Science.gov

Sample records for ir emission features

  1. The IR emission features - Emission from PAH molecules and amorphous carbon particles

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1987-01-01

    Techniques for the assessment of the importance of the various forms of PAHs, and recent infrared observations concerning the PAH problem, are considered. Spectroscopic data suggest that the observed interstellar spectrum is due to both free molecule-sized PAHs producing the narrow features, and amorphous carbon particles contributing to the broad underlying components. Explanations for the multicomponent emission spectrum are discussed. A model of the emission mechanism for the example of chrysene is presented, and an exact treatment of the IR fluorescence from highly vibrationally excited large molecules shows that species containing 20-30 carbon atoms are responsible for the narrow features, although the spectra more closely resemble those of amorphous carbon particles. It is suggested that future emphasis should be placed on the spatial characteristics of the component spectra.

  2. The IR emission features - Emission from PAH molecules and amorphous carbon particles

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1987-01-01

    Given the current understanding of polycyclic aromatic hydrocarbons (PAHs), the spectroscopic data suggest that are at least two components which contribute to the interstellar emission spectrum: (1) free molecule-sized PAHs producing the narrow features and (2) amorphous carbon particles (which are primarily composed of an irregular 'lattice' of PAHs) contributing to the broad underlying components. An exact treatment of the IR fluorescence from highly vibrationally excited large molecules demonstrates that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. It is concluded that, since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is required along with an observational program focusing on the spatial characteristics of the spectra.

  3. Unidentified Infrared Emission Features

    NASA Astrophysics Data System (ADS)

    Joblin, Christine

    2015-03-01

    When referring to unidentified infrared emission features, one has in mind the series of aromatic IR bands (AIBs) between 3.3 and 15 μm that are observed in emission in many environments where UV photons irradiate interstellar matter. These bands are now used by astronomers to classify objects and characterize local physical conditions. However, a deep analysis cannot proceed without understanding the properties of the band carriers. Large polycyclic aromatic hydrocarbon molecules are attractive candidates but interstellar species are still poorly characterized. Various studies emphasize the need for tackling the link between molecular aromatic species, aliphatic material and very small carbonaceous grains. Other unidentified emission features such as the 6.9, 21 and 30 μm bands could be involved in the evolutionary scenario.

  4. The characteristics of the IR emission features in the spectra of Herbig Ae stars: evidence for chemical evolution

    NASA Astrophysics Data System (ADS)

    Boersma, C.; Bouwman, J.; Lahuis, F.; van Kerckhoven, C.; Tielens, A. G. G. M.; Waters, L. B. F. M.; Henning, T.

    2008-06-01

    Context: Infrared (IR) spectra provide a prime tool to study the characteristics of polycyclic aromatic hydrocarbon (PAH) molecules in regions of star formation. Herbig Ae/Be stars are a class of young pre-main sequence stellar objects of intermediate mass. They are known to have varying amounts of natal cloud material still present in their direct vicinity. Aims: We characterise the IR emission bands, due to fluorescence by PAH molecules, in the spectra of Herbig Ae/Be stars and link observed variations to spatial aspects of the mid-IR emission. Methods: We analysed two PAH dominated spectra from a sample of 15 Herbig Ae/Be stars observed with the Spitzer Space Telescope. Results: We derived profiles of the major PAH bands by subtracting appropriate continua. The shape and the measured band characteristics show pronounced variations between the two Spitzer spectra investigated. Those variations parallel those found between three infrared space observatory (ISO) spectra of other, well-studied, Herbig Ae/Be stars. The derived profiles are compared to those from a broad sample of sources, including reflection nebulae, planetary nebulae, H II regions, young stellar objects, evolved stars and galaxies. The Spitzer and ISO spectra exhibit characteristics commonly interpreted respectively as interstellar matter-like (ISM), non-ISM-like, or a combination of the two. Conclusions: We argue that the PAH emission detected from the sources exhibiting a combination of ISM-like and non-ISM-like characteristics indicates the presence of two dissimilar, spatially separated, PAH families. As the shape of the individual PAH band profiles reflects the composition of the PAH molecules involved, this demonstrates that PAHs in subsequent, evolutionary linked stages of star formation are different from those in the general ISM, implying active chemistry. None of the detected PAH emission can be associated with the (unresolved) disk and is thus associated with the circumstellar (natal

  5. Constraining Cometary Crystal Shapes from IR Spectral Features

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean; Harker, David E.; Kelley, Michael S. P.; Woodward, Charles E.; Murphy, James Richard

    2013-01-01

    A major challenge in deriving the silicate mineralogy of comets is ascertaining how the anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and 33 microns [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to compute IR spectral energy distributions (SEDs, lambdaF lambda vs. lambda) and constrain the silicate mineralogy of comets. Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-, b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need models that account for crystal shape. The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline spectral features is the relative lengths of the crystallographic axes. The second significant grain shape characteristic is breaking the symmetry of all three axes [17]. Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the spectral fits. Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk temperatures where the cometary crystalline

  6. IR emission and UV extinction in two open clusters

    NASA Technical Reports Server (NTRS)

    Hackwell, James A.; Hecht, James H.

    1989-01-01

    Recent models of interstellar extinction have shown the importance of understanding both the UV and IR properties of interstellar dust grains. IRAS data have shown variations in 60 and 100 micron emissions presumably due to the presence of IR cirrus, while recent observations in the UV by Fitzpatrick and Massa have identified components in the UV extinction curve which vary in different star regions. A Draine and Anderson model connects these results by proposing that different size variations in interstellar grains would cause distinct changes in both the IR emission and the UV extinction. In order to test this model it is necessary to make observations in well defined locations away from peculiar extinction regions. In the infrared this means looking away from the galactic plane so as to limit non-local sources of IR radiation. Two open clusters that are out of the galactic plane and which contain a number of late B and early A stars suitable for UV extinction studies, and whose IRAS data show variations in the 60/100 micron ratio were studied. Based on the Drain and Anderson model, variations were expected in their UV extinction curves that correlate with the IR cirrus emission.

  7. Constraining Cometary Crystal Shapes from IR Spectral Features

    NASA Astrophysics Data System (ADS)

    Wooden, D. H.; Lindsay, S.; Harker, D. E.; Kelley, M. S.; Woodward, C. E.; Murphy, J. R.

    2013-12-01

    A major challenge in deriving the silicate mineralogy of comets is ascertaining how the anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and 33 μm [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to compute IR spectral energy distributions (SEDs, λFλ vs. λ) and constrain the silicate mineralogy of comets. Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-, b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need models that account for crystal shape. The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline spectral features is the relative lengths of the crystallographic axes. The second significant grain shape characteristic is breaking the symmetry of all three axes [17]. Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the spectral fits. Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk temperatures where the cometary crystalline forsterite formed. The

  8. Dust processing in photodissociation regions. Mid-IR emission modelling

    NASA Astrophysics Data System (ADS)

    Compiègne, M.; Abergel, A.; Verstraete, L.; Habart, E.

    2008-12-01

    Context: Mid-infrared spectroscopy of dense illuminated ridges (or photodissociation regions, PDRs) suggests dust evolution. Such evolution must be reflected in the gas physical properties through processes like photo-electric heating or H2 formation. Aims: With Spitzer Infrared Spectrograph (IRS) and ISOCAM data, we study the mid-IR emission of closeby, well known PDRs. Focusing on the band and continuum dust emissions, we follow their relative contributions and analyze their variations in terms of abundance of dust populations. Methods: In order to disentangle dust evolution and excitation effects, we use a dust emission model that we couple to radiative transfer. Our dust model reproduces extinction and emission of the standard interstellar medium that we represent with diffuse high galactic latitude clouds called Cirrus. We take the properties of dust in Cirrus as a reference to which we compare the dust emission from more excited regions, namely the Horsehead and the reflection nebula NGC 2023 North. Results: We show that in both regions, radiative transfer effects cannot account for the observed spectral variations. We interpret these variations in term of changes of the relative abundance between polycyclic aromatic hydrocarbons (PAHs, mid-IR band carriers) and very small grains (VSGs, mid-IR continuum carriers). Conclusions: We conclude that the PAH/VSG abundance ratio is 2.4 times smaller at the peak emission of the Horsehead nebula than in the Cirrus case. For NGC 2023 North where spectral evolution is observed across the northern PDR, we conclude that this ratio is ~5 times lower in the dense, cold zones of the PDR than in its diffuse illuminated part where dust properties seem to be the same as in Cirrus. We conclude that dust in PDRs seems to evolve from “dense” to “diffuse” properties at the small spatial scale of the dense illuminated ridge.

  9. Surface Emissivity Effects on Thermodynamic Retrieval of IR Spectral Radiance

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Liu, Xu

    2006-01-01

    The surface emissivity effect on the thermodynamic parameters (e.g., the surface skin temperature, atmospheric temperature, and moisture) retrieved from satellite infrared (IR) spectral radiance is studied. Simulation analysis demonstrates that surface emissivity plays an important role in retrieval of surface skin temperature and terrestrial boundary layer (TBL) moisture. NAST-I ultraspectral data collected during the CLAMS field campaign are used to retrieve thermodynamic properties of the atmosphere and surface. The retrievals are then validated by coincident in-situ measurements, such as sea surface temperature, radiosonde temperature and moisture profiles. Retrieved surface emissivity is also validated by that computed from the observed radiance and calculated emissions based on the retrievals of surface temperature and atmospheric profiles. In addition, retrieved surface skin temperature and emissivity are validated together by radiance comparison between the observation and retrieval-based calculation in the window region where atmospheric contribution is minimized. Both simulation and validation results have lead to the conclusion that variable surface emissivity in the inversion process is needed to obtain accurate retrievals from satellite IR spectral radiance measurements. Retrieval examples are presented to reveal that surface emissivity plays a significant role in retrieving accurate surface skin temperature and TBL thermodynamic parameters.

  10. Silicon-based structures for IR light emission

    NASA Astrophysics Data System (ADS)

    Hansson, Göran V.; Ni, Wei-Xin; Joelsson, Kenneth B.; Buyanova, I. A.

    1997-01-01

    There is a lot of interest in obtaining efficient infra-red (IR) light emission from Si-based structures for use in optoelectronics. Although it has been theoretically predicted that Sim/Gen atomic layer superlattices can have a quasi-direct bandgap, the experimental studies have not yet given very high luminescence intensities, particularly at room temperature, from such structures. So far, the most efficient method to have IR light emission at room temperature is to process Si/Si1-xGex superlattices or quantum well structures into narrow (<60nm diameter) columnar structures. After planarization with insulating material it has been possible to fabricate LEDs using these columns. While the results are very promising there are also a number of unsolved problems concerning the mechanism allowing for efficient light emission and concerning the passivation of the surfaces of the columns to have a long-term stability of the emission. Another way to have IR light emission at room temperature and possibly obtain a Si-based laser is to use Er-doped material. For Er-doped LEDs, most of the work has been done on ion-implanted structures. It has been found that to have the Er-related emission at 1.54 μm it is necessary to also have co-dopants like O or F to activate the Er. Since a high temperature step is necessary to anneal out implantation damage it has been difficult to have high concentrations of Er/O without precipitation, as the required concentration for useful devices is far above the solid solubility of Er in Si. Low temperature growth using MBE is a promising method to achieve high Er/O or Er/F concentrations without precipitation and intense room-temperature electroluminescence has very recently been reported from a reverse biased Er/O-doped LED grown by MBE.

  11. Global Land Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, D. K.; Larar, A. M.; Liu, Xu; Smith, W. L.; Strow, L. L.; Yang, Ping; Schlussel, P.; Calbet, X.

    2011-01-01

    Ultraspectral resolution infrared (IR) radiances obtained from nadir observations provide information about the atmosphere, surface, aerosols, and clouds. Surface spectral emissivity (SSE) and surface skin temperature from current and future operational satellites can and will reveal critical information about the Earth s ecosystem and land-surface-type properties, which might be utilized as a means of long-term monitoring of the Earth s environment and global climate change. In this study, fast radiative transfer models applied to the atmosphere under all weather conditions are used for atmospheric profile and surface or cloud parameter retrieval from ultraspectral and/or hyperspectral spaceborne IR soundings. An inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral IR sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface or cloud microphysical parameters. This inversion scheme has been applied to the Infrared Atmospheric Sounding Interferometer (IASI). Rapidly produced SSE is initially evaluated through quality control checks on the retrievals of other impacted surface and atmospheric parameters. Initial validation of retrieved emissivity spectra is conducted with Namib and Kalahari desert laboratory measurements. Seasonal products of global land SSE and surface skin temperature retrieved with IASI are presented to demonstrate seasonal variation of SSE.

  12. High-resolution studies of atmospheric IR emission spectra

    NASA Technical Reports Server (NTRS)

    Murcray, F. J.; Murcray, F. H.; Goldman, A.; Blatherwick, R. D.; Murcray, D. G.

    1991-01-01

    Atmospheric emission spectra obtained with two different spectrometer systems are presented. The first system (the BOMEM Michelson interferometer) is designed for emission work. Spectra were obtained under adverse conditions in the Antarctic, and are still of good absolute accuracy. The second system (a modified Bruker Instruments IFS120 very high spectral resolution interferometer) demonstrates the sensitivity that can be achieved even at higher spectral resolution. This system shows that mid-IR atmospheric emission spectra can be obtained with a good SNR in a reasonable length of time at a relatively high resolution. A properly designed high resolution system should achieve high accuracy, sensitivity, and resolution, thereby permitting measurements of many atmospheric constituents when solar spectra cannot be obtained.

  13. THE ROLE OF THE ACCRETION DISK, DUST, AND JETS IN THE IR EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Mason, R. E.; Ramos Almeida, C.; Alonso-Herrero, A.

    2013-11-10

    We use recent high-resolution infrared (IR; 1-20 μm) photometry to examine the origin of the IR emission in low-luminosity active galactic nuclei (LLAGN). The data are compared with published model fits that describe the spectral energy distribution (SED) of LLAGN in terms of an advection-dominated accretion flow, truncated thin accretion disk, and jet. The truncated disk in these models is usually not luminous enough to explain the observed IR emission, and in all cases its spectral shape is much narrower than the broad IR peaks in the data. Synchrotron radiation from the jet appears to be important in very radio-loud nuclei, but the detection of strong silicate emission features in many objects indicates that dust must also contribute. We investigate this point by fitting the IR SED of NGC 3998 using dusty torus and optically thin (τ{sub mid-IR} ∼ 1) dust shell models. While more detailed modeling is necessary, these initial results suggest that dust may account for the nuclear mid-IR emission of many LLAGN.

  14. On Structural Features Necessary for Near-IR-Light Photocatalysts.

    PubMed

    Wang, Gang; Huang, Baibiao; Li, Zhujie; Wang, Zeyan; Qin, Xiaoyan; Zhang, Xiaoyang; Dai, Ying; Whangbo, Myung-Hwan

    2015-09-21

    In the search for photocatalysts that can directly utilize near-IR (NIR) light, we investigated three oxides Cu3(OH)4SO4 (antlerite), Cu4(OH)6SO4, and Cu2(OH)3Cl by photodecomposing 2,4-dichlorophenol over them under NIR irradiation and by comparing their electronic structures with that of the known NIR photocatalyst Cu2(OH)PO4. Both Cu3(OH)4SO4 and Cu4(OH)6SO4 are NIR photocatalysts, but Cu2(OH)3Cl is not. Thus, in addition to the presence of two different CuOm and Cu'On polyhedra linked with Cu-O-Cu' bridges, the presence of acceptor groups (e.g., SO4, PO4) linked to the metal oxygen polyhedra is necessary for NIR photocatalysts. PMID:26235723

  15. Emission and surface characteristic of ternary alloy Ir/Re/W-coated impregnated tungsten cathodes

    NASA Astrophysics Data System (ADS)

    Zhang, Honglai; Liu, Yanwen; Zhang, Mingchen; Li, Yutao

    2005-09-01

    In order to improve the activation characteristics and emission ability of the conventional Ir-coated impregnated tungsten cathodes, a new type of dispenser cathode with ternary alloy Ir/Re/W coating was developed. The improved cathodes show higher emission current density and faster activation characteristics than that of the conventional pure Ir-coated impregnated tungsten cathodes. X-ray photoelectron spectroscopy (XPS) was used to analyze the element compositions on the surface of the cathodes coated with pure Ir and Ir/Re/W alloy. The results show that for pure Ir coating cathode, binary alloy (Ir/W) is formed. The surface atom concentration is near 50/50 after full activation. For ternary alloy coating cathode, the surface atom concentration has changed from 35%Ir-25%Re-40%W to 33%Ir-19%Re-48%W before and after activation.

  16. UV extinction and IR emission in diffuse H2 regions

    NASA Technical Reports Server (NTRS)

    Aannestad, Per A.

    1994-01-01

    HII regions occupy a unique position in our understanding of the physical relationships between stars, the interstellar medium, and galactic structure. Observations show a complex interaction between a newly formed hot star and its surroundings. In particular, the ultraviolet radiation from the stars modifies the pre-existing dust, which again affects both the amount of ionizing radiation absorbed by the gas, and the infrared spectrum emitted by the heated dust. The aim of this project was to use UV and far-UV observations to gain information on the nebular dust, and to use this dust to model the far-IR emission, for a consistent picture of a few selected diffuse HII regions. Using archival data from the IUE and Voyager data banks and computed model atmospheres, we have deduced extinction curves for early-types stars. The requisite spectral resolution turned out to be a major task. We have successfully modelled these curves in terms of a multi-component, multi-size distribution of dust grains, and interpret the differences in the curves as primarily due to the presence or non-presence of intermediate size grains (0.01 to 0.04 micron). Much smaller (0.005 micron) grains must also be present. Finally, we have made calculations of the temperature fluctuations and the corresponding infra-red emission in such small grains.

  17. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection.

    PubMed

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  18. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    PubMed Central

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  19. Resonant microcavity light emitters for onboard exhaust emissions IR sensor

    NASA Astrophysics Data System (ADS)

    Levy, Francois; Picard, Emmanuel; Rothmann, Johan; Mottin, Eric; Hadji, Emmanuel; Duhr, Joel

    2005-02-01

    A sensor based on selective optical absorption allows monitoring of hazardous engine exhaust emissions such as gaseous hydrocarbons and carbon monoxide. The IR components presented here offer the potential to develop a compact, fast and selective sensor reaching the technical and cost requirements for on-board automotive applications. Optical gas monitoring requires light sources above 3&mum since most of the gas species have their fundamental absorption peaks between 3 and 6 &mum. We report here on resonant microcavity light sources emitting at room temperature between 3 and 5&mum. The emitter combines a CdxHg1-xTe light emitting heterostructure and two dielectric multilayered mirrors. It is optically pumped by a commercial III-V laser diode. The principle of the resonant microcavity emitter allows tailoring of the emission wavelength and the line width to fit the absorption band of a specific gas, ensuring a very good selectivity between species. Moreover, this kind of emitter allows fast modulation enabling high detectivity and short response time. We report performances of light sources in the range 3-5&mum allowing the detection of hydrocarbons and carbon monoxide. Association of emitters peaking at different characteristic wavelengths with a single broad band detector allows designing of an optical sensor for several gas species. Sensitivity and time response issues have been characterized: detection of less than 50ppm of CH4 on a 15cm path has been demonstrated on synthetic gas; analysis of exhaust gases from a vehicle has allowed cylinder to cylinder resolution. This optical sensor offers the potential of various on-board automotive applications.

  20. Far-IR Absorption Features of Titan Aerosol Analogs Produced from Aromatic Precursors

    NASA Astrophysics Data System (ADS)

    Sebree, Joshua; Trainer, M. G.; Anderson, C. M.; Loeffler, M. J.

    2012-10-01

    The arrival of the Cassini spacecraft in orbit around Saturn has led to the discovery of benzene (C6H6) at ppm levels, as well as large positive ions in Titan’s atmosphere, tentatively identified as polycyclic aromatic hydrocarbons (PAHs).[1] The presence of aromatic molecules, which are photolytically active in the ultraviolet, may be an important part of the formation of aerosol particles in Titan’s haze layers, even at these low concentrations. To date, there have been no laboratory experiments in the literature exploring this area of study. The analysis of data from the Composite Infrared Spectrometer (CIRS) on-board Cassini has recently uncovered a broad emission feature centered at 140 cm-1 in the far-IR that is unique to the aerosol layers of Titan’s atmosphere.[2] Current optical constants from laboratory-generated aerosol analogs have been unable to reproduce this feature.[3,4] From the broadness of this feature, we speculate that the emission is a blended composite of low-energy vibrations of large molecules such as PAHs and their nitrogen containing counterparts, polycyclic aromatic nitrogen heterocycles (PANHs). We hypothesize that the inclusion of trace amounts of aromatic precursors will aid in the production of these large structures in the laboratory-generated aerosols. In this study, we perform UV irradiation of several aromatic precursors, both with and without nitrogen heteroatoms, to understand their influence on the observable characteristics of the aerosol. Measured optical and chemical properties will be compared to those formed from CH4/N2 mixtures [5,6] as well as to those from Cassini observations. [1] Waite, J. H., et al. (2007) Science 316 870-875. [2] Anderson, C.M, et al. (2011) Icarus 212 762-778. [3] Khare, B.N., et al. (1984) Icarus 60 127-137. [4] Imanaka, H., et al. (2012) Icarus 218 247-261. [5] Trainer, M.G., et al. (2006) PNAS 103 18035-18042. [6] Trainer, M.G., et al. (2012) Astrobiology 12 315-326.

  1. IR Emission Models from High-Mass Star Formation Cores

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Deutsch, L. K.

    2001-12-01

    Recognition that high-mass stars form only in clusters has motivated us to make new radiative transfer models for infrared emission from compact, dense cloud cores surrounding very young high-mass stars. We assume outer cloud radii are limited by the formation of stars in clusters to 0.1 pc. Since there is a high efficiency of conversion of gas into stars within clusters, we assumed the mass of gas and dust in the cloud models is equal or less than the mass of the central star. We assumed Draine and Lee (1984) dust properties with 100:1 gas to dust mass ratio, and used the Egan, Leung, and Spagna (1988) radiative transfer code. The central star in all models is an O8 ZAMS type at 1700 pc distance (the distance to NGC6334). The dust emitting clouds were assumed to have inner cavities of radius 0.006 pc, just outside an ultracompact HII region. Density distributions were taken as uniform or proportional to r-3/2. Except for the highest mass clouds, the models showed the 10 micron silicate feature in emission rather than self absorption. All models' spectral energy distributions peak shortward of 50 microns. The lack of silicate self absorption and the SEDs peaking shortward of 50 microns are apparently due to the small size of these models. In order to match observed silicate absorption in UCHIIs, an external cold absorbing component must be added to the models. The results suggest that individual high mass star-formation cores should be searched for in mid-infrared rather than far-infrared wavelengths, and that SEDs which peak in the far- infrared are at least partly produced by separate, larger outer cloud envelopes. Draine, B. T. & Lee, H. M. 1984 ApJ, 285, 89; Egan, M.P., Leung, C.M., & Spagna, G.F, Jr. 1988 Comput. Phys. Comm., 48, 271

  2. Radio Monitoring of the Periodically Variable IR Source LRLL 54361: No Direct Correlation between the Radio and IR Emissions

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Rodríguez, Luis F.; Palau, Aina; Zapata, Luis A.; Muzerolle, James; Gutermuth, Robert A.

    2015-11-01

    LRLL 54361 is an infrared source located in the star-forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 over roughly one week every 25.34 days. To understand the origin of these remarkable periodic variations, we obtained sensitive 3.3 cm JVLA radio continuum observations of LRLL 54361 and its surroundings in six different epochs: three of them during the IR-on state and three during the IR-off state. The radio source associated with LRLL 54361 remained steady and did not show a correlation with the IR variations. We suggest that the IR is tracing the results of fast (with a timescale of days) pulsed accretion from an unseen binary companion, while the radio traces an ionized outflow with an extent of ∼100 AU that smooths out the variability over a period of the order of a year. The average flux density measured in these 2014 observations, 27 ± 5 μJy, is about a factor of two less than that measured about 1.5 years before, 53 ± 11 μJy, suggesting that variability in the radio is present, but over larger timescales than in the IR. We discuss other sources in the field, in particular two infrared/X-ray stars that show rapidly varying gyrosynchrotron emission.

  3. Utilizing Lifetimes to Suppress Random Coil Features in 2D IR Spectra of Peptides

    PubMed Central

    Middleton, Chris T.; Buchanan, Lauren E.; Dunkelberger, Emily B.

    2011-01-01

    We report that the waiting time delay in 2D IR pulse sequences can be used to suppress signals from structurally disordered regions of amyloid fibrils. At a waiting time delay of 1.0 ps, the random coil vibrational modes of amylin fibrils are no longer detectable, leaving only the sharp excitonic vibrational features of the fibril β-sheets. Isotope labeling with 13C18O reveals that structurally disordered residues decay faster than residues protected from solvent. Since structural disorder is usually accompanied by hydration, we conclude that the shorter lifetimes of random-coil residues is due to solvent exposure. These results indicate that 2D IR pulse sequences can utilize the waiting time to better resolve solvent-protected regions of peptides and that local mode lifetimes should be included in simulations of 2D IR spectra. PMID:21966585

  4. The Luminous Polycyclic Aromatic Hydrocarbon Emission Features: Applications to High Redshift Galaxies and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shipley, Heath V.

    2016-01-01

    For decades, significant work has been applied to calibrating emission from the ultra-violet, nebular emission lines, far-infrared, X-ray and radio as tracers of the star-formation rate (SFR) in distant galaxies. Understanding the exact rate of star-formation and how it evolves with time and galaxy mass has deep implications for how galaxies form. The co-evolution of star-formation and supermassive black hole (SMBH) accretion is one of the key problems in galaxy formation theory. But, many of these SFR indicators are influenced by SMBH accretion in galaxies and result in unreliable SFRs. Utilizing the luminous polycyclic aromatic hydrocarbon (PAH) emission features, I provide a new robust SFR calibration using the luminosity emitted from the PAHs at 6.2μm, 7.7μm and 11.3μm to solve this. The PAH features emit strongly in the mid-infrared (mid-IR; 5-25μm) mitigating dust extinction, containing on average 5-10% of the total IR luminosity in galaxies. I use a sample of 105 star-forming galaxies covering a range of total IR luminosity, LIR = L(8-1000μm) = 109 - 1012 L⊙ and redshift 0 < z < 0.4, with mid-IR spectroscopy from the Spitzer Infrared Spectrograph (IRS), and data covering other SFR indicators (Hα emission and rest-frame 24μm continuum emission). The PAH luminosity correlates linearly with the SFR as measured by the Hα luminosity (corrected for attenuation using the mono-chromatic rest-frame 24μm emission), with a tight scatter of <0.15 dex. The scatter is comparable to that between SFRs derived from the Paα and dust-corrected Hα emission lines. We present a case study in advance of JWST, which will be capable of measuring SFRs (from 8μm rest-frame photometry, i.e. PAHs) in distant galaxies (z ≤ 2) with JWST/MIRI to SFRs as low as ~10 M⊙yr-1, because the PAH features are so bright. We use Spitzer/IRS observations of PAH features in lensed star-forming galaxies at 1 < z < 3 to demonstrate the utility of the PAHs to derive SFRs that agree with

  5. Mid-IR Spectra of HED Meteorites and Synthetic Pyroxenes: Reststrahlen Features (9-12 micron)

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2010-01-01

    In an earlier study. Hamilton (2000) mapped the behavior of the 9-12 micron reststrahlen structures with composition in a suite of primarily natural terrestrial pyroxenes. Here we examine the same set of reststrahlen features in the spectra of diogenites and eucrites and place them in the context of the terrestrial samples and of a suite of well-characterized synthetic pyroxenes. The results will be useful to the interpretation of mid-IR spectra of 4 Vesta and other basaltic asteroids.

  6. High surface porosity as the origin of emissivity features in asteroid spectra

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Delbo, M.; King, P. L.; Izawa, M. R. M.; Olofsson, J.; Lamy, P.; Cipriani, F.; Binzel, R. P.; Marchis, F.; Merín, B.; Tamanai, A.

    2012-11-01

    Emission features in the mid-IR domain (7-25 μm) are quite ubiquitous among large asteroids and therefore offer the potential to uncover their surface composition. However, when comparing these spectra with the actual laboratory spectra of both minerals and meteorites, they do not necessarily match. Here, and in a companion paper by King et al. (in preparation, 2012), we show that by modifying the sample preparation - typically by suspending meteorite and/or mineral powder (<30 μm) in IR-transparent KBr (potassium bromide) powder - we are able to reproduce the spectral behavior of those main-belt asteroids with emissivity features. This resulting good match between KBr-diluted meteorite spectra and asteroid spectra suggests an important surface porosity (>90%) for the first millimeter for our asteroid sample. It therefore appears that mid-IR emission spectra of asteroids do not only carry information about their surface composition but they can also help us constraining their surface structure (under-dense versus compact surface structure), as suggested by Emery et al. (Emery, J.P., Cruikshank, D.P., van Cleve, J. [2006]. Icarus 182, 496-512) in the case of the Jupiter Trojans. The large surface porosity inferred from the mid-IR spectra of certain asteroids is also implied by two other independent measurements, namely their thermal inertia and their radar albedo. We further clarified how much compositional information can be retrieved from the mid-IR range by focusing our analysis on a single object, 624 Hektor. We showed that the mid-IR range provides critical constraints (i) on its origin and of that of the red Trojans that we locate in the formation regions of the comets, and (ii) on the primordial composition of the dust present in the outer region (>10 AU) of the Solar System’s protoplanetary disk. Future investigations should focus on finding the mechanism responsible for creating such high surface porosity.

  7. Temperature dependence of the emissivity of platinum in the IR.

    PubMed

    Deemyad, Shanti; Silvera, Isaac F

    2008-08-01

    The accuracy of temperature determination by fitting the spectral irradiance to a Planck curve depends on knowledge of the emissivity at all temperatures and pressures of interest within a spectral region. Here, the emissivity of platinum is measured in the near infrared as a function of temperature. In the wavelength range of study and the temperature range of 650-1100 K, we find the emissivity to be independent of temperature to within experimental error. This result should lead to improved accuracy of temperature measurement by optical pyrometry where platinum is used as a thermal emitter. PMID:19044386

  8. The origin of the diffuse galactic IR/submm emission: Revisited after IRAS

    NASA Technical Reports Server (NTRS)

    Cox, P.; Mezger, P. G.

    1987-01-01

    Balloon observations are compared with Infrared Astronomy Satellite observations. There was good agreement for the longitudinal profiles. However, the dust emission observed by IRAS, contrary to the balloon observations which show dust emission only within the absolute value of b is equal to or less than 3 degrees, extends all the way to the galactic pole. The model fits were repeated using more recent parameters for the distribution of interstellar matter in the galactic disk and central region. The IR luminosities are derived for the revised galactic distance scale of solar radius - 8.5 Kpc. A total IR luminosity of 1.2 E10 solar luminosity is obtained, which is about one third of the estimated stellar luminosity of the Galaxy. The dust emission spectrum lambdaI(sub lambda) attains it maximum at 100 microns. A secondary maximum in the dust emission spectrum occurs at 10 microns, which contains 15% of the total IR luminosity of the Galaxy. The galactic dust emission spectrum was compared with the dust emission spectra of external IRAS galaxies. The warm dust luminosity relates to the present OB star formation rate, while flux densities observed at longer submm wavelengths are dominated by cold dust emission and thus can be used to estimate gas masses.

  9. Ir Emission Spectroscopy of Ammonia: Linelists and Assignments

    NASA Astrophysics Data System (ADS)

    Hargreaves, R.; Bernath, P. F.; Zobov, N. F.; Shirin, S. V.; Ovsyannikov, R. I.; Polyansky, O. L.; Yurchenko, S. N.; Barber, R. J.; Tennyson, J.

    2011-06-01

    We present high resolution intensity-calibrated linelists of ammonia (NH_3) at high temperatures obtained from Fourier transform emission spectra recorded using a tube furnace. Individual calibrated linelists are presented for 12 temperatures (300-1300°C in 100°C intervals and 1370°C). Each linelist covers the 800--2200 cm-1 range and includes the majority of the ν_2 bending mode and the complete ν_4 mode regions. We also demonstrate the useful technique of obtaining empirical lower state energies from spectra at different temperatures. We expect our hot NH_3 linelists to find direct application in modeling of the spectra of extrasolar planets and brown dwarfs. Quantum number assignments in the experimental linelists are difficult because of extensive perturbations and the poor convergence of traditional Hamiltonians based on perturbation theory. A new theoretical linelist, known as BYTe, was computed variationally to assign and model spectra with ammonia temperatures up to 1500 K. It was computed using the NH3-2010 spectroscopically-determined potential energy surface and the TROVE rovibrational computer program. Intensities were calculated using an ab initio dipole moment surface. BYTe comprises more than 1.1 billion transitions in the wavenumber range from 0 to 12 000 Cm-1, constructed from 1.3 million energy levels lying below 18 000 Cm-1. Given an accurate potential energy surface, variational calculations are able to account automatically for perturbations.

  10. AGN are cooler than you think: the intrinsic far-IR emission from QSOs

    NASA Astrophysics Data System (ADS)

    Symeonidis, M.; Giblin, B. M.; Page, M. J.; Pearson, C.; Bendo, G.; Seymour, N.; Oliver, S. J.

    2016-06-01

    We present an intrinsic AGN spectral energy distribution (SED) extending from the optical to the submm, derived with a sample of unobscured, optically luminous (νLν,5100 > 1043.5 erg s-1) QSOs at z < 0.18 from the Palomar Green survey. The intrinsic AGN SED was computed by removing the contribution from stars using the 11.3 μm polycyclic aromatic hydrocarbon (PAH) feature in the QSOs' mid-IR spectra; the 1σ uncertainty on the SED ranges between 12 and 45 per cent as a function of wavelength and is a combination of PAH flux measurement errors and the uncertainties related to the conversion between PAH luminosity and star-forming luminosity. Longwards of 20 μm, the shape of the intrinsic AGN SED is independent of the AGN power indicating that our template should be applicable to all systems hosting luminous AGN (νLν, 5100 or L_X(2-10 keV) ≳ 1043.5 erg s-1). We note that for our sample of luminous QSOs, the average AGN emission is at least as high as, and mostly higher than, the total stellar powered emission at all wavelengths from the optical to the submm. This implies that in many galaxies hosting powerful AGN, there is no `safe' broad-band photometric observation (at λ < 1000 μm) which can be used in calculating star formation rates without subtracting the AGN contribution. Roughly, the AGN contribution may be ignored only if the intrinsic AGN luminosity at 5100 AA is at least a factor of 4 smaller than the total infrared luminosity (LIR, 8-1000 μm) of the galaxy. Finally, we examine the implication of our work in statistical studies of star formation in AGN host galaxies.

  11. The luminous polycyclic aromatic hydrocarbon emission features: Applications to high redshift galaxies and active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Shipley, Heath Vernon

    The co-evolution of star-formation and supermassive black hole (SMBH) accretion in galaxies is one of the key problems in galaxy formation theory. Understanding the formation of galaxies, and their subsequent evolution, will be coupled to intensive study of the evolution of SMBHs. This thesis focuses on studying diagnostics of star-formation and SMBH accretion to develop tools to study this co-evolution. Chapter 2 consists of using mid-infrared (mid-IR) spectroscopy from the Spitzer Infrared Spectrograph (IRS) to study the nature of star-formation and SMBH accretion. The mid-IR spectra cover wavelengths 5-38mum, spanning the polycyclic aromatic hydrocarbon (PAH) features and important atomic diagnostic lines. We divide our sample into a subsample of galaxies with Spitzer IRAC colors indicative of warm dust heated by an AGN (IRAGN) and those galaxies whose colors indicate star-formation processes (non-IRAGN). In both the IRAGN and star-forming samples, the luminosity in the PAH features correlates strongly with [Ne II]lambda12.8&mum emission line, from which we conclude that the PAH luminosity directly traces the instantaneous star-formation rate (SFR) in both the IRAGN and star-forming galaxies. There is no measurable difference between the PAH luminosity ratios of L11:3/L7:7 and L6:2/L7:7 for the IRAGN and non-IRAGN, suggesting that AGN do not significantly excite or destroy PAH molecules on galaxy-wide scales. In chapter 3, I calibrate the PAH luminosity as a SFR indicator. We provide a new robust SFR calibration using the luminosity emitted from PAH molecules at 6.2mum, 7.7mum and 11.3mum. The PAH features emit strongly in the mid-IR mitigating dust extinction, containing on average 5--10% of the total IR luminosity in galaxies. We use mid-IR spectroscopy from the Spitzer/IRS, and data covering other SFR indicators (Halpha emission and rest-frame 24mum continuum emission). The PAH luminosity correlates linearly with the SFR as measured by the Halpha luminosity

  12. An Empirical Decomposition of Near-IR Emission into Galactic and Extragalactic Components

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Arendt, Richard G.

    2002-01-01

    We decompose the COBE/DIRBE observations of the near-IR sky brightness (minus zodiacal light) into Galactic stellar and interstellar medium (ISM) components and an extragalactic background. This empirical procedure allows us to estimate the 4.9 micron cosmic infrared background (CIB) as a function of the CIB intensity at shorter wavelengths. A weak indication of a rising CIB intensity at wavelengths greater than 3.5$ microns hints at interesting astrophysics in the CIB spectrum, or warns that the foreground zodiacal emission may be incompletely subtracted. Subtraction of only the stellar component from the zodiacal-light-subtracted all--sky map reveals the clearest 3.5 micron ISM emission map, which is found to be tightly correlated with the ISM emission at far-IR wavelengths.

  13. Features of gallstone and kidney stone fragmentation by IR-pulsed Nd:YAG laser radiation

    NASA Astrophysics Data System (ADS)

    Batishche, Sergei A.

