDA)-receptor activation in anterior cingulate cortex (ACC) neurons plays critical roles in modulating visceral pain responses in visceral hypersensitivity (VH) rats. However, there are few reports about the expressions of NMDA and α-amino-3-hydroxy-5-methyl-4-isox-azolepropionic-acid (AMPA) receptor subtypes in ACC of VH model rats at different time points. The current study was undertaken to investigate NR2A, NR2B and GluR2 expressions in ACC of VH rats that were induced by administration with 5% mustard oil. Our results indicated that NR2B, but not NR2A, was highly expressed in VH model group on day 15, 22, and 36 compared with normal group (p < 0.05). GluR2 expression was also higher in VH model group on day 15, 22, and 36 than that of normal group (p < 0.05). These findings suggested increased expression of NR2B and GluR2 might be key mechanisms for long-term synaptic plastic changes in VH rats. Copyright © 2014. Published by Elsevier Inc.

  20. Oxytocin and vasopressin flatten dominance hierarchy and enhance behavioral synchrony in part via anterior cingulate cortex.

    PubMed

    Jiang, Yaoguang; Platt, Michael L

    2018-05-29

    The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) influence social functions in many mammals. In humans and rhesus macaques, OT delivered intranasally can promote prosocial behavior in certain contexts. Yet the precise neural mechanisms mediating these behavioral effects remain unclear. Here we show that treating a group of male macaque monkeys intranasally with aerosolized OT relaxes their spontaneous social interactions with other monkeys. OT reduces differences in social behavior between dominant and subordinate monkeys, thereby flattening the status hierarchy. OT also increases behavioral synchrony within a pair. Intranasal delivery of aerosolized AVP reproduces the effects of OT with greater efficacy. Remarkably, all behavioral effects are replicated when OT or AVP is injected focally into the anterior cingulate gyrus (ACCg), a brain area linked to empathy and other-regarding behavior. ACCg lacks OT receptors but is rich in AVP receptors, suggesting exogenous OT may shape social behavior, in part, via nonspecific binding. Notably, OT and AVP alter behaviors of both the treated monkey and his untreated partner, consistent with enhanced feedback through reciprocal social interactions. These findings bear important implications for use of OT in both basic research and as a therapy for social impairments in neurodevelopmental disorders.

  1. Cortical thinning of the right anterior cingulate cortex in spider phobia: a magnetic resonance imaging and spectroscopy study.

    PubMed

    Linares, I M P; Jackowski, A P; Trzesniak, C M F; Arrais, K C; Chagas, M H N; Sato, J R; Santos, A C; Hallak, J E C; Zuardi, A W; Nardi, A E; Coimbra, N C; Crippa, J A S

    2014-08-12

    There a lack of consistent neuroimaging data on specific phobia (SP) and a need to assess volumetric and metabolic differences in structures implicated in this condition. The aim of this study is investigate possible metabolic (via (1)H MRS) and cortical thickness abnormalities in spider-phobic patients compared to healthy volunteers. Participants were recruited via public advertisement and underwent clinical evaluations and MRI scans. The study started in 2010 and the investigators involved were not blind in respect to patient groupings. The study was conducted at the Ribeirão Preto Medical School University Hospital of the University of São Paulo, Brazil. Patients with spider phobia (n=19) were matched to 17 healthy volunteers with respect to age, education and socio-economic status. The spider SP group fulfilled the diagnostic criteria for spider phobia according to the Structured Clinical Interview for DSM-IV. None of the participants had a history of neurological, psychiatric or other relevant organic diseases, use of prescribed psychotropic medication or substance abuse. All imaging and spectroscopy data were collected with a 3 T MRI scanner equipped with 25 mT gradient coils in 30-minute scans. The Freesurfer image analysis package and LC Model software were used to analyze data. The hypothesis being tested was formulated before the data collection (neural correlates of SP would include the amygdala, insula, anterior cingulate gyrus and others). The results indicated the absence of metabolic alterations, but thinning of the right anterior cingulate cortex (ACC) in the SP group when compared to the healthy control group (mean cortical thickness±SD: SP=2.11±0.45 mm; HC=2.16±0.42 mm; t (34)=3.19, p=0.001 [-35.45, 71.00, -23.82]). In spectroscopy, the ratios between N-acetylaspartate and creatine and choline levels were measured. No significant effect or correlation was found between MRS metabolites and scores in the Spider Phobia Questionnaire and Beck

  2. Neurons in Dorsal Anterior Cingulate Cortex Signal Postdecisional Variables in a Foraging Task

    PubMed Central

    Hayden, Benjamin Y.

    2014-01-01

    The dorsal anterior cingulate cortex (dACC) is a key hub of the brain's executive control system. Although a great deal is known about its role in outcome monitoring and behavioral adjustment, whether and how it contributes to the decision process remain unclear. Some theories suggest that dACC neurons track decision variables (e.g., option values) that feed into choice processes and is thus “predecisional.” Other theories suggest that dACC activity patterns differ qualitatively depending on the choice that is made and is thus “postdecisional.” To compare these hypotheses, we examined responses of 124 dACC neurons in a simple foraging task in which monkeys accepted or rejected offers of delayed rewards. In this task, options that vary in benefit (reward size) and cost (delay) appear for 1 s; accepting the option provides the cued reward after the cued delay. To get at dACC neurons' contributions to decisions, we focused on responses around the time of choice, several seconds before the reward and the end of the trial. We found that dACC neurons signal the foregone value of the rejected option, a postdecisional variable. Neurons also signal the profitability (that is, the relative value) of the offer, but even these signals are qualitatively different on accept and reject decisions, meaning that they are also postdecisional. These results suggest that dACC can be placed late in the decision process and also support models that give it a regulatory role in decision, rather than serving as a site of comparison. PMID:24403162

  3. Abnormal ventral tegmental area-anterior cingulate cortex connectivity in Parkinson's disease with depression.

    PubMed

    Wei, Luqing; Hu, Xiao; Yuan, Yonggui; Liu, Weiguo; Chen, Hong

    2018-07-16

    Neuropathology suggests that Parkinson's disease (PD) with depression may involve a progressive degeneration of the nigrostriatal and mesocorticolimbic dopaminergic systems. Previous positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies have shown that dopamine changes in individual brain regions constituting the nigrostriatal and mesocorticolimbic circuits are associated with depression in PD. However, few studies have been conducted on the circuit-level alterations in this disease. The present study used resting-state fMRI and seed-based functional connectivity of putative dopaminergic midbrain regions (i.e., substantia nigra (SN) and ventral tegmental area (VTA)) to investigate the circuit-related abnormalities in PD with depression. The results showed that depressed PD (DPD) patients relative to healthy controls (HC) and non-depressed PD (NDPD) patients had increased functional connectivity between VTA and anterior cingulate cortex (ACC), demonstrating that dysfunctional mesocorticolimbic dopaminergic neurotransmission may be associated with depression in PD. Compared with HC, DPD and NDPD patients showed increased functional connectivity from SN to sensorimotor cortex, validating that alterations in the nigrostriatal circuitry could be responsible for cardinal motor features in PD. In addition, aberrant connectivity between VTA and ACC was correlated with the severity of depression in PD patients, further supporting that abnormal mesocorticolimbic system may account for depressive symptoms in PD. These results have provided potential circuit-level biomarkers of depression in PD, and suggested that resting state functional connectivity of midbrain dopaminergic nuclei may be useful for understanding the underlying pathology in PD with depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Dysfunctional Noise Cancelling of the Rostral Anterior Cingulate Cortex in Tinnitus Patients

    PubMed Central

    Song, Jae Jin; Vanneste, Sven; De Ridder, Dirk

    2015-01-01

    Background Peripheral auditory deafferentation and central compensation have been regarded as the main culprits of tinnitus generation. However, patient-to-patient discrepancy in the range of the percentage of daytime in which tinnitus is perceived (tinnitus awareness percentage, 0 – 100%), is not fully explicable only by peripheral deafferentation, considering that the deafferentation is a stable persisting phenomenon but tinnitus is intermittently perceived in most patients. Consequently, the involvement of a dysfunctional noise cancellation mechanism has recently been suggested with regard to the individual differences in reported tinnitus awareness. By correlating the tinnitus awareness percentage with resting-state source-localized electroencephalography findings, we may be able to retrieve the cortical area that is negatively correlated with tinnitus awareness percentage, and then the area may be regarded as the core of the noise cancelling system that is defective in patients with tinnitus. Methods and Findings Using resting-state cortical oscillation, we investigated 80 tinnitus patients by correlating the tinnitus awareness percentage with their source-localized cortical oscillatory activity and functional connectivity. The activity of bilateral rostral anterior cingulate cortices (ACCs), left dorsal- and pregenual ACCs for the delta band, bilateral rostral/pregenual/subgenual ACCs for the theta band, and left rostral/pregenual ACC for the beta 1 band displayed significantly negative correlations with tinnitus awareness percentage. Also, the connectivity between the left primary auditory cortex (A1) and the rostral ACC, as well as between the left A1 and the subgenual ACC for the beta 1 band, were negatively correlated with tinnitus awareness percentage. Conclusions These results may designate the role of the rostral ACC as the core of the descending noise cancellation system, and thus dysfunction of the rostral ACC may result in perception of tinnitus

  5. Glutamate/glutamine concentrations in the dorsal anterior cingulate vary with Post-Traumatic Stress Disorder symptoms.

    PubMed

    Harnett, Nathaniel G; Wood, Kimberly H; Ference, Edward W; Reid, Meredith A; Lahti, Adrienne C; Knight, Amy J; Knight, David C

    2017-08-01

    Trauma and stress-related disorders (e.g., Acute Stress Disorder; ASD and Post-Traumatic Stress Disorder; PTSD) that develop following a traumatic event are characterized by cognitive-affective dysfunction. The cognitive and affective functions disrupted by stress disorder are mediated, in part, by glutamatergic neural systems. However, it remains unclear whether neural glutamate concentrations, measured acutely following trauma, vary with ASD symptoms and/or future PTSD symptom expression. Therefore, the current study utilized proton magnetic resonance spectroscopy ( 1 H-MRS) to investigate glutamate/glutamine (Glx) concentrations within the dorsal anterior cingulate cortex (ACC) of recently (i.e., within one month) traumatized individuals and non-traumatized controls. Although Glx concentrations within dorsal ACC did not differ between recently traumatized and non-traumatized control groups, a positive linear relationship was observed between Glx concentrations and current stress disorder symptoms in traumatized individuals. Further, Glx concentrations showed a positive linear relationship with future stress disorder symptoms (i.e., assessed 3 months post-trauma). The present results suggest glutamate concentrations may play a role in both acute and future post-traumatic stress symptoms following a traumatic experience. The current results expand our understanding of the neurobiology of stress disorder and suggest glutamate within the dorsal ACC plays an important role in cognitive-affective dysfunction following a traumatic experience. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Anterior cingulate synapses in prefrontal areas 10 and 46 suggest differential influence in cognitive control

    PubMed Central

    Medalla, M.; Barbas, H.

    2011-01-01

    Dorsolateral prefrontal areas 46 and 10 are involved in distinct aspects of cognition. Area 46 has a key role in working memory tasks, and frontopolar area 10 is recruited in complex multi-task operations. Both areas are innervated by the anterior cingulate cortex (ACC) a region associated with emotions and memory, but is also important for attentional control through unknown synaptic mechanisms. Here we found that in rhesus monkeys (Macaca mulatta) most axon terminals labeled from tracers injected in ACC area 32 innervated spines of presumed excitatory neurons, but about 20–30% formed mostly large synapses with dendritic shafts of presumed inhibitory neurons in the upper layers (I–IIIa) of dorsolateral areas 10, 46, and 9. Moreover, area 32 terminals targeted preferentially calbindin and, to a lesser extent, calretinin neurons, which are thought to be inhibitory neurons that modulate the gain of task-relevant activity during working memory tasks. Area 46 was distinguished as recipient of more (by ~40%) area 32 synapses on putative inhibitory neurons. Area 10 stood apart as recipient of significantly larger (by ~40% in volume) area 32 terminals on spines of putative excitatory neurons. These synaptic specializations suggest that area 32 has complementary roles, potentially enhancing inhibition in area 46 and strengthening excitation in area 10, which may help direct attention to new tasks while temporarily holding in memory another task. PMID:21123554

  7. Characterization of neuronal intrinsic properties and synaptic transmission in layer I of anterior cingulate cortex from adult mice

    PubMed Central

    2012-01-01

    The neurons in neocortex layer I (LI) provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies were reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC), a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all of the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP, named ADP1 and ADP2, respectively. Using pharmacological approaches, we found that LI neurons received both excitatory (mediated by AMPA, kainate and NMDA receptors), and inhibitory inputs (which were mediated by GABAA receptors). Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice. PMID:22818293

  8. Role of the anterior cingulate cortex in the retrieval of novel object recognition memory after a long delay

    PubMed Central

    Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin CF.; Cassaday, Helen J.

    2017-01-01

    Previous in vivo electrophysiological studies suggest that the anterior cingulate cortex (ACgx) is an important substrate of novel object recognition (NOR) memory. However, intervention studies are needed to confirm this conclusion and permanent lesion studies cannot distinguish effects on encoding and retrieval. The interval between encoding and retrieval tests may also be a critical determinant of the role of the ACgx. The current series of experiments used micro-infusion of the GABAA receptor agonist, muscimol, into ACgx to reversibly inactivate the area and distinguish its role in encoding and retrieval. ACgx infusions of muscimol, before encoding did not alter NOR assessed after a delay of 20 min or 24 h. However, when infused into the ACgx before retrieval muscimol impaired NOR assessed after a delay of 24 h, but not after a 20-min retention test. Together these findings suggest that the ACgx plays a time-dependent role in the retrieval, but not the encoding, of NOR memory, neuronal activation being required for the retrieval of remote (24 h old), but not recent (20 min old) visual memory. PMID:28620078

  9. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation.

    PubMed

    Yu, Chunshui; Zhou, Yuan; Liu, Yong; Jiang, Tianzi; Dong, Haiwei; Zhang, Yunting; Walter, Martin

    2011-02-14

    The four-region model with 7 specified subregions represents a theoretical construct of functionally segregated divisions of the cingulate cortex based on integrated neurobiological assessments. Under this framework, we aimed to investigate the functional specialization of the human cingulate cortex by analyzing the resting-state functional connectivity (FC) of each subregion from a network perspective. In 20 healthy subjects we systematically investigated the FC patterns of the bilateral subgenual (sACC) and pregenual (pACC) anterior cingulate cortices, anterior (aMCC) and posterior (pMCC) midcingulate cortices, dorsal (dPCC) and ventral (vPCC) posterior cingulate cortices and retrosplenial cortices (RSC). We found that each cingulate subregion was specifically integrated in the predescribed functional networks and showed anti-correlated resting-state fluctuations. The sACC and pACC were involved in an affective network and anti-correlated with the sensorimotor and cognitive networks, while the pACC also correlated with the default-mode network and anti-correlated with the visual network. In the midcingulate cortex, however, the aMCC was correlated with the cognitive and sensorimotor networks and anti-correlated with the visual, affective and default-mode networks, whereas the pMCC only correlated with the sensorimotor network and anti-correlated with the cognitive and visual networks. The dPCC and vPCC involved in the default-mode network and anti-correlated with the sensorimotor, cognitive and visual networks, in contrast, the RSC was mainly correlated with the PCC and thalamus. Based on a strong hypothesis driven approach of anatomical partitions of the cingulate cortex, we could confirm their segregation in terms of functional neuroanatomy, as suggested earlier by task studies or exploratory multi-seed investigations. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Structural and functional changes of the cingulate gyrus following traumatic brain injury: relation to attention and executive skills.

    PubMed

    Merkley, Tricia L; Larson, Michael J; Bigler, Erin D; Good, Daniel A; Perlstein, William M

    2013-09-01

    Impairments of attention and executive functions are common sequelae of traumatic brain injury (TBI). The anterior cingulate is implicated in conflict-related task performance, such as the Stroop, and is susceptible to TBI-related injury due to its frontal location and proximity to the rough surface of the falx cerebri. We investigated the relationship between cingulate cortex volume and performance on tasks of selective attention and cognitive flexibility (single-trial Stroop and Auditory Consonant Trigrams [ACT]). Participants consisted of 12 adults with severe TBI and 18 controls. T1-weighted volumetric MRI data were analyzed using automated cortical reconstruction, segmentation, parcellation, and volume measurement. Cortical volume reductions were prominent bilaterally in frontal, temporal, and inferior parietal regions.Specific regional reduction of the cingulate cortex was observed only for cortical volume of right caudal anterior cingulate(cACC). The TBI group performed significantly worse than control participants on the Stroop and ACT tasks. Findings suggest that atrophy of the right cACC may contribute to reduced performance on executive function tasks, such as the Stroop and ACT, although this is likely but one node of an extensive brain network involved in these cognitive processes.

  11. Rostral Anterior Cingulate Cortex Theta Current Density and Response to Antidepressants and Placebo in Major Depression

    PubMed Central

    Korb, Alexander S.; Hunter, Aimee M.; Cook, Ian A.; Leuchter, Andrew F.

    2009-01-01

    Objective To assess whether pretreatment theta current density in the rostral anterior cingulate (rACC) and medial orbitofrontal cortex (mOFC) differentiates responders from non-responders to antidepressant medication or placebo in a double-blinded study. Methods Pretreatment EEGs were collected from 72 subjects with Major Depressive Disorder (MDD) who participated in one of three placebo-controlled trials. Subjects were randomized to receive treatment with fluoxetine, venlafaxine, or placebo. Low-resolution brain electromagnetic tomography (LORETA) was used to assess theta current density in the rACC and mOFC. Results Medication responders showed elevated rACC and mOFC theta current density compared to medication non-responders (rACC: p=0.042; mOFC: p=0.039). There was no significant difference in either brain region between placebo responders and placebo non-responders. Conclusions Theta current density in the rACC and mOFC may be useful as a biomarker for prediction of response to antidepressant medication. Significance This is the first double-blinded treatment study to examine pretreatment rACC and mOFC theta current density in relation to antidepressant response and placebo response. Results support the potential clinical utility of this approach for predicting clinical outcome to antidepressant treatments in MDD. PMID:19539524

  12. Deep brain stimulation of the dorsal anterior cingulate cortex for the treatment of chronic neuropathic pain.

    PubMed

    Russo, Jennifer F; Sheth, Sameer A

    2015-06-01

    Chronic neuropathic pain is estimated to affect 3%-4.5% of the worldwide population. It is associated with significant loss of productive time, withdrawal from the workforce, development of mood disorders such as depression and anxiety, and disruption of family and social life. Current medical therapeutics often fail to adequately treat chronic neuropathic pain. Deep brain stimulation (DBS) targeting subcortical structures such as the periaqueductal gray, the ventral posterior lateral and medial thalamic nuclei, and the internal capsule has been investigated for the relief of refractory neuropathic pain over the past 3 decades. Recent work has identified the dorsal anterior cingulate cortex (dACC) as a new potential neuromodulation target given its central role in cognitive and affective processing. In this review, the authors briefly discuss the history of DBS for chronic neuropathic pain in the United States and present evidence supporting dACC DBS for this indication. They review existent literature on dACC DBS and summarize important findings from imaging and neurophysiological studies supporting a central role for the dACC in the processing of chronic neuropathic pain. The available neurophysiological and empirical clinical evidence suggests that dACC DBS is a viable therapeutic option for the treatment of chronic neuropathic pain and warrants further investigation.

  13. Dissociable effects of surprise and model update in parietal and anterior cingulate cortex

    PubMed Central

    O’Reilly, Jill X.; Schüffelgen, Urs; Cuell, Steven F.; Behrens, Timothy E. J.; Mars, Rogier B.; Rushworth, Matthew F. S.

    2013-01-01

    Brains use predictive models to facilitate the processing of expected stimuli or planned actions. Under a predictive model, surprising (low probability) stimuli or actions necessitate the immediate reallocation of processing resources, but they can also signal the need to update the underlying predictive model to reflect changes in the environment. Surprise and updating are often correlated in experimental paradigms but are, in fact, distinct constructs that can be formally defined as the Shannon information (IS) and Kullback–Leibler divergence (DKL) associated with an observation. In a saccadic planning task, we observed that distinct behaviors and brain regions are associated with surprise/IS and updating/DKL. Although surprise/IS was associated with behavioral reprogramming as indexed by slower reaction times, as well as with activity in the posterior parietal cortex [human lateral intraparietal area (LIP)], the anterior cingulate cortex (ACC) was specifically activated during updating of the predictive model (DKL). A second saccade-sensitive region in the inferior posterior parietal cortex (human 7a), which has connections to both LIP and ACC, was activated by surprise and modulated by updating. Pupillometry revealed a further dissociation between surprise and updating with an early positive effect of surprise and late negative effect of updating on pupil area. These results give a computational account of the roles of the ACC and two parietal saccade regions, LIP and 7a, by which their involvement in diverse tasks can be understood mechanistically. The dissociation of functional roles between regions within the reorienting/reprogramming network may also inform models of neurological phenomena, such as extinction and Balint syndrome, and neglect. PMID:23986499

  14. Rostral anterior cingulate cortex volume correlates with depressed mood in normal healthy children

    PubMed Central

    Boes, Aaron D.; McCormick, Laurie M.; Coryell, William H.; Nopoulos, Peg

    2008-01-01

    BACKGROUND The rostral anterior cingulate cortex (rACC) has been implicated as a structural neural correlate of familial major depressive disorder, raising the possibility that the structure of this region may act as a biologic marker of depression vulnerability. The aim of the current study was to determine whether children and adolescents with depressive symptoms have lower rACC volume relative to those without symptoms and examine how a positive family history of depression affects this relationship. METHODS 112 normal healthy children (59 boys, 53 girls), age 7–17, without a current diagnosis or history of depression or other psychiatric illness, were recruited from the community. Mood symptoms were collected using the Pediatric Behavior Scale, a parent- and teacher-reported questionnaire. Volumetric measures of the rACC were generated using structural MRI. The relationship of depressive symptoms and rACC volume was examined. RESULTS 1) The rACC volume was significantly lower in boys with subclinical depressive symptoms compared to boys with no depressive symptoms, particularly on the left side (14.6% reduction; F = 8.90, p = .005). 2) In comparing the correlation of depressive symptoms and rACC volume in boys with a positive family history of depression to those with no family history there was a more robust negative correlation in subjects with a positive family history. 3) In girls there was not a significant association of depressive symptoms and rACC volume. CONCLUSIONS These findings lend further support to the notion that rACC structure may act as a biologic marker of vulnerability or trait-marker of depression. PMID:17916329

  15. Amygdala-cingulate intrinsic connectivity is associated with degree of social inhibition

    PubMed Central

    Blackford, Jennifer Urbano; Clauss, Jacqueline A.; Avery, Suzanne N.; Cowan, Ronald L.; Benningfield, Margaret M.; VanDerKlok, Ross M.

    2014-01-01

    The tendency to approach or avoid novel people is a fundamental human behavior and is a core dimension of social anxiety. Resting state fMRI was used to test for an association between social inhibition and intrinsic connectivity in 40 young adults ranging from low to high in social inhibition. Higher levels of social inhibition were associated with specific patterns of reduced amygdala-cingulate cortex connectivity. Connectivity was reduced between the superficial amygdala and the rostral cingulate cortex and between the centromedial amygdala and the dorsal anterior cingulate cortex. Social inhibition also modulated connectivity in several well-established intrinsic networks; higher social inhibition correlated with reduced connectivity with default mode and dorsal attention networks and enhanced connectivity in salience and executive control networks. These findings provide important preliminary evidence that social inhibition reflects differences in the underlying intrinsic connectivity of the brain in the absence of social stimuli or stressors. PMID:24534162

  16. Anticipatory activity in anterior cingulate cortex can be independent of conflict and error likelihood.

    PubMed

    Aarts, Esther; Roelofs, Ardi; van Turennout, Miranda

    2008-04-30

    Previous studies have found no agreement on whether anticipatory activity in the anterior cingulate cortex (ACC) reflects upcoming conflict, error likelihood, or actual control adjustments. Using event-related functional magnetic resonance imaging, we investigated the nature of preparatory activity in the ACC. Informative cues told the participants whether an upcoming target would or would not involve conflict in a Stroop-like task. Uninformative cues provided no such information. Behavioral responses were faster after informative than after uninformative cues, indicating cue-based adjustments in control. ACC activity was larger after informative than uninformative cues, as would be expected if the ACC is involved in anticipatory control. Importantly, this activation in the ACC was observed for informative cues even when the information conveyed by the cue was that the upcoming target evokes no response conflict and has low error likelihood. This finding demonstrates that the ACC is involved in anticipatory control processes independent of upcoming response conflict or error likelihood. Moreover, the response of the ACC to the target stimuli was critically dependent on whether the cue was informative or not. ACC activity differed among target conditions after uninformative cues only, indicating ACC involvement in actual control adjustments. Together, these findings argue strongly for a role of the ACC in anticipatory control independent of anticipated conflict and error likelihood, and also show that such control can eliminate conflict-related ACC activity during target processing. Models of frontal cortex conflict-detection and conflict-resolution mechanisms require modification to include consideration of these anticipatory control properties of the ACC.

  17. Alleviating neuropathic pain mechanical allodynia by increasing Cdh1 in the anterior cingulate cortex.

    PubMed

    Tan, Wei; Yao, Wen-Long; Hu, Rong; Lv, You-You; Wan, Li; Zhang, Chuan-Han; Zhu, Chang

    2015-09-12

    Plastic changes in the anterior cingulate cortex (ACC) are critical in the pathogenesis of pain hypersensitivity caused by injury to peripheral nerves. Cdh1, a co-activator subunit of anaphase-promoting complex/cyclosome (APC/C) regulates synaptic differentiation and transmission. Based on this, we hypothesised that the APC/C-Cdh1 played an important role in long-term plastic changes induced by neuropathic pain in ACC. We employed spared nerve injury (SNI) model in rat and found Cdh1 protein level in the ACC was down-regulated 3, 7 and 14 days after SNI surgery. We detected increase in c-Fos expression, numerical increase of organelles, swollen myelinated fibre and axon collapse of neuronal cells in the ACC of SNI rat. Additionally, AMPA receptor GluR1 subunit protein level was up-regulated on the membrane through a pathway that involves EphA4 mediated by APC/C-Cdh1, 3 and 7 days after SNI surgery. To confirm the effect of Cdh1 in neuropathic pain, Cdh1-expressing lentivirus was injected into the ACC of SNI rat. Intra-ACC treatment with Cdh1-expressing lentivirus vectors elevated Cdh1 levels, erased synaptic strengthening, as well as alleviating established mechanical allodynia in SNI rats. We also found Cdh1-expressing lentivirus normalised SNI-induced redistribution of AMPA receptor GluR1 subunit in ACC by regulating AMPA receptor trafficking. These results provide evidence that Cdh1 in ACC synapses may offer a novel therapeutic strategy for treating chronic neuropathic pain.

  18. Neurotoxicity and reactive astrogliosis in the anterior cingulate cortex in acute ciguatera poisoning.

    PubMed

    Zhang, Xu; Cao, Bing; Wang, Jun; Liu, Jin; Tung, Vivian Oi Vian; Lam, Paul Kwan Sing; Chan, Leo Lai; Li, Ying

    2013-06-01

    Ciguatoxins (CTXs) cause long-term disturbance of cerebral functions. The primary mechanism of neurotoxicity is related to their interaction with voltage-gated sodium channels. However, until now, the neurological targets for CTXs in the brain of intact animals have not been described. In our study, 1 day following oral exposure to 0.26 ng/g of Pacific ciguatoxin 1 (P-CTX-1), we performed in vivo electrophysiological recordings in the rat anterior cingulate cortex (ACC) and identified the increase in spontaneous firings and enhanced responses to visceral noxious stimulation. Local field recordings characterized the P-CTX-1-induced synaptic potentiation and blockage of the induction of electrical stimulation-induced long-term potentiation in the medial thalamus (MT)-ACC pathway. Furthermore, intracerebroventricular administration of P-CTX-1 at doses of 1.0, 5.0, and 10 nM produced a dose-dependent increase in ACC neuronal firings and MT-ACC synaptic transmission. Further studies showed upregulated Na(+) channel expression in astrocytes under pathological conditions. We hypothesized that the astrocytes might have been activated in the ciguatera poisoning in vivo. Increases in glial fibrillary acid protein expression were detected in reactive astrocytes in the rat ACC. The activation of astroglia was further indicated by activation of the gap junction protein connexin 43 and upregulation of excitatory amino acid transporter 2 expression suggesting that glutamate was normally rapidly cleared from the synaptic cleft during acute ciguatera poisoning. However, neurotoxicity and reactive astrogliosis were not detected in the ACC after 7 days of P-CTX-1 exposure. The present results are the first characterization of P-CTX-1-invoked brain cortex neuronal excitotoxicity in vivo and supported the theme that neuron and astroglia signals might play roles in acute ciguatera poisoning.

  19. Selective anterior cingulate cortex deficit during conflict solution in schizophrenia: an event-related potential study.

    PubMed

    Neuhaus, Andres H; Koehler, Simone; Opgen-Rhein, Carolin; Urbanek, Carsten; Hahn, Eric; Dettling, Michael

    2007-10-01

    Schizophrenia research has gained a new focus on identification and further characterization of neurocognitive deficits in the search for behavioural endophenotypes of this disorder. The objective of this study was to explore differential cortical processing during executive control in schizophrenia as assessed with the attention network test (ANT). Sixteen schizophrenic patients and sixteen healthy controls matched for gender, age, education, and nicotine consumption were tested with the ANT while recording 29-channel-electroencephalogram (EEG). Visual event-related potentials (ERP) N200 and P300 were topographically analyzed and cortical mapping using low resolution brain electromagnetic tomography (LORETA) was applied to localize neuroelectric generators of ERP. Behaviourally, significant differences between schizophrenic patients and controls were found only for the conflict condition (p<0.05) and for conflict adjusted by mean reaction time (p<0.01). Examining ERP of control subjects, N200 failed to show robust flanker congruency effects. P300 amplitude was reduced at Pz (p<0.05) and P300 latency was increased at Cz (p<0.005) for the conflict condition. Schizophrenic patients differed significantly in P300 latency at Cz during late conflict processing (p<0.005). Source analysis revealed a deficit in anterior cingulate cortex (p<0.05). Our results are in line with previous reports about dysfunctional ACC activation in schizophrenia and argue in favour of a selective deficit of cortical conflict resolution. It is further proposed that dysfunctional ACC activation during executive processing may be a neurophysiologic endophenotype candidate of schizophrenia.

  20. Changed Hub and Corresponding Functional Connectivity of Subgenual Anterior Cingulate Cortex in Major Depressive Disorder

    PubMed Central

    Wu, Huawang; Sun, Hui; Xu, Jinping; Wu, Yan; Wang, Chao; Xiao, Jing; She, Shenglin; Huang, Jianwei; Zou, Wenjin; Peng, Hongjun; Lu, Xiaobing; Huang, Guimao; Jiang, Tianzi; Ning, Yuping; Wang, Jiaojian

    2016-01-01

    Major depressive disorder (MDD) is one of the most prevalent mental disorders. In the brain, the hubs of the brain network play a key role in integrating and transferring information between different functional modules. However, whether the changed pattern in functional network hubs contributes to the onset of MDD remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI) and graph theory methods, we investigated whether alterations of hubs can be detected in MDD. First, we constructed the whole-brain voxel-wise functional networks and calculated a functional connectivity strength (FCS) map in each subject in 34 MDD patients and 34 gender-, age- and education level-matched healthy controls (HCs). Next, the two-sample t-test was applied to compare the FCS maps between HC and MDD patients and identified significant decrease of FCS in subgenual anterior cingulate cortex (sgACC) in MDD patients. Subsequent functional connectivity analyses of sgACC showed disruptions in functional connectivity with posterior insula, middle and inferior temporal gyrus, lingual gyrus and cerebellum in MDD patients. Furthermore, the changed FCS of sgACC and functional connections to sgACC were significantly correlated with the Hamilton Depression Rating Scale (HDRS) scores in MDD patients. The results of the present study revealed the abnormal hub of sgACC and its corresponding disrupted frontal-limbic-visual cognitive-cerebellum functional networks in MDD. These findings may provide a new insight for the diagnosis and treatment of MDD. PMID:28018183

  1. Task-dependent response conflict monitoring and cognitive control in anterior cingulate and dorsolateral prefrontal cortices.

    PubMed

    Kim, Chobok; Chung, Chongwook; Kim, Jeounghoon

    2013-11-06

    Previous experience affects our behavior in terms of adjustments. It has been suggested that the conflict monitor-controller system implemented in the prefrontal cortex plays a critical role in such adjustments. Previous studies suggested that there exists multiple conflict monitor-controller systems associated with the level of information (i.e., stimulus and response levels). In this study, we sought to test whether different types of conflicts occur at the same information processing level (i.e., response level) are independently processed. For this purpose, we designed a task paradigm to measure two different types of response conflicts using color-based and location-based conflict stimuli and measured the conflict adaptation effects associated with the two types of conflicts either independently (i.e., single conflict conditions) or simultaneously (i.e., a double-conflict condition). The behavioral results demonstrated that performance on current incongruent trials was faster only when the preceding trial was the same type of response conflict regardless of whether they included a single- or double-conflict. Imaging data also showed that anterior cingulate and dorsolateral prefrontal cortices operate in a task-specific manner. These findings suggest that there may be multiple monitor-controller loops for color-based and location-based conflicts even at the same response level. Importantly, our results suggest that double-conflict processing is qualitatively different from single-conflict processing although double-conflict shares the same sources of conflict with two single-conflict conditions. © 2013 Published by Elsevier B.V.

  2. Abnormal Resting-State Functional Connectivity of the Anterior Cingulate Cortex in Unilateral Chronic Tinnitus Patients

    PubMed Central

    Chen, Yu-Chen; Liu, Shenghua; Lv, Han; Bo, Fan; Feng, Yuan; Chen, Huiyou; Xu, Jin-Jing; Yin, Xindao; Wang, Shukui; Gu, Jian-Ping

    2018-01-01

    Purpose: The anterior cingulate cortex (ACC) has been suggested to be involved in chronic subjective tinnitus. Tinnitus may arise from aberrant functional coupling between the ACC and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to illuminate the functional connectivity (FC) network of the ACC subregions in chronic tinnitus patients. Methods: Resting-state fMRI scans were obtained from 31 chronic right-sided tinnitus patients and 40 healthy controls (age, sex, and education well-matched) in this study. Rostral ACC and dorsal ACC were selected as seed regions to investigate the intrinsic FC with the whole brain. The resulting FC patterns were correlated with clinical tinnitus characteristics including the tinnitus duration and tinnitus distress. Results: Compared with healthy controls, chronic tinnitus patients showed disrupted FC patterns of ACC within several brain networks, including the auditory cortex, prefrontal cortex, visual cortex, and default mode network (DMN). The Tinnitus Handicap Questionnaires (THQ) scores showed positive correlations with increased FC between the rostral ACC and left precuneus (r = 0.507, p = 0.008) as well as the dorsal ACC and right inferior parietal lobe (r = 0.447, p = 0.022). Conclusions: Chronic tinnitus patients have abnormal FC networks originating from ACC to other selected brain regions that are associated with specific tinnitus characteristics. Resting-state ACC-cortical FC disturbances may play an important role in neuropathological features underlying chronic tinnitus. PMID:29410609

  3. Decreased ventral anterior cingulate cortex activity is associated with reduced social pain during emotional support.

    PubMed

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Ura, Mitsuhiro; Yamawaki, Shigeto

    2009-01-01

    People feel psychological pain when they are excluded, and this pain is often attenuated when emotional support is received. It is therefore likely that a specific neural mechanism underlies the detection of social exclusion. Similarly, specific neural mechanisms may underlie the beneficial effects of emotional support. Although neuroimaging researchers have recently examined the neural basis of social pain, there is presently no agreement as to which part of the anterior cingulate cortex (ACC) is involved in the perception and modulation of social pain. We hypothesized that activity in those brain regions that are associated with social pain would be correlated with decrements in social pain induced by emotional support. To examine the effects of emotional support on social pain caused by exclusion, we conducted an fMRI study in which participants played a virtual ball-tossing game. Participants were initially included and later excluded from the game. In the latter half of the session from which participants were excluded, participants received emotionally supportive text messages. We found that emotional support led to increased activity in the left lateral/medial prefrontal cortices and some temporal regions. Those individuals who experienced greater attenuation of social pain exhibited lower ventral ACC and higher left lateral prefrontal cortex activation. These results suggest that the ventral ACC underlies social pain, and that emotional support enhances prefrontal cortex activity, which in turn may lead to a weakened affective response.

  4. Inhibition of mammalian target of rapamycin activation in the rostral anterior cingulate cortex attenuates pain-related aversion in rats.

    PubMed

    Lu, Bo; Jiang, Jingyan; Sun, Jianliang; Xiao, Chun; Meng, Bo; Zheng, Jinwei; Li, Xiaoyu; Wang, Ruichun; Wu, Guorong; Chen, Junping

    2016-09-01

    Pain is a complex experience that comprises both sensory and affective dimensions. Mammalian target of rapamycin (mTOR) plays an important role in the modulation of neuronal plasticity associated with the pathogenesis of pain sensation. However, the role of mTOR in pain affect is unclear. Using a formalin-induced conditioned place avoidance (F-CPA) test, the current study investigated the effects of the mTOR specific inhibitor rapamycin on noxious stimulation induced aversion in the rostral anterior cingulate cortex (rACC). Intraplantar injection of 5% formalin was associated with significant activation of mTOR, as well as p70 ribosomal S6 protein (p70S6K), its downstream effector, in the rACC. The inhibition of mTOR activation with rapamycin disrupted pain-related aversion; however, this inhibition did not affect formalin-induced spontaneous nociceptive behaviors in rats. These findings demonstrated for the first time that mTOR and its downstream pathway in the rACC contribute to the induction of pain-related negative emotion. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice

    PubMed Central

    Rovira, Víctor; Geijo-Barrientos, Emilio

    2016-01-01

    Disinhibition of the cortex (e.g., by GABA -receptor blockade) generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14–20 days), the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7) than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05), which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s). We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere), and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges. PMID:26930051

  6. Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-naïve adolescents with depression compared to controls.

    PubMed

    Halari, Rozmin; Simic, Mima; Pariante, Carmine M; Papadopoulos, Andrew; Cleare, Anthony; Brammer, Michael; Fombonne, Eric; Rubia, Katya

    2009-03-01

    There is increasing recognition of major depressive disorder (MDD) in adolescence. In adult MDD, abnormalities of fronto-striatal and fronto-cingulate circuitries mediating cognitive control functions have been implicated in the pathogenesis and been related to problems with controlling negative thoughts. No neuroimaging studies of cognitive control functions, however, exist in paediatric depression. This study investigated whether medication-naïve adolescents with MDD show abnormal brain activation of fronto-striatal and fronto-cingulate networks when performing tasks of attentional and cognitive control. Event-related functional magnetic resonance imaging was used to compare brain activation between 21 medication-naïve adolescents with a first-episode of MDD aged 14-17 years and 21 healthy adolescents, matched for handedness, age, sex, demographics and IQ. Activation paradigms were tasks of selective attention (Simon task), attentional switching (Switch task), and motor response inhibition and error detection (Stop task). In all three tasks, adolescents with depression compared to healthy controls demonstrated reduced activation in task-relevant right dorsolateral (DLPFC), inferior prefrontal cortex (IFC) and anterior cingulate gyrus (ACG). Additional areas of relatively reduced activation were in the parietal lobes during the Stop and Switch tasks, putamen, insula and temporal lobes during the Switch task and precuneus during the Simon task. This study shows first evidence that medication-naïve adolescents with MDD are characterised by abnormal function in ACG and right lateral prefrontal cortex during tasks of attention and performance monitoring, suggesting an early pathogenesis of these functional abnormalities attributed to MDD.

  7. Higher Media Multi-Tasking Activity Is Associated with Smaller Gray-Matter Density in the Anterior Cingulate Cortex

    PubMed Central

    Loh, Kep Kee; Kanai, Ryota

    2014-01-01

    Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences. PMID:25250778

  8. Not so bad: avoidance and aversive discounting modulate threat appraisal in anterior cingulate and medial prefrontal cortex

    PubMed Central

    Schlund, Michael W.; Brewer, Adam T.; Richman, David M.; Magee, Sandy K.; Dymond, Simon

    2015-01-01

    The dorsal anterior cingulate (adACC) and dorsal medial prefrontal cortex (dmPFC) play a central role in the discrimination and appraisal of threatening stimuli. Yet, little is known about what specific features of threatening situations recruit these regions and how avoidance may modulate appraisal and activation through prevention of aversive events. In this investigation, 30 healthy adults underwent functional neuroimaging while completing an avoidance task in which responses to an Avoidable CS+ threat prevented delivery of an aversive stimulus, but not to an Unavoidable CS+ threat. Extinction testing was also completed where CSs were presented without aversive stimulus delivery and an opportunity to avoid. The Avoidable CS+ relative to the Unavoidable CS+ was associated with reductions in ratings of negative valence, fear, and US expectancy and activation. Greater regional activation was consistently observed to the Unavoidable CS+ during avoidance, which declined during extinction. Individuals exhibiting greater aversive discounting—that is, those more avoidant of immediate monetary loss compared to a larger delayed loss—also displayed greater activation to the Unavoidable CS+, highlighting aversive discounting as a significant individual difference variable. These are the first results linking adACC/dmPFC reactivity to avoidance-based reductions of aversive events and modulation of activation by individual differences in aversive discounting. PMID:26113813

  9. Temporal lobe epilepsy and affective disorders: the role of the subgenual anterior cingulate cortex.

    PubMed

    Stretton, J; Pope, R A; Winston, G P; Sidhu, M K; Symms, M; Duncan, J S; Koepp, M; Thompson, P J; Foong, J

    2015-02-01

    Reduced deactivation within the default mode network (DMN) is common in individuals with primary affective disorders relative to healthy volunteers (HVs). It is unknown whether similar network abnormalities are present in temporal lobe epilepsy (TLE) patients with a history of affective psychopathology. 17 TLE patients with a lifetime affective diagnosis, 31 TLE patients with no formal psychiatric history and 30 HVs were included. We used a visuo-spatial 'n-back' paradigm to compare working memory (WM) network activation between these groups. Post hoc analyses included voxel-based morphometry and diffusion tensor imaging. The Beck Depression Inventory-Fast Screen and Beck Anxiety Inventory were completed on the day of scanning. Each group activated the fronto-parietal WM networks and deactivated the typical DMN in response to increasing task demands. Group comparison revealed that TLE patients with lifetime affective morbidity showed significantly greater deactivation in subgenual anterior cingulate cortex (sACC) than either the TLE-only or the HVs (p<0.001). This effect persisted after covarying for current psychotropic medication and severity of current depressive/anxiety symptoms (all p<0.001). Correlational analysis revealed that this finding was not driven by differences in task performance. There were no significant differences in grey matter volume or structural connectivity between the TLE groups. Our results provide novel evidence suggesting that affective psychopathology in TLE has a neurobiological correlate, and in this context the sACC performs differently compared with network activity in primary affective disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Executive Dysfunction in Obsessive-Compulsive Disorder and Anterior Cingulate-Based Resting State Functional Connectivity

    PubMed Central

    Yun, Je-Yeon; Jang, Joon Hwan; Jung, Wi Hoon; Shin, Na Young; Kim, Sung Nyun; Hwang, Jae Yeon

    2017-01-01

    Objective Executive dysfunction might be an important determinant for response to pharmacotherapy in obsessive-compulsive disorder (OCD), and could be sustained independently of symptom relief. The anterior cingulate cortex (ACC) has been indicated as a potential neural correlate of executive functioning in OCD. The present study examined the brain-executive function relationships in OCD from the ACC-based resting state functional connectivity networks (rs-FCNs), which reflect information processing mechanisms during task performance. Methods For a total of 58 subjects [OCD, n=24; healthy controls (HCs), n=34], four subdomains of executive functioning were measured using the Rey-Osterrieth Complex Figure Test (RCFT), the Stroop Color-Word Test (SCWT), the Wisconsin Card Sorting Test (WCST), and the Trail Making Test part B (TMT-B). To probe for differential patterns of the brain-cognition relationship in OCD compared to HC, the ACC-centered rs-FCN were calculated using five seed regions systemically placed throughout the ACC. Results Significant differences between the OCD group and the HCs with respect to the WCST perseverative errors, SCWT interference scores, and TMT-B reaction times (p<0.05) were observed. Moreover, significant interactions between diagnosis×dorsal ACC [S3]-based rs-FCN strength in the right dorsolateral prefrontal cortex for RCFT organization summary scores as well as between diagnosis×perigenual ACC [S7]-based rs-FCN strength in the left frontal eye field for SCWT color-word interference scores were unveiled. Conclusion These network-based neural foundations for executive dysfunction in OCD could become a potential target of future treatment, which could improve global domains of functioning broader than symptomatic relief. PMID:28539952

  11. Threat distractor and perceptual load modulate test-retest reliability of anterior cingulate cortex response.

    PubMed

    Bunford, Nora; Kinney, Kerry L; Michael, Jamie; Klumpp, Heide

    2017-07-03

    Accumulating data from fMRI studies implicate the rostral anterior cingulate cortex (rACC) in inhibition of attention to threat distractors that compete with task-relevant goals for processing resources. However, little data is available on the reliability of rACC activation. Our aim in the current study was to examine test-retest reliability of rACC activation over a 12-week period, in the context of a validated emotional interference paradigm that varied in perceptual load. During functional MRI, 23 healthy volunteers completed a task involving a target letter in a string of identical letters (low load) or in a string of mixed letters (high load) superimposed on angry, fearful, and neutral face distractors. Intraclass correlation coefficients (ICCs) indicated that under low, but not high perceptual load, rACC activation to fearful vs. neutral distractors was moderately reliable. Conversely, regardless of perceptual load, rACC activation to angry vs. neutral distractors was not reliable. Regarding behavioral performance, ICCs indicated that accuracy was not reliable regardless of distractor type or perceptual load. Although reaction time (RT) was similarly not reliable regardless of distractor type under low perceptual load, RT to angry vs. neutral distractors and to fearful vs. neutral distractors was reliable under high perceptual load. Together, results indicate the test-retest reliability of rACC activation and corresponding behavioral performance are context dependent; reliability of the former varies as a function of distractor type and level of cognitive demand, whereas reliability of the latter depends on behavioral index (accuracy vs. RT) and level of cognitive demand but not distractor type. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Anterior cingulate glutamate-glutamine levels predict symptom severity in women with obsessive-compulsive disorder.

    PubMed

    Yücel, Murat; Wood, Stephen J; Wellard, R Mark; Harrison, Ben J; Fornito, Alex; Pujol, Jesus; Velakoulis, Dennis; Pantelis, Christos

    2008-06-01

    Abnormalities of the anterior cingulate cortex (ACC) have consistently been identified in obsessive-compulsive disorder (OCD), but very few studies have examined the biochemical basis of such changes. The purpose of the present study was to investigate how ACC biochemistry in OCD varies as a function of gender, hemisphere, subregion, and symptomatology. 3 T proton-magnetic resonance spectroscopy (MRS) was used to probe ACC biochemistry in 20 OCD patients (10 male, 10 female) and a comparable group of 26 healthy comparison subjects. Data were acquired from the left and right dorsal and rostral subregions of the ACC. Metabolites assessed included N-acetylaspartate (NAA), glutamate-glutamine (Glx), choline-containing compounds (Cho), creatine/phosphocreatine (Cr), and myoinositol-containing compounds (mI). Female OCD patients had significantly reduced levels of Glx in all but one subregion of the ACC when compared to matched controls. Levels of Glx were correlated with clinical measures of symptom severity in female but not male patients. State levels of anxiety and depression did not explain this association. In addition, both male and female OCD patients had relatively higher concentrations of mI in their right ACC (rostral and dorsal) compared with healthy controls. No other compounds had any statistically significant group differences, nor were the concentrations of any other compounds correlated with symptom measures. To the authors' knowledge this is the first study to demonstrate gender-specific neurochemical changes in OCD. Although these findings are tentative and require replication, they raise the possibility that MRS techniques may be of use in objectively monitoring patient progress and assessing the effectiveness of various treatments.

  13. Multiple forebrain systems converge on motor neurons innervating the thyroarytenoid muscle

    PubMed Central

    Van Daele, Douglas J.; Cassell, Martin D.

    2009-01-01

    The present study investigated the central connections of motor neurons innervating the thyroarytenoid laryngeal muscle that is active in swallowing, respiration and vocalization. In both intact and sympathectomized rats, the pseudorabies virus (PRV) was inoculated into the muscle. After initial infection of laryngomotor neurons in the ipsilateral loose division of the nucleus ambiguous (NA) by 3 days post-inoculation., PRV spread to the ipsilateral compact portion of the NA, the central and intermediate divisions of the nucleus tractus solitarii (NTS), the Botzinger complex, and the parvocellular reticular formation by 4 days. Infection was subsequently expanded to include the ipsilateral granular and dysgranular parietal insular cortex, the ipsilateral medial division of the central nucleus of the amygdala, the lateral, paraventricular, ventrolateral and medial preoptic nuclei of the hypothalamus (generally bilaterally), the lateral periaqueductal gray, the A7 and oral and caudal pontine nuclei. At the latest time points sampled post-inoculation (5 days), infected neurons were identified in the ipsilateral agranular insular cortex, the caudal parietal insular cortex, the anterior cingulate cortex, and the contralateral motor cortex. In the amygdala, infection had spread to the lateral central nucleus and the parvocellular portion of the basolateral nucleus. Hypothalamic infection was largely characterized by an increase in the number of infected cells in earlier infected regions though the posterior, dorsomedial, tuberomammillary and mammillary nuclei contained infected cells. Comparison with previous connectional data suggest PRV followed three interconnected systems originating in the forebrain; a bilateral system including the ventral anterior cingulate cortex, periaqueductal gray and ventral respiratory group; an ipsilateral system involving the parietal insular cortex, central nucleus of the amygdala and parvicellular reticular formation, and a minor

  14. Anterior paracingulate and cingulate cortex mediates the effects of cognitive load on speech sound discrimination.

    PubMed

    Gennari, Silvia P; Millman, Rebecca E; Hymers, Mark; Mattys, Sven L

    2018-06-12

    Perceiving speech while performing another task is a common challenge in everyday life. How the brain controls resource allocation during speech perception remains poorly understood. Using functional magnetic resonance imaging (fMRI), we investigated the effect of cognitive load on speech perception by examining brain responses of participants performing a phoneme discrimination task and a visual working memory task simultaneously. The visual task involved holding either a single meaningless image in working memory (low cognitive load) or four different images (high cognitive load). Performing the speech task under high load, compared to low load, resulted in decreased activity in pSTG/pMTG and increased activity in visual occipital cortex and two regions known to contribute to visual attention regulation-the superior parietal lobule (SPL) and the paracingulate and anterior cingulate gyrus (PaCG, ACG). Critically, activity in PaCG/ACG was correlated with performance in the visual task and with activity in pSTG/pMTG: Increased activity in PaCG/ACG was observed for individuals with poorer visual performance and with decreased activity in pSTG/pMTG. Moreover, activity in a pSTG/pMTG seed region showed psychophysiological interactions with areas of the PaCG/ACG, with stronger interaction in the high-load than the low-load condition. These findings show that the acoustic analysis of speech is affected by the demands of a concurrent visual task and that the PaCG/ACG plays a role in allocating cognitive resources to concurrent auditory and visual information. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Early life social stress and resting state functional connectivity in postpartum rat anterior cingulate circuits.

    PubMed

    Nephew, Benjamin C; Febo, Marcelo; Huang, Wei; Colon-Perez, Luis M; Payne, Laurellee; Poirier, Guillaume L; Greene, Owen; King, Jean A

    2018-03-15

    Continued development and refinement of resting state functional connectivity (RSFC) fMRI techniques in both animal and clinical studies has enhanced our comprehension of the adverse effects of stress on psychiatric health. The objective of the current study was to assess both maternal behavior and resting state functional connectivity (RSFC) changes in these animals when they were dams caring for their own young. It was hypothesized that ECSS exposed dams would express depressed maternal care and exhibit similar (same networks), yet different specific changes in RSFC (different individual nuclei) than reported when they were adult females. We have developed an ethologically relevant transgenerational model of the role of chronic social stress (CSS) in the etiology of postpartum depression and anxiety. Initial fMRI investigation of the CSS model indicates that early life exposure to CSS (ECSS) induces long term changes in functional connectivity in adult nulliparous female F1 offspring. ECSS in F1 dams resulted in depressed maternal care specifically during early lactation, consistent with previous CSS studies, and induced changes in functional connectivity in regions associated with sensory processing, maternal and emotional responsiveness, memory, and the reward pathway, with robust changes in anterior cingulate circuits. The sample sizes for the fMRI groups were low, limiting statistical power. This behavioral and functional neuroanatomical foundation can now be used to enhance our understanding of the neural etiology of early life stress associated disorders and test preventative measures and treatments for stress related disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Transient inactivation of the anterior cingulate cortex in rats disrupts avoidance of a dynamic object.

    PubMed

    Svoboda, Jan; Lobellová, Veronika; Popelíková, Anna; Ahuja, Nikhil; Kelemen, Eduard; Stuchlík, Aleš

    2017-03-01

    Although animals often learn and monitor the spatial properties of relevant moving objects such as conspecifics and predators to properly organize their own spatial behavior, the underlying brain substrate has received little attention and hence remains elusive. Because the anterior cingulate cortex (ACC) participates in conflict monitoring and effort-based decision making, and ACC neurons respond to objects in the environment, it may also play a role in the monitoring of moving cues and exerting the appropriate spatial response. We used a robot avoidance task in which a rat had to maintain at least a 25cm distance from a small programmable robot to avoid a foot shock. In successive sessions, we trained ten Long Evans male rats to avoid a fast-moving robot (4cm/s), a stationary robot, and a slow-moving robot (1cm/s). In each condition, the ACC was transiently inactivated by bilateral injections of muscimol in the penultimate session and a control saline injection was given in the last session. Compared to the corresponding saline session, ACC-inactivated rats received more shocks when tested in the fast-moving condition, but not in the stationary or slow robot conditions. Furthermore, ACC-inactivated rats less frequently responded to an approaching robot with appropriate escape responses although their response to shock stimuli remained preserved. Since we observed no effect on slow or stationary robot avoidance, we conclude that the ACC may exert cognitive efforts for monitoring dynamic updating of the position of an object, a role complementary to the dorsal hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Conflict effects without conflict in anterior cingulate cortex: multiple response effects and context specific representations

    PubMed Central

    Brown, Joshua W.

    2009-01-01

    The error likelihood computational model of anterior cingulate cortex (ACC) (Brown & Braver, 2005) has successfully predicted error likelihood effects, risk prediction effects, and how individual differences in conflict and error likelihood effects vary with trait differences in risk aversion. The same computational model now makes a further prediction that apparent conflict effects in ACC may result in part from an increasing number of simultaneously active responses, regardless of whether or not the cued responses are mutually incompatible. In Experiment 1, the model prediction was tested with a modification of the Eriksen flanker task, in which some task conditions require two otherwise mutually incompatible responses to be generated simultaneously. In that case, the two response processes are no longer in conflict with each other. The results showed small but significant medial PFC effects in the incongruent vs. congruent contrast, despite the absence of response conflict, consistent with model predictions. This is the multiple response effect. Nonetheless, actual response conflict led to greater ACC activation, suggesting that conflict effects are specific to particular task contexts. In Experiment 2, results from a change signal task suggested that the context dependence of conflict signals does not depend on error likelihood effects. Instead, inputs to ACC may reflect complex and task specific representations of motor acts, such as bimanual responses. Overall, the results suggest the existence of a richer set of motor signals monitored by medial PFC and are consistent with distinct effects of multiple responses, conflict, and error likelihood in medial PFC. PMID:19375509

  18. Smoking reduces conflict-related anterior cingulate activity in abstinent cigarette smokers performing a Stroop task.

    PubMed

    Azizian, Allen; Nestor, Liam J; Payer, Doris; Monterosso, John R; Brody, Arthur L; London, Edythe D

    2010-02-01

    Prior research suggests that abrupt initiation of abstinence from cigarette smoking reduces neural cognitive efficiency. When cognitive efficiency is high, processing speed and accuracy are maximized with minimal allocation of cognitive resources. The study presented here tested the effects of resumption of smoking on cognitive response conflict after overnight abstinence from smoking, hypothesizing that smoking would enhance cognitive efficiency. Twenty paid research volunteers who were chronic cigarette smokers abstained from smoking overnight (>12 h) before undergoing fMRI while performing a color-word Stroop task during two separate test sessions: one that did not include smoking before testing and another one that did. Statistical analyses were performed by modeling the Stroop effect (incongruent >congruent) BOLD response within a collection of a priori regions of interest that have consistently been associated with cognitive control. Behavioral assessment alone did not reveal any significant differences in the Stroop effect between the two sessions. BOLD activations, however, indicated that in the right anterior cingulate cortex (ACC), smokers had significantly less task-related activity following smoking (p<0.02). In contrast, the right middle frontal gyrus exhibited significantly greater activity after smoking as compared to the no-smoking session (p<0.003). Exaggerated neural activity in the ACC during nicotine withdrawal may reflect a compensatory mechanism by which cognitive control networks expend excessive energy to support selective attention processes. Resumption of smoking may enhance cognitive control in smokers, involving a reduction in ACC response conflict activity together with improvement in conflict resolution involving the dorsolateral prefrontal cortex.

  19. The Integration of Negative Affect, Pain, and Cognitive Control in the Cingulate Cortex

    PubMed Central

    Shackman, Alexander J.; Salomons, Tim V.; Slagter, Heleen A.; Fox, Andrew S.; Winter, Jameel J.; Davidson, Richard J.

    2011-01-01

    Preface It has been argued that emotion, pain, and cognitive control are functionally segregated in distinct subdivisions of the cingulate cortex. But recent observations encourage a fundamentally different view. Imaging studies indicate that negative affect, pain, and cognitive control activate an overlapping region of dorsal cingulate, the anterior midcingulate cortex (aMCC). Anatomical studies reveal that aMCC constitutes a hub where information about reinforcers can be linked to motor centers responsible for expressing affect and executing goal-directed behavior. Computational modeling and other kinds of evidence suggest that this intimacy reflects control processes that are common to all three domains. These observations compel a reconsideration of dorsal cingulate’s contribution to negative affect and pain. PMID:21331082

  20. Exposure to blue wavelength light modulates anterior cingulate cortex activation in response to 'uncertain' versus 'certain' anticipation of positive stimuli.

    PubMed

    Alkozei, Anna; Smith, Ryan; Killgore, William D S

    2016-03-11

    Blue wavelength light has been used as an effective treatment for some types of mood disorders and circadian rhythm related sleep problems. We hypothesized that acute exposure to blue wavelength light would directly affect the functioning of neurocircuity implicated in emotion regulation (i.e., ventromedial prefrontal cortex, amygdala, insula, and anterior cingulate cortex [ACC]) during 'certain' and 'uncertain' anticipation of negative and positive stimuli. Thirty-five healthy adults were randomized to receive a thirty-minute exposure to either blue (active) or amber (placebo) light, immediately followed by an emotional anticipation task during functional magnetic resonance imaging (fMRI). In contrast to placebo, participants in the blue light group showed significantly reduced activation within the rostral ACC during 'uncertain' anticipation (i.e., uncertainty regarding whether a positive or negative stimulus would be shown) in comparison to 'certain' anticipation of a positive stimulus. These findings may be explicable in terms of interactions between blue light exposure and the influence of specific neuromodulators on ACC-mediated decision-making mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Anterior Cingulate Cortex Instigates Adaptive Switches in Choice by Integrating Immediate and Delayed Components of Value in Ventromedial Prefrontal Cortex

    PubMed Central

    Guitart-Masip, Marc; Kurth-Nelson, Zeb; Dolan, Raymond J.

