Sample records for iron coordination complexes

  1. Electronic structure and reactivity of three-coordinate iron complexes.

    PubMed

    Holland, Patrick L

    2008-08-01

    [Reaction: see text]. The identity and oxidation state of the metal in a coordination compound are typically thought to be the most important determinants of its reactivity. However, the coordination number (the number of bonds to the metal) can be equally influential. This Account describes iron complexes with a coordination number of only three, which differ greatly from iron complexes with octahedral (six-coordinate) geometries with respect to their magnetism, electronic structure, preference for ligands, and reactivity. Three-coordinate complexes with a trigonal-planar geometry are accessible using bulky, anionic, bidentate ligands (beta-diketiminates) that steer a monodentate ligand into the plane of their two nitrogen donors. This strategy has led to a variety of three-coordinate iron complexes in which iron is in the +1, +2, and +3 oxidation states. Systematic studies on the electronic structures of these complexes have been useful in interpreting their properties. The iron ions are generally high spin, with singly occupied orbitals available for pi interactions with ligands. Trends in sigma-bonding show that iron(II) complexes favor electronegative ligands (O, N donors) over electropositive ligands (hydride). The combination of electrostatic sigma-bonding and the availability of pi-interactions stabilizes iron(II) fluoride and oxo complexes. The same factors destabilize iron(II) hydride complexes, which are reactive enough to add the hydrogen atom to unsaturated organic molecules and to take part in radical reactions. Iron(I) complexes use strong pi-backbonding to transfer charge from iron into coordinated alkynes and N 2, whereas iron(III) accepts charge from a pi-donating imido ligand. Though the imidoiron(III) complex is stabilized by pi-bonding in the trigonal-planar geometry, addition of pyridine as a fourth donor weakens the pi-bonding, which enables abstraction of H atoms from hydrocarbons. The unusual bonding and reactivity patterns of three-coordinate

  2. Spectral Studies of Iron Coordination in Hemeprotein Complexes

    PubMed Central

    Brill, Arthur S.; Sandberg, Howard E.

    1968-01-01

    In order to evaluate the feasibility of observing the spectral behavior of protein groups in the coordination sphere of the iron in hemeproteins, criteria are developed to determine whether or not the application of difference absorption spectroscopy to the study of complex formation will be successful. Absolute absorption spectra, 300-1100 mμ, from bacterial catalase complexes are displayed, and the infrared bands correlated with magnetic susceptibility values of similar complexes of other hemeproteins. Dissociation constants for the formation of cyanide and azide complexes of metmyoglobin, methemoglobin, bacterial catalase, and horseradish peroxidase are given. Difference spectra, 210-280 mμ, are displayed for cyanide and azide complexes of these hemeproteins. A band at 235-241 mμ is found in the difference spectra of all low-spin vs. high-spin complexes. The factors which favor the assignment of this band to a transition involving a histidine residue are presented. PMID:5699802

  3. Reactivity pathways for nitric oxide and nitrosonium with iron complexes in biologically relevant sulfur coordination spheres.

    PubMed

    Harrop, Todd C; Song, Datong; Lippard, Stephen J

    2007-11-01

    The interaction of nitric oxide (NO) with iron-sulfur cluster proteins results in the formation of dinitrosyl iron complexes (DNICs) coordinated by cysteine residues from the peptide backbone or with low molecular weight sulfur-containing molecules like glutathione. Such DNICs are among the modes available in biology to store, transport, and deliver NO to its relevant targets. In order to elucidate the fundamental chemistry underlying the formation of DNICs and to characterize possible intermediates in the process, we have investigated the interaction of NO (g) and NO(+) with iron-sulfur complexes having the formula [Fe(SR)(4)](2-), where R=(t)Bu, Ph, or benzyl, chosen to mimic sulfur-rich iron sites in biology. The reaction of NO (g) with [Fe(S(t)Bu)(4)](2-) or [Fe(SBz)(4)](2-) cleanly affords the mononitrosyl complexes (MNICs), [Fe(S(t)Bu)(3)(NO)](-) (1) and [Fe(SBz)(3)(NO)](-) (3), respectively, by ligand displacement. Mononitrosyl species of this kind were previously unknown. These complexes further react with NO (g) to generate the corresponding DNICs, [Fe(SPh)(2)(NO)(2)](-) (4) and [Fe(SBz)(2)(NO)(2)](-) (5), with concomitant reductive elimination of the coordinated thiolate donors. Reaction of [Fe(SR)(4)](2-) complexes with NO(+) proceeds by a different pathway to yield the corresponding dinitrosyl S-bridged Roussin red ester complexes, [Fe(2)(mu-S(t)Bu)(2)(NO)(4)] (2), [Fe(2)(mu-SPh)(2)(NO)(4)] (7) and [Fe(2)(mu-SBz)(2)(NO)(4)] (8). The NO/NO(+) reactivity of an Fe(II) complex with a mixed nitrogen/sulfur coordination sphere was also investigated. The DNIC and red ester species, [Fe(S-o-NH(2)C(6)H(4))(2)(NO)(2)](-) (6) and [Fe(2)(mu-S-o-NH(2)C(6)H(4))(2)(NO)(4)] (9), were generated. The structures of 8 and 9 were verified by X-ray crystallography. The MNIC complex 1 can efficiently deliver NO to iron-porphyrin complexes like [Fe(TPP)Cl], a reaction that is aided by light. Removal of the coordinated NO ligand of 1 by photolysis and addition of elemental

  4. Divergent Coordination Chemistry: Parallel Synthesis of [2×2] Iron(II) Grid-Complex Tauto-Conformers.

    PubMed

    Schäfer, Bernhard; Greisch, Jean-François; Faus, Isabelle; Bodenstein, Tilmann; Šalitroš, Ivan; Fuhr, Olaf; Fink, Karin; Schünemann, Volker; Kappes, Manfred M; Ruben, Mario

    2016-08-26

    The coordination of iron(II) ions by a homoditopic ligand L with two tridentate chelates leads to the tautomerism-driven emergence of complexity, with isomeric tetramers and trimers as the coordination products. The structures of the two dominant [Fe(II) 4 L4 ](8+) complexes were determined by X-ray diffraction, and the distinctness of the products was confirmed by ion-mobility mass spectrometry. Moreover, these two isomers display contrasting magnetic properties (Fe(II) spin crossover vs. a blocked Fe(II) high-spin state). These results demonstrate how the coordination of a metal ion to a ligand that can undergo tautomerization can increase, at a higher hierarchical level, complexity, here expressed by the formation of isomeric molecular assemblies with distinct physical properties. Such results are of importance for improving our understanding of the emergence of complexity in chemistry and biology. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Analysis of Heme Iron Coordination in DGCR8: The Heme-Binding Component of the Microprocessor Complex.

    PubMed

    Girvan, Hazel M; Bradley, Justin M; Cheesman, Myles R; Kincaid, James R; Liu, Yilin; Czarnecki, Kazimierz; Fisher, Karl; Leys, David; Rigby, Stephen E J; Munro, Andrew W

    2016-09-13

    DGCR8 is the RNA-binding partner of the nuclease Drosha. Their complex (the "Microprocessor") is essential for processing of long, primary microRNAs (pri-miRNAs) in the nucleus. Binding of heme to DGCR8 is essential for pri-miRNA processing. On the basis of the split Soret ultraviolet-visible (UV-vis) spectrum of ferric DGCR8, bis-thiolate sulfur (cysteinate, Cys(-)) heme iron coordination of DGCR8 heme iron was proposed. We have characterized DGCR8 heme ligation using the Δ276 DGCR8 variant and combined electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), electron nuclear double resonance, resonance Raman, and electronic absorption spectroscopy. These studies indicate DGCR8 bis-Cys heme iron ligation, with conversion from bis-thiolate (Cys(-)/Cys(-)) axial coordination in ferric DGCR8 to bis-thiol (CysH/CysH) coordination in ferrous DGCR8. Pri-miRNA binding does not perturb ferric DGCR8's optical spectrum, consistent with the axial ligand environment being separated from the substrate-binding site. UV-vis absorption spectra of the Fe(II) and Fe(II)-CO forms indicate discrete species exhibiting peaks with absorption coefficients substantially larger than those for ferric DGCR8 and that previously reported for a ferrous form of DGCR8. Electron-nuclear double resonance spectroscopy data exclude histidine or water as axial ligands for ferric DGCR8 and favor bis-thiolate coordination in this form. UV-vis MCD and near-infrared MCD provide data consistent with this conclusion. UV-vis MCD data for ferrous DGCR8 reveal features consistent with bis-thiol heme iron coordination, and resonance Raman data for the ferrous-CO form are consistent with a thiol ligand trans to the CO. These studies support retention of DGCR8 cysteine coordination upon reduction, a conclusion distinct from those of previous studies of a different ferrous DGCR8 isoform.

  6. Trithiocyanurate complexes of iron, manganese and nickel and their anticholinesterase activity.

    PubMed

    Kopel, Pavel; Dolezal, Karel; Langer, Vratislav; Jun, Daniel; Adam, Vojtech; Kuca, Kamil; Kizek, Rene

    2014-04-08

    The complexes of Fe(II), Mn(II) and Ni(II) with a combination of a Schiff base, nitrogen-donor ligand or macrocyclic ligand and trithiocyanuric acid (ttcH3) were prepared and characterized by elemental analysis and spectroscopies. Crystal and molecular structures of the iron complex of composition [Fe(L1)](ttcH2)(ClO4)·EtOH·H2O (1), where L1 is Schiff base derived from tris(2-aminoethyl)amine and 2-pyridinecarboxaldehyde, were solved. It was found that the Schiff base is coordinated to the central iron atom by six nitrogens forming deformed octahedral arrangement, whereas trithiocyanurate(1-) anion, perchlorate and solvent molecules are not coordinated. The X-ray structure of the Schiff base sodium salt is also presented and compared with the iron complex. The anticholinesterase activity of the complexes was also studied.

  7. Whey Peptide-Iron Complexes Increase the Oxidative Stability of Oil-in-Water Emulsions in Comparison to Iron Salts.

    PubMed

    Caetano-Silva, Maria Elisa; Barros Mariutti, Lilian Regina; Bragagnolo, Neura; Bertoldo-Pacheco, Maria Teresa; Netto, Flavia Maria

    2018-02-28

    Food fortification with iron may favor lipid oxidation in both food matrices and the human body. This study aimed at evaluating the effect of peptide-iron complexation on lipid oxidation catalyzed by iron, using oil-in-water (O/W) emulsions as a model system. The extent of lipid oxidation of emulsions containing iron salts (FeSO 4 or FeCl 2 ) or iron complexes (peptide-iron complexes or ferrous bisglycinate) was evaluated during 7 days, measured as primary (peroxide value) and secondary products (TBARS and volatile compounds). Both salts catalyzed lipid oxidation, leading to peroxide values 2.6- to 4.6-fold higher than the values found for the peptide-iron complexes. The addition of the peptide-iron complexes resulted in the formation of lower amounts of secondary volatiles of lipid oxidation (up to 78-fold) than those of iron salts, possibly due to the antioxidant activity of the peptides and their capacity to keep iron apart from the lipid phase, since the iron atom is coordinated and takes part in a stable structure. The peptide-iron complexes showed potential to reduce the undesirable sensory changes in food products and to decrease the side effects related to free iron and the lipid damage of cell membranes in the organism, due to the lower reactivity of iron in the complexed form.

  8. His86 from the N-terminus of frataxin coordinates iron and is required for Fe-S cluster synthesis.

    PubMed

    Gentry, Leslie E; Thacker, Matthew A; Doughty, Reece; Timkovich, Russell; Busenlehner, Laura S

    2013-09-03

    Human frataxin has a vital role in the biosynthesis of iron-sulfur (Fe-S) clusters in mitochondria, and its deficiency causes the neurodegenerative disease Friedreich's ataxia. Proposed functions for frataxin in the Fe-S pathway include iron donation to the Fe-S cluster machinery and regulation of cysteine desulfurase activity to control the rate of Fe-S production, although further molecular detail is required to distinguish these two possibilities. It is well established that frataxin can coordinate iron using glutamate and aspartate side chains on the protein surface; however, in this work we identify a new iron coordinating residue in the N-terminus of human frataxin using complementary spectroscopic and structural approaches. Further, we demonstrate that His86 in this N-terminal region is required for high affinity iron coordination and iron assembly of Fe-S clusters by ISCU as part of the Fe-S cluster biosynthetic complex. If a binding site that includes His86 is important for Fe-S cluster synthesis as part of its chaperone function, this raises the possibility that either iron binding at the acidic surface of frataxin may be spurious or that it is required for protein-protein interactions with the Fe-S biosynthetic quaternary complex. Our data suggest that iron coordination to frataxin may be significant to the Fe-S cluster biosynthesis pathway in mitochondria.

  9. Bacterial iron transport: coordination properties of azotobactin, the highly fluorescent siderophore of Azotobacter vinelandii.

    PubMed

    Palanché, Tania; Blanc, Sylvie; Hennard, Christophe; Abdallah, Mohamed A; Albrecht-Gary, Anne-Marie

    2004-02-09

    Azotobacter vinelandii, a nitrogen-fixing soil bacterium, secretes in iron deficiency azotobactin delta, a highly fluorescent pyoverdin-like chromopeptidic hexadentate siderophore. The chromophore, derived from 2,3-diamino-6,7 dihydroxyquinoline, is bound to a peptide chain of 10 amino acids: (L)-Asp-(D)-Ser-(L)-Hse-Gly-(D)-beta-threo-HOAsp-(L)-Ser-(D)-Cit-(L)-Hse-(L)-Hse lactone-(D)-N(delta)-Acetyl, N(delta)-HOOrn. Azotobactin delta has three different iron(III) binding sites which are one hydroxamate group at the C-terminal end of the peptidic chain (N(delta)-Acetyl, N(delta)-HOOrn), one alpha-hydroxycarboxylic function in the middle of the chain (beta-threo-hydroxyaspartic acid), and one catechol group on the chromophore. The coordination properties of its iron(III) and iron(II) complexes were measured by spectrophotometry, potentiometry, and voltammetry after the determination of the acid-base functions of the uncomplexed free siderophore. Strongly negatively charged ferric species were observed at neutral p[H]'s corresponding to a predominant absolute configuration Lambda of the ferric complex in solution as deduced from CD measurements. The presence of an alpha-hydroxycarboxylic chelating group does not decrease the stability of the iron(III) complex when compared to the main trishydroxamate siderophores or to pyoverdins. The value of the redox potential of ferric azotobactin is highly consistent with a reductive step by physiological reductants for the iron release. Formation and dissociation kinetics of the azotobactin delta ferric complex point out that both ends of this long siderophore chain get coordinated to Fe(III) before the middle. The most striking result provided by fluorescence measurements is the lasting quenching of the fluorophore in the course of the protonation of the ferric azotobactin delta complex. Despite the release of the hydroxyacid and of the catechol, the fluorescence remains indeed quenched, when iron(III) is bound only to the

  10. Spin state switching in iron coordination compounds

    PubMed Central

    Gaspar, Ana B; Garcia, Yann

    2013-01-01

    Summary The article deals with coordination compounds of iron(II) that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere. Spin transition in such compounds also occurs under pressure and irradiation with light. The spin states involved have different magnetic and optical properties suitable for their detection and characterization. Spin crossover compounds, though known for more than eight decades, have become most attractive in recent years and are extensively studied by chemists and physicists. The switching properties make such materials potential candidates for practical applications in thermal and pressure sensors as well as optical devices. The article begins with a brief description of the principle of molecular spin state switching using simple concepts of ligand field theory. Conditions to be fulfilled in order to observe spin crossover will be explained and general remarks regarding the chemical nature that is important for the occurrence of spin crossover will be made. A subsequent section describes the molecular consequences of spin crossover and the variety of physical techniques usually applied for their characterization. The effects of light irradiation (LIESST) and application of pressure are subjects of two separate sections. The major part of this account concentrates on selected spin crossover compounds of iron(II), with particular emphasis on the chemical and physical influences on the spin crossover behavior. The vast variety of compounds exhibiting this fascinating switching phenomenon encompasses mono-, oligo- and polynuclear iron(II) complexes and cages, polymeric 1D, 2D and 3D systems, nanomaterials, and polyfunctional materials that combine spin crossover with another physical or chemical property. PMID:23504535

  11. Differences and Comparisons of the Properties and Reactivities of Iron(III)–hydroperoxo Complexes with Saturated Coordination Sphere

    PubMed Central

    Faponle, Abayomi S; Quesne, Matthew G; Sastri, Chivukula V; Banse, Frédéric; de Visser, Sam P

    2015-01-01

    Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)–oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)–hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)–hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)–hydroperoxo reacted directly with substrates or that an initial O–O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)–hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)–hydroperoxo complex with pentadentate ligand system (L52). Direct C–O bond formation by an iron(III)–hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L52)FeIII(OOH)]2+ should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)–hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O–O bond, whereas a heterolytic O–O bond breaking in heme iron(III)–hydroperoxo is found. PMID:25399782

  12. Heme-Coordinating Inhibitors of Neuronal Nitric Oxide Synthase. Iron-Thioether Coordination is Stabilized by Hydrophobic Contacts Without Increased Inhibitor Potency

    PubMed Central

    Martell, Jeffrey D.; Li, Huiying; Doukov, Tzanko; Martásek, Pavel; Roman, Linda J.; Soltis, Michael; Poulos, Thomas L.; Silverman, Richard B.

    2010-01-01

    The heme-thioether ligand interaction often occurs between heme iron and native methionine ligands, but thioether-based heme-coordinating (type II) inhibitors are uncommon due to the difficulty in stabilizing the Fe-S bond. Here, a thioether-based inhibitor (3) of neuronal nitric oxide synthase (nNOS) was designed, and its binding was characterized by spectrophotometry and crystallography. A crystal structure of inhibitor 3 coordinated to heme iron was obtained, representing, to our knowledge, the first crystal structure of a thioether inhibitor complexed to any heme enzyme. A series of related potential inhibitors (4-8) also were evaluated. Compounds 4-8 were all found to be type I (non-heme-coordinating) inhibitors of ferric nNOS, but 4 and 6-8 were found to switch to type II upon heme reduction to the ferrous state, reflecting the higher affinity of thioethers for ferrous heme than for ferric heme. Contrary to what has been widely thought, thioether-heme ligation was found not to increase inhibitor potency, illustrating the intrinsic weakness of the thioether-ferric heme linkage. Subtle changes in the alkyl groups attached to the thioether sulfur caused drastic changes in binding conformation, indicating that hydrophobic contacts play a crucial role in stabilizing the thioether-heme coordination. PMID:20014790

  13. Iron speciation in peats: Chemical and spectroscopic evidence for the co-occurrence of ferric and ferrous iron in organic complexes and mineral precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli

    The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe

  14. Iron speciation in peats: Chemical and spectroscopic evidence for the co-occurrence of ferric and ferrous iron in organic complexes and mineral precipitates

    DOE PAGES

    Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli; ...

    2017-10-31

    The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe

  15. Synthesis, characterization and electrochemistry studies of iron(III) complex with curcumin ligand.

    PubMed

    Özbolat, Gülüzar; Yegani, Arash Alizadeh; Tuli, Abdullah

    2018-05-11

    Iron overload is a serious clinical condition for humans and is a key target in drug development. The aim of this study was to investigate the coordination of iron(III) ions with curcumin ligand that may be used in the treatment of iron overload. Iron(III) complex of curcumin was synthesized and structurally characterized in its solid and solution state by FT-IR, UV-Vis, elemental analysis, and magnetic susceptibility. Electrochemical behaviour of the ligand and the complexes were examined using cyclic voltammetry. The cytotoxic activities of the ligand and the iron(III) complex were evaluated by the MTT assay. Curcumin reacted with iron in high concentrations at physiological pH at room temperature. Subsequently, a brown-red complex was formed. Data regarding magnetic susceptibility showed that the complexes with a 1:2 (metal/ligand) mole ratio had octahedral geometry. The complex showed higher anti-oxidant effect towards the cell line ECV304 at IC 50 values of 4.83 compared to curcumin. The complex exhibited very high cytotoxic activity and showed a cytotoxic effect that was much better than that of the ligand. The potentials for redox were calculated as 0.180 V and 0.350 V, respectively. The electrochemistry studies showed that Fe 3+ /Fe 2+ couple redox process occurred at low potentials. This value was within the range of compounds that are expected to show superoxide dismutase activity. This finding indicates that the iron complex is capable of removing free radicals. The observed cytotoxicity could be pursued to obtain a potential drug. Further studies investigating the use of curcumin for this purpose are needed. © 2018 John Wiley & Sons Australia, Ltd.

  16. Synthetic iron complexes as models for natural iron-humic compounds: Synthesis, characterization and algal growth experiments.

    PubMed

    Orlowska, Ewelina; Roller, Alexander; Pignitter, Marc; Jirsa, Franz; Krachler, Regina; Kandioller, Wolfgang; Keppler, Bernhard K

    2017-01-15

    A series of monomeric and dimeric Fe III complexes with O,O-; O,N-; O,S-coordination motifs has been prepared and characterized by standard analytical methods in order to elucidate their potential to act as model compounds for aquatic humic acids. Due to the postulated reduction of iron in humic acids and following uptake by microorganisms, the redox behavior of the models was investigated with cyclic voltammetry. Most of the investigated compounds showed iron reduction potentials accessible to biological reducing agents. Additionally, observed reduction processes were predominantly irreversible, suggesting that subsequent reactions can take place after reduction of the iron center. Also the stability of the synthesized complexes in pure water and artificial seawater was monitored from 24h up to 21days by means of UV-Vis spectrometry. Several complexes remained stable even after 21days, showing only partially precipitation but some of them showed changes in UV-Vis spectra already after 24h which were connected to protonation/deprotonation processes as well as redox processes and degradation of the complexes. The ability to act as an iron source for primary producers was tested in algal growth experiments with two marine algae species Chlorella salina and Prymnesium parvum. Some of the compounds showed effects on the algal cultures, which are comparable with natural humic acids and better as for the samples kept under ideal conditions. Those findings help to understand which functional groups of humic acids could be responsible for the reversible iron binding and transport in aquatic humic substances. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Syntheses and structural characterization of iron(II) and copper(II) coordination compounds with the neutral flexible bidentate N-donor ligands

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Lalegani, Arash; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2014-08-01

    Two new coordination compounds [Fe(bib)2(N3)2]n(1) and [Cu2(bpp)2(N3)4] (2) with azide and flexible ligands 1,4-bis(imidazolyl)butane (bib) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp) were prepared and structurally characterized. In the 2D network structure of 1, the iron(II) ion lies on an inversion center and exhibits an FeN6 octahedral arrangement while in the dinuclear structure of 2, the copper(II) ion adopts an FeN5 distorted square pyramid geometry. In the complex 1, each μ2-bib acts as bridging ligand connecting two adjacent iron(II) ions while in the complex 2, the bpp ligand is coordinated to copper(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analysis of polymer 1 was also studied.

  18. Nitric oxide activation by distal redox modulation in tetranuclear iron nitrosyl complexes.

    PubMed

    de Ruiter, Graham; Thompson, Niklas B; Lionetti, Davide; Agapie, Theodor

    2015-11-11

    A series of tetranuclear iron complexes displaying a site-differentiated metal center was synthesized. Three of the metal centers are coordinated to our previously reported ligand, based on a 1,3,5-triarylbenzene motif with nitrogen and oxygen donors. The fourth (apical) iron center is coordinatively unsaturated and appended to the trinuclear core through three bridging pyrazolates and an interstitial μ4-oxide moiety. Electrochemical studies of complex [LFe3(PhPz)3OFe][OTf]2 revealed three reversible redox events assigned to the Fe(II)4/Fe(II)3Fe(III) (-1.733 V), Fe(II)3Fe(III)/Fe(II)2Fe(III)2 (-0.727 V), and Fe(II)2Fe(III)2/Fe(II)Fe(III)3 (0.018 V) redox couples. Combined Mössbauer and crystallographic studies indicate that the change in oxidation state is exclusively localized at the triiron core, without changing the oxidation state of the apical metal center. This phenomenon is assigned to differences in the coordination environment of the two metal sites and provides a strategy for storing electron and hole equivalents without affecting the oxidation state of the coordinatively unsaturated metal. The presence of a ligand-binding site allowed the effect of redox modulation on nitric oxide activation by an Fe(II) metal center to be studied. Treatment of the clusters with nitric oxide resulted in binding of NO to the apical iron center, generating a {FeNO}(7) moiety. As with the NO-free precursors, the three reversible redox events are localized at the iron centers distal from the NO ligand. Altering the redox state of the triiron core resulted in significant change in the NO stretching frequency, by as much as 100 cm(-1). The increased activation of NO is attributed to structural changes within the clusters, in particular, those related to the interaction of the metal centers with the interstitial atom. The differences in NO activation were further shown to lead to differential reactivity, with NO disproportionation and N2O formation performed by the more

  19. A Glutaredoxin·BolA Complex Serves as an Iron-Sulfur Cluster Chaperone for the Cytosolic Cluster Assembly Machinery*♦

    PubMed Central

    Frey, Avery G.; Palenchar, Daniel J.; Wildemann, Justin D.; Philpott, Caroline C.

    2016-01-01

    Cells contain hundreds of proteins that require iron cofactors for activity. Iron cofactors are synthesized in the cell, but the pathways involved in distributing heme, iron-sulfur clusters, and ferrous/ferric ions to apoproteins remain incompletely defined. In particular, cytosolic monothiol glutaredoxins and BolA-like proteins have been identified as [2Fe-2S]-coordinating complexes in vitro and iron-regulatory proteins in fungi, but it is not clear how these proteins function in mammalian systems or how this complex might affect Fe-S proteins or the cytosolic Fe-S assembly machinery. To explore these questions, we use quantitative immunoprecipitation and live cell proximity-dependent biotinylation to monitor interactions between Glrx3, BolA2, and components of the cytosolic iron-sulfur cluster assembly system. We characterize cytosolic Glrx3·BolA2 as a [2Fe-2S] chaperone complex in human cells. Unlike complexes formed by fungal orthologs, human Glrx3-BolA2 interaction required the coordination of Fe-S clusters, whereas Glrx3 homodimer formation did not. Cellular Glrx3·BolA2 complexes increased 6–8-fold in response to increasing iron, forming a rapidly expandable pool of Fe-S clusters. Fe-S coordination by Glrx3·BolA2 did not depend on Ciapin1 or Ciao1, proteins that bind Glrx3 and are involved in cytosolic Fe-S cluster assembly and distribution. Instead, Glrx3 and BolA2 bound and facilitated Fe-S incorporation into Ciapin1, a [2Fe-2S] protein functioning early in the cytosolic Fe-S assembly pathway. Thus, Glrx3·BolA is a [2Fe-2S] chaperone complex capable of transferring [2Fe-2S] clusters to apoproteins in human cells. PMID:27519415

  20. Glutathione, Glutaredoxins, and Iron.

    PubMed

    Berndt, Carsten; Lillig, Christopher Horst

    2017-11-20

    Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.

  1. Syntheses and Characterization of Ruthenium(II) Tetrakis(pyridine)complexes: An Advanced Coordination Chemistry Experiment or Mini-Project

    ERIC Educational Resources Information Center

    Coe, Benjamin J.

    2004-01-01

    An experiment for third-year undergraduate a student is designed which provides synthetic experience and qualitative interpretation of the spectroscopic properties of the ruthenium complexes. It involves the syntheses and characterization of several coordination complexes of ruthenium, the element found directly beneath iron in the middle of the…

  2. Iron and its complexes in silicon

    NASA Astrophysics Data System (ADS)

    Istratov, A. A.; Hieslmair, H.; Weber, E. R.

