Science.gov

Sample records for iridium catalyzed c-c

  1. Formation of C-C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation.

    PubMed

    Bower, John F; Krische, Michael J

    2011-01-01

    The formation of C-C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C-C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile-nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C-H bonds. PMID:21822399

  2. Formation of C-C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation

    NASA Astrophysics Data System (ADS)

    Bower, John F.; Krische, Michael J.

    The formation of C-C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C-C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile-nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C-H bonds.

  3. Iridium-Catalyzed Allylic Substitution

    NASA Astrophysics Data System (ADS)

    Hartwig, John F.; Pouy, Mark J.

    Iridium-catalyzed asymmetric allylic substitution has become a valuable method to prepare products from the addition of nucleophiles at the more substituted carbon of an allyl unit. The most active and selective catalysts contain a phosphoramidite ligand possessing at least one arylethyl substituent on the nitrogen atom of the ligand. In these systems, the active catalyst is generated by a base-induced cyclometalation at the methyl group of this substituent to generate an iridium metalacycle bound by the COD ligand of the [Ir(COD)Cl]2 precursor and one additional labile dative ligand. Such complexes catalyze the reactions of linear allylic esters with alkylamines, arylamines, phenols, alcohols, imides, carbamates, ammonia, enolates and enolate equivalents, as well as typical stabilized carbon nucleophiles generated from malonates and cyanoesters. Iridium catalysts for enantioselective allylic substitution have also been generated from phosphorus ligands with substituents bound by heteroatoms, and an account of the studies of such systems, along with a description of the development of iridium catalysts is included.

  4. Iridium-Catalyzed Hydrogen Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Saidi, Ourida; Williams, Jonathan M. J.

    This chapter describes the application of iridium complexes to catalytic hydrogen transfer reactions. Transfer hydrogenation reactions provide an alternative to direct hydrogenation for the reduction of a range of substrates. A hydrogen donor, typically an alcohol or formic acid, can be used as the source of hydrogen for the reduction of carbonyl compounds, imines, and alkenes. Heteroaromatic compounds and even carbon dioxide have also been reduced by transfer hydrogenation reactions. In the reverse process, the oxidation of alcohols to carbonyl compounds can be achieved by iridium-catalyzed hydrogen transfer reactions, where a ketone or alkene is used as a suitable hydrogen acceptor. The reversible nature of many hydrogen transfer processes has been exploited for the racemization of alcohols, where temporary removal of hydrogen generates an achiral ketone intermediate. In addition, there is a growing body of work where temporary removal of hydrogen provides an opportunity for using alcohols as alkylating agents. In this chemistry, an iridium catalyst "borrows" hydrogen from an alcohol to give an aldehyde or ketone intermediate, which can be transformed into either an imine or alkene under the reaction conditions. Return of the hydrogen from the catalyst provides methodology for the formation of amines or C-C bonds where the only by-product is typically water.

  5. Iridium(iii)-catalyzed regioselective C7-sulfonamidation of indoles.

    PubMed

    Song, Zengqiang; Antonchick, Andrey P

    2016-06-01

    Iridium(iii)-catalyzed direct C7-sulfonamidation of indoles with sulfonyl azides is described. The developed method has good compatibility with diverse functional groups, providing various 7-amino-substituted indoles with good to excellent yields in a short time under mild reaction conditions. The key feature of the developed method is the regioselective functionalization at the C7-position of 2,3-unsubstituted indoles. Biologically active compounds can be obtained using this protocol. The application of the iridium(iii) catalyst and directing group plays a crucial role in the regioselectivity of the developed reaction. PMID:27173668

  6. Ag-catalyzed C-H/C-C bond functionalization.

    PubMed

    Zheng, Qing-Zhong; Jiao, Ning

    2016-08-21

    Silver, known and utilized since ancient times, is a coinage metal, which has been widely used for various organic transformations in the past few decades. Currently, the silver-catalyzed reaction is one of the frontier areas in organic chemistry, and the progress of research in this field is very rapid. Compared with other transition metals, silver has long been believed to have low catalytic efficiency, and most commonly, it is used as either a cocatalyst or a Lewis acid. Interestingly, the discovery of Ag-catalysis has been significantly improved in recent years. Especially, Ag(i) has been demonstrated as an important and versatile catalyst for a variety of organic transformations. However, so far, there has been no systematic review on Ag-catalyzed C-H/C-C bond functionalization. In this review, we will focus on the development of Ag-catalyzed C-H/C-C bond functionalization and the corresponding mechanism. PMID:27056573

  7. Olefin hydroaryloxylation catalyzed by pincer-iridium complexes.

    PubMed

    Haibach, Michael C; Guan, Changjian; Wang, David Y; Li, Bo; Lease, Nicholas; Steffens, Andrew M; Krogh-Jespersen, Karsten; Goldman, Alan S

    2013-10-01

    Aryl alkyl ethers, which are widely used throughout the chemical industry, are typically produced via the Williamson ether synthesis. Olefin hydroaryloxylation potentially offers a much more atom-economical alternative. Known acidic catalysts for hydroaryloxylation, however, afford very poor selectivity. We report the organometallic-catalyzed intermolecular hydroaryloxylation of unactivated olefins by iridium "pincer" complexes. These catalysts do not operate via the hidden Brønsted acid pathway common to previously developed transition-metal-based catalysts. The reaction is proposed to proceed via olefin insertion into an iridium-alkoxide bond, followed by rate-determining C-H reductive elimination to yield the ether product. The reaction is highly chemo- and regioselective and offers a new approach to the atom-economical synthesis of industrially important ethers and, potentially, a wide range of other oxygenates. PMID:24028199

  8. Hydroxymethylation beyond Carbonylation: Enantioselective Iridium-Catalyzed Reductive Coupling of Formaldehyde with Allylic Acetates via Enantiotopic π-Facial Discrimination.

    PubMed

    Garza, Victoria J; Krische, Michael J

    2016-03-23

    Chiral iridium complexes modified by SEGPHOS catalyze the 2-propanol-mediated reductive coupling of branched allylic acetates 1a-1o with formaldehyde to form primary homoallylic alcohols 2a-2o with excellent control of regio- and enantioselectivity. These processes, which rely on enantiotopic π-facial discrimination of σ-allyliridium intermediates, represent the first examples of enantioselective formaldehyde C-C coupling beyond aldol addition. PMID:26958737

  9. Iridium-Catalyzed Reductive Nitro-Mannich Cyclization

    PubMed Central

    Gregory, Alex W; Chambers, Alan; Hawkins, Alison; Jakubec, Pavol; Dixon, Darren J

    2015-01-01

    A new chemoselective reductive nitro-Mannich cyclization reaction sequence of nitroalkyl-tethered lactams has been developed. Relying on the rapid and chemoselective iridium(I)-catalyzed reduction of lactams to the corresponding enamine, subsequent nitro-Mannich cyclization of tethered nitroalkyl functionality provides direct access to important alkaloid natural-product-like structures in yields up to 81 % and in diastereoselectivities that are typically good to excellent. An in-depth understanding of the reaction mechanism has been gained through NMR studies and characterization of reaction intermediates. The new methodology has been applied to the total synthesis of (±)-epi-epiquinamide in four steps. PMID:25399919

  10. Iridium-catalysed direct C-C coupling of methanol and allenes

    NASA Astrophysics Data System (ADS)

    Moran, Joseph; Preetz, Angelika; Mesch, Ryan A.; Krische, Michael J.

    2011-04-01

    Methanol is an abundant (35 million metric tons per year), renewable chemical feedstock, yet its use as a one-carbon building block in fine chemical synthesis is highly underdeveloped. Using a homogeneous iridium catalyst developed in our laboratory, methanol engages in a direct C-C coupling with allenes to furnish higher alcohols that incorporate all-carbon quaternary centres, free of stoichiometric by-products. A catalytic mechanism that involves turnover-limiting methanol oxidation, a consequence of the high energetic demand of methanol dehydrogenation, is corroborated through a series of competition kinetics experiments. This process represents the first catalytic C-C coupling of methanol to provide discrete products of hydrohydroxymethylation.

  11. Iridium-Catalyzed Branch-Selective Hydroarylation of Vinyl Ethers via C-H Bond Activation.

    PubMed

    Ebe, Yusuke; Nishimura, Takahiro

    2015-05-13

    Iridium-catalyzed hydroarylation of vinyl ethers via a directed C-H bond activation of aromatic compounds gave high yields of the corresponding addition products with high branch selectivity. PMID:25928127

  12. Iridium-Catalyzed Selective Isomerization of Primary Allylic Alcohols.

    PubMed

    Li, Houhua; Mazet, Clément

    2016-06-21

    This Account presents the development of the iridium-catalyzed isomerization of primary allylic alcohols in our laboratory over the past 8 years. Our initial interest was driven by the long-standing challenge associated with the development of a general catalyst even for the nonasymmetric version of this seemingly simple chemical transformation. The added value of the aldehyde products and the possibility to rapidly generate molecular complexity from readily accessible allylic alcohols upon a redox-economical isomerization reaction were additional sources of motivation. Certainly influenced by the success story of the related isomerization of allylic amines, most catalysts developed for the selective isomerization of allylic alcohols were focused on rhodium as a transition metal of choice. Our approach has been based on the commonly accepted precept that hydrogenation and isomerization are often competing processes, with the latter being usually suppressed in favor of the former. The cationic iridium complexes [(Cy3P)(pyridine)Ir(cod)]X developed by Crabtree (X = PF6) and Pfaltz (X = BArF) are usually considered as the most versatile catalysts for the hydrogenation of allylic alcohols. Using molecular hydrogen to generate controlled amounts of the active form of these complexes but performing the reaction in the absence of molecular hydrogen enabled deviation from the typical hydrogenation manifold and favored exclusively the isomerization of allylic alcohols into aldehydes. Isotopic labeling and crossover experiments revealed the intermolecular nature of the process. Systematic variation of the ligand on the iridium center allowed us to identify the structural features beneficial for catalytic activity. Subsequently, three generations of chiral catalysts have been investigated and enabled us to reach excellent levels of enantioselectivity for a wide range of 3,3-disubstituted aryl/alkyl and alkyl/alkyl primary allylic alcohols leading to β-chiral aldehydes. The

  13. Luminescent Iridium(III) Complexes Supported by N-Heterocyclic Carbene-based C^C^C-Pincer Ligands and Aromatic Diimines

    NASA Astrophysics Data System (ADS)

    Chung, Lai-Hon; Lo, Hoi-Shing; Ng, Sze-Wing; Ma, Dik-Lung; Leung, Chung-Hang; Wong, Chun-Yuen

    2015-10-01

    Iridium(III) hydrido complexes containing N-heterocyclic carbene (NHC)-based pincer ligand 1,3-bis(1-butylimidazolin-2-ylidene)phenyl anion (C1^C^C1) or 1,3-bis(3-butylbenzimidazolin-2-ylidene)phenyl anion (C2^C^C2) and aromatic diimine (2,2‧-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4‧-dimethyl-2,2‧-bipyridine (Me2bpy), or dipyrido-[3,2-f:2‧,3‧-h]-quinoxaline (dpq)) in the form of [Ir(C^C^C)(N^N)(H)]+ have been prepared. Crystal structures for these complexes show that the Ir-CNHC distances are 2.043(5)-2.056(5) Å. The hydride chemical shifts for complexes bearing C1^C^C1 (-20.6 to -20.3 ppm) are more upfield than those with C2^C^C2 (-19.5 and -19.2 ppm), revealing that C1^C^C1 is a better electron donor than C2^C^C2. Spectroscopic comparisons and time-dependent density functional theory (TD-DFT) calculations suggest that the lowest-energy electronic transition associated with these complexes (λ = 340-530 nm (ɛ ≤ 103 dm3 mol-1 cm-1)) originate from a dπ(IrIII) → π*(N^N) metal-to-ligand charge transfer transition, where the dπ(IrIII) level contain significant contribution from the C^C^C ligands. All these complexes are emissive in the yellow-spectral region (553-604 nm in CH3CN and CH2Cl2) upon photo-excitation with quantum yields of 10-3-10-1.

  14. Luminescent Iridium(III) Complexes Supported by N-Heterocyclic Carbene-based C^C^C-Pincer Ligands and Aromatic Diimines

    PubMed Central

    Chung, Lai-Hon; Lo, Hoi-Shing; Ng, Sze-Wing; Ma, Dik-Lung; Leung, Chung-Hang; Wong, Chun-Yuen

    2015-01-01

    Iridium(III) hydrido complexes containing N-heterocyclic carbene (NHC)-based pincer ligand 1,3-bis(1-butylimidazolin-2-ylidene)phenyl anion (C1^C^C1) or 1,3-bis(3-butylbenzimidazolin-2-ylidene)phenyl anion (C2^C^C2) and aromatic diimine (2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4′-dimethyl-2,2′-bipyridine (Me2bpy), or dipyrido-[3,2-f:2′,3′-h]-quinoxaline (dpq)) in the form of [Ir(C^C^C)(N^N)(H)]+ have been prepared. Crystal structures for these complexes show that the Ir–CNHC distances are 2.043(5)–2.056(5) Å. The hydride chemical shifts for complexes bearing C1^C^C1 (−20.6 to −20.3 ppm) are more upfield than those with C2^C^C2 (−19.5 and −19.2 ppm), revealing that C1^C^C1 is a better electron donor than C2^C^C2. Spectroscopic comparisons and time-dependent density functional theory (TD-DFT) calculations suggest that the lowest-energy electronic transition associated with these complexes (λ = 340–530 nm (ε ≤ 103 dm3 mol−1 cm−1)) originate from a dπ(IrIII) → π*(N^N) metal-to-ligand charge transfer transition, where the dπ(IrIII) level contain significant contribution from the C^C^C ligands. All these complexes are emissive in the yellow-spectral region (553–604 nm in CH3CN and CH2Cl2) upon photo-excitation with quantum yields of 10−3–10−1. PMID:26487542

  15. Iridium-Catalyzed Enantioselective Hydroalkynylation of Enamides for the Synthesis of Homopropargyl Amides.

    PubMed

    Bai, Xiao-Yan; Wang, Zi-Xuan; Li, Bi-Jie

    2016-07-25

    Reported is an iridium-catalyzed asymmetric hydroalkynylation of enamides with terminal alkynes. The reaction occurs regioselectively at the β-position of an enamide to produce homopropargyl amides. Good to high enantioselectivity was observed with an iridium complex ligated by a chiral bis(phosphine) ligand. This method provides a straightforward route to synthesize chiral homopropargyl amides with a stereocenter β to the amide. PMID:27111577

  16. Iridium-catalyzed borylation of thiophenes: versatile, synthetic elaboration founded on selective C–H functionalization

    PubMed Central

    Chotana, Ghayoor A.; Kallepalli, Venkata A.; Maleczka, Robert E.; Smith, Milton R.

    2013-01-01

    Iridium-catalyzed borylation has been applied to various substituted thiophenes to synthesize poly-functionalized thiophenes in good to excellent yields. Apart from common functionalities compatible with iridium-catalyzed borylations, additional functional group tolerance to acyl (COMe), and trimethylsilyl (TMS) groups was also observed. High regioselectivities were observed in borylation of 3-and 2,5-di-substituted thiophenes. Electrophilic aromatic C–H/C-Si bromination on thiophene boronate esters is shown to take place without breaking the C–B bond, and one-pot C–H borylation/Suzuki-Miyaura cross-coupling has been accomplished on 2- and 3-borylated thiophenes. PMID:24385669

  17. Ni-Catalyzed C-C Couplings Using Alkyl Electrophiles.

    PubMed

    Iwasaki, Takanori; Kambe, Nobuaki

    2016-10-01

    Much effort has been devoted to developing new methods using Ni catalysts for the cross-coupling reaction of alkyl electrophiles with organometallic reagents, and significant achievements in this area have emerged during the past two decades. Nickel catalysts have enabled the coupling reaction of not only primary alkyl electrophiles, but also sterically hindered secondary and tertiary alkyl electrophiles possessing β-hydrogens with various organometallic reagents to construct carbon skeletons. In addition, Ni catalysts opened a new era of asymmetric cross-coupling reaction using alkyl halides. Recent progress in nickel-catalyzed cross-coupling reaction of alkyl electrophiles with sp(3)-, sp(2)-, and sp-hybridized organometallic reagents including asymmetric variants as well as mechanistic insights of nickel catalysis are reviewed in this chapter. PMID:27580894

  18. Iridium-Catalyzed Synthesis of Acylpyridines by [2 + 2 + 2] Cycloaddition of Diynes with Acyl Cyanides.

    PubMed

    Hashimoto, Toru; Kato, Kaoru; Yano, Reiko; Natori, Tomoki; Miura, Hiroki; Takeuchi, Ryo

    2016-07-01

    2-Acylpyridines were prepared by iridium-catalyzed [2 + 2 + 2] cycloaddition of α,ω-diynes with acyl cyanides. [Ir(cod)Cl]2/rac-BINAP or F-DPPE is an efficient catalyst for this reaction. The scope and limitations of this reaction have been disclosed. PMID:27275734

  19. Iridium-catalyzed enantioselective hydrogenation of unsaturated heterocyclic acids.

    PubMed

    Song, Song; Zhu, Shou-Fei; Pu, Liu-Yang; Zhou, Qi-Lin

    2013-06-01

    Spiral binding: A highly enantioselective hydrogenation of unsaturated heterocyclic acids has been developed by using chiral iridium/spirophosphino oxazoline catalysts (see scheme; BArF(-) =tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, Boc=tert-butoxycarbonyl). This reaction provided an efficient method for the preparation of optically active heterocyclic acids with excellent enantioselectivities. PMID:23610004

  20. Highly Enantioselective Iridium-Catalyzed Hydrogenation of Cyclic Enamides.

    PubMed

    Salomó, Ernest; Orgué, Sílvia; Riera, Antoni; Verdaguer, Xavier

    2016-07-01

    The MaxPHOX-Ir catalyst system provided the highest selectivity ever reported for the reduction of cyclic enamides derived from α- and β-tetralones. This result indicates that iridium catalysts are also proficient in reducing alkenes bearing metal-coordinating groups. In the present system, selectivity was pressure-dependent: In most cases, a decrease in the H2 pressure to 3 bar resulted in an increase in enantioselectivity. Moreover, the process can be carried out in environmentally friendly solvents, such as methanol and ethyl acetate, with no loss of selectivity. PMID:27186653

  1. Rh(I)-Catalyzed Insertion of Allenes into C-C Bonds of Benzocyclobutenols.

    PubMed

    Zhao, Chunliang; Liu, Li-Chuan; Wang, Jing; Jiang, Chenran; Zhang, Qing-Wei; He, Wei

    2016-01-15

    Herein we report a Rh(I)-catalyzed two carbon insertion into C-C bonds of benzocyclobutenols by employing symmetrical and unsymmetrical allenes. This reaction provides rapid access to alkylidene tetralins bearing two adjacent stereogenic centers in good yields and diasteroselectivities. PMID:26727276

  2. Rh(III)-Catalyzed C-C/C-N Coupling of Imidates with α-Diazo Imidamide: Synthesis of Isoquinoline-Fused Indoles.

    PubMed

    Wang, He; Li, Lei; Yu, Songjie; Li, Yunyun; Li, Xingwei

    2016-06-17

    Imidate esters and diazo compounds have been established as bifunctional substrates for the construction of biologically active fused heterocycles via rhodium-catalyzed C-H activation and C-C/C-N coupling. This reaction occurs under mild conditions with high efficiency, step economy, and low catalyst loading. PMID:27280947

  3. Control of Diastereoselectivity for Iridium-catalyzed Allylation of a Prochiral Nucleophile with a Phosphate Counterion

    PubMed Central

    Chen, Wenyong; Hartwig, John F.

    2013-01-01

    We report a highly diastereo- and enantioselective allylation of azlactones catalyzed by the combination of a metallayclic iridium complex and an optically inactive phosphate anion. The process demonstrates an approach to conduct diastereoselective reactions with prochiral nucleophiles in the presence of metallacyclic allyliridium complexes. The reaction provides access to an array of enantioenriched allylated azlactones containing adjacent tertiary and quaternary carbon centers. Preliminary mechanistic studies suggest that the phosphate and methyl carbonate anions together induce the unusually high diastereoselectivity. PMID:23286279

  4. Iridium(III)-Catalyzed Tandem [3 + 2] Annulation: Synthesis of Spirocyclic Phosphoramide Derivatives.

    PubMed

    Li, Shuai-Shuai; Wu, Lin; Qin, Liu; Zhu, Yu-Qin; Su, Fu; Xu, Yan-Jun; Dong, Lin

    2016-09-01

    A highly efficient iridium(III)-catalyzed C-H activation/tandem Grignard-type [3 + 2] annulation process was developed for the synthesis of novel spirocyclic phosphoramide derivatives. Compared with other transition-metal catalysts, [Cp*IrCl2]2 exhibited favorite efficiency and best selectivity in this cascade reaction. The strategy could be applied to further construct more complex heterocyclic compounds. PMID:27553969

  5. Formation of C-C bonds via ruthenium-catalyzed transfer hydrogenation().

    PubMed

    Moran, Joseph; Krische, Michael J

    2012-01-01

    Ruthenium-catalyzed transfer hydrogenation of diverse π-unsaturated reactants in the presence of aldehydes provides products of carbonyl addition. Dehydrogenation of primary alcohols in the presence of the same π-unsaturated reactants provides identical products of carbonyl addition. In this way, carbonyl addition is achieved from the alcohol or aldehyde oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. In this account, the discovery of ruthenium-catalyzed C-C bond-forming transfer hydrogenations and the recent development of diastereo- and enantioselective variants are discussed. PMID:23430602

  6. Iron-Catalyzed C-C Cross-Couplings Using Organometallics.

    PubMed

    Guérinot, Amandine; Cossy, Janine

    2016-08-01

    Over the last decades, iron-catalyzed cross-couplings have emerged as an important tool for the formation of C-C bonds. A wide variety of alkenyl, aryl, and alkyl (pseudo)halides have been coupled to organometallic reagents, the most currently used being Grignard reagents. Particular attention has been devoted to the development of iron catalysts for the functionalization of alkyl halides that are generally challenging substrates in classical cross-couplings. The high functional group tolerance of iron-catalyzed cross-couplings has encouraged organic chemists to use them in the synthesis of bioactive compounds. Even if some points remain obscure, numerous studies have been carried out to investigate the mechanism of iron-catalyzed cross-coupling and several hypotheses have been proposed. PMID:27573401

  7. Iridium-Catalyzed Diastereoselective and Enantioselective Allylic Substitutions with Acyclic α-Alkoxy Ketones.

    PubMed

    Jiang, Xingyu; Chen, Wenyong; Hartwig, John F

    2016-05-01

    The asymmetric alkylation of acyclic ketones is a longstanding challenge in organic synthesis. Reported herein are diastereoselective and enantioselective allylic substitutions with acyclic α-alkoxy ketones catalyzed by a metallacyclic iridium complex to form products with contiguous stereogenic centers derived from the nucleophile and electrophile. These reactions occur between allyl methyl carbonates and unstabilized copper(I) enolates generated in situ from acyclic α-alkoxy ketones. The resulting products can be readily converted into enantioenriched tertiary alcohols and tetrahydrofuran derivatives without erosion of enantiomeric purity. PMID:27038004

  8. Iridium/N-heterocyclic carbene-catalyzed C–H borylation of arenes by diisopropylaminoborane

    PubMed Central

    Igarashi, Takuya

    2016-01-01

    Summary Catalytic C–H borylation of arenes has been widely used in organic synthesis because it allows the introduction of a versatile boron functionality directly onto simple, unfunctionalized arenes. We report herein the use of diisopropylaminoborane as a boron source in C–H borylation of arenes. An iridium(I) complex with 1,3-dicyclohexylimidazol-2-ylidene is found to efficiently catalyze the borylation of arenes and heteroarenes. The resulting aminoborylated products can be converted to the corresponding boronic acid derivatives simply by treatment with suitable diols or diamines. PMID:27340457

  9. Lewis Base Activation of Silyl Acetals: Iridium-Catalyzed Reductive Horner-Wadsworth-Emmons Olefination.

    PubMed

    Dakarapu, Udaya Sree; Bokka, Apparao; Asgari, Parham; Trog, Gabriela; Hua, Yuanda; Nguyen, Hiep H; Rahman, Nawal; Jeon, Junha

    2015-12-01

    A Lewis base promoted deprotonative pronucleophile addition to silyl acetals has been developed and applied to the iridium-catalyzed reductive Horner-Wadsworth-Emmons (HWE) olefination of esters and the chemoselective reduction of the resulting enoates. Lewis base activation of silyl acetals generates putative pentacoordinate silicate acetals, which fragment into aldehydes, silanes, and alkoxides in situ. Subsequent deprotonative metalation of phosphonate esters followed by HWE with aldehydes furnishes enoates. This operationally convenient, mechanistically unique protocol converts the traditionally challenging aryl, alkenyl, and alkynyl esters to homologated enoates at room temperature within a single vessel. PMID:26566189

  10. Rhodium-catalyzed C-C coupling reactions via double C-H activation.

    PubMed

    Li, Shuai-Shuai; Qin, Liu; Dong, Lin

    2016-05-18

    Various rhodium-catalyzed double C-H activations are reviewed. These powerful strategies have been developed to construct C-C bonds, which might be widely embedded in complex aza-fused heterocycles, polycyclic skeletons and heterocyclic scaffolds. In particular, rhodium(iii) catalysis shows good selectivity and reactivity to functionalize the C-H bond, generating reactive organometallic intermediates in most of the coupling reactions. Generally, intermolecular, intramolecular and multi-component coupling reactions via double C-H activations with or without heteroatom-assisted chelation are discussed in this review. PMID:27099126

  11. Iridium Catalyzed Dehydrogenation of Substituted Amine Boranes: Kinetics, Thermodynamics and Implications for Hydrogen Storage.

    SciTech Connect

    Dietrich, Brandon L.; Goldberg, Karen I.; Heinekey, D. M.; Autrey, Thomas; Linehan, John C.

    2008-10-06

    Dehydrogenation of ammonia borane (AB) and methylamine-borane (MeAB) is catalyzed efficiently by the iridium pincer complex (η3-1,3-(OPtBu2)2C6H3)Ir(H)2 (1). With MeAB and with MeAB/AB mixtures, rapid release of one equivalent of H2 is observed to yield soluble oligomeric products at rates similar to those previously reported for the dehydrogenation of AB catalyzed by 1. The rapid dehydrogenation reaction has allowed the experimental determination of the reaction enthalpy (ΔH) for the dehydrogenation of AB, MeAB, and AB/MeAB mixtures by calorimetry. The reactions are significantly more exothermic than suggested by some computational studies. This work was supported by the U.S. Department of Energy (DOE) as part of the Center of Excellence for Chemical Hydrogen Storage. PNNL is operated by Battelle for DOE.

  12. Iridium-catalyzed dehydrogenative decarbonylation of primary alcohols with the liberation of syngas.

    PubMed

    Olsen, Esben P K; Madsen, Robert

    2012-12-01

    A new iridium-catalyzed reaction in which molecular hydrogen and carbon monoxide are cleaved from primary alcohols in the absence of any stoichiometric additives has been developed. The dehydrogenative decarbonylation was achieved with a catalyst generated in situ from [Ir(coe)(2)Cl](2) (coe = cyclooctene) and racemic 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (rac-BINAP) in a mesitylene solution saturated with water. A catalytic amount of lithium chloride was also added to improve the catalyst turnover. The reaction has been applied to a variety of primary alcohols and gives rise to products in good to excellent yields. Ethers, esters, imides, and aryl halides are stable under the reaction conditions, whereas olefins are partially saturated. The reaction is believed to proceed by two consecutive organometallic transformations that are catalyzed by the same iridium(I)-BINAP species. First, dehydrogenation of the primary alcohol to the corresponding aldehyde takes place, which is then followed by decarbonylation to the product with one less carbon atom. PMID:23108889

  13. Manganese-catalyzed regiospecific sp(3) C-S bond formation through C-C bond cleavage of cyclobutanols.

    PubMed

    Ren, Rongguo; Wu, Zhen; Zhu, Chen

    2016-06-21

    A manganese-catalyzed regioselective sp(3) C-S bond formation through C-C bond cleavage of cyclobutanols is described. A variety of primary and secondary alkyl thioethers are efficiently prepared under mild reaction conditions. The mechanistic pathways involving radical-mediated tandem C-C bond cleavage and C-S bond formation are proposed. PMID:27279018

  14. C-H activation and C=C double bond formation reactions in iridium ortho-methyl arylphosphane complexes.

    PubMed

    Baratta, Walter; Ballico, Maurizio; Del Zotto, Alessandro; Zangrando, Ennio; Rigo, Pierluigi

    2007-01-01

    The Vaska-type iridium(I) complex [IrCl(CO){PPh(2)(2-MeC(6)H(4))}(2)] (1), characterized by an X-ray diffraction study, was obtained from iridium(III) chloride hydrate and PPh(2)(2,6-MeRC(6)H(3)) with R=H in DMF, whereas for R=Me, activation of two ortho-methyl groups resulted in the biscyclometalated iridium(III) compound [IrCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)] (2). Conversely, for R=Me the iridium(I) compound [IrCl(CO){PPh(2)(2,6-Me(2)C(6)H(3))}(2)] (3) can be obtained by treatment of [IrCl(COE)(2)](2) (COE=cyclooctene) with carbon monoxide and the phosphane in acetonitrile. Compound 3 in CH(2)Cl(2) undergoes intramolecular C-H oxidative addition, affording the cyclometalated hydride iridium(III) species [IrHCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}] (4). Treatment of 2 with Na[BAr(f) (4)] (Ar(f)=3,5-C(6)H(3)(CF(3))(2)) gives the fluxional cationic 16-electron complex [Ir(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)][BAr(f) (4)] (5), which reversibly reacts with dihydrogen to afford the delta-agostic complex [IrH(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}][BAr(f)(4)] (6), through cleavage of an Ir-C bond. This species can also be formed by treatment of 4 with Na[BAr(f)(4)] or of 2 with Na[BAr(f)(4)] through C-H oxidative addition of one ortho-methyl group, via a transient 14-electron iridium(I) complex. Heating of the coordinatively unsaturated biscyclometalated species 5 in toluene gives the trans-dihydride iridium(III) complex [IrH(2)(CO){PPh(2)(2,6-MeC(6)H(3)CH=CHC(6)H(3)Me-2,6)PPh(2)}][BAr(f) (4)] (7), containing a trans-stilbene-type terdentate ligand, as result of a dehydrogenative carbon-carbon double bond coupling reaction, possibly through an iridium carbene species. PMID:17535000

  15. Regio- and Enantioselective N-Allylations of Imidazole, Benzimidazole, and Purine Heterocycles Catalyzed by Single-Component Metallacyclic Iridium Complexes

    PubMed Central

    Stanley, Levi M.

