Science.gov

Sample records for ir thermography methods

  1. The development of in-situ calibration method for divertor IR thermography in ITER

    SciTech Connect

    Takeuchi, M.; Sugie, T.; Ogawa, H.; Takeyama, S.; Itami, K.

    2014-08-21

    For the development of the calibration method of the emissivity in IR light on the divertor plate in ITER divertor IR thermography system, the laboratory experiments have been performed by using IR instruments. The calibration of the IR camera was performed by the plane black body in the temperature of 100–600 degC. The radiances of the tungsten heated by 280 degC were measured by the IR camera without filter (2.5–5.1 μm) and with filter (2.95 μm, 4.67 μm). The preliminary data of the scattered light of the laser of 3.34 μm that injected into the tungsten were acquired.

  2. The development of in-situ calibration method for divertor IR thermography in ITER

    NASA Astrophysics Data System (ADS)

    Takeuchi, M.; Sugie, T.; Ogawa, H.; Takeyama, S.; Itami, K.

    2014-08-01

    For the development of the calibration method of the emissivity in IR light on the divertor plate in ITER divertor IR thermography system, the laboratory experiments have been performed by using IR instruments. The calibration of the IR camera was performed by the plane black body in the temperature of 100-600 degC. The radiances of the tungsten heated by 280 degC were measured by the IR camera without filter (2.5-5.1 μm) and with filter (2.95 μm, 4.67 μm). The preliminary data of the scattered light of the laser of 3.34 μm that injected into the tungsten were acquired.

  3. IR Thermography NDE of ISS Radiator Panels

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay; Winfree, William; Morton, Richard; Wilson, Walter; Reynolds, Gary

    2010-01-01

    The presentation covers an active and a passive infrared (IR) thermography for detection of delaminations in the radiator panels used for the International Space Station (ISS) program. The passive radiator IR data was taken by a NASA astronaut in an extravehicular activity (EVA) using a modified FLIR EVA hand-held camera. The IR data could be successfully analyzed to detect gross facesheet disbonds. The technique used the internal hot fluid tube as the heat source in analyzing the IR data. Some non-flight ISS radiators were inspected using an active technique of IR flash thermography to detect disbond of face sheet with honeycomb core, and debonds in facesheet overlap areas. The surface temperature and radiated heat emission from flight radiators is stable during acquisition of the IR video data. This data was analyzed to detect locations of unexpected surface temperature gradients. The flash thermography data was analyzed using derivative analysis and contrast evolutions. Results of the inspection are provided.

  4. Corrosion detection on pipelines by IR thermography

    NASA Astrophysics Data System (ADS)

    Bison, P.; Marinetti, S.; Cuogo, G.; Molinas, B.; Zonta, P.; Grinzato, E.

    2011-05-01

    IR thermography is applied to detect hidden corrosion on carbon steel pipelines for oil transportation. The research is oriented to set up a robust technique to carry out in situ the early detection of corroded zones that may evolve either towards leakage or failure. The use of thermography associated with a transient thermal technique is investigated on 12.2 mm thick samples, machined to artificially create a reduction of wall thickness that simulates the effect of real corrosion in pipes. The extension and depth of the artificial defects is controlled by ultrasounds which represents the reference for the results obtained by thermography. Two approaches are proposed: the first is based on the processing of a single thermogram taken at the optimum time after a finite pulse heating of a large area of the external surface; the second technique is carried out by scanning the pipeline by means of a device composed of a linear lamp and a thermographic camera which move jointly over the surface to test. A suitable reconstruction provides a map of the tested surface with possible hot spots in correspondence with the corroded areas. The analysis of the thermal problem by Finite Element Method is used to optimize the experimental parameters. The experimental results demonstrate a detection capability starting from 15 % of wall thickness reduction.

  5. Air tightness monitoring by IR thermography

    NASA Astrophysics Data System (ADS)

    Grinzato, Ermanno G.; Marinetti, Sergio; Bison, Paolo G.

    2004-04-01

    The standard air tightness test of containers is based on measurement of global parameters as the outlet of a specific gas, detected by specialised mass spectrometers. The identification and location of air leakages is extremely important especially for the container manufacturer. At the same time, the measure of the mass flux is of importance. IR Thermography has been successfully applied for leakages detection on buildings, but unfortunately, the noise due to The standard air tightness test of containers is based on measurement of global parameters as the outlet of a specific gas, detected by specialised mass spectrometers. The identification and location of air leakages is extremely important especially for the container manufacturer. At the same time, the measure of the mass flux is of importance. IR Thermography has been successfully applied for leakage detection on buildings, but unfortunately, the noise due to environment limits its applicability, particularly in case of a small flux. A new thermal procedure has been developed for the leakage detection. The technique is based on the stimulation of the envelope with a low oscillating heat flux and lock-in analysis. An airflow is injected, with a harmonically varying flowrate and a slightly higher temperature than the ambient. Then, the thermograms sequence is analyzed in the frequency domain. A review of quantitative techniques for the convective heat exchange measurement is reported. The procedure has been utilized for special containers used for both transport and exhibition of pictures inside museums. Tests performed before and after gaskets improvements show the capability of the technique to estimate qualitatively the airflow.

  6. Heat transfer investigation in pipe by IR thermography

    NASA Astrophysics Data System (ADS)

    Koppel, Tiit; Ainola, Leo; Ekholm, Ari; Lahdeniemi, Matti

    2000-03-01

    The IR-thermography has proved to be a useful contactless instrument in fluid flow research, especially for investigation of heat transfer processes. Series of experimental measurements of suddenly accelerated and pulsating pipe flow were made at Satakunta Polytechnic, Technology in Pori, Finland, with this aim.

  7. IR Thermography of International Space Station Radiator Panels

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay; Winfree, WIlliam; Morton, Richard; Howell, Patricia

    2010-01-01

    Several non-flight qualification test radiators were inspected using flash thermography. Flash thermography data analysis used raw and second derivative images to detect anomalies (Echotherm and Mosaic). Simple contrast evolutions were plotted for the detected anomalies to help in anomaly characterization. Many out-of-family indications were noted. Some out-of-family indications were classified as cold spot indications and are due to additional adhesive or adhesive layer behind the facesheet. Some out-of-family indications were classified as hot spot indications and are due to void, unbond or lack of adhesive behind the facesheet. The IR inspection helped in assessing expected manufacturing quality of the radiators.

  8. Divertor IR thermography on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-01

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  9. Divertor IR thermography on Alcator C-Mod.

    PubMed

    Terry, J L; LaBombard, B; Brunner, D; Payne, J; Wurden, G A

    2010-10-01

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings. PMID:21034041

  10. Divertor IR thermography on Alcator C-Mod

    SciTech Connect

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-15

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6 deg. toroidal sector has been given a 2 deg. toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  11. Application of IR thermography for unsteady fluid-flow research

    NASA Astrophysics Data System (ADS)

    Koppel, Tiit; Lahdeniemi, Matti; Ekholm, Ari

    1998-03-01

    In the recent years the IR thermography technique has been sued successfully as a new contactless instrument for gas and fluid flow research in pipes and on the surface of a flat plate. It is well known that most energy changes in the flow take place in the boundary layer. This is in turn important for the intensity of convective heat transfer in pipe flows and enables to measure processes connected with energy changes in the flow from outside the pipe. Series of measurements of suddenly accelerated and pulsating pipe flow were made at Satakunta Polytechnic, Technology Pori, Finland. The theoretical criterion describing the transition from laminar to turbulent regime is found depending on the critical thickness of the boundary layer of suddenly accelerated flow. At the moment of transition of the 'plug' type flow into turbulent flow, the velocities in the wall region diminish and this can be detected using the IR thermography from the wall temperature changes. the experimental results of the mean velocity development and transition criteria correspond to the theoretical calculations. The changes of the internal structure of the flow affect the convective heat transfer and this in turn influences the pipe wall temperature. IR thermography measures pipe wall temperature changes and consequently we can detect flow structure changes in the boundary layer in the accelerated and decelerated phase of the pulsating pipe flow.

  12. Inspecting thermal barrier coatings by IR thermography

    NASA Astrophysics Data System (ADS)

    Bison, Paolo G.; Marinetti, Sergio; Grinzato, Ermanno G.; Vavilov, Vladimir P.; Cernuschi, Federico; Robba, Daniele

    2003-04-01

    As far as power generation is concerned, coating technologies find the main and more advanced applications. Nowadays, superalloys available for manufacturing hot path components in gas turbine like combustion liners, blades and vanes can not sustain temperatures up to 1100°C. In order to guarantee a significative temperature drop ceramic thermal barrier coatings are deposited onto the metallic core. The thickness of thermal barrier coatings (TBC) ranges from a few hundreds microns up to 1 millimetre or more, depending on component and deposition technique (mainly Air Plasma Spray or Electron Beam Physical Vapour Deposition). The structural integrity of both the substrate and the coating and their mutual adhesion is a key point because any loss of the protective layer exposes the bulk material to an extremely aggressive environment in terms of oxidation and temperature. Therefore, TBC must be tested for detecting of defects during both quality control and periodic in-service inspections. Because of the key role played by thickness and low thermal diffusivity of TBC in the decreasing of the substrate material temperature, both delaminations and thickness variation must be detected and classified. Pulsed Thermography has been successfully applied to this application field. Nevertheless, the procedure gives ambiguous results when thickness or thermal properties change in a continuous way within the thermal barrier. In this paper, a specific study on the detection performances of NDE techniques is presented, even when a non-uniform TBC thickness is superimposed to the disbonding defect. Tests performed at workshop on real and specifically manufactured components are reported. Dedicated processing algorithms improving the test reliability and effectiveness are presented as well. Tests on real components on the field are also reported.

  13. IR thermography for dynamic detection of laminar-turbulent transition

    NASA Astrophysics Data System (ADS)

    Simon, Bernhard; Filius, Adrian; Tropea, Cameron; Grundmann, Sven

    2016-05-01

    This work investigates the potential of infrared (IR) thermography for the dynamic detection of laminar-turbulent transition. The experiments are conducted on a flat plate at velocities of 8-14 m/s, and the transition of the laminar boundary layer to turbulence is forced by a disturbance source which is turned on and off with frequencies up to 10 Hz. Three different heating techniques are used to apply the required difference between fluid and structure temperature: a heated aluminum structure is used as an internal structure heating technique, a conductive paint acts as a surface bounded heater, while an IR heater serves as an example for an external heating technique. For comparison of all heating techniques, a normalization is introduced and the frequency response of the measured IR camera signal is analyzed. Finally, the different heating techniques are compared and consequences for the design of experiments on laminar-turbulent transition are discussed.

  14. Thermography.

    ERIC Educational Resources Information Center

    Cage, Bob N.

    1984-01-01

    Thermography, a diagnostic tool that combines photography and infrared sensing, permits direct measurement of apparent surface temperatures. Building energy losses can be detected and correction measures planned. Criteria for the use of thermography are provided. (MLF)

  15. High-resolution survey of buildings by lock-in IR thermography

    NASA Astrophysics Data System (ADS)

    Bortolin, A.; Cadelano, G.; Ferrarini, G.; Bison, P.; Peron, F.; Maldague, X.

    2013-05-01

    Applications of Infrared Thermography in buildings surveys are not limited to the identification of the temperature distribution and heat losses on building envelopes. As it is well known from NDT testing in industrial applications, active IR thermographic methods such as heating-up/cooling-down or lock-in thermography improve the results in many investigations. In civil engineering these techniques have not been used widely. Mostly, thermography is used in a quasistatic manner. This paper illustrates a new approach to achieve, by the lock-in technique, an in depth view of the structure of the wall evidencing the presence of buried elements, interfaces and cracks. The idea is to take advantage of the periodic heating and cooling of earth surface due to the alternating of day and night. The corresponding thermal wave has a period equal to 24 hours that can probe the walls of buildings with a penetration depth of the order of some centimeters. The periodic temperature signal is analysed to extract amplitude and phase. It is expected that the phase image gives the indication of inhomogeneity buried in the wall structure. As a case study, the exterior surface of Palazzo Ducale in Venice is analysed and illustrated. In addition to IR images, visible electromagnetic band is considered to evaluate the strength of the solar radiation and the geometrical distortion. Indeed, the periodicity due to the Earth rotation is only approximately of 24 hours. The passing clouds or the possibility of rainy days can superimpose other heating or cooling frequencies to the main one. The Fourier analysis of the impinging radiation on the wall is performed. The façade of Palazzo Ducale is tiled with stone of two different colours and types. A final attempt to automatically classify the stone tiles in the visible and infrared images is conducted.

  16. IR thermography for the assessment of the thermal conductivity of thermoelectric modules at intermediate temperature

    NASA Astrophysics Data System (ADS)

    Boldrini, S.; Ferrario, A.; Bison, P.; Miozzo, A.; Montagner, F.; Fabrizio, M.

    2016-05-01

    The correct measurement of the performances of thermoelectric (TE) modules for energy conversion is a mandatory task both for laboratory research and for industries engaged in TE modules development or in their integration into thermoelectric generators. A testing device oriented to the maximum flexibility, based on the heat flow meter method at the cold side of the module has been developed. The system is conceived to test TE modules (single or in cascade) with a footprint up to 60x60 mm2, from room temperature up to intermediate temperature. Modules can be tested under vacuum or inert atmosphere. Specifically, the flow meter is made of a block of material, with known thermal conductivity, in contact with the cold side of the thermoelectric module. The heat flow is finally determined by measuring the temperature profile along the heat flow path and that is obtained by IR thermography. IR thermography is also utilized to evaluate the contact resistance between the active thermoelectric elements made of ceramic materials and the ceramic layer working as heat diffuser and mechanical support. Some finite element thermal analyses of the system performed for its design are presented.

  17. CURVATURE EFFECT QUANTIFICATION FOR IN-VIVO IR THERMOGRAPHY.

    PubMed

    Cheng, Tze-Yuan; Deng, Daxiang; Herman, Cila

    2012-01-01

    Medical Infrared (IR) Imaging has become an important diagnostic tool over recent years. However, one underlying problem in medical diagnostics is associated with accurate quantification of body surface temperatures. This problem is caused by the artifacts induced by the curvature of objects, which leads to inaccurate temperature mapping and biased diagnostic results. Therefore, in our study, an experiment-based analysis is conducted to address the curvature effects toward the 3D temperature reconstruction of the IR thermography image. For quantification purposes, an isothermal copper plate with flat surface, and a cylindrical metal container filled with water are imaged. For the flat surface, the tilting angle measured from camera axis was varied incrementally from 0° to 60 °, such that the effects of surface viewing angle and travel distance on the measured temperature can be explored. On the cylindrical curved surface, the points viewed from 0° to 90° with respect to the camera axis are simultaneously imaged at different temperature levels. The experimental data obtained for the flat surface indicate that both viewing angle and distance effects become noticeable for angles over 40 °. The travel distance contributes a minor change when compared with viewing angle. The experimental results from the curved surface indicate that the curvature effect becomes pronounced when the viewing angle is larger than 60 °. The measurement error on the curved surface is compared with the simulation using the non-dielectric model, and the normalized temperature difference relative to 0° viewing angle was analyzed at six temperature levels. These results indicate that the linear formula associated with directional emissivity is a reasonable approximation for the measurement error, and the normalized error curves change consistently with viewing angle at various temperatures. Therefore, the analysis in this study implies that the directional emissivity based on the non

  18. Fuel Cell Manufacturing Diagnostic Techniques: IR Thermography with Reactive Flow through Excitation

    SciTech Connect

    Manak, A. J.; Ulsh, M.; Bender, G.

    2012-01-01

    While design and material considerations for PEMFCs have a large impact on cost, it is also necessary to consider a transition to high volume production of fuel cell systems, including MEA components, to enable economies of scale and reduce per unit cost. One of the critical manufacturing tasks is developing and deploying techniques to provide in‐process measurement of fuel cell components for quality control. This effort requires a subsidiary task: The study of the effect of manufacturing defects on performance and durability with the objective to establish validated manufacturing tolerances for fuel cell components. This work focuses on the development of a potential quality control method for gas diffusion electrodes (GDEs). The method consists of infrared (IR) thermography combined with reactive flow through (RFT) excitation. Detection of catalyst loading reduction defects in GDE catalyst layers will be presented.

  19. Evaluation of the sensitivity and response of IR thermography from a transparent heater under liquid jet impingement

    NASA Astrophysics Data System (ADS)

    Haustein, H. D.; Rohlfs, W.; Al-Sibai, F.; Kneer, R.

    2012-11-01

    The feasibility of a visible/IR transparent heater and its suitability for IR thermography is experimentally examined. The most common transparent conductive coating, Indium Tin Oxide (ITO), is quite reflective and its optical properties depend on thickness and manufacturing process. Therefore, the optical properties of several thicknesses and types of ITO, coated on an IR window (BaF2), are examined. A highly transparent Cadmium Oxide (CdO) coating on a ZnS window, also examined, is found to be unusable. Transmissivity is found to increase with a decrease in coating thickness, and total emittance is relatively low. A thick ITO coating was examined for IR thermography in the challenging test case of submerged water jet impingement, where temperature differences were characteristically small and distributed. The measurements under steady state conditions were found to agree well with the literature, and the method was validated. Comparison of two IR cameras did not show the LWIR low-temperature advantage, up to the maximal acquisition rate examined, 1.3KHz. Rather the MWIR camera had a stronger signal to noise ratio, due to the higher emissivity of the heater in this range. The transient response of the transparent heater showed no time-delay, though the substrate dampens the thermal response significantly. Therefore, only qualitative transient measurements are shown for the case of pulsating free-surface jet impingement, showing that the motion of the hydraulic jump coincides with thermal measurements. From these results, recommendations are made for coating/window combination in IR thermography.

  20. Validation of quantitative IR thermography for estimating the U-value by a hot box apparatus

    NASA Astrophysics Data System (ADS)

    Nardi, I.; Paoletti, D.; Ambrosini, D.; de Rubeis, T.; Sfarra, S.

    2015-11-01

    Energy saving plays a key role in the reduction of energy consumption and carbon emission, and therefore it is essential for reaching the goal of the 20-20-2020 policy. In particular, buildings are responsible of about 30% of the total amount of Europe energy consumption; the increase of their energy efficiency with the reduction of the thermal transmittance of the envelope is a point of strength with the actions and strategies of the policy makers. Currently, the study of energy performance of buildings is based on international standards, in particular the Italian one allows to calculate the U-value according the ISO 6946 or by in-situ measurements, using a heat flow meter (HFM), following recommendations provided in ISO 9869. In the last few years, a new technique, based on Infrared Thermography (IRT) (also referred to as Infrared Thermovision Technique - ITT), has been proposed for in situ determination of the thermal transmittance of opaque building elements. Some case studies have been reported. This method has already been applied on existing buildings, providing reliable results, but also revealing some weaknesses. In order to overcome such weak points and to assess a systematic procedure for the application of IRT, a validation of the method has been performed in a monitored environment. Infrared camera, the heat flow meter sensors and a nearby meteorological station have been used for thermal transmittance measurement. Comparison between the U-values measured in a hot box with IRT as well as values calculated following international standards and HFM results has been effected. Results give a good description of the advantages, as well as of the open problems, of IR Thermography for estimating the U-value. Further studies will help to refine the technique, and to identify the best operative conditions.

  1. Non-Destructive Evaluation of Slot-Die-Coated Lithium Secondary Battery Electrodes by In-Line Laser Caliper and IR Thermography Methods-Journal Cover Page

    SciTech Connect

    Mohanty, Debasish; Li, Jianlin; Born, Rachael; Maxey, L Curt; Dinwiddie, Ralph Barton; Daniel, Claus; Wood III, David L

    2014-01-01

    Note: This is a cover page for the 'Analytical Methods' journal, which was requested by the journal editor for consideration. The article has already been published and the PTS publication ID is 44000. The acknowledgements are same as mentioned in the PTS publication ID 44000.

  2. Treated-skin temperature regularities revealed by IR thermography

    NASA Astrophysics Data System (ADS)

    Vainer, Boris G.

    2001-03-01

    Experimental results disclosing temperature change of human skin affected by various unnatural factors are presented in detail. Thermograms are obtained with the IR thermograph containing high performance InAs CID FPA-based photosensitive unit. Using logarithmic scale of time, evolution of skin temperature after moistening, spirit sponging, and olive oil lubrication is investigated. A comparative analysis of the resulting effects of treatments including alpha-hydroxy acid, cosmetic regenerating cream, spirit, and water, is made. Quantitative distinctions between skin regions characterized by ordinary, and depleted blood supply, including areas located directly above surface main vessels, are revealed. Strongly logarithmic time- dependence of a skin temperature is discovered when the skin is cooled down after its preliminary heating with a hot wax. Non-monotonic change of a local temperature during electrically active procedure is described. Low level light therapy equipment is also applied. A special role of the temperature of nose is discussed.

  3. Control of CFRP strengthening applied to civil structures by IR thermography

    NASA Astrophysics Data System (ADS)

    Grinzato, E.; Trentin, R.; Bison, P. G.; Marinetti, S.

    2007-04-01

    NdT methods are highly promoted by an increasing demand of checking the effectiveness of strengthening and repair intervention on structural components, both in buildings and bridges. IR thermography exhibits excellent performances, particularly when innovative materials as CFRP (Carbon Fiber Reinforced Polymer) are used. Non destructive control by the use of thermographic analysis is used to detect adhesion defects or imperfections, which can lead the component to become brittle and collapsing unexpectedly. This paper shows as the geometrical evaluation of delaminated areas is carried out. Laboratory tests both on reduced or full scale are illustrated in order to set up and validate the proposed procedure. An experimental study on samples bonded with FRP and containing defects appropriately applied at the interface, will be presented. A series of beams (10 m long) have been tested under bending loads and strengthened conditions, by placing a pre-impregnated thin carbon (CFRP) laminate at the intrados. Different reinforcement configurations have been adopted in the beams (ordinary steel reinforcement and with addition of pre-stressed strands), using mechanical devices for the anchorage of the supplementary pre-tension of the strips. At local level, the simulation of possible lack of bonding during loading or intrinsic defects and imperfections has been contextually analysed on specifically dimensioned specimens. Different algorithms have been applied at the evaluation stage in order to estimate the defect size and location. Particularly, the extension of the delamination is estimate with a simple and robust algorithm. In facts, standards set the limit for acceptable defects, both in terms of number and size.

  4. Gamma-irradiation tests of IR optical fibres for ITER thermography--a case study

    SciTech Connect

    Reichle, R.; Pocheau, C.; Jouve, M.

    2008-03-12

    In the course of the development of a concept for a spectrally resolving infrared thermography diagnostic for the ITER divertor we have tested 3 types of infrared (IR) fibres in Co{sup 60} irradiation facilities under {gamma} irradiation. The fibres were ZrF{sub 4} (and HfF{sub 4}) fibres from different manufacturers, hollow fibres (silica capillaries with internal Ag/AgJ coating) and a sapphire fibre. For the IR range, only the latter fibre type encourages to go further for neutron tests in a reactor. If one restricted the interest onto the near infrared range, high purity core silica fibres could be used. This study might be seen as a typical example of the relation between diagnostic development for a nuclear environment and irradiation experiments.

  5. Flame attenuation effects on surface temperature measurements using IR thermography

    NASA Astrophysics Data System (ADS)

    de Vries, Jaap; Tabinowski, Robert

    2016-05-01

    Long-wave infrared (LWIR) cameras provide the unique ability to see through smoke and condensed water vapor. However, soot generated inside the flame does attenuate the LWIR signal. This work focuses on gas flame attenuation effects of LWIR signals originating from a blackbody. The experimental setup consists of time averaged, laboratory-scale turbulent diffusion flames with heat release rates set at 5 kW, 10 kW, and 15 kW. Propylene and ethylene were used as fuel, providing two different soot yields. A 30 cm by 30 cm blackbody was used with maximum surface temperatures set to 600°C. Both instantaneous and time-averaged blackbody temperature profiles through the flame were measured using a LWIR microbolometer camera (7.5-14 μm). Flame intermittency was quantified by color segmenting visible images. The experiments showed that low blackbody temperatures were significantly affected by the presence of the flame. At 600°C, the effect of flame absorption matches the emitted radiation from the flame itself. Using data obtained at various blackbody temperatures, the flame transmittance was obtained using a Generalized Reduced Gradient optimization method. The transmittance was lower for propylene flames compared to ethylene flames. Ethylene flames were shown to have higher temperatures. Using the values for flame radiance and transmissivity, the total averaged radiance of the flame plus the blackbody could be reproduced with 1% accuracy.

  6. Investigation of honeycomb structure using pulse infrared thermography method

    NASA Astrophysics Data System (ADS)

    Li, Huijuan

    2010-11-01

    To reduce weight and improve strength in the aerospace industry, composite structure has gained popularity as a replacement for conventional materials and structures, such as adhesive bonding and honeycomb structure. Honeycomb structures composed by a honeycomb core between two facesheets are very common on aerospace parts. However, the adhesive bonding process is more susceptible to quality variations during manufacturing than traditional joining methods. With the large increase in the use of composite materials and honeycomb structures, the need for high speed, large area inspection for fracture critical, sub-surface defects in aircraft, missiles and marine composites led to broad acceptance of infrared based NDT methods. Infrared thermography is one of several non-destructive testing techniques which can be used for defect detection in aircraft materials. Infrared thermography can be potentially useful, as it is quick, real time, non-contact and can examine over a relatively large area in one inspection procedure. In this paper, two kinds of defects which are of various size, shape and location below the test surface are planted in the honeycomb structure, they are all tested by pulsed thermography, analyze the thermal sequence and intensity graph got by this methods, it shows that pulsed thermography is an effective nondestructive technique for inspecting disbonding defect, can distinguish the location and the dimension of the defect exactly.

  7. Thermography as a quantitative imaging method for assessing postoperative inflammation

    PubMed Central

    Christensen, J; Matzen, LH; Vaeth, M; Schou, S; Wenzel, A

    2012-01-01

    Objective To assess differences in skin temperature between the operated and control side of the face after mandibular third molar surgery using thermography. Methods 127 patients had 1 mandibular third molar removed. Before the surgery, standardized thermograms were taken of both sides of the patient's face using a Flir ThermaCam™ E320 (Precisions Teknik AB, Halmstad, Sweden). The imaging procedure was repeated 2 days and 7 days after surgery. A region of interest including the third molar region was marked on each image. The mean temperature within each region of interest was calculated. The difference between sides and over time were assessed using paired t-tests. Results No significant difference was found between the operated side and the control side either before or 7 days after surgery (p > 0.3). The temperature of the operated side (mean: 32.39 °C, range: 28.9–35.3 °C) was higher than that of the control side (mean: 32.06 °C, range: 28.5–35.0 °C) 2 days after surgery [0.33 °C, 95% confidence interval (CI): 0.22–0.44 °C, p < 0.001]. No significant difference was found between the pre-operative and the 7-day post-operative temperature (p > 0.1). After 2 days, the operated side was not significantly different from the temperature pre-operatively (p = 0.12), whereas the control side had a lower temperature (0.57 °C, 95% CI: 0.29–0.86 °C, p < 0.001). Conclusions Thermography seems useful for quantitative assessment of inflammation between the intervention side and the control side after surgical removal of mandibular third molars. However, thermography cannot be used to assess absolute temperature changes due to normal variations in skin temperature over time. PMID:22752326

  8. Infrared contrast data analysis method for quantitative measurement and monitoring in flash infrared thermography

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper provides information on a new infrared (IR) image contrast data post-processing method that involves converting raw data to normalized contrast versus time evolutions from the flash infrared thermography inspection video data. Thermal measurement features such as peak contrast, peak contrast time, persistence time, and persistence energy are calculated from the contrast evolutions. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat bottom holes in a test plate of the subject material. The measurement features are used to monitor growth of anomalies and to characterize the void-like anomalies. The method was developed to monitor and analyze void-like anomalies in reinforced carbon-carbon (RCC) materials used on the wing leading edge of the NASA Space Shuttle Orbiters, but the method is equally applicable to other materials. The thermal measurement features relate to the anomaly characteristics such as depth and size. Calibration of the contrast is used to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat bottom hole (EFBH) from the calibration data. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH diameter are compared with actual widths to evaluate utility of IR Contrast method. Some thermal measurements relate to gap thickness of the delaminations. Results of IR Contrast method on RCC hardware are provided. Keywords: normalized contrast, flash infrared thermography.

  9. Study Methods to Standardize Thermography NDE

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1998-01-01

    The purpose of this work is to develop thermographic inspection methods and standards for use in evaluating structural composites and aerospace hardware. Qualification techniques and calibration methods are investigated to standardize the thermographic method for use in the field. Along with the inspections of test standards structural hardware, support hardware is designed and fabricated to aid in the thermographic process. Also, a standard operating procedure is developed for performing inspections with the Bales Thermal Image Processor (TIP). Inspections are performed on a broad range of structural composites. These materials include various graphite/epoxies, graphite/cyanide-ester, graphite/silicon-carbide, graphite phenolic and Keviar/epoxy. Also metal honeycomb (titanium and aluminum faceplates over an aluminum honeycomb core) structures are investigated. Various structural shapes are investigated and the thickness of the structures vary from as few as 3 plies to as many as 80 plies. Special emphasis is placed on characterizing defects in attachment holes and bondlines, in addition to those resulting from impact damage and the inclusion of foreign matter. Image processing through statistical analysis and digital filtering is investigated to enhance the quality and quantify the NDE thermal images when necessary.

  10. Study Methods to Standardize Thermography NDE

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1998-01-01

    The purpose of this work is to develop thermographic inspection methods and standards for use in evaluating structural composites and aerospace hardware. Qualification techniques and calibration methods are investigated to standardize the thermographic method for use in the field. Along with the inspections of test standards structural hardware, support hardware is designed and fabricated to aid in the thermographic process. Also, a standard operating procedure is developed for performing inspections with the Bales Thermal Image Processor (TIP). Inspections are performed on a broad range of structural composites. These materials include graphite/epoxies, graphite/cyanide-ester, graphite/silicon-carbide, graphite phenolic and Kevlar/epoxy. Also metal honeycomb (titanium and aluminum faceplates over an aluminum honeycomb core) structures are investigated. Various structural shapes are investigated and the thickness of the structures vary from as few as 3 plies to as many as 80 plies. Special emphasis is placed on characterizing defects in attachment holes and bondlines, in addition to those resulting from impact damage and the inclusion of foreign matter. Image processing through statistical analysis and digital filtering is investigated to enhance the quality and quantify the NDE thermal images when necessary.