    This article is the first in a series of two reviews on the properties of iron in silicon. It offers a comprehensive of the current state of understanding of fundamental physical properties of iron and its complexes in silicon. The first section of this review discusses the position of iron in the silicon lattice and the electrical properties of interstitial iron. Updated expressions for the solubility and the diffusivity of iron in silicon are presented, and possible explanations for conflicting experimental data obtained by different groups are discussed. The second section of the article considers the electrical and the structural properties of complexes of interstitial iron with shallow acceptors (boron, aluminum, indium, gallium, and thallium), shallow donors (phosphorus and arsenic) and other impurities (gold, silver, platinum, palladium, zinc, sulfur, oxygen, carbon, and hydrogen). Special attention is paid to the kinetics of iron pairing with shallow acceptors, the dissociation of these pairs, and the metastability of iron-acceptor pairs. The parameters of iron-related defects in silicon are summarized in tables that include more than 30 complexes of iron as detected by electron paramagnetic resonance (EPR) and almost 20 energy levels in the band gap associated with iron. The data presented in this review illustrate the enormous complexing activity of iron, which is attributed to the partial or complete (depending on the temperature and the conductivity type) ionization of iron as well as the high diffusivity of iron in silicon. It is shown that studies of iron in silicon require exceptional cleanliness of experimental facilities and highly reproducible diffusion and temperature ramping (quenching) procedures. Properties of iron that are not yet completely understood and need further research are outlined.

  3. Selective Conversion of CO2 into Isocyanate by Low-Coordinate Iron Complexes.

    PubMed

    Broere, Daniël L J; Mercado, Brandon Q; Holland, Patrick L

    2018-04-06

    Discovery of the mechanisms for selective transformations of CO 2 into organic compounds is a challenge. Herein, we describe the reaction of low-coordinate Fe silylamide complexes with CO 2 to give trimethylsilyl isocyanate and the corresponding Fe siloxide complex. Kinetic studies show that this is a two-stage reaction, and the presence of a single equivalent of THF influences the rates of both steps. Isolation of a thermally unstable intermediate provides mechanistic insight that explains both the effect of THF in this reaction, and the way in which the reaction achieves high selectivity for isocyanate formation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Iron(II) cage complexes of N-heterocyclic amide and bis(trimethylsilyl)amide ligands: synthesis, structure, and magnetic properties.

    PubMed

    Sulway, Scott A; Collison, David; McDouall, Joseph J W; Tuna, Floriana; Layfield, Richard A

    2011-03-21

    Metallation of hexahydropyrimidopyrimidine (hppH) by [Fe{N(SiMe(3))(2)}(2)] (1) produces the trimetallic iron(II) amide cage complex [{(Me(3)Si)(2)NFe}(2)(hpp)(4)Fe] (2), which contains three iron(II) centers, each of which resides in a distorted tetrahedral environment. An alternative, one-pot route that avoids use of the highly air-sensitive complex 1 is described for the synthesis of the iron(II)-lithium complex [{(Me(3)Si)(2)N}(2)Fe{Li(bta)}](2) (3) (where btaH = benzotriazole), in which both iron(II) centers reside in 3-coordinated pyramidal environments. The structure of 3 is also interpreted in terms of the ring laddering principle developed for alkali metal amides. Magnetic susceptibility measurements reveal that both compounds display very weak antiferromagnetic exchange between the iron(II) centers, and that the iron(II) centers in 2 and 3 possess large negative axial zero-field splittings.

  5. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DOE PAGES

    Zhang, Wenkai; Kjaer, Kasper S.; Alonso-Mori, Roberto; ...

    2016-08-25

    Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover – the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN –) ligands and one 2,2'-bipyridine (bpy) ligand. This enablesmore » MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN) 4(bpy)] 2–. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. Here, we conclude that the MLCT excited state of [Fe(CN) 4(bpy)] 2– decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine) 3] 2+ by more than two orders of magnitude.« less

  6. Iron-Terephthalate Coordination Network Thin Films Through In-Situ Atomic/Molecular Layer Deposition.

    PubMed

    Tanskanen, A; Karppinen, M

    2018-06-12

    Iron terephthalate coordination network thin films can be fabricated using the state-of-the-art gas-phase atomic/molecular layer deposition (ALD/MLD) technique in a highly controlled manner. Iron is an Earth-abundant and nonhazardous transition metal, and with its rich variety of potential applications an interesting metal constituent for the inorganic-organic coordination network films. Our work underlines the role of the metal precursor used when aiming at in-situ ALD/MLD growth of crystalline inorganic-organic thin films. We obtain crystalline iron terephthalate films when FeCl 3 is employed as the iron source whereas depositions based on the bulkier Fe(acac) 3 precursor yield amorphous films. The chemical composition and structure of the films are investigated with GIXRD, XRR, FTIR and XPS.

  7. Magnetic blocking in a linear iron(I) complex.

    PubMed

    Zadrozny, Joseph M; Xiao, Dianne J; Atanasov, Mihail; Long, Gary J; Grandjean, Fernande; Neese, Frank; Long, Jeffrey R

    2013-07-01

    Single-molecule magnets that contain one spin centre may represent the smallest possible unit for spin-based computational devices. Such applications, however, require the realization of molecules with a substantial energy barrier for spin inversion, achieved through a large axial magnetic anisotropy. Recently, significant progress has been made in this regard by using lanthanide centres such as terbium(III) and dysprosium(III), whose anisotropy can lead to extremely high relaxation barriers. We contend that similar effects should be achievable with transition metals by maintaining a low coordination number to restrict the magnitude of the d-orbital ligand-field splitting energy (which tends to hinder the development of large anisotropies). Herein we report the first two-coordinate complex of iron(I), [Fe(C(SiMe3)3)2](-), for which alternating current magnetic susceptibility measurements reveal slow magnetic relaxation below 29 K in a zero applied direct-current field. This S =  complex exhibits an effective spin-reversal barrier of Ueff = 226(4) cm(-1), the largest yet observed for a single-molecule magnet based on a transition metal, and displays magnetic blocking below 4.5 K.

  8. Characterization of a Novel Iron Acquisition Activity That Coordinates the Iron Response with Population Density under Iron-Replete Conditions in Bacillus subtilis.

    PubMed

    Roy, Emily M; Griffith, Kevin L

    2017-01-01

    Iron is an essential micronutrient required for the viability of many organisms. Under oxidizing conditions, ferric iron is highly insoluble (∼10 -9 to 10 -18 M), yet bacteria typically require ∼10 -6 M for survival. To overcome this disparity, many bacteria have adopted the use of extracellular iron-chelating siderophores coupled with specific iron-siderophore uptake systems. In the case of Bacillus subtilis, undomesticated strains produce the siderophore bacillibactin. However, many laboratory strains, e.g., JH642, have lost the ability to produce bacillibactin during the process of domestication. In this work, we identified a novel iron acquisition activity from strain JH642 that accumulates in the growth medium and coordinates the iron response with population density. The molecule(s) responsible for this activity was named elemental Fe(II/III) (Efe) acquisition factor because efeUOB (ywbLMN) is required for its activity. Unlike most iron uptake molecules, including siderophores and iron reductases, Efe acquisition factor is present under iron-replete conditions and is regulated independently of Fur repressor. Restoring bacillibactin production in strain JH642 inhibits the activity of Efe acquisition factor, presumably by sequestering available iron. A similar iron acquisition activity is produced from a mutant of Escherichia coli unable to synthesize the siderophore enterobactin. Given the conservation of efeUOB and its regulation by catecholic siderophores in B. subtilis and E. coli, we speculate that Efe acquisition factor is utilized by many bacteria, serves as an alternative to Fur-mediated iron acquisition systems, and provides cells with biologically available iron that would normally be inaccessible during aerobic growth under iron-replete conditions. Iron is an essential micronutrient required for a variety of biological processes, yet ferric iron is highly insoluble during aerobic growth. In this work, we identified a novel iron acquisition

  9. Redox non-innocent bis(2,6-diimine-pyridine) ligand-iron complexes as anolytes for flow battery applications.

    PubMed

    Duarte, Gabriel M; Braun, Jason D; Giesbrecht, Patrick K; Herbert, David E

    2017-12-21

    Diiminepyridines are a well-known class of "non-innocent" ligands that confer additional redox activity to coordination complexes beyond metal-centred oxidation/reduction. Here, we demonstrate that metal coordination complexes (MCCs) of diiminepyridine (DIP) ligands with iron are suitable anolytes for redox-flow battery applications, with enhanced capacitance and stability compared with bipyridine analogs, and access to storage of up to 1.6 electron equivalents. Substitution of the ligand is shown to be a key factor in the cycling stability and performance of MCCs based on DIP ligands, opening the door to further optimization.

  10. 21 CFR 172.370 - Iron-choline citrate complex.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Iron-choline citrate complex. 172.370 Section 172... CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting approximately equimolecular quantities of ferric hydroxide, choline, and...

  11. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  12. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  13. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  14. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  15. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  16. Superoxide scavenging activity of pirfenidone-iron complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitani, Yoshihiro; Sato, Keizo; Muramoto, Yosuke

    Pirfenidone (PFD) is focused on a new anti-fibrotic drug, which can minimize lung fibrosis etc. We evaluated the superoxide (O{sub 2}{sup {center_dot}}{sup -}) scavenging activities of PFD and the PFD-iron complex by electron spin resonance (ESR) spectroscopy, luminol-dependent chemiluminescence assay, and cytochrome c reduction assay. Firstly, we confirmed that the PFD-iron complex was formed by mixing iron chloride with threefold molar PFD, and the complex was stable in distillated water and ethanol. Secondary, the PFD-iron complex reduced the amount of O{sub 2}{sup {center_dot}}{sup -} produced by xanthine oxidase/hypoxanthine without inhibiting the enzyme activity. Thirdly, it also reduced the amount ofmore » O{sub 2}{sup {center_dot}}{sup -} released from phorbor ester-stimulated human neutrophils. PFD alone showed few such effects. These results suggest the possibility that the O{sub 2}{sup {center_dot}}{sup -} scavenging effect of the PFD-iron complex contributes to the anti-fibrotic action of PFD used for treating idiopathic pulmonary fibrosis.« less

  17. SapF-mediated heme-iron utilization enhances persistence and coordinates biofilm architecture of Haemophilus

    PubMed Central

    Vogel, Andrew R.; Szelestey, Blake R.; Raffel, Forrest K.; Sharpe, Samantha W.; Gearinger, Rachel L.; Justice, Sheryl S.; Mason, Kevin M.

    2012-01-01

    Non-typeable Haemophilus influenzae (NTHI) is a common commensal bacterium that resides in the human upper respiratory tract of healthy individuals. NTHI is also a known causative agent of multiple diseases including sinusitis, otitis media, as well as exacerbates disease severity of patients with cystic fibrosis and chronic obstructive pulmonary disease. We have previously shown that the Sap transporter mediates resistance to host antimicrobial peptides (AMPs) and import of the iron-containing compound heme. Here, we analyzed the contribution of the Sap structural ATPase protein, SapF, in these essential functions. In contrast to SapD, SapF was dispensable for NTHI survival when exposed to AMPs in vitro. SapF was responsible for heme utilization and recovery of depleted internal heme-iron stores. Further, a loss of SapF resulted in morphological plasticity and enhanced community development and biofilm architecture, suggesting the potential role of heme-iron availability in coordinating the complexity of NTHI biofilm architecture. SapF was required for colonization of the nasopharynx and acute infection of the middle ear, as SapF deficiency correlated with a statistically significant decrease in NTHI persistence in vivo. These data suggest that SapF is required for proper heme utilization which directly impacts NTHI survival. Thus, these studies further support a role for the Sap complex in the transport of multiple substrates and further defines substrate specificity for the two ATPase subunits. Given the multiple essential functions provided by the Sap transporter, this complex could prove to be an effective therapeutic target for the treatment of NTHI diseases. PMID:22919633

  18. Azide and acetate complexes plus two iron-depleted crystal structures of the di-iron enzyme delta9 stearoyl-acyl carrier protein desaturase. Implications for oxygen activation and catalytic intermediates.

    PubMed

    Moche, Martin; Shanklin, John; Ghoshal, Alokesh; Lindqvist, Ylva

    2003-07-04

    Delta9 stearoyl-acyl carrier protein (ACP) desaturase is a mu-oxo-bridged di-iron enzyme, which belongs to the structural class I of large helix bundle proteins and that catalyzes the NADPH and O2-dependent formation of a cis-double bond in stearoyl-ACP. The crystal structures of complexes with azide and acetate, respectively, as well as the apoand single-iron forms of Delta9 stearoyl-ACP desaturase from Ricinus communis have been determined. In the azide complex, the ligand forms a mu-1,3-bridge between the two iron ions in the active site, replacing a loosely bound water molecule. The structure of the acetate complex is similar, with acetate bridging the di-iron center in the same orientation with respect to the di-iron center. However, in this complex, the iron ligand Glu196 has changed its coordination mode from bidentate to monodentate, the first crystallographic observation of a carboxylate shift in Delta9 stearoyl-ACP desaturase. The two complexes are proposed to mimic a mu-1,2 peroxo intermediate present during catalytic turnover. There are striking structural similarities between the di-iron center in the Delta9 stearoyl-ACP desaturase-azide complex and in the reduced rubrerythrin-azide complex. This suggests that Delta9 stearoyl-ACP desaturase might catalyze the formation of water from exogenous hydrogen peroxide at a low rate. From the similarity in iron center structure, we propose that the mu-oxo-bridge in oxidized desaturase is bound to the di-iron center as in rubrerythrin and not as reported for the R2 subunit of ribonucleotide reductase and the hydroxylase subunit of methane monooxygenase. The crystal structure of the one-iron depleted desaturase species demonstrates that the affinities for the two iron ions comprising the di-iron center are not equivalent, Fe1 being the higher affinity site and Fe2 being the lower affinity site.

  19. Theoretical Study of Spin Crossover in 30 Iron Complexes.

    PubMed

    Kepp, Kasper P

    2016-03-21

    Iron complexes are important spin crossover (SCO) systems with vital roles in oxidative metabolism and promising technological potential. The SCO tendency depends on the free energy balance of high- and low-spin states, which again depends on physical effects such as dispersion, relativistic effects, and vibrational entropy. This work studied 30 different iron SCO systems with experimentally known thermochemical data, using 12 different density functionals. Remarkably general entropy-enthalpy compensation across SCO systems was identified (R = 0.82, p = 0.002) that should be considered in rational SCO design. Iron(II) complexes displayed higher ΔH and ΔS values than iron(III) complexes and also less steep compensation effects. First-coordination sphere ΔS values computed from numerical frequencies reproduce most of the experimental entropy and should thus be included when modeling spin-state changes in inorganic chemistry (R = 0.52, p = 3.4 × 10(-3); standard error in TΔS ≈ 4.4 kJ/mol at 298 K vs 16 kJ/mol of total TΔS on average). Zero-point energies favored high-spin states by 9 kJ/mol on average. Interestingly, dispersion effects are surprisingly large for the SCO process (average: 9 kJ/mol, but up to 33 kJ/mol) and favor the more compact low-spin state. Relativistic effects favor low-spin by ∼9 kJ/mol on average, but up to 24 kJ/mol. B3LYP*, TPSSh, B2PLYP, and PW6B95 performed best for the typical calculation scheme that includes ZPE. However, if relativistic and dispersion effects are included, only B3LYP* remained accurate. On average, high-spin was favored by LYP by 11-15 kJ/mol relative to other correlation functionals, and by 4.2 kJ/mol per 1% HF exchange in hybrids. 13% HF exchange was optimal without dispersion, and 15% was optimal with all effects included for these systems.

  20. Synthesis and characterization of the tetranuclear iron(III) complex of a new asymmetric multidentate ligand. A structural model for purple acid phosphatases.

    PubMed

    Boudalis, Athanassios K; Aston, Robyn E; Smith, Sarah J; Mirams, Ruth E; Riley, Mark J; Schenk, Gerhard; Blackman, Allan G; Hanton, Lyall R; Gahan, Lawrence R

    2007-11-28

    The ligand, 2-((2-hydroxy-5-methyl-3-((pyridin-2-ylmethylamino)methyl)benzyl)(2-hydroxybenzyl)amino)acetic acid (H(3)HPBA), which contains a donor atom set that mimics that of the active site of purple acid phosphatase is described. Reaction of H(3)HPBA with iron(III) or iron(II) salts results in formation of the tetranuclear complex, [Fe(4)(HPBA)(2)(OAc)(2)(mu-O)(mu-OH)(OH(2))(2)]ClO(4) x 5H(2)O. X-Ray structural analysis reveals the cation consists of four iron(III) ions, two HPBA(3-) ligands, two bridging acetate ligands, a bridging oxide ion and a bridging hydroxide ion. Each binucleating HPBA(3-) ligand coordinates two structurally distinct hexacoordinate iron(III) ions. The two metal ions coordinated to a HPBA(3-) ligand are linked to the two iron(III) metal ions of a second, similar binuclear unit by intramolecular oxide and hydroxide bridging moieties to form a tetramer. The complex has been further characterised by elemental analysis, mass spectrometry, UV-vis and MCD spectroscopy, X-ray crystallography, magnetic susceptibility measurements and variable-temperature Mössbauer spectroscopy.

  1. [Transport of dinitrosyl iron complexes into animal lungs].

    PubMed

    Mojokina, G N; Elistratova, N A; Mikoyan, V D; Vanin, A F

    2015-01-01

    Effective accumulation of binuclear dinitrosyl iron complexes with glutathione was shown after a subcutaneous para lymphatic injection of an aqueous solution of a dinitrosyl-iron complex into animal lung tissue at a single-dose of 2 micromoles per kilogram two times a day with a 2-h interval. Two hours later after the administration was repeated the concentration of these complexes was 16 micromoles per kilogram of tissue dropping down for the last two hours to 7 micromoles per kilogram of tissue. At one dose injection of binuclear dinitrosyl iron complexes with glutathione their concentration in 2 and 4 hours was two times lower than in the previous experiments. Presumably at the obtained concentration of dinitrosyl iron complexes a bactericidal effect in lungs can be observed against mycobacterium tuberculosis and rapidly proliferating lung tumors.

  2. 21 CFR 172.370 - Iron-choline citrate complex.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting...

  3. Iron Homeostasis and Nutritional Iron Deficiency123

    PubMed Central

    Theil, Elizabeth C.

    2011-01-01

    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins encoded in iron responsive element (IRE)-mRNA. The noncoding IRE-mRNA structures bind protein repressors, IRP1 or 2, during iron deficiency. Integration of the IRE-RNA in translation regulators (near the cap) or turnover elements (after the coding region) increases iron uptake (DMT1/TRF1) or decreases iron storage/efflux (FTN/FPN) when IRP binds. An antioxidant response element in FTN DNA binds Bach1, a heme-sensitive transcription factor that coordinates expression among antioxidant response proteins like FTN, thioredoxin reductase, and quinone reductase. FTN, an antioxidant because Fe2+ and O2 (reactive oxygen species generators) are consumed to make iron mineral, is also a nutritional iron concentrate that is an efficiently absorbed, nonheme source of iron from whole legumes. FTN protein cages contain thousands of mineralized iron atoms and enter cells by receptor-mediated endocytosis, an absorption mechanism distinct from transport of nonheme iron salts (ferrous sulfate), iron chelators (ferric-EDTA), or heme. Recognition of 2 nutritional nonheme iron sources, small and large (FTN), will aid the solution of iron deficiency, a major public health problem, and the development of new policies on iron nutrition. PMID:21346101

  4. A new iron(III) complex-containing sulfadiazine inhibits the proliferation and induces cystogenesis of Toxoplasma gondii.

    PubMed

    Portes, Juliana de A; Azeredo, Nathália F B; Siqueira, Pedro G T; de Souza, Tatiana Guinancio; Fernandes, Christiane; Horn, Adolfo; Candela, Dalber R S; de Souza, Wanderley; DaMatta, Renato A; Seabra, Sérgio H

    2018-06-22

    We have previously shown that metallocomplexes can control the growth of Toxoplasma gondii, the agent that causes toxoplasmosis. In order to develop new metallodrugs to treat this disease, we investigated the influence of the coordination of sulfadiazine (SDZ), a drug used to treat toxoplasmosis, on the biological activity of the iron(III) complex [Fe(HBPClNOL)Cl 2 ]·H 2 O, 1, (H 2 BPClNOL=N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)(3-chloro)(2-hydroxy)-propylamine). The new complex [(Cl)(SDZ)Fe(III)(μ-BPClNOL) 2 Fe(III)(SDZ)(Cl)]·2H 2 O, 2, which was obtained by the reaction between complex 1 and SDZ, was characterized using a range of physico-chemical techniques. The cytotoxic effect of the complexes and the ability of T. gondii to infect LLC-MK2 cells were assessed. It was found that both complexes reduced the growth of T. gondii while also causing low cytotoxicity in the host cells. After 48 h of treatment, complex 2 reduced the parasite's ability to proliferate by about 50% with an IC 50 of 1.66 μmol/L. Meanwhile, complex 1 or SDZ alone caused a 40% reduction in proliferation, and SDZ displayed an IC 50 of 5.3 μmol/L. In addition, complex 2 treatment induced distinct morphological and ultrastructural changes in the parasites and triggered the formation of cyst-like forms. These results show that the coordination of SDZ to the iron(III) complex is a good strategy for increasing the anti-toxoplasma activity of these compounds.

  5. Reductive Activation of O2 by Non-Heme Iron(II) Benzilate Complexes of N4 Ligands: Effect of Ligand Topology on the Reactivity of O2-Derived Oxidant.

    PubMed

    Chakraborty, Biswarup; Jana, Rahul Dev; Singh, Reena; Paria, Sayantan; Paine, Tapan Kanti

    2017-01-03

    A series of iron(II) benzilate complexes (1-7) with general formula [(L)Fe II (benzilate)] + have been isolated and characterized to study the effect of supporting ligand (L) on the reactivity of metal-based oxidant generated in the reaction with dioxygen. Five tripodal N 4 ligands (tris(2-pyridylmethyl)amine (TPA in 1), tris(6-methyl-2-pyridylmethyl)amine (6-Me 3 -TPA in 2), N 1 ,N 1 -dimethyl-N 2 ,N 2 -bis(2-pyridylmethyl)ethane-1,2-diamine (iso-BPMEN in 3), N 1 ,N 1 -dimethyl-N 2 ,N 2 -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me 2 -iso-BPMEN in 4), and tris(2-benzimidazolylmethyl)amine (TBimA in 7)) along with two linear tetradentate amine ligands (N 1 ,N 2 -dimethyl-N 1 ,N 2 -bis(2-pyridylmethyl)ethane-1,2-diamine (BPMEN in 5) and N 1 ,N 2 -dimethyl-N 1 ,N 2 -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me 2 -BPMEN in 6)) were employed in the study. Single-crystal X-ray structural studies reveal that each of the complex cations of 1-3 and 5 contains a mononuclear six-coordinate iron(II) center coordinated by a monoanionic benzilate, whereas complex 7 contains a mononuclear five-coordinate iron(II) center. Benzilate binds to the iron center in a monodentate fashion via one of the carboxylate oxygens in 1 and 7, but it coordinates in a bidentate chelating mode through carboxylate oxygen and neutral hydroxy oxygen in 2, 3, and 5. All of the iron(II) complexes react with dioxygen to exhibit quantitative decarboxylation of benzilic acid to benzophenone. In the decarboxylation pathway, dioxygen becomes reduced on the iron center and the resulting iron-oxygen oxidant shows versatile reactivity. The oxidants are nucleophilic in nature and oxidize sulfide to sulfoxide and sulfone. Furthermore, complexes 2 and 4-6 react with alkenes to produce cis-diols in moderate yields with the incorporation of both the oxygen atoms of dioxygen. The oxygen atoms of the nucleophilic oxidants do not exchange with water. On the basis of interception studies, nucleophilic

  6. Reversible five-coordinate ⇄ six-coordinate transformation in cobalt(II) complexes

    NASA Astrophysics Data System (ADS)

    Xiao, Linda; Bhadbhade, Mohan; Baker, Anthony T.

    2018-04-01

    The heterocyclic ligands 2,6-bis(pyrazol-1-yl)pyridine (L1) and 2,6-bis(benzimidazol-2-yl)pyridine (L2) and their cobalt(II) complexes were synthesized. The blue five-coordinate complex [Co(L1)Cl2] isolated initially from the reaction mixture rapidly absorbed water vapour from the atmosphere to yield the pink six-coordinate complex [Co(L1)(H2O)3]Cl2. This change is reversible upon desiccation or transferring [Co(L1)(H2O)3]Cl2 into acetonitrile. The five coordinate complex [Co(L2)Cl2], however, remains stable under similar conditions. The structures of the complexes [Co(L1)Cl2], [Co(L1)(H2O)3]Cl2 and [Co(L2)Cl2] have been determined by x-ray crystallography. The magnetic susceptibilities and the electronic spectra for [Co(L1)Cl2], [Co(L2)Cl2] and [Co(L1)(H2O)3]Cl2 are presented.

  7. Tetrahedrally Coordinated Fe3+ in Silicate Glasses: A Mossbauer, Iron K-edge XANES and Raman Spectroscopies Study

    NASA Astrophysics Data System (ADS)

    Cochain, B.; Neuville, D. R.; McCammon, C.; Henderson, G. S.; de Ligny, D.; Pinet, O.; Richet, P.

    2009-05-01

    In natural or industrial glasses, iron is the most abundant transition metal. A good knowledge of its redox equilibrium is important to better understand the chemical and structural evolution of magmas (crystallization, viscosity), and also to optimize vitrification processes and properties of iron-bearing glasses. To study the role of iron in silicate glasses and melts, we have used in a consistent manner the Mössbauer, iron K-edge XANES and Raman spectroscopies to investigate several series of silicate glasses as a function of redox state. The samples were selected to cover a wide composition range and to investigate the interactions of iron with two network forming cations, namely, Al3+ and B3+. The glasses investigated were synthesized at high temperature under various conditions of oxygen fugacity to achieve different redox ratios for each composition. Therefore, the iron redox state was varied from the most oxidized to the most reduced. Iron redox ratios were first determined by wet chemical analysis and in some cases by room temperature Mossbauer spectroscopy. This experimental method was also used to determine the local structure of iron of some of the investigated glasses. These results where compared to iron K-edge XANES/EXAFS spectroscopy results, which lead to the iron redox state and indicate that Fe2+ is in octahedral coordination whereas Fe3+ is in tetrahedral coordination. In addition, Raman spectroscopy gave us information on the network polymerization of glasses. Clearly changes in Raman spectra are visible with the evolution of iron redox ratio. For a given composition, we observed systematically, in the 800-1200 cm-1 envelope, which is sensitive to the environment of tetrahedrally coordinated cations, the growth of a band with the iron content and the oxidation state of the sample. The peak area of this band, which we attribute to vibrational modes involving tetrahedrally coordinated Fe3+, increases with the oxidation of the sample. This

  8. Geology of the Biwabik Iron Formation and Duluth Complex.

    PubMed

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact.

  9. Geology of the Biwabik Iron Formation and Duluth Complex

    USGS Publications Warehouse

    Jirsa, M.A.; Miller, J.D.; Morey, G.B.

    2008-01-01

    The Biwabik Iron Formation is a ???1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by ???1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact. ?? 2007 Elsevier Inc. All rights reserved.