    1995-05-01

    It is shown that infra-red ((lambda) equals 1064 nm) long pulse (approximately 100 microsecond(s) ) radiation of YAG:Nd laser, operating in free generation regime, effectively fragments gallstones, urinary calculus and kidney stones. The features of the mechanism of this process are investigated. Laser lithotripsy is nowadays a method widely used for fragmentation of gallstones, urinary calculus and kidney stones. Flashlamp pumped dye lasers of microsecond duration are most often used for such purposes. Nevertheless, there are some reports on lithotripsies with nanosecond duration laser pulses (for example, Q-switched YAG:Nd laser). The mechanism of the laser fragmentation of such stones was supposed to be the next. The laser powerful radiation, delivered through the optical fiber, is absorbed by the material of the stone. As a result of such highly localized energy absorption, dense plasma is formed, which expands. Such plasma and vapor, liquid confined, forms a cavitation bubble. This bubble grows, reaches its most dimension and then collapses on itself in some hundreds of micro seconds. Shock waves generated during the growth and the collapse of these bubbles are the origin of fragmentation of the stone. It is necessary to say that there are rather confined data on the hundreds microsecond laser pulse fragmentation especially what concerns the usage of infra-red (IR) YAG:Nd lasers with long laser pulses. Clearing this problem would result in better understanding of the fragmentation mechanism and it could favor development of simple and more reliable laser systems for lithotripsy. In this work we report about investigation of features of an effective fragmentation of gallstones, urinary calculus and kidney stones under exposure of IR ((lambda) equals 1064 nm) radiation of repetitive YAG:Nd laser working in free generation regime.

  14. Characterization of protein and carbohydrate mid-IR spectral features in crop residues

    NASA Astrophysics Data System (ADS)

    Xin, Hangshu; Zhang, Yonggen; Wang, Mingjun; Li, Zhongyu; Wang, Zhibo; Yu, Peiqiang

    2014-08-01

    To the best of our knowledge, a few studies have been conducted on inherent structure spectral traits related to biopolymers of crop residues. The objective of this study was to characterize protein and carbohydrate structure spectral features of three field crop residues (rice straw, wheat straw and millet straw) in comparison with two crop vines (peanut vine and pea vine) by using Fourier transform infrared spectroscopy (FTIR) technique with attenuated total reflectance (ATR). Also, multivariate analyses were performed on spectral data sets within the regions mainly related to protein and carbohydrate in this study. The results showed that spectral differences existed in mid-IR peak intensities that are mainly related to protein and carbohydrate among these crop residue samples. With regard to protein spectral profile, peanut vine showed the greatest mid-IR band intensities that are related to protein amide and protein secondary structures, followed by pea vine and the rest three field crop straws. The crop vines had 48-134% higher spectral band intensity than the grain straws in spectral features associated with protein. Similar trends were also found in the bands that are mainly related to structural carbohydrates (such as cellulosic compounds). However, the field crop residues had higher peak intensity in total carbohydrates region than the crop vines. Furthermore, spectral ratios varied among the residue samples, indicating that these five crop residues had different internal structural conformation. However, multivariate spectral analyses showed that structural similarities still exhibited among crop residues in the regions associated with protein biopolymers and carbohydrate. Further study is needed to find out whether there is any relationship between spectroscopic information and nutrition supply in various kinds of crop residue when fed to animals.

  15. Spectral structure near the 11.3 micron emission feature

    NASA Technical Reports Server (NTRS)

    Witteborn, Fred C.; Sandford, Scott A.; Bregman, Jesse D.; Allamandola, Louis J.; Cohen, M.; Wooden, Diane

    1989-01-01

    If the 11.3 micron emission feature seen in the spectra of many planetary nebulae, H II regions, and reflection nebulae is attributable to polycyclic aromatic hydrocarbons (PAHs), then additional features should be present between 11.3 and 13.0 microns. Moderate resolution spectra of NGC 7027, HD 44179, BD+30 deg 3639, and IRAS 21282+5050 are presented which show evidence for new emission features centered near 12.0 and 12.7 microns. These are consistent with an origin from PAHs and can be used to constrain the molecular structure of the family of PAHs responsible for the infrared features. There is an indication that coronene-like PAHs contribute far more to the emission from NGC 7027 than to the emission from HD 44179. The observed asymmetric profile of the 11.3 micron band in all the spectra is consistent with the slight anharmonicity expected in the C-H out-of-plane bending mode in PAHs. A series of repeating features between 10 and 11 microns in the spectrum of HD 44179 suggests a simple hydride larger than 2 atoms is present in the gas phase in this object.

  16. Toward Unraveling the Nature of the Mysterious 21 and 30 Micrometer Emission Features of Evolved Stars

    NASA Astrophysics Data System (ADS)

    Mishra, Ajay; Li, A.

    2014-01-01

    The mysterious "21 micrometer" emission feature seen almost exclusively in the short-lived protoplanetary nebula (PPN) phase of stellar evolution remains unidentified since its discovery two decades ago. This feature is always accompanied by the equally mysterious, unidentified "30 micrometer" feature and the so-called “unidentified infrared” (UIR) features generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. The 30 micrometer feature is commonly observed in all stages of stellar evolution from the asymptotic giant branch (AGB) through PPN to the planetary nebula phase. We explore the interrelations among the mysterious 21 micrometer, 30 micrometer, and UIR features in the Galactic and Magellanic Cloud 21 micrometer sources. We derive the fluxes emitted in the observed UIR, 21 micrometer, and 30 micrometer features from published ISO or Spitzer/IRS spectra. To derive the stellar mass loss rates of these 21 micrometer sources, we use the 2-dust radiative transfer code for axisymmetric dusty systems to model their dust infrared emission. We found that --- (1) The 30 micrometer feature does not seem to positively correlate with the 21 micrometer feature. This argues against the hypothesis of thiourea and aliphatic chains (attached to various carbonaceous structures) as the common carriers for both the 21 and 30 micrometer features; (2) The 21 micrometer feature does not correlate with the UIR features. This argues against large PAH clusters as a possible carrier for the 21 micrometer feature. (3) The 30 micrometer feature and the UIR features appear to weakly correlate, suggesting that the UIR carriers (e.g. PAHs) may result from the decomposition or shattering of the 30 micrometer feature carrier; and (4) The 21 micrometer feature and UIR features seem to weakly correlate with the stellar mass loss rates while the 30 micrometer feature appears to weakly anti-correlate with the stellar mass loss rates, suggesting that the UIR and 21 micrometer

  17. Unusual features in the persistent emission of the Rapid Burster

    NASA Technical Reports Server (NTRS)

    Lubin, Lori M.; Lewin, Walter H. G.; Van Paradijs, Jan; Van Der Klis, Michiel

    1993-01-01

    Several distinct features in the persistent X-ray emission after long (greater than 30 s) type II bursts from the Rapid Burster were discovered in August 1985. A specific pattern characterized by a 'hump' was observed in the early portion of the persistent emission after type II bursts with integrated fluxes less than about 4.8 x 10 exp -6 erg/sq cm. This hump which typically lasts about 200 s is almost never observed after bursts with fluences greater than this value. The emission during the hump is found to be always harder than the average persistent emission. Quasi-periodic oscillations with frequencies of about 40 mHz observed in 10 cases occur exclusively during a hump. The persistent emission also exhibited sharp 'glitches' and small 'bumps' lasting about 20-100 s. The glitches always occurred at the same phase in the intervals between bursts. In seven cases the glitches were followed by a bump.

  18. Atom-probe and field emission electron spectroscope studies of Ge on Ir

    NASA Astrophysics Data System (ADS)

    Ashino, Makoto; Tomitori, Masahiko; Nishikawa, Osamu

    1993-04-01

    The combination of an atom-probe (AP) and a field emission electron spectroscope (FEES) was employed to investigate the electronic structure of Ge layers on an Ir substrate. Germanium forms a thin film with a fairly uniform thickness, possibly owing to a small activation energy for diffusion on Ir or the lattice matching between Ge and Ir. The FEES spectrum obtained from Ge layers thicker than 8-9 ML exhibits a semiconductive energy gap and a peak at 0.7 eV below the Fermi level as for Si on Mo. However, the minimum layer thickness to exhibit the semiconductive spectrum profile is significantly thicker than that for Si on Mo. The observed difference could be attributed to the layer structure of the deposited Ge and to the narrower energy gap of Ge than that of Si.

  19. Detecting early IR emission from dust heated by a tidal disruption flare

    NASA Astrophysics Data System (ADS)

    van Velzen, Sjoert; Gezari, Suvi; Hung, Tiara; Cenko, Bradley; Gorjian, Varoujan

    2016-06-01

    A stellar tidal disruption flare (TDF) occurs when a star gets too close to a supermassive black hole and is shredded into streams that are accreted. New TDFs can be discovered by their transient optical or X-ray emission. We have recently made a discovery that opens a new wavelength regime for the study of these flares: transient emission at 3 micron in WISE multi-epoch imaging. This emission is best understood as originating from dust that has been heated by the intense UV and X-ray emission of the flare. However, the 6-month cadence of the WISE observations is too low to critically test this dust reprocessing model. Using optical observations of the iPTF survey, we recently discovered a very strong TDF candidate that is currenlty only a few weeks past maximum light. Since TDFs are rare, this new source provides an unique oppurtunity for Spitzer to make a very important contribution to this field. We proposed 7 Spitzer follow-up observations of this flare, which would yield the first early-time light curve of IR emission from a tidal flare. This data will be crucial to estabilish (or rule-out) dust reprocessing as the origin of IR emission from TDFs.

  20. Ten years of the UW high spectral resolution global IR land surface emissivity (UWIREMIS) database

    NASA Astrophysics Data System (ADS)

    Borbas, E. E.; Knuteson, R. O.

    2012-12-01

    The monthly, UW/CIMSS Baseline Fit (BF) global infrared land surface emissivity database has been developed based on combination of the MODIS/MYD11C3 operational emissivity products and some selected laboratory measurements. The database has been available for distribution since 2006 at the http://cimss.ssec.wisc.edu/iremis/ website and includes data from October 2002 at ten wavelengths (3.6, 4.3, 5.0, 5.8, 7.6, 8.3, 9.3, 10.8, 12.1, and 14.3 microns) with 0.05 degree spatial resolution. To derive high spectral resolution emissivity spectra, the UW High Spectral Resolution (HSR) IR Emissivity Algorithm was also developed. This algorithm uses a principal component analysis (PCA) regression from a combination of high spectral resolution laboratory measurements of selected materials, and the above-mentioned UW/CIMSS Baseline Fit (BF) Global Infrared Land Surface Emissivity Database to provide a 5 wavenumber resolution emissivity database at 416 wavenumbers. Applying the UW HSR Emissivity Algorithm to the UW BF emissivity data makes it possible to create a monthly instrument specific emissivity spectrum for any application involving forward model calculations such as retrieval methods and NWP assimilation or for use in studies of surface energy and water balance. This poster introduces the latest updates and results focusing on the ten year-long available dataset.

  1. C-H Hot Bands in the Near-IR Emission Spectra of Leonids

    NASA Technical Reports Server (NTRS)

    Freund, F. T.; Scoville, J.; Holm, R.; Seelemann, R.; Freund, M. M.

    2002-01-01

    The reported infrared (IR) emission spectra from 1999 Leonid fireballs show a 3.4 micron C-H emission band and unidentified bands at longer wavelengths. Upon atmospheric entry, the Leonid meteorites were flash-heated to temperatures around 2400K, which would destroy any organics on the surface of the meteorite grains. We propose that the nu(sub )CH emission band in the Leonid emission spectra arises from matrix-embedded C(sub n)-H-O entities that are protected from instant pyrolysis. Our model is based on IR absorption nu(sub )CH bands, which we observed in laboratory-grown MgO and natural olivine single crystals, where they arise from C(sub n)-H-O units imbedded in the mineral matrix, indicative of aliphatic -CH2- and -CH3 organics. Instead of being pyrolyzed, the C(sub n)-H-O entities in the Leonid trails become vibrationally excited to higher levels n = 1, 2, 3 etc. During de-excitation they emit at 3.4 microns, due to the (0 => 1) transition, and at longer wavelengths, due to hot bands. As a first step toward verifying this hypothesis we measured the C-H vibrational manifold of hexane (C6H14). The calculated positions of the (2 => l ) , (3 => 2), and possibly (4 => 3) hot bands agree with the Leonid emission bands at 3.5, 3.8 and 4.l microns.

  2. An Atomically Precise Au10 Ag2 Nanocluster with Red-Near-IR Dual Emission.

    PubMed

    Lei, Zhen; Guan, Zong-Jie; Pei, Xiao-Li; Yuan, Shang-Fu; Wan, Xian-Kai; Zhang, Jin-Yuan; Wang, Quan-Ming

    2016-08-01

    A red-near-IR dual-emissive nanocluster with the composition [Au10 Ag2 (2-py-C≡C)3 (dppy)6 ](BF4 )5 (1; 2-py-C≡C is 2-pyridylethynyl, dppy=2-pyridyldiphenylphosphine) has been synthesized. Single-crystal X-ray structural analysis reveals that 1 has a trigonal bipyramidal Au10 Ag2 core that contains a planar Au4 (2-py-C≡C)3 unit sandwiched by two Au3 Ag(dppy)3 motifs. Cluster 1 shows intense red-NIR dual emission in solution. The visible emission originates from metal-to-ligand charge transfer (MLCT) from silver atoms to phosphine ligands in the Au3 Ag(dppy)3 motifs, and the intense NIR emission is associated with the participation of 2-pyridylethynyl in the frontier orbitals of the cluster, which is confirmed by a time-dependent density functional theory (TD-DFT) calculation. PMID:27305386

  3. Evaluation of angle dependence in spectral emissivity of ceramic tiles measured by FT-IR

    NASA Astrophysics Data System (ADS)

    Kobayashi, C.; Ogasawara, N.; Yamada, H.; Yamada, S.; Kikuchi, T.

    2015-05-01

    Ceramic tiles are widely used for building walls. False detections are caused in inspections by infrared thermography because of the infrared reflection and angle dependence of emissivity. As the first problem, ceramic tile walls are influenced from backgrounds reflection. As the second problem, in inspection for tall buildings, the camera angles are changed against the height. Thus, to reveal the relation between the emissivity and angles is needed. However, there is very little data about it. It is impossible to decrease the false detection on ceramic tile walls without resolving these problems; background reflection and angle dependence of emissivity. In this study, the angle problem was investigated. The purpose is to establish a revision method in the angle dependence of the emissivity for infrared thermography. To reveal the relation between the emissivity and angles, the spectral emissivity of a ceramic tile at various angles was measured by FT-IR and infrared thermographic instrument. These two experimental results were compared with the emissivity-angle curves from the theoretical formula. In short wavelength range, the two experimental results showed similar behavior, but they did not agree with the theoretical curve. This will be the subject of further study. In long wavelength range, the both experimental results almost obeyed the theoretical curve. This means that it is possible to revise the angle dependence of spectral emissivity, for long wavelength range.

  4. Variations of the Mid-IR Aromatic Features Inside and Among Galaxies

    NASA Technical Reports Server (NTRS)

    Galliano, F.; Madden, S.C.; Tielens, A. G. G. M.; Peeters, E.; Jones, A. P.

    2007-01-01

    We present the results of a systematic study of mid-IR spectra of Galactic regions, Magellanic H II regions, and galaxies of various types (dwarf, spiral, starburst), observed by the satellites ISO and Spitzer. We study the relative variations of the 6.2, 7.7, 8.6 and 11.3 micron features inside spatially resolved objects (such as M 82, M 51, 30 Doradus, M 17 and the Orion bar), as well as among 90 integrated spectra of 50 objects. Our main results are that the 6.2, 7.7 and 8.6 micron bands are essentially tied together, while the ratios between these bands and the 11.3 micron band varies by one order of magnitude. This implies that the properties of the PAHs are remarkably universal throughout our sample, and that the relative variations of the band ratios are mainly controlled by the fraction of ionized PAHs. In particular, we show that we can rule out the modification of the PAH size distribution as an explanation of these variations. Using a few well-studied Galactic regions (including the spectral image of the Orion bar), we give an empirical relation between the I(6.2)/I(11.3) ratio and the ionization/recombination ratio Go/n(sub e) x square root of(T(sub gas)). Finally, we discuss the physical interpretation of the I(6.2)/I(11.3) ratio, on galactic size scales.

  5. Modeling of Far-IR Emission From G34.3+0.2

    NASA Astrophysics Data System (ADS)

    Clark, D. M.; Campbell, M. F.; Harvey, P. M.; Lester, D. M.

    2001-05-01

    Photometric scans at 47 and 95 μ m made on the KAO of the bright source centered on G34.3+0.2 are presented and analyzed. The 47 and 95 μ m scans are similar, showing sharp central peaks and very similar diffuse extended emission wings. Maximum entropy method deconvolutions indicate that the peaks are quite compact with FWHM values of 11 by 14 \\arcsec and 18 by 20 \\arcsec at 47 and 95 μ m respectively. The Egan, Leung, & Spagna (1988) radiative transfer code has been used to model the emission from the central peak at 47 and 95 μ m as Draine and Lee (1985) dust surrounding the O star(s) which ionize the ultracompact HII regions A, B, and C. The emission optical depth in the far-ir model is comparable to the amount of dust assumed to be in absorption in the models of mid-ir emission from G34.3+02C presented by Campbell et al. (2000). This work was supported by NASA Grants 2-67 & 2-546 and by Colby College. Campbell, M.F. et al. 2000, ApJ, 536, 816 Draine, B.T. & Lee, H.M. 1984, ApJ, 289, 89 Egan, M.P., Leung, C.M., & Spagna, G.F. 1988, CPC, 48, 271

  6. A Systematic Search for the Spectra with Features of Crystalline Silicates in the Spitzer IRS Enhanced Products

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Luo, Ali; Liu, Jiaming; Jiang, Biwei

    2016-06-01

    The crystalline silicate features are mainly reflected in infrared bands. The Spitzer Infrared Spectrograph (IRS) collected numerous spectra of various objects and provided a big database to investigate crystalline silicates in a wide range of astronomical environments. We apply the manifold ranking algorithm to perform a systematic search for the spectra with crystalline silicate features in the Spitzer IRS Enhanced Products available. In total, 868 spectra of 790 sources are found to show the features of crystalline silicates. These objects are cross-matched with the SIMBAD database as well as with the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST)/DR2. The average spectrum of young stellar objects shows a variety of features dominated either by forsterite or enstatite or neither, while the average spectrum of evolved objects consistently present dominant features of forsterite in AGB, OH/IR, post-AGB, and planetary nebulae. They are identified optically as early-type stars, evolved stars, galaxies and so on. In addition, the strength of spectral features in typical silicate complexes is calculated. The results are available through CDS for the astronomical community to further study crystalline silicates.

  7. Phosphorus Features in FT-IR Spectra of Natural Organic Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fourier-Transform Infrared (FT-IR) spectroscopy has been used extensively to characterize natural organic matter (NOM). Absorption bands at 1100-1000 cm-1 in FT-IR spectra of NOM have been frequently assigned to alcoholic and polysaccharide C-O stretching or to vibrations of SiO2-related impurities...

  8. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    NASA Technical Reports Server (NTRS)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  9. A New Star Formation Rate Calibration from Polycyclic Aromatic Hydrocarbon Emission Features and Application to High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Shipley, Heath V.; Papovich, Casey; Rieke, George H.; Brown, Michael J. I.; Moustakas, John

    2016-02-01

    We calibrate the integrated luminosity from the polycyclic aromatic hydrocarbon (PAH) features at 6.2, 7.7, and 11.3 μm in galaxies as a measure of the star formation rate (SFR). These features are strong (containing as much as 5%-10% of the total infrared luminosity) and suffer minimal extinction. Our calibration uses Spitzer Infrared Spectrograph (IRS) measurements of 105 galaxies at 0 < z < 0.4, infrared (IR) luminosities of 109-1012 {L}⊙ , combined with other well-calibrated SFR indicators. The PAH luminosity correlates linearly with the SFR as measured by the extinction-corrected Hα luminosity over the range of luminosities in our calibration sample. The scatter is 0.14 dex, comparable to that between SFRs derived from the Paα and extinction-corrected Hα emission lines, implying that the PAH features may be as accurate an SFR indicator as hydrogen recombination lines. The PAH SFR relation depends on gas-phase metallicity, for which we supply an empirical correction for galaxies with 0.2 < Z ≲ 0.7 {Z}⊙ . We present a case study in advance of the James Webb Space Telescope (JWST), which will be capable of measuring SFRs from PAHs in distant galaxies at the peak of the SFR density in the universe (z ˜ 2) with SFRs as low as ˜10 {M}⊙ {{yr}}-1. We use Spitzer/IRS observations of the PAH features and Paα emission plus Hα measurements in lensed star-forming galaxies at 1 < z < 3 to demonstrate the ability of the PAHs to derive accurate SFRs. We also demonstrate that because the PAH features dominate the mid-IR fluxes, broadband mid-IR photometric measurements from JWST will both trace the SFR and provide a way to exclude galaxies dominated by an active galactic nucleus.

  10. Investigating the Enigmatic Ultraviolet 2175 A Extinction Feature and Correlation with Infrared Aromatic/PAH emission in M101

    NASA Astrophysics Data System (ADS)

    Gordon, Karl

    2011-10-01

    The 2175 Angstrom ultraviolet dust extinction feature has been known for more than 45 years, but the source of the extinction has yet to be positively identified. One of the leading contenders in dust grain models is small aromatic/PAHs grains. Through IR observations of HII regions in the spiral galaxy M101, PAHs have measured emission strengths that dramatically weaken at large radii and ionizations. The parameter space of these HII regions in terms of metallicity, ionization, and PAH emission strengths is the largest of any known galaxy. To explore the connection between the 2175 A extinction feature and IR aromatic/PAH emission strengths, we propose to observe the six regions in M101 {5 HII and the nucleus} using near-UV and far-UV gratings {G230L/G140L} with the MAMA detectors on STIS. The STIS instrument provides the opportunity to obtain high S/N UV spectra integrated over the same large spatial scales of the previous IR observations { 78 square arcsec} in minimal time {2 orbits per region}. From the measured spectra, we will employ stellar evolutionary synthesis and radiative transfer models to extract the intrinsic strength of the 2175 A extinction feature. The 2175 A features strengths will be compared with the published emission strengths of five different aromatic/PAH features in all six regions. If the 2175 A feature is associated with aromatic/PAHs grains, we will see a strong correlation. The lack of a strong correlation will imply the need for significant modification of leading dust models.

  11. Understanding the variability of nightside temperatures, NO UV and O2 IR nightglow emissions in the Venus upper atmosphere

    NASA Astrophysics Data System (ADS)

    Brecht, A. S.; Bougher, S. W.; Gérard, J.-C.; Parkinson, C. D.; Rafkin, S.; Foster, B.

    2011-08-01

    Venus Express (VEX) has been monitoring key nightglow emissions and thermal features (O2 IR nightglow, NO UV nightglow, and nightside temperatures) which contribute to a comprehensive understanding of the global dynamics and circulation patterns above ˜90 km. The nightglow emissions serve as effective tracers of Venus' middle and upper atmosphere global wind system due to their variable peak brightness and horizontal distributions. A statistical map has been created utilizing O2 IR nightglow VEX observations, and a statistical map for NO UV is being developed. A nightside warm layer near 100 km has been observed by VEX and ground-based observations. The National Center for Atmospheric Research (NCAR) Venus Thermospheric General Circulation Model (VTGCM) has been updated and revised in order to address these key VEX observations and to provide diagnostic interpretation. The VTGCM is first used to capture the statistically averaged mean state of these three key observations. This correspondence implies a weak retrograde superrotating zonal flow (RSZ) from ˜80 km to 110 km and above 110 km the emergence of modest RSZ winds approaching 60 m s-1 above ˜130 km. Subsequently, VTGCM sensitivity tests are performed using two tuneable parameters (the nightside eddy diffusion coefficient and the wave drag term) to examine corresponding variability within the VTGCM. These tests identified a possible mechanism for the observed noncorrelation of the O2 and NO emissions. The dynamical explanation requires the nightglow layers to be at least ˜15 km apart and the retrograde zonal wind to increase dramatically over 110 to 130 km.

  12. Measuring the IR emission from the host galaxy of PTF11qcj

    NASA Astrophysics Data System (ADS)

    Corsi, Alessandra; Kasliwal, Mansi

    2013-10-01

    In 2011, the Palomar Transient Factory discovered a radio-loud Ic supernova (SN) with broad spectral features, PTF11qcj. As a rare example of a SN with properties in between ordinary Ib/c SNe and the extreme gamma-ray burst (GRB) - associated SN1998bw, PTF11qcj represents an important step forward toward the ambitious goal of unraveling one of the biggest open questions pertaining the death of massive stars: why do some stars die as ordinary SN, while some other die more dramatically launching relativistic jets (GRBs)? A remarkable feature of PTF11qcj is that its radio light curves show abrupt flux variations and a late-time re-brightening, that challenges the simplest models of SN interaction with a smooth circumstellar material (CSM), and suggest the presence of a complex environment. This last hypothesis agrees with the discovery of a precursor eruption from the PTF11qcj progenitor, about 2.5yr before the SN. IR observations are a powerful tool to reveal the CSM properties. With Spitzer we detected an IR counterpart to PTF11qcj, whose flux is above the extrapolation of the optical SN light. This IR excess is likely related to pre-existing dust in the CSM. To confirm this result, here we ask for a new Spitzer image of the PTF11qcj field, so we can remove the galaxy contamination.

  13. Dual emission from an ortho-metalated Ir(III) complex

    SciTech Connect

    King, K.A.; Watts, R.J.

    1987-03-04

    Several complexes of Ir(III) containing both the bidentate N-coordinating ligand 2,2'-bipyridine (bpy) and the N,C-orthometalating ligand 2-phenylpyridine (ppy) have recently been prepared; these include the two species Ir(ppy)/sub 2/(bpy)/sup +/ (A) and Ir(ppy)(bpy)/sub 2//sup 2 +/ (B). The former was prepared from the dichloro-bridged dimer, (Ir(ppy)/sub 2/Cl)/sub 2/, by modification of the procedure of Nonoyama while the latter was obtained by reaction of cis-(Ir(bpy)/sub 2/(OSO/sub 2/CF/sub 3/)/sub 2/) (CF/sub 3/SO/sub 3/) with ppy in refluxing 2-ethoxyethanol. The purity of the complexes was monitored with thin-layer chromatography using silica gel plates and 1:1:1 acetone/methanol/water mixtures for elution. Samples of the complexes used in these studies showed only one component in thin-layer chromatography. While only one isomer of B is possible, there are three possible isomers of A. Data from /sup 1/H and /sup 13/C NMR experiments indicate that A has C/sub 2/ symmetry. The NMR spectrum indicates, as does thin-layer chromatography, that only a single isomer of A is present with no detectable impurities due to a mixture of isomers. While X-ray structural data for A are lacking, structural data for related complexes suggest that A is the isomer with cisoid metal-carbon bonds and bpy metal-nitrogen bonds transoid to the metal-carbon bonds and bpy metal-nitrogen bonds transoid to the metal-carbon bonds. These species were prepared in order to probe further the effects of metal-carbon bonding on energy-transfer processes and electron-transfer reactions of metal complexes. Emission spectroscopic studies reported here reveal unusual and distinct intramolecular energy-transfer behavior in these complexes. Whereas dual emission from the former is observed in glasses at 77 K, a single emission is observed in the latter.

  14. Foreground Bias from Parametric Models of Far-IR Dust Emission

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.

    2016-01-01

    We use simple toy models of far-IR dust emission to estimate the accuracy to which the polarization of the cosmic microwave background can be recovered using multi-frequency fits, if the parametric form chosen for the fitted dust model differs from the actual dust emission. Commonly used approximations to the far-IR dust spectrum yield CMB residuals comparable to or larger than the sensitivities expected for the next generation of CMB missions, despite fitting the combined CMB plus foreground emission to precision 0.1 percent or better. The Rayleigh-Jeans approximation to the dust spectrum biases the fitted dust spectral index by (Delta)(Beta)(sub d) = 0.2 and the inflationary B-mode amplitude by (Delta)(r) = 0.03. Fitting the dust to a modified blackbody at a single temperature biases the best-fit CMB by (Delta)(r) greater than 0.003 if the true dust spectrum contains multiple temperature components. A 13-parameter model fitting two temperature components reduces this bias by an order of magnitude if the true dust spectrum is in fact a simple superposition of emission at different temperatures, but fails at the level (Delta)(r) = 0.006 for dust whose spectral index varies with frequency. Restricting the observing frequencies to a narrow region near the foreground minimum reduces these biases for some dust spectra but can increase the bias for others. Data at THz frequencies surrounding the peak of the dust emission can mitigate these biases while providing a direct determination of the dust temperature profile.

  15. Foreground Bias from Parametric Models of Far-IR Dust Emission

    NASA Astrophysics Data System (ADS)

    Kogut, A.; Fixsen, D. J.

    2016-08-01

    We use simple toy models of far-IR dust emission to estimate the accuracy to which the polarization of the cosmic microwave background can be recovered using multi-frequency fits, if the parametric form chosen for the fitted dust model differs from the actual dust emission. Commonly used approximations to the far-IR dust spectrum yield CMB residuals comparable to or larger than the sensitivities expected for the next generation of CMB missions, despite fitting the combined CMB + foreground emission to precision 0.1% or better. The Rayleigh–Jeans approximation to the dust spectrum biases the fitted dust spectral index by {{Δ }}{β }d=0.2 and the inflationary B-mode amplitude by {{Δ }}r=0.03. Fitting the dust to a modified blackbody at a single temperature biases the best-fit CMB by {{Δ }}r\\gt 0.003 if the true dust spectrum contains multiple temperature components. A 13-parameter model fitting two temperature components reduces this bias by an order of magnitude if the true dust spectrum is in fact a simple superposition of emission at different temperatures, but fails at the level {{Δ }}r=0.006 for dust whose spectral index varies with frequency. Restricting the observing frequencies to a narrow region near the foreground minimum reduces these biases for some dust spectra but can increase the bias for others. Data at THz frequencies surrounding the peak of the dust emission can mitigate these biases while providing a direct determination of the dust temperature profile.

  16. Identifying fatigue crack geometric features from acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Bao, Jingjing; Poddar, Banibrata; Giurgiutiu, Victor

    2016-04-01

    Acoustic emission (AE) caused by the growth of fatigue crack were well studied by researchers. Conventional approaches predominantly are based on statistical analysis. In this study we focus on identifying geometric features of the crack from the AE signals using physics based approach. One of the main challenges of this approach is to develop a physics of materials based understanding of the generation and propagation of acoustic emissions due to the growth of a fatigue crack. As the geometry changes due to the crack growth, so does the local vibration modes around the crack. Our aim is to understand these changing local vibration modes and find possible relation between the AE signal features and the geometric features of the crack. Finite element (FE) analysis was used to model AE events due to fatigue crack growth. This was done using dipole excitation at the crack tips. Harmonic analysis was also performed on these FE models to understand the local vibration modes. Experimental study was carried out to verify these results. Piezoelectric wafer active sensors (PWAS) were used to excite cracked specimen and the local vibration modes were captured using laser Doppler vibrometry. The preliminary results show that the AE signals do carry the information related to the crack geometry.

  17. Mars atmosphere studies with the SPICAM IR emission phase function observations

    NASA Astrophysics Data System (ADS)

    Trokhimovskiy, Alexander; Fedorova, Anna; Montmessin, Franck; Korablev, Oleg; Bertaux, Jean-Loup

    Emission Phase Function (EPF) observations is a powerful tool for characterization of atmosphere and surface. EPF sequence provides the extensive coverage of scattering angles above the targeted surface location which allow to separate the surface and aerosol scattering, study a vertical distribution of minor species and aerosol properties. SPICAM IR instrument on Mars Express mission provides continuous atmospheric observations in near IR (1-1.7 mu) in nadir and limb starting from 2004. For the first years of SPICAM operation only a very limited number of EPFs was performed. But from the mid 2013 (Ls=225, MY31) SPICAM EPF observations become rather regular. Based on the multiple-scattering radiative transfer model SHDOM, we analyze equivalent depths of carbon dioxide (1,43 mu) and water vapour (1,38 mu) absorption bands and their dependence on airmass during observation sequence to get aerosol optical depths and properties. The derived seasonal dust opacities from near IR can be used to retrieve the size distribution from comparison with simultaneous results of other instruments in different spectral ranges. Moreover, the EPF observations of water vapour band allow to access poorly known H2O vertical distribution for different season and locations.

  18. A High Spatial Resolution Study of Far IR Emission of Galaxies

    NASA Technical Reports Server (NTRS)

    Caldwell, Barrie A.

    2000-01-01

    This grant funded observations, data reduction, professional publications and travel for scientific efforts on the Kuiper Airborne Observatory. The research project was successfully completed. New insights into the distribution of far infrared emission across star forming regions was obtained, and student training was achieved. The efforts contributed towards new observing strategies, such as calibration and intercomparison of data from different infrared astronomical observing platforms, that will impact future NASA missions, such as SOFIA. The results of the effort have been presented in several papers in the refereed literature, including: "The Structure of IR Luminous Galaxies at 100 Microns". " Far Infrared Thermal Emission from the Inner Cooling Flow Region of NGC1275". "Distribution of Light in the "Dusty Hand" Galaxy NGC2146".

  19. IR detector for hydrocarbons concentration measurement in emissions during petroleum and oil products storage and transportation

    NASA Astrophysics Data System (ADS)

    Vasilyev, Andrey O.; Shemanin, Valeriy G.; Chartiy, Pavel V.

    2011-10-01

    A double beam IR detector is developed for light hydrocarbons concentration measurement in emissions from storage vessels during oil and oil products storage and transportation. It was concluded on the basis of chromatogram that main crude losses from evaporation are the share of hydrocarbons light ends from methane to decane. Detector operation is based on spectral transparency measurement in the infrared spectra absorption range. Operational wavelength of infrared radiation makes 3.4 μm. measurement principle is based on concentration calculation proceed from molecule absorption cross-section, optical path length between light emitted diode and reference and signal photodiodes as well as from value of measured signal transmitted through gaging volume. The novel of offering device is an actual paraffin hydrocarbons concentration measurement in emissions and continuous and automatic environment quality control.

  20. Error analysis for retrieval of Venus' IR surface emissivity from VIRTIS/VEX measurements

    NASA Astrophysics Data System (ADS)

    Kappel, David; Haus, Rainer; Arnold, Gabriele

    2015-08-01

    Venus' surface emissivity data in the infrared can serve to explore the planet's geology. The only global data with high spectral, spatial, and temporal resolution and coverage at present is supplied by nightside emission measurements acquired by the Visible and InfraRed Thermal Imaging Spectrometer VIRTIS-M-IR (1.0 - 5.1 μm) aboard ESA's Venus Express. A radiative transfer simulation and a retrieval algorithm can be used to determine surface emissivity in the nightside spectral transparency windows located at 1.02, 1.10, and 1.18 μm. To obtain satisfactory fits to measured spectra, the retrieval pipeline also determines auxiliary parameters describing cloud properties from a certain spectral range. But spectral information content is limited, and emissivity is difficult to retrieve due to strong interferences from other parameters. Based on a selection of representative synthetic VIRTIS-M-IR spectra in the range 1.0 - 2.3 μm, this paper investigates emissivity retrieval errors that can be caused by interferences of atmospheric and surface parameters, by measurement noise, and by a priori data, and which retrieval pipeline leads to minimal errors. Retrieval of emissivity from a single spectrum is shown to fail due to extremely large errors, although the fits to the reference spectra are very good. Neglecting geologic activity, it is suggested to apply a multi-spectrum retrieval technique to retrieve emissivity relative to an initial value as a parameter that is common to several measured spectra that cover the same surface bin. Retrieved emissivity maps of targets with limited extension (a few thousand km) are then additively renormalized to remove spatially large scale deviations from the true emissivity map that are due to spatially slowly varying interfering parameters. Corresponding multi-spectrum retrieval errors are estimated by a statistical scaling of the single-spectrum retrieval errors and are listed for 25 measurement repetitions. For the best of the

  1. Panchromatic Light Capture and Efficient Excitation Transfer Leading to Near-IR Emission of BODIPY Oligomers.

    PubMed

    Sharma, Ritambhara; Gobeze, Habtom B; D'Souza, Francis; Ravikanth, Mangalampalli

    2016-08-18

    All-BODIPY-based (BODIPY=boron-dipyrromethene) donor-acceptor systems capable of wide-band absorbance leading to efficient energy transfer in the near-IR region are reported. A covalently linked 3-pyrrolyl BODIPY-BODIPY dimer building block bearing an ethynyl group at the meso-aryl position is synthesized and coupled with three different monomeric BODIPY/pyrrolyl BODIPY building blocks with a bromo/iodo group under Pd(0) coupling conditions to obtain three covalently linked 3-pyrrolyl-BODIPY-based donor-acceptor oligomers in 19-29 % yield. The oligomers are characterized in detail by 1D and 2D NMR spectroscopy, high-resolution mass spectrometry, and optical spectroscopy. Due to the presence of different functionalized BODIPY derivatives in the oligomers, panchromatic light capture (300-725 nm) is witnessed. Fluorescence studies reveal singlet-singlet energy transfer from BODIPY monomer to BODIPY dimer leading to emission in the 700-800 nm range. Theoretical modeling according to the Förster mechanism predicts ultrafast energy transfer due to good spectral overlap of the donor and acceptor entities. Femtosecond transient absorption studies confirm this to be the case and thus show the relevance of the currently developed all-BODIPY-based energy-funneling supramolecular sytems with near-IR emission to solar-energy harvesting applications. PMID:27168532

  2. SiO and H2O maser emission in OH/IR objects and late-type variable stars

    NASA Technical Reports Server (NTRS)

    Nyman, L.-A.; Johansson, L. E. B.; Booth, R. S.