  11. A comparative study of in-situ measurement methods of a building wall thermal resistance using infrared thermography

    NASA Astrophysics Data System (ADS)

    Ibos, Laurent; Monchau, Jean-Pierre; Feuillet, Vincent; Candau, Yves

    2015-04-01

    This study concerns the in-situ determination of the thermal resistance of a building wall. Measurements were performed in the PANISSE platform, which is a residential building with two floors located in the town of Villemomble, at about ten kilometers in the east of Paris. During a renovation, a 6cm-thick external insulating layer was fixed onto the cellular concrete walls of the house. Three methods using IR thermography were used to estimate the thermal resistance of the insulated walls. Results are compared to a standardized method (ISO 9869-1) that uses contact sensors. The comparison is made considering estimated thermal resistance values, measurement uncertainties and measurement duration.

  12. Endoscopic Shearography and Thermography Methods for Nondestructive Evaluation of Lined Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Bullock, Michael W.

    1996-01-01

    The goal of this research effort was the development of methods for shearography and thermography inspection of coatings, bonds, or laminates inside rocket fuel or oxidizer tanks, fuel lines, and other closed structures. The endoscopic methods allow imaging and inspection inside cavities which are traditionally inaccessible with shearography or thermography cameras. The techniques are demonstrated and suggestions for practical application are made in this report. Drawings of the experimental setups, detailed procedures, and experimental data are included.

  13. Coupling IR Thermography and BIA to analyse body reaction after one acupuncture session

    NASA Astrophysics Data System (ADS)

    Piquemal, M.

    2013-04-01

    Coupling both thermography and bio-Impedance, some biophysical acupuncture mechanisms are statically studied on a small population of 18 subjects. Results show that a possible way of understanding acupuncture, in an electrical way, should be to consider ionic flux redistribution between vascular and extra cell compartments. This is a two steps mechanism. The first one is starting with needles insertion and the second one is lasting with more intensity after removing them from skin.

  14. Implementing recommendations of the Columbia accident investigation board: development of on-orbit IR thermography

    NASA Astrophysics Data System (ADS)

    Ottens, Brian P.; Parker, Bradford; Stephan, Ryan A.

    2005-03-01

    One of NASA"s Space Shuttle Return-to-Flight (RTF) efforts has been to develop thermography for the on-orbit inspection of the Reinforced Carbon Carbon (RCC) portion of the Orbiter Wing Leading Edge (WLE). This paper addresses the capability of thermography to detect cracks in RCC by using in-plane thermal gradients that naturally occur on-orbit. Crack damage, which can result from launch debris impact, is a detection challenge for other on-orbit sensors under consideration for RTF, such as the Intensified Television Camera and Laser Dynamic Range Imager. We studied various cracks in RCC, both natural and simulated, along with material characteristics, such as emissivity uniformity, in steady-state thermography. Severity of crack, such as those likely and unlikely to cause burn through were tested, both in-air and in-vacuum, and the goal of this procedure was to assure crew and vehicle safety during re-entry by identification and quantification of a damage condition while on-orbit. Expected thermal conditions are presented in typical shuttle orbits, and the expected damage signatures for each scenario are presented. Finally, through statistical signal detection, our results show that even at very low in-plane thermal gradients, we are able to detect damage at or below the threshold for fatality in the most critical sections of the WLE, with a confidence exceeding 1 in 10,000 probability of false negative.

  15. Implementing Recommendations of the Columbia Accident Investigation Board: Development of On-Orbit IR Thermography

    NASA Technical Reports Server (NTRS)

    Ottens, Brian P.; Parker, Bradford; Stephan, Ryan

    2005-01-01

    One of NASA's Space Shuttle Return-to-Flight (RTF) efforts has been to develop thermography for the on-orbit inspection of the Reinforced Carbon Carbon (RCC) portion of the Orbiter Wing Leading Edge (WLE). This paper addresses the capability of thermography to detect cracks in RCC by using in-plane thermal gradients that naturally occur on-orbit. Crack damage, which can result from launch debris impact, is a detection challenge for other on-orbit sensors under consideration for RTF, such as the Intensified Television Camera and Laser Dynamic Range Imager. We studied various cracks in RCC, both natural and simulated, along with material characteristics, such as emissivity uniformity, in steady-state thermography. Severity of crack, such as those likely and unlikely to cause burn through were tested, both in-air and in-vacuum, and the goal of this procedure was to assure crew and vehicle safety during reentry by identification and quantification of a damage condition while on-orbit. Expected thermal conditions are presented in typical shuttle orbits, and the expected damage signatures for each scenario are presented. Finally, through statistical signal detection, our results show that even at very low in-plane thermal gradients, we are able to detect damage at or below the threshold for fatality in the most critical sections of the WLE, with a confidence exceeding 1 in 10,000 probability of false negative.

  16. Study Methods to Characterize and Implement Thermography Nondestructive Evaluation (NDE)

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    1998-01-01

    The limits and conditions under which an infrared thermographic nondestructive evaluation can be utilized to assess the quality of aerospace hardware is demonstrated in this research effort. The primary focus of this work is on applying thermography to the inspection of advanced composite structures such as would be found in the International Space Station Instrumentation Racks, Space Shuttle Cargo Bay Doors, Bantam RP-1 tank or RSRM Nose Cone. Here, the detection of delamination, disbond, inclusion and porosity type defects are of primary interest. In addition to composites, an extensive research effort has been initiated to determine how well a thermographic evaluation can detect leaks and disbonds in pressurized metallic systems "i.e. the Space Shuttle Main Engine Nozzles". In either case, research into developing practical inspection procedures was conducted and thermographic inspections were performed on a myriad of test samples, subscale demonstration articles and "simulated" flight hardware. All test samples were fabricated as close to their respective structural counterparts as possible except with intentional defects for NDE qualification. As an added benefit of this effort to create simulated defects, methods were devised for defect fabrication that may be useful in future NDE qualification ventures.

  17. Defect detection of wall paintings in the Château de Versailles using TV-holography and IR thermography

    NASA Astrophysics Data System (ADS)

    Chambard, Jean-Pierre; Roche, Alain

    2007-07-01

    Monuments are continuously submitted to external events like water infiltration or condensation, temperature variation, soil instability, that lead to internal damage of the structure itself as well as of its surfaces. Wall paintings are then submitted to stresses that may cause cracks, internal de-lamination of the plaster or de-bonding between canvas and plaster. In the frame of the restoration of the "galerie des glaces" in the "château de Versailles", TV-Holography and IR Thermography have been used to investigate the wall paintings of the vault. The surfaces to control were either direct paintings on the plaster or paintings on canvas backed on the plaster. IR Thermography for art work and in particular for wall paintings has only recently been used. The technique allows to record transient temperature maps, when slightly heating the surface during a short time. Then, nonhomogeneities in the conductive heat transfer are related to de-bonding or de-lamination. The time parameter gives information on the depth of the defect. A calibration procedure has to be carried out to ensure reliable defect detection. Speckle interferometry is a Non Destructive Testing technique that is currently used in industry. For the wall paintings, we have used TV-Holography associated with a continuous wave laser. The technique allows, 13 metres away from the surface, to detect parts of the paintings that were vibrating due to an acoustic excitation. The control processes based on these two technologies is detailed as well as the results obtained and a comparison with manual investigation is done.

  18. From photothermal radiometry to lock-in thermography methods

    NASA Astrophysics Data System (ADS)

    Busse, Gerd

    2010-03-01

    This thermal wave conference dates back to 1979 when it was held for the first time in Ames/Iowa. All participants have this area still in mind, maybe not only due to the landscape but also to the cheerleader courses held parallel to our sessions on the same campus. So after 30 years time has come to review some thermal wave developments that started back in 1979 and to see how they affected other fields, e.g. NDE. This paper traces the origin of lock-in thermography back to the roots which is essentially to show how initially two different areas (thermal waves and thermography) merged partially together to become a powerful tool for modern NDE.

  19. Heat flux determination at the AWJ cutting zone using IR thermography and inverse heat conduction problem

    SciTech Connect

    Mohan, R.S.; Kovacevic, R.; Beardsley, H.E.

    1996-12-31

    In abrasive waterjet (AWJ) cutting, the cutting tool is a thin stream of high velocity abrasive waterjet slurry which can be considered as a moving line heat source that increases the temperature of the narrow zone along the cut kerf wall. A suitably defined inverse heat conduction problem which uses the experimentally determined temperature histories at various points in the workpiece, is adopted to determine the heat flux at the cutting zone. Temperature distribution in the workpiece and the cutting nozzle during AWJ cutting is monitored using infrared thermography. A suitable strategy for on-line monitoring of the radial and axial wear of the AWJ nozzle based on the nozzle temperature distribution is also proposed.

  20. C/C composite brake disk nondestructive evaluation by IR thermography

    NASA Astrophysics Data System (ADS)

    Chu, Tsuchin P.; Poudel, Anish; Filip, Peter

    2012-06-01

    This paper discusses the non-destructive evaluation of thick Carbon/Carbon (C/C) composite aircraft brake disks by using transient infrared thermography (IRT) approach. Thermal diffusivity measurement technique was applied to identify the subsurface anomalies in thick C/C brake disks. In addition, finite element analysis (FEA) modeling tool was used to determine the transient thermal response of the C/C disks that were subjected to flash heating. For this, series of finite element models were built and thermal responses with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models by using custom built in-house IRT system and commercial turnkey system. The analysis and experimental results showed good correlation between thermal diffusivity value and anomalies within the disk. It was demonstrated that the step-heating transient thermal approach could be effectively applied to obtain the whole field thermal diffusivity value of C/C composites.

  1. Experimental Heat Transfer Study of Endwall in a Linear Cascade with IR Thermography

    NASA Astrophysics Data System (ADS)

    Rojo, Borja; Jimenez, Carlos; Chernoray, Valery

    2014-03-01

    This abstract presents an endwall heat transfer experimental data of air flow going through outlet guide vanes (OGVs) situated in a low speed linear cascade. The measurement technique for this experiment was infrared thermography. In order to calculate the heat transfer coefficient (HTC) on the endwall, it has been used an instrumented window with a controlled constant temperature in one side of a 5 millimeter Plexiglass in order to generate high temperature gradients and, therefore, by measuring the surface temperature one the other side of the Plexiglass, it is calculated the HTC. Due to the fact that Plexiglass material has not good optical properties at infrared spectrum, it has been used a thin layer of black paint (10-12 μm) which has high emissivity (0.973) in the range of temperature that we are working. The Reynolds number for this experiment is 300000 in on and off-design configuration of the OGVs (on-design 25° and off-design cases are 40° and -25° incident angle). Furthermore, the on-design case is run at two different Reynolds number, 300000 and 450000. During this experiments it can be seen how changing the inlet angle to the OGVs produces significant differences on the heat transfer along the endwall. The main objective for this investigation is to study the heat transfer along the endwall of a linear cascade so that it would be a well-defined test case for CFD validation.

  2. Cloud2IR: Infrared thermography and environmental sensors integrated in an autonomoussystem for long term monitoring of structures

    NASA Astrophysics Data System (ADS)

    Crinière, Antoine; Dumoulin, Jean; Mevel, Laurent; Andrade-Barroso, Guillermo

    2016-04-01

    acquisition scenario the local storage management and the network management through SFTP or SOAP for the OGC frame. The data side only need an XML configuration file and if a configuration change occurs in time the system is automatically restarted with the new value. Cloud2IR has been deployed on field since several Monthat the SenseCity outdoor test bed in Marne La Vallée (France)[4]. The next step will be the full standardisation of the system and possibly the full separation between the sensor side and the data side which can be seen at term as an external framework. References: [1] A Crinière, J Dumoulin, L Mevel, G Andrade-Barosso, M Simonin. The Cloud2SM Project.European Geosciences Union General Assembly (EGU2015), Apr 2015, Vienne, Austria. 2015. [2] J Dumoulin, A Criniere, and R Averty. The detection and thermal characterization of the inner structure of the 'musmeci' bridge deck by infrared thermography monitoring. Journal Of Geophysics And Engineering doi:10.1088/1742-2132/10/6/064003, Vol 10, 2013. [3] J Dumoulin, R Averty. Development of an infrared system coupled with a weather station for real time atmospheric corrections using GPU computing: Application to bridge monitoring, in Proc of 11 th International Conference on Quantitative InfraRed Thermography, Naples Italy, 2012. [4] F Derkx, B Lebental, T Bourouina, Frédéric B, C Cojocaru, and al..The Sense-City project.XVIIIth Symposium on Vibrations, Shocks and Noise, Jul 2012, France. 9p, 2012.

  3. A new measurement method of coatings thickness based on lock-in thermography

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Yu; Meng, Xiang-bin; Ma, Yong-chao

    2016-05-01

    Coatings have been widely used in modern industry and it plays an important role. Coatings thickness is directly related to the performance of the functional coatings, therefore, rapid and accurate coatings thickness inspection has great significance. Existing coatings thickness measurement method is difficult to achieve fast and accurate on-site non-destructive coatings inspection due to cost, accuracy, destruction during inspection and other reasons. This paper starts from the introduction of the principle of lock-in thermography, and then performs an in-depth study on the application of lock-in thermography in coatings inspection through numerical modeling and analysis. The numerical analysis helps explore the relationship between coatings thickness and phase, and the relationship lays the foundation for accurate calculation of coatings thickness. The author sets up a lock-in thermography inspection system and uses thermal barrier coatings specimens to conduct an experiment. The specimen coatings thickness is measured and calibrated to verify the quantitative inspection. Experiment results show that the lock-in thermography method can perform fast coatings inspection and the inspection accuracy is about 95%. Therefore, the method can meet the field testing requirements for engineering projects.

  4. Temperature measurements on solid surfaces in rack-storage fires using IR thermography

    NASA Astrophysics Data System (ADS)

    de Vries, J.; Ren, N.; Chaos, M.

    2015-05-01

    The development of fire modeling tools capable of predicting large-scale fire phenomena is of great value to the fire science community. To this end, FM Global has developed an open-source CFD fire simulation code, FireFOAM. The accuracy of this code relies fundamentally on high-quality experimental validation data. However, at larger scales, detailed measurements of local quantities (e.g., surface temperatures) needed for model validation are difficult to obtain. Often, the information obtained from large-scale fire tests is limited to the global heat release rates (HRR) or point temperature or heat flux measurements from embedded thermocouples or heat flux gauges, respectively. The present study addresses this limitation by introducing IR thermographic measurements in a three- and a five-tier-high rack storage scenario. IR temperatures are compared against modeled results. The tested and modeled cases represent realistic industrial warehouse fire scenarios. The rack-stored commodity consisted of corrugated paperboard boxes wrapped around a steel cubic liners, placed on top of a hardwood pallet. The global heat release rate was measured using a 20- MW fire products collector located inside FM Global's Fire Technology Laboratory. An in-house calibrated microbolometer IR camera was used to obtain two-dimensional temperature measurements on the fuel surfaces and on the surfaces inside the flue spaces. Maximum temperatures up to 1200 K were observed on the external surfaces of the test array. Inside the flue spaces between pallet loads, temperatures up to 1400 K were measured. The modeled fire spread results match well fire spread shown in the IR thermographic images. The peak modeled surface temperatures obtained inside some of the horizontal flue spaces were ~1400K, which agreed well with the peak temperatures seen by the IR camera. The effect of the flames present between the surfaces of interest and the IR camera only contribute to about 50 K increase in measured

  5. Endoscopic Shearography and Thermography Methods for Nondestructive Evaluation of Lined Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Russell, S. S.; Lansing, M. D.

    1997-01-01

    The goal of this research effort was the development of methods for shearographic and thermographic inspection of coatings, bonds, or laminates inside rocket fuel or oxidizer tanks, fuel lines, and other closed structures. The endoscopic methods allow imaging and inspection inside cavities that are traditionally inaccessible with shearography or thermography cameras. The techniques are demonstrated and suggestions for practical application are made in this report. Drawings of the experimental setups, detailed procedures, and experimental data are included.

  6. A novel and simple method for identifying the lung intersegmental plane using thermography.

    PubMed

    Sakamoto, Kei; Kanzaki, Masato; Mitsuboshi, Shota; Maeda, Hideyuki; Kikkawa, Takuma; Isaka, Tamami; Murasugi, Masahide; Onuki, Takamasa

    2016-07-01

    Identifying the intersegmental plane is very important for successful lung segmentectomy. Although several methods are available, they require specialized skills and pose a potential risk of losing sight of the correct intersegmental planes. Therefore, easier and more reliable methods are required. In this study, we hypothesized that surface temperatures of resecting segments or lobes decrease because of blood flow suppression after the ligation of target arteries and veins, and intersegmental planes can be visualized using a thermography. To test this hypothesis, we performed six lung resections (two lobectomies and four segmentectomies) on three pigs and, using a handheld thermography, we monitored the lung surface temperatures to identify intersegmental planes. We demonstrated that thermal imaging sharply demarcated intersegmental planes soon after the ligation of vessels in all procedures. Compared with other methods, thermography requires no special technical skills, drug injection and lung inflation. Therefore, we believe that the thermographic method described in this study will be a powerful option to identify intersegmental planes during anatomical lung segmentectomy. PMID:27030684

  7. Broadband Sub-terahertz Camera Based on Photothermal Conversion and IR Thermography

    NASA Astrophysics Data System (ADS)

    Romano, M.; Chulkov, A.; Sommier, A.; Balageas, D.; Vavilov, V.; Batsale, J. C.; Pradere, C.

    2016-05-01

    This paper describes a fast sub-terahertz (THz) camera that is based on the use of a quantum infrared camera coupled with a photothermal converter, called a THz-to-Thermal Converter (TTC), thus allowing fast image acquisition. The performance of the experimental setup is presented and discussed, with an emphasis on the advantages of the proposed method for decreasing noise in raw data and increasing the image acquisition rate. A detectivity of 160 pW Hz-0.5 per pixel has been achieved, and some examples of the practical implementation of sub-THz imaging are given.

  8. Clinical study on thermography, as modern investigation method for Candida-associated denture stomatitis.

    PubMed

    Iosif, Laura; Preoteasa, Cristina Teodora; Murariu-Măgureanu, Cătălina; Preoteasa, Elena

    2016-01-01

    Candida-associated denture stomatitis is an infectious inflammatory condition of the oral mucosa, with frequent recurrences. The aim of this study was to assess the use of infrared thermography as investigation method for Candida-associated denture stomatitis (as inflammatory disorder of the maxillary denture bearing area), by comparing disease and non-disease groups. An observational study was conducted on maxillary edentulous patients treated by acrylic dentures, with and without Candida-associated denture stomatitis. Diagnostic test methods used were clinical examination for denture stomatitis and conventional microbiological culture method for oral candidiasis. Thermography analysis of the maxillary denture bearing area was made using the ThermaCAM PM350 infrared camera (Inframetrics, Flir Systems) and ThermaGram Pro 95 software, data being acquired by usage of standard protocol of thermographic registrations. The sample included 52 patients, 21 with and 31 without Candida-associated denture stomatitis. The temperature of the maxillary mucosa corresponding to the denture bearing area was found to be statistically significantly higher in Candida-associated denture stomatitis (mean 36.20°C), compared to healthy oral mucosa (mean 34.85°C). The thermal threshold value of 35.44°C was identified as best differentiating a pathological from normal state of the maxillary mucosa corresponding to the denture bearing area. In conclusion, infrared thermography, a rapid non-invasive investigation method, has the premises to bring valuable data in inflammatory disorders of the maxillary denture bearing area, as Candida-associated denture stomatitis that may be used for screening, diagnostic or monitoring purposes. PMID:27151707

  9. Bridge deck surface temperature monitoring by infrared thermography and inner structure identification using PPT and PCT analysis methods

    NASA Astrophysics Data System (ADS)

    Dumoulin, Jean

    2013-04-01

    One of the objectives of ISTIMES project was to evaluate the potentialities offered by the integration of different electromagnetic techniques able to perform non-invasive diagnostics for surveillance and monitoring of transport infrastructures. Among the EM methods investigated, we focused our research and development efforts on uncooled infrared camera techniques due to their promising potential level of dissemination linked to their relative low cost on the market. On the other hand, works were also carried out to identify well adapted implementation protocols and key limits of Pulse Phase Thermography (PPT) and Principal Component Thermography (PCT) processing methods to analyse thermal image sequence and retrieve information about the inner structure. So the first part of this research works addresses infrared thermography measurement when it is used in quantitative mode (not in laboratory conditions) and not in qualitative mode (vision applied to survey). In such context, it requires to process in real time thermal radiative corrections on raw data acquired to take into account influences of natural environment evolution with time, thanks to additional measurements. But, camera sensor has to be enough smart to apply in real time calibration law and radiometric corrections in a varying atmosphere. So, a complete measurement system was studied and developed [1] with low cost infrared cameras available on the market. In the system developed, infrared camera is coupled with other sensors to feed simplified radiative models running, in real time, on GPU available on small PC. The whole measurement system was implemented on the "Musmeci" bridge located in Potenza (Italy). No traffic interruption was required during the mounting of our measurement system. The infrared camera was fixed on top of a mast at 6 m elevation from the surface of the bridge deck. A small weather station was added on the same mast at 1 m under the camera. A GPS antenna was also fixed at the

  10. Handy method to estimate uncertainty of temperature measurement by infrared thermography

    NASA Astrophysics Data System (ADS)

    Muniz, Pablo Rodrigues; de Araújo Kalid, Ricardo; Cani, Shirley P. N.; da Silva Magalhães, Robson

    2014-07-01

    Temperature measurement by infrared thermography is a technique that is widely used in predictive maintenance to detect faults. The uncertainty involved in measuring temperature by thermography is not only due to the imager, but also due to the measurements and estimates made by the user: emissivity of the inspected object, distance, temperature, and relative humidity of the propagation medium, temperature of objects located in the ambient, and the imager itself. This measurement uncertainty should be available for the thermographer to be able to make a more accurate diagnosis. The methods available in the literature to estimate the uncertainty of measured temperature usually require information nonaccessible to the regular thermographer. This paper proposes a method for calculating the uncertainty of temperature that requires only data available to the thermographer. This method is useful under usual conditions in predictive maintenance-short distance (7.5 to 14 μm) thermal imagers, no fog or rain, among others. It provides results similar to methods that use models that are not available or reserved by the manufacturers of imagers. The results indicate that not all sources of uncertainty are relevant in measurement uncertainty. However, the total uncertainty can be so high that it may lead to misdiagnosis.

  11. Buying Thermography

    NASA Astrophysics Data System (ADS)

    Madding, Robert P.

    1981-01-01

    The cost of thermographic information obtained by contracting for a service is compared to that of buying equipment and doing the work in-house. A breakeven analysis method is used to find the number of days per year an instrument must be used to justify buying it. Life-cycle costing techniques are used to find the equivalent annual cost of various classes of thermographic instruments. Results indicate that a full-time person earning 20,000 annually must use a 30,000 instrument at least 73 days per year if thermography can otherwise be contracted for $675 per day. By devoting a person to thermography part-time, the number of inspection days for this case can be reduced to about 28. Further in-house advantage can be gained by considering investment tax credits, salvage value and, to some extent, accelerated depreciation. Techniques for finding the breakeven number of inspection days for other costs are developed. A nomogram is included for rapid comparisons.

  12. Active IR-applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Wiggenhauser, H.

    2002-06-01

    Applications of IR-thermography in civil engineering are not limited to the identification of heat losses in building envelopes. As it is well known from other areas of non-destructive testing, active IR-thermographic methods such as cooling down or lock-in thermography improves the results in many investigations. In civil engineering these techniques have not been used widely. Mostly thermography is used in a quasi-static manner. The interpretation of moisture measurements with thermography on surfaces can be very difficult due to several overlapping effects: emissivity changes due to composition, heat transfer through wet sections of the specimen, cooling through air flow or reflected spurious radiation sources. These effects can be reduced by selectively measuring the reflection in two wavelength windows, one on an absorption band of water and another in a reference band and then combining the results in a moisture index image. Cooling down thermography can be used to identify subsurface structural deficiencies. For building materials like concrete these measurements are performed on a much longer time scale than in flash lamp experiments. A quantitative analysis of the full cooling down process over several minutes can reliably identify defects at different depths. Experiments at BAM have shown, that active thermography is capabale of identifying structural deficiencies or moist areas in building materials much more reliable than quasi-static thermography.

  13. IrLaW an OGC compliant infrared thermography measurement system developed on mini PC with real time computing capabilities for long term monitoring of transport infrastructures

    NASA Astrophysics Data System (ADS)

    Dumoulin, J.; Averty, R.

    2012-04-01

    One of the objectives of ISTIMES project is to evaluate the potentialities offered by the integration of different electromagnetic techniques able to perform non-invasive diagnostics for surveillance and monitoring of transport infrastructures. Among the EM methods investigated, uncooled infrared camera is a promising technique due to its dissemination potential according to its relative low cost on the market. Infrared thermography, when it is used in quantitative mode (not in laboratory conditions) and not in qualitative mode (vision applied to survey), requires to process in real time thermal radiative corrections on raw data acquired to take into account influences of natural environment evolution with time. But, camera sensor has to be enough smart to apply in real time calibration law and radiometric corrections in a varying atmosphere. So, a complete measurement system was studied and developed with low cost infrared cameras available on the market. In the system developed, infrared camera is coupled with other sensors to feed simplified radiative models running, in real time, on GPU available on small PC. The system studied and developed uses a fast Ethernet camera FLIR A320 [1] coupled with a VAISALA WXT520 [2] weather station and a light GPS unit [3] for positioning and dating. It can be used with other Ethernet infrared cameras (i.e. visible ones) but requires to be able to access measured data at raw level. In the present study, it has been made possible thanks to a specific agreement signed with FLIR Company. The prototype system studied and developed is implemented on low cost small computer that integrates a GPU card to allow real time parallel computing [4] of simplified radiometric [5] heat balance using information measured with the weather station. An HMI was developed under Linux using OpenSource and complementary pieces of software developed at IFSTTAR. This new HMI called "IrLaW" has various functionalities that let it compliant to be use in

  14. Use of infra-red thermography for automotive climate control analysis

    SciTech Connect

    Burch, S.D.; Hassani, V.; Penney, T.R.

    1994-03-01

    In this paper, several automotive climate control applications for IR thermography are described. Some of these applications can be performed using conventional IR techniques. Others, such as visualizing the air temperature distribution within the cabin, at duct exits, and at heater and evaporator faces, require new experimental methods. In order to capture the temperature distribution within an airstream, a 0.25-mm-thick (0.01 inch) fiberglass screen is used. This screen can be positioned perpendicular or parallel to the flow to obtain three-dimensional spatial measurements. In many cases, the air flow pattern can be inferred from the resulting temperature distribution, allowing improved air distribution designs. In all cases, significant improvement in the speed, ease, and quantity of temperature distribution information can be realized with thermography as compared to conventional thermocouple array techniques. Comparisons are presented between IR thermography images and both thermocouple measurements and computational fluid dynamics (CFD) predictions.

  15. Thermography Applied to Interfacial Phenomena, Potentials and Pitfalls

    NASA Astrophysics Data System (ADS)

    Antoni, M.; Sefiane, K.

    Infrared (IR) thermography is a non-intrusive method for temperature measurement. Its ability to produce two-dimensional temperature images makes it a powerful tool for investigating systems exhibiting spatial variation of temperature. IR temperature measurements are almost always surface measurements; the technique has therefore found use in obtaining interfacial temperatures, primarily in heat and mass transfer investigations. The reasons for the technique's limited uptake likely stems from the requirement of accurate material emissivity data and the large number of potential sources of error. This chapter provides an overview of the underlying theory of radiative heat transfer. Key considerations and problems in the application of IR thermography are discussed with reference to some examples of recent successful applications.

  16. Thermography in undescended testes

    NASA Astrophysics Data System (ADS)

    Berghoff, Ruben; Sarti, Fernando; Urrutia, Azucena; Renee, Marcela; Lluesma, Eliseo G.

    2001-03-01

    Are one of the pathologies more frequent in infant surgery - intra-abdominal, inguinal or ectopic. With actual methods of diagnosis some inguinal and none of the abdominal are detectable. Change of temperature is one of the elements to explain the detection in the maturity and development of the testes. Hormonal stimuli are used to obtain the increase in the development and descent of the testis. In this research we will test if thermography can be an effective technology for the diagnosis in the localization and morphology testicular. Another important feature will be to test if thermography may detect some of the stimulus testis with induction hormonal.

  17. A novel intelligent fault diagnosis method for electrical equipment using infrared thermography

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Huang, Fuzhen

    2015-11-01

    Infrared thermography (IRT) has taken a very important role in monitoring and inspecting thermal defects of electrical equipment without shutting down, which has important significance for the stability of power systems. It has many advantages such as non-contact detection, freedom from electromagnetic interference, safety, reliability and providing large inspection coverage. Manual analysis of infrared images for detecting defects and classifying the status of equipment may take a lot of time and efforts, and may also lead to incorrect diagnosis results. To avoid the lack of manual analysis of infrared images, many intelligent fault diagnosis methods for electrical equipment are proposed, but there are two difficulties when using these methods: one is to find the region of interest, another is to extract features which can represent the condition of electrical equipment, as it is difficult to segment infrared images due to their over-centralized distributions and low intensity contrasts, which are quite different from those in visual light images. In this paper, a new intelligent diagnosis method for classification different conditions of electrical equipment using data obtained from infrared images is presented. In the first stage of our method, an infrared image of electrical equipment is clustered using K-means algorithm, then statistical characteristics containing temperature and area information are extracted in each region. In the second stage, in order to select the salient features which can better represent the condition of electrical equipment, some or all statistical characteristics from each region are combined as input data for support vector machine (SVM) classifier. To improve the classification performance of SVM, a coarse-to-fine parameter optimization approach is adopted. The performance of SVM is compared with that of back propagation neural network. The comparison results show that our method can achieve a better performance with accuracy 97.8495%.

  18. Airborne infrared thermography

    NASA Astrophysics Data System (ADS)

    Miller, Geoffrey M.

    2003-01-01

    To explore the feasibility of utilizing an IR imaging system to support flow visualization studies, an initial series of tests were conducted using an AN/AAS-38, NITE Hawk targeting pod. The targeting pod, installed on the left side of an F/A-18 aircraft provides a stabilized infrared imaging capability in the 8-12 micron spectral band. Initial data acquired with system indicated that IR thermography was a very promising tool for flow visualization. For the next phase of the investigation, an advanced version of the NITE Hawk targeting pod equipped with a staring 3-5 micron sensor was utilized. Experimental results obtained with this sensor indicated improved sensitivity and resolution. This method was limited to position the experiment and chase aircraft sufficiently close to each other and with the sightline angle required to acquire the region of interest. For the current phase of the investigation, the proven 3-5 micron staring sensor was deployed in an externally mounted podlet, located on the experimental aircraft with a fixed line of sight, centered on the region of interest. Based on initial data collection efforts, this approach appears to provide consistent high quality data for a wide range of flight conditions. To minimize the size of the podlet and resultant drag, the sensor was oriented parallel to the air flow. This also placed the line of sight parallel to the experiment. A fold mirror was incorporated in the design to fold the line of sight inboard and down to center on the region of interest. The experimental results obtained during the current test phase have provided consistently high quality images clearly mapping regions of laminar and turbulent flow. Several examples of these images and further details of the experimental approach are presented.