  10. Identifying and Coordinating Care for Complex Patients

    PubMed Central

    Rudin, Robert S.; Gidengil, Courtney A.; Predmore, Zachary; Schneider, Eric C.; Sorace, James; Hornstein, Rachel

    2017-01-01

    Abstract In the United States, a relatively small proportion of complex patients---defined as having multiple comorbidities, high risk for poor outcomes, and high cost---incur most of the nation's health care costs. Improved care coordination and management of complex patients could reduce costs while increasing quality of care. However, care coordination efforts face multiple challenges, such as segmenting populations of complex patients to better match their needs with the design of specific interventions, understanding how to reduce spending, and integrating care coordination programs into providers' care delivery processes. Innovative uses of analytics and health information technology (HIT) may address these challenges. Rudin and colleagues at RAND completed a literature review and held discussions with subject matter experts, reaching the conclusion that analytics and HIT are being used in innovative ways to coordinate care for complex patients but that the capabilities are limited, evidence of their effectiveness is lacking, and challenges are substantial, and important foundational work is still needed. PMID:28845354

  11. Unusual heme iron-lipid acyl chain coordination in Escherichia coli flavohemoglobin.

    PubMed

    D'Angelo, Paola; Lucarelli, Debora; della Longa, Stefano; Benfatto, Maurizio; Hazemann, Jean Louis; Feis, Alessandro; Smulevich, Giulietta; Ilari, Andrea; Bonamore, Alessandra; Boffi, Alberto

    2004-06-01

    Escherichia coli flavohemoglobin is endowed with the notable property of binding specifically unsaturated and/or cyclopropanated fatty acids both as free acids or incorporated into a phospholipid molecule. Unsaturated or cyclopropanated fatty acid binding to the ferric heme results in a spectral change observed in the visible absorption, resonance Raman, extended x-ray absorption fine spectroscopy (EXAFS), and x-ray absorption near edge spectroscopy (XANES) spectra. Resonance Raman spectra, measured on the flavohemoglobin heme domain, demonstrate that the lipid (linoleic acid or total lipid extracts)-induced spectral signals correspond to a transition from a five-coordinated (typical of the ligand-free protein) to a hexacoordinated, high spin heme iron. EXAFS and XANES measurements have been carried out both on the lipid-free and on the lipid-bound protein to assign the nature of ligand in the sixth coordination position of the ferric heme iron. EXAFS data analysis is consistent with the presence of a couple of atoms in the sixth coordination position at 2.7 A in the lipid-bound derivative (bonding interaction), whereas a contribution at 3.54 A (nonbonding interaction) can be singled out in the lipid-free protein. This last contribution is assigned to the CD1 carbon atoms of the distal LeuE11, in full agreement with crystallographic data on the lipid-free protein at 1.6 A resolution obtained in the present work. Thus, the contributions at 2.7 A distance from the heme iron are assigned to a couple of carbon atoms of the lipid acyl chain, possibly corresponding to the unsaturated carbons of the linoleic acid.

  12. Steric modifications tune the regioselectivity of the alkane oxidation catalyzed by non-heme iron complexes.

    PubMed

    He, Yu; Gorden, John D; Goldsmith, Christian R

    2011-12-19

    Iron complexes with the tetradentate N-donor ligand N,N'-di(phenylmethyl)-N,N'-bis(2-pyridinylmethyl)-1,2-cyclohexanediamine (bbpc) are reported. Despite the benzyl groups present on the amines, the iron compounds catalyze the oxygenation of cyclohexane to an extent similar to those employing less sterically encumbered ligands. The catalytic activity is strongly dependent on the counterion, with the highest activity and the strongest preference for alkane hydroxylation correlating to the most weakly coordinating anion, SbF(6)(-). The selectivity for the alcohol product over the ketone is amplified when acetic acid is present as an additive. When hydrocarbon substrates with both secondary and tertiary carbons are oxidized by H(2)O(2), the catalyst directs oxidation toward the secondary carbons to a greater degree than other previously reported iron-containing homogeneous catalysts. © 2011 American Chemical Society

  13. Iron Hill (Powderhorn) carbonatite complex, Gunnison County, CO - A potential source of several uncommon mineral resources

    USGS Publications Warehouse

    Van Gosen, B. S.; Lowers, H.A.

    2007-01-01

    The Iron Hill (Powderhorn) carbonatite complex is a 31-kM2 (12-sq mile) alkalic intrusion located about 35 km (22 miles) south-southwest of Gunnison, CO. The intrusion has been well studied and described because of its classic petrology and architecture ofa carbonatite-alkalic complex. The complex is also noteworthy because it contains enrichments of titanium, rare earth elements, thorium, niobium (columbium), vanadium and deposits of vermiculite and nepheline syenite. In particular, the complex is thought to host the largest titanium and niobium resources in the United States, although neither has been developed. It may be economic to extract multiple resources from this complex with a well-coordinated mine and mill plan.

  14. [Partitioning of taxifolin-iron ions complexes in octanol-water system].

    PubMed

    Shatalin, Iu V; Shubina, V S

    2014-01-01

    The composition of taxifolin-iron ions complexes in an octanol-water biphasic system was studied using the method of absorption spectrophotometry. It was found that at pH 5.0 in an aqueous biphasic system the complex of [Tf2 x Fe x (OH)k(H2O)8-k] is present, but at pH 7.0 and 9.0 the complexes of [Tf2 x Fe x (OH)k(H2O)2-k] and [Tf x Fe x OH)k(H2O)4-k] are predominantly observed. The formation of a stable [Tf3 x Fe] complex occurred in octanol phase. The charged iron ion of this complex is surrounded by taxifolin molecules, which shield the iron ion from lipophilic solvent. During transition from water to octanol phase the changes of the composition of complexes are accompanied by reciprocal changes in portion of taxifolin and iron ions in these phases. It was shown that the portion of taxifolin in aqueous solution in the presence of iron ions is increased at high pH values, and the portion of iron ions is minimal at pH 7.0. In addition, the parameters of solubility limits of taxifolin-iron ions complexes in an aqueous solution were determined. The data obtained gain a better understanding of the role of complexation of polyphenol with metal of variable valency in passive transport of flavonoids and metal ions across lipid membranes.

  15. Complexation Effect on Redox Potential of Iron(III)-Iron(II) Couple: A Simple Potentiometric Experiment

    ERIC Educational Resources Information Center

    Rizvi, Masood Ahmad; Syed, Raashid Maqsood; Khan, Badruddin

    2011-01-01

    A titration curve with multiple inflection points results when a mixture of two or more reducing agents with sufficiently different reduction potentials are titrated. In this experiment iron(II) complexes are combined into a mixture of reducing agents and are oxidized to the corresponding iron(III) complexes. As all of the complexes involve the…

  16. Does a higher metal oxidation state necessarily imply higher reactivity toward H-atom transfer? A computational study of C-H bond oxidation by high-valent iron-oxo and -nitrido complexes.

    PubMed

    Geng, Caiyun; Ye, Shengfa; Neese, Frank

    2014-04-28

    In this work, the reactions of C-H bond activation by two series of iron-oxo ( (Fe(IV)), (Fe(V)), (Fe(VI))) and -nitrido model complexes ( (Fe(IV)), (Fe(V)), (Fe(VI))) with a nearly identical coordination geometry but varying iron oxidation states ranging from iv to vi were comprehensively investigated using density functional theory. We found that in a distorted octahedral coordination environment, the iron-oxo species and their isoelectronic nitrido analogues feature totally different intrinsic reactivities toward C-H bond cleavage. In the case of the iron-oxo complexes, the reaction barrier monotonically decreases as the iron oxidation state increases, consistent with the gradually enhanced electrophilicity across the series. The iron-nitrido complex is less reactive than its isoelectronic iron-oxo species, and more interestingly, a counterintuitive reactivity pattern was observed, i.e. the activation barriers essentially remain constant independent of the iron oxidation states. The detailed analysis using the Polanyi principle demonstrates that the different reactivities between these two series originate from the distinct thermodynamic driving forces, more specifically, the bond dissociation energies (BDEE-Hs, E = O, N) of the nascent E-H bonds in the FeE-H products. Further decomposition of the BDEE-Hs into the electron and proton affinity components shed light on how the oxidation states modulate the BDEE-Hs of the two series.

  17. Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas

    PubMed Central

    Pandey, Sheo Shankar; Patnana, Pradeep Kumar; Lomada, Santosh Kumar; Tomar, Archana; Chatterjee, Subhadeep

    2016-01-01

    Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named X anthomonas iron binding regulator) of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc). Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon’s involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in Xanthomonads in

  18. Reactivity of tris(acetylacetonato) iron(III) with tridentate [ONO] donor Schiff base as an access to newer mixed-ligand iron(III) complexes

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Chira R.; Goswami, Pankaj; Pramanik, Harun A. R.; Paul, Pradip C.; Mondal, Paritosh

    2011-05-01

    Two new mixed-ligand iron(III) complexes, [Fe(L n)(acac)(C 2H 5OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac) 3] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H 2L 1) or 2-aminobenzoic acid (H 2L 2). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L n)(acac)X] ( n = 1, 2; X = Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, 1H and 13C NMR spectroscopy. Room temperature magnetic susceptibility measurements ( μeff ˜ 5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (Δ Ep > 100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential ( E1/2) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level.

  19. Reactivity of tris(acetylacetonato) iron(III) with tridentate [ONO] donor Schiff base as an access to newer mixed-ligand iron(III) complexes.

    PubMed

    Bhattacharjee, Chira R; Goswami, Pankaj; Pramanik, Harun A R; Paul, Pradip C; Mondal, Paritosh

    2011-05-01

    Two new mixed-ligand iron(III) complexes, [Fe(L(n))(acac)(C(2)H(5)OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac)(3)] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H(2)L(1)) or 2-aminobenzoic acid (H(2)L(2)). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L(n))(acac)X] (n=1, 2; X=Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, (1)H and (13)C NMR spectroscopy. Room temperature magnetic susceptibility measurements (μ(eff)∼5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (ΔE(p)>100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential (E(1/2)) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. 21 CFR 172.370 - Iron-choline citrate complex.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline...

  1. 21 CFR 172.370 - Iron-choline citrate complex.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline...

  2. Structure and reactivity of a mononuclear non-haem iron(III)–peroxo complex

    PubMed Central

    Cho, Jaeheung; Jeon, Sujin; Wilson, Samuel A.; Liu, Lei V.; Kang, Eun A; Braymer, Joseph J.; Lim, Mi Hee; Hedman, Britt; Hodgson, Keith O.; Valentine, Joan Selverstone; Solomon, Edward I.; Nam, Wonwoo

    2012-01-01

    Oxygen-containing mononuclear iron species—iron(III)–peroxo, iron(III)–hydroperoxo and iron(IV)–oxo—are key intermediates in the catalytic activation of dioxygen by iron-containing metalloenzymes1–7. It has been difficult to generate synthetic analogues of these three active iron–oxygen species in identical host complexes, which is necessary to elucidate changes to the structure of the iron centre during catalysis and the factors that control their chemical reactivities with substrates. Here we report the high-resolution crystal structure of a mononuclear non-haem side-on iron(III)–peroxo complex, [Fe(III)(TMC)(OO)]+. We also report a series of chemical reactions in which this iron(III)–peroxo complex is cleanly converted to the iron(III)–hydroperoxo complex, [Fe(III)(TMC)(OOH)]2+, via a short-lived intermediate on protonation. This iron(III)–hydroperoxo complex then cleanly converts to the ferryl complex, [Fe(IV)(TMC)(O)]2+, via homolytic O–O bond cleavage of the iron(III)–hydroperoxo species. All three of these iron species—the three most biologically relevant iron–oxygen intermediates—have been spectroscopically characterized; we note that they have been obtained using a simple macrocyclic ligand. We have performed relative reactivity studies on these three iron species which reveal that the iron(III)–hydroperoxo complex is the most reactive of the three in the deformylation of aldehydes and that it has a similar reactivity to the iron(IV)–oxo complex in C–H bond activation of alkylaromatics. These reactivity results demonstrate that iron(III)–hydroperoxo species are viable oxidants in both nucleophilic and electrophilic reactions by iron-containing enzymes. PMID:22031443

  3. From iron coordination compounds to metal oxide nanoparticles.

    PubMed

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel; Cazacu, Maria

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe 2 III Fe II O(CH 3 COO) 6 (H 2 O) 3 ]·2H 2 O (FeAc1), μ 3 -oxo trinuclear iron(III) acetate, [Fe 3 O(CH 3 COO) 6 (H 2 O) 3 ]NO 3 ∙4H 2 O (FeAc2), iron furoate, [Fe 3 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeF), iron chromium furoate, FeCr 2 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  4. From iron coordination compounds to metal oxide nanoparticles

    PubMed Central

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2 IIIFeIIO(CH3COO)6(H2O)3]·2H2O (FeAc1), μ3-oxo trinuclear iron(III) acetate, [Fe3O(CH3COO)6(H2O)3]NO3∙4H2O (FeAc2), iron furoate, [Fe3O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeF), iron chromium furoate, FeCr2O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles. PMID:28144555

  5. A Mononuclear Nonheme Iron(V)-Imido Complex

    DOE PAGES

    Hong, Seungwoo; Sutherlin, Kyle D.; Vardhaman, Anil Kumar; ...

    2017-06-19

    Mononuclear nonheme iron(V)-oxo complexes have been reported previously. Herein, we report the first example of a mononuclear nonheme iron(V)-imido complex bearing a tetraamido macrocyclic ligand (TAML), [(TAML)Fe V(NTs)] – . The spectroscopic characterization of 1 revealed an S = 1/2 Fe(V) oxidation state, an Fe—N bond length of 1.65(4) Å, and an Fe—N vibration at 817 cm –1. In conclusion, the reactivity of 1 was demonstrated in C—H bond functionalization and nitrene transfer reactions.

  6. A Mononuclear Nonheme Iron(V)-Imido Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Seungwoo; Sutherlin, Kyle D.; Vardhaman, Anil Kumar

    Mononuclear nonheme iron(V)-oxo complexes have been reported previously. Herein, we report the first example of a mononuclear nonheme iron(V)-imido complex bearing a tetraamido macrocyclic ligand (TAML), [(TAML)Fe V(NTs)] – . The spectroscopic characterization of 1 revealed an S = 1/2 Fe(V) oxidation state, an Fe—N bond length of 1.65(4) Å, and an Fe—N vibration at 817 cm –1. In conclusion, the reactivity of 1 was demonstrated in C—H bond functionalization and nitrene transfer reactions.

  7. Cytotoxicity of Cyclometalated Platinum Complexes Based on Tridentate NCN and CNN-coordinating ligands: Remarkable Coordination Dependence

    PubMed Central

    Vezzu, Dileep A. k.; Lu, Qun; Chen, Yan-Hua; Huo, Shouquan

    2014-01-01

    A series of cyclometalated platinum complexes with diverse coordination patterns and geometries were screened for their anticancer activity. It was discovered that the NʌCʌN-coordinated platinum complex based on 1,3-di(pyridyl)benzene displayed much higher cytotoxicity against human lung cancer cells NCI-H522, HCC827, and NCI-H1299, and human prostate cancer cell RV1 than cisplatin. In a sharp contrast, the CʌNʌN-coordinated platinum complex based on 6-phenyl-2,2′-bipyridine was ineffective on these cancer cells. This remarkable difference in cytotoxicity displayed by NʌCʌN- and CʌNʌN-coordinated platinum complexes was related to the trans effect of the carbon donor in the cyclometalated platinum complexes, which played a crucial role in facilitating the dissociation of the chloride ligand to create an active binding site. The DNA binding was studied for the NʌCʌN-coordinated platinum complex using electrophoresis and emission titration. The cellular uptake observed by fluorescent microscope showed the complex is largely concentrated in the cytoplasm. The possible pathways for the cell apoptosis was studied by western blot analysis and the activation of PARP via caspase 7 was observed. PMID:24531534

  8. Decomposition of water-soluble mononitrosyl iron complexes with dithiocarbamates and of dinitrosyl iron complexes with thiol ligands in animal organisms.

    PubMed

    Serezhenkov, Vladimir A; Timoshin, Alexander A; Orlova, Tsvetina R; Mikoyan, Vasak D; Kubrina, Lioudmila N; Poltorakov, Alexander P; Ruuge, Enno K; Sanina, Natalia A; Vanin, Anatoly F

    2008-05-01

    EPR studies have shown that water-soluble mononitrosyl iron complexes with N-methyl-d-glucamine dithiocarbamate (MNIC-MGD) (3 micromol) injected to intact mice were decomposed virtually completely within 1h. The total content of MNIC-MGD in animal urine did not exceed 30 nmol/ml. In the liver, a small amount of MNIC-MGD were converted into dinitrosyl iron complexes (30 nmol/g of liver tissue). The same was observed in intact rabbits in which MNIC-MGD formation was induced by endogenous or exogenous NO binding to NO traps, viz., iron complexes with MGD. In mice, the content of MNIC-MGD in urine samples did not change after bacterial lipopolysaccharide-induced expression of iNOS. It was supposed that MNIC-MGD decomposition in intact animals was largely due to the release of NO from the complexes and its further transfer to other specific acceptors. In mice with iNOS expression, the main contribution to MNIC-MGD decomposition was made by superoxide ions whose destructive effect is mediated by an oxidative mechanism. This effect could fully compensate the augmented synthesis of MNIC-MGD involving endogenous NO whose production was supported by iNOS. Water-soluble dinitrosyl iron complexes (DNIC) with various thiol-containing ligands and thiosulfate injected to intact mice were also decomposed; however, in this case the effect was less pronounced than in the case of MNIC-MGD. It was concluded that DNIC decomposition was largely due to the oxidative effect of superoxide ions on these complexes.

  9. Cytosolic iron chaperones: Proteins delivering iron cofactors in the cytosol of mammalian cells.

    PubMed

    Philpott, Caroline C; Ryu, Moon-Suhn; Frey, Avery; Patel, Sarju

    2017-08-04

    Eukaryotic cells contain hundreds of metalloproteins that are supported by intracellular systems coordinating the uptake and distribution of metal cofactors. Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones in the cytosolic/nuclear compartment, binding iron at import and delivering it to enzymes, for storage (ferritin) and export (ferroportin). Ferritin iron is mobilized by autophagy through the cargo receptor, nuclear co-activator 4. The monothiol glutaredoxin Glrx3 and BolA2 function as a [2Fe-2S] chaperone complex. These proteins form a core system of cytosolic iron cofactor chaperones in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. EGCG inhibit chemical reactivity of iron through forming an Ngal-EGCG-iron complex.

    PubMed

    Bao, Guan-Hu; Xu, Jie; Hu, Feng-Lin; Wan, Xiao-Chun; Deng, Shi-Xian; Barasch, Jonathan

    2013-12-01

    Accumulated evidence indicates that the interconversion of iron between ferric (Fe(3+)) and ferrous (Fe(2+)) can be realized through interaction with reactive oxygen species in the Fenton and Haber-Weiss reactions and thereby physiologically effects redox cycling. The imbalance of iron and ROS may eventually cause tissue damage such as renal proximal tubule injury and necrosis. Many approaches were exploited to ameliorate the oxidative stress caused by the imbalance. (-)-Epigallocatechin-3-gallate, the most active and most abundant catechin in tea, was found to be involved in the protection of a spectrum of renal injuries caused by oxidative stress. Most of studies suggested that EGCG works as an antioxidant. In this paper, Multivariate analysis of the LC-MS data of tea extracts and binding assays showed that the tea polyphenol EGCG can form stable complex with iron through the protein Ngal, a biomarker of acute kidney injury. UV-Vis and Luminescence spectrum methods showed that Ngal can inhibit the chemical reactivity of iron and EGCG through forming an Ngal-EGCG-iron complex. In thinking of the interaction of iron and ROS, we proposed that EGCG may work as both antioxidant and Ngal binding siderphore in protection of kidney from injuries.

  11. [Preliminary studies on physicochemical properties of Angelica sinensis polysaccharide-iron complex].

    PubMed

    Wang, Kai-ping; Zhang, Yu; Dai, Li-quan

    2006-05-01

    To study some physicochemical properties of Angelica sinensis polysaccharide-iron complex (APC). Based on the qualitatively identified reactions of iron (III), the qualitatively identified reactions of APC were found out by comparing hydroxide. The content of iron (III) in APC was determined with iodometry. The stability of APC under physiological pH conditions was judged by titrating APC with sodium hydroxide. The deoxidization of APC was tested with colorimetric analysis. APC showed the qualitatively identified reactions of iron (III). The content of iron (III) in APC ranged from 10% to 40%, and the water-solubility of APC was related to the content of iron (III). The complex was stable at physiological pH from 3 to 12, without precipitation and dissociation. At 37 degrees C, Fe (III) in the complex was completely reduced to Fe (III) by ascorbic acid in about 6 hours. APC can be qualitatively identified by using the qualitatively identified reactions of iron (III). When its iron (III) content is within 20%-25%, APC has a better ability to dissolve in water. And the complex is stable under physiological pH conditions.

  12. Cytotoxicity of cyclometalated platinum complexes based on tridentate NCN and CNN-coordinating ligands: remarkable coordination dependence.

    PubMed

    Vezzu, Dileep A K; Lu, Qun; Chen, Yan-Hua; Huo, Shouquan

    2014-05-01

    A series of cyclometalated platinum complexes with diverse coordination patterns and geometries were screened for their anticancer activity. It was discovered that the N^C^N-coordinated platinum complex based on 1,3-di(pyridyl)benzene displayed much higher cytotoxicity against human lung cancer cells NCI-H522, HCC827, and NCI-H1299, and human prostate cancer cell RV1 than cisplatin. In a sharp contrast, the C^N^N-coordinated platinum complex based on 6-phenyl-2,2'-bipyridine was ineffective on these cancer cells. This remarkable difference in cytotoxicity displayed by N^C^N- and C^N^N-coordinated platinum complexes was related to the trans effect of the carbon donor in the cyclometalated platinum complexes, which played a crucial role in facilitating the dissociation of the chloride ligand to create an active binding site. The DNA binding was studied for the N^C^N-coordinated platinum complex using electrophoresis and emission titration. The cellular uptake observed by fluorescent microscope showed that the complex is largely concentrated in the cytoplasm. The possible pathways for the cell apoptosis were studied by western blot analysis and the activation of PARP via caspase 7 was observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Formation mechanism and biological activity of novel thiolated human-like collagen iron complex.

    PubMed

    Zhu, Chenhui; Liu, Lingyun; Deng, Jianjun; Ma, Xiaoxuan; Hui, Junfeng; Fan, Daidi

    2016-03-01

    To develop an iron supplement that is effectively absorbed and utilized, thiolated human-like collagen was created to improve the iron binding capacity of human-like collagen. A thiolated human-like collagen-iron complex was prepared in a phosphate buffer, and one mole of thiolated human-like collagen-iron possessed approximately 28.83 moles of iron. The characteristics of thiolated human-like collagen-iron were investigated by ultraviolet-visible absorption spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and differential scanning calorimetry. The results showed that the thiolated human-like collagen-iron complex retained the secondary structure of human-like collagen and had greater thermodynamic stability than human-like collagen, although interactions between iron ions and human-like collagen occurred during the formation of the complex. In addition, to evaluate the bioavailability of thiolated human-like collagen-iron, an in vitro Caco-2 cell model and an in vivo iron deficiency anemia mouse model were employed. The data demonstrated that the thiolated human-like collagen-iron complex exhibited greater bioavailability and was more easily utilized than FeSO4, ferric ammonium citrate, or ferrous glycinate. These results indicated that the thiolated human-like collagen-iron complex is a potential iron supplement in the biomedical field. © The Author(s) 2016.

  14. Manganese(II), iron(II), cobalt(II), and copper(II) complexes of an extended inherently chiral tris-bipyridyl cage.

    PubMed

    Perkins, David F; Lindoy, Leonard F; McAuley, Alexander; Meehan, George V; Turner, Peter

    2006-01-17

    Manganese(II), iron(II), cobalt(II), and copper(II) derivatives of two inherently chiral, Tris(bipyridyl) cages (L and L') of type [ML]-(PF(6))(2)(solvent)(n) and [FeL'](ClO(4))(2) are reported, where L is the hexa-tertiary butyl-substituted derivative of L'. These products were obtained by using the free cage and metal template procedures; the latter involved the reductive amination of the respective Tris-dialdehyde precursor complexes of iron(II), cobalt(II), or nickel(II). Electrochemical, EPR, and NMR studies have been used to probe the nature of the individual complexes. X-ray structures of the manganese(II), iron(II), and copper(II) complexes of L and the iron(II) complex of L' are presented; these are compared with the previously reported structures of the corresponding nickel(II) complex and metal-free cage (L). In each complex the metal cation occupies the cage's central cavity and is coordinated to six nitrogens from the three bipyridyl groups. The cations [MnL](2+) and [FeL](2+) are isostructural but both exhibit a different arrangement of the bound cage to that observed in the corresponding nickel(II) and copper(II) complexes. The latter have an exo-exo arrangement of the bridgehead nitrogen lone pairs, with the metal inducing a triple helical twist that extends approximately 22 A along the axial length of each complex. In contrast, [MnL](2+) and [FeL](2+) have their terminal nitrogen lone pairs directed endo, causing a significant change in the configuration of the bound ligand. In [FeL'](2+), the cage has both bridgehead nitrogen lone pairs orientated exo. Semiempirical calculations indicate that the observed endo-endo and exo-exo arrangements are of comparable energy.

  15. Synthesis and characterization of a new Inonotus obliquus polysaccharide-iron(III) complex.

    PubMed

    Wang, Jia; Chen, Haixia; Wang, Yanwei; Xing, Lisha

    2015-04-01

    A new Inonotus obliquus polysaccharide-iron(III) complex (IOPS-iron) was synthesized and characterized. The preparation conditions of IOPS-iron(III) were optimized and the physicochemical properties were characterized by physicochemical methods, scanning electron microscopy (SEM), electron paramagnetic resonance (EPR) spectroscopy, fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy, respectively. The highest iron content of IOPS-iron(III) complex (19.40%) was obtained at the conditions: the ratio of IOPS and FeCl3 • 6H2O was 3:5 (w/w), the pH value of alkali solution was 10, the reaction temperature was 30 °C and the reaction time was 6h. The iron(III) was shown to be bound through the binding sites of the polysaccharide IOPS and it could form spatially separated iron centers on the polysaccharide backbone. IOPS-iron(III) complex was found to have good digestive availability and antioxidant activities in the in vitro assays, which suggested the IOPS-iron(III) complex might be used as a new iron supplement candidate. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Antibacterial activity and spectral studies of trivalent chromium, manganese, iron macrocyclic complexes derived from oxalyldihydrazide and glyoxal.

    PubMed

    Singh, D P; Kumar, Ramesh; Singh, Jitender

    2009-06-01

    A new series of complexes is synthesized by template condensation of oxalyldihydrazide and glyoxal in methanolic medium in the presence of trivalent chromium, manganese and iron salts forming complexes of the type: [M(C(8)H(8)N(8)O(4))X]X(2) where M = Cr(III), Mn(III), Fe(III) and X = Cl(-1), NO(-1)(3), CH(3)COO(-1). The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic susceptibility measurements, electronic, NMR, infrared and far infrared spectral studies. On the basis of these studies, a five coordinate square pyramidal geometry for these complexes has been proposed. The biological activities of the metal complexes were tested in vitro against a number of pathogenic bacteria and some of the complexes exhibited remarkable antibacterial activities.

  17. Organometallic iron complexes as potential cancer therapeutics.

    PubMed

    Mojžišová, Gabriela; Mojžiš, Ján; Vašková, Janka

    2014-01-01

    Metal-containing drugs have long been used for medicinal purposes in more or less empirical way. The potential of these anticancer agents has only been fully realised and explored since the discovery of the biological activity of cisplatin. Cisplatin and carboplatin have been two of the most successful anti-cancer agents ever developed, and are currently used to treat ovarian, lung and testicular cancers. They share certain side effects, so their clinical use is severely limited by dose-limiting toxicity. Inherent or acquired resistance is a second problem often associated with platinum-based drugs, with further limits of their clinical use. These problems have prompted chemists to employ different strategies in development of the new metal-based anticancer agents with different mechanisms of action. There are various metal complexes still under development and investigation for the future cancer treatment use. In the search for novel bio-organometallic molecules, iron containing anti-tumoral agents are enjoying an increasing interest and appear very promising as the potential drug candidates. Iron, as an essential cofactor in a number of enzymes and physiological processes, may be less toxic than non essential metals, such as platinum. Up to now, some of iron complexes have been tested as cytotoxic agents and found to be endowed with an antitumor activity in several in vitro tests (on cultured cancer cell lines) and few in vivo experiments (e. g. on Ehrlich's ascites carcinoma). Although the precise molecular mechanism is yet to be defined, a number of observations suggest that the reactive oxygen species can play important role in iron-induced cytotoxicty. This review covers some relevant examples of research on the novel iron complexes.