    2014-01-01

    Actions can lead to an immediate reward or punishment and a complex set of delayed outcomes. Adaptive choice necessitates the brain track and integrate both of these potential consequences. Here, we designed a sequential task whereby the decision to exploit or forego an available offer was contingent on comparing immediate value and a state-dependent future cost of expending a limited resource. Crucially, the dynamics of the task demanded frequent switches in policy based on an online computation of changing delayed consequences. We found that human subjects choose on the basis of a near-optimal integration of immediate reward and delayed consequences, with the latter computed in a prefrontal network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled to ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. Our results suggest a choice architecture whereby interactions between ACC and vmPFC underpin an integration of immediate and delayed components of value to support flexible policy switching that accommodates the potential delayed consequences of an action. PMID:24573291

  2. Anterior cingulate cortex instigates adaptive switches in choice by integrating immediate and delayed components of value in ventromedial prefrontal cortex.

    PubMed

    Economides, Marcos; Guitart-Masip, Marc; Kurth-Nelson, Zeb; Dolan, Raymond J

    2014-02-26

    Actions can lead to an immediate reward or punishment and a complex set of delayed outcomes. Adaptive choice necessitates the brain track and integrate both of these potential consequences. Here, we designed a sequential task whereby the decision to exploit or forego an available offer was contingent on comparing immediate value and a state-dependent future cost of expending a limited resource. Crucially, the dynamics of the task demanded frequent switches in policy based on an online computation of changing delayed consequences. We found that human subjects choose on the basis of a near-optimal integration of immediate reward and delayed consequences, with the latter computed in a prefrontal network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled to ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. Our results suggest a choice architecture whereby interactions between ACC and vmPFC underpin an integration of immediate and delayed components of value to support flexible policy switching that accommodates the potential delayed consequences of an action.

  3. Amygdala and cingulate structure is associated with stereotype on sex-role

    PubMed Central

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2015-01-01

    Sex-role egalitarianism (SRE) is the belief that the sex of an individual should not influence the perception of his or her rights, abilities, obligations, and opportunities. Thus, low SRE reflects a more conservative stereotypical view on sex-role. Here we investigated anatomical correlates of individual differences in SRE in the present study. We used voxel-based morphometry, a questionnaire to determine an individual’s SRE and associated psychological measures, and determined the association of SRE with gray matter structures and their cognitive nature in healthy individuals (375 men and 306 women; age, 20.6 ± 1.8 years). We demonstrated that higher SRE was associated with smaller regional gray matter density (rGMD) in the anterior part of the posterior cingulate cortex (PCC) and higher rGMD in the right amygdala. Post-hoc analyses revealed psychological measures characterized by contentious interpersonal orientations, such as contentious achievement motivation, were associated with lower SRE and higher rGMD in the anterior part of PCC. Depressive tendencies were associated with lower SRE and higher rGMD in the right amygdala. These findings suggest that variations in stereotype on sex role have roots in the limbic brain structures linked to contentious interpersonal orientation (cingulate) and negative mood (amygdala). PMID:26420574

  4. Amygdala and cingulate structure is associated with stereotype on sex-role.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2015-09-30

    Sex-role egalitarianism (SRE) is the belief that the sex of an individual should not influence the perception of his or her rights, abilities, obligations, and opportunities. Thus, low SRE reflects a more conservative stereotypical view on sex-role. Here we investigated anatomical correlates of individual differences in SRE in the present study. We used voxel-based morphometry, a questionnaire to determine an individual's SRE and associated psychological measures, and determined the association of SRE with gray matter structures and their cognitive nature in healthy individuals (375 men and 306 women; age, 20.6 ± 1.8 years). We demonstrated that higher SRE was associated with smaller regional gray matter density (rGMD) in the anterior part of the posterior cingulate cortex (PCC) and higher rGMD in the right amygdala. Post-hoc analyses revealed psychological measures characterized by contentious interpersonal orientations, such as contentious achievement motivation, were associated with lower SRE and higher rGMD in the anterior part of PCC. Depressive tendencies were associated with lower SRE and higher rGMD in the right amygdala. These findings suggest that variations in stereotype on sex role have roots in the limbic brain structures linked to contentious interpersonal orientation (cingulate) and negative mood (amygdala).

  5. Resting State Functional Connectivity within the Cingulate Cortex Jointly Predicts Agreeableness and Stressor-Evoked Cardiovascular Reactivity

    PubMed Central

    Ryan, John P.; Sheu, Lei K.; Gianaros, Peter J.

    2010-01-01

    Exaggerated cardiovascular reactivity to stress confers risk for cardiovascular disease. Further, individual differences in stressor-evoked cardiovascular reactivity covary with the functionality of cortical and limbic brain areas, particularly within the cingulate cortex. What remains unclear, however, is how individual differences in personality traits interact with cingulate functionality in the prediction of stressor-evoked cardiovascular reactivity. Accordingly, we tested the associations between (i) a particular personality trait, Agreeableness, which is associated with emotional reactions to conflict, (ii) resting state functional connectivity within the cingulate cortex, and (iii) stressor-evoked blood pressure (BP) reactivity. Participants (N=39, 19 men, aged 20–37 yrs) completed a resting functional connectivity MRI protocol, followed by two standardized stressor tasks that engaged conflict processing and evoked BP reactivity. Agreeableness covaried positively with BP reactivity across individuals. Moreover, connectivity analyses demonstrated that a more positive functional connectivity between the posterior cingulate (BA31) and the perigenual anterior cingulate (BA32) covaried positively with Agreeableness and with BP reactivity. Finally, statistical mediation analyses demonstrated that BA31–BA32 connectivity mediated the covariation between Agreeableness and BP reactivity. Functional connectivity within the cingulate appears to link Agreeableness and a risk factor for cardiovascular disease, stressor-evoked BP reactivity. PMID:21130172

  6. Neural representation of cost-benefit selections in rat anterior cingulate cortex in self-paced decision making.

    PubMed

    Wang, Shuai; Shi, Yi; Li, Bao-Ming

    2017-03-01

    The anterior cingulate cortex (ACC) is crucial for decision making which involves the processing of cost-benefit information. Our previous study has shown that ACC is essential for self-paced decision making. However, it is unclear how ACC neurons represent cost-benefit selections during the decision-making process. In the present study, we trained rats on the same "Do More Get More" (DMGM) task as in our previous work. In each trial, the animals stand upright and perform a sustained nosepoke of their own will to earn a water reward, with the amount of reward positively correlated to the duration of the nosepoke (i.e., longer nosepokes earn larger rewards). We then recorded ACC neuronal activity on well-trained rats while they were performing the DMGM task. Our results show that (1) approximately 3/5 ACC neurons (296/496, 59.7%) exhibited changes in firing frequency that were temporally locked with the main events of the DMGM task; (2) about 1/5 ACC neurons (101/496, 20.4%) or 1/3 of the event-modulated neurons (101/296, 34.1%) showed differential firing rate changes for different cost-benefit selections; and (3) many ACC neurons exhibited linear encoding of the cost-benefit selections in the DMGM task events. These results suggest that ACC neurons are engaged in encoding cost-benefit information, thus represent the selections in self-paced decision making. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Effects of dopamine D1 modulation of the anterior cingulate cortex in a fear conditioning procedure

    PubMed Central

    Pezze, M.A.; Marshall, H.J.; Domonkos, A.; Cassaday, H.J.

    2016-01-01

    The anterior cingulate cortex (AC) component of the medial prefrontal cortex (mPFC) has been implicated in attention and working memory as measured by trace conditioning. Since dopamine (DA) is a key modulator of mPFC function, the present study evaluated the role of DA receptor agents in rat AC, using trace fear conditioning. A conditioned stimulus (CS, noise) was followed by an unconditioned stimulus (US, shock) with or without a 10 s trace interval interposed between these events in a between-subjects design. Conditioned suppression of drinking was assessed in response to presentation of the CS or an experimental background stimulus (flashing lights, previously presented for the duration of the conditioning session). The selective D1 agonist SKF81297 (0.05 μg/side) or D1 antagonist SCH23390 (0.5 μg/side) was administered by intra-cerebral microinfusion directly into AC. It was predicted that either of these manipulations should be sufficient to impair trace (but not delay) conditioning. Counter to expectation, there was no effect of DA D1 modulation on trace conditioning as measured by suppression to the noise CS. However, rats infused with SKF81297 acquired stronger conditioned suppression to the experimental background stimulus than those infused with SCH23390 or saline. Thus, the DA D1 agonist SKF81297 increased conditioned suppression to the contextual background light stimulus but was otherwise without effect on fear conditioning. PMID:26343307

  8. Abrupt changes in the patterns and complexity of anterior cingulate cortex activity when food is introduced into an environment

    PubMed Central

    Caracheo, Barak F.; Emberly, Eldon; Hadizadeh, Shirin; Hyman, James M.; Seamans, Jeremy K.

    2013-01-01

    Foraging typically involves two distinct phases, an exploration phase where an organism explores its local environment in search of needed resources and an exploitation phase where a discovered resource is consumed. The behavior and cognitive requirements of exploration and exploitation are quite different and yet organisms can quickly and efficiently switch between them many times during a foraging bout. The present study investigated neural activity state dynamics in the anterior cingulate sub-region of the rat medial prefrontal cortex (mPFC) when a reliable food source was introduced into an environment. Distinct and largely independent states were detected using a Hidden Markov Model (HMM) when food was present or absent in the environment. Measures of neural entropy or complexity decreased when rats went from exploring the environment to exploiting a reliable food source. Exploration in the absence of food was associated with many weak activity states, while bouts of food consumption were characterized by fewer stronger states. Widespread activity state changes in the mPFC may help to inform foraging decisions and focus behavior on what is currently most prominent or valuable in the environment. PMID:23745102

  9. Differential encoding of factors influencing predicted reward value in monkey rostral anterior cingulate cortex.

    PubMed

    Toda, Koji; Sugase-Miyamoto, Yasuko; Mizuhiki, Takashi; Inaba, Kiyonori; Richmond, Barry J; Shidara, Munetaka

    2012-01-01

    The value of a predicted reward can be estimated based on the conjunction of both the intrinsic reward value and the length of time to obtain it. The question we addressed is how the two aspects, reward size and proximity to reward, influence the responses of neurons in rostral anterior cingulate cortex (rACC), a brain region thought to play an important role in reward processing. We recorded from single neurons while two monkeys performed a multi-trial reward schedule task. The monkeys performed 1-4 sequential color discrimination trials to obtain a reward of 1-3 liquid drops. There were two task conditions, a valid cue condition, where the number of trials and reward amount were associated with visual cues, and a random cue condition, where the cue was picked from the cue set at random. In the valid cue condition, the neuronal firing is strongly modulated by the predicted reward proximity during the trials. Information about the predicted reward amount is almost absent at those times. In substantial subpopulations, the neuronal responses decreased or increased gradually through schedule progress to the predicted outcome. These two gradually modulating signals could be used to calculate the effect of time on the perception of reward value. In the random cue condition, little information about the reward proximity or reward amount is encoded during the course of the trial before reward delivery, but when the reward is actually delivered the responses reflect both the reward proximity and reward amount. Our results suggest that the rACC neurons encode information about reward proximity and amount in a manner that is dependent on utility of reward information. The manner in which the information is represented could be used in the moment-to-moment calculation of the effect of time and amount on predicted outcome value.

  10. Rostral anterior cingulate cortex morphology predicts treatment response to internet-based CBT for depression

    PubMed Central

    Webb, Christian A.; Olson, Elizabeth A.; Killgore, William D.S.; Pizzagalli, Diego A.; Rauch, Scott L.; Rosso, Isabelle M.

    2018-01-01

    Background Rostral and subgenual anterior cingulate cortex (rACC and sgACC) activity and, to a lesser extent, volume have been shown to predict depressive symptom improvement across different antidepressant treatments. This study extends prior work by examining whether rACC and/or sgACC morphology predicts treatment response to internet-based cognitive behavioral therapy (iCBT) for major depressive disorder (MDD). This is the first study to examine neural predictors of response to iCBT. Methods Hierarchical linear modeling tested whether pre-treatment rACC and sgACC volumes predicted depressive symptom improvement during a 6-session (10-week) randomized clinical trial of iCBT (n = 35) vs. a monitored attention control (MAC; n = 38). Analyses also tested whether pre-treatment rACC and sgACC volumes differed between patients who achieved depression remission versus those who did not remit. Results Larger pre-treatment right rACC volume was a significant predictor of greater depressive symptom improvement in iCBT, even when controlling for demographic (age, gender, race) and clinical (baseline depression, anhedonia and anxiety) variables previously linked to treatment response. In addition, pre-treatment right rACC volume was larger among iCBT patients whose depression eventually remitted relative to those who did not remit. Corresponding analyses in the MAC group and for the sgACC were not significant. Conclusions rACC volume prior to iCBT demonstrated incremental predictive validity beyond clinical and demographic variables previously found to predict symptom improvement. Such findings may help inform our understanding of the mediating anatomy of iCBT and, if replicated, may suggest neural targets to augment treatment response (e.g., via modulation of rACC function). ClinicalTrials.gov Identifier NCT01598922 PMID:29486867

  11. Exploring individual differences in task switching: Persistence and other personality traits related to anterior cingulate cortex function.

    PubMed

    Umemoto, A; Holroyd, C B

    2016-01-01

    Anterior cingulate cortex (ACC) is involved in cognitive control and decision-making but its precise function is still highly debated. Based on evidence from lesion, neurophysiological, and neuroimaging studies, we have recently proposed a critical role for ACC in motivating extended behaviors according to learned task values (Holroyd and Yeung, 2012). Computational simulations based on this theory suggest a hierarchical mechanism in which a caudal division of ACC selects and applies control over task execution, and a rostral division of ACC facilitates switches between tasks according to a higher task strategy (Holroyd and McClure, 2015). This theoretical framework suggests that ACC may contribute to personality traits related to persistence and reward sensitivity (Holroyd and Umemoto, 2016). To explore this possibility, we carried out a voluntary task switching experiment in which on each trial participants freely chose one of two tasks to perform, under the condition that they try to select the tasks "at random" and equally often. The participants also completed several questionnaires that assessed personality trait related to persistence, apathy, anhedonia, and rumination, in addition to the Big 5 personality inventory. Among other findings, we observed greater compliance with task instructions by persistent individuals, as manifested by a greater facility with switching between tasks, which is suggestive of increased engagement of rostral ACC. © 2016 Elsevier B.V. All rights reserved.

  12. Dissociated roles of the anterior cingulate cortex in reward and conflict processing as revealed by the feedback error-related negativity and N200.

    PubMed

    Baker, Travis E; Holroyd, Clay B

    2011-04-01

    The reinforcement learning theory of the error-related negativity (ERN) holds that the impact of reward signals carried by the midbrain dopamine system modulates activity of the anterior cingulate cortex (ACC), alternatively disinhibiting and inhibiting the ACC following unpredicted error and reward events, respectively. According to a recent formulation of the theory, activity that is intrinsic to the ACC produces a component of the event-related brain potential (ERP) called the N200, and following unpredicted rewards, the N200 is suppressed by extrinsically applied positive dopamine reward signals, resulting in an ERP component called the feedback-ERN (fERN). Here we demonstrate that, despite extensive spatial and temporal overlap between the two ERP components, the functional processes indexed by the N200 (conflict) and the fERN (reward) are dissociable. These results point toward avenues for future investigation. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Ipsilateral hemiparesis in ischemic stroke patients.

    PubMed

    Inatomi, Y; Nakajima, M; Yonehara, T; Ando, Y

    2017-07-01

    To investigate clinical characteristics of ipsilateral hemiparesis in ischemic stroke patients. Patients with acute ischemic stroke were prospectively examined. Ipsilateral hemiparesis was defined as hemiparesis ipsilateral to recent stroke lesions. Patients with ipsilateral hemiparesis were examined with functional neuroimaging studies including transcranial magnetic stimulation (TMS) and functional MRI. Of 8360 patients, ipsilateral hemiparesis was detected in 14 patients (0.17%, mean age 71±6 years, eight men). Lesions responsible for the recent strokes were located in the frontal cortex in three patients, corona radiata in seven, internal capsule in one, and pons in three. These lesions were located along the typical route of the corticospinal tract in all but one patient. Thirteen patients also had a past history of stroke contralateral to the recent lesions; 12 of these had motor deficits contralateral to past stroke lesions. During TMS, ipsilateral magnetic evoked potentials were evoked in two of seven patients and contralateral potentials were evoked in all seven. Functional MRI activated cerebral hemispheres ipsilaterally in eight of nine patients and contralaterally in all nine. Most patients with ipsilateral hemiparesis had a past history of stroke contralateral to the recent one, resulting in motor deficits contralateral to the earlier lesions. Moreover, functional neuroimaging findings indicated an active crossed corticospinal tract in all of the examined patients. Both findings suggest the contribution of the uncrossed corticospinal tract contralateral to stroke lesions as a post-stroke compensatory motor system. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Disrupted directed connectivity along the cingulate cortex determines vigilance after sleep deprivation

    PubMed Central

    Piantoni, Giovanni; Cheung, Bing Leung P.; Van Veen, Barry D.; Romeijn, Nico; Riedner, Brady A.; Tononi, Giulio; Van Der Werf, Ysbrand D.; Van Someren, Eus J.W.

    2013-01-01

    The cingulate cortex is regarded as the backbone of structural and functional connectivity of the brain. While its functional connectivity has been intensively studied, little is known about its effective connectivity, its modulation by behavioral states, and its involvement in cognitive performance. Given their previously reported effects on cingulate functional connectivity, we investigated how eye-closure and sleep deprivation changed cingulate effective connectivity, estimated from resting-state high-density electroencephalography (EEG) using a novel method to calculate Granger Causality directly in source space. Effective connectivity along the cingulate cortex was dominant in the forward direction. Eyes-open connectivity in the forward direction was greater compared to eyes-closed, in well-rested participants. The difference between eyes-open and eyes-closed connectivity was attenuated and no longer significant after sleep deprivation. Individual variability in the forward connectivity after sleep deprivation predicted subsequent task performance, such that those subjects who showed a greater increase in forward connectivity between the eyes-open and the eyes-closed periods also performed better on a sustained attention task. Effective connectivity in the opposite, backward, direction was not affected by whether the eyes were open or closed or by sleep deprivation. These findings indicate that the effective connectivity from posterior to anterior cingulate regions is enhanced when a well-rested subject has his eyes open compared to when they are closed. Sleep deprivation impairs this directed information flow, proportional to its deleterious effect on vigilance. Therefore, sleep may play a role in the maintenance of waking effective connectivity. PMID:23643925

  15. Corticospinal activation of internal oblique muscles has a strong ipsilateral component and can be lateralised in man.

    PubMed

    Strutton, Paul H; Beith, Iain D; Theodorou, Sophie; Catley, Maria; McGregor, Alison H; Davey, Nick J

    2004-10-01

    Trunk muscles receive corticospinal innervation ipsilaterally and contralaterally and here we investigate the degree of ipsilateral innervation and any cortical asymmetry in pairs of trunk muscles and proximal and distal limb muscles. Transcranial magnetic stimulation (TMS) was applied to left and right motor cortices in turn and bilateral electromyographic (EMG) recordings were made from internal oblique (IO; lower abdominal), deltoid (D; shoulder) and first dorsal interosseus (1DI; hand) muscles during voluntary contraction in ten healthy subjects. We used a 7-cm figure-of-eight stimulating coil located 2 cm lateral and 2 cm anterior to the vertex over either cortex. Incidence of ipsilateral motor evoked potentials (MEPs) was 85% in IO, 40% in D and 35% in 1DI. Mean (+/- S.E.M.) ipsilateral MEP latencies were longer ( P<0.05; paired t-test) than contralateral MEP latencies (contralateral vs. ipsilateral; IO: 16.1+/-0.4 ms vs. 19.0+/-0.5 ms; D: 9.7+/-0.3 ms vs. 15.1+/-1.9 ms; 1DI: 18.3+/-0.6 ms vs. 23.3+/-1.4 ms), suggesting that ipsilateral MEPs were not a result of interhemispheric current spread. Where data were available, we calculated a ratio (ipsilateral MEP areas/contralateral MEP areas) for a given muscle (IO: n=16; D: n=8; 1DI: n=7 ratios). Mean values for these ratios were 0.70+/-0.20 (IO), 0.14+/-0.05 (D) and 0.08+/-0.02 (1DI), revealing stronger ipsilateral drive to IO. Comparisons of the sizes of these ratios revealed a bias towards one cortex or the other (four subjects right; three subjects left). The predominant cortex showed a mean ratio of 1.21+/-0.38 compared with 0.26+/-0.06 in the other cortex ( P<0.05). It appears that the corticospinal control of IO has a strong ipsilateral component relative to the limb muscles and also shows hemispheric asymmetry.

  16. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion.

    PubMed

    Bussey, T J; Everitt, B J; Robbins, T W

    1997-10-01

    The effects of quinolinic acid-induced lesions of the anterior cingulate, posterior cingulate, and medial frontal cortices on stimulus-reward learning were investigated with a novel Pavlovian autoshaping procedure in an apparatus allowing the automated presentation of computer-graphic stimuli to rats (T. J. Bussey, J. L. Muir, & T. W. Robbins, 1994). White vertical rectangles were presented on the left or the right of a computer screen. One of these conditioned stimuli (the CS+) was always followed by the presentation of a sucrose pellet; the other, the CS-, was never followed by reward. With training, rats came to approach the CS+ more often than the CS-. Anterior cingulate cortex-lesioned rats failed to demonstrate normal discriminated approach, making significantly more approaches to the CS- than did sham-operated controls. Medial frontal cortex-lesioned rats acquired the task normally but had longer overall approach latencies. Posterior cingulate cortex lesions did not affect acquisition.

  17. Sustained anterior cingulate cortex activation during reward processing predicts response to psychotherapy in major depressive disorder.

    PubMed

    Carl, Hannah; Walsh, Erin; Eisenlohr-Moul, Tory; Minkel, Jared; Crowther, Andrew; Moore, Tyler; Gibbs, Devin; Petty, Chris; Bizzell, Josh; Dichter, Gabriel S; Smoski, Moria J

    2016-10-01

    The purpose of the present investigation was to evaluate whether pre-treatment neural activation in response to rewards is a predictor of clinical response to Behavioral Activation Therapy for Depression (BATD), an empirically validated psychotherapy that decreases depressive symptoms by increasing engagement with rewarding stimuli and reducing avoidance behaviors. Participants were 33 outpatients with major depressive disorder (MDD) and 20 matched controls. We examined group differences in activation, and the capacity to sustain activation, across task runs using functional magnetic resonance imaging (fMRI) and the monetary incentive delay (MID) task. Hierarchical linear modeling was used to investigate whether pre-treatment neural responses predicted change in depressive symptoms over the course of BATD treatment. MDD and Control groups differed in sustained activation during reward outcomes in the right nucleus accumbens, such that the MDD group experienced a significant decrease in activation in this region from the first to second task run relative to controls. Pretreatment anhedonia severity and pretreatment task-related reaction times were predictive of response to treatment. Furthermore, sustained activation in the anterior cingulate cortex during reward outcomes predicted response to psychotherapy; patients with greater sustained activation in this region were more responsive to BATD treatment. The current study only included a single treatment condition, thus it unknown whether these predictors of treatment response are specific to BATD or psychotherapy in general. Findings add to the growing body of literature suggesting that the capacity to sustain neural responses to rewards may be a critical endophenotype of MDD. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making.

    PubMed

    Khani, Abbas; Kermani, Mojtaba; Hesam, Soghra; Haghparast, Abbas; Argandoña, Enrike G; Rainer, Gregor

    2015-06-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test days, the rats received local injections of either vehicle or ACEA, a cannabinoid type-1 receptor (CB1R) agonist in the ACC or OFC. We measured spontaneous locomotor activity following the same treatments and characterized CB1Rs localization on different neuronal populations within these regions using immunohistochemistry. We showed that CB1R activation in the ACC impaired decision making such that rats were less willing to invest physical effort to gain high reward. Similarly, CB1R activation in the OFC induced impulsive pattern of choice such that rats preferred small immediate rewards to large delayed rewards. Control tasks ensured that the effects were specific for differential cost-benefit tasks. Furthermore, we characterized widespread colocalizations of CB1Rs on GABAergic axonal ends but few colocalizations on glutamatergic, dopaminergic, and serotonergic neuronal ends. These results provide first direct evidence that the cannabinoid system plays a critical role in regulating cost-benefit decision making in the ACC and OFC and implicate cannabinoid modulation of synaptic ends of predominantly interneurons and to a lesser degree other neuronal populations in these two frontal regions.

  19. Amygdala functional disconnection with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood.

    PubMed

    Chen, Yu-Chen; Bo, Fan; Xia, Wenqing; Liu, Shenghua; Wang, Peng; Su, Wen; Xu, Jin-Jing; Xiong, Zhenyu; Yin, Xindao

    2017-10-03

    Chronic tinnitus is often accompanied with depressive symptom, which may arise from aberrant functional coupling between the amygdala and cerebral cortex. To explore this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to investigate the disrupted amygdala-cortical functional connectivity (FC) in chronic tinnitus patients with depressive mood. Chronic tinnitus patients with depressive mood (n=20), without depressive mood (n=20), and well-matched healthy controls (n=23) underwent resting-state fMRI scanning. Amygdala-cortical FC was characterized using a seed-based whole-brain correlation method. The bilateral amygdala FC was compared among the three groups. Compared to non-depressed patients, depressive tinnitus patients showed decreased amygdala FC with the prefrontal cortex and anterior cingulate cortex as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. Relative to healthy controls, depressive tinnitus patients revealed decreased amygdala FC with the superior and middle temporal gyrus, anterior and posterior cingulate cortex, and prefrontal cortex, as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. The current study identified for the first time abnormal resting-state amygdala-cortical FC with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood, which will provide novel insight into the underlying neuropathological mechanisms of tinnitus-induced depressive disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Post-learning infusion of anisomycin into the anterior cingulate cortex impairs instrumental acquisition through an effect on reinforcer valuation

    PubMed Central

    Jonkman, Sietse; Everitt, Barry J.

    2009-01-01

    The integrity of the rodent anterior cingulate cortex (ACC) is essential for various aspects of instrumental behavior, but it is not clear if the ACC is important for the acquisition of a simple instrumental response. Here, it was demonstrated that post-session infusions of anisomycin into the rat ACC completely prevented the acquisition of instrumental responding. The experimental use of post-session intracranial infusions of plasticity inhibitors is assumed to affect local consolidation of plasticity, but not behavioral task performance. However, in associative appetitive conditioning, post-session intracranial infusion of pharmaco-active compounds could actually interfere with subsequent task performance indirectly through retrospective effects on the valuation of ingested rewards. Thus, it was subsequently demonstrated that the intracranial infusion of anisomycin into the ACC after sucrose pellet consumption significantly reduced subsequent pellet consumption, suggesting that the infusion of anisomycin into the ACC produced conditioned taste avoidance. In the third experiment, an innovative procedure was introduced that dissociated the effects of intracranial infusions after conditioning sessions on task-learning and unconditioned stimulus valuation. With this procedure, the infusion of anisomycin into the ACC after instrumental sessions did not affect instrumental reinforcer valuation or the acquisition of instrumental responding, suggesting that plasticity in the ACC is not necessary for the acquisition of instrumental behavior. PMID:19864297

  1. Reduced γ-Aminobutyric Acid in Occipital and Anterior Cingulate Cortices in Primary Insomnia: a Link to Major Depressive Disorder?

    PubMed Central

    Plante, David T; Jensen, J Eric; Schoerning, Laura; Winkelman, John W

    2012-01-01

    Insomnia is closely related to major depressive disorder (MDD) both cross-sectionally and longitudinally, and as such, offers potential opportunities to refine our understanding of the neurobiology of both sleep and mood disorders. Clinical and basic science data suggest a role for reduced γ-aminobutyric acid (GABA) in both MDD and primary insomnia (PI). Here, we have utilized single-voxel proton magnetic spectroscopy (1H-MRS) at 4 Tesla to examine GABA relative to total creatine (GABA/Cr) in the occipital cortex (OC), anterior cingulate cortex (ACC), and thalamus in 20 non-medicated adults with PI (12 women) and 20 age- and sex-matched healthy sleeper comparison subjects. PI subjects had significantly lower GABA/Cr in the OC (p=0.0005) and ACC (p=0.03) compared with healthy sleepers. There was no significant difference in thalamic GABA/Cr between groups. After correction for multiple comparisons, GABA/Cr did not correlate significantly with insomnia severity measures among PI subjects. This study is the first to demonstrate regional reductions of GABA in PI in the OC and ACC. Reductions in GABA in similar brain regions in MDD using 1H-MRS suggest a common reduction in cortical GABA among PI and mood disorders. PMID:22318195

  2. The influence of 5-HTTLPR transporter genotype on amygdala-subgenual anterior cingulate cortex connectivity in autism spectrum disorder.

    PubMed

    Velasquez, Francisco; Wiggins, Jillian Lee; Mattson, Whitney I; Martin, Donna M; Lord, Catherine; Monk, Christopher S

    2017-04-01

    Social deficits in autism spectrum disorder (ASD) are linked to amygdala functioning and functional connection between the amygdala and subgenual anterior cingulate cortex (sACC) is involved in the modulation of amygdala activity. Impairments in behavioral symptoms and amygdala activation and connectivity with the sACC seem to vary by serotonin transporter-linked polymorphic region (5-HTTLPR) variant genotype in diverse populations. The current preliminary investigation examines whether amygdala-sACC connectivity differs by 5-HTTLPR genotype and relates to social functioning in ASD. A sample of 108 children and adolescents (44 ASD) completed an fMRI face-processing task. Youth with ASD and low expressing 5-HTTLPR genotypes showed significantly greater connectivity than youth with ASD and higher expressing genotypes as well as typically developing (TD) individuals with both low and higher expressing genotypes, in the comparison of happy vs. baseline faces and happy vs. neutral faces. Moreover, individuals with ASD and higher expressing genotypes exhibit a negative relationship between amygdala-sACC connectivity and social dysfunction. Altered amygdala-sACC coupling based on 5-HTTLPR genotype may help explain some of the heterogeneity in neural and social function observed in ASD. This is the first ASD study to combine genetic polymorphism analyses and functional connectivity in the context of a social task. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Combined rTMS treatment targeting the Anterior Cingulate and the Temporal Cortex for the Treatment of Chronic Tinnitus

    PubMed Central

    Kreuzer, Peter M.; Lehner, Astrid; Schlee, Winfried; Vielsmeier, Veronika; Schecklmann, Martin; Poeppl, Timm B.; Landgrebe, Michael; Rupprecht, Rainer; Langguth, Berthold

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a tinnitus treatment option. Promising results have been obtained by consecutive stimulation of lateral frontal and auditory brain regions. We investigated a combined stimulation paradigm targeting the anterior cingulate cortex (ACC) with double cone coil rTMS, followed by stimulation of the temporo-parietal junction area with a figure-of-eight coil. The study was conducted as a randomized, double-blind pilot trial in 40 patients suffering from chronic tinnitus. We compared mediofrontal stimulation with double-cone-coil, (2000 stimuli, 10 Hz) followed by left temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz) to left dorsolateral-prefrontal-cortex stimulation with figure-of-eight-coil (2000 stimuli, 10 Hz) followed by temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz). The stimulation was feasible with comparable dropout rates in both study arms; no severe adverse events were registered. Responder rates did not differ in both study arms. There was a significant main effect of time for the change in the TQ score, but no significant time x group interaction. This pilot study demonstrated the feasibility of combined mediofrontal/temporoparietal-rTMS-stimulation with double cone coil in tinnitus patients but failed to show better outcome compared to an actively rTMS treated control group. PMID:26667790

  4. Modulation of Beta-Band Activity in the Subgenual Anterior Cingulate Cortex during Emotional Empathy in Treatment-Resistant Depression.

    PubMed

    Merkl, Angela; Neumann, Wolf-Julian; Huebl, Julius; Aust, Sabine; Horn, Andreas; Krauss, Joachim K; Dziobek, Isabel; Kuhn, Jens; Schneider, Gerd-Helge; Bajbouj, Malek; Kühn, Andrea A

    2016-06-01

    Deep brain stimulation (DBS) is a promising approach in treatment-resistant depression (TRD). TRD is associated with problems in interpersonal relationships, which might be linked to impaired empathy. Here, we investigate the influence of DBS in the subgenual anterior cingulate cortex (sgACC) on empathy in patients with TRD and explore the pattern of oscillatory sgACC activity during performance of the multifaceted empathy test. We recorded local field potential activity directly from sgACC via DBS electrodes in patients. Based on previous behavioral findings, we expected disrupted empathy networks. Patients showed increased empathic involvement ratings toward negative stimuli as compared with healthy subjects that were significantly reduced after 6 months of DBS. Stimulus-related oscillatory activity pattern revealed a broad desynchronization in the beta (14-35 Hz) band that was significantly larger during patients' reported emotional empathy for negative stimuli than when patients reported to have no empathy. Beta desynchronization for empathic involvement correlated with self-reported severity of depression. Our results indicate a "negativity bias" in patients that can be reduced by DBS. Moreover, direct recordings show activation of the sgACC area during emotional processing and propose that changes in beta-band oscillatory activity in the sgACC might index empathic involvement of negative emotion in TRD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Anterior cingulate cortex and cerebellar hemisphere neurometabolite changes in depression treatment: A 1H magnetic resonance spectroscopy study.

    PubMed

    Chen, Li-Ping; Dai, Hai-Yang; Dai, Zhuo-Zhi; Xu, Chong-Tao; Wu, Ren-Hua

    2014-05-01

    We utilized single-voxel 1H magnetic resonance spectroscopy to determine biochemical abnormalities related to major depressive disorder (MDD) in the bilateral dorsolateral prefrontal cortex, anterior cingulate cortex (ACC), and cerebellar hemisphere before and after antidepressant treatment. Fifteen adult MDD patients and 15 age- and sex-matched healthy controls were involved. Magnetic resonance spectroscopy of the brain was conducted in all subjects at the beginning of the study and the depressed subjects were reassessed after 8 weeks of antidepressant treatment. At baseline, N-acetyl aspartate (NAA), total glutamine plus glutamate (Glx) and myo-inositol (MI) levels in the bilateral ACC were significantly lower in MDD patients than in controls (P < 0.05/3). MI in the bilateral cerebellar hemisphere were also decreased in patients compared with controls. After the treatment, the lower NAA, Glx and MI in ACC were normalized in MDD patients and the NAA and Glx increased compared to baseline values. The MI levels in the bilateral cerebellar hemisphere were also normalized in patients. MI and choline levels in the right cerebellar hemisphere were elevated compared to those at baseline. Our study suggests that metabolic abnormalities in the ACC and cerebellar hemisphere are implicated in MDD. Antidepressants may alter the local metabolic abnormalities in these areas. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  6. The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control.

    PubMed

    Silton, Rebecca Levin; Heller, Wendy; Towers, David N; Engels, Anna S; Spielberg, Jeffrey M; Edgar, J Christopher; Sass, Sarah M; Stewart, Jennifer L; Sutton, Bradley P; Banich, Marie T; Miller, Gregory A

    2010-04-15

    A network of brain regions has been implicated in top-down attentional control, including left dorsolateral prefrontal cortex (LDLPFC) and dorsal anterior cingulate cortex (dACC). The present experiment evaluated predictions of the cascade-of-control model (Banich, 2009), which predicts that during attentionally-demanding tasks, LDLPFC imposes a top-down attentional set which precedes late-stage selection performed by dACC. Furthermore, the cascade-of-control model argues that dACC must increase its activity to compensate when top-down control by LDLPFC is poor. The present study tested these hypotheses using fMRI and dense-array ERP data collected from the same 80 participants in separate sessions. fMRI results guided ERP source modeling to characterize the time course of activity in LDLPFC and dACC. As predicted, dACC activity subsequent to LDLPFC activity distinguished congruent and incongruent conditions on the Stroop task. Furthermore, when LDLPFC activity was low, the level of dACC activity was related to performance outcome. These results demonstrate that dACC responds to attentional demand in a flexible manner that is dependent on the level of LDLPFC activity earlier in a trial. Overall, results were consistent with the temporal course of regional brain function proposed by the cascade-of-control model. Copyright 2009 Elsevier Inc. All rights reserved.

  7. Comparing the actions of lanicemine and ketamine in depression: key role of the anterior cingulate.

    PubMed

    Downey, Darragh; Dutta, Arpan; McKie, Shane; Dawson, Gerard R; Dourish, Colin T; Craig, Kevin; Smith, Mark A; McCarthy, Dennis J; Harmer, Catherine J; Goodwin, Guy M; Williams, Steve; Deakin, J F William

    2016-06-01

    Intravenous infusion of lanicemine (formerly AZD6765), a low trapping non-selective N-methyl-D-aspartate (NMDA) receptor antagonist, induces antidepressant effects with a similar time course to ketamine. We investigated whether a single dose lanicemine infusion would reproduce the previously reported decrease in subgenual anterior cingulate cortex (sgACC) activity evoked by ketamine, a potential mechanism of antidepressant efficacy. Sixty un-medicated adults meeting the criteria for major depressive disorder were randomly assigned to receive constant intravenous infusions of ketamine, lanicemine or saline during a 60min pharmacological magnetic resonance imaging (phMRI) scan. Both ketamine and lanicemine gradually increased the blood oxygen level dependent signal in sgACC and rostral ACC as the primary outcome measure. No decreases in signal were seen in any region. Interviewer-rated psychotic and dissociative symptoms were minimal following administration of lanicemine. There was no significant antidepressant effect of either infusion compared to saline. The previously reported deactivation of sgACC after ketamine probably reflects the rapid and pronounced subjective effects evoked by the bolus-infusion method used in the previous study. Activation of the ACC was observed following two different NMDA compounds in both Manchester and Oxford using different 3T MRI scanners, and this effect predicted improvement in mood 1 and 7 days post-infusion. These findings suggest that the initial site of antidepressant action for NMDA antagonists may be the ACC (NCT01046630. A Phase I, Multi-centre, Double-blind, Placebo-controlled Parallel Group Study to Assess the pharmacoMRI Effects of AZD6765 in Male and Female Subjects Fulfilling the Criteria for Major Depressive Disorder; http://clinicaltrials.gov/show/NCT01046630). Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  8. Enhanced responses of the anterior cingulate cortex neurones to colonic distension in viscerally hypersensitive rats

    PubMed Central

    Gao, Jun; Wu, Xiaoyin; Owyang, Chung; Li, Ying

    2006-01-01

    The anterior cingulate cortex (ACC) is critically involved in processing the affective component of pain sensation. Visceral hypersensitivity is a characteristic of irritable bowel syndrome. Electrophysiological activity of the ACC with regard to visceral sensitization has not been characterized. Single ACC neuronal activities in response to colorectal distension (CRD) were recorded in control, sham-treated rats and viscerally hypersensitive (EA) rats (induced by chicken egg albumin injection, i.p). The ACC neurones of controls failed to respond to 10 or 30 mmHg CRD; only 22% were activated by 50 mmHg CRD. Among the latter, 16.4% exhibited an excitatory response to CRD and were labelled ‘CRD-excited’ neurones. In contrast, CRD (10, 30 and 50 mmHg) markedly increased ACC neuronal responses of EA rats (10%, 28% and 47%, respectively). CRD produced greater pressure-dependent increases in ACC spike firing rates in EA rats compared with controls. Splanchnicectomy combined with pelvic nerve section abolished ACC responses to CRD in EA rats. Spontaneous activity in CRD-excited ACC neurones was significantly higher in EA rats than in controls. CRD-excited ACC neurones in control and EA rats (7 of 16 (42%) and 8 of 20 (40%), respectively) were activated by transcutaneous electrical and thermal stimuli. However, ACC neuronal activity evoked by noxious cutaneous stimuli did not change significantly in EA rats. This study identifies CRD-responsive neurones in the ACC and establishes for the first time that persistence of a heightened visceral afferent nociceptive input to the ACC induces ACC sensitization, characterized by increased spontaneous activity of CRD-excited neurones, decreased CRD pressure threshold, and increased response magnitude. Enhanced ACC nociceptive transmission in viscerally hypersensitive rats is restricted to visceral afferent input. PMID:16239277

  9. Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization.

    PubMed

    Cullen, Patrick K; Gilman, T Lee; Winiecki, Patrick; Riccio, David C; Jasnow, Aaron M

    2015-10-01

    Memories for context become less specific with time resulting in animals generalizing fear from training contexts to novel contexts. Though much attention has been given to the neural structures that underlie the long-term consolidation of a context fear memory, very little is known about the mechanisms responsible for the increase in fear generalization that occurs as the memory ages. Here, we examine the neural pattern of activation underlying the expression of a generalized context fear memory in male C57BL/6J mice. Animals were context fear conditioned and tested for fear in either the training context or a novel context at recent and remote time points. Animals were sacrificed and fluorescent in situ hybridization was performed to assay neural activation. Our results demonstrate activity of the prelimbic, infralimbic, and anterior cingulate (ACC) cortices as well as the ventral hippocampus (vHPC) underlie expression of a generalized fear memory. To verify the involvement of the ACC and vHPC in the expression of a generalized fear memory, animals were context fear conditioned and infused with 4% lidocaine into the ACC, dHPC, or vHPC prior to retrieval to temporarily inactivate these structures. The results demonstrate that activity of the ACC and vHPC is required for the expression of a generalized fear memory, as inactivation of these regions returned the memory to a contextually precise form. Current theories of time-dependent generalization of contextual memories do not predict involvement of the vHPC. Our data suggest a novel role of this region in generalized memory, which should be incorporated into current theories of time-dependent memory generalization. We also show that the dorsal hippocampus plays a prolonged role in contextually precise memories. Our findings suggest a possible interaction between the ACC and vHPC controls the expression of fear generalization. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Altered anterior cingulate neurochemistry in emerging adult binge drinkers with a history of alcohol-induced blackouts

    PubMed Central

    Silveri, Marisa M.; Cohen-Gilbert, Julia; Crowley, David J.; Rosso, Isabelle M.; Jensen, J. Eric; Sneider, Jennifer T.

    2015-01-01

    Background Binge alcohol consumption is associated with multiple neurobiological consequences, including altered neurophysiology, brain structure and functional activation. Magnetic resonance spectroscopy (MRS) studies have demonstrated neurochemical alterations in the frontal lobe of alcohol users, although most studies focused on older, alcohol dependent subjects. Methods In this study, neurochemical data were acquired using MRS at 4T from emerging adults (18–24 years old) who were binge alcohol drinkers (BD, n=23) or light drinkers (LD, n=31). Since binge drinking is also associated with increased prevalence of experiencing an alcohol-induced blackout, BD were stratified into alcohol-induced blackout (BDBO) and non-blackout groups (BDN). Results Overall, BD had significantly lower gamma amino-butyric acid (GABA) and N-acetyl-aspartate (NAA) in the anterior cingulate cortex (ACC) than LD. When stratified by blackout history, BDBO also had lower ACC glutamate (Glu) than LD. No group differences in MRS metabolites were observed in the parietal-occipital cortex. Lower ACC GABA and glutamate remained significant after accounting for lower grey matter content in BD, however NAA differences were no longer evident. In addition, low ACC GABA levels were associated with greater alcohol use consequences, and worse response inhibition and attention/mental flexibility in BD. Conclusions These data indicate that binge drinking affects frontal lobe neurochemistry, more so in those who had experienced an alcohol-induced blackout. Characterization of the neurochemical profiles associated with binge alcohol consumption and blackout history may help identify unique risk factors for the later manifestation of alcohol abuse and dependence, in young individuals who are heavy, frequent drinkers, but who do not meet the criteria for alcohol use disorders. PMID:24512596

  11. Specific Contributions of Ventromedial, Anterior Cingulate, and Lateral Prefrontal Cortex for Attentional Selection and Stimulus Valuation

    PubMed Central

    Kaping, Daniel; Vinck, Martin; Hutchison, R. Matthew; Everling, Stefan; Womelsdorf, Thilo

    2011-01-01

    Attentional control ensures that neuronal processes prioritize the most relevant stimulus in a given environment. Controlling which stimulus is attended thus originates from neurons encoding the relevance of stimuli, i.e. their expected value, in hand with neurons encoding contextual information about stimulus locations, features, and rules that guide the conditional allocation of attention. Here, we examined how these distinct processes are encoded and integrated in macaque prefrontal cortex (PFC) by mapping their functional topographies at the time of attentional stimulus selection. We find confined clusters of neurons in ventromedial PFC (vmPFC) that predominantly convey stimulus valuation information during attention shifts. These valuation signals were topographically largely separated from neurons predicting the stimulus location to which attention covertly shifted, and which were evident across the complete medial-to-lateral extent of the PFC, encompassing anterior cingulate cortex (ACC), and lateral PFC (LPFC). LPFC responses showed particularly early-onset selectivity and primarily facilitated attention shifts to contralateral targets. Spatial selectivity within ACC was delayed and heterogeneous, with similar proportions of facilitated and suppressed responses during contralateral attention shifts. The integration of spatial and valuation signals about attentional target stimuli was observed in a confined cluster of neurons at the intersection of vmPFC, ACC, and LPFC. These results suggest that valuation processes reflecting stimulus-specific outcome predictions are recruited during covert attentional control. Value predictions and the spatial identification of attentional targets were conveyed by largely separate neuronal populations, but were integrated locally at the intersection of three major prefrontal areas, which may constitute a functional hub within the larger attentional control network. PMID:22215982

  12. Age and sex effects levels of choline compounds in the anterior cingulate cortex of adolescent methamphetamine users.

    PubMed

    Cloak, Christine C; Alicata, Daniel; Chang, Linda; Andrews-Shigaki, Brian; Ernst, Thomas

    2011-12-15

    Methamphetamine can be neurotoxic to the adult brain; however, many individuals first use methamphetamine during adolescence, and the drug's impact on this period of brain development is unknown. Therefore, we evaluated young methamphetamine users for possible abnormalities in brain metabolite concentrations. Anterior cingulate cortex (ACC), frontal white matter (FWM), basal ganglia, and thalamus were studied with localized proton magnetic resonance spectroscopy in 54 periadolescent (ages 13-23 years) methamphetamine users and 53 comparison subjects. The concentrations of major brain metabolites and their associations with age, sex and cognition were assessed. FWM total-creatine correlated with age in methamphetamine-using males and comparison females, but not comparison males or methamphetamine-using females, leading to a drug by sex by age interaction (p=0.003) and ACC choline-containing compounds (CHO) correlated with age only in comparison males leading to a drug by sex by age interaction (p=0.03). Higher ACC CHO was associated with faster performance on the Stroop Interference task in the control males. Male methamphetamine users had slowest performance on the Stroop Interference task and did not show age-appropriate levels of ACC CHO. The altered age-appropriate levels of ACC CHO and poorer executive function in male methamphetamine users suggest methamphetamine abuse may interfere with brain maturation. These periadolescents did not have the abnormal neuronal markers previously reported in adult methamphetamine users, suggesting that neuronal abnormalities may be the result of long-term use or interference in normal cortical maturation, emphasizing the need for early intervention for young methamphetamine users. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Activation of the serotonergic system by pedaling exercise changes anterior cingulate cortex activity and improves negative emotion.

    PubMed

    Ohmatsu, Satoko; Nakano, Hideki; Tominaga, Takanori; Terakawa, Yuzo; Murata, Takaho; Morioka, Shu

    2014-08-15

    Pedaling exercise (PE) of moderate intensity has been shown to ease anxiety and discomfort; however, little is known of the changes that occur in brain activities and in the serotonergic (5-HT) system after PE. Therefore, this study was conducted for the following reasons: (1) to localize the changes in the brain activities induced by PE using a distributed source localization algorithm, (2) to examine the changes in frontal asymmetry, as used in the Davidson model, with electroencephalography (EEG) activity, and (3) to examine the effect of PE on the 5-HT system. A 32-channel EEG was used to record before and after PE. Profile of Mood States tests indicated that there was a significant decrease in tension-anxiety and a significant increase in vigor after PE. A standardized low-resolution brain electromagnetic tomography analysis showed a significant decrease in brain activities after PE in the alpha-2 band (10-12.5 Hz) in the anterior cingulate cortex (ACC). Moreover, a significant increase in frontal EEG asymmetry was observed after PE in the alpha-1 band (7.5-10 Hz). Urine 5-HT levels significantly increased after PE. Urine 5-HT levels positively correlated with the degree of frontal EEG asymmetry in the alpha-1 band and negatively correlated with brain activity in ACC. Our results suggested that PE activates the 5-HT system and consequently induces increases in frontal EEG asymmetry in the alpha-1 band and reductions of brain activity in the alpha-2 band in the ACC region. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Anterior cingulate hyperactivations during negative emotion processing among men with schizophrenia and a history of violent behavior.

    PubMed

    Tikàsz, Andràs; Potvin, Stéphane; Lungu, Ovidiu; Joyal, Christian C; Hodgins, Sheilagh; Mendrek, Adrianna; Dumais, Alexandre

    2016-01-01

    Evidence suggests a 2.1-4.6 times increase in the risk of violent behavior in schizophrenia compared to the general population. Current theories propose that the processing of negative emotions is defective in violent individuals and that dysfunctions within the neural circuits involved in emotion processing are implicated in violence. Although schizophrenia patients show enhanced sensitivity to negative stimuli, there are only few functional neuroimaging studies that have examined emotion processing among men with schizophrenia and a history of violence. The present study aimed to identify the brain regions with greater neurofunctional alterations, as detected by functional magnetic resonance imaging during an emotion processing task, of men with schizophrenia who had engaged in violent behavior compared with those who had not. Sixty men were studied; 20 with schizophrenia and a history of violence, 19 with schizophrenia and no violence, and 21 healthy men were scanned while viewing positive, negative, and neutral images. Negative images elicited hyperactivations in the anterior cingulate cortex (ACC), left and right lingual gyrus, and the left precentral gyrus in violent men with schizophrenia, compared to nonviolent men with schizophrenia and healthy men. Neutral images elicited hyperactivations in the right and left middle occipital gyrus, left lingual gyrus, and the left fusiform gyrus in violent men with schizophrenia, compared to the other two groups. Violent men with schizophrenia displayed specific increases in ACC in response to negative images. Given the role of the ACC in information integration, these results indicate a specific dysfunction in the processing of negative emotions that may trigger violent behavior in men with schizophrenia.

  15. Cognitive Control Functions of Anterior Cingulate Cortex in Macaque Monkeys Performing a Wisconsin Card Sorting Test Analog

    PubMed Central

    Kuwabara, Masaru; Mansouri, Farshad A.; Buckley, Mark J.

    2014-01-01

    Monkeys were trained to select one of three targets by matching in color or matching in shape to a sample. Because the matching rule frequently changed and there were no cues for the currently relevant rule, monkeys had to maintain the relevant rule in working memory to select the correct target. We found that monkeys' error commission was not limited to the period after the rule change and occasionally occurred even after several consecutive correct trials, indicating that the task was cognitively demanding. In trials immediately after such error trials, monkeys' speed of selecting targets was slower. Additionally, in trials following consecutive correct trials, the monkeys' target selections for erroneous responses were slower than those for correct responses. We further found evidence for the involvement of the cortex in the anterior cingulate sulcus (ACCs) in these error-related behavioral modulations. First, ACCs cell activity differed between after-error and after-correct trials. In another group of ACCs cells, the activity differed depending on whether the monkeys were making a correct or erroneous decision in target selection. Second, bilateral ACCs lesions significantly abolished the response slowing both in after-error trials and in error trials. The error likelihood in after-error trials could be inferred by the error feedback in the previous trial, whereas the likelihood of erroneous responses after consecutive correct trials could be monitored only internally. These results suggest that ACCs represent both context-dependent and internally detected error likelihoods and promote modes of response selections in situations that involve these two types of error likelihood. PMID:24872558

  16. Age and sex effects levels of choline compounds in the anterior cingulate cortex of adolescent methamphetamine users

    PubMed Central

    Cloak, Christine C.; Alicata, Daniel; Chang, Linda; Andrews-Shigaki, Brian; Ernst, Thomas

    2011-01-01

    Background Methamphetamine can be neurotoxic to the adult brain; however, many individuals first use methamphetamine during adolescence, and the drug’s impact on this period of brain development is unknown. Therefore, we evaluated young methamphetamine users for possible abnormalities in brain metabolite concentrations. Methods Anterior cingulate cortex (ACC), frontal white matter (FWM), basal ganglia, and thalamus were studied with localized proton magnetic resonance spectroscopy in 54 periadolescent (ages 13–23 years) methamphetamine users and 53 comparison subjects. The concentrations of major brain metabolites and their associations with age, sex and cognition were assessed. Results FWM total-creatine correlated with age in methamphetamine-using males and comparison females, but not comparison males or methamphetamine-using females, leading to a drug by sex by age interaction (p=0.003) and ACC choline-containing compounds (CHO) correlated with age only in comparison males leading to a drug by sex by age interaction (p=0.03). Higher ACC CHO was associated with faster performance on the Stroop Interference task in the control males. Male methamphetamine users had slowest performance on the Stroop Interference task and did not show showed age-appropriate levels of ACC CHO. Conclusions The altered age-appropriate levels of ACC CHO and poorer executive function in male methamphetamine users suggest methamphetamine abuse may interfere with brain maturation. These periadolescents did not have the abnormal neuronal markers previously reported in adult methamphetamine users, suggesting that neuronal abnormalities may be the result of long-term use or interference in normal cortical maturation, emphasizing the need for early intervention for young methamphetamine users. PMID:21775074

  17. Dissociable contributions of anterior cingulate cortex and basolateral amygdala on a rodent cost/benefit decision-making task of cognitive effort.

    PubMed

    Hosking, Jay G; Cocker, Paul J; Winstanley, Catharine A

    2014-06-01

    Personal success often requires the choice to expend greater effort for larger rewards, and deficits in such effortful decision making accompany a number of illnesses including depression, schizophrenia, and attention-deficit/hyperactivity disorder. Animal models have implicated brain regions such as the basolateral amygdala (BLA) and anterior cingulate cortex (ACC) in physical effort-based choice, but disentangling the unique contributions of these two regions has proven difficult, and effort demands in industrialized society are predominantly cognitive in nature. Here we utilize the rodent cognitive effort task (rCET), a modification of the five-choice serial reaction-time task, wherein animals can choose to expend greater visuospatial attention to obtain larger sucrose rewards. Temporary inactivation (via baclofen-muscimol) of BLA and ACC showed dissociable effects: BLA inactivation caused hard-working rats to 'slack off' and 'slacker' rats to work harder, whereas ACC inactivation caused all animals to reduce willingness to expend mental effort. Furthermore, BLA inactivation increased the time needed to make choices, whereas ACC inactivation increased motor impulsivity. These data illuminate unique contributions of BLA and ACC to effort-based decision making, and imply overlapping yet distinct circuitry for cognitive vs physical effort. Our understanding of effortful decision making may therefore require expanding our models beyond purely physical costs.

  18. Impact of family history of alcoholism on glutamine/glutamate ratio in anterior cingulate cortex in substance-naïve adolescents.

    PubMed

    Cohen-Gilbert, Julia E; Sneider, Jennifer T; Crowley, David J; Rosso, Isabelle M; Jensen, J Eric; Silveri, Marisa M

    2015-12-01

    Neuroimaging studies of individuals with family histories of alcoholism provide evidence suggesting neurobiological risk factors for alcoholism. Youth family history positive (FH+) for alcoholism exhibit increased impulsivity compared to family history negative (FH-) peers in conjunction with altered functional activation in prefrontal cortex, including anterior cingulate cortex (ACC). This study examined glutamate (Glu) and glutamine (Gln), amino acids vital to protein synthesis, cellular metabolism and neurotransmission, acquired from ACC and parieto-occipital cortex (POC) using magnetic resonance spectroscopy (MRS) at 4T. Participants were 28 adolescents (13 male, 12-14 yrs) and 31 emerging adults (16 male, 18-25 yrs), stratified into FH- and FH+ groups. Significantly higher ACC Gln/Glu was observed in emerging adults versus adolescents in FH- but not FH+ groups. In FH- adolescents, higher impulsivity was significantly associated with higher ACC Gln/Glu. In FH+ emerging adults, higher impulsivity was negatively associated with ACC Gln/Glu. No differences or associations were observed for POC. These findings provide preliminary evidence that family history of alcoholism is associated with a neurochemical profile that may influence normative age differences in glutamatergic metabolites and their association with impulse control, which together could confer greater genetic risk of addiction later in life. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Impact of Family History of Alcoholism on Glutamine/Glutamate Ratio in Anterior Cingulate Cortex in Substance-Naïve Adolescents

    PubMed Central

    Cohen-Gilbert, Julia E.; Sneider, Jennifer T.; Crowley, David J.; Rosso, Isabelle M.; Jensen, J. Eric; Silveri, Marisa M.

    2015-01-01

    Neuroimaging studies of individuals with family histories of alcoholism provide evidence suggesting neurobiological risk factors for alcoholism. Youth family history positive (FH+) for alcoholism exhibit increased impulsivity compared to family history negative (FH−) peers, in conjunction with altered functional activation in prefrontal cortex, including anterior cingulate cortex (ACC). This study examined glutamate (Glu) and glutamine (Gln), amino acids vital to protein synthesis, cellular metabolism and neurotransmission, acquired from ACC and parieto-occipital cortex (POC) using magnetic resonance spectroscopy (MRS) at 4T. Participants were 28 adolescents (13 male, 12–14yrs) and 31 emerging adults (16 male, 18–25yrs), stratified into FH− and FH+ groups. Significantly higher ACC Gln/Glu was observed in emerging adults versus adolescents in FH− but not FH+ groups. In FH− adolescents, higher impulsivity was significantly associated with higher ACC Gln/Glu. In FH+ emerging adults, higher impulsivity was negatively associated with ACC Gln/Glu. No differences or associations were observed for POC. These findings provide preliminary evidence that family history of alcoholism is associated with a neurochemical profile that may influence normative age differences in glutamatergic metabolites and their association with impulse control, which together could confer greater genetic risk of addiction later in life. PMID:26025607

  20. Encoding of Reward and Space During a Working Memory Task in the Orbitofrontal Cortex and Anterior Cingulate Sulcus

    PubMed Central

    Kennerley, Steven W.

    2009-01-01

    Several lines of research indicate that emotional and motivational information may be useful in guiding the allocation of attentional resources. Two areas of the frontal lobe that are particularly implicated in the encoding of motivational information are the orbital prefrontal cortex (PFo) and the dorsomedial region of prefrontal cortex, specifically the anterior cingulate sulcus (PFcs). However, it remains unclear whether these areas use this information to influence spatial attention. We used single-unit neurophysiology to examine whether, at the level of individual neurons, there was evidence for integration between reward information and spatial attention. We trained two subjects to perform a task that required them to attend to a spatial location across a delay under different expectancies of reward for correct performance. We balanced the order of presentation of spatial and reward information so we could assess the neuronal encoding of the two pieces of information independently and conjointly. We found little evidence for encoding of the spatial location in either PFo or PFcs. In contrast, both areas encoded the expected reward. Furthermore, PFo consistently encoded reward more quickly than PFcs, although reward encoding was subsequently more prevalent and stronger in PFcs. These results suggest a differential contribution of PFo and PFcs to reward encoding, with PFo potentially more important for initially determining the value of rewards predicted by sensory stimuli. They also suggest that neither PFo nor PFcs play a direct role in the control of spatial attention. PMID:19776363

  1. Simultaneous Anterior Glenohumeral Dislocation and Ipsilateral Acromioclavicular Separation: A Dual Injury of the Shoulder.