    2010-01-01

    Highly regio- and enantioselective iridium-catalyzed N-allylations of benzimidazoles, imidazoles, and purines have been developed. N-Allylated benzimidazoles and imidazoles were isolated in high yields (up to 97%) with high branched-to-linear selectivity (up to 99:1) and enantioselectivity (up to 98% ee) from the reactions of benzimidazole and imidazole nucleophiles with unsymmetrical allylic carbonates in the presence of single component, ethylene-bound, metallacyclic iridium catalysts. N-Allylated purines were also obtained in high yields (up to 91%) with high N9:N7 selectivity (up to 96:4), high branched-to-linear selectivity (98:2), and high enantioselectivity (up to 98% ee) under similar conditions. The reactions encompass a range of benzimidazole, imidazole, and purine nucleophiles, as well as a variety of unsymmetrical aryl, heteroaryl, and aliphatic allylic carbonates. Competition experiments between common amine nucleophiles and the heterocyclic nitrogen nucleophiles studied in this work illustrate the effect of nucleophile pKa on the rate of iridium-catalyzed N-allylation reactions. Kinetic studies on the allylation of benzimidazole catalyzed by metallacyclic iridium-phosphoramidite complexes, in combination with studies on the deactivation of these catalysts in the presence of heterocyclic nucleophiles, provide insight into the effects of the structure of the phosphoramidite ligands on the stability of the metallacyclic catalysts. The data obtained from these studies has led to the development of N-allylations of benzimidazoles and imidazoles in the absence of an exogenous base. PMID:19480431

  16. Rh(III)-Catalyzed Synthesis of N-Unprotected Indoles from Imidamides and Diazo Ketoesters via C-H Activation and C-C/C-N Bond Cleavage.

    PubMed

    Qi, Zisong; Yu, Songjie; Li, Xingwei

    2016-02-19

    The synthesis of N-unprotected indoles has been realized via Rh(III)-catalyzed C-H activation/annulation of imidamides with α-diazo β-ketoesters. The reaction occurs with the release of an amide coproduct, which originates from both the imidamide and the diazo as a result of C═N cleavage of the imidamide and C-C(acyl) cleavage of the diazo. A rhodacyclic intermediate has been isolated and a plausible mechanism has been proposed. PMID:26824751

  17. Iridium-catalyzed enantioselective hydrogenation of imines in supercritical carbon dioxide

    SciTech Connect

    Kainz, S.; Brinkmann, A.; Leitner, W.; Pfaltz, A.

    1999-07-14

    Supercritical carbon dioxide (scCO{sub 2}) was shown to be a reaction medium with unique properties for highly efficient iridium-catalyzed enantioselective hydrogenation of prochiral imines. Cationic iridium(I) complexes with chiral phosphinodihydrooxazoles, modified with perfluoroalkyl groups in the ligand or in the anion, were synthesized and tested in the hydrogenation of N-(1-phenylethylidene)aniline. Both the side chains and the lipophilic anions increased the solubility, but the choice of the anion also had a dramatic effect on the enantioselectivity with tetrakis-3,5-bis(trifluoromethyl)phenylborate (BARF) leading to the highest asymmetric induction. (R)-N-phenyl-1-phenylethylamine was formed quantitatively within 1 h in scCO{sub 2}[d(CO{sub 2}) = 0.75 g mL{sup {minus}1}] at 40 C and a H{sub 2} pressure of 30 bar with enantiomeric excesses of up to 81% using 0.078 mol % catalyst. The use of scCO{sub 2} instead of conventional solvents such as CH{sub 2}Cl{sub 2} allowed the catalyst loading to be lowered significantly owing to a change in the rate profile of the reaction. the homogeneous nature of the catalytically active species under the reaction conditions was demonstrated and was found to depend strongly on the composition of the reaction mixture and especially on the presence of the substrate. Utilizing the selective extractive properties of scCO{sub 2}, the product could be readily separated from the catalyst, which could be recycled several times without significant loss of activity and enantioselectivity. High-pressure FT-IR and NMR investigations revealed that the reactivity of the products to form the corresponding carbamic acids plays an important role for the application of this new methodology.

  18. Highly regio- and enantioselective synthesis of N-substituted 2-pyridones: iridium-catalyzed intermolecular asymmetric allylic amination.

    PubMed

    Zhang, Xiao; Yang, Ze-Peng; Huang, Lin; You, Shu-Li

    2015-02-01

    The first iridium-catalyzed intermolecular asymmetric allylic amination reaction with 2-hydroxypyridines has been developed, thus providing a highly efficient synthesis of enantioenriched N-substituted 2-pyridone derivatives from readily available starting materials. This protocol features a good tolerance of functional groups in both the allylic carbonates and 2-hydroxypyridines, thereby delivering multifunctionalized heterocyclic products with up to 98% yield and 99% ee. PMID:25504907

  19. Rhodium- and iridium-catalyzed dehydrogenative cyclization through double C-H bond cleavages to produce fluorene derivatives.

    PubMed

    Itoh, Masaki; Hirano, Koji; Satoh, Tetsuya; Shibata, Yu; Tanaka, Ken; Miura, Masahiro

    2013-02-15

    The rhodium-catalyzed cyclization of a series of 2,2-diarylalkanoic acids in the presence of copper acetate as an oxidant smoothly proceeded through double C-H bond cleavages and subsequent decarboxylation to produce the corresponding fluorene derivatives. The direct cyclization of triarylmethanols also took place efficiently by using an iridium catalyst in place of the rhodium, while the hydroxy function was still intact. PMID:23360206

  20. Iridium-Catalyzed Allylic Amination Route to α-Aminoboronates: Illustration of the Decisive Role of Boron Substituents

    PubMed Central

    Touchet, Sabrina; Molander, Gary A.; Carboni, Bertrand; Bouillon, Alexandre

    2012-01-01

    The development of a new route to α-aminoboronates using an iridium-catalyzed allylic amination on boronated substrates is described. Unlike the boronate group, the trifluoroborato substituent was found to govern the regioselectivity exclusively in favor of branched products. The transformation of an allylic substitution product into an α-aminoboronic ester in an efficient way validated the implementation of this approach. PMID:22350584

  1. Carboxylate-Assisted Iridium-Catalyzed C-H Amination of Arenes with Biologically Relevant Alkyl Azides.

    PubMed

    Zhang, Tao; Hu, Xuejiao; Wang, Zhen; Yang, Tiantian; Sun, Hao; Li, Guigen; Lu, Hongjian

    2016-02-24

    An iridium-catalyzed C-H amination of arenes with a wide substrate scope is reported. Benzamides with electron-donating and -withdrawing groups and linear, branched, and cyclic alkyl azides are all applicable. Cesium carboxylate is crucial for both reactivity and regioselectivity of the reactions. Many biologically relevant molecules, such as amino acid, peptide, steroid, sugar, and thymidine derivatives can be introduced to arenes with high yields and 100 % chiral retention. PMID:26712274

  2. CO2 hydrogenation catalyzed by iridium complexes with a proton-responsive ligand

    SciTech Connect

    Onishi, Naoya; Xu, Shaoan; Manaka, Yuichi; Suna, Yuki; Wang, Wan -Hui; Muckerman, James T.; Fujita, Etsuko; Himeda, Yuichiro

    2015-02-18

    In this study, the catalytic cycle for the production of formic acid by CO₂ hydrogenation and the reverse reaction has received renewed attention because they are viewed as offering a viable scheme for hydrogen storage and release. In this Forum Article, CO₂ hydrogenation catalyzed by iridium complexes bearing N^N-bidentate ligands is reported. We describe how a ligand containing hydroxyl groups as proton-responsive substituents enhances catalytic performance by an electronic effect of the oxyanions and a pendent-base effect through secondary coordination sphere interaction. In particular, [(Cp*IrCl)₂(TH2BPM)]Cl₂ (Cp* = pentamethyl cyclopentadienyl, TH2BPM = 4,4',6,6'-tetrahydroxy-2,2'-bipyrimidine) promotes enormously the catalytic hydrogenation of CO₂ by these synergistic effects under atmospheric pressure and at room temperature. Additionally, newly designed complexes with azole-type ligands are applied to CO₂ hydrogenation. The catalytic efficiencies of the azole-type complexes are much higher than that of the unsubstituted bipyridine complex [Cp*Ir(bpy)(OH₂)]SO₄. Furthermore, the introduction of one or more hydroxyl groups into ligands such as 2-pyrazolyl-6-hydroxypyridine, 2-pyrazolyl-4,6-dihydroxyl pyrimidine, and 4-pyrazolyl-2,6-dihydroxyl pyrimidine enhanced catalytic activity. It is clear that the incorporation of electron-donating hydroxyl groups into proton-responsive ligands is effective for promoting the hydrogenation of CO₂.

  3. CO2 hydrogenation catalyzed by iridium complexes with a proton-responsive ligand

    DOE PAGESBeta

    Onishi, Naoya; Xu, Shaoan; Manaka, Yuichi; Suna, Yuki; Wang, Wan -Hui; Muckerman, James T.; Fujita, Etsuko; Himeda, Yuichiro

    2015-02-18

    In this study, the catalytic cycle for the production of formic acid by CO₂ hydrogenation and the reverse reaction has received renewed attention because they are viewed as offering a viable scheme for hydrogen storage and release. In this Forum Article, CO₂ hydrogenation catalyzed by iridium complexes bearing N^N-bidentate ligands is reported. We describe how a ligand containing hydroxyl groups as proton-responsive substituents enhances catalytic performance by an electronic effect of the oxyanions and a pendent-base effect through secondary coordination sphere interaction. In particular, [(Cp*IrCl)₂(TH2BPM)]Cl₂ (Cp* = pentamethyl cyclopentadienyl, TH2BPM = 4,4',6,6'-tetrahydroxy-2,2'-bipyrimidine) promotes enormously the catalytic hydrogenation of CO₂ bymore » these synergistic effects under atmospheric pressure and at room temperature. Additionally, newly designed complexes with azole-type ligands are applied to CO₂ hydrogenation. The catalytic efficiencies of the azole-type complexes are much higher than that of the unsubstituted bipyridine complex [Cp*Ir(bpy)(OH₂)]SO₄. Furthermore, the introduction of one or more hydroxyl groups into ligands such as 2-pyrazolyl-6-hydroxypyridine, 2-pyrazolyl-4,6-dihydroxyl pyrimidine, and 4-pyrazolyl-2,6-dihydroxyl pyrimidine enhanced catalytic activity. It is clear that the incorporation of electron-donating hydroxyl groups into proton-responsive ligands is effective for promoting the hydrogenation of CO₂.« less

  4. pH-Dependent catalytic activity and chemoselectivity in transfer hydrogenation catalyzed by iridium complex with 4,4'-dihydroxy-2,2'-bipyridine.

    PubMed

    Himeda, Yuichiro; Onozawa-Komatsuzaki, Nobuko; Miyazawa, Satoru; Sugihara, Hideki; Hirose, Takuji; Kasuga, Kazuyuki

    2008-01-01

    Transfer hydrogenation catalyzed by an iridium catalyst with 4,4'-dihydroxy-2,2'-bipyridine (DHBP) in an aqueous formate solution exhibits highly pH-dependent catalytic activity and chemoselectivity. The substantial change in the activity is due to the electronic effect based on the acid-base equilibrium of the phenolic hydroxyl group of DHBP. Under basic conditions, high turnover frequency values of the DHBP complex, which can be more than 1000 times the value of the unsubstituted analogue, are obtained (up to 81 000 h(-1) at 80 degrees C). In addition, the DHBP catalyst exhibits pH-dependent chemoselectivity for alpha,beta-unsaturated carbonyl compounds. Selective reduction of the C=C bond of enone with high activity are observed under basic conditions. The ketone moieties can be reduced with satisfactory activity under acidic conditions. In particular, pH-selective chemoselectivity of the C=O versus C=C bond reduction was observed in the transfer hydrogenation of cinnamaldehyde. PMID:18989857

  5. Enantioselective hydrogenation. III. Methyl pyruvate hydrogenation catalyzed by alkaloid-modified iridium

    SciTech Connect

    Simons, K.E.; Johnston, P.; Plum, H.; Wells, P.B.; Ibbotson, A.

    1994-12-01

    Enantioselective hydrogenation of methyl pyruvate, MeCOCOOMe to methyl lactate, MeCH(OH)COOMe, is catalyzed in solution at room temperature by supported iridium catalysts modified with cinchona alkaloids. Modification with cinchonidine or quinine yields R-lactate in excess, whereas modification with cinchonine or quinidine favors S-lactate formation. Ir/SiO{sub 2} catalysts (20%) calcined at 393 to 573 K and reduced at 523 to 593 K were highly active for racemic hydrogenation in the absence of a modifier (rates typically 1.8 mol h{sup -1} g{sub cat}{sup -1}) and were comparably active when modified with cinchonidine but gave an enantiomeric excess of about 30%. Use of higher calcination or reduction temperatures led to substantially inferior activity and selectivity. The high rates recorded for both racemic and enantioselective reactions are dependent on the catalysts being activated before use by a procedure involving exposure of the catalyst to air after the initial reduction. Use of a Cl-free precursor gave an Ir/SiO{sub 2} catalyst (20%) of superior activity but inferior enantioselectivity. Ir/CaCO{sub 3} (5%) was more active for racemic hydrogenation than for enantioselective hydrogenation, but provided the highest value of the enantiomeric excess 39%. Kinematics of reaction are reported. Exchange of H for D in 10,11-dihydrocinchonidine at room temperature over Ir/CaCO{sub 3} occurred in the quinoline moiety but not in the quinuclidine ring system, indicating that the alkaloid was adsorbed to the Ir surface via the interaction of its {pi}-electron system. For both silica-supported and calcium carbonate-supported Ir, the presence of chloride ion in the catalyst was advantageous for the achievement of enantioselectivity. 25 refs., 2 figs., 3 tabs.

  6. Conversion of alkenes to enol silyl ethers of acylsilanes by iridium-catalyzed reaction with a hydrosilane and carbon monoxide

    SciTech Connect

    Chatani, Naoto; Ikeda, Shin-ichi; Ohe, Kouichi

    1992-11-18

    We wish to report that iridium complexes [IrCl(CO){sub 3}]{sub n} and Ir{sub 4}(CO){sub 13} catalyze the reaction of alkenes with a hydrosilane HSiR{sub 3} and carbon monoxide (eq 1) to yield enol silyl ethers of acylsilanes. This unprecedented reaction results in regioselective introduction of carbon monoxide into the terminal carbon atom of alkenes, forming a siloxy(silyl)methylene unit(=C(SiR{sub 3})-OSiR{sub 3}). The present Ir-catalyzed reaction represents the first example of formation of acylsilane derivatives form the HSiR{sub 3}/CO combination. The new catalytic reaction can be applied to a wide variety of terminal alkenes. The acetal, cyano, and epoxide functional groups remain intact through this catalysis. The mechanism of the reaction may involve the possible intervention of a siloxycarbyne comple intermediate. 12 refs., 1 fig., 1 tab.

  7. Gold-Catalyzed Oxidation of Propargylic Ethers with Internal C-C Triple Bonds: Impressive Regioselectivity Enabled by Inductive Effect

    PubMed Central

    Ji, Kegong; D’Souza, Brendan; Nelson, Jon; Zhang, Liming

    2014-01-01

    Inductive perturbations of C-C triple bonds are shown to dictate the regiochemistry of gold-catalyzed oxidation of internal C-C triple bonds in the cases of propargylic ethers, resulting in highly regioselective formation of β-alkoxy-α,β-unsaturated ketones (up to >50/1 selectivity) via α-oxo gold carbene intermediates. Ethers derived from primary propargylic alcohols can be reliably transformed in good yields, and various functional groups are tolerated. With substrates derived from secondary propargylic alcohols, the development of a new P,N-bidentate ligand enables the minimization of competing alkyl group migration to the gold carbene center over the desired hydride migration; the preferred migration of a phenyl group, however, results in efficient formation of a α-phenyl-β-alkoxy-α,β-unsaturated ketone. These results further advance the surrogacy of a propargyl moiety to synthetically versatile enone function with reliable and readily predictable regioselectivity. PMID:25284890

  8. Enantioselective Rh-Catalyzed Carboacylation of C═N Bonds via C-C Activation of Benzocyclobutenones.

    PubMed

    Deng, Lin; Xu, Tao; Li, Hongbo; Dong, Guangbin

    2016-01-13

    Herein we describe the first enantioselective Rh-catalyzed carboacylation of oximes (imines) via C-C activation. In this transformation, the benzocyclobutenone C1-C2 bond is selectively activated by a low valent rhodium catalyst and subsequently the resulting two Rh-C bonds add across a C═N bond, which provides a unique approach to access chiral lactams. A range of polycyclic nitrogen-containing scaffolds were obtained in good yields with excellent enantioselectivity. Further derivatization of the lactam products led to a rapid entry to various novel fused heterocycles. PMID:26674855

  9. Structure sensitivity of hydrogenolytic cleavage of endocyclic and exocyclic C-C bonds in methylcyclohexane over supported iridium particles

    SciTech Connect

    Shi, Hui; Gutierrez, Oliver Y.; Haller, Gary L.; Mei, Donghai; Rousseau, Roger J.; Lercher, Johannes A.

    2013-01-02

    Structure sensitivities, H2 pressure effects and temperature dependencies for rates and selectivities of endo- and exocyclic C–C bond cleavage in methylcyclohexane were studied over supported Ir catalysts. The rate of endocyclic C–C bond cleavage first decreased and then increased with declining Ir dispersion from 0.65 to 0.035. The ring opening (RO) product distribution remained unchanged with varying H2 pressure on small Ir particles, while further shifting to methylhexanes with increasing H2 pressure on large particles. In contrast, the rate and selectivity of exocyclic C–C bond cleavage decreased monotonically with increasing H2 pressure and decreasing Ir particle size. The distinct dependencies of endocyclic and exocyclic C–C bond cleavage pathways on Ir dispersion and H2 pressure suggest that they are mediated by surface species with different ensemble size requirements. DFT calculations were performed on an Ir50 cluster and an Ir(111) surface, with or without pre-adsorbed hydrogen atoms, to provide insight into the observed effects of particle size and H2 pressure on RO pathways. On small Ir particles, the calculated dehydrogenation enthalpies for all endocyclic bonds were similar and affected to similar extents by H2 pressure; on large particles, the selectivity to n-heptane (via substituted C-C bond cleavage) was even lower than on small particles as a result of the least favorable adsorption and dehydrogenation energetics for hindered bonds. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences under Contract DE-AC05-76RL01830. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The computing time is provided by the user project from EMSL, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research and located at Pacific

  10. Donor-Flexible Nitrogen Ligands for Efficient Iridium-Catalyzed Water Oxidation Catalysis.

    PubMed

    Navarro, Miquel; Li, Mo; Müller-Bunz, Helge; Bernhard, Stefan; Albrecht, Martin

    2016-05-10

    A pyridylideneamide ligand with variable donor properties owing to a pronounced zwitterionic and a neutral diene-type resonance structure was used as a dynamic ligand at a Cp* iridium center to facilitate water oxidation catalysis, a reaction that requires the stabilization of a variety of different iridium oxidation states and that is key for developing an efficient solar fuel device. The ligand imparts high activity (nearly three-fold increase of turnover frequency compared to benchmark systems), and exceptionally high turnover numbers, which indicate a robust catalytic cycle and little catalyst degradation. PMID:26919306

  11. Diastereo- and Enantioselective Iridium Catalyzed Coupling of Vinyl Aziridines with Alcohols: Site-Selective Modification of Unprotected Diols and Synthesis of Substituted Piperidines.

    PubMed

    Wang, Gang; Franke, Jana; Ngo, Chinh Q; Krische, Michael J

    2015-06-24

    The chiral cyclometalated π-allyliridium ortho-C,O-benzoate complex (R)-Ir-VIb derived from [Ir(cod)Cl]2, allyl acetate, 4-cyano-3-nitro-benzoic acid, and (R)-MeO-BIPHEP catalyzes the coupling of N-(p-nitrophenylsulfonyl) protected vinyl aziridine 3a with primary alcohols 1a-1l to furnish branched products of C-C bond formation 4a-4l with good levels of anti-diastereo- and enantioselectivity. In the presence of 2-propanol, but under otherwise identical conditions, vinyl aziridine 3a and aldehydes 2a-2l engage in reductive coupling to furnish an equivalent set of adducts 4a-4l with roughly equivalent levels of anti-diastereo- and enantioselectivity. Using enantiomeric iridium catalysts, vinyl aziridine 3a reacts with unprotected chiral 1,3-diols 1m-1o in a site-selective manner to deliver the diastereomeric products of C-allylation syn-4m, -4n, -4o and anti-4m, -4n, -4o, respectively, with good isolated yields and excellent levels of catalyst-directed diastereoselectivity. These adducts were directly converted to the diastereomeric 2,4,5-trisubstituted piperidines syn-5m, -5n, -5o and anti-5m, -5n, -5o. PMID:26074091

  12. Synthesis of 2H-Azirines by Iridium-Catalyzed Decarboxylative Ring Contraction of Isoxazol-5(4H)-ones.

    PubMed

    Okamoto, Kazuhiro; Shimbayashi, Takuya; Yoshida, Masato; Nanya, Atsushi; Ohe, Kouichi

    2016-06-13

    A phosphine-free iridium-catalyzed reaction of isoxazol-5(4H)-ones (isoxazolones) has been developed, and affords 2H-azirines through decarboxylation and ring contraction. This method provides an efficient and environmentally benign protocol which could replace the conventional approaches used to synthesize 2H-azirines. PMID:27125870

  13. A Homogeneous, Recyclable Polymer Support for Rh(I)-Catalyzed C-C Bond Formation

    PubMed Central

    Jana, Ranjan; Tunge, Jon A.

    2011-01-01

    A robust and practical polymer-supported, homogeneous, recyclable biphephos rhodium(I) catalyst has been developed for C-C bond formation reactions. Control of polymer molecular weight allowed tuning of the polymer solubility such that the polymer-supported catalyst is soluble in nonpolar solvents and insoluble in polar solvents. Using the supported rhodium catalysts, addition of aryl and vinylboronic acids to the electrophiles such as enones, aldehydes, N-sulfonyl aldimines, and alkynes occurs smoothly to provide products in high yields. Additions of terminal alkynes to enones and industrially relevant hydroformylation reactions have also been successfully carried out. Studies show that the leaching of Rh from the polymer support is low and catalyst recycle can be achieved by simple precipitation and filtration. PMID:21895010

  14. Iridium(I)-catalyzed regioselective C-H activation and hydrogen-isotope exchange of non-aromatic unsaturated functionality.

    PubMed

    Kerr, William J; Mudd, Richard J; Paterson, Laura C; Brown, Jack A

    2014-11-01

    Isotopic labelling is a key technology of increasing importance for the investigation of new CH activation and functionalization techniques, as well as in the construction of labelled molecules for use within both organic synthesis and drug discovery. Herein, we report for the first time selective iridium-catalyzed CH activation and hydrogen-isotope exchange at the β-position of unsaturated organic compounds. The use of our highly active [Ir(cod)(IMes)(PPh3 )][PF6 ] (cod=1,5-cyclooctadiene) catalyst, under mild reaction conditions, allows the regioselective β-activation and labelling of a range of α,β-unsaturated compounds with differing steric and electronic properties. This new process delivers high levels of isotope incorporation over short reaction times by using low levels of catalyst loading. PMID:25283156

  15. Branch-Selective Alkene Hydroarylation by Cooperative Destabilization: Iridium-Catalyzed ortho-Alkylation of Acetanilides

    PubMed Central

    Crisenza, Giacomo E M; Sokolova, Olga O; Bower, John F

    2015-01-01

    An iridium(I) catalyst system, modified with the wide-bite-angle and electron-deficient bisphosphine dFppb (1,4-bis(di(pentafluorophenyl)phosphino)butane) promotes highly branch-selective hydroarylation reactions between diverse acetanilides and aryl- or alkyl-substituted alkenes. This provides direct and ortho-selective access to synthetically challenging anilines, and addresses long-standing issues associated with related Friedel–Crafts alkylations. PMID:26490739

  16. An Iridium(I) N-Heterocyclic Carbene Complex Catalyzes Asymmetric Intramolecular Allylic Amination Reactions.

    PubMed

    Ye, Ke-Yin; Cheng, Qiang; Zhuo, Chun-Xiang; Dai, Li-Xin; You, Shu-Li

    2016-07-01

    A chiral iridium(I) N-heterocyclic carbene complex was reported for the first time as the catalyst in the highly enantioselective intramolecular allylic amination reaction. The current method provides facile access to biologically important enantioenriched indolopiperazinones and piperazinones in good yields (74-91 %) and excellent enantioselectivities (92-99 % ee). Preliminary mechanistic investigations reveal that the C-H activation occurs at the position ortho to the N-aryl group of the ligand. PMID:27162135

  17. Asymmetric Iridium-Catalyzed C-C Coupling of Chiral Diols via Site-Selective Redox-Triggered Carbonyl Addition.

    PubMed

    Shin, Inji; Krische, Michael J

    2016-01-01

    Cyclometalated π-allyliridium C,O-benzoate complexes modified by axially chiral chelating phosphine ligands display a pronounced kinetic preference for primary alcohol dehydrogenation, enabling highly site-selective redox-triggered carbonyl additions of chiral primary-secondary 1,3-diols with exceptional levels of catalyst-directed diastereoselectivity. Unlike conventional methods for carbonyl allylation, the present redox-triggered alcohol C-H functionalizations bypass the use of protecting groups, premetalated reagents, and discrete alcohol-to-aldehyde redox reactions. PMID:26187028

  18. Iridium/Copper Co-catalyzed Anti-Stereoselective Ring Opening of Oxabenzonorbornadienes with Grignard Reagents.

    PubMed

    Cheng, Guo; Yang, Wen; Li, Yue; Yang, Dingqiao

    2016-09-01

    Cooperative catalysis has been widely considered as one of the most powerful strategies to improve synthetic efficiency. A new iridium/copper cocatalyst was developed for the ring-opening reaction of oxabenzonorbornadienes with a wide variety of Grignard reagents, which afforded the corresponding anti-2-substituted 1,2-dihydronaphthalen-1-ols in high yields (up to 99% yield) under mild conditions. The effects of catalyst loading, Lewis acid, Grignard reagent loading, and reaction temperature on the yield were investigated. To the best of our knowledge, it represents the first example of ring-opening reactions of oxabicyclic alkenes with Grignard reagent nucleophiles in a trans-stereoselective manner. PMID:27455165

  19. Cyclometalated iridium complexes of bis(aryl) phosphine ligands: catalytic C-H/C-D exchanges and C-C coupling reactions.