    1986-01-01

    A four-year search for 86-GHz SiO and H2O maser emission towards about 20 unidentified OH/IR objects and about 35 optically identified variable stars has yielded information on the temporal variations of many of these sources. The SiO maser emission is noted to behave differently in OH/IR objects as compared with Mira variables. An attempt is made to explain the appearance of strong masers in both vibrational states solely at the 43 GHz transition, under the assumption that an intrinsically weak pump mechanism generates weak (v=1, J=2-1) emission.

  3. Particular features of the application of IR reflection spectroscopy methods in studies in archeology and paleontology

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.; Khlopachev, G. A.

    2013-06-01

    We have considered an optical model of a porous rough surface with optical properties of objects (bone, flint) that are typical of archeology and paleontology. We have formulated an approach that makes it possible to perform mathematical processing of the IR reflection spectra of objects of this kind using standard algorithms and determine criteria that ensure obtaining reliable information on objects with a rough surface in the course of interpretation of frequencies in their IR reflection spectra. The potential of the approach has been demonstrated using as an example an investigation by the IR Fourier-transform reflection spectroscopy of mineralization processes of mammoth tusks from two paleolithic sites (14000 and 16000 BCE) located by the town of Yudinovo, Bryansk oblast, Russia.

  4. THEMIS-IR Emissivity Spectrum of a Large "Dark Streak" near Olympus Mons

    NASA Astrophysics Data System (ADS)

    Brumby, S. P.

    2004-03-01

    "Dark streaks" are unusual transient surface features found on Mars. We have obtained an infrared emissivity spectrum of a large dark streak on the north western edge of Olympus Mons, using imagery from the THEMIS instrument on the Mars Odyssey 2001 spacecraft.

  5. Physiological and genomic characterization of Arcobacter anaerophilus IR-1 reveals new metabolic features in Epsilonproteobacteria

    PubMed Central

    Roalkvam, Irene; Drønen, Karine; Stokke, Runar; Daae, Frida L.; Dahle, Håkon; Steen, Ida H.

    2015-01-01

    In this study we characterized and sequenced the genome of Arcobacter anaerophilus strain IR-1 isolated from enrichment cultures used in nitrate-amended corrosion experiments. A. anaerophilus IR-1 could grow lithoautotrophically on hydrogen and hydrogen sulfide and lithoheterothrophically on thiosulfate and elemental sulfur. In addition, the strain grew organoheterotrophically on yeast extract, peptone, and various organic acids. We show for the first time that Arcobacter could grow on the complex organic substrate tryptone and oxidize acetate with elemental sulfur as electron acceptor. Electron acceptors utilized by most Epsilonproteobacteria, such as oxygen, nitrate, and sulfur, were also used by A. anaerophilus IR-1. Strain IR-1 was also uniquely able to use iron citrate as electron acceptor. Comparative genomics of the Arcobacter strains A. butzleri RM4018, A. nitrofigilis CI and A. anaerophilus IR-1 revealed that the free-living strains had a wider metabolic range and more genes in common compared to the pathogen strain. The presence of genes for NAD+-reducing hydrogenase (hox) and dissimilatory iron reduction (fre) were unique for A. anaerophilus IR-1 among Epsilonproteobacteria. Finally, the new strain had an incomplete denitrification pathway where the end product was nitrite, which is different from other Arcobacter strains where the end product is ammonia. Altogether, our study shows that traditional characterization in combination with a modern genomics approach can expand our knowledge on free-living Arcobacter, and that this complementary approach could also provide invaluable knowledge about the physiology and metabolic pathways in other Epsilonproteobacteria from various environments. PMID:26441916

  6. Diogenite-like Features in the Spitzer IRS (5-35 micrometers) Spectrum of 956 ELISA

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2009-01-01

    We report preliminary results from the Spitzer Infrared Spectrograph (IRS) observations of the V-type asteroid 956 Elisa. Elisa was observed as part of a campaign to measure the 5.2-38 micron spectra of small basaltic asteroids with the Spitzer IRS. Targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vesroids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan.

  7. The discovery of a new infrared emission feature at 1905 wavenumbers (5.25 microns) in the spectrum of BD + 30 deg 3639 and its relation to the polycyclic aromatic hydrocarbon model

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Bregman, J. D.; Sandford, S. A.; Tielens, A. G. G. M.; Witteborn, F. C.

    1989-01-01

    A new IR emission feature at 1905/cm (5.25 microns) has been discovered in the spectrum of BD + 30 deg 3639. This feature joins the family of well-known IR emission features at 3040, 2940, 1750, 1610, '1310', 1160, and 890/cm. The origin of this new feature is discussed and it is assigned to an overtone or combination band involving C-H bending modes of polycyclic aromatic hydrocarbons (PAHs). Laboratory work suggests that spectral studies of the 2000-1650/cm region may be very useful in elucidating the molecular structure of interstellar PAHs. The new feature, in conjunction with other recently discovered spectral structures, suggests that the narrow IR emission features originate in PAH molecules rather than large carbon grains.

  8. Searching for gas emission lines in Spitzer Infrared Spectrograph (IRS) spectra of young stars in Taurus

    NASA Astrophysics Data System (ADS)

    Baldovin-Saavedra, C.; Audard, M.; Güdel, M.; Rebull, L. M.; Padgett, D. L.; Skinner, S. L.; Carmona, A.; Glauser, A. M.; Fajardo-Acosta, S. B.

    2011-04-01

    Context. Our knowledge of circumstellar disks has traditionally been based on studies of dust. However, gas dominates the disk mass and its study is key to our understanding of accretion, outflows, and ultimately planet formation. The Spitzer Space Telescope provides access to gas emission lines in the mid-infrared, providing crucial new diagnostics of the physical conditions in accretion disks and outflows. Aims: We seek to identify gas emission lines in mid-infrared spectra of 64 pre-main-sequence stars in Taurus. Using line luminosities and other known star-disk-outflow parameters, we aim to identify correlations that will help to constrain gas heating, excitation mechanisms, and the line formation. Methods: We have based our study on Spitzer observations using the Infrared Spectrograph (IRS), mainly with the high-resolution modules. Line luminosities (or 3σ upper limits) have been obtained by fitting Gaussian profiles to the lines. We have further searched for correlations between the line luminosities and different parameters related to the star-disk system. Results: We have detected H2 (17.03, 28.22 μm) emission in 6 objects, [Ne II] (12.81 μm) emission in 18 objects, and [Fe II] (17.93, 25.99 μm) emission in 7 objects. [Ne II] detections are found primarily in Class II objects. The luminosity of the [Ne II] line (LNeII) is in general higher for objects known to drive jets than for those without known jets, but the two groups are not statistically distinguishable. LNeII is correlated with X-ray luminosity, but for Class II objects only. LNeII is also correlated with disk mass and accretion rate when the sample is divided into high and low accretors. Furthermore, we find correlations of LNeII with mid-IR continuum luminosity and with luminosity of the [O I] (6300 Å) line, the latter being an outflow tracer. L [FeII] correlates with Ṁacc. No correlations were found between LH2 and several tested parameters. Conclusions: Our study reveals a general trend

  9. Solid State FT-IR and (31)P NMR Spectral Features of Phosphate Compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid-state spectroscopic techniques, including Fourier transform infrared (FT-IR) and solid-state 31P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopies, are powerful tools for evaluating metal speciation and transformation mechanisms of P compounds in the environment. Studie...

  10. An alternative mechanism for production of emission features in some infrared objects

    NASA Technical Reports Server (NTRS)

    Apruzese, J. P.

    1975-01-01

    Two dust-envelope models of the M supergiant VX Sgr, which exhibits a prominent emission feature at 10 microns, are presented. The models indicate that, for certain envelope sizes, the presence of the observed emission feature does not necessarily indicate that the emitting grains possess a similar feature in their emissivity profile. The mechanism which may in some cases be producing the observed emission feature is discussed.

  11. Discussing the processes constraining the Jovian synchrotron radio emission's features

    NASA Astrophysics Data System (ADS)

    Santos-Costa, Daniel; Bolton, Scott J.

    2008-03-01

    Our recent analysis and understanding of the Jovian synchrotron radio emission with a radiation-belt model is presented. In this work, the electron population is determined by solving the Fokker-Planck diffusion equation and considering different physical processes. The results of the modeling are first compared to in situ particle data, brightness distributions, radio spectrum, and beaming curves to verify the simulated particle distributions. The dynamics of high-energy electrons in Jupiter's inner magnetosphere and their related radio emission are then examined. The results demonstrate that the Jovian moons set the extension and intensity of the synchrotron emission's brightness distribution along the magnetic equator. Simulations show that moons and dust both control the transport toward the planet by significantly reducing the abundance of particles constrained to populate, near the equator and inside 1.8 Jovian radii, the innermost region of the magnetosphere. Due to interactions with dust and synchrotron mechanism, radiation-belt electrons are moved along field lines, between Metis (1.79 Jovian radii) and Amalthea (2.54 Jovian radii), toward high latitudes. The quantity of particles transported away from the equator is sufficient to produce measurable secondary radio emissions. Among all the phenomena acting in the inner magnetosphere, the moons (Amalthea and Thebe) are the primary moderator for the radiation's intensity at high latitudes. Moon losses also affect the characteristics of the total radio flux with longitude. The sweeping effect amplifies the 10-h modulation of the beaming curve's amplitude while energy resonances occurring near Amalthea and Thebe belong to phenomena adjusting it to the right level. Interactions with dust do not significantly constrain radio spectrum features. Resonances near Amalthea and Thebe are responsible for the Jovian radio spectrum's particular slope.

  12. Parks Medical Flo-Lab 2100-SX may interpret IR emissions from CenTrak RTLS as user commands.

    PubMed

    2010-09-01

    The Parks Medical Flo-Lab 2100-SX vascular laboratory system may react to infrared (IR) emissions from the CenTrak real-time locating system (RTLS) as if they were remote-control commands, causing the Flo-Lab to operate without user action. Parks Medical plans to offer a redesigned remote control to eliminate susceptibility of its product to IR interference. In addition, CenTrak has designed an assessment tool that will help identify devices that may be vulnerable to IR interference from its RTLS. PMID:21305940

  13. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  14. Comparison of the emission of IR decoy flare under controlled laboratory and on-field conditions

    NASA Astrophysics Data System (ADS)

    Sánchez Oliveros, Carmen; Martín Aragón, Laura; Macias Jareño, Raquel

    2009-09-01

    The knowledge of the optical properties of decoy flares such as peak intensity, rise time and function time as well as the trajectory after being ejected are crucial to ensure the decoy effectiveness and the protection of the aircraft. The Countermeasures Laboratory of the "Institute of technology Marañosa" (ITM) has performed a measurement campaign during the spring of 2008 to determine the IR decoy signature in both wind tunnel test and in-flight conditions. Both tests are complementary because of the different test conditions that influence the behavior of the flare burn profile. Deviations were found between two sets of data due to high wind-stream and high altitudes. Comparison of both sets of results allows extrapolating the measurements in stationary conditions to that of a real scenario. Besides, these comparisons are useful to validate IR flare emission simulation software. The radiant intensity and burn time was calculated trough a sequence of calibrated images. The effect of the influent parameter on the emitted intensity were also Identified and measured. Analysis of in-flight measurements took into account the altitude, aerodynamic conditions, angle aspect and of course the wind speed. Sky radiance and atmospheric transmittance were also calculated. The radiation measurements of IR flares on flight and wind tunnel test are performed with a MWIR camera equipped with a 350mm focal length lens. Besides the camera a Circular Variable Filter (CVF) spectrorradiometer was used for the tunnel test. For the field trial an automatic tracking system of targets were used in order to determine the flare trajectory.

  15. The IR emission spectrum of N2 excited under auroral conditions.

    NASA Technical Reports Server (NTRS)

    Cartwright, D. C.; Williams, W.; Trajmar, S.

    1972-01-01

    Recently determined experimental and theoretical cross sections for electron impact excitation of six triplet states of N2 (A, B, W, C, E, D) have been utilized to predict the absolute IR volume emission rates from N2 under nighttime auroral conditions. Secondary electron fluxes appropriate to an IBC II normal aurora were used in the calculations. The cascade contributions coupling the various electronic states were included as well as the most important quenching processes. The results indicate that the B yields reversibly A and W yields reversibly B cascade processes, which are important in the population of the A, B, and W states, produce appreciable radiation in the 1- to 5-micron wavelength region.

  16. The Spectacular Radio-near-IR-X-Ray Jet of 3C 111: The X-Ray Emission Mechanism and Jet Kinematics

    NASA Astrophysics Data System (ADS)

    Clautice, Devon; Perlman, Eric S.; Georganopoulos, Markos; Lister, Matthew L.; Tombesi, Francesco; Cara, Mihai; Marshall, Herman L.; Hogan, Brandon; Kazanas, Demos

    2016-08-01

    Relativistic jets are the most energetic manifestation of the active galactic nucleus (AGN) phenomenon. AGN jets are observed from the radio through gamma-rays and carry copious amounts of matter and energy from the sub-parsec central regions out to the kiloparsec and often megaparsec scale galaxy and cluster environs. While most spatially resolved jets are seen in the radio, an increasing number have been discovered to emit in the optical/near-IR and/or X-ray bands. Here we discuss a spectacular example of this class, the 3C 111 jet, housed in one of the nearest, double-lobed FR II radio galaxies known. We discuss new, deep Chandra and Hubble Space Telescope (HST) observations that reveal both near-IR and X-ray emission from several components of the 3C 111 jet, as well as both the northern and southern hotspots. Important differences are seen between the morphologies in the radio, X-ray, and near-IR bands. The long (over 100 kpc on each side), straight nature of this jet makes it an excellent prototype for future, deep observations, as it is one of the longest such features seen in the radio, near-IR/optical, and X-ray bands. Several independent lines of evidence, including the X-ray and broadband spectral shape as well as the implied velocity of the approaching hotspot, lead us to strongly disfavor the EC/CMB model and instead favor a two-component synchrotron model to explain the observed X-ray emission for several jet components. Future observations with NuSTAR, HST, and Chandra will allow us to further constrain the emission mechanisms.

  17. THE SPATIAL EXTENT OF (U)LIRGS IN THE MID-INFRARED. II. FEATURE EMISSION

    SciTech Connect

    DIaz-Santos, T.; Charmandaris, V.; Armus, L.; Stierwalt, S.; Haan, S.; Howell, J. H.; Petric, A. O.; Surace, J. A.; Mazzarella, J. M.; Veilleux, S.; Murphy, E. J.; Appleton, P.; Evans, A. S.; Sanders, D. B.

    2011-11-01

    We present results from the second part of our analysis of the extended mid-infrared (MIR) emission of the GOALS sample based on 5-14 {mu}m low-resolution spectra obtained with the Infrared Spectrograph on Spitzer. We calculate the fraction of extended emission (FEE) as a function of wavelength for all galaxies in the sample, FEE{sub {lambda}}, defined as the fraction of the emission that originates outside of the unresolved central component of a source, and spatially separate the MIR spectrum of a galaxy into its nuclear and extended components. We find that the [Ne II]12.81 {mu}m emission line is as compact as the hot dust MIR continuum, while the polycyclic aromatic hydrocarbon (PAH) emission is more extended. In addition, the 6.2 and 7.7 {mu}m PAH emission is more compact than that of the 11.3 {mu}m PAH, which is consistent with the formers being enhanced in a more ionized medium. The presence of an active galactic nucleus (AGN) or a powerful nuclear starburst increases the compactness and the luminosity surface density of the hot dust MIR continuum, but has a negligible effect on the spatial extent of the PAH emission on kpc-scales. Furthermore, it appears that both processes, AGN and/or nuclear starburst, are indistinguishable in terms of how they modify the integrated PAH-to-continuum ratio of the FEE in (ultra)luminous infrared galaxies ((U)LIRGs). Globally, the 5-14 {mu}m spectra of the extended emission component are homogeneous for all galaxies in the GOALS sample. This suggests that, independently of the spatial distribution of the various MIR features, the physical properties of star formation occurring at distances farther than 1.5 kpc from the nuclei of (U)LIRGs are very similar, resembling local star-forming galaxies with L{sub IR} < 10{sup 11} L{sub sun}, as well as star-formation-dominated ULIRGs at z {approx} 2. In contrast, the MIR spectra of the nuclear component of local ULIRGs and LIRGs are very diverse. These results imply that the observed

  18. FT-IR measurements of emissivity and temperature during high flux solar processing

    SciTech Connect

    Markham, J.R.; Smith, W.W.; Haigis, J.R.

    1996-02-01

    The experimental capability to generate and utilize concentrated solar flux has been demonstrated at a number of facilities in the US. To advance this research area, the National Renewable Energy Laboratory (NREL) has designed and constructed a versatile High Flux Solar Furnace (HFSF). Research is ongoing in areas of material processing, high temperature and UV enhanced detoxification, chemical synthesis, high flux optics, solar pumped lasers, and high heating rate processes. Surface modifications via concentrated solar flux, however, are currently performed without the means to accurately monitor the temperature of the surface of interest. Thermoelectric and pyrometric devices are not accurate due to limitations in surface contact and knowledge of surface emissivity, respectively, as well as interference contributed by the solar flux. In this article, the authors present a noncontact optical technique that simultaneously measures the directional spectral emissivity, and temperature of the surface during solar processing. A Fourier Transform Infrared (FT-IR) spectrometer is coupled to a processing chamber at NREL`s HFSF with a fiber-optic radiation transfer assembly. The system measures directional emission and hemispherical-directional reflectance in a spectral region that lacks contribution from solar flux. From these radiative property measurements during solar processing, the spectral emittance and temperature at the measurement point can be obtained. The methodology, validation measurements, and in-situ measurements during solar processing of materials are presented. Knowledge of surface temperature during solar processing is an important parameter for process control. Based on validation measurements for spectral emittance, the temperature error associated with the novel instrument is less than {+-} 5% for surfaces of mid-range emittance.

  19. Highly selective and responsive visible to near-IR ytterbium emissive probe for monitoring mercury(II).

    PubMed

    Zhang, Tao; Chan, Chi-Fai; Lan, Rongfeng; Wong, Wai-Kwok; Wong, Ka-Leung

    2014-01-20

    A new lanthanide probe based on the fluorescence resonance energy transfer (FRET) process with the combination of ytterbium porphyrinate complex and a rhodamine B derivative unit was synthesized to detect the Hg(2+) ion with responsive emission in the visible and near-IR region with a detection limit of 10 μM. PMID:24425677

  20. SPATIALLY RESOLVED POLYCYCLIC AROMATIC HYDROCARBON EMISSION FEATURES IN NEARBY, LOW METALLICITY, STAR-FORMING GALAXIES

    SciTech Connect

    Haynes, Korey; Cannon, John M.; Skillman, Evan D.; Gehrz, Robert; Jackson, Dale C. E-mail: khaynes5@gmu.ed E-mail: gehrz@astro.umn.ed

    2010-11-20

    Low-resolution, mid-infrared Spitzer/IRS spectral maps are presented for three nearby, low-metallicity dwarf galaxies (NGC 55, NGC 3109, and IC 5152) for the purpose of examining the spatial distribution and variation of polycyclic aromatic hydrocarbon (PAH) emission. The sample straddles a metallicity of 12 + log(O/H) {approx} 8, a transition point below which PAH intensity empirically drops and the character of the interstellar medium changes. We derive quantitative radiances of PAH features and atomic lines on both global and spatially resolved scales. The Spitzer spectra, combined with extensive ancillary data from the UV through the mid-infrared, allow us to examine changes in the physical environments and in PAH feature radiances down to a physical scale of {approx}50 pc. We discuss correlations between various PAH emission feature and atomic line radiances. The (6.2 {mu}m)/(11.3 {mu}m), (7.7 {mu}m)/(11.3 {mu}m), (8.6 {mu}m)/(11.3 {mu}m), (7.7 {mu}m)/(6.2 {mu}m), and (8.6 {mu}m)/(6.2 {mu}m) PAH radiance ratios are found to be independent of position across all three galaxies, although the ratios do vary from galaxy to galaxy. As seen in other galaxies, we find no variation in the grain size distribution as a function of local radiation field strength. Absolute PAH feature intensities as measured by a ratio of PAH/(24 {mu}m) radiances are seen to vary both positionally within a given galaxy and from one galaxy to another when integrated over the full observed extent of each system. We examine direct comparisons of CC mode PAH ratios (7.7 {mu}m)/(6.2 {mu}m) and (8.6 {mu}m)/(6.2 {mu}m) to the mixed (CC/CH) mode PAH ratio (7.7 {mu}m)/(11.3 {mu}m). We find little variation in either mode and no difference in trends between modes. While the local conditions change markedly over the observed regions of these galaxies, the properties of PAH emission show a remarkable degree of uniformity.

  1. Complex infrared emission features in the spectrum of beta Lyrae

    NASA Technical Reports Server (NTRS)

    Morgan, T. H.; Potter, A. E.; Kondo, Y.

    1974-01-01

    Spectra of beta Lyrae over the spectral region from 5800 to 11,000 per cm (1.76 to 0.9 micron) at two different phases have been obtained. They show a remarkable emission-absorption complex at 9231 per cm, a highly structured emission at P beta, and several additional broad weak emissions.

  2. Comet Grains: Their IR Emission and Their Relation to ISM Grains

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Comets and the chodritic, porous interplanetary dust particles (CP IDPs) that they shed in their comae are reservoirs of primitive solar nebula materials. The high porosity and fragility of cometary grains and CP IDPs, and anomalously high deuterium contents of highly fragile, pyroxene-rich Cluster IDPs imply these aggregate particles contain significant abundances of grains from the interstellar medium (ISM). IR spectra of comets (3 - 40 micron) reveal the presence of a warm (nearIR) featureless emission modeled by amorphous carbon grains. Broad and narrow resonances near 10 and 20 microns are modeled by warm chondritic (50% Fe and 50% Mg) amorphous silicates and cooler Mg-rich crystalline silicate minerals, respectively. Cometary amorphous silicates resonances are well matched by IR spectra of CP IDPs dominated by GEMS (0.1 micron silicate spherules) that are thought to be the interstellar Fe-bearing amorphous silicates produced in AGB stars. Acid-etched ultramicrotomed CP IDP samples, however, show that both the carbon phase (amorphous and aliphatic) and the Mg-rich amorphous silicate phase in GEMS are not optically absorbing. Rather, it is Fe and FeS nanoparticles embedded in the GEMS that makes the CP IDPs dark. Therefore, CP IDPs suggest significant processing has occurred in the ISM. ISM processing probably includes in He' ion bombardment in supernovae shocks. Laboratory experiments show He+ ion bombardment amorphizes crystalline silicates, increases porosity, and reduces Fe into nanoparticles. Cometary crystalline silicate resonances are well matched by IR spectra of laboratory submicron Mg-rich olivine crystals and pyroxene crystals. Discovery of a Mg-pure olivine crystal in a Cluster IDP with isotopically anomalous oxygen indicates that a small fraction of crystalline silicates may have survived their journey from AGB stars through the ISM to the early solar nebula. The ISM does not have enough crystalline silicates (<5%) , however, to account for the

  3. MATRYOSHKA HOLES: NESTED EMISSION RINGS IN THE TRANSITIONAL DISK OPH IRS 48

    SciTech Connect

    Brown, J. M.; Rosenfeld, K. A.; Andrews, S. M.; Wilner, D. J.; Van Dishoeck, E. F.

    2012-10-20

    The processes that form transition disks-disks with depleted inner regions-are not well understood; possible scenarios include planet formation, grain growth, and photoevaporation. Disks with spatially resolved dust holes are rare, but, in general, even less is known about the gas structure. The disk surrounding the A0 star Oph IRS 48 in the nearby {rho} Ophiuchus region has a 30 AU radius hole previously detected in the 18.7 {mu}m dust continuum and in warm CO in the 5 {mu}m fundamental rovibrational band. We present here Submillimeter Array 880 {mu}m continuum imaging resolving an inner hole. However, the radius of the hole in the millimeter dust is only 13 AU, significantly smaller than measured at other wavelengths. The nesting structure of the disk is counter intuitive, with increasingly large radius rings of emission seen in the millimeter dust (12.9{sup +1.7}{sub -3.4} AU), 5 {mu}m CO (30 AU), and 18.7 {mu}m dust (peaking at 55 AU). We discuss possible explanations for this structure, including self-shadowing that cools the disk surface layers, photodissociation of CO, and photoevaporation. However, understanding this unusual disk within the stringent multi-wavelength spatial constraints will require further observations to search for cold atomic and molecular gas.

  4. Polycyclic Aromatic Hydrocarbon Emission in Spitzer/IRS Maps. I. Catalog and Simple Diagnostics

    NASA Astrophysics Data System (ADS)

    Stock, D. J.; Choi, W. D.-Y.; Moya, L. G. V.; Otaguro, J. N.; Sorkhou, S.; Allamandola, L. J.; Tielens, A. G. G. M.; Peeters, E.

    2016-03-01

    We present a sample of resolved galactic H ii regions and photodissociation regions (PDRs) observed with the Spitzer infrared spectrograph in spectral mapping mode between the wavelengths of 5-15 μm. For each object we have spectral maps at a spatial resolution of ˜4″ in which we have measured all of the mid-infrared emission and absorption features. These include the polycyclic aromatic hydrocarbon (PAH) emission bands, primarily at 6.2, 7.7, 8.6, 11.2, and 12.7 μm, as well as the spectral emission lines of neon and sulfur and the absorption band caused by silicate dust at around 9.8 μm. In this work we describe the data in detail, including the data reduction and measurement strategies, and subsequently present the PAH emission band intensity correlations for each of the objects and the sample as a whole. We find that there are distinct differences between the sources in the sample, with two main groups: the first comprising the H ii regions and the second the reflection nebulae (RNe). Three sources—the reflection nebula NGC 7023, the Horsehead nebula PDR (an interface between the H ii region IC 434 and the Orion B molecular cloud), and M17—resist this categorization, with the Horsehead PDR points mimicking the RNe and the NGC 7023 fluxes displaying a unique bifurcated appearance in our correlation plots. These discrepancies seem to be due to the very low radiation field experienced by the Horsehead PDR and the very clean separation between the PDR environment and a diffuse environment in the NGC 7023 observations.

  5. Mid-IR Properties of an Unbiased AGN Sample of the Local Universe. 1; Emission-Line Diagnostics

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Melendez, M.; Muhotzky, R. F.; Kraemer, S.; Engle, K.; Malumuth. E.; Tueller, J.; Markwardt, C.; Berghea, C. T.; Dudik, R. P.; Winter, L. M.; Armus, L.

    2010-01-01

    \\Ve compare mid-IR emission-lines properties, from high-resolution Spitzer IRS spectra of a statistically-complete hard X-ray (14-195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 microns, [Ne II] 12.81 microns, [Ne III] 15.56 microns and [Ne V] 14.32 microns, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations, although six newly discovered BAT AGNs are shown to be under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT luminosities suggests that the emission lines primarily arise in gas ionized by the AGN. We also compared the mid-IR emission-lines in the BAT AGNs with those from published studies of star-forming galaxies and LINERs. We found that the BAT AGN fall into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] quantities. From this we found that sources that have been previously classified in the mid-infrared/optical as AGN have smaller emission line ratios than those found for the BAT AGNs, suggesting that, in our X-ray selected sample, the AGN represents the main contribution to the observed line emission. Overall, we present a different set of emission line diagnostics to distinguish between AGN and star forming galaxies that can be used as a tool to find new AGN.

  6. Energetic electrons, hard x-ray emission and MHD activity studies in the IR-T1 tokamak.

    PubMed

    Agah, K Mikaili; Ghoranneviss, M; Elahi, A Salar

    2015-01-01

    Determinations of plasma parameters as well as the Magnetohydrodynamics (MHD) activity, energetic electrons energy and energy confinement time are essential for future fusion reactors experiments and optimized operation. Also some of the plasma information can be deduced from these parameters, such as plasma equilibrium, stability, and MHD instabilities. In this contribution we investigated the relation between energetic electrons, hard x-ray emission and MHD activity in the IR-T1 Tokamak. For this purpose we used the magnetic diagnostics and a hard x-ray spectroscopy in IR-T1 tokamak. A hard x-ray emission is produced by collision of the runaway electrons with the plasma particles or limiters. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons. PMID:25882736

  7. Emission features in the spectrum of NGC 7027 near 3. 3 microns at very high resolution

    SciTech Connect

    Lowe, R.P.; Moorhead, J.M.; Wehlau, W.H.; Maillard, J.P. CNRS, Institut d'Astrophysique, Paris )

    1991-02-01

    A very high resolution spectrum is presented of the planetary nebula NGC 7027 over a 200/cm interval centered at 2950/cm, and the features found are described: (1) nebular continuum, (2) atomic recombination lines of H and He II, and (3) three broader emission features of uncertain origin. For the latter the first evidence is presented that the 3.46 micron feature and possibly the 3.40 micron feature are resolvable into a sequence of narrower features. The interpretation of the broader features is discussed in terms of the hypothesis of identification with emission by polycyclic aromatic hydrocarbons. 18 refs.

  8. Quenched carbonaceous composite. III - Comparison to the 3.29 micron interstellar emission feature

    NASA Technical Reports Server (NTRS)

    Sakata, A.; Wada, S.; Onaka, T.; Tokunaga, A. T.

    1990-01-01

    Laboratory data are presented showing that oxidized f-QCC, after heating to 500 C, has a 3.29 micron absorption feature that matches precisely the wavelength of the 3.29 micron interstellar emission feature. In addition, the width of the f-QCC (filmy quenched carbonaceous composite) feature is close to that of the 3.29 micron emission feature observed in NGC 7027, Orion, and IRAS 21282 + 5050. Laboratory spectra of polycyclic aromatic hydrocarbons (PAHs) were also obtained, and comparison of the f-QCC and PAH absorption spectra to that of the 3.29 micron emission feature indicates that the f-QCC provides a much better match. It is thus suggested that f-QCC is representative of the class of material giving rise to the emission features in the interstellar medium.

  9. Regioselective aromatic substitution reactions of cyclometalated Ir(III) complexes: synthesis and photochemical properties of substituted Ir(III) complexes that exhibit blue, green, and red color luminescence emission.

    PubMed

    Aoki, Shin; Matsuo, Yasuki; Ogura, Shiori; Ohwada, Hiroki; Hisamatsu, Yosuke; Moromizato, Shinsuke; Shiro, Motoo; Kitamura, Masanori

    2011-02-01

    In this manuscript, the regioselective halogenation, nitration, formylation, and acylation of Ir(tpy)(3) and Ir(ppy)(3) (tpy = 2-(4'-tolyl)pyridine and ppy = 2-phenylpyridine) and the subsequent conversions are described. During attempted bromination of the three methyl groups in fac-Ir(tpy)(3) using N-bromosuccinimide (NBS) and benzoyl peroxide (BPO), three protons at the 5'-position (p-position with respect to the C-Ir bond) of phenyl rings in tpy units were substituted by Br, as confirmed by (1)H NMR spectra, mass spectra, and X-ray crystal structure analysis. It is suggested that such substitution reactions of Ir complexes proceed via an ionic mechanism rather than a radical mechanism. UV-vis and luminescence spectra of the substituted Ir(III) complexes are reported. The introduction of electron-withdrawing groups such as CN and CHO groups at the 5'-position of tpy induces a blue shift of luminescence emission to about 480 nm, and the introduction of electron-donating groups such as an amino group results in a red shift to about 600 nm. A reversible change of emission for the 5'-amino derivative of Ir(tpy)(3), Ir(atpy)(3), between red and green occurs upon protonation and deprotonation. PMID:21214169

  10. A Red to Near-IR Fluorogen: Aggregation-Induced Emission, Large Stokes Shift, High Solid Efficiency and Application in Cell-Imaging.

    PubMed

    Wang, Yi Jia; Shi, Yang; Wang, Zhaoyang; Zhu, Zhenfeng; Zhao, Xinyuan; Nie, Han; Qian, Jun; Qin, Anjun; Sun, Jing Zhi; Tang, Ben Zhong

    2016-07-01

    A tetraphenylethene (TPE) derivative modified with the strong electron acceptor 2-dicyano-methylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) was obtained in high yield by a simple two-step reaction. The resultant TPE-TCF showed evident aggregation-induced emission (AIE) features and pronounced solvatochromic behavior. Changing the solvent from apolar cyclohexane to highly polar acetonitrile, the emission peak shifted from 560 to 680 nm (120 nm redshift). In an acetonitrile solution and in the solid powder, the Stokes shifts are as large as 230 and 190 nm, respectively. The solid film emits red to near-IR (red-NIR) fluorescence with an emission peak at 670 nm and a quantum efficiency of 24.8 %. Taking the advantages of red-NIR emission and high efficiency, nanoparticles (NPs) of TPE-TCF were fabricated by using tat-modified 1,2-distearoylsn-glycero-3-phosphor-ethanol-amine-N-[methoxy-(polyethyl-eneglycol)-2000] as the encapsulation matrix. The obtained NPs showed perfect membrane penetrability and high fluorescent imaging quality of cell cytoplasm. Upon co-incubation with 4,6-diamidino-2-phenylindole (DAPI) in the presence of tritons, the capsulated TPE-TCF nanoparticles could enter into the nucleus and displayed similar staining properties to those of DAPI. PMID:27265326

  11. Multi-spectrum retrieval of Venus IR surface emissivity maps from VIRTIS/VEX nightside measurements at Themis Regio

    NASA Astrophysics Data System (ADS)

    Kappel, David; Arnold, Gabriele; Haus, Rainer

    2016-02-01

    Surface emissivity maps in the infrared can contribute to explore Venus' geology. Nightside radiance spectra at Themis Regio acquired by the IR mapping channel of the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS-M-IR) aboard Venus EXpress (VEX) are used to derive emissivity data from the three accessible spectral surface windows at 1.02, 1.10, and 1.18 μm. The measured spectra are simulated by applying a full radiative transfer model. Neglecting geologic activity, a multi-spectrum retrieval algorithm is utilized to determine the emissivity maps of the surface target as parameter vectors that are common to many spectrally resolved images that cover this target. Absolute emissivity values are difficult to obtain due to strong interferences from other parameters. The true emissivity mean of the target cannot be retrieved, nor can the emissivity mean of a retrieved map be strictly preset. The retrieved map can exhibit trends with latitude and topography that are probably artificial. Once the trends have been removed in a post-processing step, it can be observed that the magnitude of the resulting spatial emissivity fluctuations around their mean value increases with increasing mean value. A linear transformation is applied that converts the de-trended map to exhibit a defined emissivity mean value called reference emissivity, here 0.5, yielding the 'renormalized emissivity map' with accordingly transformed fluctuations. It is verified that renormalized emissivity maps are largely independent of the emissivity mean before renormalization, of modifications to interfering atmospheric, surface, and instrumental parameters, and of selected details of the retrieval pipeline and data calibration and preprocessing. Extremely large emissivity retrieval errors due to imperfect or unconsidered forward model parameters are effectively avoided. If the absolute emissivity at a given bin of the target were known, the absolute emissivity map of the entire target could be

  12. THE 217.5 nm BAND, INFRARED ABSORPTION, AND INFRARED EMISSION FEATURES IN HYDROGENATED AMORPHOUS CARBON NANOPARTICLES

    SciTech Connect

    Duley, W. W.; Hu, Anming E-mail: a2hu@uwaterloo.ca

    2012-12-20

    We report on the preparation of hydrogenated amorphous carbon nanoparticles whose spectral characteristics include an absorption band at 217.5 nm with the profile and characteristics of the interstellar 217.5 nm feature. Vibrational spectra of these particles also contain the features commonly observed in absorption and emission from dust in the diffuse interstellar medium. These materials are produced under ''slow'' deposition conditions by minimizing the flux of incident carbon atoms and by reducing surface mobility. The initial chemistry leads to the formation of carbon chains, together with a limited range of small aromatic ring molecules, and eventually results in carbon nanoparticles having an sp {sup 2}/sp {sup 3} ratio Almost-Equal-To 0.4. Spectroscopic analysis of particle composition indicates that naphthalene and naphthalene derivatives are important constituents of this material. We suggest that carbon nanoparticles with similar composition are responsible for the appearance of the interstellar 217.5 nm band and outline how these particles can form in situ under diffuse cloud conditions by deposition of carbon on the surface of silicate grains. Spectral data from carbon nanoparticles formed under these conditions accurately reproduce IR emission spectra from a number of Galactic sources. We provide the first detailed fits to observational spectra of Type A and B emission sources based entirely on measured spectra of a carbonaceous material that can be produced in the laboratory.

  13. More interstellar emission features at 3.3-3.6 micrometers!

    NASA Technical Reports Server (NTRS)

    Tokunaga, A. T.; Nagata, T.; Sellgren, K.; Smith, R. G.; Onaka, T.; Nakada, Y.; Sakata, A.; Wada, S.

    1986-01-01

    The present data set consists of 3.20 to 3.55 micron spectra of HD44179, NGC 7027, BD+30 3639, and Elias 1 obtained with a cooled-grating array spectrometer (CGAS) at the NASA Infrared Telescope Facility. Emission features and details of the emission feature profiles are presented for high resolution spectra. Greater complexity is shown than might be expected. It is significant that the 3.29 micron feature has an invariant central wavelength, even at high resolution, and this strongly supports the case for a very specific substance or mixture of substances which is giving rise to this feature.

  14. Anthracene clusters and the interstellar infrared emission features

    SciTech Connect

    Roser, J. E.; Ricca, A.; Allamandola, L. J.