  18. 21 CFR 172.370 - Iron-choline citrate complex.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline...

  19. Mixed-valent dicobalt and iron-cobalt complexes with high-spin configurations and short metal-metal bonds.

    PubMed

    Zall, Christopher M; Clouston, Laura J; Young, Victor G; Ding, Keying; Kim, Hyun Jung; Zherebetskyy, Danylo; Chen, Yu-Sheng; Bill, Eckhard; Gagliardi, Laura; Lu, Connie C

    2013-08-19

    Cobalt-cobalt and iron-cobalt bonds are investigated in coordination complexes with formally mixed-valent [M2](3+) cores. The trigonal dicobalt tris(diphenylformamidinate) compound, Co2(DPhF)3, which was previously reported by Cotton, Murillo, and co-workers (Inorg. Chim. Acta 1996, 249, 9), is shown to have an energetically isolated, high-spin sextet ground-state by magnetic susceptibility and electron paramagnetic resonance (EPR) spectroscopy. A new tris(amidinato)amine ligand platform is introduced. By tethering three amidinate donors to an apical amine, this platform offers two distinct metal-binding sites. Using the phenyl-substituted variant (abbreviated as L(Ph)), the isolation of a dicobalt homobimetallic and an iron-cobalt heterobimetallic are demonstrated. The new [Co2](3+) and [FeCo](3+) cores have high-spin sextet and septet ground states, respectively. Their solid-state structures reveal short metal-metal bond distances of 2.29 Å for Co-Co and 2.18 Å for Fe-Co; the latter is the shortest distance for an iron-cobalt bond to date. To assign the positions of iron and cobalt atoms as well as to determine if Fe/Co mixing is occurring, X-ray anomalous scattering experiments were performed, spanning the Fe and Co absorption energies. These studies show only a minor amount of metal-site mixing in this complex, and that FeCoL(Ph) is more precisely described as (Fe0.94(1)Co0.06(1))(Co0.95(1)Fe0.05(1))L(Ph). The iron-cobalt heterobimetallic has been further characterized by Mössbauer spectroscopy. Its isomer shift of 0.65 mm/s and quadrupole splitting of 0.64 mm/s are comparable to the related diiron complex, Fe2(DPhF)3. On the basis of spectroscopic data and theoretical calculations, it is proposed that the formal [M2](3+) cores are fully delocalized.

  20. Electronic structure and reactivity of high-spin iron--alkyl- and--pterinperoxo complexes.

    PubMed

    Lehnert, Nicolai; Fujisawa, Kiyoshi; Solomon, Edward I

    2003-01-27

    The spectroscopic properties and electronic structure of the four-coordinate high-spin [FeIII(L3)(OOtBu)]+ complex (1; L3 = hydrotris(3-tert-butyl-5-isopropyl-1-pyrazolyl)borate; tBu = tert-butyl) are investigated and compared to the six-coordinated high-spin [Fe(6-Me3TPA)(OHx)(OOtBu)]x+ system (TPA = tris(2-pyridylmethyl)amine, x = 1 or 2) studied earlier [Lehnert, N.; Ho, R. Y. N.; Que, L., Jr.; Solomon, E. I. J. Am. Chem. Soc. 2001, 123, 12802-12816]. Complex 1 is characterized by Raman features at 889 and 830 cm-1 which are assigned to the O-O stretch (mixed with the symmetric C-C stretch) and a band at 625 cm-1 that corresponds to nu(Fe-O). The UV-vis spectrum shows a charge-transfer (CT) transition at 510 nm from the alkylperoxo pi v* (v = vertical to C-O-O plane) to a d orbital of Fe(III). A second CT is identified from MCD at 370 nm that is assigned to a transition from pi h* (h = horizontal to C-O-O plane) to an Fe(III) d orbital. For the TPA complex the pi v* CT is at 560 nm while the pi h* CT is to higher energy than 250 nm. These spectroscopic differences between four- and six-coordinate Fe(III)-OOR complexes are interpreted on the basis of their different ligand fields. In addition, the electronic structure of Fe-OOPtn complexes with the biologically relevant pterinperoxo ligand are investigated. Substitution of the tert-butyl group in 1 by pterin leads to the corresponding Fe(III)-OOPtn species (2), which shows a stronger electron donation from the peroxide to Fe(III) than 1. This is related to the lower ionization potential of pterin. Reduction of 2 by one electron leads to the Fe(II)-OOPtn complex (3), which is relevant as a model for potential intermediates in pterin-dependent hydroxylases. However, in the four-coordinate ligand field of 3, the additional electron is located in a nonbonding d orbital of iron. Hence, the pterinperoxo ligand is not activated for heterolytic cleavage of the O-O bond in this system. This is also evident from the

  1. Architecture of the Yeast Mitochondrial Iron-Sulfur Cluster Assembly Machinery: THE SUB-COMPLEX FORMED BY THE IRON DONOR, Yfh1 PROTEIN, AND THE SCAFFOLD, Isu1 PROTEIN.

    PubMed

    Ranatunga, Wasantha; Gakh, Oleksandr; Galeano, Belinda K; Smith, Douglas Y; Söderberg, Christopher A G; Al-Karadaghi, Salam; Thompson, James R; Isaya, Grazia

    2016-05-06

    The biosynthesis of Fe-S clusters is a vital process involving the delivery of elemental iron and sulfur to scaffold proteins via molecular interactions that are still poorly defined. We reconstituted a stable, functional complex consisting of the iron donor, Yfh1 (yeast frataxin homologue 1), and the Fe-S cluster scaffold, Isu1, with 1:1 stoichiometry, [Yfh1]24·[Isu1]24 Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional reconstruction of this complex at a resolution of ∼17 Å. In addition, via chemical cross-linking, limited proteolysis, and mass spectrometry, we identified protein-protein interaction surfaces within the complex. The data together reveal that [Yfh1]24·[Isu1]24 is a roughly cubic macromolecule consisting of one symmetric Isu1 trimer binding on top of one symmetric Yfh1 trimer at each of its eight vertices. Furthermore, molecular modeling suggests that two subunits of the cysteine desulfurase, Nfs1, may bind symmetrically on top of two adjacent Isu1 trimers in a manner that creates two putative [2Fe-2S] cluster assembly centers. In each center, conserved amino acids known to be involved in sulfur and iron donation by Nfs1 and Yfh1, respectively, are in close proximity to the Fe-S cluster-coordinating residues of Isu1. We suggest that this architecture is suitable to ensure concerted and protected transfer of potentially toxic iron and sulfur atoms to Isu1 during Fe-S cluster assembly. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The Fur-Iron Complex Modulates Expression of the Quorum-Sensing Master Regulator, SmcR, To Control Expression of Virulence Factors in Vibrio vulnificus

    PubMed Central

    Kim, In Hwang; Wen, Yancheng; Son, Jee-Soo; Lee, Kyu-Ho

    2013-01-01

    The gene vvpE, encoding the virulence factor elastase, is a member of the quorum-sensing regulon in Vibrio vulnificus and displays enhanced expression at high cell density. We observed that this gene was repressed under iron-rich conditions and that the repression was due to a Fur (ferric uptake regulator)-dependent repression of smcR, a gene encoding a quorum-sensing master regulator with similarity to luxR in Vibrio harveyi. A gel mobility shift assay and a footprinting experiment demonstrated that the Fur-iron complex binds directly to two regions upstream of smcR (−82 to −36 and −2 to +27, with respect to the transcription start site) with differing affinities. However, binding of the Fur-iron complex is reversible enough to allow expression of smcR to be induced by quorum sensing at high cell density under iron-rich conditions. Under iron-limiting conditions, Fur fails to bind either region and the expression of smcR is regulated solely by quorum sensing. These results suggest that two biologically important environmental signals, iron and quorum sensing, converge to direct the expression of smcR, which then coordinates the expression of virulence factors. PMID:23716618

  3. Gallium(iii) and iron(iii) complexes of quinolone antimicrobials.

    PubMed

    Mjos, Katja Dralle; Cawthray, Jacqueline F; Polishchuk, Elena; Abrams, Michael J; Orvig, Chris

    2016-08-16

    Iron is an essential nutrient for many microbes. According to the "Trojan Horse Hypothesis", biological systems have difficulties distinguishing between Fe(3+) and Ga(3+), which constitutes the antimicrobial efficacy of the gallium(iii) ion. Nine novel tris(quinolono)gallium(iii) complexes and their corresponding iron(iii) analogs have been synthesized and fully characterized. Quinolone antimicrobial agents from three drug generations were used in this study: ciprofloxacin, enoxacin, fleroxacin, levofloxacin, lomefloxacin, nalidixic acid, norfloxacin, oxolinic acid, and pipemidic acid. The antimicrobial efficacy of the tris(quinolono)gallium(iii) complexes was studied against E. faecalis and S. aureus (both Gram-positive), as well as E. coli, K. pneumonia, and P. aeruginosa (all Gram-negative) in direct comparison to the tris(quinolono)iron(iii) complexes and the corresponding free quinolone ligands at various concentrations. For the tris(quinolono)gallium(iii) complexes, no combinational antimicrobial effects between Ga(3+) and the quinolone antimicrobial agents were observed.

  4. EPR spectroscopy of complex biological iron-sulfur systems.

    PubMed

    Hagen, Wilfred R

    2018-02-21

    From the very first discovery of biological iron-sulfur clusters with EPR, the spectroscopy has been used to study not only purified proteins but also complex systems such as respiratory complexes, membrane particles and, later, whole cells. In recent times, the emphasis of iron-sulfur biochemistry has moved from characterization of individual proteins to the systems biology of iron-sulfur biosynthesis, regulation, degradation, and implications for human health. Although this move would suggest a blossoming of System-EPR as a specific, non-invasive monitor of Fe/S (dys)homeostasis in whole cells, a review of the literature reveals limited success possibly due to technical difficulties in adherence to EPR spectroscopic and biochemical standards. In an attempt to boost application of System-EPR the required boundary conditions and their practical applications are explicitly and comprehensively formulated.

  5. Anthropogenic combustion iron as a complex climate forcer

    DOE PAGES

    Matsui, Hitoshi; Mahowald, Natalie M.; Moteki, Nobuhiro; ...

    2018-04-23

    Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30–90 °S) by 52%, withmore » a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m –2 globally and 0.22 W m –2 over East Asia. In conclusion, our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.« less

  6. Anthropogenic combustion iron as a complex climate forcer.

    PubMed

    Matsui, Hitoshi; Mahowald, Natalie M; Moteki, Nobuhiro; Hamilton, Douglas S; Ohata, Sho; Yoshida, Atsushi; Koike, Makoto; Scanza, Rachel A; Flanner, Mark G

    2018-04-23

    Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30-90 °S) by 52%, with a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m -2 globally and 0.22 W m -2 over East Asia. Our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.

  7. Anthropogenic combustion iron as a complex climate forcer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Hitoshi; Mahowald, Natalie M.; Moteki, Nobuhiro

    Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30–90 °S) by 52%, withmore » a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m –2 globally and 0.22 W m –2 over East Asia. In conclusion, our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.« less

  8. The Siderocalin/Enterobactin Interaction: A Link between Mammalian Immunity and Bacterial Iron Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meux, Susan C.

    2008-05-12

    The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [Fe{sup III}(Ent)]{sup 3-}. This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an anti-bacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidicmore » endosomes and [Fe{sup III}(Ent)]{sup 3-} is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[Fe{sup III}(Ent)]{sup 3-} and Scn-Y106F:[Fe{sup III}(Ent)]{sup 3-} complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [Fe{sup III}(Ent)]{sup 3-}. Fluorescence, UV-Vis and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogs of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.« less

  9. The Siderocalin/Enterobactin Interaction: a Link Between Mammalian Immunity And Bacterial Iron Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abergel, R.J.; Clifton, M.C.; Pizarro, J.C.

    2009-05-12

    The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [Fe{sup III}(Ent)]{sup 3-}. This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an antibacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidicmore » endosomes and [Fe{sup III}(Ent)]{sup 3-} is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[Fe{sup III}(Ent)]{sup 3-} and Scn-Y106F:[Fe{sup III}(Ent)]{sup 3-} complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [Fe{sup III}(Ent)]{sup 3-}. Fluorescence, UV-vis, and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogues of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.« less

  10. [Physico-chemical features of dinitrosyl iron complexes with natural thiol-containing ligands underlying biological activities of these complexes].

    PubMed

    Vanin, A F; Borodulin, R R; Kubrina, L N; Mikoian, V D; Burbaev, D Sh

    2013-01-01

    Current notions and new experimental data of the authors on physico-chemical features of dinitrosyl iron complexes with natural thiol-containing ligands (glutathione or cysteine), underlying the ability of the complexes to act as NO molecule and nitrosonium ion donors, are considered. This ability determines various biological activities of dinitrosyl iron complexes--inducing long-lasting vasodilation and thereby long-lasting hypotension in human and animals, inhibiting pellet aggregation, increasing red blood cell elasticity, thereby stimulating microcirculation, and reducing necrotic zone in animals with myocardial infarction. Moreover, dinitrosyl iron complexes are capable of accelerating skin wound healing, improving the function of penile cavernous tissue, blocking apoptosis development in cell cultures. When decomposed dinitrosyl iron complexes can exert cytotoxic effect that can be used for curing infectious and carcinogenic pathologies.

  11. Structural analysis of the coordination of dinitrogen to transition metal complexes.

    PubMed

    Peigné, Benjamin; Aullón, Gabriel

    2015-06-01

    Transition-metal complexes show a wide variety of coordination modes for the nitrogen molecule. A structural database study has been undertaken for dinitrogen complexes, and geometrical parameters around the L(n)M-N2 unit are retrieved from the Cambridge Structural Database. These data were classified in families of compounds, according to metal properties, to determine the degree of lengthening for the dinitrogen bonding. The importance of the nature of the metal center, such as coordination number and electronic configuration, is reported. Our study reveals poor activation by coordination of dinitrogen in mononuclear complexes, always having end-on coordination. However, partial weakening of nitrogen-nitrogen bonding is found for end-on binuclear complexes, whereas side-on complexes can be completely activated.

  12. Synthesis, Structure, and Physical Properties for a Series of Monomeric Iron(III) Hydroxo Complexes with Varying Hydrogen-Bond Networks

    PubMed Central

    Mukherjee, Jhumpa; Lucas, Robie L.; Zart, Matthew K.; Powell, Douglas R.; Day, Victor W.; Borovik, A. S.

    2013-01-01

    Mononuclear iron(III) complexes with terminal hydroxo ligands are proposed to be important species in several metalloproteins, but they have been difficult to isolate in synthetic systems. Using a series of amidate/ureido tripodal ligands, we have prepared and characterized monomeric FeIIIOH complexes with similar trigonal-bipyramidal primary coordination spheres. Three anionic nitrogen donors define the trigonal plane, and the hydroxo oxygen atom is trans to an apical amine nitrogen atom. The complexes have varied secondary coordination spheres that are defined by intramolecular hydrogen bonds between the FeIIIOH unit and the urea NH groups. Structural trends were observed between the number of hydrogen bonds and the Fe–Ohydroxo bond distances: the more intramolecular hydrogen bonds there were, the longer the Fe–O bond became. Spectroscopic trends were also found, including an increase in the energy of the O–H vibrations with a decrease in the number of hydrogen bonds. However, the FeIII/II reduction potentials were constant throughout the series (∼2.0 V vs [Cp2Fe]0/+1), which is ascribed to a balancing of the primary and secondary coordination-sphere effects. PMID:18498155

  13. Binding of dinitrogen to an iron-sulfur-carbon site

    NASA Astrophysics Data System (ADS)

    Čorić, Ilija; Mercado, Brandon Q.; Bill, Eckhard; Vinyard, David J.; Holland, Patrick L.

    2015-10-01

    Nitrogenases are the enzymes by which certain microorganisms convert atmospheric dinitrogen (N2) to ammonia, thereby providing essential nitrogen atoms for higher organisms. The most common nitrogenases reduce atmospheric N2 at the FeMo cofactor, a sulfur-rich iron-molybdenum cluster (FeMoco). The central iron sites that are coordinated to sulfur and carbon atoms in FeMoco have been proposed to be the substrate binding sites, on the basis of kinetic and spectroscopic studies. In the resting state, the central iron sites each have bonds to three sulfur atoms and one carbon atom. Addition of electrons to the resting state causes the FeMoco to react with N2, but the geometry and bonding environment of N2-bound species remain unknown. Here we describe a synthetic complex with a sulfur-rich coordination sphere that, upon reduction, breaks an Fe-S bond and binds N2. The product is the first synthetic Fe-N2 complex in which iron has bonds to sulfur and carbon atoms, providing a model for N2 coordination in the FeMoco. Our results demonstrate that breaking an Fe-S bond is a chemically reasonable route to N2 binding in the FeMoco, and show structural and spectroscopic details for weakened N2 on a sulfur-rich iron site.

  14. Iron vs. cobalt clathrochelate electrocatalysts of HER: the first example on a cage iron complex.

    PubMed

    Dolganov, Alexander V; Belov, Alexander S; Novikov, Valentin V; Vologzhanina, Anna V; Mokhir, Andriy; Bubnov, Yurii N; Voloshin, Yan Z

    2013-04-07

    New macrobicyclic 2-thiopheneboron-capped iron and cobalt(II) tris-dioximates showed high electrocatalytic activity for hydrogen production from H(+) ions. This is the first example of the hydrogen evolution reaction electrocatalyzed by a clathrochelate iron complex, which catalyzes the hydrogen production at low overpotential.

  15. Persistent four-coordinate iron-centered radical stabilized by π-donation† †Electronic supplementary information (ESI) available: Experimental, crystallographic, computational details, and crystal data for 2, 4, 5 and 8. CCDC 1057111–1057113 and 1425703. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc02601f Click here for additional data file. Click here for additional data file.

    PubMed Central

    Ishida, Shintaro; Hirakawa, Fumiya; Shiota, Yoshihito; Yoshizawa, Kazunari; Kanegawa, Shinji; Sato, Osamu; Nagashima, Hideo

    2016-01-01

    Dinuclear iron carbonyl complex 2, which contains an elongated unsupported Fe–Fe bond, was synthesized by the reaction between Fe2(CO)9 and phosphinyl radical 1. Thermal Fe–Fe bond homolysis led to the generation of a four-coordinate carbonyl-based iron-centered radical, 3, which is stabilized by π-donation. Complex 3 exhibited high reactivity toward organic radicals to form diamagnetic five-coordinate Fe(ii) complexes. PMID:28758000

  16. 40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as iron...

  17. 40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as iron...

  18. 40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as iron...

  19. Mononitrosyl tris(thiolate) iron complex [Fe(NO)(SPh)3]- and dinitrosyl iron complex [(EtS)2Fe(NO)2]-: formation pathway of dinitrosyl iron complexes (DNICs) from nitrosylation of biomimetic rubredoxin [Fe(SR)4]2-/1- (R = Ph, Et).

    PubMed

    Lu, Tsai-Te; Chiou, Show-Jen; Chen, Chun-Yu; Liaw, Wen-Feng

    2006-10-16

    Nitrosylation of the biomimetic reduced- and oxidized-form rubredoxin [Fe(SR)4]2-/1- (R = Ph, Et) in a 1:1 stoichiometry led to the formation of the extremely air- and light-sensitive mononitrosyl tris(thiolate) iron complexes (MNICs) [Fe(NO)(SR)3]- along with byproducts [SR]- or (RS)2. Transformation of [Fe(NO)(SR)3]- into dinitrosyl iron complexes (DNICs) [(RS)2Fe(NO)2]- and Roussin's red ester [Fe2(mu-SR)2(NO)4] occurs rapidly under addition of 1 equiv of NO(g) and [NO]+, respectively. Obviously, the mononitrosyl tris(thiolate) complex [Fe(NO)(SR)3]- acts as an intermediate when the biomimetic oxidized- and reduced-form rubredoxin [Fe(SR)4]2-/1- exposed to NO(g) were modified to form dinitrosyl iron complexes [(RS)2Fe(NO)2]-. Presumably, NO binding to the electron-deficient [Fe(III)(SR)4]- and [Fe(III)(NO)(SR)3]- complexes triggers reductive elimination of dialkyl/diphenyl disulfide, while binding of NO radical to the reduced-form [Fe(II)(SR)4]2- induces the thiolate-ligand elimination. Protonation of [Fe(NO)(SEt)3]- yielding [Fe(NO)(SPh)3]- by adding 3 equiv of thiophenol and transformation of [Fe(NO)(SPh)3]- to [Fe(NO)(SEt)3]- in the presence of 3 equiv of [SEt]-, respectively, demonstrated that complexes [Fe(NO)(SPh)3]- and [Fe(NO)(SEt)3]- are chemically interconvertible. Mononitrosyl tris(thiolate) iron complex [Fe(NO)(SPh)3]- and dinitrosyl iron complex [(EtS)2Fe(NO)2]- were isolated and characterized by X-ray diffraction. The mean NO bond distances of 1.181(7) A (or 1.191(7) A) in complex [(EtS)2Fe(NO)2]- are nearly at the upper end of the 1.178(3)-1.160(6) A for the anionic {Fe(NO)2}9 DNICs, while the mean FeN(O) distances of 1.674(6) A (or 1.679(6) A) exactly fall in the range of 1.695(3)-1.661(4) A for the anionic {Fe(NO)2}9 DNICs.

  20. Mussel-Inspired Protein Nanoparticles Containing Iron(III)-DOPA Complexes for pH-Responsive Drug Delivery.

    PubMed

    Kim, Bum Jin; Cheong, Hogyun; Hwang, Byeong Hee; Cha, Hyung Joon

    2015-06-15

    A novel bioinspired strategy for protein nanoparticle (NP) synthesis to achieve pH-responsive drug release exploits the pH-dependent changes in the coordination stoichiometry of iron(III)-3,4-dihydroxyphenylalanine (DOPA) complexes, which play a major cross-linking role in mussel byssal threads. Doxorubicin-loaded polymeric NPs that are based on Fe(III)-DOPA complexation were thus synthesized with a DOPA-modified recombinant mussel adhesive protein through a co-electrospraying process. The release of doxorubicin was found to be predominantly governed by a change in the structure of the Fe(III)-DOPA complexes induced by an acidic pH value. It was also demonstrated that the fabricated NPs exhibited effective cytotoxicity towards cancer cells through efficient cellular uptake and cytosolic release. Therefore, it is anticipated that Fe(III)-DOPA complexation can be successfully utilized as a new design principle for pH-responsive NPs for diverse controlled drug-delivery applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Characterization of Water Coordination to Ferrous Nitrosyl Complexes with fac-N2O, cis-N2O2, and N2O3 Donor Ligands.

    PubMed

    McCracken, John; Cappillino, Patrick J; McNally, Joshua S; Krzyaniak, Matthew D; Howart, Michael; Tarves, Paul C; Caradonna, John P

    2015-07-06

    Electron paramagnetic resonance (EPR) experiments were done on a series of S = (3)/2 ferrous nitrosyl model complexes prepared with chelating ligands that mimic the 2-His-1-carboxylate facial triad iron binding motif of the mononuclear nonheme iron oxidases. These complexes formed a comparative family, {FeNO}(7)(N2Ox)(H2O)3-x with x = 1-3, where the labile coordination sites for the binding of NO and solvent water were fac for x = 1 and cis for x = 2. The continuous-wave EPR spectra of these three complexes were typical of high-spin S = (3)/2 transition-metal ions with resonances near g = 4 and 2. Orientation-selective hyperfine sublevel correlation (HYSCORE) spectra revealed cross peaks arising from the protons of coordinated water in a clean spectral window from g = 3.0 to 2.3. These cross peaks were absent for the {FeNO}(7)(N2O3) complex. HYSCORE spectra were analyzed using a straightforward model for defining the spin Hamiltonian parameters of bound water and showed that, for the {FeNO}(7)(N2O2)(H2O) complex, a single water conformer with an isotropic hyperfine coupling, Aiso = 0.0 ± 0.3 MHz, and a dipolar coupling of T = 4.8 ± 0.2 MHz could account for the data. For the {FeNO}(7)(N2O)(H2O)2 complex, the HYSCORE cross peaks assigned to coordinated water showed more frequency dispersion and were analyzed with discrete orientations and hyperfine couplings for the two water molecules that accounted for the observed orientation-selective contour shapes. The use of three-pulse electron spin echo envelope modulation (ESEEM) data to quantify the number of water ligands coordinated to the {FeNO}(7) centers was explored. For this aspect of the study, HYSCORE spectra were important for defining a spectral window where empirical integration of ESEEM spectra would be the most accurate.

  2. 3D Motions of Iron in Six-Coordinate {FeNO} 7 Hemes by Nuclear Resonance Vibration Spectroscopy [3-D Motions of Iron in Six-coordinate {FeNO} 7 Hemes by NRVS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Qian; Pavlik, Jeffrey W.; Silvernail, Nathan J.

    The vibrational spectrum of a six-coordinate nitrosyl iron porphyrinate, monoclinic [Fe(T pFPP)(1-MeIm)(NO)] (T pFPP = tetra- para-fluorophenylporphyrin; 1-MeIm=1-methylimidazole), has been studied by oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS). The crystal was oriented to give spectra perpendicular to the porphyrin plane and two in-plane spectra perpendicular or parallel to the projection of the FeNO plane. These enable assignment of the FeNO bending and stretching modes. The measurements reveal that the two in-plane spectra have substantial differences that result from the strongly bonded axial NO ligand. The direction of the in-plane iron motion is found to be largely parallel and perpendicularmore » to the projection of the bent FeNO on the porphyrin plane. The out-of-plane Fe-N-O stretching and bending modes are strongly mixed with each other, as well as with porphyrin ligand modes. The stretch is mixed with v 50 as was also observed for dioxygen complexes. The frequency of the assigned stretching mode of eight Fe-X-O (X= N, C, and O) complexes is correlated with the Fe XO bond lengths. The nature of highest frequency band at ≈560 cm -1 has also been examined in two additional new derivatives. Previously assigned as the Fe NO stretch (by resonance Raman), it is better described as the bend, as the motion of the central nitrogen atom of the FeNO group is very large. There is significant mixing of this mode. In conclusion, the results emphasize the importance of mode mixing; the extent of mixing must be related to the peripheral phenyl substituents.« less

  3. 3D Motions of Iron in Six-Coordinate {FeNO} 7 Hemes by Nuclear Resonance Vibration Spectroscopy [3-D Motions of Iron in Six-coordinate {FeNO} 7 Hemes by NRVS

    DOE PAGES

    Peng, Qian; Pavlik, Jeffrey W.; Silvernail, Nathan J.; ...

    2016-03-21

    The vibrational spectrum of a six-coordinate nitrosyl iron porphyrinate, monoclinic [Fe(T pFPP)(1-MeIm)(NO)] (T pFPP = tetra- para-fluorophenylporphyrin; 1-MeIm=1-methylimidazole), has been studied by oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS). The crystal was oriented to give spectra perpendicular to the porphyrin plane and two in-plane spectra perpendicular or parallel to the projection of the FeNO plane. These enable assignment of the FeNO bending and stretching modes. The measurements reveal that the two in-plane spectra have substantial differences that result from the strongly bonded axial NO ligand. The direction of the in-plane iron motion is found to be largely parallel and perpendicularmore » to the projection of the bent FeNO on the porphyrin plane. The out-of-plane Fe-N-O stretching and bending modes are strongly mixed with each other, as well as with porphyrin ligand modes. The stretch is mixed with v 50 as was also observed for dioxygen complexes. The frequency of the assigned stretching mode of eight Fe-X-O (X= N, C, and O) complexes is correlated with the Fe XO bond lengths. The nature of highest frequency band at ≈560 cm -1 has also been examined in two additional new derivatives. Previously assigned as the Fe NO stretch (by resonance Raman), it is better described as the bend, as the motion of the central nitrogen atom of the FeNO group is very large. There is significant mixing of this mode. In conclusion, the results emphasize the importance of mode mixing; the extent of mixing must be related to the peripheral phenyl substituents.« less

  4. Effect of atmospheric organic complexation on iron-bearing dust solubility

    NASA Astrophysics Data System (ADS)

    Paris, R.; Desboeufs, K. V.