  19. Aerodynamic applications of infrared thermography

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Alderfer, David W.

    1989-01-01

    A series of wind tunnel experiments were conducted as part of a systematic study for evaluation of infrared thermography as a viable non-intrusive thermal measurement technique for aerodynamic applications. The experiments consisted of obtaining steady-state surface temperature and convective heat transfer rates for a uniformly heated cylinder in transverse flow with a Reynolds number range of 46,000 to 250,000. The calculated convective heat transfer rates were in general agreement with classical data. Furthermore, IR thermography provided valuable real-time fluid dynamic information such as visualization of flow separation, transition and vortices.

  20. Nondestructive test of brazed cooling tubes of prototype bolometer camera housing using active infrared thermography.

    PubMed

    Tahiliani, Kumudni; Pandya, Santosh P; Pandya, Shwetang; Jha, Ratneshwar; Govindarajan, J

    2011-01-01

    The active infrared thermography technique is used for assessing the brazing quality of an actively cooled bolometer camera housing developed for steady state superconducting tokamak. The housing is a circular pipe, which has circular tubes vacuum brazed on the periphery. A unique method was adopted to monitor the temperature distribution on the internal surface of the pipe. A stainless steel mirror was placed inside the pipe and the reflected IR radiations were viewed using an IR camera. The heat stimulus was given by passing hot water through the tubes and the temperature distribution was monitored during the transient phase. The thermographs showed a significant nonuniformity in the brazing with a contact area of around 51%. The thermography results were compared with the x-ray radiographs and a good match between the two was observed. Benefits of thermography over x-ray radiography testing are emphasized. PMID:21280850

  1. Integration of infrared thermography and high-frequency electromagnetic methods in archaeological surveys

    NASA Astrophysics Data System (ADS)

    di Maio, Rosa; Meola, Carosena; Fedi, Maurizio; Carlomagno, Giovanni Maria

    2010-05-01

    An integration of high-resolution non-destructive techniques is presented for the inspection and evaluation of ancient architectonic structures. Infrared thermography (IRT) represents a valuable tool for nondestructive evaluation of architectonic structures and artworks because it is capable of giving indications about most of the degradation sources of artworks and buildings of both historical interest and civil use. In particular, it is possible to detect cracks, disbondings, alteration of material consistency, etc. Indeed, by choosing the most adequate thermographic technique, it is possible to monitor the conservation state of artworks in time and to detect the presence of many types of defects (e.g., voids, cracks, disbondings, etc.) in different types of materials (e.g., concrete, masonry structures, bronze, etc.). The main advantages of infrared thermography when dealing with precious artworks may be summarized with three words: non-contact, non-invasive, and two-dimensionality. It is possible to inspect either a large surface such as the facade of a palace, or a very small surface of only few square millimetres. Conversely, the inspection depth is quite small; generally, of the order of centimetres. However, as demonstrated in previous work, IRT well matches with electric-and electromagnetic-type geophysical methods to characterize the overlapping zone from low-to-high depth in masonry structures. In particular, the use of high-frequency electromagnetic techniques, such as the ground penetrating radar (GPR), permits to reach investigation depths of some ten of centimetres by choosing appropriate frequencies of the transmitted electromagnetic signal. In the last decade a large utilisation of the GPR methodology to non-destructive analysis of engineering and architectural materials and structures has been experienced. This includes diverse features, such as definition of layer thickness, characterisation of different constructive materials, identification of

  2. [The instrument for thermography].

    PubMed

    Hamaguchi, Shinsuke

    2014-07-01

    Thermography is an imaging method using the instrument to detect infrared rays emitted from the body surface, and to plot them as a distribution diagram of the temperature information. Therefore, a thermographic instrument can be assumed to measure the skin temperature of the diseased region. Such an instrument is a useful device for noninvasive and objective assessment of various diseases. Examination using a thermographic instrument can assess the autonomic dysfunction by measuring the skin blood flow involved with the sympathetic innervation. Thermography is useful in assisting the determination of the therapeutic effect. However, autonomic dysfunction should be confirmed correctly with the assessment of thermatome that shows abnormal thermal distribution in the region of the disease. Thermography should make noticeable the difference between the body temperature of abnormal and normal sites, and show the alteration of temperature. Monitoring using thermography is useful to determine the effect of sympathetic nerve block. If a thermographic instrument is used, it is important that examiners should understand the function of the instrument, as well as its advantages and disadvantages. PMID:25098130

  3. CFRP sandwiched facesheets inspected by pulsed thermography

    NASA Astrophysics Data System (ADS)

    Li, Huijuan; Huo, Yan; Cai, Liangxu; Huang, Zhenhua

    2010-10-01

    Carbon fiber reinforced polymer (CFRP) has been always used in aerospace, Sandwiched structures composed by a honeycomb core between two multi-layer CFRP facesheets are very common on aerospace parts. As to the application of the CFRP sandwiched facesheets is extended, The demand for quality control of CFRP sandwiched composites is increasing, Infrared thermography is one of several non-destructive testing techniques which can be used for defect detection in aircraft materials such as carbon-fibre-reinforced composites. Infrared thermography can be potentially useful, as it is quick, real time, non-contact and can examine over a relatively large area in one inspection procedure. The technique is based on heating the sample surface with different heat sources and monitoring the surface temperature of the sample with an IR camera, any abnormal behavior of the surface temperature distribution indicates the subsurface defect. This kind of structure is normally affected by anomalies such as delaminations, disbonding, water ingressing to the core. in this paper, several different kinds of defects which are of various size and depth below the test surface are planted in the CFRP composites, the Teflon inserts between the plies in the facesheet represents the delaminations, the Teflon inserts between the inner facesheet and adhensive or between adhensive and core are simulated disbonding in the composites, they are all tested by pulsed thermography, meanwhile, these samples are also inspected by ultrasonic testing, compare with each characteristic and the results got by these two different methods, it shows that pulsed thermography is an effective nondestructive technique for inspecting CFRP composites.

  4. Study on the heat flux reconstruction with the infrared thermography for the divertor target plates in the KSTAR tokamak.

    PubMed

    Kang, C S; Lee, H H; Oh, S; Lee, S G; Wi, H M; Kim, Y S; Kim, H S

    2016-08-01

    An infrared (IR) thermography is the preferred diagnostic that can quantify heat flux by measuring the surface temperature distributions of the divertor plates. The IR thermography is successfully instrumented on Korea Superconducting Tokamak Advanced Research (KSTAR). In this study, finite volume method is considered to solve the heat conduction equations. 1D-, 2D-, and 3D models are developed and compared with various calculation algorithms, such as Duhamel's theorem and THEODOR. These comparisons show good agreement. In order to acquire more efficient and reliable calculation results, we consider two numerical analysis schemes, influence of temperature on thermal properties and image stabilization. Recently, this reconstruction code is successfully applied to the KSTAR IR thermography. PMID:27587124

  5. Exit Presentation: Infrared Thermography on Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla

    2010-01-01

    This slide presentation reports on the internship project that was accomplished during the summer of 2010. The objectives of the project were to: (1) Simulate Flash Thermography on Graphite/Epoxy Flat Bottom hole Specimen and thin void specimens, (2) Obtain Flash Thermography data on Graphite/Epoxy flat bottom hole specimens, (3) Compare experimental results with simulation results, Compare Flat Bottom Hole Simulation with Thin Void Simulation to create a graph to determine size of IR Thermography detected defects

  6. Evaluation Method of Gas Turbine Blades Covering Integrity by IR Camera

    NASA Astrophysics Data System (ADS)

    Yang, Dong-Jo; Choi, Choul-Jun; Kim, Jae-Yeol

    Key parts of the main equipment in a gas turbine may likely be damaged due to operation under high temperature, high pressure, high-speed rotation, etc. Accordingly, the cost for maintenance increases and the damaged parts may cause generation to stop. The surface of a blade is thermal-sprayed, using powder with main compositions such as Ni, Cr, Al, etc, in order to inhibit hot oxidation. Conventional regular maintenance of the coating layer of a blade is made by FPI (Fluorescent Penetrant Inspection) and MTP (Magnetic Particle Testing). Such methods, however, are complicated and take a long time and also require high cost. In this study, defect diagnostics were tested on the coating layer of an industrial gas turbine blade, using an infrared thermography camera. Since the infrared thermography method can check a temperature distribution by means of non-contact on a wide range of areas, it can advantageously save expense and time as compared to conventional test methods. For the infrared thermography method, however, thermo-load must be applied onto a tested specimen and it is difficult to quantify the measured data. To solve the problems, this paper includes description about producing a specimen of a gas turbine blade (bucket), applying thermo-load onto the produced specimen, photographing thermography images by an infrared thermography camera, analyzing the thermography images, and pre-testing to analyze defects on the coating layer of the gas turbine blade.

  7. Infrared thermography

    SciTech Connect

    Roberts, C.C. Jr.

    1982-12-01

    Infrared thermography is a useful tool for the diagnosis of problems in building systems. In instances where a building owner has several large buildings, an investment in a typical $30,000 infrared system may be cost effective. In most instances, however, the rental of an infrared system or the hiring of an infrared consulting service is a cost effective alternative. As can be seen from the several applications presented here, any mechanical problem manifesting itself in an atypical temperature pattern can usually be detected. The two primary savings generated from infrared analysis of building systems are maintenance and energy.

  8. Thermal characterization of ZnBeMnSe mixed compounds by means of photopyroelectric and lock-in thermography methods

    NASA Astrophysics Data System (ADS)

    Strzałkowski, K.; Dadarlat, D.; Streza, M.; Zakrzewski, J.

    2015-06-01

    In this work, a thermal characterization (measurement of dynamic thermal parameters) of quaternary Zn1-x-yBexMnySe mixed crystals was carried out. The crystals under investigation were grown from the melt by the modified high-pressure Bridgman method with different Be and Mn contents. The effect of Be and Mn contents on thermal properties of Zn1-x-yBexMnySe compounds was analyzed, by using the photopyroelectric (PPE) method in the back configuration (BPPE) for thermal diffusivity measurements and the PPE technique in the front configuration for thermal effusivity investigations. Infrared lock-in thermography was used in order to validate the BPPE results. The measured thermal effusivity and diffusivity allowed the calculation of thermal conductivity of the investigated materials.

  9. Surface thermography

    SciTech Connect

    Ulrickson, M.

    1986-05-01

    The temperature sensitivity of many plasma materials interactions in both fusion plasmas and process plasmas requires the determination of the surface temperature of the material in contact with the plasma. The determination of the surface temperature is made difficult by the presence of the plasma, the large electrical potentials that may be present, and the need to not contaminate the surface. Radiation thermography permits determination of the surface temperature while overcoming the difficulties listed above. This paper briefly discusses thermal radiation, Planck's Law, and the selection of the best wavelength band for a given temperature range. Both one and two color pyrometry are discussed. Several considerations that are necessary for practical applications are discussed. Some examples of the use of radiation thermometry in fusion applications between 350 and 3000 /sup 0/C are presented. Surface heat flux has also been determined from the time variation of the surface temperature.

  10. High speed heterodyne infrared thermography applied to thermal diffusivity identification

    NASA Astrophysics Data System (ADS)

    Pradere, C.; Clerjaud, L.; Batsale, J. C.; Dilhaire, S.

    2011-05-01

    We have combined InfraRed thermography and thermal wave techniques to perform microscale, ultrafast (microsecond) temperature field measurements. The method is based on an IR camera coupled to a microscope and synchronized to the heat source by means of phase locked function generators. The principle is based on electronic stroboscopic sampling where the low IR camera acquisition frequency facq (25 Hz) undersamples a high frequency thermal wave. This technique permits the measurement of the emissive thermal response at a (microsecond) short time scale (microsecond) with the full frame mode of the IR camera with a spatial thermal resolution of 7 μm. Then it becomes possible to study 3D transient heat transfer in heterogeneous and high thermal conductive thin layers. Thus it is possible for the first time in our knowledge to achieve temperature field measurements in heterogeneous media within a wide range of time domains. The IR camera is now a suitable instrument for multiscale thermal analysis.

  11. Thermography pattern analysis and separation

    NASA Astrophysics Data System (ADS)

    Gao, Bin; Bai, Libing; Woo, W. L.; Tian, Guiyun

    2014-06-01

    Analysis of thermography spatial-transient patterns has considerable potential to enable automatic identification and quantification of defects in non-destructive testing and evaluation. This Letter proposes a non-negative pattern separation model for eddy current pulsed thermography to automatically extract important spatial and time patterns according to the transient thermal sequences without any pre-training or prior knowledge. In particular, the method is scale-invariant, such that large differences in surface emissivity, hot spots, and cool areas with dynamic range of thermal contrast can be extracted. Finally, an artificial slot in a steel sample with shining, black strip on the surface is tested to validate the proposed method.

  12. INFRARED THERMOGRAPHY OF CUTANEOUS MELANOMA METASTASES

    PubMed Central

    Shada, Amber L.; Dengel, Lynn T.; Petroni, Gina R.; Smolkin, Mark E.; Acton, Scott; Slingluff, Craig L.

    2014-01-01

    Background Differentiating melanoma metastasis from benign cutaneous lesions currently requires biopsy or costly imaging, such as positron emission tomography scans. Melanoma metastases have been observed to be subjectively warmer than similarly appearing benign lesions. We hypothesized that infrared (IR) thermography would be sensitive and specific in differentiating palpable melanoma metastases from benign lesions. Materials and methods Seventy-four patients (36 females and 38 males) had 251 palpable lesions imaged for this pilot study. Diagnosis was determined using pathologic confirmation or clinical diagnosis. Lesions were divided into size strata for analysis: 0–5, >5–15, >15–30, and >30 mm. Images were scored on a scale from −1 (colder than the surrounding tissue) to +3 (significantly hotter than the surrounding tissue). Sensitivity and specificity were calculated for each stratum. Logistical challenges were scored. Results IR imaging was able to determine the malignancy of small (0–5 mm) lesions with a sensitivity of 39% and specificity of 100%. For lesions >5–15 mm, sensitivity was 58% and specificity 98%. For lesions >15–30 mm, sensitivity was 95% and specificity 100%, and for lesions >30 mm, sensitivity was 78% and specificity 89%. The positive predictive value was 88%–100% across all strata, and the negative predictive value was 95% for >15–30 mm lesions and 80% for >30 mm lesions. Conclusions Malignant lesions >15 mm were differentiated from benign lesions with excellent sensitivity and specificity. IR imaging was well tolerated and feasible in a clinic setting. This pilot study shows promise in the use of thermography for the diagnosis of malignant melanoma with further potential as a noninvasive tool to follow tumor responses to systemic therapies. PMID:23043862

  13. Thermography analyses of the hole-drilling residual stress measuring technique

    NASA Astrophysics Data System (ADS)

    Honner, Milan; Litoš, Pavel; Švantner, Michal

    2004-03-01

    The paper deals with methods and results of thermography analyses of the hole-drilling residual stress measuring technique. Surface IR properties of the drilling mill and sample with strain gauge rosette of millimeter dimensions are determined by the emissivity and reflectivity measurements. Dynamic surface temperature field measurement is accompanied by the strain measurement during step-by-step drilling. Possible sources of errors in relation to the residual stress determination are discussed.

  14. Crack detection by stimulated infrared thermography

    NASA Astrophysics Data System (ADS)

    Bodnar, Jean-Luc

    2014-03-01

    In this paper, the potential of stimulated infrared thermography is studied for the detection of cracks located in metallic materials. To start with, the feasibility of the method is shown with the use of numerical simulations. Stimulated infrared thermography allows detecting emerging cracks in samples whether reflective or not as well as non-emerging cracks. In addition, crack detection is due to the radiative effects and/or the thermal effects induced by the defects. Then, the experimental device implemented for the study is detailed. Finally, experiments confirm that stimulated infrared thermography enables to detect microscopic cracks, whether emerging or non-emerging, in metal samples.

  15. Applied methods of testing and evaluation for IR imaging system

    NASA Astrophysics Data System (ADS)

    Liao, Xiao-yue; Lu, Jin

    2009-07-01

    Different methods of testing and evaluation for IR imaging system are used with the application of the 2nd and the 3rd generation infrared detectors. The performance of IR imaging system can be reflected by many specifications, such as Noise Equivalent Temperature Difference (NETD), Nonuniformity, system Modulation Transfer Function (MTF), Minimum Resolvable Temperature Difference (MRTD), and Minimum Detectable Temperature Difference (MRTD) etc. The sensitivity of IR sensors is estimated by NETD. The sensitivity of thermal imaging sensors and space resolution are evaluated by MRTD, which is the chief specification of system. In this paper, the theoretical analysis of different testing methods is introduced. The characteristics of them are analyzed and compared. Based on discussing the factors that affect measurement results, an applied method of testing NETD and MRTD for IR system is proposed.

  16. IR Spot Weld Inspect

    SciTech Connect

    Chen, Jian; Feng, Zhili

    2014-01-01

    In automotive industry, destructive inspection of spot welds is still the mandatory quality assurance method due to the lack of efficient non-destructive evaluation (NDE) tools. However, it is costly and time-consuming. Recently at ORNL, a new NDE prototype system for spot weld inspection using infrared (IR) thermography has been developed to address this problem. This software contains all the key functions that ensure the NDE system to work properly: system input/output control, image acquisition, data analysis, weld quality database generation and weld quality prediction, etc.

  17. IR Spot Weld Inspect

    Energy Science and Technology Software Center (ESTSC)

    2014-01-01

    In automotive industry, destructive inspection of spot welds is still the mandatory quality assurance method due to the lack of efficient non-destructive evaluation (NDE) tools. However, it is costly and time-consuming. Recently at ORNL, a new NDE prototype system for spot weld inspection using infrared (IR) thermography has been developed to address this problem. This software contains all the key functions that ensure the NDE system to work properly: system input/output control, image acquisition, datamore » analysis, weld quality database generation and weld quality prediction, etc.« less

  18. Using infrared thermography for the creation of a window surface temperature database to validate computer heat transfer models

    SciTech Connect

    Beck, F.A.; Griffith, B.T.; Tuerler, D.; Arasteh, D.

    1995-04-01

    IR thermography is well suited for resolving small differences in the thermal performance of highly insulating window systems. Infrared thermographic measurements made in conjunction with reference emitter techniques in a controlled and characterized laboratory setting can have an absolute accuracy of {plus_minus}0.5{degree}C. Quantitative infrared thermography requires that a number of sources of error related to measurement accuracy and test environmental conditions be quantified and minimized to the extent possible. Laboratory-based infrared thermography can be used to generate window surface temperature profile databases which can be used to direct the development of 2-D and 3-D finite element and finite difference method fenestration heat transfer simulation codes, identify their strengths and weaknesses, set research priorities, and validate finished modeling tools. Development of such a database is under way at Lawrence Berkeley Laboratory, and will be made available for public use.

  19. Comparison of TLD calibration methods for 192Ir dosimetry.

    PubMed

    Haworth, Annette; Butler, Duncan J; Wilfert, Lisa; Ebert, Martin A; Todd, Stephen P; Hayton, Anna J M; Kron, Tomas

    2013-01-01

    For the purpose of dose measurement using a high-dose rate (192)Ir source, four methods of thermoluminescent dosimeter (TLD) calibration were investigated. Three of the four calibration methods used the (192)Ir source. Dwell times were calculated to deliver 1 Gy to the TLDs irradiated either in air or water. Dwell time calculations were confirmed by direct measurement using an ionization chamber. The fourth method of calibration used 6 MV photons from a medical linear accelerator, and an energy correction factor was applied to account for the difference in sensitivity of the TLDs in (192)Ir and 6 MV. The results of the four TLD calibration methods are presented in terms of the results of a brachytherapy audit where seven Australian centers irradiated three sets of TLDs in a water phantom. The results were in agreement within estimated uncertainties when the TLDs were calibrated with the (192)Ir source. Calibrating TLDs in a phantom similar to that used for the audit proved to be the most practical method and provided the greatest confidence in measured dose. When calibrated using 6 MV photons, the TLD results were consistently higher than the (192)Ir-calibrated TLDs, suggesting this method does not fully correct for the response of the TLDs when irradiated in the audit phantom. PMID:23318392

  20. Dynamic thermography in diagnostics of onychomycosis

    NASA Astrophysics Data System (ADS)

    Fryca, Jaroslaw; Nowakowski, Antoni; Urbanowski, Slawomir

    2004-07-01

    The paper shows the results of the research on the active dynamic thermography used for diagnostics of onychomycosis and progress of the healing process. It seems that the most essential factor affecting the development of mycosis in nails is the microcirculation in the tissue close to the nail. Active dynamic thermography may prove to be a new diagnostic method and a sufficient tool for measurements of this parameter.

  1. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  2. Techniques of infrared thermography.

    PubMed

    Jatteau, M

    1975-01-01

    Considering the main objectives of thermographic techniques and the particular characteristics of passive infrared detection, the essential arguments in favor of single detector scanners have been pointed out after a brief discussion of the detection and image pickup methods when quantitative and precise (0.1 degrees C) information on the temperature distribution near ambient temperature must be obtained. Single detector scanners can have sufficiently good performance to reach the objectives of precise thermography, but their real technical limits must be well-known in practice; consequently, the thermograph performance must be clearly defined by means of the modulation transfer function, the intrinsic thermal resolution and the response uniformity, as we indicate in the second part of this paper. PMID:1180865

  3. Temperature maps measurements on 3D surfaces with infrared thermography

    NASA Astrophysics Data System (ADS)

    Cardone, Gennaro; Ianiro, Andrea; Dello Ioio, Gennaro; Passaro, Andrea

    2012-02-01

    The use of the infrared camera as a temperature transducer in wind tunnel applications is convenient and widespread. Nevertheless, the infrared data are available in the form of 2D images while the observed surfaces are often not planar and the reconstruction of temperature maps over them is a critical task. In this work, after recalling the principles of IR thermography, a methodology to rebuild temperature maps on the surfaces of 3D object is proposed. In particular, an optical calibration is applied to the IR camera by means of a novel target plate with control points. The proposed procedure takes also into account the directional emissivity by estimating the viewing angle. All the needed steps are described and analyzed. The advantages given by the proposed method are shown with an experiment in a hypersonic wind tunnel.

  4. Quantitative Evaluation of Pulsed Thermography, Lock-in Thermography and Vibrothermography on Foreign Object Defect (FOD) in CFRP.

    PubMed

    Liu, Bin; Zhang, Hai; Fernandes, Henrique; Maldague, Xavier

    2016-01-01

    In this article, optical excitation thermographic techniques, including pulsed thermography and lock-in thermography, were used to detect foreign object defect (FOD) and delamination in CFRP. Then, vibrothermography as an ultrasonic excitation technique was used to detect these defects for the comparative purposes. Different image processing methods, including cold image subtraction (CIS), principal component thermography (PCT), thermographic signal reconstruction (TSR) and Fourier transform (FT), were performed. Finally, a comparison of optical excitation thermography and vibrothermography was conducted, and a thermographic probability of detection was given. PMID:27213403

  5. Quantitative Evaluation of Pulsed Thermography, Lock-in Thermography and Vibrothermography on Foreign Object Defect (FOD) in CFRP

    PubMed Central

    Liu, Bin; Zhang, Hai; Fernandes, Henrique; Maldague, Xavier

    2016-01-01

    In this article, optical excitation thermographic techniques, including pulsed thermography and lock-in thermography, were used to detect foreign object defect (FOD) and delamination in CFRP. Then, vibrothermography as an ultrasonic excitation technique was used to detect these defects for the comparative purposes. Different image processing methods, including cold image subtraction (CIS), principal component thermography (PCT), thermographic signal reconstruction (TSR) and Fourier transform (FT), were performed. Finally, a comparison of optical excitation thermography and vibrothermography was conducted, and a thermographic probability of detection was given. PMID:27213403

  6. Dynamic and static thermal study of micromachined heaters: the advantages of visible and near-infrared thermography compared to classical methods

    NASA Astrophysics Data System (ADS)

    Teyssieux, D.; Briand, D.; Charnay, J.; de Rooij, N. F.; Cretin, B.

    2008-06-01

    We report on the dynamic and static thermal characterization of microsystems using a visible and near-infrared (NIR) thermography system based on a low-cost standard CCD sensor. The interest of this method is that it is possible to obtain a true spatial resolution better than 500 nm, which is necessary in high spatial resolution applications (microsystem applications). Another interesting point of this optical method is that the temperature error versus the emissivity error is always very low (compared to infrared thermography). We show, in this study, that this behavior originates in the high sensitivity of Planck's law in this wavelength range (compared to infrared range). Thus, we demonstrate the principal advantages of this method for micromachined heater application. Thermal measurements (in dynamic and static modes) were performed on micro-heaters commonly used in microsystems, platinum- and silicon-based micromachined heaters. The results show the capability of the method in terms of the thermal resolution and spatial resolution as well as the capacity to quickly obtain static and dynamic thermal images of the studied sample.

  7. Methods and Systems for Measurement and Estimation of Normalized Contrast in Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M. (Inventor)

    2015-01-01

    Methods and systems for converting an image contrast evolution of an object to a temperature contrast evolution and vice versa are disclosed, including methods for assessing an emissivity of the object; calculating an afterglow heat flux evolution; calculating a measurement region of interest temperature change; calculating a reference region of interest temperature change; calculating a reflection temperature change; calculating the image contrast evolution or the temperature contrast evolution; and converting the image contrast evolution to the temperature contrast evolution or vice versa, respectively.

  8. IR-based method for copper electrolysis short circuit detection

    NASA Astrophysics Data System (ADS)

    Makipaa, Esa; Tanttu, Juha T.; Virtanen, Henri

    1997-04-01

    In the copper electrorefining process short-circuits between the anodes and cathodes are harmful. They cause decreasing production rate and poor cathode copper quality. Short- circuits should be detected and eliminated as soon as possible. Manual inspection methods often take a lot of time and excessive walking on the electrodes can not be avoided. For these reasons there is a lot of interest to develop short-circuit detection and quality control. In this paper an IR based method for short circuit detection is presented. In the case of the short-circuited anode and cathode pair especially cathode bar becomes significantly warmer than bar in the normal condition. Using IR camera mounted on a moving crane these hot spots among the electrodes were easily detected. IR imaging was tested in the harsh conditions of the refinery hall with various crane speeds. Image processing is a tool to interpret the obtained IR images. In this paper an algorithm for searching the locations of the short-circuits in the electrolytic cell using imaging results as test material is proposed. The basic idea of the developed algorithm is first to search and calculate necessary edges and initial lines of the electrolytic cell. The second step is to determine the exact position of each cathode plate in the cell so that using thresholding the location of the short-circuited cathode can be determined. IR imaging combined with image processing has proven to be a superior method for predictive maintenance and process control compared to manual ones in the copper electrorefining process. It also makes it possible to collect valuable information for the quality control purposes.

  9. Effects of moisture in infrared thermography of resin matrix composites

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Kantsios, A. G.; Mcerlean, E. A.; Babcock, R. A.; Buckingham, R. D.

    1978-01-01

    Several multiply graphite polyimide composite specimens were examined by real-time infrared thermography in order to study the effects of moisture on their thermograms. Heat was injected from one side and IR emission detected on the opposite side using AGA Thermovision System-680. No differences between the thermograms of dry and water containing specimens were detected for defect-free specimens. However, the presence of trapped water in defective specimens modified the thermographic contrast significantly. It is concluded that: (1) IR thermography can be used to detect moisture in defective composites, and (2) because of the possibility of moisture camouflaging defects, IR thermography for subsurface defect detection should be supplemented by other techniques - such as acoustical imaging and X-radiography.

  10. Infrared thermography for laser-based powder bed fusion additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Moylan, Shawn; Whitenton, Eric; Lane, Brandon; Slotwinski, John

    2014-02-01

    Additive manufacturing (AM) has the potential to revolutionize discrete part manufacturing, but improvements in processing of metallic materials are necessary before AM will see widespread adoption. A better understanding of AM processes, resulting from physics-based modeling as well as direct process metrology, will form the basis for these improvements. Infrared (IR) thermography of AM processes can provide direct process metrology, as well as data necessary for the verification of physics-based models. We review selected works examining how IR thermography was implemented and used in various powder-bed AM processes. This previous work, as well as significant experience at the National Institute of Standards and Technology in temperature measurement and IR thermography for machining processes, shapes our own research in AM process metrology with IR thermography. We discuss our experimental design, as well as plans for future IR measurements of a laser-based powder bed fusion AM process.

  11. Infrared thermography for laser-based powder bed fusion additive manufacturing processes

    SciTech Connect

    Moylan, Shawn; Whitenton, Eric; Lane, Brandon; Slotwinski, John

    2014-02-18

    Additive manufacturing (AM) has the potential to revolutionize discrete part manufacturing, but improvements in processing of metallic materials are necessary before AM will see widespread adoption. A better understanding of AM processes, resulting from physics-based modeling as well as direct process metrology, will form the basis for these improvements. Infrared (IR) thermography of AM processes can provide direct process metrology, as well as data necessary for the verification of physics-based models. We review selected works examining how IR thermography was implemented and used in various powder-bed AM processes. This previous work, as well as significant experience at the National Institute of Standards and Technology in temperature measurement and IR thermography for machining processes, shapes our own research in AM process metrology with IR thermography. We discuss our experimental design, as well as plans for future IR measurements of a laser-based powder bed fusion AM process.

  12. A nondestructive method for diagnostic of insulated building walls using infrared thermography

    NASA Astrophysics Data System (ADS)

    Larbi Youcef, Mohamed H. A.; Mazioud, Atef; Bremond, Pierre; Ibos, Laurent; Candau, Yves; Piro, Michel; Filloux, Alain

    2007-04-01

    This work deals with the development of an experimental protocol for the diagnostic of multi-layered insulated building walls. First, a test bench is set up in order to measure front and back sides temperatures of standard panels. The panels considered have insulation thicknesses of 2, 6 and 10cm. The front side is heated by two halogen lamps of 500W. A CEDIP Jade Long wave infrared camera and thermocouples are used to carry out temperature measurements. In a second time, a one dimensional model based on thermal quadruples and Laplace transforms was developped under Matlab environment. Also, we developped a three dimensional model based on finite volumes using Fluent computational code. Finally, a method of identification of physical parameters is implemented by performing least square minimization based on Levenberg-Marquardt method. The experimental measurements are compared to theoretical results and by minimization we obtain thermal conductivity and diffusivity as well as thickness of the two layers.