    PubMed

    Kılıçaslan, Ömer Faruk; Acar, Baver; Atik, Aziz; Kose, Ozkan

    2017-08-19

    Isolated acromioclavicular separations or shoulder dislocations are common injuries. However, a combination of complete acromioclavicular separation and anterior shoulder dislocation is extremely rare. Herein we present a combination of anterior shoulder dislocation and type III acromioclavicular separation that was succesfully treated conservatively. Orthopaedic surgeons should have a high clinical suspicion in daily practice. We believe that both pathologies can be treated conservatively.

  2. CHILDHOOD MALTREATMENT PREDICTS REDUCED INHIBITION-RELATED ACTIVITY IN THE ROSTRAL ANTERIOR CINGULATE IN PTSD, BUT NOT TRAUMA-EXPOSED CONTROLS.

    PubMed

    Stevens, Jennifer S; Ely, Timothy D; Sawamura, Takehito; Guzman, Dora; Bradley, Bekh; Ressler, Kerry J; Jovanovic, Tanja

    2016-07-01

    A deficit in the ability to inhibit fear has been proposed as a biomarker of posttraumatic stress disorder (PTSD). Previous research indicates that individuals with PTSD show reduced inhibition-related activation in rostral anterior cingulate cortex (rACC). The goal of the current study was to investigate differential influences of an early environmental risk factor for PTSD-childhood maltreatment-on inhibition-related brain function in individuals with PTSD versus trauma-exposed controls. Individuals with PTSD (n = 37) and trauma-exposed controls (n = 53) were recruited from the primary care waiting rooms of an urban public hospital in Atlanta, GA. Participants completed an inhibition task during fMRI, and reported childhood and adult traumatic experiences. The groups were matched for adult and child trauma load. We observed an interaction between childhood maltreatment severity and PTSD status in the rACC (P < .05, corrected), such that maltreatment was negatively associated with inhibition-related rACC activation in the PTSD group, but did not influence rACC activation in the TC group. Rostral ACC activation was associated with inhibition-related task performance in the TC group but not the PTSD group, suggesting a possible contribution to stress resilience. Findings highlight individual differences in neural function following childhood trauma, and point to inhibition-related activation in rostral ACC as a risk factor for PTSD. © 2016 Wiley Periodicals, Inc.

  3. Alterations in anterior cingulate cortex myoinositol and aggression in veterans with suicidal behavior: A proton magnetic resonance spectroscopy study.

    PubMed

    Sheth, Chandni; Prescot, Andrew; Bueler, Elliott; DiMuzio, Jennifer; Legarreta, Margaret; Renshaw, Perry F; Yurgelun-Todd, Deborah; McGlade, Erin

    2018-06-30

    Studies investigating the neurochemical changes that correspond with suicidal behavior (SB) have not yielded conclusive results. Suicide correlates such as aggression have been used to explore risk factors for SB. Yet the neurobiological basis for the association between aggression and SB is unclear. Aggression and SB are both prevalent in veterans relative to civilian populations. The current study evaluated the relationship between brain chemistry in the anterior (ACC) and the posterior cingulate cortex (POC), as well as the relationship between aggression and SB in a veteran population using proton magnetic resonance spectroscopy ( 1 H-MRS). Single-voxel MRS data at 3 Tesla (T) were acquired from the ACC and POC voxels using a 2-dimensional J-resolved point spectroscopy sequence and quantified using the ProFit algorithm. Participants also completed a structured diagnostic interview and a clinical battery. Our results showed that the myoinositol (mI)/H2O ratio in the ACC and POC was significantly higher in veterans who reported SB when compared to veterans who did not. The two groups did not differ significantly with regard to other metabolites. Second, verbal aggression and SB measures positively correlated with mI/H2O in the ACC. Finally, verbal aggression mediated the relationship between mI/H2O in the ACC and SB. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Loss of integrity and atrophy in cingulate structural covariance networks in Parkinson's disease.

    PubMed

    de Schipper, Laura J; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J

    2017-01-01

    In Parkinson's disease (PD), the relation between cortical brain atrophy on MRI and clinical progression is not straightforward. Determination of changes in structural covariance networks - patterns of covariance in grey matter density - has shown to be a valuable technique to detect subtle grey matter variations. We evaluated how structural network integrity in PD is related to clinical data. 3 Tesla MRI was performed in 159 PD patients. We used nine standardized structural covariance networks identified in 370 healthy subjects as a template in the analysis of the PD data. Clinical assessment comprised motor features (Movement Disorder Society-Unified Parkinson's Disease Rating Scale; MDS-UPDRS motor scale) and predominantly non-dopaminergic features (SEverity of Non-dopaminergic Symptoms in Parkinson's Disease; SENS-PD scale: postural instability and gait difficulty, psychotic symptoms, excessive daytime sleepiness, autonomic dysfunction, cognitive impairment and depressive symptoms). Voxel-based analyses were performed within networks significantly associated with PD. The anterior and posterior cingulate network showed decreased integrity, associated with the SENS-PD score, p = 0.001 (β = - 0.265, η p 2  = 0.070) and p = 0.001 (β = - 0.264, η p 2  = 0.074), respectively. Of the components of the SENS-PD score, cognitive impairment and excessive daytime sleepiness were associated with atrophy within both networks. We identified loss of integrity and atrophy in the anterior and posterior cingulate networks in PD patients. Abnormalities of both networks were associated with predominantly non-dopaminergic features, specifically cognition and excessive daytime sleepiness. Our findings suggest that (components of) the cingulate networks display a specific vulnerability to the pathobiology of PD and may operate as interfaces between networks involved in cognition and alertness.

  5. Nonlinear response of the anterior cingulate and prefrontal cortex in schizophrenia as a function of variable attentional control.

    PubMed

    Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Caforio, Grazia; Romano, Raffaella; Lobianco, Luciana; Fazio, Leonardo; Di Giorgio, Annabella; Latorre, Valeria; Sambataro, Fabio; Popolizio, Teresa; Nardini, Marcello; Mattay, Venkata S; Weinberger, Daniel R; Bertolino, Alessandro

    2010-04-01

    Previous studies have reported abnormal prefrontal and cingulate activity during attentional control processing in schizophrenia. However, it is not clear how variation in attentional control load modulates activity within these brain regions in this brain disorder. The aim of this study in schizophrenia is to investigate the impact of increasing levels of attentional control processing on prefrontal and cingulate activity. Blood oxygen level-dependent (BOLD) responses of 16 outpatients with schizophrenia were compared with those of 21 healthy subjects while performing a task eliciting increasing levels of attentional control during event-related functional magnetic resonance imaging at 3 T. Results showed reduced behavioral performance in patients at greater attentional control levels. Imaging data indicated greater prefrontal activity at intermediate attentional control levels in patients but greater prefrontal and cingulate responses at high attentional control demands in controls. The BOLD activity profile of these regions in controls increased linearly with increasing cognitive loads, whereas in patients, it was nonlinear. Correlation analysis consistently showed differential region and load-specific relationships between brain activity and behavior in the 2 groups. These results indicate that varying attentional control load is associated in schizophrenia with load- and region-specific modification of the relationship between behavior and brain activity, possibly suggesting earlier saturation of cognitive capacity.

  6. Simultaneous Anterior Glenohumeral Dislocation and Ipsilateral Acromioclavicular Separation: A Dual Injury of the Shoulder

    PubMed Central

    Acar, Baver; Atik, Aziz; Kose, Ozkan

    2017-01-01

    Isolated acromioclavicular separations or shoulder dislocations are common injuries. However, a combination of complete acromioclavicular separation and anterior shoulder dislocation is extremely rare. Herein we present a combination of anterior shoulder dislocation and type III acromioclavicular separation that was succesfully treated conservatively. Orthopaedic surgeons should have a high clinical suspicion in daily practice. We believe that both pathologies can be treated conservatively. PMID:29062614

  7. Anterior cingulate hyperactivations during negative emotion processing among men with schizophrenia and a history of violent behavior

    PubMed Central

    Tikàsz, Andràs; Potvin, Stéphane; Lungu, Ovidiu; Joyal, Christian C; Hodgins, Sheilagh; Mendrek, Adrianna; Dumais, Alexandre

    2016-01-01

    Background Evidence suggests a 2.1–4.6 times increase in the risk of violent behavior in schizophrenia compared to the general population. Current theories propose that the processing of negative emotions is defective in violent individuals and that dysfunctions within the neural circuits involved in emotion processing are implicated in violence. Although schizophrenia patients show enhanced sensitivity to negative stimuli, there are only few functional neuroimaging studies that have examined emotion processing among men with schizophrenia and a history of violence. Objective The present study aimed to identify the brain regions with greater neurofunctional alterations, as detected by functional magnetic resonance imaging during an emotion processing task, of men with schizophrenia who had engaged in violent behavior compared with those who had not. Methods Sixty men were studied; 20 with schizophrenia and a history of violence, 19 with schizophrenia and no violence, and 21 healthy men were scanned while viewing positive, negative, and neutral images. Results Negative images elicited hyperactivations in the anterior cingulate cortex (ACC), left and right lingual gyrus, and the left precentral gyrus in violent men with schizophrenia, compared to nonviolent men with schizophrenia and healthy men. Neutral images elicited hyperactivations in the right and left middle occipital gyrus, left lingual gyrus, and the left fusiform gyrus in violent men with schizophrenia, compared to the other two groups. Discussion Violent men with schizophrenia displayed specific increases in ACC in response to negative images. Given the role of the ACC in information integration, these results indicate a specific dysfunction in the processing of negative emotions that may trigger violent behavior in men with schizophrenia. PMID:27366072

  8. Systems Reconsolidation Reveals a Selective Role for the Anterior Cingulate Cortex in Generalized Contextual Fear Memory Expression

    PubMed Central

    Einarsson, Einar Ö; Pors, Jennifer; Nader, Karim

    2015-01-01

    After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory. PMID:25091528

  9. Systems reconsolidation reveals a selective role for the anterior cingulate cortex in generalized contextual fear memory expression.

    PubMed

    Einarsson, Einar Ö; Pors, Jennifer; Nader, Karim

    2015-01-01

    After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory.

  10. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus

    PubMed Central

    Nakata, Hiroki; Sakamoto, Kiwako; Kakigi, Ryusuke

    2014-01-01

    Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging, and neurophysiological methods, such as magnetoencephalography and electroencephalography, have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural responses to pain stimulation during meditation in the anterior cingulate cortex (ACC) and insula, whereas others showed a decrease in these regions. There have been inconsistent findings to date. Moreover, in general, since the activities of the ACC and insula are correlated with pain perception, the increase in neural activities during meditation would be related to the enhancement of pain perception rather than its reduction. These contradictions might directly contribute to the ‘mystery of meditation.’ In this review, we presented previous findings for brain regions during meditation and the anatomical changes that occurred in the brain with long-term meditation training. We then discussed the findings of previous studies that examined pain-related neural activity during meditation. We also described the brain mechanisms responsible for pain relief during meditation, and possible reasons for paradoxical evidence among previous studies. By thoroughly overviewing previous findings, we hypothesized that meditation reduces pain-related neural activity in the ACC, insula, secondary somatosensory cortex, and thalamus. We suggest that the characteristics of the modulation of this activity may depend on the kind of meditation and/or number of years of experience of meditation, which were associated with paradoxical findings among previous studies that investigated pain-related neural activities during meditation. PMID:25566158

  11. Metabolic changes in the anterior and posterior cingulate cortices of the normal aging brain: proton magnetic resonance spectroscopy study at 3 T.

    PubMed

    Chiu, Pui-Wai; Mak, Henry Ka-Fung; Yau, Kelvin Kai-Wing; Chan, Queenie; Chang, Raymond Chuen-Chung; Chu, Leung-Wing

    2014-02-01

    Magnetic resonance spectroscopy (MRS) can explore aging at a molecular level. In this study, we investigated the relationships between regional concentrations of metabolites (such as choline, creatine, myo-inositol, and N-acetyl-aspartate) and normal aging in 30 cognitively normal subjects (15 women and 15 men, age range 22-82, mean = 49.9 ± 18.3 years) using quantitative proton magnetic resonance spectroscopy. All MR scans were performed using a 3 T scanner. Point resolved spectroscopy was used as the volume selection method for the region-of-interest and the excitation method for water suppression. Single voxel spectroscopy with short echo time of 39 ms and repetition time of 2,000 ms was employed. Single voxels were placed in the limbic regions, i.e., anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and left and right hippocampi. Cerebrospinal fluid normalization and T1 and T2 correction factors were implemented in the calculation of absolute metabolite concentrations. A standardized T1W 3D volumetric fast field echo and axial T2-weighted fast spin-echo images were also acquired. Our results showed significant positive correlation of choline (r = 0.545, p = 0.002), creatine (r = 0.571, p = 0.001), and N-acetyl-aspartate (r = 0.674, p < 0.001) in the ACC; choline (r = 0.614, p < 0.001), creatine (r = 0.670, p < 0.001), and N-acetyl-aspartate (r = 0.528, p = 0.003) in the PCC; and NAA (r = 0.409, p = 0.025) in the left hippocampus, with age. No significant gender effect on metabolite concentrations was found. In aging, increases in choline and creatine might suggest glial proliferation, and an increase in N-acetyl-aspartate might indicate neuronal hypertrophy. Such findings highlight the metabolic changes of ACC and PCC with age, which could be compensatory to an increased energy demand coupled with a lower cerebral blood flow.

  12. Ipsilateral Medial and Lateral Discoid Meniscus with Medial Meniscus Tear

    PubMed Central

    Shimozaki, Kengo; Nakase, Junsuke; Ohashi, Yoshinori; Numata, Hitoaki; Oshima, Takeshi; Takata, Yasushi; Tsuchiya, Hiroyuki

    2016-01-01

    Introduction: Discoid meniscus is a well-documented knee pathology, and there are many cases of medial or lateral discoid meniscus reported in the literature. However, ipsilateral concurrent medial and lateral discoid meniscus is very rare, and only a few cases have been reported. Herein, we report a case of concurrent medial and lateral discoid meniscus. Case Report: A 27-year-old Japanese man complained of pain on medial joint space in his right knee that was diagnosed as a complete medial and lateral discoid meniscus. In magnetic resonance imaging, although the lateral discoid meniscus had no tear, the medial discoid meniscus had a horizontal tear. Arthroscopic examination of his right knee similarly revealed that the medial discoid meniscus had a horizontal tear. In addition, the discoid medial meniscus also had an anomalous insertion to the anterior cruciate ligament, and there was also mild fibrillation of the medial tibial cartilage surface. We performed arthroscopic partial meniscectomy for the torn medial discoid meniscus but not for the asymptomatic lateral discoid meniscus. The latest follow-up at 18 months indicated satisfactory results. Conclusion: We report a rare case of ipsilateral medial and lateral discoid meniscus with medial meniscus tear. The medial discoid meniscus with tear was treated with partial meniscectomy, whereas the lateral discoid meniscus without tear was only followed up. PMID:28164045

  13. Right Anterior Cingulate Cortical Thickness and Bilateral Striatal Volume Correlate with CBCL Aggressive Behavior Scores in Healthy Children

    PubMed Central

    Ducharme, Simon; Hudziak, James J; Botteron, Kelly N; Ganjavi, Hooman; Lepage, Claude; Collins, D Louis; Albaugh, Matthew D.; Evans, Alan C; Karama, Sherif

    2011-01-01

    Background The anterior cingulate cortex (ACC), orbito-frontal cortex (OFC) and basal ganglia have been implicated in pathological aggression. This study aimed at identifying neuroanatomical correlates of impulsive aggression in healthy children. Methods Data from 193 representative 6–18 year-old healthy children were obtained from the NIH MRI Study of Normal Brain Development after a blinded quality control (1). Cortical thickness and subcortical volumes were obtained with automated software. Aggression levels were measured with the Aggressive Behavior scale (AGG) of the Child Behavior Checklist (CBCL). AGG scores were regressed against cortical thickness and basal ganglia volumes using first and second-order linear models while controlling for age, gender, scanner site and total brain volume. ‘Gender by AGG’ interactions were analyzed. Results There were positive associations between bilateral striatal volumes and AGG scores (right: r=0.238, p=0.001; left: r=0.188, p=0.01). A significant association was found with right ACC and subgenual ACC cortical thickness in a second-order linear model (p<0.05, corrected). High AGG scores were associated with a relatively thin right ACC cortex. An ‘AGG by gender’ interaction trend was found in bilateral OFC and ACC associations with AGG scores. Conclusion This study shows the existence of relationships between impulsive aggression in healthy children and the structure of the striatum and right ACC. It also suggests the existence of gender specific patterns of association in OFC/ACC grey matter. These results may guide research on oppositional-defiant and conduct disorders. PMID:21531391

  14. Neurometabolic characteristics in the anterior cingulate gyrus of Alzheimer's disease patients with depression: a (1)H magnetic resonance spectroscopy study.

    PubMed

    Guo, Zhongwei; Zhang, Jiangtao; Liu, Xiaozheng; Hou, Hongtao; Cao, Yulin; Wei, Fuquan; Li, Japeng; Chen, Xingli; Shen, Yuedi; Chen, Wei

    2015-12-02

    Depression is a common comorbid psychiatric symptom in patients with Alzheimer's disease (AD), and the prevalence of depression is higher among people with AD compared with healthy older adults. Comorbid depression in AD may increase the risk of cognitive decline, impair patients' function, and reduce their quality of life. However, the mechanisms of depression in AD remain unclear. Here, our aim was to identify neurometabolic characteristics in the brain that are associated with depression in patients with mild AD. Thirty-seven patients were evaluated using the Neuropsychiatric Inventory (NPI) and Hamilton Depression Rating Scale (HAMD-17), and divided into two groups: 17 AD patients with depression (D-AD) and 20 non-depressed AD patients (nD-AD). Using proton magnetic resonance spectroscopy, we characterized neurometabolites in the anterior cingulate gyrus (ACG) of D-AD and nD-AD patients. Compared with nD-AD patients, D-AD patients showed lower N-acetylaspartate/creatine (NAA/Cr) and higher myo-inositol/creatine (mI/Cr) in the left ACG. NPI score correlated with NAA/Cr and mI/Cr in the left ACG, while HAMD correlated with NAA/Cr. Our findings show neurometabolic alterations in D-AD patients. Thus, D-AD pathogenesis may be attributed to abnormal activity of neurons and glial cells in the left ACG.

  15. Therapygenetics: anterior cingulate cortex-amygdala coupling is associated with 5-HTTLPR and treatment response in panic disorder with agoraphobia.

    PubMed

    Lueken, Ulrike; Straube, Benjamin; Wittchen, Hans-Ulrich; Konrad, Carsten; Ströhle, Andreas; Wittmann, André; Pfleiderer, Bettina; Arolt, Volker; Kircher, Tilo; Deckert, Jürgen; Reif, Andreas

    2015-01-01

    Variation in the 5'-flanking promoter region of the serotonin transporter gene SLC6A4, the 5-HTT-linked polymorphic region (5-HTTLPR) has been inconclusively associated with response to cognitive-behavioural therapy (CBT). As genomic functions are stronger related to neural than to behavioural markers, we investigated the association of treatment response, 5-HTTLPR and functional brain connectivity in patients with panic disorder with agoraphobia (PD/AG). Within the national research network PANIC-NET 231 PD/AG patients who provided genetic information underwent a manualized exposure-based CBT. A subset of 41 patients participated in a functional magnetic resonance imaging (fMRI) add-on study prior to treatment applying a differential fear conditioning task. Neither the treatment nor the reduced fMRI sample showed a direct effect of 5-HTTLPR on treatment response as defined by a reduction in the Hamilton Anxiety Scale score ≥50 % from baseline to post assessment. On a neural level, inhibitory anterior cingulate cortex (ACC)-amygdala coupling during fear conditioning that had previously been shown to characterize treatment response in this sample was driven by responders with the L/L genotype. Building upon conclusive evidence from basic and preclinical findings on the association of the 5-HTTLPR polymorphism with emotion regulation and related brain connectivity patterns, present findings translate these to a clinical sample of PD/AG patients and point towards a potential intermediate connectivity phenotype modulating response to exposure-based CBT.

  16. Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats.

    PubMed

    Cardinal, Rudolf N; Parkinson, John A; Lachenal, Guillaume; Halkerston, Katherine M; Rudarakanchana, Nung; Hall, Jeremy; Morrison, Caroline H; Howes, Simon R; Robbins, Trevor W; Everitt, Barry J

    2002-08-01

    The nucleus accumbens core (AcbC), anterior cingulate cortex (ACC), and central nucleus of the amygdala (CeA) are required for normal acquisition of tasks based on stimulus-reward associations. However, it is not known whether they are involved purely in the learning process or are required for behavioral expression of a learned response. Rats were trained preoperatively on a Pavlovian autoshaping task in which pairing a visual conditioned stimulus (CS+) with food causes subjects to approach the CS+ while not approaching an unpaired stimulus (CS-). Subjects then received lesions of the AcbC, ACC, or CeA before being retested. AcbC lesions severely impaired performance; lesioned subjects approached the CS+ significantly less often than controls, failing to discriminate between the CS+ and CS-. ACC lesions also impaired performance but did not abolish discrimination entirely. CeA lesions had no effect on performance. Thus, the CeA is required for learning, but not expression, of a conditioned approach response, implying that it makes a specific contribution to the learning of stimulus-reward associations.

  17. Unilateral hypoplasia with contralateral hypertrophy of anterior belly of digastric muscle: a case report.

    PubMed

    Ochoa-Escudero, Martin; Juliano, Amy F

    2016-10-01

    Anomalies of the anterior belly of the digastric muscle (DM) are uncommon. We present a case of hypoplasia of the anterior belly of the left DM with hypertrophy of the anterior belly of the contralateral DM. The importance of recognizing this finding is to differentiate hypoplasia of the anterior belly of the DM from denervation atrophy, and not to confuse contralateral hypertrophy with a submental mass or lymphadenopathy. In denervation atrophy of the anterior belly of the DM, associated atrophy of the ipsilateral mylohyoid muscle is present. Hypertrophy of the anterior belly of the contralateral DM can be differentiated from a submental mass or lymphadenopathy by recognizing its isodensity on computed tomography and isointensity on magnetic resonance imaging to other muscles, without abnormal contrast enhancement.

  18. Influence of Isokinetic Strength Training of Unilateral Ankle on Ipsilateral One-legged Standing Balance of Adults

    PubMed Central

    Son, Sung Min; Kang, Kyung Woo; Lee, Na Kyung; Nam, Seok Hyun; Kwon, Jung Won; Kim, Kyoung

    2013-01-01

    [Purpose] The purpose of the current study was to investigate the changes in one-legged standing balance of the ipsilateral lower limb following unilateral isokinetic strength training. [Subjects and Methods] Thirty healthy adult volunteers were randomly assigned to either a training group or a control group, so that each group included 15 subjects. Subjects in the training group performed unilateral ankle isokinetic exercises of the dominant leg using the Biodex 3 PRO System for a period of four weeks. Ipsilateral one-legged standing balance was evaluated before and after the intervention with three stability indexes of balance using the Biodex System: Anterior-Posterior Stability Index (APSI), Medial-Lateral Stability Index (MLSI), and Overall Stability Index (OSI). [Results] Comparison of pre- and post-test data revealed significant improvements in strength values (dorsiflexion, plantarflexion, eversion, and inversion) and stability indexes (APSI, MLSI, OSI). [Conclusion] These results suggest that ankle strengthening exercise can be considered as a form of exercise that may assist individuals with improvement of balance. PMID:24259783

  19. Altered functional connectivity between the insula and the cingulate cortex in patients with temporomandibular disorder: a pilot study.

    PubMed

    Ichesco, Eric; Quintero, Andres; Clauw, Daniel J; Peltier, Scott; Sundgren, Pia M; Gerstner, Geoffrey E; Schmidt-Wilcke, Tobias

    2012-03-01

    Among the most common chronic pain conditions, yet poorly understood, are temporomandibular disorders (TMDs), with a prevalence estimate of 3-15% for Western populations. Although it is increasingly acknowledged that central nervous system mechanisms contribute to pain amplification and chronicity in TMDs, further research is needed to unravel neural correlates that might abet the development of chronic pain. The insular cortex (IC) and cingulate cortex (CC) are both critically involved in the experience of pain. The current study sought specifically to investigate IC-CC functional connectivity in TMD patients and healthy controls (HCs), both during resting state and during the application of a painful stimulus. Eight patients with TMD, and 8 age- and sex-matched HCs were enrolled in the present study. Functional magnetic resonance imaging data during resting state and during the performance of a pressure pain stimulus to the temple were acquired. Predefined seed regions were placed in the IC (anterior and posterior insular cortices) and the extracted signal was correlated with brain activity throughout the whole brain. Specifically, we were interested whether TMD patients and HCs would show differences in IC-CC connectivity, both during resting state and during the application of a painful stimulus to the face. As a main finding, functional connectivity analyses revealed an increased functional connectivity between the left anterior IC and pregenual anterior cingulate cortex (ACC) in TMD patients, during both resting state and applied pressure pain. Within the patient group, there was a negative correlation between the anterior IC-ACC connectivity and clinical pain intensity as measured by a visual analog scale. Since the pregenual region of the ACC is critically involved in antinociception, we hypothesize that an increase in anterior IC-ACC connectivity is indicative of an adaptation of the pain modulatory system early in the chronification process. © 2011

  20. Sympathetic regulation and anterior cingulate cortex volume are altered in a rat model of chronic back pain.

    PubMed

    Touj, Sara; Houle, Sébastien; Ramla, Djamel; Jeffrey-Gauthier, Renaud; Hotta, Harumi; Bronchti, Gilles; Martinoli, Maria-Grazia; Piché, Mathieu

    2017-06-03

    Chronic pain is associated with autonomic disturbance. However, specific effects of chronic back pain on sympathetic regulation remain unknown. Chronic pain is also associated with structural changes in the anterior cingulate cortex (ACC), which may be linked to sympathetic dysregulation. The aim of this study was to determine whether sympathetic regulation and ACC surface and volume are affected in a rat model of chronic back pain, in which complete Freund Adjuvant (CFA) is injected in back muscles. Sympathetic regulation was assessed with renal blood flow (RBF) changes induced by electrical stimulation of a hind paw, while ACC structure was examined by measuring cortical surface and volume. RBF changes and ACC volume were compared between control rats and rats injected with CFA in back muscles segmental (T10) to renal sympathetic innervation or not (T2). In rats with CFA, chronic inflammation was observed in the affected muscles in addition to increased nuclear factor-kappa B (NF-kB) protein expression in corresponding spinal cord segments (p=0.01) as well as decreased ACC volume (p<0.05). In addition, intensity-dependent decreases in RBF during hind paw stimulation were attenuated by chronic pain at T2 (p's<0.05) and T10 (p's<0.05), but less so at T10 compared with T2 (p's<0.05). These results indicate that chronic back pain alters sympathetic functions through non-segmental mechanisms, possibly by altering descending regulatory pathways from ACC. Yet, segmental somato-sympathetic reflexes may compete with non-segmental processes depending on the back region affected by pain and according to the segmental organization of the sympathetic nervous system. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Effects of intensive cognitive-behavioral therapy on cingulate neurochemistry in obsessive–compulsive disorder

    PubMed Central

    O'Neill, Joseph; Gorbis, Eda; Feusner, Jamie D.; Yip, Jenny C.; Chang, Susanna; Maidment, Karron M.; Levitt, Jennifer G.; Salamon, Noriko; Ringman, John M.; Saxena, Sanjaya

    2013-01-01

    The neurophysiological bases of cognitive-behavioral therapy (CBT) for obsessive–compulsive disorder (OCD) are incompletely understood. Previous studies, though sparse, implicate metabolic changes in pregenual anterior cingulate cortex (pACC) and anterior middle cingulate cortex (aMCC) as neural correlates of response to CBT. The goal of this pilot study was to determine the relationship between levels of the neurochemically interlinked metabolites glutamate + glutamine (Glx) and N-acetyl-aspartate + N-acetyl-aspartyl-glutamate (tNAA) in pACC and aMCC to pretreatment OCD diagnostic status and OCD response to CBT. Proton magnetic resonance spectroscopic imaging (1H MRSI) was acquired from pACC and aMCC in 10 OCD patients at baseline, 8 of whom had a repeat scan after 4 weeks of intensive CBT. pACC was also scanned (baseline only) in 8 age-matched healthy controls. OCD symptoms improved markedly in 8/8 patients after CBT. In right pACC, tNAA was significantly lower in OCD patients than controls at baseline and then increased significantly after CBT. Baseline tNAA also correlated with post-CBT change in OCD symptom severity. In left aMCC, Glx decreased significantly after intensive CBT. These findings add to evidence implicating the pACC and aMCC as loci of the metabolic effects of CBT in OCD, particularly effects on glutamatergic and N-acetyl compounds. Moreover, these metabolic responses occurred after just 4 weeks of intensive CBT, compared to 3 months for standard weekly CBT. Baseline levels of tNAA in the pACC may be associated with response to CBT for OCD. Lateralization of metabolite effects of CBT, previously observed in subcortical nuclei and white matter, may also occur in cingulate cortex. Tentative mechanisms for these effects are discussed. Comorbid depressive symptoms in OCD patients may have contributed to metabolite effects, although baseline and post-CBT change in depression ratings varied with choline-compounds and myo-inositol rather than Glx or t

  2. Anatomic Connections of the Subgenual Cingulate Region.

    PubMed

    Vergani, Francesco; Martino, Juan; Morris, Christopher; Attems, Johannes; Ashkan, Keyoumars; DellʼAcqua, Flavio

    2016-09-01

    The subgenual cingulate gyrus (SCG) has been proposed as a target for deep brain stimulation (DBS) in neuropsychiatric disorders, mainly major depression. Despite promising clinical results, the mechanism of action of DBS in this region is poorly understood. Knowledge of the connections of the SCG can elucidate the network involved by DBS in this area and can help refine the targeting for DBS electrode placement. To investigate the anatomic connections of the SCG region. An anatomic study of the connections of the SCG was performed on postmortem specimens and in vivo with MR diffusion imaging tractography. Postmortem dissections were performed according to the Klingler technique. Specimens were fixed in 10% formalin and frozen at -15°C for 2 weeks. After thawing, dissection was performed with blunt dissectors. Whole brain tractography was performed using spherical deconvolution tractography. Four main connections were found: (1) fibers of the cingulum, originating at the level of the SCG and terminating at the medial aspect of the temporal lobe (parahippocampal gyrus); (2) fibers running toward the base of the frontal lobe, connecting the SCG with frontopolar areas; (3) fibers running more laterally, converging onto the ventral striatum (nucleus accumbens); (4) fibers of the uncinate fasciculus, connecting the orbitofrontal with the anterior temporal region. The SCG shows a wide range of white matter connections with limbic, prefrontal, and mesiotemporal areas. These findings can help to explain the role of the SCG in DBS for psychiatric disorders. DBS, deep brain stimulationSCG, subgenual cingulate gyrus.

  3. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure

    PubMed Central

    Migliorini, Robyn; Moore, Eileen M.; Glass, Leila; Infante, M. Alejandra; Tapert, Susan F.; Jones, Kenneth Lyons; Mattson, Sarah N.; Riley, Edward P.

    2015-01-01

    Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n = 32) and non-exposed controls (CON, n = 21). Adolescents (12–17 years) underwent structural magnetic resonance imaging yielding measures of gray matter volume, surface area, and thickness across four ACC subregions. A subset of subjects were administered the NEPSY-II Inhibition subtest. MANCOVA was utilized to test for group differences in ACC and inhibition performance and multiple linear regression was used to probe ACC-inhibition relationships. ACC surface area was significantly smaller in AE, though this effect was primarily driven by reduced right caudal ACC (rcACC). AE also performed significantly worse on inhibition speed but not on inhibition accuracy. Regression analyses with the rcACC revealed a significant group × ACC interaction. A smaller rcACC surface area was associated with slower inhibition completion time for AE but was not significantly associated with inhibition in CON. After accounting for processing speed, smaller rcACC surface area was associated with worse (i.e., slower) inhibition regardless of group. Examining processing speed independently, a decrease in rcACC surface area was associated with faster processing speed for CON but not significantly associated with processing speed in AE. Results support the theory that caudal ACC may monitor reaction time in addition to inhibition and highlight the possibility of delayed ACC neurodevelopment in prenatal alcohol exposure. PMID:26025509

  4. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure.

    PubMed

    Migliorini, Robyn; Moore, Eileen M; Glass, Leila; Infante, M Alejandra; Tapert, Susan F; Jones, Kenneth Lyons; Mattson, Sarah N; Riley, Edward P

    2015-10-01

    Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n = 32) and non-exposed controls (CON, n = 21). Adolescents (12-17 years) underwent structural magnetic resonance imaging yielding measures of gray matter volume, surface area, and thickness across four ACC subregions. A subset of subjects were administered the NEPSY-II Inhibition subtest. MANCOVA was utilized to test for group differences in ACC and inhibition performance and multiple linear regression was used to probe ACC-inhibition relationships. ACC surface area was significantly smaller in AE, though this effect was primarily driven by reduced right caudal ACC (rcACC). AE also performed significantly worse on inhibition speed but not on inhibition accuracy. Regression analyses with the rcACC revealed a significant group × ACC interaction. A smaller rcACC surface area was associated with slower inhibition completion time for AE but was not significantly associated with inhibition in CON. After accounting for processing speed, smaller rcACC surface area was associated with worse (i.e., slower) inhibition regardless of group. Examining processing speed independently, a decrease in rcACC surface area was associated with faster processing speed for CON but not significantly associated with processing speed in AE. Results support the theory that caudal ACC may monitor reaction time in addition to inhibition and highlight the possibility of delayed ACC neurodevelopment in prenatal alcohol exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Paclitaxel Causes Electrophysiological Changes in the Anterior Cingulate Cortex via Modulation of the γ-Aminobutyric Acid-ergic System.

    PubMed

    Nashawi, Houda; Masocha, Willias; Edafiogho, Ivan O; Kombian, Samuel B

    The aim of this study was to elucidate any electrophysiological changes that may contribute to the development of neuropathic pain during treatment with the anticancer drug paclitaxel, particularly in the γ-aminobutyric acid (GABA) system. One hundred and eight Sprague-Dawley rats were used (untreated control: 43; vehicle-treated: 21, and paclitaxel-treated: 44). Paclitaxel (8 mg/kg) was administered intraperitoneally on 2 alternate days to induce mechanical allodynia. The rats were sacrificed 7 days after treatment to obtain slices of the anterior cingulate cortex (ACC), a brain region involved in the central processing of pain. Field excitatory postsynaptic potentials (fEPSPs) were recorded in layer II/III of ACC slices, and stimulus-response curves were constructed. The observed effects were pharmacologically characterized by bath application of GABA and appropriate drugs to the slices. The paclitaxel-treated rats developed mechanical allodynia (i.e. reduced withdrawal threshold to mechanical stimuli). Slices from paclitaxel-treated rats produced a significantly higher maximal response (Emax) than those from untreated rats (p < 0.001). Bath application of GABA (0.4 µM) reversed this effect and returned the excitability to a level similar to control. Pretreatment of the slices with the GABAB receptor blocker CGP 55845 (50 µM) increased Emax in slices from untreated rats (p < 0.01) but not from paclitaxel-treated rats. In this study, there was a GABA deficit in paclitaxel-treated rats compared to untreated ones. Such a deficit could contribute to the pathophysiology of paclitaxel-induced neuropathic pain (PINP). Thus, the GABAergic system might be a potential therapeutic target for managing PINP. © 2016 S. Karger AG, Basel.

  6. Neuronal density, size and shape in the human anterior cingulate cortex: a comparison of Nissl and NeuN staining.

    PubMed

    Gittins, Rebecca; Harrison, Paul J

    2004-03-15

    There are an increasing number of quantitative morphometric studies of the human cerebral cortex, especially as part of comparative investigations of major psychiatric disorders. In this context, the present study had two aims. First, to provide quantitative data regarding key neuronal morphometric parameters in the anterior cingulate cortex. Second, to compare the results of conventional Nissl staining with those observed after immunostaining with NeuN, an antibody becoming widely used as a selective neuronal marker. We stained adjacent sections of area 24b from 16 adult brains with cresyl violet or NeuN. We measured the density of pyramidal and non-pyramidal neurons, and the size and shape of pyramidal neurons, in laminae II, III, Va, Vb and VI, using two-dimensional counting methods. Strong correlations between the two modes of staining were seen for all variables. However, NeuN gave slightly higher estimates of neuronal density and size, and a more circular perikaryal shape. Brain pH was correlated with neuronal size, measured with both methods, and with neuronal shape. Age and post-mortem interval showed no correlations with any parameter. These data confirm the value of NeuN as a tool for quantitative neuronal morphometric studies in routinely processed human brain tissue. Absolute values are highly correlated between NeuN and cresyl violet stains, but cannot be interchanged. NeuN may be particularly useful when it is important to distinguish small neurons from glia, such as in cytoarchitectural studies of the cerebral cortex in depression and schizophrenia.

  7. Long-Term Temporal Imprecision of Information Coding in the Anterior Cingulate Cortex of Mice with Peripheral Inflammation or Nerve Injury

    PubMed Central

    Li, Xiang-Yao; Wang, Ning; Wang, Yong-Jie; Zuo, Zhen-Xing; Koga, Kohei; Luo, Fei

    2014-01-01

    Temporal properties of spike firing in the central nervous system (CNS) are critical for neuronal coding and the precision of information storage. Chronic pain has been reported to affect cognitive and emotional functions, in addition to trigger long-term plasticity in sensory synapses and behavioral sensitization. Less is known about the possible changes in temporal precision of cortical neurons in chronic pain conditions. In the present study, we investigated the temporal precision of action potential firing in the anterior cingulate cortex (ACC) by using both in vivo and in vitro electrophysiological approaches. We found that peripheral inflammation caused by complete Freund's adjuvant (CFA) increased the standard deviation (SD) of spikes latency (also called jitter) of ∼51% of recorded neurons in the ACC of adult rats in vivo. Similar increases in jitter were found in ACC neurons using in vitro brain slices from adult mice with peripheral inflammation or nerve injury. Bath application of glutamate receptor antagonists CNQX and AP5 abolished the enhancement of jitter induced by CFA injection or nerve injury, suggesting that the increased jitter depends on the glutamatergic synaptic transmission. Activation of adenylyl cyclases (ACs) by bath application of forskolin increased jitter, whereas genetic deletion of AC1 abolished the change of jitter caused by CFA inflammation. Our study provides strong evidence for long-term changes of temporal precision of information coding in cortical neurons after peripheral injuries and explains neuronal mechanism for chronic pain caused cognitive and emotional impairment. PMID:25100600

  8. Subthalamic nucleus involvement in executive functions with increased cognitive load: a subthalamic nucleus and anterior cingulate cortex depth recording study.

    PubMed

    Aulická, Stefania Rusnáková; Jurák, Pavel; Chládek, Jan; Daniel, Pavel; Halámek, Josef; Baláž, Marek; Bočková, Martina; Chrastina, Jan; Rektor, Ivan

    2014-10-01

    We studied the appearance of broadband oscillatory changes (ranging 2-45 Hz) induced by a cognitive task with two levels of complexity. The event-related de/synchronizations (ERD/S) in the subthalamic nucleus (STN) and in the anterior cingulate cortex (ACC) were evaluated in an executive function test. Four epilepsy surgery candidates with intracerebral electrodes implanted in the ACC and three Parkinson's disease patients with externalized deep brain stimulation electrodes implanted in the STN participated in the study. A Flanker test (FT) with visual stimuli (arrows) was performed. Subjects reacted to four types of stimuli presented on the monitor by pushing the right or left button: congruent arrows to the right or left side (simple task) and incongruent arrows to the right or left side (more difficult complex task). We explored the activation of STN and the activation of the ACC while processing the FT. Both conditions, i.e. congruent and incongruent, induced oscillatory changes in the ACC and also STN with significantly higher activation during incongruent trial. At variance with the ACC, in the STN not only the ERD beta but also the ERD alpha activity was significantly more activated by the incongruent condition. In line with our earlier studies, the STN appears to be involved in activities linked with increased cognitive load. The specificity and complexity of task-related activation of the STN might indicate the involvement of the STN in processes controlling human behaviour, e.g. in the selection and inhibition of competing alternatives.

  9. Brain network dysfunction in youth with obsessive-compulsive disorder induced by simple uni-manual behavior: The role of the dorsal anterior cingulate cortex

    PubMed Central

    Friedman, Amy L.; Burgess, Ashley; Ramaseshan, Karthik; Easter, Phil; Khatib, Dalal; Chowdury, Asadur; Arnold, Paul D.; Hanna, Gregory L.; Rosenberg, David R.; Diwadkar, Vaibhav A.

    2017-01-01

    In an effort to elucidate differences in functioning brain networks between youth with obsessive-compulsive disorder and controls, we used fMRI signals to analyze brain network interactions of the dorsal anterior cingulate cortex (dACC) during visually coordinated motor responses. Subjects made a uni-manual response to briefly presented probes, at periodic (allowing participants to maintain a “motor set”) or random intervals (demanding reactive responses). Network interactions were assessed using psycho-physiological interaction (PPI), a basic model of functional connectivity evaluating modulatory effects of the dACC in the context of each task condition. Across conditions, OCD were characterized by hyper-modulation by the dACC, with loci alternatively observed as both condition-general and condition-specific. Thus, dynamically driven task demands during simple uni-manual motor control induce compensatory network interactions in cortical-thalamic regions in OCD. These findings support previous research in OCD showing compensatory network interactions during complex memory tasks, but establish that these network effects are observed during basic sensorimotor processing. Thus, these patterns of network dysfunction may in fact be independent of the complexity of tasks used to induce brain network activity. Hypothesis-driven approaches coupled with sophisticated network analyses are a highly valuable approach in using fMRI to uncover mechanisms in disorders like OCD. PMID:27992792

  10. Women's Preference for a Male Acquaintance Enhances Social Reward Processing of Material Goods in the Anterior Cingulate Cortex.

    PubMed

    Nakagawa, Jun; Takahashi, Muneyoshi; Okada, Rieko; Matsushima, Eisuke; Matsuda, Tetsuya

    2015-01-01

    Men, like the male of many animal species, use gifts to build satisfactory relationships with a desired woman. From the woman's perspective, all gifts are not always equally rewarding; the reward value of a gift depends on two factors: (1) the giver and (2) the type of the gift (the gift's social meaning). In this study, we investigated how these two factors interactively determine the reward value of a gift. Specifically, we examined how the neural processing for understanding a gift's social meaning is modulated by preferences for the giver. We performed a functional magnetic resonance imaging (fMRI) study in which a female participant was asked to judge a gift from a male she was acquainted with in real life. We examined the interactive effects between (1) the female participant's attitude toward the male acquaintance (liked vs. uninteresting) and (2) the type of the gift (romantic [e.g., bouquet, earrings, and perfumes] vs. non-romantic [e.g., pencils, memo pad, and moneybox]). We found that preference for an acquaintance selectively modulated activity in the anterior cingulate cortex (ACC) in response to romantic gifts, compared to non-romantic gifts. In contrast, if the woman was indifferent toward an acquaintance, no activity modulation was observed in this area for the same gifts. In addition, the ACC showed functional connectivity with the supplementary motor area/dorsal ACC (SMA/dACC), an area within the dorsal mediofrontal cortex, suggesting that it integrates action monitoring and emotional and cognitive processing in decision-making. These results suggest that attitude toward an opposite sex member has a modulatory role in recognizing the social meaning of material goods--preference for the member is a powerful modulator of social reward processing.

  11. Conflict-related anterior cingulate functional connectivity is associated with past suicidal ideation and behavior in recent-onset schizophrenia.

    PubMed

    Minzenberg, Michael J; Lesh, Tyler; Niendam, Tara; Yoon, Jong H; Cheng, Yaoan; Rhoades, Remy; Carter, Cameron S

    2015-06-01

    Suicide is highly prevalent in schizophrenia (SZ), yet it remains unclear how suicide risk factors such as past suicidal ideation or behavior relate to brain function. Circuits modulated by the prefrontal cortex (PFC) are altered in SZ, including in dorsal anterior cingulate cortex (dACC) during conflict-monitoring (an important component of cognitive control), and dACC changes are observed in post-mortem studies of heterogeneous suicide victims. We tested whether conflict-related dACC functional connectivity is associated with past suicidal ideation and behavior in SZ. 32 patients with recent-onset of DSM-IV-TR-defined SZ were evaluated with the Columbia Suicide Severity Rating Scale and functional MRI during cognitive control (AX-CPT) task performance. Group-level regression models relating past history of suicidal ideation or behavior to dACC-seeded functional connectivity during conflict-monitoring controlled for severity of depression, psychosis and impulsivity. Past suicidal ideation was associated with relatively higher functional connectivity of the dACC with the precuneus during conflict-monitoring. Intensity of worst-point past suicidal ideation was associated with relatively higher dACC functional connectivity in medial parietal lobe and striato-thalamic nuclei. In contrast, among those with past suicidal ideation (n = 17), past suicidal behavior was associated with lower conflict-related dACC connectivity with multiple lateral and medial PFC regions, parietal and temporal cortical regions. This study provides unique evidence that recent-onset schizophrenia patients with past suicidal ideation or behavior show altered dACC-based circuit function during conflict-monitoring. Suicidal ideation and suicidal behavior have divergent patterns of associated dACC functional connectivity, suggesting a differing pattern of conflict-related brain dysfunction with these two distinct features of suicide phenomenology. Published by Elsevier Ltd.

  12. Anterior cingulate cortex choline levels in female adolescents with unipolar versus bipolar depression: A potential new tool for diagnosis

    PubMed Central

    Shi, Xian-Feng; Forrest, Lauren N.; Kuykendall, M. Danielle; Prescot, Andrew P.; Sung, Young-Hoon; Huber, Rebekah S.; Hellem, Tracy L.; Jeong, Eun-Kee; Renshaw, Perry F.; Kondo, Douglas G.

    2015-01-01

    Background Delayed diagnosis in bipolar disorder (BD) due to misdiagnosis as major depressive disorder (MDD) is a significant public health concern. Thus, identification of relevant diagnostic biomarkers is a critical unmet need, particularly early in the course of illness. The anterior cingulate cortex (ACC) is thought to play an important role in mood disorder pathophysiology. Case-control studies utilizing proton-1 magnetic resonance spectroscopy (1H-MRS) have found increased total choline levels in several brain regions in MDD. However, there are no published 1H-MRS reports directly comparing adolescents with MDD and BD. We hypothesized that ACC choline levels would be increased in adolescents with unipolar versus bipolar depression. Methods We studied depressed adolescents with MDD (n=28; mean age 17.0±2.1 years) and BD (n=9; 17.3±3.1 years). A Siemens Verio 3-Tesla clinical MRI system was used to acquire scans, using a single-voxel PRESS sequence. The voxel (18.75 cm3) was positioned on the ACC in the midsagittal plane. To remove potential gender effects, only female adolescent participants were included. Data were analyzed using the ANOVA and post-hoc Tukey tests. Results A significantly increased ACC choline/creatine ratio was observed in participants with MDD (mean=0.253±0.021) compared to BD (mean=0.219±0.020) (p=0.0002). There were no significant differences in the other 1H-MRS metabolites. Limitations Cross sectional design, single gender sample, limited sample size. Conclusions The present findings suggest that ACC total choline may have the potential to serve as a diagnostic biomarker in adolescent mood disorders. PMID:25082110

  13. Electrical activity of the cingulate cortex. II. Cholinergic modulation.

    PubMed

    Borst, J G; Leung, L W; MacFabe, D F

    1987-03-24

    The role of the cholinergic innervation in the modulation of cingulate electrical activity was studied by means of pharmacological manipulations and brain lesions. In the normal rat, an irregular slow activity (ISA) accompanied with EEG-spikes was recorded in the cingulate cortex during immobility as compared to walking. Atropine sulfate, but not atropine methyl nitrate, increased ISA and the frequency of cingulate EEG-spikes. Pilocarpine suppressed ISA and EEG-spikes during immobility, and induced a slow (4-7 Hz) theta rhythm. Unilateral or bilateral lesions of the substantia innominata and ventral globus pallidus area using kainic acid did not significantly change the cingulate EEG or its relation to behavior. Large electrolytic lesions of the medial septal nuclei and vertical limbs of the diagonal band generally decreased or abolished all theta activity in the cingulate cortex and the hippocampus. However, in 5 rats the cingulate theta rhythm increased while the hippocampal theta disappeared after a medial septal lesion. The large, postlesion cingulate theta, accompanied by sharp EEG-spikes during its negative phase, is an unequivocal demonstration of the existence of a theta rhythm in the cingulate cortex, independent of the hippocampal rhythm. Cholinergic afferents from the medial septum and diagonal band nuclei are inferred to be responsible for the behavioral suppression of cingulate EEG-spikes and ISA, and partially for the generation of a local cingulate theta rhythm. However, an atropine-resistant pathway and a theta-suppressing pathway, possibly coming from the medial septum or the hippocampus, may also be important in cingulate theta generation.

  14. Electrophysiological indices of anterior cingulate cortex function reveal changing levels of cognitive effort and reward valuation that sustain task performance.

    PubMed

    Umemoto, Akina; Inzlicht, Michael; Holroyd, Clay B

    2018-06-21

    Successful execution of goal-directed behaviors often requires the deployment of cognitive control, which is thought to require cognitive effort. Recent theories have proposed that anterior cingulate cortex (ACC) regulates control levels by weighing the reward-related benefits of control against its effort-related costs. However, given that the sensations of cognitive effort and reward valuation are available only to introspection, this hypothesis is difficult to investigate empirically. We have proposed that two electrophysiological indices of ACC function, frontal midline theta and the reward positivity (RewP), provide objective measures of these functions. To explore this issue, we recorded the electroencephalogram (EEG) from participants engaged in an extended, cognitively-demanding task. Participants performed a time estimation task for 2 h in which they received reward and error feedback according to their task performance. We observed that the amplitude of the RewP, a feedback-locked component of the event related brain potential associated with reward processing, decreased with time-on-task. Conversely, frontal midline theta power, which consists of 4-8 Hz EEG oscillations associated with cognitive effort, increased with time-on-task. We also explored how these phenomena changed over time by conducting within-participant multi-level modeling analyses. Our results suggest that extended execution of a cognitively-demanding task is characterized by an early phase in which high control levels foster rapid improvements in task performance, and a later phase in which high control levels were necessary to maintain stable task performance, perhaps counteracting waning reward valuation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Alterations of resting state networks and structural connectivity in relation to the prefrontal and anterior cingulate cortices in late prematurity.

    PubMed

    Degnan, Andrew J; Wisnowski, Jessica L; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M; Corby, Patricia; Schmithorst, Vincent J; Panigrahy, Ashok

    2015-01-07

    Late preterm birth is increasingly recognized as a risk factor for cognitive and social deficits. The prefrontal cortex is particularly vulnerable to injury in late prematurity because of its protracted development and extensive cortical connections. Our study examined children born late preterm without access to advanced postnatal care to assess structural and functional connectivity related to the prefrontal cortex. Thirty-eight preadolescents [19 born late preterm (34-36 /7 weeks gestational age) and 19 at term] were recruited from a developing community in Brazil. Participants underwent neuropsychological testing. Individuals underwent three-dimensional T1-weighted, diffusion-weighted, and resting state functional MRI. Probabilistic tractography and functional connectivity analyses were carried out using unilateral seeds combining the medial prefrontal cortex and the anterior cingulate cortex. Late preterm children showed increased functional connectivity within regions of the default mode, salience, and central-executive networks from both right and left frontal cortex seeds. Decreased functional connectivity was observed within the right parahippocampal region from left frontal seeding. Probabilistic tractography showed a pattern of decreased streamlines in frontal white matter pathways and the corpus callosum, but also increased streamlines in the left orbitofrontal white matter and the right frontal white matter when seeded from the right. Late preterm children and term control children scored similarly on neuropsychological testing. Prefrontal cortical connectivity is altered in late prematurity, with hyperconnectivity observed in key resting state networks in the absence of neuropsychological deficits. Abnormal structural connectivity indicated by probabilistic tractography suggests subtle changes in white matter development, implying disruption of normal maturation during the late gestational period.

  16. Right anterior cingulate cortical thickness and bilateral striatal volume correlate with child behavior checklist aggressive behavior scores in healthy children.

    PubMed

    Ducharme, Simon; Hudziak, James J; Botteron, Kelly N; Ganjavi, Hooman; Lepage, Claude; Collins, D Louis; Albaugh, Matthew D; Evans, Alan C; Karama, Sherif

    2011-08-01

    The anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and basal ganglia have been implicated in pathological aggression. This study aimed at identifying neuroanatomical correlates of impulsive aggression in healthy children. Data from 193 representative 6- to 18-year-old healthy children were obtained from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development after a blinded quality control. Cortical thickness and subcortical volumes were obtained with automated software. Aggression levels were measured with the Aggressive Behavior scale (AGG) of the Child Behavior Checklist. AGG scores were regressed against cortical thickness and basal ganglia volumes using first- and second-order linear models while controlling for age, gender, scanner site, and total brain volume. Gender by AGG interactions were analyzed. There were positive associations between bilateral striatal volumes and AGG scores (right: r = .238, p = .001; left: r = .188, p = .01). A significant association was found with right ACC and subgenual ACC cortical thickness in a second-order linear model (p < .05, corrected). High AGG scores were associated with a relatively thin right ACC cortex. An AGG by gender interaction trend was found in bilateral OFC and ACC associations with AGG scores. This study shows the existence of relationships between impulsive aggression in healthy children and the structure of the striatum and right ACC. It also suggests the existence of gender-specific patterns of association in OFC/ACC gray matter. These results may guide research on oppositional-defiant and conduct disorders. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Effect of Dopamine Transporter Gene (SLC6A3) Variation on Dorsal Anterior Cingulate Function in Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Brown, Ariel B.; Biederman, Joseph; Valera, Eve M.; Doyle, Alysa E.; Bush, George; Spencer, Thomas; Monuteaux, Michael C.; Mick, Eric; Whitfield-Gabrieli, Susan; Makris, Nikos; LaViolette, Peter S.; Oscar-Berman, Marlene; Faraone, Stephen V.; Seidman, Larry J.

    2010-01-01

    Objective - Although Attention-Deficit/Hyperactivity Disorder (ADHD) is associated both with brain alterations in attention and executive function (EF) circuitry and with genetic variations within the dopamine system (including the dopamine transporter gene [SLC6A3]), few studies have directly investigated how genetic variations are linked to brain alterations. We sought to examine how a polymorphism in the 3’ untranslated region (UTR) of SLC6A3, associated with ADHD in meta-analysis, might contribute to variation in dorsal anterior cingulate cortex (dACC) function in subjects with ADHD. Method - We collected fMRI scans of 42 individuals with ADHD, all of European descent and over the age of 17, while they performed the Multi-Source Interference Task (MSIT), a cognitive task shown to activate dACC. SLC6A3 3’ UTR variable number tandem repeat (VNTR) polymorphisms were genotyped and brain activity was compared for groups based on allele status. Results - ADHD individuals homozygous for the 10R allele showed significant hypoactivation in the left dACC compared to 9R-carriers. Exploratory analysis also showed trends toward hypoactivation in the 10R homozygotes in left cerebellar vermis and right lateral prefrontal cortex. Further breakdown of genotype groups showed similar activation in individuals heterozygous and homozygous for the 9R allele. Conclusions - Alterations in activation of attention and EF networks found previously to be involved in ADHD are likely influenced by SLC6A3 genotype. This genotype may contribute to heterogeneity of brain alterations found within ADHD samples. PMID:19676101

  18. Task-Related Deactivation and Functional Connectivity of the Subgenual Cingulate Cortex in Major Depressive Disorder

    PubMed Central

    Davey, Christopher G.; Yücel, Murat; Allen, Nicholas B.; Harrison, Ben J.

    2012-01-01

    Background: Major depressive disorder is associated with functional alterations in activity and resting-state connectivity of the extended medial frontal network. In this study we aimed to examine how task-related medial network activity and connectivity were affected in depression. Methods: 18 patients with major depressive disorder, aged 15- to 24-years-old, were matched with 19 healthy control participants. We characterized task-related activations and deactivations while participants engaged with an executive-control task (the multi-source interference task, MSIT). We used a psycho-physiological interactions approach to examine functional connectivity changes with subgenual anterior cingulate cortex. Voxel-wise statistical maps for each analysis were compared between the patient and control groups. Results: There were no differences between groups in their behavioral performances on the MSIT task, and nor in patterns of activation and deactivation. Assessment of functional connectivity with the subgenual cingulate showed that depressed patients did not demonstrate the same reduction in functional connectivity with the ventral striatum during task performance, but that they showed greater reduction in functional connectivity with adjacent ventromedial frontal cortex. The magnitude of this latter connectivity change predicted the relative activation of task-relevant executive-control regions in depressed patients. Conclusion: The study reinforces the importance of the subgenual cingulate cortex for depression, and demonstrates how dysfunctional connectivity with ventral brain regions might influence executive–attentional processes. PMID:22403553

  19. Activation of anterior paralimbic structures during guilt-related script-driven imagery.

    PubMed

    Shin, L M; Dougherty, D D; Orr, S P; Pitman, R K; Lasko, M; Macklin, M L; Alpert, N M; Fischman, A J; Rauch, S L

    2000-07-01

    Several recent neuroimaging studies have examined the neuroanatomical correlates of normal emotional states, such as happiness, sadness, fear, anger, anxiety, and disgust; however, no previous study has examined the emotional state of guilt. In the current study, we used positron emission tomography and the script-driven imagery paradigm to study regional cerebral blood flow (rCBF) during the transient emotional experience of guilt in eight healthy male participants. In the Guilt condition, participants recalled and imagined participating in a personal event involving the most guilt they had ever experienced. In the Neutral condition, participants recalled and imagined participating in an emotionally neutral personal event. In the Guilt versus Neutral comparison, rCBF increases occurred in anterior paralimbic regions of the brain: bilateral anterior temporal poles, anterior cingulate gyrus, and left anterior insular cortex/inferior frontal gyrus. These results, along with those of previous studies, are consistent with the notion that anterior paralimbic regions of the brain mediate negative emotional states in healthy individuals.