    2013-02-01

    Recent studies reported that the effect of organic complexation may be a potentially important process to be considered in models to estimate atmospheric iron flux to the ocean. In this study, we investigated this effect by a series of dissolution experiments on iron-bearing dust in presence or absence of various organic compounds typically found in the atmospheric waters (acetate, formate, oxalate, malonate, succinate, glutarate, glycolate, lactate, tartrate and humic acid as an analogue of humic like substances (HULIS)). Only 4 of tested organic ligands (oxalate, malonate, tartrate and humic acid) caused an enhancement of iron solubility which was associated with an increase of dissolved Fe(II) concentrations. For all of these organic ligands, a positive linear dependence of iron solubility to organic concentrations was observed and showed that the extent of organic complexation on iron solubility decreased in order oxalate > malonate = tartrate > humic acid. This was attributed to the ability of electron donors of organic ligands and implied a reductive ligand-promoted dissolution. This study confirmed that oxalate is the most effective ligand playing on dust iron solubility and showed, for the first time, the potential effect of HULIS on iron dissolution in atmospheric conditions.

  5. A Six-Coordinate Peroxynitrite Low-Spin Iron(III) Porphyrinate Complex—The Product of the Reaction of Nitrogen Monoxide (·NO (g)) with a Ferric-Superoxide Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Savita K.; Schaefer, Andrew W.; Lim, Hyeongtaek

    Peroxynitrite ( –OON=O, PN) is a reactive nitrogen species (RNS) which can effect deleterious nitrative or oxidative (bio)chemistry. It may derive from reaction of superoxide anion (O 2 •–) with nitric oxide (·NO) and has been suggested to form an as-yet unobserved bound heme-iron-PN intermediate in the catalytic cycle of nitric oxide dioxygenase (NOD) enzymes, which facilitate a ·NO homeostatic process, i.e., its oxidation to the nitrate anion. Here, a discrete six-coordinate low-spin porphyrinate-Fe III complex [(P Im)Fe III( –OON=O)] (P Im; a porphyrin moiety with a covalently tethered imidazole axial “base” donor ligand) has been identified and characterized bymore » various spectroscopies (UV–vis, NMR, EPR, XAS, resonance Raman) and DFT calculations, following its formation at –80 °C by addition of ·NO (g) to the heme-superoxo species, [(P Im)Fe III(O 2 •–)]. DFT calculations confirm that is a six-coordinate low-spin species with the PN ligand coordinated to iron via its terminal peroxidic anionic O atom with the overall geometry being in a cis-configuration. Complex thermally transforms to its isomeric low-spin nitrato form [(P Im)Fe III(NO 3 –)]. While previous (bio)chemical studies show that phenolic substrates undergo nitration in the presence of PN or PN-metal complexes, in the present system, addition of 2,4-di- tert-butylphenol ( 2,4DTBP) to complex does not lead to nitrated phenol; the nitrate complex still forms. Furthermore, DFT calculations reveal that the phenolic H atom approaches the terminal PN O atom (farthest from the metal center and ring core), effecting O–O cleavage, giving nitrogen dioxide (·NO 2) plus a ferryl compound [(P Im)Fe IV=O] (7); this rebounds to give [(P Im)Fe III(NO 3 –)].The generation and characterization of the long sought after ferriheme peroxynitrite complex has been accomplished.« less

  6. A Six-Coordinate Peroxynitrite Low-Spin Iron(III) Porphyrinate Complex—The Product of the Reaction of Nitrogen Monoxide (·NO (g)) with a Ferric-Superoxide Species

    DOE PAGES

    Sharma, Savita K.; Schaefer, Andrew W.; Lim, Hyeongtaek; ...

    2017-11-01

    Peroxynitrite ( –OON=O, PN) is a reactive nitrogen species (RNS) which can effect deleterious nitrative or oxidative (bio)chemistry. It may derive from reaction of superoxide anion (O 2 •–) with nitric oxide (·NO) and has been suggested to form an as-yet unobserved bound heme-iron-PN intermediate in the catalytic cycle of nitric oxide dioxygenase (NOD) enzymes, which facilitate a ·NO homeostatic process, i.e., its oxidation to the nitrate anion. Here, a discrete six-coordinate low-spin porphyrinate-Fe III complex [(P Im)Fe III( –OON=O)] (P Im; a porphyrin moiety with a covalently tethered imidazole axial “base” donor ligand) has been identified and characterized bymore » various spectroscopies (UV–vis, NMR, EPR, XAS, resonance Raman) and DFT calculations, following its formation at –80 °C by addition of ·NO (g) to the heme-superoxo species, [(P Im)Fe III(O 2 •–)]. DFT calculations confirm that is a six-coordinate low-spin species with the PN ligand coordinated to iron via its terminal peroxidic anionic O atom with the overall geometry being in a cis-configuration. Complex thermally transforms to its isomeric low-spin nitrato form [(P Im)Fe III(NO 3 –)]. While previous (bio)chemical studies show that phenolic substrates undergo nitration in the presence of PN or PN-metal complexes, in the present system, addition of 2,4-di- tert-butylphenol ( 2,4DTBP) to complex does not lead to nitrated phenol; the nitrate complex still forms. Furthermore, DFT calculations reveal that the phenolic H atom approaches the terminal PN O atom (farthest from the metal center and ring core), effecting O–O cleavage, giving nitrogen dioxide (·NO 2) plus a ferryl compound [(P Im)Fe IV=O] (7); this rebounds to give [(P Im)Fe III(NO 3 –)].The generation and characterization of the long sought after ferriheme peroxynitrite complex has been accomplished.« less

  7. Zn and Fe complexes containing a redox active macrocyclic biquinazoline ligand.

    PubMed

    Banerjee, Priyabrata; Company, Anna; Weyhermüller, Thomas; Bill, Eckhard; Hess, Corinna R

    2009-04-06

    A series of iron and zinc complexes has been synthesized, coordinated by the macrocyclic biquinazoline ligand, 2-4:6-8-bis(3,3,4,4-tetramethyldihydropyrrolo)-10-15-(2,2'-biquinazolino)-[15]-1,3,5,8,10,14-hexaene-1,3,7,9,11,14-N(6) (Mabiq). The Mabiq ligand consists of a bipyrimidine moiety and two dihydropyrrole units. The electronic structures of the metal-Mabiq complexes have been characterized using spectroscopic and density-functional theory (DFT) computational methods. The parent zinc complex exhibits a ligand-centered reduction to generate the metal-coordinated Mabiq radical dianion, establishing the redox non-innocence of this ligand. Iron-Mabiq complexes have been isolated in three oxidation states. This redox series includes low-spin ferric and low-spin ferrous species, as well as an intermediate-spin Fe(II) compound. In the latter complex, the iron ion is antiferromagnetically coupled to a Mabiq-centered pi-radical. The results demonstrate the rich redox chemistry and electronic properties of metal complexes coordinated by the Mabiq ligand.

  8. Ternary iron(II) complex with an emissive imidazopyridine arm from Schiff base cyclizations and its oxidative DNA cleavage activity.

    PubMed

    Mukherjee, Arindam; Dhar, Shanta; Nethaji, Munirathinam; Chakravarty, Akhil R

    2005-01-21

    The ternary iron(II) complex [Fe(L')(L")](PF6)3(1) as a synthetic model for the bleomycins, where L' and L" are formed from metal-mediated cyclizations of N,N'-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)(L), is synthesized and structurally characterized by X-ray crystallography. In the six-coordinate iron(ii) complex, ligands L' and L" show tetradentate and bidentate chelating modes of bonding. Ligand L' is formed from an intramolecular attack of the alcoholic OH group of L to one imine moiety leading to the formation of a stereochemically constrained five-membered ring. Ligand L" which is formed from an intermolecular reaction involving one imine moiety of L and pyridine-2-carbaldehyde has an emissive cationic imidazopyridine pendant arm. The complex binds to double-stranded DNA in the minor groove giving a Kapp value of 4.1 x 10(5) M(-1) and displays oxidative cleavage of supercoiled DNA in the presence of H2O2 following a hydroxyl radical pathway. The complex also shows photo-induced DNA cleavage activity on UV light exposure involving formation of singlet oxygen as the reactive species.

  9. Phosphinosilylenes as a novel ligand system for heterobimetallic complexes.

    PubMed

    Breit, Nora C; Eisenhut, Carsten; Inoue, Shigeyoshi

    2016-04-25

    A dihydrophosphinosilylene iron complex [LSi{Fe(CO)4}PH2] has been prepared and utilized in the synthesis of novel heterobimetallic complexes. The phosphine moiety in this phosphinosilylene complex allows coordination towards tungsten leading to the iron-tungsten heterobimetallic complex [LSi{Fe(CO)4}PH2{W(CO)5}]. In contrast, the reaction of [LSi{Fe(CO)4}PH2] with ethylenebis(triphenylphosphine)platinum(0) results in the formation of the iron-platinum heterobimetallic complex [LSi{Fe(CO)4}PH{PtH(PPh3)2}] via oxidative addition.

  10. Effect of atmospheric organic complexation on iron-bearing dust solubility

    NASA Astrophysics Data System (ADS)

    Paris, R.; Desboeufs, K. V.

    2013-05-01

    Recent studies reported that the effect of organic complexation may be a potentially important process to be considered by models estimating atmospheric iron flux to the ocean. In this study, we investigated this process effect by a series of dissolution experiments on iron-bearing dust in the presence or the absence of various organic compounds (acetate, formate, oxalate, malonate, succinate, glutarate, glycolate, lactate, tartrate and humic acid as an analogue of humic like substances, HULIS) typically found in atmospheric waters. Only 4 of tested organic ligands (oxalate, malonate, tartrate and humic acid) caused an enhancement of iron solubility which was associated with an increase of dissolved Fe(II) concentrations. For all of these organic ligands, a positive linear dependence of iron solubility to organic concentrations was observed and showed that the extent of organic complexation on iron solubility decreased in the following order: oxalate >malonate = tartrate > humic acid. This was attributed to the ability of electron donors of organic ligands and implies a reductive ligand-promoted dissolution. This study confirms that among the known atmospheric organic binding ligands of Fe, oxalate is the most effective ligand promoting dust iron solubility and showed, for the first time, the potential effect of HULIS on iron dissolution under atmospheric conditions.

  11. Spin transition in a four-coordinate iron oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, T.; Sutou, S.; Hirama, H.

    2009-01-01

    The spin transition, or spin crossover, is a manifestation of electronic instability induced by external constraints such as pressure1. Among known examples that exhibit spin transition, 3d ions with d6 electron configurations represent the vast majority, but the spin transition observed thus far has been almost exclusively limited to that between high-spin (S = 2) and low-spin (S = 0) states2-9. Here we report a novel high-spin to intermediate-spin (S = 1) state transition at 33 GPa induced by pressurization of an antiferromagnetic insulator SrFeO2 with a square planar coordination10. The change in spin multiplicity brings to ferromagnetism as wellmore » as metallicity, yet keeping the ordering temperature far above ambient. First-principles calculations attribute the origin of the transition to the strong inlayer hybridization between Fe dx 2 -y 2 O p , leading to a pressure-induced electronic instability toward the depopulation of Fe dx 2 -y 2 O p antibonding states. Furthermore, the ferromagnetic S = 1 state is half-metallic due to the inception of half-occupied spin-down (dxz, dyz) degenerate states upon spin transition. These results highlight the square-planar coordinated iron oxides as a new class of magnetic and electric materials and provide new avenues toward realizing multi-functional sensors and data-storage devices.« less

  12. Chelating agent-assisted heat treatment of a carbon-supported iron oxide nanoparticle catalyst for PEMFC.

    PubMed

    Liu, Shyh-Jiun; Huang, Chia-Hung; Huang, Chun-Kai; Hwang, Weng-Sing

    2009-08-28

    Iron complexes were supported on commercial carbon black and heat treated to create FeO(x)/C catalysts that showed a larger normalized current density and normalized power density than commercial Pt/C catalysts; the coordination number of the iron complexes used affected the formation of the active site for oxygen reduction in PEMFC.

  13. Synthesis and Ligand Non-Innocence of Thiolate-Ligated (N4S) Iron(II) and Nickel(II) Bis(imino)pyridine Complexes

    PubMed Central

    Widger, Leland R.; Jiang, Yunbo; Siegler, Maxime; Kumar, Devesh; Latifi, Reza; de Visser, Sam P.; Jameson, Guy N.L.; Goldberg, David P.

    2013-01-01

    The known iron(II) complex [FeII(LN3S)(OTf)] (1) was used as starting material to prepare the new biomimetic (N4S(thiolate)) iron(II) complexes [FeII(LN3S)(py)](OTf) (2) and [FeII(LN3S)(DMAP)](OTf) (3), where LN3S is a tetradentate bis(imino)pyridine (BIP) derivative with a covalently tethered phenylthiolate donor. These complexes were characterized by X-ray crystallography, UV-vis, 1H NMR, and Mössbauer spectroscopy, as well as electrochemistry. A nickel(II) analogue, [NiII(LN3S)](BF4) (5), was also synthesized and characterized by structural and spectroscopic methods. Cyclic voltammetric studies showed 1 – 3 and 5 undergo a single reduction process with E1/2 between −0.9 to −1.2 V versus Fc+/Fc. Treatment of 3 with 0.5% Na/Hg amalgam gave the mono-reduced complex [Fe(LN3S)(DMAP)]0 (4), which was characterized by X-ray crystallography, UV-vis, EPR (g = [2.155, 2.057, 2.038]) and Mössbauer (δ = 0.33 mm s−1; ΔEQ = 2.04 mm s−1) spectroscopies. Computational methods (DFT) were employed to model complexes 3 – 5. The combined experimental and computational studies show that 1 – 3 are 5-coordinate, high-spin (S = 2) FeII complexes, whereas 4 is best described as a 5-coordinate, intermediate-spin (S = 1) FeII complex antiferromagnetically coupled to a ligand radical. This unique electronic configuration leads to an overall doublet spin (Stotal = ½) ground state. Complexes 2 and 3 are shown to react with O2 to give S-oxygenated products, as previously reported for 1. In contrast, the mono-reduced 4 appears to react with O2 to give a mixture of S- and Fe-oxygenates. The nickel(II) complex 5 does not react with O2, and even when the mono-reduced nickel complex is produced, it appears to undergo only outer-sphere oxidation with O2. PMID:23992096

  14. Nitrate-to-nitrite-to-nitric oxide conversion modulated by nitrate-containing {Fe(NO)2}9 dinitrosyl iron complex (DNIC).

    PubMed

    Tsai, Fu-Te; Lee, Yu-Ching; Chiang, Ming-Hsi; Liaw, Wen-Feng

    2013-01-07

    Nitrosylation of high-spin [Fe(κ(2)-O(2)NO)(4)](2-) (1) yields {Fe(NO)}(7) mononitrosyl iron complex (MNIC) [(κ(2)-O(2)NO)(κ(1)-ONO(2))(3)Fe(NO)](2-) (2) displaying an S = 3/2 axial electron paramagnetic resonance (EPR) spectrum (g(⊥) = 3.988 and g(∥) = 2.000). The thermally unstable nitrate-containing {Fe(NO)(2)}(9) dinitrosyl iron complex (DNIC) [(κ(1)-ONO(2))(2)Fe(NO)(2)](-) (3) was exclusively obtained from reaction of HNO(3) and [(OAc)(2)Fe(NO)(2)](-) and was characterized by IR, UV-vis, EPR, superconducting quantum interference device (SQUID), X-ray absorption spectroscopy (XAS), and single-crystal X-ray diffraction (XRD). In contrast to {Fe(NO)(2)}(9) DNIC [(ONO)(2)Fe(NO)(2)](-) constructed by two monodentate O-bound nitrito ligands, the weak interaction between Fe(1) and the distal oxygens O(5)/O(7) of nitrato-coordinated ligands (Fe(1)···O(5) and Fe(1)···O(7) distances of 2.582(2) and 2.583(2) Å, respectively) may play important roles in stabilizing DNIC 3. Transformation of nitrate-containing DNIC 3 into N-bound nitro {Fe(NO)}(6) [(NO)(κ(1)-NO(2))Fe(S(2)CNEt(2))(2)] (7) triggered by bis(diethylthiocarbamoyl) disulfide ((S(2)CNEt(2))(2)) implicates that nitrate-to-nitrite conversion may occur via the intramolecular association of the coordinated nitrate and the adjacent polarized NO-coordinate ligand (nitrosonium) of the proposed {Fe(NO)(2)}(7) intermediate [(NO)(2)(κ(1)-ONO(2))Fe(S(2)CNEt(2))(2)] (A) yielding {Fe(NO)}(7) [(NO)Fe(S(2)CNEt(2))(2)] (6) along with the release of N(2)O(4) (·NO(2)) and the subsequent binding of ·NO(2) to complex 6. The N-bound nitro {Fe(NO)}(6) complex 7 undergoes Me(2)S-promoted O-atom transfer facilitated by imidazole to give {Fe(NO)}(7) complex 6 accompanied by release of nitric oxide. This result demonstrates that nitrate-containing DNIC 3 acts as an active center to modulate nitrate-to-nitrite-to-nitric oxide conversion.

  15. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions.

    PubMed

    Ueno, Hiroshi M; Urazono, Hiroshi; Kobayashi, Toshiya

    2014-02-15

    The iron-lactoferrin complex is a common food ingredient because of its iron-solubilizing capability in the presence of hydrogen carbonate ions. However, it is unclear whether the formation of a stable iron-binding complex is limited to lactoferrin. In this study, we investigated the effects of bovine serum albumin (BSA) on iron solubility and iron-catalyzed lipid oxidation in the presence of hydrogen carbonate ions. BSA could solubilize >100-fold molar equivalents of iron at neutral pH, exceeding the specific metal-binding property of BSA. This iron-solubilizing capability of BSA was impaired by thermally denaturing BSA at ≥ 70 °C for 10 min at pH 8.5. The resulting iron-BSA complex inhibited iron-catalyzed oxidation of soybean oil in a water-in-oil emulsion measured using the Rancimat test. Our study is the first to show that BSA, like lactoferrin, forms a soluble iron-binding complex in the presence of hydrogen carbonate ions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. New water soluble heterometallic complex showing unpredicted coordination modes of EDTA

    NASA Astrophysics Data System (ADS)

    Mudsainiyan, R. K.; Jassal, A. K.; Chawla, S. K.

    2015-10-01

    A mesoporous 3D polymeric complex (I) having formula {[Zr(IV)O-μ3-(EDTA)Fe(III)OH]·H2O}n has been crystallized and characterized by various techniques. Single-crystal X-ray diffraction analysis revealed that complex (I) crystallized in chiral monoclinic space group Cc (space group no. 9) with unexpected coordination modes of EDTA and mixture of two transition metal ions. In this complex, the coordination number of Zr(IV) ion is seven where four carboxylate oxygen atoms, two nitrogen atoms, one oxide atom are coordinating with Zr(IV). Fe(III) is four coordinated and its coordination environment is composed of three different carboxylic oxygen atoms from three different EDTA and one oxygen atom of -OH group. The structure consists of 4-c and 16-c (2-nodal) net with new topology and point symbol for net is (336·454·530)·(36). TGA study and XRPD pattern showed that the coordination polymer is quite stable even after losing water molecule and -OH ion. Quenching behavior in fluorescence of ligand is observed by complexation with transition metal ions is due to n-π* transition. The SEM micrograph shows the morphology of complex (I) exhibits spherical shape with size ranging from 50 to 280 nm. The minimum N2 (SBET=8.7693 m2/g) and a maximum amount of H2 (high surface area=1044.86 m2/g (STP)) could be adsorbed at 77 K. From DLS study, zeta potential is calculated i.e. -7.94 shows the negative charges on the surface of complex. Hirshfeld surface analysis and fingerprint plots revealed influence of weak or non bonding interactions in crystal packing of complex.

  17. Iron and its complexation by phenolic cellular metabolites

    PubMed Central

    Chobot, Vladimir

    2010-01-01

    Iron is a transition metal that forms chelates and complexes with various organic compounds, also with phenolic plant secondary metabolites. The ligands of iron affect the redox potential of iron. Electrons may be transferred either to hydroxyl radicals, hydrogen peroxide or molecular oxygen. In the first case, oxidative stress is decreased, in the latter two cases, oxidative stress is increased. This milieu-dependent mode of action may explain the non-linear mode of action of juglone and other secondary metabolites. Attention to this phenomenon may help to explain idiosyncratic and often nonlinear effects that result in biological assays. Current chemical assays are discussed that help to explore these aspects of redox chemistry. PMID:20592800

  18. Energetic lanthanide complexes: coordination chemistry and explosives applications

    NASA Astrophysics Data System (ADS)

    Manner, V. W.; Barker, B. J.; Sanders, V. E.; Laintz, K. E.; Scott, B. L.; Preston, D. N.; Sandstrom, M.; Reardon, B. L.

    2014-05-01

    Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with 'tailor made' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.

  19. Energetic Lanthanide Complexes: Coordination Chemistry and Explosives Applications

    NASA Astrophysics Data System (ADS)

    Manner, Virginia; Barker, Beau; Sanders, Eric; Laintz, Kenneth; Scott, Brian; Preston, Daniel; Sandstrom, Mary; Reardon, Bettina

    2013-06-01

    Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with ``tailor made'' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.

  20. Matrix Infrared Spectra of Manganese and Iron Isocyanide Complexes.

    PubMed

    Chen, Xiuting; Li, Qingnuan; Andrews, Lester; Gong, Yu

    2017-11-22

    Mono and diisocyanide complexes of manganese and iron were prepared via the reactions of laser-ablated manganese and iron atoms with (CN) 2 in an argon matrix. Product identifications were performed based on the characteristic infrared absorptions from isotopically labeled (CN) 2 experiments as compared with computed values for both cyanides and isocyanides. Manganese atoms reacted with (CN) 2 to produce Mn(NC) 2 upon λ > 220 nm irradiation, during which MnNC was formed mainly as a result of the photoinduced decomposition of Mn(NC) 2 . Similar reaction products FeNC and Fe(NC) 2 were formed during the reactions of Fe and (CN) 2 . All the product molecules together with the unobserved cyanide isomers were predicted to have linear geometries at the B3LYP level of theory. The cyanide complexes of manganese and iron were computed to be more stable than the isocyanide isomers with energy differences between 0.4 and 4 kcal/mol at the CCSD(T) level. Although manganese and iron cyanide molecules are slightly more stable according to the theory, no absorption can be assigned to these isomers in the region above the isocyanides possibly due to their low infrared intensities.

  1. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?

    PubMed

    Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi

    2013-08-19

    Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions.

  2. In vivo anti-radiation activities of the Ulva pertusa polysaccharides and polysaccharide-iron(III) complex.

    PubMed

    Shi, Jinming; Cheng, Cuilin; Zhao, Haitian; Jing, Jing; Gong, Ning; Lu, Weihong

    2013-09-01

    Polysaccharides with different molecular weights were extracted from Ulva pertusa and fractionated by ultrafiltration. Iron(III) complex of the low molecular-weight U. pertusa polysaccharides were synthesized. Atomic absorption spectrum showed that the iron content of iron(III)-polysaccharide complex was 27.4%. The comparison between U. pertusa polysaccharides and their iron(III) complex showed that iron chelating altered the structural characteristics of the polysaccharides. The bioactivity analysis showed that polysaccharide with low molecular weight was more effective than polysaccharide with high molecular weight in protecting mice from radiation induced damages on bone marrow cells and immune system. Results also proved that the anti-radiation and anti-oxidative activity of iron(III) complex of low molecular-weight polysaccharides were not less than that of low molecular-weight polysaccharides. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Iron-dextran complex: geometrical structure and magneto-optical features.

    PubMed

    Graczykowski, Bartłomiej; Dobek, Andrzej

    2011-11-15

    Molecular mass of the iron-dextran complex (M(w)=1133 kDa), diameter of its particles (∼8.3 nm) and the content of iron ions in the complex core (N(Fe)=6360) were determined by static light scattering, measurements of refractive index increment and the Cotton-Mouton effect in solution. The known number of iron ions permitted the calculation of the permanent magnetic dipole moment value to be μ(Fe)=3.17×10(-18) erg Oe(-1) and the determination of anisotropy of linear magneto-optical polarizabilities components as Δχ=9.2×10(-21) cm(3). Knowing both values and the value of the mean linear optical polarizability α=7.3×10(-20) cm(3), it was possible to show that the total measured CM effect was due to the reorientation of the permanent and the induced magnetic dipole moments of the complex. Analysis of the measured magneto-optical birefringence indicated very small optical anisotropy of linear optical polarizability components, κ(α), which suggested a homogeneous structure of particles of spherical symmetry. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. A theoretical study on the electronic structures and equilibrium constants evaluation of Deferasirox iron complexes.

    PubMed

    Salehi, Samie; Saljooghi, Amir Shokooh; Izadyar, Mohammad

    2016-10-01

    Elemental iron is essential for cellular growth and homeostasis but it is potentially toxic to the cells and tissues. Excess iron can contribute in tumor initiation and tumor growth. Obviously, in iron overload issues using an iron chelator in order to reduce iron concentration seems to be vital. This study presents the density functional theory calculations of the electronic structure and equilibrium constant for iron-deferasirox (Fe-DFX) complexes in the gas phase, water and DMSO. A comprehensive study was performed to investigate the Deferasirox-iron complexes in chelation therapy. Calculation was performed in CAMB3LYP/6-31G(d,p) to get the optimized structures for iron complexes in high and low spin states. Natural bond orbital and quantum theory of atoms in molecules analyses was carried out with B3LYP/6-311G(d,p) to understand the nature of complex bond character and electronic transition in complexes. Electrostatic potential effects on the complexes were evaluated using the CHelpG calculations. The results indicated that higher affinity for Fe(III) is not strictly a function of bond length but also the degree of Fe-X (X=O,N) covalent bonding. Based on the quantum reactivity parameters which have been investigated here, it is possible reasonable design of the new chelators to improve the chelator abilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Synthesis and CV Studies of Dithiol-terminated Metal Terpyridine Complexes

    NASA Technical Reports Server (NTRS)

    Asano, Sylvia; Fan, Wendy; Ng, Hou-Tee; Han, Jie; Meyyappan, M.

    2003-01-01

    Transition metal coordination complexes possess unique electronic structures that should be a good model for studying electronic transport behavior at a molecular level. The discrete, multiple redox states, low redox potential and the superb ability to establish contact with other molecular and electronic components by coordination chemistry have made this a subject of investigation for their possible application as active electronic components in molecular devices. We present the synthesis and electrochemical characterization of 4'-thioacetylphenyl-2'2:6',2"-terpyridine iron(II) complex and compare it with a model bis-terpyridine iron(II) complex by cyclic voltammetry. With the use of different working electrodes, the behavior of these complexes show different electron transfer rates.