    PubMed

    Campos, Jesús; Espada, María F; López-Serrano, Joaquín; Carmona, Ernesto

    2013-06-01

    This work details the synthesis and structural identification of a series of complexes of the (η(5)-C5Me5)Ir(III) unit coordinated to cyclometalated bis(aryl)phosphine ligands, PR'(Ar)2, for R' = Me and Ar = 2,4,6-Me3C6H2, 1b; 2,6-Me2-4-OMe-C6H2, 1c; 2,6-Me2-4-F-C6H2, 1d; R' = Et, Ar = 2,6-Me2C6H3, 1e. Both chloride- and hydride-containing compounds, 2b-2e and 3b-3e, respectively, are described. Reactions of chlorides 2 with NaBArF (BArF = B(3,5-C6H3(CF3)2)4) in the presence of CO form cationic carbonyl complexes, 4(+), with ν(CO) values in the narrow interval 2030-2040 cm(-1), indicating similar π-basicity of the Ir(III) center of these complexes. In the absence of CO, NaBArF forces κ(4)-P,C,C',C″ coordination of the metalated arm (studied for the selected complexes 5b, 5d, and 5e), a binding mode so far encountered only when the phosphine contains two benzylic groups. A base-catalyzed intramolecular, dehydrogenative, C-C coupling reaction converts the κ(4) species 5d and 5e into the corresponding hydrido phosphepine complexes 6d and 6e. Using CD3OD as the source of deuterium, the chlorides 2 undergo deuteration of their 11 benzylic positions whereas hydrides 3 experience only D incorporation into the Ir-H and Ir-CH2 sites. Mechanistic schemes that explain this diversity have come to light thanks to experimental and theoretical DFT studies that are also reported. PMID:23675910

  20. Ceric ammonium nitrate (CAN) catalyzed modification of ketones via two C-C bond cleavages with the retention of the oxo-group.

    PubMed

    Feng, Peng; Sun, Xiang; Su, Yijin; Li, Xinyao; Zhang, Li He; Shi, Xiaodong; Jiao, Ning

    2014-06-20

    A simple ceric ammonium nitrate (CAN) catalyzed functionalization of ketones through double C-C bond cleavage strategy has been disclosed. This reaction provides a mild, practical method toward carbamoyl azides, which are versatile intermediates and building blocks in organic synthesis. Based on relevant mechanistic studies, a unique and plausible C-C bond and N-O bond cleavage process is proposed, where the oxyamination intermediate plays an important role in this reaction. PMID:24906031

  1. Access to Structurally Diverse Quinoline-Fused Heterocycles via Rhodium(III)-Catalyzed C-C/C-N Coupling of Bifunctional Substrates.

    PubMed

    Yu, Songjie; Li, Yunyun; Zhou, Xukai; Wang, He; Kong, Lingheng; Li, Xingwei

    2016-06-17

    Rhodium(III)-catalyzed C-H activation of heteroarenes and functionalization with bifunctional substrates such as anthranils allows facile construction of quinoline-fused heterocycles under redox-neutral conditions. The couplings feature broad substrate scope and provide step-economical access to two classes of quinoline-fused condensed heterocycles. PMID:27267178

  2. Total synthesis of protosappanin A and its derivatives via palladium catalyzed ortho C-H activation/C-C cyclization under microwave irradiation.

    PubMed

    Liu, Jiaqi; Zhou, Xuan; Wang, Chenglong; Fu, Wanyong; Chu, Wenyi; Sun, Zhizhong

    2016-04-14

    A total synthesis method for protosappanin A, which is a complex natural product with many biological activities, was developed with 6 linear steps. Dibenzo[b,d]oxepinones as the key intermediates of the synthetic route were prepared by a palladium-catalyzed ortho C-H activation/C-C cyclization under microwave irradiation. 25 derivatives of protosappanin A were obtained. PMID:26997503

  3. Rhodium-catalyzed oxidative coupling of triarylmethanols with internal alkynes via successive C-H and C-C bond cleavages.

    PubMed

    Uto, Toshihiko; Shimizu, Masaki; Ueura, Kenji; Tsurugi, Hayato; Satoh, Tetsuya; Miura, Masahiro

    2008-01-01

    The rhodium-catalyzed oxidative coupling of triarylmethanols with internal alkynes effectively proceeds in a 1:2 manner via cleavage of C-H and C-C bonds to produce the corresponding naphthalene derivatives. Addition of tri- or tetraphenylcyclopentadiene as a ligand is crucial for the reaction to occur efficiently. PMID:18052297

  4. A Selective Rh(I) -Catalyzed Substrate-Controlled C-C Bond Activation of Benzyl Sulfonamide/Alcohol-Tethered Alkylidenecyclopropanes.

    PubMed

    Chen, Kai; Liu, Jia-Xin; Tang, Xiang-Ying; Shi, Min

    2016-08-01

    Benzyl sulfonamide/alcohol-tethered alkylidenecyclopropanes undergo a rhodium-catalyzed and substrate-controlled selective C-C bond activation, producing three types of common organic structural units: benzo[c]azepine/oxepines, dihydronaphthalen-1-amines, and conjugated dienes. Epoxidation and aromatization of these products to construct two useful compounds have also been achieved. PMID:27305281

  5. Iridium-bipyridine periodic mesoporous organosilica catalyzed direct C-H borylation using a pinacolborane.

    PubMed

    Maegawa, Yoshifumi; Inagaki, Shinji

    2015-08-01

    Heterogeneous catalysis for direct C-H borylation of arenes and heteroarenes in the combination of iridium (Ir) complex fixed on periodic mesoporous organosilica containing bipyridine ligands within the framework (Ir-BPy-PMO) and pinacolborane (HBpin) is reported. Ir-BPy-PMO showed higher catalytic activity toward the borylation of benzene with inexpensive HBpin compared to expensive bis(pinacolato)diboron (B2pin2). The precatalyst could be handled without the use of a glove box. The catalyst was easily recovered from reaction mixtures by simple filtration under air. The recovered catalyst still showed good catalytic activity for at least three more times for the borylation of benzene. A variety of arenes and heteroarenes were successfully borylated with high boron efficiency by Ir-BPy-PMO using HBpin, whereas almost no activity was observed for borylation of some heteroarenes with B2pin2. The system using Ir-BPy-PMO and HBpin was also utilized in syntheses of multi-boronated thiophene-based building blocks containing ladder-, acenefused-, and fused-thiophene skeletons. The combination of a stable and reusable solid catalyst and inexpensive HBpin is expected to be superior to conventional approaches for the development of industrial applications. PMID:25748945

  6. Immobilized catalysts for iridium-catalyzed allylic amination: rate enhancement by immobilization.

    PubMed

    Malakar, Chandi C; Helmchen, Günter

    2015-05-01

    The first immobilized catalyst for Ir-catalyzed asymmetric allylic aminations is described. The catalyst is a cationic (π-allyl)Ir complex bound by cation exchange to an anionic silica gel support. Preparation of the catalyst is facile, and the supported catalyst displayed considerably enhanced activity compared with the parent homogeneous catalyst. Up to 43 consecutive amination runs were possible in recycling experiments. PMID:25787122

  7. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has

  8. Palladium(ii)-catalyzed C-C and C-O bond formation for the synthesis of C1-benzoyl isoquinolines from isoquinoline N-oxides and nitroalkenes.

    PubMed

    Li, Jiu-Ling; Li, Wei-Ze; Wang, Ying-Chun; Ren, Qiu; Wang, Heng-Shan; Pan, Ying-Ming

    2016-08-01

    C1-Benzoyl isoquinolines can be generated via a palladium(ii)-catalyzed C-C and C-O coupling of isoquinoline N-oxides with aromatic nitroalkenes. The reaction proceeds through remote C-H bond activation and subsequent intramolecular oxygen atom transfer (OAT). In this reaction, the N-O bond was designed as a directing group in the C-H bond activation as well as the source of an oxygen atom. PMID:27443150

  9. Rhodium(III)-catalyzed C-C coupling of 7-azaindoles with vinyl acetates and allyl acetates.

    PubMed

    Li, Shuai-Shuai; Wang, Cheng-Qi; Lin, Hui; Zhang, Xiao-Mei; Dong, Lin

    2016-01-01

    The behaviour of electron-rich alkenes with 7-azaindoles in rhodium(III)-catalyzed C-H activation is investigated. Various substituted vinyl acetates and allyl acetates as coupling partners reacted smoothly providing a wide variety of 7-azaindole derivatives, and the selectivity of the coupling reaction is alkene-dependent. In addition, the approaches of rhodium(III)-catalyzed dehydrogenative Heck-type reaction (DHR) and carbonylation reaction were quite novel and simple. PMID:26553424

  10. Splitting a Substrate into Three Parts: Gold-Catalyzed Nitrogenation of Alkynes by C-C and C≡C Bond Cleavage.

    PubMed

    Qin, Chong; Su, Yijin; Shen, Tao; Shi, Xiaodong; Jiao, Ning

    2016-01-01

    A gold-catalyzed nitrogenation of alkynes for the synthesis of carbamides and amino tetrazoles through C-C and C≡C bond cleavages is described. A diverse set of functionalized carbamide and amino tetrazole derivatives were selectively constructed under mild conditions. The chemoselectivity can be easily switched by the selection of the acid additives. The reaction is characterized by its broad substrate scope, direct construction of high value products, easy operation under air, and mild conditions at room temperature. This chemistry provides a way to transform alkynes by splitting the substrate into three parts. PMID:26494539

  11. Ruthenium-Catalyzed Transfer Hydrogenation for C-C Bond Formation: Hydrohydroxyalkylation and Hydroaminoalkylation via Reactant Redox Pairs.

    PubMed

    Perez, Felix; Oda, Susumu; Geary, Laina M; Krische, Michael J

    2016-06-01

    Merging the chemistry of transfer hydrogenation and carbonyl or imine addition, a broad new family of redox-neutral or reductive hydrohydroxyalkylations and hydroaminomethylations have been developed. In these processes, hydrogen redistribution between alcohols and π-unsaturated reactants is accompanied by C-C bond formation, enabling direct conversion of lower alcohols to higher alcohols. Similarly, hydrogen redistribution between amines to π-unsaturated reactants results in direct conversion of lower amines to higher amines. Alternatively, equivalent products of hydrohydroxyalkylation and hydroaminomethylation may be generated through the reaction of carbonyl compounds or imines with π-unsaturated reactants under the conditions of 2-propanol-mediated reductive coupling. Finally, using vicinally dioxygenated reactants, that is, diol, ketols, or diones, successive transfer hydrogenative coupling occurs to generate 2 C-C bonds, resulting in products of formal [4+2] cycloaddition. PMID:27573275

  12. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures.

    PubMed

    Fan, Qitang; Gottfried, J Michael; Zhu, Junfa

    2015-08-18

    Carbon-based nanostructures have attracted tremendous interest because of their versatile and tunable properties, which depend on the bonding type of the constituting carbon atoms. Graphene, as the most prominent representative of the π-conjugated carbon-based materials, consists entirely of sp(2)-hybridized carbon atoms and exhibits a zero band gap. Recently, countless efforts were made to open and tune the band gap of graphene for its applications in semiconductor devices. One promising method is periodic perforation, resulting in a graphene nanomesh (GNM), which opens the band gap while maintaining the exceptional transport properties. However, the typically employed lithographic approach for graphene perforation is difficult to control at the atomic level. The complementary bottom-up method using surface-assisted carbon-carbon (C-C) covalent coupling between organic molecules has opened up new possibilities for atomically precise fabrication of conjugated nanostructures like GNM and graphene nanoribbons (GNR), although with limited maturity. A general drawback of the bottom-up approach is that the desired structure usually does not represent the global thermodynamic minimum. It is therefore impossible to improve the long-range order by postannealing, because once the C-C bond formation becomes reversible, graphene as the thermodynamically most stable structure will be formed. This means that only carefully chosen precursors and reaction conditions can lead to the desired (non-graphene) material. One of the most popular and frequently used organic reactions for on-surface C-C coupling is the Ullmann reaction of aromatic halides. While experimentally simple to perform, the irreversibility of the C-C bond formation makes it a challenge to obtain long-range ordered nanostructures. With no postreaction structural improvement possible, the assembly process must be optimized to result in defect-free nanostructures during the initial reaction, requiring complete

  13. CYP96T1 of Narcissus sp. aff. pseudonarcissus Catalyzes Formation of the Para-Para' C-C Phenol Couple in the Amaryllidaceae Alkaloids

    PubMed Central

    Kilgore, Matthew B.; Augustin, Megan M.; May, Gregory D.; Crow, John A.; Kutchan, Toni M.

    2016-01-01

    The Amaryllidaceae alkaloids are a family of amino acid derived alkaloids with many biological activities; examples include haemanthamine, haemanthidine, galanthamine, lycorine, and maritidine. Central to the biosynthesis of the majority of these alkaloids is a C-C phenol-coupling reaction that can have para-para', para-ortho', or ortho-para' regiospecificity. Through comparative transcriptomics of Narcissus sp. aff. pseudonarcissus, Galanthus sp., and Galanthus elwesii we have identified a para-para' C-C phenol coupling cytochrome P450, CYP96T1, capable of forming the products (10bR,4aS)-noroxomaritidine and (10bS,4aR)-noroxomaritidine from 4′-O-methylnorbelladine. CYP96T1 was also shown to catalyzed formation of the para-ortho' phenol coupled product, N-demethylnarwedine, as less than 1% of the total product. CYP96T1 co-expresses with the previously characterized norbelladine 4′-O-methyltransferase. The discovery of CYP96T1 is of special interest because it catalyzes the first major branch in Amaryllidaceae alkaloid biosynthesis. CYP96T1 is also the first phenol-coupling enzyme characterized from a monocot. PMID:26941773

  14. An Electron-Poor C64 Nanographene by Palladium-Catalyzed Cascade C-C Bond Formation: One-Pot Synthesis and Single-Crystal Structure Analysis.

    PubMed

    Seifert, Sabine; Shoyama, Kazutaka; Schmidt, David; Würthner, Frank

    2016-05-23

    Herein, we report the one-pot synthesis of an electron-poor nanographene containing dicarboximide groups at the corners. We efficiently combined palladium-catalyzed Suzuki-Miyaura cross-coupling and dehydrohalogenation to synthesize an extended two-dimensional π-scaffold of defined size in a single chemical operation starting from N-(2,6-diisopropylphenyl)-4,5-dibromo-1,8-naphthalimide and a tetrasubstituted pyrene boronic acid ester as readily accessible starting materials. The reaction of these precursors under the conditions commonly used for Suzuki-Miyaura cross-coupling afforded a C64 nanographene through the formation of ten C-C bonds in a one-pot process. Single-crystal X-ray analysis unequivocally confirmed the structure of this unique extended aromatic molecule with a planar geometry. The optical and electrochemical properties of this largest ever synthesized planar electron-poor nanographene skeleton were also analyzed. PMID:27058998

  15. Iridium(iii)-catalyzed regioselective direct arylation of sp(2) C-H bonds with diaryliodonium salts.

    PubMed

    Gao, Pan; Liu, Li; Shi, Zhuangzhi; Yuan, Yu

    2016-08-01

    A regioselective direct arylation of arenes and olefins at the ortho position is reported. The key to the high selectivity is the appropriate choice of diaryliodonium salts as the arylating reagent in the presence of a cationic iridium(iii) catalyst. The coordination of the metal with an oxygen atom or a nitrogen atom and subsequent C-H activation allows for direct arylation with coupling partners. This reaction proceeds under mild reaction conditions and with a high tolerance of various functional groups including many halide functional groups. PMID:27381238

  16. Selective iridium-catalyzed alkylation of (hetero)aromatic amines and diamines with alcohols under mild reaction conditions.

    PubMed

    Blank, Benoît; Michlik, Stefan; Kempe, Rhett

    2009-01-01

    A P,N-ligand-coordinated iridium complex has been employed as an efficient catalyst for the selective monoalkylation of (hetero)aromatic amines with alcohols. A significant improvement of this alkylation method has been achieved, such that it can be performed at a temperature of 70 degrees C and with catalyst loadings as low as 0.1 mol % Ir, while still affording excellent yields of secondary amines. Furthermore, the high selectivity of this catalyst for the monoalkylation of aromatic amino functions has been successfully exploited for the alkylation of diamines in both symmetric and nonsymmetric fashions, providing a novel and very efficient synthetic tool for the preparation of N,N'-dialkylated aromatic diamines. PMID:19219878

  17. Iridium- and rhodium-catalyzed C-H activation and formyl arylation of benzaldehydes under chelation-assistance.

    PubMed

    Yang, Xifa; Wang, He; Zhou, Xukai; Li, Xingwei

    2016-06-21

    Mild and efficient synthesis of benzophenones via Ir(iii)- and Rh(iii)-catalyzed, directing group-assisted formyl C-H arylation of benzaldehydes has been achieved using diaryliodonium salts, in which Rh(iii) and Ir(iii) catalysts exhibited a complementary substrate scope. PMID:27222168

  18. Iridium-catalyzed anti-diastereo- and enantioselective carbonyl (trimethylsilyl)allylation from the alcohol or aldehyde oxidation level.

    PubMed

    Han, Soo Bong; Gao, Xin; Krische, Michael J

    2010-07-01

    Using the ortho-cyclometalated pi-allyl iridium precatalyst (R)-I derived from [Ir(cod)Cl](2), 4-cyano-3-nitrobenzoic acid, (R)-SEGPHOS, and allyl acetate, enantioselective transfer hydrogenation of alpha-(trimethylsilyl)allyl acetate in the presence of aldehydes 2a-i mediated by 2-propanol delivers products of (trimethylsilyl)allylation 4a-i in good isolated yields and with exceptional levels of anti-diastereoselectivity and enantioselectivity (90-99% ee). In the absence of 2-propanol, but under otherwise identical reaction conditions, carbonyl (trimethylsilyl)allylation is achieved directly from the alcohol oxidation level to furnish an equivalent set of adducts 4a-i with roughly equivalent isolated yields and stereoselectivities. To evaluate the synthetic utility of the reaction products 4a-i, adduct 4g was converted to the 1,4-ene-diol 5g via dioxirane-mediated oxidative desilylation with allylic transposition, the allylic alcohol 6g via protodesilylation with allylic transposition, and the gamma-lactam 7g via chlorosulfonyl isocyanate-mediated cycloaddition. PMID:20540509

  19. Cesium Carboxylate-Promoted Iridium Catalyzed C-H Amidation/Cyclization with 2,2,2-Trichloroethoxycarbonyl Azide.

    PubMed

    Zhang, Tao; Wang, Zhen; Hu, Xuejiao; Yu, Meng; Deng, Tianning; Li, Guigen; Lu, Hongjian

    2016-06-01

    An Ir(III)-catalyzed direct C-H amidation/cyclization of benzamides using 2,2,2-trichloroethoxycarbonyl azide (TrocN3) as the aminocarbonyl source is reported. With the aid of cesium carboxylate, the reactions proceed efficiently and with high regioselectivity, producing various functionalized quinazoline-2,4(1H,3H)-diones, which are important building blocks and key synthetic intermediates for biologically and medicinally important compounds. During the reactions, two new C-N bonds were formed by breaking C-H and N-H bonds sequence. PMID:27164005

  20. Synthesis of a-Alkylated Ketones via Tandem Acceptorless Dehydrogenation/a-Alkylation from Secondary and Primary Alcohols Catalyzed by Metal-Ligand Bifunctional Iridium Complex [Cp*Ir(2,2'-bpyO)(H2O)].

    PubMed

    Wang, Rongzhou; Ma, Juan; Li, Feng

    2015-11-01

    A new strategy for the synthesis of α-alkylated ketones via tandem acceptorless dehydrogenation/α-alkylation from secondary and primary alcohols was proposed and accomplished. In the presence of metal-ligand bifunctional iridium complex [Cp*Ir(2,2'-bpyO)(H2O)], various desirable products were obtained in high yields. Compared with previous methods for the direct dehydrogenative coupling of secondary alcohols with primary alcohols to α-alkylated ketones, this protocol has obvious advantages including complete selectivity for α-alkylated ketones and more environmentally benign conditions. Notably, the study also exhibited the potential to develop tandem reactions catalyzed using a metal-ligand bifunctional iridium complex. PMID:26428210

  1. Aerobic synthesis of substituted quinoline from aldehyde and aniline: copper-catalyzed intermolecular C-H active and C-C formative cyclization.

    PubMed

    Yan, Rulong; Liu, Xingxing; Pan, Congming; Zhou, Xiaoqiang; Li, Xiaoni; Kang, Xing; Huang, Guosheng

    2013-09-20

    An efficient method for the direct synthesis of substituted quinolines from anilines and aldehydes through C-H functionalization, C-C/C-N bond formation, and C-C bond cleavage has been developed. The method is simple and practical and employs air as an oxidant. PMID:24024912

  2. Labile Cu(I) catalyst/spectator Cu(II) species in copper-catalyzed C-C coupling reaction: operando IR, in situ XANES/EXAFS evidence and kinetic investigations.

    PubMed

    He, Chuan; Zhang, Guanghui; Ke, Jie; Zhang, Heng; Miller, Jeffrey T; Kropf, Arthur J; Lei, Aiwen

    2013-01-01

    Insights toward the Cu-catalyzed C-C coupling reaction were investigated through operando IR and in situ X-ray absorption near-edge structure/extended X-ray absorption fine structure. It was found that the Cu(I) complex formed from the reaction of CuI with β-diketone nucleophile was liable under the cross-coupling conditions, which is usually considered as active catalytic species. This labile Cu(I) complex could rapidly disproportionate to the spectator Cu(II) and Cu(0) species under the reaction conditions, which was an off-cycle process. In this copper-catalyzed C-C coupling reaction, β-diketone might act both as the substrate and the ligand. PMID:23214954

  3. Metal- and Oxidant-Free Synthesis of Quinazolinones from β-Ketoesters with o-Aminobenzamides via Phosphorous Acid-Catalyzed Cyclocondensation and Selective C-C Bond Cleavage.

    PubMed

    Li, Zhongwen; Dong, Jianyu; Chen, Xiuling; Li, Qiang; Zhou, Yongbo; Yin, Shuang-Feng

    2015-10-01

    A general and efficient phosphorous acid-catalyzed cyclocondensation of β-ketoesters with o-aminobenzamides via selective C-C bond cleavage leading to quinazolinones is developed. This reaction proceeds smoothly under metal- and oxidant-free conditions, giving both 2-alkyl- and 2-aryl-substituted quinazolinones in excellent yields. This strategy can also be applied to the synthesis of other N-heterocycles, such as benzimidazoles and benzothiazoles. PMID:26339716

  4. Cuprous Oxide Catalyzed Oxidative C-C Bond Cleavage for C-N Bond Formation: Synthesis of Cyclic Imides from Ketones and Amines.

    PubMed

    Wang, Min; Lu, Jianmin; Ma, Jiping; Zhang, Zhe; Wang, Feng

    2015-11-16

    Selective oxidative cleavage of a C-C bond offers a straightforward method to functionalize organic skeletons. Reported herein is the oxidative C-C bond cleavage of ketone for C-N bond formation over a cuprous oxide catalyst with molecular oxygen as the oxidant. A wide range of ketones and amines are converted into cyclic imides with moderate to excellent yields. In-depth studies show that both α-C-H and β-C-H bonds adjacent to the carbonyl groups are indispensable for the C-C bond cleavage. DFT calculations indicate the reaction is initiated with the oxidation of the α-C-H bond. Amines lower the activation energy of the C-C bond cleavage, and thus promote the reaction. New insight into the C-C bond cleavage mechanism is presented. PMID:26494312

  5. Alkyne-aldehyde reductive C-C coupling through ruthenium-catalyzed transfer hydrogenation: direct regio- and stereoselective carbonyl vinylation to form trisubstituted allylic alcohols in the absence of premetallated reagents.

    PubMed

    Leung, Joyce C; Patman, Ryan L; Sam, Brannon; Krische, Michael J

    2011-10-24

    Nonsymmetric 1,2-disubstituted alkynes engage in reductive coupling to a variety of aldehydes under the conditions of ruthenium-catalyzed transfer hydrogenation by employing formic acid as the terminal reductant and delivering the products of carbonyl vinylation with good to excellent levels of regioselectivity and with complete control of olefin stereochemistry. As revealed in an assessment of the ruthenium counterion, iodide plays an essential role in directing the regioselectivity of C-C bond formation. Isotopic labeling studies corroborate reversible catalytic propargyl C-H oxidative addition in advance of the C-C coupling, and demonstrate that the C-C coupling products do not experience reversible dehydrogenation by way of enone intermediates. This transfer hydrogenation protocol enables carbonyl vinylation in the absence of stoichiometric metallic reagents. PMID:21953608

  6. Bronsted-Evans-Polany relationships for C-C bond forming and C-C bond breaking reactions in thiamine-catalyzed decarboxylation of 2-keto acids using density functional theory.

    SciTech Connect

    Assary, R. S.; Broadbelt, L. J.; Curtiss, L. A.

    2012-01-01

    The concept of generalized enzyme reactions suggests that a wide variety of substrates can undergo enzymatic transformations, including those whose biotransformation has not yet been realized. The use of quantum chemistry to evaluate kinetic feasibility is an attractive approach to identify enzymes for the proposed transformation. However, the sheer number of novel transformations that can be generated makes this impractical as a screening approach. Therefore, it is essential to develop structure/activity relationships based on quantities that are more efficient to calculate. In this work, we propose a structure/activity relationship based on the free energy of binding or reaction of non-native substrates to evaluate the catalysis relative to that of native substrates. While Broensted-Evans-Polanyi (BEP) relationships such as that proposed here have found broad application in heterogeneous catalysis, their extension to enzymatic catalysis is limited. We report here on density functional theory (DFT) studies for C-C bond formation and C-C bond cleavage associated with the decarboxylation of six 2-keto acids by a thiamine-containing enzyme (EC 1.2.7.1) and demonstrate a linear relationship between the free energy of reaction and the activation barrier. We then applied this relationship to predict the activation barriers of 17 chemically similar novel reactions. These calculations reveal that there is a clear correlation between the free energy of formation of the transition state and the free energy of the reaction, suggesting that this method can be further extended to predict the kinetics of novel reactions through our computational framework for discovery of novel biochemical transformations.

  7. Rhodium(III)-Catalyzed Directed ortho-C-H Bond Functionalization of Aromatic Ketazines via C-S and C-C Coupling.

    PubMed

    Wen, Jing; Wu, An; Wang, Mingyang; Zhu, Jin

    2015-11-01

    Described herein is a convenient and efficient method for sulfuration and olefination of aromatic ketazines via rhodium-catalyzed oxidative C-H bond activation. A range of substituted substrates are supported, and a possible mechanism is proposed according to experimental results of kinetic isotopic effect, reversibility studies, and catalysis of rhodacycle intermediate c1. PMID:26417874

  8. Enantioselective Ruthenium Catalyzed Carbonyl Allylation via Alkyne-Alcohol C-C Bond Forming Transfer Hydrogenation: Allene Hydrometallation vs. Oxidative Coupling

    PubMed Central

    Liang, Tao; Nguyen, Khoa D.; Zhang, Wandi; Krische, Michael J.

    2015-01-01

    Chiral ruthenium(II) complexes modified by Josiphos ligands catalyze the reaction of alkynes with primary alcohols to form homoallylic alcohols with excellent control of regio-, diastereo- and enantioselectivity. These processes represent the first examples of enantioselective carbonyl allylation using alkynes as allylmetal equivalents. PMID:25734220

  9. Successive C-C Coupling of Dienes to Vicinally Dioxygenated Hydrocarbons: Ruthenium Catalyzed [4+2] Cycloaddition across the Diol, Hydroxycarbonyl or Dione Oxidation Levels

    PubMed Central

    Geary, Laina M.; Glasspoole, Ben W.; Kim, Mary M.; Krische, Michael J.

    2013-01-01

    The ruthenium(0) catalyst generated from Ru3(CO)12 and tricyclohexylphosphine or BIPHEP promotes successive C-C coupling of dienes to vicinally dioxygenated hydrocarbons across the diol, hydroxyketone and dione oxidation levels to form products of [4+2] cycloaddition. A mechanism involving diene-carbonyl oxidative coupling followed by intramolecular carbonyl addition from the resulting allylruthenium intermediate is postulated. PMID:23448269

  10. A one-pot copper catalyzed biomimetic route to N-heterocyclic amides from methyl ketones via oxidative C-C bond cleavage.

    PubMed

    Subramanian, Parthasarathi; Indu, Satrajit; Kaliappan, Krishna P

    2014-12-01

    A direct one-pot Cu-catalyzed biomimetic oxidation of methyl ketones to pharmaceutically important N-heterocyclic amides is reported. The scope of the method is broad, scalable, and mild, and the reaction is tolerant with various acid, base sensitive functionalities with multiple heteroatoms and aryl halides. The extensive mechanistic studies suggest that this reaction follows the Luciferin-Luciferase-like pathway. PMID:25409417

  11. NAD(P)H-Independent Asymmetric C=C Bond Reduction Catalyzed by Ene Reductases by Using Artificial Co-substrates as the Hydrogen Donor

    PubMed Central

    Winkler, Christoph K; Clay, Dorina; Entner, Marcello; Plank, Markus; Faber, Kurt

    2014-01-01

    To develop a nicotinamide-independent single flavoenzyme system for the asymmetric bioreduction of C=C bonds, four types of hydrogen donor, encompassing more than 50 candidates, were investigated. Six highly potent, cheap, and commercially available co-substrates were identified that (under the optimized conditions) resulted in conversions and enantioselectivities comparable with, or even superior to, those obtained with traditional two-enzyme nicotinamide adenine dinucleotide phosphate (NAD(P)H)-recycling systems. PMID:24382795

  12. Metal-catalyzed C-C bond cleavage in alkanes: effects of methyl substitution on transition-state structures and stability.