  13. Methods and Systems for Characterization of an Anomaly Using Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M. (Inventor)

    2013-01-01

    A method for characterizing an anomaly in a material comprises (a) extracting contrast data; (b) measuring a contrast evolution; (c) filtering the contrast evolution; (d) measuring a peak amplitude of the contrast evolution; (d) determining a diameter and a depth of the anomaly, and (e) repeating the step of determining the diameter and the depth of the anomaly until a change in the estimate of the depth is less than a set value. The step of determining the diameter and the depth of the anomaly comprises estimating the depth using a diameter constant C.sub.D equal to one for the first iteration of determining the diameter and the depth; estimating the diameter; and comparing the estimate of the depth of the anomaly after each iteration of estimating to the prior estimate of the depth to calculate the change in the estimate of the depth of the anomaly.

  14. Heat flux sensors for infrared thermography in convective heat transfer.

    PubMed

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  15. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    PubMed Central

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  16. Electro-thermography technique for nondestructive testing (NDT) applications

    NASA Astrophysics Data System (ADS)

    Chen, Y. S.; Hung, Y. Y.; Liu, L.

    2008-11-01

    In this paper, Electro-Thermography is introduced in nondestructive testing applications. Electro-Thermography is one of the novel active thermography techniques for nondestructive testing. It gains the advantages from the optical and electromagnetic properties in full-field, non-contact, high inspection speed, and sensitivity in geometry variation. It is mostly applicable to all kind of ferrous-metal, some composites materials. A fundamental difference among electro-thermography and other active thermography techniques are the excitation mechanism. Electro-Thermography is a combination of the electromagnetic induction and surface thermal radiation measuring technique; it used the induction method to excite the object, and then it used the radiation properties to measure the distribution of surface temperature of the object. It detects flaws by the flaw's anomalous heating and heat transfer response. The method of excitation is also different from others irradiation excitation. Electro-Thermography needs an electromagnetic coil to generate eddy current through induction to change the surface and subsurface temperature. Electro-Thermography can detect surface and sub-surface flaws, unless the flaw is too remote and tiny from the surface. Some experiments in flaw detections and other types of inspections are demonstrated.

  17. Thermography and k-means clustering methods for anti-reflective coating film inspection: scratch and bubble defects

    NASA Astrophysics Data System (ADS)

    Zhou, Xunfei; Wang, Hongjin; Hsieh, Sheng-Jen (Tony)

    2016-05-01

    Anti-reflective coating is widely used on telescopes, eyeglasses and screens to effectively enhance the transmission of light. However, the presence of defects such as bubbles or scratches lowers the usability and functionality of optical film. Optical cameras are often used for coating inspection, but their accuracy relies heavily on the illumination source, camera viewing angles and defect location. This paper describes an active thermography approach that can potentially overcome this issue. Eighteen scratch and bubble defects were located on AR film with dimensions ranging from 0.03mm to 4.4 mm. An infrared camera was used to capture thermal images of those defects over 65 seconds of heating. After the thermal images were acquired, time-domain analysis and space-domain analysis were conducted and k-means clustering methodology was used to highlight the defective area. Results suggest active thermography can be used to detect scratch defects with widths of 0.03mm to 4.40 mm and bubble defects with diameters ranging from 0.08 to 4 mm. For defects with dimensions larger than 0.4 mm, our algorithm can estimate the dimension with less than 15% bias. However, for defects with dimensions less than 0.4mm, the algorithm estimation error ranged from 68% to 900% due to camera resolution limitations. It should be noted that our algorithm can still distinguish a scratch defect with a width of less than one pixel. This study also suggests active thermography can detect scratch and bubble defects regardless of the location of the illumination source.

  18. First investigations to refine video-based IR thermography as a non-invasive tool to monitor the body temperature of calves.

    PubMed

    Hoffmann, G; Schmidt, M; Ammon, C

    2016-09-01

    In this study, a video-based infrared camera (IRC) was investigated as a tool to monitor the body temperature of calves. Body surface temperatures were measured contactless using videos from an IRC fixed at a certain location in the calf feeder. The body surface temperatures were analysed retrospectively at three larger areas: the head area (in front of the forehead), the body area (behind forehead) and the area of the entire animal. The rectal temperature served as a reference temperature and was measured with a digital thermometer at the corresponding time point. A total of nine calves (Holstein-Friesians, 8 to 35 weeks old) were examined. The average maximum temperatures of the area of the entire animal (mean±SD: 37.66±0.90°C) and the head area (37.64±0.86°C) were always higher than that of the body area (36.75±1.06°C). The temperatures of the head area and of the entire animal were very similar. However, the maximum temperatures as measured using IRC increased with an increase in calf rectal temperature. The maximum temperatures of each video picture for the entire visible body area of the calves appeared to be sufficient to measure the superficial body temperature. The advantage of the video-based IRC over conventional IR single-picture cameras is that more than one picture per animal can be analysed in a short period of time. This technique provides more data for analysis. Thus, this system shows potential as an indicator for continuous temperature measurements in calves. PMID:26190139

  19. Automated Induction Thermography of Generator Components

    NASA Astrophysics Data System (ADS)

    Goldammer, M.; Mooshofer, H.; Rothenfusser, M.; Bass, J.; Vrana, J.

    2010-02-01

    Using Active Thermography defects such as cracks can be detected fast and reliably. Choosing from a wide range of excitation techniques the method can be adapted to a number of tasks in non-destructive evaluation. Induction thermography is ideally suited for testing metallic components for cracks at or close to the surface. In power generation a number of components are subjected to high loads and stresses—therefore defect detection is crucial for a safe operation of the engines. Apart from combustion turbines this also applies to generators: At regular inspection intervals even small cracks have to be detected to avoid crack growth and consequently failure of the component. As an imaging technique thermography allows for a fast 100% testing of the complete surface of all relevant parts. An automated setup increases the cost effectiveness of induction thermography significantly. Time needed to test a single part is reduced, the number of tested parts per shift is increased, and cost for testing is reduced significantly. In addition, automation guarantees a reliable testing procedure which detects all critical defects. We present how non-destructive testing can be automated using as an example an industrial application at the Siemens sector Energy, and a new induction thermography setup for generator components.

  20. Induction and Conduction Thermography: Optimizing the Electromagnetic Excitation Towards Application

    NASA Astrophysics Data System (ADS)

    Vrana, J.; Goldammer, M.; Bailey, K.; Rothenfusser, M.; Arnold, W.

    2009-03-01

    Active thermography, using electromagnetic excitation, allows detecting defects like cracks which distort the flow of current in the component under examination. Like other thermography techniques it is rapid and reliably utilizing infrared imaging. Electric current can be used in two ways for thermography: In induction thermography a current is coupled to the component by passing an AC current through a coil which is in close proximity to the component inspected, while in conduction thermography the current is coupled directly into the component. In this paper, the specific advantages of both coupling methods are discussed, including the efficiency of the coupling and optimization strategies for testing and also the necessary algorithms required to analyze the data. Taking these considerations into account a number of different systems for laboratory and practical application were developed.

  1. Measuring and Estimating Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2013-01-01

    Infrared flash thermography (IRFT) is used to detect void-like flaws in a test object. The IRFT technique involves heating up the part surface using a flash of flash lamps. The post-flash evolution of the part surface temperature is sensed by an IR camera in terms of pixel intensity of image pixels. The IR technique involves recording of the IR video image data and analysis of the data using the normalized pixel intensity and temperature contrast analysis method for characterization of void-like flaws for depth and width. This work introduces a new definition of the normalized IR pixel intensity contrast and normalized surface temperature contrast. A procedure is provided to compute the pixel intensity contrast from the camera pixel intensity evolution data. The pixel intensity contrast and the corresponding surface temperature contrast differ but are related. This work provides a method to estimate the temperature evolution and the normalized temperature contrast from the measured pixel intensity evolution data and some additional measurements during data acquisition.

  2. Thermography in ocular inflammation

    PubMed Central

    Kawali, Ankush A

    2013-01-01

    Background and Objectives: The purpose of this study was to evaluate ocular inflammatory and non-inflammatory conditions using commercially available thermal camera. Materials and Methods: A non-contact thermographic camera (FLIR P 620) was used to take thermal pictures of seven cases of ocular inflammation, two cases of non-inflammatory ocular pathology, and one healthy subject with mild refractive error only. Ocular inflammatory cases included five cases of scleritis, one case of postoperative anterior uveitis, and a case of meibomian gland dysfunction with keratitis (MGD-keratitis). Non-inflammatory conditions included a case of conjunctival benign reactive lymphoid hyperplasia (BRLH) and a case of central serous chorio-retinopathy. Thermal and non-thermal photographs were taken, and using analyzing software, the ocular surface temperature was calculated. Results: Patient with fresh episode of scleritis revealed high temperature. Eyes with MGD-keratitis depicted lower temperature in clinically more affected eye. Conjunctival BRLH showed a cold lesion on thermography at the site of involvement, in contrast to cases of scleritis with similar clinical presentation. Conclusion: Ocular thermal imaging is an underutilized diagnostic tool which can be used to distinguish inflammatory ocular conditions from non-inflammatory conditions. It can also be utilized in the evaluation of tear film in dry eye syndrome. Its applications should be further explored in uveitis and other ocular disorders. Dedicated “ocular thermographic” camera is today's need of the hour. PMID:24347863

  3. Clinical applications of computerized thermography

    NASA Technical Reports Server (NTRS)

    Anbar, Michael

    1988-01-01

    Computerized or digital, thermography is a rapidly growing diagnostic imaging modality. It has superseded contact thermography and analog imaging thermography which do not allow effective quantization. Medical applications of digital thermography can be classified in two groups: static and dynamic imaging. They can also be classified into macro thermography (resolution greater than 1 mm) and micro thermography (resolution less than 100 microns). Both modalities allow a thermal resolution of 0.1 C. The diagnostic power of images produced by any of these modalities can be augmented by the use of digital image enhancement and image recognition procedures. Computerized thermography has been applied in neurology, cardiovascular and plastic surgery, rehabilitation and sports medicine, psychiatry, dermatology and ophthalmology. Examples of these applications are shown and their scope and limitations are discussed.

  4. Nondestructive testing with thermography

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, Clemente; Tarpani, José Ricardo; Maldague, Xavier P. V.

    2013-11-01

    Thermography is a nondestructive testing (NDT) technique based on the principle that two dissimilar materials, i.e., possessing different thermo-physical properties, would produce two distinctive thermal signatures that can be revealed by an infrared sensor, such as a thermal camera. The fields of NDT applications are expanding from classical building or electronic components monitoring to more recent ones such as inspection of artworks or composite materials. Furthermore, thermography can be conveniently used as a didactic tool for physics education in universities given that it provides the possibility of visualizing fundamental principles, such as thermal physics and mechanics among others.

  5. Crack depth determination with inductive thermography

    NASA Astrophysics Data System (ADS)

    Oswald-Tranta, B.; Schmidt, R.

    2015-05-01

    Castings, forgings and other steel products are nowadays usually tested with magnetic particle inspection, in order to detect surface cracks. An alternative method is active thermography with inductive heating, which is quicker, it can be well automated and as in this paper presented, even the depth of a crack can be estimated. The induced eddy current, due to its very small penetration depth in ferro-magnetic materials, flows around a surface crack, heating this selectively. The surface temperature is recorded during and after the short inductive heating pulse with an infrared camera. Using Fourier transformation the whole IR image sequence is evaluated and the phase image is processed to detect surface cracks. The level and the local distribution of the phase around a crack correspond to its depth. Analytical calculations were used to model the signal distribution around cracks with different depth and a relationship has been derived between the depth of a crack and its phase value. Additionally, also the influence of the heating pulse duration has been investigated. Samples with artificial and with natural cracks have been tested. Results are presented comparing the calculated and measured phase values depending on the crack depth. Keywords: inductive heating, eddy current, infrared

  6. Thermography in Neurologic Practice

    PubMed Central

    Neves, Eduardo Borba; Vilaça-Alves, José; Rosa, Claudio; Reis, Victor Machado

    2015-01-01

    One kind of medical images that has been developed in the last decades is thermal images. These images are assessed by infrared cameras and have shown an exponential development in recent years. In this sense, the aim of this study was to describe possibilities of thermography usage in the neurologic practice. It was performed a systematic review in Web of Knowledge (Thompson Reuters), set in all databases which used two combination of keywords as “topic”: “thermography” and “neurology”; and “thermography” and “neurologic”. The chronological period was defined from 2000 to 2014 (the least 15 years). Among the studies included in this review, only seven were with experimental design. It is few to bring thermography as a daily tool in clinical practice. However, these studies have suggested good results. The studies of review and an analyzed patent showed that the authors consider the thermography as a diagnostic tool and they recommend its usage. It can be concluded that thermography is already used as a diagnostic and monitoring tool of patients with neuropathies, particularly in complex regional pain syndrome, and stroke. And yet, this tool has great potential for future research about its application in diagnosis of other diseases of neurological origin. PMID:26191090

  7. A synchronized particle image velocimetry and infrared thermography technique applied to an acoustic streaming flow

    PubMed Central

    Sou, In Mei; Layman, Christopher N.; Ray, Chittaranjan

    2013-01-01

    Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed. PMID:24347810

  8. A synchronized particle image velocimetry and infrared thermography technique applied to an acoustic streaming flow.

    PubMed

    Sou, In Mei; Allen, John S; Layman, Christopher N; Ray, Chittaranjan

    2011-11-01

    Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed. PMID:24347810

  9. Thermal diffusivity estimation with quantitative pulsed phase thermography

    NASA Astrophysics Data System (ADS)

    Ospina-Borras, J. E.; Florez-Ospina, Juan F.; Benitez-Restrepo, H. D.; Maldague, X.

    2015-05-01

    Quantitative Pulsed Phase Thermography (PPT) has been only used to estimate defect parameters such as depth and thermal resistance. Here, we propose a thermal quadrupole based method that extends quantitative pulsed phase thermography. This approach estimates thermal diffusivity by solving a inversion problem based on non-linear squares estimation. This approach is tested with pulsed thermography data acquired from a composite sample. We compare our results with another technique established in time domain. The proposed quantitative analysis with PPT provides estimates of thermal diffusivity close to those obtained with the time domain approach. This estimation requires only the a priori knowledge of sample thickness.

  10. Active Thermography for the Detection of Defects in Powder Metallurgy Compacts

    NASA Astrophysics Data System (ADS)

    Benzerrouk, Souheil; Ludwig, Reinhold; Apelian, Diran

    2007-03-01

    Active thermography is an established NDE technique that has become the method of choice in many industrial applications which require non-contact access to the parts under test. Unfortunately, when conducting on-line infrared (IR) inspection of powder metallic compacts, complications can arise due the generally low emissivity of metals and the thermally noisy environment typically encountered in manufacturing plants. In this paper we present results of an investigation that explores the suitability of active IR imaging of powder metallurgy compacts for the detection of surface and sub-surface defects in the pre-sinter state and in an on-line manufacturing setting to ensure complete quality assurance. Additional off-line tests can be carried out for statistical quality analyses. In this research, the IR imaging of sub-surface defects is based on a transient instrumentation approach that relies on an electric control system which synchronizes and monitors the thermal response due to an electrically generated heat source. Preliminary testing reveals that this newly developed pulsed thermography system can be employed for the detection of subsurface defects in green-state parts. Practical measurements agree well with theoretical predictions. The inspection approach being developed can be used for the testing of green-state compacts as they exit the compaction press at speeds of up to 1,000 parts per hour.

  11. Active Thermography for the Detection of Defects in Powder Metallurgy Compacts

    SciTech Connect

    Benzerrouk, Souheil; Ludwig, Reinhold; Apelian, Diran

    2007-03-21

    Active thermography is an established NDE technique that has become the method of choice in many industrial applications which require non-contact access to the parts under test. Unfortunately, when conducting on-line infrared (IR) inspection of powder metallic compacts, complications can arise due the generally low emissivity of metals and the thermally noisy environment typically encountered in manufacturing plants. In this paper we present results of an investigation that explores the suitability of active IR imaging of powder metallurgy compacts for the detection of surface and sub-surface defects in the pre-sinter state and in an on-line manufacturing setting to ensure complete quality assurance. Additional off-line tests can be carried out for statistical quality analyses. In this research, the IR imaging of sub-surface defects is based on a transient instrumentation approach that relies on an electric control system which synchronizes and monitors the thermal response due to an electrically generated heat source. Preliminary testing reveals that this newly developed pulsed thermography system can be employed for the detection of subsurface defects in green-state parts. Practical measurements agree well with theoretical predictions. The inspection approach being developed can be used for the testing of green-state compacts as they exit the compaction press at speeds of up to 1,000 parts per hour.

  12. Advanced multispectral dynamic thermography as a new tool for inspection of gas-fired furnaces

    NASA Astrophysics Data System (ADS)

    Pregowski, Piotr; Goleniewski, Grzegorz; Komosa, Wojciech; Korytkowski, Waldemar

    2004-04-01

    The main special feature of elaborated method is that the dynamic IR thermography (DIRT) bases on forming of single image consisting of pixels of chosen minimum (IMAX) or maximum (IMAX) value, noted during adequately long sequence of thermograms with total independence to the moment of its (image's) capture. In this way, additive or suppressed interferences of fluctuating character become bypassed. Due to this method thereafter elaborated in classic way such "artificial thermogram" offers the quality impossible to achieve with a classic "one shot" method. Although preliminary, results obtained clearly show great potential of the method. and confirmed the validity in decreasing errors caused by fluctuating disturbances. In the case of process furnaces of gas-fired type and especially of coal-fired, application of presented solutions should result in significant increasing the reliability of IR thermography application. By use of properly chosen optical filters and algorithm, elaborated method offers a new potential attractive to test temperature problems other than in tubes , as for example symmetry and efficiency of the furnace heaters.

  13. Department of National Defence's use of thermography for facilities maintenance

    NASA Astrophysics Data System (ADS)

    Kittson, John E.

    1990-03-01

    Since the late seventies DND through the Director General Works has been actively encouraging the use of thermography as an efficient and effective technique for supporting preventive maintenance quality assurance and energy conservation programs at Canadian Forces Bases (CFBs). This paper will provide an overview of DND''s experiences in the utilization of thermography for facilities maintenance applications. 1. HISTORICAL MILESTONES The following are milestones of DND''s use of thermography: a. Purchase of Infrared Equipment In 1976/77 DND purchased five AGA 750 Infrared Thermovision Systems which were distributed to commands. In 1980/81/82 six AGA liOs five AGA TPT8Os two AGA 782s and one AGA 720 were acquired. Finally DND also purchased seven AGEMA 870 systems during 1987/88. b. First and Second Interdepartaental Building Thermography Courses In 1978 and 1980 DND hosted two building thermography courses that were conducted by Public Works Canada. c. CE Thermographer Specialist Training Courses DND developed a training standard in 1983 for Construction Engineering (CE) Thermographer qualification which included all CE applications of thermography. The first annual inhouse training course was conducted at CFB Borden Ontario in 1984. These are now being conducted at the CFB Chilliwack Detachment in Vernon British Columbia. 2 . MARKETING FACILITIES MAINTENANCE IR Of paramount importance for successfully developing DND appreciation for thermography was providing familiarization training to CE staff at commands and bases. These threeday presentations emphasized motivational factors conducting thermographic surveys and utilizing infrared data of roofs electrical/mechanical systems heating plants steam distribution and building enclosures. These factors consisted mainly of the following objectives: a. preventive maintenance by locating deficiencies to be repaired b. quality assurance by verification of workmanship materials and design c. energy conservation by locating

  14. Airborne thermography of temperature patterns in sugar beet piles

    NASA Technical Reports Server (NTRS)

    Moore, D. G.; Bichsel, S.

    1975-01-01

    An investigation was conducted to evaluate the use of thermography for locating spoilage areas (chimneys) within storage piles and to subsequently use the information for the scheduling of their processing. Thermal-infrared quantitative scanner data were acquired initially on January 16, 1975, over the storage piles at Moorhead, Minnesota, both during the day and predawn. Photographic data were acquired during the day mission to evaluate the effect of uneven snow cover on the thermal emittance, and the predawn thermography was used to locate potential chimneys. The piles were examined the day prior for indications of spoilage areas, and the ground crew indicated that no spoilage areas were located using their existing methods. Nine spoilage areas were interpreted from the thermography. The piles were rechecked by ground methods three days following the flights. Six of the nine areas delineated by thermography were actual spoilage areas.

  15. Determination of effective resonance energy for the 193Ir(n,γ)194Ir reaction by the cadmium ratio method

    NASA Astrophysics Data System (ADS)

    Budak, Mustafa Guray; Karadag, Mustafa; Yücel, Haluk

    2016-04-01

    In this work, the effective resonance energy, Ebarr -value for the 193Ir(n,γ)194Ir reaction was measured using cadmium ratio method. A dual monitor (197Au-98Mo), which has convenient resonance properties, was employed for characterization of the irradiation sites. Then analytical grade iridium oxide samples diluted with CaCO3 to lower neutron self-shielding effect stacked in small cylindrical Teflon boxes were irradiated once with a 1 mm thick Cd cylindrical box placed in a thermalized neutron field of an 241Am-Be neutron source then without it. The activities produced in samples during 193Ir(n,γ)194Ir reaction were measured using a p-type HPGe detector γ-ray spectrometer with a 44.8% relative efficiency. The correction factors for thermal, epithermal neutron self-shielding (Gth, Gepi), true coincidence summing (Fcoi) and gamma-ray self-absorption (Fs) effects were determined with appropriate approaches and programs. Thus, the experimental Ebarr -value was determined to be 2.65 ± 0.61 eV for 193Ir target nuclide. The recent data for Q0 and FCd values for Ebarr determination were based on k0-NAA online database. The present experimental Ebarr value was calculated and compared with more recent values for Q0 and FCd for 193Ir. Additionally, the Ebarr -values was theoretically calculated from the up-to-date resonance data obtained from ENDF/B VII library using two different approaches. Since there is no experimentally determined Ebarr -value for the 193Ir isotope, the results are compared with the calculated ones given in the literature.

  16. Theoretical framework for quantitatively estimating ultrasound beam intensities using infrared thermography.

    PubMed

    Myers, Matthew R; Giridhar, Dushyanth

    2011-06-01

    In the characterization of high-intensity focused ultrasound (HIFU) systems, it is desirable to know the intensity field within a tissue phantom. Infrared (IR) thermography is a potentially useful method for inferring this intensity field from the heating pattern within the phantom. However, IR measurements require an air layer between the phantom and the camera, making inferences about the thermal field in the absence of the air complicated. For example, convection currents can arise in the air layer and distort the measurements relative to the phantom-only situation. Quantitative predictions of intensity fields based upon IR temperature data are also complicated by axial and radial diffusion of heat. In this paper, mathematical expressions are derived for use with IR temperature data acquired at times long enough that noise is a relatively small fraction of the temperature trace, but small enough that convection currents have not yet developed. The relations were applied to simulated IR data sets derived from computed pressure and temperature fields. The simulation was performed in a finite-element geometry involving a HIFU transducer sonicating upward in a phantom toward an air interface, with an IR camera mounted atop an air layer, looking down at the heated interface. It was found that, when compared to the intensity field determined directly from acoustic propagation simulations, intensity profiles could be obtained from the simulated IR temperature data with an accuracy of better than 10%, at pre-focal, focal, and post-focal locations. PMID:21682428

  17. Simple laboratory methods for quantitative IR measurements of CW agents

    NASA Astrophysics Data System (ADS)

    Puckrin, Eldon; Thériault, Jean-Marc; Lavoie, Hugo; Dubé, Denis; Lepage, Carmela J.; Petryk, Michael

    2005-11-01

    A simple method is presented for quantitatively measuring the absorbance of chemical warfare (CW) agents and their simulants in the vapour phase. The technique is based on a standard lab-bench FTIR spectrometer, 10-cm gas cell, a high accuracy Baratron pressure manometer, vacuum pump and simple stainless-steel hardware components. The results of this measurement technique are demonstrated for sarin (GB) and soman (GD). A second technique is also introduced for the passive IR detection of CW agents in an open- air path located in a fumehood. Using a modified open-cell with a pathlength of 45 cm, open-air passive infrared measurements have been obtained for simulants and several classical CW agents. Detection, identification and quantification results based on passive infrared measurements are presented for GB and the CW agent simulant, DMMP, using the CATSI sensor which has been developed by DRDC Valcartier. The open-cell technique represents a relatively simple and feasible method for examining the detection capability of passive sensors, such as CATSI, for CW agents.

  18. An active thermography approach for thermal and electrical characterization of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Streza, M.; Longuemart, S.; Guilmeau, E.; Strzalkowski, K.; Touati, K.; Depriester, M.; Maignan, A.; Sahraoui, A. Hadj

    2016-07-01

    The enhancement of figure of merit (ZT) of thermoelectrics is becoming extremely important for an efficient conversion of thermal energy into electrical energy. In this respect, reliable measurements of thermal and electrical parameters are of paramount importance in order to characterize thermoelectric materials in terms of their efficiency. In this work, a combined theoretical-experimental active thermography approach is presented. The method consists of selecting the right sequential interdependence between the excitation frequency and the sampling rate of the infrared camera, by computing a temporal Fourier analysis of each pixel of the recorded IR image. The method is validated by using a reference sample which is then applied to a recent synthesized titanium trisulphide thermoelectric material (TiS3). By combining AC and steady-state experiments, one can obtain information on both thermal and electrical parameters of TE materials (namely thermal diffusivity, Seebeck coefficient). The thermal diffusivity and thermal conductivity of TiS3 are also measured using photothermal radiometry technique (PTR) and the resulting values of these parameters are α  =  9.7*10‑7 m2 s‑1 and k  =  2.2 W m‑1 K, respectively. The results obtained with the two techniques are in good agreement. In the case of TE materials, the main benefit of the proposed method is related to its non-contact nature and the possibility of obtaining the electric potential and temperature at the same probes. The Seebeck coefficient obtained by active IR thermography (S  =  ‑554 μV K‑1) is consistent with the one obtained using an ULVAC-ZEM3 system (S  =  ‑570 μV K‑1). For a large number of users of thermographic cameras, which are not equipped with a lock-in thermography module, the present approach provides an affordable and cheaper solution.

  19. Development of IR Contrast Data Analysis Application for Characterizing Delaminations in Graphite-Epoxy Structures

    NASA Technical Reports Server (NTRS)

    Havican, Marie

    2012-01-01

    Objective: Develop infrared (IR) flash thermography application based on use of a calibration standard for inspecting graphite-epoxy laminated/honeycomb structures. Background: Graphite/Epoxy composites (laminated and honeycomb) are widely used on NASA programs. Composite materials are susceptible for impact damage that is not readily detected by visual inspection. IR inspection can provide required sensitivity to detect surface damage in composites during manufacturing and during service. IR contrast analysis can provide characterization of depth, size and gap thickness of impact damage. Benefits/Payoffs: The research provides an empirical method of calibrating the flash thermography response in nondestructive evaluation. A physical calibration standard with artificial flaws such as flat bottom holes with desired diameter and depth values in a desired material is used in calibration. The research devises several probability of detection (POD) analysis approaches to enable cost effective POD study to meet program requirements.

  20. Surface temperature measurement of insulating glass units using infrared thermography

    SciTech Connect

    Elmahdy, H.

    1996-12-31

    Infrared (IR) thermography is a process to produce, by means of an infrared scanner, thermal images of surfaces by detecting the radiation emitted from the surfaces. The application of IR thermography as a diagnostic tool in building science assists in determining existing anomalies in the building envelope and other building components. In this paper, IR thermography is used to compare the glass surface temperatures of insulating glass (IG) units made with two types of spacer bar (metal and silicone foam) and different gap widths. The results from this research are compared with data obtained from another research laboratory using a different IR scanner and also with data from finite-element computer modeling. All the tests and simulations were performed on identical IG units. Tests performed on seven IG units indicated that IR thermography could be used to assess the edge-of-glass temperature of IG units for the prediction of condensation resistance of the units. The image processing and analysis depend on the knowledge of accurate emissivity of the surfaces under investigation as well as other variables that affect the final thermal image (e.g., ambient temperature, relative humidity of air in the optical path, and the optical path length). The IR scanner records all the radiation (both direct and reflected) it sees either from the intended target or from any other radiative surfaces in its field of view (FOV). The vertical temperature profiles of all the tested units showed considerable reduction of temperature at the bottom section of the IG unit. The degree of temperature reduction is affected by the type of spacer bar material and the gap thickness.

  1. T.S.A. and Thermography

    NASA Astrophysics Data System (ADS)

    Reynolds, W. N.

    1987-04-01

    The SIRA SPATE equipment for thermal stress analysis is a successful example of the application of modern instrumentation technology to the development and application of classical concepts in physics. The use of Infra Red Optics to monitor small temperature changes over the surface of a solid material has great advantages in many applications as it is rapid, non contacting and non-invasive, and produces signals which can be recorded and analysed in many ways. These advantages have already been exploited to some extent in other applications such as conventional thermography, in which the distribution of heat in a structure is monitored by an I.R. imager using a rotating scanning system, or an I.R. pyroelectric vidicon tube. Such systems are widely employed in monitoring electrical power supplies or chemical plant, but have proved of less relevance to problems of nondestructive testing. In recent years this idea has been combined with that of introducing an alternating or on-off source of heat by means of a chopped laser beam for example, and using recording equipment such as SPATE to monitor the flow heat through a solid. It can be shown that such a source produces a train of critically damped waves of length A where 1/2 A = 2{1T4 where a is the thermal diffusivity of the solid and v is the frequency of chopping and the wave amplitude falls to l/e of its initial value in one wavelength. For waves of frequency 1Hz in copper, A is about 20mm, but normally it is necessary to work at frequencies of 100Hz or more in materials of much lower diffusivity. Consequently this method is chiefly of interest in the examination of thin sheets or coatings up to 1-2mm in thickness. In another development which is more specifically adaptable 'to many problems of NDT, heat is introduced over a chosen area at a high rate for a predetermined time of between lms and about 10s. The subsequent flow through the solid is then monitored by means of an I.R. imager compatible with current TV

  2. Flash Infrared Thermography Contrast Data Analysis Technique

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2014-01-01

    This paper provides information on an IR Contrast technique that involves extracting normalized contrast versus time evolutions from the flash thermography inspection infrared video data. The analysis calculates thermal measurement features from the contrast evolution. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat-bottom holes in the subject material. The measurement features and the contrast simulation are used to evaluate flash thermography data in order to characterize delamination-like anomalies. The thermal measurement features relate to the anomaly characteristics. The contrast evolution simulation is matched to the measured contrast evolution over an anomaly to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat-bottom hole (EFBH) similar to that used as input to the simulation. A similar analysis, in terms of diameter and depth of an equivalent uniform gap (EUG) providing a best match with the measured contrast evolution, is also provided. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH/EUG diameter are compared to evaluate the anomaly. The information provided here is geared towards explaining the IR Contrast technique. Results from a limited amount of validation data on reinforced carbon-carbon (RCC) hardware are included in this paper.