  6. New water soluble heterometallic complex showing unpredicted coordination modes of EDTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudsainiyan, R.K., E-mail: mudsainiyanrk@gmail.com; Jassal, A.K.; Chawla, S.K., E-mail: sukhvinder.k.chawla@gmail.com

    2015-10-15

    A mesoporous 3D polymeric complex (I) having formula ([Zr(IV)O-μ{sup 3}-(EDTA)Fe(III)OH]·H{sub 2}O){sub n} has been crystallized and characterized by various techniques. Single-crystal X-ray diffraction analysis revealed that complex (I) crystallized in chiral monoclinic space group Cc (space group no. 9) with unexpected coordination modes of EDTA and mixture of two transition metal ions. In this complex, the coordination number of Zr(IV) ion is seven where four carboxylate oxygen atoms, two nitrogen atoms, one oxide atom are coordinating with Zr(IV). Fe(III) is four coordinated and its coordination environment is composed of three different carboxylic oxygen atoms from three different EDTA and onemore » oxygen atom of –OH group. The structure consists of 4-c and 16-c (2-nodal) net with new topology and point symbol for net is (3{sup 36}·4{sup 54}·5{sup 30})·(3{sup 6}). TGA study and XRPD pattern showed that the coordination polymer is quite stable even after losing water molecule and –OH ion. Quenching behavior in fluorescence of ligand is observed by complexation with transition metal ions is due to n–π⁎ transition. The SEM micrograph shows the morphology of complex (I) exhibits spherical shape with size ranging from 50 to 280 nm. The minimum N{sub 2} (S{sub BET}=8.7693 m{sup 2}/g) and a maximum amount of H{sub 2} (high surface area=1044.86 m{sup 2}/g (STP)) could be adsorbed at 77 K. From DLS study, zeta potential is calculated i.e. −7.94 shows the negative charges on the surface of complex. Hirshfeld surface analysis and fingerprint plots revealed influence of weak or non bonding interactions in crystal packing of complex. - Graphical abstract: The complex (I) crystallized with unexpected coordination modes of EDTA having 4-c, 16-c net with new topology and point symbol is (3{sup 36}·4{sup 54}·5{sup 30})·(3{sup 6}). TGA study and XRPD pattern proved its stability with high preference of H{sub 2} uptake by complex. - Highlights: • 3D

  7. Organic iron (III) complexing ligands during an iron enrichment experiment in the western subarctic North Pacific

    NASA Astrophysics Data System (ADS)

    Kondo, Yoshiko; Takeda, Shigenobu; Nishioka, Jun; Obata, Hajime; Furuya, Ken; Johnson, William Keith; Wong, C. S.

    2008-06-01

    Complexation of iron (III) with natural organic ligands was investigated during a mesoscale iron enrichment experiment in the western subarctic North Pacific (SEEDS II). After the iron infusions, ligand concentrations increased rapidly with subsequent decreases. While the increases of ligands might have been partly influenced by amorphous iron colloids formation (12-29%), most in-situ increases were attributable to the <200 kDa fraction. Dilution of the fertilized patch may have contributed to the rapid decreases of the ligands. During the bloom decline, ligand concentration increased again, and the high concentrations persisted for 10 days. The conditional stability constant was not different between inside and outside of the fertilized patch. These results suggest that the chemical speciation of the released iron was strongly affected by formation of the ligands; the production of ligands observed during the bloom decline will strongly impact the iron cycle and bioavailability in the surface water.

  8. A potential new biosignature of life in iron-rich extreme environments: An iron (III) complex of scytonemin and proposal for its identification using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Varnali, Tereza; Edwards, Howell G. M.

    2013-07-01

    Scytonemin is a cyanobacterial sheath pigment with potent UV absorbing (UV-A, UV-B and UV-C) properties. The importance of this biomolecule is its photoprotective function which is one of the major survival strategies adopted by extremophiles to combat high energy radiation insolation in environmentally stressed conditions. Also, iron (III) oxides offering an additional UV-protecting facility to subsurface biological colonization as well as banded iron formations with zones of iron depletion in rock matrices have attracted attention with special interest in the mobilisation and transportation of iron compounds through the rock. This study represents a novel proposal that an iron-scytonemin complex could facilitate the movement of iron through the subsurface rock as part of the this extremophilic survival strategy. The predicted Raman wavenumbers for the proposed scytonemin complex of iron(III) are derived computationally using DFT calculations. Comparison of the experimentally observed Raman spectra of scytonemin with the theoretically predicted Raman spectra of the iron-scytonemin complex show that the latter may be discriminated and the expected characteristic bands are reported in relation to structural changes that are effected upon complexation. This information will inform the future search for experimental evidence for an iron-scytonemin complex, which has not been recognised hitherto and which could provide a novel biosignature for the extremophilic colonization of terrestrial iron-rich geological matrices. Such a terrestrial scenario would be potentially of significance for the remote robotic analytical exploration of the iron-rich surface and immediate subsurface of Mars.

  9. Synthesis of thin film containing 4-amino-1,2,4-triazole iron(II) complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onggo, Djulia, E-mail: djulia@Chem.itb.ac.id

    The Iron(II) complex with 4-amino-1,2,4 triazole (NH{sub 2}-trz) ligand has potential applications as smart material since the compounds show a distinct color change from lilac at low temperature to colorless at high temperature. The lilac color of the complex represent the diamagnetic low spin state while the colorless correspond to the paramagnetic high spin state of iron(II). The transition between the two states could be tuned by changing the anionic group. Generally, the complex was synthesized directly from aqueous solution of iron(II) salt with considerable amounts of NH{sub 2}-trz solution produced solid powder compound. For application as an electronic molecularmore » device, the complex should be obtained as a thin film. The transparent [Fe(NH{sub 2}trz){sub 3}]-Nafion film has been successfully obtained, however, no anion variation can be produced since the nafion is an anionic resin. In this work, the [Fe(NH{sub 2}trz){sub 3}]-complexes with several anions have been synthesized inside nata de coco membrane that commonly used as a medium for deposition metal nano-particles. After drying the membrane containing the complex became a thin film. At room temperature, the film containing iron(II) complexes of sulphate and nitrate salts show lilac color, similar to that of the original complexes in the powder form. On heating, the color of the complex film changed to colorless and this color change was observed reversibly. In contrast, the films containing perchlorate and tetrafluoroborate iron(II) complexes are colorless at room temperature and changed to lilac on cooling. The significant color changing of the iron(II)complexes in the nata de coco film can be used for demonstration thermo chromic effect of smart materials with relatively small amount of the compounds.« less

  10. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion.

    PubMed

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D; Nam, Wonwoo

    2014-02-18

    Reaction of a nonheme iron(III)-peroxo complex, [Fe(III)(14-TMC)(O2)](+), with NO(+), a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2˙(-)) + NO], affords an iron(IV)-oxo complex, [Fe(IV)(14-TMC)(O)](2+), and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [Fe(III)(14-TMC)(NO3)(F)](+).

  11. Unraveling the complexity of iron oxides at high pressure and temperature: Synthesis of Fe 5O 6

    DOE PAGES

    Lavina, Barbara; Meng, Yue

    2015-06-26

    The iron-oxygen system is the most important reference of rocks’ redox state. Even as minor components, iron oxides can play a critical role in redox equilibria, which affect the speciation of the fluid phases chemical differentiation, melting, and physical properties. Until our recent finding of Fe 4O 5, iron oxides were assumed to comprise only the polymorphs of FeO, Fe 3O 4, and Fe 2O 3. Combining synthesis at high pressure and temperature with micro- diffraction mapping, we have identified yet another distinct iron oxide, Fe 5O 6. The new compound, which has an orthorhombic structure, was obtained in themore » pressure range from 10 to 20 GPa upon laser heating mixtures of iron and hematite at ~2000 K, and is recoverable to ambient conditions. The high-pressure orthorhombic iron oxides Fe 5O 6, Fe 4O 5, and h-Fe 3O 4 display similar iron coordination geometries and structural arrangements, and indeed exhibit coherent systematic behavior of crystallographic parameters and compressibility. Fe 5O 6, along with FeO and Fe 4O 5, is a candidate key minor phase of planetary interiors; as such, it is of major petrological and geo- chemical importance. Here, we are revealing an unforeseen complexity in the Fe-O system with four different compounds—FeO, Fe 5O 6, Fe 4O 5, and h-Fe 3O 4—in a narrow compositional range (0.75 < Fe/O < 1.0). New, finely spaced oxygen buffers at conditions of the Earth’s mantle can be defined.« less

  12. [Civilian-military coordination].

    PubMed

    de Montravel, G

    2002-01-01

    Current humanitarian emergencies create complex, mutidimensional situations that stimulate simultaneous responses from a wide variety of sources including governments, non-governmental organizations (NGO), United Nations agencies, and private individuals. As a result, it has become essential to establish a coherent framework in which each actor can contribute promptly and effectively to the overall effort. This is the role of the United Nations Office for the Coordination of Humanitarian Affairs. Regardless of the circumstances and level of coordination, cooperation and collaboration between humanitarian and military personnel, it is necessary to bear in mind their objectives. The purpose of humanitarian action is to reduce human suffering. The purpose of military intervention is to stop warfare. The author of this article will discuss the three major obstacles to civilian-military coordination (strategic, tactical, and operational). Operations cannot be conducted smoothly and differences cannot be ironed out without mutual respect between the two parties, an explicit definition of their respective duties and responsibilities, a clear understanding of their cultural differences, and the presence of an organization and facilities for coordination and arbitrage by a neutral referee.

  13. Hydrosilylation of aldehydes and ketones catalyzed by hydrido iron complexes bearing imine ligands.

    PubMed

    Zuo, Zhenyu; Sun, Hongjian; Wang, Lin; Li, Xiaoyan

    2014-08-14

    Two new hydrido iron complexes (2 and 4) were synthesized by the reactions of (4-methoxyphenyl)phenylketimine ((4-MeOPh)PhC=NH) with Fe(PMe3)4 or FeMe2(PMe3)4. The molecular structures of complexes 2 and 4 were confirmed by X-ray single crystal diffraction. Using hydrido iron complexes (1-4) as catalysts, the hydrosilylations of aldehydes and ketones were investigated. The four complexes were effective catalysts for this reduction reaction. Complex 1 among them is the best catalyst.

  14. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion†

    PubMed Central

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D.; Nam, Wonwoo

    2014-01-01

    Reaction of a nonheme iron(III)-peroxo complex, [FeIII(14-TMC)(O2)]+, with NO+, a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2•−) + NO], affords an iron(IV)-oxo complex, [FeIV(14-TMC)(O)]2+, and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [FeIII(14-TMC)(NO3)(F)]+. PMID:24394960

  15. Achieving One-Electron Oxidation of a Mononuclear Nonheme Iron(V)-Imido Complex

    DOE PAGES

    Hong, Seungwoo; Lu, Xiaoyan; Lee, Yong -Min; ...

    2017-09-29

    Here, a mononuclear nonheme iron(V)-imido complex bearing a tetraamido macrocyclic ligand (TAML), [Fe V(NTs)(TAML)] – (1), was oxidized by one-electron oxidants, affording formation of an iron(V)-imido TAML cation radical species, [Fe V(NTs)(TAML +•)] (2); 2 is a diamagnetic (S = 0) complex, resulting from the antiferromagnetic coupling of the low-spin iron(V) ion (S = 1/2) with the one-electron oxidized ligand (TAML +•). 2 is a competent oxidant in C–H bond functionalization and nitrene transfer reaction, showing that the reactivity of 2 is greater than that of 1.

  16. Secondary coordination sphere interactions within the biomimetic iron azadithiolate complexes related to Fe-only hydrogenase: dynamic measure of electron density about the Fe sites.

    PubMed

    Liu, Yu-Chiao; Tu, Ling-Kuang; Yen, Tao-Hung; Lee, Gene-Hsiang; Yang, Shu-Ting; Chiang, Ming-Hsi

    2010-07-19

    A series of iron azadithiolate complexes possessing an intramolecular secondary coordination sphere interaction and an ability to reduce HOAc at the potential near the first electron-transfer process are reported. A unique structural feature in which the aza nitrogen has its lone pair point toward the apical carbonyl carbon is observed in [Fe(2)(mu-S(CH(2))(2)NR(CH(2))(2)S)(CO)(6-x)L(x)](2) (R = (n)Pr, x = 0, 1a; R = (i)Pr, x = 0, 1b; R = (n)Pr, L = PPh(3), x = 1, 2; R = (n)Pr, L = P(n)Bu(3), x = 1, 3) as biomimetic models of the active site of Fe-only hydrogenase. The presence of this weak N...C(CO(ap)) interaction provides electronic perturbation at the Fe center. The distance of the N...C(CO(ap)) contact is 3.497 A in 1a. It increases by 0.455 A in 2 when electronic density of the Fe site is slightly enriched by a weak sigma-donating ligand, PPh(3). A longer distance (4.040 A) is observed for the P(n)Bu(3) derivative, 3. This N...C(CO(ap)) distance is thus a dynamic measure of electronic nature of the Fe(2) core. Variation of electronic richness within the Fe(2) moiety among the complexes reflects on their electrochemical response. Reduction of 2 is recorded at the potential of -2.17 V, which is 270 mV more negative than that of 1. Complex 3 requires additional 150 mV for the same reduction. Such cathodic shift results from CO substitution by phosphines. Electrocatalytic hydrogen production from HOAc by both kinds of complexes (all-CO and phosphine-substituted species) requires the potential close to that for reduction of the parent molecules in the absence of acids. The catalytic mechanism of 1a is proposed to involve proton uptake at the Fe(0)Fe(I) redox level instead of the Fe(0)Fe(0) level. This result is the first observation among the all-CO complexes with respect to electrocatalysis of HOAc.

  17. Effect of Low-Dose Ferrous Sulfate vs Iron Polysaccharide Complex on Hemoglobin Concentration in Young Children With Nutritional Iron-Deficiency Anemia: A Randomized Clinical Trial.

    PubMed

    Powers, Jacquelyn M; Buchanan, George R; Adix, Leah; Zhang, Song; Gao, Ang; McCavit, Timothy L

    2017-06-13

    Iron-deficiency anemia (IDA) affects millions of persons worldwide, and is associated with impaired neurodevelopment in infants and children. Ferrous sulfate is the most commonly prescribed oral iron despite iron polysaccharide complex possibly being better tolerated. To compare the effect of ferrous sulfate with iron polysaccharide complex on hemoglobin concentration in infants and children with nutritional IDA. Double-blind, superiority randomized clinical trial of infants and children aged 9 to 48 months with nutritional IDA (assessed by history and laboratory criteria) that was conducted in an outpatient hematology clinic at a US tertiary care hospital from September 2013 through November 2015; 12-week follow-up ended in January 2016. Three mg/kg of elemental iron once daily as either ferrous sulfate drops or iron polysaccharide complex drops for 12 weeks. Primary outcome was change in hemoglobin over 12 weeks. Secondary outcomes included complete resolution of IDA (defined as hemoglobin concentration >11 g/dL, mean corpuscular volume >70 fL, reticulocyte hemoglobin equivalent >25 pg, serum ferritin level >15 ng/mL, and total iron-binding capacity <425 μg/dL at the 12-week visit), changes in serum ferritin level and total iron-binding capacity, adverse effects. Of 80 randomized infants and children (median age, 22 months; 55% male; 61% Hispanic white; 40 per group), 59 completed the trial (28 [70%] in ferrous sulfate group; 31 [78%] in iron polysaccharide complex group). From baseline to 12 weeks, mean hemoglobin increased from 7.9 to 11.9 g/dL (ferrous sulfate group) vs 7.7 to 11.1 g/dL (iron complex group), a greater difference of 1.0 g/dL (95% CI, 0.4 to 1.6 g/dL; P < .001) with ferrous sulfate (based on a linear mixed model). Proportion with a complete resolution of IDA was higher in the ferrous sulfate group (29% vs 6%; P = .04). Median serum ferritin level increased from 3.0 to 15.6 ng/mL (ferrous sulfate) vs 2.0 to 7.5 ng/mL (iron complex) over

  18. Derepression of the Azotobacter vinelandii siderophore system, using iron-containing minerals to limit iron repletion.

    PubMed Central

    Page, W J; Huyer, M

    1984-01-01

    Azotobacter vinelandii solubilized iron from certain minerals using only dihydroxybenzoic acid, which appeared to be produced constitutively. Solubilization of iron from other minerals required dihydroxybenzoic acid and the siderophore N,N'-bis-(2,3- dihydroxybenzoyl )-L-lysine ( azotochelin ) or these chelators plus the yellow-green fluorescent siderophore azotobactin . In addition to this sequential production of siderophores, cells also demonstrated partial to hyperproduction relative to the iron-limited control. The iron sources which caused partial derepression of the siderophores caused derepression of all the high-molecular-weight iron-repressible outer membrane proteins except a 77,000-molecular-weight protein, which appeared to be coordinated with azotobactin production. Increased siderophore production correlated with increased production of outer membrane proteins with molecular weights of 93,000, 85,000, and 77,000, but an 81,000-molecular-weight iron-repressible protein appeared at a constant level despite the degree of derepression. When iron was readily available, it appeared to complex with a 60,000-molecular-weight protein believed to form a surface layer on the A. vinelandii cell. Images PMID:6233258

  19. Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis

    PubMed Central

    Landry, Aaron P.; Cheng, Zishuo; Ding, Huangen

    2013-01-01

    Iron-sulphur cluster biogenesis requires coordinated delivery of iron and sulphur to scaffold proteins, followed by transfer of the assembled clusters from scaffold proteins to target proteins. This complex process is accomplished by a group of dedicated iron-sulphur cluster assembly proteins that are conserved from bacteria to humans. While sulphur in iron-sulphur clusters is provided by L-cysteine via cysteine desulfurase, the iron donor(s) for iron-sulphur cluster assembly remains largely elusive. Here we report that among the primary iron-sulphur cluster assembly proteins, IscA has a unique and strong binding activity for mononuclear iron in vitro and in vivo. Furthermore, the ferric iron centre tightly bound in IscA can be readily extruded by L-cysteine, followed by reduction to ferrous iron for iron-sulphur cluster biogenesis. Substitution of the highly conserved residue tyrosine 40 with phenylalanine (Y40F) in IscA results in a mutant protein that has a diminished iron binding affinity but retains the iron-sulphur cluster binding activity. Genetic complementation studies show that the IscA Y40F mutant is inactive in vivo, suggesting that the iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis. PMID:23258274

  20. Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis.

    PubMed

    Landry, Aaron P; Cheng, Zishuo; Ding, Huangen

    2013-03-07

    Iron-sulphur cluster biogenesis requires coordinated delivery of iron and sulphur to scaffold proteins, followed by transfer of the assembled clusters from scaffold proteins to target proteins. This complex process is accomplished by a group of dedicated iron-sulphur cluster assembly proteins that are conserved from bacteria to humans. While sulphur in iron-sulphur clusters is provided by L-cysteine via cysteine desulfurase, the iron donor(s) for iron-sulphur cluster assembly remains largely elusive. Here we report that among the primary iron-sulphur cluster assembly proteins, IscA has a unique and strong binding activity for mononuclear iron in vitro and in vivo. Furthermore, the ferric iron centre tightly bound in IscA can be readily extruded by l-cysteine, followed by reduction to ferrous iron for iron-sulphur cluster biogenesis. Substitution of the highly conserved residue tyrosine 40 with phenylalanine (Y40F) in IscA results in a mutant protein that has a diminished iron binding affinity but retains the iron-sulphur cluster binding activity. Genetic complementation studies show that the IscA Y40F mutant is inactive in vivo, suggesting that the iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis.

  1. A Bridge to Coordination Isomer Selection in Lanthanide(III) DOTA-tetraamide Complexes

    PubMed Central

    Vipond, Jeff; Woods, Mark; Zhao, Piyu; Tircso, Gyula; Ren, Jimin; Bott, Simon G.; Ogrin, Doug; Kiefer, Garry E.; Kovacs, Zoltan; Sherry, A.Dean

    2008-01-01

    Interest in macrocyclic lanthanide complexes such as DOTA is driven largely through interest in their use as contrast agents for MRI. The lanthanide tetraamide derivatives of DOTA have shown considerable promise as PARACEST agents, taking advantage of the slow water exchange kinetics of this class of complex. We postulated that water exchange in these tetraamide complexes could be slowed even further by introducing a group to sterically encumber the space above the water coordination site, thereby hindering the departure and approach of water molecules to the complex. The ligand 8O2-bridged-DOTAM was synthesized in a 34% yield from cyclen. It was found that the lanthanide complexes of this ligand did not possess a water molecule in the inner coordination sphere of the bound lanthanide. The crystal structure of the ytterbium complex revealed that distortions to the coordination sphere were induced by the steric constraints imposed on the complex by the bridging unit. The extent of the distortion was found to increase with increasing ionic radius of the lanthanide ion, eventually resulting in a complete loss of symmetry in the complex. Because this ligand system is bicyclic, the conformation of each ring in the system is constrained by that of the other, in consequence inclusion of the bridging unit in the complexes means only a twisted square antiprismatic coordination geometry is observed for complexes of 8O2-bridged-DOTAM. PMID:17295475

  2. Indefinitely stable iron(IV) cage complexes formed in water by air oxidation

    NASA Astrophysics Data System (ADS)

    Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.

    2017-01-01

    In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.

  3. Indefinitely stable iron(IV) cage complexes formed in water by air oxidation.

    PubMed

    Tomyn, Stefania; Shylin, Sergii I; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O

    2017-01-19

    In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.

  4. Indefinitely stable iron(IV) cage complexes formed in water by air oxidation

    PubMed Central

    Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.

    2017-01-01

    In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge. PMID:28102364

  5. Characterization of a tricationic trigonal bipyramidal iron(IV) cyanide complex, with a very high reduction potential, and its iron(II) and iron(III) congeners.

    PubMed

    England, Jason; Farquhar, Erik R; Guo, Yisong; Cranswick, Matthew A; Ray, Kallol; Münck, Eckard; Que, Lawrence

    2011-04-04

    Currently, there are only a handful of synthetic S = 2 oxoiron(IV) complexes. These serve as models for the high-spin (S = 2) oxoiron(IV) species that have been postulated, and confirmed in several cases, as key intermediates in the catalytic cycles of a variety of nonheme oxygen activating enzymes. The trigonal bipyramidal complex [Fe(IV)(O)(TMG(3)tren)](2+) (1) was both the first S = 2 oxoiron(IV) model complex to be generated in high yield and the first to be crystallographically characterized. In this study, we demonstrate that the TMG(3)tren ligand is also capable of supporting a tricationic cyanoiron(IV) unit, [Fe(IV)(CN)(TMG(3)tren)](3+) (4). This complex was generated by electrolytic oxidation of the high-spin (S = 2) iron(II) complex [Fe(II)(CN)(TMG(3)tren)](+) (2), via the S = 5/2 complex [Fe(III)(CN)(TMG(3)tren)](2+) (3), the progress of which was conveniently monitored by using UV-vis spectroscopy to follow the growth of bathochromically shifting ligand-to-metal charge transfer (LMCT) bands. A combination of X-ray absorption spectroscopy (XAS), Mössbauer and NMR spectroscopies was used to establish that 4 has a S = 0 iron(IV) center. Consistent with its diamagnetic iron(IV) ground state, extended X-ray absorption fine structure (EXAFS) analysis of 4 indicated a significant contraction of the iron-donor atom bond lengths, relative to those of the crystallographically characterized complexes 2 and 3. Notably, 4 has an Fe(IV/III) reduction potential of ∼1.4 V vs Fc(+/o), the highest value yet observed for a monoiron complex. The relatively high stability of 4 (t(1/2) in CD(3)CN solution containing 0.1 M KPF(6) at 25 °C ≈ 15 min), as reflected by its high-yield accumulation via slow bulk electrolysis and amenability to (13)C NMR at -40 °C, highlights the ability of the sterically protecting, highly basic peralkylguanidyl donors of the TMG(3)tren ligand to support highly charged high-valent complexes.

  6. Characterization of a Tricationic Trigonal Bipyramidal Iron(IV) Cyanide Complex, with a Very High Reduction Potential, and Its Iron(II) and Iron(III) Congeners

    PubMed Central

    England, Jason; Farquhar, Erik R.; Guo, Yisong; Cranswick, Matthew A.; Ray, Kallol

    2011-01-01

    Currently, there are only a handful of synthetic S = 2 oxoiron(IV) complexes. These serve as models for the high-spin (S = 2) oxoiron(IV) species that have been postulated, and confirmed in several cases, as key intermediates in the catalytic cycles of a variety of non-heme oxygen activating enzymes. The trigonal bipyramidal complex [FeIV(O)(TMG3tren)]2+ (1) was both the first S = 2 oxoiron(IV) model complex to be generated in high yield and the first to be crystallographically characterized. In this study, we demonstrate that the TMG3tren ligand is also capable of supporting a tricationic cyanoiron(IV) unit, [FeIV(CN)(TMG3tren)]3+ (4). This complex was generated by electrolytic oxidation of the high-spin (S = 2) iron(II) complex [FeII(CN)(TMG3tren)]+ (2), via the S = 5/2 complex [FeIII(CN)(TMG3tren)]2+ (3), the progress of which was conveniently monitored by using UV-Vis spectroscopy to follow the growth of bathochromically shifting LMCT bands. A combination of XAS, Mössbauer and NMR spectroscopies was used to establish that 4 has a S = 0 iron(IV) center. Consistent with its diamagnetic iron(IV) ground state, EXAFS analysis of 4 indicated a significant contraction of the iron-donor atom bond lengths, relative to those of the crystallographically characterized complexes 2 and 3. Notably, 4 has an FeIV/III reduction potential of ~1.4 V vs Fc+/o, the highest value yet observed for a monoiron complex. The relatively high stability of 4 (t1/2 in CD3CN solution containing 0.1 M KPF6 at 25 °C ≈ 15 min), as reflected by its high-yield accumulation via slow bulk electrolysis and amenability to 13C NMR at −40 °C, highlights the ability of the sterically protecting, highly basic peralkylguanidyl donors of the TMG3tren ligand to support highly charged high-valent complexes. PMID:21381646

  7. Identification of different coordination geometries by XAFS in copper(II) complexes with trimesic acid

    NASA Astrophysics Data System (ADS)

    Gaur, A.; Klysubun, W.; Soni, Balram; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2016-10-01

    X-ray absorption spectroscopy (XAS) is very useful in revealing the information about geometric and electronic structure of a transition-metal absorber and thus commonly used for determination of metal-ligand coordination. But XAFS analysis becomes difficult if differently coordinated metal centers are present in a system. In the present investigation, existence of distinct coordination geometries around metal centres have been studied by XAFS in a series of trimesic acid Cu(II) complexes. The complexes studied are: Cu3(tma)2(im)6 8H2O (1), Cu3(tma)2(mim)6 17H2O (2), Cu3(tma)2(tmen)3 8.5H2O (3), Cu3(tma) (pmd)3 6H2O (ClO4)3 (4) and Cu3(tma)2 3H2O (5). These complexes have not only Cu metal centres with different coordination but in complexes 1-3, there are multiple coordination geometries present around Cu centres. Using XANES spectra, different coordination geometries present in these complexes have been identified. The variation observed in the pre-edge features and edge features have been correlated with the distortion of the specific coordination environment around Cu centres in the complexes. XANES spectra have been calculated for the distinct metal centres present in the complexes by employing ab-initio calculations. These individual spectra have been used to resolve the spectral contribution of the Cu centres to the particular XANES features exhibited by the experimental spectra of the multinuclear complexes. Also, the variation in the 4p density of states have been calculated for the different Cu centres and then correlated with the features originated from corresponding coordination of Cu. Thus, these spectral features have been successfully utilized to detect the presence of the discrete metal centres in a system. The inferences about the coordination geometry have been supported by EXAFS analysis which has been used to determine the structural parameters for these complexes.

  8. Complexity of intravenous iron nanoparticle formulations: implications for bioequivalence evaluation.

    PubMed

    Pai, Amy Barton

    2017-11-01

    Intravenous iron formulations are a class of complex drugs that are commonly used to treat a wide variety of disease states associated with iron deficiency and anemia. Venofer® (iron-sucrose) is one of the most frequently used formulations, with more than 90% of dialysis patients in the United States receiving this formulation. Emerging data from global markets outside the United States, where many iron-sucrose similars or copies are available, have shown that these formulations may have safety and efficacy profiles that differ from the reference listed drug. This may be attributable to uncharacterized differences in physicochemical characteristics and/or differences in labile iron release. As bioequivalence evaluation guidance evolves, clinicians should be educated on these potential clinical issues before a switch to the generic formulation is made in the clinical setting. © 2017 New York Academy of Sciences.