    PubMed

    Flaherty, David W; Hibbitts, David D; Iglesia, Enrique

    2014-07-01

    Methyl substituents at C-C bonds influence hydrogenolysis rates and selectivities of acyclic and cyclic C2-C8 alkanes on Ir, Rh, Ru, and Pt catalysts. C-C cleavage transition states form via equilibrated dehydrogenation steps that replace several C-H bonds with C-metal bonds, desorb H atoms (H*) from saturated surfaces, and form λ H2(g) molecules. Activation enthalpies (ΔH(‡)) and entropies (ΔS(‡)) and λ values for (3)C-(x)C cleavage are larger than for (2)C-(2)C or (2)C-(1)C bonds, irrespective of the composition of metal clusters or the cyclic/acyclic structure of the reactants. (3)C-(x)C bonds cleave through α,β,γ- or α,β,γ,δ-bound transition states, as indicated by the agreement between measured activation entropies and those estimated for such structures using statistical mechanics. In contrast, less substituted C-C bonds involve α,β-bound species with each C atom bound to several surface atoms. These α,β configurations weaken C-C bonds through back-donation to antibonding orbitals, but such configurations cannot form with (3)C atoms, which have one C-H bond and thus can form only one C-M bond. (3)C-(x)C cleavage involves attachment of other C atoms, which requires endothermic C-H activation and H* desorption steps that lead to larger ΔH(‡) values but also larger ΔS(‡) values (by forming more H2(g)) than for (2)C-(2)C and (2)C-(1)C bonds, irrespective of alkane size (C2-C8) or cyclic/acyclic structure. These data and their mechanistic interpretation indicate that low temperatures and high H2 pressures favor cleavage of less substituted C-C bonds and form more highly branched products from cyclic and acyclic alkanes. Such interpretations and catalytic consequences of substitution seem also relevant to C-X cleavage (X = S, N, O) in desulfurization, denitrogenation, and deoxygenation reactions. PMID:24961991

  13. Ruthenium catalyzed C-C bond formation via transfer hydrogenation: branch-selective reductive coupling of allenes to paraformaldehyde and higher aldehydes.

    PubMed

    Ngai, Ming-Yu; Skucas, Eduardas; Krische, Michael J

    2008-07-01

    Under the conditions of ruthenium-catalyzed transfer hydrogenation employing 2-propanol as the terminal reductant, 1,1-disubstituted allenes 1a- h engage in reductive coupling to paraformaldehyde to furnish homoallylic alcohols 2a- h. Under identical transfer hydrogenation conditions, 1,1-disubstituted allenes engage in reductive coupling to aldehydes 3a- f to furnish homoallylic alcohols 4a- n. In all cases, reductive coupling occurs with branched regioselectivity to deliver homoallylic alcohols bearing all-carbon quaternary centers. PMID:18533665

  14. A novel iridium/acid co-catalyzed transfer hydrogenative C(sp(3))-H bond alkylation to access functionalized N-heteroaromatics.

    PubMed

    Tan, Zhenda; Jiang, Huanfeng; Zhang, Min

    2016-08-01

    A novel iridium/acid co-catalysed transfer hydrogenative coupling strategy, enabling direct alkylation of C(sp(3))-H bonds and atom-economic access to alkyl chain-lengthened N-heteroaromatics from six-membered 2-alkyl cyclic amines and aldehydes, has been demonstrated. This work has built an important basis to convert cyclic amines, a class of bulk chemical raw materials, into functionalized products. PMID:27355181

  15. Ruthenium(0) Catalyzed Endiyne-α-Ketol [4+2] Cycloaddition: Convergent Assembly of Type II Polyketide Substructures via C-C Bond Forming Transfer Hydrogenation

    PubMed Central

    Saxena, Aakarsh; Perez, Felix; Krische, Michael J.

    2015-01-01

    Upon exposure of 3,4-benzannulated 1,5-diynes (benzo-endiynes) to α-ketols (α-hydroxyketones) in the presence of ruthenium(0) catalysts derived from Ru3(CO)12 and RuPhos or CyJohnPhos, successive redox-triggered C-C coupling occurs to generate products of [4+2] cycloaddition. The proposed catalytic mechanism involves consecutive alkyne-carbonyl oxidative couplings to form transient oxaruthana-cycles that suffer α-ketol mediated transfer hydrogenolysis. This process provides a new, convergent means of assembling Type II polyketide substructures. PMID:25938947

  16. Ester-directed Ru-catalyzed C-O activation/C-C coupling reaction of ortho-methoxy naphthoates with organoboroneopentylates.

    PubMed

    Zhao, Yigang; Snieckus, Victor

    2016-01-28

    A new, catalytic and general synthetic methodology for the construction of biaryls and heterobiaryls by the cross-coupling of ortho-methoxy naphthoates with organoboroneopentylates is disclosed. The reaction proceeds under RuH2(CO)(PPh3)3-catalyzed conditions driven by unreactive C-O bond activation of a proximate ester directing group (DG)-catalyst chelation. This one-step synthesis of 2-aryl and -heteroaryl-1-naphthoates has the features of operational simplicity, minimum waste and convenient scale-up. The hierarchy of C(O)Me > CONEt2 > CO2Me coordination-assisted reactivity, of potential value in chemoselective synthesis, is also established. PMID:26661919

  17. Metal-catalyzed alpha-arylation of carbonyl and related molecules: novel trends in C-C bond formation by C-H bond functionalization.

    PubMed

    Johansson, Carin C C; Colacot, Thomas J

    2010-01-01

    Alpha-arylated carbonyl compounds are commonly occurring motifs in biologically interesting molecules and are therefore of high interest to the pharmaceutical industry. Conventional procedures for their synthesis often result in complications in scale-up, such as the use of stoichiometric amounts of toxic reagents and harsh reaction conditions. Over the last decade, significant efforts have been directed towards the development of metal-catalyzed alpha-arylations of carbonyl compounds as an alternative synthetic approach that operates under milder conditions. This Review summarizes the developments in this area to date, with a focus on how the substrate scope has been expanded through selection of the most appropriate synthetic method, such as the careful choice of ligands, precatalysts, bases, and reaction conditions. PMID:20058282

  18. Tailored synthesis of various nanomaterials by using a graphene-oxide-based gel as a nanoreactor and nanohybrid-catalyzed C-C bond formation.

    PubMed

    Biswas, Abhijit; Banerjee, Arindam

    2014-12-01

    New graphene oxide (GO)-based hydrogels that contain vitamin B2/B12 and vitamin C (ascorbic acid) have been synthesized in water (at neutral pH value). These gel-based soft materials have been used to synthesize various metal nanoparticles, including Au, Ag, and Pd nanoparticles, as well as nanoparticle-containing reduced graphene oxide (RGO)-based nanohybrid systems. This result indicates that GO-based gels can be used as versatile reactors for the synthesis of different nanomaterials and hybrid systems on the nanoscale. Moreover, the RGO-based nanohybrid hydrogel with Pd nanoparticles was used as an efficient catalyst for C-C bond-formation reactions with good yields and showed high recyclability in Suzuki-Miyaura coupling reactions. PMID:25224859

  19. Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C-C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells.

    PubMed

    Ikezawa, Nobuhiro; Iwasa, Kinuko; Sato, Fumihiko

    2008-04-01

    Cytochrome P450s (P450) play a key role in oxidative reactions in plant secondary metabolism. Some of them, which catalyze unique reactions other than the standard hydroxylation, increase the structural diversity of plant secondary metabolites. In isoquinoline alkaloid biosyntheses, several unique P450 reactions have been reported, such as methylenedioxy bridge formation, intramolecular C-C phenol-coupling and intermolecular C-O phenol-coupling reactions. We report here the isolation and characterization of a C-C phenol-coupling P450 cDNA (CYP80G2) from an expressed sequence tag library of cultured Coptis japonica cells. Structural analysis showed that CYP80G2 had high amino acid sequence similarity to Berberis stolonifera CYP80A1, an intermolecular C-O phenol-coupling P450 involved in berbamunine biosynthesis. Heterologous expression in yeast indicated that CYP80G2 had intramolecular C-C phenol-coupling activity to produce (S)-corytuberine (aporphine-type) from (S)-reticuline (benzylisoquinoline type). Despite this intriguing reaction, recombinant CYP80G2 showed typical P450 properties: its C-C phenol-coupling reaction required NADPH and oxygen and was inhibited by a typical P450 inhibitor. Based on a detailed substrate-specificity analysis, this unique reaction mechanism and substrate recognition were discussed. CYP80G2 may be involved in magnoflorine biosynthesis in C. japonica, based on the fact that recombinant C. japonica S-adenosyl-L-methionine:coclaurine N-methyltransferase could convert (S)-corytuberine to magnoflorine. PMID:18230623

  20. Iridium-Catalyzed Intramolecular Methoxy C-H Addition to Carbon-Carbon Triple Bonds: Direct Synthesis of 3-Substituted Benzofurans from o-Methoxyphenylalkynes.

    PubMed

    Torigoe, Takeru; Ohmura, Toshimichi; Suginome, Michinori

    2016-07-18

    Catalytic hydroalkylation of an alkyne with methyl ether was accomplished. Intramolecular addition of the C-H bond of a methoxy group in 1-methoxy-2-(arylethynyl)benzenes across a carbon-carbon triple bond took place efficiently either in toluene at 110 °C or in p-xylene at 135 °C in the presence of an iridium catalyst. The initial 5-exo cyclization products underwent double-bond migration during the reaction to give 3-(arylmethyl)benzofurans in high yields. PMID:27168516

  1. Electronic Structure and Bonding in Iron(II) and Iron(I) Complexes Bearing Bisphosphine Ligands of Relevance to Iron-Catalyzed C-C Cross-Coupling.

    PubMed

    Kneebone, Jared L; Fleischauer, Valerie E; Daifuku, Stephanie L; Shaps, Ari A; Bailey, Joseph M; Iannuzzi, Theresa E; Neidig, Michael L

    2016-01-01

    Chelating phosphines are effective additives and supporting ligands for a wide array of iron-catalyzed cross-coupling reactions. While recent studies have begun to unravel the nature of the in situ-formed iron species in several of these reactions, including the identification of the active iron species, insight into the origin of the differential effectiveness of bisphosphine ligands in catalysis as a function of their backbone and peripheral steric structures remains elusive. Herein, we report a spectroscopic and computational investigation of well-defined FeCl2(bisphosphine) complexes (bisphosphine = SciOPP, dpbz, (tBu)dppe, or Xantphos) and known iron(I) variants to systematically discern the relative effects of bisphosphine backbone character and steric substitution on the overall electronic structure and bonding within their iron complexes across oxidation states implicated to be relevant in catalysis. Magnetic circular dichroism (MCD) and density functional theory (DFT) studies demonstrate that common o-phenylene and saturated ethyl backbone motifs result in small but non-negligible perturbations to 10Dq(Td) and iron-bisphosphine bonding character at the iron(II) level within isostructural tetrahedra as well as in five-coordinate iron(I) complexes FeCl(dpbz)2 and FeCl(dppe)2. Notably, coordination of Xantphos to FeCl2 results in a ligand field significantly reduced relative to those of its iron(II) partners, where a large bite angle and consequent reduced iron-phosphorus Mayer bond orders (MBOs) could play a role in fostering the unique ability of Xantphos to be an effective additive in Kumada and Suzuki-Miyaura alkyl-alkyl cross-couplings. Furthermore, it has been found that the peripheral steric bulk of the SciOPP ligand does little to perturb the electronic structure of FeCl2(SciOPP) relative to that of the analogous FeCl2(dpbz) complex, potentially suggesting that differences in the steric properties of these ligands might be more important in

  2. Iridium in natural waters

    SciTech Connect

    Anbar, A.D.; Wasserburg, G.J.; Papanastassiou, D.A.

    1996-09-13

    Iridium, commonly used as a tracer of extraterrestrial material, was measured in rivers, oceans, and an estuarine environment. The concentration of iridium in the oceans ranges from 3.0 ({+-}1.3) x 10{sup 8} to 5.7 ({+-}0.8) x 10{sup 8} atoms per kilogram. Rivers contain from 17.4 ({+-}0.9) x 10{sup 8} to 92.9 ({+-}2.2) x 10{sup 8} atoms per kilogram and supply more dissolved iridium to the oceans than do extraterrestrial sources. In the Baltic Sea, {approximately}75% of riverine iridium is removed from solution. Iron-manganese oxyhydroxides scavenge iridium under oxidizing conditions, but anoxic environments are not a major sink for iridium. The ocean residence time of iridium is between 2 x 10{sup 3} and 2 x 10{sup 4} years. 32 refs., 3 figs., 1 tab.

  3. Processing of Iridium and Iridium Alloys

    SciTech Connect

    Ohriner, Evan Keith

    2008-01-01

    Iridium and its alloys have been considered to be difficult to fabricate due to their high melting temperatures, limited ductility, sensitivity to impurity content, and chemical properties. The variety of processing methods used for iridium and its alloys are reviewed, including purification, melting, forming, joining, and powder metallurgy techniques. Also included are coating and forming by the methods of electroplating, chemical and physical vapor deposition, and melt particle deposition.

  4. Iridium Interfacial Stack (IRIS)

    NASA Technical Reports Server (NTRS)

    Spry, David James (Inventor)

    2015-01-01

    An iridium interfacial stack ("IrIS") and a method for producing the same are provided. The IrIS may include ordered layers of TaSi.sub.2, platinum, iridium, and platinum, and may be placed on top of a titanium layer and a silicon carbide layer. The IrIS may prevent, reduce, or mitigate against diffusion of elements such as oxygen, platinum, and gold through at least some of its layers.

  5. Direct, redox-neutral prenylation and geranylation of secondary carbinol C-H bonds: C4-regioselectivity in ruthenium-catalyzed C-C couplings of dienes to α-hydroxy esters.

    PubMed

    Leung, Joyce C; Geary, Laina M; Chen, Te-Yu; Zbieg, Jason R; Krische, Michael J

    2012-09-26

    The ruthenium catalyst generated in situ from Ru(3)(CO)(12) and tricyclohexylphosphine, PCy(3), promotes the redox-neutral C-C coupling of aryl-substituted α-hydroxy esters to isoprene and myrcene at the diene C4-position, resulting in direct carbinol C-H prenylation and geranylation, respectively. This process enables direct conversion of secondary to tertiary alcohols in the absence of stoichiometric byproducts or premetalated reagents, and is the first example of C4-regioselectivity in catalytic C-C couplings of 2-substituted dienes to carbonyl partners. Mechanistic studies corroborate a catalytic cycle involving diene-carbonyl oxidative coupling. PMID:22985393

  6. Iridium: failures & successes

    NASA Astrophysics Data System (ADS)

    Christensen, CarissaBryce; Beard, Suzette

    2001-03-01

    This paper will provide an overview of the Iridium business venture in terms of the challenges faced, the successes achieved, and the causes of the ultimate failure of the venture — bankruptcy and system de-orbit. The paper will address technical, business, and policy issues. The intent of the paper is to provide a balanced and accurate overview of the Iridium experience, to aid future decision-making by policy makers, the business community, and technical experts. Key topics will include the history of the program, the objectives and decision-making of Motorola, the market research and analysis conducted, partnering strategies and their impact, consumer equipment availability, and technical issues — target performance, performance achieved, technical accomplishments, and expected and unexpected technical challenges. The paper will use as sources trade media and business articles on the Iridium program, technical papers and conference presentations, Wall Street analyst's reports, and, where possible, interviews with participants and close observers.

  7. Copper-catalyzed domino synthesis of 2-imino-1H-imidazol-5(2H)-ones and quinoxalines involving C-C bond cleavage with a 1,3-dicarbonyl unit as a leaving group.

    PubMed

    Yang, Yan; Ni, Fan; Shu, Wen-Ming; Wu, An-Xin

    2014-09-01

    Although 2-imino-1H-imidazol-5(2H)-ones have important biological activities in metabolism, their synthesis has rarely been investigated. Quinoxalines as "privileged scaffolds" in medicinal chemistry have been extensively investigated, but the development of novel and efficient synthetic methods remains very attractive. Herein, we have developed two copper-catalyzed domino reactions for the synthesis of 2-imino-1H-imidazol-5(2H)-ones and quinoxalines involving CC bond-cleavage with a 1,3-dicarbonyl unit as a leaving group. The domino sequence for the synthesis of 2-imino-1H-imidazol-5(2H)-ones includes aza-Michael addition, intramolecular cyclization, CC bond-cleavage, 1,2-rearrangement, and aerobic dehydrogenation reaction, whereas the domino sequence for the synthesis of quinoxalines includes aza-Michael addition, intramolecular cyclization, elimination reaction, and CC bond-cleavage reaction. The two domino reactions have significant advantages including high efficiency, mild reaction conditions, and high tolerance of various functional groups. PMID:25079446

  8. Method for refining contaminated iridium

    DOEpatents

    Heshmatpour, B.; Heestand, R.L.

    1982-08-31

    Contaminated iridium is refined by alloying it with an alloying agent selected from the group consisting of manganese and an alloy of manganese and copper, and then dissolving the alloying agent from the formed alloy to provide a purified iridium powder.

  9. Method for refining contaminated iridium

    DOEpatents

    Heshmatpour, Bahman; Heestand, Richard L.

    1983-01-01

    Contaminated iridium is refined by alloying it with an alloying agent selected from the group consisting of manganese and an alloy of manganese and copper, and then dissolving the alloying agent from the formed alloy to provide a purified iridium powder.

  10. Solar abundance of iridium

    PubMed Central

    Drake, Stephen; Aller, Lawrence H.

    1976-01-01

    By a method of spectrum synthesis, which yields log gfA, where g is the statistical weight of the lower level, f is the oscillator strength, and A is the abundance, an attempt is made to deduce the solar iridium abundance from one relatively unblended, but fairly weak IrI line, λ 3220.78 Å. If the Corliss-Bozman f-value for this line is adopted, we find log A(Ir) = 0.82 on the scale log A(H) = 12.00. The discordance with the value found from carbonaceous chondrites may arise from faulty f-values or from difficulties arising from line blending in this far ultraviolet domain of the solar spectrum. PMID:16578735

  11. Hydridomethyl iridium complex

    DOEpatents

    Bergman, Robert G.; Buchanan, J. Michael; Stryker, Jeffrey M.; Wax, Michael J.

    1989-01-01

    A process for functionalizing methane comprising: (a) reacting methane with a hydridoalkyl metal complex of the formula: CpIr[P(R.sub.1).sub.3 ]H(R.sub.2) wherein Cp represents a cyclopentadienyl or alkylcyclopentadienyl radical having from 1 to 5 carbon atoms; Ir represents an iridium atom; P represents a phosphorus atom; R.sub.1 represents an alkyl group; R.sub.2 represents an alkyl group having at least two carbon atoms; and H represents a hydrogen atom, in the presence of a liquid alkane R.sub.3 H having at least three carbon atoms to form a hydridomethyl complex of the formula: CpIr[P(R.sub.1).sub.3 ]HMe where Me represents a methyl radical. (b) reacting said hydridomethyl complex with an organic halogenating agent such as a tetrahalomethane or a haloform of the formulas: CX'X"X'"X"" or CHX'X"X'"; wherein X', X", X"', and X"" represent halogens selected from bromine, iodine and chlorine, to halomethyl complex of step (a) having the formula: CpIr[P(R.sub.1).sub.3 ]MeX: (c) reacting said halomethyl complex with a mercuric halide of the formula HgX.sub.2 to form a methyl mercuric halide of the formula HgMeX; and (d) reacting said methyl mercuric halide with a molecular halogen of the formula X.sub.2 to form methyl halide.

  12. Understanding the Effect of Monomeric Iridium(III/IV) Aquo Complexes on the Photoelectrochemistry of IrO(x)·nH2O-Catalyzed Water-Splitting Systems.

    PubMed

    Zhao, Yixin; Vargas-Barbosa, Nella M; Strayer, Megan E; McCool, Nicholas S; Pandelia, Maria-Erini; Saunders, Timothy P; Swierk, John R; Callejas, Juan F; Jensen, Lasse; Mallouk, Thomas E

    2015-07-15

    Soluble, monomeric Ir(III/IV) complexes strongly affect the photoelectrochemical performance of IrO(x)·nH2O-catalyzed photoanodes for the oxygen evolution reaction (OER). The synthesis of IrO(x)·nH2O colloids by alkaline hydrolysis of Ir(III) or Ir(IV) salts proceeds through monomeric intermediates that were characterized using electrochemical and spectroscopic methods and modeled in TDDFT calculations. In air-saturated solutions, the monomers exist in a mixture of Ir(III) and Ir(IV) oxidation states, where the most likely formulations at pH 13 are [Ir(OH)5(H2O)](2-) and [Ir(OH)6](2-), respectively. These monomeric anions strongly adsorb onto IrO(x)·nH2O colloids but can be removed by precipitation of the colloids with isopropanol. The monomeric anions strongly adsorb onto TiO2, and they promote the adsorption of ligand-free IrO(x)·nH2O colloids onto mesoporous titania photoanodes. However, the reversible adsorption/desorption of electroactive monomers effectively short-circuits the photoanode redox cycle and thus dramatically degrades the photoelectrochemical performance of the cell. The growth of a dense TiO2 barrier layer prevents access of soluble monomeric anions to the interface between the oxide semiconductor and the electrode back contact (a fluorinated tin oxide transparent conductor) and leads to improved photoanode performance. Purified IrO(x)·nH2O colloids, which contain no adsorbed monomer, give improved performance at the same electrodes. These results explain earlier observations that IrO(x)·nH2O catalysts can dramatically degrade the performance of metal oxide photoanodes for the OER reaction. PMID:26106904

  13. Iridium porphyrins in CD3OD: reduction of Ir(III), CD3-OD bond cleavage, Ir-D acid dissociation and alkene reactions.

    PubMed

    Bhagan, Salome; Imler, Gregory H; Wayland, Bradford B

    2013-04-15

    Methanol solutions of iridium(III) tetra(p-sulfonatophenyl)porphyrin [(TSPP)Ir(III)] form an equilibrium distribution of methanol and methoxide complexes ([(TSPP)Ir(III)(CD3OD)(2-n)(OCD3)n]((3+n)-)). Reaction of [(TSPP)Ir(III) with dihydrogen (D2) in methanol produces an iridium hydride [(TSPP)Ir(III)-D(CD3OD)](4-) in equilibrium with an iridium(I) complex ([(TSPP)Ir(I)(CD3OD)](5-)). The acid dissociation constant of the iridium hydride (Ir-D) in methanol at 298 K is 3.5 × 10(-12). The iridium(I) complex ([(TSPP)Ir(I)(CD3OD)](5-)) catalyzes reaction of [(TSPP)Ir(III)-D(CD3OD)](4-) with CD3-OD to produce an iridium methyl complex [(TSPP)Ir(III)-CD3(CD3OD)](4-) and D2O. Reactions of the iridium hydride with ethene and propene produce iridium alkyl complexes, but the Ir-D complex fails to give observable addition with acetaldehyde and carbon monoxide in methanol. Reaction of the iridium hydride with propene forms both the isopropyl and propyl complexes with free energy changes (ΔG° 298 K) of -1.3 and -0.4 kcal mol(-1) respectively. Equilibrium thermodynamics and reactivity studies are used in discussing relative Ir-D, Ir-OCD3 and Ir-CD2- bond energetics in methanol. PMID:23540797

  14. Alkali metal mediated C-C bond coupling reaction

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2015-02-01

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2]- was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  15. IRIDIUM LINER FOR NASA 5 LBF CLASS MATERIAL TEST CHAMBER IRIDIUM LINER FOR ATLANTIC RESEARCH CORPORA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    IRIDIUM LINER FOR NASA 5 LBF CLASS MATERIAL TEST CHAMBER IRIDIUM LINER FOR ATLANTIC RESEARCH CORPORATION 5 LBF CLASS ROCKET CHAMBER 25 LBF CLASS 75 HFC 25 TAC CERAMIC COMPOSITE ROCKET CHAMBER FROM REFRACTURY COMPOSITES INC. PURCHASE ORDER C-551941-

  16. Toward the Digital Electrochemical Recognition of Cobalt, Iridium, Nickel, and Iron Ion Collisions by Catalytic Amplification.

    PubMed

    Dick, Jeffrey E; Bard, Allen J

    2016-07-13

    We report the electrochemical detection of femtomolar amounts of cobalt, iridium, nickel, and iron ions in solution by electrocatalyst formation and amplification. The metal oxides of these ions can be formed electrochemically and can catalyze the oxidation of water. Alternatively, the reduction of metal ions to metals, such as the reduction of IrCl6(3-) to iridium, is capable of electrocatalytically reducing protons to molecular hydrogen, as shown previously with Pt. These events, which manifest themselves in amperometry, correspond to the formation of electrocatalytic nuclei on the electrode surface, capable of electrocatalytically oxidizing water or reducing protons. An analysis of the frequency of anodic blips compared to theory implies that the requirement for water oxidation is 10 ± 1 ions of cobalt, 13 ± 4 ions of iridium, and 11 ± 3 ions of nickel. A similar analysis for iridium reduction and the corresponding catalytic reduction of protons implies that 6 ± 2 ions of iridium are required for proton reduction. These numbers are confirmed in an analysis of the time of first nucleation event, i.e. the time at which the first blip on the amperometric i-t experiment occurs. We further show that the anodic blips in detecting nickel increase in intensity upon increasing amounts of iron ions in solution to a ratio of Ni/Fe of ∼5, surprisingly close to that for bulk electrocatalysts of Ni-Fe. PMID:27295309

  17. Mechanistically Driven Development of Iridium Catalysts for Asymmetric Allylic Substitution

    PubMed Central

    Hartwig, John F.; Stanley, Levi M.

    2010-01-01

    Conspectus Enantioselective allylic substitution reactions comprise some of the most versatile methods for preparing enantiomerically enriched materials. These reactions form products that contain multiple functionalities by creating carbon–nitrogen, carbon–oxygen, carbon–carbon, and carbon–sulfur bonds. For many years, the development of catalysts for allylic substitution focused on palladium complexes. However, studies of complexes of other metals have revealed selectivities that often complement those of palladium systems. Most striking is the observation that reactions with unsymmetrical allylic electrophiles that typically occur with palladium catalysts at the less hindered site of an allylic electrophile occur at the more hindered site with catalysts based on other metals. In this Account, we describe an iridium precursor and a phosphoramidite ligand that catalyze reactions with a particularly broad scope of nucleophiles. The active form of this iridium catalyst is not generated by the simple binding of the phosphoramidite ligand to the metal precursor. Instead, the initial phosphoramidite and iridium precursor react in the presence of base to form a metallacyclic species that is the active catalyst. This species is generated either in situ or separately in isolated form by reactions with added base. The identification of the structure of the active catalyst led to the development of simplified catalysts as well as the most active form of the catalyst now available, which is stabilized by a loosely bound ethylene. Most recently, this structure was used to prepare intermediates containing allyl ligands, the structures of which provide a model for the enantioselectivities discussed here. Initial studies from our laboratory on the scope of iridium-catalyzed allylic substitution showed that reactions of primary and secondary amines, including alkylamines, benzylamines, and allylamines, and reactions of phenoxides and alkoxides occurred in high yields

  18. Iridium complexes of new NCP pincer ligands: catalytic alkane dehydrogenation and alkene isomerization.

    PubMed

    Jia, Xiangqing; Zhang, Lei; Qin, Chuan; Leng, Xuebing; Huang, Zheng

    2014-09-28

    Iridium complexes of novel NCP pincer ligands containing pyridine and phosphinite arms have been synthesized. One Ir complex shows good catalytic activity for alkane dehydrogenation, and all complexes are highly active for olefin isomerization. A combination of the Ir complex and a (PNN)Fe pincer complex catalyzes the formation of linear alkylboronates selectively from internal olefins via sequential olefin isomerization-hydroboration. PMID:25101950

  19. Gold-Catalyzed Synthesis of Heterocycles

    NASA Astrophysics Data System (ADS)

    Arcadi, Antonio

    2014-04-01

    The following sections are included: * Introduction * Synthesis of Heterocycles via Gold-Catalyzed Heteroatom Addition to Unsaturated C-C Bonds * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cyclization of Polyunsaturated Compounds * Synthesis of Heterocyclic Compounds via α-Oxo Gold Carbenoid * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cycloaddition Reactions * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Activation of Carbonyl Groups and Alcohols * Synthesis of Heterocyclic Compounds through Gold-Mediated C-H Bond Functionalization * Gold-Catalyzed Domino Cyclization/Oxidative Coupling Reactions * Conclusions * References

  20. State and catalytic activity of iridium compounds in the reaction of mercury(I) oxidation by cerium(IV)

    SciTech Connect

    Khomutova, E.G.; Rysev, A.P.; Romanovskaya, L.E.; Malysheva, N.M.