  3. Thermography evaluation of metal bonding materials

    NASA Astrophysics Data System (ADS)

    Safai, Morteza

    The thermographic technique used for the nondestructive evaluation of bondline integrity in metal and silicone rubber bonded material is described. An AGEMA model 880 IR thermographic scanner combined with a 20-deg lens was used to detect the IR radiation from the test panel. A video tape recorder was used to record the live temperature distribution at 25 picture frames per second. A personal computer with an AGEMA TIC-8000 digital image processor was used to record and plot the temperature vs time. The technique was found to be capable of detecting subsurface disbonds as small as 0.0625 sq in. in 0.187-in.-thick thermal protection system bonded materials. The thermography technique meets all the requirements of other approved NDT techniques, and it works well with complex structures and is noncontaminating, noncontact, real-time, and portable.

  4. Thermography evaluation of metal bonding materials

    NASA Astrophysics Data System (ADS)

    Safai, Morteza

    1992-04-01

    The thermographic technique used for the nondestructive evaluation of bondline integrity in metal and silicone rubber bonded material is described. An AGEMA model 880 IR thermographic scanner combined with a 20-deg lens was used to detect the IR radiation from the test panel. A video tape recorder was used to record the live temperature distribution at 25 picture frames per second. A personal computer with an AGEMA TIC-8000 digital image processor was used to record and plot the temperature vs time. The technique was found to be capable of detecting subsurface disbonds as small as 0.0625 sq in. in 0.187-in.-thick thermal protection system bonded materials. The thermography technique meets all the requirements of other approved NDT techniques, and it works well with complex structures and is noncontaminating, noncontact, real-time, and portable.

  5. Trends in quantitative aerial thermography

    SciTech Connect

    Schott, J.R.; Wilkinson, E.P.

    1983-06-01

    Recent improvements in aerial thermographic techniques, particularly in achievable spatial resolution and noise equivalent temperature variation, have enabled the use of thermography in a more objective fashion. Interpretation of the information contained in thermograms has also been improved through the use of certain techniques accounting for roof material type (emissivity), background effects, and atmospheric variables. With current methods, roof surface temperature from aerial imagery can be measured to within 1.8/sup 0/F (1.0/sup 0/C) of the actual temperature. These advances in thermogram analysis have opened the door for potential direct measurement of rooftop heat-loss levels from thermogram data. Ultimately, it is felt that this type of information would make it feasible to direct intensive energy-conservation efforts toward a smaller population, where the need and cost benefits will be the greatest.

  6. Recognition of wall materials through active thermography coupled with numerical simulations.

    PubMed

    Pietrarca, Francesca; Mameli, Mauro; Filippeschi, Sauro; Fantozzi, Fabio

    2016-09-01

    In the framework of historical buildings, wall thickness as well as wall constituents are not often known a priori, and active IR thermography can be exploited as a nonintrusive method for detecting what kind of material lies beneath the external plaster layer. In the present work, the wall of a historical building is subjected to a heating stimulus, and the surface temperature temporal trend is recorded by an IR camera. A hybrid numerical model is developed in order to simulate the transient thermal response of a wall made of different known materials underneath the plaster layer. When the numerical thermal contrast and the appearance time match with the experimental thermal images, the material underneath the plaster can be qualitatively identified. PMID:27607254

  7. IR imaging simulation and analysis for aeroengine exhaust system based on reverse Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Chen, Shiguo; Chen, Lihai; Mo, Dongla; Shi, Jingcheng

    2014-11-01

    The IR radiation characteristics of aeroengine are the important basis for IR stealth design and anti-stealth detection of aircraft. With the development of IR imaging sensor technology, the importance of aircraft IR stealth increases. An effort is presented to explore target IR radiation imaging simulation based on Reverse Monte Carlo Method (RMCM), which combined with the commercial CFD software. Flow and IR radiation characteristics of an aeroengine exhaust system are investigated, which developing a full size geometry model based on the actual parameters, using a flow-IR integration structured mesh, obtaining the engine performance parameters as the inlet boundary conditions of mixer section, and constructing a numerical simulation model of engine exhaust system of IR radiation characteristics based on RMCM. With the above models, IR radiation characteristics of aeroengine exhaust system is given, and focuses on the typical detecting band of IR spectral radiance imaging at azimuth 20°. The result shows that: (1) in small azimuth angle, the IR radiation is mainly from the center cone of all hot parts; near the azimuth 15°, mixer has the biggest radiation contribution, while center cone, turbine and flame stabilizer equivalent; (2) the main radiation components and space distribution in different spectrum is different, CO2 at 4.18, 4.33 and 4.45 micron absorption and emission obviously, H2O at 3.0 and 5.0 micron absorption and emission obviously.

  8. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  9. Automatized segmentation of photovoltaic modules in IR-images with extreme noise

    NASA Astrophysics Data System (ADS)

    Vetter, Andreas; Hepp, Johannes; Brabec, Christoph J.

    2016-05-01

    Local electric defects may result in considerable performance losses in solar cells. Infrared thermography is an essential tool to detect these defects on photovoltaic modules. Accordingly, IR-thermography is frequently used in R&D labs of PV manufactures and, furthermore, outdoors in order to identify faulty modules in PV-power plants. Massive amount of data is acquired which needs to be analyzed. An automatized method for detecting solar modules in IR-images would enable a faster and automatized analysis of the data. However, IR-images tend to suffer from rather large noise, which makes an automatized segmentation challenging. The aim of this study was to establish a reliable segmentation algorithm for R&D labs. We propose an algorithm, which detects a solar cell or module within an IR-image with large noise. We tested the algorithm on images of 10 PV-samples characterized by highly sensitive dark lock-in thermography (DLIT). The algorithm proved to be very reliable in detecting correctly the solar module. In our study, we focused on thin film solar cells, however, a transfer of the algorithm to other cell types is straight forward.

  10. Infrared Contrast Analysis Technique for Flash Thermography Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2014-01-01

    The paper deals with the infrared flash thermography inspection to detect and analyze delamination-like anomalies in nonmetallic materials. It provides information on an IR Contrast technique that involves extracting normalized contrast verses time evolutions from the flash thermography infrared video data. The paper provides the analytical model used in the simulation of infrared image contrast. The contrast evolution simulation is achieved through calibration on measured contrast evolutions from many flat bottom holes in the subject material. The paper also provides formulas to calculate values of the thermal measurement features from the measured contrast evolution curve. Many thermal measurement features of the contrast evolution that relate to the anomaly characteristics are calculated. The measurement features and the contrast simulation are used to evaluate flash thermography inspection data in order to characterize the delamination-like anomalies. In addition, the contrast evolution prediction is matched to the measured anomaly contrast evolution to provide an assessment of the anomaly depth and width in terms of depth and diameter of the corresponding equivalent flat-bottom hole (EFBH) or equivalent uniform gap (EUG). The paper provides anomaly edge detection technique called the half-max technique which is also used to estimate width of an indication. The EFBH/EUG and half-max width estimations are used to assess anomaly size. The paper also provides some information on the "IR Contrast" software application, half-max technique and IR Contrast feature imaging application, which are based on models provided in this paper.

  11. Active and passive infrared thermography applied to the detection and characterization of hidden defects in structure

    NASA Astrophysics Data System (ADS)

    Dumoulin, Jean

    2013-04-01

    Infrared thermography for Non Destructive Testing (NDT) has encountered a wide spreading this last 2 decades, in particular thanks to emergence on the market of low cost uncooled infrared camera. So, infrared thermography is not anymore a measurement technique limited to laboratory application. It has been more and more involved in civil engineering and cultural heritage applications, but also in many other domains, as indicated by numerous papers in the literature. Nevertheless, laboratory, measurements are done as much as possible in quite ideal conditions (good atmosphere conditions, known properties of materials, etc.), while measurement on real site requires to consider the influence of not controlled environmental parameters and additional unknown thermal properties. So, dedicated protocol and additional sensors are required for measurement data correction. Furthermore, thermal excitation is required to enhance the signature of defects in materials. Post-processing of data requires to take into account the protocol used for the thermal excitation and sometimes its nature to avoid false detection. This analysis step is based on signal and image processing tool and allows to carry out the detection. Characterization of anomalies detected at the previous step can be done by additional signal processing in particular for manufactured objects. The use of thermal modelling and inverse method allows to determine properties of the defective area. The present paper will first address a review of some protocols currently in use for field measurement with passive and/or active infrared measurements. Illustrations in various experiments carried out on civil engineering structure will be shown and discussed. In a second part, different post-processing approaches will be presented and discussed. In particular, a review of the most standard processing methods like Fast Fourier Analysis, Principal Components Analysis, Polynomial Decomposition, defect characterization using

  12. Track-before-declare methods in IR image sequences

    NASA Astrophysics Data System (ADS)

    Bolen, Steven M.

    1992-09-01

    The development of low observable (LO) targets, such as cruise missiles and cruise-missile-carrying aircraft, can severely stress the detection and tracking capabilities of infrared (IR) surveillance systems. Long-range surveillance requires the detection and tracking of targets that are spatially unresolved and often maneuvering in a low signal-to-clutter ratio (SCR) environment. These characteristics make the LO target difficult to detect in single-frame processing techniques. However, by combining intensity information from each pixel over many frames of data it is possible to improve target detection capability. A class of long-term integration techniques for weak target detection, known as track-before-declare (TBD), will be discussed in this paper.

  13. Shuttle Entry Imaging Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas; Berry, Scott; Alter, Stephen; Blanchard, Robert; Schwartz, Richard; Ross, Martin; Tack, Steve

    2007-01-01

    During the Columbia Accident Investigation, imaging teams supporting debris shedding analysis were hampered by poor entry image quality and the general lack of information on optical signatures associated with a nominal Shuttle entry. After the accident, recommendations were made to NASA management to develop and maintain a state-of-the-art imagery database for Shuttle engineering performance assessments and to improve entry imaging capability to support anomaly and contingency analysis during a mission. As a result, the Space Shuttle Program sponsored an observation campaign to qualitatively characterize a nominal Shuttle entry over the widest possible Mach number range. The initial objectives focused on an assessment of capability to identify/resolve debris liberated from the Shuttle during entry, characterization of potential anomalous events associated with RCS jet firings and unusual phenomenon associated with the plasma trail. The aeroheating technical community viewed the Space Shuttle Program sponsored activity as an opportunity to influence the observation objectives and incrementally demonstrate key elements of a quantitative spatially resolved temperature measurement capability over a series of flights. One long-term desire of the Shuttle engineering community is to calibrate boundary layer transition prediction methodologies that are presently part of the Shuttle damage assessment process using flight data provided by a controlled Shuttle flight experiment. Quantitative global imaging may offer a complementary method of data collection to more traditional methods such as surface thermocouples. This paper reviews the process used by the engineering community to influence data collection methods and analysis of global infrared images of the Shuttle obtained during hypersonic entry. Emphasis is placed upon airborne imaging assets sponsored by the Shuttle program during Return to Flight. Visual and IR entry imagery were obtained with available airborne

  14. Influence of the acquisition parameters on the performance of laser-thermography for crack detection in metallic components

    NASA Astrophysics Data System (ADS)

    Myrach, Philipp; Ziegler, Mathias; Maierhofer, Christiane; Kreutzbruck, Marc

    2014-02-01

    We present a systematic study on the performance of laser-thermography for the detection of surface cracks in metallic components. Scanning a metallic surface with laser causes local heating that is mapped simultaneously by an IR-camera and allows identifying cracks with sub-μm openings. The detectability, however, depends on a number of acquisition parameters (e.g. scanning speed, laser power, IR-camera resolution) that typically relate on each other. Most importantly, the detection-sensitivity of surface breaking cracks is given by a particular combination for the acquisition parameter values. As a result, this sensitivity is adaptable within wide ranges allowing the detection of cracks with openings ranging from 200 to 0.1 μm at testing speeds of 100 to 0.05 cm2/s. By examining artificial as well as fatigue cracks, we demonstrate that the method can be even applied to shiny surfaces with no need of pretreatments, which makes it an entirely contactless, remote and automatable NDT technique. A comparison with magnetic particle testing shows that laser-thermography has the potential to become a strong competitor to conventional surface inspection methods in the future.

  15. Defect characterisation based on heat diffusion using induction thermography testing

    NASA Astrophysics Data System (ADS)

    He, Yunze; Pan, Mengchun; Luo, Feilu

    2012-10-01

    Pulsed eddy current (PEC) thermography (a.k.a. induction thermography) has been successfully applied to detect defects (corrosion, cracks, impact, and delamination) in metal alloy and carbon fiber reinforced plastic. During these applications, the defect detection mechanism is mainly investigated based on the eddy current interaction with defect. In this paper, defect characterisation for wall thinning defect and inner defect in steel is investigated based on heat diffusion. The paper presents the PEC thermography testing, which integrates the reflection mode and transmission mode by means of configuring two cameras on both sides of sample. The defect characterisation methods under transmission mode and reflection mode are investigated and compared through 1D analytical analysis, 3D numerical studies, and experimental studies. The suitable detection mode for wall thinning and inner defects quantification is concluded.

  16. Defect characterisation based on heat diffusion using induction thermography testing.

    PubMed

    He, Yunze; Pan, Mengchun; Luo, Feilu

    2012-10-01

    Pulsed eddy current (PEC) thermography (a.k.a. induction thermography) has been successfully applied to detect defects (corrosion, cracks, impact, and delamination) in metal alloy and carbon fiber reinforced plastic. During these applications, the defect detection mechanism is mainly investigated based on the eddy current interaction with defect. In this paper, defect characterisation for wall thinning defect and inner defect in steel is investigated based on heat diffusion. The paper presents the PEC thermography testing, which integrates the reflection mode and transmission mode by means of configuring two cameras on both sides of sample. The defect characterisation methods under transmission mode and reflection mode are investigated and compared through 1D analytical analysis, 3D numerical studies, and experimental studies. The suitable detection mode for wall thinning and inner defects quantification is concluded. PMID:23126785

  17. Detection of foreign substances in food using thermography

    NASA Astrophysics Data System (ADS)

    Meinlschmidt, Peter; Maergner, Volker

    2002-03-01

    This paper gives a short introduction into the possibility of detecting foreign bodies in food by using IR thermography. The first results shown for combinations of cherries and chocolate and berries contaminated with leaves, stalks, pedicel and thorns could be easily evaluated manually. Therefore the differing emissivity coefficients or the different heat conductivities and/or capacities are used for differentiation. Applying pulse thermography, first heat conductivity measurements of different food materials are performed. Calculating the contrast of possible food / contaminant combinations shows the difficulty of differentiating certain materials. A possible automatic evaluation for raisins contaminated with wooden sticks and almonds blended with stones could be shown. The power of special adapted algorithms using statistical or morphological analysis is shown to distinguish the foreign bodies from the foodstuff.

  18. Thermography in Occlusive Cerebrovascular Diseases

    PubMed Central

    Mawdsley, C.; Samuel, E.; Sumerling, M. D.; Young, G. B.

    1968-01-01

    Cooling of the skin over the medial supraorbital region in 80% of patients who have an occlusion or severe stenosis of a carotid artery can be demonstrated by facial thermography. Minor stenotic lesions in the carotid arteries do not produce characteristic thermographic changes, while thermography is of no help in the diagnosis of vertebrobasilar arterial disease. Thermographic changes suggestive of carotid arterial lesions are found occasionally in patients whose angiograms are normal, owing to variations in the size of the frontal sinuses, or factors such as fever or inflammatory lesions. It is suggested that facial thermography is of value in the preliminary investigation of patients with occlusive cerebrovascular disease. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:5676953

  19. Real time capable infrared thermography for ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  20. Real time capable infrared thermography for ASDEX Upgrade

    SciTech Connect

    Sieglin, B. Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  1. Real time capable infrared thermography for ASDEX Upgrade.

    PubMed

    Sieglin, B; Faitsch, M; Herrmann, A; Brucker, B; Eich, T; Kammerloher, L; Martinov, S

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW. PMID:26628130

  2. Computerized tomography technique for reconstruction of obstructed temperature field in infrared thermography

    NASA Astrophysics Data System (ADS)

    Sham, F. C.; Huang, Y. H.; Liu, L.; Chen, Y. S.; Hung, Y. Y.; Lo, T. Y.

    2010-01-01

    Infrared thermography is a rapid, non-invasive and full-field technique for non-destructive testing and evaluation (NDT&E). With all the achievements on IR instrumentation and image processing techniques attained, it has been extended far beyond simple hot-spot detection and becomes one of the most promising NDT&E techniques in the last decades. It has achieved increasing acceptance in different sectors include medical imaging, manufacturing component fault detection and buildings diagnostic. However, one limitation of IR thermography is that the testing results are greatly affected by object surface emissivity. Surface with various emissivities may lead to difficult discrimination between area of defect and area with different emissivity. Therefore, many studies have been carried out on eliminating emissivity, for example, the time derivative approach, lock-in processing and differential contrast measurements. In these methods, sequence of themo-data/images are recorded and being processed in order to eliminate differences of emissivity. Another problem of IR thermography is that any obstruction may limit stimulations and imaging which leads to the observation of unclear defect image. To solve this problem, this paper proposes an algorithm based on the principle of computerized tomography which permits the reconstruction of unavailable/partially available temperature distribution of the affected area using the measured surrounding temperature field. In the process, a set of imaginary rays are projected from many different directions across the area. For each ray, integration of the temperature derivatives along the ray is equals to the temperature difference between the boundary points intercepted by the ray. Therefore, a set of linear equations can be established by considering the multiple rays. Each equation expresses the unknown temperature derivatives in the affected area in terms of the measured boundary temperature data. Solution of the set of simultaneous

  3. Veterinary applications of infrared thermography.

    PubMed

    Rekant, Steven I; Lyons, Mark A; Pacheco, Juan M; Arzt, Jonathan; Rodriguez, Luis L

    2016-01-01

    Abnormal body temperature is a major indicator of disease; infrared thermography (IRT) can assess changes in body surface temperature quickly and remotely. This technology can be applied to a myriad of diseases of various etiologies across a wide range of host species in veterinary medicine. It is used to monitor the physiologic status of individual animals, such as measuring feed efficiency or diagnosing pregnancy. Infrared thermography has applications in the assessment of animal welfare, and has been used to detect soring in horses and monitor stress responses. This review addresses the variety of uses for IRT in veterinary medicine, including disease detection, physiologic monitoring, welfare assessment, and potential future applications. PMID:26709943

  4. Infrared Thermography Flight Experimentation

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Carter, Matthew L.; Kirsch, Michael

    2003-01-01

    Analysis was done on IR data collected by DFRC on May 8, 2002. This includes the generation of a movie to initially examine the IR flight data. The production of the movie was challenged by the volume of data that needed to be processed, namely 40,500 images with each image (256 x 252) containing over 264 million points (pixel depth 4096). It was also observed during the initial analysis that the RTD surface coating has a different emissivity than the surroundings. This fact added unexpected complexity in obtaining a correlation between RTD data and IR data. A scheme was devised to generate IR data near the RTD location which is not affected by the surface coating This scheme is valid as long as the surface temperature as measured does not change too much over a few pixel distances from the RTD location. After obtaining IR data near the RTD location, it is possible to make a direct comparison with the temperature as measured during the flight after adjusting for the camera s auto scaling. The IR data seems to correlate well to the flight temperature data at three of the four RID locations. The maximum count intensity occurs closely to the maximum temperature as measured during flight. At one location (RTD #3), there is poor correlation and this must be investigated before any further progress is possible. However, with successful comparisons at three locations, it seems there is great potential to be able to find a calibration curve for the data. Moreover, as such it will be possible to measure temperature directly from the IR data in the near future.

  5. The effect of instrument attachment on the surface temperature of juvenile grey seals ( Halichoerus grypus) as measured by infrared thermography

    NASA Astrophysics Data System (ADS)

    McCafferty, Dominic J.; Currie, John; Sparling, Carol E.

    2007-02-01

    Previous research has highlighted the importance of minimising hydrodynamic drag from biologging instruments fitted to marine mammals. However, there is a need to investigate other possible impacts of instruments on animals. The aim of this study was to examine the effect of deploying instruments on the surface temperature distribution of grey seals ( Halichoerus grypus). Infrared (IR) thermography was used to record the surface temperature of two juveniles that had been fitted with heart rate recorders and mounting straps for the attachment of a time depth recorder. When animals were fully wet and inactive, the surface temperature pattern was unaffected by instruments. However, as animals dried out regions of high temperature were recorded around the edges of attachment sites compared to surrounding fur. This appeared to be due to heat leakage around the sides of instruments and mounting straps that provided an additional layer of insulation. There were no obvious changes in the surface temperature distribution around instruments associated with duration of deployment. This work shows that attachment of relatively small biologging instruments will produce localised effects on heat transfer in air but will not significantly change the total heat exchange of grey seals on land or at sea. IR thermography was also shown to be a useful method of detecting surface temperature patterns associated with epidural anaesthesia and blubber biopsy.

  6. Study of heating capacity of focused IR light soldering systems.

    PubMed

    Anguiano, C; Félix, M; Medel, A; Bravo, M; Salazar, D; Márquez, H

    2013-10-01

    An experimental study about four optical setups used for developing a Focused IR Light Soldering System (FILSS) for Surface Mount Technology (SMT) lead-free electronic devices specifically for Ball Grid Arrays (BGA) is presented. An analysis of irradiance and infrared thermography at BGA surface is presented, as well as heat transfer by radiation and conduction process from the surface of the BGA to the solder balls. The results of this work show that the heating provided by our proposed optical setups, measured at the BGA under soldering process, meets the high temperature and uniform thermal distribution requirements, which are defined by the reflow solder method for SMT devices. PMID:24104296

  7. A self-method for resolving the problem of apparent LWIR emissivity for quantitative thermography up to 130 °C

    NASA Astrophysics Data System (ADS)

    Riou, Olivier; Logerais, Pierre-Olivier; Delaleux, Fabien; Durastanti, Jean-Félix

    2014-11-01

    In a previous work, we succeeded in connecting normal LWIR apparent emissivity to the spectral one of an aluminum nitride ceramic plate. The key problem was the knowledge of the effective spectral bandwidth in use in the system. Hence we have developed an analyzer which permits to identify the spectral bandwidth of IR system using only its raw data. It proceeds by minimizing the dispersion from linearity of the characteristic thermosignals/integrated radiance over a temperature range of the IR system. The capacities of the analyzer are tested for five commercial cameras. Each of these systems exhibits a similar formatting process implemented during the thermogram recording. The effective spectral bandwidth shows plausible values. It varies significantly from one model to the other and the residual non-linearity is connected to the NETD of the IR system. The robustness of the apparent emissivity measurements is also tested with the aid of emissivity reference of 0.5. The overall accuracy of the method is less than 1%, depending on the specular or diffuse part of the reflected irradiation. Applied in field situation, the method is suitable to detect absolute variation of emissivity of less than 6 ṡ 10-3. We use the analyzer to determine the spectral bandwidth of a commercial 320 × 240 microbolometer uncooled IRFPA camera which had already served to characterize the normal LWIR apparent emissivity of the aluminum nitride ceramic plate. By using the spectral response of the two major microbolometer sensor technologies, the general formulation of apparent emissivity matches our apparent emissivity measurements. An agreement better than 0.6% in absolute value and a less than 6 ṡ 10-3%/°C dispersion are found over the entire temperature range [40-130 °C].

  8. Comparative defect evaluation of aircraft components by active thermography

    NASA Astrophysics Data System (ADS)

    Zauner, G.; Mayr, G.; Hendorfer, G.

    2009-02-01

    Active Thermography has become a powerful tool in the field of non-destructive testing (NDT) in recent years. This infrared thermal imaging technique is used for non-contact inspection of materials and components by visualizing thermal surface contrasts after a thermal excitation. The imaging modality combined with the possibility of detecting and characterizing flaws as well as determining material properties makes Active Thermography a fast and robust testing method even in industrial-/production environments. Nevertheless, depending on the kind of defect (thermal properties, size, depth) and sample material (CFRP carbon fiber reinforced plastics, metal, glass fiber) or sample structure (honeycomb, composite layers, foam), active thermography can sometimes produce equivocal results or completely fails in certain test situations. The aim of this paper is to present examples of results of Active Thermography methods conducted on aircraft components compared to various other (imaging) NDT techniques, namely digital shearography, industrial x-ray imaging and 3D-computed tomography. In particular we focus on detection limits of thermal methods compared to the above-mentioned NDT methods with regard to: porosity characterization in CFRP, detection of delamination, detection of inclusions and characterization of glass fiber distributions.

  9. Concept And Development Of Instruments For ITER Thermography

    SciTech Connect

    Reichle, R.; Balorin, C.; Carpentier, S.; Corre, Y.; Davi, M.; Delchambre, E.; Desgrange, C.; Escourbiac, F.; Fougerolle, S.; Gardarein, J. L.; Gauthier, E.; Guilhem, D.; Jouve, M.; Loarer, Th.; Martins, J. P.; Patterlini, J. C.; Pocheau, C.; Roche, H.; Salasca, S.; Travere, J. M.

    2008-03-12

    We give here a short overview of the status of the development for ITER thermography as performed by the CEA-Cadarache and some of its collaboration partners. The topics that have been included in this synthesis are the status of the optical design, the role of multi-wavelength mesurements, multicolour pyroreflectometry, photothermal methods, and reflection simulations and measurements.

  10. Using infrared thermography to study freezing in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Factors that determine when and to what extent a plant will freeze are complex. While thermocouples have served as the main method of monitoring the freezing process in plants, infrared thermography offers distinct advantages, and the use of this latter technology has provided new insights on the p...

  11. Infrared thermography to evaluate lameness in pregnant sows

    PubMed Central

    Amezcua, Rocio; Walsh, Shannon; Luimes, Paul H.; Friendship, Robert M.

    2014-01-01

    Early detection of lameness in sows is important to reduce losses and improve animal welfare. Mild-to-moderate lameness is difficult to diagnose in sows. Infrared thermography (IRT) was evaluated as a method of detecting signs of inflammation in the lower limbs as an aid in lameness detection. PMID:24587511

  12. Veterinary applications of infrared thermography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abnormal temperature is a major indicator of disease; infrared thermography (IRT) can assess changes in surface temperature quickly and remotely. This technology can be applied to myriad diseases in veterinary medicine, ranging across host species and disease etiologies. It can also be used to deter...

  13. Focal plane array based infrared thermography in fine physical experiment

    NASA Astrophysics Data System (ADS)

    Vainer, Boris G.

    2008-03-01

    By two examples of dissimilar physical phenomena causing thermophysical effects, the unique capabilities of one of the up-to-date methods of experimental physics—focal plane array (FPA) based infrared (IR) thermography (IRT), are demonstrated distinctly. Experimenters inexperienced in IRT can grasp how this method provides a means for combining real-time visualization with quantitative analysis. A narrow-band short-wavelength IR camera was used in the experiments. It is discussed and stated that IRT is best matched and suited to the next two test conditions—when a heated specimen is thin and when heat is generated in the immediate region of a surface of a solid. The first prerequisite is realized in the search for directional patterns of combined low-power radiation sources with the use of the IRT-aided method. The second one is realized in studies of water vapour adsorption on uneven (irregular) surfaces of solid materials. With multiple swatches taken from a set of different fabrics and used as experimental samples, a sharp distinction between adsorptivities of their surfaces is strikingly illustrated by IRT time-domain measurements exhibiting the associated thermal effect ranging within an order of magnitude. It is justified that the described IRT-aided test can find practical implementation at least in the light industry. Emissivities of different fabrics are evaluated experimentally with the described reflection method based on the narrow spectral range of IRT. On the basis of direct IR observations, attention is paid to the need for close control over the surface temperature increase while the adsorption isotherms are being measured. Sensitivity of the FPA-based IRT method, as applied to examine the kinetics of initial stages of adsorption of gaseous molecules on the solid surface, is evaluated analytically and quantitatively. The relationship between the amount of adsorbate and the measurable excess of adsorbent temperature is found. It is discovered

  14. Procedure to estimate thermophysical and geometrical parameters of embedded cancerous lesions using thermography.

    PubMed

    Manuel Luna, Jose; Romero-Mendez, Ricardo; Hernandez-Guerrero, Abel; Elizalde-Blancas, Francisco

    2012-03-01

    Based on the fact that malignant cancerous lesions (neoplasms) develop high metabolism and use more blood supply than normal tissue, infrared thermography (IR) has become a reliable clinical technique used to indicate noninvasively the presence of cancerous diseases, e.g., skin and breast cancer. However, to diagnose cancerous diseases by IR, the technique requires procedures that explore the relationship between the neoplasm characteristics (size, blood perfusion rate and heat generated) and the resulting temperature distribution on the skin surface. In this research work the dual reciprocity boundary element method (DRBEM) has been coupled with the simulated annealing technique (SA) in a new inverse procedure, which coupled to the IR technique, is capable of estimating simultaneously geometrical and thermophysical parameters of the neoplasm. The method is of an evolutionary type, requiring random initial values for the unknown parameters and no calculations of sensitivities or search directions. In addition, the DRBEM does not require any re-meshing at each proposed solution to solve the bioheat model. The inverse procedure has been tested considering input data for simulated neoplasms of different sizes and positions in relation to the skin surface. The successful estimation of unknown neoplasm parameters validates the idea of using the SA technique and the DRBEM in the estimation of parameters. Other estimation techniques, based on genetic algorithms or sensitivity coefficients, have not been capable of obtaining a solution because the skin surface temperature difference is very small. PMID:22482688

  15. Experimental developments towards an ITER thermography diagnostic

    NASA Astrophysics Data System (ADS)

    Reichle, R.; Brichard, B.; Escourbiac, F.; Gardarein, J. L.; Hernandez, D.; Le Niliot, C.; Rigollet, F.; Serra, J. J.; Badie, J. M.; van Ierschot, S.; Jouve, M.; Martinez, S.; Ooms, H.; Pocheau, C.; Rauber, X.; Sans, J. L.; Scheer, E.; Berghmans, F.; Decréton, M.

    2007-06-01

    In the course of the development of a concept for a spectrally resolving thermography diagnostic for the ITER divertor using optical fibres experimental development work has been carried out in three different areas. Firstly ZrF4 fibres and hollow fibres (silica capillaries with internal AG/AgJ coating) were tested in a Co60 irradiation facility under γ irradiation up to doses of 5 kGy and 27 kGy, respectively. The ZrF4 fibres suffered more radiation induced degradation (>1 db/m) then the hollow fibres (0-0.4 db/m). Secondly multi-colour pyroreflectometry is being developed towards tokamak applicability. The emissivity and temperature of tungsten samples were measured in the range of 700-1500 °C. The angular working range for off normal observation of the method was 20-30°. The working distance of the method has been be increased from cm to the m range. Finally, encouraging preliminary results have been obtained concerning the application of pulsed and modulated active thermography.