  9. Site-selective detection of vibrational modes of an iron atom in a trinuclear complex

    NASA Astrophysics Data System (ADS)

    Faus, Isabelle; Rackwitz, Sergej; Wolny, Juliusz A.; Banerjee, Atanu; Kelm, Harald; Krüger, Hans-Jörg; Schlage, Kai; Wille, Hans-Christian; Schünemann, Volker

    2016-12-01

    Nuclear inelastic scattering (NIS) experiments on the trinuclear complex [57Fe{L-N4(CH2Fc)2} (CH3CN)2](ClO4)2 have been performed. The octahedral iron ion in the complex was labelled with 57Fe and thereby exclusively the vibrational modes of this iron ion have been detected with NIS. The analysis of nuclear forward scattering (NFS) data yields a ferrous low-spin state for the 57Fe labelled iron ion. The simulation of the partial density of states (pDOS) for the octahedral low-spin iron(II) ion of the complex by density functional theory (DFT) calculations is in excellent agreement with the experimental pDOS of the complex determined from the NIS data obtained at 80 K. Thereby it was possible to assign almost each of the experimentally observed NIS bands to the corresponding molecular vibrational modes.

  10. Higher iron bioavailability of a human-like collagen iron complex.

    PubMed

    Zhu, Chenhui; Yang, Fan; Fan, Daidi; Wang, Ya; Yu, Yuanyuan

    2017-07-01

    Iron deficiency remains a public health problem around the world due to low iron intake and/or bioavailability. FeSO 4 , ferrous succinate, and ferrous glycinate chelate are rich in iron but have poor bioavailability. To solve the problem of iron deficiency, following previous research studies, a thiolated human-like collagen-ironcomplex supplement with a high iron content was prepared in an anaerobic workstation. In addition, cell viability tests were evaluated after conducting an MTT assay, and a quantitative analysis of the thiolated human-like collagen-iron digesta samples was performed using the SDS-PAGE method coupled with gel filtration chromatography. The iron bioavailability was assessed using Caco-2 cell monolayers and iron-deficiency anemia mice models. The results showed that (1) one mole of thiolated human-like collagen-iron possessed approximately 35.34 moles of iron; (2) thiolated human-like collagen-iron did not exhibit cytotoxity and (3) thiolated human-like collagen- iron digesta samples had higher bioavailability than other iron supplements, including FeSO 4 , ferrous succinate, ferrous glycine chelate and thiolated human-like collagen-Fe iron. Finally, the iron bioavailability was significantly enhanced by vitamin C. These results indicated that thiolated human-like collagen-iron is a promising iron supplement for use in the future.

  11. Increasing the rate of hydrogen oxidation without increasing the overpotential: A bio-inspired iron molecular electrocatalyst with an outer coordination sphere proton relay

    DOE PAGES

    Darmon, Jonathan M.; Kumar, Neeraj; Hulley, Elliott B.; ...

    2015-03-05

    Oxidation of hydrogen (H₂) to protons and electrons for energy production in fuel cells is catalyzed by platinum, but its low abundance and high cost present drawbacks to widespread adoption. Precisely controlled proton delivery and removal is critical in hydrogenase enzymes in nature that catalyze H₂ oxidation using earth-abundant metals (iron and nickel). Here we report a synthetic iron complex, (Cp C5F4N)Fe(P EtN (CH2)3NMe2PEt)(Cl), that serves as a precatalyst for the oxidation of H₂, with turnover frequencies of 290 s⁻¹ in fluorobenzene, under 1 atm of H₂ using 1,4-diazabicyclo[2.2.2]octane (DABCO) as the exogenous base. The cooperative effect of the primary,more » secondary and outer coordination spheres for moving protons in this remarkably fast catalyst emphasizes the key role of pendant amines in mimicking the functionality of the proton pathway in the hydrogenase enzymes.« less

  12. Copper(I)- and copper(0)-promoted homocoupling and homocoupling-hydrodehalogenation reactions of dihalogenoclathrochelate precursors for C-C conjugated iron(II) bis-cage complexes.

    PubMed

    Varzatskii, Oleg A; Shul'ga, Sergey V; Belov, Alexander S; Novikov, Valentin V; Dolganov, Alexander V; Vologzhanina, Anna V; Voloshin, Yan Z

    2014-12-28

    Iron(II) dibromo- and diiodoclathrochelates undergo copper(I)-promoted reductive homocoupling in HMPA at 70-80 °C leading to C-C conjugated dibromo- and diiodo-bis-clathrochelates in high yields. Under the same conditions, their dichloroclathrochelate analog does not undergo the same homocoupling reaction, so the target dichloro-bis-cage product was obtained in high yield via dimerization of its heterodihalogenide iodochloromonomacrobicyclic precursor. The use of NMP as a solvent at 120-140 °C gave the mixture of bis-clathrochelates resulting from a tandem homocoupling-hydrodehalogenation reaction: the initial acetonitrile copper(I) solvato-complex at a high temperature underwent re-solvatation and disproportionation leading to Cu(II) ions and nano-copper, which promoted the hydrodehalogenation process even at room temperature. The most probable pathway of this reaction in situ includes hydrodehalogenation of the already formed dihalogeno-bis-clathrochelate via the formation of reduced anion radical intermediates. As a result, chemical transformations of the iron(II) dihalogenoclathrochelates in the presence of an acetonitrile copper(I) solvato-complex were found to depend both on the nature of halogen atoms in their ribbed chelate fragments and on reaction conditions (i.e. solvent and temperature). The C-C conjugated iron(II) dihalogeno-bis-clathrochelates easily undergo nucleophilic substitution with various N,S-nucleophiles giving ribbed-functionalized bis-cage species. These iron(II) complexes were characterized by elemental analysis, MALDI-TOF mass spectrometry, IR, UV-Vis, (1)H and (13)C NMR spectroscopy, and by X-ray diffraction; their electrochemical properties were studied by cyclic voltammetry. The isomeric shift values in (57)Fe Mössbauer spectra of such cage compounds allowed identifying them as low-spin iron(II) complexes, while those of the quadrupole splitting are the evidence for a significant TP distortion of their FeN6-coordination polyhedra

  13. Parent Perspective on Care Coordination Services for Their Child with Medical Complexity.

    PubMed

    Cady, Rhonda G; Belew, John L

    2017-06-06

    The overarching goal of care coordination is communication and co-management across settings. Children with medical complexity require care from multiple services and providers, and the many benefits of care coordination on health and patient experience outcomes have been documented. Despite these findings, parents still report their greatest challenge is communication gaps. When this occurs, parents assume responsibility for aggregating and sharing health information across providers and settings. A new primary-specialty care coordination partnership model for children with medical complexity works to address these challenges and bridge communication gaps. During the first year of the new partnership, parents participated in focus groups to better understand how they perceive communication and collaboration between the providers and services delivering care for their medically complex child. Our findings from these sessions reflect the current literature and highlight additional challenges of rural families, as seen from the perspective of the parents. We found that parents appreciate when professional care coordination is provided, but this is often the exception and not the norm. Additionally, parents feel that the local health system's inability to care for their medically complex child results in unnecessary trips to urban-based specialty care. These gaps require a system-level approach to care coordination and, consequently, new paradigms for delivery are urgently needed.

  14. Diamagnetic Anisotropy: Two Iron Complexes as Laboratory Examples

    ERIC Educational Resources Information Center

    Fernandez, Ignacio; Sanchez, Jorge Fernando Fernandez

    2010-01-01

    There are relatively few experiments describing the NMR properties of bis(amine) iron(II) phthalocyanine complexes. Several features make this experiment attractive: First, it nicely illustrates the diamagnetic anisotropy phenomena, providing both students and teachers an opportunity to gain insight into aspects such as phase correction and…

  15. Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity.

    PubMed

    Langer, Robert; Diskin-Posner, Yael; Leitus, Gregory; Shimon, Linda J W; Ben-David, Yehoshoa; Milstein, David

    2011-10-10

    A highly active iron catalyst for the hydrogenation of carbon dioxide and bicarbonates works under remarkably low pressures and achieves activities similar to some of the best noble metal catalysts. A mechanism is proposed involving the direct attack of an iron trans-dihydride on carbon dioxide, followed by ligand exchange and dihydrogen coordination. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effects of molecular composition of natural organic matter on ferric iron complexation at circumneutral pH.

    PubMed

    Fujii, Manabu; Imaoka, Akira; Yoshimura, Chihiro; Waite, T D

    2014-04-15

    Thermodynamic and kinetic parameters for ferric iron (Fe[III]) complexation by well-characterized humic substances (HS) from various origins were determined by a competitive ligand method with 5-sulfosalicylic acid at circumneutral pH (6.0-8.0) and an ionic strength of ∼0.06 M. The measured Fe binding properties including conditional stability constants and complexation capacities ranged over more than 2 orders of magnitude, depending on the origin and the particular operationally defined fraction of HS examined. Statistical comparison of the complexation parameters to a range of chemical properties of the HS indicated a strong positive correlation between Fe(III) complexation capacity and aromatic carbon content in the HS at all pHs examined. In contrast, the complexation capacity was determined to be up to a few orders of magnitude smaller than the concentration of carboxylic and phenolic groups present. Therefore, specific functional groups including those resident in the proximity of aromatic structures within the HS are likely preferable for Fe(III) coordination under the conditions examined. Overall, our results suggest that the concentration of dissolved Fe(III) complexes in natural waters is substantially influenced by variation in HS characteristics in addition to other well-known factors such as HS concentration and nature and concentration of competing cations present.

  17. Polymer complexes.. XXXX. Supramolecular assembly on coordination models of mixed-valence-ligand poly[1-acrylamido-2-(2-pyridyl)ethane] complexes

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; El-Bindary, A. A.; Diab, M. A.

    2003-02-01

    The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [( 11)+( 12)] in the paper and in mononuclear polymer complexes ( 1)-( 5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX 2 and KPtCl 4 in the presence of N-heterocyclic base consisting of polymer complexes ( 9)+( 10), and in monouclear compounds ( 6)-( 8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds ( 13)+( 14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.

  18. Polymer complexes. XXXX. Supramolecular assembly on coordination models of mixed-valence-ligand poly[1-acrylamido-2-(2-pyridyl)ethane] complexes.

    PubMed

    El-Sonbati, A Z; El-Bindary, A A; Diab, M A

    2003-02-01

    The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [(11)+(12)] in the paper and in mononuclear polymer complexes (1)-(5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX2 and KPtCl4 in the presence of N-heterocyclic base consisting of polymer complexes (9)+(10), and in monouclear compounds (6)-(8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds (13)+(14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.

  19. Characterization of Fe-leonardite complexes as novel natural iron fertilizers.

    PubMed

    Kovács, Krisztina; Czech, Viktória; Fodor, Ferenc; Solti, Adam; Lucena, Juan J; Santos-Rosell, Sheila; Hernández-Apaolaza, Lourdes

    2013-12-18

    Water-soluble humic substances (denoted by LN) extracted at alkaline pH from leonardite are proposed to be used as complexing agents to overcome micronutrient deficiencies in plants such as iron chlorosis. LN presents oxidized functional groups that can bind Fe(2+) and Fe(3+). The knowledge of the environment of Fe in the Fe-LN complexes is a key point in the studies on their efficacy as Fe fertilizers. The aim of this work was to study the Fe(2+)/Fe(3+) species formed in Fe-LN complexes with (57)Fe Mössbauer spectroscopy under different experimental conditions in relation to the Fe-complexing capacities, chemical characteristics, and efficiency to provide iron in hydroponics. A high oxidation rate of Fe(2+) to Fe(3+) was found when samples were prepared with Fe(2+), although no well-crystalline magnetically ordered ferric oxide formation could be observed in slightly acidic or neutral media. It seems to be the case that the formation of Fe(3+)-LN compounds is favored over Fe(2+)-LN compounds, although at acidic pH no complex formation between Fe(3+) and LN occurred. The Fe(2+)/Fe(3+) speciation provided by the Mössbauer data showed that Fe(2+)-LN could be efficient in hydroponics while Fe(3+)-LN is suggested to be used more effectively under calcareous soil conditions. However, according to the biological assay, Fe(3+)-LN proved to be effective as a chlorosis corrector applied to iron-deficient cucumber in nutrient solution.

  20. The coordination chemistry of group 15 element ligand complexes--a developing area.

    PubMed

    Scheer, Manfred

    2008-09-07

    A survey of the contemporary challenges of the field of unsubstituted group 15 element ligand complexes (excluding N) is given. The focus of the article is on the coordination chemistry behaviour of such E(n) ligand complexes. This field is subdivided into two areas of reactivity: E(n) ligand complexes with (i) noncoordinated Lewis-acidic cations and (ii) Lewis-acidic coordination compounds containing at least one permanently coordinating ligand. In the latter case, insoluble 1D and 2D polymers respectively are obtained; however, under special conditions soluble, spherical, fullerene-like giant molecules are formed. These nano-sized molecules are up to 2.4 nm in diameter and are able to encapsulate small molecules in their holes. In contrast, the first-mentioned field uses weakly coordinating anions to obtain readily soluble di- and polycationic products. These show depolymerisation tendencies in solution under the formation of oligomer-monomer equilibria and thus reveal dynamic supramolecular aggregation processes.

  1. Memory for Negation in Coordinate and Complex Sentences

    ERIC Educational Resources Information Center

    Harris, Richard J.

    1976-01-01

    Two experiments were run to test memory for the negation morpheme "not" in coordinate sentences (e.g., The ballerina had twins and the policewoman did not have triplets) and complex sentences (e.g., The ghost scared Hamlet into not murdering Shakespeare). (Editor)

  2. Parent Perspective on Care Coordination Services for Their Child with Medical Complexity

    PubMed Central

    Cady, Rhonda G.; Belew, John L.

    2017-01-01

    The overarching goal of care coordination is communication and co-management across settings. Children with medical complexity require care from multiple services and providers, and the many benefits of care coordination on health and patient experience outcomes have been documented. Despite these findings, parents still report their greatest challenge is communication gaps. When this occurs, parents assume responsibility for aggregating and sharing health information across providers and settings. A new primary-specialty care coordination partnership model for children with medical complexity works to address these challenges and bridge communication gaps. During the first year of the new partnership, parents participated in focus groups to better understand how they perceive communication and collaboration between the providers and services delivering care for their medically complex child. Our findings from these sessions reflect the current literature and highlight additional challenges of rural families, as seen from the perspective of the parents. We found that parents appreciate when professional care coordination is provided, but this is often the exception and not the norm. Additionally, parents feel that the local health system’s inability to care for their medically complex child results in unnecessary trips to urban-based specialty care. These gaps require a system-level approach to care coordination and, consequently, new paradigms for delivery are urgently needed. PMID:28587274

  3. Dinitrosyl iron complexes with glutathione as NO and NO⁺ donors.

    PubMed

    Borodulin, Rostislav R; Kubrina, Lyudmila N; Mikoyan, Vasak D; Poltorakov, Alexander P; Shvydkiy, Vyacheslav О; Burbaev, Dosymzhan Sh; Serezhenkov, Vladimir A; Yakhontova, Elena R; Vanin, Anatoly F

    2013-02-28

    It has been found that heating of solutions of the binuclear form of dinitrosyl iron complexes (B-DNIC) with glutathione in a degassed Thunberg apparatus (рН 1.0, 70°С, 6 h) results in their decomposition with a concomitant release of four gaseous NO molecules per one B-DNIC. Further injection of air into the Thunberg apparatus initiates fast oxidation of NO to NO₂ and formation of two GS-NO molecules per one B-DNIC. Under similar conditions, the decomposition of B-DNIC solutions in the Thunberg apparatus in the presence of air is complete within 30-40 min and is accompanied by formation of four GS-NO molecules per one B-DNIC. It is suggested that the latter events are determined by oxidation of B-DNIC iron and concominant release of four nitrosonium ions (NO⁺) from each complex. Binding of NO⁺ to thiol groups of glutathione provokes GS-NO synthesis. At neutral рН, decomposition of B-DNIC is initiated by strong iron chelators, viz., о-phenanthroline and N-methyl-d-glucamine dithiocarbamate (MGD). In the former case, the reaction occurs under anaerobic conditions (degassed Thunberg apparatus) and is accompanied by a release of four NO molecules from B-DNIC. Under identical conditions, MGD-induced decomposition of B-DNIC gives two EPR-active mononuclear mononitrosyl iron complexes with MGD (MNIC-MGD) able to incorporate two iron molecules and two NO molecules from each B-DNIC. The other two NO molecules released from B-DNIC (most probably, in the form of nitrosonium ions) bind to thiol groups of MGD to give corresponding S-nitrosothiols. Acidification of test solutions to рН 1.0 initiates hydrolysis of MGD and, as a consequence, decomposition of MNIC-MGD and the S-nitrosated form of MGD; the gaseous phase contains four NO molecules (as calculated per each B-DNIC). The data obtained testify to the ability of B-DNIC with glutathione (and, probably, of B-DNIC with other thiol-containing ligands) to release both NO molecules and nitrosonium ions upon their

  4. Bimetallic iron–iron and iron–zinc complexes of the redox-active ONO pincer ligand† †Electronic supplementary information (ESI) available: Complete experimental procedures and magnetic measurements and models. CCDC 1417565–1417567. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc03006d Click here for additional data file. Click here for additional data file.

    PubMed Central

    Wong, Janice L.; Higgins, Robert F.; Bhowmick, Indrani; Cao, David Xi; Szigethy, Géza; Ziller, Joseph W.

    2016-01-01

    A new bimetallic platform comprising a six-coordinate Fe(ONO)2 unit bound to an (ONO)M (M = Fe, Zn) has been discovered ((ONOcat)H3 = bis(3,5-di-tert-butyl-2-phenol)amine). Reaction of Fe(ONO)2 with either (ONOcat)Fe(py)3 or with (ONOq)FeCl2 under reducing conditions led to the formation of the bimetallic complex Fe2(ONO)3, which includes unique five- and six-coordinate iron centers. Similarly, the reaction of Fe(ONO)2 with the new synthon (ONOsq˙)Zn(py)2 led to the formation of the heterobimetallic complex FeZn(ONO)3, with a six-coordinate iron center and a five-coordinate zinc center. Both bimetallic complexes were characterized by single-crystal X-ray diffraction studies, solid-state magnetic measurements, and multiple spectroscopic techniques. The magnetic data for FeZn(ONO)3 are consistent with a ground state S = 3/2 spin system, generated from a high-spin iron(ii) center that is antiferromagnetically coupled to a single (ONOsq˙)2– radical ligand. In the case of Fe2(ONO)3, the magnetic data revealed a ground state S = 7/2 spin system arising from the interactions of one high-spin iron(ii) center, one high-spin iron(iii) center, and two (ONOsq˙)2– radical ligands. PMID:28808535

  5. Coordinating complex problem-solving among distributed intelligent agents

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1992-01-01

    A process-oriented control model is described for distributed problem solving. The model coordinates the transfer and manipulation of information across independent networked applications, both intelligent and conventional. The model was implemented using SOCIAL, a set of object-oriented tools for distributing computing. Complex sequences of distributed tasks are specified in terms of high level scripts. Scripts are executed by SOCIAL objects called Manager Agents, which realize an intelligent coordination model that routes individual tasks to suitable server applications across the network. These tools are illustrated in a prototype distributed system for decision support of ground operations for NASA's Space Shuttle fleet.

  6. Coordination of a complex welfare system case: rehabilitation entity in Finland.

    PubMed

    Miettinen, Sari; Ashorn, Ulla; Lehto, Juhani; Viitanen, Elina

    2011-01-01

    The main purpose of this article is to analyse the institutional and political structures of the Finnish rehabilitation entity and the governmental efforts to improve the governance of the rehabilitation policy. Rehabilitation in Finland is a complex welfare system which has undergone several coordination attempts during the last two decades. The centrality of the coordination of this welfare system is obvious. Based on the content analysis of three Government's rehabilitation reports from 1994 to 2002 and their background papers, this article provides two main findings. First, the rehabilitation entity seems to be based on different funding strategies, different governing and different coordination models between the rehabilitation subsystems. Second, the governance discourse in the reports seems to be unchanging with a predominantly hierarchical mode. The article concludes with a discussion on the challenges to coordinate this kind of a complex welfare system as an entity and also how to overcome those challenges. Copyright © 2010 John Wiley & Sons, Ltd.

  7. Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand

    PubMed Central

    Kuriyama, Shogo; Arashiba, Kazuya; Nakajima, Kazunari; Matsuo, Yuki; Tanaka, Hiromasa; Ishii, Kazuyuki; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2016-01-01

    Synthesis and reactivity of iron-dinitrogen complexes have been extensively studied, because the iron atom plays an important role in the industrial and biological nitrogen fixation. As a result, iron-catalyzed reduction of molecular dinitrogen into ammonia has recently been achieved. Here we show that an iron-dinitrogen complex bearing an anionic PNP-pincer ligand works as an effective catalyst towards the catalytic nitrogen fixation, where a mixture of ammonia and hydrazine is produced. In the present reaction system, molecular dinitrogen is catalytically and directly converted into hydrazine by using transition metal-dinitrogen complexes as catalysts. Because hydrazine is considered as a key intermediate in the nitrogen fixation in nitrogenase, the findings described in this paper provide an opportunity to elucidate the reaction mechanism in nitrogenase. PMID:27435503

  8. Coordination characteristics of uranyl BBP complexes: Insights from an electronic structure analysis

    DOE PAGES

    Pemmaraju, Chaitanya Das; Copping, Roy; Smiles, Danil E.; ...

    2017-03-21

    Here, organic ligand complexes of lanthanide/actinide ions have been studied extensively for applications in nuclear fuel storage and recycling. Several complexes of 2,6-bis(2-benzimidazyl)pyridine (H2BBP) featuring the uranyl moiety have been reported recently, and the present study investigates the coordination characteristics of these complexes using density functional theory-based electronic structure analysis. In particular, with the aid of several computational models, the nonplanar equatorial coordination about uranyl, observed in some of the compounds, is studied and its origin traced to steric effects.

  9. Complexation equilibria and spectrophotometric determination of iron(III) with 1-amino-4-hydroxyanthraquinone.

    PubMed

    Abu-Bakr, M S; Sedaira, H; Hashem, E Y

    1994-10-01

    The complex equilibria of iron(III) with 1-amino-4-hydroxyanthraquinone (AMHA) were studied spectrophotometrically in 40% (v/v) ethanol and an ionic strength of 0.1M (NaClO(4)). The complexation reactions were demonstrated and characterized using graphical logarithmic analysis of the absorbance-pH graphs. A simple, rapid, selective and sensitive method for the spectrophotometric determination of trace amounts of Fe(III) is developed based on the formation of Fe(AMHA) complex at pH 2.5 (lambda(max) = 640 nm, epsilon approximately = 2.1 x 10(4) L. mol(-1) . cm(-1)) in the presence of a large number of foreign ions. Interferences caused by palladium(II) was masked by the addition of cyanide ions. The method has been applied to the determination of iron in some synthetic samples and polymetallic iron ores.

  10. Geochemistry of Rock Samples Collected from the Iron Hill Carbonatite Complex, Gunnison County, Colorado

    USGS Publications Warehouse

    Van Gosen, Bradley S.

    2008-01-01

    A study conducted in 2006 by the U.S. Geological Survey collected 57 surface rock samples from nine types of intrusive rock in the Iron Hill carbonatite complex. This intrusive complex, located in Gunnison County of southwestern Colorado, is known for its classic carbonatite-alkaline igneous geology and petrology. The Iron Hill complex is also noteworthy for its diverse mineral resources, including enrichments in titanium, rare earth elements, thorium, niobium (columbium), and vanadium. This study was performed to reexamine the chemistry and metallic content of the major rock units of the Iron Hill complex by using modern analytical techniques, while providing a broader suite of elements than the earlier published studies. The report contains the geochemical analyses of the samples in tabular and digital spreadsheet format, providing the analytical results for 55 major and trace elements.

  11. UV-light-driven prebiotic synthesis of iron-sulfur clusters

    NASA Astrophysics Data System (ADS)

    Bonfio, Claudia; Valer, Luca; Scintilla, Simone; Shah, Sachin; Evans, David J.; Jin, Lin; Szostak, Jack W.; Sasselov, Dimitar D.; Sutherland, John D.; Mansy, Sheref S.

    2017-12-01

    Iron-sulfur clusters are ancient cofactors that play a fundamental role in metabolism and may have impacted the prebiotic chemistry that led to life. However, it is unclear whether iron-sulfur clusters could have been synthesized on prebiotic Earth. Dissolved iron on early Earth was predominantly in the reduced ferrous state, but ferrous ions alone cannot form polynuclear iron-sulfur clusters. Similarly, free sulfide may not have been readily available. Here we show that UV light drives the synthesis of [2Fe-2S] and [4Fe-4S] clusters through the photooxidation of ferrous ions and the photolysis of organic thiols. Iron-sulfur clusters coordinate to and are stabilized by a wide range of cysteine-containing peptides and the assembly of iron-sulfur cluster-peptide complexes can take place within model protocells in a process that parallels extant pathways. Our experiments suggest that iron-sulfur clusters may have formed easily on early Earth, facilitating the emergence of an iron-sulfur-cluster-dependent metabolism.

  12. Attributes of advanced practice registered nurse care coordination for children with medical complexity.

    PubMed

    Cady, Rhonda G; Kelly, Anne M; Finkelstein, Stanley M; Looman, Wendy S; Garwick, Ann W

    2014-01-01

    Care coordination is an essential component of the pediatric health care home. This study investigated the attributes of relationship-based advanced practice registered nurse care coordination for children with medical complexity enrolled in a tertiary hospital-based health care home. Retrospective review of 2,628 care coordination episodes conducted by telehealth over a consecutive 3-year time period for 27 children indicated that parents initiated the majority of episodes and the most frequent reason was acute and chronic condition management. During this period, care coordination episodes tripled, with a significant increase (p < .001) between years 1 and 2. The increased episodes could explain previously reported reductions in hospitalizations for this group of children. Descriptive analysis of a program-specific survey showed that parents valued having a single place to call and assistance in managing their child's complex needs. The advanced practice registered nurse care coordination model has potential for changing the health management processes for children with medical complexity. Copyright © 2014 National Association of Pediatric Nurse Practitioners. Published by Mosby, Inc. All rights reserved.

  13. Iron regulatory proteins and their role in controlling iron metabolism.

    PubMed

    Kühn, Lukas C

    2015-02-01

    Cellular iron homeostasis is regulated by post-transcriptional feedback mechanisms, which control the expression of proteins involved in iron uptake, release and storage. Two cytoplasmic proteins with mRNA-binding properties, iron regulatory proteins 1 and 2 (IRP1 and IRP2) play a central role in this regulation. Foremost, IRPs regulate ferritin H and ferritin L translation and thus iron storage, as well as transferrin receptor 1 (TfR1) mRNA stability, thereby adjusting receptor expression and iron uptake via receptor-mediated endocytosis of iron-loaded transferrin. In addition splice variants of iron transporters for import and export at the plasma-membrane, divalent metal transporter 1 (DMT1) and ferroportin are regulated by IRPs. These mechanisms have probably evolved to maintain the cytoplasmic labile iron pool (LIP) at an appropriate level. In certain tissues, the regulation exerted by IRPs influences iron homeostasis and utilization of the entire organism. In intestine, the control of ferritin expression limits intestinal iron absorption and, thus, whole body iron levels. In bone marrow, erythroid heme biosynthesis is coordinated with iron availability through IRP-mediated translational control of erythroid 5-aminolevulinate synthase mRNA. Moreover, the translational control of HIF2α mRNA in kidney by IRP1 coordinates erythropoietin synthesis with iron and oxygen supply. Besides IRPs, body iron absorption is negatively regulated by hepcidin. This peptide hormone, synthesized and secreted by the liver in response to high serum iron, downregulates ferroportin at the protein level and thereby limits iron absorption from the diet. Hepcidin will not be discussed in further detail here.