    2014-03-10

    The unidentified infrared bands are ubiquitous in the interstellar medium and typically attributed to emission from neutral and ionized polycyclic aromatic hydrocarbons (or PAHs). The contribution of neutral PAH clusters to these bands has been impossible to determine due to a paucity of infrared spectral data. Here we investigated neutral clusters of the three-ring PAH anthracene using FTIR absorption spectroscopy of anthracene matrix-isolated at varying concentrations in solid argon. In order to determine likely cluster structures of the embedded molecules, we also calculated theoretical absorption spectra for the anthracene monomer through hexamer using density functional theory with a dispersion correction (DFT-D). The DFT-D calculations have been calibrated for the anthracene dimer using the second-order Møller-Plesset approach. Because there is some support for the hypothesis that three or four-ring PAHs are present in the Red Rectangle nebula, we discuss the application of our results to this nebula in particular as well as to the interstellar infrared emission in general.

  15. Time variations of UV emission features of Be stars

    NASA Technical Reports Server (NTRS)

    Bahng, J. D. R.

    1975-01-01

    The UV spectra of three Be stars (gamma Cas, sigma Tau, eta Cen) were studied. Of the six Be stars observed in the first four lines of the Balmer series, three stars showed at least one of the Balmer lines to be variable in the equivalent width amounting to a few percent with time scales of 3 to 30 minutes. Photoelectric spectrum scans of five southern Wolf-Rayet stars showed night-to-night variations. A simple model is proposed to account for the behavior of these emission lines. Scans of gamma square Vel showed rapid variations of emission strengths of He II 4686 and C III - IV 4650. These variations have time scales of 1 minute and longer. Night-to-night variations were also found. Scans of four Be stars in H alpha showed a definite variation of 3 to 4 percent, with time scales of 1 minute and longer in sigma Tau. In 48 Per and kappa Dra the variations are not as well established. No variation of any significance was found for nu Gem.

  16. Optical emission studies of nitrogen plasma generated by IR CO2 laser pulses

    NASA Astrophysics Data System (ADS)

    Camacho, J. J.; Poyato, J. M. L.; Díaz, L.; Santos, M.

    2007-12-01

    Large-scale plasma produced in nitrogen gas at room temperature and pressures ranging from 4 × 103 to 1.2 × 105 Pa by high-power laser-induced dielectric breakdown (LIDB) has been investigated. Time-integrated optical nitrogen gas spectra excited from a CO2 laser have been measured and analysed. The spectrum of the generated plasma is dominated by the emission of strong N+ and N and very weak N2+ atomic lines and molecular features of N+2(B2Σ+u-X2Σ+g), N+2(D2Πg-A2Πu), N2(C3Πu-B3Πg) and very weak N2(B3Πg-A3Σ+u). The relative intensities of the 0-0 band heads in the N2(C-B) and N+2(B-X) systems are very weak as compared with the chemiluminescence spectrum of nitrogen formed in a glow discharge. An excitation temperature Texc = 21 000 ± 1300 K was calculated by means of the relative intensity of ionized nitrogen atomic lines assuming local thermodynamic equilibrium. Optical breakdown threshold intensities in N2 at 9.621 µm have been determined. The physical processes leading to the LIDB of nitrogen in the power density range 0.4 < J < 4.5 GW cm-2 have been analysed. From our experimental observations we can suggest that, although the first electrons must appear via multiphoton ionization or natural ionization, electron cascade is the main mechanism responsible for the LIDB in nitrogen. In Memoriam: Professor Antonio Pardo Martinez.

  17. The influence of the spectral emissivity of flat-plate calibrators on the calibration of IR thermometers

    SciTech Connect

    Cárdenas-García, D.; Méndez-Lango, E.

    2013-09-11

    Flat Calibrators (FC) are an option for calibration of infrared thermometers (IT) with a fixed large target. FCs are neither blackbodies, nor gray-bodies; their spectral emissivity is lower than one and depends on wavelength. Nevertheless they are used as gray-bodies with a nominal emissivity value. FCs can be calibrated radiometrically using as reference a calibrated IR thermometer (RT). If an FC will be used to calibrate ITs that work in the same spectral range as the RT then its calibration is straightforward: the actual FC spectral emissivity is not required. This result is valid for any given fixed emissivity assessed to the FC. On the other hand, when the RT working spectral range does not match with that of the ITs to be calibrated with the FC then it is required to know the FC spectral emissivity as part of the calibration process. For this purpose, at CENAM, we developed an experimental setup to measure spectral emissivity in the infrared spectral range, based on a Fourier transform infrared spectrometer. Not all laboratories have emissivity measurement capability in the appropriate wavelength and temperature ranges to obtain the spectral emissivity. Thus, we present an estimation of the error introduced when the spectral range of the RT used to calibrate an FC and the spectral ranges of the ITs to be calibrated with the FC do not match. Some examples are developed for the cases when RT and IT spectral ranges are [8,13] μm and [8,14] μm respectively.

  18. Analysis of the emitting states of an Ir(III) complex with strong blue emission

    NASA Astrophysics Data System (ADS)

    Liew, Jane Y.; Lo, Shih-Chun; Burn, Paul L.; Krausz, Elmars R.; Hall, Jeremy D.; Moore, Evan G.; Riley, Mark J.

    2015-11-01

    Temperature dependent luminescence, lifetimes and magnetic circularly polarised luminescence (MCPL) are reported between 1.7 and 80 K and in magnetic fields of 0-5 T for [Ir(ptz)3]. Data analysis reveals the temperature and field dependent behaviour is due to the sublevel structure of the emitting state. We have determined energy separations of ΔEII,I = 10 cm-1 and ΔEIII,I = 45 cm-1 between three triplet sublevels, with intrinsic luminescence lifetimes of τI = 160 μs, τII = 10 μs and τIII = 800 ns. We compare these with values for the green emitter, [Ir(ppy)3] and discuss implications for the excited state geometries.

  19. State of the art and future plans for IR imaging of gaseous fugitive emissions

    NASA Astrophysics Data System (ADS)

    Ljungberg, Sven-Ake; Kulp, Thomas J.; McRae, Thomas G.

    1997-04-01

    The means to detect, visualize and survey different kinds of gases within industrial and energy processes, technical infrastructure, landfill bodies, indoor and outdoor environment are discussed. The current status and future plans for IR imaging technologies in the U.S. and in Sweden are described. Primary consideration is given to mobile and airborne remote sensing systems, such as current laser-based imaging technologies, advanced IR systems with and without filter techniques, and two-dimensional gas-correlation techniques, being used or under development. Results of recent laboratory and field experiments involving the imaging of natural gas leaks under both controlled and actual conditions are presented and discussed. Plans for future field testing and technology improvements are described.

  20. A study of extreme carbon stars. I - Silicon carbide emission features

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1984-01-01

    10-micron spectra of many extreme carbon stars reveal a prominent emission feature near 11 microns. This is compared with laboratory spectra of SiC grains. Two distinct types of features are found, perhaps indicative of different mechanisms of grain formation in different stars. Estimates are made of probable column densities and total masses of SiC in the circumstellar shells.

  1. Unravelling thermal emissivity spectra of the main minerals on Mercury's surface by comparison with ab initio calculated IR-HT vibrational frequencies

    NASA Astrophysics Data System (ADS)

    Stangarone, C.; Helbert, J.; Tribaudino, M.; Maturilli, A.; D'Amore, M.; Ferrari, S.; Prencipe, M.

    2015-12-01

    Spectral signatures of minerals are intimately related to the crystal structure; therefore they may represent a remote sensing model to determine surface composition of planetary bodies, by analysing their spectral reflectance and emission. However, one of the most critical point is data interpretation considering planetary surfaces, as Mercury, where the changes in spectral characteristics are induced by the high temperatures conditions (Helbert et al., 2013). The aim of this work is to interpret the experimental thermal emissivity spectra with an innovative approach: simulating IR spectra of the main mineral families that compose the surface of Mercury, focusing on pyroxenes (Sprague et al., 2002), both at room and high temperature, exploiting the accuracy of ab initio quantum mechanical calculations, by means of CRYSTAL14 code (Dovesi et al., 2014). The simulations will be compared with experimental emissivity measurements of planetary analogue samples at temperature up to 1000K, performed at Planetary Emissivity Laboratory (PEL) by Institute of Planetary Research (DLR, Berlin). Results will be useful to create a theoretical background to interpret HT-IR emissivity spectra that will be collected by the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS), a spectrometer developed by DLR that will be on board of the ESA BepiColombo Mercury Planetary Orbiter (MPO) scheduled for 2017. The goal is to point out the most interesting spectral features for a geological mapping of Mercury and other rocky bodies, simulating the environmental conditions of the inner planets of Solar System. Dovesi R., Saunders V. R., Roetti C., Orlando R., Zicovich-Wilson C. M., Pascale F., Civalleri B., Doll K., Harrison N. M., Bush I. J., D'Arco P., Llunell M., Causà M. & Noël Y. 2014. CRYSTAL14 User's Manual, University of Torino. Sprague, A. L., Emery, J. P., Donaldson, K. L., Russell, R. W., Lynch, D. K., & Mazuk, A. L. (2002). Mercury: Mid-infrared (3-13.5

  2. Search for the infrared emission features from deuterated interstellar polycyclic aromatic hydrocarbons

    SciTech Connect

    Onaka, Takashi; Mori, Tamami I.; Sakon, Itsuki; Ohsawa, Ryou; Kaneda, Hidehiro; Okada, Yoko; Tanaka, Masahiro

    2014-01-10

    We report the results of a search for emission features from interstellar deuterated polycyclic aromatic hydrocarbons (PAHs) in the 4 μm region with the Infrared Camera (IRC) on board AKARI. No significant excess emission is seen in 4.3-4.7 μm in the spectra toward the Orion Bar and M17 after the subtraction of line emission from the ionized gas. A small excess of emission remains at around 4.4 and 4.65 μm, but the ratio of their intensity to that of the band emission from PAHs at 3.3-3.5 μm is estimated as 2%-3%. This is an order of magnitude smaller than the values previously reported and also those predicted by the model of deuterium depletion onto PAHs. Since the subtraction of the ionized gas emission introduces an uncertainty, the deuterated PAH features are also searched for in the reflection nebula GN 18.14.0, which does not show emission lines from ionized gas. We obtain a similar result that excess emission in the 4 μm region, if present, is about 2% of the PAH band emission in the 3 μm region. The present study does not find evidence for the presence of the large amount of deuterated PAHs that the depletion model predicts. The results are discussed in the context of deuterium depletion in the interstellar medium.

  3. Atom-probe and field emission electron spectroscopy studies of ordered structures and electronic properties of Ge overlayers on Ir-tips

    NASA Astrophysics Data System (ADS)

    Ashino, Makoto; Tomitori, Masahiko; Nishikawa, Osamu

    1994-03-01

    The combined instrument of an atom probe (AP) and a field emission electron spectroscope (FEES) was employed to investigate the crystallinity and the surface electronic state of Ge overlayers deposited on Ir tips. The crystallinity of Ge overlayers deposited at 300 and 420 K, and those annealed after the deposition, is better than that of the overlayers deposited at 50 K. The surface electronic state of the well-crystallized Ge overlayer is semiconductive at the thickness of ≈4 ML. When the degree of crystallinity is rather low or Ir atoms exist in the Ge overlayer, even a thick overlayer exhibits metallic surface electronic states. When an Ir atom exists on the overlayer surface, a small peak appears at ≈ 0.3 eV below the Fermi level in the field emission electron distribution (FEED), indicating a local state of the Ir atom.

  4. The contribution of CHONS particles to the diffuse high-Galactic-latitude IR emission

    NASA Astrophysics Data System (ADS)

    Papoular, R.

    2014-05-01

    This work purports to model the far-infrared grey-body emission in the spectra of high-Galactic-latitude clouds. Several carbonaceous laboratory materials are tested for their fitness as carriers of this modified blackbody emission which, according to data delivered by the Planck satellite, and others before, is best fitted with temperature 17.9 K and spectral index β = 1.78. Some of these materials were discarded for insufficient emissivity, others for inadequate β. By contrast, CHONS clusters (β = 1.4, T = 19 K) combine nicely with magnesium silicate (β = 2, T = 18.7 K) to give a spectrum which falls well within the observational error bars (total emission cross-section at 250 μm: 8.6 × 10-26 cm2 per H atom). Only 15 per cent of all Galactic carbon atoms are needed for this purpose. The CHONS particles that were considered and described have a disordered (amorphous) structure but include a sizeable fraction of aromatic rings, although they are much less graphitized than a-C:H/hydrogenated amorphous carbon. They can be seen as one embodiment of `astronomical graphite' deduced earlier on from the then available astronomical observations. Grain heating by H atom capture is proposed as a contributor to the observed residual emissions that do not follow the dust/H I correlation.

  5. The discovery of a new infrared emission feature at 1905 wavenumbers (5.25 microns) in the spectrum of BD +30 degrees 3639 and its relation to the polycyclic aromatic hydrocarbon model

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Bregman, J. D.; Sandford, S. A.; Tielens, A. G.; Witteborn, F. C.; Wooden, D. H.; Rank, D.

    1989-01-01

    We have discovered a new IR emission feature at 1905 cm-1 (5.25 microns) in the spectrum of BD +30 degrees 3639. This feature joins the family of well-known IR emission features at 3040, 2940, 1750, 1610, "1310," 1160, and 890 cm-1 (3.3, 3.4, 5.7, 6.2, "7.7," 8.6, and 11.2 microns). The origin of this new feature is discussed and it is assigned to an overtone or combination band involving C-H bending modes of polycyclic aromatic hydrocarbons (PAHs). Laboratory work suggests that spectral studies of the 2000-1650 cm-1 (5.0-6.1 microns) region may be very useful in elucidating the molecular structure of interstellar PAHs. The new feature, in conjunction with other recently discovered spectral structure, suggests that the narrow IR emission features originate in PAH molecules rather than large carbon grains. Larger species are likely to be the source of the broad underlying "plateaus" seen in many of the spectra.

  6. The Non-LTE Model of IR Emissions of Methane in the Titan'sAtmosphere

    NASA Astrophysics Data System (ADS)

    Kutepov, Alexander; Rezac, Ladislav; Feofilov, Artem; Rey, Michael; Nikitin, Andrei; Tyuterev, Vladimir

    2015-11-01

    Above about 400-450 km in Titan's atmosphere, the assumption of local thermodynamic equilibrium (LTE) breaks down for molecular vibrational levels of methane and various trace gases. Above this altitude non-LTE significantly impacts the formation of infrared ro-vibrational band emissions of these species observed in the limb viewing geometry. We present detailed model of the non-LTE in methane in the Titan's atmosphere based on a new extended database of the CH4 spectroscopic parameters calculated for this study. We analyze vibrational temperatures of various 12CH4 and 13CH4 levels as well as CH4 limb emissions in the 7.6 and 3.3 um spectral regions. The impact on these emissions of many weak one-quantum and combinational bands, which are missing in current databases, is studied. Implications for the non-LTE diagnostics of the Cassini CIRS and VIMS measurements are discussed.

  7. Sportswear textiles emissivity measurement: comparison of IR thermography and emissometry techniques

    NASA Astrophysics Data System (ADS)

    Bison, P.; Grinzato, E.; Libbra, A.; Muscio, A.

    2012-06-01

    Three sportswear textiles are compared, one normal and two 'special' with Ag+ ions and Carbon powder added, with different colors. The emissivity of the textiles has been measured to determine if it is increased in the 'special' textiles with respect to the normal one. The test implied some non-standard procedure due to the semitransparent nature of the textiles, in comparison with the normal procedure that is commonly used on opaque surfaces. The test is also carried out by a standard emissometry technique, based on a comparative approach with reference samples having known thermal emissivity. The results are compared and discussed.

  8. On the Relation between the Mysterious 21 μm Emission Feature of Post-asymptotic Giant Branch Stars and Their Mass-loss Rates

    NASA Astrophysics Data System (ADS)

    Mishra, Ajay; Li, Aigen; Jiang, B. W.

    2016-07-01

    Over two decades ago, a prominent, mysterious emission band peaking at ˜20.1 μm was serendipitously detected in four preplanetary nebulae (PPNe; also known as “protoplanetary nebulae”). To date, this spectral feature, designated as the “21 μm” feature, has been seen in 27 carbon-rich PPNe in the Milky Way and the Magellanic Clouds. The nature of its carriers remains unknown although many candidate materials have been proposed. The 21 μm sources also exhibit an equally mysterious, unidentified emission feature peaking at 30 μm. While the 21 μm feature is exclusively seen in PPNe, a short-lived evolutionary stage between the end of the asymptotic giant branch (AGB) and planetary nebula (PN) phases, the 30 μm feature is more commonly observed in all stages of stellar evolution from the AGB through PPN to PN phases. We derive the stellar mass-loss rates (\\dot{M}) of these sources from their infrared (IR) emission, using the “2-DUST” radiative transfer code for axisymmetric dusty systems which allows one to distinguish the mass-loss rates of the AGB phase ({\\dot{M}}{AGB}) from that of the superwind ({\\dot{M}}{SW}) phase. We examine the correlation between {\\dot{M}}{AGB} or {\\dot{M}}{SW} and the fluxes emitted from the 21 and 30 μm features. We find that both features tend to correlate with {\\dot{M}}{AGB}, suggesting that their carriers are probably formed in the AGB phase. The nondetection of the 21 μm feature in AGB stars suggests that, unlike the 30 μm feature, the excitation of the carriers of the 21 μm feature may require ultraviolet photons which are available in PPNe but not in AGB stars.

  9. Narrow polarized components in the OH 1612-MHz maser emission from supergiant OH-IR sources

    NASA Technical Reports Server (NTRS)

    Cohen, R. J.; Downs, G.; Emerson, R.; Grimm, M.; Gulkis, S.; Stevens, G.

    1987-01-01

    High-resolution (300 Hz) OH 1612-MHz spectra of the supergiant OH-IR sources VY CMa, VX Sgr, IRC 10420, and NML Cyg are presented. Linewidths as small as 550 Hz (0.1 km/s) are found for narrow components in the spectra. The present results are consistent with current models for maser line-narrowing and for the physical properties in the OH maser regions. A significant degree of circular polarization is noted in many of the narrow components. The circular polarization suggests the presence of magnetic fields of about 1 mG in the circumstellar envelopes which would be strong enough to influence the outflow from the stars, and which may explain asymmetries found in the circumstellar envelopes.

  10. Optical Emission Studies of Copper Plasma Induced Using Infrared Transversely Excited Atmospheric (IR TEA) Carbon Dioxide Laser Pulses.

    PubMed

    Momcilovic, Milos; Kuzmanovic, Miroslav; Rankovic, Dragan; Ciganovic, Jovan; Stoiljkovic, Milovan; Savovic, Jelena; Trtica, Milan

    2015-04-01

    Spatially resolved, time-integrated optical emission spectroscopy was applied for investigation of copper plasma produced by a nanosecond infrared (IR) transversely excited atmospheric (TEA) CO2 laser, operating at 10.6 μm. The effect of surrounding air pressure, in the pressure range 0.1 to 1013 mbar, on plasma formation and its characteristics was investigated. A linear dependence of intensity threshold for plasma formation on logarithm of air pressure was found. Lowering of the air pressure reduces the extent of gas breakdown, enabling better laser-target coupling and thus increases ablation. Optimum air pressure for target plasma formation was 0.1 mbar. Under that pressure, the induced plasma consisted of two clearly distinguished and spatially separated regions. The maximum intensity of emission, with sharp and well-resolved spectral lines and negligibly low background emission, was obtained from a plasma zone 8 mm from the target surface. The estimated excitation temperature in this zone was around 7000 K. The favorable signal to background ratio obtained in this plasma region indicates possible analytical application of TEA CO2 laser produced copper plasma. Detection limits of trace elements present in the Cu sample were on the order of 10 ppm (parts per million). Time-resolved measurements of spatially selected plasma zones were used to find a correlation between the observed spatial position and time delay. PMID:25741748

  11. Classification of Spectra of Emission-line Stars Using Feature Extraction Based on Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Bromová P.; Bařina, D.; Škoda, P.; Vážný, J.; Zendulka, J.

    2014-05-01

    Our goal is to automatically identify spectra of emission (Be) stars in large archives and classify their types based on a typical shape of the Hα emission line. Due to the length of spectra, of the original data is very time-consuming. In order to lower computational requirements and enhance the separability of the classes, we have to find a reduced representation of spectral features, however conserving most of the original information content. As the Be stars show a number of different shapes of emission lines, it is not easy to construct simple criteria (like e.g. Gaussian fits) to distinguish the emission lines in an automatic manner. We proposed to perform the wavelet transform of the spectra, calculate statistical metrics from the wavelet coefficients, and use them as feature vectors for classification. In this paper, we compare different wavelet transforms, different wavelets, and different statistical metrics in an attempt to identify the best method.

  12. ON THE VIABILITY OF THE PAH MODEL AS AN EXPLANATION OF THE UNIDENTIFIED INFRARED EMISSION FEATURES

    SciTech Connect

    Zhang, Yong; Kwok, Sun E-mail: sunkwok@hku.hk

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are widely considered the preferred candidate for the carrier of the unidentified infrared emission bands observed in the interstellar medium and circumstellar envelopes. In this paper, we report the results of fitting a variety of non-PAH spectra (silicates, hydrogenated amorphous carbon, coal, and even artificial spectra) using the theoretical infrared spectra of PAHs from the NASA Ames PAH IR Spectroscopic Database. We show that these non-PAH spectra can be well fitted by PAH mixtures. This suggests that a general match between astronomical spectra and those of PAH mixtures does not necessarily provide definitive support for the PAH hypothesis.

  13. Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars.

    PubMed

    Walavalkar, Sameer S; Hofmann, Carrie E; Homyk, Andrew P; Henry, M David; Atwater, Harry A; Scherer, Axel

    2010-11-10

    Visible and near-IR photoluminescence (PL) is reported from sub-10 nm silicon nanopillars. Pillars were plasma etched from single crystal Si wafers and thinned by utilizing strain-induced, self-terminating oxidation of cylindrical structures. PL, lifetime, and transmission electron microscopy were performed to measure the dimensions and emission characteristics of the pillars. The peak PL energy was found to blue shift with narrowing pillar diameter in accordance with a quantum confinement effect. The blue shift was quantified using a tight binding method simulation that incorporated the strain induced by the thermal oxidation process. These pillars show promise as possible complementary metal oxide semiconductor compatible silicon devices in the form of light-emitting diode or laser structures. PMID:20919695

  14. DUST AROUND R CORONAE BOREALIS STARS. II. INFRARED EMISSION FEATURES IN AN H-POOR ENVIRONMENT

    SciTech Connect

    Garcia-Hernandez, D. A.; Lambert, D. L. E-mail: nkrao@iiap.res.in

    2013-08-20

    Residual Spitzer/Infrared Spectrograph spectra for a sample of 31 R Coronae Borealis (RCB) stars are presented and discussed in terms of narrow emission features superimposed on the quasi-blackbody continuous infrared emission. A broad {approx}6-10 {mu}m dust emission complex is seen in the RCBs showing an extreme H-deficiency. A secondary and much weaker {approx}11.5-15 {mu}m broad emission feature is detected in a few RCBs with the strongest {approx}6-10 {mu}m dust complex. The Spitzer infrared spectra reveal for the first time the structure within the {approx}6-10 {mu}m dust complex, showing the presence of strong C-C stretching modes at {approx}6.3 and 8.1 {mu}m as well as of other dust features at {approx}5.9, 6.9, and 7.3 {mu}m, which are attributable to amorphous carbonaceous solids with little or no hydrogen. The few RCBs with only moderate H-deficiencies display the classical ''unidentified infrared bands (UIRs)'' and mid-infrared features from fullerene-related molecules. In general, the characteristics of the RCB infrared emission features are not correlated with the stellar and circumstellar properties, suggesting that the RCB dust features may not be dependent on the present physical conditions around RCB stars. The only exception seems to be the central wavelength of the 6.3 {mu}m feature, which is blueshifted in those RCBs showing also the UIRs, i.e., the RCBs with the smallest H deficiency.

  15. The Non-LTE Model of IR Emissions of Methane in the Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Kutepov, Alexander; Rezac, Ladislav; Rey, Michael; Nikitin, Andrei; Boursier, Corinne

    2014-11-01

    Above about 400-450 km in Titan's atmosphere, the assumption of local thermodynamic equilibrium (LTE) breaks down for molecular vibrational levels of methane and various trace gases. Above this altitude non-LTE significantly impacts the formation of infrared ro-vibrational band emissions of these species observed in the limb viewing geometry. We present detailed model of the non-LTE in methane in the Titan's atmosphere based on a new extended database of the CH4 spectroscopic parameters as well as on the revised system of collisional V-T and V-V exchange rates. We analyze for a number of atmospheric models the vibrational temperatures of various CH4 levels and limb emissions, and compare them with those obtained for the HITRAN-2012 methane spectroscopic parameters. Implications for the non-LTE diagnostics of the Cassini CIRS and VIMS measurements are discussed.

  16. HST WFC3 Early Release Science: Emission-Line Galaxies from IR Grism Observations

    NASA Technical Reports Server (NTRS)

    Straughn, A. N.; Kuntschner, H.; Kuemmel, M.; Walsh, J. R.; Cohen, S. H.; Gardner, J. P.; Windhorst, R. A.; O'Connell, R. W.; Pirzkal, N.; Meurer, G.; McCarthy, P. J.; Hathi, N. P.; Malhotra, S.; Rhoads, J.; Balick, B.; Bond, H. E.; Calzetti, D.; Disney, M. J.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.; Holtzman, J. A.; Kimlbe, R. A.; Trauger, J. T.; Young, E. T.

    2010-01-01

    We present grism spectra of emission line galaxies (ELGs) from 0.6-1.6 microns from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). These new infrared grism data augment previous optical Advanced Camera for Surveys G800L (0.6-0.95 micron) grism data in GOODS South, extending the wavelength coverage well past the G800L red cutoff. The ERS grism field was observed at a depth of 2 orbits per grism, yielding spectra of hundreds of faint objects, a subset of which are presented here. ELGs are studied via the Ha, [O III ], and [OII] emission lines detected in the redshift ranges 0.2 less than or equal to z less than or equal to 1.6, 1.2 less than or equal to z less than or equal to 2.4 and 2.0 less than or equal to z less than or equal to 3.6 respectively in the G102 (0.8-1.1 microns; R approximately 210) and C141 (1.1-1.6 microns; R approximately 130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., [S II] and [S III] lines). From these relatively shallow observations, line luminosities, star formation rates, and grism spectroscopic redshifts are determined for a total of 25 ELGs to M(sub AB)(F098M) approximately 25 mag. The faintest source in our sample with a strong but unidentified emission line--is MAB(F098M)=26.9 mag. We also detect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample, indicative of downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes.

  17. Statistical analysis of thermal IR (10-12 micron) emission from the lunar surface

    NASA Astrophysics Data System (ADS)

    Pugacheva, S. G.

    Brightness data analyzed by Saari and Shorthill are used in a statistical study of thermal 10-12 micron emission from the lunar surface. A digital model of the distribution of surface brightness temperature is described, and isotherm contour maps of the lunar-globe surface for full and new moon periods are constructed. A table of selenographic coordinates and brightness temperatures of 150 sections of the lunar surface with temperature anomalies is presented.

  18. HST WFC3 Early Release Science: Emission-line Galaxies from IR Grism Observations

    NASA Astrophysics Data System (ADS)

    Straughn, Amber; Kuntschner, H.; Kuemmel, M.; Walsh, J.; Cohen, S.; Gardner, J. P.; Windhorst, R. A.; O'Connell, R. W.; Pirzkal, N.; Meurer, G.; McCarthy, P. J.; Hathi, N. P.; Malhotra, S.; Rhoads, J.; SOC, WFC3

    2011-01-01

    The Early Release Science II program for HST WFC3 includes one pointing observed with the G102 (0.8-1.1 microns; R 210) and G141 (1.1-1.6 microns; R 130) infrared grisms at a depth of 2 orbits/grism. From this data we detect 48 actively star-forming emission-line galaxies and measure the galaxies' redshifts, line fluxes, star-formation rates, and masses. In particular, the prominent emission lines Ha, [OII], and [OIII] fall into the two infrared grism bandpasses over a redshift range z=0.2-3.6, and the majority of galaxies have at least two lines in the observable wavelength range resulting in secure line identification and redshift determination. We detect galaxies with line fluxes to 3 x 10-17 erg/s/cm2 as well as several sources with very high EW lines. The higher spectral resolution and sensitivity of the WFC3 grisms over previous instrumentation also allows detection of other emission lines in some galaxies. The average magnitude of the emission-line galaxy sample is mAB(F098M)=23.6 mag with more than 20% of the sample fainter than mAB(F098M)=25 mag, demonstrating the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes and intermediate redshifts. Our results point to the promising potential for future science with WFC3 grism spectroscopy, as well as upcoming missions such as JWST and WFIRST. This paper is based on Early Release Science observations made by the WFC3 Scientific Oversight Committee. We are grateful to the Director of the Space Telescope Science Institute for awarding Director's Discretionary time for this program. This research was supported in part by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA (ANS).

  19. Turbine engine exhaust gas measurements using in-situ FT-IR emission/transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Marran, David F.; Cosgrove, Joseph E.; Neira, Jorge; Markham, James R.; Rutka, Ronald; Strange, Richard R.

    2001-02-01

    12 An advanced multiple gas analyzer based on in-situ Fourier transform infrared spectroscopy has been used to successfully measure the exhaust plume composition and temperature of an operating gas turbine engine at a jet engine test stand. The sensor, which was optically coupled to the test cell using novel broadband hollow glass waveguides, performed well in this harsh environment (high acoustical noise and vibration, considerable temperature swings in the ambient with engine operation), providing quantitative gas phase information. Measurements were made through the diameter of the engine's one meter exhaust plume, about 0.7 meters downstream of the engine exit plane. The sensor performed near simultaneous infrared transmission and infrared emission measurements through the centerline of the plume. Automated analysis of the emission and transmission spectra provided the temperature and concentration information needed for engine tuning and control that will ensure optimal engine operation and reduced emissions. As a demonstration of the utility and accuracy of the technique, carbon monoxide, nitric oxide, water, and carbon dioxide were quantified in spite of significant variations in the exhaust gas temperature. At some conditions, unburned fuel, particulates (soot/fuel droplets), methane, ethylene and aldehydes were identified, but not yet quantified.

  20. High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Liangliang; Mu, Kaijun; Zhou, Yunsong; Wang, Hai; Zhang, Cunlin; Zhang, X.-C.

    2015-07-01

    Terahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an intense (~10 mW) and ultra-broadband (~150 THz) THz to infrared (IR) source with a Gaussian wavefront, emitted from nano-pore-structured metallic thin films with femtosecond laser pulse excitation. The underlying mechanism has been proposed as thermal radiation. In addition, an intense coherent THz signal was generated through the optical rectification process simultaneously with the strong thermal signal. This unique feature opens up new avenues in biomedical research.

  1. High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures

    PubMed Central

    Zhang, Liangliang; Mu, Kaijun; Zhou, Yunsong; Wang, Hai; Zhang, Cunlin; Zhang, X.-C.

    2015-01-01

    Terahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an intense (~10 mW) and ultra-broadband (~150 THz) THz to infrared (IR) source with a Gaussian wavefront, emitted from nano-pore-structured metallic thin films with femtosecond laser pulse excitation. The underlying mechanism has been proposed as thermal radiation. In addition, an intense coherent THz signal was generated through the optical rectification process simultaneously with the strong thermal signal. This unique feature opens up new avenues in biomedical research. PMID:26205611

  2. High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures.

    PubMed

    Zhang, Liangliang; Mu, Kaijun; Zhou, Yunsong; Wang, Hai; Zhang, Cunlin; Zhang, X-C

    2015-01-01

    Terahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an intense (~10 mW) and ultra-broadband (~150 THz) THz to infrared (IR) source with a Gaussian wavefront, emitted from nano-pore-structured metallic thin films with femtosecond laser pulse excitation. The underlying mechanism has been proposed as thermal radiation. In addition, an intense coherent THz signal was generated through the optical rectification process simultaneously with the strong thermal signal. This unique feature opens up new avenues in biomedical research. PMID:26205611

  3. The Effect of Radiation Timing on Patients With High-Risk Features of Parameningeal Rhabdomyosarcoma: An Analysis of IRS-IV and D9803

    SciTech Connect

    Spalding, Aaron C.; Hawkins, Douglas S.; Anderson, James R.; Lyden, Elizabeth; Laurie, Fran; Wolden, Suzanne L.; Arndt, Carola A.S.; Michalski, Jeff M.

    2013-11-01

    Purpose: Radiation therapy remains an essential treatment for patients with parameningeal rhabdomyosarcoma (PMRMS), and early radiation therapy may improve local control for patients with intracranial extension (ICE). Methods and Materials: To address the role of radiation therapy timing in PMRMS in the current era, we reviewed the outcome from 2 recent clinical trials for intermediate-risk RMS: Intergroup Rhabdomyosarcoma Study (IRS)-IV and Children's Oncology Group (COG) D9803. The PMRMS patients on IRS-IV with any high-risk features (cranial nerve palsy [CNP], cranial base bony erosion [CBBE], or ICE) were treated immediately at day 0, and PMRMS patients without any of these 3 features received week 6-9 radiation therapy. The D9803 PMRMS patients with ICE received day 0 X-Ray Therapy (XRT) as well; however, those with either CNP or CBBE had XRT at week 12. Results: Compared with the 198 PMRMS patients from IRS-IV, the 192 PMRMS patients from D9803 had no difference (P<.05) in 5-year local failure (19% vs 19%), failure-free-survival (70% vs 67%), or overall survival (75% vs 73%) in aggregate. The 5-year local failure rates by subset did not differ when patients were classified as having no risk features (None, 15% vs 19%, P=.25), cranial nerve palsy/cranial base of skull erosion (CNP/CBBE, 15% vs 28%, P=.22), or intracranial extension (ICE, 21% vs 15%, P=.27). The D9083 patients were more likely to have received initial staging by magnetic resonance imaging (71% vs 53%). Conclusions: These data support that a delay in radiation therapy for high-risk PMRMS features of CNP/CBBE does not compromise clinical outcomes.

  4. Spatial variations of the 3-micron emission features within Orion's Bar

    NASA Technical Reports Server (NTRS)

    Moorhouse, A.; Brand, P. W. J. L.; Geballe, T. R.; Allamandola, L. J.; Tielens, A. G. G. M.

    1988-01-01

    3-micron spectra of the Orion Bar region have been obtained at three positions corresponding to different distances from the exciting source. The recently discovered unidentified features at 3.46, 3.51, and 3.57 microns are clearly visible. The spectra show that the 3.4 and 3.51-micron emission features increase in intensity relative to the strong 3.3-micron feature as the distance from the exciting source increases. The implications for polycyclic aromatic hydrocarbons and recent ideas concerning their ultraviolet excitation and spatial evolution are discussed.

  5. Specific features of diffuse reflection of human face skin for laser and non-laser sources of visible and near-IR light

    SciTech Connect

    Dolotov, L E; Sinichkin, Yu P; Tuchin, Valerii V; Al'tshuler, G B; Yaroslavskii, I V

    2011-04-30

    The specific features of diffuse reflection from different areas of human face skin for laser and non-laser sources of visible and near-IR light have been investigated to localise the closed-eye (eyelid) region. In the visible spectral range the reflection from the eyelid skin surface can be differentiated by measuring the slope of the spectral dependence of the effective optical density of skin in the wavelength range from 650 to 700nm. In the near-IR spectral range the reflectances of the skin surface at certain wavelengths, normalised to the forehead skin reflectance, can be used as a criterion for differentiating the eyelid skin. In this case, a maximum discrimination is obtained when measuring the skin reflectances at laser wavelengths of 1310 and 1470nm, which correspond to the spectral ranges of maximum and minimum water absorption. (optical technologies in biophysics and medicine)

  6. Optical emission spectroscopy of oxygen plasma induced by IR CO2 pulsed laser

    NASA Astrophysics Data System (ADS)

    Camacho, J. J.; Santos, M.; Díaz, L.; Poyato, J. M. L.

    2008-11-01

    Laser-induced breakdown (LIB) spectroscopy in oxygen at room temperature and pressures ranging from 4.6 to 75 kPa was studied using a high-power transverse excitation atmospheric CO2 laser (λ = 9.621 and 10.591 µm τFWHM = 64 ns; power densities ranging from 0.87 to 6.31 GW cm-2). The spectrum of the generated plasma is dominated by emission of strong O, O+ and weak O2+ atomic lines. Excitation temperatures of 31 500 ± 1600 K and 23 000 ± 3000 K were estimated by means of O2+ and O+ ionic lines, respectively. Electron number densities of the order of (3.5-16.5) × 1016 cm-3 were deduced from the Stark broadening of several ionic O+ lines. The characteristics of the spectral emission intensities from different species have been investigated as functions of the oxygen pressure and laser irradiance. Optical breakdown threshold intensities in O2 at 10.591 µm have been determined. The physical processes leading to LIB of oxygen have been analysed.

  7. Spectroscopy of the 3. 4 micron emission feature in comet Halley

    SciTech Connect

    Baas, F.; Geballe, T.R.; Walther, D.M.

    1986-12-01

    Infrared spectra in the 3-5 micron region have been obtained of Comet Halley after perihelion, at heliocentric distances of 1.6 and 2.0 AU. A broad emission feature, peaking near 3.4 microns and containing some spectral substructure, was observed, while at longer wavelengths only a featureless blackbody emission spectrum was seen. The emission feature probably arises from UV-pumped infrared fluorescence of organic molecules which are either in the gas phase or are embedded in very small grains. In the former interpretation the molecules must be quite large. These results lend support to the idea that comets formed out of interstellar grains whose molecular ice mantles largely consist of nonvolatile complex organic molecules. 21 references.

  8. High-resolution spectra of the 3.29 micron interstellar emission feature - A summary

    NASA Technical Reports Server (NTRS)

    Tokunaga, A. T.; Sellgren, K.; Smith, R. G.; Nagata, T.; Sakata, A.; Nakada, Y.