  16. Investigation on choosing technical parameters for pulse thermography

    NASA Astrophysics Data System (ADS)

    Li, Huijuan

    2015-04-01

    Composite material connected by glue has gained popularity as a replacement for conventional materials and structures to reduce weight and improve strength in the aerospace industry, with the development of material science and structural mechanics. However, the adhesive bonding process is more susceptible to quality variations during manufacturing than traditional joining methods. The integrality, strength and rigidity of product would be broken by disbonding. Infrared thermography is one of several non-destructive testing techniques which can be used for defect detection in aircraft materials. Pulsed infrared thermography has been widely used in aerospace and mechanical manufacture industry because it can offer noncontact, quickly and visual examinations of disbonding defects. However the parameter choosing method is difficult to decide. Investigate the choosing technical parameters for pulse thermograpghy is more important to ensure the product quality and testing efficiency. In this paper, two kinds of defects which are of various size, shape and location below the test surface are planted in the honeycomb structure, they are all tested by pulsed thermography. This paper presents a study of single factor experimental research on damage sample in simulation was carried out. The impact of the power of light source, detection distance, and the wave band of thermography camera on detecting effect is studied. The select principle of technique is made, the principle supplied basis for selection of detecting parameters in real part testing.

  17. Lock-in thermography, penetrant inspection, and scanning electron microscopy for quantitative evaluation of open micro-cracks at the tooth-restoration interface

    NASA Astrophysics Data System (ADS)

    Streza, M.; Hodisan, I.; Prejmerean, C.; Boue, C.; Tessier, Gilles

    2015-03-01

    The evaluation of a dental restoration in a non-invasive way is of paramount importance in clinical practice. The aim of this study was to assess the minimum detectable open crack at the cavity-restorative material interface by the lock-in thermography technique, at laser intensities which are safe for living teeth. For the analysis of the interface, 18 box-type class V standardized cavities were prepared on the facial and oral surfaces of each tooth, with coronal margins in enamel and apical margins in dentine. The preparations were restored with the Giomer Beautifil (Shofu) in combination with three different adhesive systems. Three specimens were randomly selected from each experimental group and each slice has been analysed by visible, infrared (IR), and scanning electron microscopy (SEM). Lock-in thermography showed the most promising results in detecting both marginal and internal defects. The proposed procedure leads to a diagnosis of micro-leakages having openings of 1 µm, which is close to the diffraction limit of the IR camera. Clinical use of a thermographic camera in assessing the marginal integrity of a restoration becomes possible. The method overcomes some drawbacks of standard SEM or dye penetration testing. The results support the use of an IR camera in dentistry, for the diagnosis of micro-gaps at bio-interfaces.

  18. Amplitude-sensitive modulation thermography to measure moisture in building materials

    NASA Astrophysics Data System (ADS)

    Wild, Walter; Buescher, Konstantin A.; Wiggenhauser, Herbert

    1998-03-01

    There have been reports about moisture detection in building walls by reflective IR-thermography. Typically, only limited results could be obtained because of the emission coefficient variations, leaking radiation or inhomogeneous illumination of the object. In addition, the quantitative relation between remission spectra and the moisture has often been unclear. Reflectometry uses constant excitation illumination which is recorded by the IR camera. With the use of the 'lock-in-technology' a low frequency modulated signal of an IR radiation source is coupled with the thermo camera and a frequency and phase sensitive signal from the thermal images can be derived. The advantage is, that emission coefficient dependencies are eliminated and that leaking radiation does not have any influence on the measured signal. The selective water measurement is possible, because there is an interference filter mounted in front of the radiator which has its transmission maximum at the wavelength of an absorption band of water. The area investigated is therefore illuminated under well defined circumstances and quantitative moisture measurement on the surface of building materials becomes a possibility. The illumination modulation is done with a sine wave to facilitate the calculation of the temporal intensity behavior of the amplitude signal. Subsequently, the amplitude image is used to determine the distribution and the level of moisture quantitatively. Point measurements in the laboratory were carried out on several building materials with changing moisture levels. It could be shown that this method successfully eliminates disturbing contributions to the measured signal like surface effects or leaking radiation.

  19. Prospects and limitations of digital Shearography and Active Thermography in finding and rating flaws in CFRP sandwich parts with honeycomb core

    NASA Astrophysics Data System (ADS)

    Gruber, J.; Mayr, G.; Hendorfer, G.

    2012-05-01

    This work shows the prospects and limitations of the non-destructive testing methods Digital Shearography and Active Thermography when applied to CFRP sandwich parts with honeycomb cores. Two specimens with different core materials (aluminum, NOMEX) and artificial flaws such as delaminations, disbonds and inclusions of foreign material, are tested with Digital Shearography and Pulse Thermography including Pulse Phase Thermography. Both methods provide a good ability for finding and rating the flaws.

  20. Modeling of the ITER-like wide-angle infrared thermography view of JET.

    PubMed

    Aumeunier, M-H; Firdaouss, M; Travère, J-M; Loarer, T; Gauthier, E; Martin, V; Chabaud, D; Humbert, E

    2012-10-01

    Infrared (IR) thermography systems are mandatory to ensure safe plasma operation in fusion devices. However, IR measurements are made much more complicated in metallic environment because of the spurious contributions of the reflected fluxes. This paper presents a full predictive photonic simulation able to assess accurately the surface temperature measurement with classical IR thermography from a given plasma scenario and by taking into account the optical properties of PFCs materials. This simulation has been carried out the ITER-like wide angle infrared camera view of JET in comparing with experimental data. The consequences and the effects of the low emissivity and the bidirectional reflectivity distribution function used in the model for the metallic PFCs on the contribution of the reflected flux in the analysis are discussed. PMID:23130792

  1. Modeling of the ITER-like wide-angle infrared thermography view of JET

    SciTech Connect

    Aumeunier, M.-H.; Firdaouss, M.; Travere, J.-M.; Loarer, T.; Gauthier, E.; Martin, V.; Chabaud, D.; Humbert, E.; Collaboration: JET-EFDA Contributors

    2012-10-15

    Infrared (IR) thermography systems are mandatory to ensure safe plasma operation in fusion devices. However, IR measurements are made much more complicated in metallic environment because of the spurious contributions of the reflected fluxes. This paper presents a full predictive photonic simulation able to assess accurately the surface temperature measurement with classical IR thermography from a given plasma scenario and by taking into account the optical properties of PFCs materials. This simulation has been carried out the ITER-like wide angle infrared camera view of JET in comparing with experimental data. The consequences and the effects of the low emissivity and the bidirectional reflectivity distribution function used in the model for the metallic PFCs on the contribution of the reflected flux in the analysis are discussed.

  2. Modeling of the ITER-like wide-angle infrared thermography view of JETa)

    NASA Astrophysics Data System (ADS)

    Aumeunier, M.-H.; Firdaouss, M.; Travère, J.-M.; Loarer, T.; Gauthier, E.; Martin, V.; Chabaud, D.; Humbert, E.; JET-EFDA Contributors

    2012-10-01

    Infrared (IR) thermography systems are mandatory to ensure safe plasma operation in fusion devices. However, IR measurements are made much more complicated in metallic environment because of the spurious contributions of the reflected fluxes. This paper presents a full predictive photonic simulation able to assess accurately the surface temperature measurement with classical IR thermography from a given plasma scenario and by taking into account the optical properties of PFCs materials. This simulation has been carried out the ITER-like wide angle infrared camera view of JET in comparing with experimental data. The consequences and the effects of the low emissivity and the bidirectional reflectivity distribution function used in the model for the metallic PFCs on the contribution of the reflected flux in the analysis are discussed.

  3. IR spectrum simulation of molecular structure model of Shendong coal vitrinite by using quantum chemistry method.

    PubMed

    Jia, Jian-Bo; Wang, Ying; Li, Feng-Hai; Yi, Gui-Yun; Zeng, Fan-Gui; Guo, Hong-Yu

    2014-01-01

    The structure of coal needs to be understood from a molecular point of view for clean, effective and high value-added utilization of coal. In the literature, molecular structure model of Shendong coal vitrinite (SV) was established by the authors on the basis of experimental results of ultimate analysis and 13C NMR, and the calculated 13C NMR spectrum of SV model was consistent with the experimental spectrum. In order to further verify the accuracy of SV structure model established by the authors, the infrared spectrum of SV structure model was calculated using quantum chemistry semi-empirical VAMP in this thesis. The results showed that the peak shape of calculated IR spectrum of SV structure model was similar to the experiment's, but the wave number of calculated IR spectrum was obviously higher than that of experimental spectrum. According to the calculated results for model compounds by using the same method, calculated vibrational frequency was higher than that of experiment for the same functional groups. Hence, the calculated IR spectrum should be corrected. After correction the calculated IR spectrum of SV structure model matched well with the experimental spectrum. In other words, the SV structure model can truly reflect the structure characteristics of SV. PMID:24783531

  4. Membrane fouling characterization by infrared thermography

    NASA Astrophysics Data System (ADS)

    Ndukaife, Kennethrex O.; Ndukaife, Justus C.; Agwu Nnanna, A. G.

    2015-01-01

    An infrared thermography (IRT) technique for characterization of fouling on flat sheet membrane surface has been developed. In this work, an IR camera was used to measure surface temperature and emissivity of foulant on a membrane surface. Different fouling experiments were performed using different feed concentrations of aluminum oxide nanoparticle mixed with deionized water so as to investigate the effect of feed concentration on the degree of fouling and on the emissivity values measured on the membrane surfaces. Our findings revealed that the emissivity of the fouled membrane surface is contingent on the surface roughness as well as the material composition of the foulant. The technique was utilized to distinguish between foulants made of metallic materials from those that are non-metallic. This approach, which is simple to use and nondestructive represents an important addition to the toolset of fouling analysis techniques and would benefit a wide range of applications from observation of foulant structure to qualitative assessment of composition of foulant material.

  5. Aerial thermography in archaeological prospection: Applications & processing

    NASA Astrophysics Data System (ADS)

    Cool, Autumn Chrysantha

    Aerial thermography is one of the least utilized archaeological prospection methods, yet it has great potential for detecting anthropogenic anomalies. Thermal infrared radiation is absorbed and reemitted at varying rates by all objects on and within the ground depending upon their density, composition, and moisture content. If an area containing archaeological features is recorded at the moment when their thermal signatures most strongly contrast with that of the surrounding matrix, they can be visually identified in thermal images. Research conducted in the 1960s and 1970s established a few basic rules for conducting thermal survey, but the expense associated with the method deterred most archaeologists from using this technology. Subsequent research was infrequent and almost exclusively appeared in the form of case studies. However, as the current proliferation of unmanned aerial vehicles (UAVs) and compact thermal cameras draws renewed attention to aerial thermography as an attractive and exciting form of survey, it is appropriate and necessary to reevaluate our approach. In this thesis I have taken a two-pronged approach. First, I built upon the groundwork of earlier researchers and created an experiment to explore the impact that different environmental and climatic conditions have on the success or failure of thermal imaging. I constructed a test site designed to mimic a range of archaeological features and imaged it under a variety of conditions to compare and contrast the results. Second, I explored a new method for processing thermal data that I hope will lead to a means of reducing noise and increasing the clarity of thermal images. This step was done as part of a case study so that the effectiveness of the processing method could be evaluated by comparison with the results of other geophysical surveys.

  6. Identification of age degradation in EPROM chips using infrared thermography

    NASA Astrophysics Data System (ADS)

    Allred, Lloyd G.

    1998-03-01

    In a recent upgrade of the digital flight control computer for the F-16, there was serious consternation expressed about the quality of the soldering repair process. Dozens of circuit cards failed to function after the upgrade, even though all of these cards operated correctly before the modifications. The shop called for the use of the IR camera to assist in diagnosing and repairing these cards. What the Neural Radiant Energy Detection found was faulty and marginal chips.Of particular interest was the presence of degraded EPROM chips on the Program Memory cards. While it is known that EPROMs have a limited life cycle, the failure has been further characterized. Thermography provides a quantification of the degradation in thermal performance as the EPROMs are reused. Pristine EPROM chips have a rise rate of about 0.008 degrees C/sec. When the heat rates exceed 0.021 degrees C/sec, the EPROM chips will not accept a program. Some of the chips exhibited heat rates exceeding 0.1 degrees C/sec. Some chips with degradation of 0.018 degrees C/sec would accept a program, but fail other functional tests. What is clear from these results is that IR thermography can be used to identify degrading EPROM chips for replacement before failures become immanent.

  7. Mirnov Coil Analysis by Singular Value Decomposition Method in IR-T1 Tokamak

    NASA Astrophysics Data System (ADS)

    Salemi, Mohammad K.; Saadat, Shervin; Ghoranneviss, Mahmoud; Tabadar, Alireza

    2010-10-01

    The spatial and temporal structures of magnetic signal in the tokamak is analyzed using recently developed singular value decomposition (SVD) technique to determine the structure of current perturbation as the discharge progresses. In this work we use SVD technique for that purpose in IR-T1 tokamak.ootnotetextC. Nardonet, ``Multichannel Fluctuation Data Analysis By The Singular Value Decomposition Method Application To MHD Modes In Jet,'' Plasma Physics & Controlled Fusion, V. 34, No. 9, 1992, 1447-1465

  8. Objective methods for achieving an early prediction of the effectiveness of regional block anesthesia using thermography and hyper-spectral imaging

    NASA Astrophysics Data System (ADS)

    Klaessens, John H. G. M.; Landman, Mattijs; de Roode, Rowland; Noordmans, Herke J.; Verdaasdonk, Rudolf M.

    2011-03-01

    An objective method to measure the effectiveness of regional anesthesia can reduce time and unintended pain inflicted to the patient. A prospective observational study was performed on 22 patients during a local anesthesia before undergoing hand surgery. Two non-invasive techniques thermal and oxygenation imaging were applied to observe the region affected by the peripheral block and the results were compared to the standard cold sensation test. The supraclavicular block was placed under ultrasound guidance around the brachial plexus by injecting 20 cc Ropivacaine. The sedation causes a relaxation of the muscles around the blood vessels resulting in dilatation and hence an increase of blood perfusion, skin temperature and skin oxygenation in the lower arm and hand. Temperatures were acquired with an IR thermal camera (FLIR ThermoCam SC640). The data were recorded and analyzed with the ThermaCamTMResearcher and Matlab software. Narrow band spectral images were acquired at selected wavelengths with a CCD camera either combined with a Liquid Crystal Tunable Filter (420-730 nm) or a tunable hyper-wavelength LED light source (450-880nm). Concentration changes of oxygenated and deoxygenated hemoglobin in the dermis of the skin were calculated using the modified Lambert Beer equation. Both imaging methods showed distinct oxygenation and temperature differences at the surface of the skin of the hand with a good correlation to the anesthetized areas. A temperature response was visible within 5 minutes compared to the standard of 30 minutes. Both non-contact methods show to be more objective and can have an earlier prediction for the effectiveness of the anesthetic block.

  9. Potentialities of steady-state and transient thermography in breast tumour depth detection: A numerical study.

    PubMed

    Amri, Amina; Pulko, Susan Helen; Wilkinson, Anthony James

    2016-01-01

    Breast thermography still has inherent limitations that prevent it from being fully accepted as a breast screening modality in medicine. The main challenges of breast thermography are to reduce false positive results and to increase the sensitivity of a thermogram. Further, it is still difficult to obtain information about tumour parameters such as metabolic heat, tumour depth and diameter from a thermogram. However, infrared technology and image processing have advanced significantly and recent clinical studies have shown increased sensitivity of thermography in cancer diagnosis. The aim of this paper is to study numerically the possibilities of extracting information about the tumour depth from steady state thermography and transient thermography after cold stress with no need to use any specific inversion technique. Both methods are based on the numerical solution of Pennes bioheat equation for a simple three-dimensional breast model. The effectiveness of two approaches used for depth detection from steady state thermography is assessed. The effect of breast density on the steady state thermal contrast has also been studied. The use of a cold stress test and the recording of transient contrasts during rewarming were found to be potentially suitable for tumour depth detection during the rewarming process. Sensitivity to parameters such as cold stress temperature and cooling time is investigated using the numerical model and simulation results reveal two prominent depth-related characteristic times which do not strongly depend on the temperature of the cold stress or on the cooling period. PMID:26522612

  10. Eddy current pulsed phase thermography and feature extraction

    NASA Astrophysics Data System (ADS)

    He, Yunze; Tian, GuiYun; Pan, Mengchun; Chen, Dixiang

    2013-08-01

    This letter proposed an eddy current pulsed phase thermography technique combing eddy current excitation, infrared imaging, and phase analysis. One steel sample is selected as the material under test to avoid the influence of skin depth, which provides subsurface defects with different depths. The experimental results show that this proposed method can eliminate non-uniform heating and improve defect detectability. Several features are extracted from differential phase spectra and the preliminary linear relationships are built to measure these subsurface defects' depth.

  11. IR-Sensography™—expanding the scope of contact-free sensing methods

    NASA Astrophysics Data System (ADS)

    Klein, Jens; Schunk, Stephan A.

    2005-01-01

    Capturing the response of one or more sensor materials is conventionally performed by the direct transformation of a chemical or physico-chemical signal into an electrical one. With an increasing number of sensor materials within an arrangement of sensor elements or a sensor array, problems such as contacting each single sensor, signal processing and resistance against cross-talk, harsh conditions such as corrosive atmospheres, etc are limiting factors for the further development of so-called 'chemical noses'. State-of-the-art and commercially available are arrays of eight different sensor materials, literature known in another context are sensor arrays with 256 materials on a silicon wafer, which are contacted via electrical conduits. We present here the concept of the IR-Sensography™, the use of an IR-camera as an external detector system for sensor libraries. Acting like an optical detection method, the IR-camera detects small temperature changes due to physisorption, chemisorption or other forms of interaction or reaction as an output signal in the form of radiation emitted by the multiplicity of sensor materials simultaneously. The temperature resolution of commercially available IR-camera systems can be tuned to the range below 0.1 K. Due to the separation of sensors and the detector device, reaction conditions at the sensor locus can be adapted to the analytical problem and do not need to take care of other boundary conditions which come into play with the analytical device, e.g. the IR-camera. Calibration or regeneration steps can as well be performed over the multiplicity of all sensor materials. Any given chemical compound that comes into contact with the sensor through the passing fluids will result in a specific activity pattern on a spatially fixed library of sensor materials that is unique for the given compound. While the pattern therefore serves as an identifier, the intensity of the pattern represents the quantitative amount of this compound in

  12. Using thermography for an obstruction of the lower lacrimal system.

    PubMed

    Machado, Marco Antonio de Campos; Silva, João Amaro Ferrari; Brioschi, Marcos Leal; Allemann, Norma

    2016-02-01

    Obstructions in the lacrimal pathways quite often require accurate and reliable image scanning for confirmation and documentation. Infrared thermal imaging, known as thermography, is a resource that complements diagnosis; it does not require touching the patient or applying contrast materials and has been used in various medical procedures for decades. However, there have been few studies in the literature about its use in ophthalmology. In this paper, the authors have presented a case of dacryocystitis where the obstruction of the lacrimal punctum was so acute that conventional dacryocystography could not be used. The authors have successfully reported the use of thermography as a complementary propaedeutic and will discuss the method they used. PMID:26840168

  13. The use of infrared thermography for nondestructive evaluation of joints

    NASA Astrophysics Data System (ADS)

    Meola, Carosena; Carlomagno, Giovanni M.; Squillace, Antonino; Giorleo, Giuseppe

    2004-12-01

    A junction between two similar, or dissimilar, materials represents generally a weak structural point and so it requires accurate choice of the most adequate joining technique and nondestructive evaluation of joined parts whatever the joining technique. The attention of the present paper is focused on the aid provided by infrared thermography for nondestructive evaluation of three types of joints: aluminum adhesively bonded joints, stainless steel laser welded joints and Glare ® mechanical fastened joints. Both techniques, pulse and modulated thermography with optical stimulation, are used. The attention is particularly focused on the second method because phase images are practically not affected by local nonuniform heating and/or local variation of the emissivity coefficient as thermal images.

  14. IR spectroscopic methods for the investigation of the CO release from CORMs.

    PubMed

    Klein, Moritz; Neugebauer, Ute; Gheisari, Ali; Malassa, Astrid; Jazzazi, Taghreed M A; Froehlich, Frank; Westerhausen, Matthias; Schmitt, Michael; Popp, Jürgen

    2014-07-24

    Carbon monoxide (CO) is a toxic gas for mammals, and despite this fact, it is naturally produced in these organisms and has been proven to be beneficial in medical treatments, too. Therefore, CO-releasing molecules (CORMs) are intensively developed to administer and dose CO for physiological applications. Nearly all of these compounds are metal carbonyl complexes, which have been synthesized and investigated. However, for most of these CORMs, the exact reaction mechanisms of CO release is not completely elucidated, although it is of utmost importance. The widely used myoglobin assay for testing the CO release has several disadvantages, and therefore, different methods have to be applied to characterize CORMs. In this work, different setups of IR absorption spectroscopy are used to analyze and quantify the CO release during the decay of various CORMs: IR spectroscopy of the gas phase is applied to follow the CO liberation, and attenuated total reflection (ATR) IR spectroscopy is used to record the decay of the metal carbonyl. IR spectroscopy supported by DFT calculations yields valuable insights in the CO release reaction mechanism. The focus is set on two different CORMs: CORM-2 (Ru2(CO)(6)Cl(4)) and on the photoactive CORM-S1 (photoCORM [Fe(CO)2(SCH2CH2NH2)2]). Our results indicate that the CO liberation from CORM-2 strongly depends on sodium dithionite, which is required for the commonly applied myoglobin assay and that CORM-S1 loses all its bound CO molecules upon irradiation with blue light. PMID:24978105

  15. Spatially resolved determination of the short-circuit current density of silicon solar cells via lock-in thermography

    SciTech Connect

    Fertig, Fabian Greulich, Johannes; Rein, Stefan

    2014-05-19

    We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplified in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  16. Non-destructive Testing of Forged Metallic Materials by Active Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Maillard, S.; Cadith, J.; Bouteille, P.; Legros, G.; Bodnar, J. L.; Detalle, V.

    2012-11-01

    Nowadays, infrared thermography is considered as the reference method in many applications such as safety, the inspection of electric installations, or the inspection of buildings' heat insulation. In recent years, the evolution of both material and data-processing tools also allows the development of thermography as a real non-destructive testing method. Thus, by subjecting the element to be inspected to an external excitation and by analyzing the propagation of heat in the examined zone, it is possible to highlight surface or subsurface defects such as cracks, delaminations, or corrosion. One speaks then about active infrared thermography. In this study, some results obtained during the collective studies carried out by CETIM and the University of Reims for the forging industry are presented. Various experimental possibilities offered by active thermography are presented and the interest in this method in comparison with the traditional non-destructive testing methods (penetrant testing and magnetic particle inspection) is discussed. For example, comparative results on a forged cracked hub, a steering joint, and a threaded rod are presented. They highlight the interest of infrared thermography stimulated by induction for forged parts.

  17. Inspection of composite structures using line scanning thermography

    NASA Astrophysics Data System (ADS)

    Ley, Obdulia; Butera, Manny; Godinez, Valery

    2012-06-01

    This work deals with the non destructive analysis of different composite parts and structures using Line Scanning Thermography (LST), a non-contact inspection method based in dynamic thermography. The LST technique provides a quick and efficient methodology to scan wide areas rapidly; the technique has been used on the inspection of composite propellers, sandwich panels, motor case tubes and wind turbine blades, among others. In LST a line heat source is used to thermally excite the surface under study while an infrared detector records the transient surface temperature variation of the heated region. Line Scanning Thermography (LST), has successfully been applied to determine the thickness of metallic plates and to assess boiler tube thinning. In this paper the LST protocols developed for the detection of sub-surface defects in different composite materials commonly used in aerospace applications, plates will be presented. In most cases the thermal images acquired using LST will be compared with ultrasonic c-scans. The fundamentals of LST will be discussed, as well as the limitations of this technique for NDT inspection.

  18. The effective image denoising method for MEMS based IR image arrays

    NASA Astrophysics Data System (ADS)

    Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin; Liu, Ming; Hui, Mei; Zhou, Xiaoxiao

    2008-12-01

    MEMS have become viable systems to utilize for uncooled infrared imaging in recent years. They offer advantages due to their simplicity, low cost and scalability to high-resolution FPAs without prohibitive increase in cost. An uncooled thermal detector array with low NETD is designed and fabricated using MEMS bimaterial microcantilever structures that bend in response to thermal change. The IR images of objects obtained by these FPAs are readout by an optical method. For the IR images, processed by a sparse representation-based image denoising and inpainting algorithm, which generalizing the K-Means clustering process, for adapting dictionaries in order to achieve sparse signal representations. The processed image quality is improved obviously. Great compute and analysis have been realized by using the discussed algorithm to the simulated data and in applications on real data. The experimental results demonstrate, better RMSE and highest Peak Signal-to-Noise Ratio (PSNR) compared with traditional methods can be obtained. At last we discuss the factors that determine the ultimate performance of the FPA. And we indicated that one of the unique advantages of the present approach is the scalability to larger imaging arrays.

  19. Finite element modeling of haptic thermography: A novel approach for brain tumor detection during minimally invasive neurosurgery.

    PubMed

    Sadeghi-Goughari, Moslem; Mojra, Afsaneh

    2015-10-01

    Intraoperative Thermal Imaging (ITI) is a novel neuroimaging method that can potentially locate tissue abnormalities and hence improves surgeon's diagnostic ability. In the present study, thermography technique coupled with artificial tactile sensing method called "haptic thermography" is utilized to investigate the presence of an abnormal object as a tumor with an elevated temperature relative to the normal tissue in the brain. The brain tissue is characterized as a hyper-viscoelastic material to be descriptive of mechanical behavior of the brain tissue during tactile palpation. Based on a finite element approach, Magnetic Resonance Imaging (MRI) data of a patient diagnosed to have a brain tumor is utilized to simulate and analyze the capability of haptic thermography in detection and localization of brain tumor. Steady-state thermal results prove that temperature distribution is an appropriate outcome of haptic thermography for the superficial tumors while heat flux distribution can be used as an extra thermal result for deeply located tumors. PMID:26590456

  20. Tracking composite material damage evolution using Bayesian filtering and flash thermography data

    NASA Astrophysics Data System (ADS)

    Gregory, Elizabeth D.; Holland, Steve D.

    2016-05-01

    We propose a method for tracking the condition of a composite part using Bayesian filtering of ash thermography data over the lifetime of the part. In this demonstration, composite panels were fabricated; impacted to induce subsurface delaminations; and loaded in compression over multiple time steps, causing the delaminations to grow in size. Flash thermography data was collected between each damage event to serve as a time history of the part. The ash thermography indicated some areas of damage but provided little additional information as to the exact nature or depth of the damage. Computed tomography (CT) data was also collected after each damage event and provided a high resolution volume model of damage that acted as truth. After each cycle, the condition estimate, from the ash thermography data and the Bayesian filter, was compared to 'ground truth'. The Bayesian process builds on the lifetime history of ash thermography scans and can give better estimates of material condition as compared to the most recent scan alone, which is common practice in the aerospace industry. Bayesian inference provides probabilistic estimates of damage condition that are updated as each new set of data becomes available. The method was tested on simulated data and then on an experimental data set.

  1. Non-destructive Testing by Infrared Thermography Under Random Excitation and ARMA Analysis

    NASA Astrophysics Data System (ADS)

    Bodnar, J. L.; Nicolas, J. L.; Candoré, J. C.; Detalle, V.

    2012-11-01

    Photothermal thermography is a non-destructive testing (NDT) method, which has many applications in the field of control and characterization of thin materials. This technique is usually implemented under CW or flash excitation. Such excitations are not adapted for control of fragile materials or for multi-frequency analysis. To allow these analyses, in this article, the use of a new control mode is proposed: infrared thermography under random excitation and auto regressive moving average analysis. First, the principle of this NDT method is presented. Then, the method is shown to permit detection, with low energy constraints, of detachments situated in mural paintings.

  2. Differential identification of mushrooms sclerotia by IR macro-fingerprint method

    NASA Astrophysics Data System (ADS)

    Choong, Yew Keong; Lan, Jin; Lee, Han Lim; Chen, Xiang-dong; Wang, Xiao-guang; Yang, Yu-ping

    2016-01-01

    Many macrofungus sclerotia are well-known medicinal herbs, health food and nutritional supplements. However, the prevalent adulterant commercial products are major hindrances to their incorporation into mainstream medical use in many countries. The mushroom sclerotia of Lignosus rhinocerotis, Poria cocos, Polyporus umbellatus, Pleurotus tuber-regium and Omphalia lapidescens are commonly used in traditional Chinese medicine. In this study, IR macro-fingerprint method was used in the identification of these sclerotia. The results showed that the spectrum of L. rhinocerotis (LR) was comparable with P. cocos with 94.4% correlation, except that the peak at 1543 cm-1 of LR appeared in lower intensity. The spectrum of P. umbellatus and P. tuber-regium was also correlated (91.5%), as both spectra could be clearly discriminated in that P. umbellatus spectrum has small base peaks located at the range of 1680-1500 cm-1. O. lapidescens was not comparable with all the other sclerotia as its spectrum was totally different. Its base peak was broad and derivated equally along the range. The first IR has revealed the dissimilarity among five mushrooms sclerotia. The second derivative and 2DIR further enhanced the identification in detail.

  3. X-shooter near-IR spectrograph arm: design and manufacturing methods

    NASA Astrophysics Data System (ADS)

    Navarro, Ramon; Elswijk, Eddy; de Haan, Menno; Hanenburg, Hiddo; ter Horst, Rik; Kleszcz, Pawel; Kragt, Jan; Pragt, Johan; Rigal, Florence; Roelfsema, Ronald; Schoenmaker, Ton; Tromp, Niels; Venema, Lars; Groot, Paul; Kaper, Lex

    2006-06-01

    X-shooter, the first 2nd generation VLT instrument, is a new high-efficiency echelle spectrograph. X-shooter operates at the Cassegrain focus and covers an exceptionally wide spectral range from 300 to 2500 nm in a single exposure, with an intermediate spectral resolving power R~5000. The instrument consists of a central structure and three prism cross-dispersed echelle spectrographs optimized for the UV-blue, visible and near-IR wavelength ranges. The design of the near-IR arm of the X-shooter instrument employs advanced design methods and manufacturing techniques. Integrated system design is done at cryogenic working temperatures, aiming for an almost alignment-free integration. ASTRON Extreme Light Weighting is used for high stiffness at low mass. Bare aluminium is post-polished to optical quality mirrors, preserving high shape accuracy at cryogenic conditions. Cryogenic optical mounts compensate for CTE differences of various materials, while ensuring high thermal contact. This paper addresses the general design and the application of these specialized techniques.