    1995-12-01

    Kinetic methods of determining Ir are insufficiently selective and sensitive as compared to the methods of determining Os and Ru. These characteristics may be improved by increasing the catalytic activity of iridium. All other factors being equal, catalytic activity depends on the state and form of iridium that enters the catalytic process. This is why one of the ways of improving the performance characteristics of a method of determining iridium involves searching for forms of the catalyst with higher catalytic activity. The aim of this work was to study the state and catalytic activity of iridium compounds. The method based on the iridium-catalyzed reaction of mercury(I) oxidation by cerium(IV) was chosen for the investigation. This method is most commonly used for analyzing complex samples. It was found previously that both the catalytic activity and selectivity of iridium determination increase when the reaction is conducted in the medium of perchloric acid or the sample is pretreated with nitric acid.

  1. Electronic Structure of Iridium Clusters on Graphene

    NASA Astrophysics Data System (ADS)

    Barker, Bradford A.; Bradley, Aaron J.; Ugeda, Miguel M.; Coh, Sinisa; Zettl, Alex; Crommie, Michael F.; Cohen, Marvin L.; Louie, Steven G.

    2015-03-01

    Graphene was predicted to exhibit non-trivial Z2 topology, but its exceedingly weak spin-orbit coupling prevented this from being observed. Previous theoretical work has proposed enhancing the spin-orbit coupling strength by depositing individual adatoms adsorbed onto the surface of graphene. We show experimental evidence that the iridium adatoms cluster, with a cluster size of at least two atoms. We investigate through theoretical calculations the orientation of the iridium dimers on graphene, contrast the electronic structure of iridium dimers with iridium monomers, and compare the theoretical iridium dimer electronic structure calculations with the experimental results determined via scanning tunneling spectroscopy. This work was supported by NSF Grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility.

  2. Iridium material for hydrothermal oxidation environments

    DOEpatents

    Hong, Glenn T.; Zilberstein, Vladimir A.

    1996-01-01

    A process for hydrothermal oxidation of combustible materials in which, during at least a part of the oxidation, corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises iridium, iridium oxide, an iridium alloy, or a base metal overlaid with an iridium coating. Iridium has been found to be highly resistant to environments encountered in the process of hydrothermal oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 800.degree. C.

  3. TCP Performance Enhancement Over Iridium

    NASA Technical Reports Server (NTRS)

    Torgerson, Leigh; Hutcherson, Joseph; McKelvey, James

    2007-01-01

    In support of iNET maturation, NASA-JPL has collaborated with NASA-Dryden to develop, test and demonstrate an over-the-horizon vehicle-to-ground networking capability, using Iridium as the vehicle-to-ground communications link for relaying critical vehicle telemetry. To ensure reliability concerns are met, the Space Communications Protocol Standards (SCPS) transport protocol was investigated for its performance characteristics in this environment. In particular, the SCPS-TP software performance was compared to that of the standard Transmission Control Protocol (TCP) over the Internet Protocol (IP). This paper will report on the results of this work.

  4. Asymmetric Hydrogenation of Isoxazolium Triflates with a Chiral Iridium Catalyst.

    PubMed

    Ikeda, Ryuhei; Kuwano, Ryoichi

    2016-06-13

    The iridium catalyst [IrCl(cod)]2 -phosphine-I2 (cod=1,5-cyclooctadiene) selectively reduced isoxazolium triflates to isoxazolines or isoxazolidines in the presence of H2 . The iridium-catalyzed hydrogenation proceeded in high-to-good enantioselectivity when an optically active phosphine-oxazoline ligand was used. The 3-substituted 5-arylisoxazolium salts were transformed into 4-isoxazolines with up to 95:5 enantiomeric ratio (e.r.). Chiral cis-isoxazolidines were obtained in up to 89:11 e.r., with no formation of their trans isomers, when the substrates had a primary alkyl substituent at the 5-position. The mechanistic studies indicate that the hydridoiridium(III) species prefers to deliver its hydride to the C5 atom of the isoxazole ring. The hydride attack leads to the formation of the chiral isoxazolidine via a 3-isoxazoline intermediate. Meanwhile, in the selective formation of 4-isoxazolines, hydride attack at the C5 atom may be obstructed by steric hindrance from the 5-aryl substituent. PMID:27105605

  5. On the dissolution of iridium by aluminum.

    SciTech Connect

    Hewson, John C.

    2009-08-01

    The potential for liquid aluminum to dissolve an iridium solid is examined. Substantial uncertainties exist in material properties, and the available data for the iridium solubility and iridium diffusivity are discussed. The dissolution rate is expressed in terms of the regression velocity of the solid iridium when exposed to the solvent (aluminum). The temperature has the strongest influence in the dissolution rate. This dependence comes primarily from the solubility of iridium in aluminum and secondarily from the temperature dependence of the diffusion coefficient. This dissolution mass flux is geometry dependent and results are provided for simplified geometries at constant temperatures. For situations where there is negligible convective flow, simple time-dependent diffusion solutions are provided. Correlations for mass transfer are also given for natural convection and forced convection. These estimates suggest that dissolution of iridium can be significant for temperatures well below the melting temperature of iridium, but the uncertainties in actual rates are large because of uncertainties in the physical parameters and in the details of the relevant geometries.

  6. Determining the Altitude of Iridium Flares

    NASA Technical Reports Server (NTRS)

    Foster, James; Owe, Manfred

    1999-01-01

    Iridium flares have nothing to do with the element iridium. Iridium is also the name of a telecommunications company that has been launching satellites into low orbits around the Earth. These satellites are being used for a new type of wireless phone and paging service. Flares have been observed coming from these satellites. These flares have the potential, especially when the full fleet of satellites is in orbit, to disrupt astronomical observations. The paper reviews using simple trigonometry how to calculate the altitude of one of these satellites.

  7. Iminopropadienones RN=C=C=C=O and bisiminopropadienes RN=C=C=C=NR: Matrix infrared spectra and anharmonic frequency calculations

    NASA Astrophysics Data System (ADS)

    Bégué, Didier; Baraille, Isabelle; Andersen, Heidi Gade; Wentrup, Curt

    2013-10-01

    Methyliminopropadienone MeN=C=C=C=O 1a was generated by flash vacuum thermolysis from four different precursors and isolated in solid argon. The matrix-isolation infrared spectrum is dominated by unusually strong anharmonic effects resulting in complex fine structure of the absorptions due to the NCCCO moiety in the 2200 cm-1 region. Doubling and tripling of the corresponding absorption bands are observed for phenyliminopropadienone PhN=C=C=C=O 1b and bis(phenylimino)propadiene PhN=C=C=C=NPh 9, respectively. Anharmonic vibrational frequency calculations allow the identification of a number of overtones and combination bands as the cause of the splittings for each molecule. This method constitutes an important tool for the characterization of reactive intermediates and unusual molecules by matrix-isolation infrared spectroscopy.

  8. A Rhodium Catalyst Superior to Iridium Congeners for Enantioselective Radical Amination Activated by Visible Light.

    PubMed

    Shen, Xiaodong; Harms, Klaus; Marsch, Michael; Meggers, Eric

    2016-06-27

    A bis-cyclometalated rhodium(III) complex catalyzes a visible-light-activated enantioselective α-amination of 2-acyl imidazoles with up to 99 % yield and 98 % ee. The rhodium catalyst is ascribed a dual function as a chiral Lewis acid and, simultaneously, as a light-activated smart initiator of a radical-chain process through intermediate aminyl radicals. Notably, related iridium-based photoredox catalysts reported before were unsuccessful in this enantioselective radical C-N bond formation. The surprising preference for rhodium over iridium is attributed to much faster ligand-exchange kinetics of the rhodium complexes involved in the catalytic cycle, which is crucial to keep pace with the highly reactive and thus short-lived nitrogen-centered radical intermediate. PMID:27145893

  9. 98. Catalog HHistory 1, C.C.C., 19 Tree Planting, Negative No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. Catalog H-History 1, C.C.C., 19 Tree Planting, Negative No. P 474c (Photographer and date unknown) TRANSPLANTING TREE. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  10. Effect of ultrasound sonication on electroplating of iridium.

    PubMed

    Ohsaka, Takashi; Isaka, Motohiro; Hirano, Katsuhiko; Ohishi, Tomoji

    2008-04-01

    Effect of ultrasound sonication was examined on the electroplating of iridium in aqueous hexabromoiridate(III) solution. The electrodeposits were evaluated by observing the defects of the iridium deposits by means of voltammetry, in which the current-potential curves of the iridium deposits on copper were measured. Applying ultrasound sonication to the electroplating of iridium decreased the defects including the cracks in the deposit whenever the glycerol as the additives was contained or not in the electrolyte. PMID:18164231

  11. IRIDIUM (R): A Lockheed transition to commercial space

    NASA Technical Reports Server (NTRS)

    Tadano, Thomas N.

    1995-01-01

    At Lockheed Missiles & Space Company, the IRIDIUM commercial space program is dramatically revolutionizing spacecraft development and manufacturing processes to reduce cost while maintaining quality and reliability. This report includes the following sections: an overview of the IRIDIUM system, the Lockheed IRIDIUM project and challenges; cycle-time reduction through production reorganization; and design for manufacturing and quality.

  12. Nickel-Catalyzed Reductive Couplings.

    PubMed

    Wang, Xuan; Dai, Yijing; Gong, Hegui

    2016-08-01

    The Ni-catalyzed reductive coupling of alkyl/aryl with other electrophiles has evolved to be an important protocol for the construction of C-C bonds. This chapter first emphasizes the recent progress on the Ni-catalyzed alkylation, arylation/vinylation, and acylation of alkyl electrophiles. A brief overview of CO2 fixation is also addressed. The chemoselectivity between the electrophiles and the reactivity of the alkyl substrates will be detailed on the basis of different Ni-catalyzed conditions and mechanistic perspective. The asymmetric formation of C(sp(3))-C(sp(2)) bonds arising from activated alkyl halides is next depicted followed by allylic carbonylation. Finally, the coupling of aryl halides with other C(sp(2))-electrophiles is detailed at the end of this chapter. PMID:27573395

  13. Rhodium-Catalyzed Ketone Methylation Using Methanol Under Mild Conditions: Formation of α-Branched Products**

    PubMed Central

    Chan, Louis K M; Poole, Darren L; Shen, Di; Healy, Mark P; Donohoe, Timothy J

    2014-01-01

    The rhodium-catalyzed methylation of ketones has been accomplished using methanol as the methylating agent and the hydrogen-borrowing method. The sequence is notable for the relatively low temperatures that are required and for the ability of the reaction system to form α-branched products with ease. Doubly alkylated ketones can be prepared from methyl ketones and two different alcohols by using a sequential one-pot iridium- and rhodium-catalyzed process. PMID:24288297

  14. Origin of brittle cleavage in iridium.

    PubMed

    Cawkwell, Marc J; Nguyen-Manh, Duc; Woodward, Christopher; Pettifor, David G; Vitek, Vaclav

    2005-08-12

    Iridium is unique among the face-centered cubic metals in that it undergoes brittle cleavage after a period of plastic deformation under tensile stress. Atomistic simulation using a quantum-mechanically derived bond-order potential shows that in iridium, two core structures for the screw dislocation are possible: a glissile planar core and a metastable nonplanar core. Transformation between the two core structures is athermal and leads to exceptionally high rates of cross slip during plastic deformation. Associated with this athermal cross slip is an exponential increase in the dislocation density and strong work hardening from which brittle cleavage is a natural consequence. PMID:16099981

  15. Annealing Increases Stability Of Iridium Thermocouples

    NASA Technical Reports Server (NTRS)

    Germain, Edward F.; Daryabeigi, Kamran; Alderfer, David W.; Wright, Robert E.; Ahmed, Shaffiq

    1989-01-01

    Metallurgical studies carried out on samples of iridium versus iridium/40-percent rhodium thermocouples in condition received from manufacturer. Metallurgical studies included x-ray, macroscopic, resistance, and metallographic studies. Revealed large amount of internal stress caused by cold-working during manufacturing, and large number of segregations and inhomogeneities. Samples annealed in furnace at temperatures from 1,000 to 2,000 degree C for intervals up to 1 h to study effects of heat treatment. Wire annealed by this procedure found to be ductile.

  16. Iridium satellites light up the sky

    NASA Astrophysics Data System (ADS)

    James, N. D.

    1998-08-01

    Motorola's Iridium satellite system is the largest and most ambitious of a set of competing satellite-based mobile phone systems. Motorola's objective is to allow handheld mobiles to be used from anywhere on the planet, with the call being routed directly from handset to handset via one or several of the satellites. After a bad start when the first Delta launch failed, Iridium spacecraft have been launched up to five at a time and the system is due to go operational late this year.

  17. Iridium emissions from Hawaiian volcanoes

    NASA Technical Reports Server (NTRS)

    Finnegan, D. L.; Zoller, W. H.; Miller, T. M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes.

  18. Mapping the Globe with C & C Technologies

    NASA Astrophysics Data System (ADS)

    Kleiner, A. A.

    2001-12-01

    C & C Technologies is an international survey and mapping company with an entrepreneurial spirit that is evident throughout. C & C was recently awarded the MTS (Marine Technology Society) ROV Committee Corporate Excellence Award in recognition of their pioneering spirit displayed by the introduction of the HUGIN 3000 Autonomous Underwater Vehicle (AUV) to the offshore industry. This presentation will outline the wide variety of global mapping projects that C & C has performed for government, private sector, and academia. These include high-resolution mapping of Cater Lake, the Panama Canal, Antarctica, Lake Tahoe, and the HUGIN 3000ś discovery of the German submarine U-166 in 5000 feet of water in the Gulf of Mexico. Adacemic disciplines required to support these technical challenges will be characterized and job opportunities in this emerging field will be addressed.

  19. Iridium-192 Production for Cancer Treatment

    SciTech Connect

    Rostelato, M.E.C.M.; Silva, C.P.G.; Rela, P.R.; Zeituni, C.A.; Lepki, V.; Feher, A.

    2004-10-05

    The purpose of this work is to settle a laboratory for Iridium -192 sources production, that is, to determine a wire activation method and to build a hot cell for the wires manipulation, quality control and packaging. The paper relates, mainly, the wire activation method and its quality control. The wire activation is carried out in our nuclear reactor, IEA- R1m.

  20. Iridium-Coated Rhenium Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Tuffias, Robert H.; Rosenberg, Sanders D.

    1994-01-01

    Iridium-coated rhenium combustion chamber withstands operating temperatures up to 2,200 degrees C. Chamber designed to replace older silicide-coated combustion chamber in small rocket engine. Modified versions of newer chamber could be designed for use on Earth in gas turbines, ramjets, and scramjets.

  1. Osmium-191/iridium-191m radionuclide

    DOEpatents

    Knapp, Jr., Furn F.; Butler, Thomas A.; Brihaye, Claude

    1987-01-01

    A generator system to provide iridium-191m for clinical imaging applications comprises an activated carbon adsorbent loaded with a compound containing the parent nuclide, osmium-191. The generator, which has a shelf-life in excess of two weeks and does not require a scavenger column, can be eluted with physiologically compatible saline.

  2. Osmium-191/iridium-191m radionuclide

    DOEpatents

    Knapp, F.F. Jr.; Butler, T.A.; Brihaye, C.

    1985-08-26

    A generator system to provide iridium-191m for clinical imaging applications comprises an activated carbon adsorbent loaded with a compound containing the parent nuclide, osmium-191. The generator, which has a shelf-life in excess of two weeks and does not require a scavenger column, can be eluted with physiologically compatible saline. 4 figs. 3 tabs.

  3. 102. Catalog HHistory 1, C.C.C., 34 Landscaping, Negative No. 6040a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Catalog H-History 1, C.C.C., 34 Landscaping, Negative No. 6040a (Photographer and date unknown) BEAUTIFICATION PROGRAM STARTED AS SOON AS GRADING ALONG THE DRIVE WAS COMPLETED. CCC CAMP 3 SHOWN PLANTING LAUREL. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  4. Recent advances in copper-catalyzed asymmetric coupling reactions.

    PubMed

    Zhou, Fengtao; Cai, Qian

    2015-01-01

    Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C-C, C-N, C-O and other carbon-heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C-C and carbon-heteroatom bonds. PMID:26734106

  5. A Site-isolated Mononuclear Iridium Complex Catalyst Supported on MgO: Characterization by Spectroscopy and Aberration-corrected Scanning Transmission Electron Microscopy

    SciTech Connect

    Uzun, A.; Ortalan, V; Browning, N; Gates , B

    2010-01-01

    Supported mononuclear iridium complexes with ethene ligands were prepared by the reaction of Ir(C{sub 2}H{sub 4}){sub 2}(acac) (acac is CH{sub 3}COCHCOCH{sub 3}) with highly dehydroxylated MgO. Characterization of the supported species by extended X-ray absorption fine structure (EXAFS) and infrared (IR) spectroscopies showed that the resultant supported organometallic species were Ir(C{sub 2}H{sub 4}){sub 2}, formed by the dissociation of the acac ligand from Ir(C{sub 2}H{sub 4}){sub 2}(acac) and bonding of the Ir(C{sub 2}H{sub 4}){sub 2} species to the MgO surface. Direct evidence of the site-isolation of these mononuclear complexes was obtained by aberration-corrected scanning transmission electron microscopy (STEM); the images demonstrate the presence of the iridium complexes in the absence of any clusters. When the iridium complexes were probed with CO, the resulting IR spectra demonstrated the formation of Ir(CO){sub 2} complexes on the MgO surface. The breadth of the {nu}{sub CO} bands demonstrates a substantial variation in the metal-support bonding, consistent with the heterogeneity of the MgO surface; the STEM images are not sufficient to characterize this heterogeneity. The supported iridium complexes catalyzed ethene hydrogenation at room temperature and atmospheric pressure in a flow reactor, and EXAFS spectra indicated that the mononuclear iridium species remained intact. STEM images of the used catalyst confirmed that almost all of the iridium complexes remained intact, but this method was sensitive enough to detect a small degree of aggregation of the iridium on the support.

  6. Application of the Iridium Satellite System to Aeronautical Communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Meza, Mike; Gupta, Om

    2008-01-01

    The next generation air transportation system will require greater air-ground communications capacity to accommodate more air traffic with increased safety and efficiency. Communications will remain primarily terrestrially based, but satellite communications will have an increased role. Inmarsat s aeronautical services have been approved and are in use for aeronautical safety communications provided by geostationary satellites. More recently the approval process for the Iridium low earth orbit constellation is nearing completion. The current Iridium system will be able to provide basic air traffic services communications suitable for oceanic, remote and polar regions. The planned second generation of the Iridium system, called Iridium NEXT, will provide enhanced capabilities and enable a greater role in the future of aeronautical communications. This paper will review the potential role of satellite communications in the future of air transportation, the Iridium approval process and relevant system testing, and the potential role of Iridium NEXT.

  7. Microscopic thermal characterization of C/C and C/C-SiC composites

    NASA Astrophysics Data System (ADS)

    Jumel, J.; Krapez, J. C.; Lepoutre, F.; Enguehard, F.; Rochais, D.; Neuer, G.; Cataldi, M.

    2002-05-01

    To measure the thermal properties of C/C and C/C-SiC composites constituents, photoreflectance microscopy is used. Specific methods are developed to cope with experimental artefacts (material semi-transparency, convolution effects), so as with fibers and matrix specificities (strong thermal anisotropy, geometric effects…). Experimental results are presented demonstrating the interest of photoreflectance microscopy for a quantitative determination of the microscopic thermal properties of these complex graphite materials.

  8. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, J. T.; Kazaroff, J. M.; Appel, M. A.

    1989-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the melting temperature of iridium, 2400 C (4350 F).

  9. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, John T.; Kazaroff, John M.; Appel, Marshall A.

    1988-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the meltimg temperature of iridium, 2400 C (4350 F).

  10. Handling System for Iridium-192 Seeds

    NASA Technical Reports Server (NTRS)

    Carpenter, W.; Wodicka, D.

    1973-01-01

    A complete system is proposed for safe handling of iridium-192 seeds used to internally irradiate malignant growths. A vibratory hopper feeds the seeds onto a transport system for deposit in a magazine or storage area. A circular magazine consisting of segmented plastic tubing with holes in the walls to accommodate the seeds seems feasible. The magazine is indexed to stop and release a seed for calibration and deposition.

  11. Advances in iridium alloy processing in 1987

    SciTech Connect

    Heestand, R.L.; Ohriner, E.K.; Roche, T.K.

    1988-08-01

    A new process for the production of DOP-26 iridium alloy blanks is being evaluated and optimized. The alloy is prepared by electron-beam (EB) melting of Ir-0.3% W powder compacts followed by doping with aluminum and thorium by arc melting. Drop-cast alloy rod segments are EB welded to produce an electrode that is consumable arc melted to produce an ingot for extrusion and subsequent rolling. Initial results showed rejections for ultrasonic indications of alloy blanks produced by this process to be very low. Subsequently, some ingots have exhibited delaminations in the sheet, leading to rejection rates similar to that obtained in the standard process. The increase in delaminations is related to near-surface porosity in the consumable arc-melted ingot. A number of modifications to the arc-melting process and plans for further experimental work are described. In addition, the tensile properties of the DOP-26 iridium alloys have been measured over a range of test temperatures and strain rates. A laboratory evaluation of alternative cleaning procedures indicates that electrolytic dissolution of DOP-26 iridium alloy in an HCl solution is a potential substitute to the KCN process now in use. 7 refs., 13 figs., 6 tabs.

  12. Variation of iridium in a differentiated tholeiitic dolerite

    USGS Publications Warehouse

    Greenland, L.P.

    1971-01-01

    Iridium has been determined in a drill core from the Great Lake (Tasmania) dolerite sheet. Iridium decreases systematically from the mafic dolerites (0.25 ppb) to the granophyres (0.006 ppb). The trend with differentiation closely parallels that of chromium. ?? 1971.

  13. Iridium enrichment in airborne particles from kilauea volcano: january 1983.

    PubMed

    Zoller, W H; Parrington, J R; Kotra, J M

    1983-12-01

    Airborne particulate matter from the January 1983 eruption of Kilauea volcano was inadvertently collected on air filters at Mauna Loa Observatory at a sampling station used to observe particles in global circulation. Analyses of affected samples revealed unusually large concentrations of selenium, arsenic, indium, gold, and sulfur, as expected for volcanic emissions. Strikingly large concentrations of iridium were also observed, the ratio of iridium to aluminum being 17,000 times its value in Hawaiian basalt. Since iridium enrichments have not previously been observed in volcanic emissions, the results for Kilauea suggest that it is part of an unusual volcanic system which may be fed by magma from the mantle. The iridium enrichment appears to be linked with the high fluorine content of the volcanic gases, which suggests that the iridium is released as a volatile IrF(6). PMID:17747384

  14. C-C Coupling of Benzyl Fluorides Catalyzed by an Electrophilic Phosphonium Cation.

    PubMed

    Zhu, Jiangtao; Pérez, Manuel; Stephan, Douglas W

    2016-07-11

    The activation and cleavage of benzyl fluorides by the electrophilic organofluorophosphonium catalyst, [(C6 F5 )3 PF][B(C6 F5 )4 ], is reported and used for the preparation of 1,1-diarylalkanes (37 examples) and substituted aryl homoallylic alkenes (14 examples). This procedure involves mild conditions, avoids harmful waste, and is compatible with a range of substituted arenes and allylic silanes. PMID:27239806

  15. Iridium Interfacial Stack - IrIS

    NASA Technical Reports Server (NTRS)

    Spry, David

    2012-01-01

    Iridium Interfacial Stack (IrIS) is the sputter deposition of high-purity tantalum silicide (TaSi2-400 nm)/platinum (Pt-200 nm)/iridium (Ir-200 nm)/platinum (Pt-200 nm) in an ultra-high vacuum system followed by a 600 C anneal in nitrogen for 30 minutes. IrIS simultaneously acts as both a bond metal and a diffusion barrier. This bondable metallization that also acts as a diffusion barrier can prevent oxygen from air and gold from the wire-bond from infiltrating silicon carbide (SiC) monolithically integrated circuits (ICs) operating above 500 C in air for over 1,000 hours. This TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. There are two ways that IrIS can be used in SiC ICs for applications above 500 C: it can be put directly on a SiC ohmic contact metal, such as Ti, or be used as a bond metal residing on top of an interconnect metal. For simplicity, only the use as a bond metal is discussed. The layer thickness ratio of TaSi2 to the first Pt layer deposited thereon should be 2:1. This will allow Si from the TaSi2 to react with the Pt to form Pt2Si during the 600 C anneal carried out after all layers have been deposited. The Ir layer does not readily form a silicide at 600 C, and thereby prevents the Si from migrating into the top-most Pt layer during future anneals and high-temperature IC operation. The second (i.e., top-most) deposited Pt layer needs to be about 200 nm to enable easy wire bonding. The thickness of 200 nm for Ir was chosen for initial experiments; further optimization of the Ir layer thickness may be possible via further experimentation. Ir itself is not easily wire-bonded because of its hardness and much higher melting point than Pt. Below the iridium layer, the TaSi2 and Pt react and form desired Pt2Si during the post-deposition anneal while above the iridium layer remains pure Pt as desired to facilitate easy and strong wire-bonding to the Si

  16. Iridium Film For Charge-Coupled Device

    NASA Technical Reports Server (NTRS)

    Hecht, Michael H.

    1990-01-01

    Usability extended to different environments. Application of thin film of iridium to back surface of back-surface-illuminated charge-coupled device expected to increase and stabilize quantum efficiency at wavelengths less than 4,500 Angstrom. Enhances quantum efficiency according to principle discussed in "Metal Film Increases CCD Output" (NPO-16815). Does not react with hydrogen, so device need not be kept in oxygen: Advantage where high absorption of ultraviolet light by oxygen undesirable; for example, when device used to make astronomical observations from high altitudes.

  17. Validation of EXAFS Analysis of Iridium Compounds

    NASA Astrophysics Data System (ADS)

    Feiters, M. C.; Longo, A.; Banerjee, D.; van der Ham, C. J. M.; Hetterscheid, D. G. H.

    2016-05-01

    Results of iridium L3 edge EXAFS measurements of compounds relevant for water oxidation catalysis are compared to those of other structural techniques. The structural results from EXAFS for the Ir compounds investigated here compare well to those of other structural techniques. Multiple scattering contributions are important in the coordinated Cp* and NHC ligands as well as in the IrCl6 unit and the IrO2 rutile structure. NHC is relatively weak compared to Ir, Cl, and even Cp* and O, and often out of phase with the other contributions.

  18. Iridium/Rhenium Parts For Rocket Engines

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Harding, John T.; Wooten, John R.

    1991-01-01

    Oxidation/corrosion of metals at high temperatures primary life-limiting mechanism of parts in rocket engines. Combination of metals greatly increases operating temperature and longevity of these parts. Consists of two transition-element metals - iridium and rhenium - that melt at extremely high temperatures. Maximum operating temperature increased to 2,200 degrees C from 1,400 degrees C. Increases operating lifetimes of small rocket engines by more than factor of 10. Possible to make hotter-operating, longer-lasting components for turbines and other heat engines.

  19. Parahydrogen induced polarization and the oxidative addition of hydrogen to iridium tribromostannyl carbonylate anions.

    PubMed

    Permin, Alexei; Eisenberg, Richard

    2002-05-01

    Activation of dihydrogen by a system composed of (Bu(4)N)[IrBr(2)(CO)(2)] (1) and tin dibromide in varying ratios was studied using parahydrogen induced polarization (PHIP) which allows the detection of transient dihydrides not observable in conventional (1)H NMR spectra. While the oxidative addition of dihydrogen to neutral and cationic Ir(I) species is common, there are only a few examples of H(2) addition to anionic complexes. Tin dibromide reacts with iridium(I) complex 1 in acetone forming equilibrium mixtures of cis- and trans-tribromostannyl derivatives [IrBr(n)()(SnBr(3))(2)(-)(n)()(CO)(2)](-), n = 0,1, the existence of which is inferred from the stereochemistries of the dihydrogen addition products determined using PHIP. The sigma-donating effect of the SnBr(3)(-) ligand facilitates the oxidative addition to the iridium center. The structures of the dihydrides formed upon addition of dihydrogen are assigned on the basis of hydride chemical shifts and values of (2)J((1)H-(117,119)Sn). The only dihydride observed in conventional (1)H NMR spectra is cis-trans-cis-[IrH(2)(SnBr(3))(2)(CO)(2)](-), the identity of which was confirmed using the (13)C labeled Ir(I) precursor. Both [IrBr(2)(CO)(2)](-) and its tribromostannyl derivatives catalyze cis-pairwise addition of dihydrogen to phenylacetylene. PMID:11978112

  20. Luminescent Iridium(III) Cyclometalated Complexes with 1,2,3-Triazole "Click" Ligands.

    PubMed

    Connell, Timothy U; White, Jonathan M; Smith, Trevor A; Donnelly, Paul S

    2016-03-21

    A series of cyclometalated iridium(III) complexes with either 4-(2-pyridyl)-1,2,3-triazole or 1-(2-picolyl)-1,2,3-triazole ancillary ligands to give complexes with either 5- or 6-membered chelate rings were synthesized and characterized by a combination of X-ray crystallography, electron spin ionization-high-resolution mass spectroscopy (ESI-HRMS), and nuclear magnetic resonance (NMR) spectroscopy. The electronic properties of the complexes were probed using absorption and emission spectroscopy, as well as cyclic voltammetry. The relative stability of the complexes formed from each ligand class was measured, and their excited-state properties were compared. The emissive properties are, with the exception of complexes that contain a nitroaromatic substituent, insensitive to functionalization of the ancillary pyridyl-1,2,3-triazole ligand but tuning of the emission maxima was possible by modification of the cyclometalating ligands. It is possible to prepare a wide range of optimally substituted pyridyl-1,2,3-triazoles using copper Cu(I)-catalyzed azide alkyne cycloaddition, which is a commonly used "click" reaction, and this family of ligands represent an useful alternative to bipyridine ligands for the preparation of luminescent iridium(III) complexes. PMID:26938838

  1. Redox-triggered C-C coupling of alcohols and vinyl epoxides: diastereo- and enantioselective formation of all-carbon quaternary centers via tert-(hydroxy)-prenylation.