    1991-01-01

    High spectral resolution observations of the 3.29-micron interstellar emission feature show two types of profiles. Type 1 has a central wavelength of 3.289-micron and is observed in extended objects such as planetary nebulae and H II regions. Type 2 has a central wavelength of 3.296 microns and is observed around a small number of stellar sources. Type 2 has a full width at half-maximum of 0.020 micron; Type 1 has a broader FWHM, perhaps as much as 0.042 micron, but this is uncertain because of contamination by Pf(delta) emission. These profiles are tabulated for comparison to laboratory data. It is found that no proposed identification for the 3.29-micron emission feature definitely matches the observational spectra, although amorphous aromatic materials and heated polycyclic aromatic hydrocarbons tend to fit the best.

  9. The Luminous Polycyclic Aromatic Hydrocarbon Emission Features: Applications to High Redshift Galaxies and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shipley, Heath; Papovich, Casey

    2015-08-01

    We provide a new robust star-formation rate (SFR) calibration using the luminosity from polycyclic aromatic hydrogen (PAH) molecules. The PAH features emit strongly in the mid-infrared (mid-IR; 3-19μm), mitigating dust extinction, and they are very luminous, containing 5-10% of the total IR luminosity in galaxies. We derive the calibration of the PAH luminosity as a SFR indicator using a sample of 105 star-forming galaxies covering a range of total IR luminosity, LIR = L(8-1000μm) = 109 - 1012 L⊙ and redshift 0 < z < 0.6. The PAH luminosity correlates linearly with the SFR as measured by the dust-corrected Hα luminosity (using the sum of the Hα and rest-frame 24μm luminosity from Kennicutt et al. 2009), with tight scatter of ~0.15 dex, comparable to the scatter in the dust-corrected Hα SFRs and Paα SFRs. We show this relation is sensitive to galaxy metallicity, where the PAH luminosity of galaxies with Z < 0.7 Z⊙ departs from the linear SFR relationship but in a behaved manor. We derive for this a correction to galaxies below solar metallicity. As a case study for observations with JWST, we apply the PAH SFR calibration to a sample of lensed galaxies at 1 < z < 3 with Spitzer Infrared Spectrograph (IRS) data, and we demonstrate the utility of PAHs to derive SFRs as accurate as those available from any other indicator. This new SFR indicator will be useful for probing the peak of the SFR density of the universe (1 < z < 3) and for studying the coevolution of star-formation and supermassive blackhole accretion contemporaneously in a galaxy.

  10. Dust emission features in 3-micron spectra of Herbig Ae/Be stars

    NASA Technical Reports Server (NTRS)

    Brooke, T. Y.; Tokunaga, A. T.; Strom, S. E.

    1993-01-01

    Attention is given to low- and medium-resolution spectra in the 3-micron region of 24 Herbig Ae/Be stars obtained in a search for organic features from the dust around young stars. The 3.29-micron emission feature from aromatic hydrocarbons was detected in three objects: Lk H-alpha 25, XY Per, and AS 310. Two other stars, HD 245185 and HK Ori, may have weak features. About 20 percent of the Herbig Ae/Be surveyed to date have firmly detected 3.29-micron features. The available data indicate that the 3.29-micron feature is more extended around Herbig Ae/Be stars of earlier spectral type, possibly due to dehydrogenization or destruction of the aromatics near these stars. It is suggested that the total number of aromatics excited by the stars is also greater around the earlier-type objects.

  11. IR Windstreaks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Windstreaks are features caused by the interaction of wind and topographic landforms. The raised rims and bowls of impact craters causes a complex interaction such that the wind vortex in the lee of the crater can both scour away the surface dust and deposit it back in the center of the lee. If you look closely, you will see evidence of this in a darker 'rim' enclosing a brighter interior.

    This infrared image shows windstreaks in the region between Gordii Dorsum and Amazonis Mensa.

    Image information: IR instrument. Latitude -15.8, Longitude 215 East (145 West). 97 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Separation of Atmospheric and Surface Spectral Features in Mars Global Surveyor Thermal Emission Spectrometer (TES) Spectra

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.

    2000-01-01

    We present two algorithms for the separation of spectral features caused by atmospheric and surface components in Thermal Emission Spectrometer (TES) data. One algorithm uses radiative transfer and successive least squares fitting to find spectral shapes first for atmospheric dust, then for water-ice aerosols, and then, finally, for surface emissivity. A second independent algorithm uses a combination of factor analysis, target transformation, and deconvolution to simultaneously find dust, water ice, and surface emissivity spectral shapes. Both algorithms have been applied to TES spectra, and both find very similar atmospheric and surface spectral shapes. For TES spectra taken during aerobraking and science phasing periods in nadir-geometry these two algorithms give meaningful and usable surface emissivity spectra that can be used for mineralogical identification.

  13. Probing the terrestrial regions of planetary systems: warm debris disks with emission features

    SciTech Connect

    Ballering, Nicholas P.; Rieke, George H.; Gáspár, András

    2014-09-20

    Observations of debris disks allow for the study of planetary systems, even where planets have not been detected. However, debris disks are often only characterized by unresolved infrared excesses that resemble featureless blackbodies, and the location of the emitting dust is uncertain due to a degeneracy with the dust grain properties. Here, we characterize the Spitzer Infrared Spectrograph spectra of 22 debris disks exhibiting 10 μm silicate emission features. Such features arise from small warm dust grains, and their presence can significantly constrain the orbital location of the emitting debris. We find that these features can be explained by the presence of an additional dust component in the terrestrial zones of the planetary systems, i.e., an exozodiacal belt. Aside from possessing exozodiacal dust, these debris disks are not particularly unique; their minimum grain sizes are consistent with the blowout sizes of their systems, and their brightnesses are comparable to those of featureless warm debris disks. These disks are in systems of a range of ages, though the older systems with features are found only around A-type stars. The features in young systems may be signatures of terrestrial planet formation. Analyzing the spectra of unresolved debris disks with emission features may be one of the simplest and most accessible ways to study the terrestrial regions of planetary systems.

  14. Detection of the Near-IR Cosmic Infrared Background Using Alternative Models of Near-IR Galactic Emission in the DIRBE Data

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dwek, Eli; Oliversen, Ronald J. (Technical Monitor)

    2000-01-01

    The analysis portion of this task has been completed. New models were developed for the removal of the near-infrared emission of Galactic stars in the DIRBE data. Subtraction of these models from the observed emission attempted to achieve a better detection of the Cosmic Infrared Background at near-infrared wavelengths. The new models were found to provide a large improvement in the isotropy of the residual emission, however constraints on the intensity of the emission are not significantly improved. A paper detailing the procedures and results has been drafted, and will be completed next year. The draft of this paper is included as the final report on the contract.

  15. Studies of the jet in BL Lacertae. I. Recollimation shock and moving emission features

    SciTech Connect

    Cohen, M. H.; Hovatta, T.; Meier, D. L.; Arshakian, T. G.; Homan, D. C.; Kovalev, Y. Y.; Pushkarev, A. B.; Savolainen, T.

    2014-06-01

    Parsec-scale VLBA images of BL Lac at 15 GHz show that the jet contains a permanent quasi-stationary emission feature 0.26 mas (0.34 pc projected) from the core, along with numerous moving features. In projection, the tracks of the moving features cluster around an axis at a position angle of –166.°6 that connects the core with the standing feature. The moving features appear to emanate from the standing feature in a manner strikingly similar to the results of numerical two-dimensional relativistic magneto-hydrodynamic (RMHD) simulations in which moving shocks are generated at a recollimation shock (RCS). Because of this, and the close analogy to the jet feature HST-1 in M87, we identify the standing feature in BL Lac as an RCS. We assume that the magnetic field dominates the dynamics in the jet, and that the field is predominantly toroidal. From this we suggest that the moving features are compressions established by slow and fast mode magneto-acoustic MHD waves. We illustrate the situation with a simple model in which the slowest moving feature is a slow-mode wave, and the fastest feature is a fast-mode wave. In the model, the beam has Lorentz factor Γ{sub beam}{sup gal}≈3.5 in the frame of the host galaxy and the fast mode wave has Lorentz factor Γ{sub Fwave}{sup beam}≈1.6 in the frame of the beam. This gives a maximum apparent speed for the moving features, β{sub app} = v{sub app}/c = 10. In this model the Lorentz factor of the pattern in the galaxy frame is approximately three times larger than that of the beam itself.

  16. Emission features of femtosecond laser ablated carbon plasma in ambient helium

    NASA Astrophysics Data System (ADS)

    Al-Shboul, K. F.; Harilal, S. S.; Hassanein, A.

    2013-04-01

    We investigated the optical emission features of plasmas produced by 800 nm, 40 fs ultrafast laser pulses on a carbon target in the presence of ambient helium or nitrogen gases at varied pressures. Fast photography employing intensified charge coupled device, optical emission spectroscopy, and temporally spatially resolved optical time of flight emission spectroscopy were used as diagnostic tools. Spatio-temporal contours of excited neutral, ionic, as well as molecular carbon species in the plume were obtained using time of flight emission spectroscopy. These contours provided detailed account of molecular species evolution and expansion dynamics and indicate that three-body recombination is a major mechanism for carbon dimers generation in ultrafast laser ablation plumes in the presence of ambient gas. A systematic comparison of the emission features from ns and fs laser ablation carbon plumes as well as their expansion in ambient helium is also given. C2 vibrational temperatures were estimated during carbon plasma expansion with lower values in ambient helium compared to nitrogen and showed decreasing values with respect to space and ambient gas pressure.

  17. Mixed aromatic-aliphatic organic nanoparticles as carriers of unidentified infrared emission features

    NASA Astrophysics Data System (ADS)

    Kwok, Sun; Zhang, Yong

    2011-11-01

    Unidentified infrared emission bands at wavelengths of 3-20 micrometres are widely observed in a range of environments in our Galaxy and in others. Some features have been identified as the stretching and bending modes of aromatic compounds, and are commonly attributed to polycyclic aromatic hydrocarbon molecules. The central argument supporting this attribution is that single-photon excitation of the molecule can account for the unidentified infrared emission features observed in `cirrus' clouds in the diffuse interstellar medium. Of the more than 160 molecules identified in the circumstellar and interstellar environments, however, not one is a polycyclic aromatic hydrocarbon molecule. The detections of discrete and broad aliphatic spectral features suggest that the carrier of the unidentified infrared emission features cannot be a pure aromatic compound. Here we report an analysis of archival spectroscopic observations and demonstrate that the data are most consistent with the carriers being amorphous organic solids with a mixed aromatic-aliphatic structure. This structure is similar to that of the organic materials found in meteorites, as would be expected if the Solar System had inherited these organic materials from interstellar sources.

  18. Mixed aromatic-aliphatic organic nanoparticles as carriers of unidentified infrared emission features.

    PubMed

    Kwok, Sun; Zhang, Yong

    2011-11-01

    Unidentified infrared emission bands at wavelengths of 3-20 micrometres are widely observed in a range of environments in our Galaxy and in others. Some features have been identified as the stretching and bending modes of aromatic compounds, and are commonly attributed to polycyclic aromatic hydrocarbon molecules. The central argument supporting this attribution is that single-photon excitation of the molecule can account for the unidentified infrared emission features observed in 'cirrus' clouds in the diffuse interstellar medium. Of the more than 160 molecules identified in the circumstellar and interstellar environments, however, not one is a polycyclic aromatic hydrocarbon molecule. The detections of discrete and broad aliphatic spectral features suggest that the carrier of the unidentified infrared emission features cannot be a pure aromatic compound. Here we report an analysis of archival spectroscopic observations and demonstrate that the data are most consistent with the carriers being amorphous organic solids with a mixed aromatic-aliphatic structure. This structure is similar to that of the organic materials found in meteorites, as would be expected if the Solar System had inherited these organic materials from interstellar sources. PMID:22031328

  19. Analysis of the New Sodium Emission Feature Discovered in Io's Wake

    NASA Astrophysics Data System (ADS)

    Lovering, Jessica; Schneider, N. M.; Grava, C.; Barbieri, C.

    2009-09-01

    Recent observations have revealed a new high-velocity sodium emission feature near Io's wake, in addition to the two well-known emission features of Io's neutral cloud. Using the SARG spectrograph on the 3.6-m Telescopio Nazionale Galileo in the Canary Islands, we observed three distinct spectral features lying parallel to Io's orbit. While the "banana cloud” of slow sodium and the fast sodium "jet” or "stream” are well understood, the Jupiter-ward orientation and high velocity (>10 km/s) of this new feature make it quite unexpected. Unlike the slow sodium of the banana cloud, the velocity of this new feature suggests a source process due to electrodynamic interactions, similar to Io's jet or stream. However, the Jupiter-ward direction of this new feature suggests it does not have the same source mechanism as the jet, which ejects opposite Jupiter. In our pre- and post-eclipse observations we found that this new feature disappears after eclipse, suggesting that the source mechanism is inhibited by atmospheric collapse or a change in photoionization. We will present characterization of this new feature including extent, velocity distribution, and source rate. Modeling the velocity distribution and comparing with observed velocity distributions allow us to pinpoint the source mechanism. We will also discuss the most likely source processes based on the observations. This work has been supported by NSF's Planetary Astronomy Program, INAF/TNG, Dipartimento di Astronomia and CISAS, Università di Padova, through a contract by the Italian Space Agency ASI.

  20. The effect of emissive biased limiter on the magnetohydrodynamic modes in the IR-T1 tokamak

    SciTech Connect

    Ghasemloo, M.; Ghoranneviss, M.; Salem, M. K.; Arvin, R.; Mohammadi, S.; Nik Mohammadi, A.

    2013-03-15

    A moveable emissive biased limiter (EBL) for the investigation of spatial and temporal structure of MHD modes in IR-T1 tokamak, based on mirnov oscillations, was designed and constructed. The biasing has been considered to improve the global confinement by setting up an electric field at the plasma edge. Radial electric field (E{sub r}) modifies edge plasma turbulence, plasma rotation, and transport. Mirnov oscillations using singular value decomposition (SVD) and wavelet techniques were analyzed. SVD algorithm has been employed to analyze the frequency and wavenumber harmonics of the MHD fluctuations. The time-resolved frequency component analysis has been performed using wavelets. The EBL was applied to plasma at 10 ms with negative polarity. The results show that after applying EBL, the m = 2 mode is grown, m = 3 mode is suppressed, and H{sub {alpha}} radiation is decreased. Furthermore, results of the wavelet analysis of mirnov coil in the time range of 8-12 ms indicate that 1.5 ms after applying EBL, the MHD frequency is reduced from 45 kHz to 25 kHz.

  1. Polarization features of solar radio emission and possible existence of current sheets in active regions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Zheleznyakov, V. V.; White, S. M.; Kundu, M. R.

    1994-01-01

    We show that it is possible to account for the polarization features of solar radio emission provided the linear mode coupling theory is properly applied and the presence of current sheets in the corona is taken into account. We present a schematic model, including a current sheet that can explain the polarization features of both the low frequency slowly varying component and the bipolar noise storm radiation; the two radiations face similar propagation conditions through a current sheet and hence display similar polarization behavior. We discuss the applications of the linear mode coupling theory to the following types of solar emission: the slowly varying component, the microwave radio bursts, metric type U bursts, and bipolar noise storms.

  2. THE 5.25 AND 5.7 {mu}m ASTRONOMICAL POLYCYCLIC AROMATIC HYDROCARBON EMISSION FEATURES

    SciTech Connect

    Boersma, C.; Tielens, A. G. G. M.; Mattioda, A. L.; Allamandola, L. J.; Bauschlicher, C. W.; Peeters, E.

    2009-01-10

    Astronomical mid-IR spectra show two minor polycyclic aromatic hydrocarbon (PAH) features at 5.25 and 5.7 {mu}m (1905 and 1754 cm{sup -1}) that hitherto have been little studied, but contain information about the astronomical PAH population that complements that of the major emission bands. Here, we report a study involving both laboratory and theoretical analysis of the fundamentals of PAH spectroscopy that produce features in this region and use these to analyze the astronomical spectra. The Infrared Space Observatory Short Wavelength Spectrograph spectra of 15 objects showing these PAH features were considered for this study, however only four (HD 44179; NGC 7027; Orion Bar, two positions) have sufficient signal-to-noise between 5 and 6 {mu}m to allow for an in-depth analysis. All four astronomical spectra show similar peak positions and profiles. The 5.25 {mu}m feature is peaked and asymmetric, with an FWHM of about 0.12 {+-} 0.01 {mu}m ({approx}40 {+-} 6.5 cm{sup -1}), while the 5.7 {mu}m feature is broader and flatter, with an FWHM of about 0.17 {+-} 0.02 {mu}m (50 {+-} 5.6 cm{sup -1}). Detailed analysis of the laboratory spectra and quantum-chemical calculations show that the astronomical 5.25 and 5.7 {mu}m bands are a blend of combination, difference and overtone bands primarily involving CH stretching and CH in-plane and CH out-of-plane bending fundamental vibrations. The experimental and computational spectra show that, of all the hydrogen adjacency classes that are possible on PAHs, solo and duo hydrogens consistently produce prominent bands at the observed positions, whereas quartet hydrogens do not. In all, this study supports the picture that astronomical PAHs are large with compact, regular structures. From the coupling with primarily strong CH out-of-plane bending modes, one might surmise that the 5.25 and 5.7 {mu}m bands track the neutral PAH population. However, theory suggests that the role of charge in these astronomical bands might also be

  3. A far-infrared emission feature in carbon-rich stars and planetary nebulae

    NASA Technical Reports Server (NTRS)

    Forrest, W. J.; Houck, J. R.; Mccarthy, J. F.

    1981-01-01

    The 16-30 micron spectra of several carbon stars and the planetary nebulae IC 418 and NGC 6572 have been obtained using the NASA C-141 Kuiper Airborne Observatory. A newly observed emission feature appears in the spectrum of IRC +10216 and several other carbon stars at wavelengths greater than 24 microns. The feature is interpreted as resulting from a solid-state resonance in the dust grains which have condensed around these stars. A similar feature appears in the spectra of IC 418 and NGC 6572, implying that the same type of dust is present. Since the dust probably condensed from a carbon-rich gas, this indicates an evolutionary link between carbon stars and these planetary nebulae. No identification for the grain material has been found, but some clues are apparent which could aid in the identification.

  4. The molecular hydrogen emission around L1551 IRS 5 - Shock-heated molecular gas at the base of the molecular outflow

    NASA Technical Reports Server (NTRS)

    Yamashita, Takuya; Tamura, Motohide

    1992-01-01

    Spatially resolved observations of the v = 1-0 S(1) molecular hydrogen emission toward L1551 IRS 5 using the grating spectrometer at KPNO are presented. The S(1) emission consists of a ridge component extending toward west along the optical jet from its peak on IRS 5 and a diffuse component which traces the innermost region of the cavity enclosed by the molecular outflow. The ridge component represents shock-heated molecular gas at the root of the optical jet. The diffuse component is too bright to be of scattered origin; it most likely arises from shock-heated gas within the cavity and could represent an acceleration process of the molecular outflow.

  5. Emission intensity in the visible and IR spectral ranges from Si-based structures formed by direct bonding with simultaneous doping with erbium (Er) and europium (Eu)

    SciTech Connect

    Mezdrogina, M. M. Kostina, L. S.; Beliakova, E. I.; Kuzmin, R. V.

    2013-09-15

    The photo- and electroluminescence spectra of silicon-based structures formed by direct bonding with simultaneous doping with rare-earth metals are studied. It is shown that emission in the visible and IR spectral ranges can be obtained from n-Si:Er/p-Si and n-Si:Eu/p-Si structures fabricated by the method suggested in the study. The results obtained make this method promising for the fabrication of optoelectronic devices.

  6. Narrowband Radio Emission As A Possible Feature of Before CMEs Onset Processes

    NASA Astrophysics Data System (ADS)

    Fridman, V.; Sheiner, O.; Grechin, S.

    The narrow band events in microwave radio emission were discovered during the ob- servations by RT-22 CrAO on August 12, 1989 before CMEs registration has been done. The observations were carried out using the sweeping spectrograph in 13-17 GHz range with frequency resolution of 100 MHz and sweeping time of less then 1 sec. It is well known that the period preceding the CMEs formation is characterized by sporadic radio emission of different types. We have found the existence of fast changes in temporal behavior of radio emission during the burst. They are character- ized by consistent origin of narrow-band (<1 GHz) components of emission with flux amplitude of about 1 sfu, moving from high to low frequencies in 1-3 seconds. We detected the shift of spectral maximum to short waves and appearance of narrow-band (<800 MHz) features during the CMEs formation. The results are being discussed within the framework of known models of radioemission of active region and bursts. Their application to possible conditions in formation of CMEs is also addressed in this research. This work is being supported by the Federal Science and Technology Programme "Astronomy" and the Russian Foundation for Fundamental Research.

  7. Laboratory simulation of infrared astrophysical features. Ph.D. Thesis; [emission spectra of comets

    NASA Technical Reports Server (NTRS)

    Rose, L. A.

    1977-01-01

    Intermediate resolution emission spectroscopy was used to study a group of 9 terrestrial silicates, 1 synthetic silicate, 6 meteorites and 2 lunar soils; comparisons were made with the intermediate resolution spectra of Comet Kohoutek in order to determine which materials best simulate the 10um astrophysical feature. Mixtures of silicates which would yield spectra matching the spectrum of the comet in the 10um region include: (1) A hydrous layer lattice silicate in combination with a high temperature condensate; (2) an amorphous magnesium silicate in combination with a high temperature condensate and (3) glassy olivine and glassy anorthite in approximately equal proportions.

  8. Spectroscopic observations of bright and dark emission features on the night side of venus.

    PubMed

    Bell, J F; Crisp, D; Lucey, P G; Ozoroski, T A; Sinton, W M; Willis, S C; Campbell, B A

    1991-05-31

    Near-infrared spectra of a bright and a dark thermal emission feature on the night side of Venus have been obtained from 2.2 to 2.5 micrometers (microm) at a spectral resolution of 1200 to 1500. Both bright and dark features show numerous weak absorption bands produced by CO(2), CO, water vapor, and other gases. The bright feature (hot spot) emits more radiation than the dark feature (cold spot) throughout this spectral region, but the largest contrasts occur between 2.21 and 2.32 microm, where H(2)SO(4) clouds and a weak CO(2) band provide the only known sources of extinction. The contrast decreases by 55 to 65 percent at wavelengths longer than 2.34 microm, where CO, clouds, and water vapor also absorb and scatter upwelling radiation. This contrast reduction may provide direct spectroscopic evidence for horizontal variations in the water vapor concentrations in the Venus atmosphere at levels below the cloud tops. PMID:17842954

  9. On the Origin of the 11.3 Micron Unidentified Infrared Emission Feature

    NASA Astrophysics Data System (ADS)

    Sadjadi, SeyedAbdolreza; Zhang, Yong; Kwok, Sun

    2015-07-01

    The 11.3 μm emission feature is a prominent member of the family of unidentified infrared emission (UIE) bands and is frequently attributed to out-of-plane bending modes of polycyclic aromatic hydrocarbon (PAH) molecules. We have performed quantum mechanical calculations of 60 neutral PAH molecules and found that it is difficult to reconcile the observed astronomical feature with any or a mix of these PAH molecules. We have further analyzed the fitting of spectra of several astronomical objects by the NASA PAH database program and found that reasonable fittings to the observed spectra are only possible by including significant contributions from oxygen- and/or magnesium-containing molecules in the mix. A mix of pure PAH molecules, even including units of different sizes, geometry, and charged states, is unable to fit the astronomical spectra. Preliminary theoretical results on the vibrational spectra of simple molecules with mixed aromatic/aliphatic structures show that these structures have consistent clusters of vibrational modes and could be viable carriers of the UIE bands.

  10. THE CARRIERS OF THE INTERSTELLAR UNIDENTIFIED INFRARED EMISSION FEATURES: AROMATIC OR ALIPHATIC?

    SciTech Connect

    Li Aigen; Draine, B. T. E-mail: draine@astro.princeton.edu

    2012-12-01

    The unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 {mu}m, commonly attributed to polycyclic aromatic hydrocarbon (PAH) molecules, have been recently ascribed to coal- or kerogen-like organic nanoparticles with a mixed aromatic-aliphatic structure. However, we show in this Letter that this hypothesis is inconsistent with observations. We estimate the aliphatic fraction of the UIE carriers based on the observed intensities of the 3.4 {mu}m and 6.85 {mu}m emission features by attributing them exclusively to aliphatic C-H stretch and aliphatic C-H deformation vibrational modes, respectively. We derive the fraction of carbon atoms in aliphatic form to be <15%. We conclude that the UIE emitters are predominantly aromatic, with aliphatic material at most a minor part of the UIE carriers. The PAH model is consistent with astronomical observations and PAHs dominate the strong UIE bands.

  11. Hard X-ray emission and {sup 44}Ti line features of the Tycho supernova remnant

    SciTech Connect

    Wang, Wei; Li, Zhuo E-mail: zhuo.li@pku.edu.cn

    2014-07-10

    A deep hard X-ray survey of the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite has detected for the first time non-thermal emission up to 90 keV in the Tycho supernova (SN) remnant. Its 3-100 keV spectrum is fitted with a thermal bremsstrahlung of kT ∼ 0.81 ± 0.45 keV plus a power-law model of Γ ∼ 3.01 ± 0.16. Based on diffusive shock acceleration theory, this non-thermal emission, together with radio measurements, implies that the Tycho remnant may not accelerate protons up to >PeV but to hundreds TeV. Only heavier nuclei may be accelerated to the cosmic ray spectral 'knee'. In addition, using INTEGRAL, we search for soft gamma-ray lines at 67.9 and 78.4 keV that come from the decay of radioactive {sup 44}Ti in the Tycho remnant. A bump feature in the 60-90 keV energy band, potentially associated with the {sup 44}Ti line emission, is found with a marginal significance level of ∼2.6σ. The corresponding 3σ upper limit on the {sup 44}Ti line flux amounts to 1.5 × 10{sup –5} photon cm{sup –2} s{sup –1}. Implications on the progenitor of the Tycho SN, considered to be a Type Ia SN prototype, are discussed.

  12. Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures

    SciTech Connect

    Farid, N.; Harilal, S. S. Hassanein, A.; Ding, H.

    2014-01-21

    The influence of ambient pressure on the spectral emission features and expansion dynamics of a plasma plume generated on a metal target has been investigated. The plasma plumes were generated by irradiating Cu targets using 6 ns, 1064 nm pulses from a Q-switched Nd:YAG laser. The emission and expansion dynamics of the plasma plumes were studied by varying air ambient pressure levels ranging from vacuum to atmospheric pressure. The ambient pressure levels were found to affect both the line intensities and broadening along with the signal to background and signal to noise ratios and the optimum pressure conditions for analytical applications were evaluated. The characteristic plume parameters were estimated using emission spectroscopy means and noticed that the excitation temperature peaked ∼300 Torr, while the electron density showed a maximum ∼100 Torr. Fast-gated images showed a complex interaction between the plume and background air leading to changes in the plume geometry with pressure as well as time. Surface morphology of irradiated surface showed that the pressure of the ambient gas affects the laser-target coupling significantly.

  13. Spectral and ion emission features of laser-produced Sn and SnO2 plasmas

    NASA Astrophysics Data System (ADS)

    Hui, Lan; Xin-Bing, Wang; Du-Luo, Zuo

    2016-03-01

    We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are irradiated with 1.06 μm, 8 ns Nd:YAG laser pulses. Fast photography employing an intensified charge coupled device (ICCD), optical emission spectroscopy (OES), and optical time of flight emission spectroscopy are used as diagnostic tools. Our results show that the Sn plasma provides a higher extreme ultraviolet (EUV) conversion efficiency (CE) than the SnO2 plasma. However, the kinetic energies of Sn ions are relatively low compared with those of SnO2. OES studies show that the Sn plasma parameters (electron temperature and density) are lower compared to those of the SnO2 plasma. Furthermore, we also give the effects of the vacuum degree and the laser pulse energy on the plasma parameters. Project supported by the National Natural Science Foundation of China (Grant No. 11304235) and the Director Fund of WNLO, China.

  14. High-spectral resolution observations of the 3.29 micron emission feature: Comparison to QCC and PAHs

    NASA Technical Reports Server (NTRS)

    Tokunaga, Alan T.; Sellgren, Kris; Sakata, Akira; Wada, S.; Onaka, Takashi; Nakada, Y.; Nagata, T.

    1989-01-01

    Two of the most promising explanations for the origin of the interstellar emission features observed at 3.29, 3.4, 6.2, 7.7, 8.6, and 11.3 microns are: quenched carbonaceous composite (QCC) and polycyclic aromatic hydrocarbons (PAHs). High resolution spectra are given of the 3.29 micron emission feature which were taken with the Cooled Grating Array Spectrometer at the NASA Infrared Telescope Facility and previously published. These spectra show that the peak wavelength of the 3.29 micron feature is located at 3.295 + or - 0.005 micron and that it is coincident with the peak absorbance of QCC. The peak wavelength of the 3.29 micron feature appears to be the same in all of the sources observed thus far. However, the width of the feature in HD 44179 and Elias 1 is only 0.023 micron, which is smaller than the 0.043 micron width in NGC 7027, IRAS 21282+5050, the Orion nebula, and BD+30 deg 3639. Spectra of NGC 7027, QCC, and PAHs is shown. QCC matches the 3.29 micron interstellar emission feature very closely in the wavelength of the peak, and it produces a single feature. On the other hand, PAHs rarely match the peak of the interstellar emission feature, and characteristically produce multiple features.

  15. The spatial extent and nature of the 3-micron emission features in HD 97048 and CPD-56 deg 8032

    NASA Astrophysics Data System (ADS)

    Roche, P. F.; Allen, D. A.; Bailey, J. A.

    1986-05-01

    Speckle observations at the peaks of narrow dust emission features at 3.3 and 3.5 microns in the low-excitation planetary nebula CPD-56 deg 8032 and the peculiar emission-line star HD 97048 are presented. In CPD-56 deg 8032 the emission in the 3.28-micron band is extended on a scale of approximately 1.3 arcsec, and this is probably the same as the extent of the ionized nebula. By contrast, the emission in the 3.53-micron band in HD 97048 is spatially unresolved and arises from a region less than 0.1 arcsec across. Dust grains within 0.05 arcsec of the star have temperatures not less than 1000 K, so that the proposed identification of the species emitting the strong 3.43-and 3.53-micron features with formaldehyde ice is untenable, and the materials responsible for the band emission remain unidentified.

  16. Features for instantaneous emissions of low-level infrared signals of glucokinase enzyme from Pyrococcus furiosus.

    PubMed

    Torres, Sergio; Mella, Héctor; Reyes, Claudio; Meza, Pablo; Gallardo, Maria J; Staforelli, Juan P

    2015-03-10

    A noncontact infrared (IR) imaging-based methodology and signal recovery tools are applied on an enzyme reaction as a test target. The method is implemented by a long-wave (8-12 μm) IR microbolometer imaging array and a germanium-based IR optical vision. The reaction is carried out by the glucokinase, which produces a rapid exothermal release of energy that is weak, and, even worse, the IR video captured by the uncooled microbolometer detector is affected by spatial and temporal noise with specific complexities. Hitherto, IR-based signal recovery tools have worked with a standard acquisition frequency, which is clearly beyond the time scale of a real scenario. The implications of this (and similar) rapid reactions motivate the designs of a signal recovery method using prior information of the processes to extract and quantify the spontaneity of the enzymatic reaction in a three-dimensional (space and time) single and noncontact online measurement. PMID:25968383

  17. Comparison of EUV spectral and ion emission features from laser-produced Sn and Li plasmas

    NASA Astrophysics Data System (ADS)

    Coons, R. W.; Campos, D.; Crank, M.; Harilal, S. S.; Hassanein, A.

    2010-04-01

    Planar slabs of pure Sn and Li were irradiated with 1064 nm, 9 ns Nd:YAG laser pulses. The resulting plasmas were evaluated with an absolutely calibrated extreme ultraviolet (EUV) power tool, a transmission grating spectrograph, a pinhole camera, and a Faraday cup. These diagnostic tools have allowed us to determine EUV conversion efficiency (CE), EUV spectral emission features, EUV-emitting plasma size, and the kinetic energies and fluxes of ions at various laser intensities for both Sn and Li plasmas. The maximum estimated CE values for Li and Sn plasmas are 1 +/- 0.1 % and 2 +/- 0.2 %, respectively. The Li2+ Lyman-α line and Sn8-13+ lines generate the in-band emissions of Li and Sn. The intensity of Li2+ lines was found to increase with laser intensity. However, the Sn unresolved transmission array (UTA) showed remarkable changes with at higher laser intensities, including the appearance of a spectral dip. EUV plasma images showed that Sn plasmas take on a conical shape, as opposed to the hemispherical shape of Li plasmas. Ion debris analysis showed the kinetic energies for Li ions are less than that of Sn ions under similar conditions. Moreover, the kinetic spread of Li ions has been found to be narrower compared to the kinetic energy distribution of the Sn ions. We also compared the ion flux emitted by Sn and Li plasmas.

  18. Noninvasive express diagnostics of pulmonary diseases based on control of patient's gas emission using methods of IR and terahertz laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Starikova, M. K.; Bulanova, A. A.; Bukreeva, E. B.; Karapuzikov, A. A.; Karapuzikov, A. I.; Kistenev, Y. V.; Klementyev, V. M.; Kolker, D. B.; Kuzmin, D. A.; Nikiforova, O. Y.; Ponomarev, Yu. N.; Sherstov, I. V.; Boyko, A. A.

    2013-11-01

    Pulmonary diseases diagnostics always occupies one of the key positions in medicine practices. A large variety of high technology methods are used today, but none of them cannot be used for early screening of pulmonary diseases. We discuss abilities of methods of IR and terahertz laser spectroscopy for noninvasive express diagnostics of pulmonary diseases on a base of analysis of absorption spectra of patient's gas emission, in particular, exhaled air. Experience in the field of approaches to experimental data analysis and hard-ware realization of gas analyzers for medical applications is also discussed.

  19. Ly(alpha) emission and absorption features in the spectra of galaxies

    NASA Technical Reports Server (NTRS)

    Chen, W. L.; Neufeld, David A.

    1994-01-01

    The combined effects of interstellar dust absorption and of scattering by hydrogen atoms may give rise to a Ly(alpha) spectral feature of negative equivalent width, as has been observed in several star-forming galaxies. By considering the transfer of Ly(alpha) line radiation and of neighboring stellar continuum radiation within a dusty galaxy, we find that dust absorption has three effects: (1) it reduces the apparent ultraviolet continuum luminosity at all wavelengths; (2) it preferentially decreases the apparent Ly(alpha) line luminosity from H II regions; and (3) it creates an 'attenuation feature' in the continuum spectrum -- centered at the Ly(alpha) rest frequency -- which occurs because the attenuation of the stellar continuum radiation increases as the Ly(alpha) rest frequency is approached, due to the effects of scattering by hydrogen atoms. For plausible values of the galactic dust content and of the disk thickness, these effects can lead to a negative net Ly(alpha) equivalent width, even for galaxies in which the unattenuated spectrum would show a strong Ly(alpha) emission line.

  20. Spatial variations of the 3 micron emission features within UV-excited nebulae - Photochemical evolution of interstellar polycyclic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Geballe, T. R.; Tielens, A. G. G. M.; Allamandola, L. J.; Moorhouse, A.; Brand, P. W. J. L.

    1989-01-01

    Spectra at 3 microns have been obtained at several positions in the Orion Bar region and in the nebula surrounding HD 44179. Weak emission features at 3.40, 3.46, 3.51, and 3.57 microns are prominent in the Orion Bar region. The 3.40- and 3.51-micron features increase in intensity relative to the dominant 3.29-micron feature. The spectrum obtained in the Red Rectangle region 5 arcsecs north of HD 44179 are similar to those in the Orion Bar, with a weak, broad 3.40-micron feature at the position of HD 44179. The spatial behavior of the weak emission features is explained in terms of hot bands of the CH stretch and overtones, and combination bands of other fundamental vibrations in simple PAHs. Based on the susceptibility of PAHs to destruction by the far UV fields in both regions, PAH sizes are estimated at 20-50 carbon atoms.

  1. Excited-state dynamics and enhanced near-IR emission in Nd3+-structurally activated aluminophosphate glass containing silver and tin

    NASA Astrophysics Data System (ADS)

    Jiménez, José A.; Lysenko, Sergiy; Sendova, Mariana; Zhao, Chunqing

    2015-08-01

    The excited state dynamics and near-infrared (IR) luminescent properties of Nd3+-doped melt-quenched aluminophosphate glass containing silver and tin have been investigated under pulsed-laser and steady-state excitation at 266 nm. A comparative emission dynamics assessment was carried out concerning Ag and Sn dopants in the glass matrix with and without neodymium. The data indicates an effective non-radiative energy transfer from single Ag+ ions and Sn centers as donors to neodymium activator ions which ultimately populates the 4F3/2 emitting state in Nd3+. As a result, the near-IR (1.06 μm) emission from the 4F3/2 metastable state in Nd3+ is enhanced about an order of magnitude relative to a purely Nd-doped reference. In addition, the 4F3/2 excited state lifetime becomes significantly longer in the presence of silver and tin. A comparative 31P nuclear magnetic resonance spectroscopy study suggests glass depolymerization upon neodymium doping. It is proposed that a structural alteration might be linked to the established non-radiative energy transfer.