  4. Joint estimation of TOA and DOA in IR-UWB system using a successive propagator method

    NASA Astrophysics Data System (ADS)

    Wang, Fangqiu; Zhang, Xiaofei; Wang, Chenghua; Zhou, Shengkui

    2015-10-01

    Impulse radio ultra-wideband (IR-UWB) ranging and positioning require accurate estimation of time-of-arrival (TOA) and direction-of-arrival (DOA). With receiver of two antennas, both of the TOA and DOA parameters can be estimated via two-dimensional (2D) propagator method (PM), in which the 2D spectral peak searching, however, renders much higher computational complexity. This paper proposes a successive PM algorithm for joint TOA and DOA estimation in IR-UWB system to avoid 2D spectral peak searching. The proposed algorithm firstly gets the initial TOA estimates in the two antennas from the propagation matrix, then utilises successively one-dimensional (1D) local searches to achieve the estimation of TOAs in the two antennas, and finally obtains the DOA estimates via the difference in the TOAs between the two antennas. The proposed algorithm, which only requires 1D local searches, can avoid the high computational cost in 2D-PM algorithm. Furthermore, the proposed algorithm can obtain automatically paired parameters and has better joint TOA and DOA estimation performance than conventional PM algorithm, estimation of signal parameters via rotational invariance techniques algorithm and matrix pencil algorithm. Meanwhile, it has very close parameter estimation to that of 2D-PM algorithm. We have also derived the mean square error of TOA and DOA estimation of the proposed algorithm and the Cramer-Rao bound of TOA and DOA estimation in this paper. The simulation results verify the usefulness of the proposed algorithm.

  5. Differential identification of mushrooms sclerotia by IR macro-fingerprint method.

    PubMed

    Choong, Yew Keong; Lan, Jin; Lee, Han Lim; Chen, Xiang-Dong; Wang, Xiao-Guang; Yang, Yu-Ping

    2016-01-01

    Many macrofungus sclerotia are well-known medicinal herbs, health food and nutritional supplements. However, the prevalent adulterant commercial products are major hindrances to their incorporation into mainstream medical use in many countries. The mushroom sclerotia of Lignosus rhinocerotis, Poria cocos, Polyporus umbellatus, Pleurotus tuber-regium and Omphalia lapidescens are commonly used in traditional Chinese medicine. In this study, IR macro-fingerprint method was used in the identification of these sclerotia. The results showed that the spectrum of L. rhinocerotis (LR) was comparable with P. cocos with 94.4% correlation, except that the peak at 1543cm(-1) of LR appeared in lower intensity. The spectrum of P. umbellatus and P. tuber-regium was also correlated (91.5%), as both spectra could be clearly discriminated in that P. umbellatus spectrum has small base peaks located at the range of 1680-1500cm(-1). O. lapidescens was not comparable with all the other sclerotia as its spectrum was totally different. Its base peak was broad and derivated equally along the range. The first IR has revealed the dissimilarity among five mushrooms sclerotia. The second derivative and 2DIR further enhanced the identification in detail. PMID:26186395

  6. Exploring the solar system: the view of planetary surfaces with VIS/IR remote sensing methods

    NASA Astrophysics Data System (ADS)

    Arnold, Gabriele E.

    2011-09-01

    The structure of planetary surfaces unveils basic formation processes and evolution lines of different objects in the solar system, and often the view on the top of a planet is the only available information about it. Advanced remote sensing technologies on deep space missions are aimed at accessing a maximum of relevant data to characterize a planetary object holistically. This approach requires concert strategies in planetary and engineering science. In this framework VIS/IR spectroscopic remote sensing methods are key technologies for imaging planetary atmospheres and surfaces, for studying their composition, texture, structure and dynamics. Basing on these analyses it succeeds to observe the single objects in more global geo-scientific content. The paper focuses on main geo-scientific output coming from spectroscopic studies of planetary surfaces in conjunction with their interiors, atmospheres, and the interplanetary space. It summarizes selected results of spectral studies onboard of the ESA deep space missions BepiColombo, Venus Express, Mars Express, and Rosetta. The corresponding spectral instruments are introduced. The complex conflation of special knowledge of the disciplines planetology, optical and IR measuring techniques, and space flight engineering is demonstrated in several examples. Finally, the paper gives an outlook of current developments for spectral studies in planned missions, and sums up some of the driving questions in planetary science.

  7. Low-velocity impact damage characterization of carbon fiber reinforced polymer (CFRP) using infrared thermography

    NASA Astrophysics Data System (ADS)

    Li, Yin; Zhang, Wei; Yang, Zheng-wei; Zhang, Jin-yu; Tao, Sheng-jie

    2016-05-01

    Carbon fiber reinforced polymer (CFRP) after low-velocity impact is detected using infrared thermography, and different damages in the impacted composites are analyzed in the thermal maps. The thermal conductivity under pulse stimulation, frictional heating and thermal conductivity under ultrasonic stimulation of CFRP containing low-velocity impact damage are simulated using numerical simulation method. Then, the specimens successively exposed to the low-velocity impact are respectively detected using the pulse infrared thermography and ultrasonic infrared thermography. Through the numerical simulation and experimental investigation, the results obtained show that the combination of the above two detection methods can greatly improve the capability for detecting and evaluating the impact damage in CFRP. Different damages correspond to different infrared thermal images. The delamination damage, matrix cracking and fiber breakage are characterized as the block-shape hot spot, line-shape hot spot,

  8. Damage Detection in Rotorcraft Composite Structures Using Thermography and Laser-Based Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Zalameda, Joseph N.; Madaras, Eric I.

    2004-01-01

    New rotorcraft structural composite designs incorporate lower structural weight, reduced manufacturing complexity, and improved threat protection. These new structural concepts require nondestructive evaluation inspection technologies that can potentially be field-portable and able to inspect complex geometries for damage or structural defects. Two candidate technologies were considered: Thermography and Laser-Based Ultrasound (Laser UT). Thermography and Laser UT have the advantage of being non-contact inspection methods, with Thermography being a full-field imaging method and Laser UT a point scanning technique. These techniques were used to inspect composite samples that contained both embedded flaws and impact damage of various size and shape. Results showed that the inspection techniques were able to detect both embedded and impact damage with varying degrees of success.

  9. Thermography to Inspect Insulation of Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen; Youngquist, Robert

    2011-01-01

    Thermography has been used in the past to monitor active, large, cryogenic storage tanks. This approach proposes to use thermography to monitor new or refurbished tanks, prior to filling with cryogenic liquid, to look for insulation voids. Thermography may provide significant cost and schedule savings if voids can be detected early before a tank is returned to service.

  10. Measurement of Crystallization Temperature Using Thermography for Thin Film Amorphous Alloy Samples

    NASA Astrophysics Data System (ADS)

    Hata, Seiichi; Aono, Yuko; Sakurai, Junpei; Shimokohbe, Akira

    2009-03-01

    This report describes a new non-contact measurement method for the crystallization temperature (Tx) of a thin film amorphous alloy. The thermal emissivity of the amorphous alloy sample is predicted to be modified when it crystallizes. It was attempted to relate this modification to changes in the apparent temperature by thermography. Thin film amorphous alloys of Pt67Si33 and Pt73Si27 were sputtered onto an Al2O3 substrate and then heated at 20 K/min in vacuum, and the film temperature was monitored by thermography. The Tx indicated by the proposed method coincided with the temperature measured by conventional differential scanning calorimeter within 8 K.

  11. Fusion of the Dhfr/Mtx and IR/MAR Gene Amplification Methods Produces a Rapid and Efficient Method for Stable Recombinant Protein Production

    PubMed Central

    Miki, Daisuke; Shimizu, Noriaki

    2012-01-01

    Amplification of the dihydrofolate reductase gene (Dhfr) by methotrexate (Mtx) exposure is commonly used for recombinant protein expression in Chinese hamster ovary (CHO) cells. However, this method is both time- and labor-intensive, and the high-producing cells that are generated are frequently unstable in culture. Another gene amplification method is based on using a plasmid bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR), which result in the spontaneous initiation of gene amplification in transfected cells. The IR/MAR and Dhfr/Mtx methods of gene amplification are based on entirely different principles. In this study, we combine these two methods to yield a novel method, termed the IR/MAR-Dhfr fusion method, which was used to express three proteins, the Fc receptor, GFP, and recombinant antibody. The fusion method resulted in a dramatic increase in expression of all three proteins in two CHO sub-lines, DXB-11, and DG44. The IR/MAR-Dhfr fusion amplified the genes rapidly and efficiently, and produced larger amounts of antibody than the Dhfr/Mtx or IR/MAR methods alone. While the amplified structure produced by the Dhfr/Mtx method was highly unstable, and the antibody production rate rapidly decreased with the culture time of the cells, the IR/MAR-Dhfr fusion method resulted in stable amplification and generated clonal cells that produced large amounts of antibody protein over a long period of time. In summary, the novel IR/MAR-Dhfr fusion method enables isolation of stable cells that produce larger amounts of a target recombinant protein more rapidly and easily than either the Dhfr/Mtx or IR/MAR methods alone. PMID:23300841

  12. Application of Infrared Thermography as a Diagnostic Tool of Knee Osteoarthritis

    NASA Astrophysics Data System (ADS)

    Arfaoui, Ahlem; Bouzid, Mohamed Amine; Pron, Hervé; Taiar, Redha; Polidori, Guillaume

    This paper aimed to study the feasibility of application of infrared thermography to detect osteoarthritis of the knee and to compare the distribution of skin temperature between participants with osteoarthritis and those without pathology. All tests were conducted at LACM (Laboratory of Mechanical Stresses Analysis) and the gymnasium of the University of Reims Champagne Ardennes. IR thermography was performed using an IR camera. Ten participants with knee osteoarthritis and 12 reference healthy participants without OA participated in this study. Questionnaires were also used. The participants with osteoarthritis of the knee were selected on clinical examination and a series of radiographs. The level of pain was recorded by using a simple verbal scale (0-4). Infrared thermography reveals relevant disease by highlighting asymmetrical behavior in thermal color maps of both knees. Moreover, a linear evolution of skin temperature in the knee area versus time has been found whatever the participant group is in the first stage following a given effort. Results clearly show that the temperature can be regarded as a key parameter for evaluating pain. Thermal images of the knee were taken with an infrared camera. The study shows that with the advantage of being noninvasive and easily repeatable, IRT appears to be a useful tool to detect quantifiable patterns of surface temperatures and predict the singular thermal behavior of this pathology. It also seems that this non-intrusive technique enables to detect the early clinical manifestations of knee OA.

  13. Calibration and Evaluation of Ultrasound Thermography Using Infrared Imaging.

    PubMed

    Hsiao, Yi-Sing; Deng, Cheri X

    2016-02-01

    Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound heating, we simultaneously acquired ultrasound and infrared imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with infrared-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (-0.59 ± 0.08) and cardiac tissue (-0.69 ± 0.18°C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the infrared-measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45°C-50°C in cardiac tissues. Unlike previous studies in which thermocouples or water bath techniques were used to evaluate the performance of ultrasound thermography, our results indicate that high-resolution infrared thermography is a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods. PMID:26547634

  14. Nde of Advanced Automotive Composite Materials that Apply Ultrasound Infrared Thermography Technique

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Hyun; Park, Soo-Keun; Kim, Jae-Yeol

    The infrared thermographic nondestructive inspection technique is a quality inspection and stability assessment method used to diagnose the physical characteristics and defects by detecting the infrared ray radiated from the object without destructing it. Recently, the nondestructive inspection and assessment that use the ultrasound-infrared thermography technique are widely adopted in diverse areas. The ultrasound-infrared thermography technique uses the phenomenon that the ultrasound wave incidence to an object with cracks or defects on its mating surface generates local heat on the surface. The car industry increasingly uses composite materials for their lightweight, strength, and environmental resistance. In this study, the car piston passed through the ultrasound-infrared thermography technique for nondestructive testing, among the composite material car parts. This study also examined the effects of the frequency and power to optimize the nondestructive inspection.

  15. Bridge concrete deteriorating diagnosis by infrared thermography

    NASA Astrophysics Data System (ADS)

    Shibata, Hiroki; Fukuyama, Nobuhiro; Sakuma, Joji; Mochizuki, Jun; Kimura, Yukinori

    2006-04-01

    Bridge is indispensable as social overhead capital. In the past, concrete construction was believed to be semi-permanent. Actually, however, concrete is deteriorated by various factors including seawater damage, annual temperature change, etc. Therefore, it is now obvious that maintenance and management are essential to keep performance of the bridge. In Japan, we had many reports of using infrared thermography for diagnosis of building, mainly for delamination of tile and mortar used for surface of the building for more than 10 years. In recent years, infrared thermogrephy is more actively used for delamination of surface of the bridge. Passive method is usually used for open-air concrete structure diagnosis, which utilizes intraday environmental temperature change and/or radiation energy emitted from the sun which create delta-T of delamination portion of the concrete structure. It is very important to take thermal image at right conditions. Otherwise, you may easily fall onto false diagnosis. In our presentation, many case examples and study of thermal data will be shown, which are taken at the right condition.

  16. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  17. Study on detecting CFRP composites using pulsed infrared thermography

    NASA Astrophysics Data System (ADS)

    Huo, Yan; Li, Hui-Juan; Zhao, Yue-Jin; Zhang, Cun-Lin

    2011-08-01

    Composite sandwich structure has been widely used in aerospace due to its lightweight, high stiffness and strength. The quality of the structure is crucial to durability and structural integrity of the rehabilitated the structure, Delaminations, debonding and water ingressing to honeycomb are typical defects in the structure. Defects in the structure will influence the quality of product. Pulse thermography has been an effective NDE method in recent ten years. The technique uses pulse to excite the specimen, because the presence of subsurface defects reduce the diffusion rate, then temperature difference between defect area and sound area will be measured by an infrared camera. Subsurface defects become visible with time delays, it is a non-contact, quickly inspection method. Pulsed infrared thermography has been widely used in aerospace and mechanical manufacture industry because it can offer non-contact, quickly and visual examinations of defects. It is a meaningful research topic to study on quantitative testing with the structure rapidly and non-destructively. Sandwich composites with aluminum facesheet and aluminum honeycomb cores are chosen as study objectives. Some back-drilled holes with different sizes and depths in the specimen are used to simulate delaminations between plies in the strcuture .The paper presents a method for defining the boundaries, quantitatively estimating the sizes of the flaws in the CFRP using pulsed infrared thermography. Processing captured data using splinefitting, measuring the size of the defects by calculating the pixels numbers that exceed the detection threshold and computing areas of defects by binary image. Compared with the designed sizes and areas having defects, the results show that the method offers more than 90% accuracies with reference to the sizes of artificial flaws embedded in the CFRP sheet. The experimental results demonstrate the feasibility of using detection threshold to inspect the CFRP sheet. The curve of

  18. Open crack depth sizing by laser stimulated infrared lock-in thermography

    NASA Astrophysics Data System (ADS)

    Fedala, Y.; Streza, M.; Roger, J.-P.; Tessier, G.; Boué, C.

    2014-11-01

    Recent advances in infrared imaging have made active thermography an interesting non destructive technique for sub-surface defect detection. Here, we present a method for the estimation of the depth of open surface defects by infrared lock-in thermography, based on the relation between the crack depth and the Laplacian of the surface temperature distribution induced by a local heating using a laser. A comparison to numerical finite element modelling for different depths allows an accurate determination of fatigue crack depth in Inconel alloy test blocks.

  19. 29 CFR 2520.104-48 - Alternative method of compliance for model simplified employee pensions-IRS Form 5305-SEP.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 9 2013-07-01 2013-07-01 false Alternative method of compliance for model simplified... Provisions Applicable to Both Reporting and Disclosure Requirements § 2520.104-48 Alternative method of compliance for model simplified employee pensions—IRS Form 5305-SEP. Under the authority of section 110...

  20. 29 CFR 2520.104-48 - Alternative method of compliance for model simplified employee pensions-IRS Form 5305-SEP.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 9 2014-07-01 2014-07-01 false Alternative method of compliance for model simplified... Provisions Applicable to Both Reporting and Disclosure Requirements § 2520.104-48 Alternative method of compliance for model simplified employee pensions—IRS Form 5305-SEP. Under the authority of section 110...

  1. 29 CFR 2520.104-48 - Alternative method of compliance for model simplified employee pensions-IRS Form 5305-SEP.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 9 2011-07-01 2011-07-01 false Alternative method of compliance for model simplified... Provisions Applicable to Both Reporting and Disclosure Requirements § 2520.104-48 Alternative method of compliance for model simplified employee pensions—IRS Form 5305-SEP. Under the authority of section 110...

  2. 29 CFR 2520.104-48 - Alternative method of compliance for model simplified employee pensions-IRS Form 5305-SEP.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 9 2012-07-01 2012-07-01 false Alternative method of compliance for model simplified... Provisions Applicable to Both Reporting and Disclosure Requirements § 2520.104-48 Alternative method of compliance for model simplified employee pensions—IRS Form 5305-SEP. Under the authority of section 110...

  3. Molecular IR Spectroscopy: New Trends and Methods of Noninvasive Diagnostics of Tissue IN VIVO

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia; Bruch, Reinhard

    1998-05-01

    Fiberoptic evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy using fiberoptic sensors operated in the attenuated total reflection (ATR) regime in the middle infrared (IR) region of the spectrum (850-1850 cm-1) has recently been applied to the diagnostics of tissues. The method is suitable for noninvasive and rapid (seconds) direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo and in vivo. The aim of our studies is the express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications. We measured the normal skin and malignant tissues in vivo on the surface (directly on patients) in various cases of basaloma, melanoma and nevus. The experiments were performed in the operating room to measure the skin in the depth (under/in the layers of epidermis) of human breast, stomach, lung, and kidney tissues. The breast and skin tissues at different stages of tumor or cancer were distinguished very clearly in spectra of amide, side cyclic and noncyclic hydrogen bonded fragments of aminoacid residuals, phosphate groups and sugars. Computer monitoring is being developed for diagnostics.

  4. Simple fully reflective method of scatter reduction in 2D-IR spectroscopy.

    PubMed

    Spector, Ivan C; Olson, Courtney M; Huber, Christopher J; Massari, Aaron M

    2015-04-15

    A fully reflective two-dimensional IR (2D-IR) setup is described that enables efficient cancellation of scattered light from multiple pulses in the phase-matched direction. The local oscillator pulse and the pulse that stimulates the vibrational echo signal are synchronously modulated (or fibrillated) in time maintaining their phase relationships with the echo wavepacket. The modification is cost-effective and can be easily implemented on existing 2D-IR instruments, and it avoids the addition of dispersive elements into the beam paths. The fibrillation results in a decrease of waiting-time resolution of only tens of femtoseconds and has no impact on the spectral lineshape, making it a general improvement for 2D-IR spectrometers even for weakly or non-scattering samples. PMID:25872090

  5. Fabrication of 0.0075-Scale Orbiter Phosphor Thermography Test Models for Shuttle RTF Aeroheating Studies

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.; Powers, Michael A.; Griffith, Mark S.; Hopins, John W.; Veneris, Pete H.; Kuykendoll, Kathryn

    2006-01-01

    This report details the techniques and fidelity associated with aeroheating models constructed in support of the return-to-flight boundary layer transition (BLT) activity for STS-114. This report provides technical descriptions of the methods, materials, and equipment used, as well as the surface quality results obtained with the cast ceramic phosphor thermography models.

  6. Spectral and angular responses of microbolometer IR FPA: a characterization method using a FTIR

    NASA Astrophysics Data System (ADS)

    Touvignon, Aurélie; Durand, Alain; Romanens, Fabien; Favreau, Julien; Gravrand, Olivier; Tisse, Christel-Loïc.

    2014-05-01

    In order to evaluate the impact of technological evolutions on the spectral responsivity of microbolometer FPAs (Focal Plane Arrays) as well as to find out a way to estimate the mechanical stability of microbolometric pixel membranes, ULIS is proposing a new method to measuring the spectral response of the detector array over a large region (area of pixels) simultaneously. This is done by tweaking the standard protocol of a commercial FTIR (Fourier Transform InfraRed) spectrometer where the IR detector is replaced by the array to be measured. All the calculations (i.e. interferogram processing) are taken care of externally. We use this new set up to measure the angular spectral response of the detector array and to analyse the relationship between spectral response and mechanical behaviour of the pixel. Firstly the setup of this measurement is presented and some preliminary technical issues are outlined. Then we focus on the results obtained from the measurements on 17μm pitch pixels over a wide range of angles of incidence (from normal to 45° incidence). Finally, we share some theoretical insights on both those results and the inherent limitations of this protocol using a simple optical cavity model.

  7. FPA-based infrared thermography as applied to the study of cutaneous perspiration and stimulated vascular response in humans.

    PubMed

    Vainer, Boris G

    2005-12-01

    This review gives an overview of focal plane array (FPA)-based infrared (IR) thermography as a powerful research method in the field of physiology and medicine. Comparison of the gained results with the data previously obtained by other authors with other research tools is given. Outer thermoregulatory manifestations displayed by the human organism subjected to whole-body heating (sauna bath) and physical loads (exercise bicycling) are quantitatively analysed. Some details of human body emotional sweating (psycho-physiological effect) are reported. Particular attention is paid to studying active sweat glands as individual objects. All experimental data were obtained with the help of a high-sensitivity (0.03 degrees C) fast 128 x 128 InAs IR detector-based thermal imaging system operating in the short-wave spectral region (2.5 to 3 microm) and perfectly suiting medical purposes. It is shown that IR thermography makes it possible to overcome limitations inherent to contact measuring means that were traditionally used before in thermal studies. It is also shown that heterogeneous thermograms displayed by organisms with disturbed inner equilibrium can be quantitatively analysed in terms of statistical parameters of related surface-temperature histograms, such as the mean temperature and the standard deviation of temperature (SDT). The increase and the decrease in SDT turned out to be typical of prolonged physical load and subsequent relaxation, and of external whole-body heating, respectively. Explanation of this result based on a hypothesis advanced within the context of the doctrine of human-organism evolution is given. Skin-temperature distribution function accompanying the relaxed organism in normality was found to closely resemble normal-distribution function. Symmetry break down and variation of the shape of this characteristic may serve as an indicator of homeostasis shift and can be used as a quantitative criterion for the latter. A new phenomenon, stable

  8. Tone Burst Eddy-Current Thermography (tbet)

    NASA Astrophysics Data System (ADS)

    Kumar, Ch. N. Kiran; Krishnamurthy, C. V.; Maxfield, Bruce W.; Balasubramaniam, Krishnan

    2008-02-01

    This paper reports on a Tone Burst Eddycurrent Thermography (TBET) technique that uses short-time bursts of eddy-currents induced in conducting media to generate local heating inside the material. The transient diffusion of the heat inside the material, induced by pulsed/short-time induction heating, is imaged by measuring the transient temperature profiles on the surface of the material. The presence and characteristics of the defects inside the materials changes the surface temperature transients and thus can be used for the nondestructive evaluation (NDE) of conducting materials. Axisymmetric numerical models of the conventional transient thermography technique are used to benchmark the TBET technique. From the temperature profile data, temperature contrast information is obtained for the different defect depths. Temperature contrast data obtained for TBET, in this process, was compared with that obtained from conventional transient thermography data. It was found that the frequency of the eddy-current and, consequently, the skin-depth of the induced field play an important role in the effective utilization of this technique. Simulation details and the experimental results are presented in the paper. Possible advantages of TBET over conventional flash thermography are also discussed and supported by experimental data.

  9. Application of infrared thermography in computer aided diagnosis

    NASA Astrophysics Data System (ADS)

    Faust, Oliver; Rajendra Acharya, U.; Ng, E. Y. K.; Hong, Tan Jen; Yu, Wenwei

    2014-09-01

    The invention of thermography, in the 1950s, posed a formidable problem to the research community: What is the relationship between disease and heat radiation captured with Infrared (IR) cameras? The research community responded with a continuous effort to find this crucial relationship. This effort was aided by advances in processing techniques, improved sensitivity and spatial resolution of thermal sensors. However, despite this progress fundamental issues with this imaging modality still remain. The main problem is that the link between disease and heat radiation is complex and in many cases even non-linear. Furthermore, the change in heat radiation as well as the change in radiation pattern, which indicate disease, is minute. On a technical level, this poses high requirements on image capturing and processing. On a more abstract level, these problems lead to inter-observer variability and on an even more abstract level they lead to a lack of trust in this imaging modality. In this review, we adopt the position that these problems can only be solved through a strict application of scientific principles and objective performance assessment. Computing machinery is inherently objective; this helps us to apply scientific principles in a transparent way and to assess the performance results. As a consequence, we aim to promote thermography based Computer-Aided Diagnosis (CAD) systems. Another benefit of CAD systems comes from the fact that the diagnostic accuracy is linked to the capability of the computing machinery and, in general, computers become ever more potent. We predict that a pervasive application of computers and networking technology in medicine will help us to overcome the shortcomings of any single imaging modality and this will pave the way for integrated health care systems which maximize the quality of patient care.

  10. 29 CFR 2520.104-48 - Alternative method of compliance for model simplified employee pensions-IRS Form 5305-SEP.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Alternative method of compliance for model simplified employee pensions-IRS Form 5305-SEP. 2520.104-48 Section 2520.104-48 Labor Regulations Relating to Labor (Continued) EMPLOYEE BENEFITS SECURITY ADMINISTRATION, DEPARTMENT OF LABOR REPORTING AND DISCLOSURE UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY...

  11. A relative-intensity two-color phosphor thermography system

    NASA Technical Reports Server (NTRS)

    Merski, N. Ronald

    1991-01-01

    The NASA LaRC has developed a relative-intensity two-color phosphor thermography system. This system has become a standard technique for acquiring aerothermodynamic data in LaRC Hypersonic Facilities Complex (HFC). The relative intensity theory and its application to the LaRC phosphor thermography system is discussed along with the investment casting technique which is critical to the utilization of the phosphor method for aerothermodynamic studies. Various approaches to obtaining quantitative heat transfer data using thermographic phosphors are addressed and comparisons between thin-film data and thermographic phosphor data on an orbiter-like configuration are presented. In general, data from these two techniques are in good agreement. A discussion is given on the application of phosphors to integration heat transfer data reduction techniques (the thin film method) and preliminary heat transfer data obtained on a calibration sphere using thin-film equations are presented. Finally, plans for a new phosphor system which uses target recognition software are discussed.

  12. Robust remote monitoring of breathing function by using infrared thermography.

    PubMed

    Pereira, Carina B; Yu, Xinchi; Blazek, Vladimir; Leonhardt, Steffen

    2015-08-01

    An abnormal breathing rate (BR) is one of the strongest markers of physiological distress. Moreover, it plays an important role in early detection of sudden infant death syndrome, as well as in the diagnosis of respiratory disorders. However, the current measuring modalities can cause discomfort to the patient, since attachment to the patient's body is required. This paper proposes a new approach based on infrared thermography to remotely monitor BR. This method allows to (1) detect automatically the nose, (2) track the associate region of interest (ROI), and (3) extract BR. To evaluate the performance of this method, thermal recording of 5 healthy subjects were acquired. Results were compared with BR obtained by capnography. The introduced approach demonstrated an excellent performance. ROIs were precisely segmented and tracked. Furthermore, a Bland-Altman diagram showed a good agreement between estimated BR and gold standard. The mean correlation and mean absolute BR error are 0.92 ± 0.07 and 0.53 bpm, respectively. In summary, infrared thermography seems to be a great, clinically relevant alternative to attached sensors, due to its outstanding characteristics and performance. PMID:26737233

  13. Medical applications of model-based dynamic thermography

    NASA Astrophysics Data System (ADS)

    Nowakowski, Antoni; Kaczmarek, Mariusz; Ruminski, Jacek; Hryciuk, Marcin; Renkielska, Alicja; Grudzinski, Jacek; Siebert, Janusz; Jagielak, Dariusz; Rogowski, Jan; Roszak, Krzysztof; Stojek, Wojciech

    2001-03-01

    The proposal to use active thermography in medical diagnostics is promising in some applications concerning investigation of directly accessible parts of the human body. The combination of dynamic thermograms with thermal models of investigated structures gives attractive possibility to make internal structure reconstruction basing on different thermal properties of biological tissues. Measurements of temperature distribution synchronized with external light excitation allow registration of dynamic changes of local temperature dependent on heat exchange conditions. Preliminary results of active thermography applications in medicine are discussed. For skin and under- skin tissues an equivalent thermal model may be determined. For the assumed model its effective parameters may be reconstructed basing on the results of transient thermal processes. For known thermal diffusivity and conductivity of specific tissues the local thickness of a two or three layer structure may be calculated. Results of some medical cases as well as reference data of in vivo study on animals are presented. The method was also applied to evaluate the state of the human heart during the open chest cardio-surgical interventions. Reference studies of evoked heart infarct in pigs are referred, too. We see the proposed new in medical applications technique as a promising diagnostic tool. It is a fully non-invasive, clean, handy, fast and affordable method giving not only qualitative view of investigated surfaces but also an objective quantitative measurement result, accurate enough for many applications including fast screening of affected tissues.

  14. Scanning induction thermography (SIT) for imaging damages in carbon-fibre reinforced plastics (CFRP) components

    NASA Astrophysics Data System (ADS)

    Thomas, K. Renil; Balasubramaniam, Krishnan

    2015-03-01

    Scanning Induction Thermography (SIT) combines both Eddy Current Technique (ECT) and Thermographic Non-Destructive Techniques (TNDT) [1],[2]. This NDT technique has been earlier demonstrated for metallic components for the detection of cracks, corrosion, etc.[3]-[9] Even though Carbon-Fiber Reinforced Plastics (CFRP) has a relatively less electrical conductivity compared to metals, it was observed that sufficient heat could be generated using induction heating that can be used for nondestructive evaluation using the Induction Thermography technique. Also, measurable temperatures could be achieved using relatively less currents, when compared to metals. In Scanning Induction Thermography (SIT) technique, the induction coil moves over the sample at optimal speeds and the temperature developed in the sample due to Joule heating effects is captured as a function of time and distance using an IR camera in the form of video images. A new algorithm is also presented for the analysis of the video images for improved analysis of the data obtained. Several CFRP components were evaluated for detection of impact damage and delaminations using the SIT technique.