  20. Incidence and Predictors for Ipsilateral Hydronephrosis Following Ureteroscopic Lithotripsy.

    PubMed

    Barbour, Meredith L; Raman, Jay D

    2015-09-01

    To review our experience in using ureteroscopy (URS) with lithotripsy for renal or ureteral calculi to determine the incidence and predictors of postprocedural ipsilateral hydronephrosis. Records of 324 URS cases for renal or ureteral calculi with imaging performed 4-12 weeks postprocedure were reviewed. Ipsilateral hydronephrosis was determined by computed tomography scan or renal ultrasound. Univariate and multivariate analyses determined the factors associated with hydronephrosis. 176 men and 148 women with a median age of 50 years were included. Median stone size was 6 mm and operative duration was 60 minutes; 30% of patients had multiple calculi; and 35% had undergone a prior ipsilateral URS. Overall, 49 of 324 patients (15%) had evidence of hydronephrosis, with 65% of these patients having symptoms and 40% requiring ancillary procedures. On multivariate analysis, increasing stone diameter (odds ratio [OR] 8.9, 95% confidence interval [CI] 1.9-23.8, P = .03), prior ipsilateral URS (OR 7.7, 95% CI 1.8-28.2, P = .006), longer operative duration (OR 6.5, 95% CI 1.8-16.3, P = .02), and renal colic symptoms (OR 48.3, 95% CI 14.7-71.4, P <.001) independently predicted hydronephrosis. Conversely, other factors including stone impaction at procedure, ureteral dilation, use of an access sheath, intraoperative perforation, or use of a stent did not associate with ipsilateral hydronephrosis. In this contemporary cohort study, 15% of patients undergoing URS had evidence of ipsilateral hydronephrosis. Larger stone size, longer OR duration, prior ipsilateral URS, and recurrent colic were associated with an increased likelihood for this observation. Patients and stone cases with such characteristics likely warrant imaging modalities beyond plain radiography. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Ultra-fast ipsilateral DPOAE adaptation not modulated by attention?

    NASA Astrophysics Data System (ADS)

    Dalhoff, Ernst; Zelle, Dennis; Gummer, Anthony W.

    2018-05-01

    Efferent stimulation of outer hair cells is supposed to attenuate cochlear amplification of sound waves and is accompanied by reduced DPOAE amplitudes. Recently, a method using two subsequent f2 pulses during presentation of a longer f1 pulse was introduced to measure fast ipsilateral adaptation effects on separated DPOAE components. Compensating primary-tone onsets for their latencies at the f2-tonotopic place, the average adaptation measured in four normal-hearing subjects was 5.0 dB with a time constant below 5 ms. In the present study, two experiments were performed to determine the origin of this ultra-fast ipsilateral adaptation effect. The first experiment measured ultra-fast ipsilateral adaptation using a two-pulse paradigm at three frequencies in the four subjects, while controlling for visual attention of the subjects. The other experiment also controlled for visual attention, but utilized a sequence of f2 short pulses in the presence of a continuous f1 tone to sample ipsilateral adaptation effects with longer time constants in eight subjects. In the first experiment, no significant change in the ultra-fast adaptation between non-directed attention and visual attention could be detected. In contrast, the second experiment revealed significant changes in the magnitude of the slower ipsilateral adaptation in the visual-attention condition. In conclusion, the lack of an attentional influence indicates that the ultra-fast ipsilateral DPOAE adaptation is not solely mediated by the medial olivocochlear reflex.

  2. Motivation but not valence modulates neuroticism-dependent cingulate cortex and insula activity.

    PubMed

    Deng, Yaling; Li, Shijia; Zhou, Renlai; Walter, Martin

    2018-04-01

    Neuroticism has been found to specifically modulate amygdala activations during differential processing of valence and motivation while other brain networks yet are unexplored for associated effects. The main purpose of this study was to investigate whether neural mechanisms processing valence or motivation are prone to neuroticism in the salience network (SN), a network that is anchored in the anterior cingulate cortex (ACC) and the anterior insula. This study used functional magnetic resonance imaging (fMRI) and an approach/avoid emotional pictures task to investigate brain activations modulated by pictures' valence or motivational status between high and low neurotic individuals. We found that neuroticism-dependent SN and the parahippocampal-fusiform area activations were modulated by motivation but not valence. Valence in contrast interacted with neuroticism in the lateral orbitofrontal cortex. We suggested that neuroticism modulated valence and motivation processing, however, under the influence of the two distinct networks. Neuroticism modulated the motivation through the SN while it modulated the valence through the orbitofrontal networks. © 2018 Wiley Periodicals, Inc.

  3. Processing of emotional stimuli is reflected by modulations of beta band activity in the subgenual anterior cingulate cortex in patients with treatment resistant depression

    PubMed Central

    Huebl, Julius; Brücke, Christof; Merkl, Angela; Bajbouj, Malek; Schneider, Gerd-Helge

    2016-01-01

    Deep brain stimulation (DBS) of the subgenual anterior cingulate cortex (sgACC) has emerged as a new therapeutic option in patients with treatment resistant depression (TRD). At the same time, DBS offers a unique opportunity as an innovative research tool to study brain function in vivo. Indirect measures of brain function such as positron-emission-tomography imaging findings have revealed a hypermetabolism in the sgACC area in patients with TRD that normalizes in parallel with treatment response to DBS. We used direct intracranial recordings via implanted DBS electrodes to study the neuronal oscillatory activity in the sgACC area during a picture viewing task including emotional and neutral stimuli in eight patients with TRD who underwent DBS. We found a stimulus-induced decrease in beta-band and increase in gamma-band activity, with a main effect of valence for event-related desynchronisation in the beta-frequency range (14–30 Hz). Unpleasant stimuli induced the strongest and most sustained beta-power decrease. The degree of beta-band modulation upon emotional stimuli correlated with the patients’ rating of stimulus valence. Our findings confirm the involvement of the sgACC area in emotional processing that was more enhanced for unpleasant stimuli. Moreover, stimulus evaluation may be encoded by modulations of beta-band activity. PMID:27013105

  4. Neural dissociations in attitude strength: Distinct regions of cingulate cortex track ambivalence and certainty.

    PubMed

    Luttrell, Andrew; Stillman, Paul E; Hasinski, Adam E; Cunningham, William A

    2016-04-01

    People's behaviors are often guided by valenced responses to objects in the environment. Beyond positive and negative evaluations, attitudes research has documented the importance of attitude strength--qualities of an attitude that enhance or attenuate its impact and durability. Although neuroscience research has extensively investigated valence, little work exists on other related variables like metacognitive judgments about one's attitudes. It remains unclear, then, whether the various indicators of attitude strength represent a single underlying neural process or whether they reflect independent processes. To examine this, we used functional MRI (fMRI) to identify the neural correlates of attitude strength. Specifically, we focus on ambivalence and certainty, which represent metacognitive judgments that people can make about their evaluations. Although often correlated, prior neuroscience research suggests that these 2 attributes may have distinct neural underpinnings. We investigate this by having participants make evaluative judgments of visually presented words while undergoing fMRI. After scanning, participants rated the degree of ambivalence and certainty they felt regarding their attitudes toward each word. We found that these 2 judgments corresponded to distinct brain regions' activity during the process of evaluation. Ambivalence corresponded to activation in anterior cingulate cortex, dorsomedial prefrontal cortex, and posterior cingulate cortex. Certainty, however, corresponded to activation in unique areas of the precuneus/posterior cingulate cortex. These results support a model treating ambivalence and certainty as distinct, though related, attitude strength variables, and we discuss implications for both attitudes and neuroscience research. (c) 2016 APA, all rights reserved).

  5. Motor demand-dependent activation of ipsilateral motor cortex.

    PubMed

    Buetefisch, Cathrin M; Revill, Kate Pirog; Shuster, Linda; Hines, Benjamin; Parsons, Michael

    2014-08-15

    The role of ipsilateral primary motor cortex (M1) in hand motor control during complex task performance remains controversial. Bilateral M1 activation is inconsistently observed in functional (f)MRI studies of unilateral hand performance. Two factors limit the interpretation of these data. As the motor tasks differ qualitatively in these studies, it is conceivable that M1 contributions differ with the demand on skillfulness. Second, most studies lack the verification of a strictly unilateral execution of the motor task during the acquisition of imaging data. Here, we use fMRI to determine whether ipsilateral M1 activity depends on the demand for precision in a pointing task where precision varied quantitatively while movement trajectories remained equal. Thirteen healthy participants used an MRI-compatible joystick to point to targets of four different sizes in a block design. A clustered acquisition technique allowed simultaneous fMRI/EMG data collection and confirmed that movements were strictly unilateral. Accuracy of performance increased with target size. Overall, the pointing task revealed activation in contralateral and ipsilateral M1, extending into contralateral somatosensory and parietal areas. Target size-dependent activation differences were found in ipsilateral M1 extending into the temporal/parietal junction, where activation increased with increasing demand on accuracy. The results suggest that ipsilateral M1 is active during the execution of a unilateral motor task and that its activity is modulated by the demand on precision. Copyright © 2014 the American Physiological Society.

  6. Assessment of Anterior Cingulate Cortex (ACC) and Left Cerebellar Metabolism in Asperger's Syndrome with Proton Magnetic Resonance Spectroscopy (MRS).

    PubMed

    Goji, Aya; Ito, Hiromichi; Mori, Kenji; Harada, Masafumi; Hisaoka, Sonoka; Toda, Yoshihiro; Mori, Tatsuo; Abe, Yoko; Miyazaki, Masahito; Kagami, Shoji

    2017-01-01

    Proton magnetic resonance spectroscopy (1H MRS) is a noninvasive neuroimaging method to quantify biochemical metabolites in vivo and it can serve as a powerful tool to monitor neurobiochemical profiles in the brain. Asperger's syndrome (AS) is a type of autism spectrum disorder, which is characterized by impaired social skills and restrictive, repetitive patterns of interest and activities, while intellectual levels and language skills are relatively preserved. Despite clinical aspects have been well-characterized, neurometabolic profiling in the brain of AS remains to be clear. The present study used proton magnetic resonance spectroscopy (1H MRS) to investigate whether pediatric AS is associated with measurable neurometabolic abnormalities that can contribute new information on the neurobiological underpinnings of the disorder. Study participants consisted of 34 children with AS (2-12 years old; mean age 5.2 (±2.0); 28 boys) and 19 typically developed children (2-11 years old; mean age 5.6 (±2.6); 12 boys) who served as the normal control group. The 1H MRS data were obtained from two regions of interest: the anterior cingulate cortex (ACC) and left cerebellum. In the ACC, levels of N-acetylaspartate (NAA), total creatine (tCr), total choline-containing compounds (tCho) and myo-Inositol (mI) were significantly decreased in children with AS compared to controls. On the other hand, no significant group differences in any of the metabolites were found in the left cerebellum. Neither age nor sex accounted for the metabolic findings in the regions. The finding of decreased levels of NAA, tCr, tCho, and mI in the ACC but not in left cerebellar voxels in the AS, suggests a lower ACC neuronal density in the present AS cohort compared to controls.

  7. Women’s Preference for a Male Acquaintance Enhances Social Reward Processing of Material Goods in the Anterior Cingulate Cortex

    PubMed Central

    Nakagawa, Jun; Takahashi, Muneyoshi; Okada, Rieko; Matsushima, Eisuke; Matsuda, Tetsuya

    2015-01-01

    Men, like the male of many animal species, use gifts to build satisfactory relationships with a desired woman. From the woman’s perspective, all gifts are not always equally rewarding; the reward value of a gift depends on two factors: (1) the giver and (2) the type of the gift (the gift’s social meaning). In this study, we investigated how these two factors interactively determine the reward value of a gift. Specifically, we examined how the neural processing for understanding a gift’s social meaning is modulated by preferences for the giver. We performed a functional magnetic resonance imaging (fMRI) study in which a female participant was asked to judge a gift from a male she was acquainted with in real life. We examined the interactive effects between (1) the female participant’s attitude toward the male acquaintance (liked vs. uninteresting) and (2) the type of the gift (romantic [e.g., bouquet, earrings, and perfumes] vs. non-romantic [e.g., pencils, memo pad, and moneybox]). We found that preference for an acquaintance selectively modulated activity in the anterior cingulate cortex (ACC) in response to romantic gifts, compared to non-romantic gifts. In contrast, if the woman was indifferent toward an acquaintance, no activity modulation was observed in this area for the same gifts. In addition, the ACC showed functional connectivity with the supplementary motor area/dorsal ACC (SMA/dACC), an area within the dorsal mediofrontal cortex, suggesting that it integrates action monitoring and emotional and cognitive processing in decision-making. These results suggest that attitude toward an opposite sex member has a modulatory role in recognizing the social meaning of material goods—preference for the member is a powerful modulator of social reward processing. PMID:26301954

  8. Adenosine A2A receptor deletion affects social behaviors and anxiety in mice: Involvement of anterior cingulate cortex and amygdala.

    PubMed

    López-Cruz, Laura; Carbó-Gas, Maria; Pardo, Marta; Bayarri, Pilar; Valverde, Olga; Ledent, Catherine; Salamone, John D; Correa, Mercè

    2017-03-15

    Blockade of adenosine A 2A receptors can potentiate motivation to work for natural reinforcers such as food. Conspecific interaction is a potent natural reinforcer in social animals that can be manifested as preference for social exploration versus other sources of novel stimulation. Deficiencies in this type of motivated behavior (social withdrawal) have been seen in several pathologies such as autism and depression. However, the role of A 2A receptors in motivation for social interaction has not been widely explored. Social interaction paradigms evaluate the natural preference of animals for exploring other conspecifics, and the ability to differentiate between familiar versus novel ones. Anxiety is one of the factors that can induce avoidance of social interaction. In the present study, adenosine A 2A knockout (A 2A KO) and wild-type (WT) mice were assessed for social and anxiety-related behaviors. c-Fos immunoreactivity was evaluated as a measure of neuronal activation in brain areas involved in different aspects of motivation and emotional processes. Although A 2A KO mice showed an anxious profile, they displayed higher levels of sociability and were less sensitive to social novelty. WT mice displayed a typical pattern of social recognition 24h later, but not A 2A KO mice, which explored equally both conspecifics. There were no differences between strains in aggressiveness, perseverance or social odor preferences. c-Fos immunoreactivity in A 2A KO mice was higher in anterior cingulate and amygdala compared to WT mice. Thus, A 2A receptors appear to be potential targets for the improvement of pathologies related to social function. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The roles of the anterior cingulate cortex and its dopamine receptors in self-paced cost-benefit decision making in rats.

    PubMed

    Wang, Shuai; Hu, Shan-Hu; Shi, Yi; Li, Bao-Ming

    2017-03-01

    It has been shown that the anterior cingulate cortex (ACC) and its dopamine system are crucial for decision making that requires physical/emotional effort, but not for all forms of cost-benefit decision making. Previous studies had mostly employed behavioral tasks with two competing cost-reward options that were preset by the experimenters. However, few studies have been conducted using scenarios in which the subjects have full control over the energy/time expenditure required to obtain a proportional reward. Here, we assessed the roles of the ACC and its dopamine system in cost-benefit decision making by utilizing a "do more get more" (DMGM) task and a time-reward trade-off (TRTO) task, wherein the animals were able to self-determine how much effort or time to expend at a nosepoke operandum for a proportional reward. Our results showed that (1) ACC inactivation severely impaired DMGM task performance, with a reduction in the rate of correct responses and a decrease in the effort expended, but did not affect the TRTO task; and (2) blocking ACC D2 receptors had no impact on DMGM task performance in the baseline cost-benefit scenario, but it significantly reduced the attempts to invest increased effort for a large reward when the benefit-cost ratio was reduced by half. In contrast, blocking ACC D1 receptors had no effect on DMGM task performance. These findings suggest that the ACC is required for self-paced effort-based but not for time-reward trade-off decision making. Furthermore, ACC dopamine D2 but not D1 receptors are involved in DMGM decision making.

  10. fMRI Neurofeedback Training for Increasing Anterior Cingulate Cortex Activation in Adult Attention Deficit Hyperactivity Disorder. An Exploratory Randomized, Single-Blinded Study.

    PubMed

    Zilverstand, Anna; Sorger, Bettina; Slaats-Willemse, Dorine; Kan, Cornelis C; Goebel, Rainer; Buitelaar, Jan K

    2017-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is characterized by poor cognitive control/attention and hypofunctioning of the dorsal anterior cingulate cortex (dACC). In the current study, we investigated for the first time whether real-time fMRI neurofeedback (rt-fMRI) training targeted at increasing activation levels within dACC in adults with ADHD leads to a reduction of clinical symptoms and improved cognitive functioning. An exploratory randomized controlled treatment study with blinding of the participants was conducted. Participants with ADHD (n = 7 in the neurofeedback group, and n = 6 in the control group) attended four weekly MRI training sessions (60-min training time/session), during which they performed a mental calculation task at varying levels of difficulty, in order to learn how to up-regulate dACC activation. Only neurofeedback participants received continuous feedback information on actual brain activation levels within dACC. Before and after the training, ADHD symptoms and relevant cognitive functioning was assessed. Results showed that both groups achieved a significant increase in dACC activation levels over sessions. While there was no significant difference between the neurofeedback and control group in clinical outcome, neurofeedback participants showed stronger improvement on cognitive functioning. The current study demonstrates the general feasibility of the suggested rt-fMRI neurofeedback training approach as a potential novel treatment option for ADHD patients. Due to the study's small sample size, potential clinical benefits need to be further investigated in future studies. ISRCTN12390961.

  11. fMRI Neurofeedback Training for Increasing Anterior Cingulate Cortex Activation in Adult Attention Deficit Hyperactivity Disorder. An Exploratory Randomized, Single-Blinded Study

    PubMed Central

    Slaats-Willemse, Dorine; Kan, Cornelis C.; Goebel, Rainer; Buitelaar, Jan K.

    2017-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is characterized by poor cognitive control/attention and hypofunctioning of the dorsal anterior cingulate cortex (dACC). In the current study, we investigated for the first time whether real-time fMRI neurofeedback (rt-fMRI) training targeted at increasing activation levels within dACC in adults with ADHD leads to a reduction of clinical symptoms and improved cognitive functioning. An exploratory randomized controlled treatment study with blinding of the participants was conducted. Participants with ADHD (n = 7 in the neurofeedback group, and n = 6 in the control group) attended four weekly MRI training sessions (60-min training time/session), during which they performed a mental calculation task at varying levels of difficulty, in order to learn how to up-regulate dACC activation. Only neurofeedback participants received continuous feedback information on actual brain activation levels within dACC. Before and after the training, ADHD symptoms and relevant cognitive functioning was assessed. Results showed that both groups achieved a significant increase in dACC activation levels over sessions. While there was no significant difference between the neurofeedback and control group in clinical outcome, neurofeedback participants showed stronger improvement on cognitive functioning. The current study demonstrates the general feasibility of the suggested rt-fMRI neurofeedback training approach as a potential novel treatment option for ADHD patients. Due to the study’s small sample size, potential clinical benefits need to be further investigated in future studies. Trial Registration: ISRCTN12390961 PMID:28125735

  12. Nonconscious attention bias to threat is correlated with anterior cingulate cortex gray matter volume: a voxel-based morphometry result and replication.

    PubMed

    Carlson, Joshua M; Beacher, Felix; Reinke, Karen S; Habib, Reza; Harmon-Jones, Eddie; Mujica-Parodi, Lilianne R; Hajcak, Greg

    2012-01-16

    An important aspect of the fear response is the allocation of spatial attention toward threatening stimuli. This response is so powerful that modulations in spatial attention can occur automatically without conscious awareness. Functional neuroimaging research suggests that the amygdala and anterior cingulate cortex (ACC) form a network involved in the rapid orienting of attention to threat. A hyper-responsive attention bias to threat is a common component of anxiety disorders. Yet, little is known of how individual differences in underlying brain morphometry relate to variability in attention bias to threat. Here, we performed two experiments using dot-probe tasks that measured individuals' attention bias to backward masked fearful faces. We collected whole-brain structural magnetic resonance images and used voxel-based morphometry to measure brain morphometry. We tested the hypothesis that reduced gray matter within the amygdala and ACC would be associated with reduced attention bias to threat. In Experiment 1, we found that backward masked fearful faces captured spatial attention and that elevated attention bias to masked threat was associated with greater ACC gray matter volumes. In Experiment 2, this association was replicated in a separate sample. Thus, we provide initial and replicating evidence that ACC gray matter volume is correlated with biased attention to threat. Importantly, we demonstrate that variability in affective attention bias within the healthy population is associated with ACC morphometry. This result opens the door for future research into the underlying brain morphometry associated with attention bias in clinically anxious populations. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Ipsilateral obturator type of hip dislocation with fracture shaft femur in a child: a case report and literature review.

    PubMed

    Arjun, R H H; Kumar, Vishal; Saibaba, Balaji; John, Rakesh; Guled, Uday; Aggarwal, Sameer

    2016-09-01

    The incidence of traumatic hip dislocations in children is rising in this fast developing world along with increasing numbers of high-velocity road traffic accidents. Anterior dislocation of the hip has a lower incidence compared with posterior dislocation of the hip. We encountered a rare case of the obturator type of anteriorly dislocated hip associated with ipsilateral fracture of the shaft femur in an 11-year-old child. This is a highly unusual injury combination and the mechanism of injury is obscure. Only two similar cases have been reported in the English literature to date. Closed reduction of the hip using a hitherto undescribed technique and an intramedullary interlocking nail was performed in this case. At 6 months of follow-up, the fracture shaft femur has united and the child is bearing full weight on the limb.

  14. Unique cortical physiology associated with ipsilateral hand movements and neuroprosthetic implications.

    PubMed

    Wisneski, Kimberly J; Anderson, Nicholas; Schalk, Gerwin; Smyth, Matt; Moran, Daniel; Leuthardt, Eric C

    2008-12-01

    Brain computer interfaces (BCIs) offer little direct benefit to patients with hemispheric stroke because current platforms rely on signals derived from the contralateral motor cortex (the same region injured by the stroke). For BCIs to assist hemiparetic patients, the implant must use unaffected cortex ipsilateral to the affected limb. This requires the identification of distinct electrophysiological features from the motor cortex associated with ipsilateral hand movements. In this study we studied 6 patients undergoing temporary placement of intracranial electrode arrays. Electrocorticographic (ECoG) signals were recorded while the subjects engaged in specific ipsilateral or contralateral hand motor tasks. Spectral changes were identified with regards to frequency, location, and timing. Ipsilateral hand movements were associated with electrophysiological changes that occur in lower frequency spectra, at distinct anatomic locations, and earlier than changes associated with contralateral hand movements. In a subset of 3 patients, features specific to ipsilateral and contralateral hand movements were used to control a cursor on a screen in real time. In ipsilateral derived control this was optimal with lower frequency spectra. There are distinctive cortical electrophysiological features associated with ipsilateral movements which can be used for device control. These findings have implications for patients with hemispheric stroke because they offer a potential methodology for which a single hemisphere can be used to enhance the function of a stroke induced hemiparesis.

  15. Neural Correlates of the Antinociceptive Effects of Stimulating the Anterior Pretectal Nucleus in Rats.

    PubMed

    Genaro, Karina; Prado, Wiliam A

    2016-11-01

    Stimulation-evoked antinociception (SEA) from the anterior pretectal nucleus (APtN) activates mechanisms that descend to the spinal cord through the dorsolateral funiculus, but the encephalic route followed by the descending pathways from the APtN is not completely known. This study evaluated the changes in the SEA from the APtN in the Wistar rat tail-flick test after lidocaine-induced neural block or N-methyl-d-aspartate-induced neurotoxic lesion of the deep mesencephalic nucleus (DpMe), tegmental pedunculopontine nucleus (PPTg), or lateral paragigantocellular nucleus (LPGi). The SEA from the APtN was less intense after neural block of the contralateral DpMe or PPTg or the ipsilateral LPGi, but was not changed by the neural block of the ipsilateral DpMe or PPTg or the contralateral LPGi. Antinociception did not occur when APtN stimulation was carried out 5 minutes after lidocaine or 6 days after N-methyl-d-aspartate injections into the contralateral DpMe and the ipsilateral LPGi, or into the contralateral PPTg and the ipsilateral LPGi. We conclude that the SEA from the APtN activates 2 descending pain inhibitory pathways, one relaying in the ipsilateral LPGi and another relaying sequentially in the contralateral DpMe and PPTg. The antinociceptive effect of the APtN stimulation involves 2 descending pathways: one relaying in the ipsilateral LPGi and another descending contralaterally via relays in the DpMe and PPTg. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  16. Forelimb training drives transient map reorganization in ipsilateral motor cortex

    PubMed Central

    Pruitt, David T.; Schmid, Ariel N.; Danaphongse, Tanya T.; Flanagan, Kate E.; Morrison, Robert A.; Kilgard, Michael P.; Rennaker, Robert L.; Hays, Seth A.

    2016-01-01

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. PMID:27392641

  17. An Anterior-to-Posterior Shift in Midline Cortical Activity in Schizophrenia During Self-Reflection

    PubMed Central

    Holt, Daphne J.; Cassidy, Brittany S.; Andrews-Hanna, Jessica R.; Lee, Su Mei; Coombs, Garth; Goff, Donald C.; Gabrieli, John D.; Moran, Joseph M.

    2013-01-01

    Background Deficits in social cognition, including impairments in self-awareness, contribute to the overall functional disability associated with schizophrenia. Studies in healthy subjects have shown that social cognitive functions, including self-reflection, rely on the medial prefrontal cortex (mPFC) and posterior cingulate gyrus, and these regions exhibit highly correlated activity during “resting” states. In this study, we tested the hypothesis that patients with schizophrenia show dysfunction of this network during self-reflection and that this abnormal activity is associated with changes in the strength of resting-state correlations between these regions. Methods Activation during self-reflection and control tasks was measured with functional magnetic resonance imaging in 19 patients with schizophrenia and 20 demographically matched control subjects. In addition, the resting-state functional connectivity of midline cortical areas showing abnormal self-reflection-related activation in schizophrenia was measured. Results Compared with control subjects, the schizophrenia patients demonstrated lower activation of the right ventral mPFC and greater activation of the mid/posterior cingulate gyri bilaterally during self-reflection, relative to a control task. A similar pattern was seen during overall social reflection. In addition, functional connectivity between the portion of the left mid/posterior cingulate gyrus showing abnormally elevated activity during self-reflection in schizophrenia, and the dorsal anterior cingulate gyrus was lower in the schizophrenia patients compared with control subjects. Conclusions Schizophrenia is associated with an anterior-to-posterior shift in introspection-related activation, as well as changes in functional connectivity, of the midline cortex. These findings provide support for the hypothesis that aberrant midline cortical function contributes to social cognitive impairment in schizophrenia. PMID:21144498

  18. An anterior-to-posterior shift in midline cortical activity in schizophrenia during self-reflection.

    PubMed

    Holt, Daphne J; Cassidy, Brittany S; Andrews-Hanna, Jessica R; Lee, Su Mei; Coombs, Garth; Goff, Donald C; Gabrieli, John D; Moran, Joseph M

    2011-03-01

    Deficits in social cognition, including impairments in self-awareness, contribute to the overall functional disability associated with schizophrenia. Studies in healthy subjects have shown that social cognitive functions, including self-reflection, rely on the medial prefrontal cortex (mPFC) and posterior cingulate gyrus, and these regions exhibit highly correlated activity during "resting" states. In this study, we tested the hypothesis that patients with schizophrenia show dysfunction of this network during self-reflection and that this abnormal activity is associated with changes in the strength of resting-state correlations between these regions. Activation during self-reflection and control tasks was measured with functional magnetic resonance imaging in 19 patients with schizophrenia and 20 demographically matched control subjects. In addition, the resting-state functional connectivity of midline cortical areas showing abnormal self-reflection-related activation in schizophrenia was measured. Compared with control subjects, the schizophrenia patients demonstrated lower activation of the right ventral mPFC and greater activation of the mid/posterior cingulate gyri bilaterally during self-reflection, relative to a control task. A similar pattern was seen during overall social reflection. In addition, functional connectivity between the portion of the left mid/posterior cingulate gyrus showing abnormally elevated activity during self-reflection in schizophrenia, and the dorsal anterior cingulate gyrus was lower in the schizophrenia patients compared with control subjects. Schizophrenia is associated with an anterior-to-posterior shift in introspection-related activation, as well as changes in functional connectivity, of the midline cortex. These findings provide support for the hypothesis that aberrant midline cortical function contributes to social cognitive impairment in schizophrenia. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier

  19. Metabolite profiles in the anterior cingulate cortex of depressed patients differentiate those taking N-acetyl-cysteine versus placebo.

    PubMed

    Das, Pritha; Tanious, Michelle; Fritz, Kristina; Dodd, Seetal; Dean, Olivia M; Berk, Michael; Malhi, Gin S

    2013-04-01

    Increased oxidative stress is thought to contribute to the pathophysiology of major depressive disorder (MDD), which is in part due to diminished levels of glutathione, the primary anti-oxidant of the brain. Oral administration of N-acetyl-cysteine (NAC) replenishes glutathione and has therefore been shown to reduce depressive symptoms. Proton magnetic spectroscopy ((1)H-MRS) that allows quantification of brain metabolites pertinent to both MDD and oxidative biology may provide some novel insights into the neurobiological effects of NAC, and in particular metabolite concentrations within the anterior cingulate cortex (ACC) are likely to be important given the key role of this region in the regulation of affect. The aim of this study was to determine whether the metabolite profile of the ACC in MDD patients predicts treatment with adjunctive NAC versus placebo. This study was nested within a multicentre, randomized, double-blind, placebo-controlled study of MDD participants treated with adjunctive NAC. Participants (n = 76) from one site completed the spectroscopy component at the end of treatment (12 weeks). Spectra from a single-voxel in the ACC were acquired and absolute concentrations of glutamate (Glu), glutamate-glutamine (Glx), N-acetyl-aspartate (NAA) and myo-inositol (mI) were obtained. Binary logistic regression analysis was performed to determine whether metabolite profiles could predict NAC versus placebo group membership. When predicting group outcome (NAC or placebo), Glx, NAA and mI were a significant model, and had 75% accuracy, while controlling for depression severity and sex. However, the Glu, NAA and mI profile was only predictive at a trend level, with 68.3% accuracy. For both models, the log of the odds of a participant being in the NAC group was positively related to NAA, Glx and Glu levels and negatively related to mI levels. The finding of higher Glx and NAA levels being predictive of the NAC group provides preliminary support for the

  20. Ipsilateral pedicled TRAM flaps: the safer alternative?

    PubMed

    Clugston, P A; Gingrass, M K; Azurin, D; Fisher, J; Maxwell, G P

    2000-01-01

    Transverse rectus abdominis myocutaneous (TRAM) flap breast reconstruction has become a commonly performed procedure in the 1990s. The original description of the procedure was that of an ipsilaterally based pedicle procedure. Concerns about potential folding of the pedicle with possible compromise of the vascular supply led many surgeons to prefer the contralateral pedicle. Subsequently, there have been several large clinical series of pedicled TRAM flaps showing a relatively high complication rate related to flap vascularity problems. Partial flap necrosis rates in pedicled TRAM series range from 5 to 44 percent. These findings resulted in many centers favoring free TRAM flap breast reconstruction, despite an increase in resource use and negligible differences in complication rates. Ipsilateral pedicle TRAM flap breast reconstruction is not a commonly reported procedure and is reserved for cases for which scars preclude use of the contralateral pedicle. Simplicity and versatility of flap shaping, improved maintenance of the inframammary fold, and lack of disruption of the natural xiphoid hollow give ipsilateral TRAM flaps further advantages. This study reports on a series of 252 consecutive ipsilateral TRAM flap reconstructions in 190 patients. The majority of patients underwent muscle-sparing procedures with preservation of a medial and a lateral strip of rectus muscle. Immediate reconstruction was done in 104 of the 190 patients. Skin-sparing (69 patients) or skin-reduction procedures (21 patients) were used in 90 of the 104 patients (87 percent) undergoing immediate reconstruction. Complication rates were comparable to those of series reported for contralateral TRAM flaps, except that partial flap necrosis (2.0 percent) was less in this series. Risk factors were analyzed with regard to the most common complications seen in this study. Ipsilateral TRAM flap breast reconstruction is our preferred method, if available, because we believe that it has several

  1. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    PubMed

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Neural Signatures of Value Comparison in Human Cingulate Cortex during Decisions Requiring an Effort-Reward Trade-off

    PubMed Central

    Kennerley, Steven W.; Friston, Karl; Bestmann, Sven

    2016-01-01

    Integrating costs and benefits is crucial for optimal decision-making. Although much is known about decisions that involve outcome-related costs (e.g., delay, risk), many of our choices are attached to actions and require an evaluation of the associated motor costs. Yet how the brain incorporates motor costs into choices remains largely unclear. We used human fMRI during choices involving monetary reward and physical effort to identify brain regions that serve as a choice comparator for effort-reward trade-offs. By independently varying both options' effort and reward levels, we were able to identify the neural signature of a comparator mechanism. A network involving supplementary motor area and the caudal portion of dorsal anterior cingulate cortex encoded the difference in reward (positively) and effort levels (negatively) between chosen and unchosen choice options. We next modeled effort-discounted subjective values using a novel behavioral model. This revealed that the same network of regions involving dorsal anterior cingulate cortex and supplementary motor area encoded the difference between the chosen and unchosen options' subjective values, and that activity was best described using a concave model of effort-discounting. In addition, this signal reflected how precisely value determined participants' choices. By contrast, separate signals in supplementary motor area and ventromedial prefrontal cortex correlated with participants' tendency to avoid effort and seek reward, respectively. This suggests that the critical neural signature of decision-making for choices involving motor costs is found in human cingulate cortex and not ventromedial prefrontal cortex as typically reported for outcome-based choice. Furthermore, distinct frontal circuits seem to drive behavior toward reward maximization and effort minimization. SIGNIFICANCE STATEMENT The neural processes that govern the trade-off between expected benefits and motor costs remain largely unknown. This is

  3. Neural Signatures of Value Comparison in Human Cingulate Cortex during Decisions Requiring an Effort-Reward Trade-off.

    PubMed

    Klein-Flügge, Miriam C; Kennerley, Steven W; Friston, Karl; Bestmann, Sven

    2016-09-28

    Integrating costs and benefits is crucial for optimal decision-making. Although much is known about decisions that involve outcome-related costs (e.g., delay, risk), many of our choices are attached to actions and require an evaluation of the associated motor costs. Yet how the brain incorporates motor costs into choices remains largely unclear. We used human fMRI during choices involving monetary reward and physical effort to identify brain regions that serve as a choice comparator for effort-reward trade-offs. By independently varying both options' effort and reward levels, we were able to identify the neural signature of a comparator mechanism. A network involving supplementary motor area and the caudal portion of dorsal anterior cingulate cortex encoded the difference in reward (positively) and effort levels (negatively) between chosen and unchosen choice options. We next modeled effort-discounted subjective values using a novel behavioral model. This revealed that the same network of regions involving dorsal anterior cingulate cortex and supplementary motor area encoded the difference between the chosen and unchosen options' subjective values, and that activity was best described using a concave model of effort-discounting. In addition, this signal reflected how precisely value determined participants' choices. By contrast, separate signals in supplementary motor area and ventromedial prefrontal cortex correlated with participants' tendency to avoid effort and seek reward, respectively. This suggests that the critical neural signature of decision-making for choices involving motor costs is found in human cingulate cortex and not ventromedial prefrontal cortex as typically reported for outcome-based choice. Furthermore, distinct frontal circuits seem to drive behavior toward reward maximization and effort minimization. The neural processes that govern the trade-off between expected benefits and motor costs remain largely unknown. This is striking because

  4. Processing of emotional stimuli is reflected by modulations of beta band activity in the subgenual anterior cingulate cortex in patients with treatment resistant depression.

    PubMed

    Huebl, Julius; Brücke, Christof; Merkl, Angela; Bajbouj, Malek; Schneider, Gerd-Helge; Kühn, Andrea A

    2016-08-01

    Deep brain stimulation (DBS) of the subgenual anterior cingulate cortex (sgACC) has emerged as a new therapeutic option in patients with treatment resistant depression (TRD). At the same time, DBS offers a unique opportunity as an innovative research tool to study brain function in vivo Indirect measures of brain function such as positron-emission-tomography imaging findings have revealed a hypermetabolism in the sgACC area in patients with TRD that normalizes in parallel with treatment response to DBS. We used direct intracranial recordings via implanted DBS electrodes to study the neuronal oscillatory activity in the sgACC area during a picture viewing task including emotional and neutral stimuli in eight patients with TRD who underwent DBS.We found a stimulus-induced decrease in beta-band and increase in gamma-band activity, with a main effect of valence for event-related desynchronisation in the beta-frequency range (14-30 Hz). Unpleasant stimuli induced the strongest and most sustained beta-power decrease. The degree of beta-band modulation upon emotional stimuli correlated with the patients' rating of stimulus valence. Our findings confirm the involvement of the sgACC area in emotional processing that was more enhanced for unpleasant stimuli. Moreover, stimulus evaluation may be encoded by modulations of beta-band activity. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Anterior Insular Cortex and Emotional Awareness

    PubMed Central

    Gu, Xiaosi; Hof, Patrick R.; Friston, Karl J.; Fan, Jin

    2014-01-01

    This paper reviews the foundation for a role of the human anterior insular cortex (AIC) in emotional awareness, defined as the conscious experience of emotions. We first introduce the neuroanatomical features of AIC and existing findings on emotional awareness. Using empathy, the awareness and understanding of other people’s emotional states, as a test case, we then present evidence to demonstrate: 1) AIC and anterior cingulate cortex (ACC) are commonly coactivated as revealed by a meta-analysis, 2) AIC is functionally dissociable from ACC, 3) AIC integrates stimulus-driven and top-down information, and 4) AIC is necessary for emotional awareness. We propose a model in which AIC serves two major functions: integrating bottom-up interoceptive signals with top-down predictions to generate a current awareness state and providing descending predictions to visceral systems that provide a point of reference for autonomic reflexes. We argue that AIC is critical and necessary for emotional awareness. PMID:23749500

  6. Interhemispheric Asymmetries and Theta Activity in the Rostral Anterior Cingulate Cortex as EEG Signature of HIV-Related Depression: Gender Matters.

    PubMed

    Kremer, Heidemarie; Lutz, Franz P C; McIntosh, Roger C; Dévieux, Jessy G; Ironson, Gail

    2016-04-01

    Resting EEGs of 40 people living with HIV (PLWH) on long-term antiretroviral treatment were examined for z-scored deviations from a healthy control (normative database) to examine the main and interaction effects of depression and gender. Regions of interest were frontal (alpha) and central (all bands) for interhemispheric asymmetries in quantitative EEGs and theta in the rostral anterior cingulate cortex (rACC) in low-resolution electromagnetic tomography (LORETA). Z-scored normed deviations of depressed PLWH, compared with nondepressed, showed right-dominant interhemispheric asymmetries in all regions. However, after adjusting for multiple testing, significance remained only central for theta, alpha, and beta. Reversed (left-dominant) frontal alpha asymmetry is a potential EEG marker of depression in the HIV negative population that was not reversed in depressive PLWH; however, corresponding with extant literature, gender had an effect on the size of frontal alpha asymmetry. The LORETA analysis revealed a trending interactional effect of depression and gender on theta activity in the rACC in Brodmann area 32. We found that compared to men, women had greater right-dominant frontal alpha-asymmetry and elevated theta activity in voxels of the rACC, which may indicate less likelihood of depression and a higher likelihood of response to antidepressants. In conclusion, subtle EEG deviations, such as right-dominant central theta, alpha, and beta asymmetries and theta activity in the rACC may mark HIV-related depressive symptoms and may predict the likelihood of response to antidepressants but gender effects need to be taken into account. Although this study introduced the use of LORETA to examine the neurophysiological correlates of negative affect in PLWH, further research is needed to assess the utility of this tool in diagnostics and treatment monitoring of depression in PLWH. © EEG and Clinical Neuroscience Society (ECNS) 2015.

  7. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide.

    PubMed

    Sequeira, Adolfo; Morgan, Ling; Walsh, David M; Cartagena, Preston M; Choudary, Prabhakara; Li, Jun; Schatzberg, Alan F; Watson, Stanley J; Akil, Huda; Myers, Richard M; Jones, Edward G; Bunney, William E; Vawter, Marquis P

    2012-01-01

    Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.

  8. Gene Expression Changes in the Prefrontal Cortex, Anterior Cingulate Cortex and Nucleus Accumbens of Mood Disorders Subjects That Committed Suicide

    PubMed Central

    Sequeira, Adolfo; Morgan, Ling; Walsh, David M.; Cartagena, Preston M.; Choudary, Prabhakara; Li, Jun; Schatzberg, Alan F.; Watson, Stanley J.; Akil, Huda; Myers, Richard M.; Jones, Edward G.; Bunney, William E.; Vawter, Marquis P.

    2012-01-01

    Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P≤0.01 and fold change±1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain. PMID:22558144

  9. Lower anterior cingulate volume in seriously violent men with antisocial personality disorder or schizophrenia and a history of childhood abuse.

    PubMed

    Kumari, Veena; Uddin, Shahir; Premkumar, Preethi; Young, Susan; Gudjonsson, Gisli H; Raghuvanshi, Satya; Barkataki, Ian; Sumich, Alexander; Taylor, Pamela; Das, Mrigendra

    2014-02-01

    Antisocial personality disorder (ASPD) and schizophrenia, as well as childhood abuse, are associated with violent behaviour and show marked volumetric reduction in the anterior cingulate (AC), a brain region implicated in regulation of violence through its involvement in decision making, empathy, impulse control, and emotion regulation. The present study examined, for the first time to the authors' knowledge, the grey matter volume of the AC in relation to seriously violent behaviour and childhood psychosocial deprivation (including physical and sexual abuse) in the context of a mental disorder (schizophrenia or ASPD). Fifty-seven men [14 with ASPD and a history of serious violence; 13 with schizophrenia and a history of serious violence (VSZ); 15 with schizophrenia without a violence history (SZ); 15 nonviolent healthy participants] underwent whole-brain magnetic resonance imaging and were rated on the presence of physical abuse, sexual abuse, neglect, extreme poverty, foster home placement, criminal parent, severe family conflict, and broken home (collectively 'psychosocial deprivation'). Stereological volumetric ratings of the AC were examined for group differences and their association with childhood psychosocial deprivation. A higher proportion of ASPD and VSZ patients had suffered psychosocial deprivation as children, in particular severe physical abuse, relative to SZ patients and healthy participants. ASPD and VSZ, but not SZ, patients had significantly lower AC volume relative to healthy participants. AC volumes correlated negatively with (total) psychosocial deprivation as well as physical and sexual abuse ratings. Group differences in AC volume became nonsignificant when psychosocial deprivation ratings were covaried for. Violent mentally disordered individuals with ASPD or schizophrenia suffer from a significant AC volume loss and this deficit, at least in part, is explained by their histories of stressful childhood experiences. Current and future

  10. Activation of Extracellular Signal-Regulated Kinase in the Anterior Cingulate Cortex Contributes to the Induction and Expression of Affective Pain

    PubMed Central

    Cao, Hong; Gao, Yong-Jing; Ren, Wen-Hua; Li, Ting-Ting; Duan, Kai-Zheng; Cui, Yi-Hui; Cao, Xiao-Hua; Zhao, Zhi-Qi; Ji, Ru-Rong; Zhang, Yu-Qiu

    2009-01-01

    The anterior cingulate cortex (ACC) is implicated in the affective response to noxious stimuli. However, little is known about the molecular mechanisms involved. The present study demonstrated that extracellular signal-regulated kinase (ERK) activation in the ACC plays a crucial role in pain-related negative emotion. Intraplantar formalin injection produced a transient ERK activation in laminae V–VI and a persistent ERK activation in laminae II–III of the rostral ACC (rACC) bilaterally. Using formalin-induced conditioned place avoidance (F-CPA) in rats, which is believed to reflect the pain-related negative emotion, we found that blockade of ERK activation in the rACC with MEK inhibitors prevented the induction of F-CPA. Interestingly, this blockade did not affect formalin-induced two-phase spontaneous nociceptive responses and CPA acquisition induced by electric foot-shock or U69,593, an innocuous aversive agent. Upstream, NMDA receptor, adenylyl cyclase (AC) and PKA activators activated ERK in rACC slices. Consistently, intra-rACC microinjection of AC or PKA inhibitors prevented F-CPA induction. Downstream, phosphorylation of cAMP response element binding protein (CREB) was induced in the rACC by formalin injection and by NMDA, AC and PKA activators in brain slices, which was suppressed by MEK inhibitors. Furthermore, ERK also contributed to the expression of pain-related negative emotion. Thus, when rats were re-exposed to the conditioning context for retrieval of pain experience, ERK and CREB were re-activated in the rACC, and inhibiting ERK activation blocked the expression of F-CPA. All together, our results demonstrate that ERK activation in the rACC is required for the induction and expression of pain-related negative affect. PMID:19279268

  11. Preferential Representation of Past Outcome Information and Future Choice Behavior by Putative Inhibitory Interneurons Rather Than Putative Pyramidal Neurons in the Primate Dorsal Anterior Cingulate Cortex.

    PubMed

    Kawai, Takashi; Yamada, Hiroshi; Sato, Nobuya; Takada, Masahiko; Matsumoto, Masayuki

    2018-05-02

    The dorsal anterior cingulate cortex (dACC) plays crucial roles in monitoring the outcome of a choice and adjusting a subsequent choice behavior based on the outcome information. In the present study, we investigated how different types of dACC neurons, that is, putative pyramidal neurons and putative inhibitory interneurons, contribute to these processes. We analyzed single-unit database obtained from the dACC in monkeys performing a reversal learning task. The monkey was required to adjust choice behavior from past outcome experiences. Depending on their action potential waveforms, the recorded neurons were classified into putative pyramidal neurons and putative inhibitory interneurons. We found that these neurons do not equally contribute to outcome monitoring and behavioral adjustment. Although both neuron types evenly responded to the current outcome, a larger proportion of putative inhibitory interneurons than putative pyramidal neurons stored the information about the past outcome. The putative inhibitory interneurons further represented choice-related signals more frequently, such as whether the monkey would shift the last choice to an alternative at the next choice opportunity. Our findings suggest that putative inhibitory interneurons, which are thought not to project to brain areas outside the dACC, preferentially transmit signals that would adjust choice behavior based on past outcome experiences.

  12. Myofascial involvement of supra- and infraspinatus muscles contributes to ipsilateral shoulder pain after muscle-sparing thoracotomy and video-assisted thoracic surgery.

    PubMed

    Ohmori, Aki; Iranami, Hiroshi; Fujii, Keisuke; Yamazaki, Akinori; Doko, Yukari

    2013-12-01

    This study examined the hypothesis that ipsilateral upper extremity elevation for muscle-sparing thoracotomy procedures contributes to the postoperative shoulder pain. Prospective observational study. Medical center. ASA physical status 1-2 patients undergoing elective lung surgeries including pneumonectomy, lobectomy, and segmentectomy performed through either the anterolateral approach or video-assisted thoracotomy surgery. Postoperative observation of ipsilateral shoulder pain. Postoperative examinations of sites of shoulder pain (clavicle, anterior, lateral,or posterior aspect of acromion, posterior neck, supraspinatus, infraspinatus, and these entire areas) with or without trigger points, visual analog scale score of wound pain, and requested counts of analgesics. The number of patients who suffered from postoperative shoulder pain was 37 of 70 (52.9%). Demographic data, anterolateral/VATS ratio, VAS scores, and requested counts of rescue analgesics requirement were similar in the groups of patients with and without postoperative shoulder pain. The segmentectomy caused a significantly higher incidence of postoperative shoulder pain compared with other procedures (p < 0.05). The supra- and infraspinatus were significantly higher areas of painful regions compared to the other sites. The 16 of 37 patients (43.2%) with shoulder pain showed defined trigger points in their painful areas. These results supported the hypothesis that myofascial involvement contributed, to some extent, to shoulder pain after muscle-sparing thoracotomy with ipsilateral upper extremity elevation. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Monocular Patching May Induce Ipsilateral “Where” Spatial Bias

    PubMed Central

    Chen, Peii; Erdahl, Lillian; Barrett, Anna M.

    2009-01-01

    Spatial bias is an asymmetry of perception and/or representation of spatial information —“where” bias —, or of spatially directed actions — “aiming” bias. A monocular patch may induce contralateral “where” spatial bias (the Sprague effect; Sprague (1966) Science, 153, 1544–1547). However, an ipsilateral patch-induced spatial bias may be observed if visual occlusion results in top-down, compensatory re-allocation of spatial perceptual or representational resources toward the region of visual deprivation. Tactile distraction from a monocular patch may also contribute to an ipsilateral bias. To examine these hypotheses, neurologically normal adults bisected horizontal lines at baseline without a patch, while wearing a monocular patch, and while wearing tactile-only and visual-only monocular occlusion. We fractionated “where” and “aiming” spatial bias components using a video apparatus to reverse visual feedback for half of the test trials. The results support monocular patch-induced ipsilateral “where” spatial errors, which are not consistent with the Sprague effect. Further, the present findings suggested that the induced ipsilateral bias may be primarily induced by visual deprivation, consistent with compensatory “where” resource re-allocation. PMID:19100274

  14. Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms.

    PubMed

    Müller-Vahl, Kirsten R; Grosskreutz, Julian; Prell, Tino; Kaufmann, Jörn; Bodammer, Nils; Peschel, Thomas

    2014-01-07

    Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS "only" (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects. Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus. Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded.

  15. Exposure to subliminal arousing stimuli induces robust activation in the amygdala, hippocampus, anterior cingulate, insular cortex and primary visual cortex: a systematic meta-analysis of fMRI studies.

    PubMed

    Brooks, S J; Savov, V; Allzén, E; Benedict, C; Fredriksson, R; Schiöth, H B

    2012-02-01

    Functional Magnetic Resonance Imaging (fMRI) demonstrates that the subliminal presentation of arousing stimuli can activate subcortical brain regions independently of consciousness-generating top-down cortical modulation loops. Delineating these processes may elucidate mechanisms for arousal, aberration in which may underlie some psychiatric conditions. Here we are the first to review and discuss four Activation Likelihood Estimation (ALE) meta-analyses of fMRI studies using subliminal paradigms. We find a maximum of 9 out of 12 studies using subliminal presentation of faces contributing to activation of the amygdala, and also a significantly high number of studies reporting activation in the bilateral anterior cingulate, bilateral insular cortex, hippocampus and primary visual cortex. Subliminal faces are the strongest modality, whereas lexical stimuli are the weakest. Meta-analyses independent of studies using Regions of Interest (ROI) revealed no biasing effect. Core neuronal arousal in the brain, which may be at first independent of conscious processing, potentially involves a network incorporating primary visual areas, somatosensory, implicit memory and conflict monitoring regions. These data could provide candidate brain regions for the study of psychiatric disorders associated with aberrant automatic emotional processing. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Ipsilateral femoral shaft and vertical patella fracture: a case report

    PubMed Central

    Ozkan, Korhan; Eceviz, Engin; Sahin, Adem; Ugutmen, Ender

    2009-01-01

    Introduction A femoral shaft fracture with an ipsilateral patella fracture has been, to our knowledge, given only cursory attention in English-speaking literature. Case presentation A 15 year old male patient had hitten by a car to his motorcycle came to emergency room and he had been operated for his femoral shaft freacture and vertical patellar fracture which was iniatally missed. Conclusion To us it is vital to obtain CT scan of the patient’s knee if there is an ipsilateral femoral fracture with an ipsilateral knee effusion and a punction which reveals hematoma even in the absence of a fracture line seen in AP and lateral projections. PMID:19829933

  17. Mapping of cingulate motor function by cortical stimulation.

    PubMed

    Basha, Maysaa M; Fernández-Baca Vaca, Guadalupe; Lüders, Hans O

    2013-09-01

    An 8-year-old boy with intractable left mesiofrontal lobe epilepsy underwent placement of stereotactic intracerebral depth electrodes to better localise the epileptogenic zone. Co-registration of preoperative MRI and post-electrode implantation CAT allowed for anatomical localisation of electrode contacts. Electrical stimulation of electrodes over the dorsal and ventral banks of the cingulate cortex on the left produced right foot dorsiflexion and right wrist and elbow flexion, respectively, demonstrating detailed representation of cingulate motor function in humans, somatotopically distributed along the banks of the cingulate sulcus, as seen in the non-human primate. [Published with video sequences].

  18. Association of Ipsilateral Rib Fractures With Displacement of Midshaft Clavicle Fractures.

    PubMed

    Stahl, Daniel; Ellington, Matthew; Brennan, Kindyle; Brennan, Michael

    2017-04-01

    To determine whether the presence of ipsilateral rib fractures affects the rate of a clavicle fracture being unstable (>100% displacement). A retrospective review from 2002-2013 performed at a single level 1 trauma center evaluated 243 midshaft clavicle fractures. Single Level 1 trauma center. These fractures were subdivided into those with ipsilateral rib fractures (CIR; n = 149) and those without ipsilateral rib fractures (CnIR; n = 94). The amount of displacement was measured on the initial injury radiograph and subsequent follow-up radiographs. Fractures were classified into either <100% displacement or >100% displacement, based on anteroposterior radiographs. Ipsilateral rib fractures were recorded based on which number rib was fractured and the total number of fractured ribs. One hundred sixteen (78%) of the CIR group and 51 (54%) of the CnIR group were found to have >100% displacement at follow-up (P = 0.0047). Seventy-two percent of the CIR group demonstrated progression from <100% to >100% displacement of the fracture compared with only 54% of the CnIR group (P < 0.05). The odds ratio for progression of the clavicle fracture to >100% was 4.08 (P = 0.000194) when ribs 1-4 were fractured and not significant for rib fractures 5-8 or 9-12. The presence of concomitant ipsilateral rib fractures significantly increases the rate of midshaft clavicle fractures being >100% displaced. In addition, a fracture involving the upper one-third of the ribs significantly increases the rate of the clavicle fracture being >100% displaced on early follow-up. Clavicle fractures with associated ipsilateral rib fractures tend to demonstrate an increased amount of displacement on follow-up radiographs compared with those without ipsilateral rib fractures. Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.

  19. Altered effective connectivity anchored in the posterior cingulate cortex and the medial prefrontal cortex in cognitively intact elderly APOE ε4 carriers: a preliminary study.

    PubMed

    Luo, Xiao; Li, Kaicheng; Jia, Y L; Zeng, Qingze; Jiaerken, Yeerfan; Qiu, Tiantian; Huang, Peiyu; Xu, Xiaojun; Shen, Zhujing; Guan, Xiaojun; Zhou, Jiong; Wang, Chao; Xu, J J; Zhang, Minming

    2018-03-17

    The APOE ε4 allele is associated with impaired intrinsic functional connectivity in neural networks, especially in the default mode network (DMN). However, effective connectivity (EC) reflects the direct causal effects of one brain region to another, which has rarely been investigated. Recently, Granger causality analysis (GCA) proved suitable for the study of directionality in neuronal interactions. Using GCA, we examined the differences in the EC between the anterior medial prefrontal cortex/posterior cingulate cortex (aMPFC/PCC) and the whole brain in 17 ε4 carrying and 32 non-carrying cognitively intact elderly individuals. Furthermore, correlation analyses were performed between the abnormal EC and cognition/neuropathological indices. Compared with the non-carriers, the results showed that the ε4 carriers exhibited decreased EC from the PCC to the whole brain in the middle temporal gyrus (MTG), the anterior cingulate cortex (ACC), and the precuneus (PCu). Meanwhile, the ε4 carriers demonstrated increased EC from the whole brain to the aMPFC in the inferior parietal lobe (IPL) and the postcentral gyrus (PCG). The correlation analyses suggested that the EC from the IPL/PCG to the aMPFC was related to episodic memory in non-carriers, while the decreased EC from the PCC to the ACC was associated with increased levels of t-tau in the ε4 carriers. In ε4 carriers, a negative influence can be traced from the PCC to both the anterior and posterior DMN subsystems; meanwhile, the anterior DMN subsystem receives compensatory effects from the parietal cortex. Early increases in AD-related pathologies in the PCC may act as first factors during this pathological process.

  20. 5-Hydroxytryptamine (serotonin)2A receptors in rat anterior cingulate cortex mediate the discriminative stimulus properties of d-lysergic acid diethylamide.

    PubMed

    Gresch, Paul J; Barrett, Robert J; Sanders-Bush, Elaine; Smith, Randy L

    2007-02-01

    d-Lysergic acid diethylamide (LSD), an indoleamine hallucinogen, produces profound alterations in mood, thought, and perception in humans. The brain site(s) that mediates the effects of LSD is currently unknown. In this study, we combine the drug discrimination paradigm with intracerebral microinjections to investigate the anatomical localization of the discriminative stimulus of LSD in rats. Based on our previous findings, we targeted the anterior cingulate cortex (ACC) to test its involvement in mediating the discriminative stimulus properties of LSD. Rats were trained to discriminate systemically administered LSD (0.085 mg/kg s.c.) from saline. Following acquisition of the discrimination, bilateral cannulae were implanted into the ACC (AP, +1.2 mm; ML, +/-1.0 mm; DV, -2.0 mm relative to bregma). Rats were tested for their ability to discriminate varying doses of locally infused LSD (0.1875, 0.375, and 0.75 microg/side) or artificial cerebrospinal fluid (n = 3-7). LSD locally infused into ACC dose-dependently substituted for systemically administered LSD, with 0.75 microg/side LSD substituting completely (89% correct). Systemic administration of the selective 5-hydroxytryptamine (serotonin) (5-HT)(2A) receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol (M100907; 0.4 mg/kg) blocked the discriminative cue of LSD (0.375 microg/side) infused into ACC (from 68 to 16% drug lever responding). Furthermore, M100907 (0.5 microg/microl/side) locally infused into ACC completely blocked the stimulus effects of systemic LSD (0.04 mg/kg; from 80 to 12% on the LSD lever). Taken together, these data indicate that 5-HT(2A) receptors in the ACC are a primary target mediating the discriminative stimulus properties of LSD.

  1. Association of a History of Child Abuse With Impaired Myelination in the Anterior Cingulate Cortex: Convergent Epigenetic, Transcriptional, and Morphological Evidence.