  2. Late-time mid-IR emission from Type Ia and stripped-envelope core-collapse supernovae - possible sign of circumstellar interaction

    NASA Astrophysics Data System (ADS)

    Szalai, Tamas; Vinko, Jozsef; Pooley, David A.; Silverman, Jeffrey Michael; Wheeler, J. Craig

    2016-01-01

    The signs of circumstellar interaction in the late phase (>1 yr) of supernovae (SNe) can be studied in various wavelength regimes from X-ray to radio. These observations offer a chance to reveal information about the type and mass-loss history of the progenitor, the presence of a companion star, and the environment of the SN. While this phenomenon is well-known and well-studied concerning SN IIn, similar processes have not been observed to take place in other types of SNe.We suggest that numeruous objects belong to other types of SNe (SNe Ia, Ib/c or IIb) may also show detectable sign of circumstellar interaction. In these types of SNe, the source of late-time mid-infrared (mid-IR) excess may be some kind of interaction between the SN ejecta and the circumstellar matter (CSM) that originated from the pre-explosion mass-loss of the progenitor and/or its companion star. The observed mid-IR emission from these SNe, especially combined with data from other wavelength regimes, may be a convincing sign of CSM interaction.Here we present some unpublished results based on the archive measurements of the Spitzer Space Telescope. Our study includes the analysis of late-time mid-IR emission from such well-known CSM-interacting SNe like SN Ia-CSM PTF11kx, SN Ibn 2001em, and SN IIb 1993J, as well as from some other interesting Type Ia and stripped-envelope SNe, where CSM interaction may also take place.

  3. The Galactic disc distribution of planetary nebulae with warm dust emission features - II

    NASA Astrophysics Data System (ADS)

    Casassus, S.; Roche, P. F.

    2001-02-01

    We address the question of whether the distribution of warm-dust compositions in IR-bright Galactic disc PNe (Paper I, Casassus et al.) can be linked to the underlying stellar population. The PNe with warm dust emission represent a homogeneous population, which is presumably young and minimally affected by a possible dependence of PN lifetime on progenitor mass. The sample in Paper I thus allows testing of the predictions of single-star evolution, through a comparison with synthetic distributions and under the assumption that tip-of-the-AGB and PN statistics are similar. We construct a schematic model for AGB evolution (adapted from Groenewegen & de Jong), the free parameters of which are calibrated with the luminosity function (LF) of C stars in the LMC, the initial-final mass relation and the range of PN compositions. The observed metallicity gradient and distribution of star-forming regions with Galactocentric radius (Bronfman et al.) allow us to synthesize the Galactic disc PN progenitor population. We find that the fraction of O-rich PNe, f(0), is a tight constraint on AGB parameters. For our best model, a minimum PN progenitor mass Mmin=1 M⊙ predicts that about 50per cent of all young PNe should be O-rich, compared with an observed fraction of 22per cent; thus Mmin=1.2 M⊙, at a 2σ confidence level Mmin=1.3 M⊙ at 1σ). By contrast, current AGB models for single stars can account neither for the continuous range of N enrichment (Leisy & Dennefeld) nor for the observation that the majority of very C-rich PNe have Peimbert type I (Paper I). f(O) is thus an observable quantity much easier to model. The decrease in f(O) with Galactocentric radius, as reported in Paper I, is a strong property of the synthetic distribution, independent of Mmin. This trend reflects the sensitivity of the surface temperature of AGB stars and of the core mass at the first thermal pulse to the Galactic metallicity gradient.

  4. The correlation dimension: A robust chaotic feature for classifying acoustic emission signals generated in construction materials

    NASA Astrophysics Data System (ADS)

    Kacimi, S.; Laurens, S.

    2009-07-01

    In the field of acoustic emission (AE) source recognition, this paper presents a classification feature based on the paradigm of nonlinear dynamical systems, often referred to as chaos theory. The approach considers signals as time series expressing an underlying dynamical phenomenon and enclosing all the information regarding the dynamics. The scientific knowledge on nonlinear dynamical systems has considerably improved for the past 40 years. The dynamical behavior is analyzed in the phase space, which is the space generated by the state variables of the system. The time evolution of a system is expressed in the phase space by trajectories, and the asymptotic behavior of trajectories defines a space area which is referred to as a system attractor. Dynamical systems may be characterized by the topological properties of attractors, such as the correlation dimension, which is a fractal dimension. According to Takens theorem, even if the system is not clearly defined, it is possible to infer topological information about the attractor from experimental observations. Such a method, which is called phase space reconstruction, was successfully applied for the classification of acoustic emission waveforms propagating in more or less complex materials such as granite and concrete. Laboratory tests were carried out in order to collect numerous AE waveforms from various controlled acoustic sources. Then, each signal was processed to extract a reconstructed attractor from which the correlation dimension was computed. The first results of this research show that the correlation dimension assessed after phase space reconstruction is very relevant and robust for classifying AE signals. These promising results may be explained by the fact that the totality of the signal is used to achieve classifying information. Moreover, due to the self-similar nature of attractors, the correlation dimension, and thus a correlation dimension-based classification approach, is theoretically

  5. Time-resolved optically stimulated luminescence and spectral emission features of α-Al2O3:C

    NASA Astrophysics Data System (ADS)

    Chithambo, M. L.; Nyirenda, A. N.; Finch, A. A.; Rawat, N. S.

    2015-09-01

    This report is concerned with the influence of measurement temperature on luminescence lifetime and on the spectral emission features of luminescence from α-Al2O3:C. The lifetimes were determined from time-resolved luminescence spectra. Spectral measurements were done using thermoluminescence and X-ray excited optical luminescence. The emission spectra of α-Al2O3:C studied in this work shows prominent bands at 330, 380 and 420 nm associated with vacancies in the oxygen sub-lattice in α-Al2O3:C and an additional band at 695 nm due to Cr substitution for Al. Emission bands below 500 nm are independent of temperature below 125 °C but widen with temperature. Direct evidence of thermal quenching of the 420 nm emission band is provided. Beyond 200 °C, the 380 and 420 nm bands merge and widen, with the 420 nm emission dominant. Before the onset of thermal quenching, luminescence lifetimes are affected by retrapping both in the shallow- and in the main electron trap. This was deduced from features of time-resolved luminescence spectra measured from samples with and without the shallow trap. Additional measurements with temperature decreasing from 160 to 20 °C, after phototransfer as well as after a considerable delay between irradiation and measurement, suggest that the change in lifetimes could also be related to other factors including slight shifts in emission wavelength for the 380 and 420 nm emissions.

  6. Thermal emission spectroscopy of microcrystalline sedimentary phases: Effects of natural surface roughness on spectral feature shape

    NASA Astrophysics Data System (ADS)

    Hardgrove, C. J.; Rogers, A. D.; Glotch, T. D.; Arnold, J. A.

    2016-03-01

    Distinguishing between microcrystalline and macrocrystalline mineral phases can help constrain the conditions under which those minerals formed or the degree of postdepositional alteration. This study demonstrates the effects of crystal size and surface roughness on thermal infrared emission spectra of micro and macrocrystalline phases of the two most common minerals on Earth, quartz and calcite. Given the characteristic depositional and environmental conditions under which microcrystalline minerals form, and the recent observations of high-silica deposits on Mars, it is important to understand how these unique materials can be identified using remote infrared spectroscopy techniques. We find that (a) microcrystalline minerals exhibit naturally rough surfaces compared to their macrocrystalline counterparts at the 10 µm scale; and that (b) this roughness causes distinct spectral differences within the Reststrahlen bands of each mineral. These spectral differences occur for surfaces that are rough on the wavelength scale, where the absorption coefficient (k) is large. Specifically, the wavelength positions of the Reststrahlen features for microcrystalline phases are narrowed and shifted compared to macrocrystalline counterparts. The spectral shape differences are small enough that the composition of the material is still recognizable, but large enough such that a roughness effect could be detected. Petrographic and topographic analyses of microcrystalline samples suggest a relationship between crystal size and surface roughness. Together, these observations suggest it may be possible to make general inferences about microcrystallinity from the thermal infrared spectral character of samples, which could aid in reconstructions of sedimentary rock diagenesis where corresponding petrographic or microimaging is not available.

  7. Optical Emission Spectroscopy in PECVD Helps Modulate Key Features in Biofunctional Coatings for Medical Implants

    NASA Astrophysics Data System (ADS)

    Santos, Miguel; Michael, Praveesuda; Filipe, Elysse; Wise, Steven; Bilek, Marcela; University of Sydney Collaboration

    2015-09-01

    We explore the use of optical emission spectroscopy (OES) diagnostic tools as a process feedback control strategy in plasma-assisted deposition of biofunctional coatings. Hydrogenated carbon nitride coatings are deposited on medical-grade metallic substrates using radio-frequency (rf) discharges sustained in C2H2/N2/Ar gaseous mixtures. The discharge is generated by capacitively coupling the rf power (supplied at f = 13.56 MHz) to the plasma and the substrates are electrically biased using a pulse generator to provide microsecond square profiled pulses at voltages in the range |Vbias| = 250 V - 1000 V. Nitrogen content and CN bonding configurations in the coatings follow similar trends to those of CN radicals and nitrogen molecular ions in the discharge. OES is used as a non-intrusive diagnostic technique to identify a suitable window of process parameters and ultimately achieve biofunctional interfaces compatible with current clinical demands. Importantly, we demonstrate that key features of the coatings can be modulated and made suitable for blood and/or tissue contacting medical implants, such as coronary stents and orthopaedic implants. The coatings are mechanically robust, inherently non-thrombogenic and can be readily modified, enabling an easy functionalization through the immobilization of biological molecules in a bioactive conformation.

  8. First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere

    NASA Astrophysics Data System (ADS)

    Todd Clancy, R.; Sandor, Brad J.; García-Muñoz, Antonio; Lefèvre, Franck; Smith, Michael D.; Wolff, Michael J.; Montmessin, Franck; Murchie, Scott L.; Nair, Hari

    2013-09-01

    Visible and near-IR Meinel band emissions originate from excited OH in the terrestrial upper atmosphere (Meinel, I.A.B. [1950]. Astrophys. J. 111, 555. http://dx.doi.org/10.1086/145296), and have recently been detected in the Venus nightside upper mesosphere (Piccioni, G. et al. [2008]. Astron. Astrophys. 483, L29-L33. http://dx.doi.org/10.1051/0004-6361:200809761). Meinel band observations support key studies of transport and photochemistry in both of these atmospheres. In the case of Mars, OH regulates the basic stability of the CO2 atmosphere to photolytic decomposition (to CO and O2, e.g. Parkinson, T.D., Hunten, D.M. [1972]. J. Atmos. Sci. 29, 1380-1390. http://dx.doi.org/10.1175/1520-0469(1972)029<1380:SAAOOO>2.0.CO;2), and yet has never been measured. We present the first detection of Mars atmospheric OH, associated with CRISM near-IR spectral limb observations of polar night Meinel band emissions centered at 1.45 and 2.9 μm. Meinel band (1-0), (2-1), and (2-0) average limb intensities of 990 ± 280, 1060 ± 480, and 200 ± 100 kiloRayleighs (kR), respectively, are determined for 70-90 NS polar winter latitudes over altitudes of 40-56 km. Additional OH bands, such as (3-2), (3-1), and (4-2), present ⩽1σ measurements. Uncertainty in the (4-2) band emission rate contributes to increased uncertainty in the determination of the O2(1Δg) (0-0)/(0-1) band emission ratio A00/A01=47-12+26. An average profile retrieval for Mars OH polar nightglow indicates 45-55 km altitude levels for volume emission rates (VER) of 0.4 (2-0) to 2 (1-0, 2-1) × 104 photons/(cm3 s). Similar to polar night O2(1Δg) emission (e.g. Clancy, R.T. et al. [2012]. J. Geophys. Res. (Planets) 117, E00J10. http://dx.doi.org/10.1029/2011JE004018), Meinel OH band emission is supported by upper level, winter poleward transport of O and H in the deep Hadley solsticial circulations of Mars. The retrieved OH emission rates are compared to polar winter OH nightglow simulated by the LMD (Laboratoire

  9. First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere

    NASA Astrophysics Data System (ADS)

    Clancy, R. Todd; Sandor, Brad J.; García-Muñoz, Antonio; Lefèvre, Franck; Smith, Michael D.; Wolff, Michael J.; Montmessin, Franck; Murchie, Scott L.; Nair, Hari

    2013-09-01

    Visible and near-IR Meinel band emissions originate from excited OH in the terrestrial upper atmosphere (Meinel, I.A.B. [1950]. Astrophys. J. 111, 555. http://dx.doi.org/10.1086/145296), and have recently been detected in the Venus nightside upper mesosphere (Piccioni, G. et al. [2008]. Astron. Astrophys. 483, L29-L33. http://dx.doi.org/10.1051/0004-6361:200809761). Meinel band observations support key studies of transport and photochemistry in both of these atmospheres. In the case of Mars, OH regulates the basic stability of the CO2 atmosphere to photolytic decomposition (to CO and O2, e.g. Parkinson, T.D., Hunten, D.M. [1972]. J. Atmos. Sci. 29, 1380-1390. http://dx.doi.org/10.1175/1520-0469(1972)029<1380:SAAOOO>2.0.CO;2), and yet has never been measured. We present the first detection of Mars atmospheric OH, associated with CRISM near-IR spectral limb observations of polar night Meinel band emissions centered at 1.45 and 2.9 μm. Meinel band (1-0), (2-1), and (2-0) average limb intensities of 990 ± 280, 1060 ± 480, and 200 ± 100 kiloRayleighs (kR), respectively, are determined for 70-90 NS polar winter latitudes over altitudes of 40-56 km. Additional OH bands, such as (3-2), (3-1), and (4-2), present ⩽1σ measurements. Uncertainty in the (4-2) band emission rate contributes to increased uncertainty in the determination of the O2(1Δg) (0-0)/(0-1) band emission ratio A00/A01=47-12+26. An average profile retrieval for Mars OH polar nightglow indicates 45-55 km altitude levels for volume emission rates (VER) of 0.4 (2-0) to 2 (1-0, 2-1) × 104 photons/(cm3 s). Similar to polar night O2(1Δg) emission (e.g. Clancy, R.T. et al. [2012]. J. Geophys. Res. (Planets) 117, E00J10. http://dx.doi.org/10.1029/2011JE004018), Meinel OH band emission is supported by upper level, winter poleward transport of O and H in the deep Hadley solsticial circulations of Mars. The retrieved OH emission rates are compared to polar winter OH nightglow simulated by the LMD (Laboratoire

  10. In Vivo Quantification of 5-HT2A Brain Receptors in Mdr1a KO Rats with 123I-R91150 Single-Photon Emission Computed Tomography.

    PubMed

    Dumas, Noé; Moulin-Sallanon, Marcelle; Fender, Pascal; Tournier, Benjamin B; Ginovart, Nathalie; Charnay, Yves; Millet, Philippe

    2015-01-01

    Our goal was to identify suitable image quantification methods to image 5-hydroxytryptamine2A (5-HT2A) receptors in vivo in Mdr1a knockout (KO) rats (i.e., P-glycoprotein KO) using 123I-R91150 single-photon emission computed tomography (SPECT). The 123I-R91150 binding parameters estimated with different reference tissue models (simplified reference tissue model [SRTM], Logan reference tissue model, and tissue ratio [TR] method) were compared to the estimates obtained with a comprehensive three-tissue/seven-parameter (3T/7k)-based model. The SRTM and Logan reference tissue model estimates of 5-HT2A receptor (5-HT2AR) nondisplaceable binding potential (BPND) correlated well with the absolute receptor density measured with the 3T/7k gold standard (r > .89). Quantification of 5-HT2AR using the Logan reference tissue model required at least 90 minutes of scanning, whereas the SRTM required at least 110 minutes. The TR method estimates were also highly correlated to the 5-HT2AR density (r > .91) and only required a single 20-minute scan between 100 and 120 minutes postinjection. However, a systematic overestimation of the BPND values was observed. The Logan reference tissue method is more convenient than the SRTM for the quantification of 5-HT2AR in Mdr1a KO rats using 123I-R91150 SPECT. The TR method is an interesting and simple alternative, despite its bias, as it still provides a valid index of 5-HT2AR density. PMID:26105563

  11. DETECTION OF POWERFUL MID-IR H{sub 2} EMISSION IN THE BRIDGE BETWEEN THE TAFFY GALAXIES

    SciTech Connect

    Peterson, B. W.; Struck, C.; Appleton, P. N.; Helou, G.; Jarrett, T. H.; Guillard, P.; Cluver, M. E.; Ogle, P.; Boulanger, F.

    2012-05-20

    We report the detection of strong, resolved emission from warm H{sub 2} in the Taffy galaxies and bridge. Relative to the continuum and faint polyclic aromatic hydrocarbon (PAH) emission, the H{sub 2} emission is the strongest in the connecting bridge, approaching L(H{sub 2})/L(PAH 8 {mu}m) = 0.1 between the two galaxies, where the purely rotational lines of H{sub 2} dominate the mid-infrared spectrum in a way very reminiscent of the group-wide shock in the interacting group Stephan's Quintet (SQ). The surface brightness in the 0-0 S(0) and S(1) H{sub 2} lines in the bridge is more than twice that observed at the center of the SQ shock. We observe a warm H{sub 2} mass of 4.2 Multiplication-Sign 10{sup 8} M{sub Sun} in the bridge, but taking into account the unobserved bridge area, the total warm mass is likely to be twice this value. We use excitation diagrams to characterize the warm molecular gas, finding an average surface mass of {approx}5 Multiplication-Sign 10{sup 6} M{sub Sun} kpc{sup -2} and typical excitation temperatures of 150-175 K. H{sub 2} emission is also seen in the galaxy disks, although there the emission is more consistent with normal star-forming galaxies. We investigate several possible heating mechanisms for the bridge gas but favor the conversion of kinetic energy from the head-on collision via turbulence and shocks as the main heating source. Since the cooling time for the warm H{sub 2} is short ({approx}5000 yr), shocks must be permeating the molecular gas in the bridge region in order to continue heating the H{sub 2}.

  12. IR fiber sources for scene projection

    NASA Astrophysics Data System (ADS)

    Shaw, L. B.; Sanghera, J. S.; Aggarwal, I. D.

    2007-04-01

    Naval Research Laboratory has developed IR transmitting fiber and IR fiber sources which can be used for HWIL testing. IR transmitting fiber is capable of broad transmission from near IR to LWIR and can be formed into bundles for imaging. IR fiber sources are based on rare earth doped glass or nonlinear processes in the glass and are cable of high brightness IR emission. Recently, NRL developed a four emitter MWIR fiber source which is capable of high temperature simulation, high dynamic range, and fast response. New broadband fiber sources based upon IR supercontinuum generation in IR fibers are also being developed. In this paper, we will report on these technologies.

  13. Risk assessment of an old landfill regarding the potential of gaseous emissions--a case study based on bioindication, FT-IR spectroscopy and thermal analysis.

    PubMed

    Tintner, Johannes; Smidt, Ena; Böhm, Katharina; Matiasch, Lydia

    2012-12-01

    Risk assessment of two sections (I and II) of an old landfill (ALH) in Styria (Austria) in terms of reactivity of waste organic matter and the related potential of gaseous emissions was performed using conventional parameters and innovative tools to verify their effectiveness in practice. The ecological survey of the established vegetation at the landfill surface (plant sociological relevés) indicated no relevant emissions over a longer period of time. Statistical evaluation of conventional parameters reveals that dissolved organic carbon (DOC), respiration activity (RA(4)), loss of ignition (LOI) and total inorganic carbon (TIC) mostly influence the variability of the gas generation sum (GS(21)). According to Fourier Transform Infrared (FT-IR) spectral data and the results of the classification model the reactivity potential of the investigated sections is very low which is in accordance with the results of plant sociological relevés and biological tests. The interpretation of specific regions in the FT-IR spectra was changed and adapted to material characteristics. Contrary to mechanically-biologically treated (MBT) materials, where strong aliphatic methylene bands indicate reactivity, they are rather assigned to the C-H vibrations of plastics in old landfill materials. This assumption was confirmed by thermal analysis and the characteristic heat flow profile of plastics containing landfill samples. Therefore organic carbon contents are relatively high compared to other stable landfills as shown by a prediction model for TOC contents based on heat flow profiles and partial least squares regression (PLS-R). The stability of the landfill samples, expressed by the relation of CO(2) release and enthalpies, was compared to unreactive landfills, archeological samples, earthlike materials and hardly degradable organic matter. Due to the material composition and the aging process the landfill samples are located between hardly degradable, but easily combustible

  14. New emission features in the 11-13 micron region and their relationship to polycyclic aromatic hydrocarbons.

    PubMed

    Witteborn, F C; Sandford, S A; Bregman, J D; Allamandola, L J; Cohen, M; Wooden, D H; Graps, A L

    1989-06-01

    If the "11.3 microns" emission feature seen in the spectra of many planetary nebulae, H II regions, and reflection nebulae is due to polycyclic aromatic hydrocarbons (PAHs), then additional features should be present between 11.3 and 13.0 microns (885 and 770 cm-1). Moderate-resolution spectra of NGC 7027, HD 44179, IRAS 21282+5050, and BD + 30 degrees 3639 are presented which show that the "11.3 microns" feature actually peaks at 11.22 microns (891 cm-1). The spectra also show evidence of new emission features near 11.9 and 12.7 microns (840 and 787 cm-1). These are consistent with an origin from PAHs and can be used to constrain the molecular structure of the family of PAHs responsible for the infrared features. The observed asymmetry of the "11.3 microns" band is consistent with the slight anharmonicity expected in the C--H out-of-plane bending mode in PAHs. Laboratory experiments show that the intensity of this mode relative to the higher frequency modes depends on the extent of molecular "clustering." The observed strengths of the "11.3 microns" interstellar bands relative to the higher frequency bands are most consistent with the features originating from free molecular PAHs. The intensity and profile of the underlying broad structure, however, may well arise from PAH clusters and amorphous carbon particles. Analysis of the 11-13 microns (910-770 cm-1) emission suggests that the molecular structures of the most intensity emitting free PAHs vary somewhat between the high-excitation environment in NGC 7027 and the low-excitation but high-flux environment close to HD 44179. Finally, a previously undetected series of regularly spaced features between 10 and 11 microns (1000 and 910 cm-1) in the spectrum of HD 44179 suggests that a simple polyatomic hydride is present in the gas phase in this object. PMID:11542169

  15. Visible red, NIR and Mid-IR emission studies of Ho3+ doped Zinc Alumino Bismuth Borate glasses

    NASA Astrophysics Data System (ADS)

    Mahamuda, Sk.; Swapna, K.; Packiyaraj, P.; Srinivasa Rao, A.; Vijaya Prakash, G.

    2013-12-01

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of Holmium were prepared by conventional melt quenching technique. The glassy nature of these glasses has been confirmed through the XRD spectral measurements. The FTIR spectra recorded for undoped glass revealed the information related to the functional groups involved in the host glass. Optical absorption, excitation and photoluminescence spectra of these glasses have been recorded at room temperature. The Judd-Ofelt theory has been applied successfully to characterize the absorption spectra of the ZnAlBiB glasses. From this theory various radiative properties such as radiative transition probability (AR), radiative lifetimes (τR), branching ratios (βR) and spectroscopic quality factor (χ) for the prominent emission levels 5F5 → 5I7, 5F5 → 5I8 and 5I7 → 5I8 have been evaluated. The photoluminescence spectra revealed the quenching of luminescence intensity beyond 1.0 mol% of Ho3+ ion concentration in ZnAlBiB glasses. To investigate the lasing potentiality of 5F5 → 5I7, 5F5 → 5I8 and 5I7 → 5I8 transitions, the effective band width (Δλp) and the stimulated emission cross-section (σse) were determined. The CIE chromaticity co-ordinates were also evaluated from the emission spectra for all the glasses to understand the suitability of these materials for visible red laser emission in principle.

  16. Spectral features of guanidinium-carboxylate salt bridges. The combined ATR-IR and theoretical studies of aqueous solution of guanidinium acetate

    NASA Astrophysics Data System (ADS)

    Levina, Elena O.; Lokshin, Boris V.; Mai, Bich D.; Vener, Mikhail V.

    2016-08-01

    The spectrum of guanidinium acetate in aqueous solution has been recorded by attenuated total reflectance infrared spectroscopy (ATR-IR). Assignments of the bands have been done using the polarizable continuum model (PCM). Three IR intensive bands at 1670, 1550, and 1410 cm-1 are associated with stretching and bending vibrations of the groups forming a ring of six heavy atoms of the bidentate configuration of guanidinium acetate. The relatively weak broad band near 2200 cm-1 is tentatively assigned to the stretching vibration of the Nsbnd H⋯O fragment of the hydrogen-bonded ion pairs.

  17. Spatial variations of the 3 micron emission features within UV-excited nebulae: photochemical evolution of interstellar polycyclic aromatic hydrocarbons.

    PubMed

    Geballe, T R; Tielens, A G; Allamandola, L J; Moorhouse, A; Brand, P W

    1989-06-01

    We have obtained 3 microns spectra at several positions in the Orion Bar region and in the "Red Rectangle," the nebula surrounding HD 44179. The recently discovered weak emission features at 3.40, 3.46, 3.51, and 3.57 microns (2940, 2890, 2850, and 2800 cm-1) are prominent in the Orion Bar region. The 3.40 microns and 3.51 microns features increases in intensity relative to the dominant 3.29 microns (3040 cm-1) feature when going from the ionized to the neutral zone across the Orion Bar. However, only a weak and rather broad 3.40 microns feature is present at the position of HD 44179. These spectra demonstrate that some of the 3 microns emission components vary independently of each other and in a systematic way within UV-excited nebulae. This spatial variation is discussed in terms of the UV excitation and photochemical evolution of polycyclic aromatic hydrocarbons and related molecular structures. The spatial behavior of the weak emission features can be understood qualitatively in terms of hot bands of the CH stretch and overtones and combination bands of other fundamental vibrations in simple PAHs. An explanation in terms of emission by molecular sidegroups attached to the PAHs is less straightforward, particularly in the case of the Red Rectangle and other evolved mass-losing objects. We estimate PAH sizes of 20-50 carbon atoms based on the susceptibility of PAHs to destruction by the far ultraviolet fields present in the Orion Bar and the Red Rectangle; the size range is similar to independent estimates made previously. PMID:11542168

  18. Sensing Properties of Multiwalled Carbon Nanotubes Grown in MW Plasma Torch: Electronic and Electrochemical Behavior, Gas Sensing, Field Emission, IR Absorption

    PubMed Central

    Majzlíková, Petra; Sedláček, Jiří; Prášek, Jan; Pekárek, Jan; Svatoš, Vojtěch; Bannov, Alexander G.; Jašek, Ondřej; Synek, Petr; Eliáš, Marek; Zajíčková, Lenka; Hubálek, Jaromír

    2015-01-01

    Vertically aligned multi-walled carbon nanotubes (VA-MWCNTs) with an average diameter below 80 nm and a thickness of the uniform VA-MWCNT layer of about 16 μm were grown in microwave plasma torch and tested for selected functional properties. IR absorption important for a construction of bolometers was studied by Fourier transform infrared spectroscopy. Basic electrochemical characterization was performed by cyclic voltammetry. Comparing the obtained results with the standard or MWCNT‐modified screen-printed electrodes, the prepared VA-MWCNT electrodes indicated their high potential for the construction of electrochemical sensors. Resistive CNT gas sensor revealed a good sensitivity to ammonia taking into account room temperature operation. Field emission detected from CNTs was suitable for the pressure sensing application based on the measurement of emission current in the diode structure with bending diaphragm. The advantages of microwave plasma torch growth of CNTs, i.e., fast processing and versatility of the process, can be therefore fully exploited for the integration of surface-bound grown CNTs into various sensing structures. PMID:25629702

  19. Sensing properties of multiwalled carbon nanotubes grown in MW plasma torch: electronic and electrochemical behavior, gas sensing, field emission, IR absorption.

    PubMed

    Majzlíková, Petra; Sedláček, Jiří; Prášek, Jan; Pekárek, Jan; Svatoš, Vojtěch; Bannov, Alexander G; Jašek, Ondřej; Synek, Petr; Eliáš, Marek; Zajíčková, Lenka; Hubálek, Jaromír

    2015-01-01

    Vertically aligned multi-walled carbon nanotubes (VA-MWCNTs) with an average diameter below 80 nm and a thickness of the uniform VA-MWCNT layer of about 16 µm were grown in microwave plasma torch and tested for selected functional properties. IR absorption important for a construction of bolometers was studied by Fourier transform infrared spectroscopy. Basic electrochemical characterization was performed by cyclic voltammetry. Comparing the obtained results with the standard or MWCNT‑modified screen-printed electrodes, the prepared VA-MWCNT electrodes indicated their high potential for the construction of electrochemical sensors. Resistive CNT gas sensor revealed a good sensitivity to ammonia taking into account room temperature operation. Field emission detected from CNTs was suitable for the pressure sensing application based on the measurement of emission current in the diode structure with bending diaphragm. The advantages of microwave plasma torch growth of CNTs, i.e., fast processing and versatility of the process, can be therefore fully exploited for the integration of surface-bound grown CNTs into various sensing structures. PMID:25629702

  20. Coincident Maser Emission in NGC 7538 IRS 1 from the (J,K) = (10,8) and (9,8) States of Para-Ammonia

    NASA Astrophysics Data System (ADS)

    Hoffman, Ian M.

    2013-01-01

    Using the Green Bank Telescope and the Very Large Array, we have detected the (J,K)=(10,8) and (9,8) ammonia lines from NGC 7538 for the first time. These are the first interferometric observations of the (10,8) transition of nonmetastable (J>K) para-ammonia (K not a multiple of three) in any source; in this case a synthesized beam of approximately 200 milliarcseconds. Both transitions show compact (< 100 milliarcseconds) and narrow (0.5 km/s) emission with high brightness temperature (> 104 K), indicative of maser amplification. Furthermore, the emission from both transitions occurs at the same velocity and at the same sky position within IRS 1, consistent with the conjecture that both transitions arise in the same volume of gas. We discuss the possible pumping of a maser for which population inversions can occur in adjacent "rungs" of value J within a "ladder" of value K. We also describe ongoing observations to constrain more fully the pumping and level populations elsewhere in the K=8 ladder. This work is supported by the Weaver Fund of Wittenberg University.

  1. COS-B observations of gamma-ray emission from local galactic features

    NASA Technical Reports Server (NTRS)

    Bignami, G. F.; Barbareschi, L.; Caraveo, P. A.; Bloemen, J. B. G. M.; Hermsen, W.; Buccheri, R.; Kanbach, G.; Mayer-Hasselwander, H. A.; Lebrun, F.; Paul, J. A.

    1981-01-01

    Evidence for large scale correlations between the high-energy photon sky and the known local distribution of diffuse interstellar matter is discussed. Evidence is presented of correlations with the Gould's Belt and the Dolidze Belt. The correlations indicate that the emission of gamma rays at medium latitudes can be explained by the distribution of interstellar matter, and the interaction of CR with interstellar matter can explain the mechanism of the gamma-ray emission by regarding the emissivity as a global average of the two systems since they contain most of the local dense cloud.

  2. Variations in the Peak Position of the 6.2 micron Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Bauschlicher, Charles W.; Allamandola, L. J.

    2005-01-01

    more nitrogen atoms within the interior of the carbon skeleton of a PAH cation induces a significant blueshift in the position of the dominant CC stretching feature of these compounds that is suf6cient to account for the position of the interstellar bands. Subsequent studies of the effects of substitution by other heteroatoms (O and Si), metal ion complexation (Fe(+), Mg(+), and Mg(2+)), and molecular symmetry variation-all of which fail to reproduce the blueshift observed in the PANH cations-indicate that N appears to be unique in its ability to accommodate the position of the interstellar 6.2 micron bands while simultaneously satisfying the other constraints of the astrophysical problem. This result implies that the peak position of the interstellar feature near 6.2 micron traces the degree of nitrogen substitution in the population, that most of the PAHs responsible for the interstellar IR emission features incorporate nitrogen within their aromatic networks, and that a lower limit of 1%-2% of the cosmic nitrogen is sequestered within the interstellar PAH population. Finally, in view of the ubiquity and abundance of interstellar PAHs and the permanent dipoles and distinctive electronic structures of these nitrogen-substituted variants, this work impacts a wide range of observational phenomena outside of the infrared region of the spectrum including the forest of unidentified molecular rotational features and the anomalous Galactic foreground emission in the microwave, and the diffuse interstellar bands (DIBs) and other structure in the interstellar extinction curve in the ulhviolet/visible. These astrophysical ramifications are discussed, and the dipole moments and rotational constants are tabulated to facilitate further investigations of the astrophysical role of nitrogen-substituted aromatic compounds.

  3. Highly strained InAs quantum wells on InP substrates for mid-IR emission

    NASA Astrophysics Data System (ADS)

    Kim, Sangho; Kirch, Jeremy; Mawst, Luke

    2010-04-01

    Optical emission characteristics of indium arsenide (InAs) quantum wells were studied using organometallic vapor phase epitaxy (OMVPE). Low growth temperature (<500 °C) and tertiarybutylarsine (TBA) and/or arsine precursors were applied for this study. Several growth parameters such as growth temperature, growth rate, interruption time between growths of layers, and mixture of group V precursors were investigated. It was found that relatively high growth rate of InAs (0.3 nm/s) and a mixture flow of TBA and AsH 3, allowed growth of up to 9 nm thick InAs quantum wells without significant strain relaxation. Photoluminescence (PL) wavelengths of 2.52 μm were observed at room temperature (RT) from a 9 nm InAs double quantum well (DQW) in a separate confinement hetero-structure (SCH) structure.

  4. Lunar Mare Basalts as Analogues for Martian Volcanic Compositions: Evidence from Visible, Near-IR, and Thermal Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Graff, T. G.; Morris, R. V.; Christensen, P. R.

    2003-01-01

    The lunar mare basalts potentially provide a unique sample suite for understanding the nature of basalts on the martian surface. Our current knowledge of the mineralogical and chemical composition of the basaltic material on Mars comes from studies of the basaltic martian meteorites and from orbital and surface remote sensing observations. Petrographic observations of basaltic martian meteorites (e.g., Shergotty, Zagami, and EETA79001) show that the dominant phases are pyroxene (primarily pigeonite and augite), maskelynite (a diaplectic glass formed from plagioclase by shock), and olivine [1,2]. Pigeonite, a low calcium pyroxene, is generally not found in abundance in terrestrial basalts, but does often occur on the Moon [3]. Lunar samples thus provide a means to examine a variety of pigeonite-rich basalts that also have bulk elemental compositions (particularly low-Ti Apollo 15 mare basalts) that are comparable to basaltic SNC meteorites [4,5]. Furthermore, lunar basalts may be mineralogically better suited as analogues of the martian surface basalts than the basaltic martian meteorites because the plagioclase feldspar in the basaltic Martian meteorites, but not in the lunar surface basalts, is largely present as maskelynite [1,2]. Analysis of lunar mare basalts my also lead to additional endmember spectra for spectral libraries. This is particularly important analysis of martian thermal emission spectra, because the spectral library apparently contains a single pigeonite spectrum derived from a synthetic sample [6].

  5. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    SciTech Connect

    Sargent, B. A.; Forrest, W.; Watson, Dan M.; Kim, K. H.; Richter, I.; Tayrien, C.; D'Alessio, P.; Calvet, N.; Furlan, E.; Green, J.; Pontoppidan, K.

    2014-09-10

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.

  6. Impact of temperature field inhomogeneities on the retrieval of atmospheric species from MIPAS IR limb emission spectra

    NASA Astrophysics Data System (ADS)

    Kiefer, M.; Arnone, E.; Dudhia, A.; Carlotti, M.; Castelli, E.; von Clarmann, T.; Dinelli, B. M.; Kleinert, A.; Linden, A.; Milz, M.; Papandrea, E.; Stiller, G.

    2010-04-01

    We examine volume mixing ratios (vmr) retrieved from limb emission spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). In level 2 (L2) data products of three different retrieval processors, which perform one dimensional (1-D) retrievals, we find significant differences between species' profiles from ascending and descending orbit parts. The relative differences vary systematically with time of the year, latitude, and altitude. In the lower stratosphere their monthly means can reach maxima of 20% for CFC-11, CFC-12, HNO3, H2O, 10% for CH4 and N2O. Relative differences between monthly means of 1-D retrieval results and of the true atmospheric state can be expected to reach half of these percentage values, while relative differences in single vmr profiles might well exceed those numbers. Often there are no physical or chemical reasons for these differences, so they are an indicator for a problem in the data processing. The differences are generally largest at locations where the meridional temperature gradient of the atmosphere is strong. On the contrary, when performing the retrieval with a tomographic two dimensional (2-D) retrieval, L2 products generally do not show these differences. This implies that inhomogeneities in the temperature field, and possibly in the species' fields, which are accounted for in the 2-D algorithm and not in standard 1-D processors, may cause significant deviations in the results. Inclusion of an externally given adequate temperature gradient in the forward model of a 1-D processor helps to reduce the observed differences. However, only the full tomographic approach is suitable to resolve the horizontal inhomogeneities. Implications for the use of the 1-D data, e.g. for validation, are discussed. The dependence of the ascending/descending differences on the observation strategy suggests that this problem is to be expected to affect in general 1-D retrievals of infrared limb sounders, if the line of

  7. Impact of temperature field inhomogeneities on the retrieval of atmospheric species from MIPAS IR limb emission spectra

    NASA Astrophysics Data System (ADS)

    Kiefer, M.; Arnone, E.; Dudhia, A.; Carlotti, M.; Castelli, E.; von Clarmann, T.; Dinelli, B. M.; Kleinert, A.; Linden, A.; Milz, M.; Papandrea, E.; Stiller, G.