    PubMed

    Feng, Jiajie; Garza, Victoria J; Krische, Michael J

    2014-06-25

    Iridium catalyzed primary alcohol oxidation triggers reductive C-O bond cleavage of isoprene oxide to form aldehyde-allyliridium pairs that combine to form products of tert-(hydroxy)-prenylation, a motif found in >2000 terpenoid natural products. Curtin-Hammett effects are exploited to enforce high levels of anti-diastereo- and enantioselectivity in the formation of an all-carbon quaternary center. The present redox-triggered carbonyl additions occur in the absence of stoichiometric byproducts, premetalated reagents, and discrete alcohol-to-aldehyde redox manipulations. PMID:24915473

  2. Metalloenzyme-Like Zeolites as Lewis Acid Catalysts for C-C Bond Formation.

    PubMed

    Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-10-19

    The use of metalloenzyme-like zeolites as Lewis acid catalysts for C-C bond formation reactions has received increasing attention over the past few years. In particular, the observation of direct aldol condensation reactions enabled by hydrophobic zeolites with isolated framework metal sites has encouraged the development of catalytic approaches for producing chemicals from biomass-derived compounds. The discovery of new Diels-Alder cycloaddition/dehydration routes and experimental and computational studies of Lewis acid catalyzed carbonyl-ene reactions have given a further boost to this rapidly evolving field. PMID:26465652

  3. Continuous flow Sonogashira C-C coupling using a heterogeneous palladium-copper dual reactor.

    PubMed

    Tan, Li-Min; Sem, Zhi-Yu; Chong, Wei-Yuan; Liu, Xiaoqian; Hendra; Kwan, Wei Lek; Lee, Chi-Lik Ken

    2013-01-01

    We report the development of a heterogeneous catalyst system on continuous flow chemistry. A palladium (Pd) coated tubular reactor was placed in line with copper (Cu) tubing using a continuous flow platform, and a Sonogashira C-C coupling reaction was used to evaluate the performance. The reactions were favorably carried out in the Cu reactor, catalyzed by the traces of leached Pd from the Pd reactor. The leached Pd and Cu were trapped with a metal scavaging resin at the back-end of the continuous flow system, affording a genuine approach toward green chemistry. PMID:23248977

  4. Diminiode thermionic conversion with 111-iridium electrodes

    NASA Technical Reports Server (NTRS)

    Koeger, E. W.; Bair, V. L.; Morris, J. F.

    1976-01-01

    Preliminary data indicating thermionic-conversion potentialities for a 111-iridium emitter and collector spaced 0.2 mm apart are presented. These results comprise output densities of current and of power as functions of voltage for three sets of emitter, collector, and reservoir temperatures: 1553, 944, 561 K; 1605, 898, 533 K; and 1656, 1028, 586 K. For the 1605 K evaluation, estimates produced work-function values of 2.22 eV for the emitter and 1.63 eV for the collector with a 2.0-eV barrier index (collector work function plus interelectrode voltage drop) corresponding to the maximum output of 5.5 W/sq cm at 0.24 volt. The current, voltage curve for the 1656 K 111-iridium diminiode yields a 6.2 W/sq cm maximum at 0.25 volt and is comparable with the 1700 K envelope for a diode with an etched-rhenium emitter and a 0.025-mm electrode gap made by TECO and evaluated by NASA.

  5. Autyomatic Differentiation of C/C++

    SciTech Connect

    Beata Winnicka, Boyana Norris

    2005-11-14

    Automatic differentiation (AD) tools mechanize the process of developing code for the computation of derivatives. AD avoids the inaccuracies inherent in numerical approximations. Furthermore, sophisticated AD algoirthms can often produce c ode that is more reliable and more efficient than code written by an expert programmer. ADIC is the first and only AD tool for C and C++ based on compiler technology. This compiler foundation makes possible analyses and optimizations not available in toos based on operator overloading. The earliest implementations of ADIC included support for ANSI C applications, ADIC 2.0 lverages EDG, a commercial C/C++ parser, to provide robust C++ differentiation support. Modern AD tools, including ADIC are implemented in a modular way, aiming to isolate language-dependent program analyses and semantic transformations. The component design leads to much higher implementation quality because the different components can be implemented by experts in each of the different domains involved. For example, a compiler expert can focus on parsing, canonicalizing, and unparising C and C++, while an expert in graph theory and algorithms can produce new differentiation modules without having to worry about the complexity of parsing and generating C++ code. Thsi separation of concerns was achieved through the use of language-independent program analysis interfaces (in collaboration with researcgers at Rice University) and a language-independent XML representation of the computational portions of programs (XAIF). In addition to improved robustness and faster development times, this design naturally enables the reuse of program analysis algorithms and differentiation modules in compiler-based AD tools for other languages. In fact, the analysis and differention components are used in both ADIC and the Open AD Fortran front-end (based on Rice's Open64 compiler.

  6. Autyomatic Differentiation of C/C++

    Energy Science and Technology Software Center (ESTSC)

    2005-11-14

    Automatic differentiation (AD) tools mechanize the process of developing code for the computation of derivatives. AD avoids the inaccuracies inherent in numerical approximations. Furthermore, sophisticated AD algoirthms can often produce c ode that is more reliable and more efficient than code written by an expert programmer. ADIC is the first and only AD tool for C and C++ based on compiler technology. This compiler foundation makes possible analyses and optimizations not available in toos basedmore » on operator overloading. The earliest implementations of ADIC included support for ANSI C applications, ADIC 2.0 lverages EDG, a commercial C/C++ parser, to provide robust C++ differentiation support. Modern AD tools, including ADIC are implemented in a modular way, aiming to isolate language-dependent program analyses and semantic transformations. The component design leads to much higher implementation quality because the different components can be implemented by experts in each of the different domains involved. For example, a compiler expert can focus on parsing, canonicalizing, and unparising C and C++, while an expert in graph theory and algorithms can produce new differentiation modules without having to worry about the complexity of parsing and generating C++ code. Thsi separation of concerns was achieved through the use of language-independent program analysis interfaces (in collaboration with researcgers at Rice University) and a language-independent XML representation of the computational portions of programs (XAIF). In addition to improved robustness and faster development times, this design naturally enables the reuse of program analysis algorithms and differentiation modules in compiler-based AD tools for other languages. In fact, the analysis and differention components are used in both ADIC and the Open AD Fortran front-end (based on Rice's Open64 compiler.« less

  7. Ir-Catalyzed Regio- and Stereoselective Hydrosilylation of Internal Thioalkynes: A Combined Experimental and Computational Study.

    PubMed

    Song, Li-Juan; Ding, Shengtao; Wang, Yong; Zhang, Xinhao; Wu, Yun-Dong; Sun, Jianwei

    2016-08-01

    Iridium complexes are known catalysts for a range of silylation reactions. However, the exploitation for selective hydrosilylation of unsymmetrical internal alkynes has been limitedly known. Described here is a new example of this type. Specifically, [(cod)IrCl]2 catalyzes the efficient and mild hydrosilylation of thioalkynes by various silanes with excellent regio- and stereoselectivity. DFT studies suggested a new mechanism involving Ir(I) hydride as the key intermediate. PMID:27232905

  8. A Site-Isolated Iridium Diethylene Complex Supported on Highly Dealuminated Y Zeolite: Synthesis And Characterization

    SciTech Connect

    Uzun, A.; Bhirud, V.A.; Kletnieks, P.W.; Haw, J.F.; Gates, B.C.

    2009-06-04

    Highly dealuminated Y zeolite-supported mononuclear iridium complexes with reactive ethylene ligands were synthesized by chemisorption of Ir(C{sub 2}H{sub 4}){sub 2}(C{sub 5}H{sub 7}O{sub 2}). The resultant structure and its treatment in He, CO, ethylene, and H2 were investigated with infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopies. The IR spectra show that Ir(C{sub 2}H{sub 4}){sub 2}(C{sub 5}H{sub 7}O{sub 2}) reacted readily with surface OH groups of the zeolite, leading to the removal of C{sub 5}H{sub 7}O{sub 2} ligands and the formation of supported mononuclear iridium complexes, confirmed by the lack of Ir-Ir contributions in the EXAFS spectra. The EXAFS data show that each Ir atom was bonded to four carbon atoms at an average distance of 2.10 {angstrom}, consistent with the presence of two ethylene ligands per Ir atom and in agreement with the IR spectra indicating {pi}-bonded ethylene ligands. The EXAFS data also indicate that each Ir atom was bonded to two oxygen atoms of the zeolite at a distance of 2.15 {angstrom}. The supported iridium-ethylene complex reacted with H{sub 2} to give ethane, and it also catalyzed ethylene hydrogenation at atmospheric pressure and 294 K. Treatment of the sample in CO led to the formation of Ir(CO){sub 2} complexes bonded to the zeolite. The sharpness of the V{sub CO} bands indicates a high degree of uniformity of these complexes on the support. The iridium-ethylene complex on the crystalline zeolite support is inferred to be one of the most nearly uniform supported metal complex catalysts. The results indicate that it is isostructural with a previously reported rhodium complex on the same zeolite; thus, the results are a start to a family of analogous, structurally well-defined supported metal complex catalysts.

  9. Phase control of iridium and iridium oxide thin films in atomic layer deposition

    SciTech Connect

    Kim, Sung-Wook; Kwon, Se-Hun; Kwak, Dong-Kee; Kang, Sang-Won

    2008-01-15

    The atomic layer deposition of iridium (Ir) and iridium oxide (IrO{sub 2}) films was investigated using an alternating supply of (ethylcyclopentadienyl)(1,5-cyclooctadiene) iridium and oxygen gas at temperatures between 230 and 290 deg. C. The phase transition between Ir and IrO{sub 2} occurred at the critical oxygen partial pressure during the oxygen injection pulse. The oxygen partial pressure was controlled by the O{sub 2}/(Ar+O{sub 2}) ratio or deposition pressures. The resistivity of the deposited Ir and IrO{sub 2} films was about 9 and 120 {mu}{omega} cm, respectively. In addition, the critical oxygen partial pressure for the phase transition between Ir and IrO{sub 2} was increased with increasing the deposition temperature. Thus, the phase of the deposited film, either Ir or IrO{sub 2}, was controlled by the oxygen partial pressure and the deposition temperature. However, the formation of a thin Ir layer was detected between the IrO{sub 2} and SiO{sub 2} substrate. To remove this interfacial layer, the oxygen partial pressure is increased to a severe condition. And the impurity contents were below the detection limit of Auger electron spectroscopy in both Ir and IrO{sub 2} films.

  10. Iridium anomaly approximately synchronous with terminal eocene extinctions

    SciTech Connect

    Alvarez, W.; Asaro, F.; Michel, H.V.; Alvarez, L.W.

    1982-05-21

    An iridium anomaly has been found in coincidence with the known microtektite level in cores from Deep Sea Drilling Project site 149 in the Caribbean Sea. The iridium was probably not in the microtektites but deposited simultaneously with them; this could occur if the iridium was deposited from a dust cloud resulting from a bolide impact, as suggested for the anomaly associated with the Cretaceous-Tertiary boundary. Other workers have deduced that the microtektites are part of the North American strewn tektite field, which is dated at about 34 million years before present, and that the microtektite horizon in deep-sea cores is synchronous with the extinction of five radiolarian species. Mass extinctions also occur in terrestrial mammals within 4 million years of this time. The iridium anomaly and the tektites and microtektites are supportive of a major bolide impact about 34 million years ago.

  11. Iridium anomaly approximately synchronous with terminal eocene extinctions.

    PubMed

    Alvarez, W; Asaro, F; Michel, H V; Alvarez, L W

    1982-05-21

    An iridium anomaly has been found in coincidence with the known microtektite level in cores from Deep Sea Drilling Project site 149 in the Caribbean Sea. The iridium was probably not in the microtektites but deposited simultaneously with them; this could occur if the iridium was deposited from a dust cloud resulting from a bolide impact, as suggested for the anomaly associated with the Cretaceous-Tertiary boundary. Other workers have deduced that the microtektites are part of the North American strewn tektite field, which is dated at about 34 million years before present, and that the microtektite horizon in deep-sea cores is synchronous with the extinction of five radiolarian species. Mass extinctions also occur in terrestrial mammals within 4 million years of this time. The iridium anomaly and the tektites and microtektites are supportive of a major bolide impact about 34 million years ago. PMID:17819180

  12. Acute radiodermatitis from occupational exposure to iridium 192

    SciTech Connect

    Becker, J.; Rosen, T. )

    1989-12-01

    Industrial radiography using the man-made radioisotope iridium 192 is commonplace in the southern states. Despite established procedures and safeguards, accidental exposure may result in typical acute radiodermatitis. We have presented a clinical example of this phenomenon.9 references.

  13. Low energy cyclotron production and cyclometalation chemistry of iridium-192.

    PubMed

    Langille, G; Yang, H; Zeisler, S K; Hoehr, C; Storr, T; Andreoiu, C; Schaffer, P

    2016-09-01

    This work demonstrates the labelling of a novel class of iridium lumophore with radioiridium, as proof-of-feasibility for producing and using the medically useful isotope iridium-192. Natural osmium was electroplated onto silver target backings in basic media and irradiated for up to two hours with ≤20μA of 12.8MeV protons. A range of iridium isotopes were generated, characterized and quantified using γ-spectroscopy methods. The target material was removed from the backings via oxidative dissolution with hydrogen peroxide, and the iridium radioisotopes isolated using an anion exchange resin. Both no-carrier-added as well as carrier-added formulations were then used in subsequent cyclometalation reactions. PMID:27344003

  14. GPS/GNSS Interference from Iridium Data Transmitters

    NASA Astrophysics Data System (ADS)

    Berglund, H. T.; Blume, F.; Estey, L.; White, S.

    2011-12-01

    The Iridium satellite communication system broadcasts in the 1610 to 1626.5 MHz band. The L1 frequencies broadcast by GPS, Galileo and GLONASS satellites are 1575.42 MHz, 1575.42 MHz and 1602 MHz + n × 0.5625 MHz, respectively (each GLONASS satellite uses a unique frequency). The proximity of the Iridium frequency band with the L1 frequencies of the GPS, Galileo and GLONASS systems leaves GNSS receivers susceptible to interference from Iridium data transmissions. Interference from Iridium transmissions can cause cycle slips and loss of lock on the carrier and code phases, thereby degrading the quality of GNSS observations and position estimates. In 2008, UNAVCO staff members observed that the percent of slips vs. the number of observations increased as the distance between a GPS choke ring antenna (TRM29659.00) and an Iridium antenna decreased. From those observations they suggested that Iridium antennas and GPS antennas should be separated by >30 m to minimize cycle slips caused by the interference from Iridium data transmissions. A second test conducted in 2009 using a newer Trimble GNSS choke ring antenna (TRM59800.00) showed similar results to the previous test despite the wider frequency range of the newer antenna. More recent testing conducted to investigate the response of new receiver models to iridium transmissions has shown that many GNSS enabled models, when combined with GNSS enabled antennas, have increased sensitivity to interference when compared to older GPS-only models. The broader frequency spectrum of the Low Noise Amplifiers (LNA) installed in many newer GNSS antennas can increase the impact of near-band RF interference on tracking performance. Our testing has shown that the quality of data collected at sites collocated with iridium communications is highly degraded for antenna separations exceeding 100m. Using older GPS antenna models (e.g. TRM29659.00) with newer GNSS enabled receivers can reduce this effect. To mitigate the effects that

  15. The fourth spectrum of iridium (Ir IV)

    NASA Astrophysics Data System (ADS)

    Azarov, Vladimir I.; Gayasov, Robert R.

    2016-03-01

    The spectrum of three times ionized iridium, Ir IV, was investigated in the 650-2045 Å wavelength region. The analysis has led to the determination of the 5d6, 5d5 6 s and 5d5 6 p configurations. Twenty-nine of 34 theoretically possible 5d6 levels, 44 of 74 possible 5d5 6 s levels and 150 of 214 possible 5d5 6 p levels have been established. The levels are based on 1348 classified spectral lines. The level structure and transition probabilities were calculated using the orthogonal operators technique. The energy parameters have been determined by the least squares fit to the observed levels. Calculated energy values and LS-compositions obtained from the fitted parameter values are given. The level optimization procedure and the determination of uncertainties of the obtained energy level values are discussed.

  16. Synthesis and characterization of nitrides of iridium and palladiums

    SciTech Connect

    Crowhurst, Jonathan C.; Goncharov, Alexander F.; Sadigh, B.; Zaug, J.M.; Aberg, D.; Meng, Yue; Prakapenka, Vitali B.

    2008-08-14

    We describe the synthesis of nitrides of iridium and palladium using the laser-heated diamond anvil cell. We have used the in situ techniques of x-ray powder diffraction and Raman scattering to characterize these compounds and have compared our experimental findings where possible to the results of first-principles theoretical calculations. We suggest that palladium nitride is isostructural with pyrite, while iridium nitride has a monoclinic symmetry and is isostructural with baddeleyite.

  17. Iridium Complexes as a Roadblock for DNA Polymerase during Amplification.

    PubMed

    Chandra, Falguni; Kumar, Prashant; Tripathi, Suman Kumar; Patra, Srikanta; Koner, Apurba L

    2016-07-01

    Iridium-based metal complexes containing polypyridyl-pyrazine ligands show properties of DNA intercalation. They serve as roadblocks to DNA polymerase activity, thereby inhibiting the polymerization process. Upon the addition of increasing concentrations of these iridium complexes, a rapid polymerase chain reaction (PCR)-based assay reveals the selective inhibition of the DNA polymerization process. This label-free approach to study the inhibition of fundamental cellular processes via physical roadblock can offer an alternative route toward cancer therapy. PMID:27240728

  18. Iridium{reg_sign} worldwide personal communication system

    SciTech Connect

    Helm, J.

    1997-01-01

    The IRIDIUM system is a personal worldwide communication system designed to support portable, low power subscriber units through the use of a constellation of satellites in low earth polar orbit. The satellites are networked together to form a system which provides continuous line-of-sight communications between the IRIDIUM system and any point within 30 km of the earth{close_quote}s surface. The system architecture and operation are described. {copyright} {ital 1997 American Institute of Physics.}

  19. PURIFICATION OF IRIDIUM BY ELECTRON BEAM MELTING

    SciTech Connect

    Ohriner, Evan Keith

    2008-01-01

    The purification of iridium metal by electron beam melting has been characterized for 48 impurity elements. Chemical analysis was performed by glow discharge mass spectrographic (GDMS) analysis for all elements except carbon, which was analyzed by combustion. The average levels of individual elemental impurities in the starting powder varied from 37 g/g to 0.02 g/g. The impurity elements Li, Na, Mg, P, S, Cl, K, Ca, Mn, Co, Ni, Cu, Zn, As, Pd, Ag, Cd, Sn, Sb, Te, Ba, Ce, Tl, Pb, and Bi were not detectable following the purification. No significant change in concentration of the elements Ti, V, Zr, Nb, Mo, and Re was found. The elements B, C, Al, Si, Cr, Fe, Ru, Rh, and Pt were partially removed by vaporization during electron beam melting. Langmuir's equation for ideal vaporization into a vacuum was used to calculate for each impurity element the expected ratio of impurity content after melting to that before melting. Equilibrium vapor pressures were calculated using Henry's law, with activity coefficients obtained from published data for the elements Fe, Ti, and Pt. Activity coefficients were estimated from enthalpy data for Al, Si, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, and Hf and an ideal solution model was used for the remaining elements. The melt temperature was determined from measured iridium weight loss. Excellent agreement was found between measured and calculated impurity ratios for all impurity elements. The results are consistent with some localized heating of the melt pool due to rastering of the electron beam, with an average vaporization temperature of 3100 K as compared to a temperature of 2965 K calculated for uniform heating of the melt pool. The results are also consistent with ideal mixing in the melt pool.

  20. Oxo-rhenium catalyzed reductive coupling and deoxygenation of alcohols.

    PubMed

    Kasner, Gabrielle R; Boucher-Jacobs, Camille; Michael McClain, J; Nicholas, Kenneth M

    2016-06-01

    Representative benzylic, allylic and α-keto alcohols are deoxygenated to alkanes and/or reductively coupled to alkane dimers by reaction with PPh3 catalyzed by (PPh3)2ReIO2 (1). The newly discovered catalytic reductive coupling reaction is a rare C-C bond-forming transformation of alcohols. PMID:27174412

  1. Iridium NEXT: A Global access for your sensor needs

    NASA Astrophysics Data System (ADS)

    Gupta, O. P.; Fish, C. S.

    2010-12-01

    The operational Iridium constellation is comprised of 66 satellites, used to primarily provide worldwide voice and data coverage to satellite phones, pagers and integrated transceivers. The satellites are in low Earth orbit at 781 km and inclination of 86.4 deg, resulting in unprecedented 24/7 coverage and real-time visibility of the entire globe. Recently, through funding from the National Science Foundation (NSF), Iridium has been utilized by the Johns Hopkins University Applied Physics Laboratory (APL), with help from The Boeing Company, as an infrastructure for a comprehensive network for space environment measurements. Known as the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), the Iridium-based system provides real-time magnetic field measurements using the satellites as part of a new observation network to forecast weather in space. In February 2007, Iridium announced Iridium NEXT, a novel design for a second-generation satellite constellation. Anticipated to begin launching in 2015, Iridium NEXT will maintain the existing Iridium constellation architecture of 66 cross-linked satellite LEO covering 100 percent of the globe. In the spirit of AMPERE, for commercial, government, and scientific organizations Iridium NEXT also plans to offer new earth and space observation opportunities through hosted hosted payloads on the 66 Iridium NEXT satellite network. To provide seamless support and access to this latest innovation in payload transportation, Iridium NEXT has teamed with Space Dynamics Laboratory - Utah State University which has delivered thousands of successful sensors and subsystems for over 400 space borne and aircraf based payloads. One such innovation called SensorPOD will offer unique benefits such as unprecedented spatial and temporal coverage, real-time relay of data to and from up to 5 Kg payloads in space, and access to space at a fraction of the cost of a dedicated missions such as 3U or larger Cubesats. In this

  2. DETERMINATION OF HETEROGENEOUS ELECTRON TRANSFER RATE CONSTANTS AT MICROFABRICATED IRIDIUM ELECTRODES. (R825511C022)

    EPA Science Inventory

    There has been an increasing use of both solid metal and microfabricated iridium electrodes as substrates for various types of electroanalysis. However, investigations to determine heterogeneous electron transfer rate constants on iridium, especially at an electron beam evapor...

  3. Iridium complexes demonstrating broadband emission through controlled geometric distortion and applications thereof

    DOEpatents

    Li, Jian; Turner, Eric

    2016-04-12

    Iridium compounds and their uses are disclosed herein. For example, carbazole containing iridium compounds are disclosed. The compounds are useful in many devices, including, but not limited to, electroluminescent devices.

  4. Understanding Rotation about a C=C Double Bond

    ERIC Educational Resources Information Center

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-01-01

    The study focuses on the process and energetic cost of twisting around a C=C double bond and provides instructors with a simple vehicle for rectifying the common misrepresentation of C=C double bonds as rigid and inflexible. Discussions of cis and trans isomers of cycloalkenes are a good entry point for introducing students to the idea of a…

  5. Characterization of Platinum and Iridium Oxyhydrate Surface Layers from Platinum and Iridium Foils.

    PubMed

    Johnson, Benjamin; Ranjan, Chinmoy; Greiner, Mark; Arrigo, Rosa; Schuster, Manfred Erwin; Höpfner, Britta; Gorgoi, Mihaela; Lauermann, Iver; Willinger, Marc; Knop-Gericke, Axel; Schlögl, Robert

    2016-07-01

    Platinum and iridium polycrystalline foils were oxidized electrochemically through anodization to create thin platinum and iridium hydrous oxide layers, which were analyzed through laboratory photoelectron spectroscopy during heating and time series (temperature-programmed spectroscopy). The films contain oxygen in the form of bound oxides, water, and hydroxides and were investigated by depth profiling with high-energy photoelectron spectroscopy. The Pt films are unstable and begin to degrade immediately after removal from the electrolyte to form core-shell structures with a metallic inner core and a hydrous oxide outer shell almost devoid of Pt. However, evidence was found for metastable intermediate states of degradation; therefore, it may be possible to manufacture PtOx phases with increased stability. Heating the film to even 100 °C causes accelerated degradation, which shows that stoichiometric oxides such as PtO2 or PtO are not the active species in the electrolyte. The Ir films exhibit increased stability and higher surface Ir content, and gentle heating at low temperatures leads to a decrease in defect density. Although both layers are based on noble metals, their surface structures are markedly different. The complexity of such hydrous oxide systems is discussed in detail with the goal of identifying the film composition more precisely. PMID:27226255

  6. The high-temperature impact properties of DOP-26 iridium

    SciTech Connect

    George, T.G.; Stevens, M.F. )

    1988-10-01

    A study of the impact properties of DOP-26 iridium (which contains 0.3% tungsten and --40 pm thorium) at temperatures of 600 to 1,440/sup 0/C revealed that the predominant mode of failure for the material is intergranular separation with occasional transgranular cleavage. DOP-26 iridium also appears to have a high notch sensitivity, in contrast to most other face-centered-cubic (fcc) metals; at elevated deformation temperatures, the dislocation substructure is similar to that of other fcc metals. In addition, regular arrays of pure edge character dislocations have been found. In the test specimens used in this study, the presence of Ir Th particles was observed within iridium grains. The existence of these particles indicates that the role of thorium is not well understood, particularly in light of the fact that previous studies, which depended on grain boundary segregation, have shown thorium to improve grain boundary cohesion.

  7. Pd and Mo Catalyzed Asymmetric Allylic Alkylation

    PubMed Central

    Trost, Barry M.

    2012-01-01

    The ability to control the alkylation of organic substrates becomes ever more powerful by using metal catalysts. Among the major benefits of metal catalysis is the possibility to perform such processes asymmetrically using only catalytic amounts of the chiral inducing agent which is a ligand to the metal of the catalyst. A unique aspect of asymmetric metal catalyzed processes is the fact that many mechanisms exist for stereoinduction. Furthermore, using the same catalyst system, many types of bonds including but not limited to C-C, C-N, C-O, C-S, C-P, and C-H can be formed asymmetrically. An overview of this process using palladium and molybdenum based metals being developed in my laboratories and how they influence strategy in synthesizing bioactive molecular targets is presented. PMID:22736934

  8. Dehydrogenation of n-alkanes catalyzed by iridium ``pincer`` complexes: Regioselective formation of {alpha}-olefins

    SciTech Connect

    Liu, F.; Singh, B.; Goldman, A.S.; Pak, E.B.; Jensen, C.M.

    1999-04-28

    The development of methods for the functionalization of alkanes is of cardinal importance in catalytic chemistry. A specific functionalization of particularly great potential value is the conversion of n-alkanes to the corresponding 1-alkenes ({alpha}-olefins) since these serve as precursors for a wide range of commodity-scale chemicals (>2 {times} 10{sup 9} kg/yr). Such a conversion is also an intriguing challenge as viewed from a fundamental perspective. n-Alkanes are the simplest organic molecules with the potential to undergo regioselective transformations; {alpha}-olefins are the thermodynamically least stable of the corresponding double-bond isomers and any mechanism for their formation must presumably involve activation of the strongest bond (primary C-{single_bond}H) in the molecule.