    PubMed

    Lutz, Pierre-Eric; Tanti, Arnaud; Gasecka, Alicja; Barnett-Burns, Sarah; Kim, John J; Zhou, Yi; Chen, Gang G; Wakid, Marina; Shaw, Meghan; Almeida, Daniel; Chay, Marc-Aurele; Yang, Jennie; Larivière, Vanessa; M'Boutchou, Marie-Noël; van Kempen, Léon C; Yerko, Volodymyr; Prud'homme, Josée; Davoli, Maria Antonietta; Vaillancourt, Kathryn; Théroux, Jean-François; Bramoullé, Alexandre; Zhang, Tie-Yuan; Meaney, Michael J; Ernst, Carl; Côté, Daniel; Mechawar, Naguib; Turecki, Gustavo

    2017-12-01

    Child abuse has devastating and long-lasting consequences, considerably increasing the lifetime risk of negative mental health outcomes such as depression and suicide. Yet the neurobiological processes underlying this heightened vulnerability remain poorly understood. The authors investigated the hypothesis that epigenetic, transcriptomic, and cellular adaptations may occur in the anterior cingulate cortex as a function of child abuse. Postmortem brain samples from human subjects (N=78) and from a rodent model of the impact of early-life environment (N=24) were analyzed. The human samples were from depressed individuals who died by suicide, with (N=27) or without (N=25) a history of severe child abuse, as well as from psychiatrically healthy control subjects (N=26). Genome-wide DNA methylation and gene expression were investigated using reduced representation bisulfite sequencing and RNA sequencing, respectively. Cell type-specific validation of differentially methylated loci was performed after fluorescence-activated cell sorting of oligodendrocyte and neuronal nuclei. Differential gene expression was validated using NanoString technology. Finally, oligodendrocytes and myelinated axons were analyzed using stereology and coherent anti-Stokes Raman scattering microscopy. A history of child abuse was associated with cell type-specific changes in DNA methylation of oligodendrocyte genes and a global impairment of the myelin-related transcriptional program. These effects were absent in the depressed suicide completers with no history of child abuse, and they were strongly correlated with myelin gene expression changes observed in the animal model. Furthermore, a selective and significant reduction in the thickness of myelin sheaths around small-diameter axons was observed in individuals with history of child abuse. The results suggest that child abuse, in part through epigenetic reprogramming of oligodendrocytes, may lastingly disrupt cortical myelination, a

  2. Expression of the dopaminergic D1 and D2 receptors in the anterior cingulate cortex in a model of neuropathic pain

    PubMed Central

    2011-01-01

    Background The anterior cingulate cortex (ACC) has been related to the affective component of pain. Dopaminergic mesocortical circuits, including the ACC, are able to inhibit neuropathic nociception measured as autotomy behaviour. We determined the changes in dopamine D1 and D2 (D1R and D2R) receptor expression in the ACC (cg1 and cg2) in an animal model of neuropathic pain. The neuropathic group had noxious heat applied in the right hind paw followed 30 min. later by right sciatic denervation. Autotomy score (AS) was recorded for eight days and subsequently classified in low, medium and high AS groups. The control consisted of naïve animals. A semiquantitative RT-PCR procedure was done to determine mRNA levels for D1R and D2R in cg1 and cg2, and protein levels were measured by Western Blot. Results The results of D1R mRNA in cg1 showed a decrease in all groups. D2R mRNA levels in cg1 decreased in low AS and increased in medium and high AS. Regarding D1R in cg2, there was an increase in all groups. D2R expression levels in cg2 decreased in all groups. In cg1, the D2R mRNA correlated positively with autotomy behaviour. Protein levels of D2R in cg1 increased in all groups but to a higher degree in low AS. In cg2 D2R protein only decreased discretely. D1R protein was not found in either ACC region. Conclusions This is the first evidence of an increase of inhibitory dopaminergic receptor (D2R) mRNA and protein in cg1 in correlation with nociceptive behaviour in a neuropathic model of pain in the rat. PMID:22171983

  3. The impact of multiple memory formation on dendritic complexity in the hippocampus and anterior cingulate cortex assessed at recent and remote time points

    PubMed Central

    Wartman, Brianne C.; Holahan, Matthew R.

    2014-01-01

    Consolidation processes, involving synaptic and systems level changes, are suggested to stabilize memories once they are formed. At the synaptic level, dendritic structural changes are associated with long-term memory storage. At the systems level, memory storage dynamics between the hippocampus and anterior cingulate cortex (ACC) may be influenced by the number of sequentially encoded memories. The present experiment utilized Golgi-Cox staining and neuron reconstruction to examine recent and remote structural changes in the hippocampus and ACC following training on three different behavioral procedures. Rats were trained on one hippocampal-dependent task only (a water maze task), two hippocampal-dependent tasks (a water maze task followed by a radial arm maze task), or one hippocampal-dependent and one non-hippocampal-dependent task (a water maze task followed by an operant conditioning task). Rats were euthanized recently or remotely. Brains underwent Golgi-Cox processing and neurons were reconstructed using Neurolucida software (MicroBrightField, Williston, VT, USA). Rats trained on two hippocampal-dependent tasks displayed increased dendritic complexity compared to control rats, in neurons examined in both the ACC and hippocampus at recent and remote time points. Importantly, this behavioral group showed consistent, significant structural differences in the ACC compared to the control group at the recent time point. These findings suggest that taxing the demand placed upon the hippocampus, by training rats on two hippocampal-dependent tasks, engages synaptic and systems consolidation processes in the ACC at an accelerated rate for recent and remote storage of spatial memories. PMID:24795581

  4. Complex posterior thoracic wall reconstruction using a crossover combined latissimus dorsi and serratus anterior free flap.

    PubMed

    Bodin, Frédéric; Dissaux, Caroline; Steib, Jean-Paul; Massard, Gilbert

    2016-03-01

    Radical resection of an extended malignant sarcoma of the chest wall requires full-thickness thoracic chest wall reconstruction. Reconstruction is tedious in the case of posteriorly located tumours, because the ipsilateral pedicled myocutaneous latissimus dorsi flap is involved and hence not usable for soft tissue coverage. We report an original case of a left giant dorsal chondrosarcoma originating from the 11th costovertebral joint. After extended resection and skeletal reconstruction, soft tissue coverage was achieved with an original contralateral free flap encompassing both latissimus dorsi and serratus anterior muscles. The flap pedicle was anastomosed to the ipsilateral thoracodorsal vessels. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  5. Off-label intranasal oxytocin use in adults is associated with increased amygdala-cingulate resting-state connectivity.

    PubMed

    Kovács, B; Kéri, S

    2015-06-01

    Intranasally administered oxytocin gained popularity as a hormone facilitating trust, cooperation, and affiliation. However, the long-term consequences of oxytocin use are not known. Given that intensive media attention and advertisements of the "love hormone" might lead to a new form of misuse, we conducted an online survey and identified 41 individuals with oxytocin misuse. Misuse will be proposed throughout the manuscript instead of the more accurate "off-label use" for reasons of simplicity. We compared the social functions of oxytocin users with that of 41 matched control volunteers. We administered the "Reading the Mind in the Eyes Test" (RMET) and the National Institute of Health (NIH) Toolbox Adult Social Relationship Scales (NIH-ASRS) to delineate affective "theory of mind" and real-life social functions, respectively. Resting-state functional brain connectivity analyses were also carried out. Results revealed no significant differences between individuals with oxytocin misuse and control participants on the RMET and NIH-ASRS. However, individuals with oxytocin misuse showed an increased connectivity between the right amygdala and dorsal anterior cingulate cortex relative to the control group. Higher estimated cumulative doses of oxytocin were associated with enhanced amygdala-cingulate connectivity. These results show that individuals who have self-selected for and pursued oxytocin use have increased amygdala-cingulate resting connectivity, compared to individuals who have not used oxytocin, despite the lack of differences in RMET and NIH-ASRS scores. Further longitudinal studies are warranted to investigate the cause-effect relationship between oxytocin use and brain connectivity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Recent cannabis abuse decreased stress-induced BOLD signals in the frontal and cingulate cortices of cocaine dependent individuals.

    PubMed

    Li, Chiang-Shan Ray; Milivojevic, Verica; Constable, R Todd; Sinha, Rajita

    2005-12-30

    Previous neuroimaging studies showed that use of marijuana can alter patterns of cortical activation during rest or a task challenge. We used functional magnetic resonance imaging to examine whether recent cannabis abuse contributed to stress-induced blood-oxygen-level-dependent (BOLD) contrast in a group of cocaine-dependent individuals. Emotional stress was induced using the script-guided imagery paradigm, in which subjects imagined being in a real-life stressful situation and, as a control, in a neutral situation, while BOLD signals of their brain were acquired with a 1.5 T scanner. Abstinent cocaine-dependent subjects with recent marijuana abuse (n=8) were compared with abstinent cocaine-dependent subjects who had not abused marijuana recently (n=18). The two groups were otherwise matched in their demographic characteristics and drug use history. All subjects were abstinent for at least 15 days and drug free as confirmed by urine drug screening before the imaging session. Recent cannabis abusers demonstrated hypo-activation in frontal cortical areas including the perigenual anterior cingulate during increased emotional stress. In contrast, at the same statistical threshold, no brain regions showed increased activation in recent cannabis abusers compared with non-abusers. The group difference in the perigenual anterior cingulate remained even when lifetime cocaine and alcohol consumption was accounted for in covariance analysis. These results provide evidence that recent cannabis abuse is associated with decreased activation in the frontal cortex during an emotional stress task. The results suggest an abnormal cognitive control mechanism during affective processing in association with heavy cannabis use.

  7. Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization.

    PubMed

    Beckmann, Matthias; Johansen-Berg, Heidi; Rushworth, Matthew F S

    2009-01-28

    Whole-brain neuroimaging studies have demonstrated regional variations in function within human cingulate cortex. At the same time, regional variations in cingulate anatomical connections have been found in animal models. It has, however, been difficult to estimate the relationship between connectivity and function throughout the whole cingulate cortex within the human brain. In this study, magnetic resonance diffusion tractography was used to investigate cingulate probabilistic connectivity in the human brain with two approaches. First, an algorithm was used to search for regional variations in the probabilistic connectivity profiles of all cingulate cortex voxels with the whole of the rest of the brain. Nine subregions with distinctive connectivity profiles were identified. It was possible to characterize several distinct areas in the dorsal cingulate sulcal region. Several distinct regions were also found in subgenual and perigenual cortex. Second, the probabilities of connection between cingulate cortex and 11 predefined target regions of interest were calculated. Cingulate voxels with a high probability of connection with the different targets formed separate clusters within cingulate cortex. Distinct connectivity fingerprints characterized the likelihood of connections between the extracingulate target regions and the nine cingulate subregions. Last, a meta-analysis of 171 functional studies reporting cingulate activation was performed. Seven different cognitive conditions were selected and peak activation coordinates were plotted to create maps of functional localization within the cingulate cortex. Regional functional specialization was found to be related to regional differences in probabilistic anatomical connectivity.

  8. Estimating corresponding locations in ipsilateral breast tomosynthesis views

    NASA Astrophysics Data System (ADS)

    van Schie, Guido; Tanner, Christine; Karssemeijer, Nico

    2011-03-01

    To improve cancer detection in mammography, breast exams usually consist of two views per breast. To combine information from both views, radiologists and multiview computer-aided detection (CAD) systems need to match corresponding regions in the two views. In digital breast tomosynthesis (DBT), finding corresponding regions in ipsilateral volumes may be a difficult and time-consuming task for radiologists, because many slices have to be inspected individually. In this study we developed a method to quickly estimate corresponding locations in ipsilateral tomosynthesis views by applying a mathematical transformation. First a compressed breast model is matched to the tomosynthesis view containing a point of interest. Then we decompress, rotate and compress again to estimate the location of the corresponding point in the ipsilateral view. In this study we use a simple elastically deformable sphere model to obtain an analytical solution for the transformation in a given DBT case. The model is matched to the volume by using automatic segmentation of the pectoral muscle, breast tissue and nipple. For validation we annotated 181 landmarks in both views and applied our method to each location. Results show a median 3D distance between the actual location and estimated location of 1.5 cm; a good starting point for a feature based local search method to link lesions for a multiview CAD system. Half of the estimated locations were at most 1 slice away from the actual location, making our method useful as a tool in mammographic workstations to interactively find corresponding locations in ipsilateral tomosynthesis views.

  9. The von Economo neurons in fronto-insular and anterior cingulate cortex

    PubMed Central

    Allman, John M.; Tetreault, Nicole A.; Hakeem, Atiya Y.; Manaye, Kebreten F.; Semendeferi, Katerina; Erwin, Joseph M.; Park, Soyoung; Goubert, Virginie; Hof, Patrick R.

    2011-01-01

    The von Economo neurons (VENs) are large bipolar neurons located in fronto-insular cortex (FI) and anterior limbic area (LA) in great apes and humans but not in other primates. Our stereological counts of VENs in FI and LA show them to be more numerous in humans than in apes. In humans, small numbers of VENs appear the 36th week post conception, with numbers increasing during the first eight months after birth. There are significantly more VENs in the right hemisphere in postnatal brains; this may be related to asymmetries in the autonomic nervous system. VENs are also present in elephants and whales and may be a specialization related to very large brain size. The large size and simple dendritic structure of these projection neurons suggest that they rapidly send basic information from FI and LA to other parts of the brain, while slower neighboring pyramids send more detailed information. Selective destruction of VENs in early stages of fronto-temporal dementia implies that they are involved in empathy, social awareness, and self-control, consistent with evidence from functional imaging. PMID:21534993

  10. Dorsal Anterior Cingulate Cortex Responses to Repeated Social Evaluative Feedback in Young Women with and without a History of Depression

    PubMed Central

    Dedovic, Katarina; Slavich, George M.; Muscatell, Keely A.; Irwin, Michael R.; Eisenberger, Naomi I.

    2016-01-01

    The dorsal anterior cingulate cortex (dACC) is recruited when a person is socially rejected or negatively evaluated. However, it remains to be fully understood how this region responds to repeated exposure to personally-relevant social evaluation, in both healthy populations and those vulnerable to Major Depressive Disorder (MDD), as well as how responding in these regions is associated with subsequent clinical functioning. To address this gap in the literature, we recruited 17 young women with past history of MDD (previously depressed) and 31 healthy controls and exposed them to a social evaluative session in a neuroimaging environment. In two bouts, participants received an equal amount of positive, negative, and neutral feedback from a confederate. All participants reported increases in feelings of social evaluation in response to the evaluative task. However, compared to healthy controls, previously depressed participants tended to show greater increases in depressed mood following the task. At the neural level, in response to negative (vs. positive) feedback, no main effect of group or evaluation periods was observed. However, a significant interaction between group and evaluation periods was found. Specifically, over the two bouts of evaluation, activity in the dACC decreased among healthy participants while it increased among previously depressed individuals. Interestingly and unexpectedly, in the previously depressed group specifically, this increased activity in dACC over time was associated with lower levels of depressive symptoms at baseline and at 6-months following the evaluation session (controlling for baseline levels). Thus, the subset of previously depressed participants who showed increases in the recruitment of the dACC over time in response to the negative evaluation seemed to fair better emotionally. These findings suggest that examining how the dACC responds to repeated bouts of negative evaluation reveals a new dimension to the role of the d

  11. The Neural Correlates of Mindful Awareness: A Possible Buffering Effect on Anxiety-Related Reduction in Subgenual Anterior Cingulate Cortex Activity

    PubMed Central

    Hakamata, Yuko; Iwase, Mikio; Kato, Takashi; Senda, Kohei; Inada, Toshiya

    2013-01-01

    Background Human personality consists of two fundamental elements character and temperament. Character allays automatic and preconceptual emotional responses determined by temperament. However, the neurobiological basis of character and its interplay with temperament remain elusive. Here, we examined character-temperament interplay and explored the neural basis of character, with a particular focus on the subgenual anterior cingulate cortex extending to a ventromedial portion of the prefrontal cortex (sgACC/vmPFC). Methods Resting brain glucose metabolism (GM) was measured using [18F] fluorodeoxyglucose positron emission tomography in 140 healthy adults. Personality traits were assessed using the Temperament and Character Inventory. Regions of interest (ROI) analysis and whole-brain analysis were performed to examine a combination effect of temperament and character on the sgACC/vmPFC and to explore the neural correlates of character, respectively. Results Harm avoidance (HA), a temperament trait (i.e., depressive, anxious, vulnerable), showed a significant negative impact on the sgACC/vmPFC GM, whereas self-transcendence (ST), a character trait (i.e., intuitive, judicious, spiritual), exhibited a significant positive effect on GM in the same region (HA β = −0.248, p = 0.003; ST: β = 0.250, p = 0.003). In addition, when coupled with strong ST, individuals with strong HA maintained the sgACC/vmPFC GM level comparable to the level of those with low scores on both HA and ST. Furthermore, exploratory whole-brain analysis revealed a significant positive relationship between ST and sgACC/vmPFC GM (peak voxel at x = −8, y = 32, z = −8, k = 423, Z = 4.41, corrected p FDR = 0.030). Conclusion The current findings indicate that the sgACC/vmPFC might play a critical role in mindful awareness to something beyond as well as in emotional regulation. Developing a sense of mindfulness may temper exaggerated emotional responses in

  12. The neural correlates of mindful awareness: a possible buffering effect on anxiety-related reduction in subgenual anterior cingulate cortex activity.

    PubMed

    Hakamata, Yuko; Iwase, Mikio; Kato, Takashi; Senda, Kohei; Inada, Toshiya

    2013-01-01

    Human personality consists of two fundamental elements character and temperament. Character allays automatic and preconceptual emotional responses determined by temperament. However, the neurobiological basis of character and its interplay with temperament remain elusive. Here, we examined character-temperament interplay and explored the neural basis of character, with a particular focus on the subgenual anterior cingulate cortex extending to a ventromedial portion of the prefrontal cortex (sgACC/vmPFC). Resting brain glucose metabolism (GM) was measured using [(18)F] fluorodeoxyglucose positron emission tomography in 140 healthy adults. Personality traits were assessed using the Temperament and Character Inventory. Regions of interest (ROI) analysis and whole-brain analysis were performed to examine a combination effect of temperament and character on the sgACC/vmPFC and to explore the neural correlates of character, respectively. Harm avoidance (HA), a temperament trait (i.e., depressive, anxious, vulnerable), showed a significant negative impact on the sgACC/vmPFC GM, whereas self-transcendence (ST), a character trait (i.e., intuitive, judicious, spiritual), exhibited a significant positive effect on GM in the same region (HA β = -0.248, p = 0.003; ST: β = 0.250, p = 0.003). In addition, when coupled with strong ST, individuals with strong HA maintained the sgACC/vmPFC GM level comparable to the level of those with low scores on both HA and ST. Furthermore, exploratory whole-brain analysis revealed a significant positive relationship between ST and sgACC/vmPFC GM (peak voxel at x = -8, y = 32, z = -8, k = 423, Z = 4.41, corrected p (FDR) = 0.030). The current findings indicate that the sgACC/vmPFC might play a critical role in mindful awareness to something beyond as well as in emotional regulation. Developing a sense of mindfulness may temper exaggerated emotional responses in individuals with a risk for or having

  13. Impairment of decision making and disruption of synchrony between basolateral amygdala and anterior cingulate cortex in the maternally separated rat.

    PubMed

    Cao, Bing; Wang, Jun; Zhang, Xu; Yang, Xiangwei; Poon, David Chun-Hei; Jelfs, Beth; Chan, Rosa H M; Wu, Justin Che-Yuen; Li, Ying

    2016-12-01

    There is considerable evidence to suggest early life experiences, such as maternal separation (MS), play a role in the prevalence of emotional dysregulation and cognitive impairment. At the same time, optimal decision making requires functional integrity between the amygdala and anterior cingulate cortex (ACC), and any dysfunction of this system is believed to induce decision-making deficits. However, the impact of MS on decision-making behavior and the underlying neurophysiological mechanisms have not been thoroughly studied. As such, we consider the impact of MS on the emotional and cognitive functions of rats by employing the open-field test, elevated plus-maze test, and rat gambling task (RGT). Using multi-channel recordings from freely behaving rats, we assessed the effects of MS on the large scale synchrony between the basolateral amygdala (BLA) and the ACC; while also characterizing the relationship between neural spiking activity and the ongoing oscillations in theta frequency band across the BLA and ACC. The results indicated that the MS rats demonstrated anxiety-like behavior. While the RGT showed a decrease in the percentage of good decision-makers, and an increase in the percentage of poor decision-makers. Electrophysiological data revealed an increase in the total power in the theta band of the LFP in the BLA and a decrease in theta power in the ACC in MS rats. MS was also found to disrupt the spike-field coherence of the ACC single unit spiking activity to the ongoing theta oscillations in the BLA and interrupt the synchrony in the BLA-ACC pathway. We provide specific evidence that MS leads to decision-making deficits that are accompanied by alteration of the theta band LFP in the BLA-ACC circuitries and disruption of the neural network integrity. These observations may help revise fundamental notions regarding neurophysiological biomarkers to treat cognitive impairment induced by early life stress. Copyright © 2016 Elsevier Inc. All rights

  14. Cortical Effects on Ipsilateral Hindlimb Muscles Revealed with Stimulus-Triggered Averaging of EMG Activity

    PubMed Central

    Messamore, William G.; Van Acker, Gustaf M.; Hudson, Heather M.; Zhang, Hongyu Y.; Kovac, Anthony; Nazzaro, Jules; Cheney, Paul D.

    2016-01-01

    While a large body of evidence supports the view that ipsilateral motor cortex may make an important contribution to normal movements and to recovery of function following cortical injury (Chollet et al. 1991; Fisher 1992; Caramia et al. 2000; Feydy et al. 2002), relatively little is known about the properties of output from motor cortex to ipsilateral muscles. Our aim in this study was to characterize the organization of output effects on hindlimb muscles from ipsilateral motor cortex using stimulus-triggered averaging of EMG activity. Stimulus-triggered averages of EMG activity were computed from microstimuli applied at 60–120 μA to sites in both contralateral and ipsilateral M1 of macaque monkeys during the performance of a hindlimb push–pull task. Although the poststimulus effects (PStEs) from ipsilateral M1 were fewer in number and substantially weaker, clear and consistent effects were obtained at an intensity of 120 μA. The mean onset latency of ipsilateral poststimulus facilitation was longer than contralateral effects by an average of 0.7 ms. However, the shortest latency effects in ipsilateral muscles were as short as the shortest latency effects in the corresponding contralateral muscles suggesting a minimal synaptic linkage that is equally direct in both cases. PMID:26088970

  15. Theta-frequency phase-locking of single anterior cingulate cortex neurons and synchronization with the medial thalamus are modulated by visceral noxious stimulation in rats.

    PubMed

    Wang, J; Cao, B; Yu, T R; Jelfs, B; Yan, J; Chan, R H M; Li, Y

    2015-07-09

    The rodent anterior cingulate cortex (ACC) is critical for visceral pain and pain-related aversive response in chronic visceral hypersensitive (VH) state. Long-term potentiation (LTP), induced by theta burst stimulation (TBS) in the medial thalamus (MT)-ACC pathway, is blocked in VH rats. However, the neuronal intrinsic firing characteristics and the MT-ACC connectivity have not been investigated in visceral pain. Using repetitive distension of the colon and rectum (rCRD) as a sensitization paradigm, we have identified that the spontaneous firing rates of ACC neurons and the CRD-stimulated neuronal firings were increased after repetitive visceral noxious stimulation. This correlates with increases in visceral pain responses (visceromotor responses, VMRs). Two multichannel arrays of electrodes were implanted in the MT and ACC. Recordings were performed in free-moving rats before and after repeated CRD treatment. Power spectral density analysis showed that the local field potential (LFP) recorded in the ACC displayed increases in theta band power (4-10 Hz) that were modulated by rCRD. Neural spike activity in the ACC becomes synchronized with ongoing theta oscillations of LFP. Furthermore, cross correlation analysis showed augmented synchronization of thalamo-ACC theta band LFPs, which was consistent with an increase of neuronal communication between the two regions. In conclusion, these results reveal theta oscillations and theta-frequency phase-locking as prominent features of neural activity in the ACC and a candidate neural mechanism underlying acute visceral pain. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Reduced gray matter volume in the anterior cingulate, orbitofrontal cortex and thalamus as a function of mild depressive symptoms: a voxel-based morphometric analysis.

    PubMed

    Webb, C A; Weber, M; Mundy, E A; Killgore, W D S

    2014-10-01

    Studies investigating structural brain abnormalities in depression have typically employed a categorical rather than dimensional approach to depression [i.e., comparing subjects with Diagnostic and Statistical Manual of Mental Disorders (DSM)-defined major depressive disorder (MDD) v. healthy controls]. The National Institute of Mental Health, through their Research Domain Criteria initiative, has encouraged a dimensional approach to the study of psychopathology as opposed to an over-reliance on categorical (e.g., DSM-based) diagnostic approaches. Moreover, subthreshold levels of depressive symptoms (i.e., severity levels below DSM criteria) have been found to be associated with a range of negative outcomes, yet have been relatively neglected in neuroimaging research. To examine the extent to which depressive symptoms--even at subclinical levels--are linearly related to gray matter volume reductions in theoretically important brain regions, we employed whole-brain voxel-based morphometry in a sample of 54 participants. The severity of mild depressive symptoms, even in a subclinical population, was associated with reduced gray matter volume in the orbitofrontal cortex, anterior cingulate, thalamus, superior temporal gyrus/temporal pole and superior frontal gyrus. A conjunction analysis revealed concordance across two separate measures of depression. Reduced gray matter volume in theoretically important brain regions can be observed even in a sample that does not meet DSM criteria for MDD, but who nevertheless report relatively elevated levels of depressive symptoms. Overall, these findings highlight the need for additional research using dimensional conceptual and analytic approaches, as well as further investigation of subclinical populations.

  17. Localized microstimulation of primate pregenual cingulate cortex induces negative decision-making.

    PubMed

    Amemori, Ken-ichi; Graybiel, Ann M

    2012-05-01

    The pregenual anterior cingulate cortex (pACC) has been implicated in human anxiety disorders and depression, but the circuit-level mechanisms underlying these disorders are unclear. In healthy individuals, the pACC is involved in cost-benefit evaluation. We developed a macaque version of an approach-avoidance decision task used to evaluate anxiety and depression in humans and, with multi-electrode recording and cortical microstimulation, we probed pACC function as monkeys performed this task. We found that the macaque pACC has an opponent process-like organization of neurons representing motivationally positive and negative subjective value. Spatial distribution of these two neuronal populations overlapped in the pACC, except in one subzone, where neurons with negative coding were more numerous. Notably, microstimulation in this subzone, but not elsewhere in the pACC, increased negative decision-making, and this negative biasing was blocked by anti-anxiety drug treatment. This cortical zone could be critical for regulating negative emotional valence and anxiety in decision-making.

  18. Outcome Uncertainty and Brain Activity Aberrance in the Insula and Anterior Cingulate Cortex Are Associated with Dysfunctional Impulsivity in Borderline Personality Disorder

    PubMed Central

    Mortensen, Jørgen Assar; Evensmoen, Hallvard Røe; Klensmeden, Gunilla; Håberg, Asta Kristine

    2016-01-01

    Uncertainty is recognized as an important component in distress, which may elicit impulsive behavior in patients with borderline personality disorder (BPD). These patients are known to be both impulsive and distress intolerant. The present study explored the connection between outcome uncertainty and impulsivity in BPD. The prediction was that cue primes, which provide incomplete information of subsequent target stimuli, led BPD patients to overrate the predictive value of these cues in order to reduce distress related to outcome uncertainty. This would yield dysfunctional impulsive behavior detected as commission errors to incorrectly primed targets. We hypothesized that dysfunctional impulsivity would be accompanied by aberrant brain activity in the right insula and anterior cingulate cortex (ACC), previously described to be involved in uncertainty processing, attention-/cognitive control and BPD pathology. 14 female BPD patients and 14 healthy matched controls (HCs) for comparison completed a Posner task during fMRI at 3T. The task was modified to limit the effect of spatial orientation and enhance the effect of conscious expectations. Brain activity was monitored in the priming phase where the effects of cue primes and neutral primes were compared. As predicted, the BPD group made significantly more commission errors to incorrectly primed targets than HCs. Also, the patients had faster reaction times to correctly primed targets relative to targets preceded by neutral primes. The BPD group had decreased activity in the right mid insula and increased activity in bilateral dorsal ACC during cue primes. The results indicate that strong expectations induced by cue primes led to reduced uncertainty, increased response readiness, and ultimately, dysfunctional impulsivity in BPD patients. We suggest that outcome uncertainty may be an important component in distress related impulsivity in BPD. PMID:27199724

  19. Fiction feelings in Harry Potter: haemodynamic response in the mid-cingulate cortex correlates with immersive reading experience.

    PubMed

    Hsu, Chun-Ting; Conrad, Markus; Jacobs, Arthur M

    2014-12-03

    Immersion in reading, described as a feeling of 'getting lost in a book', is a ubiquitous phenomenon widely appreciated by readers. However, it has been largely ignored in cognitive neuroscience. According to the fiction feeling hypothesis, narratives with emotional contents invite readers more to be empathic with the protagonists and thus engage the affective empathy network of the brain, the anterior insula and mid-cingulate cortex, than do stories with neutral contents. To test the hypothesis, we presented participants with text passages from the Harry Potter series in a functional MRI experiment and collected post-hoc immersion ratings, comparing the neural correlates of passage mean immersion ratings when reading fear-inducing versus neutral contents. Results for the conjunction contrast of baseline brain activity of reading irrespective of emotional content against baseline were in line with previous studies on text comprehension. In line with the fiction feeling hypothesis, immersion ratings were significantly higher for fear-inducing than for neutral passages, and activity in the mid-cingulate cortex correlated more strongly with immersion ratings of fear-inducing than of neutral passages. Descriptions of protagonists' pain or personal distress featured in the fear-inducing passages apparently caused increasing involvement of the core structure of pain and affective empathy the more readers immersed in the text. The predominant locus of effects in the mid-cingulate cortex seems to reflect that the immersive experience was particularly facilitated by the motor component of affective empathy for our stimuli from the Harry Potter series featuring particularly vivid descriptions of the behavioural aspects of emotion.

  20. Speed-Dependent Contribution of Callosal Pathways to Ipsilateral Movements

    PubMed Central

    Tazoe, Toshiki

    2013-01-01

    Transcallosal inhibitory interactions between primary motor cortices are important to suppress unintended movements in a resting limb during voluntary activation of the contralateral limb. The functional contribution of transcallosal inhibition targeting the voluntary active limb remains unknown. Using transcranial magnetic stimulation, we examined transcallosal inhibition [by measuring interhemispheric inhibition (IHI) and the ipsilateral silent period (iSP)] in the preparatory and execution phases of isotonic slower self-paced and ballistic movements performed by the ipsilateral index finger into abduction and the elbow into flexion in intact humans. We demonstrate decreased IHI in the preparatory phase of self-paced and ballistic index finger and elbow movements compared to rest; the decrease in IHI was larger during ballistic than self-paced movements. In contrast, in the execution phase, IHI and the iSP increased during ballistic compared to self-paced movements. Transcallosal inhibition was negatively correlated with reaction times in the preparatory phase and positively correlated with movement amplitude in the execution phase. Together, our results demonstrate a widespread contribution of transcallosal inhibition to ipsilateral movements of different speeds with a functional role during rapid movements; at faster speeds, decreased transcallosal inhibition in the preparatory phase may contribute to start movements rapidly, while the increase in the execution phase may contribute to stop the movement. We argue that transcallosal pathways enable signaling of the time of discrete behavioral events during ipsilateral movements, which is amplified by the speed of a movement. PMID:24107950

  1. Altered Resting State Effective Connectivity of Anterior Insula in Depression.

    PubMed

    Kandilarova, Sevdalina; Stoyanov, Drozdstoy; Kostianev, Stefan; Specht, Karsten

    2018-01-01

    Depression has been associated with changes in both functional and effective connectivity of large scale brain networks, including the default mode network, executive network, and salience network. However, studies of effective connectivity by means of spectral dynamic causal modeling (spDCM) are still rare and the interaction between the different resting state networks has not been investigated in detail. Thus, we aimed at exploring differences in effective connectivity among eight right hemisphere brain areas-anterior insula, inferior frontal gyrus, middle frontal gyrus (MFG), frontal eye field, anterior cingulate cortex, superior parietal lobe, amygdala, and hippocampus, between a group of healthy controls ( N  = 20) and medicated depressed patients ( N  = 20). We found that patients not only had significantly reduced strength of the connection from the anterior insula to the MFG (i.e., dorsolateral prefrontal cortex) but also a significant connection between the amygdala and the anterior insula. Moreover, depression severity correlated with connectivity of the hippocampal node. In conclusion, the results from this resting state spDCM study support and enrich previous data on the role of the right anterior insula in the pathophysiology of depression. Furthermore, our findings add to the growing evidence of an association between depression severity and disturbances of the hippocampal function in terms of impaired connectivity with other brain regions.

  2. Altered Resting State Effective Connectivity of Anterior Insula in Depression

    PubMed Central

    Kandilarova, Sevdalina; Stoyanov, Drozdstoy; Kostianev, Stefan; Specht, Karsten

    2018-01-01

    Depression has been associated with changes in both functional and effective connectivity of large scale brain networks, including the default mode network, executive network, and salience network. However, studies of effective connectivity by means of spectral dynamic causal modeling (spDCM) are still rare and the interaction between the different resting state networks has not been investigated in detail. Thus, we aimed at exploring differences in effective connectivity among eight right hemisphere brain areas—anterior insula, inferior frontal gyrus, middle frontal gyrus (MFG), frontal eye field, anterior cingulate cortex, superior parietal lobe, amygdala, and hippocampus, between a group of healthy controls (N = 20) and medicated depressed patients (N = 20). We found that patients not only had significantly reduced strength of the connection from the anterior insula to the MFG (i.e., dorsolateral prefrontal cortex) but also a significant connection between the amygdala and the anterior insula. Moreover, depression severity correlated with connectivity of the hippocampal node. In conclusion, the results from this resting state spDCM study support and enrich previous data on the role of the right anterior insula in the pathophysiology of depression. Furthermore, our findings add to the growing evidence of an association between depression severity and disturbances of the hippocampal function in terms of impaired connectivity with other brain regions. PMID:29599728

  3. Functional connectivity and neuronal variability of resting state activity in bipolar disorder--reduction and decoupling in anterior cortical midline structures.

    PubMed

    Magioncalda, Paola; Martino, Matteo; Conio, Benedetta; Escelsior, Andrea; Piaggio, Niccolò; Presta, Andrea; Marozzi, Valentina; Rocchi, Giulio; Anastasio, Loris; Vassallo, Linda; Ferri, Francesca; Huang, Zirui; Roccatagliata, Luca; Pardini, Matteo; Northoff, Georg; Amore, Mario

    2015-02-01

    The cortical midline structures seem to be involved in the modulation of different resting state networks, such as the default mode network (DMN) and salience network (SN). Alterations in these systems, in particular in the perigenual anterior cingulate cortex (PACC), seem to play a central role in bipolar disorder (BD). However, the exact role of the PACC, and its functional connections to other midline regions (within and outside DMN) still remains unclear in BD. We investigated functional connectivity (FC), standard deviation (SD, as a measure of neuronal variability) and their correlation in bipolar patients (n = 40) versus healthy controls (n = 40), in the PACC and in its connections in different frequency bands (standard: 0.01-0.10 Hz; Slow-5: 0.01-0.027 Hz; Slow-4: 0.027-0.073 Hz). Finally, we studied the correlations between FC alterations and clinical-neuropsychological parameters and we explored whether subgroups of patients in different phases of the illness present different patterns of FC abnormalities. We found in BD decreased FC (especially in Slow-5) from the PACC to other regions located predominantly in the posterior DMN (such as the posterior cingulate cortex (PCC) and inferior temporal gyrus) and in the SN (such as the supragenual anterior cingulate cortex and ventrolateral prefrontal cortex). Second, we found in BD a decoupling between PACC-based FC and variability in the various target regions (without alteration in variability itself). Finally, in our subgroups explorative analysis, we found a decrease in FC between the PACC and supragenual ACC (in depressive phase) and between the PACC and PCC (in manic phase). These findings suggest that in BD the communication, that is, information transfer, between the different cortical midline regions within the cingulate gyrus does not seem to work properly. This may result in dysbalance between different resting state networks like the DMN and SN. A deficit in the anterior DMN-SN connectivity

  4. STA-ACA bypass using the ipsilateral free STA graft as an interposition graft and A3-A3 anastomosis for treatment of bilateral ACA steno-occlusive ischemia.

    PubMed

    Horiuchi, Tetsuyoshi; Ichinose, Shunsuke; Agata, Masahiro; Ito, Kiyoshi; Hongo, Kazuhiro

    2018-04-01

    Anterior cerebral artery (ACA)-related ischemia is a rare entity in patients with atherosclerosis. Some surgical treatments are reported to date. We present the modification of intracranial-intracranial and intracranial-extracranial bypasses for symptomatic bilateral ACA steno-occlusive disease. The A3-A3 bypass followed by the superficial temporal artery-ACA bypass using the ipsilateral free superficial temporal artery graft is useful without harvesting of the radial artery. Bilateral ACA steno-occlusive induced ischemia can be treated with tailored bypass procedures.

  5. Evidence that the medial amygdala projects to the anterior/ventromedial hypothalamic nuclei to inhibit maternal behavior in rats.

    PubMed

    Sheehan, T; Paul, M; Amaral, E; Numan, M J; Numan, M

    2001-01-01

    The maternal behaviors shown by a rat that has given birth are not shown by a virgin female rat when she is first presented with young. This absence of maternal behavior in virgins has been attributed to the activity of a neural circuit that inhibits maternal behavior in nulliparae. The medial amygdala and regions of the medial hypothalamus such as the anterior and ventromedial hypothalamic nuclei have previously been shown to inhibit maternal behavior, in that lesions to these regions promote maternal responding. Furthermore, we have recently shown that these and other regions, such as the principal bed nucleus of the stria terminalis, the ventral lateral septum, and the dorsal premammillary nucleus, show higher pup-induced Fos-immunoreactivity in non-maternal rats exposed to pups than during the performance of maternal behavior, indicating that they too could be involved in preventing maternal responsiveness. The current study tested whether the medial amygdala projects to the anterior/ventromedial hypothalamic nuclei in a neural circuit that inhibits maternal behavior, as well as to see what other brain regions could participate in this circuit. Bilateral excitotoxic lesions of the medial amygdala, or of the anterior/ventromedial hypothalamic nuclei, promoted maternal behavior. Unilateral medial amygdala lesions caused a reduction of pup-induced Fos-immunoreactivity in the anterior/ventromedial hypothalamic nuclei in non-maternal rats ipsilateral to the lesion, as well as in the principal bed nucleus of the stria terminalis, ventral lateral septum, and dorsal premammillary nucleus. Finally, unilateral medial amygdala lesions paired with contralateral anterior/ventromedial hypothalamic nuclei lesions promoted maternal behavior, although ipsilateral lesion placements were also effective.Together, these results indicate that the medial amygdala projects to the anterior/ventromedial hypothalamic nuclei in a neural circuit that inhibits maternal behavior, and that

  6. Ten-m3 Is Required for the Development of Topography in the Ipsilateral Retinocollicular Pathway

    PubMed Central

    Dharmaratne, Nuwan; Glendining, Kelly A.; Young, Timothy R.; Tran, Heidi; Sawatari, Atomu; Leamey, Catherine A.

    2012-01-01

    Background The alignment of ipsilaterally and contralaterally projecting retinal axons that view the same part of visual space is fundamental to binocular vision. While much progress has been made regarding the mechanisms which regulate contralateral topography, very little is known of the mechanisms which regulate the mapping of ipsilateral axons such that they align with their contralateral counterparts. Results Using the advantageous model provided by the mouse retinocollicular pathway, we have performed anterograde tracing experiments which demonstrate that ipsilateral retinal axons begin to form terminal zones (TZs) in the superior colliculus (SC), within the first few postnatal days. These appear mature by postnatal day 11. Importantly, TZs formed by ipsilaterally-projecting retinal axons are spatially offset from those of contralaterally-projecting axons arising from the same retinotopic location from the outset. This pattern is consistent with that required for adult visuotopy. We further demonstrate that a member of the Ten-m/Odz/Teneurin family of homophilic transmembrane glycoproteins, Ten-m3, is an essential regulator of ipsilateral retinocollicular topography. Ten-m3 mRNA is expressed in a high-medial to low-lateral gradient in the developing SC. This corresponds topographically with its high-ventral to low-dorsal retinal gradient. In Ten-m3 knockout mice, contralateral ventrotemporal axons appropriately target rostromedial SC, whereas ipsilateral axons exhibit dramatic targeting errors along both the mediolateral and rostrocaudal axes of the SC, with a caudal shift of the primary TZ, as well as the formation of secondary, caudolaterally displaced TZs. In addition to these dramatic ipsilateral-specific mapping errors, both contralateral and ipsilateral retinocollicular TZs exhibit more subtle changes in morphology. Conclusions We conclude that important aspects of adult visuotopy are established via the differential sensitivity of ipsilateral and

  7. Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse.

    PubMed

    Goulas, Alexandros; Uylings, Harry B M; Hilgetag, Claus C

    2017-04-01

    Structural connectivity among cortical areas provides the substrate for information exchange in the cerebral cortex and is characterized by systematic patterns of presence or absence of connections. What principles govern this cortical wiring diagram? Here, we investigate the relation of physical distance and cytoarchitecture with the connectional architecture of the mouse cortex. Moreover, we examine the relation between patterns of ipsilateral and contralateral connections. Our analysis reveals a mirrored and attenuated organization of contralateral connections when compared with ipsilateral connections. Both physical distance and cytoarchitectonic similarity of cortical areas are related to the presence or absence of connections. Notably, our analysis demonstrates that the combination of these factors relates better to cortico-cortical connectivity than each factor in isolation and that the two factors relate differently to ipsilateral and contralateral connectivity. Physical distance is more tightly related to the presence or absence of ipsilateral connections, but its relevance greatly diminishes for contralateral connections, while the contribution of cytoarchitectonic similarity remains relatively stable. Our results, together with similar findings in the cat and macaque cortex, suggest that a common set of principles underlies the macroscale wiring of the mammalian cerebral cortex.

  8. Decision-making for complex scapula and ipsilateral clavicle fractures: a review.

    PubMed

    Hess, Florian; Zettl, Ralph; Smolen, Daniel; Knoth, Christoph

    2018-03-23

    Complex scapula with ipsilateral clavicle fracures remains a challange and treatment recommendations are still missing.  This review provides an overview of the evolution of the definition, classification and treatment strategies for complex scapula and ipsilateral clavicle fractures. As with other rare conditions, consensus has not been reached on the most suitable management strategies to treat these patients. The aim of this review is twofold: to compile and summarize the currently available literature on this topic, and to recommend treatment approaches. Included in the review are the following topics: biomechanics of scapula and ipsilateral clavicle fractures, preoperative radiological evaluation, surgical treatment of the clavicle only, surgical treatment of both the clavicle and scapula, and nonsurgical treatment options. A decision-making algorithm is proposed for different treatment strategies based on pre-operative parameters, and an example of a case treated our institution is presented to illustrate use of the algorithm. The role of instability in complex scapula with ipsilateral clavicle fractures remains unclear. The question of stability is preoperatively less relevant than the question of whether the dislocated fragments lead to compromised shoulder function.

  9. Occipital Nerve Field Transcranial Direct Current Stimulation Normalizes Imbalance Between Pain Detecting and Pain Inhibitory Pathways in Fibromyalgia.

    PubMed

    De Ridder, Dirk; Vanneste, Sven

    2017-04-01

    Occipital nerve field (OCF) stimulation with subcutaneously implanted electrodes is used to treat headaches, more generalized pain, and even failed back surgery syndrome via unknown mechanisms. Transcranial direct current stimulation (tDCS) can predict the efficacy of implanted electrodes. The purpose of this study is to unravel the neural mechanisms involved in global pain suppression, mediated by occipital nerve field stimulation, within the realm of fibromyalgia. Nineteen patients with fibromyalgia underwent a placebo-controlled OCF tDCS. Electroencephalograms were recorded at baseline after active and sham stimulation. In comparison with healthy controls, patients with fibromyalgia demonstrate increased dorsal anterior cingulate cortex, increased premotor/dorsolateral prefrontal cortex activity, and an imbalance between pain-detecting dorsal anterior cingulate cortex and pain-suppressing pregenual anterior cingulate cortex activity, which is normalized after active tDCS but not sham stimulation associated with increased pregenual anterior cingulate cortex activation. The imbalance improvement between the pregenual anterior cingulate cortex and the dorsal anterior cingulate cortex is related to clinical changes. An imbalance assumes these areas communicate and, indeed, abnormal functional connectivity between the dorsal anterior cingulate cortex and pregenual anterior cingulate cortex is noted to be caused by a dysfunctional effective connectivity from the pregenual anterior cingulate cortex to the dorsal anterior cingulate cortex, which improves and normalizes after real tDCS but not sham tDCS. In conclusion, OCF tDCS exerts its effect via activation of the descending pain inhibitory pathway and de-activation of the salience network, both of which are abnormal in fibromyalgia.

  10. Activation of anterior insula during self-reflection.

    PubMed

    Modinos, Gemma; Ormel, Johan; Aleman, André

    2009-01-01

    Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the "self"-network. Using functional magnetic resonance imaging (fMRI), we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC) and the anterior cingulate cortex (ACC). Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.

  11. Age-related changes of n-3 and n-6 polyunsaturated fatty acids in the anterior cingulate cortex of individuals with major depressive disorder.

    PubMed

    Conklin, Sarah M; Runyan, Caroline A; Leonard, Sherry; Reddy, Ravinder D; Muldoon, Matthew F; Yao, Jeffrey K

    2010-01-01

    Accumulating evidence finds a relative deficiency of peripheral membrane fatty acids in persons with affective disorders such as unipolar and bipolar depression. Here we sought to investigate whether postmortem brain fatty acids within the anterior cingulate cortex (BA-24) varied according to the presence of major depression at the time of death. Using capillary gas chromatography we measured fatty acids in a depressed group (n=12), and in a control group without lifetime history of psychiatric diagnosis (n=14). Compared to the control group, the depressed group showed significantly lower concentrations of numerous saturated and polyunsaturated fatty acids including both the n-3 and n-6 fatty acids. Additionally, significant correlations between age at death and precursor (or metabolites) in the n-3 fatty acid pathway were demonstrated in the depressed group but not in control subjects. In the n-6 fatty acid family, the ratio of 20:3(n-6)/18:2(n-6) was higher in patients than in control groups, whereas the ratio of 20:4(n-6)/20:3(n-6) was relatively decreased in patients. Lastly, a significant negative correlation between age and the ratio of 20:4(n-6) to 22:6(n-3) was found in patients, but not in controls. Taken together, decreases in 22:6(n-3) may be caused, at least in part, by the diminished formation of 20:5(n-3), which is derived from 20:4(n-3) through a Delta5 desaturase reaction. The present findings from postmortem brain tissue raise the possibility that an increased ratio of 20:4(n-6) to 22:6(n-3) may provide us with a biomarker for depression. Future research should further investigate these relationships. Published by Elsevier Ltd.

  12. A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action

    PubMed Central

    Manza, Peter; Hu, Sien; Chao, Herta H.; Zhang, Sheng; Leung, Hoi-Chung; Li, Chiang-shan R.

    2016-01-01

    Response inhibition and salience detection are among the most studied psychological constructs of cognitive control. Despite a growing body of work, how inhibition and salience processing interact and engage regional brain activations remains unclear. Here, we examined this issue in a stop signal task (SST), where a prepotent response needs to be inhibited to allow an alternative, less dominant response. Sixteen adult individuals performed two versions of the SST each with 25% (SST25) and 75% (SST75) of stop trials. We posited that greater regional activations to the infrequent trial type in each condition (i.e., to stop as compared to go trials in SST25 and to go as compared to stop trials in SST75) support salience detection. Further, successful inhibition in stop trials requires attention to the stop signal to trigger motor inhibition, and the stop signal reaction time (SSRT) has been used to index the efficiency of motor response inhibition. Therefore, greater regional activations to stop as compared to go success trials in association with the stop signal reaction time (SSRT) serves to expedite response inhibition. In support of an interactive role, the dorsal anterior cingulate cortex (dACC) increases activation to salience detection in both SST25 and SST75, but only mediates response inhibition in SST75. Thus, infrequency response in the dACC supports motor inhibition only when stopping has become a routine. In contrast, although the evidence is less robust, the pre-supplementary motor area (pre-SMA) increases activity to the infrequent stimulus and supports inhibition in both SST25 and SST75. These findings clarify a unique role of the dACC and add to the literature that distinguishes dACC and pre-SMA functions in cognitive control. PMID:27126003

  13. A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action.

    PubMed

    Manza, Peter; Hu, Sien; Chao, Herta H; Zhang, Sheng; Leung, Hoi-Chung; Li, Chiang-Shan R

    2016-07-01

    Response inhibition and salience detection are among the most studied psychological constructs of cognitive control. Despite a growing body of work, how inhibition and salience processing interact and engage regional brain activations remains unclear. Here, we examined this issue in a stop signal task (SST), where a prepotent response needs to be inhibited to allow an alternative, less dominant response. Sixteen adult individuals performed two versions of the SST each with 25% (SST25) and 75% (SST75) of stop trials. We posited that greater regional activations to the infrequent trial type in each condition (i.e., to stop as compared to go trials in SST25 and to go as compared to stop trials in SST75) support salience detection. Further, successful inhibition in stop trials requires attention to the stop signal to trigger motor inhibition, and the stop signal reaction time (SSRT) has been used to index the efficiency of motor response inhibition. Therefore, greater regional activations to stop as compared to go success trials in association with the stop signal reaction time (SSRT) serve to expedite response inhibition. In support of an interactive role, the dorsal anterior cingulate cortex (dACC) increases activation to salience detection in both SST25 and SST75, but only mediates response inhibition in SST75. Thus, infrequency response in the dACC supports motor inhibition only when stopping has become a routine. In contrast, although the evidence is less robust, the pre-supplementary motor area (pre-SMA) increases activity to the infrequent stimulus and supports inhibition in both SST25 and SST75. These findings clarify a unique role of the dACC and add to the literature that distinguishes dACC and pre-SMA functions in cognitive control. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Errors Recruit both Cognitive and Emotional Monitoring Systems: Simultaneous Intracranial Recordings in the Dorsal Anterior Cingulate Gyrus and Amygdala Combined with fMRI

    ERIC Educational Resources Information Center

    Pourtois, Gilles; Vocat, Roland; N'Diaye, Karim; Spinelli, Laurent; Seeck, Margitta; Vuilleumier, Patrik

    2010-01-01

    We studied error monitoring in a human patient with unique implantation of depth electrodes in both the left dorsal cingulate gyrus and medial temporal lobe prior to surgery. The patient performed a speeded go/nogo task and made a substantial number of commission errors (false alarms). As predicted, intracranial Local Field Potentials (iLFPs) in…

  15. Choosing the appropriate side for subcutaneous port catheter placement in patients with mastectomy: ipsilateral or contralateral?

    PubMed

    Nas, Omer Fatih; Hacikurt, Kadir; Kaya, Ahmet; Dogan, Nurullah; Sanal, Bekir; Ozkaya, Guven; Dundar, Halit Ziya; Erdogan, Cuneyt

    2017-06-01

    To evaluate long-term clinical follow-up results of implanting subcutaneous port catheters (SPCs) on ipsilateral or contralateral with mastectomy side in patients with axillary lymph node dissection. A total of 73 patients composed of ipsilateral (34 catheters) and contralateral (39 catheters) groups, with SPCs were included. All patients had lumpectomy or modified radical mastectomy for breast cancer. Ipsilateral and contralateral groups had similar patient characteristics. Five late complications were seen in the ipsilateral group and 2 late complications in the contralateral group. No statistical significant difference was seen between two groups in regard to late complications. Four complications of the ipsilateral group were classified as major group C and 1 as major group D, while 1 complication of the contralateral group was classified as minor group B and 1 as major group C according to Society of Interventional Radiology (SIR) classification. No statistical significant difference was seen between complication rates of two groups in regard to SIR classification. SPC related complications do not differ in regard to ipsilateral or contralateral side selection on mastectomized patients with breast cancer and lymph node dissection. SPCs can be implanted on ipsilateral or contralateral sides of the operation in these patients.

  16. Masking overshoot: Effects of ipsilateral, bilateral and contralateral priming

    NASA Astrophysics Data System (ADS)

    Connington, Maureen Catherine

    This study was concerned with masking overshoot, the elevation of the threshold of a brief signal when it is presented at the onset of a masking noise rather than at its temporal center. More specifically, it was concerned with the release from overshoot (i.e., threshold improvement) produced by priming stimuli, presented ipsilaterally, bilaterally and contralaterally at primer- masker gaps of 20, 40 and 80 msec. The more general purpose of the study was to assess the contributions of peripheral and central factors to the overshoot and overshoot-release phenomena. The primers and masking stimuli consisted of white noise bursts of 200 and 400 msec duration, respectively. The probe signal was a 20 msec 4kHz tone. The tone and masker were always presented in one ear. There were, however, 3 modes of primer presentation: ipsilateral, bilateral (identical waveforms to both ears) and contralateral. Three primer-masker gaps of 20, 40 and 80 msec were used. Five normally hearing adults were tested at primer and masker levels of 80 dB HL. Four of the five subjects exhibited significant masking overshoot, when tested without priming. Ipsilateral priming with 20 and 40 msec gaps produced significant masking release from overshoot. Threshold became poorer, however with increasing gap duration and with increasing distance of the perceived primer from the test ear (i.e. ipsilateral priming produced better thresholds than did bilateral priming and bilateral priming produced better thresholds than contralateral priming). There was significant masking enhancement (i.e. threshold was significantly poorer than in the unprimed probe at onset condition) with the contralateral 80 msec primer. The fact that ipsilateral and bilateral primers performed differently does not support the theory that masking overshoot and its release are solely the results of peripheral adaptation. In fact, the group results support the conclusion that masking overshoot is influenced by central factors. However

  17. Reduced Activation in Lateral Prefrontal Cortex and Anterior Cingulate during Attention and Cognitive Control Functions in Medication-Naive Adolescents with Depression Compared to Controls

    ERIC Educational Resources Information Center

    Halari, Rozmin; Simic, Mima; Pariante, Carmine M.; Papadopoulos, Andrew; Cleare, Anthony; Brammer, Michael; Fombonne, Eric; Rubia, Katya

    2009-01-01

    Background: There is increasing recognition of major depressive disorder (MDD) in adolescence. In adult MDD, abnormalities of fronto-striatal and fronto-cingulate circuitries mediating cognitive control functions have been implicated in the pathogenesis and been related to problems with controlling negative thoughts. No neuroimaging studies of…

  18. Psychostimulant drug effects on glutamate, Glx, and creatine in the anterior cingulate cortex and subjective response in healthy humans.

    PubMed

    White, Tara L; Monnig, Mollie A; Walsh, Edward G; Nitenson, Adam Z; Harris, Ashley D; Cohen, Ronald A; Porges, Eric C; Woods, Adam J; Lamb, Damon G; Boyd, Chelsea A; Fekir, Sinda

    2018-06-01

    Prescription psychostimulants produce rapid changes in mood, energy, and attention. These drugs are widely used and abused. However, their effects in human neocortex on glutamate and glutamine (pooled as Glx), and key neurometabolites such as N-acetylaspartate (tNAA), creatine (tCr), choline (Cho), and myo-inositol (Ins) are poorly understood. Changes in these compounds could inform the mechanism of action of psychostimulant drugs and their abuse potential in humans. We investigated the acute impact of two FDA-approved psychostimulant drugs on neurometabolites using magnetic resonance spectroscopy ( 1 H MRS). Single clinically relevant doses of d-amphetamine (AMP, 20 mg oral), methamphetamine (MA, 20 mg oral; Desoxyn®), or placebo were administered to healthy participants (n = 26) on three separate test days in a placebo-controlled, double-blinded, within-subjects crossover design. Each participant experienced all three conditions and thus served as his/her own control. 1 H MRS was conducted in the dorsal anterior cingulate cortex (dACC), an integrative neocortical hub, during the peak period of drug responses (140-150 m post ingestion). D-amphetamine increased the level of Glu (p = .0001), Glx (p = .003), and tCr (p = .0067) in the dACC. Methamphetamine increased Glu in females, producing a significant crossover interaction pattern with gender (p = .02). Drug effects on Glu, tCr, and Glx were positively correlated with subjective drug responses, predicting both the duration of AMP liking (Glu: r = +.49, p = .02; tCr: r = +.41, p = .047) and the magnitude of peak drug high to MA (Glu: r = +.52, p = .016; Glx: r = +.42, p = .049). Neither drug affected the levels of tNAA, Cho, or Ins after correction for multiple comparisons. We conclude that d-amphetamine increased the concentration of glutamate, Glx, and tCr in the dACC in male and female volunteers 2 1 / 2 hours after drug consumption. There was evidence

  19. Lateral medullary infarction with ipsilateral hemiparesis, lemniscal sensation loss and hypoglossal nerve palsy.

    PubMed

    Li, Xiaodi; Wang, Yuzhou

    2014-04-01

    Here, we present a rare case of a lateral medullary infarction with ipsilateral hemiparesis, lemniscal sensation loss and hypoglossal nerve palsy. In this case, we proved Opalski's hypothesis by diffusion tensor tractography that ipsilateral hemiparesis in a medullary infarction is due to the involvement of the decussated corticospinal tract. We found that the clinical triad of ipsilateral hemiparesis, lemniscal sensation loss and hypoglossal nerve palsy, which had been regarded as a variant of medial medullary syndrome, turned out to be caused by lateral lower medullary infarction. Therefore, this clinical triad does not imply the involvement of the anteromedial part of medulla oblongata, when it is hard to distinguish a massive lateral medullary infarction from a hemimedullary infarction merely from MR images. At last, we suggest that hyperreflexia and Babinski's sign may not be indispensable to the diagnosis of Opalski's syndrome and we propose that "hemimedullary infarction with ipsilateral hemiparesis" is intrinsically a variant of lateral medullary infarction.

  20. High frequency electrical stimulation concurrently induces central sensitization and ipsilateral inhibitory pain modulation.

    PubMed

    Vo, L; Drummond, P D

    2013-03-01

    In healthy humans, analgesia to blunt pressure develops in the ipsilateral forehead during various forms of limb pain. The aim of the current study was to determine whether this analgesic response is induced by ultraviolet B radiation (UVB), which evokes signs of peripheral sensitization, or by high-frequency electrical stimulation (HFS), which triggers signs of central sensitization. Before and after HFS and UVB conditioning, sensitivity to heat and to blunt and sharp stimuli was assessed at and adjacent to the treated site in the forearm. In addition, sensitivity to blunt pressure was measured bilaterally in the forehead. The effect of ipsilateral versus contralateral temple cooling on electrically evoked pain in the forearm was then examined, to determine whether HFS or UVB conditioning altered inhibitory pain modulation. UVB conditioning triggered signs of peripheral sensitization, whereas HFS conditioning triggered signs of central sensitization. Importantly, ipsilateral forehead analgesia developed after HFS but not UVB conditioning. In addition, decreases in electrically evoked pain at the HFS-treated site were greater during ipsilateral than contralateral temple cooling, whereas decreases at the UVB-treated site were similar during both procedures. HFS conditioning induced signs of central sensitization in the forearm and analgesia both in the ipsilateral forehead and the HFS-treated site. This ipsilateral analgesia was not due to peripheral sensitization or other non-specific effects, as it failed to develop after UVB conditioning. Thus, the supra-spinal mechanisms that evoke central sensitization might also trigger a hemilateral inhibitory pain modulation process. This inhibitory process could sharpen the boundaries of central sensitization or limit its spread. © 2012 European Federation of International Association for the Study of Pain Chapters.

  1. Brain-derived neurotrophic factor (BDNF) in the rostral anterior cingulate cortex (rACC) contributes to neuropathic spontaneous pain-related aversion via NR2B receptors.

    PubMed

    Zhang, Le; Wang, Gongming; Ma, Jinben; Liu, Chengxiao; Liu, Xijiang; Zhan, Yufeng; Zhang, Mengyuan

    2016-10-01

    The rostral anterior cingulate cortex (rACC) plays an important role in pain affect. Previous investigations have reported that the rACC mediates the negative affective component of inflammatory pain and contributed to the aversive state of nerve injury-induced neuropathic pain. Brain-derived neurotrophic factor (BDNF), an activity-dependent neuromodulator in the adult brain, is believed to play a role in the development and maintenance of inflammatory and neuropathic pain in the spinal cord. However, whether and how BDNF in the rACC regulates pain-related aversion due to peripheral nerve injury is largely unknown. Behaviorally, using conditioned place preference (CPP) training in rats, which is thought to reveal spontaneous pain-related aversion, we found that CPP was acquired following spinal clonidine in rats with partial sciatic nerve transection. Importantly, BDNF was upregulated within the rACC in of rats with nerve injury and enhanced the CPP acquisition, while a local injection of a BDNF-tropomyosin receptor kinase B (TrkB) antagonist into the rACC completely blocked this process. Finally, we demonstrated that the BDNF/TrkB pathway exerted its function by activating the NR2B receptor, which is widely accepted to be a crucial factor contributing to pain affect. In conclusion, our results demonstrate that the BDNF/TrkB-mediated signaling pathway in the rACC is involved in the development of neuropathic spontaneous pain-related aversion and that this process is dependent upon activation of NR2B receptors. These findings suggest that suppression of the BDNF-related signaling pathway in the rACC may provide a novel strategy to overcome pain-related aversion. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Increased nuclear Olig1-expression in the pregenual anterior cingulate white matter of patients with major depression: a regenerative attempt to compensate oligodendrocyte loss?