    2010-10-01

    We examine volume mixing ratios (vmr) retrieved from limb emission spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board Envisat. In level 2 (L2) data products of three different retrieval processors, which perform one dimensional (1-D) retrievals, we find significant differences between species' profiles from ascending and descending orbit parts. The relative differences vary systematically with time of the year, latitude, and altitude. In the lower stratosphere their monthly means can reach maxima of 20% for CFC-11, CFC-12, HNO3, H2O, 10% for CH4 and N2O. Relative differences between monthly means of 1-D retrieval results and of the true atmospheric state can be expected to reach half of these percentage values, while relative differences in single vmr profiles might well exceed those numbers. Often there are no physical or chemical reasons for these differences, so they are an indicator for a problem in the data processing. The differences are generally largest at locations where the meridional temperature gradient of the atmosphere is strong. On the contrary, when performing the retrieval with a tomographic two dimensional (2-D) retrieval, L2 products generally do not show these differences. This suggests that inhomogeneities in the temperature field, and possibly in the species' fields, which are accounted for in the 2-D algorithm and not in standard 1-D processors, may cause significant deviations in the results. Inclusion of an externally given adequate temperature gradient in the forward model of a 1-D processor helps to reduce the observed differences. However, only the full tomographic 2-D approach is suitable to resolve the horizontal inhomogeneities. Implications for the use of the 1-D data, e.g. for validation, are discussed. The dependence of the ascending/descending differences on the observation strategy suggests that this problem may affect 1-D retrievals of infrared limb sounders, if the line of sight

  8. Mapping vegetation types with the multiple spectral feature mapping algorithm in both emission and absorption

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg A.; Koch, Christopher; Ager, Cathy

    1992-01-01

    Vegetation covers a large portion of the Earth's land surface. Remotely sensing quantitative information from vegetation has proven difficult because in a broad sense, all vegetation is similar from a chemical viewpoint, and most healthy plants are green. Plant species are generally characterized by the leaf and flower or fruit morphology, not by remote sensing spectral signatures. But to the human eye, many plants show varying shades of green, so there is direct evidence for spectral differences between plant types. Quantifying these changes in a predictable manner has not been easy. The Clark spectral features mapping algorithm was applied to mapping spectral features in vegetation species.

  9. Cryptography based on the absorption/emission features of multicolor semiconductor nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Chang, Shoude; Grover, Chander P.

    2004-06-01

    Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.

  10. Possible Detection of an Emission Cyclotron Resonance Scattering Feature from the Accretion-Powered Pulsar 4U 1626-67

    NASA Technical Reports Server (NTRS)

    Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.; Mihara, T.; Angelini, L.; Yamada, S.; Enoto, T.; Makishima, K.; Nakajima, M.; Yoshida, A.

    2012-01-01

    We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of 88 ks. The source was detected at an average 10-60 keY flux of approx 4 x 10-10 erg / sq cm/ s. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at approx 37 keY by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand. the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model. we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(exp -3) and 1.53 x 10(exp -5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.

  11. Modeling of laboratory streamer discharge features leading to x-ray emissions

    NASA Astrophysics Data System (ADS)

    Lehtinen, Nikolai; Ostgaard, Nikolai; Kochkin, Pavlo

    2016-04-01

    We model the propagation of a branching negative streamer in air under the conditions of the experiment of Kochkin et al [2014, doi:10.1088/0022-3727/47/14/145203]. We compare the results with the peculiar phenomena which were observed in this experiment, such as (1) the reverse streamers which propagate towards the initiating electrode; (2) quasi-periodic pulsation of the electrode current; and (3) quasi-static spatial charge structures. Some of these features are signatures of streamer stepping and may provide the base for the transition from a streamer corona to a stepped leader. A numerical model gives an advantage of isolating the physical mechanisms which could lead to these features. We analyse how the calculated electric field may lead to acceleration of electrons and estimate the possible x-ray output in the Cooray [2009, doi:10.1016/j.jastp.2009.07.010] mechanism of streamer collision.

  12. Applying light-emitting diodes with narrowband emission features in differential spectroscopy.

    PubMed

    Sihler, Holger; Kern, Christoph; Pöhler, Denis; Platt, Ulrich

    2009-12-01

    LEDs are a promising new type of light source for differential optical absorption spectroscopy (DOAS). Varying differential structures in the emission spectrum of LEDs, however, display a potentially severe problem. We show that the structures, which originate from a Fabry-Pérot etalon, may be removed by tilting the emitter, which at the same time increases the radiant flux coupled into the subsequent optical system. The results of long-path DOAS measurements, where we apply our method on a blue LED for the suppression of periodic structures, are also presented. PMID:19953172

  13. Dissociative excitation of vacuum ultraviolet emission features by electron impact on molecular gases. 3: CO2

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Borst, W. L.; Zipf, E. C.

    1972-01-01

    Vacuum ultraviolet multiplets of C I, C II, and O I were produced by electron impact on CO2. Absolute emission cross sections for these multiplets were measured from threshold to 350 eV. The electrostatically focused electron gun used is described in detail. The atomic multiplets which were produced by dissociative excitation of CO2 and the cross sections at 100 eV are presented. The dependence of the excitation functions on electron energy shows that these multiplets are produced by electric-dipole-allowed transitions in CO2.

  14. Influence of laser pulse duration on extreme ultraviolet and ion emission features from tin plasmas

    SciTech Connect

    Roy, A. E-mail: aroy@barc.gov.in; Harilal, S. S.; Polek, M. P.; Hassan, S. M.; Hassanein, A.; Endo, A.

    2014-03-15

    We investigated the role of laser pulse duration and intensity on extreme ultraviolet (EUV) generation and ion emission from a laser produced Sn plasma. For producing plasmas, planar slabs of pure Sn were irradiated with 1064 nm Nd:YAG laser pulses with varying pulse duration (5–20 ns) and intensity. Experimental results performed at CMUXE indicate that the conversion efficiency (CE) of the EUV radiation strongly depend on laser pulse width and intensity, with a maximum CE of ∼2.0% measured for the shortest laser pulse width used (5 ns). Faraday Cup ion analysis of Sn plasma showed that the ion flux kinetic profiles are shifted to higher energy side with the reduction in laser pulse duration and narrower ion kinetic profiles are obtained for the longest pulse width used. However, our initial results showed that at a constant laser energy, the ion flux is more or less constant regardless of the excitation laser pulse width. The enhanced EUV emission obtained at shortest laser pulse duration studied is related to efficient laser-plasma reheating supported by presence of higher energy ions at these pulse durations.

  15. Features of space-charge-limited emission in foil-less diodes

    SciTech Connect

    Wu, Ping; Yuan, Keliang; Liu, Guozhi; Sun, Jun

    2014-12-15

    Space-charge-limited (SCL) current can always be obtained from the blade surface of annular cathodes in foil-less diodes which are widely used in O-type relativistic high power microwave generators. However, there is little theoretical analysis regarding it due to the mathematical complexity, and almost all formulas about the SCL current in foil-less diodes are based on numerical simulation results. This paper performs an initial trial in calculation of the SCL current from annular cathodes theoretically under the ultra-relativistic assumption and the condition of infinitely large guiding magnetic field. The numerical calculation based on the theoretical research is coherent with the particle-in-cell (PIC) simulation result to some extent under a diode voltage of 850 kV. Despite that the theoretical research gives a much larger current than the PIC simulation (41.3 kA for the former and 9.7 kA for the latter), which is induced by the ultra-relativistic assumption in the theoretical research, they both show the basic characteristic of emission from annular cathodes in foil-less diodes, i.e., the emission enhancement at the cathode blade edges, especially at the outer edge. This characteristic is confirmed to some extent in our experimental research of cathode plasma photographing under the same diode voltage and a guiding magnetic field of 4 T.

  16. Features of the Earth surface deformations in Kamchatka peninsula and their relation with geoacoustic emission

    NASA Astrophysics Data System (ADS)

    Larionov, I. A.; Marapulets, Yu. V.; Shevtsov, B. M.

    2014-08-01

    The paper presents the results of investigations of deformation process in the near surface sedimentary rocks, which has been carried out in a seismically active region of Kamchatka peninsular since 2007. The peculiarity of the experiments on registration of geodeformations is the application of a laser strainmeter-interferometer constructed according to the Michelson interferometer scheme. Besides rock deformations, geoacoustic emission in the frequency range from several hertz to the first tens of kilohertz is under the investigation. Piezoceramic hydrophones installed in artificial water reservoirs are applied. It is shown that periods of primary rock compression and tension with the duration up to several months are distinguished in the geodeformation process at the observation site. During the direction change in the deformations, when geodeformation process rate grows, the increase of geoacoustic radiation is observed.

  17. Specific features of thermocouple calorimeter application for measurements of pulsed X-ray emission from plasma

    SciTech Connect

    Gavrilov, V. V.; Fasakhov, I. K.

    2012-01-15

    It is shown that the accuracy of time-integrated measurements of pulsed X-ray emission from hot plasma with calibrated thermocouple calorimeters is mainly determined by two factors. The first and the most important factor is heating of the filter by the absorbed X-rays; as a result, the calorimeter measures the thermal radiation of the filter, which causes appreciable distortion of the temporal profile and amplitude of the recorded signal. The second factor is the dependence of the effective depth of X-ray absorption in the dielectric that covers the entrance window of the calorimeter on the energy of X-ray photons, i.e., on the recorded radiation spectrum. The results of model calculations of the calorimeter signal are compared with the experimental data.

  18. Silicate emission feature in the spectrum of comet Mueller 1993a

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S.; Hackwell, John A.; Russell, Ray W.; Lynch, David K.

    1994-01-01

    An 8- to 13-micron spectrum of comet Mueller 1993a, a dynamically new comet, was acquired when the comet was at R = 2 AU. Strong, structured silicate emission is present, closely resembling that seen in Comet P/Halley at smaller R. For the first time in a new comet, the 11.2-micron peak of crystalline olivine was detected, demonstrating that crystalline olivine particles were widespread in the solar nebula. Crystalline olivine particles could have formed in the inner protosolar nebula at temperatures greater than 1200 K; extensive radial mixing would have been required to transport these grains to the region of comet formation. Either there was more radial mixing in the solar nebula than some current theories predict or the olivine grains have a presolar origin.

  19. The infrared spectrum of comet Bradfield (1987s) and the silicate emission feature.

    PubMed

    Hanner, M S; Newburn, R L; Gehrz, R D; Harrison, T; Ney, E P; Hayward, T L

    1990-01-01

    Infrared (1-20 micrometers) observations of comet Bradfield (1987s) from three observatories are reported. Silicate emission is prominent in all the data, from heliocentric distance r=0.87 to 1.45 AU. A CVF spectrum at r=1.45 AU shows a peak at 11.3 micrometers identified as crystalline olivine; the spectral shape is similar to that in Halley. Dust optical properties are similar to those of the grains in Halley's jets. Dust production rate near perihelion was approximately 10(6) g s-1 and varied in proportion to (r-2). We suggest that some differences in grain properties among comets could result from differences in the thermal history of the nuclear surface and the relative fraction of the dust particles originating in the subsurface icy layer versus the devolatilized mantle. PMID:11538569

  20. The 2-Year Checkup on 10 SNe IIn Discovered by Spitzer to Exhibit Late-Time (is greater than 100 Day) IR Emission

    NASA Technical Reports Server (NTRS)

    Fox, Ori Dosovitz; Chevalier, R. A.; Skrutskie, A. V.; Filippenko, A. V.; Silverman, J. M.; Ganeshalingam, M.

    2012-01-01

    Two years ago, a warm Spitzer survey of sixty-eight SNe IIn identified between the years 1998-2008 discovered 10 events with unreported late-time infrared (IR) excesses, in some cases more than 5 years post-explosion. These data nearly double the database of existing mid-IR observations of SNe IIn and offer important clues regarding the SN circumstellar.

  1. Salient features of otoacoustic emissions are common across tetrapod groups and suggest shared properties of generation mechanisms.

    PubMed

    Bergevin, Christopher; Manley, Geoffrey A; Köppl, Christine

    2015-03-17

    Otoacoustic emissions (OAEs) are faint sounds generated by healthy inner ears that provide a window into the study of auditory mechanics. All vertebrate classes exhibit OAEs to varying degrees, yet the biophysical origins are still not well understood. Here, we analyzed both spontaneous (SOAE) and stimulus-frequency (SFOAE) otoacoustic emissions from a bird (barn owl, Tyto alba) and a lizard (green anole, Anolis carolinensis). These species possess highly disparate macromorphologies of the inner ear relative to each other and to mammals, thereby allowing for novel insights into the biomechanical mechanisms underlying OAE generation. All ears exhibited robust OAE activity, and our chief observation was that SFOAE phase accumulation between adjacent SOAE peak frequencies clustered about an integral number of cycles. Being highly similar to published results from human ears, we argue that these data indicate a common underlying generator mechanism of OAEs across all vertebrates, despite the absence of morphological features thought essential to mammalian cochlear mechanics. We suggest that otoacoustic emissions originate from phase coherence in a system of coupled oscillators, which is consistent with the notion of "coherent reflection" but does not explicitly require a mammalian-type traveling wave. Furthermore, comparison between SFOAE delays and auditory nerve fiber responses for the barn owl strengthens the notion that most OAE delay can be attributed to tuning. PMID:25737537

  2. UV and IR measurements of sulphur dioxide emissions during and after the 2014-2015 Bárðarbunga eruption, Iceland

    NASA Astrophysics Data System (ADS)

    Simmons, Isla C.; Whitty, Rachel C. W.; Pfeffer, Melissa A.; Thomas, Helen; Galle, Bo; Calder, Eliza; Arellano, Santiago; Prata, Fred; Pumphrey, Hugh C.

    2016-04-01

    A basaltic fissure eruption of the Bárðarbunga volcanic system, Iceland, occurred from 31st August 2014 until 28th February 2015. This flood basalt eruption produced 1.6 km3 of lava and emitted sulphur dioxide (SO2) from the vents at rates of up to 3800 kg/s forming an eruption plume that could easily be detected from space. SO2 was also released by the cooling lava flows forming a low level haze. SO2 emissions were monitored using multiple techniques including scanning differential optical absorption spectrometers (DOAS), mobile DOAS traverses, and a NicAIR II infrared camera. UV DOAS data have been processed to distinguish the SO2 released by the degassing lava field as it cooled, both during and after the eruption. Initial results show that during February, the final month of the eruption, the lava field released about 3 kg/s of SO2. The lava field continued to emit detectable levels of SO2 at lower quantities in March, following the end of the eruption. Brightness temperature differences using 8.62 and 10.87 μm channels on the IR camera have been processed to calculate the column amounts of SO2 within the eruption plume. SO2 path lengths of over 700 ppm-m have been retrieved in November. This has been achieved despite the challenges of high H2O concentrations in the plume and high gas concentrations above the lava field. Poor meteorological conditions often resulted in a lack of clear sky within the images causing difficulties constraining background SO2 levels.

  3. Persistent time intervals between features in solar flare hard X-ray emission

    NASA Astrophysics Data System (ADS)

    Desai, Upendra D.; Kouveliotou, Chryssa; Barat, C.; Hurley, K.; Niel, M.; Talon, R.; Vedrenne, G.

    Several solar hard X-ray events (greater than 100 keV) were observed simultaneously with identical instruments on the Venera 11, 12, 13, 14, and Prognoz spacecraft. High time resolution (= 2 ms) data were stored in memory when a trigger occurred. The observations of modulation are presented with a period of 1.6 s for the event on December 3, 1978. Evidence is also presented for fast time fluctuations from an event on November 6, 1979, observed from Venera 12 and another on September 6, 1981, observed from the Solar Maximum Mission. Power spectrum analysis, epoch folding, and Monte Carlo simulation were used to evaluate the statistical significance of persistent time delays between features. The results are discussed in light of the MHD model proposed by Zaitsev and Stepanov.

  4. Persistent time intervals between features in solar flare hard X-ray emission

    NASA Technical Reports Server (NTRS)

    Desai, Upendra D.; Kouveliotou, Chryssa; Barat, C.; Hurley, K.; Niel, M.; Talon, R.; Vedrenne, G.

    1986-01-01

    Several solar hard X-ray events (greater than 100 keV) were observed simultaneously with identical instruments on the Venera 11, 12, 13, 14, and Prognoz spacecraft. High time resolution (= 2 ms) data were stored in memory when a trigger occurred. The observations of modulation are presented with a period of 1.6 s for the event on December 3, 1978. Evidence is also presented for fast time fluctuations from an event on November 6, 1979, observed from Venera 12 and another on September 6, 1981, observed from the Solar Maximum Mission. Power spectrum analysis, epoch folding, and Monte Carlo simulation were used to evaluate the statistical significance of persistent time delays between features. The results are discussed in light of the MHD model proposed by Zaitsev and Stepanov.

  5. Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood?

    PubMed Central

    Rosner, Sabine; Klein, Andrea; Wimmer, Rupert; Karlsson, Bo

    2011-01-01

    Summary • The aim of this study was to assess the hydraulic vulnerability of Norway spruce (Picea abies) trunkwood by extraction of selected features of acoustic emissions (AEs) detected during dehydration of standard size samples. • The hydraulic method was used as the reference method to assess the hydraulic vulnerability of trunkwood of different cambial ages. Vulnerability curves were constructed by plotting the percentage loss of conductivity vs an overpressure of compressed air. • Differences in hydraulic vulnerability were very pronounced between juvenile and mature wood samples; therefore, useful AE features, such as peak amplitude, duration and relative energy, could be filtered out. The AE rates of signals clustered by amplitude and duration ranges and the AE energies differed greatly between juvenile and mature wood at identical relative water losses. • Vulnerability curves could be constructed by relating the cumulated amount of relative AE energy to the relative loss of water and to xylem tension. AE testing in combination with feature extraction offers a readily automated and easy to use alternative to the hydraulic method. PMID:16771986

  6. IRS organigram

    NASA Technical Reports Server (NTRS)

    Messerschmid, Ernst

    1991-01-01

    Charts and graphs relative to magnetoplasmadynamic (MPD) thruster technology are given. The research activities at the Institute of Space Transportation, University of Stuttgart, are summarized. Information is given on the Institute's Electric Propulsion and Plasma Wind Tunnel; thermal arcjet research; the nozzle-type thruster, DT-IRS; nozzle-type MPD thrusters; a hot anode thruster; the DT6 thruster; the ZT-1 thruster; the cylindrical MPD thruster; and a comparison of continuous and quasi-steady MPD.

  7. Emission and extinction of ground and vapor-condensed silicates from 4 to 14 microns and the 10 micron silicate feature

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Rusell, R. W.

    1979-01-01

    Emission and absorption spectra from 4 to 14 microns of ground and laser-vaporized olivine and enstatite silicates are compared with the 10-micron emission feature of the Orion Trapezium. The agreement in band center and shape between the amorphous laser-vaporized olivine sample and the Trapezium feature suggests that amorphous silicate grains of approximately olivine composition may be a major constituent of interstellar dust. Differences between the emission and absorption spectral profiles (absorption plus scattering) show characteristics that could be used as a sensitive probe of the morphology of interstellar grain systems when high signal-to-noise ratio (30-100) observational spectra become available.

  8. Modeling Far-UV Fluorescent Emission Features of Warm Molecular Hydrogen in the Inner Regions of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; France, Kevin

    2015-01-01

    Probing the surviving molecular gas within the inner regions of protoplanetary disks (PPDs) around T Tauri stars (1 - 10 Myr) provides insight into the conditions in which planet formation and migration occurs while the gas disk is still present. We model observed far ultraviolet (FUV) molecular hydrogen (H₂) fluorescent emission lines that originate within the inner regions (< 10 AU) of 9 well-studied Classic T Tauri stars, using the Hubble Space Telescope Cosmic Origins Spectrograph (COS), to explore the physical structure of the molecular disk at different PPD dust evolutionary stages. We created a 2D radiative transfer model that estimates the density and temperature distributions of warm, inner radial H₂ (T > 1500 K) with a set of 6 free parameters and produces a data cube of expected emission line profiles that describe the physical structure of the inner molecular disk atmosphere. By comparing the modeled emission lines with COS H₂ fluorescence emission features, we estimate the physical structure of the molecular disk atmosphere for each target with the set of free parameters that best replicate the observed lines. First results suggest that, for all dust evolutionary stages of disks considered, ground-state H₂ populations are described by a roughly constant temperature T(H₂) = 2500 +/- 1000 K. Possible evolution of the density structure of the H₂ atmosphere between intact and depleting dust disks may be distinguishable, but large errors in the inferred best-fit parameter sets prevent us from making this conclusion. Further improvements to the modeling framework and statistical comparison in determining the best-fit model-to-data parameter sets are ongoing, beginning with improvements to the radiative transfer model and use of up-to-date HI Lyman α absorption optical depths (see McJunkin in posters) to better estimate disk structural parameters. Once improvements are implemented, we will investigate the possible presence of a molecular wind

  9. Why the oxygen IR emission at 1.27 μm is not the best way for ozone retrieval in the mesosphere?

    NASA Astrophysics Data System (ADS)

    Manuilova, Rada O.; Yankovsky, Valentine A.

    2016-04-01

    In the framework of model of electronic vibrational kinetics of excited products of O3 and O2 photolysis in the MLT of the Earth, YM2011, we have tried to answer the formulated above question. In our study we propose to retrieve the [O3] using as proxies electronic-vibrationally excited levels of oxygen molecule, namely O2(b1, v=0, 1), O2(a1, v=0) and excited atom O(1D). Concerning the [O3] retrieval in the range of 50-100 km, the emissions at 1.27 μm formed by transition from O2(a1, v=0) and at 762 nm formed by transition from O2(b1, v=0) are the most intensive ones among all emissions under consideration. However, considering the complexity of kinetics of the excited components: choosing O(1D) as a proxy for [O3] retrieval, requires taking into account five aeronomical reactions. For other proxies the number of aeronomical reactions is as follows: O2(b1, v=1) ‑ 13; O2(b1, v=0) ‑ 18; O2(a1, v=0) ‑ 25. Increasing the number of reactions that must be considered when using a proxy from O(1D) to O2(a1, v=0) depends on the fact that, calculating the population of each of the underlying electronic-vibrationally excited state requires considering the mechanisms of the population of the upper levels. Using the O2(a1, v=0) is also associated with the problem of poorly known rate coefficients for some important processes. For example, the rate constant of reaction O₂( a1, v=0) + O(³P) -> products is known with uncertainty 200%. The next criterion of a "good" proxy is the value of [O3] retrieval uncertainty. Above 90 km, O2(a1, v=0) becomes the worst proxy among all under consideration with the uncertainty exceeding 100%. In the interval 50‑98 km O2(b1, v=1) is the "good" proxy with the value of uncertainty less than 20% below 90 km and less than 25% up to 98 km. Therefore, O2(b1, v=1) is the preferable proxy at the altitudes of 50‑98 km. Commonly used [O3] retrieval proxy, O2(a1, v=0), transition from which forms the 1.27 μm O2 IR Atmospheric band, has more

  10. Optical characteristics of aerosol trioxide dialuminum at the IR wavelength range

    NASA Astrophysics Data System (ADS)

    Voitsekhovskaya, O. K.; Shefer, O. V.; Kashirskii, D. E.

    2015-11-01

    In this work, a numerical study of the transmission function, extinction coefficient, scattering coefficient, and absorption coefficient of the aerosol generated by the jet engine emissions was performed. Analyzing the calculation results of the IR optical characteristics of anthropogenic emissions containing the dialuminum trioxide was carried out. The spectral features of the optical characteristics of the medium caused by the average size, concentration and complex refractive index of the particles were illustrated.

  11. Magmatic gas emissions at Holocene volcanic features near Mono Lake, California, and their relation to regional magmatism

    NASA Astrophysics Data System (ADS)

    Bergfeld, Deborah; Evans, William C.; Howle, James F.; Hunt, Andrew G.

    2015-02-01

    Silicic lavas have erupted repeatedly in the Mono Basin over the past few thousand years, forming the massive domes and coulees of the Mono Craters chain and the smaller island vents in Mono Lake. We report here on the first systematic study of magmatic CO2 emissions from these features, conducted during 2007-2010. Most notably, a known locus of weak steam venting on the summit of North Coulee is actually enclosed in a large area (~ 0.25 km2) of diffuse gas discharge that emits 10-14 t/d of CO2, mostly at ambient temperature. Subsurface gases sampled here are heavily air-contaminated, but after standard corrections are applied, show average δ13C-CO2 of - 4.72‰, 3He/4He of 5.89RA, and CO2/3He of 0.77 × 1010, very similar to the values in fumarolic gas from Mammoth Mountain and the Long Valley Caldera immediately to the south of the basin. If these values also characterize the magmatic gas source at Mono Lake, where CO2 is captured by the alkaline lake water, a magmatic CO2 upflow beneath the lake of ~ 4 t/d can be inferred. Groundwater discharge from the Mono Craters area transports ~ 13 t/d of 14C-dead CO2 as free gas and dissolved carbonate species, and adding in this component brings the estimated total magmatic CO2 output to 29 t/d for the two silicic systems in the Mono Basin. If these emissions reflect intrusion and degassing of underlying basalt with 0.5 wt.% CO2, a modest intrusion rate of 0.00075 km3/yr is indicated. Much higher intrusion rates are required to account for CO2 emissions from Mammoth Mountain and the West Moat of the Long Valley Caldera.

  12. Gas-emission crater in Central Yamal, West Siberia, Russia, a new permafrost feature

    NASA Astrophysics Data System (ADS)

    Leibman, Marina; Kizyakov, Alexandr; Khomutov, Artem; Dvornikov, Yury; Streletskaya, Irina; Gubarkov, Anatoly

    2016-04-01

    The Yamal crater is a hole funnel-shaped on top and cylinder-shaped down to the bottom, surrounded by a parapet. Field study of the crater included size measurements, photo- video-documentation of the feature and the surrounding environment, and geochemical sampling. The upper part of the geological section within the crater consisted of stratified icy sediments, underlain by almost pure stratified ice of nearly vertical orientation of the layers. The volume of discharged material (volume of the void of the crater) was 6 times larger than the volume of material in the parapet. The difference was due to a significant amount of ice exposed in the walls of the crater, emitted to the surface and melted there. Remote sensing data was processes and validated by field observations to reveal the date of crater formation, previous state of the surface, evolution of the crater and environmental conditions of the surrounding area. Crater formed between 9 October and 1 November 2013. The initial size derived from Digital Elevation Model (DEM) had diameter of the vegetated rim 25-29 m. It turned through a sharp bend into a cylinder with close to vertical sides and diameter 15-16 m. Depth of the hole was impossible to estimate from DEM because of no light reaching walls in the narrow hole. By the time of initial observation in July 2014, water was found at the depth exceeding 50 m below the rim. In November 2014 this depth was 26 m. By September 2015 almost all the crater was flooded, with water surface about 5 m below the rim. The plan dimensions of the crater increased dramatically from initial 25-29 to 47-54 m in 2015. Thus, it took two warm seasons to almost entirely fill in the crater. We suppose that during the next 1-2 years parapet will be entirely destroyed, and as a result the crater will look like an ordinary tundra lake. Excluding impossible and improbable versions of the crater's development, the authors conclude that the origin of this crater can be attributed to

  13. IR Asterisms

    NASA Astrophysics Data System (ADS)

    Riess, Adam

    2010-09-01

    Observing asterisms for photometric calibration provides a "happy medium" between observing single stars which areobservable from the ground but lack statistics, and star clusters which have excellent statistics but are too crowded to observe from the ground.Asterisms in the IR for calibration have been less available than in the optical, e.g., Landolt's standard fields.While ad-hoc asterisms for calibration could be formed from 2MASS calibration, the photometric precision of 2MASSis relatively low, 0.02-0.05, for the fainter stars, m=9-13, that can still be observed without saturation in WFC3-IR.However, IR monitoring of variable phenomena {e.g., AGN SNe, stellar variables} from the ground has produced calibration of stars in asterisms with m=9-13 with a relative uncertainty of 0.001 to 0.01 mag due to the high frequency of monitoring. We have selected 4 such asterisms to observe. Because the stars are bright we need to use subarrays of 64x64 or 128x128 to get read out short enough to avoid saturation. The observations are obtained in pairs of 3 close stars, i.e., 2x3=6 stars per orbit in F125W and F160W as well as a F555W full frame to verify astrometry. In all we expect to measure 24 stars with m=9 to 14. The goal is to provide 2 calibrations, an independent zeropoint and its uncertainty as well as a measure of count rate non linearity. For the latter, an expected CRNL over 2 dex {5 mag} is expected tobe 0.02 mag.

  14. HERSCHEL-PACS OBSERVATIONS OF FAR-IR CO LINE EMISSION IN NGC 1068: HIGHLY EXCITED MOLECULAR GAS IN THE CIRCUMNUCLEAR DISK

    SciTech Connect

    Hailey-Dunsheath, S.; Sturm, E.; Gracia-Carpio, J.; Davies, R.; Poglitsch, A.; Contursi, A.; Genzel, R.; Lutz, D.; Tacconi, L.; De Jong, J. A.; Fischer, J.; Sternberg, A.; Mark, D.; Gonzalez-Alfonso, E.; Veilleux, S.; Verma, A.

    2012-08-10

    We report the detection of far-IR CO rotational emission from the prototypical Seyfert 2 galaxy NGC 1068. Using Herschel-PACS, we have detected 11 transitions in the J{sub upper} = 14-30 (E{sub upper}/k{sub B} = 580-2565 K) range, all of which are consistent with arising from within the central 10'' (700 pc). The detected transitions are modeled as arising from two different components: a moderate-excitation (ME) component close to the galaxy systemic velocity and a high-excitation (HE) component that is blueshifted by {approx}80 km s{sup -1}. We employ a large velocity gradient model and derive n{sub H2} {approx} 10{sup 5.6} cm{sup -3}, T{sub kin} {approx} 170 K, and M{sub H2} {approx} 10{sup 6.7} M{sub Sun} for the ME component and n{sub H2} {approx} 10{sup 6.4} cm{sup -3}, T{sub kin} {approx} 570 K, and M{sub H2} {approx} 10{sup 5.6} M{sub Sun} for the HE component, although for both components the uncertainties in the density and mass are {+-}(0.6-0.9) dex. Both components arise from denser and possibly warmer gas than traced by low-J CO transitions, and the ME component likely makes a significant contribution to the mass budget in the nuclear region. We compare the CO line profiles with those of other molecular tracers observed at higher spatial and spectral resolution and find that the ME transitions are consistent with these lines arising in the {approx}200 pc diameter ring of material traced by H{sub 2} 1-0 S(1) observations. The blueshift of the HE lines may also be consistent with the bluest regions of this H{sub 2} ring, but a better kinematic match is found with a clump of infalling gas {approx}40 pc north of the active galactic nucleus (AGN). We consider potential heating mechanisms and conclude that X-ray- or shock heating of both components is viable, while far-UV heating is unlikely. We discuss the prospects of placing the HE component near the AGN and conclude that while the moderate thermal pressure precludes an association with the {approx}1 pc

  15. Using ATR-FT/IR to detect carbohydrate-related molecular structure features of carinata meal and their in situ residues of ruminal fermentation in comparison with canola meal

    NASA Astrophysics Data System (ADS)

    Xin, Hangshu; Yu, Peiqiang

    2013-10-01

    There is no information on the co-products from carinata bio-fuel and bio-oil processing (carinata meal) in molecular structural profiles mainly related to carbohydrate biopolymers in relation to ruminant nutrition. Molecular analyses with Fourier transform infrared spectroscopy (FT/IR) technique with attenuated total reflectance (ATR) and chemometrics enable to detect structural features on a molecular basis. The objectives of this study were to: (1) determine carbohydrate conformation spectral features in original carinata meal, co-products from bio-fuel/bio-oil processing; and (2) investigate differences in carbohydrate molecular composition and functional group spectral intensities after in situ ruminal fermentation at 0, 12, 24 and 48 h compared to canola meal as a reference. The molecular spectroscopic parameters of carbohydrate profiles detected were structural carbohydrates (STCHO, mainly associated with hemi-cellulosic and cellulosic compounds; region and baseline ca. 1483-1184 cm-1), cellulosic compounds (CELC, region and baseline ca. 1304-1184 cm-1), total carbohydrates (CHO, region and baseline ca. 1193-889 cm-1) as well as the spectral ratios calculated based on respective spectral intensity data. The results showed that the spectral profiles of carinata meal were significantly different from that of canola meal in CHO 2nd peak area (center at ca. 1091 cm-1, region: 1102-1083 cm-1) and functional group peak intensity ratios such as STCHO 1st peak (ca. 1415 cm-1) to 2nd peak (ca. 1374 cm-1) height ratio, CHO 1st peak (ca. 1149 cm-1) to 3rd peak (ca. 1032 cm-1) height ratio, CELC to total CHO area ratio and STCHO to CELC area ratio, indicating that carinata meal may not in full accord with canola meal in carbohydrate utilization and availability in ruminants. Carbohydrate conformation and spectral features were changed by significant interaction of meal type and incubation time and almost all the spectral parameters were significantly decreased (P < 0

  16. FE K EMISSION AND ABSORPTION FEATURES IN THE XMM-EPIC SPECTRUM OF THE SEYFERT GALAXY IC 4329A

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Reeves, J. N.; Braito, V.

    2001-01-01

    We present a re-analysis of the XMM-Newton long-look of the X-ray bright Seyfert galaxy IC 4329a. The Fe K bandpass is dominated by two peaks, consistent with emission from neutral or near-neutral Fe Ka and KP. A relativistic diskline model whereby both peaks are the result of one doubly-peaked diskline profile is found to be a poor description of the data. Models using two relativistic disklines are found to describe the emission profile well. A low-inclination, moderately-relativistic dual-diskline model is possible if the contribution from narrow components, due to distant material, is small or absent. A high-inclination, moderately relativistic profile for each peak is possible if there are roughly equal contributions from both the broad and narrow components. Upper limits on Fe XXV and Fe XXVI emission and absorption at the systemic velocity of IC 4329a are obtained. We also present the results of RXTE monitoring of this source obtained so far; the combined XMM-Newton and RXTE data sets allow us to explore the time-resolved spectral behavior of this source on time scales ranging from hours to 2 years. We find no strong evidence for variability of the Fe Ka emission line on any time scale probed, likely due to the minimal level of continuum variability. We detect a narrow absorption line, at a energy of 7.68 keV in the rest frame of the source; its significance has been confirmed using Monte Carlo simulations. This feature is most likely due to absorption from Fe XXVI blueshifted to approximately 0.1c relative to the systemic velocity, making IC 4329a the lowest-redshift AGN known with a high-velocity, highly-ionized outflow component. As is often the case with similar outflows seen in high-luminosity quasars, the estimated mass outflow rate is larger than the inflow accretion rate, signaling that the outflow represents a substantial portion of the total energy budget of the AGN. The outflow could arise from a radiatively-driven disk wind, or it may be in the

  17. Computational insights into the photophysical and electroluminescence properties of homoleptic fac-Ir(C^N)3 complexes employing different phenyl-derivative-featuring phenylimidazole-based ligands for promising phosphors in OLEDs.

    PubMed

    Li, Jieqiong; Wang, Li; Sun, Kenan; Zhang, Jinglai

    2016-02-21

    The electronic structures and photophysical properties of three homoleptic iridium(iii) complexes IrL3 with C^N ligands, including 2a (L = 1-(2,6-diisopropylphenyl)-2-phenyl-1H-imidazole), 5a (L = 1-(2,6-dimethylphenyl)-2-phenyl-1H-imidazole), and 6a (L = 1-(3,5-diisopropylbiphenyl-4-yl)-2-phenyl-1H-imidazole), are investigated by means of the density functional method. Furthermore, seven new complexes are theoretically designed, including 1a (L = 1,2-diphenyl-1H-imidazole), 3a (L = 1-(2,6-dimethoxyphenyl)-2-phenyl-1H-imidazol), 4a (L = 2-(2-phenyl-1H-imidazol-1-yl)isophthalaldehyde), 1b (L = 2-(biphenyl-3-yl)-1H-imidazole), 2b (L = 2-(2',6'-diisopropylbiphenyl-3-yl)-1H-imidazole), 3b (L = 2-(2',6'-dimethoxybiphenyl-3-yl)-1H-imidazole), and 4b (L = 3'-(1H-imidazol-2-yl)biphenyl-2,6-dicarbaldehyde), to explore the influence of different substituents and different substituted positions on the electronic structures, phosphorescence properties, and organic light-emitting diode (OLED) performance. The HOMO-LUMO energy gap is greatly decreased by introduction of the -CHO group into the phenyl ring (4a and 4b see -sketched structures for all the investigated Ir(iii) complexes). As a result, their absorption and emission spectra present red-shifting leading them to be potential red-emitting phosphors. Other complexes are all blue-emitting materials, indicating that the effect of the substituted position on the emitting color is negligible. However, the addition of the substituent on the para-position of the phenyl ring in the phenylimidazole ligand would increase the quantum yield and electroluminescence (EL) performance compared with that on the imidazole ring. PMID:26763190

  18. Physical properties of coronal mass ejection plasma associated with erupting prominences as seen emission or absorption features in EUV and X-rays

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Yi; Raymond, John C.; Reeves, Kathy; Moon, Yong-Jae; Kim, Kap-Sung

    2016-05-01

    We investigate the physical properties (temperature, density, mass, and energy) of coronal mass ejection plasmas observed by the Atmospheric Imaging Assembly on Solar Dynamics Observatory and X-ray Telescope on Hinode. The prominences are seen as absorption features in EUV at the beginning of their eruptions. Later the prominences change to emission features during eruptions, which indicates the heating of the erupting plasma. We find the temperatures and densities of the erupting prominences using absorption properties of hydrogen and helium in different passbands. We estimate the temperatures and densities of the erupting plasma in emission features using differential emission measure method, which uses both EUV and X-ray observations applying various spectra using photospheric and coronal abundances. We verify and discuss the methods for the estimation of temperatures and densities for erupting plasmas. Lastly, we discuss the heating of the coronal mass ejection plasmas.

  19. Magmatic gas emissions at Holocene volcanic features near Mono Lake, California, and their relation to regional magmatism

    USGS Publications Warehouse

    Bergfeld, D.; Evans, William C.; Howle, James F.; Hunt, Andrew G.