  9. Iridium-Catalyzed ortho-Arylation of Benzoic Acids with Arenediazonium Salts.

    PubMed

    Huang, Liangbin; Hackenberger, Dagmar; Gooßen, Lukas J

    2015-10-19

    In the presence of catalytic [{IrCp*Cl2 }2 ] and Ag2 CO3 , Li2 CO3 as the base, and acetone as the solvent, benzoic acids react with arenediazonium salts to give the corresponding diaryl-2-carboxylates under mild conditions. This C-H arylation process is generally applicable to diversely substituted substrates, ranging from extremely electron-rich to electron-poor derivatives. The carboxylate directing group is widely available and can be removed tracelessly or employed for further derivatization. Orthogonality to halide-based cross-couplings is achieved by the use of diazonium salts, which can be coupled even in the presence of iodo substituents. PMID:26465654

  10. One-pot synthesis of quinazolinones via iridium-catalyzed hydrogen transfers.

    PubMed

    Zhou, Jianguang; Fang, Jie

    2011-10-01

    A one-pot oxidative cyclization of primary alcohols with o-aminobenzamides to quinazolinones was successfully achieved using [Cp*IrCl(2)](2) (Cp* = pentamethylcyclopentadienyl) as a catalyst under hydrogen transfer conditions. PMID:21851120

  11. Hydrogen-Borrowing and Interrupted-Hydrogen-Borrowing Reactions of Ketones and Methanol Catalyzed by Iridium**

    PubMed Central

    Shen, Di; Poole, Darren L; Shotton, Camilla C; Kornahrens, Anne F; Healy, Mark P; Donohoe, Timothy J

    2015-01-01

    Reported herein is the use of catalytic [{Ir(cod)Cl}2] to facilitate hydrogen-borrowing reactions of ketone enolates with methanol at 65 °C. An oxygen atmosphere accelerates the process, and when combined with the use of a bulky monodentate phosphine ligand, interrupts the catalytic cycle by preventing enone reduction. Subsequent addition of pro-nucleophiles to the reaction mixture allowed a one-pot methylenation/conjugate addition protocol to be developed, which greatly expands the range of products that can be made by this methodology. PMID:25491653

  12. Iridium-Catalyzed Allylation of Chiral β-Stereogenic Alcohols: Bypassing Discrete Formation of Epimerizable Aldehydes

    PubMed Central

    Schmitt, Daniel C.; Dechert-Schmitt, Anne-Marie R.; Krische, Michael J.

    2012-01-01

    The cyclometallated π-allyliridium 3,4-dinitro-C,O-benzoate complex modified by (R)- or (S)-Cl,MeO-BIPHEP promotes the transfer hydrogenative coupling of allyl acetate to β-stereogenic alcohols with good to excellent levels of catalyst-directed diastereoselectivity to furnish homoallylic alcohols. Remote electronic effects of the C,O-benzoate of the catalyst play a critical role in suppressing epimerization of the transient α-stereogenic aldehyde. PMID:23231774

  13. Experimental determination of the solubility of iridium in silicate melts: Preliminary results

    NASA Technical Reports Server (NTRS)

    Borisov, Alexander; Dingwell, Donald B.; Oneill, Hugh ST.C.; Palme, Herbert

    1992-01-01

    Little is known of the geochemical behavior of iridium. Normally this element is taken to be chalcophile and/or siderophile so that during planetary differentiation processes, e.g., core formation, iridium is extracted from silicate phases into metallic phases. Experimental determination of the metal/silicate partition coefficient of iridium is difficult simply because it is so large. Also there are no data on the solubility behavior of iridium in silicate melts. With information on the solubility of iridium in silicate melts it is possible, in combination with experimental data for Fe-Ir alloys, to calculate the partition coefficient between a metallic phase and a silicate melt.

  14. 7. Historic American Buildings Survey, C. C. Adams, Photographer August ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic American Buildings Survey, C. C. Adams, Photographer August 1931, SEED PACKING ROOM, Gift of New York State Department of Education. - Shaker North Family Washhouse (first), Shaker Road, New Lebanon, Columbia County, NY

  15. Field desorption of Na and Cs from graphene on iridium

    NASA Astrophysics Data System (ADS)

    Bernatskii, D. P.; Pavlov, V. G.

    2015-08-01

    Field electron and desorption microscopy has been used to study specific features of the field desorption of sodium and cesium ions adsorbed on the surface of iridium with graphene. It was found that adsorbed sodium atoms most strongly reduce the work function on graphene islands situated over densely packed faces of iridium. A strong electric field qualitatively similarly affects the sodium and cesium desorption processes from a field emitter to give two desorption phases and has no noticeable effect on the disintegration of the graphene layer.

  16. Synthesis of new heteroscorpionate iridium(I) and iridium(III) complexes.

    PubMed

    Roa, A E; Campos, J; Paneque, M; Salazar, V; Otero, A; Lara-Sánchez, A; Rodríguez, A M; López-Solera, I; Gómez, M V

    2015-04-21

    The reactivity of different heteroscorpionate ligands based on bis(pyrazol-1-yl)methane, with different iridium-(i) and -(iii) precursors is reported. The reaction of the heteroscorpionate lithium salts "Li(bdmpza)", [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate], "Li(bdmpzdta)" [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate] and "Li(S)-mbpam" [(S)-mbpam = (S)-(-)-N-α-methylbenzyl-2,2-bis(3,5-dimethylpyrazol-1-yl)acetamidate] with 1 equivalent of [IrCl3(THF)3] in THF for 18 h affords high yields of neutral and anionic heteroscorpionate chloride iridium complexes [IrCl2(bdmpza)(THF)] (), [Li(THF)4][IrCl3(bdmpzdta)] () and [IrCl2{(S)-mbpam})(THF)] (). Solution of complex in acetonitrile at room temperature leads to complex [IrCl2{(S)-mbpam})(NCCH3)] (). Complexes and were isolated as enantiopure compounds. The reaction of the lithium salt "Li(bdmpza)" with [IrCl(η(4)-CH2[double bond, length as m-dash]C(Me)C(Me)[double bond, length as m-dash]CH2)]2 in THF for 18 h gave the Ir(i) complex [Ir(bdmpza)(η(4)-CH2[double bond, length as m-dash]C(Me)C(Me)[double bond, length as m-dash]CH2)] (). The reaction of complex with CO (2 atm) at room temperature leads to a new complex of Ir(iii), [Ir(bdmpza)(k(2)-CH2C(Me)[double bond, length as m-dash]C(Me)CH2)(CO)] (). Treatment of heteroscorpionate ligand precursors "Li(bdmpza)" and "Li(bdmpzdta)" with [IrCp*Cl2]2 in THF yielded the iridium(iii) complexes [Ir2Cp*2Cl2(bdmpzx)] (x = a , x = dta ). These complexes have helical chirality due to the demands of the fixed pyrazole rings. The stereoisomerism and the self-assembly processes of these helicates have been studied in some detail in solution by NMR spectroscopy and in the solid state by X-ray diffraction. Mixtures of M- and P-handed enantiomers were obtained. Complex undergoes a decarboxylation process initiated by the HCl generated in the previous step leading to the known ionic complex [IrClCp*(bdmpm)][IrCl3Cp*] [bdmpm = bis(3,5-dimethylpyrazol-1-yl)methane] (). The

  17. Homogeneous and heterogenized iridium water oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Macchioni, Alceo

    2014-10-01

    The development of an efficient catalyst for the oxidative splitting of water into molecular oxygen, protons and electrons is of key importance for producing solar fuels through artificial photosynthesis. We are facing the problem by means of a rational approach aimed at understanding how catalytic performance may be optimized by the knowledge of the reaction mechanism of water oxidation and the fate of the catalytic site under the inevitably harsh oxidative conditions. For the purposes of our study we selected iridium water oxidation catalysts, exhibiting remarkable performance (TOF > 5 s-1 and TON > 20000). In particular, we recently focused our attention on [Cp*Ir(N,O)X] (N,O = 2-pyridincarboxylate; X = Cl or NO3) and [IrCl(Hedta)]Na water oxidation catalysts. The former exhibited a remarkable TOF whereas the latter showed a very high TON. Furthermore, [IrCl(Hedta)]Na was heterogenized onto TiO2 taking advantage of the presence of a dandling -COOH functionality. The heterogenized catalyst maintained approximately the same catalytic activity of the homogeneous analogous with the advantage that could be reused many times. Mechanistic studies were performed in order to shed some light on the rate-determining step and the transformation of catalysts when exposed to "oxidative stress". It was found that the last oxidative step, preceding oxygen liberation, is the rate-determining step when a small excess of sacrificial oxidant is used. In addition, several intermediates of the oxidative transformation of the catalyst were intercepted and characterized by NMR, X-Ray diffractometry and ESI-MS.

  18. (4-Chloro-acetanilido-κ(2)N,O)bis-[2-(pyridin-2-yl)phenyl-κ(2)C(1),N]iridium(III).

    PubMed

    Sun, Lijun; Zhang, Songlin; Song, Qijun

    2013-02-01

    In the neutral mononuclear iridium(III) title compound, [Ir(C(8)H(7)ClNO)(C(11)H(8)N)(2)], the Ir(III) atom adopts an octa-hedral geometry, and is coordinated by two 2-phenyl-pyridyl ligands and one anionic 4-chloro-acetanilide ligand. The 2-phenyl-pyridyl ligands are arranged in a cis-C,C' and cis-N,N' fashion. Each 2-phenyl-pyridyl ligand forms a five-membered ring with the Ir(III) atom. The 2-phenyl-pyridyl planes are perpendicular to each other [dihedral angle = 89.9 (1)°]. The Ir-C and Ir-N bond lengths are comparable to those reported for related iridium(III) 2-phenyl-pyridyl complexes. The remaining two coordination sites are occupied by the amidate N and O atoms, which form a four-membered ring with the iridium atom (Ir-N-C-O). The amidate plane is nearly perpendicular to both 2-phenyl-pyridyl ligands [dihedral angles = 87.8 (2) and 88.3 (2)°]. PMID:23424440

  19. Corrosion-resistant iridium-platinum anode material for high polarization application in corrosive acids

    SciTech Connect

    Farmer, J.; Summers, L.; Lewis, P.

    1993-09-08

    The present invention relates to highly corrosion resistant components for use in an electrochemical cell. Specifically, these components are resistant to corrosion under very extreme conditions such as exposure to aqua regia in the presence of a constant current density of 100mA/m{sup 2}. The components are comprised of an iridium-platinum alloy that comprises less than 30% iridium. In a preferred embodiment of the present invention, the iridium-platinum alloy comprises 15-20% iridium. In another preferred embodiment of the present invention, the iridium-platinum alloy is deposited on the surface of an electrochemical cell component by magnetron sputtering. The present invention also relates to a method for conducting an electrochemical reaction in the presence of highly corrosive acids under a high degree of polarization wherein the electrochemical cell comprises a component, preferably the anode, containing an iridium-platinum alloy that comprises less than 30% iridium.

  20. Modeling of the Reaction Mechanism of Enzymatic Radical C-C Coupling by Benzylsuccinate Synthase.

    PubMed

    Szaleniec, Maciej; Heider, Johann

    2016-01-01

    Molecular modeling techniques and density functional theory calculations were performed to study the mechanism of enzymatic radical C-C coupling catalyzed by benzylsuccinate synthase (BSS). BSS has been identified as a glycyl radical enzyme that catalyzes the enantiospecific fumarate addition to toluene initiating its anaerobic metabolism in the denitrifying bacterium Thauera aromatica, and this reaction represents the general mechanism of toluene degradation in all known anaerobic degraders. In this work docking calculations, classical molecular dynamics (MD) simulations, and DFT+D2 cluster modeling was employed to address the following questions: (i) What mechanistic details of the BSS reaction yield the most probable molecular model? (ii) What is the molecular basis of enantiospecificity of BSS? (iii) Is the proposed mechanism consistent with experimental observations, such as an inversion of the stereochemistry of the benzylic protons, syn addition of toluene to fumarate, exclusive production of (R)-benzylsuccinate as a product and a kinetic isotope effect (KIE) ranging between 2 and 4? The quantum mechanics (QM) modeling confirms that the previously proposed hypothetical mechanism is the most probable among several variants considered, although C-H activation and not C-C coupling turns out to be the rate limiting step. The enantiospecificity of the enzyme seems to be enforced by a thermodynamic preference for binding of fumarate in the pro(R) orientation and reverse preference of benzyl radical attack on fumarate in pro(S) pathway which results with prohibitively high energy barrier of the radical quenching. Finally, the proposed mechanism agrees with most of the experimental observations, although the calculated intrinsic KIE from the model (6.5) is still higher than the experimentally observed values (4.0) which suggests that both C-H activation and radical quenching may jointly be involved in the kinetic control of the reaction. PMID:27070573

  1. Testing of DLR C/C-SiC and C/C for HIFiRE 8 Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Capriotti, Diego P.; Reimer, Thomas; Kutemeyer, Marius; Smart, Michael K.

    2014-01-01

    Ceramic Matrix Composites (CMCs) have been proposed for use as lightweight hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a carbon/carbon (C/C) and a carbon/carbon-silicon carbide (C/C-SiC) material fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for Hypersonic International Flight Research Experimentation (HIFiRE) 8, a joint Australia / Air Force Research Laboratory hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kilopascals. Flat panels of the DLR C/C and C/C-SiC materials were installed downstream of a hydrogen-fueled, dual-mode scramjet combustor and tested for several minutes at conditions simulating flight at Mach 5 and Mach 6. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used during some of the tests to reduce heat loss from the back surface and thus increase the heated surface temperature of the C/C-SiC panel approximately 177 C (350 F). The final C/C-SiC panel was tested for three cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.

  2. Iridium Cyclometalates with Tethered o-Carboranes: Impact of Restricted Rotation of o-Carborane on Phosphorescence Efficiency.

    PubMed

    Lee, Young Hoon; Park, Jihyun; Lee, Junseong; Lee, Sang Uck; Lee, Min Hyung

    2015-07-01

    Iridium(III) cyclometalates (1c and 2c) in which the two carborane units on the 4- or 5-positions of 2-phenylpyridine (ppy) ligands were tethered by an alkylene linker were prepared to investigate the effect of free rotation of o-carborane on phosphorescence efficiency. In comparison with the unlinked complex, tethering the o-carboranes to the 5-positions of ppy ligands (2c) enhanced phosphorescence efficiency by over 30-fold in polar medium (Φ(PL) = 0.37 vs 0.011 in THF), while restricting the rotation of o-carborane at the 4-positions (1c) negatively affected the phosphorescence efficiency. The different effects of restricted rotation of o-carborane on phosphorescence efficiency were likely a result of the different variations of the carboranyl C-C bond distances in the excited state. PMID:26075816

  3. Iridium Aluminide Coats For Protection Against Ox idation

    NASA Technical Reports Server (NTRS)

    Kaplan, Richard B.; Tuffias, Robert H.; La Ferla, Raffaele; Jang, Qin

    1996-01-01

    Iridium aluminide coats investigated for use in protecting some metallic substrates against oxidation at high temperatures. Investigation prompted by need for cost-effective anti-oxidation coats for walls of combustion chambers in rocket engines. Also useful in special terrestrial applications like laboratory combustion chambers and some chemical-processing chambers.

  4. Magnetostratigraphy, Late devonian iridium anomaly, and impact hypotheses

    SciTech Connect

    Hurley, N.F.; Van der Voo, R. )

    1990-04-01

    Paleomagnetism, sedimentology, and fine-scale stratigraphy have been integrated to explain the origin of an iridium anomaly in the Late Devonian of Western Australia. Thermal demagnetization experiments were carried out on 93 specimens of marginal-slope limestone form the northern Canning Basin. Samples are from a condensed sequence of deep-water (> 100 m) Frutexites microstromatolites. Frutexites is a shrublike cyanobacterial organism that probably precipitated hematite, or a metastable precursor, from sea water. When plotted within the microstratigraphic framework for the study area, the observed characteristic directions from the sampled interval (14.5 cm thick) are in five discrete, layer-parallel, normal- and reversed-polarity zones. The measured northeast-southwest declinations and shallow inclinations probably record Late Devonian magnetostratigraphy on a centimetre scale. The Frutexites bed studied there occurs close to the Frasnian/Famennian (Late Devonian) boundary, a time of mass extinction of a wide variety of marine organisms throughout the world. Anomalously high iridium concentrations observed in the Frutexites bed have suggested to some authors that the mass extinction was caused by meteorite impact. This study concludes that iridium, which is present over the span of five layer-parallel magnetic reversals, was concentrated over a long period of time by biologic processes. Thus, the Canning Basin iridium anomaly may be unrelated to meteorite impact.

  5. The Iridium (tm) system: Personal communications anytime, anyplace

    NASA Astrophysics Data System (ADS)

    Hatlelid, John E.; Casey, Larry

    The Iridium system is designed to provide handheld personal communications between diverse locations around the world at any time and without prior knowledge of the location of the personal units. This paper provides an overview of the system, the services it provides, its operation, and an overview of the commercial practices and relatively high volume satellite production techniques which will make the system cost effective. A constellation of 66 satellites will provide an orbiting, spherical-shell, infrastructure for this global calling capability. The satellites act as tall cellular towers and allow convenient operation for portable handheld telephones. The system will provide a full range of services including voice, paging, data, geolocation, and fax capabilities. Motorola is a world leader in the production of high volume, high quality, reliable telecommunications hardware. One of Iridium's goals is to apply these production techniques to high reliability space hardware. Concurrent engineering, high performance work teams, advanced manufacturing technologies, and improved assembly and test methods are some of the techniques that will keep the Iridium system cost effective. Mobile, global, flexible personal communications are coming that will allow anyone to call or receive a call from/to anyplace at anytime. The Iridium system will provide communications where none exist today. This connectivity will allow increased information transfer, open new markets for various business endeavors, and in general increase productivity and development.

  6. The Iridium (tm) system: Personal communications anytime, anyplace

    NASA Technical Reports Server (NTRS)

    Hatlelid, John E.; Casey, Larry

    1993-01-01

    The Iridium system is designed to provide handheld personal communications between diverse locations around the world at any time and without prior knowledge of the location of the personal units. This paper provides an overview of the system, the services it provides, its operation, and an overview of the commercial practices and relatively high volume satellite production techniques which will make the system cost effective. A constellation of 66 satellites will provide an orbiting, spherical-shell, infrastructure for this global calling capability. The satellites act as tall cellular towers and allow convenient operation for portable handheld telephones. The system will provide a full range of services including voice, paging, data, geolocation, and fax capabilities. Motorola is a world leader in the production of high volume, high quality, reliable telecommunications hardware. One of Iridium's goals is to apply these production techniques to high reliability space hardware. Concurrent engineering, high performance work teams, advanced manufacturing technologies, and improved assembly and test methods are some of the techniques that will keep the Iridium system cost effective. Mobile, global, flexible personal communications are coming that will allow anyone to call or receive a call from/to anyplace at anytime. The Iridium system will provide communications where none exist today. This connectivity will allow increased information transfer, open new markets for various business endeavors, and in general increase productivity and development.

  7. Iridium alloy Clad Vent Set manufacturing qualification studies

    NASA Astrophysics Data System (ADS)

    Ulrich, George B.

    Metallurgical qualification studies to demonstrate the manufacturing readiness of the iridium alloy Clad Vent Set (CVS) for the General Purpose Heat Source program at the Oak Ridge Y-12 Plant are described. Microstructural data for various materials/test conditions are presented.

  8. Discovery of tantalum, rhenium, osmium, and iridium isotopes

    SciTech Connect

    Robinson, R.; Thoennessen, M.

    2012-09-15

    Currently, thirty-eight tantalum, thirty-eight rhenium, thirty-nine osmium, and thirty-eight iridium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  9. Achieving zero stress in iridium, chromium, and nickel thin films

    NASA Astrophysics Data System (ADS)

    Broadway, David M.; Weimer, Jeffrey; Gurgew, Danielle; Lis, Tomasz; Ramsey, Brian D.; O'Dell, Stephen L.; Gubarev, Mikhail; Ames, A.; Bruni, R.

    2015-05-01

    We examine a method for achieving zero intrinsic stress in thin films of iridium, chromium, and nickel deposited by magnetron sputter deposition. The examination of the stress in these materials is motivated by efforts to advance the optical performance of light-weight x-ray space telescopes into the regime of sub-arc second resolution. A characteristic feature of the intrinsic stress behavior in chromium and nickel is their sensitivity to the magnitude and sign of the intrinsic stress with argon gas pressure, including the existence of a critical pressure that results in zero film stress. This critical pressure scales linearly with the film's density. While the effect of stress reversal with argon pressure has been previously reported by Hoffman and others for nickel and chromium, we have discovered a similar behavior for the intrinsic stress in iridium films. Additionally, we have identified zero stress in iridium shortly after island coalescence in the high adatom mobility growth regime. This feature of film growth is used for achieving a total internal stress of -2.89 MPa for a 15.8 nm thick iridium film with a surface roughness of 5.0 +/- 0.5Å based on x-ray reflectivity (XRR) measurement at CuKα. The surface topography was also examined using atomic force microscopy (AFM). The examination of the stress in these films has been performed with a novel in-situ measurement device. The methodology and sensitivity of the in-situ instrument is also described herein.

  10. Achieving Zero Stress in Iridium, Chromium, and Nickle Thin Films

    NASA Technical Reports Server (NTRS)

    Broadway, David M.; Weimer, Jeffrey; Gurgew, Danielle; Lis, Tomasz; Ramsey, Brian D.; O'Dell, Stephen L.; Ames, A.; Bruni, R.

    2015-01-01

    We examine a method for achieving zero intrinsic stress in thin films of iridium, chromium, and nickel deposited by magnetron sputter deposition. The examination of the stress in these materials is motivated by efforts to advance the optical performance of light-weight x-ray space telescopes into the regime of sub-arc second resolution that rely on control of the film stress to values within 10-100 MPa. A characteristic feature of the intrinsic stress behavior in chromium and nickel is their sensitivity to the magnitude and sign of the intrinsic stress with argon gas pressure, including the existence of a critical pressure that results in zero film stress. This critical pressure scales linearly with the film's density. While the effect of stress reversal with argon pressure has been previously reported by Hoffman and others for nickel and chromium, we have discovered a similar behavior for iridium. Additionally, we have identified zero stress in iridium shortly after island coalescence. This feature of film growth is used for achieving a total internal stress of -2.89 MPa for a 15.8 nm thick iridium film. The surface roughness of this low-stress film was examined using scanning probe microscopy (SPM) and x-ray reflectivity (XRR) at CuKa and these results presented and discussed.

  11. Mononuclear iridium dinitrogen complexes bonded to zeolite HY

    SciTech Connect

    Yang, Dong; Chen, Mingyang; Martinez-Macias, Claudia; Dixon, David A.; Gates, Bruce C.

    2014-11-07

    In this study, the adsorption of N2 on structurally well-defined dealuminated HY zeolite-supported iridium diethylene complexes was investigated. Iridium dinitrogen complexes formed when the sample was exposed to N2 in H2 at 298 K, as shown by infrared spectra recorded with isotopically labeled N2. Four supported species formed in various flowing gases: Ir(N2), Ir(N2)(N2), Ir(C2H5)(N2), and Ir(H)(N2). Their interconversions are summarized in a reaction network, showing, for example, that, in the presence of N2, Ir(N2) was the predominant dinitrogen species at temperatures of 273-373 K. Ir(CO)(N2) formed transiently in flowing CO, and in the presence of H2, rather stable iridium hydride complexes formed. Here, four structural models of each iridium complex bonded at the acidic sites of the zeolite were employed in a computational investigation, showing that the calculated vibrational frequencies agree well with experiment when full calculations are done at the level of density functional theory, independent of the size of the model of the zeolite.

  12. Internal friction and gas desorption of {C}/{C} composites

    NASA Astrophysics Data System (ADS)

    Serizawa, H.; Sato, S.; Kohyama, A.

    1994-09-01

    {C}/{C} composites are the most promising candidates as high heat flux component materials, where temperature dependence of mechanical properties and gas desorption behavior at elevated temperature are important properties. At the beginning, the newly developed internal friction measurement apparatus, which enables the accurate measurement of dynamic elastic properties up to 1373 K along with the measurement of gas desorption behavior, was used. The materials studied were unidirectional (UD) {C}/{C} composites reinforced with mesophase pitch-based carbon fibers, which were heat treated at temperatures ranging from 1473 to 2773 K which produced a variety of graphitized microstructures. Two-dimensional (2D) {C}/{C} composites reinfored with flat woven fabrics of PAN type carbon fibers were also studied. These materials were heat treated at 1873 K. From the temperature spectrum of internal friction of 2D {C}/{C} composites, these internal friction peaks were detected and were related to gas desorption. Also the temperature dependence of Young's modulus of UD {C}/{C} composites, negative and positive dependence of Young's modulus were observed reflecting microstructure changes resulting from the heat treatments.

  13. Enantioselective copper-catalyzed carboetherification of unactivated alkenes.

    PubMed

    Bovino, Michael T; Liwosz, Timothy W; Kendel, Nicole E; Miller, Yan; Tyminska, Nina; Zurek, Eva; Chemler, Sherry R

    2014-06-16

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein reported is a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols which terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, thus yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition-state calculations support a cis-oxycupration stereochemistry-determining step. PMID:24798697

  14. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  15. Structure, electrochemical properties and capacitance performance of polypyrrole electrodeposited onto 1-D crystals of iridium complex

    NASA Astrophysics Data System (ADS)

    Wysocka-Żołopa, Monika; Winkler, Krzysztof

    2015-12-01

    Composites of polypyrrole and one-dimensional iridium complex crystals [(C2H5)4N]0.55[IrCl2(CO)2] were prepared by in situ two-step electrodeposition. Initially, iridium complex crystals were formed during [IrCl2(CO)2]- complex oxidation. Next, pyrrole was electropolymerized on the surface of the iridium needles. The morphology of the composite was investigated by scanning and transmission electron microscopy. At positive potentials, the iridium complex crystals and the polypyrrole were oxidized. In aprotic solvents, oxidation of the iridium complex crystals resulted in their dissolution. In water containing tetra(n-butyl)ammonium chlorides, the 1-D iridium complex crystals were reversibly oxidized. The product of the iridium complex oxidation remained on the electrode surface in crystalline form. The iridium complex needles significantly influenced the redox properties of the polymer. The polypyrrole involved electrode processes become more reversible in presence of crystals of iridium complex. The current of polypyrrole oxidation was higher compared to that of pure polypyrrole and the capacitance properties of the polymer were significantly enhanced. A specific capacitance as high as 590 F g-1 was obtained for a composite of polypyrrole and 1-D crystals of the iridium complex in water containing tetra(n-butyl)ammonium chloride. This value is approximately twice as high as the capacitance of the pure polymer deposited onto the electrode surface.

  16. The Decomposition of Hydrazine in the Gas Phase and over an Iridium Catalyst

    SciTech Connect

    Schmidt, Michael W.; Gordon, Mark S.

    2013-09-30

    Hydrazine is an important rocket fuel, used as both a monopropellant and a bipropellant. This paper presents theoretical results to complement the extensive experimental studies of the gas phase and Ir catalyzed decompositions involved in the monopropellant applications of hydrazine. Gas phase electronic structure theory calculations that include electron correlation predict that numerous molecular and free radical reactions occur within the same energy range as the basic free radical pathways: NN bond breaking around 65 kcal/mol and NH bond breaking around 81 kcal/mol. The data suggest that a revision to existing kinetics modeling is desirable, based on the energetics and the new elementary steps reported herein. A supported Ir-6 octahedron model for the Shell 405 Iridium catalyst used in thrusters was developed. Self-Consistent Field and electron correlation calculations (with core potentials and associated basis sets) find a rich chemistry for hydrazine on this catalyst model. The model catalyst provides dramatically lower NN and NH bond cleavage energies and an even smaller barrier to breaking the NH bond by NH2 abstractions. Thus, the low temperature decomposition over the catalyst is interpreted in terms of consecutive NH2 abstractions to produce ammonia and nitrogen. The higher temperature channel, which has hydrogen and nitrogen products, may be due to a mixture of two mechanisms. These two mechanisms are successive NH cleavages with surface H + H recombinations, and the same type of assisted H-2 eliminations found to occur in the gas phase part of this study.

  17. Insights into the oxidative dehydrogenation of amines with nanoparticulate iridium oxide.

    PubMed

    Hammond, Ceri; Schümperli, Martin T; Hermans, Ive

    2013-09-23

    The aerobic oxidation of amines offers a promising route towards many versatile chemical compounds. Within this contribution, we extend our previous investigations of iridium oxide-catalyzed alcohol oxidation to amine substrates. In addition to demonstrating the versatility of this catalyst, particular attention is focused on the mechanisms of the reaction. Herein, we demonstrate that although amines are oxidized slower than the corresponding alcohols, the catalyst has a preference for amine substrates, and oxidizes various amines at turnover frequencies greater than other systems found in the open literature. Furthermore, the competition between double amine dehydrogenation, to yield the corresponding nitrile, and amine-imine coupling, to yield the corresponding coupled imine, has been found to arise from a competitive reaction pathway, and stems from an effect of substrate-to-metal ratio. Finally, the mechanism responsible for the formation of N-benzylidene-1-phenylmethanamine was examined, and attributed to the coupling of free benzyl amine substrate and benzaldehyde, formed in situ through hydrolysis of the primary reaction product, benzyl imine. PMID:23939827

  18. The Gas Leakage Analysis in C/C Composites

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yuichi; Hatta, Hiroshi; Bando, Takamasa; Sugibayashi, Toshio

    Gas leakage through carbon fiber reinforcement carbon composites, C/Cs, was discussed so as to apply C/Cs to heat exchangers in an engine system for a future space-plane. Since C/Cs include many cracks and pores, gas easily leaks through C/Cs. To predict and to prevent the gas flow through a C/C, leakage rate was measured as a function of pressure and gas flow path was identified by micro-observation of the C/C. Then, several analytical models were examined to clarify principal mechanism yielding gas flow resistance. It was found that laminar flow models gave far small flow resistance compared with experimental results, but a model based on adiabatic expansion and compression flow, used for gas leak through labyrinth seals, resulted in reasonable agreement. Finally, Si impregnation in a C/C was examined to minimize the gas leakage. This treatment was shown to be an excellent measure to reduce the gas leakage through C/C.