    PubMed

    Mosebach, Jennifer; Keilhoff, Gerburg; Gos, Tomasz; Schiltz, Kolja; Schoeneck, Linda; Dobrowolny, Henrik; Mawrin, Christian; Müller, Susan; Schroeter, Matthias L; Bernstein, Hans-Gert; Bogerts, Bernhard; Steiner, Johann

    2013-08-01

    Structural and functional oligodendrocyte deficits as well as impaired myelin integrity have been described in affective disorders and schizophrenia, and may disturb the connectivity between disease-relevant brain regions. Olig1, an oligodendroglial transcription factor, might be important in this context, but has not been systematically studied so far. Nissl- and Olig1-stained oligodendrocytes were quantified in the pregenual anterior cingulate (pACC)/dorsolateral prefrontal cortex (DLPFC), and adjacent white matter of patients with major depressive disorder (MDD, n = 9), bipolar disorder (BD, n = 8), schizophrenia (SZ, n = 13), and matched controls (n = 16). Potential downstream effects of increased Olig1-expression were analyzed. Antidepressant drug effects on Olig1-expression were further explored in OLN-93 oligodendrocyte cultures. Nissl-stainings of both white matter regions showed a 19-27% reduction of total oligodendrocyte densities in MDD and BD, but not in SZ. In contrast, nuclear Olig1-immunoreactivity was elevated in MDD in the pACC-adjacent white matter (left: p = 0.008; right: p = 0.018); this effect tended to increase with antidepressant dosage (r = 0.631, p = 0.069). This reactive increase of Olig1 was confirmed by partly dose-dependent effects of imipramine and amitriptyline in oligodendrocyte cultures. Correspondingly, MBP expression in the pACC-adjacent white matter tended to increase with antidepressant dosage (r = 0.637, p = 0.065). Other tested brain regions showed no diagnosis-dependent differences regarding Olig1-immunoreactivity. Since nuclear Olig1-expression marks oligodendrocyte precursor cells, its increased expression along with reduced total oligodendrocyte densities (Nissl-stained) in the pACC-adjacent white matter of MDD patients might indicate a (putatively medication-boosted) regenerative attempt to compensate oligodendrocyte loss. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. APOE ε4 associated with preserved executive function performance and maintenance of temporal and cingulate brain volumes in younger adults

    PubMed Central

    Taylor, Warren D.; Boyd, Brian; Turner, Rachel; McQuoid, Douglas R.; Ashley-Koch, Allison; MacFall, James R.; Saleh, Ayman; Potter, Guy G.

    2016-01-01

    The APOE ε4 allele is associated with cognitive deficits and brain atrophy in older adults, but studies in younger adults are mixed. We examined APOE genotype effects on cognition and brain structure in younger adults and whether genotype effects differed by age and with presence of depression. 157 adults (32% ε4 carriers, 46% depressed) between 20–50 years of age completed neuropsychological testing, 131 of which also completed 3T cranial MRI. We did not observe a direct effect of APOE genotype on cognitive performance or structural MRI measures. A significant genotype by age interaction was observed for executive function, where age had less of an effect on executive function in ε4 carriers. Similar interactions were observed for the entorhinal cortex, rostral and caudal anterior cingulate cortex and parahippocampal gyrus, where the effect of age on regional volumes was reduced in ε4 carriers. There were no significant interactions between APOE genotype and depression diagnosis. The ε4 allele benefits younger adults by allowing them to maintain executive function performance and volumes of cingulate and temporal cortex regions with aging, at least through age fifty years. PMID:26843007

  4. Hemodynamic effects of innominate artery occlusive disease on anterior cerebral artery.

    PubMed

    Tan, Teng-Yeow; Lien, Li-Ming; Schminke, Ulf; Tesh, Paul; Reynolds, Patrick S; Tegeler, Charles H

    2002-01-01

    Stenoses of the innominate artery (IA) may affect flow conditions in the carotid arteries. However, alternating flow in ipsilateral anterior cerebral artery (ACA) due to IA stenosis is extremely rare. A 49-year-old woman who was evaluated for symptomatic cerebrovascular disease presented with right latent subclavian and right carotid system steal. Transcranial Doppler examination displayed systolic deceleration wave-forms in the right terminal internal carotid artery and alternating flow in the right ACA. Magnetic resonance angiography demonstrated tight stenosis of the right IA. For a thorough study of the hemodynamic effects of IA stenosis, a combination of duplex and transcranial Doppler examination is required.

  5. T174. STRUCTURAL ABNORMALITIES IN THE CINGULATE CORTEX IN ADOLESCENTS AT ULTRA-HIGH RISK WHO LATER DEVELOP PSYCHOSIS

    PubMed Central

    Fortea, Adriana; van Eindhjoven, Phillip; Pariente, Jose; Calvo, Anna; Batalla, Albert; de la Serna, Elena; Ilzarbe, Daniel; Tor, Jordina; Dolz, Montserrat; Baeza, Inmaculada; Sugranyes, Gisela

    2018-01-01

    effects, CTH was measured for each parcellation. ANCOVA was performed to test differences between groups in SPSS 22.0, including gender, age, total intracranial volume and site as covariates. Significance was set at p<.05, corrected using the false discovery rate (FDR). Results 122 subjects were included (59 UHR-NP vs. 18 UHR-P vs. 45 HC, mean ages: 15.2 ± 1.5 vs. 15.0 ± 1.8 vs. 15.8 ± 1.5, F=1.9, p=.15; gender (%female): 61.0% vs 61.1% vs 68.9%, χ2=.76, p=.68). There were no significant differences in case-control proportion between centres: χ2=1.3, p=.25. No significant differences in global CTH in UHR-P (2.57 ± 0.13mm) relative to UHR-NP (2.56 ± 0.11mm) and HC (2.58 ± 0.09mm) were found. There was a significant group effect on the right cingulate cortex (F=6.6, pFDR=.024): UHR-P showed lower CTH in this area relative to controls (p=.007 uncorrected). Within the right cingulate cortex, a significant group effect was found in the posterior cingulate (F=5.7, pFDR=.016) and isthmus (F=4.6, pFDR=.024), and a trend level in the caudal anterior cingulate (F=2.9, p=.057): with smaller CTH in UHR-P relative to HC in the isthmus cingulate (p=.025) and the posterior cingulate (p=.066). No significant differences were observed between UHR-P and UHR-NP groups. Discussion UHR-P showed significant cortical thinning in several regions of the right cingulate cortex in comparison to HC, giving support to the notion that structural alterations in the cingulate cortex may be present in children and adolescents prior the onset of psychosis. Longitudinal changes in CTH have the potential to increase understanding of changes related to transition to clinical illness.

  6. Activation of Anterior Insula during Self-Reflection

    PubMed Central

    Modinos, Gemma; Ormel, Johan; Aleman, André

    2009-01-01

    Background Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the “self”-network. Methodology/Principal Findings Using functional magnetic resonance imaging (fMRI), we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC) and the anterior cingulate cortex (ACC). Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. Conclusions/Significance The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self. PMID:19242539

  7. Attenuation of pCREB and Egr1 expression in the insular and anterior cingulate cortices associated with enhancement of CFA-evoked mechanical hypersensitivity after repeated forced swim stress.

    PubMed

    Imbe, Hiroki; Kimura, Akihisa

    2017-09-01

    The perception and response to pain are severely impacted by exposure to stressors. In some animal models, stress increases pain sensitivity, which is termed stress-induced hyperalgesia (SIH). The insular cortex (IC) and anterior cingulate cortex (ACC), which are typically activated by noxious stimuli, affect pain perception through the descending pain modulatory system. In the present study, we examined the expression of phospho-cAMP response element-binding protein (pCREB) and early growth response 1 (Egr1) in the IC and ACC at 3h (the acute phase of peripheral tissue inflammation) after complete Freund's adjuvant (CFA) injection in naïve rats and rats preconditioned with forced swim stress (FS) to clarify the effect of FS, a stressor, on cortical cell activities in the rats showing SIH induced by FS. The CFA injection into the hindpaw induced mechanical hypersensitivity and increased the expression of the pCREB and Egr1 in the IC and ACC at 3h after the injection. FS (day 1, 10min; days 2-3, 20min) prior to the CFA injection enhanced the CFA-induced mechanical hypersensitivity and attenuated the increase in the expression of pCREB and Egr1 in the IC and ACC. These findings suggested that FS modulates the CFA injection-induced neuroplasticity in the IC and ACC to enhance the mechanical hypersensitivity. These findings are thought to signify stressor-induced dysfunction of the descending pain modulatory system. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. [Neglected ipsilateral simultaneous ruptures of patellar and quadriceps tendon].

    PubMed

    Karahasanoğlu, İlker; Yoloğlu, Osman; Kerimoğlu, Servet; Turhan, Ahmet Uğur

    2015-01-01

    Neglected patellar and quadriceps tendon rupture is a rare injury, but ipsilateral simultaneous patellar and quadriceps tendon rupture was not described in the literature to our knowledge. In this article, we report a 40-year-old healthy male patient with neglected ipsilateral patellar and quadriceps tendon ruptures treated by peroneus longus tendon autograft. Patient had received some conservative and surgical treatments for patellar fracture before applying to our clinic. After our treatment using peroneus longus autograft and interference nails, patient was immobilized for six weeks in cylindrical cast. Flexion exercises and full weight bearing were started after cast removal. Patient had no complaint at postoperative second year. Patient was a neglected case. Surgical repair and early rehabilitation enabled us to achieve a satisfactory outcome.

  9. Assessment of Ipsilateral Efferent Effects in Human via ECochG

    PubMed Central

    Verschooten, Eric; Strickland, Elizabeth A.; Verhaert, Nicolas; Joris, Philip X.

    2017-01-01

    Development of electrophysiological means to assess the medial olivocochlear (MOC) system in humans is important to further our understanding of the function of that system and for the refinement and validation of psychoacoustical and otoacoustic emission methods which are thought to probe the MOC. Based on measurements in anesthetized animals it has been hypothesized that the MOC-reflex (MOCR) can enhance the response to signals in noise, and several lines of evidence support such a role in humans. A difficulty in these studies is the isolation of efferent effects. Efferent activation can be triggered by acoustic stimulation of the contralateral or ipsilateral ear, but ipsilateral stimulation is thought to be more effective. However, ipsilateral stimulation complicates interpretation of effects since these sounds can affect the perception of other ipsilateral sounds by mechanisms not involving olivocochlear efferents. We assessed the ipsilaterally evoked MOCR in human using a transtympanic procedure to record mass-potentials from the cochlear promontory or the niche of the round window. Averaged compound action potential (CAP) responses to masked probe tones of 4 kHz with and without a precursor (designed to activate the MOCR but not the stapedius reflex) were extracted with a polarity alternating paradigm. The masker was either a simultaneous narrow band noise masker or a short (20-ms) tonal ON- or OFF-frequency forward masker. The subjects were screened for normal hearing (audiogram, tympanogram, threshold stapedius reflex) and psychoacoustically tested for the presence of a precursor effect. We observed a clear reduction of CAP amplitude by the precursor, for different masking conditions. Even without an MOCR, this is expected because the precursor will affect the response to subsequent stimuli via neural adaptation. To determine whether the precursor also activated the efferent system, we measured the CAP over a range of masker levels, with or without

  10. A glial palisade delineates the ipsilateral optic projection in Monodelphis.

    PubMed

    MacLaren, R E

    1998-01-01

    In developing marsupials, the path taken through the optic chiasm by ipsilaterally projecting retinal ganglion cells is complicated. Just prior to entry into the chiasm, ganglion cells destined for the ipsilateral optic tract separate from the remainder of axons by turning abruptly downwards to take a position in the ventral part of the optic nerve. In this report, it is shown that a discrete population of about 10-15 large glial cells transiently form a linear array across the prechiasmatic part of the optic nerve, precisely at this axon turning point. The distinct morphology of these cells and their novel location may reflect a specialized role in axon guidance.

  11. Differences in neural responses to ipsilateral stimuli in wide-view fields between face- and house-selective areas

    PubMed Central

    Li, Ting; Niu, Yan; Xiang, Jie; Cheng, Junjie; Liu, Bo; Zhang, Hui; Yan, Tianyi; Kanazawa, Susumu; Wu, Jinglong

    2018-01-01

    Category-selective brain areas exhibit varying levels of neural activity to ipsilaterally presented stimuli. However, in face- and house-selective areas, the neural responses evoked by ipsilateral stimuli in the peripheral visual field remain unclear. In this study, we displayed face and house images using a wide-view visual presentation system while performing functional magnetic resonance imaging (fMRI). The face-selective areas (fusiform face area (FFA) and occipital face area (OFA)) exhibited intense neural responses to ipsilaterally presented images, whereas the house-selective areas (parahippocampal place area (PPA) and transverse occipital sulcus (TOS)) exhibited substantially smaller and even negative neural responses to the ipsilaterally presented images. We also found that the category preferences of the contralateral and ipsilateral neural responses were similar. Interestingly, the face- and house-selective areas exhibited neural responses to ipsilateral images that were smaller than the responses to the contralateral images. Multi-voxel pattern analysis (MVPA) was implemented to evaluate the difference between the contralateral and ipsilateral responses. The classification accuracies were much greater than those expected by chance. The classification accuracies in the FFA were smaller than those in the PPA and TOS. The closer eccentricities elicited greater classification accuracies in the PPA and TOS. We propose that these ipsilateral neural responses might be interpreted by interhemispheric communication through intrahemispheric connectivity of white matter connection and interhemispheric connectivity via the corpus callosum and occipital white matter connection. Furthermore, the PPA and TOS likely have weaker interhemispheric communication than the FFA and OFA, particularly in the peripheral visual field. PMID:29451872

  12. Muscarinic receptor binding increases in anterior thalamus and cingulate cortex during discriminative avoidance learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, B.A.; Gabriel, M.; Vogt, L.J.

    Training-induced neuronal activity develops in the mammalian limbic system during discriminative avoidance conditioning. This study explores behaviorally relevant changes in muscarinic ACh receptor binding in 52 rabbits that were trained to one of five stages of conditioned response acquisition. Sixteen naive and 10 animals yoked to criterion performance served as control cases. Upon reaching a particular stage of training, the brains were removed and autoradiographically assayed for 3H-oxotremorine-M binding with 50 nM pirenzepine (OxO-M/PZ) or for 3H-pirenzepine binding in nine limbic thalamic nuclei and cingulate cortex. Specific OxO-M/PZ binding increased in the parvocellular division of the anterodorsal nucleus early inmore » training when the animals were first exposed to pairing of the conditional and unconditional stimuli. Elevated binding in this nucleus was maintained throughout subsequent training. In the parvocellular division of the anteroventral nucleus (AVp), OxO-M/PZ binding progressively increased throughout training, reached a peak at the criterion stage of performance, and returned to control values during extinction sessions. Peak OxO-M/PZ binding in AVp was significantly elevated over that for cases yoked to criterion performance. In the magnocellular division of the anteroventral nucleus (AVm), OxO-M/PZ binding was elevated only during criterion performance of the task, and it was unaltered in any other limbic thalamic nuclei. Specific OxO-M/PZ binding was also elevated in most layers in rostral area 29c when subjects first performed a significant behavioral discrimination. Training-induced alterations in OxO-M/PZ binding in AVp and layer Ia of area 29c were similar and highly correlated.« less

  13. The mechanism of ipsilateral ataxia in lacunar hemiparesis: SPECT perfusion imaging.

    PubMed

    Yamamoto, Ryoo; Johkura, Ken; Nakae, Yoshiharu; Tanaka, Fumiaki

    2015-01-01

    Although ataxic hemiparesis is a common lacunar syndrome, the precise mechanism underlying hemiataxia is not clear. We attempted to identify ataxia-related, cerebral blood flow changes in patients presenting with ataxic hemiparesis after acute capsular infarct. We used 99mTc-ECD brain perfusion single-photon emission computed tomography to evaluate regional cerebral blood flow in 12 patients with ataxic hemiparesis caused by capsular infarct, and we compared the regional blood flow of these patients with that of 11 patients with pure motor hemiparesis caused by similar lesions. The ipsilateral red nucleus blood flow was significantly decreased in the ataxic hemiparesis patients, whereas the ipsilateral red nucleus blood flow was increased in the pure motor hemiparesis patients. Crossed cerebellar diaschisis (decreased contralateral cerebellar blood flow) was seen in ataxic hemiparesis patients; similarly, it was seen in pure motor hemiparesis patients. Our findings suggest that ataxia in hemiparetic patients with capsular infarct can be caused by ipsilateral red nucleus dysfunction secondary to cortico-rubral pathway disruption at the internal capsule.

  14. Neurosteroid allopregnanolone reduces ipsilateral visual cortex potentiation following unilateral optic nerve injury.

    PubMed

    Sergeeva, Elena G; Espinosa-Garcia, Claudia; Atif, Fahim; Pardue, Machelle T; Stein, Donald G

    2018-05-02

    In adult mice with unilateral optic nerve crush injury (ONC), we studied visual response plasticity in the visual cortex following stimulation with sinusoidal grating. We examined visually evoked potentials (VEP) in the primary visual cortex ipsilateral and contralateral to the crushed nerve. We found that unilateral ONC induces enhancement of visual response on the side ipsilateral to the injury that is evoked by visual stimulation to the intact eye. This enhancement was associated with supranormal spatial frequency thresholds in the intact eye when tested using optomotor response. To probe whether injury-induced disinhibition caused the potentiation, we treated animals with the neurosteroid allopregnanolone, a potent agonist of the GABA A receptor, one hour after crush and on post-injury days 3, 8, 13, and 18. Allopregnanolone diminished enhancement of the VEP and this effect was associated with the upregulated synthesis of the δ-subunit of the GABA A receptor. Our study shows a new aspect of experience-dependent plasticity following unilateral ONC. This hyper-activity in the ipsilateral visual cortex is prevented by upregulation of GABA inhibition with allopregnanolone. Our findings suggest the therapeutic potential of allopregnanolone for modulation of plasticity in certain eye and brain disorders and a possible role for disinhibition in ipsilateral hyper-activity following unilateral ONC. Copyright © 2018. Published by Elsevier Inc.

  15. Maturation of Cortico-Subcortical Structural Networks-Segregation and Overlap of Medial Temporal and Fronto-Striatal Systems in Development.

    PubMed

    Walhovd, Kristine B; Tamnes, Christian K; Bjørnerud, Atle; Due-Tønnessen, Paulina; Holland, Dominic; Dale, Anders M; Fjell, Anders M

    2015-07-01

    The brain consists of partly segregated neural circuits within which structural convergence and functional integration occurs during development. The relationship of structural cortical and subcortical maturation is largely unknown. We aimed to study volumetric development of the hippocampus and basal ganglia (caudate, putamen, pallidum, accumbens) in relation to volume changes throughout the cortex. Longitudinal MRI data were obtained across a mean interval of 2.6 years in 85 participants with an age range of 8-19 years at study start. Left and right subcortical changes were related to cortical change vertex-wise in the ipsilateral hemisphere with general linear models with age, sex, interval between scans, and mean cortical volume change as covariates. Hippocampal-cortical change relationships centered on parts of the Papez circuit, including entorhinal, parahippocampal, and isthmus cingulate areas, and lateral temporal, insular, and orbitofrontal cortices in the left hemisphere. Basal ganglia-cortical change relationships were observed in mostly nonoverlapping and more anterior cortical areas, all including the anterior cingulate. Other patterns were unique to specific basal ganglia structures, including pre-, post-, and paracentral patterns relating to putamen change. In conclusion, patterns of cortico-subcortical development as assessed by morphometric analyses in part map out segregated neural circuits at the macrostructural level. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Severe ipsilateral carotid stenosis and middle cerebral artery disease in lacunar ischaemic stroke: innocent bystanders?

    PubMed

    Mead, G E; Lewis, S C; Wardlaw, J M; Dennis, M S; Warlow, C P

    2002-03-01

    Lacunar infarcts are thought to be mostly due to intracranial small vessel disease. Therefore, when a stroke patient with a relevant lacunar infarct does have severe ipsilateral internal carotid artery (ICA) or middle cerebral artery (MCA) disease, it is unclear whether the arterial disease is causative or coincidental. If causative, we would expect ICA/MCA disease to be more severe on the symptomatic side than on the asymptomatic side. Therefore, our aim was to compare the severity of ipsilateral with contralateral ICA and MCA disease in patients with lacunar ischaemic stroke. We studied 259 inpatients and outpatients with a recent lacunar ischaemic stroke and no other prior stroke. We used carotid Duplex ultrasound and transcranial Doppler (TCD) ultrasound to identify ICA and MCA disease, and compared our results with previously published data. In our study, there was no difference between the severity of ipsilateral and contralateral ICA stenosis within individuals (median difference 0%, Wilcoxon paired data p=0.24, comparing severity of ipsilateral and contralateral stenosis). The overall prevalence of severe ipsilateral stenosis was 5%, and the prevalence of severe contralateral stenosis was 4% (OR 1.6, 95% CI 0.6, 4.8). There was no difference in the prevalence of ipsilateral and contralateral MCA disease. A systematic review of the other available studies strengthened this conclusion. Carotid stenosis in patients with a lacunar ischaemic stroke may be coincidental. Further studies are required to elucidate the causes of lacunar stroke, and to evaluate the role of carotid endarterectomy.

  17. Ipsilateral visual illusion after unilateral posterior cerebral artery infarction: a report of two cases.

    PubMed

    Hong, Yoon Hee; Lim, Tae-Sung; Yong, Suk Woo; Moon, So Young

    2010-08-15

    In cases of unilateral posterior cerebral artery (PCA) infarction, abnormal visual perception in the ipsilateral visual field, which is usually believed to be intact, is not met frequently and may confuse doctors during evaluation. Recently, we observed two patients who presented with contralateral hemianopsia accompanied by ipsilateral visual illusions after acute unilateral PCA infarctions. Their visual illusion was characterized by zooming in, macropsia or micropsia. These symptoms appeared to be related to deficits in size constancy. Lesions of both patients commonly involved the ipsilateral forceps major. The consistent presentation observed in these two patients suggests that dominance of size constancy can be located in the left hemisphere in some individuals. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Miniopen Transforaminal Lumbar Interbody Fusion with Unilateral Fixation: A Comparison between Ipsilateral and Contralateral Reherniation

    PubMed Central

    Liu, Fubing; Jiang, Chun

    2016-01-01

    The aim of this study was to evaluate the risk factors between ipsilateral and contralateral reherniation and to compare the effectiveness of miniopen transforaminal lumbar interbody fusion (TLIF) with unilateral fixation for each group. From November 2007 to December 2014, clinical and radiographic data of each group (ipsilateral or contralateral reherniation) were collected and compared. Functional assessment (Visual Analog Scale (VAS) score and Japanese Orthopaedic Association (JOA)) and radiographic evaluation (fusion status, disc height, lumbar lordosis (LL), and functional spine unit (FSU) angle) were applied to compare surgical effect for each group preoperatively and at final followup. MacNab questionnaire was applied to further evaluate the satisfactory rate after the discectomy and fusion. No difference except pain-free interval was found between ipsilateral and contralateral groups. There was a significant difference in operative time between two groups. No differences were found in clinical and radiographic data for assessment of surgical effect between two groups. The satisfactory rate was decreasing in both groups with time passing after discectomy. Difference in pain-free interval may be a distinction for ipsilateral and contralateral reherniation. Miniopen TLIF with unilateral pedicle screw fixation can be a recommendable way for single level reherniation regardless of ipsilateral or contralateral reherniation. PMID:27885358

  19. Ipsilateral EEG mu rhythm reflects the excitability of uncrossed pathways projecting to shoulder muscles.

    PubMed

    Hasegawa, Keita; Kasuga, Shoko; Takasaki, Kenichi; Mizuno, Katsuhiro; Liu, Meigen; Ushiba, Junichi

    2017-08-25

    Motor planning, imagery or execution is associated with event-related desynchronization (ERD) of mu rhythm oscillations (8-13 Hz) recordable over sensorimotor areas using electroencephalography (EEG). It was shown that motor imagery involving distal muscles, e.g. finger movements, results in contralateral ERD correlating with increased excitability of the contralateral corticospinal tract (c-CST). Following the rationale that purposefully increasing c-CST excitability might facilitate motor recovery after stroke, ERD recently became an attractive target for brain-computer interface (BCI)-based neurorehabilitation training. It was unclear, however, whether ERD would also reflect excitability of the ipsilateral corticospinal tract (i-CST) that mainly innervates proximal muscles involved in e.g. shoulder movements. Such knowledge would be important to optimize and extend ERD-based BCI neurorehabilitation protocols, e.g. to restore shoulder movements after stroke. Here we used single-pulse transcranial magnetic stimulation (TMS) targeting the ipsilateral primary motor cortex to elicit motor evoked potentials (MEPs) of the trapezius muscle. To assess whether ERD reflects excitability of the i-CST, a correlation analysis between between MEP amplitudes and ipsilateral ERD was performed. Experiment 1 consisted of a motor execution task during which 10 healthy volunteers performed elevations of the shoulder girdle or finger pinching while a 128-channel EEG was recorded. Experiment 2 consisted of a motor imagery task during which 16 healthy volunteers imagined shoulder girdle elevations or finger pinching while an EEG was recorded; the participants simultaneously received randomly timed, single-pulse TMS to the ipsilateral primary motor cortex. The spatial pattern and amplitude of ERD and the amplitude of the agonist muscle's TMS-induced MEPs were analyzed. ERDs occurred bilaterally during both execution and imagery of shoulder girdle elevations, but were lateralized to the

  20. Midshaft clavicle fractures with associated ipsilateral acromioclavicular joint dislocations: Incidence and risk factors.

    PubMed

    Ottomeyer, Christina; Taylor, Benjamin C; Isaacson, Mark; Martinez, Lara; Ebaugh, Pierce; French, Bruce G

    2017-02-01

    Simultaneous ipsilateral clavicle and acromioclavicular (AC) joint injury have been infrequently reported in the literature at this time. The purpose of this study was to assess incidence as well as assess risk factors for this dual injury pattern. We performed a retrospective review of a prospectively collected database (Level III evidence), evaluating 383 adult patients without previous shoulder girdle injury or trauma with a minimum 1-year follow-up who sustained a displaced diaphyseal clavicle fracture. All patients in the study underwent either nonoperative management or surgical reduction and stabilization of a diaphyseal clavicle fracture with a plate and screw construct. Study subjects were followed with serial radiographs. Clavicle and shoulder radiographs, as well as chest radiographs and contralateral films in questionable cases, were used to assess for acromioclavicular joint injury in both operative and nonoperative groups. Additional data was collected on concurrent injuries, patient demographics, fracture characteristics, fixation techniques, surgical/post-operative data, and operative or nonoperative treatment. We found that 13/183 (7.1%) of patients undergoing fixation of a diaphyseal clavicle fracture had an ipsilateral AC joint injury, while 13/200 (6.5%) of patients undergoing conservative management had an ipsilateral AC joint injury. Critical analysis of the data revealed that presence of ipsilateral scapular body fractures, and a likely incidental association with superior plating fixation, were associated with an increased rate of this injury pattern. Ipsilateral clavicle fracture and AC joint injury is much more common than traditionally believed, with an incidence of 6.8% overall. It is unknown how the presence of an associated AC injury influences outcome, as AC injury was not universally symptomatic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Cooperation Not Competition: Bihemispheric tDCS and fMRI Show Role for Ipsilateral Hemisphere in Motor Learning.

    PubMed

    Waters, Sheena; Wiestler, Tobias; Diedrichsen, Jörn

    2017-08-02

    What is the role of ipsilateral motor and premotor areas in motor learning? One view is that ipsilateral activity suppresses contralateral motor cortex and, accordingly, that inhibiting ipsilateral regions can improve motor learning. Alternatively, the ipsilateral motor cortex may play an active role in the control and/or learning of unilateral hand movements. We approached this question by applying double-blind bihemispheric transcranial direct current stimulation (tDCS) over both contralateral and ipsilateral motor cortex in a between-group design during 4 d of unimanual explicit sequence training in human participants. Independently of whether the anode was placed over contralateral or ipsilateral motor cortex, bihemispheric stimulation yielded substantial performance gains relative to unihemispheric or sham stimulation. This performance advantage appeared to be supported by plastic changes in both hemispheres. First, we found that behavioral advantages generalized strongly to the untrained hand, suggesting that tDCS strengthened effector-independent representations. Second, functional imaging during speed-matched execution of trained sequences conducted 48 h after training revealed sustained, polarity-independent increases in activity in both motor cortices relative to the sham group. These results suggest a cooperative rather than competitive interaction of the two motor cortices during skill learning and suggest that bihemispheric brain stimulation during unimanual skill learning may be beneficial because it harnesses plasticity in the ipsilateral hemisphere. SIGNIFICANCE STATEMENT Many neurorehabilitation approaches are based on the idea that is beneficial to boost excitability in the contralateral hemisphere while attenuating that of the ipsilateral cortex to reduce interhemispheric inhibition. We observed that bihemispheric transcranial direct current stimulation (tDCS) with the excitatory anode either over contralateral or ipsilateral motor cortex

  2. Involvement of the anterior cingulate cortex in time-based prospective memory task monitoring: An EEG analysis of brain sources using Independent Component and Measure Projection Analysis

    PubMed Central

    Burgos, Pablo; Kilborn, Kerry; Evans, Jonathan J.

    2017-01-01

    Objective Time-based prospective memory (PM), remembering to do something at a particular moment in the future, is considered to depend upon self-initiated strategic monitoring, involving a retrieval mode (sustained maintenance of the intention) plus target checking (intermittent time checks). The present experiment was designed to explore what brain regions and brain activity are associated with these components of strategic monitoring in time-based PM tasks. Method 24 participants were asked to reset a clock every four minutes, while performing a foreground ongoing word categorisation task. EEG activity was recorded and data were decomposed into source-resolved activity using Independent Component Analysis. Common brain regions across participants, associated with retrieval mode and target checking, were found using Measure Projection Analysis. Results Participants decreased their performance on the ongoing task when concurrently performed with the time-based PM task, reflecting an active retrieval mode that relied on withdrawal of limited resources from the ongoing task. Brain activity, with its source in or near the anterior cingulate cortex (ACC), showed changes associated with an active retrieval mode including greater negative ERP deflections, decreased theta synchronization, and increased alpha suppression for events locked to the ongoing task while maintaining a time-based intention. Activity in the ACC was also associated with time-checks and found consistently across participants; however, we did not find an association with time perception processing per se. Conclusion The involvement of the ACC in both aspects of time-based PM monitoring may be related to different functions that have been attributed to it: strategic control of attention during the retrieval mode (distributing attentional resources between the ongoing task and the time-based task) and anticipatory/decision making processing associated with clock-checks. PMID:28863146

  3. Persistent antidepressant effect of low-dose ketamine and activation in the supplementary motor area and anterior cingulate cortex in treatment-resistant depression: A randomized control study.

    PubMed

    Chen, Mu-Hong; Li, Cheng-Ta; Lin, Wei-Chen; Hong, Chen-Jee; Tu, Pei-Chi; Bai, Ya-Mei; Cheng, Chih-Ming; Su, Tung-Ping

    2018-01-01

    A single low-dose ketamine infusion exhibited a rapid antidepressant effect within 1h. Despite its short biological half-life (approximately 3h), the antidepressant effect of ketamine has been demonstrated to persist for several days. However, changes in brain function responsible for the persistent antidepressant effect of a single low-dose ketamine infusion remain unclear METHODS: Twenty-four patients with treatment-resistant depression (TRD) were randomized into three groups according to the treatment received: 0.5mg/kg ketamine, 0.2mg/kg ketamine, and normal saline infusion. Standardized uptake values (SUVs) of glucose metabolism measured through 18 F-FDG positron-emission-tomography before infusion and 1day after a 40-min ketamine or normal saline infusion were used for subsequent whole-brain voxel-wise analysis and were correlated with depressive symptoms, as defined using the Hamilton Depression Rating Scale-17 (HDRS-17) score RESULTS: The voxel-wise analysis revealed that patients with TRD receiving the 0.5mg/kg ketamine infusion had significantly higher SUVs (corrected for family-wise errors, P = 0.014) in the supplementary motor area (SMA) and dorsal anterior cingulate cortex (dACC) than did those receiving the 0.2mg/kg ketamine infusion. The increase in the SUV in the dACC was negatively correlated with depressive symptoms at 1day after ketamine infusion DISCUSSION: The persistent antidepressant effect of a 0.5mg/kg ketamine infusion may be mediated by increased activation in the SMA and dACC. The higher increase in dACC activation was related to the reduction in depressive symptoms after ketamine infusion. A 0.5mg/kg ketamine infusion facilitated the glutamatergic neurotransmission in the SMA and dACC, which may be responsible for the persistent antidepressant effect of ketamine much beyond its half-life. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Prolonged ketamine exposure induces increased activity of the GluN2B-containing N-methyl-d-aspartate receptor in the anterior cingulate cortex of neonatal rats.

    PubMed

    Kokane, Saurabh S; Gong, Kerui; Jin, Jianhui; Lin, Qing

    2017-09-01

    Ketamine is a commonly used anesthetic among pediatric patients due to its high efficacy. However, it has been demonstrated by several preclinical studies that, widespread accelerated programmed death of neurons (neuroapoptosis) occurs due to prolonged or repeated exposure to ketamine specifically in the neonatal brain. Therefore, an emphasis on understanding the molecular mechanisms underlying this selective vulnerability of the neonatal brain to ketamine-induced neuroapoptosis becomes important in order to identify potential therapeutic targets, which would help prevent or at least ameliorate this neuroapoptosis. In this study, we demonstrated that repeated ketamine administration (6 injections of 20mg/kg dose given over 12h time period) in neonatal (postnatal day 7; PND 7) Sprague-Dawley rats induced a progressive increase in N-methyl-d-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents (EPSCs) in the neurons of the anterior cingulate cortex (ACC) for up to 6h after the last ketamine dose. Specifically, we observed that the increased EPSCs were largely mediated by GluN2B-containing NMDARs in the neurons of the ACC. Along with increased synaptic transmission, there was also a significant increase in the expression of the GluN2B-containing NMDARs as well. Taken together, these results showed that after repeated exposure to ketamine, the synaptic transmission mediated by GluN2B-containing NMDARs was significantly increased in the neonatal brain. This was significant as it showed for the first time that ketamine had subunit-specific effects on GluN2B-containing NMDARs, potentially implicating the involvement of these subunits in the increased vulnerability of immature neurons of the neonatal brain to ketamine-induced neuroapoptosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Ebselen reduces autophagic activation and cell death in the ipsilateral thalamus following focal cerebral infarction.

    PubMed

    Li, Yiliang; Zhang, Jian; Chen, Li; Xing, Shihui; Li, Jingjing; Zhang, Yusheng; Li, Chuo; Pei, Zhong; Zeng, Jinsheng

    2015-07-23

    Previous studies have demonstrated that both oxidative stress and autophagy play important roles in secondary neuronal degeneration in the ipsilateral thalamus after distal middle cerebral artery occlusion (MCAO). This study aimed to investigate whether oxidative stress is associated with autophagy activation within the ipsilateral thalamus after distal MCAO. Sixty stroke-prone renovascular hypertensive rats were subjected to distal MCAO or sham operation, and were killed at 14 days after MCAO. Mn-SOD, LC3-II, Beclin-1 and p62 expression were evaluated by immunostaining and immunoblotting. Secondary damage in the thalamus was assessed with Nissl staining and immunostaining. The association of oxidative stress with autophagy activation was investigated by the antioxidant, ebselen. We found that treatment with ebselen at 24h after MCAO significantly reduced the expression of Mn-SOD in the ipsilateral thalamus at 14 days following focal cerebral infarction. In parallel, it prevented the elevation of LC3-II and Beclin-1, and the reduction of p62. Furthermore, ebselen attenuated the neuronal loss and gliosis in the ipsilateral thalamus. These results suggested that ebselen reduced oxidative stress, autophagy activation and secondary damage in the ipsilateral thalamus following MCAO. There are associations between oxidative stress, autophagy activation and secondary damage in the thalamus after MCAO. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Hyperphosphorylation of tau protein in the ipsilateral thalamus after focal cortical infarction in rats.

    PubMed

    Dong, Da-Wei; Zhang, Yu-Sheng; Yang, Wan-Yong; Wang-Qin, Run-Qi; Xu, An-Ding; Ruan, Yi-Wen

    2014-01-16

    Hyperphosphorylation of tau has been considered as an important risk factor for neurodegenerative diseases. It has been found also in the cortex after focal cerebral ischemia. The present study is aimed at investigating changes of tau protein expression in the ipsilateral thalamus remote from the primary ischemic lesion site after distal middle cerebral artery occlusion (MCAO). The number of neurons in the ventroposterior thalamic nucleus (VPN) was evaluated using Nissl staining and neuronal nuclei (NeuN) immunostaining. Total tau and phosphorylated tau at threonine 231 (p-T231-tau) and serine 199 (p-S199-tau) levels, respectively, in the thalamus were measured using immunostaining and immunoblotting. Moreover, apoptosis was detected with terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling (TUNEL) assay. It was found that the numbers of intact neurons and NeuN(+) cells within the ipsilateral VPN were reduced significantly compared with the sham-operated group, but the levels of p-T231-tau and p-S199-tau in the ipsilateral thalamus were increased significantly in rats subjected to ischemia for 3 days, 7 days and 28 days. Furthermore, the number of TUNEL-positive cells was increased in the ipsilateral VPN at 7 days and 28 days after MCAO. Thus, hyperphosphorylated tau protein is observed in ipsilateral thalamus after focal cerebral infarction in this study. Our findings suggest that the expression of hyperphosphorylated tau protein induced by ischemia may be associated with the secondary thalamic damage after focal cortical infarction via an apoptotic pathway. © 2013 Published by Elsevier B.V.

  7. Individual differences in the anterior insula are associated with the likelihood of financially helping versus harming others.

    PubMed

    Greening, Steven; Norton, Loretta; Virani, Karim; Ty, Ambrose; Mitchell, Derek; Finger, Elizabeth

    2014-03-01

    The neural basis of individual differences in positive and negative social decisions and behaviors in healthy populations is yet undetermined. Recent work has focused on the potential role of the anterior insula in guiding social and nonsocial decision making, but the specific nature of its activation during such decision making remains unclear. To identify the neural regions mediating individual differences in helpful and harmful decisions and to assess the nature of insula activation during such decisions, in the present study we used a novel fMRI task featuring intentional and unintentional decisions to financially harm or help persons in need. Based on a whole-brain, unbiased approach, our findings indicate that individual differences in dorsal anterior insula, anterior cingulate cortex (ACC), and right temporo-parietal junction activation are associated with behavioral tendencies to financially harm or help another. Furthermore, activity in the dorsal anterior insula and ACC was greatest during unintended outcomes, whether these were gains or losses for a charity or for oneself, supporting models of the role of these regions in salience prediction error signaling. Together, the results suggest that individual differences in risk anticipation, as reflected in the dorsal anterior insula and dorsal ACC, guide social decisions to refrain from harming others.

  8. A role for primate subgenual cingulate cortex in sustaining autonomic arousal

    PubMed Central

    Rudebeck, Peter H.; Putnam, Philip T.; Daniels, Teresa E.; Yang, Tianming; Mitz, Andrew R.; Rhodes, Sarah E. V.; Murray, Elisabeth A.

    2014-01-01

    The subgenual anterior cingulate cortex (subgenual ACC) plays an important role in regulating emotion, and degeneration in this area correlates with depressed mood and anhedonia. Despite this understanding, it remains unknown how this part of the prefrontal cortex causally contributes to emotion, especially positive emotions. Using Pavlovian conditioning procedures in macaque monkeys, we examined the contribution of the subgenual ACC to autonomic arousal associated with positive emotional events. After such conditioning, autonomic arousal increases in response to cues that predict rewards, and monkeys maintain this heightened state of arousal during an interval before reward delivery. Here we show that although monkeys with lesions of the subgenual ACC show the initial, cue-evoked arousal, they fail to sustain a high level of arousal until the anticipated reward is delivered. Control procedures showed that this impairment did not result from differences in autonomic responses to reward delivery alone, an inability to learn the association between cues and rewards, or to alterations in the light reflex. Our data indicate that the subgenual ACC may contribute to positive affect by sustaining arousal in anticipation of positive emotional events. A failure to maintain positive affect for expected pleasurable events could provide insight into the pathophysiology of psychological disorders in which negative emotions dominate a patient’s affective experience. PMID:24706828

  9. Evaluation of High Ipsilateral Subventricular Zone Radiation Therapy Dose in Glioblastoma: A Pooled Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Percy, E-mail: percylee@mednet.ucla.edu; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, California; Eppinga, Wietse

    Purpose: Cancer stem cells (CSCs) may play a role in the recurrence of glioblastoma. They are believed to originate from neural stem cells in the subventricular zone (SVZ). Because of their radioresistance, we hypothesized that high doses of radiation (>59.4 Gy) to the SVZ are necessary to control CSCs and improve progression-free survival (PFS) or overall survival (OS) in glioblastoma. Methods and Materials: 173 patients with glioblastoma pooled from 2 academic centers were treated with resection followed by chemoradiation therapy. The SVZ was segmented on computed tomography to calculate radiation doses delivered to the presumptive CSC niches. The relationships betweenmore » high SVZ doses and PFS and OS were examined using Cox proportional hazards models. Five covariates were included to estimate their impact on PFS or OS: ipsilateral and contralateral SVZ doses, clinical target volume dose, age, and extent of resection. Results: Median PFS and OS were 10.4 and 19.6 months for the cohort. The mean ipsilateral SVZ, contralateral SVZ, and clinical target volume doses were 49.2, 35.2, and 60.1 Gy, respectively. Twenty-one patients who received high ipsilateral SVZ dose (>59.4 Gy) had significantly longer median PFS (12.6 vs 9.9 months, P=.042) and longer OS (25.8 vs 19.2 months, P=.173). On multivariate analysis, high radiation therapy doses to ipsilateral SVZ remained a statistically significant independent predictor of improved PFS but not of OS. The extent of surgery affected both PFS and OS on multivariate analysis. Conclusion: High radiation therapy doses to ipsilateral CSC niches are associated with improved PFS in glioblastoma.« less

  10. Dendritic spine density and EphrinB2 levels of hippocampal and anterior cingulate cortex neurons increase sequentially during formation of recent and remote fear memory in the mouse.

    PubMed

    Abate, Georgia; Colazingari, Sandra; Accoto, Alessandra; Conversi, David; Bevilacqua, Arturo

    2018-05-15

    Memory consolidation is a dynamic process that involves a sequential remodeling of hippocampal-cortical circuits. Although synaptic events underlying memory consolidation are well assessed, fine molecular events controlling this process deserve further characterization. To this aim, we challenged male C57BL/6N mice in a contextual fear conditioning (CFC) paradigm and tested their memory 24 h, 7 days or 36 days later. Mice displayed a strong fear response at all time points with an increase in dendritic spine density and protein levels of the cell adhesion factor EphrinB2 in CA1 hippocampal neurons 24 h and 7 days post conditioning (p.c.), and in anterior cingulate cortex (ACC) neurons 36 days p.c. We then investigated whether the formation of remote memory and neuronal modifications in the ACC would depend on p.c. protein synthesis in hippocampal neurons. Bilateral intrahippocampal infusions with the protein synthesis inhibitor anisomycin administered immediately p.c. decreased fear response, neuronal spine growth and EphrinB2 protein levels of hippocampal and ACC neurons 24 h and 36 days p.c., respectively. Anisomycin infusion 24 h p.c. had no effects on fear response, increase in spine density and in EphrinB2 protein levels in ACC neurons 36 days p.c. Our results thus confirm that early but not late p.c. hippocampal protein synthesis is necessary for the formation of remote memory and provide the first evidence of a possible involvement of EphrinB2 in neuronal plasticity in the ACC. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Self-regulation of the anterior insula: Reinforcement learning using real-time fMRI neurofeedback.

    PubMed

    Lawrence, Emma J; Su, Li; Barker, Gareth J; Medford, Nick; Dalton, Jeffrey; Williams, Steve C R; Birbaumer, Niels; Veit, Ralf; Ranganatha, Sitaram; Bodurka, Jerzy; Brammer, Michael; Giampietro, Vincent; David, Anthony S

    2014-03-01

    The anterior insula (AI) plays a key role in affective processing, and insular dysfunction has been noted in several clinical conditions. Real-time functional MRI neurofeedback (rtfMRI-NF) provides a means of helping people learn to self-regulate activation in this brain region. Using the Blood Oxygenated Level Dependant (BOLD) signal from the right AI (RAI) as neurofeedback, we trained participants to increase RAI activation. In contrast, another group of participants was shown 'control' feedback from another brain area. Pre- and post-training affective probes were shown, with subjective ratings and skin conductance response (SCR) measured. We also investigated a reward-related reinforcement learning model of rtfMRI-NF. In contrast to the controls, we hypothesised a positive linear increase in RAI activation in participants shown feedback from this region, alongside increases in valence ratings and SCR to affective probes. Hypothesis-driven analyses showed a significant interaction between the RAI/control neurofeedback groups and the effect of self-regulation. Whole-brain analyses revealed a significant linear increase in RAI activation across four training runs in the group who received feedback from RAI. Increased activation was also observed in the caudate body and thalamus, likely representing feedback-related learning. No positive linear trend was observed in the RAI in the group receiving control feedback, suggesting that these data are not a general effect of cognitive strategy or control feedback. The control group did, however, show diffuse activation across the putamen, caudate and posterior insula which may indicate the representation of false feedback. No significant training-related behavioural differences were observed for valence ratings, or SCR. In addition, correlational analyses based on a reinforcement learning model showed that the dorsal anterior cingulate cortex underpinned learning in both groups. In summary, these data demonstrate that it

  12. Lifetime use of cannabis from longitudinal assessments, cannabinoid receptor (CNR1) variation, and reduced volume of the right anterior cingulate

    PubMed Central

    Hill, Shirley Y.; Sharma, Vinod; Jones, Bobby L.

    2016-01-01

    Lifetime measures of cannabis use and co-occurring exposures were obtained from a longitudinal cohort followed an average of 13 years at the time they received a structural MRI scan. MRI scans were analyzed for 88 participants (mean age=25.9 years), 34 of whom were regular users of cannabis. Whole brain voxel based morphometry analyses (SPM8) were conducted using 50 voxel clusters at p=0.005. Controlling for age, familial risk, and gender, we found reduced volume in Regular Users compared to Non-Users, in the lingual gyrus, anterior cingulum (right and left), and the rolandic operculum (right). The right anterior cingulum reached family-wise error statistical significance at p=0.001, controlling for personal lifetime use of alcohol and cigarettes and any prenatal exposures. CNR1 haplotypes were formed from four CNR1 SNPs (rs806368, rs1049353, rs2023239, and rs6454674) and tested with level of cannabis exposure to assess their interactive effects on the lingual gyrus, cingulum (right and left) and rolandic operculum, regions showing cannabis exposure effects in the SPM8 analyses. These analyses used mixed model analyses (SPSS) to control for multiple potentially confounding variables. Level of cannabis exposure was associated with decreased volume of the right anterior cingulum and showed interaction effects with haplotype variation. PMID:27500453

  13. Mirror Observation of Finger Action Enhances Activity in Anterior Intraparietal Sulcus: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Murayama, Takashi; Takasugi, Jun; Monma, Masahiko; Oga, Masaru

    2013-01-01

    Mirror therapy can be used to promote recovery from paralysis in patients with post-stroke hemiplegia, There are a lot of reports that mirror-image observation of the unilateral moving hand enhanced the excitability of the primary motor area (M1) ipsilateral to the moving hand in healthy subjects. but the neural mechanisms underlying its therapeutic effects are currently unclear. To investigate this issue, we used functional magnetic resonance imaging to measure activity in brain regions related to visual information processing during mirror image movement observation. Thirteen healthy subjects performed a finger-thumb opposition task with the left and right hands separately, with or without access to mirror observation. In the mirror condition, one hand was reflected in a mirror placed above the abdomen in the MRI scanner. In the masked mirror condition, subjects performed the same task but with the mirror obscured. In both conditions, the other hand was held at rest behind the mirror. A between-task comparison (mirror versus masked mirror) revealed significant activation in the ipsilateral hemisphere in the anterior intraparietal sulcus (aIP) while performing all tasks, regardless of which hand was used. The right aIP was significantly activated while moving the right hand. In contrast, in the left aIP, a small number of voxels showed a tendency toward activation during both left and right hand movement. The enhancement of ipsilateral aIP activity by the mirror image observation of finger action suggests that bimodal aIP neurons can be activated by visual information. We propose that activation in the M1 ipsilateral to the moving hand can be induced by information passing through the ventral premotor area from the aIP. PMID:25792898

  14. Unilateral Eye Blinking Arising From the Ictal Ipsilateral Occipital Area.

    PubMed

    Falsaperla, Raffaele; Perciavalle, Valentina; Pavone, Piero; Praticò, Andrea Domenico; Elia, Maurizio; Ruggieri, Martino; Caraballo, Roberto; Striano, Pasquale

    2016-07-01

    We report on an 18-month-old boy with unilateral left eye blinking as a single ictal manifestation without facial twitching. The clinical onset of this phenomenon was first recorded (as an occasional event) at age 3 months, and it was overlooked. By age 6 months, the child's blinking increased to almost daily occurrence in clusters: during blinking the infant showed intact awareness and occasional jerks in the upper limbs and right leg. A video-electroencephalography (video-EEG) documented clinical correlation with a focal pattern arising from the left occipital region, and brain magnetic resonance imaging (MRI) revealed severe brain damage, consisting in poroencephalic hollows and increased spaces in the convexities involving a large area of the left cerebral hemisphere. The boy was prescribed sodium valproate (30 mg/kg/d), resulting in drastic reduction of his clinical seizures. Follow-up to his current age documented good general status, with persistent partial right hemilateral seizures. The blinking progressively disappeared, and is no longer recorded. The pathogenic hypotheses of the unilateral ictal blinking include involvement of the ipsilateral cerebral hemisphere and/or the cerebellar pathways. Review of previous reports of unilateral eye blinking, arising from the ictal ipsilateral brain, revealed that different damaged regions may give rise to blinking ictal phenomena, likely via the trigeminal fibres innervating the subdural intracranial structures and the pial vessels in the ipsilateral affected brain. The eye blinking in the present child represents a further example of an ictal phenomenon, which is predictive of the damaged brain region. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  15. Striatal infarction in the rat causes a transient reduction of tyrosine hydroxylase immunoreactivity in the ipsilateral substantia nigra.

    PubMed

    Soriano, M A; Justicia, C; Ferrer, I; Rodríguez-Farré, E; Planas, A M

    1997-01-01

    Dopaminergic neurons of the substantia nigra pars compacta were examined in the rat brain following striatal infarction subsequent to transient focal cerebral ischemia. Rats had the middle cerebral artery occluded for 2 h or were sham-operated, and tyrosine hydroxylase immunoreactivity was evaluated by Western blot and immunohistochemistry at different times ranging from 1 to 60 days after ischemia. The number of tyrosine hydroxylase-immunoreactive cells in the substantia nigra pars compacta was counted under the light microscope and compared to that in the contralateral side and controls. No changes of tyrosine hydroxylase immunoreactivity were detected in the ipsilateral versus the contralateral substantia nigra of sham-operated rats or 1 day after ischemia. However, a statistically significant reduction of tyrosine hydroxylase-immunoreactive cells became apparent in the ipsilateral compared with the contralateral substantia nigra at 7 and 14 days after ischemia. This reduction showed a clear recovery at 30 days after ischemia, and no signs of difference between the ipsilateral and the contralateral side were apparent by 60 days. Therefore, the reduction of tyrosine hydroxylase immunoreactivity in the ipsilateral substantia nigra was only transiently seen from 1 to 2 weeks following ischemia. The observed loss of tyrosine hydroxylase was not accompanied by signs of cell death or gliosis in the ipsilateral pars compacta. The present results show a transitory reduction of tyrosine hydroxylase immunoreactivity in the ipsilateral substantia nigra pars compacta after focal ischemia and suggest that striatal infarction causes a transient deficit of dopaminergic function.

  16. Magnetic resonance direct thrombus imaging differentiates acute recurrent ipsilateral deep vein thrombosis from residual thrombosis.

    PubMed

    Tan, Melanie; Mol, Gerben C; van Rooden, Cornelis J; Klok, Frederikus A; Westerbeek, Robin E; Iglesias Del Sol, Antonio; van de Ree, Marcel A; de Roos, Albert; Huisman, Menno V

    2014-07-24

    Accurate diagnostic assessment of suspected ipsilateral recurrent deep vein thrombosis (DVT) is a major clinical challenge because differentiating between acute recurrent thrombosis and residual thrombosis is difficult with compression ultrasonography (CUS). We evaluated noninvasive magnetic resonance direct thrombus imaging (MRDTI) in a prospective study of 39 patients with symptomatic recurrent ipsilateral DVT (incompressibility of a different proximal venous segment than at the prior DVT) and 42 asymptomatic patients with at least 6-month-old chronic residual thrombi and normal D-dimer levels. All patients were subjected to MRDTI. MRDTI images were judged by 2 independent radiologists blinded for the presence of acute DVT and a third in case of disagreement. The sensitivity, specificity, and interobserver reliability of MRDTI were determined. MRDTI demonstrated acute recurrent ipsilateral DVT in 37 of 39 patients and was normal in all 42 patients without symptomatic recurrent disease for a sensitivity of 95% (95% CI, 83% to 99%) and a specificity of 100% (95% CI, 92% to 100%). Interobserver agreement was excellent (κ = 0.98). MRDTI images were adequate for interpretation in 95% of the cases. MRDTI is a sensitive and reproducible method for distinguishing acute ipsilateral recurrent DVT from 6-month-old chronic residual thrombi in the leg veins. © 2014 by The American Society of Hematology.

  17. Unilateral Nevoid Telangiectasia Associated with Ipsilateral Melorheostosis

    PubMed Central

    Kim, Jihyun; Cho, Sung Bin; Cho, Suhyun

    2012-01-01

    Melorheostosis is a rare disorder characterized by irregular, flowing hyperostosis in long bones, commonly described on radiographs as wax flowing down a candle. In addition to bony sclerosis, cutaneous manifestations overlying the involved bones have been reported including linear scleroderma, neurofibromatosis, and vascular and lymphatic malformations. Unilateral nevoid telangiectasia (UNT) is a rare primarily cutaneous condition characterized by linearly arranged small dilated blood vessels in dermatomal or Blaschkoid patterns on the skin. Here, we present the case of a nine-year-old Korean male with UNT associated with ipsilateral melorheostosis. PMID:22577274

  18. Ipsilateral hemiparesis in lateral medullary infarction: Clinical investigation of the lesion location on magnetic resonance imaging.

    PubMed

    Uemura, Masahiro; Naritomi, Hiroaki; Uno, Hisakazu; Umesaki, Arisa; Miyashita, Kotaro; Toyoda, Kazunori; Minematsu, Kazuo; Nagatsuka, Kazuyuki

    2016-06-15

    In 1946, Opalski reported two cases of Wallenberg syndrome with ipsilateral hemiparesis (IH). His hypothesis seems to be based on the view that IH is caused by post-decussating pyramidal tract damage. Afterwards, other researchers proposed a different hypothesis that ipsilateral sensory symptoms of limbs (ISSL) or ipsilateral limb ataxia (ILA) caused by lateral medullary infarction (LMI) might lead to ipsilateral motor weakness. The present study is aimed to clarify whether IH in LMI patients is attributable mainly to ISSL/ILA or disruption of ipsilateral post-decussating pyramidal tract. Thirty-two patients with acute LMI admitted during the last 13years were divided to IH Group (n=7) and Non-IH Group (n=25). Lesion location/distribution on MRI and neurological findings were compared between the two groups. LMI involved the lower medulla in all seven IH patients and 12 of 25 Non-IH patients. The lower medullary lesion extended to the cervico-medullary junction (CMJ) in four of seven IH patients and one of 12 Non-IH patients. Definitive extension to upper cervical cord (UCC) was confirmed in none of the patients. ISSL was found in two IH and three Non-IH patients all showing only superficial sensory impairments. ILA or hypotonia was observed in 57% of IH and 60% of Non-IH patients. IH in LMI appears to be due mainly to post-decussating pyramidal tract damage at the lower medulla instead of ILA or ISSL participation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Ipsilateral femoral autograft reconstruction after resection of a pelvic tumor.

    PubMed

    Biau, David J; Thévenin, Fabrice; Dumaine, Valérie; Babinet, Antoine; Tomeno, Bernard; Anract, Philippe

    2009-01-01

    Reconstruction of bone after the resection of a pelvic tumor is challenging. The purpose of the present study was to evaluate the use of the ipsilateral femur as the graft material for reconstruction. We performed a retrospective review of thirteen patients with a malignant pelvic lesion who underwent resection followed by reconstruction with an ipsilateral femoral autograft and insertion of a total hip replacement. The study group included nine men and four women with a median age of fifty-one years at the time of the reconstruction. The diagnosis was chondrosarcoma in eight patients, metastasis in three, and myeloma and radiation-induced malignant disease in one each. The surviving patients were assessed functionally and radiographically; the cumulative probability of revision was estimated while taking into account competing risks. The median duration of follow-up was forty-nine months. At the time of the latest follow-up, seven patients were alive and disease-free and six had died from metastatic disease. Four patients had had revision of the reconstruction, two for the treatment of mechanical complications and two for the treatment of infection. Three other patients had mechanical complications but had not had a revision. The cumulative probability of revision of the reconstruction for mechanical failure was 8% (95% confidence interval, 0% to 23%), 8% (95% confidence interval, 0% to 23%), and 16% (95% confidence interval, 0% to 39%) at one, two, and four years, respectively. Although it has attendant complications consistent with pelvic tumor surgery, an ipsilateral femoral autograft reconstruction may be an option for reconstruction of pelvic discontinuity in a subgroup of patients following tumor resection. This innovative procedure requires longer-term follow-up studies.

  20. Ureteric entrapment in sacroiliac joint causing hydroureter and ipsilateral kidney hypertrophy.

    PubMed

    Otsuru, Yurie; Kondo, Chuichi; Hara, Shohei; Takahashi, Hideo; Matsuno, Kenjiro

    2018-06-01

    A unilateral megaureter was found in an elderly female cadaver during routine dissection. The left proximal ureter, which was thick and convolute, descended and entered into the pelvic cavity, where the distal ureter was attached to the posterior pelvic wall at the inlet level. Removal of connective tissue surrounding the attached region revealed ureteric entrapment in the sacroiliac joint. The ipsilateral kidney, from which the megaureter originated, showed no pelvicalyceal dilatation. In contrast, the left kidney was enlarged, weighing 24% more than the right kidney. Differences in the upper urinary system between the obstructed and normal sides were examined in terms of gross anatomy, measurements, and histology. Although ureteric obstruction frequently causes hydroureter and hydronephrosis, the present case is very rare as the incomplete obstruction may have stimulated ipsilateral kidney growth, instead of contralateral compensatory augmentation.