  15. Application of infrared thermography for online monitoring of wall temperatures in inductively coupled plasma torches with conventional and low-flow gas consumption

    NASA Astrophysics Data System (ADS)

    Engelhard, Carsten; Scheffer, Andy; Maue, Thomas; Hieftje, Gary M.; Buscher, Wolfgang

    2007-10-01

    Inductively coupled plasma (ICP) sources typically used for trace elemental determination and speciation were investigated with infrared (IR) thermography to obtain spatially resolved torch temperature distributions. Infrared thermographic imaging is an excellent tool for the monitoring of temperatures in a fast and non-destructive way. This paper presents the first application of IR thermography to inductively coupled plasma torches and the possibility to investigate temperatures and thermal patterns while the ICP is operating and despite background emission from the plasma itself. A fast and easy method is presented for the determination of temperature distributions and stress features within ICP torches. Two different ICP operating torches were studied: a commercially available Fassel-type ICP unit with 14 L min - 1 total Ar consumption and a SHIP torch with the unusually low Ar flow of 0.6 L min - 1 . Spatially resolved infrared images of both torches were obtained and laterally resolved temperature profiles were extracted. After temperature-resolved calibration of the emissivity (between 0.5 and 0.35 at 873-1323 K) and transmission (20% between 3.75 and 4.02 μm) of the fused quartz used in the torch construction, an image correction was applied. Inhomogeneous temperature distributions with locally defined stress areas in the conventional Fassel-type torch were revealed. As a general trend, it was found that the SHIP torch exhibited higher temperatures ( Tmax = 1580 K) than the conventional torch ( Tmax = 730 K). In the former case, torch sites with efficient and inefficient cooling were discovered and the external flow of cooling air (24-48 m s - 1 ) was identified as the limiting factor.

  16. Particular features of the application of IR reflection spectroscopy methods in studies in archeology and paleontology

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.; Khlopachev, G. A.

    2013-06-01

    We have considered an optical model of a porous rough surface with optical properties of objects (bone, flint) that are typical of archeology and paleontology. We have formulated an approach that makes it possible to perform mathematical processing of the IR reflection spectra of objects of this kind using standard algorithms and determine criteria that ensure obtaining reliable information on objects with a rough surface in the course of interpretation of frequencies in their IR reflection spectra. The potential of the approach has been demonstrated using as an example an investigation by the IR Fourier-transform reflection spectroscopy of mineralization processes of mammoth tusks from two paleolithic sites (14000 and 16000 BCE) located by the town of Yudinovo, Bryansk oblast, Russia.

  17. The Use of Infrared Thermography as a Rapid, Quantitative, and Noninvasive Method for Evaluation of Inflammation Response in Different Anatomical Regions of Rats

    PubMed Central

    Całkosiński, Ireneusz; Dobrzyński, Maciej; Rosińczuk, Joanna; Dudek, Krzysztof; Chrószcz, Aleksander; Fita, Katarzyna

    2015-01-01

    Purpose. Thermographic assessment of temperature distribution within the examined tissues allows a quick, noncontact, noninvasive measurement of their temperature. The aim of the study was to evaluate the usefulness of digital infrared imaging in monitoring experimental inflammation of pleura (PL), lower lip (LL), and left paw (LP) and right paw (RP) of lower limbs in rats. Materials and Methods. The inflammatory reaction was induced by injection of 1% carrageenin solution into pleural cavity, lip, or paws. With the use of digital infrared imaging temperature measurement was conducted at 0 to 72 hours of the inflammatory reaction. Results. The temperature decrease was observed at the site of injection directly afterwards. Next, it was gradually increasing and it reached the maximum on the third day of the inflammatory reaction. Statistically significant changes were observed after 48-hour period in PL and LL regions, as well as after 72-hour period in LP and RP regions (P < 0.005). Conclusion. It was found that thermographic examination allows for indicating the presence of inflammatory reaction within examined tissues and determining the dynamics of this process. This method could be used as alternative procedure that allows using fewer animals for experiments. PMID:25834830

  18. Use of thermography in the differential diagnosis of phylloides tumour.

    PubMed

    Pierart, J; Burmeister, R; Steinberg, J; Schalper, J; Cid, L

    1990-07-01

    Thermography can be used as a method of diagnosing breast masses. We report our results of its use in the differential diagnosis of fibroadenoma from phylloides tumours (n = 47 and 20 respectively). Thermographic resolution (Th) and the difference in temperature between the tumour and a similar zone in the contralateral breast (delta 2) were compared. Thermograms were class Th1 (with a similar thermal pattern in both breasts without hypervascularization or hot points) and Th2 (with hypervascularization or a hot area with a thermal difference with the same area in the opposite breast (delta 2) of less than 2 degrees C) in most (95.7 per cent) of the patients with fibroadenoma and were class Th5 (having one or more pathological sign) in 85 per cent of the patients with phylloides tumours. Patients with phylloides tumours had a mean delta 2 of 2.99 degrees C whereas most of the patients with a fibroadenoma showed no difference in temperature. Their mean delta 2 was 0.2 degrees C (P less than 0.0005). We conclude that thermography helps in differential diagnosis between a fibroadenoma and a phylloides tumour. PMID:2166612

  19. The Effect of Penetration Depth on Thermal Contrast of NDT by Thermography

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip; DiGregorio, Anthony; Russell, Samuel S.

    1999-01-01

    Nondestructive evaluation by Thermography (TNDE) is generally classified into two categories, the passive approach and the active approach. The passive approach is usually performed by measuring the natural temperature difference between the ambient and the material or structure to be tested. The active approach, on the other hand, requires the application of an external energy source to stimulate the material for inspection. A laser, a heater, a hot air blower, a high power thermal pulse, mechanical, or electromagnetic energy may provide the energy sources. For the external heating method to inspect materials for defects and imperfection at ambient temperature, a very short burst of heat can be introduced to one of the surfaces or slow heating of the side opposite to the side being observed. Due to the interruption of the heat flow through the defects, the thermal images will reveal the defective area by contrasting against the surrounding good materials. This technique is called transient Thermography, pulse video Thermography, or thermal wave imaging. As an empirical rule, the radius of the smallest defect should be at least one to two times larger than its depth under the surface. Thermography is being used to inspect void, debond, impact damage, and porosity in composite materials. It has been shown that most of the defects and imperfection can be detected. However, the current method of inspection using thermographic technique is more of an art than a practical scientific and engineering approach. The success rate of determining the defect location and defect type is largely depend on the experience of the person who operates thermography system and performs the inspection. The operator has to try different type of heat source, different duration of its application time, as well as experimenting with the thermal image acquisition time and interval during the inspection process. Further-more, the complexity of the lay-up and structure of composites makes it

  20. Short-circuit current density imaging of crystalline silicon solar cells via lock-in thermography: Robustness and simplifications

    SciTech Connect

    Fertig, Fabian Greulich, Johannes; Rein, Stefan

    2014-11-14

    Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can be omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  1. Short-circuit current density imaging of crystalline silicon solar cells via lock-in thermography: Robustness and simplifications

    NASA Astrophysics Data System (ADS)

    Fertig, Fabian; Greulich, Johannes; Rein, Stefan

    2014-11-01

    Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can be omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  2. Infrared Thermography in the Architectural Field

    PubMed Central

    2013-01-01

    Infrared thermography is becoming ever more popular in civil engineering/architecture mainly due to its noncontact character which includes two great advantages. On one side, it prevents the object, under inspection, from any alteration and this is worthwhile especially in the presence of precious works of art. On the other side, the personnel operate in a remote manner far away from any hazard and this complies well with safety at work regulations. What is more, it offers the possibility to quickly inspect large surfaces such as the entire facade of a building. This paper would be an overview of the use of infrared thermography in the architectural and civil engineering field. First, some basic testing procedures are described, and then some key examples are presented owing to both laboratory tests and applications in situ spanning from civil habitations to works of art and archaeological sites. PMID:24319358

  3. Infrared Thermography And The Expert Witness

    NASA Astrophysics Data System (ADS)

    Roberts, Charles C.

    1985-03-01

    With the continued growth of legal activities involving litigation, lawsuits involving technical matters may be very complex. Expert witnesses are often hired by both plaintiffs and defendants to help clarify and simplify technical merits of a case in order for the jury to make an educated decision. The usage of infrared thermography in legal matters has also been growing. This paper reviews several areas where infrared thermography has been utilized in legal matters. These include analysis of building defects, fire analysis and equipment failures. Expert witness qualifications, test procedures and analyses are discussed. The role of industry and governmental standards is reviewed. Opinions from the infrared thermographic expert should be unbiased, factual and within the area of qualification of the expert.

  4. Pulsed thermography in multiple infrared spectral bands

    NASA Astrophysics Data System (ADS)

    Netzelmann, U.; Abuhamad, M.

    2010-03-01

    Spectrally resolved active thermography by flash pulse excitation was performed in four sub-bands of a mid-wave infrared camera using spectral filtering and in the full long-wave band of a second infrared camera. On zirconia thermal barrier coatings on steel and PVC blocks, spectrally dependent decay rates of the thermal contrast were found. The observed behaviour can be explained by the infrared spectra of the specimens.

  5. Some fundamentals of handheld snow surface thermography

    NASA Astrophysics Data System (ADS)

    Shea, C.; Jamieson, B.

    2011-02-01

    This paper presents the concepts needed to perform snow surface thermography with a modern thermal imager. Snow-specific issues in the 7.5 to 13 μm spectrum such as ice emissivity, photographic angle, operator heating, and others receive detailed review and discussion. To illustrate the usefulness of this measurement technique, various applications are presented. These include detecting spatial temperature variation on snow pit walls and measuring the dependence of heat conduction on grain type.

  6. Some fundamentals of handheld snow surface thermography

    NASA Astrophysics Data System (ADS)

    Shea, C.; Jamieson, B.

    2010-08-01

    This paper presents the concepts needed to perform snow surface thermography with a modern thermal imager. Snow-specific issues in the 7.5 to 13 μm spectrum such as ice emissivity, photographic angle, operator heating, and others receive detailed review and discussion. To illustrate the usefulness of this measurement technique, various applications are presented. These include detecting spatial temperature variation on snow pit walls and measuring the dependence of heat conduction on grain type.

  7. NDT of railway components using induction thermography

    NASA Astrophysics Data System (ADS)

    Netzelmann, U.; Walle, G.; Ehlen, A.; Lugin, S.; Finckbohner, M.; Bessert, S.

    2016-02-01

    Induction or eddy current thermography is used to detect surface cracks in ferritic steel. The technique is applied to detect surface cracks in rails from a moving test car. Cracks were detected at a train speed between 2 and 15 km/h. An automated demonstrator system for testing railway wheels after production is described. While the wheel is rotated, a robot guides the detection unit consisting of inductor and infrared camera over the surface.

  8. Advances in the Use of Thermography to Inspect Composite Tanks for Liquid Fuel Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Russell, Samuel S.; Walker, James L.; Jones, Clyde S. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of advances in the use of thermography to inspect composite tanks for liquid fuel propulsion systems. Details are given on the thermographic inspection system, thermographic analysis method (includes scan and defect map, method of inspection, and inclusions, ply wrinkle, and delamination defects), graphite composite cryogenic feedline (including method, image map, and deep/shallow inclusions and resin rich area defects), and material degradation nondestructive evaluation.

  9. A new method for a quantitative determination of piroxicam in pharmaceutical formulations using FT-IR spectrometry.

    PubMed

    Bunaciu, Andrei A; Fleschin, Şerban; Aboul-Enein, Hassan Y

    2012-01-01

    A Fourier transform infrared (FT-IR) spectrometric method was developed for the rapid, and direct measurement of piroxicam (Pir) in pharmaceutical drugs. Pir is a well known and very effective antiinflammatory drug. Pir can be determined by various methods and now we are adding a new one that uses a Fourier transform infrared spectrophotometric technique. Conventional spectra were compared for best determination of active substance in pharmaceutical formulations. The Beer-Lambert law and two chemometric approaches, partial least squares (PLS) and principal component regression (PCR+) methods, were tried in data processing. PMID:23140406

  10. IR-based spot weld NDT in automotive applications

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Feng, Zhili

    2015-05-01

    Today's auto industry primarily relies on destructive teardown evaluation to ensure the quality of the resistance spot welds (RSWs) due to their criticality in crash resistance and performance of vehicles. The destructive teardown evaluation is labor intensive and costly. The very nature of the destructive test means only a few selected welds will be sampled for quality. Most of the welds in a car are never checked. There are significant costs and risks associated with reworking and scrapping the defective welded parts made between the teardown tests. IR thermography as a non-destructive testing (NDT) tool has its distinct advantage — its non-intrusive and non-contact nature. This makes the IR based NDT especially attractive for the highly automated assembly lines. IR for weld quality inspection has been explored in the past, mostly limited to the offline post-processing manner in a laboratory environment. No online real-time RSW inspection using IR thermography has been reported. Typically for postprocessing inspection, a short-pulse heating via xenon flash lamp light (in a few milliseconds) is applied to the surface of a spot weld. However, applications in the auto industry have been unsuccessful, largely due to a critical drawback that cannot be implemented in the high-volume production line - the prerequisite of painting the weld surface to eliminate surface reflection and other environmental interference. This is due to the low signal-to-noise ratio resulting from the low/unknown surface emissivity and the very small temperature changes (typically on the order of 0.1°C) induced by the flash lamp method. An integrated approach consisting of innovations in both data analysis algorithms and hardware apparatus that effectively solved the key technical barriers for IR NDT. The system can be used for both real-time (during welding) and post-processing inspections (after welds have been made). First, we developed a special IR thermal image processing method that

  11. Classification of edible oils and modeling of their physico-chemical properties by chemometric methods using mid-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Luna, Aderval S.; da Silva, Arnaldo P.; Ferré, Joan; Boqué, Ricard

    This research work describes two studies for the classification and characterization of edible oils and its quality parameters through Fourier transform mid infrared spectroscopy (FT-mid-IR) together with chemometric methods. The discrimination of canola, sunflower, corn and soybean oils was investigated using SVM-DA, SIMCA and PLS-DA. Using FT-mid-IR, DPLS was able to classify 100% of the samples from the validation set, but SIMCA and SVM-DA were not. The quality parameters: refraction index and relative density of edible oils were obtained from reference methods. Prediction models for FT-mid-IR spectra were calculated for these quality parameters using partial least squares (PLS) and support vector machines (SVM). Several preprocessing alternatives (first derivative, multiplicative scatter correction, mean centering, and standard normal variate) were investigated. The best result for the refraction index was achieved with SVM as well as for the relative density except when the preprocessing combination of mean centering and first derivative was used. For both of quality parameters, the best results obtained for the figures of merit expressed by the root mean square error of cross validation (RMSECV) and prediction (RMSEP) were equal to 0.0001.

  12. Calculation of the TLD700:LiF energy response from Ir-192 using novel Monte Carlo and empirical methods.

    PubMed

    Rijken, J D; Harris-Phillips, W; Lawson, J M

    2015-03-01

    Lithium fluoride thermoluminescent dosimeters (TLDs) exhibit a dependence on the energy of the radiation beam of interest so need to be carefully calibrated for different energy spectra if used for clinical radiation oncology beam dosimetry and quality assurance. TLD energy response was investigated for a specific set of TLD700:LiF(Mg,Ti) chips for a high dose rate (192)Ir brachytherapy source. A novel method of energy response calculation for (192)Ir was developed where dose was determined through Monte Carlo modelling in Geant4. The TLD response was then measured experimentally. Results showed that TLD700 has a depth dependent response in water ranging from 1.170 ± 0.125 at 20 mm to 0.976 ± 0.043 at 50 mm (normalised to a nominal 6 MV beam response). The method of calibration and Monte Carlo data developed through this study could be easily applied by other Medical Physics departments seeking to use TLDs for (192)Ir patient dosimetry or treatment planning system experimental verification. PMID:25663432

  13. Self-gravitation interaction of IR deformed Hořava-Lifshitz gravity via new Hamilton-Jacobi method

    NASA Astrophysics Data System (ADS)

    Liu, Molin; Xu, Yin; Lu, Junwang; Yang, Yuling; Lu, Jianbo; Wu, Yabo

    2014-06-01

    The apparent discovery of logarithmic entropies has a significant impact on IR deformed Hořava-Lifshitz (IRDHL) gravity in which the original infrared (IR) property is improved by introducing three-geometry's Ricci scalar term "μ4 R" in action. Here, we reevaluate the Hawking radiation in IRDHL by using recent new Hamilton-Jacobi method (NHJM). In particular, a thorough analysis is considered both in asymptotically flat Kehagias-Sfetsos and asymptotically non-flat Park models in IRDHL. We find the NHJM offers simplifications on the technical side. The modification in the entropy expression is given by the physical interpretation of self-gravitation of the Hawking radiation in this new Hamilton-Jacobi (HJ) perspectives.

  14. Detection of pathogenic gram negative bacteria using infrared thermography

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Divya, M. P.; Bagavathiappan, S.; Thomas, Sabu; Philip, John

    2012-11-01

    Detection of viable bacteria is of prime importance in all fields of microbiology and biotechnology. Conventional methods of enumerating bacteria are often time consuming and labor-intensive. All living organisms generate heat due to metabolic activities and hence, measurement of heat energy is a viable tool for detection and quantification of bacteria. In this article, we employ a non-contact and real time method - infrared thermography (IRT) for measurement of temperature variations in four clinically significant gram negative pathogenic bacteria, viz. Vibrio cholerae, Vibrio mimicus, Proteus mirabilis and Pseudomonas aeruginosa. We observe that, the energy content, defined as the ratio of heat generated by bacterial metabolic activities to the heat lost from the liquid medium to the surrounding, vary linearly with the bacterial concentration in all the four pathogenic bacteria. The amount of energy content observed in different species is attributed to their metabolisms and morphologies that affect the convection velocity and hence heat transport in the medium.

  15. A combined approach for using thermography for the detection of diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Berry, Bob

    2014-05-01

    This paper presents work done to develop an early diagnosis and monitoring method-encompassing thermography for the detection of Diabetes Mellitus. The early detection method involves fusion of images from infrared cameras, ultrasound devices, a 3D camera and a dermatascope. The project is to develop a novel system that could be easily used by physicians to allow for early intervention, and the paper highlights the approach taken by the Skindetector project.

  16. On-orbit Passive Thermography

    NASA Technical Reports Server (NTRS)

    Howell, Patricia A.; Winfree, William P.; Cramer, K. Elliott

    2008-01-01

    On July 12, 2006, British-born astronaut Piers Sellers became the first person to conduct thermal nondestructive evaluation experiments in space, demonstrating the feasibility of a new tool for detecting damage to the reinforced carbon-carbon (RCC) structures of the Shuttle. This new tool was an EVA (Extravehicular Activity, or spacewalk) compatible infrared camera developed by NASA engineers. Data was collected both on the wing leading edge of the Orbiter and on pre-damaged samples mounted in the Shuttle s cargo bay. A total of 10 infrared movies were collected during the EVA totaling over 250 megabytes of data. Images were downloaded from the orbiting Shuttle to Johnson Space Center for analysis and processing. Results are shown to be comparable to ground-based thermal inspections performed in the laboratory with the same type of camera and simulated solar heating. The EVA camera system detected flat-bottom holes as small as 2.54cm in diameter with 50% material loss from the back (hidden) surface in RCC during this first test of the EVA IR Camera. Data for the time history of the specimen temperature and the capability of the inspection system for imaging impact damage are presented.

  17. Ultraviolet excitation for thermography inspection of surface cracks in welded joints

    NASA Astrophysics Data System (ADS)

    Runnemalm, Anna; Broberg, Patrik; Henrikson, Per

    2014-10-01

    Infrared thermography is a non-contact and full field inspection method which has proven to be suitable for automatic surface crack detection. For automatic analysis of the inspection results, a high signal-to-noise ratio (SNR) is required. In this paper an alternative excitation method, using ultraviolet (UV) illumination, is presented and evaluated. Artificial surface defects, so-called notches, in a titanium plate are detected both in the weld seam and in the heat affected zone. Notches with a size from 80 μm in width and 250 μm in length are detected. The SNR using UV illumination is compared with that using flash lamp excitation. The results show that UV illumination using a mercury lamp is a good alternative as excitation source for thermography when detecting surface cracks. To validate the excitation method, results from real surface cracks are included.

  18. Advanced Image Processing for Defect Visualization in Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Plotnikov, Yuri A.; Winfree, William P.

    1997-01-01

    Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.

  19. Eddy current pulsed thermography for fatigue evaluation of gear

    NASA Astrophysics Data System (ADS)

    Tian, Gui Yun; Yin, Aijun; Gao, Bin; Zhang, Jishan; Shaw, Brian

    2014-02-01

    The pulsed eddy current (PEC) technique generates responses over a wide range of frequencies, containing more spectral coverage than traditional eddy current inspection. Eddy current pulsed thermography (ECPT), a newly developed non-destructive testing (NDT) technique, has advantages such as rapid inspection of a large area within a short time, high spatial resolution, high sensitivity and stand-off measurement distance. This paper investigates ECPT for the evaluation of gear fatigue tests. The paper proposes a statistical method based on single channel blind source separation to extract details of gear fatigue. The discussion of transient thermal distribution and patterns of fatigue contact surfaces as well as the non-contact surfaces have been reported. In addition, the measurement for gears with different cycles of fatigue tests by ECPTand the comparison results between ECPT with magnetic Barkhausen noise (MBN) have been evaluated. The comparison shows the competitive capability of ECPT in fatigue evaluation.

  20. Thermography inspection for detection and tracking of composite cylinder damage during load testing

    SciTech Connect

    Zalameda, J. N.; Winfree, W. P.; Johnston, P. H.; Seebo, J. P.

    2011-06-23

    Two thermography techniques, passive and active, are used to detect damage initiation and progression in a cyclically loaded composite cylinder. The passive thermography tracks damage progression in real time during cyclic loading. Active flash thermography, using a flash tube enclosed within the cylinder, images delaminations. A differential thermography processing technique eliminates normal material variations and improves sensitivity to and sizing of delaminations. The thermography results were compared to non-immersion ultrasonic results.

  1. Thermography Inspection for Detection and Tracking of Composite Cylinder Damage During Load Testing

    NASA Technical Reports Server (NTRS)

    Zalameda, J. N.; Winfree, W. P.; Seebo, J. P.; Johnston, P. H.

    2010-01-01

    Two thermography techniques, passive and active, are used to detect damage initiation and progression in a cyclically loaded composite cylinder. The passive thermography tracks damage progression in real time during cyclic loading. Active flash thermography, using a flash tube enclosed within the cylinder, images delaminations in a cylinder under different loads. A differential thermography processing technique eliminates normal material variations and improves sensitivity to and sizing of delaminations. The thermography results were compared to nonimmersion ultrasonic results.

  2. IR Hiding: A Method to Prevent Video Re-shooting by Exploiting Differences between Human Perceptions and Recording Device Characteristics

    NASA Astrophysics Data System (ADS)

    Yamada, Takayuki; Gohshi, Seiichi; Echizen, Isao

    A method is described to prevent video images and videos displayed on screens from being re-shot by digital cameras and camcorders. Conventional methods using digital watermarking for re-shooting prevention embed content IDs into images and videos, and they help to identify the place and time where the actual content was shot. However, these methods do not actually prevent digital content from being re-shot by camcorders. We developed countermeasures to stop re-shooting by exploiting the differences between the sensory characteristics of humans and devices. The countermeasures require no additional functions to use-side devices. It uses infrared light (IR) to corrupt the content recorded by CCD or CMOS devices. In this way, re-shot content will be unusable. To validate the method, we developed a prototype system and implemented it on a 100-inch cinema screen. Experimental evaluations showed that the method effectively prevents re-shooting.

  3. Evaluation of angle dependence in spectral emissivity of ceramic tiles measured by FT-IR

    NASA Astrophysics Data System (ADS)

    Kobayashi, C.; Ogasawara, N.; Yamada, H.; Yamada, S.; Kikuchi, T.

    2015-05-01

    Ceramic tiles are widely used for building walls. False detections are caused in inspections by infrared thermography because of the infrared reflection and angle dependence of emissivity. As the first problem, ceramic tile walls are influenced from backgrounds reflection. As the second problem, in inspection for tall buildings, the camera angles are changed against the height. Thus, to reveal the relation between the emissivity and angles is needed. However, there is very little data about it. It is impossible to decrease the false detection on ceramic tile walls without resolving these problems; background reflection and angle dependence of emissivity. In this study, the angle problem was investigated. The purpose is to establish a revision method in the angle dependence of the emissivity for infrared thermography. To reveal the relation between the emissivity and angles, the spectral emissivity of a ceramic tile at various angles was measured by FT-IR and infrared thermographic instrument. These two experimental results were compared with the emissivity-angle curves from the theoretical formula. In short wavelength range, the two experimental results showed similar behavior, but they did not agree with the theoretical curve. This will be the subject of further study. In long wavelength range, the both experimental results almost obeyed the theoretical curve. This means that it is possible to revise the angle dependence of spectral emissivity, for long wavelength range.

  4. Value of Mammary Thermography in Differential Diagnosis

    PubMed Central

    Nathan, B. E.; Burn, J. Ian; MacErlean, D. P.

    1972-01-01

    Thermographic examinations of the breasts were carried out in 359 women, most of whom had mammary symptoms. Of the 195 patients with abnormal thermograms, 27 had cancer of the breast, 53 had benign lesions, and 115 had no confirmed organic disease. The incidence of false-positive thermograms was 59%. Of the 164 patients with normal thermograms, 116 had no confirmed organic disease, 41 had benign lesions, and 7 had cancer. The incidence of false-negative mammary thermograms was 29%. We conclude that mammary thermography is of no practical value in the differential diagnosis of symptomatic mammary disease. PMID:5022040

  5. Assessment of techniques of massage and pumping in the treatment of breast engorgement by thermography

    PubMed Central

    Heberle, Anita Batista dos Santos; de Moura, Marcos Antônio Muniz; de Souza, Mauren Abreu; Nohama, Percy

    2014-01-01

    Objective to evaluate techniques of massage and pumping in the treatment of postpartum breast engorgement through thermography. Method the study was conducted in the Human Milk Bank of a hospital in Curitiba, Brazil. We randomly selected 16 lactating women with engorgement with the classification lobar, ampullary and glandular, moderate and intense. We compared the differential patterns of temperature, before and after the treatment by means of massage and pumping. Results we found a negative gradient of 0.3°C of temperature between the pre- and post-treatment in the experimental group. Breasts with intense engorgement were 0.7°C warmer when compared with moderate engorgement. Conclusion massage and electromechanical pumping were superior to manual methods when evaluated by thermography. REBEC: U1111-1136-9027. PMID:26107836

  6. Near-infrared thermography using a charge-coupled device camera: Application to microsystems

    NASA Astrophysics Data System (ADS)

    Teyssieux, D.; Thiery, L.; Cretin, B.

    2007-03-01

    Using near-infrared thermography microscopy and a low-cost charge-coupled device (CCD) camera, we have designed a system which is able to deliver quantitative submicronic thermal images. Using a theoretical model based on Planck's law and CCD sensor properties allowed us to determine a minimal theoretical detection temperature and an optimal temperature sensitivity of our system. In order to validate this method, we show a good relationship between a theoretical study and a thermal measurement of a microsample.

  7. Infrared thermography for true temperature measurement of the main board in personal computer

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Behnia, Masud; Morrison, Graham

    2002-11-01

    This paper presents a way to measure the true temperature of the electronic devices without disturbing their normal operating conditions, which involved with estimating target emissivity, background temperature correctly and choosing infrared transparent material and its transmission estimation. The temperature distributions of the main board in personal computer were measured by the method presented here with infrared thermography in several different running conditions. The measurement errors and their possible remedies are also discussed.

  8. HeatWave: the next generation of thermography devices

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman; Vidas, Stephen

    2014-05-01

    Energy sustainability is a major challenge of the 21st century. To reduce environmental impact, changes are required not only on the supply side of the energy chain by introducing renewable energy sources, but also on the demand side by reducing energy usage and improving energy efficiency. Currently, 2D thermal imaging is used for energy auditing, which measures the thermal radiation from the surfaces of objects and represents it as a set of color-mapped images that can be analysed for the purpose of energy efficiency monitoring. A limitation of such a method for energy auditing is that it lacks information on the geometry and location of objects with reference to each other, particularly across separate images. Such a limitation prevents any quantitative analysis to be done, for example, detecting any energy performance changes before and after retrofitting. To address these limitations, we have developed a next generation thermography device called Heat Wave. Heat Wave is a hand-held 3D thermography device that consists of a thermal camera, a range sensor and color camera, and can be used to generate precise 3D model of objects with augmented temperature and visible information. As an operator holding the device smoothly waves it around the objects of interest, Heat Wave can continuously track its own pose in space and integrate new information from the range and thermal and color cameras into a single, and precise 3D multi-modal model. Information from multiple viewpoints can be incorporated together to improve the accuracy, reliability and robustness of the global model. The approach also makes it possible to reduce any systematic errors associated with the estimation of surface temperature from the thermal images.

  9. Detection of seal contamination in heat-sealed food packaging based on active infrared thermography

    NASA Astrophysics Data System (ADS)

    D'huys, Karlien; Saeys, Wouter; De Ketelaere, Bart

    2015-05-01

    In the food industry packaging is often applied to protect the product from the environment, assuring quality and safety throughout shelf life if properly performed. Packaging quality depends on the material used and the closure (seal). The material is selected based on the specific needs of the food product to be wrapped. However, proper closure of the package is often harder to achieve. One problem possibly jeopardizing seal quality is the presence of food particles between the seal. Seal contamination can cause a decreased seal strength and thus an increased packaging failure risk. It can also trigger the formation of microchannels through which air and microorganisms can enter and spoil the enclosed food. Therefore, early detection and removal of seal-contaminated packages from the production chain is essential. In this work, a pulsed-type active thermography method using the heat of the sealing bars as an excitation source was studied for detecting seal contamination. The cooling profile of contaminated seals was recorded. The detection performance of four processing methods (based on a single frame, a fit of the cooling profile, pulsed phase thermography and a matched filter) was compared. High resolution digital images served as a reference to quantify contamination. The lowest detection limit (equivalent diameter of 0.63 mm) and the lowest processing time (0.42 s per sample) were obtained for the method based on a single frame. Presumably, practical limitations in the recording stage prevented the added value of active thermography to be fully reflected in this application.

  10. Application of infrared lock-in thermography for the quantitative evaluation of bruises on pears

    NASA Astrophysics Data System (ADS)

    Kim, Ghiseok; Kim, Geon-Hee; Park, Jongmin; Kim, Dae-Yong; Cho, Byoung-Kwan

    2014-03-01

    An infrared lock-in thermography technique was adjusted for the detection of early bruises on pears. This mechanical damage is usually difficult to detect in the early stage after harvested using conventional visual sorting or CCD sensor-based imaging processing methods. We measured the thermal emission signals from pears using a highly sensitive mid-infrared thermal camera. These images were post-processed using a lock-in method that utilized the periodic thermal energy input to the pear. By applying the lock-in method to infrared thermography, the detection sensitivity and signal to noise ratio were enhanced because of the phase-sensitive narrow-band filtering effect. It was also found that the phase information of thermal emission from pears provides good metrics with which to identify quantitative information about both damage size and damage depth for pears. Additionally, a photothermal model was implemented to investigate the behavior of thermal waves on pears under convective conditions. Theoretical results were compared to experimental results. These results suggested that the proposed lock-in thermography technique and resultant phase information can be used to detect mechanical damage to fruit, especially in the early stage of bruising.