    2015-01-01

    Silicic lavas have erupted repeatedly in the Mono Basin over the past few thousand years, forming the massive domes and coulees of the Mono Craters chain and the smaller island vents in Mono Lake. We report here on the first systematic study of magmatic CO2 emissions from these features, conducted during 2007–2010. Most notably, a known locus of weak steam venting on the summit of North Coulee is actually enclosed in a large area (~ 0.25 km2) of diffuse gas discharge that emits 10–14 t/d of CO2, mostly at ambient temperature. Subsurface gases sampled here are heavily air-contaminated, but after standard corrections are applied, show average δ13C-CO2 of − 4.72‰, 3He/4He of 5.89RA, and CO2/3He of 0.77 × 1010, very similar to the values in fumarolic gas from Mammoth Mountain and the Long Valley Caldera immediately to the south of the basin. If these values also characterize the magmatic gas source at Mono Lake, where CO2 is captured by the alkaline lake water, a magmatic CO2 upflow beneath the lake of ~ 4 t/d can be inferred. Groundwater discharge from the Mono Craters area transports ~ 13 t/d of 14C-dead CO2 as free gas and dissolved carbonate species, and adding in this component brings the estimated total magmatic CO2 output to 29 t/d for the two silicic systems in the Mono Basin. If these emissions reflect intrusion and degassing of underlying basalt with 0.5 wt.% CO2, a modest intrusion rate of 0.00075 km3/yr is indicated. Much higher intrusion rates are required to account for CO2 emissions from Mammoth Mountain and the West Moat of the Long Valley Caldera.

  20. Heterogeneity of Monosymptomatic Resting Tremor in a Prospective Study: Clinical Features, Electrophysiological Test, and Dopamine Transporter Positron Emission Tomography

    PubMed Central

    Zheng, Hua-Guang; Zhang, Rong; Li, Xin; Li, Fang-Fei; Wang, Ya-Chen; Wang, Xue-Mei; Lu, Ling-Long; Feng, Tao

    2015-01-01

    Background: The relationship between monosymptomatic resting tremor (mRT) and Parkinson's disease (PD) remains controversial. In this study, we aimed to assess the function of presynaptic dopaminergic neurons in patients with mRT by dopamine transporter positron emission tomography (DAT-PET) and to evaluate the utility of clinical features or electrophysiological studies in differential diagnosis. Methods: Thirty-three consecutive patients with mRT were enrolled prospectively. The Unified Parkinson's Disease Rating Scale and electromyography were tested before DAT-PET. Striatal asymmetry index (SAI) was calculated, and a normal DAT-PET was defined as a SAI of <15%. Scans without evidence of dopaminergic deficits (SWEDDs) were diagnosed in patients with a subsequent normal DAT-PET and structural magnetic resonance imaging. Results: Twenty-eight mRT patients with a significant reduction in uptake of DAT binding in the striatum were diagnosed with PD, while the remained 5 with a normal DAT-PET scan were SWEDDs. As for UPRDS, the dressing and hygiene score, walking in motor experiences of daily living (Part II) and motor examination (Part III) were significant different between two groups (P < 0.05 and P < 0.01, respectively). Bilateral tremor was more frequent in the SWEDDs group (P < 0.05). The frequency of resting tremor and the amplitude of postural tremor tend to be higher in the SWEDDs group (P = 0.08 and P = 0.05, respectively). Conclusions: mRT is heterogeneous in presynaptic nigrostriatal dopaminergic degeneration, which can be determined by DAT-PET brain imaging. Clinical and electrophysiological features may provide clues to distinguish PD from SWEDDs. PMID:26112718

  1. The Synthesis and Characterization of a Group of Transition Metal Octabutoxynaphthalocyanines and the Absorption and Emission Properties of the Co, Rh, Ir, Ni, Pd and Pt Members of This Group

    PubMed Central

    Kim, Junhwan; Soldatova, Alexandra V.; Rodgers, Michael A. J.; Kenney, Malcolm E.

    2013-01-01

    The synthesis and photophysical properties of new metallo-octabutoxynaphthalocyanines with Rh(III), Ir(III), and Pt(II) are reported. Various metals were inserted into the metal-free octabutoxynaphthalocyanine and the resultant metal complexes were fully characterized by NMR, UV-vis spectroscopy, and mass spectrometry. The absorption and emission properties of these new complexes were also examined and compared to those of Co(II), Ni(II), and Pd(II) octabutoxynaphthalocyanines. The results provide useful information to understand the effect of these transition metals on the properties of this macrocyclic ring. PMID:23745014

  2. Mid-Infrared Spectral Properties of IR QSOs

    SciTech Connect

    Xia, X. Y.; Cao, C.; Mao, S.; Deng, Z. G.

    2008-10-10

    We analyse mid-infrared (MIR) spectroscopic properties for 19 ultra-luminous infrared quasars (IR QSOs) in the local universe based on the spectra from the Infrared Spectrograph on board the Spitzer Space Telescope. The MIR properties of IR QSOs are compared with those of optically-selected Palomar-Green QSOs (PG QSOs) and ultra-luminous infrared galaxies (ULIRGs). The average MIR spectral features from {approx}5 to 30 {mu}m, including the spectral slopes, 6.2 {mu}m PAH emission strengths and [NeII] 12.81 {mu}m luminosities of IR QSOs, differ from those of PG QSOs. In contrast, IR QSOs and ULIRGs have comparable PAH and [NeII] luminosities. These results are consistent with IR QSOs being at a transitional stage from ULIRGs to classical QSOs. We also find the correlation between the EW (PAH 6.2 {mu}m) and outflow velocities suggests that star formation activities are suppressed by feedback from AGNs and/or supernovae.

  3. Analysis of simultaneous emission and absorption Ti spectral features observed with the MMI instrument in OMEGA implosions

    NASA Astrophysics Data System (ADS)

    Joshi, Tirtha; Johns, Heather; Mayes, Daniel; Durmaz, Tunay; Mancini, Roberto; Tommasini, Riccardo; Delettrez, Jack; Regan, Sean; Nagayama, Taisuke

    2012-10-01

    We discuss the observation and analysis of spectra from titanium-doped OMEGA direct-drive implosions. The targets were spherical plastic shells with a submicron Ti-doped tracer-layer initially located on the inner surface of the shell and filled with deuterium gas. The x-ray signal from the titanium tracer is observed at the collapse of the implosion and recorded with a streaked spectrometer (SSCA) and three identical gated,multi-monochromatic x-ray imager (MMI) instruments that view the implosion along three quasi-orthogonal lines-of-sight. Both streaked and MMI data show simultaneous emission and absorption features due to titanium K-shell line transitions but only the MMI data permits to diagnose the tracer's spatial properties in the core. To this end, MMI data were processed to obtain narrow-band images and spatially-resolved spectra.footnotetextT. Nagayama et al., J. App. Phys.109, 093303 (2011). Abel inversion of angle-averaged image intensity profiles reveal the spatial distribution of the titanium tracer in the core, while detailed analysis of the space-resolved spectra yields temperature, density and mixing distributions. Results are presented for several shell thicknesses and implosions driven with different laser pulse shapes.

  4. Modelling the Emission And/or Absorption Features in the High Resolution Spectra of the Southern Binary System: HH Car

    NASA Astrophysics Data System (ADS)

    Koseoglu, Dogan; Bakış, Hicran

    2016-07-01

    High-resolution spectra (R=48000) of the southern close binary system, HH Car, has been analyzed with modern analysis techniques. Precise absolute parameters were derived from the simultaneous solution of the radial velocity, produced in this study and the light curves, published. According to the results of these analyses, the primary component is an O9 type main sequence star while the secondary component is a giant/subgiant star with a spectral type of B0. Hα emissions can be seen explicitly in the spectra of HH Car. These features were modelled using the absolute parameters of the components. Since components of HH Car are massive early-type stars, mass loss through stellar winds can be expected. This study revealed that the components of HH Car have stellar winds and the secondary component loses mass to the primary. Stellar winds and the gas stream between the components were modelled as a hot shell around the system. It is determined that the interaction between the winds and the gas stream leads to formation of a high temperature impact region.

  5. Geomorphologic approach for modelling the surface features of arid environments in a model of dust emissions: application to the Sahara desert

    NASA Astrophysics Data System (ADS)

    Callot, Yann; Marticorena, Béatrice; Bergametti, Gilles

    Mineral dust emissions from arid regions are influenced by the surface features encountered in the source regions. These surface features control both the erosion threshold and the intensity of the dust flux. Recently, a soil-derived dust emission scheme has been designed in order to provide an explicit representation of the mineral dust accounting for the influence of the surface features on the dust emissions. This physical scheme has been validated with micro-scale field measurements. Its large scale application has required the development of additional relations to estimate the input parameters from more accessible data: the mean height and the covering rate of the roughness elements and the mineralogical soil type. The determination of these surface data has been based on a geomorphologic approach which describes the surface features of arid areas in a 1 × 1° grid. Inside each square degree, up to five different areas characterised by different surface features have been distinguished. However, these areas have not been located inside the square degree. Each area can be constituted by several combined surface features, including roughness, vegetation, granulometry. Five main types of landscapes and eight main types of surface features have been distinguished. This approach is based on the combination of various data, mainly topographical, geological maps and climatological analysis. In addition to the problem of scale transfer, the main constraints to obtain a quantitative assessment are the confidence level of the existing data and the number of parameters to document. On the opposite, with this method, the fine scale required by the dust modelling can be separated from the scale accessible by the mapping approach, of the order of the square degree. This method can also be easily improved by aggregating new data and can be extended to other deserts. An example of application is given for the north-west of the Algerian Sahara where the method has been

  6. Spitzer IRS Observations of FU Orionis Objects

    NASA Astrophysics Data System (ADS)

    Green, J. D.; Hartmann, L.; Calvet, N.; Watson, D. M.; Ibrahimov, M.; Furlan, E.; Sargent, B.; Forrest, W. J.

    2006-09-01

    We present 5-35 μm spectra, taken with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope, of five FU Orionis objects: FU Ori, V1515 Cyg, V1057 Cyg, BBW 76, and V346 Nor. All but V346 Nor reveal amorphous silicate grains in emission at 10 and 20 μm, and show water-vapor absorption bands at 5.8 and 6.8 μm and SiO or possibly methane absorption at 8 μm. These absorption features closely match these bands in model stellar photospheres-signs of the gaseous photospheres of the inner regions of these objects' accretion disks. The continuum emission at 5-8 μm is also consistent with such disks, and, for FU Orionis and BBW 76, longer wavelength emission may be fit by a model that includes moderate disk flaring. V1057 Cyg and V1515 Cyg have much more emission at longer wavelengths than the others, perhaps evidence of a substantial remnant of their natal, infalling envelopes.

  7. Temperature and current dependencies of terahertz emission from stacks of intrinsic Josephson junctions with thin electrodes revealed by a high-resolution FT-IR spectrometer

    NASA Astrophysics Data System (ADS)

    Kakeya, Itsuhiro; Hirayama, Nobuo; Nakagawa, Takuto; Omukai, Yuta; Suzuki, Minoru

    2013-08-01

    We report on emission of electromagnetic wave in a frequency range of 1012 hertz (THz) from stacks of intrinsic Josephson junctions (IJJ) made of superconducting Bi2Sr2CaCu2O8+δ single crystals. A home-built high-resolution Fourier-transfer-infrared spectrometer reveals that the emission spectrum is monochromatic and the width is as sharp as its resolution limit (∼1 GHz). The THz emission is obtained in a broad temperature and current range depending on the mesa. The emission frequency is tuned from 0.55 to 0.45 THz by changing temperature from 20 to 55 K.

  8. Hydrogenated Polycyclic Aromatic Hydrocarbons and the 2940 and 2850 Wavenumber (3.40 and 3.51 micron) Infrared Emission Features

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Sandford, Scott A.; Allamadola, Louis J.

    1996-01-01

    The 3150-2700/cm (3.17-3.70 micron) range of the spectra of a number of Ar-matrix-isolated PAHs containing excess H atoms (H(sub n)-PAHS) are presented. This region covers features produced by aromatic and aliphatic C-H stretching vibrations as well as overtone and combination bands involving lower lying fundamentals. The aliphatic C-H stretches in molecules of this type having low to modest excess H coverage provide excellent fits to a number of the weak emission features superposed on the plateau between 3080 and 2700/cm (3.25 and 3.7 micron) in the spectra of many planetary nebulae, reflection nebulae, and H II regions. Higher H coverage is implied for a few objects. We compare these results in context with the other suggested identifications of the emission features in the 2950-2700/cm (3.39-3.70 micron) region and briefly discuss their astrophysical implications.

  9. FAST X-RAY/IR CROSS-CORRELATIONS AND RELATIVISTIC JET FORMATION IN GRS 1915+105

    SciTech Connect

    Lasso-Cabrera, N. M.; Eikenberry, S. S.

    2013-10-01

    We present cross-correlation analyses of simultaneous X-ray and near-infrared (near-IR) observations of the microquasar GRS 1915+105 during relativistic jet-producing epochs (X-ray class α and β). While previous studies have linked the large amplitude IR flares and X-ray behaviors to jet formation in these states, our new analyses are sensitive to much lower amplitude IR variability, providing more sensitive probes of the jet formation process. The X-ray to IR cross-correlation function (CCF) shows significant correlations that vary in form between the different X-ray states. During low/hard dips in both classes, we find no significant X-ray/IR correlation. During high-variability epochs, we find consistently significant correlations in both α and β classes, but with strong differences in the CCF structure. The high variability α CCF shows strong anti-correlation between X-ray/IR, with the X-ray preceding the IR by ∼13 ± 2 s. The high variability β state shows a time-variable CCF structure, which is statistically significant but without a clearly consistent lag. Our simulated IR light curves, designed to match the observed CCFs, show variably flickering IR emission during the class β high-variability epoch, while class α can be fit by IR flickering with frequencies in the range 0.1-0.3 Hz, strengthening ∼10 s after every X-ray subflare. We interpret these features in the context of the X-ray-emitting accretion disk and IR emission from relativistic jet formation in GRS 1915+105, concluding that the CCF analysis places the origin in a synchrotron-emitting relativistic compact jet at a distance from the compact object of ∼0.02 AU.

  10. Titan aerosol analog absorption features produced from aromatics in the far infrared

    NASA Astrophysics Data System (ADS)

    Sebree, Joshua A.; Trainer, Melissa G.; Loeffler, Mark J.; Anderson, Carrie M.

    2014-07-01

    We present results on the formation of Titan aerosol analogs produced via far-UV irradiation of five aromatic precursors: benzene, naphthalene, pyridine, quinoline and isoquinoline. This is the first reported evidence of far-IR emission features observed below 200 cm-1 in laboratory-created Titan aerosols. These laboratory studies were motivated by recent analyses of Cassini Composite Infrared Spectrometer (CIRS) spectra that show a broad aerosol emission feature in the far-IR spectral region centered near 140 cm-1, which is unique to Titan’s photochemically-produced aerosol (Anderson, C.M., Samuelson, R.E. [2011]. Icarus 212, 762-778). We find that all three of the aerosol analogs formed from nitrogen-containing aromatics have similar broad emission features near that of the observed CIRS far-IR aerosol spectral feature. In addition, the inclusion of 1.5% methane to that of trace amounts of benzene also gives rise to an aerosol with a weak far-IR emission feature located below 200 cm-1.

  11. The origin of the near-IR line emission from molecular, low and high ionization gas in the inner kiloparsec of NGC 6240

    NASA Astrophysics Data System (ADS)

    Ilha, Gabriele da Silva; Bianchin, Marina; Riffel, Rogemar A.

    2016-06-01

    The understating of the origin of the H2 line emission from the central regions of galaxies represents an important key to improve our knowledge about the excitation and ionization conditions of the gas in these locations. Usually these lines can be produced by Starburst, shocks and/or radiation from an active galactic nucleus (AGN). Luminous Infrared Galaxies (LIRG) represent ideal and challenging objects to investigate the origin of the H2 emission, as all processes above can be observed in a single object. In this work, we use K-band integral field spectroscopy to map the emission line flux distributions and kinematics and investigate the origin of the molecular and ionized gas line emission from inner 1.4×2.4~kpc2 of the LIRG NGC 6240, known to be the galaxy with strongest H2 line emission. The emission lines show complex profiles at locations between both nuclei and surrounding the northern nucleus, while at locations near the southern nucleus and at 1^'' west of the northern nucleus, they can be reproduced by a single Gaussian component. We found that the H2 emission is originated mainly by thermal processes, possible being dominated by heating of the gas by X-rays from the AGN at locations near both nuclei. For the region between the northern and southern nuclei shocks due to the interacting process may be the main excitation mechanism, as indicated by the high values of the H2 λ2.12 μ m/Brγ line ratio. A contribution of fluorescent excitation may also be important at locations near 1^'' west of the northern nucleus, which show the lowest line ratios. The [Fe ii]λ2.072 μ m/Brγ ratio show a similar trend as observed for H2 λ2.12 μ m/Brγ, suggesting that [Fe ii] and H2 line emission have similar origins. Finally, the [Ca viii]λ2.32 μ m coronal line emission is observed mainly in regions next to the nuclei, suggesting it is originated gas ionized by the radiation from the AGN.

  12. ON IRON MONOXIDE NANOPARTICLES AS A CARRIER OF THE MYSTERIOUS 21 μm EMISSION FEATURE IN POST-ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Li, Aigen; Jiang, B. W.; Liu, J. M. E-mail: bjiang@bnu.edu.cn

    2013-11-10

    A prominent mysterious emission feature peaking at ∼20.1 μm—historically known as the '21 μm' feature—is seen in over two dozen Galactic and Magellanic Cloud carbon-rich, post-asymptotic giant branch (post-AGB) stars. The nature of its carrier remains unknown since the first detection of the 21 μm feature in 1989. Over a dozen materials have been suggested as possible carrier candidates. However, none of them has been accepted: they either require too much material (compared to what is available in the circumstellar shells around these post-AGB stars), or exhibit additional emission features that are not seen in these 21 μm sources. Recently, iron monoxide (FeO) nanoparticles seem to be a promising carrier candidate as Fe is an abundant element and FeO emits exclusively at ∼21 μm. In this work, using the proto-typical protoplanetary nebula HD 56126 as a test case, we examine FeO nanoparticles as a carrier for the 21 μm feature by modeling their infrared emission, with FeO being stochastically heated by single stellar photons. We find that FeO emits too broad a 21 μm feature to explain that observed and the Fe abundance required to be locked up in FeO exceeds what is available in HD 56126. We therefore conclude that FeO nanoparticles are not likely to be responsible for the 21 μm feature.

  13. IR Thermography NDE of ISS Radiator Panels

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay; Winfree, William; Morton, Richard; Wilson, Walter; Reynolds, Gary

    2010-01-01

    The presentation covers an active and a passive infrared (IR) thermography for detection of delaminations in the radiator panels used for the International Space Station (ISS) program. The passive radiator IR data was taken by a NASA astronaut in an extravehicular activity (EVA) using a modified FLIR EVA hand-held camera. The IR data could be successfully analyzed to detect gross facesheet disbonds. The technique used the internal hot fluid tube as the heat source in analyzing the IR data. Some non-flight ISS radiators were inspected using an active technique of IR flash thermography to detect disbond of face sheet with honeycomb core, and debonds in facesheet overlap areas. The surface temperature and radiated heat emission from flight radiators is stable during acquisition of the IR video data. This data was analyzed to detect locations of unexpected surface temperature gradients. The flash thermography data was analyzed using derivative analysis and contrast evolutions. Results of the inspection are provided.

  14. Efficient conversion from UV light to near-IR emission in Yb{sup 3+}-doped triple-layered perovskite CaLaNb{sub 3}O{sub 10}

    SciTech Connect

    Lu, Yuting; Li, Yuze; Qin, Lin; Huang, Yanlin; Qin, Chuanxiang; Tsuboi, Taiju; Huang, Wei

    2015-04-15

    Graphical abstract: CaRNb{sub 3}O{sub 10} is a self-activated oxide due to charge transfer transition in octahedral NbO{sub 6} groups. CaLaNb{sub 3}O{sub 10}:Yb{sup 3+} presents intense IR emission due to the cooperative energy transfer from host (NbO{sub 6}) to Yb{sup 3+} is responsible. It could be expected to be potentially applicable for enhancing photovoltaic conversion efficiency of Si-based solar cells. - Abstract: Yb{sup 3+}-doped triple-layered perovskite CaLaNb{sub 3}O{sub 10} micro-particles were synthesized via the solid-state reaction method. The crystal structure and morphology of the polycrystalline samples were investigated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) measurements, respectively. The reflectance spectra, photoluminescence (PL) excitation and emission spectra, the decay curves, and the absolute quantum efficiency (QE) of the near-infrared (NIR) emission (910–1100 nm) were measured. Under excitation of UV light, Yb{sup 3+}-doped perovskite shows an intense NIR emission attributed to the {sup 2}F{sub 5/2} → {sup 2}F{sub 7/2} transitions of Yb{sup 3+} ions, which could match maximum spectral response of a Si-based solar cell. This is beneficial for its possible application in an enhancement of the photovoltaic conversion efficiency of solar energy utilization. The efficient energy transfer in Yb{sup 3+}-doped CaLaNb{sub 3}O{sub 10} from NbO{sub 6} groups into Yb{sup 3+} ions was confirmed by the spectra and fluorescent decay measurements. Cooperative energy transfer (CET) was supposed to be the NIR emission mechanism.

  15. Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0-14.0 μm)

    USGS Publications Warehouse

    Ribeiro da Luz, Beatriz; Crowley, James K.

    2007-01-01

    In contrast to visible and short-wave infrared data, thermal infrared spectra of broad leaf plants show considerable spectral diversity, suggesting that such data eventually could be utilized to map vegetation composition. However, remotely measuring the subtle emissivity features of leaves still presents major challenges. To be successful, sensors operating in the 8–14 μm atmospheric window must have high signal-to-noise and a small enough instantaneous field of view to allow measurements of only a few leaf surfaces. Methods for atmospheric compensation, temperature–emissivity separation, and spectral feature analysis also will need to be refined to allow the recognition, and perhaps, exploitation of leaf thermal infrared spectral properties.

  16. Integrated IR sensors

    NASA Astrophysics Data System (ADS)

    Tom, Michael; Trujillo, Edward

    1994-06-01

    Integrated infrared (IR) sensors which exploit modular avionics concepts can provide features such as operational flexibility, enhanced stealthiness, and ease of maintenance to meet the demands of tactical, airborne sensor systems. On-board, tactical airborne sensor systems perform target acquisition, tracking, identification, threat warning, missile launch detection, and ground mapping in support of situation awareness, self-defense, navigation, target attack, weapon support, and reconnaissance activities. The use of sensor suites for future tactical aircraft such as US Air Force's multirole fighter require a blend of sensor inputs and outputs that may vary over time. It is expected that special-role units of these tactical aircraft will be formed to conduct tasks and missions such as anti-shipping, reconnaissance, or suppression of enemy air defenses.

  17. Photometric study of NGC 2023 in the 3500 A to 10000 A region - Confirmation of a near-IR emission process in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Schild, R. E.; Kraiman, J. B.; Witt, A. N.

    1984-01-01

    A surface brightness study of the reflection nebula NGC 2023 covering the 3500-10,000 A wavelength region performed with uvby photoelectric photometry and BVRI imaging with a CCD detector is reported along with VRI photometry of a cluster of embedded red stars. The nebular radiation in the 3500-5500 A region is dust-scattered starlight originating in the star HD 37903. The embedded red stars are probably pre-main sequence stars. The nebular surface brightness in R and I exceeds that expected on the basis of a reasonable radiative transfer model by factors of two and more than three, respectively. The excess radiation is extended across the nebula in a manner similar to the scattered light. The extended red emission may be interpreted as the high-frequency extension of extended emission discovered by Sellgren, Werner, and Dinerstein (1983) in the 2-5 micron region in NGC 2023 and two other reflection nebulae.

  18. Occurrence of global-scale emissions on Jupiter - Proposed identification of Jovian dimer H2 emission

    NASA Technical Reports Server (NTRS)

    Trafton, L. M.; Wartson, J. K. G.

    1992-01-01

    Two occasions of exceptionally widespread but distinct emission activity were observed in Jupiter's near-IR K-band spectrum during September and November of 1988. Two different sets of emission features were involved on the two dates of observation. During these occasions, the normally absent emission features extended from the South polar limb to at least the equator, over a large range of longitudes. Meanwhile, Jupiter's auroral H2 and H3(+) emissions remained confined to their usual magnetic polar domains. The global-scale emission features observed during those periods appear to have originated from the H2 dimer, (H2)2, during two different excitation modes. Inverse predissociation may have driven the November event. The September event probably originated deeper within the Jovian atmosphere, where excited H2 is more likely to combine with an unexcited H2 before radiating. Unusual magnetospheric loading probably precipitated these events.

  19. A Study of the 3.3 and 3.4 μm Emission Features in Proto-Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Hrivnak, Bruce J.; Geballe, T. R.; Kwok, Sun

    2007-06-01

    Medium-resolution spectra have been obtained of seven carbon-rich proto-planetary nebulae (PPNs) and one young planetary nebula from 3.2 to 3.8 μm, an interval containing the prominent hydrocarbon CH stretches at 3.3 and 3.4 μm due to aromatic and aliphatic structures, respectively. The 3.3 μm feature is newly identified in IRAS 23304+6147, 22223+4327, and 06530-0213 and is confirmed in Z02229+6208. Three of the PPNs emit in the 3.4 μm feature, two of these being new identifications, IRAS 20000+3239 and 01005+7910, with two others showing possible detections. The 3.3 and 3.4 μm emission features in IRAS 22272+5435 are seen in the nebula offset from the star but not at the position of the central star, consistent with the 2003 results of Goto et al. A similar distribution is seen for the 3.3 μm feature in IRAS 22223+4327. All of the PPNs except IRAS 22272+5435 show Class A 3 μm emission features. These observations, when combined with those of the approximately equal number of other carbon-rich PPNs previously observed, demonstrate that there are large differences in the 3 μm emission bands, even for PPNs with central stars of similar spectral type, and thus that the behavior of the bands does not depend solely on spectral type. We also investigated other possible correlations to help explain these differences. These differences do not depend on the C/O value, since the Class B sources fall within the C/O range found for Class A. All of these 3.3 μm sources also show C2 absorption and 21 μm emission features, except IRAS 01005+7910, which is the hottest source at B0. This research is based on observations made at the W. M. Keck Observatory by Gemini staff, supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the United Kingdom, and the United States of America. The W. M. Keck Observatory is

  20. Aggregation Induced Emission Mediated Controlled Release by Using a Built-In Functionalized Nanocluster with Theranostic Features.

    PubMed

    Zhou, Zhan; Zhang, Cheng Cheng; Zheng, Yuhui; Wang, Qianming

    2016-01-14

    We report biological evaluation of a novel nanoparticle delivery system based on 1,1,2-triphenyl-2-(p-hydroxyphenyl)-ethene (TPE-OH, compound 1), which has tunable aggregation-induced emission (AIE) characteristics. Compound 1 exhibited no emission in DMSO. In aqueous media, compound 1 aggregated, and luminescence was observed. The novel membrane-cytoplasm-nucleus sequential delivery strategy could induce apoptosis in four different kinds of cancer cells (including three adherent cell lines and one suspension cell line). The nanoparticles remained in the cytoplasm with intense blue emissions, whereas doxorubicin was observed in the nucleus with striking red luminescence. The nanoassembly was internalized in cells through an energy-dependent process. Three sorts of chemical inhibitors were used to clarify the endocytosis mechanism based on the AIE type prodrug. Furthermore, we have developed the first AIE theranostic system where drug targeting and release have been applied in an animal model. PMID:26689502

  1. Enhancement mechanism of field electron emission properties in hybrid carbon nanotubes with tree- and wing-like features

    SciTech Connect

    Yang, G.M.; Yang, C.C.; Xu, Q.; Zheng, W.T.; Li, S.

    2009-12-15

    In this work, the tree-like carbon nanotubes (CNTs) with branches of different diameters and the wing-like CNTs with graphitic-sheets of different densities were synthesized by using plasma enhanced chemical vapor deposition. The nanostructures of the as-prepared hybrid carbon materials were characterized by scanning electron microscopy and transmission electron microscopy. The structural dependence of field electron emission (FEE) property was also investigated. It is found that both of the tree- and wing-like CNTs exhibit a lower turn-on field and higher emission current density than the pristine CNTs, which can be ascribed to the effects of branch size, crystal orientation, and graphitic-sheet density. - Graphical abstract: Tree-like carbon nanotubes (CNTs) with branches and the wing-like CNTs with graphitic-sheets were synthesized by using plasma enhanced chemical vapor deposition. The structural dependence of field electron emission property was also investigated.

  2. Several features of emission spectra of Pr+3 ions incorporated into Li2B4O7 glass matrices

    NASA Astrophysics Data System (ADS)

    Majchrowski, A.; Kityk, I. V.; Mandowska, E.; Mandowski, A.; Ebothé, Jean; Lukasiewicz, T.

    2006-09-01

    Influence of lithium tetraborate (Li2B4O7, TBL) glass matrix on the luminescent properties of the Pr+3 ions emission was investigated. It was demonstrated that the decrease of matrix long-range ordering leads to substantial widening of corresponding peaks in the emission spectra in comparison with crystalline Ca4GdO(BO3)3 matrices. During the decrease of temperature from 292 down to 82K a distinct low-energy spectral shift of the principal red luminescent band from 607to610nm is observed, which is a consequence of a coexistence of several structural borate fragments. Simulations of incorporation the Pr3+ ions into the TBL glasslike matrix were carried out using the Langevin molecular dynamics simulations and quantum chemical simulations. Possibility of partial substitution of boron ions by Pr3+ ions is demonstrated. The contribution of the electron-phonon subsystems to the spectral broadening of the corresponding emission red lines was evaluated. It was shown that the main contribution to the emission bands gives harmonic electron-phonon interactions contrary to the generally adopted model assuming prevailing role of anharmonic electron-phonon interactions.

  3. Late Time Multi-wavelength Observations of Swift J1644+5734: A Luminous Optical/IR Bump and Quiescent X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Levan, A. J.; Tanvir, N. R.; Brown, G. C.; Metzger, B. D.; Page, K. L.; Cenko, S. B.; O'Brien, P. T.; Lyman, J. D.; Wiersema, K.; Stanway, E. R.; Fruchter, A. S.; Perley, D. A.; Bloom, J. S.

    2016-03-01

    We present late time multi-wavelength observations of Swift J1644+57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to >4 years from discovery and show that 1.4 years after outburst the relativistic jet switched off on a timescale less than tens of days, corresponding to a power-law decay faster than t-70. Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of LX ˜ 5 × 1042 erg s-1 and are marginally inconsistent with a continuing decay of t-5/3, similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of MBH = 3 × 106 M⊙, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint active galactic nucleus or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30-50 days, with a peak magnitude (corrected for host galaxy extinction) of MR ˜ -22 to -23. The luminosity of the bump is significantly higher than seen in other, non-relativistic TDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape, and spectrum are broadly similar to those seen in superluminous supervnovae, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares.

  4. Characterization of Vertical and Horizontal Wave Features in Dayglow Emissions as Observed from a Low-latitude Station, Hyderabad, INDIA.

    NASA Astrophysics Data System (ADS)

    Islam Laskar, Fazlul; Pallamraju, Duggirala; Chakrabarti, Supriya; Raghavarao, Ravipati; Vijaya Lakshmi, Thatiparthi; Anji Reddy, M.

    2012-07-01

    Due to the unique geomagnetic field configuration, equatorial upper atmosphere of the earth is affected by various electro-dynamical processes, such as, equatorial electrojet (EEJ), equatorial ionization anomaly (EIA), equatorial spread-F (ESF), equatorial temperature and wind anomaly (ETWA). Each of these processes leave their imprint on both the neutral and ionised components of the upper atmosphere. The plasma dynamics can be investigated by radio probing methods. Investigations on the neutral dynamics, however, are possible mainly through the optical measurements. As these phenomena spread over a large spatial extent, it is extremely important to measure their variability over a large field-of-view. Here, we present the results of the wave characteristics observed over a low latitude location, Hyderabad (Geographic: 17.5° N, 78.5° E; Geomagnetic: 8.6° N, 151.8° E), which were obtained using a high spectral-resolution multi-wavelength echelle-grating spectrograph. This instrument obtains oxygen dayglow emissions at 557.7 nm, 630.0 nm, and 777.4 nm wavelengths over a large field-of-view ( of about 140 degrees) that originate from peak altitudes of around 130 km, 230 km, and 300 km, respectively. Initial results from a total of 52 days of data reveal that the dominant wave periodicities in the intensities of these emissions are different for different emission heights. Significant latitudinal dependency is seen in case of 557.7 nm and 630.0 nm. The latitudinal behavior of the emissions show the influence of both the neutral dynamics and electrodynamics of the equatorial origin. The emission variabilities are compared with the empirical and physics based models to discern the dynamical component in them in order to understand the nature of the vertical coupling of atmospheric regions. These results will be presented in light of the electrodynamic effects on them.

  5. Temperature profile retrieval in axisymmetric combustion plumes using multilayer perceptron modeling and spectral feature selection in the infrared CO2 emission band.

    PubMed

    García-Cuesta, Esteban; de Castro, Antonio J; Galván, Inés M; López, Fernando

    2014-01-01

    In this work, a methodology based on the combined use of a multilayer perceptron model fed using selected spectral information is presented to invert the radiative transfer equation (RTE) and to recover the spatial temperature profile inside an axisymmetric flame. The spectral information is provided by the measurement of the infrared CO2 emission band in the 3-5 μm spectral region. A guided spectral feature selection was carried out using a joint criterion of principal component analysis and a priori physical knowledge of the radiative problem. After applying this guided feature selection, a subset of 17 wavenumbers was selected. The proposed methodology was applied over synthetic scenarios. Also, an experimental validation was carried out by measuring the spectral emission of the exhaust hot gas plume in a microjet engine with a Fourier transform-based spectroradiometer. Temperatures retrieved using the proposed methodology were compared with classical thermocouple measurements, showing a good agreement between them. Results obtained using the proposed methodology are very promising and can encourage the use of sensor systems based on the spectral measurement of the CO2 emission band in the 3-5 μm spectral window to monitor combustion processes in a nonintrusive way. PMID:25061791

  6. ALBERMARLE PAMLICO IR 2002

    EPA Science Inventory

    The 2002 Albermarle Pamlico Implementation Review (IR) highlights recent successes and challenges with the estuary program. Various components within the IR include: CCMP implementation, outlining priority management actions, public involvement, stakeholder contribution, and limi...

  7. Identification of the emission features near 3.5 microns in the pre main sequence star HD 97048

    NASA Technical Reports Server (NTRS)

    Baas, F.; Allamandola, L. J.; Geballe, T. R.; Persson, S. E.; Lacy, J. H.

    1982-01-01

    The spectrum of HD97048 was measured with a resolving power of 450 between 3.37 and 3.64 microns. The prominent feature near 3.5 microns is well resolved, with a peak at 3.53 microns and a wing extending to a shorter wavelength. The weaker feature near 3.4 microns is found to peak at 3.43 microns, in contrast to the 3.40 micron feature seen in other astronomical objects. The observed spectrum strongly resembles laboratory spectra of mixtures of monomeric and dimeric formaldehyde embedded in low temperature solids. Of various possible excitation mechanisms, ultraviolet pumped infrared fluorescence of formaldehyde in interstellar grains provides the best explanation for the observed spectrum of HD 97048.

  8. Development of an Extra-vehicular (EVA) Infrared (IR) Camera Inspection System

    NASA Technical Reports Server (NTRS)

    Gazarik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Pandolf, John; Jenkins, Rusty; Yates, Rusty

    2006-01-01

    Designed to fulfill a critical inspection need for the Space Shuttle Program, the EVA IR Camera System can detect crack and subsurface defects in the Reinforced Carbon-Carbon (RCC) sections of the Space Shuttle s Thermal Protection System (TPS). The EVA IR Camera performs this detection by taking advantage of the natural thermal gradients induced in the RCC by solar flux and thermal emission from the Earth. This instrument is a compact, low-mass, low-power solution (1.2cm3, 1.5kg, 5.0W) for TPS inspection that exceeds existing requirements for feature detection. Taking advantage of ground-based IR thermography techniques, the EVA IR Camera System provides the Space Shuttle program with a solution that can be accommodated by the existing inspection system. The EVA IR Camera System augments the visible and laser inspection systems and finds cracks and subsurface damage that is not measurable by the other sensors, and thus fills a critical gap in the Space Shuttle s inspection needs. This paper discusses the on-orbit RCC inspection measurement concept and requirements, and then presents a detailed description of the EVA IR Camera System design.

  9. Hydrogenated polycyclic aromatic hydrocarbons and the 2940 and 2850 wavenumber (3.40 and 3.51 micron) infrared emission features.

    PubMed

    Bernstein, M P; Sandford, S A; Allamandola, L J

    1996-12-01

    The 3150-2700 cm-1 (3.17-3.70 microns) range of the spectra of a number of Ar-matrix-isolated PAHs containing excess H atoms (Hn-PAHs) are presented. This region covers features produced by aromatic and aliphatic C-H stretching vibrations as well as overtone and combination bands involving lower lying fundamentals. The aliphatic C-H stretches in molecules of this type having low to modest excess H coverage provide excellent fits to a number of the weak emission features superposed on the plateau between 3080 and 2700 cm-1 (3.25 and 3.7 microns) in the spectra of many planetary nebulae, reflection nebulae, and H II regions. Higher H coverage is implied for a few objects. We compare these results in context with the other suggested identifications of the emission features in the 2950-2700 cm-1 (3.39-3.70 microns) region and briefly discuss their astrophysical implications. PMID:11541245

  10. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 2--morphological and mineralogical features.

    PubMed

    Calabrese, S; D'Alessandro, W

    2015-01-01

    Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques. PMID:25311770