  1. Zincergic innervation from the anterior olfactory nucleus to the olfactory bulb displays plastic responses after mitral cell loss.

    PubMed

    Airado, Carmen; Gómez, Carmela; Recio, Javier S; Baltanás, Fernando C; Weruaga, Eduardo; Alonso, José R

    2008-12-01

    Zinc ions are selectively accumulated in certain neurons (zinc-enriched neurons). The mouse olfactory bulb is richly innervated by zinc-enriched terminals. Here, the plasticity of the zincergic system was studied in the olfactory bulb of the Purkinje Cell Degeneration mutant mouse, an animal with specific postnatal neurodegeneration of the main projection neurons of the olfactory bulb. The analysis focused particularly on the anterior olfactory nucleus since most centrifugal afferents coming to the olfactory bulb arise from this structure. Zinc-enriched terminals in the olfactory bulb and zinc-enriched somata in the anterior olfactory nucleus were visualized after selenite injections. Immunohistochemistry against the vesicular zinc transporter was also carried out to confirm the distribution pattern of zinc-enriched terminals in the olfactory bulb. The mutant mice showed a clear reorganization of zincergic centrifugal projections from the anterior olfactory nucleus to the olfactory bulb. First, all zincergic contralateral neurons projecting to the olfactory bulb were absent in the mutant mice. Second, a significant increase in the number of stained somata was detected in the ipsilateral anterior olfactory nucleus. Since no noticeable changes were observed in the zinc-enriched terminals in the olfactory bulb, it is conceivable that mitral cell loss could induce a reorganization of zinc-enriched projections coming from the anterior olfactory nucleus, probably directed at balancing the global zincergic centrifugal modulation. These results show that zincergic anterior olfactory nucleus cells projecting to the olfactory bulb undergo plastic changes to adapt to the loss of mitral cells in the olfactory bulb of Purkinje Cell Degeneration mutant mice.

  2. Cannabis use and brain structural alterations of the cingulate cortex in early psychosis.

    PubMed

    Rapp, Charlotte; Walter, Anna; Studerus, Erich; Bugra, Hilal; Tamagni, Corinne; Röthlisberger, Michel; Borgwardt, Stefan; Aston, Jacqueline; Riecher-Rössler, Anita

    2013-11-30

    As cannabis use is more frequent in patients with psychosis than in the general population and is known to be a risk factor for psychosis, the question arises whether cannabis contributes to recently detected brain volume reductions in schizophrenic psychoses. This study is the first to investigate how cannabis use is related to the cingulum volume, a brain region involved in the pathogenesis of schizophrenia, in a sample of both at-risk mental state (ARMS) and first episode psychosis (FEP) subjects. A cross-sectional magnetic resonance imaging (MRI) study of manually traced cingulum in 23 FEP and 37 ARMS subjects was performed. Cannabis use was assessed with the Basel Interview for Psychosis. By using repeated measures analyses of covariance, we investigated whether current cannabis use is associated with the cingulum volume, correcting for age, gender, alcohol consumption, whole brain volume and antipsychotic medication. There was a significant three-way interaction between region (anterior/posterior cingulum), hemisphere (left/right cingulum) and cannabis use (yes/no). Post-hoc analyses revealed that this was due to a significant negative effect of cannabis use on the volume of the posterior cingulum which was independent of the hemisphere and diagnostic group and all other covariates we controlled for. In the anterior cingulum, we found a significant negative effect only for the left hemisphere, which was again independent of the diagnostic group. Overall, we found negative associations of current cannabis use with grey matter volume of the cingulate cortex, a region rich in cannabinoid CB1 receptors. As this finding has not been consistently found in healthy controls, it might suggest that both ARMS and FEP subjects are particularly sensitive to exogenous activation of these receptors. © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Affective resonance in response to others' emotional faces varies with affective ratings and psychopathic traits in amygdala and anterior insula.

    PubMed

    Seara-Cardoso, Ana; Sebastian, Catherine L; Viding, Essi; Roiser, Jonathan P

    2016-01-01

    Despite extensive research on the neural basis of empathic responses for pain and disgust, there is limited data about the brain regions that underpin affective response to other people's emotional facial expressions. Here, we addressed this question using event-related functional magnetic resonance imaging to assess neural responses to emotional faces, combined with online ratings of subjective state. When instructed to rate their own affective response to others' faces, participants recruited anterior insula, dorsal anterior cingulate, inferior frontal gyrus, and amygdala, regions consistently implicated in studies investigating empathy for disgust and pain, as well as emotional saliency. Importantly, responses in anterior insula and amygdala were modulated by trial-by-trial variations in subjective affective responses to the emotional facial stimuli. Furthermore, overall task-elicited activations in these regions were negatively associated with psychopathic personality traits, which are characterized by low affective empathy. Our findings suggest that anterior insula and amygdala play important roles in the generation of affective internal states in response to others' emotional cues and that attenuated function in these regions may underlie reduced empathy in individuals with high levels of psychopathic traits.

  4. Involvement of the primary motor cortex in controlling movements executed with the ipsilateral hand differs between left- and right-handers.

    PubMed

    van den Berg, Femke E; Swinnen, Stephan P; Wenderoth, Nicole

    2011-11-01

    Unimanual motor tasks, specifically movements that are complex or require high forces, activate not only the contralateral primary motor cortex (M1) but evoke also ipsilateral M1 activity. This involvement of ipsilateral M1 is asymmetric, such that the left M1 is more involved in motor control with the left hand than the right M1 in movements with the right hand. This suggests that the left hemisphere is specialized for movement control of either hand, although previous experiments tested mostly right-handed participants. In contrast, research on hemispheric asymmetries of ipsilateral M1 involvement in left-handed participants is relatively scarce. In the present study, left- and right-handed participants performed complex unimanual movements, whereas TMS was used to disrupt the activity of ipsilateral M1 in accordance with a "virtual lesion" approach. For right-handed participants, more disruptions were induced when TMS was applied over the dominant (left) M1. For left-handed participants, two subgroups could be distinguished, such that one group showed more disruptions when TMS was applied over the nondominant (left) M1, whereas the other subgroup showed more disruptions when the dominant (right) M1 was stimulated. This indicates that functional asymmetries of M1 involvement during ipsilateral movements are influenced by both hand dominance as well as left hemisphere specialization. We propose that the functional asymmetries in ipsilateral M1 involvement during unimanual movements are primarily attributable to asymmetries in the higher-order areas, although the contribution of transcallosal pathways and ipsilateral projections cannot be completely ruled out.

  5. The effects of anterior arcuate and dorsomedial frontal cortex lesions on visually guided eye movements: 2. Paired and multiple targets.

    PubMed

    Schiller, P H; Chou, I

    2000-01-01

    This study examined the effects of anterior arcuate and dorsomedial frontal cortex lesions on the execution of saccadic eye movements made to paired and multiple targets in rhesus monkeys. Identical paired targets were presented with various temporal asynchronies to determine the temporal offset required to yield equal probability choices to either target. In the intact animal equal probability choices were typically obtained when the targets appeared simultaneously. After unilateral anterior arcuate lesions a major shift arose in the temporal offset required to obtain equal probability choices for paired targets that necessitated presenting the target in the hemifield contralateral to the lesion more than 100 ms prior to the target in the ipsilateral hemifield. This deficit was still pronounced 1 year after the lesion. Dorsomedial frontal cortex lesions produced much smaller but significant shifts in target selection that recovered more rapidly. Paired lesions produced deficits similar to those observed with anterior arcuate lesions alone. Major deficits were also observed on a multiple target temporal discrimination task after anterior arcuate but not after dorsomedial frontal cortex lesions. These results suggest that the frontal eye fields that reside in anterior bank of the arcuate sulcus play an important role in temporal processing and in target selection. Dorsomedial frontal cortex, that contains the medial eye fields, plays a much less important role in the execution of these tasks.

  6. Multifocal synchronous ipsilateral Warthin tumors: case report and review of the literature.

    PubMed

    Hall, Joseph E; Statham, Melissa McCarty; Sheridan, Rachel M; Wilson, Keith M

    2010-09-01

    We report a case of a 73-year-old woman who presented with an enlarging superficial parotid mass, a concomitant ipsilateral deep-lobe parotid mass, and associated upper jugular lymphadenopathy. The clinical presentation and radiographic imaging were suggestive of malignancy, and the patient was treated with total parotidectomy with upper jugular lymph node sampling. Pathologic examination revealed two distinct masses, one in the superficial lobe and one in the deep lobe of the parotid gland, both consistent with synchronous Warthin tumors. Analysis of the upper jugular lymph nodes was consistent with reactive lymphoid hyperplasia. Although the true incidence of multicentricity in ipsilateral Warthin tumors may be underappreciated and underreported, this entity should remain in the differential diagnosis for unilateral parotid masses.

  7. Neurogenesis and angiogenesis within the ipsilateral thalamus with secondary damage after focal cortical infarction in hypertensive rats.

    PubMed

    Ling, Li; Zeng, Jinsheng; Pei, Zhong; Cheung, Raymond T F; Hou, Qinghua; Xing, Shihui; Zhang, Suping

    2009-09-01

    Neurogenesis and angiogenesis in the subventricular zone and peri-infarct region have been confirmed. However, newly formed neuronal cells and blood vessels that appear in the nonischemic ipsilateral ventroposterior nucleus (VPN) of the thalamus with secondary damage after stroke has not been previously studied. Twenty-four stroke-prone renovascular hypertensive rats were subjected to distal right middle cerebral artery occlusion (MCAO) or sham operation. 5'-Bromo-2'-deoxyuridine (BrdU) was used to label cell proliferation. Rats were killed at 7 or 14 days after the operation. Neuronal nuclei (NeuN), OX-42, BrdU, nestin, laminin(+), BrdU(+)/nestin(+), BrdU(+)/NeuN(+), nestin(+)/GFAP(+)(glial fibrillary acidic protein), and BrdU(+)/laminin(+) immunoreactive cells were detected within the ipsilateral VPN. The primary infarction was confined to the right somatosensory cortex. Within the ipsilateral VPN of the ischemic rats, the number of NeuN(+) neurons decreased, the OX-42(+) microglia cells were activated, and BrdU(+) and nestin(+) cells were detected at day 7 after MCAO and increased in number at day 14. Moreover, BrdU(+)/nestin(+) cells and BrdU(+)/NeuN(+) cells were detected at day 14 after MCAO. In addition, the ischemic rats showed a significant increase in vascular density in the ipsilateral VPN compared with the sham-operated rats. These results suggest that secondary damage with neurogenesis and angiogenesis of the ipsilateral VPN of the thalamus occurs after focal cortical infarction.

  8. ANTERIOR CRUCIATE LIGAMENT INJURY: TREATMENT AND REHABILITATION. CURRENT PERSPECTIVES AND TRENDS

    PubMed Central

    Arliani, Gustavo Gonçalves; Astur, Diego da Costa; Kanas, Michel; Kaleka, Camila Cohen; Cohen, Moises

    2015-01-01

    Objective: The aim of this study was to evaluate the procedures used by knee surgeons in Brazil for treating and rehabilitating anterior cruciate ligament injuries. Methods: A questionnaire consisting of 21 closed questions was developed, addressing topics relating to treatment and rehabilitation after anterior cruciate ligament reconstruction. The questionnaire was applied to Brazilian knee surgeons during the three days of the 42nd Brazilian Congress of Orthopedics and Traumatology in 2010. Results: A total of 226 surgeons filled out the questionnaire completely. The most commonly used types of graft were hamstrings tendons and the central third of the ipsilateral patellar tendon, which were used by 82.3% and 53.5% of the sample, respectively. The technique of reconstruction with a single transtibial band was the first preference and was used by 66.4% of the participants. A period of 1 to 4 weeks between injury and surgical procedure was considered ideal by most participants (52.65%). Complaints from patients that the knee was ‘giving way’ or unstable and presence of a positive pivot shift maneuver were the most decisive factors considered in making the decision to operate the patient. Patient satisfaction and absence of complaints of instability during the postoperative period were the criteria deemed to be most important for the surgery to be considered a success. Conclusions: There are clearly evolving trends in treating and rehabilitating the anterior cruciate ligament in Brazil. However, more prospective controlled studies are needed in order to evaluate the clinical and scientific benefits of these trends. PMID:27042620

  9. Ipsilateral free semitendinosus tendon graft with interference screw fixation for minimally invasive reconstruction of chronic tears of the Achilles tendon.

    PubMed

    Maffulli, N; Del Buono, A; Loppini, M; Denaro, V

    2014-10-01

    Minimally invasive ipsilateral semitendinosus reconstruction of large chronic tears aims to be advantageous for the patient in terms of plantar flexion recovery, anthropometric measures, fast return to daily and sport activity, is safe, with low donor site co-morbidities, low risks of wound complications and neurovascular injuries. Tendon gaps greater than 6 cm and in cases of revision surgery (rerupture). Diabetes, vascular diseases, previous anterior cruciate ligament (ACL) reconstruction using ipsilateral semitendinosus tendon graft. The semitendinosus tendon is harvested through an incision in the medial aspect of the popliteal fossa, and the proximal stump is exposed and mobilized through an incision performed 2 cm proximal and medial to the palpable tendon gap. We repeat the same steps distally, approaching the distal stump of the tendon through a 2.5 cm longitudinal incision made 2 cm distal and just anterior to the lateral margin of the distal stump. Through the distal incision, we expose the Kager's space and the postero-superior corner of the osteotomized calcaneum. We drill a bone tunnel into the calcaneum from dorsal to plantar using a cannulated headed reamer. The semitendinosus tendon graft is passed into the proximal stump through a medial-to-lateral small incision, its two ends are moved distally, and finally it is pulled down and shuttled through the bone tunnel. The construct is fixed to the calcaneum using an interference screw. Immobilization in a below the knee plaster cast with the foot in plantar flexion for 2 weeks, weight bearing on the metatarsal heads as tolerated, use elbow crutches, and keep the knee flexed. At 2 weeks, plaster removed, and rehabilitative exercises started, walker cast allowed. Between 2008 and 2010, the procedure was performed on 28 consecutive patients (21 men and 7 women, median age 46 years). At the 2-year follow-up, average ATRS scores significantly improved (p < 0.0001) compared to average preoperative

  10. Woolly hair nevus with an ipsilateral associated epidermal nevus and additional findings of a white sponge nevus.

    PubMed

    Legler, Allison; Thomas, Tracy; Zlotoff, Barrett

    2010-01-01

    We report a case of a 16-year-old male with a woolly hair nevus, an associated ipsilateral epidermal nevus who also had a white plaque on his tongue, clinically diagnosed as a white sponge nevus. The concurrent findings of a white sponge nevus, a woolly hair nevus, and an ipsilateral epidermal nevus, to our knowledge, have not been previously reported.

  11. Electromyography findings of the cricopharyngeus in association with ipsilateral pharyngeal and laryngeal muscles.

    PubMed

    Halum, Stacey L; Shemirani, Nima L; Merati, Albert L; Jaradeh, Safwan; Toohill, Robert J

    2006-04-01

    We reviewed a large series of cricopharyngeal (CP) muscle electromyography (EMG) results and compared them with the EMG results from the inferior constrictor (IC), thyroarytenoid, (TA), cricothyroid (CT), and posterior cricoarytenoid (PCA) muscles. We performed a retrospective review of all CP muscle EMG reports from studies performed between January 1996 and June 2003. All of the tested elements from the CP muscle EMG reports were recorded. The EMG results were recorded for the ipsilateral IC, TA, CT, and PCA muscles if they were simultaneously tested. Each muscle result was classified as normal, neurogenic inactive axonal injury (IAI), or neurogenic active axonal injury (AAI), and the muscle findings were compared. A patient chart review was performed to determine a clinical correlation. Fifty-nine patients underwent CP muscle EMG. Eighteen patients had bilateral EMG studies, making a total of 77 CP muscle studies. Nineteen sets of CP muscle results were normal, 43 demonstrated neurogenic IAI, and 15 demonstrated neurogenic AAI. The ipsilateral IC and CP muscles had the same innervation status in 27 of 28 studies (p < .0001). When the ipsilateral TA muscle was studied simultaneously with the CP muscle, 31 of 50 studies had the same innervation status (p = .005). The ipsilateral CT and CP muscles demonstrated the same innervation status in 40 of 50 studies (p < .0001). The correlations between the CP and IC muscle findings and between the CP and CT muscle findings were both stronger than the correlation between the CP and TA muscle findings (p < .0001 and p = .024, respectively). The chart review demonstrated the clinical findings to be consistent with the EMG results. The EMG studies demonstrated that CP muscle findings have the strongest correlation with IC muscle findings, followed by the CT and TA muscles. This outcome does not support theories indicating that the recurrent laryngeal nerve innervates the CP muscle in all cases.

  12. Compartment syndrome of the thigh complicating surgical treatment of ipsilateral femur and ankle fractures

    NASA Technical Reports Server (NTRS)

    Moore, M. R.; Garfin, S. R.; Hargens, A. R.

    1987-01-01

    A 26-year-old man presented with ipsilateral femur and ankle fractures. The patient was treated with interlocking nail of his femur fracture, followed by open reduction and internal fixation of his ankle fracture under tourniquet control. Postoperatively, the patient developed compartment syndrome of his thigh with elevated pressures, requiring decompressive fasciotomies. This case illustrates the possible complication of treating a femur fracture with intramedullary nailing and then immediately applying a tourniquet to treat an ipsilateral extremity fracture. Because of the complication with this patient, we feel the procedure should be staged, or a tourniquet should be avoided if possible.

  13. Surgical planning and innervation in pontine gaze palsy with ipsilateral esotropia.

    PubMed

    Somer, Deniz; Cinar, Fatma Gul; Kaderli, Ahmet; Ornek, Firdevs

    2016-10-01

    To discuss surgical intervention strategies among patients with horizontal gaze palsy with concurrent esotropia. Five consecutive patients with dorsal pontine lesions are presented. Each patient had horizontal gaze palsy with symptomatic diplopia as a consequence of esotropia in primary gaze and an anomalous head turn to attain single binocular vision. Clinical findings in the first 2 patients led us to presume there was complete loss of rectus muscle function from rectus muscle palsy. Based on this assumption, medial rectus recessions with simultaneous partial vertical muscle transposition (VRT) on the ipsilateral eye of the gaze palsy and recession-resection surgery on the contralateral eye were performed, resulting in significant motility limitation. Sequential recession-resection surgery without simultaneous VRT on the 3rd patient created an unexpected motility improvement to the side of gaze palsy, an observation differentiating rectus muscle palsy from paresis. Recession combined with VRT approach in the esotropic eye was abandoned on subsequent patients. Simultaneous recession-resection surgery without VRT in the next 2 patients resulted in alleviation of head postures, resolution of esotropia, and also substantial motility improvements to the ipsilateral hemifield of gaze palsy without limitations in adduction and vertical deviations. Ocular misalignment and abnormal head posture as a result of conjugate gaze palsy can be successfully treated by basic recession-resection surgery, with the advantage of increasing versions to the ipsilateral side of the gaze palsy. Improved motility after surgery presumably represents paresis, not "paralysis," with residual innervation in rectus muscles. Copyright © 2016 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  14. MRI signal intensity of anterior cruciate ligament graft after transtibial versus anteromedial portal technique (TRANSIG): design of a randomized controlled clinical trial.

    PubMed

    Ruiter, Simeon J S; Brouwer, Reinoud W; Meys, Tim W G M; Slump, Cornelis H; van Raay, Jos J A M

    2016-08-10

    There are two primary surgical techniques to reconstruct the anterior cruciate ligament (ACL), transtibial (TT) technique and anteromedial portal (AMP) technique. Currently, there is no consensus which surgical technique elicits the best clinical and functional outcomes. MRI-derived measures of the signal intensity (SI) of the ACL graft have been described as an independent predictor of graft properties. The purpose of this study is to compare the MRI derived SI measurements of the ACL graft one year after ACL reconstruction, in order to compare the outcomes of both the AMP and TT ACL reconstruction technique. Thirty-six patients will be included in a randomized controlled trial. Patients who are admitted for primary unilateral ACL reconstruction will be included in the study. Exclusion criteria are a history of previous surgery on the ipsilateral knee, re-rupture of the ipsilateral ACL graft, associated ligamentous injuries or meniscal tear of the ipsilateral knee, unhealthy contralateral knee, contra-indications for MRI and a preference for one of the two surgical techniques and/or orthopaedic surgeon. Primary outcome is MRI Signal intensity ratio (SIR) of the ACL graft. Secondary outcome measures are the International Knee Documentation Committee (IKDC) Knee Examination Form,the Knee injury and Osteoarthritis Outcome Scores (KOOS) and the Anterior Cruciate Ligament OsteoArthritis Score (ACLOAS). Differences between MRI SIR assessment with the current MRI protocol (proton density weighted imaging protocol) and the additional T2*-weighted gradient-echo protocol will be assessed. There is no consensus regarding the TT or AMP ACL reconstruction technique. SI measurements with MRI have been used in other clinical studies for evaluation of the ACL graft and maturation after ACL reconstruction compared to clinical and functional outcomes. This randomized controlled trial has been designed to compare the TT technique with the AMP technique with the use of MRI SI of the

  15. Multi-image CAD employing features derived from ipsilateral mammographic views

    NASA Astrophysics Data System (ADS)

    Good, Walter F.; Zheng, Bin; Chang, Yuan-Hsiang; Wang, Xiao Hui; Maitz, Glenn S.; Gur, David

    1999-05-01

    On mammograms, certain kinds of features related to masses (e.g., location, texture, degree of spiculation, and integrated density difference) tend to be relatively invariant, or at last predictable, with respect to breast compression. Thus, ipsilateral pairs of mammograms may contain information not available from analyzing single views separately. To demonstrate the feasibility of incorporating multi-view features into CAD algorithm, `single-image' CAD was applied to each individual image in a set of 60 ipsilateral studies, after which all possible pairs of suspicious regions, consisting of one from each view, were formed. For these 402 pairs we defined and evaluated `multi-view' features such as: (1) relative position of centers of regions; (2) ratio of lengths of region projections parallel to nipple axis lines; (3) ratio of integrated contrast difference; (4) ratio of the sizes of the suspicious regions; and (5) measure of relative complexity of region boundaries. Each pair was identified as either a `true positive/true positive' (T) pair (i.e., two regions which are projections of the same actual mass), or as a falsely associated pair (F). Distributions for each feature were calculated. A Bayesian network was trained and tested to classify pairs of suspicious regions based exclusively on the multi-view features described above. Distributions for all features were significantly difference for T versus F pairs as indicated by likelihood ratios. Performance of the Bayesian network, which was measured by ROC analysis, indicates a significant ability to distinguish between T pairs and F pairs (Az equals 0.82 +/- 0.03), using information that is attributed to the multi-view content. This study is the first demonstration that there is a significant amount of spatial information that can be derived from ipsilateral pairs of mammograms.

  16. Neural correlates of the classic color and emotional stroop in women with abuse-related posttraumatic stress disorder.

    PubMed

    Bremner, J Douglas; Vermetten, Eric; Vythilingam, Meena; Afzal, Nadeem; Schmahl, Christian; Elzinga, Bernet; Charney, Dennis S

    2004-03-15

    The anterior cingulate and medial prefrontal cortex play an important role in the inhibition of responses, as measured by the Stroop task, as well as in emotional regulation. Dysfunction of the anterior cingulate/medial prefrontal cortex has been implicated in posttraumatic stress disorder (PTSD). The purpose of this study was to use the Stroop task as a probe of anterior cingulate function in PTSD. Women with early childhood sexual abuse-related PTSD (n = 12) and women with abuse but without PTSD (n = 9) underwent positron emission tomographic measurement of cerebral blood flow during exposure to control, color Stroop, and emotional Stroop conditions. Women with abuse with PTSD (but not abused non-PTSD women) had a relative decrease in anterior cingulate blood flow during exposure to the emotional (but not color) classic Stroop task. During the color Stroop there were also relatively greater increases in blood flow in non-PTSD compared with PTSD women in right visual association cortex, cuneus, and right inferior parietal lobule. These findings add further evidence for dysfunction of a network of brain regions, including anterior cingulate and visual and parietal cortex, in abuse-related PTSD.

  17. Influences of unconscious priming on voluntary actions: Role of the rostral cingulate zone.

    PubMed

    Teuchies, Martyn; Demanet, Jelle; Sidarus, Nura; Haggard, Patrick; Stevens, Michaël A; Brass, Marcel

    2016-07-15

    The ability to make voluntary, free choices is fundamental to what it means to be human. A key brain region that is involved in free choices is the rostral cingulate zone (RCZ), which is part of the medial frontal cortex. Previous research has shown that activity in this brain region can be modulated by bottom-up information while making free choices. The current study extends those findings, and shows, for the first time, that activation in the RCZ can also be modulated by subliminal information. We used a subliminal response priming paradigm to bias free and cued choices. We observed more activation in the RCZ when participants made a choice that went against the prime's suggestion, compared to when they chose according to the prime. This shows that the RCZ plays an important role in overcoming externally-triggered conflict between different response options, even when the stimuli triggering this conflict are not consciously perceived. Our results suggest that an important mechanism of endogenous action in the RCZ may therefore involve exerting an internally-generated action choice against conflicting influences, such as external sensory evidence. We further found that subliminal information also modulated activity in the anterior insula and the supramarginal gyrus. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Transfer of ipsilateral fibula on vascular pedicle for treatment of congenital pseudarthrosis of the tibia.

    PubMed

    Tan, Jane S; Roach, James W; Wang, Angela A

    2011-01-01

    Although the use of free vascularized fibula grafts has frequently been reported in the treatment of congenital pseudarthrosis of the tibia, the use of ipsilateral fibula graft on a vascular pedicle is uncommon. We reviewed the long-term results of this procedure in 11 patients. The records of 11 patients who underwent transfer of the ipsilateral fibula on a vascular pedicle between 2.1 and 10.8 years of age were retrospectively reviewed. Average follow-up was 11 years after the index procedure. Seven patients had reached skeletal maturity. Clinical records and radiographs were reviewed to determine patient demographics, surgical parameters, union rate, refracture rate, residual deformity, and functional outcome. Eight patients (73%) achieved union at an average of 20.1 months. Additional bone grafting procedures were required in 4 patients with distal nonunions. There were 3 refractures (38%). Four patients eventually underwent amputation, and 1 patient had a persistent nonunion at final follow-up. Residual deformity included tibial valgus and procurvatum deformities, limb length discrepancy, and ankle valgus. Use of the ipsilateral fibula did not seem to increase the risk of ankle valgus. Functional outcomes were good in all but one patient. Use of the ipsilateral fibula as a pedicle graft provides reasonable results in healing congenital pseudarthrosis of the tibia. Patients should be monitored for the sequelae of this condition, including nonunion, refracture, shortening, and angular deformity, and treated accordingly. Therapeutic Level IV.

  19. Ventral-Dorsal Functional Contribution of the Posterior Cingulate Cortex in Human Spatial Orientation: A Meta-Analysis.

    PubMed

    Burles, Ford; Umiltá, Alberto; McFarlane, Liam H; Potocki, Kendra; Iaria, Giuseppe

    2018-01-01

    The retrosplenial cortex has long been implicated in human spatial orientation and navigation. However, neural activity peaks labeled "retrosplenial cortex" in human neuroimaging studies investigating spatial orientation often lie significantly outside of the retrosplenial cortex proper. This has led to a large and anatomically heterogenous region being ascribed numerous roles in spatial orientation and navigation. Here, we performed a meta-analysis of functional Magnetic Resonance Imaging (fMRI) investigations of spatial orientation and navigation and have identified a ventral-dorsal functional specialization within the posterior cingulate for spatial encoding vs. spatial recall . Generally, ventral portions of the posterior cingulate cortex were more likely to be activated by spatial encoding , i.e., passive viewing of scenes or active navigation without a demand to respond, perform a spatial computation, or localize oneself in the environment. Conversely, dorsal portions of the posterior cingulate cortex were more likely to be activated by cognitive demands to recall spatial information or to produce judgments of distance or direction to non-visible locations or landmarks. The greatly varying resting-state functional connectivity profiles of the ventral (centroids at MNI -22, -60, 6 and 20, -56, 6) and dorsal (centroid at MNI 4, -60, 28) posterior cingulate regions identified in the meta-analysis supported the conclusion that these regions, which would commonly be labeled as "retrosplenial cortex," should be more appropriately referred to as distinct subregions of the posterior cingulate cortex. We suggest that future studies investigating the role of the retrosplenial and posterior cingulate cortex in spatial tasks carefully localize activity in the context of these identifiable subregions.

  20. Melorheostosis with ipsilateral nevus sebaceus (didymosis melorheosebacea).

    PubMed

    Tinschert, Sigrid; Stein, Anette; Göldner, Burkhard; Dietel, Manfred; Happle, Rudolf

    2003-01-01

    We report an unusual case of unilateral melorheostosis and ipsilateral extensive sebaceous nevus. Because the two conditions affected the same side of the body, we hypothesize that they originated from a common genetic mechanism. The temporal and spatial co-occurrence may represent a further example of non-allelic didymosis (twin spotting). The embryo would carry two different recessive mutations at one gene locus or at linked loci on either of a pair of homologous chromosomes. Postzygotic recombination occurring during early embryonic development would result in two different populations of cells homozygous for either mutation. If this concept holds true, the present case may be described as " didymosis melorheosebacea ".

  1. [Woolly hair nevus associated with an ipsilateral linear epidermal nevus].

    PubMed

    Martín-González, T; del Boz-González, J; Vera-Casaño, A

    2007-04-01

    We report a 4-year-old boy with two areas of woolly hair in the right parietotemporal region and a linear epidermal nevus in the areas of woolly hair as well as in the ipsilateral hemiface and chin. Evaluation by scanning electron microscopy showed woolly hair with oval transverse section and longitudinal groove. A complete examination ruled out associated anomalies.

  2. Dynamic association of epigenetic H3K4me3 and DNA 5hmC marks in the dorsal hippocampus and anterior cingulate cortex following reactivation of a fear memory.

    PubMed

    Webb, William M; Sanchez, Richard G; Perez, Gabriella; Butler, Anderson A; Hauser, Rebecca M; Rich, Megan C; O'Bierne, Aidan L; Jarome, Timothy J; Lubin, Farah D

    2017-07-01

    Epigenetic mechanisms such as DNA methylation and histone methylation are critical regulators of gene transcription changes during memory consolidation. However, it is unknown how these epigenetic modifications coordinate control of gene expression following reactivation of a previously consolidated memory. Here, we found that retrieval of a recent contextual fear conditioned memory increased global levels of H3 lysine 4-trimethylation (H3K4me3) and DNA 5-hydroxymethylation (5hmC) in area CA1 of the dorsal hippocampus. Further experiments revealed increased levels of H3K4me3 and DNA 5hmC within a CpG-enriched coding region of the Npas4, but not c-fos, gene. Intriguingly, retrieval of a 30-day old memory increased H3K4me3 and DNA 5hmC levels at a CpG-enriched coding region of c-fos, but not Npas4, in the anterior cingulate cortex, suggesting that while these two epigenetic mechanisms co-occur following the retrieval of a recent or remote memory, their gene targets differ depending on the brain region. Additionally, we found that in vivo siRNA-mediated knockdown of the H3K4me3 methyltransferase Mll1 in CA1 abolished retrieval-induced increases in DNA 5hmC levels at the Npas4 gene, suggesting that H3K4me3 couples to DNA 5hmC mechanisms. Consistent with this, loss of Mll1 prevented retrieval-induced increases in Npas4 mRNA levels in CA1 and impaired fear memory. Collectively, these findings suggest an important link between histone methylation and DNA hydroxymethylation mechanisms in the epigenetic control of de novo gene transcription triggered by memory retrieval. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Inhibition of Cathepsin B Alleviates Secondary Degeneration in Ipsilateral Thalamus After Focal Cerebral Infarction in Adult Rats.

    PubMed

    Zuo, Xialin; Hou, Qinghua; Jin, Jizi; Zhan, Lixuan; Li, Xinyu; Sun, Weiwen; Lin, Kunqin; Xu, En

    2016-09-01

    Secondary degeneration in areas beyond ischemic foci can inhibit poststroke recovery. The cysteine protease Cathepsin B (CathB) regulates cell death and intracellular protein catabolism. To investigate the roles of CathB in the development of secondary degeneration in the ventroposterior nucleus (VPN) of the ipsilateral thalamus after focal cerebral infarction, infarct volumes, immunohistochemistry and immunofluorescence, and Western blotting analyses were conducted in a distal middle cerebral artery occlusion (dMCAO) stroke model in adult rats. We observed marked neuron loss and gliosis in the ipsilateral thalamus after dMCAO, and the expression of CathB and cleaved caspase-3 in the VPN was significantly upregulated; glial cells were the major source of CathB. Although it had no effect on infarct volume, delayed intracerebroventricular treatment with the membrane-permeable CathB inhibitor CA-074Me suppressed the expression of CathB and cleaved caspase-3 in ipsilateral VPN and accordingly alleviated the secondary degeneration. These data indicate that CathB mediates a novel mechanism of secondary degeneration in the VPN of the ipsilateral thalamus after focal cortical infarction and suggest that CathB might be a therapeutic target for the prevention of secondary degeneration in patients after stroke. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  4. The brain connectome as a personalized biomarker of seizure outcomes after temporal lobectomy.

    PubMed

    Bonilha, Leonardo; Jensen, Jens H; Baker, Nathaniel; Breedlove, Jesse; Nesland, Travis; Lin, Jack J; Drane, Daniel L; Saindane, Amit M; Binder, Jeffrey R; Kuzniecky, Ruben I

    2015-05-05

    We examined whether individual neuronal architecture obtained from the brain connectome can be used to estimate the surgical success of anterior temporal lobectomy (ATL) in patients with temporal lobe epilepsy (TLE). We retrospectively studied 35 consecutive patients with TLE who underwent ATL. The structural brain connectome was reconstructed from all patients using presurgical diffusion MRI. Network links in patients were standardized as Z scores based on connectomes reconstructed from healthy controls. The topography of abnormalities in linkwise elements of the connectome was assessed on subnetworks linking ipsilateral temporal with extratemporal regions. Predictive models were constructed based on the individual prevalence of linkwise Z scores >2 and based on presurgical clinical data. Patients were more likely to achieve postsurgical seizure freedom if they exhibited fewer abnormalities within a subnetwork composed of the ipsilateral hippocampus, amygdala, thalamus, superior frontal region, lateral temporal gyri, insula, orbitofrontal cortex, cingulate, and lateral occipital gyrus. Seizure-free surgical outcome was predicted by neural architecture alone with 90% specificity (83% accuracy), and by neural architecture combined with clinical data with 94% specificity (88% accuracy). Individual variations in connectome topography, combined with presurgical clinical data, may be used as biomarkers to better estimate surgical outcomes in patients with TLE. © 2015 American Academy of Neurology.

  5. Single voxel proton magnetic resonance spectroscopy in women with and without intimate partner violence-related posttraumatic stress disorder.

    PubMed

    Seedat, Soraya; Videen, John S; Kennedy, Colleen M; Stein, Murray B

    2005-08-30

    Preliminary in vivo proton magnetic spectroscopic ((1)H-MRS) studies of N-acetylaspartate (a putative marker of neuronal viability and function) in combat veterans and maltreated children with posttraumatic stress disorder (PTSD) suggest altered neuronal integrity in anterior cingulate and medial temporal lobe structures. In this study, (1)H-MRS was used to measure N-acetylaspartate (NAA), choline (Cho) and myo-inositol (mI) relative to creatine (Cr) in the anterior cingulate of 16 women with histories of intimate partner violence (7 with a DSM-IV diagnosis of PTSD, 9 without PTSD) and 11 healthy, non-abused comparison subjects. The relationship between anterior cingulate chemistry and performance on the Stroop Color-Word task and Part B of the Trail Making Test was also examined. There were no significant differences in anterior cingulate or occipital gray matter metabolite ratios of NAA/Cr and Cho/Cr between intimate partner violence and healthy comparison subjects. Intimate partner violence subjects with PTSD had significantly higher anterior cingulate Cho/Cr than intimate partner violence subjects without PTSD. There was evidence that the subjects with PTSD suffered more severe intimate partner violence as measured by the Conflict Tactics Scale-Revised. Metabolite ratios were not significantly correlated with performance on the Stroop or Trails B. Our findings, in agreement with earlier studies, showed significant alterations in anterior cingulate chemistry in women with PTSD. In contrast to other studies, we found an increase in Cho/Cr rather than a decrease in NAA/Cr, indicating alterations in glia, instead of neuronal dropout.

  6. The role of the posterior cingulate cortex in cognition and disease

    PubMed Central

    Sharp, David J.

    2014-01-01

    The posterior cingulate cortex is a highly connected and metabolically active brain region. Recent studies suggest it has an important cognitive role, although there is no consensus about what this is. The region is typically discussed as having a unitary function because of a common pattern of relative deactivation observed during attentionally demanding tasks. One influential hypothesis is that the posterior cingulate cortex has a central role in supporting internally-directed cognition. It is a key node in the default mode network and shows increased activity when individuals retrieve autobiographical memories or plan for the future, as well as during unconstrained ‘rest’ when activity in the brain is ‘free-wheeling’. However, other evidence suggests that the region is highly heterogeneous and may play a direct role in regulating the focus of attention. In addition, its activity varies with arousal state and its interactions with other brain networks may be important for conscious awareness. Understanding posterior cingulate cortex function is likely to be of clinical importance. It is well protected against ischaemic stroke, and so there is relatively little neuropsychological data about the consequences of focal lesions. However, in other conditions abnormalities in the region are clearly linked to disease. For example, amyloid deposition and reduced metabolism is seen early in Alzheimer’s disease. Functional neuroimaging studies show abnormalities in a range of neurological and psychiatric disorders including Alzheimer’s disease, schizophrenia, autism, depression and attention deficit hyperactivity disorder, as well as ageing. Our own work has consistently shown abnormal posterior cingulate cortex function following traumatic brain injury, which predicts attentional impairments. Here we review the anatomy and physiology of the region and how it is affected in a range of clinical conditions, before discussing its proposed functions. We synthesize

  7. Bilingual Language Control in Perception versus Action: MEG Reveals Comprehension Control Mechanisms in Anterior Cingulate Cortex and Domain-General Control of Production in Dorsolateral Prefrontal Cortex.

    PubMed

    Blanco-Elorrieta, Esti; Pylkkänen, Liina

    2016-01-13

    For multilingual individuals, adaptive goal-directed behavior as enabled by cognitive control includes the management of two or more languages. This work used magnetoencephalography (MEG) to investigate the degree of neural overlap between language control and domain-general cognitive control both in action and perception. Highly proficient Arabic-English bilingual individuals participated in maximally parallel language-switching tasks in production and comprehension as well as in analogous tasks in which, instead of the used language, the semantic category of the comprehended/produced word changed. Our results indicated a clear dissociation of language control mechanisms in production versus comprehension. Language-switching in production recruited dorsolateral prefrontal regions bilaterally and, importantly, these regions were similarly recruited by category-switching. Conversely, effects of language-switching in comprehension were observed in the anterior cingulate cortex and were not shared by category-switching. These results suggest that bilingual individuals rely on adaptive language control strategies and that the neural involvement during language-switching could be extensively influenced by whether the switch is active (e.g., in production) or passive (e.g., in comprehension). In addition, these results support that humans require high-level cognitive control to switch languages in production, but the comprehension of language switches recruits a distinct neural circuitry. The use of MEG enabled us to obtain the first characterization of the spatiotemporal profile of these effects, establishing that switching processes begin ∼ 400 ms after stimulus presentation. This research addresses the neural mechanisms underlying multilingual individuals' ability to successfully manage two or more languages, critically targeting whether language control is uniform across linguistic domains (production and comprehension) and whether it is a subdomain of general

  8. Ipsilateral Irradiation for Oral and Oropharyngeal Carcinoma Treated With Primary Surgery and Postoperative Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vergeer, Marije R., E-mail: mr.vergeer@vumc.n; Doornaert, Patricia; Jonkman, Anja

    Purpose: The purpose was to evaluate the contralateral nodal control (CLNC) in postoperative patients with oral and oropharyngeal cancer treated with ipsilateral irradiation of the neck and primary site. Late radiation-induced morbidity was also evaluated. Methods and Materials: The study included 123 patients with well-lateralized squamous cell carcinomas treated with surgery and unilateral postoperative irradiation. Most patients had tumors of the gingiva (41%) or buccal mucosa (21%). The majority of patients underwent surgery of the ipsilateral neck (n = 102 [83%]). The N classification was N0 in 73 cases (59%), N1 or N2a in 23 (19%), and N2b in 27more » cases (22%). Results: Contralateral metastases developed in 7 patients (6%). The 5-year actuarial CLNC was 92%. The number of lymph node metastases was the only significant prognostic factor with regard to CLNC. The 5-year CLNC was 99% in N0 cases, 88% in N1 or N2a cases, and 73% in N2b cases (p = 0.008). Borderline significance (p = 0.06) was found for extranodal spread. Successful salvage could be performed in 71% of patients with contralateral metastases. The prevalence of Grade 2 or higher xerostomia was 2.6% at 5 years. Conclusions: Selected patients with oral or oropharyngeal carcinoma treated with primary surgery and postoperative ipsilateral radiotherapy have a very high CLNC with a high probability of successful salvage in case of contralateral metastases. However, bilateral irradiation should be applied in case of multiple lymph node metastases in the ipsilateral neck, particularly in the presence of extranodal spread. The incidence of radiation-induced morbidity is considerably lower as observed after bilateral irradiation.« less

  9. Surgical flow modification of the anterior cerebral artery-anterior communicating artery complex in the management of giant aneurysms of internal carotid artery bifurcation: An alternative for a difficult clip reconstruction

    PubMed Central

    Pahl, Felix Hendrik; de Oliveira, Matheus Fernandes; Beer-Furlan, André Luiz; Rotta, José Marcus

    2016-01-01

    Background: Internal carotid artery bifurcation (ICAb) aneurysms account for about 2–15% of all intracranial aneurysms. In giant and complex cases, treatment may be difficult and dangerous, once some aneurysms have wide neck and anterior cerebral artery (ACA) and middle cerebral artery (MCA) may arise from the aneurysm itself. Clip reconstruction may be difficult in such cases. Whenever possible, the occlusion of ACA transform the bifurcation in a single artery reconstruction (ICA to MCA), much easier than a bifurcation reconstruction. Methods: In patients with giant and complex ICAb aneurysms, we propose routine preoperative angiography with anatomical evaluation of anterior communicating artery (ACoA) patency during cervical common carotid compression with concomitant contralateral carotid artery injection. This allowed visualization of the expected reversal of flow in the A1 segment–ACoA complex. When test is positive, we can perform ipsilateral ACA (A1 segment) clip occlusion and flow modification of the ACA-ACoA complex transforming a three vessel (ICA, ACA, and MCA) reconstruction into a two vessel (ICA and MCA) reconstruction. Results: Two patients were treated, with 100% of occlusion and good outcome. Conclusions: Surgical treatment of giant and complex ICAb may be achieved with acceptable morbidity. PMID:27313968

  10. Proton Magnetic Resonance Spectroscopy in Social Anxiety Disorder.

    PubMed

    Tükel, Raşit; Aydın, Kubilay; Yüksel, Çağrı; Ertekin, Erhan; Koyuncu, Ahmet

    2016-01-01

    In the present study, 24 nonmedicated patients with social anxiety disorder (SAD) were compared with 24 healthy control subjects to assess metabolite levels in the anterior cingulate, insula, caudate, and putamen using proton magnetic resonance spectroscopy. The ratio of N-acetylaspartate (NAA)/creatine (Cr) was significantly higher in patients with SAD than in healthy control subjects in the anterior cingulate and insula. NAA/Cr ratios in the insula correlated positively with the Liebowitz Social Anxiety Scale total scores in patients with SAD. Our results support the significance and biochemical involvement of the anterior cingulate and insula in the pathophysiology of SAD.

  11. Reliability of MEG source imaging of anterior temporal spikes: analysis of an intracranially characterized spike focus.

    PubMed

    Wennberg, Richard; Cheyne, Douglas

    2014-05-01

    To assess the reliability of MEG source imaging (MSI) of anterior temporal spikes through detailed analysis of the localization and orientation of source solutions obtained for a large number of spikes that were separately confirmed by intracranial EEG to be focally generated within a single, well-characterized spike focus. MSI was performed on 64 identical right anterior temporal spikes from an anterolateral temporal neocortical spike focus. The effects of different volume conductors (sphere and realistic head model), removal of noise with low frequency filters (LFFs) and averaging multiple spikes were assessed in terms of the reliability of the source solutions. MSI of single spikes resulted in scattered dipole source solutions that showed reasonable reliability for localization at the lobar level, but only for solutions with a goodness-of-fit exceeding 80% using a LFF of 3 Hz. Reliability at a finer level of intralobar localization was limited. Spike averaging significantly improved the reliability of source solutions and averaging 8 or more spikes reduced dependency on goodness-of-fit and data filtering. MSI performed on topographically identical individual spikes from an intracranially defined classical anterior temporal lobe spike focus was limited by low reliability (i.e., scattered source solutions) in terms of fine, sublobar localization within the ipsilateral temporal lobe. Spike averaging significantly improved reliability. MSI performed on individual anterior temporal spikes is limited by low reliability. Reduction of background noise through spike averaging significantly improves the reliability of MSI solutions. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Neural correlates of hemispheric dominance and ipsilaterality within the vestibular system.

    PubMed

    Janzen, J; Schlindwein, P; Bense, S; Bauermann, T; Vucurevic, G; Stoeter, P; Dieterich, M

    2008-10-01

    Earlier functional imaging studies on the processing of vestibular information mainly focused on cortical activations due to stimulation of the horizontal semicircular canals in right-handers. Two factors were found to determine its processing in the temporo-parietal cortex: a dominance of the non-dominant hemisphere and an ipsilaterality of the neural pathways. In an investigation of the role of these factors in the vestibular otoliths, we used vestibular evoked myogenic potentials (VEMPs) in a fMRI study of monaural saccular-otolith stimulation. Our aim was to (1) analyze the hemispheric dominance for saccular-otolith information in healthy left-handers, (2) determine if there is a predominance of the ipsilateral saccular-otolith projection, and (3) evaluate the impact of both factors on the temporo-parieto-insular activation pattern. A block design with three stimulation and rest conditions was applied: (1) 102 dB-VEMP stimulation; (2) 65 dB-control-acoustic stimulation, (3) 102 dB-white-noise-control stimulation. After subtraction of acoustic side effects, bilateral activations were found in the posterior insula, the superior/middle/transverse temporal gyri, and the inferior parietal lobule. The distribution of the saccular-otolith activations was influenced by the two factors but with topographic disparity: whereas the inferior parts of the temporo-parietal cortex were mainly influenced by the ipsilaterality of the pathways, the upper parts reflected the dominance of the non-dominant hemisphere. This is in contrast to the processing of acoustic stimulation, which showed a predominance of the contralateral pathways. Our study proves the importance of the hemispheric preponderance also in left-handers, which is of relevance in the superior parts of the insula gyrus V, the inferior parietal lobule, and the superior temporal gyri.

  13. Assessing the Psychedelic "After-Glow" in Ayahuasca Users: Post-Acute Neurometabolic and Functional Connectivity Changes Are Associated with Enhanced Mindfulness Capacities.

    PubMed

    Sampedro, Frederic; de la Fuente Revenga, Mario; Valle, Marta; Roberto, Natalia; Domínguez-Clavé, Elisabet; Elices, Matilde; Luna, Luís Eduardo; Crippa, José Alexandre S; Hallak, Jaime E C; de Araujo, Draulio B; Friedlander, Pablo; Barker, Steven A; Álvarez, Enrique; Soler, Joaquim; Pascual, Juan C; Feilding, Amanda; Riba, Jordi

    2017-09-01

    Ayahuasca is a plant tea containing the psychedelic 5-HT2A agonist N,N-dimethyltryptamine and harmala monoamine-oxidase inhibitors. Acute administration leads to neurophysiological modifications in brain regions of the default mode network, purportedly through a glutamatergic mechanism. Post-acutely, ayahuasca potentiates mindfulness capacities in volunteers and induces rapid and sustained antidepressant effects in treatment-resistant patients. However, the mechanisms underlying these fast and maintained effects are poorly understood. Here, we investigated in an open-label uncontrolled study in 16 healthy volunteers ayahuasca-induced post-acute neurometabolic and connectivity modifications and their association with mindfulness measures. Using 1H-magnetic resonance spectroscopy and functional connectivity, we compared baseline and post-acute neurometabolites and seed-to-voxel connectivity in the posterior and anterior cingulate cortex after a single ayahuasca dose. Magnetic resonance spectroscopy showed post-acute reductions in glutamate+glutamine, creatine, and N-acetylaspartate+N-acetylaspartylglutamate in the posterior cingulate cortex. Connectivity was increased between the posterior cingulate cortex and the anterior cingulate cortex, and between the anterior cingulate cortex and limbic structures in the right medial temporal lobe. Glutamate+glutamine reductions correlated with increases in the "nonjudging" subscale of the Five Facets Mindfulness Questionnaire. Increased anterior cingulate cortex-medial temporal lobe connectivity correlated with increased scores on the self-compassion questionnaire. Post-acute neural changes predicted sustained elevations in nonjudging 2 months later. These results support the involvement of glutamate neurotransmission in the effects of psychedelics in humans. They further suggest that neurometabolic changes in the posterior cingulate cortex, a key region within the default mode network, and increased connectivity between the

  14. Assessing the Psychedelic “After-Glow” in Ayahuasca Users: Post-Acute Neurometabolic and Functional Connectivity Changes Are Associated with Enhanced Mindfulness Capacities

    PubMed Central

    Sampedro, Frederic; de la Fuente Revenga, Mario; Valle, Marta; Roberto, Natalia; Domínguez-Clavé, Elisabet; Elices, Matilde; Luna, Luís Eduardo; Crippa, José Alexandre S; Hallak, Jaime E C; de Araujo, Draulio B; Friedlander, Pablo; Barker, Steven A; Álvarez, Enrique; Soler, Joaquim; Pascual, Juan C; Feilding, Amanda

    2017-01-01

    Abstract Background Ayahuasca is a plant tea containing the psychedelic 5-HT2A agonist N,N-dimethyltryptamine and harmala monoamine-oxidase inhibitors. Acute administration leads to neurophysiological modifications in brain regions of the default mode network, purportedly through a glutamatergic mechanism. Post-acutely, ayahuasca potentiates mindfulness capacities in volunteers and induces rapid and sustained antidepressant effects in treatment-resistant patients. However, the mechanisms underlying these fast and maintained effects are poorly understood. Here, we investigated in an open-label uncontrolled study in 16 healthy volunteers ayahuasca-induced post-acute neurometabolic and connectivity modifications and their association with mindfulness measures. Methods Using 1H-magnetic resonance spectroscopy and functional connectivity, we compared baseline and post-acute neurometabolites and seed-to-voxel connectivity in the posterior and anterior cingulate cortex after a single ayahuasca dose. Results Magnetic resonance spectroscopy showed post-acute reductions in glutamate+glutamine, creatine, and N-acetylaspartate+N-acetylaspartylglutamate in the posterior cingulate cortex. Connectivity was increased between the posterior cingulate cortex and the anterior cingulate cortex, and between the anterior cingulate cortex and limbic structures in the right medial temporal lobe. Glutamate+glutamine reductions correlated with increases in the “nonjudging” subscale of the Five Facets Mindfulness Questionnaire. Increased anterior cingulate cortex-medial temporal lobe connectivity correlated with increased scores on the self-compassion questionnaire. Post-acute neural changes predicted sustained elevations in nonjudging 2 months later. Conclusions These results support the involvement of glutamate neurotransmission in the effects of psychedelics in humans. They further suggest that neurometabolic changes in the posterior cingulate cortex, a key region within the default

  15. Ipsilateral hip and knee dislocation: Case report and review of literature

    PubMed Central

    Sharma, Gaurav; Chahar, Deepak; Sreenivasan, Ravi; Verma, Nikhil; Pankaj, Amite

    2016-01-01

    Hip and knee dislocations are not uncommon but simultaneous ipsilateral dislocation of the hip and knee joint is rare; consequently, there is an inadequate amount of literature on the subject. We identified only 11 such cases reported in English literature. In the present report, we describe the case of a 23-year-old male patient who presented with ipsilateral hip and knee dislocation on the right side after being involved in a road traffic accident. The hip dislocation was associated with a posterior wall acetabular fracture. The hip as well as the knee joints was reduced in the emergency bay. The patient underwent an urgent fixation of the posterior wall acetabular fracture with delayed ligament reconstruction for the knee dislocation. At one-year follow-up, he had no pain in the hip or knee. There was grade 1 posterior sag but no symptoms of knee instability. Radiographs revealed no evidence of avascular necrosis or arthritis of the femoral head. The normal treatment protocol for individual injury is affected by the simultaneous occurrence of hip and knee dislocation. PMID:27182149

  16. Focal changes in brain energy and phospholipid metabolism in first-episode schizophrenia: 31P-MRS chemical shift imaging study at 4 Tesla.

    PubMed

    Jensen, J Eric; Miller, Jodi; Williamson, Peter C; Neufeld, Richard W J; Menon, Ravi S; Malla, Ashok; Manchanda, Rahul; Schaefer, Betsy; Densmore, Maria; Drost, Dick J

    2004-05-01

    Membrane phospholipid and high-energy abnormalities measured with phosphorus magnetic resonance spectroscopy ((31)P-MRS) have been reported in patients with schizophrenia in several brain regions. Using improved imaging techniques, previously inaccessible brain regions were examined in patients with first-episode schizophrenia and healthy volunteers with 4.0 T (31)P-MRS. Brain spectra were collected in vivo from 15 patients with first-episode schizophrenia and 15 healthy volunteers from 15 cm(3) effective voxels in the thalamus, cerebellum, hippocampus, anterior/posterior cingulate, prefrontal cortex and parieto-occipital cortex. People with first-episode schizophrenia showed increased levels of glycerophosphocholine in the anterior cingulate. Inorganic phosphate, phosphocreatine and adenosine triphosphate concentrations were also increased in the anterior cingulate in this group. The increased phosphodiester and high-energy phosphate levels in the anterior cingulate of brains of people with first-episode schizophrenia may indicate neural overactivity in this region during the early stages of the illness, resulting in increased excitotoxic neural membrane breakdown.

  17. One-Lung Ventilation with Additional Ipsilateral Ventilation of Low Tidal Volume and High Frequency in Lung Lobectomy

    PubMed Central

    Feng, Yong; Wang, Jianyue; Zhang, Yang; Wang, Shiduan

    2016-01-01

    Background To investigate the protective effects of additional ipsilateral ventilation of low tidal volume and high frequency on lung functions in the patients receiving lobectomy. Material/Methods Sixty patients receiving lung lobectomy were randomized into the conventional one-lung ventilation (CV) group (n=30) and the ipsilateral low tidal volume high frequency ventilation (LV) group (n=30). In the CV group, patients received only contralateral OLV. In the LV group, patients received contralateral ventilation and additional ipsilateral ventilation of low tidal volume of 1–2 ml/kg and high frequency of 40 times/min. Normal lung tissues were biopsied for the analysis of lung injury. Lung injury was scored by evaluating interstitial edema, alveolar edema, neutrophil infiltration, and alveolar congestion. Results At 30 min and 60 min after the initiation of one-lung ventilation and after surgery, patients in the LV group showed significantly higher ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen than those in the CV group (P<0.001). Lung injury was significantly less severe (2.7±0.7) in the LV group than in the CV group (3.1±0.7) (P=0.006). Conclusions Additional ipsilateral ventilation of low tidal volume and high frequency can decrease the risk of hypoxemia and alleviate lung injury in patients receiving lobectomy. PMID:27166086

  18. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task.

    PubMed

    Goldstein, Rita Z; Woicik, Patricia A; Maloney, Thomas; Tomasi, Dardo; Alia-Klein, Nelly; Shan, Juntian; Honorio, Jean; Samaras, Dimitris; Wang, Ruiliang; Telang, Frank; Wang, Gene-Jack; Volkow, Nora D

    2010-09-21

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.

  19. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, R.Z.; Goldstein, R.Z.; Woicik, P.A.

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function)more » in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.« less

  20. Reduced posterior cingulate glutamate measured by magnetic resonance spectroscopy in hyperthyroidism.

    PubMed

    Liu, Xinxin; Bai, Zhilan; Liu, Feng; Li, Min; Zhang, Qiujuan; Song, Guangyi; Xu, Jing

    2012-01-01

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor performance in memory, depression, anxiety and mania. These symptoms suggest the dysfunction of brain. However, the underlying process of this dysfunction is not well understood. At the same time, glutamatergic system has been considered important in neuropsychiatric process by recent studies. Thus, this study is to investigate the change of glutamate concentration in patients with hyperthyroidism using proton magnetic resonance spectroscopy. Fifteen untreated patients with hyperthyroidism and fifteen age- and gender- matched controls participated in the study. The region of the posterior cingulate cortex was examined by magnetic resonance spectroscopy with a technique referred as TE-averaged PRESS at 3T field strength. The concentrations of N-Acetylaspartate, creatine, choline and glutamate were assessed using jMRUI v4.0 software. Hyperthyroid patients, compared with controls, showed a decrease of glutamate concentration (P<0.047) and glutamate/creatine ratios (P<0.009) in the posterior cingulate cortex. The decrease of choline concentration (P<0.004) and choline/creatine ratios (P<0.012) were also discovered. No significant difference was found in the concentrations of N-Acetylaspartate or creatine between patients and controls. Concentration of glutamate decreased in the region of posterior cingulate cortex in patients with hyperthyroidism. This reduction indicated a possible involvement of glutamate in the brain dysfunction in hyperthyroidism.

  1. Risk of Secondary Injury in Younger Athletes After Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Wiggins, Amelia J.; Grandhi, Ravi K.; Schneider, Daniel K.; Stanfield, Denver; Webster, Kate E.; Myer, Gregory D.