  19. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    SciTech Connect

    Purwaningsih, Anik

    2014-09-30

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  20. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    NASA Astrophysics Data System (ADS)

    Purwaningsih, Anik

    2014-09-01

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  1. Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process.

    PubMed

    Zhang, Chun; Tang, Conghui; Jiao, Ning

    2012-05-01

    Copper salts have been developed as versatile catalysts for oxidative coupling reactions in organic synthesis. During these processes, Cu-catalysts are often proposed to serve as a one-electron oxidant to promote the single-electron transfer process. Recently, the transition-metal catalyzed direct dehydrogenative transformation has attracted considerable attention. This tutorial review summarizes the recent advances in the copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process achieving C-C, C-N, C-O, C-halogen atoms, C-P, and N-N bond formation. PMID:22349590

  2. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction.

    PubMed

    Sanchez Casalongue, Hernan G; Ng, May Ling; Kaya, Sarp; Friebel, Daniel; Ogasawara, Hirohito; Nilsson, Anders

    2014-07-01

    An iridium oxide nanoparticle electrocatalyst under oxygen evolution reaction conditions was probed in situ by ambient-pressure X-ray photoelectron spectroscopy. Under OER conditions, iridium undergoes a change in oxidation state from Ir(IV) to Ir(V) that takes place predominantly at the surface of the catalyst. The chemical change in iridium is coupled to a decrease in surface hydroxide, providing experimental evidence which strongly suggests that the oxygen evolution reaction on iridium oxide occurs through an OOH-mediated deprotonation mechanism. PMID:24889896

  3. Network flexibility of the IRIDIUM (R) Global Mobile Satellite System

    NASA Technical Reports Server (NTRS)

    Hutcheson, Jonathan; Laurin, Mala

    1995-01-01

    The IRIDIUM system is a global personal communications system supported by a constellation of 66 low earth orbit (LEO) satellites and a collection of earth-based 'gateway' switching installations. Like traditional wireless cellular systems, coverage is achieved by a grid of cells in which bandwidth is reused for spectral efficiency. Unlike any cellular system ever built, the moving cells can be shared by multiple switching facilities. Noteworthy features of the IRIDIUM system include inter-satellite links, a GSM-based telephony architecture, and a geographically controlled system access process. These features, working in concert, permit flexible and reliable administration of the worldwide service area by gateway operators. This paper will explore this unique concept.

  4. Photoswitchable azobenzene-appended iridium(iii) complexes.

    PubMed

    Pérez-Miqueo, J; Altube, A; García-Lecina, E; Tron, A; McClenaghan, N D; Freixa, Z

    2016-09-21

    Iridium(iii) cyclometalated complexes have been used as models to study the effect that extended conjugation and substitution pattern has on the photochromic behavior of azobenzene-appended 2-phenylpyridyl (ppy) ligands. For this purpose four azobenzene-containing ppy ligands were synthesized. With these ligands, nine iridium(iii) complexes containing up to three appended azobenzenes were synthesized. Analysis of their photochromic behaviour by means of UV-vis and (1)H-NMR spectroscopy permitted us to conclude that the light-induced trans-to-cis isomerization of the azobenzene was strongly inhibited upon coordination to the Ir(iii) cation when the electronic conjugation was extended along the whole ligand. The use of an aliphatic spacer unit (either -CH2- or -OCH2-) between the azobenzene and the ppy fragment of the ligand sufficed to disrupt the electronic communication, and obtain photochromic organometallic complexes. PMID:27460186

  5. Water-soluble iridium phosphorescent complexes for OLED applications

    NASA Astrophysics Data System (ADS)

    Eum, Min-Sik; Yoon, Heekoo; Kim, Tae Hyung

    2012-09-01

    Newly prepared water-soluble iridium phosphorescent complexes, trans-[Ir(ppy)(PAr3)2(H)L]0,+ (ppy = bidentate 2-phenylpyridinato anionic ligand; L= Cl (1), CO (2), CN- (3); H being trans to the nitrogen of ppy ligand; PAr3 (TPPTS) = P(m-C6H4SO3Na)3), have been synthesized and characterized. Those complexes containing water-soluble phosphine ligands can emit any color region as altering cyclometalated ligands in aqueous media with high quantum efficiencies. Even though these water-soluble phosphorescent iridium complexes can be the sensing probe for toxic CO gas and CN anion, they will be capable of promising materials in the solution processible OLED applications.

  6. Circularly polarised phosphorescent photoluminescence and electroluminescence of iridium complexes

    PubMed Central

    Li, Tian-Yi; Jing, Yi-Ming; Liu, Xuan; Zhao, Yue; Shi, Lin; Tang, Zhiyong; Zheng, You-Xuan; Zuo, Jing-Lin

    2015-01-01

    Nearly all the neutral iridium complexes widely used as dopants in PhOLEDs are racemic mixtures; however, this study observed that these complexes can be separated into stable optically active Λ and ∆ isomers and that their chirality is an intrinsic property. The circularly polarised phosphorescent photoluminescence (CPPPL) signals of Λ/Δ isomers are perfect mirror images with opposite polarisation and equal intensity exhibiting a “handedness” for the polarisation. For the first time, we applied the Λ/Δ iridium isomers as emitters in OLEDs, and the circularly polarised phosphorescent electroluminescence (CPPEL) spectra reveal completely positive or negative broad peaks consistent with the CPPPL spectra. The results demonstrate that the Λ/Δ isomers have potential application for 3D OLEDs because they can exhibit high efficiency and luminance, and 3D display technology based on circularly polarised light is the most comfortable for the eyes. PMID:26446521

  7. Iridium alloy clad vent set manufacturing qualification studies

    NASA Astrophysics Data System (ADS)

    Ulrich, George B.

    1991-01-01

    Qualification studies have been successfully conducted to demonstrate iridium alloy Clad Vent Set (CVS) manufacturing readiness for the General Purpose Heat Source (GPHS) program at the Oak Ridge Y-12 Plant. These studies were joint comparison evaluations of both the Y-12 Plant and EG&G Mound G-MAT) products. Note: EG&G-MAT formerly manufactured the iridium alloy CVS. The comparison evaluations involved work in a number of areas; however, only the CVS cup metallurgical evalution will be presented here. The initial metallurgical comparisons in conjunction with follow-up metallurgical work showed the Y-12 Plant CVS product to be comparable to the fully qualified (for Galileo and Ulysses missions) EG&G-MAT product. This allowed the Y-12 Plant to commence pilot production of CVS components for potential use in the CRAF and CASSINI missions.

  8. Processing and properties of iridium alloys for space power applications

    SciTech Connect

    Ohriner, E.K.

    1994-12-31

    Iridium alloys are used as fuel cladding in radioisotope thermoelectric generators due to their high-melting point, high- temperature strength, and oxidation and corrosion resistance. Although iridium has a face-centered cubic crystal structure, it undergoes a distinct ductile-to-brittle transition characteristic of many body-centered cubic metals. Improved ductility in the alloys is achieved through material purification and controlled alloy additions at the parts per million (ppm) level. A vacuum arc remelt operation produces a nearly defect-free casting, which is further processed to sheet products. A change in processing from drop castings of small arc-melted buttons to large arc-remelted ingots has substantially improved product yields. The effects of processing changes on alloy microstructure, sheet textures, oxidation effects, high-strain-rate ductility, and fabricability are discussed.

  9. Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Narayan, Sri R.; Billings, Keith J.

    2011-01-01

    NASA requires a durable and efficient catalyst for the electrolysis of water in a polymer-electrolyte-membrane (PEM) cell. Ruthenium oxide in a slightly reduced form is known to be a very efficient catalyst for the anodic oxidation of water to oxygen, but it degrades rapidly, reducing efficiency. To combat this tendency of ruthenium oxide to change oxidation states, it is combined with iridium, which has a tendency to stabilize ruthenium oxide at oxygen evolution potentials. The novel oxygen evolution catalyst was fabricated under flowing argon in order to allow the iridium to preferentially react with oxygen from the ruthenium oxide, and not oxygen from the environment. Nanoparticulate iridium black and anhydrous ruthenium oxide are weighed out and mixed to 5 18 atomic percent. They are then heat treated at 300 C under flowing argon (in order to create an inert environment) for a minimum of 14 hours. This temperature was chosen because it is approximately the creep temperature of ruthenium oxide, and is below the sintering temperature of both materials. In general, the temperature should always be below the sintering temperature of both materials. The iridium- doped ruthenium oxide catalyst is then fabricated into a PEM-based membrane- electrode assembly (MEA), and then mounted into test cells. The result is an electrolyzer system that can sustain electrolysis at twice the current density, and at the same efficiency as commercial catalysts in the range of 100-200 mA/sq cm. At 200 mA/sq cm, this new system operates at an efficiency of 85 percent, which is 2 percent greater than commercially available catalysts. Testing has shown that this material is as stable as commercially available oxygen evolution catalysts. This means that this new catalyst can be used to regenerate fuel cell systems in space, and as a hydrogen generator on Earth.

  10. Thermodynamic characterization of hydrogen interaction with iridium polyhydride complexes

    SciTech Connect

    Zidan, R.A.; Rocheleau, R.E.

    1999-01-01

    Hydrogen interaction with solid iridium complexes IrXH{sub 2}(PPr3{sup i}){sub 2} (X=Cl, I) was investigated. Gaseous hydrogen was found to react reversibly with solid chloro-iridium complex IrClH{sub 2}(PPr3{sup i}){sub 2} forming IrClH{sub 2}(PPr3{sup i}){sub 2}H{sub 2}. The relative partial molal enthalpy and entropy were obtained from equilibrium isotherms at different hydrogen concentrations. The decrease in entropy with increasing hydrogen concentration and the absence of plateaus in the equilibrium isotherms were consistent with a single phase solid solution with two chemical components. Hydrogen release from solid iodo-iridium complex IrIH{sub 2}(PPr3{sup i}){sub 2}H{sub 2} was not observed at temperatures up to 350 K, indicating stronger hydrogen bonding. {copyright} {ital 1999 Materials Research Society.}

  11. Advances in iridium alloy processing in FY 1988

    SciTech Connect

    Ohriner, E.K.; Heestand, R.L.

    1989-12-01

    A new process for the production of DOP-26 iridium alloy blanks is being evaluated and optimized. The alloy is prepared by electron-beam (EB) melting of Ir-0.3% W powder compacts followed by doping with aluminum and thorium by arc melting. Drop-cast alloy rod segments are EB welded together into an electrode that is arc melted to produce an ingot for extrusion and subsequent sheet rolling and blanking. Initial results showed rejections for ultrasonic indications for alloy blanks fabricated by this process to be very low. Subsequently, some ingots have exhibited delaminations in the sheet, leading to blank rejection rates similar to that obtained in the standard process. The occurrence of ultrasonic indications in the blanks are now shown to be associated with the presence of subsurface flaws in the arc-melted ingot that are not healed during extrusion or the subsequent rolling of the sheet. There is substantial evidence indicating that the occurrence of surface and subsurface flaws in the ingots are exacerbated by the relatively small clearances between the electrode and the side wall of the 51-mm-diam mold. These results obtained from experimental melts, with both stainless steel and scrap iridium alloy materials, have led to a recommendation for arc melting in a large 63-mm-diam mold. The fabrication of blanks from this larger diameter ingot is under way. The efficiency of iridium material utilization in the new process is also discussed. 2 refs., 23 figs., 12 tabs.

  12. Luminescence of carbazolyl-containing polymers doped with iridium chelates

    NASA Astrophysics Data System (ADS)

    Skryshevskii, Yu. A.

    2008-05-01

    White light emission is shown to be obtainable at room temperature through the mixing of poly-N-vinylcarbazole (PVC) host fluorescence with fac-tris(2-phenylpyridyl)Ir(III) [Ir(ppy)3] and bis[2-(2'-benzothienyl)pyridinato-N,C3'](acetylacetonate)iridium (III) [Btp2Ir(acac)] dopant phosphorescence whereas at very low temperature through the superposition of poly-N-epoxypropyl-3,6-dibromocarbazole (3,6-DBrPEPC) host and Btp2Ir(acac) dopant phosphorescence emissions. The balance between basic colors is adjusted by the variation of triplet-emitter dopant concentrations. Spin-allowed singlet-singlet energy transfer from the host to iridium chelate dopants by the Forster mechanism is the dominant process in PVC. Spin-forbidden triplet-singlet transfer by the Forster mechanism from the host to the dopant occurs at low temperatures in 3,6-DBrPEPC due to strong spin-orbit coupling induced by the heavy bromine atoms. Spin-allowed transfer from the same host’s triplet excited state to the iridium chelate occurs via electron exchange at high temperatures.

  13. Mono- and bis-tolylterpyridine iridium(III) complexes

    SciTech Connect

    Hinkle, Lindsay M.; Young, Jr., Victor G.; Mann, Kent R.

    2012-01-20

    The first structure report of trichlorido[4'-(p-tolyl)-2,2':6',2{double_prime}-terpyridine]iridium(III) dimethyl sulfoxide solvate, [IrCl{sub 3}(C{sub 22}H{sub 17}N{sub 3})] {center_dot} C{sub 2}H{sub 6}OS, (I), is presented, along with a higher-symmetry setting of previously reported bis[4'-(p-tolyl)-2,2':6',2{double_prime}-terpyridine]iridium(III) tris(hexafluoridophosphate) acetonitrile disolvate, [Ir(C{sub 22}H{sub 17}N{sub 3})2](PF{sub 6}){sub 3} {center_dot} 2C{sub 2}H{sub 3}N, (II) [Yoshikawa, Yamabe, Kanehisa, Kai, Takashima & Tsukahara (2007). Eur. J. Inorg. Chem. pp. 1911-1919]. For (I), the data were collected with synchrotron radiation and the dimethyl sulfoxide solvent molecule is disordered over three positions, one of which is an inversion center. The previously reported structure of (II) is presented in the more appropriate C2/c space group. The iridium complex and one PF{sub 6}{sup -} anion lie on twofold axes in this structure, making half of the molecule unique.

  14. Mononuclear iridium dinitrogen complexes bonded to zeolite HY

    DOE PAGESBeta

    Yang, Dong; Chen, Mingyang; Martinez-Macias, Claudia; Dixon, David A.; Gates, Bruce C.

    2014-11-07

    In this study, the adsorption of N2 on structurally well-defined dealuminated HY zeolite-supported iridium diethylene complexes was investigated. Iridium dinitrogen complexes formed when the sample was exposed to N2 in H2 at 298 K, as shown by infrared spectra recorded with isotopically labeled N2. Four supported species formed in various flowing gases: Ir(N2), Ir(N2)(N2), Ir(C2H5)(N2), and Ir(H)(N2). Their interconversions are summarized in a reaction network, showing, for example, that, in the presence of N2, Ir(N2) was the predominant dinitrogen species at temperatures of 273-373 K. Ir(CO)(N2) formed transiently in flowing CO, and in the presence of H2, rather stable iridiummore » hydride complexes formed. Here, four structural models of each iridium complex bonded at the acidic sites of the zeolite were employed in a computational investigation, showing that the calculated vibrational frequencies agree well with experiment when full calculations are done at the level of density functional theory, independent of the size of the model of the zeolite.« less

  15. Direct, Sequential, and Stereoselective Alkynylation of C,C-Dibromophosphaalkenes.

    PubMed

    Shameem, Muhammad A; Esfandiarfard, Keyhan; Öberg, Elisabet; Ott, Sascha; Orthaber, Andreas

    2016-07-18

    The first direct alkynylation of C,C-dibromophosphaalkenes by a reaction with sulfonylacetylenes is reported. Alkynylation proceeds selectively in the trans position relative to the P substituent to afford bromoethynylphosphaalkenes. Owing to the absence of transition metals in the procedure, the previously observed conversion of dibromophosphaalkenes into phosphaalkynes through the phosphorus analog of the Fritsch-Buttenberg-Wiechell rearrangement is thus suppressed. The bromoethynylphosphaalkenes can subsequently be converted to C,C-diacetylenic, cross-conjugated phosphaalkenes by following a Sonogashira coupling protocol in good overall yields. By using the newly described method, full control over the stereochemistry at the P=C double bond is achieved. The substrate scope of this reaction is demonstrated for different dibromophosphaalkenes as well as different sulfonylacetylenes. PMID:27310813

  16. Dislocation dissociation in some f.c.c. metals

    NASA Technical Reports Server (NTRS)

    Esterling, D. M.

    1980-01-01

    The dissociation of a perfect screw dislocation into a stacking fault in an f.c.c. lattice is modeled by the modified lattice statics. The interatomic potentials are obtained from the work of Esterling and Swaroop and differ substantially from those empirical potentials usually employed in defect simulations. The calculated stacking fault widths for aluminum, copper, and silver are in good agreement with weak beam microscopy results.

  17. [Study on spectral emissivity of C/C composites].

    PubMed

    Zhu, Bo; Cao, Wei-Wei; Jing, Min; Dong, Xing-Guang; Wang, Cheng-Guo

    2009-11-01

    Different types of C/C composites were prepared by conventional molding, and the changes in normal spectral emissivity of samples were tested. The testing results show that spectral emissivity of C/C composite reinforced by short cut carbon fibers is generally higher than the sample reinforced by carbon cloth in the entire 2500-13000nm wavelength region. The structure of short cut carbon fibers is relatively loose and the number of material particles is less than other samples in unit volume, which increases the penetration depth of electromagnetic waves. This is the reason for higher normal spectral emissivity and better heat radiation property. Meanwhile, the test results of normal spectral emissivity for fiber perform and C/C composite samples show that the spectral emissivity of resin carbon is better than fiber carbon because of the difference in microstructure for the two kinds of carbon materials. Laser Raman spectroscopy was employed to analyze the microstructures of different carbon materials, and the results show that because sp3 and sp2 hybrid states of carbon atoms in resin carbon produced more vibration modes, the resin carbon also has higher normal spectral emissivity and better characteristics of heat radiation. PMID:20101951

  18. Ligand-Controlled Synthesis of Azoles via Ir-Catalyzed Reactions of Sulfoxonium Ylides with 2-Amino Heterocycles.

    PubMed

    Phelps, Alicia M; Chan, Vincent S; Napolitano, José G; Krabbe, Scott W; Schomaker, Jennifer M; Shekhar, Shashank

    2016-05-20

    An iridium-catalyzed method was developed for the synthesis of imidazo-fused pyrrolopyrazines. The presence or absence of a nitrogenated ligand controlled the outcome of the reaction, leading to simple β-keto amine products in the absence of added ligand and the cyclized 7- and 8-substituted-imidazo[1,2-a]pyrrolo[2,3-e]pyrazine products in the presence of ligand. This catalyst control was conserved across a variety of ylide and amine coupling partners. The substrate was shown to act as a ligand for the iridium catalyst in the absence of other ligands via NMR spectroscopy. Kinetic studies indicated that formation of the Ir-carbene was reversible and the slow step of the reaction. These mechanistic investigations suggest that the β-keto amine products form via an intramolecular carbene N-H insertion, and the imidazopyrrolopyrazines form via an intermolecular carbene N-H insertion. PMID:27104299

  19. Evaluation of Molybdenum as a Surrogate for Iridium in the GPHS Weld Development

    SciTech Connect

    Stine, Andrew Martin; Pierce, Stanley W.; Moniz, Paul F.

    2015-10-17

    The welding equipment used for welding iridium containers (clads) at Los Alamos National Laboratory is twenty five years old and is undergoing an upgrade. With the upgrade, there is a requirement for requalification of the welding process, and the opportunity for process improvement. Testing of the new system and requalification will require several welds on iridium test parts and clads, and any efforts to improve the process will add to the need for iridium parts. The extreme high cost of iridium imposes a severe limitation on the extent of test welding that can be done. The 2 inch diameter, 0.027 inch thick, iridium blank disc that the clad cup is formed from, is useful for initial weld trials, but it costs $5000. The development clad sets needed for final tests and requalification cost $15,000 per set. A solution to iridium cost issue would be to do the majority of the weld development on a less expensive surrogate metal with similar weld characteristics. One such metal is molybdenum. Since its melting index (melting temperature x thermal conductivity) is closest to iridium, welds on molybdenum should be similar in size for a given weld power level. Molybdenum is inexpensive; a single 2 inch molybdenum disc costs only $9. In order to evaluate molybdenum as a surrogate for iridium, GTA welds were first developed to provide full penetration on 0.030 inch thick molybdenum discs at speeds of 20, 25, and 30 inches per minute (ipm). These weld parameters were then repeated on the standard 0.027 inch thick iridium blanks. The top surface and bottom surface (root) width and grain structure of the molybdenum and iridium welds were compared, and similarities were evident between the two metals. Due to material and thickness differences, the iridium welds were approximately 35% wider than the molybdenum welds. A reduction in iridium weld current of 35% produce welds slightly smaller than the molybdenum welds yet showed that current could be scaled according to molybdenum/iridium

  20. Rockot Launch Vehicle Commercial Operations for Grace and Iridium Program

    NASA Astrophysics Data System (ADS)

    Viertel, Y.; Kinnersley, M.; Schumacher, I.

    2002-01-01

    The GRACE mission and the IRIDIUM mission on ROCKOT launch vehicle are presented. Two identical GRACE satellites to measure in tandem the gravitational field of the earth with previously unattainable accuracy - it's called the Gravity Research and Climate Experiment, or and is a joint project of the U.S. space agency, NASA and the German Centre for Aeronautics and Space Flight, DLR. In order to send the GRACE twins into a 500x500 km , 89deg. orbit, the Rockot launch vehicle was selected. A dual launch of two Iridium satellites was scheduled for June 2002 using the ROCKOT launch vehicle from Plesetsk Cosmodrome in Northern Russia. This launch will inject two replacement satellites into a low earth orbit (LEO) to support the maintenance of the Iridium constellation. In September 2001, Eurockot successfully carried out a "Pathfinder Campaign" to simulate the entire Iridium mission cycle at Plesetsk. The campaign comprised the transport of simulators and related equipment to the Russian port-of-entry and launch site and also included the integration and encapsulation of the simulators with the actual Rockot launch vehicle at Eurockot's dedicated launch facilities at Plesetsk Cosmodrome. The pathfinder campaign lasted four weeks and was carried out by a joint team that also included Khrunichev, Russian Space Forces and Eurockot personnel on the contractors' side. The pathfinder mission confirmed the capability of Eurockot Launch Services to perform the Iridium launch on cost and on schedule at Plesetsk following Eurockot's major investment in international standard preparation, integration and launch facilities including customer facilities and a new hotel. In 2003, Eurockot will also launch the Japanese SERVI'S-1 satellite for USEF. The ROCKOT launch vehicle is a 3 stage liquid fuel rocket whose first 2 stages have been adapted from the Russian SS-19. A third stage, called "Breeze", can be repeatedly ignited and is extraordinarily capable of manoeuvre. Rockot can place

  1. Catalyzed sodium chlorate candles

    NASA Technical Reports Server (NTRS)

    Malich, C. W.; Wydeven, T.

    1972-01-01

    The catalytic effect of cobalt powder on chlorate decomposition has been confirmed. Catalysis is enhanced by oxidation of the metal during burning. Catalysts other than cobalt compounds should also be effective; the complete elimination of fuel has shown that the oxidation of cobalt during decomposition is not a vital factor in the improved performance of catalyzed candles.

  2. Direct construction of 2-alkylbenzo-1,3-azoles via C-H activation of alkanes for C-C and C-X (X = O, S) bond formation.

    PubMed

    Yadav, Arvind K; Yadav, Lal Dhar S

    2015-03-01

    Copper catalyzed straightforward synthesis of 2-alkylbenzoxa(thia)azoles from aryl isocyanates/isothiocyanates and simple alkanes is reported. The protocol utilizes ditertiary butyl peroxide (DTBP) as a radical initiator and involves sequential formation of C-C and C-X (X = O, S) bonds followed by aromatization in a one-pot procedure. PMID:25578954

  3. C-C Bond Formation via Copper-Catalyzed Conjugate Addition Reactions to Enones in Water at Room Temperature

    PubMed Central

    Lipshutz, Bruce H.; Huang, Shenlin; Leong, Wendy Wen Yi; Isley, Nicholas A.

    2013-01-01

    Conjugate addition reactions to enones can now be done in water at room temperature with in situ-generated organocopper reagents. Mixing an enone, zinc powder, TMEDA, and an alkyl halide in a micellar environemnt containing catalytic amounts of Cu(I), Ag(I), and Au(III), leads to 1,4-adducts in good isolated yields: no organometallic precursor is involved. PMID:23190029

  4. A gold-catalyzed unique cycloisomerization of 1,5-enynes: efficient formation of 1-carboxycyclohexa-1,4-dienes and carboxyarenes.

    PubMed

    Wang, Shaozhong; Zhang, Liming

    2006-11-01

    A novel Au-catalyzed migratory cycloisomerization strategy is advanced. Implementation of this strategy led to the development of a unique Au-catalyzed 1,5-enyne cycloisomerizatioin involving carboxy migration and Au-mediated C-C single bond formation. 1-Carboxycyclohexa-1,4-dienes and carboxyarenes can be prepared with good efficiency and with flexible substitution patterns. PMID:17076498

  5. Real-Time Characterization of Formation and Breakup of Iridium Clusters in Highly Dealuminated Zeolite Y

    SciTech Connect

    Uzun, Alper; Gates, Bruce C.

    2009-01-15

    The chemistry of formation of iridium clusters from mononuclear iridium diethylene complexes anchored in dealuminated Y zeolite, and their subsequent breakup -- all including changes in the metal-metal, metal-support, and metal-ligand interactions -- is demonstrated by time-resolved EXAFS, XANES, and IR spectroscopy.

  6. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600 C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  7. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600?C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form? process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  8. Phosphorescent Imaging of Living Cells Using a Cyclometalated Iridium(III) Complex

    PubMed Central

    Ma, Dik-Lung; Zhong, Hai-Jing; Fu, Wai-Chung; Chan, Daniel Shiu-Hin; Kwan, Hiu-Yee; Fong, Wang-Fun; Chung, Lai-Hon; Wong, Chun-Yuen; Leung, Chung-Hang

    2013-01-01

    A cell permeable cyclometalated iridium(III) complex has been developed as a phosphorescent probe for cell imaging. The iridium(III) solvato complex [Ir(phq)2(H2O]2)] preferentially stains the cytoplasm of both live and dead cells with a bright luminescence. PMID:23457478

  9. Iridium-based double perovskites for efficient water oxidation in acid media

    PubMed Central

    Diaz-Morales, Oscar; Raaijman, Stefan; Kortlever, Ruud; Kooyman, Patricia J.; Wezendonk, Tim; Gascon, Jorge; Fu, W. T.; Koper, Marc T. M.

    2016-01-01

    The development of active, cost-effective and stable oxygen-evolving catalysts is one of the major challenges for solar-to-fuel conversion towards sustainable energy generation. Iridium oxide exhibits the best available compromise between catalytic activity and stability in acid media, but it is prohibitively expensive for large-scale applications. Therefore, preparing oxygen-evolving catalysts with lower amounts of the scarce but active and stable iridium is an attractive avenue to overcome this economical constraint. Here we report on a class of oxygen-evolving catalysts based on iridium double perovskites which contain 32 wt% less iridium than IrO2 and yet exhibit a more than threefold higher activity in acid media. According to recently suggested benchmarking criteria, the iridium double perovskites are the most active catalysts for oxygen evolution in acid media reported until now, to the best of our knowledge, and exhibit similar stability to IrO2. PMID:27498694

  10. Iridium-based double perovskites for efficient water oxidation in acid media

    NASA Astrophysics Data System (ADS)

    Diaz-Morales, Oscar; Raaijman, Stefan; Kortlever, Ruud; Kooyman, Patricia J.; Wezendonk, Tim; Gascon, Jorge; Fu, W. T.; Koper, Marc T. M.

    2016-08-01

    The development of active, cost-effective and stable oxygen-evolving catalysts is one of the major challenges for solar-to-fuel conversion towards sustainable energy generation. Iridium oxide exhibits the best available compromise between catalytic activity and stability in acid media, but it is prohibitively expensive for large-scale applications. Therefore, preparing oxygen-evolving catalysts with lower amounts of the scarce but active and stable iridium is an attractive avenue to overcome this economical constraint. Here we report on a class of oxygen-evolving catalysts based on iridium double perovskites which contain 32 wt% less iridium than IrO2 and yet exhibit a more than threefold higher activity in acid media. According to recently suggested benchmarking criteria, the iridium double perovskites are the most active catalysts for oxygen evolution in acid media reported until now, to the best of our knowledge, and exhibit similar stability to IrO2.