    2017-01-01

    Background Injury to the ipsilateral graft used for reconstruction of the anterior cruciate ligament (ACL) or a new injury to the contralateral ACL are disastrous outcomes after successful ACL reconstruction (ACLR), rehabilitation, and return to activity. Studies reporting ACL reinjury rates in younger active populations are emerging in the literature, but these data have not yet been comprehensively synthesized. Purpose To provide a current review of the literature to evaluate age and activity level as the primary risk factors in reinjury after ACLR. Study Design Systematic review and meta-analysis. Methods A systematic review of the literature was conducted via searches in PubMed (1966 to July 2015) and EBSCO host (CINAHL, Medline, SPORTDiscus [1987 to July 2015]). After the search and consultation with experts and rating of study quality, 19 articles met inclusion for review and aggregation. Population demographic data and total reinjury (ipsilateral and contralateral) rate data were recorded from each individual study and combined using random-effects meta-analyses. Separate meta-analyses were conducted for the total population data as well as the following subsets: young age, return to sport, and young age + return to sport. Results Overall, the total second ACL reinjury rate was 15%, with an ipsilateral reinjury rate of 7% and contralateral injury rate of 8%. The secondary ACL injury rate (ipsilateral + contralateral) for patients younger than 25 years was 21%. The secondary ACL injury rate for athletes who return to a sport was also 20%. Combining these risk factors, athletes younger than 25 years who return to sport have a secondary ACL injury rate of 23%. Conclusion This systematic review and meta-analysis demonstrates that younger age and a return to high level of activity are salient factors associated with secondary ACL injury. These combined data indicate that nearly 1 in 4 young athletic patients who sustain an ACL injury and return to high-risk sport

  2. Risk Factors for Revision Surgery After Superior Labral Anterior-Posterior Repair: A National Perspective.

    PubMed

    Taylor, Samuel A; Degen, Ryan M; White, Alexander E; McCarthy, Moira M; Gulotta, Lawrence V; O'Brien, Stephen J; Werner, Brian C

    2017-06-01

    Data regarding risk factors for revision surgery after superior labral anterior-posterior (SLAP) repair are limited to institutional series. To define risk factors for revision surgery after SLAP repair among patients in a large national database. Case-control study; Level of evidence, 3. A national insurance database was queried for patients undergoing arthroscopic SLAP repair (Current Procedural Terminology [CPT] code 29807) for the diagnosis of a SLAP tear. Patients without a CPT modifier for laterality were excluded. Revision surgery was defined as (1) subsequent ipsilateral SLAP repair (CPT 29807), (2) ipsilateral arthroscopic debridement for the diagnosis of a SLAP tear (CPT 29822 or 29823, with diagnosis code 840.7), (3) subsequent ipsilateral arthroscopic biceps tenodesis (CPT 29828), (4) subsequent ipsilateral open biceps tenodesis (CPT 23430), and (5) subsequent biceps tenotomy (CPT 23405). Multivariable binomial logistic regression analysis was performed to identify risk factors for revision surgery after SLAP repair, including patient demographics/comorbidities, concomitant diagnoses, and concomitant procedures performed. Odds ratios (ORs), 95% CIs, and P values were calculated. The estimated financial impact of revision surgery was also calculated. There were 4751 patients who met inclusion and exclusion criteria. Overall, 121 patients (2.5%) required revision surgery after SLAP repair. Regression analysis identified numerous risk factors for revision surgery, including age >40 years (OR, 1.5; 95% CI, 1.2-1.8; P = .045), female sex (OR, 1.5; 95% CI, 1.3-1.8; P = .010), obesity (OR, 1.8; 95% CI, 1.5-2.2; P = .001), smoking (OR, 2.0; 95% CI, 1.6-2.4; P < .0001), and diagnosis of biceps tendinitis (OR, 3.5; 95% CI, 3.0-4.2; P < .0001) or long head of the biceps tearing (OR, 5.1; 95% CI, 4.1-6.3; P < .0001) at or before the time of surgery. Concomitant rotator cuff repair and distal clavicle excision were not significant risk factors for revision surgery

  3. Delayed Anterior Cruciate Ligament Reconstruction in Young Patients With Previous Anterior Tibial Spine Fractures.

    PubMed

    Mitchell, Justin J; Mayo, Meredith H; Axibal, Derek P; Kasch, Anthony R; Fader, Ryan R; Chadayammuri, Vivek; Terhune, E Bailey; Georgopoulos, Gaia; Rhodes, Jason T; Vidal, Armando F

    2016-08-01

    Avulsion fractures of the anterior tibial spine in young athletes are injuries similar to anterior cruciate ligament (ACL) injuries in adults. Sparse data exist on the association between anterior tibial spine fractures (ATSFs) and later ligamentous laxity or injuries leading to ACL reconstruction. To better delineate the incidence of delayed instability or ACL ruptures requiring delayed ACL reconstruction in young patients with prior fractures of the tibial eminence. Case series; Level of evidence, 4. We identified 101 patients between January 1993 and January 2012 who sustained an ATSF and who met inclusion criteria for this study. All patients had been followed for at least 2 years after the initial injury and were included for analysis after completion of a questionnaire via direct contact, mail, and/or telephone. If patients underwent further surgical intervention and/or underwent later ACL reconstruction, clinical records and operative reports pertaining to these secondary interventions were obtained and reviewed. Differences between categorical variables were assessed using the Fisher exact test. The association between time to revision ACL surgery and fracture type was assessed by Kaplan-Meier plots. The association between need for revision ACL surgery and age, sex, and mechanism of surgery was assessed using logistic regression. Nineteen percent of all patients evaluated underwent delayed ACL reconstruction after a previous tibial spine fracture on the ipsilateral side. While there were a higher proportion of ACL reconstructions in type II fractures, there was not a statistically significant difference in the number of patients within each fracture group who went on to undergo later surgery (P = .29). Further, there was not a significant association between fracture type, sex, or mechanism of injury as it related to the progression to later ACL reconstruction. However, there was a significant association between age at the time of injury and progression

  4. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection.

    PubMed

    Li, Yi-Ke; Yang, Juan-Mei; Huang, Yi-Bo; Ren, Dong-Dong; Chi, Fang-Lu

    2015-06-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  5. Internal derangement of the knee after ipsilateral femoral shaft fracture: MR imaging findings.

    PubMed

    Blacksin, M F; Zurlo, J V; Levy, A S

    1998-08-01

    This study uses magnetic resonance (MR) imaging to delineate the types and frequencies of injuries seen in the knee after ipsilateral femoral shaft fracture. We also compare the results of the orthopedic knee examination with the MR findings. MR imaging of the ipsilateral knee was performed on 34 patients with closed femoral shaft fractures. Indications for knee MR imaging included knee pain at the time of fracture, soft tissue swelling or an effusion of the knee, or a positive knee examination under anesthesia. The patients had a mean age of 27 years and all were stabilized with intramedullary nails. Imaging was performed a mean time of 2.5 days after surgery. All patients had knee examinations done under anesthesia, and the MR results were compiled and compared with the clinical examinations. Ninety-seven percent of patients demonstrated knee effusions. Twenty-seven percent of patients demonstrated meniscal tears, with the posterior horn of the medial meniscus most frequently torn. The medial collateral ligament was the most frequent site of ligamentous injury (38%) followed by the posterior cruciate ligament (21%). Fifty percent of patients had injuries of the extensor mechanism. Bone bruises were noted in 32% of patients. Articular cartilage injuries were confined to the patella in four cases. One occult tibial plateau fracture and one meniscocapsular separation were seen. There is a common incidence of both ligamentous and meniscal injury to the knee after ipsilateral femoral shaft fracture. MR imaging can be useful in assessing the extent of injury, and may reveal findings unsuspected after clinical examination of the knee.

  6. Intracranial arteriovenous malformation: relationships between clinical and radiographic factors and ipsilateral steal severity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batjer, H.H.; Devous, M.D. Sr.; Seibert, G.B.

    1988-09-01

    Intracranial arteriovenous malformations (AVMs) are high flow shunts that may jeopardize the perfusion of adjacent tissue. Clinical and radiographic data from 62 patients were analyzed to determine their relationship to the severity of steal measured by single photon emission computed tomography (SPECT). The ipsilateral steal index (ISteal(i)) was determined by dividing regional cerebral blood flow (rCBF) values within hand-drawn regions of hypoperfusion in the ipsilateral hemisphere by total brain flow, which was calculated as the average rCBF of each hemisphere. Of the patients, 40% were less than 30 years of age, 45% were 30 to 50 years old, and 15%more » were over 50. Forty-eight per cent presented with hemorrhage and 34% presented with progressive deficits. There was angiographic steal in 37%, and postoperative hyperemic complications developed in 21%. All patients had ipsilateral regions of hypoperfusion. The ISteal(i) was less than 0.7 in 23 (37%), 0.7 to 0.8 in 20 (32%), and greater than 0.8 in 19 (31%). The ISteal(i) was significantly less severe in the patients over 50; 78% of these patients had an ISteal(i) of greater than 0.8 (P less than 0.01). A history of hemorrhage was associated with less severe steal than that in patients who had not bled (P = 0.088). Patients presenting with a history of progressive deficits had increased severity of steal compared with those without progressive deficits (P less than 0.05). A trend toward decreased severity of steal was noted in patients with unfavorable outcomes.« less

  7. Subcallosal Cingulate Connectivity in Anorexia Nervosa Patients Differs From Healthy Controls: A Multi-tensor Tractography Study.

    PubMed

    Hayes, Dave J; Lipsman, Nir; Chen, David Q; Woodside, D Blake; Davis, Karen D; Lozano, Andres M; Hodaie, Mojgan

    2015-01-01

    Anorexia nervosa is characterized by extreme low body weight and alterations in affective processing. The subcallosal cingulate regulates affect through wide-spread white matter connections and is implicated in the pathophysiology of anorexia nervosa. We examined whether those with treatment refractory anorexia nervosa undergoing deep brain stimulation (DBS) of the subcallosal white matter (SCC) show: (1) altered anatomical SCC connectivity compared to healthy controls, (2) white matter microstructural changes, and (3) microstructural changes associated with clinically-measured affect. Diffusion magnetic resonance imaging (dMRI) and deterministic multi-tensor tractography were used to compare anatomical connectivity and microstructure in SCC-associated white matter tracts. Eight women with treatment-refractory anorexia nervosa were compared to 8 age- and sex-matched healthy controls. Anorexia nervosa patients also completed affect-related clinical assessments presurgically and 12 months post-surgery. (1) Higher (e.g., left parieto-occipital cortices) and lower (e.g., thalamus) connectivity in those with anorexia nervosa compared to controls. (2) Decreases in fractional anisotropy, and alterations in axial and radial diffusivities, in the left fornix crus, anterior limb of the internal capsule (ALIC), right anterior cingulum and left inferior fronto-occipital fasciculus. (3) Correlations between dMRI metrics and clinical assessments, such as low pre-surgical left fornix and right ALIC fractional anisotropy being related to post-DBS improvements in quality-of-life and depressive symptoms, respectively. We identified widely-distributed differences in SCC connectivity in anorexia nervosa patients consistent with heterogenous clinical disruptions, although these results should be considered with caution given the low number of subjects. Future studies should further explore the use of affect-related connectivity and behavioral assessments to assist with DBS target

  8. Shaped magnetic field pulses by multi-coil repetitive transcranial magnetic stimulation (rTMS) differentially modulate anterior cingulate cortex responses and pain in volunteers and fibromyalgia patients

    PubMed Central

    2013-01-01

    Background Repetitive transcranial magnetic stimulation (rTMS) has shown promise in the alleviation of acute and chronic pain by altering the activity of cortical areas involved in pain sensation. However, current single-coil rTMS technology only allows for effects in surface cortical structures. The ability to affect activity in certain deep brain structures may however, allow for a better efficacy, safety, and tolerability. This study used PET imaging to determine whether a novel multi-coil rTMS would allow for preferential targeting of the dorsal anterior cingulate cortex (dACC), an area always activated with pain, and to provide preliminary evidence as to whether this targeted approach would allow for efficacious, safe, and tolerable analgesia both in a volunteer/acute pain model as well as in fibromyalgia chronic pain patients. Methods Part 1: Different coil configurations were tested in a placebo-controlled crossover design in volunteers (N = 16). Tonic pain was induced using a capsaicin/thermal pain model and functional brain imaging was performed by means of H215O positron emission tomography – computed tomography (PET/CT) scans. Differences in NRS pain ratings between TMS and sham treatment (NRSTMS-NRSplacebo) which were recorded each minute during the 10 minute PET scans. Part 2: 16 fibromyalgia patients were subjected to 20 multi-coil rTMS treatments over 4 weeks and effects on standard pain scales (Brief Pain Inventory, item 5, i.e. average pain NRS over the last 24 hours) were recorded. Results A single 30 minute session using one of 3 tested rTMS coil configurations operated at 1 Hz consistently produced robust reduction (mean 70% on NRS scale) in evoked pain in volunteers. In fibromyalgia patients, the 20 rTMS sessions also produced a significant pain inhibition (43% reduction in NRS pain over last 24 hours), but only when operated at 10 Hz. This degree of pain control was maintained for at least 4 weeks after the final session

  9. Retention of retinal axon collateral is responsible for induced ipsilateral retinotectal projections in adult goldfish.

    PubMed

    Sharma, S C; Tsai, C

    1991-01-01

    In normal goldfish, optic axons innervate only the contralateral optic tectum. When one eye was enucleated and the optic nerve of the other eye crushed, the regenerating optic axons innervated both optic tecta. We studied the presence of bilaterally projecting retinal ganglion cells by double retrograde cell labeling methods using Nuclear Yellow and True Blue dyes. About 10% of the retinal ganglion cells were double labeled and these cells were found throughout the retina. In addition, HRP application to the ipsilateral tectum revealed retrogradely-labeled retinal ganglion cells of all morphological types. These results suggest that induced ipsilateral projections are formed by regenerating axon collaterals and that all cell types are involved in the generation of normal mirror image typography.

  10. Contralateral versus ipsilateral rTMS of temporoparietal cortex for the treatment of chronic unilateral tinnitus: comparative study.

    PubMed

    Khedr, E M; Abo-Elfetoh, N; Rothwell, J C; El-Atar, A; Sayed, E; Khalifa, H

    2010-07-01

    Repetitive transcranial magnetic stimulation (rTMS) applied over left temporoparietal cortex has been reported to have a long-term therapeutic effect on tinnitus. We compare the impact of 1 and 25 Hz rTMS delivered either contralateral or ipsilateral to symptoms in 62 patients with unilateral chronic tinnitus. Patients were randomly assigned to one of four treatment groups: with stimulation at 1 or 25 Hz applied either ipsilateral or contralateral to symptoms. Two thousand pulses per session were given daily for 2 weeks. Changes in tinnitus handicap inventory (THI), self-rating scores of loudness, awareness, and annoyance were measured monthly for 10 months. Duration of residual inhibition (RI) and psychiatric morbidity were evaluated monthly for 3 months. There was a significant main effect of time (P < 0.0001) and a significant time x side interaction (P = 0.032) between groups. This was because of the fact that contralateral stimulation had a greater effect on THI than ipsilateral stimulation; it was also superior to left side stimulation (P = 0.027). Ratings of loudness improved more after contralateral rTMS (P = 0.037). Twenty patients had no remaining tinnitus after 3 months; the remainder had a significant increase in RI. Patients with the shortest history of tinnitus tended to respond better to rTMS. There was a significant correlation between changes in THI score and changes in Hamilton anxiety and depression scores. Ten daily treatments of 1 and 25 Hz rTMS contralateral to the side of tinnitus have a greater beneficial effect on symptoms than either ipsilateral or left side stimulation.

  11. Hand-independent representation of tool-use pantomimes in the left anterior intraparietal cortex.

    PubMed

    Ogawa, Kenji; Imai, Fumihito

    2016-12-01

    Previous neuropsychological studies of ideomotor apraxia (IMA) indicated impairments in pantomime actions for tool use for both right and left hands following lesions of parieto-premotor cortices in the left hemisphere. Using functional magnetic resonance imaging (fMRI) with multi-voxel pattern analysis (MVPA), we tested the hypothesis that the left parieto-premotor cortices are involved in the storage or retrieval of hand-independent representation of tool-use actions. In the fMRI scanner, one of three kinds of tools was displayed in pictures or letters, and the participants made pantomimes of the use of these tools using the right hand for the picture stimuli or with the left hand for the letters. We then used MVPA to classify which kind of tool the subjects were pantomiming. Whole-brain searchlight analysis revealed successful decoding using the activities largely in the contralateral primary sensorimotor region, ipsilateral cerebellum, and bilateral early visual area, which may reflect differences in low-level sensorimotor components for three types of pantomimes. Furthermore, a successful cross-classification between the right and left hands was possible using the activities of the left inferior parietal lobule (IPL) near the junction of the anterior intraparietal sulcus. Our finding indicates that the left anterior intraparietal cortex plays an important role in the production of tool-use pantomimes in a hand-independent manner, and independent of stimuli modality.

  12. Mapping the human brain during a specific Vojta's tactile input: the ipsilateral putamen's role.

    PubMed

    Sanz-Esteban, Ismael; Calvo-Lobo, Cesar; Ríos-Lago, Marcos; Álvarez-Linera, Juan; Muñoz-García, Daniel; Rodríguez-Sanz, David

    2018-03-01

    A century of research in human brain parcellation has demonstrated that different brain areas are associated with functional tasks. New neuroscientist perspectives to achieve the parcellation of the human brain have been developed to know the brain areas activation and its relationship with different stimuli. This descriptive study aimed to compare brain regions activation by specific tactile input (STI) stimuli according to the Vojta protocol (STI-group) to a non-STI stimulation (non-STI-group). An exploratory functional magnetic resonance imaging (fMRI) study was performed. The 2 groups of participants were passively stimulated by an expert physical therapist using the same paradigm structure, although differing in the place of stimulation. The stimulation was presented to participants using a block design in all cases. A sample of 16 healthy participants, 5 men and 11 women, with mean age 31.31 ± 8.13 years was recruited. Indeed, 12 participants were allocated in the STI-group and 4 participants in the non-STI-group. fMRI was used to map the human brain in vivo while these tactile stimuli were being applied. Data were analyzed using a general linear model in SPM12 implemented in MATLAB. Differences between groups showed a greater activation in the right cortical areas (temporal and frontal lobes), subcortical regions (thalamus, brainstem, and basal nuclei), and in the cerebellum (anterior lobe). STI-group had specific difference brain activation areas, such as the ipsilateral putamen. Future studies should study clinical implications in neurorehabilitation patients.

  13. Mapping the human brain during a specific Vojta's tactile input: the ipsilateral putamen's role

    PubMed Central

    Sanz-Esteban, Ismael; Calvo-Lobo, Cesar; Ríos-Lago, Marcos; Álvarez-Linera, Juan; Muñoz-García, Daniel; Rodríguez-Sanz, David

    2018-01-01

    Abstract A century of research in human brain parcellation has demonstrated that different brain areas are associated with functional tasks. New neuroscientist perspectives to achieve the parcellation of the human brain have been developed to know the brain areas activation and its relationship with different stimuli. This descriptive study aimed to compare brain regions activation by specific tactile input (STI) stimuli according to the Vojta protocol (STI-group) to a non-STI stimulation (non-STI-group). An exploratory functional magnetic resonance imaging (fMRI) study was performed. The 2 groups of participants were passively stimulated by an expert physical therapist using the same paradigm structure, although differing in the place of stimulation. The stimulation was presented to participants using a block design in all cases. A sample of 16 healthy participants, 5 men and 11 women, with mean age 31.31 ± 8.13 years was recruited. Indeed, 12 participants were allocated in the STI-group and 4 participants in the non-STI-group. fMRI was used to map the human brain in vivo while these tactile stimuli were being applied. Data were analyzed using a general linear model in SPM12 implemented in MATLAB. Differences between groups showed a greater activation in the right cortical areas (temporal and frontal lobes), subcortical regions (thalamus, brainstem, and basal nuclei), and in the cerebellum (anterior lobe). STI-group had specific difference brain activation areas, such as the ipsilateral putamen. Future studies should study clinical implications in neurorehabilitation patients. PMID:29595683

  14. A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics.

    PubMed

    McCairn, Kevin W; Nagai, Yuji; Hori, Yukiko; Ninomiya, Taihei; Kikuchi, Erika; Lee, Ju-Young; Suhara, Tetsuya; Iriki, Atsushi; Minamimoto, Takafumi; Takada, Masahiko; Isoda, Masaki; Matsumoto, Masayuki

    2016-01-20

    Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain PET imaging identified prominent, bilateral limbic cortico-subcortical activation. Local field potentials (LFPs) developed abnormal spikes in the NAc and the anterior cingulate cortex (ACC). Vocalization could occur without obvious LFP spikes, however, when phase-phase coupling of alpha oscillations were accentuated between the NAc, ACC, and the primary motor cortex. These findings contrasted with myoclonic motor tics induced by disinhibition of the dorsolateral putamen, where PET activity was confined to the ipsilateral sensorimotor system and LFP spikes always preceded motor tics. We propose that vocal tics emerge as a consequence of dysrhythmic alpha coupling between critical nodes in the limbic and motor networks. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Association between Champagne Bottle Neck Sign of Internal Carotid Artery and Ipsilateral Hemorrhagic Stroke in Patients with Moyamoya Disease.

    PubMed

    Wang, Jian; Chen, Gong; Yang, Yongbo; Zhang, Bing; Jia, Zhongzhi; Gu, Peiyuan; Wei, Dong; Ji, Jing; Hu, Weixing; Zhao, Xihai

    2018-06-15

    To assess the association between champagne bottle neck sign (CBNS) in carotid artery and intracranial hemorrhage in patients with moyamoya disease (MMD). From January 2016 to December 2017, a total of 76 consecutive patients with MMD without definite risk factors associated intracranial hemorrhage who underwent preoperative angiography were included in this retrospective study. CBNS was defined as luminal diameter of internal carotid artery (ICA)/common carotid artery (CCA) ≤ 0.5 on angiographic imaging. The right and left cerebral hemisphere in each patient was separately identified as hemorrhagic and none-hemorrhagic. The association between CBNS and intracranial hemorrhage was analyzed. Of 76 MMD patients, intracranial hemorrhage was found in 44 (28.9%) hemispheres of 152 and 6.8% (3/44) had multiple events. Compared carotid arteries without intracranial hemorrhage in the ipsilateral hemispheres, those with intracranial hemorrhage in the ipsilateral hemispheres had significantly smaller luminal diameter ratio of ICA/CCA (0.49 ± 0.11 vs. 0.55 ± 0.12, p < 0.01) and higher prevalence of CBNS (63.7% vs. 41.7%, p = 0.01). For hemispheres with intracranial hemorrhage, those with ipsilateral carotid artery CBNS had significantly higher prevalence of hemorrhage at posterior territories than those without (57.1% vs. 23.1%, p=0.05). Logistic regression revealed that CBNS was significantly associated with ipsilateral intracranial hemorrhage before (OR, 2.45; 95% CI, 1.19-5.05; p=0.02) and after (OR, 3.43; 95% CI, 1.50-7.87; p<0.01) adjusted for female, lenticulostriate anastomosis, and choroidal anastomosis. CBNS is significantly associated with intracranial hemorrhage at ipsilateral hemisphere in MMD patients, particularly for intracranial hemorrhage at posterior territories. Copyright © 2018. Published by Elsevier Inc.

  16. Lower Activation in Frontal Cortex and Posterior Cingulate Cortex Observed during Sex Determination Test in Early-Stage Dementia of the Alzheimer Type.

    PubMed

    Rajmohan, Ravi; Anderson, Ronald C; Fang, Dan; Meyer, Austin G; Laengvejkal, Pavis; Julayanont, Parunyou; Hannabas, Greg; Linton, Kitten; Culberson, John; Khan, Hafiz; De Toledo, John; Reddy, P Hemachandra; O'Boyle, Michael W

    2017-01-01

    Face-labeling refers to the ability to classify faces into social categories. This plays a critical role in human interaction as it serves to define concepts of socially acceptable interpersonal behavior. The purpose of the current study was to characterize, what, if any, impairments in face-labeling are detectable in participants with early-stage clinically diagnosed dementia of the Alzheimer type (CDDAT) through the use of the sex determination test (SDT). In the current study, four (1 female, 3 males) CDDAT and nine (4 females, 5 males) age-matched neurotypicals (NT) completed the SDT using chimeric faces while undergoing BOLD fMRI. It was expected that CDDAT participants would have poor verbal fluency, which would correspond to poor performance on the SDT. This could be explained by decreased activation and connectivity patterns within the fusiform face area (FFA) and anterior cingulate cortex (ACC). DTI was also performed to test the association of pathological deterioration of connectivity in the uncinate fasciculus (UF) and verbally-mediated performance. CDDAT showed lower verbal fluency test (VFT) performance, but VFT was not significantly correlated to SDT and no significant difference was seen between CDDAT and NT for SDT performance as half of the CDDAT performed substantially worse than NT while the other half performed similarly. BOLD fMRI of SDT displayed differences in the left superior frontal gyrus and posterior cingulate cortex (PCC), but not the FFA or ACC. Furthermore, although DTI showed deterioration of the right inferior and superior longitudinal fasciculi, as well as the PCC, it did not demonstrate significant deterioration of UF tracts. Taken together, early-stage CDDAT may represent a common emerging point for the loss of face labeling ability.

  17. Shh/Boc Signaling Is Required for Sustained Generation of Ipsilateral Projecting Ganglion Cells in the Mouse Retina

    PubMed Central

    Sánchez-Camacho, Cristina; Carreres, M. Isabel; Herrera, Eloisa; Okada, Ami; Bovolenta, Paola

    2013-01-01

    Sonic Hedgehog (Shh) signaling is an important determinant of vertebrate retinal ganglion cell (RGC) development. In mice, there are two major RGC populations: (1) the Islet2-expressing contralateral projecting (c)RGCs, which both produce and respond to Shh; and (2) the Zic2-expressing ipsilateral projecting RGCs (iRGCs), which lack Shh expression. In contrast to cRGCs, iRGCs, which are generated in the ventrotemporal crescent (VTC) of the retina, specifically express Boc, a cell adhesion molecule that acts as a high-affinity receptor for Shh. In Boc−/− mutant mice, the ipsilateral projection is significantly decreased. Here, we demonstrate that this phenotype results, at least in part, from the misspecification of a proportion of iRGCs. In Boc−/− VTC, the number of Zic2-positive RGCs is reduced, whereas more Islet2/Shh-positive RGCs are observed, a phenotype also detected in Zic2 and Foxd1 null embryos. Consistent with this observation, organization of retinal projections at the dorsallateral geniculate nucleus is altered in Boc−/− mice. Analyses of the molecular and cellular consequences of introducing Shh into the developing VTC and Zic2 and Boc into the central retina indicate that Boc expression alone is in sufficient to fully activate the ipsilateral program and that Zic2 regulates Shh expression. Taking these data together, we propose that expression of Boc in cells from the VTC is required to sustain Zic2 expression, likely by regulating the levels of Shh signaling from the nearby cRGCs. Zic2, in turn, directly or indirectly, counteracts Shh and Islet2 expression in the VTC and activates the ipsilateral program. PMID:23678105

  18. A comparative study of standard intensity-modulated radiotherapy and RapidArc planning techniques for ipsilateral and bilateral head and neck irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pursley, Jennifer, E-mail: jpursley@mgh.harvard.edu; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Damato, Antonio L.

    The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, themore » volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8 Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is

  19. A comparative study of standard intensity-modulated radiotherapy and RapidArc planning techniques for ipsilateral and bilateral head and neck irradiation.

    PubMed

    Pursley, Jennifer; Damato, Antonio L; Czerminska, Maria A; Margalit, Danielle N; Sher, David J; Tishler, Roy B

    2017-01-01

    The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is

  20. The lateral septum and anterior hypothalamus act in tandem to regulate burying in the shock-probe test but not open-arm avoidance in the elevated plus-maze.

    PubMed

    Lamontagne, Steven J; Olmstead, Mary C; Menard, Janet L

    2016-11-01

    Both the lateral septum (LS) and anterior hypothalamus (AHA) regulate behavioural defense. We tested whether those two interconnected structures act in serial in that regard. Infusions of the GABAA agonist muscimol into one side of the LS and the contralateral (but not ipsilateral) AHA suppressed rats' burying in the shock-probe test whereas none of our muscimol infusion approaches altered their open-arm avoidance in the elevated plus-maze. These results suggest that the LS-AHA circuit serves a specialized role in defensive responses towards discrete, localizable threat stimuli but not towards potential threats. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The Effects of Mirror Feedback during Target Directed Movements on Ipsilateral Corticospinal Excitability

    PubMed Central

    Yarossi, Mathew; Manuweera, Thushini; Adamovich, Sergei V.; Tunik, Eugene

    2017-01-01

    Mirror visual feedback (MVF) training is a promising technique to promote activation in the lesioned hemisphere following stroke, and aid recovery. However, current outcomes of MVF training are mixed, in part, due to variability in the task undertaken during MVF. The present study investigated the hypothesis that movements directed toward visual targets may enhance MVF modulation of motor cortex (M1) excitability ipsilateral to the trained hand compared to movements without visual targets. Ten healthy subjects participated in a 2 × 2 factorial design in which feedback (veridical, mirror) and presence of a visual target (target present, target absent) for a right index-finger flexion task were systematically manipulated in a virtual environment. To measure M1 excitability, transcranial magnetic stimulation (TMS) was applied to the hemisphere ipsilateral to the trained hand to elicit motor evoked potentials (MEPs) in the untrained first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles at rest prior to and following each of four 2-min blocks of 30 movements (B1–B4). Targeted movement kinematics without visual feedback was measured before and after training to assess learning and transfer. FDI MEPs were decreased in B1 and B2 when movements were made with veridical feedback and visual targets were absent. FDI MEPs were decreased in B2 and B3 when movements were made with mirror feedback and visual targets were absent. FDI MEPs were increased in B3 when movements were made with mirror feedback and visual targets were present. Significant MEP changes were not present for the uninvolved ADM, suggesting a task-specific effect. Analysis of kinematics revealed learning occurred in visual target-directed conditions, but transfer was not sensitive to mirror feedback. Results are discussed with respect to current theoretical mechanisms underlying MVF-induced changes in ipsilateral excitability. PMID:28553218

  2. A role for anterior thalamic nuclei in affective cognition: interaction with environmental conditions.

    PubMed

    Dupire, Alexandra; Kant, Patricia; Mons, Nicole; Marchand, Alain R; Coutureau, Etienne; Dalrymple-Alford, John; Wolff, Mathieu

    2013-05-01

    Damage to anterior thalamic nuclei (ATN) is a well-known cause of diencephalic pathology that produces a range of cognitive deficits reminiscent of a hippocampal syndrome. Anatomical connections of the ATN also extend to cerebral areas that support affective cognition. Enriched environments promote recovery of declarative/relational memory after ATN lesions and are known to downregulate emotional behaviors. Hence, the performance of standard-housed and enriched ATN rats in a range of behavioral tasks engaging affective cognition was compared. ATN rats exhibited reduced anxiety responses in the elevated plus maze, increased activity and reduced corticosterone responses when exploring an open field, and delayed acquisition of a conditioned contextual fear response. ATN rats also exhibited reduced c-Fos and phosphorylated cAMP response element-binding protein (pCREB) immunoreactivity in the hippocampal formation and the amygdala after completion of the contextual fear test. Marked c-Fos hypoactivity and reduced pCREB levels were also evident in the granular retrosplenial cortex and, to a lesser extent, in the anterior cingulate cortex. Unlike standard-housed ATN rats, enriched ATN rats expressed virtually no fear of the conditioned context. These results show that the ATN regulate affective cognition and that damage to this region may produce markedly different behavioral effects as a function of environmental housing conditions. Copyright © 2013 Wiley Periodicals, Inc.

  3. Double uterus with obstructed hemivagina and ipsilateral renal agenesis: pelvic anatomic variants in 87 cases.

    PubMed

    Fedele, L; Motta, F; Frontino, G; Restelli, E; Bianchi, S

    2013-06-01

    What are the anatomic variants (and their frequencies) of double uterus, obstructed hemivagina and ipsilateral renal agenesis? Most cases examined (72.4%) were of the classic anatomic variant of the Herlyn-Werner-Wunderlich syndrome (with didelphys uterus, obstructed hemivagina and ipsilateral renal agenesis) but the 27.6% of cases are of a rare variant of the syndrome (with uterus septum or cervical agenesis), showing relevant clinical and surgical implications. The extreme variability of anatomic structures involved in this syndrome (both uterus, cervico-vaginal and renal anomalies) is well known, even if a complete and uniform analysis of all its heterogeneous presentations in a large series is lacking. This is a retrospective study with 87 patients referred to our third level referral center between 1981 and 2011. We analyzed the laparoscopic and chart records of 87 women, who referred to our institute with double uterus, unilateral cervico-vaginal obstruction and ipsilateral renal anomalies. Sixty-three of 87 patients had the more classic variant of didelphys uterus with obstructed hemivagina; 10/87 patients had septate bicollis uterus with obstructed hemivagina; 9/87 patients had bicornuate bicollis uterus with obstructed hemivagina; 4/87 patients had didelphys uterus with unilateral cervical atresia; 1/87 patients had bicornuate uterus with one septate cervix and unilateral obstructed hemivagina. This is a retrospective study with a long enrolling period (30 years). New insights in the anatomic variants of this rare syndrome with their relevant surgical implications.

  4. The neural basis for novel semantic categorization.

    PubMed

    Koenig, Phyllis; Smith, Edward E; Glosser, Guila; DeVita, Chris; Moore, Peachie; McMillan, Corey; Gee, Jim; Grossman, Murray

    2005-01-15

    We monitored regional cerebral activity with BOLD fMRI during acquisition of a novel semantic category and subsequent categorization of test stimuli by a rule-based strategy or a similarity-based strategy. We observed different patterns of activation in direct comparisons of rule- and similarity-based categorization. During rule-based category acquisition, subjects recruited anterior cingulate, thalamic, and parietal regions to support selective attention to perceptual features, and left inferior frontal cortex to helps maintain rules in working memory. Subsequent rule-based categorization revealed anterior cingulate and parietal activation while judging stimuli whose conformity with the rules was readily apparent, and left inferior frontal recruitment during judgments of stimuli whose conformity was less apparent. By comparison, similarity-based category acquisition showed recruitment of anterior prefrontal and posterior cingulate regions, presumably to support successful retrieval of previously encountered exemplars from long-term memory, and bilateral temporal-parietal activation for perceptual feature integration. Subsequent similarity-based categorization revealed temporal-parietal, posterior cingulate, and anterior prefrontal activation. These findings suggest that large-scale networks support relatively distinct categorization processes during the acquisition and judgment of semantic category knowledge.

  5. Anterior insula signals inequalities in a modified Ultimatum Game.

    PubMed

    Cheng, Xuemei; Zheng, Li; Li, Lin; Zheng, Yijie; Guo, Xiuyan; Yang, Guang

    2017-04-21

    Studies employing the Ultimatum Game (UG) which involves two parties (i.e., proposers and responders) splitting some money have suggested the role that anterior insula (AI) plays in detecting fairness norm violation, i.e., violation of the responder's expectation of receiving equal splits from the proposer. In this study, we explored how AI would respond when there existed simultaneously another expectation of being treated equivalently as others. Participants acted as responders and would be informed about both the offers they received and the average amount of money the same proposer offered to others. Hence we introduced different conditions where participants were treated equivalently or not equivalently as other responders in UG. Participants could decide to accept or reject the offer with acceptance leading to the suggested split and rejection leaving both parties nothing. Behavioral results showed that participants rejected more unfair offers and reacted more slowly during acceptance (vs. rejection) of offers when they were offered less than others. At the neural level, stronger AI activation was observed when participants received unfair relative to fair offers, as well as when they received unequal relative to equal offers. Moreover, dorsomedial prefrontal cortex/dorsal anterior cingulate cortex (dmPFC/dACC) exhibited greater activity during receiving unequal (vs. equal) offers and during acceptance (vs. rejection) of offers which were less than others'. Taken together, the present study demonstrated that the treatment of others modulated both behavioral responses to unfairness and neural correlates of the fairness-related decision-making process, and that AI played a general role in detecting norm violations. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. When do anterior external or internal fixators provide additional stability in an unstable (Tile C) pelvic fracture? A biomechanical study.

    PubMed

    Mcdonald, E; Theologis, A A; Horst, P; Kandemir, U; Pekmezci, M

    2015-12-01

    This study aimed at evaluating the additional stability that is provided by anterior external and internal fixators in an unstable pelvic fracture model (OTA 61-C). An unstable pelvic fracture (OTA 61-C) was created in 27 synthetic pelves by making a 5-mm gap through the sacral foramina (posterior injury) and an ipsilateral pubic rami fracture (anterior injury). The posterior injury was fixed with either a single iliosacral (IS) screw, a single trans-iliac, trans-sacral (TS) screw, or two iliosacral screws (S1S2). Two anterior fixation techniques were utilized: external fixation (Ex-Fix) and supra-acetabular external fixation and internal fixation (In-Fix); supra-acetabular pedicle screws connected with a single subcutaneous spinal rod. The specimens were tested using a nondestructive single-leg stance model. Peak-to-peak (P2P) displacement and rotation and conditioning displacement (CD) were calculated. The Ex-Fix group failed in 83.3 % of specimens with concomitant single-level posterior fixation (Total: 15/18-7 of 9 IS fixation, 8 of 9 TS fixation), and 0 % (0/9) of specimens with concomitant two-level (S1S2) posterior fixation. All specimens with the In-Fix survived testing except for two specimens treated with In-Fix combined with IS fixation. Trans-sacral fixation had higher pubic rotation and greater sacral and pubic displacement than S1S2 (p < 0.05). Rotation of the pubis and sacrum was not different between In-Fix constructs combined with single-level IS and TS fixation. In this model of an unstable pelvic fracture (OTA 61-C), anterior fixation with an In-Fix was biomechanically superior to an anterior Ex-Fix in the setting of single-level posterior fixation. There was no biomechanical difference between the In-Fix and Ex-Fix when each was combined with two levels of posterior sacral fixation.

  7. Mapping the "Depression Switch" During Intraoperative Testing of Subcallosal Cingulate Deep Brain Stimulation.

    PubMed

    Choi, Ki Sueng; Riva-Posse, Patricio; Gross, Robert E; Mayberg, Helen S

    2015-11-01

    The clinical utility of monitoring behavioral changes during intraoperative testing of subcallosal cingulate deep brain stimulation is unknown. To characterize the structural connectivity correlates of deep brain stimulation-evoked behavioral effects using probabilistic tractography in depression. Categorization of acute behavioral effects was conducted in 9 adults undergoing deep brain stimulation implantation surgery for chronic treatment-resistant depression in a randomized and blinded testing session at Emory University. Patients were studied from September 1, 2011, through June 30, 2013. Post hoc analyses of the structural tractography patterns mediating distinct categories of evoked behavioral effects were defined, including the best response overall. Data analyses were performed from May 1 through July 1, 2015. Categorization of stimulation-induced transient behavioral effects and delineation of the shared white matter tracts mediating response subtypes. Among the 9 patients, 72 active and 36 sham trials were recorded. The following stereotypical behavior patterns were identified: changes in interoceptive (noted changes in body state in 30 of 72 active and 4 of 36 sham trials) and in exteroceptive (shift in attention from patient to others in 9 of 72 active and 0 sham trials) awareness. The best response was a combination of exteroceptive and interoceptive changes at a single left contact for all 9 patients. Structural connectivity showed that the best response contacts had a pattern of connections to the bilateral ventromedial frontal cortex (via forceps minor and left uncinate fasciculus) and to the cingulate cortex (via left cingulum bundle), whereas behaviorally salient but nonbest contacts had only cingulate involvement. The involvement of the 3 white matter bundles during stimulation of the best contacts suggests a mechanism for the observed transient "depression switch." This analysis of transient behavior changes during intraoperative deep brain

  8. Anticipation increases tactile stimulus processing in the ipsilateral primary somatosensory cortex.

    PubMed

    van Ede, Freek; de Lange, Floris P; Maris, Eric

    2014-10-01

    Stimulus anticipation improves perception. To account for this improvement, we investigated how stimulus processing is altered by anticipation. In contrast to a large body of previous work, we employed a demanding perceptual task and investigated sensory responses that occur beyond early evoked activity in contralateral primary sensory areas: Stimulus-induced modulations of neural oscillations. For this, we recorded magnetoencephalography in 19 humans while they performed a cued tactile identification task involving the identification of either a proximal or a distal stimulation on the fingertips. We varied the cue-target interval between 0 and 1000 ms such that tactile targets occurred at various degrees of anticipation. This allowed us to investigate the influence of anticipation on stimulus processing in a parametric fashion. We observed that anticipation increases the stimulus-induced response (suppression of beta-band oscillations) originating from the ipsilateral primary somatosensory cortex. This occurs in the period in which the tactile memory trace is analyzed and is correlated with the anticipation-induced improvement in tactile perception. We propose that this ipsilateral response indicates distributed processing across bilateral primary sensory cortices, of which the extent increases with anticipation. This constitutes a new and potentially important mechanism contributing to perception and its improvement following anticipation. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Foveational Complexity in Single Word Identification: Contralateral Visual Pathways Are Advantaged over Ipsilateral Pathways

    ERIC Educational Resources Information Center

    Obregon, Mateo; Shillcock, Richard

    2012-01-01

    Recognition of a single word is an elemental task in innumerable cognitive psychology experiments, but involves unexpected complexity. We test a controversial claim that the human fovea is vertically divided, with each half projecting to either the contralateral or ipsilateral hemisphere, thereby influencing foveal word recognition. We report a…

  10. Surgical Treatment for Failure of Repair of Patellar and Quadriceps Tendon Rupture With Ipsilateral Hamstring Tendon Graft.

    PubMed

    Maffulli, Nicola; Papalia, Rocco; Torre, Guglielmo; Denaro, Vincenzo

    2017-03-01

    Tears of the patellar and quadriceps tendon are common in the active population, especially in athletes. At present, several techniques for surgical repair and reconstruction are available. When reruptures occur, a reconstruction is mandatory. In the present paper, we describe a surgical technique for patellar and quadriceps tendon reconstruction using ipsilateral hamstring autograft. After routine hamstring tendon harvesting, the tendon ends are prepared using a whip stitch. A transverse tunnel is drilled in the midportion of the patella, the hamstring graft is passed through the patella, and firmly secured to the patellar tunnel openings with sutures. The details of the technique are fully described. Autologous ipsilateral hamstring tendon grafts provide a secure sound means to manage these challenging injuries.

  11. Repeat sentinel lymph node biopsy in patients with ipsilateral recurrent breast cancer after breast-conserving therapy and negative sentinel lymph node biopsy: a prospective study.

    PubMed

    Folli, Secondo; Falco, Giuseppe; Mingozzi, Matteo; Buggi, Federico; Curcio, Annalisa; Ferrari, Guglielmo; Taffurelli, Mario; Regolo, Lea; Nanni, Oriana

    2016-04-01

    Patients with ipsilateral breast tumor recurrence or new ipsilateral primary tumor after previous breast conservative surgery with negative sentinel lymph node biopsy need a new axillary staging procedure. However, the best surgical option, i.e. repeat sentinel lymph node biopsy or axillary lymph node dissection, is still debated. Purpose of the study is to assess the performance of repeat sentinel lymph node biopsy. In a multicenter study, lymph node biopsy completed by back-up axillary lymph node dissection was undertaken for ipsilateral breast tumor recurrence or new ipsilateral primary tumor. Tracer uptake was used to identify and isolate the sentinel lymph node during surgery, and it was classified after staining with hematoxylin and eosin and monoclonal anti-cytokeratin antibodies. Aside from negative predictive value, overall accuracy and false-negative rate of repeat sentinel lymph node biopsy were assessed. A multicenter, prospective study was conducted performing 30 repeat sentinel lymph node biopsy completed by back-up axillary lymph node dissection for ipsilateral breast tumor recurrence or new ipsilateral primary tumor in patients formerly treated with previous breast conservative surgery and negative sentinel lymph node biopsy. Negative predictive value, overall accuracy and false-negative rate of repeat sentinel lymph node biopsy were assessed. Sentinel lymph nodes were mapped in 27 patients out of 30 (90%). Aberrant drainage pathways were observed in one patient (3.7%). Tracer uptake was sufficient to identify and isolate the sentinel lymph node during surgery in 23 cases (76.6%); the patients in whom lymphoscintigraphy failed or no sentinel lymph nodes could be isolated underwent axillary lymph node dissection. The negative predictive value was 95.2%, the accuracy was 95.6% and the false-negative rate was 33%. Repeat sentinel lymph node biopsy is feasible and accurate, with a high negative predictive value. Patients with ipsilateral breast tumor

  12. Altered resting-state functional connectivity in women with chronic fatigue syndrome.

    PubMed

    Kim, Byung-Hoon; Namkoong, Kee; Kim, Jae-Jin; Lee, Seojung; Yoon, Kang Joon; Choi, Moonjong; Jung, Young-Chul

    2015-12-30

    The biological underpinnings of the psychological factors characterizing chronic fatigue syndrome (CFS) have not been extensively studied. Our aim was to evaluate alterations of resting-state functional connectivity in CFS patients. Participants comprised 18 women with CFS and 18 age-matched female healthy controls who were recruited from the local community. Structural and functional magnetic resonance images were acquired during a 6-min passive-viewing block scan. Posterior cingulate cortex seeded resting-state functional connectivity was evaluated, and correlation analyses of connectivity strength were performed. Graph theory analysis of 90 nodes of the brain was conducted to compare the global and local efficiency of connectivity networks in CFS patients with that in healthy controls. The posterior cingulate cortex in CFS patients showed increased resting-state functional connectivity with the dorsal and rostral anterior cingulate cortex. Connectivity strength of the posterior cingulate cortex to the dorsal anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score, while the Beck Depression Inventory (BDI) score was controlled. Connectivity strength to the rostral anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score. Global efficiency of the posterior cingulate cortex was significantly lower in CFS patients, while local efficiency showed no difference from findings in healthy controls. The findings suggest that CFS patients show inefficient increments in resting-state functional connectivity that are linked to the psychological factors observed in the syndrome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Ipsilateral medial olivocochlear reflex adaptation of the primary-source DPOAE component measured with pulsed tones

    NASA Astrophysics Data System (ADS)

    Dalhoff, Ernst; Zelle, Dennis; Gummer, Anthony W.

    2015-12-01

    Measurement of contralateral suppression or ipsilateral adaptation of DPOAE due to the medial olivocochlear reflex (MOCR) in humans has so far been complicated by interference between the two major contributors to a DPOAE signal, namely, the nonlinear and the reflection-source components. For instance, while the MOCR has been shown to act inhibitory to the cochlear amplifier, a considerable share of the measured responses has been reported to be of the excitatory type (e.g. 22% for contralateral adaptation in [11]), and it has been shown that the magnitudes of ipsilateral adaptation as well as contralateral suppression depend on the precise frequency choice relative to the position of dips in the DPOAE fine structure [3, 8]. To separate MOCR effects on both source components, we developed a paradigm consisting of five short f2 pulses presented during a 0.35 s on-period of the f1 primary within blocks of 1.35 s length. The responses at f1 and f2 were cancelled using the primary-tone phase variation technique [13]. In 16 normal-hearing subjects, we measured MOCR-induced ipsilateral adaptation at three near-by frequencies in the DPOAE fine structure, corresponding roughly to characteristic interference states between the two major source components of a DPOAE, i.e. constructive, destructive and quadrature interference. Measurements were performed in the frequency range 1.7 ≤ f2 ≤ 2 kHz, f2/f1 = 1.2, and with moderate primary-tone levels (L2 = 45 dB SPL, L1 = 57 dB SPL). Analysis of the DPOAE time traces showed that the nonlinear component typically presents inhibitory adaptation between the 1st and the 5th pulses (median: 0.92 dB). Fitting a single exponential function to the pooled data yielded adaptation of 1.49 dB. From 26 statistically significant MOCR effects (P < 0.1) ranging between 0.29 and 2.81 dB, no excitatory response was detected. The separation of the DPOAE sources when analysing MOCR effects on ipsilateral DPOAE offers the potential of investigating

  14. Does Roller Massage With a Foam Roll Change Pressure Pain Threshold of the Ipsilateral Lower Extremity Antagonist and Contralateral Muscle Groups? An Exploratory Study.

    PubMed

    Cheatham, Scott W; Kolber, Morey J

    2018-03-01

    Foam rolling is a popular intervention used by allied health professionals and the general population. Current research suggests that foam rolling may have an effect on the ipsilateral antagonist muscle group and produce a cross-over effect in the muscles of the contralateral limb. The purpose of this study was to examine the acute effects of foam rolling to the left quadriceps on ipsilateral antagonist hamstrings and contralateral quadriceps muscle group pressure pain threshold (PPT). Through this research, we sought to gather data to further develop the methodology for future studies of this intervention. A pretest-posttest exploratory study. University kinesiology laboratory. 21 healthy adults (age = 27.52 ± 8.9 y). Video-guided foam roll intervention on the left quadriceps musculature. Ipsilateral hamstring (antagonist) and contralateral quadriceps muscle PPT. A significant difference was found between pretest to posttest measures for the ipsilateral hamstrings (t[20] = -6.2, P < 0.001) and contralateral quadriceps (t[20] = -9.1, P < 0.001) suggesting an increase in PPT. These findings suggest that foam rolling of the quadriceps musculature may have an acute effect on the PPT of the ipsilateral hamstrings and contralateral quadriceps muscles. Clinicians should consider these results to be exploratory and future investigations examining this intervention on PPT is warranted.

  15. Using ipsilateral motor signals in the unaffected cerebral hemisphere as a signal platform for brain-computer interfaces in hemiplegic stroke survivors

    NASA Astrophysics Data System (ADS)

    Bundy, David T.; Wronkiewicz, Mark; Sharma, Mohit; Moran, Daniel W.; Corbetta, Maurizio; Leuthardt, Eric C.

    2012-06-01

    Brain-computer interface (BCI) systems have emerged as a method to restore function and enhance communication in motor impaired patients. To date, this has been applied primarily to patients who have a compromised motor outflow due to spinal cord dysfunction, but an intact and functioning cerebral cortex. The cortical physiology associated with movement of the contralateral limb has typically been the signal substrate that has been used as a control signal. While this is an ideal control platform in patients with an intact motor cortex, these signals are lost after a hemispheric stroke. Thus, a different control signal is needed that could provide control capability for a patient with a hemiparetic limb. Previous studies have shown that there is a distinct cortical physiology associated with ipsilateral, or same-sided, limb movements. Thus far, it was unknown whether stroke survivors could intentionally and effectively modulate this ipsilateral motor activity from their unaffected hemisphere. Therefore, this study seeks to evaluate whether stroke survivors could effectively utilize ipsilateral motor activity from their unaffected hemisphere to achieve this BCI control. To investigate this possibility, electroencephalographic (EEG) signals were recorded from four chronic hemispheric stroke patients as they performed (or attempted to perform) real and imagined hand tasks using either their affected or unaffected hand. Following performance of the screening task, the ability of patients to utilize a BCI system was investigated during on-line control of a one-dimensional control task. Significant ipsilateral motor signals (associated with movement intentions of the affected hand) in the unaffected hemisphere, which were found to be distinct from rest and contralateral signals, were identified and subsequently used for a simple online BCI control task. We demonstrate here for the first time that EEG signals from the unaffected hemisphere, associated with overt and

  16. Lower Activation in Frontal Cortex and Posterior Cingulate Cortex Observed during Sex Determination Test in Early-Stage Dementia of the Alzheimer Type

    PubMed Central

    Rajmohan, Ravi; Anderson, Ronald C.; Fang, Dan; Meyer, Austin G.; Laengvejkal, Pavis; Julayanont, Parunyou; Hannabas, Greg; Linton, Kitten; Culberson, John; Khan, Hafiz; De Toledo, John; Reddy, P. Hemachandra; O’Boyle, Michael W.

    2017-01-01

    Face-labeling refers to the ability to classify faces into social categories. This plays a critical role in human interaction as it serves to define concepts of socially acceptable interpersonal behavior. The purpose of the current study was to characterize, what, if any, impairments in face-labeling are detectable in participants with early-stage clinically diagnosed dementia of the Alzheimer type (CDDAT) through the use of the sex determination test (SDT). In the current study, four (1 female, 3 males) CDDAT and nine (4 females, 5 males) age-matched neurotypicals (NT) completed the SDT using chimeric faces while undergoing BOLD fMRI. It was expected that CDDAT participants would have poor verbal fluency, which would correspond to poor performance on the SDT. This could be explained by decreased activation and connectivity patterns within the fusiform face area (FFA) and anterior cingulate cortex (ACC). DTI was also performed to test the association of pathological deterioration of connectivity in the uncinate fasciculus (UF) and verbally-mediated performance. CDDAT showed lower verbal fluency test (VFT) performance, but VFT was not significantly correlated to SDT and no significant difference was seen between CDDAT and NT for SDT performance as half of the CDDAT performed substantially worse than NT while the other half performed similarly. BOLD fMRI of SDT displayed differences in the left superior frontal gyrus and posterior cingulate cortex (PCC), but not the FFA or ACC. Furthermore, although DTI showed deterioration of the right inferior and superior longitudinal fasciculi, as well as the PCC, it did not demonstrate significant deterioration of UF tracts. Taken together, early-stage CDDAT may represent a common emerging point for the loss of face labeling ability. PMID:28588478

  17. Anterior Insula GABA Levels Correlate with Emotional Aspects of Empathy: A Proton Magnetic Resonance Spectroscopy Study

    PubMed Central

    Dong, Fang; Chen, Luguang; Zheng, Li; Guo, Xiuyan; Li, Jianqi

    2014-01-01

    Background: Empathy is a multidimensional construct referring to the capacity to understand and share the emotional and affective states of another person. Cerebral γ-aminobutyric acid (GABA)-ergic levels are associated with a variety of neurological and psychiatric disorders. However, the role of the GABA system in different dimensions of empathy has not been investigated. Materials and Methods: Thirty-two right-handed healthy volunteers took part in this study. We used proton magnetic resonance spectroscopy to determine GABA concentrations in the anterior insula (AI) and the anterior cingulate cortex (ACC) and to examine the relationship between the GABA concentrations and the subcomponents of empathy evaluated by the Interpersonal Reactivity Index (IRI). Result: Pearson correlation analyses (two-tailed) showed that AI GABA was significantly associated with the empathy concern score (r = 0.584, p<0.05) and the personal distress score (r = 0.538, p<0.05) but not significantly associated with other empathy subscales. No significant correlation was found between ACC GABA and empathy subscores. Conclusion: Left AI GABA was positively correlated with the emotional aspects of empathy. These preliminary findings call into question whether AI GABA alterations might predict empathy dysfunction in major psychiatric disorders such as autism and schizophrenia, which have been described as deficits in emotional empathic abilities. PMID:25419976

  18. Outcomes of Latarjet versus Distal Tibial Allograft for Anterior Shoulder Instability Repair: A Prospective Matched Cohort Analysis

    PubMed Central

    Frank, Rachel M.; Kim, Jae; O’Donnell, Patrick Joseph; O’Brien, Michael; Newgren, Jonathan; Verma, Nikhil N.; Nicholson, Gregory P.; Cole, Brian J.; Romeo, Anthony A.; Provencher, Matthew T.

    2017-01-01

    Objectives: Recently, the use of fresh distal tibia allograft (DTA) for glenoid reconstruction in anterior shoulder instability has been described, with encouraging short-term outcomes, however, there is little available comparative data to the Latarjet procedure, long considered the gold standard for bone loss treatment. Thus, the purpose of this study was to determine the clinical outcomes for patients undergoing DTA compared to a matched cohort of patients undergoing Latarjet. Methods: A review of prospectively collected data of patients with a minimum 15% anterior glenoid bone loss who underwent shoulder stabilization with either DTA or Latarjet with a minimum follow-up of 2 years was conducted. Consecutive patients undergoing DTA were matched by age, body mass index, and number of previous ipsilateral shoulder surgeries to patients undergoing Latarjet in a 1-to- 1 format. Patients were evaluated preoperatively and at a minimum 2 years post operatively with American Shoulder and Elbow Surgeons (ASES), Single Assessment Numeric Evaluation (SANE), and Western Ontario Shoulder Instability Index (WOSI) outcomes assessments. Complications, reoperations, and episodes of recurrent instability were also analyzed. Statistical analysis was performed with student T-tests, with P<0.05 considered significant. Results: A total of 60 patients (30 Latarjet, 30 DTA) with an average age of 26.5±7.8 years were analyzed at an average 46±17 months (range, 24-87) following surgery. Twenty-two patients (73%) in each group underwent prior ipsilateral shoulder surgery (range, 1 to 3 surgeries) prior to Latarjet or DTA. There were no statistical differences in age, BMI, or number of prior surgeries between the groups. There were no differences between the groups in regards to recurrent instability events, subluxation, or apprehension on final examination (P>0.8). Patients in both groups experienced significant improvements in all outcomes scores following surgery (P>0.05 for all

  19. Occipital and Cingulate Hypometabolism are Significantly Under-Reported on 18-Fluorodeoxyglucose Positron Emission Tomography Scans of Patients with Lewy Body Dementia.

    PubMed

    Hamed, Moath; Schraml, Frank; Wilson, Jeffrey; Galvin, James; Sabbagh, Marwan N

    2018-01-01

    To determine whether occipital and cingulate hypometabolism is being under-reported or missed on 18-fluorodeoxyglucose positron emission tomography (FDG-PET) CT scans in patients with Dementia with Lewy Bodies (DLB). Recent studies have reported higher sensitivity and specificity for occipital and cingulate hypometabolism on FDG-PET of DLB patients. This retrospective chart review looked at regions of interest (ROI's) in FDG-PET CT scan reports in 35 consecutive patients with a clinical diagnosis of probable, possible, or definite DLB as defined by the latest DLB Consortium Report. ROI's consisting of glucose hypometabolism in frontal, parietal, temporal, occipital, and cingulate areas were tabulated and charted separately by the authors from the reports. A blinded Nuclear medicine physician read the images independently and marked ROI's separately. A Cohen's Kappa coefficient statistic was calculated to determine agreement between the reports and the blinded reads. On the radiology reports, 25.71% and 17.14% of patients reported occipital and cingulate hypometabolism respectively. Independent reads demonstrated significant disagreement with the proportion of occipital and cingulate hypometabolism being reported on initial reads: 91.43% and 85.71% respectively. Cohen's Kappa statistic determinations demonstrated significant agreement only with parietal hypometabolism (p<0.05). Occipital and cingulate hypometabolism is under-reported and missed frequently on clinical interpretations of FDG-PET scans of patients with DLB, but the frequency of hypometabolism is even higher than previously reported. Further studies with more statistical power and receiver operating characteristic analyses are needed to delineate the sensitivity and specificity of these in vivo biomarkers.

  20. Decrease of tight junction integrity in the ipsilateral thalamus during the acute stage after focal infarction and ablation of the cerebral cortex in rats.

    PubMed

    Li, Jing-Jing; Xing, Shi-Hui; Zhang, Jian; Hong, Hua; Li, Yi-Liang; Dang, Chao; Zhang, Yu-Sheng; Li, Chuo; Fan, Yu-Hua; Yu, Jian; Pei, Zhong; Zeng, Jin-Sheng

    2011-11-01

    1. Whether damage to the blood-brain barrier (BBB) occurs in remote areas after a focal cortical lesion remains unknown. The present study investigated tight junction-related proteins and tight junction microstructure in the ipsilateral thalamus during the acute stage after middle cerebral artery occlusion (MCAO) and cortical aspiration lesion (CAL) in rats. 2. Thirty-six hypertensive and normotensive rats were subjected to MCAO or CAL; another 18 rats in each group were submitted to sham operation. Zonula Occluden (ZO)-1, occludin and albumin were detected by western blotting 12 and 24 h after surgery. Tight junction microstructure was evaluated using electron microscopy, whereas albumin location in the ipsilateral thalamus was determined using double immunostaining for albumin and occludin or albumin and neuronal nuclei (NeuN) 24 h after surgery. 3. Twenty-four hours after MCAO or CAL, occludin expression was reduced to 78.4% and 81.3%, respectively, compared with control. A reduction in ZO-1 expression in the ipsilateral thalamus (to 79%) was seen only after CAL (P < 0.05). Membrane contact at the tight junction was discontinuous in the ipsilateral thalamus in both MCAO and CAL rats. Albumin levels were 23.2% and 82.5% higher in the ipsilateral thalamus after MCAO and CAL, respectively (P < 0.05). The percentage of the albumin-positive area that coincided with the occludin-positive area in the MCAO and CAL groups was 76.8% and 64.6%, respectively, indicating that albumin was mainly localized around the microvessels. 4. The results of the present study suggest that tight junction integrity decreases during the acute stage in the ipsilateral thalamus after MCAO and CAL in rats. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.