  14. Correlation of Solid State and Solution Coordination Numbers with Infrared Spectroscopy in Five-, Six-, and Eight-Coordinate Transition Metal Complexes of DOTAM.

    PubMed

    Nagata, Maika K C T; Brauchle, Paul S; Wang, Sen; Briggs, Sarah K; Hong, Young Soo; Laorenza, Daniel W; Lee, Andrea G; Westmoreland, T David

    2016-08-16

    Three new DOTAM (1,4,7,10-tetrakis(acetamido)-1,4,7,10-tetraazacyclododecane) complexes have been synthesized and characterized by X-ray crystallography: [Co(DOTAM)]Cl 2 •3H 2 O, [Ni(DOTAM)]Cl 2 •4H 2 O, and [Cu(DOTAM)](ClO 4 ) 2 •H 2 O. Solid state and solution IR spectroscopic features for a series of [M(DOTAM)] 2+ complexes (M=Mn, Co, Cu, Ni, Ca, Zn) correlate with solid state and solution coordination numbers. [Co(DOTAM)] 2+ , [Ni(DOTAM)] 2+ , and [Zn(DOTAM)] 2+ are demonstrated to be six-coordinate in both the solid state and in solution, while [Mn(DOTAM)] 2+ and [Ca(DOTAM)] 2+ are eight-coordinate in the solid state and remain so in solution. [Cu(DOTAM)] 2+ , which is five-coordinate by X-ray crystallography, is shown to increase its coordination number in solution to six-coordinate.

  15. A comparative study of the biosorption of iron(III)-cyanide complex anions to Rhizopus arrhizus and Chlorella vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksu, Z.; Calik, A.

    1999-03-01

    In this study a comparative biosorption of iron(III)-cyanide complex anions from aqueous solutions to Rhizopus arrhizus and Chlorella vulgaris was investigated. The iron(III)-cyanide complex ion-binding capacities of the biosorbents were shown as a function of initial pH, initial iron(III)-cyanide complex ion, and biosorbent concentrations. The results indicated that a significant reduction of iron(III)-cyanide complex ions was achieved at pH 13, a highly alkaline condition for both the biosorbents. The maximum loading capacities of the biosorbents were found to be 612.2 mg/g for R.arrhizus at 1,996.2 mg/L initial iron(III)-cyanide complex ion concentration and 387.0 mg/g for C. vulgaris at 845.4 mg/Lmore » initial iron(III)-cyanide complex ion concentration at this pH. The Freundlich, Langmuir, and Redlich-Peterson adsorption models were fitted to the equilibrium data at pH 3, 7, and 13. The equilibrium data of the biosorbents could be best fitted by all the adsorption models over the entire concentration range at pH 13.« less

  16. Mechanics of metal-catecholate complexes: The roles of coordination state and metal types

    PubMed Central

    Xu, Zhiping

    2013-01-01

    There have been growing evidences for the critical roles of metal-coordination complexes in defining structural and mechanical properties of unmineralized biological materials, including hardness, toughness, and abrasion resistance. Their dynamic (e.g. pH-responsive, self-healable, reversible) properties inspire promising applications of synthetic materials following this concept. However, mechanics of these coordination crosslinks, which lays the ground for predictive and rational material design, has not yet been well addressed. Here we present a first-principles study of representative coordination complexes between metals and catechols. The results show that these crosslinks offer stiffness and strength near a covalent bond, which strongly depend on the coordination state and type of metals. This dependence is discussed by analyzing the nature of bonding between metals and catechols. The responsive mechanics of metal-coordination is further mapped from the single-molecule level to a networked material. The results presented here provide fundamental understanding and principles for material selection in metal-coordination-based applications. PMID:24107799

  17. Recent Developments in Homogeneous Dinitrogen Reduction by Molybdenum and Iron

    PubMed Central

    MacLeod, K. Cory; Holland, Patrick L.

    2013-01-01

    The reduction of gaseous nitrogen (N2) is a challenge for industrial, biological and synthetic chemists, who want to understand the formation of ammonia (NH3) for agriculture and also want to form N-C and N-Si bonds for fine chemical synthesis. The iron-molybdenum active site of nitrogenase has inspired chemists to explore the ability of iron and molybdenum complexes to bring about transformations related to N2 reduction. This area of research has gained significant momentum, and the last two years have witnessed a number of significant advances in synthetic Fe-N2 and Mo-N2 chemistry. In addition, the identities of all atoms in the iron-molybdenum cofactor of nitrogenase have finally been elucidated, and the discovery of a carbide has generated new questions and targets for coordination chemists. This Perspective summarizes the recent work on iron and molydenum complexes, and highlights the opportunities for continued research. PMID:23787744

  18. Assigning Oxidation States to Some Metal Dioxygen Complexes of Biological Interest.

    ERIC Educational Resources Information Center

    Summerville, David A.; And Others

    1979-01-01

    The bonding of dioxygen in metal-dioxygen complexes is discussed, paying particular attention to the problems encountered in assigning conventional oxidation numbers to both the metal center and coordinated dioxygen. Complexes of iron, cobalt, chromium, and manganese are considered. (BB)

  19. Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA Binding, DNA Cleavage, and Antibacterial Activity Studies.

    PubMed

    Raza, Aun; Xu, Xiuquan; Xia, Li; Xia, Changkun; Tang, Jian; Ouyang, Zhen

    2016-11-01

    Quercetin-iron (II) complex was synthesized and characterized by elemental analysis, ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, mass spectrometry, proton nuclear magnetic resonance spectroscopy, thermogravimetry and differential scanning calorimetry, scanning electron micrography and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal:ligand) of the complex. Antioxidant study of the quercetin and its metal complex against 2, 2-di-phenyl-1-picryl hydrazyl radical showed that the complex has much more radical scavenging activity than free quercetin. The interaction of quercetin-iron (II) complex with DNA was determined using ultraviolet visible spectra, fluorescence spectra and agarose gel electrophoresis. The results showed that quercetin-iron (II) complex can intercalate moderately with DNA, quench a strong intercalator ethidium bromide and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form to nicked circular form and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was an oxidative cleavage pathway. These results revealed the potential nuclease activity of complex to cleave DNA. In addition, antibacterial activity of complex on E.coli and S. aureus was also investigated. The results showed that complex has higher antibacterial activity than ligand.

  20. Two Iron Complexes as Homogeneous and Heterogeneous Catalysts for the Chemical Fixation of Carbon Dioxide.

    PubMed

    Karan, Chandan Kumar; Bhattacharjee, Manish

    2018-04-16

    Two new bimetallic iron-alkali metal complexes of amino acid (serine)-based reduced Schiff base ligand were synthesized and structurally characterized. Their efficacy as catalysts for the chemical fixation of carbon dioxide was explored. The heterogeneous version of the catalytic reaction was developed by the immobilization of these homogeneous bimetallic iron-alkali metal complexes in an anion-exchange resin. The resin-bound complexes can be used as recyclable catalysts up to six cycles.

  1. Iron-Sulfur-Carbonyl and -Nitrosyl Complexes: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Glidewell, Christopher; And Others

    1985-01-01

    Background information, materials needed, procedures used, and typical results obtained, are provided for an experiment on iron-sulfur-carbonyl and -nitrosyl complexes. The experiment involved (1) use of inert atmospheric techniques and thin-layer and flexible-column chromatography and (2) interpretation of infrared, hydrogen and carbon-13 nuclear…

  2. The electronic structure of iron in rhyolitic and basaltic glasses at high pressure

    NASA Astrophysics Data System (ADS)

    Solomatova, N. V.; Jackson, J. M.; Sturhahn, W.; Roskosz, M.

    2016-12-01

    The physical properties of silicate melts within the Earth's mantle affect the chemical and thermal evolution of the Earth's interior. To understand melting processes within the Earth, it is imperative to determine the structure of silicate melts at high pressure. It has been proposed that iron-bearing silicate melts may exist in the lower mantle just above the core-mantle boundary [1]. The behavior of iron in mantle melts is poorly understood, but can be experimentally approximated by iron-bearing silicate glasses. Previous studies have conflicting conclusions on whether iron in lower mantle silicate melts goes through a high-spin to low-spin transition [2-4]. Additionally, the average coordination environment of iron in glasses is poorly constrained. XANES experiments on basaltic glasses have demonstrated that both four and six-fold coordinated iron may exist in significant amounts regardless of oxidation state [5] while conventional Mössbauer experiments have observed five-fold coordinated Fe2+ with small amounts of four and six-fold coordinated Fe2+ [6]. In an attempt to resolve these discrepancies, we have measured the hyperfine parameters of iron-bearing rhyolitic glass up to 115 GPa and basaltic glass up to 92 GPa in a neon pressure medium using time-resolved synchrotron Mössbauer spectroscopy at the Advanced Photon Source (Argonne National Laboratory, IL). We observed changes in the hyperfine parameters likely due to coordination changes as a result of increasing pressure. Our results indicate that iron does not undergo a high-spin to low-spin transition within the pressure range investigated. Changes in the electronic configuration, such as the spin state of iron affects the compressibility and thermal properties of melts. With the assumption that silica glasses can be used to model structural behavior in silicate melts, our study predicts that iron in chemically-complex silica-rich melts in the lower mantle likely exists in a high-spin state. Select

  3. [Dinitrosyl iron complexes are endogenous signaling agents in animal and human cells and tissues (a hypothesis)].

    PubMed

    Vanin, A F

    2004-01-01

    The hypothesis was advanced that dinitrosyl iron complexes generated in animal and human cells and tissues producing nitric oxide can function as endogenous universal regulators of biochemical and physiological processes. This function is realized by the ability of dinitrosyl iron complexes to act as donors of free nitric oxide molecules interacting with the heme groups of proteins, nitrosonium ions, or Fe+(NO+)2 interacting with the thiol groups of proteins. The effect of dinitrosyl iron complexes on the activity of some enzymes and the expression of the genome at the translation and transcription levels was considered.

  4. Mathematical model and coordination algorithms for ensuring complex security of an organization

    NASA Astrophysics Data System (ADS)

    Novoseltsev, V. I.; Orlova, D. E.; Dubrovin, A. S.; Irkhin, V. P.

    2018-03-01

    The mathematical model of coordination when ensuring complex security of the organization is considered. On the basis of use of a method of casual search three types of algorithms of effective coordination adequate to mismatch level concerning security are developed: a coordination algorithm at domination of instructions of the coordinator; a coordination algorithm at domination of decisions of performers; a coordination algorithm at parity of interests of the coordinator and performers. Assessment of convergence of the algorithms considered above it was made by carrying out a computing experiment. The described algorithms of coordination have property of convergence in the sense stated above. And, the following regularity is revealed: than more simply in the structural relation the algorithm, for the smaller number of iterations is provided to those its convergence.

  5. Synthesis, characterization and single crystal x-ray analysis of a complex of iron(II) bis(2,4-dimethylphenyl)dithiophosphate with 4-ethylpyridine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sandeep; Andotra, Savit; Kaur, Mandeep

    2016-09-15

    Complex of iron(II) bis(2,4-dimethylphenyl)dithiophosphate with 4-ethylpyridine [((2,4- (CH{sub 3}){sub 2}C{sub 6}H{sub 3}O)2PS2)2Fe(NC{sub 5}H{sub 4}(C{sub 2}H{sub 5})-4){sub 2}] is synthesized and characterized by elemental analysis, magnetic moment, IR spectroscopy and single crystal X-ray analysis. Complex crystallizes in the monoclinic sp. gr. P2{sub 1}/n, Z = 2. Crystal structure consists of mononuclear units with Fe(II) ion chelated by four S atoms of the two diphenyldithiophosphate ligands in bidentate manner. N atoms from two 4-ethylpyridine ligands are axially coordinated to the Fe(II) atom leading to an octahedral geometry.

  6. Visualizing the Reaction Cycle in an Iron(II)- and 2-(Oxo)-glutarate-Dependent Hydroxylase.

    PubMed

    Mitchell, Andrew J; Dunham, Noah P; Martinie, Ryan J; Bergman, Jonathan A; Pollock, Christopher J; Hu, Kai; Allen, Benjamin D; Chang, Wei-Chen; Silakov, Alexey; Bollinger, J Martin; Krebs, Carsten; Boal, Amie K

    2017-10-04

    Iron(II)- and 2-(oxo)-glutarate-dependent oxygenases catalyze diverse oxidative transformations that are often initiated by abstraction of hydrogen from carbon by iron(IV)-oxo (ferryl) complexes. Control of the relative orientation of the substrate C-H and ferryl Fe-O bonds, primarily by direction of the oxo group into one of two cis-related coordination sites (termed inline and offline), may be generally important for control of the reaction outcome. Neither the ferryl complexes nor their fleeting precursors have been crystallographically characterized, hindering direct experimental validation of the offline hypothesis and elucidation of the means by which the protein might dictate an alternative oxo position. Comparison of high-resolution X-ray crystal structures of the substrate complex, an Fe(II)-peroxysuccinate ferryl precursor, and a vanadium(IV)-oxo mimic of the ferryl intermediate in the l-arginine 3-hydroxylase, VioC, reveals coordinated motions of active site residues that appear to control the intermediate geometries to determine reaction outcome.

  7. Kinetic studies on the oxidation of oxyhemoglobin by biologically active iron thiosemicarbazone complexes: relevance to iron-chelator-induced methemoglobinemia.

    PubMed

    Basha, Maram T; Rodríguez, Carlos; Richardson, Des R; Martínez, Manuel; Bernhardt, Paul V

    2014-03-01

    The oxidation of oxyhemoglobin to methemoglobin has been found to be facilitated by low molecular weight iron(III) thiosemicarbazone complexes. This deleterious reaction, which produces hemoglobin protein units unable to bind dioxygen and occurs during the administration of iron chelators such as the well-known 3-aminopyridine-2-pyridinecarbaldehyde thiosemicarbazone (3-AP; Triapine), has been observed in the reaction with Fe(III) complexes of some members of the 3-AP structurally-related thiosemicarbazone ligands derived from di-2-pyridyl ketone (HDpxxT series). We have studied the kinetics of this oxidation reaction in vitro using human hemoglobin and found that the reaction proceeds with two distinct time-resolved steps. These have been associated with sequential oxidation of the two different oxyheme cofactors in the α and β protein chains. Unexpected steric and hydrogen-bonding effects on the Fe(III) complexes appear to be the responsible for the observed differences in the reaction rate across the series of HDpxxT ligand complexes used in this study.

  8. The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum: A membrane-bound complex oxidizing ferrous iron.

    PubMed

    Castelle, Cindy J; Roger, Magali; Bauzan, Marielle; Brugna, Myriam; Lignon, Sabrina; Nimtz, Manfred; Golyshina, Olga V; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2015-08-01

    The extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far. At present, little is known about the nature or the structural and functional organization of the proteins in F. acidiphilum that impact the iron biogeochemical cycle. We combine here biochemical and biophysical techniques such as enzyme purification, activity measurements, proteomics and spectroscopy to characterize the iron oxidation pathway(s) in F. acidiphilum. We isolated two respiratory membrane protein complexes: a 850 kDa complex containing an aa3-type cytochrome oxidase and a blue copper protein, which directly oxidizes ferrous iron and reduces molecular oxygen, and a 150 kDa cytochrome ba complex likely composed of a di-heme cytochrome and a Rieske protein. We tentatively propose that both of these complexes are involved in iron oxidation respiratory chains, functioning in the so-called uphill and downhill electron flow pathways, consistent with autotrophic life. The cytochrome ba complex could possibly play a role in regenerating reducing equivalents by a reverse ('uphill') electron flow. This study constitutes the first detailed biochemical investigation of the metalloproteins that are potentially directly involved in iron-mediated energy conservation in a member of the acidophilic archaea of the genus Ferroplasma. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The First Seven-Coordinated Triiodo Complex of Rhenium(III)

    NASA Astrophysics Data System (ADS)

    Schoultz, X.; Gerber, T. I. A.; Betz, R.; Hosten, E. C.

    2017-12-01

    The reaction of cis-[ReO2I(P Ph 3)2] with tert-butyl isocyanide in benzene led to the isolation of the complex [ReI3(CN- t-Bu)3(P Ph 3)] ( 1). The complex is unusual since it contains bulky ligands with large cone angles, i.e. three iodides, three isocyanides with tert-butyl groups and a triphenylphosphine as ligands in a seven-coordinate geometry around the rhenium(III) metal ion.

  10. Molecular design of cage iron(II) and cobalt(II,III) complexes with a second fluorine-enriched superhydrophobic shell.

    PubMed

    Belov, Alexander S; Zelinskii, Genrikh E; Varzatskii, Oleg A; Belaya, Irina G; Vologzhanina, Anna V; Dolganov, Alexander V; Novikov, Valentin V; Voloshin, Yan Z

    2015-02-28

    Pentafluorophenylboron-capped iron and cobalt(II) hexachloroclathrochelate precursors were obtained by the one-pot template condensation of dichloroglyoxime with pentafluorophenylboronic acid on iron and cobalt(II) ions under vigorous reaction conditions in trifluoroacetic acid media. These reactive precursors easily undergo nucleophilic substitution with (per)fluoroarylthiolate anions, giving (per)fluoroarylsulfide macrobicyclic complexes with encapsulated iron and cobalt(II) ions; nucleophilic substitution of the cobalt(II) hexachloroclathrochelate precursor with a pentafluorophenylsulfide anion gave the target hexasulfide monoclathrochelate and the mixed-valence Co(III)Co(II)Co(III) bis-clathrochelate as a side product. The complexes obtained were characterized using elemental analysis, MALDI-TOF mass spectrometry, IR, UV-Vis, (57)Fe Mössbauer (for the X-rayed iron complexes), (1)H, (11)B, (13)C and (19)F NMR spectroscopies and by X-ray diffraction; their redox and electrocatalytic behaviors were studied using cyclic voltammetry and gas chromatography. As can be seen from the single-crystal X-ray diffraction data, the second superhydrophobic shell of such caged metal ions is formed by fluorine atoms of both the apical and ribbed (per)fluoroaryl peripheral groups. The main bond distances and chelate N=C-C=N angles in their molecules are similar, but rotational elongation (contraction) along the molecular C3-pseudoaxes, accompanied by changes in the geometry of the corresponding MN6-coordination polyhedra from a trigonal prism to a trigonal antiprism, allowed encapsulating Fe(2+), Co(2+) and Co(3+) ions. The nature of an encapsulated metal ion and its oxidation state affect the M-N bond lengths, and, for cobalt(ii) clathrochelate with an electronic configuration d(7) the Jahn-Teller structural effect is observed as an alternation of the Co-N distances. Pentafluorophenylboron-capped hexachloroclathrochelate precursors, giving stable catalytically active metal

  11. Tuning the Redox Properties of a Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Zinc Ions by Water Molecules.

    PubMed

    Lee, Yong-Min; Bang, Suhee; Yoon, Heejung; Bae, Seong Hee; Hong, Seungwoo; Cho, Kyung-Bin; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2015-07-20

    Redox-inactive metal ions play important roles in tuning chemical properties of metal-oxygen intermediates. Herein we report the effect of water molecules on the redox properties of a nonheme iron(III)-peroxo complex binding redox-inactive metal ions. The coordination of two water molecules to a Zn(2+) ion in (TMC)Fe(III) -(O2 )-Zn(CF3 SO3 )2 (1-Zn(2+) ) decreases the Lewis acidity of the Zn(2+) ion, resulting in the decrease of the one-electron oxidation and reduction potentials of 1-Zn(2+) . This further changes the reactivities of 1-Zn(2+) in oxidation and reduction reactions; no reaction occurred upon addition of an oxidant (e.g., cerium(IV) ammonium nitrate (CAN)) to 1-Zn(2+) , whereas 1-Zn(2+) coordinating two water molecules, (TMC)Fe(III) -(O2 )-Zn(CF3 SO3 )2 -(OH2 )2 [1-Zn(2+) -(OH2 )2 ], releases the O2 unit in the oxidation reaction. In the reduction reactions, 1-Zn(2+) was converted to its corresponding iron(IV)-oxo species upon addition of a reductant (e.g., a ferrocene derivative), whereas such a reaction occurred at a much slower rate in the case of 1-Zn(2+) -(OH2 )2 . The present results provide the first biomimetic example showing that water molecules at the active sites of metalloenzymes may participate in tuning the redox properties of metal-oxygen intermediates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Tuning the Redox Properties of a Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Zinc Ions by Water Molecules

    DOE PAGES

    Lee, Yong-Min; Bang, Suhee; Yoon, Heejung; ...

    2015-06-19

    Here we report redox-inactive metal ions play important roles in tuning chemical properties of metal–oxygen intermediates. We describe the effect of water molecules on the redox properties of a nonheme iron(III)–peroxo complex binding redox-inactive metal ions. The coordination of two water molecules to a Zn 2+ ion in (TMC)Fe III-(O 2)-Zn(CF 3SO 3) 2 (1-Zn 2+) decreases the Lewis acidity of the Zn 2+ ion, resulting in the decrease of the one-electron oxidation and reduction potentials of 1-Zn 2+. This further changes the reactivities of 1-Zn 2+ in oxidation and reduction reactions; no reaction occurred upon addition of an oxidantmore » (e.g., cerium(IV) ammonium nitrate (CAN)) to 1-Zn 2+, whereas 1-Zn 2+ coordinating two water molecules, (TMC)Fe III-(O 2)-Zn(CF 3SO 3) 2-(OH 2) 2 [1-Zn 2+-(OH 2) 2], releases the O 2 unit in the oxidation reaction. In the reduction reactions, 1-Zn 2+ was converted to its corresponding iron(IV)–oxo species upon addition of a reductant (e.g., a ferrocene derivative), whereas such a reaction occurred at a much slower rate in the case of 1-Zn 2+-(OH 2) 2. Finally, the present results provide the first biomimetic example showing that water molecules at the active sites of metalloenzymes may participate in tuning the redox properties of metal–oxygen intermediates.« less

  13. The impact of ionic liquids on the coordination of anions with solvatochromic copper complexes.

    PubMed

    Kuzmina, O; Hassan, N H; Patel, L; Ashworth, C; Bakis, E; White, A J P; Hunt, P A; Welton, T

    2017-09-28

    Solvatochromic transition metal (TM)-complexes with weakly associating counter-anions are often used to evaluate traditional neutral solvent and anion coordination ability. However, when employed in ionic liquids (IL) many of the common assumptions made are no longer reliable. This study investigates the coordinating ability of weakly coordinating IL anions in traditional solvents and within IL solvents employing a range of solvatochromic copper complexes. Complexes of the form [Cu(acac)(tmen)][X] (acac = acetylacetonate, tmen = tetramethylethylenediamine) where [X] - = [ClO 4 ] - , Cl - , [NO 3 ] - , [SCN] - , [OTf] - , [NTf 2 ] - and [PF 6 ] - have been synthesised and characterised both experimentally and computationally. ILs based on these anions and imidazolium and pyrrolidinium cations, some of which are functionalised with hydroxyl and nitrile groups, have been examined. IL-anion coordination has been investigated and compared to typical weakly coordinating anions. We have found there is potential for competition at the Cu-centre and cases of anions traditionally assigned as weakly associating that demonstrate a stronger than expected level of coordinating ability within ILs. [Cu(acac)(tmen)][PF 6 ] is shown to contain the least coordinating anion and is established as the most sensitive probe studied here. Using this probe, the donor numbers (DNs) of ILs have been determined. Relative donor ability is further confirmed based on the UV-Vis of a neutral complex, [Cu(sacsac) 2 ] (sacsac = dithioacetylacetone), and DNs evaluated via 23 Na NMR spectroscopy. We demonstrate that ILs can span a wide donor range, similar in breadth to conventional solvents.

  14. Autocatalytic formation of an iron(IV)-oxo complex via scandium ion-promoted radical chain autoxidation of an iron(II) complex with dioxygen and tetraphenylborate.

    PubMed

    Nishida, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Fukuzumi, Shunichi

    2014-06-04

    A non-heme iron(IV)-oxo complex, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), was formed by oxidation of an iron(II) complex ([(TMC)Fe(II)](2+)) with dioxygen (O2) and tetraphenylborate (BPh4(-)) in the presence of scandium triflate (Sc(OTf)3) in acetonitrile at 298 K via autocatalytic radical chain reactions rather than by a direct O2 activation pathway. The autocatalytic radical chain reaction is initiated by scandium ion-promoted electron transfer from BPh4(-) to [(TMC)Fe(IV)(O)](2+) to produce phenyl radical (Ph(•)). The chain propagation step is composed of the addition of O2 to Ph(•) and the reduction of the resulting phenylperoxyl radical (PhOO(•)) by scandium ion-promoted electron transfer from BPh4(-) to PhOO(•) to produce phenyl hydroperoxide (PhOOH), accompanied by regeneration of phenyl radical. PhOOH reacts with [(TMC)Fe(II)](2+) to yield phenol (PhOH) and [(TMC)Fe(IV)(O)](2+). Biphenyl (Ph-Ph) was formed via the radical chain autoxidation of BPh3 by O2. The induction period of the autocatalytic radical chain reactions was shortened by addition of a catalytic amount of [(TMC)Fe(IV)(O)](2+), whereas addition of a catalytic amount of ferrocene that can reduce [(TMC)Fe(IV)(O)](2+) resulted in elongation of the induction period. Radical chain autoxidation of BPh4(-) by O2 also occurred in the presence of Sc(OTf)3 without [(TMC)Fe(IV)(O)](2+), initiating the autocatalytic oxidation of [(TMC)Fe(II)](2+) with O2 and BPh4(-) to yield [(TMC)Fe(IV)(O)](2+). Thus, the general view for formation of non-heme iron(IV)-oxo complexes via O2-binding iron species (e.g., Fe(III)(O2(•-))) without contribution of autocatalytic radical chain reactions should be viewed with caution.

  15. Retardation of iron-cyanide complexes in the soil of a former manufactured gas plant site.

    PubMed

    Sut, Magdalena; Repmann, Frank; Raab, Thomas

    2015-01-01

    The soil in the vicinities of former Manufactured Gas Plant (MGP) sites is commonly contaminated with iron-cyanide complexes (ferric ferrocyanide). The phenomenon of cyanide mobility in soil, according to the literature, is mainly governed by the dissolution and precipitation of ferric ferrocyanide, which is only slightly soluble (<1 mg L(-1)) under acidic conditions. In this paper, retention properties of the sandy loam soil and the potential vertical movement of the solid iron-cyanide complexes, co-existing with the dissolution, sorption and precipitation reactions were investigated. Preliminary research conducted on a former MGP site implied colloidal transport of ferric ferricyanide from the initial deposition in the wastes layer towards the sandy loam material (secondary accumulation), which possibly retarded the mobility of cyanide (CN). A series of batch and column experiments were applied in order to investigate the retardation of iron-cyanide complexes by the sandy loam soil. Batch experiments revealed that in circumneutral pH conditions sandy loam material decreases the potassium ferro- and ferricyanide concentration. In column experiments a minor reduction in CN concentration was observed prior to addition of iron sulfide (FeS) layer, which induced the formation of the Prussian blue colloids in circumneutral pH conditions. Precipitated solid iron-cyanide complexes were mechanically filtered by the coherent structure of the investigated soil. Additionally, the reduction of the CN concentration of the percolation solutions by the sandy loam soil was presumably induced due to the formation of potassium manganese iron-cyanide (K2Mn[Fe(CN)6]).

  16. ON THE RELATIVE STABILITY OF ALUMINUM, TITANIUM, VANADIUM, IRON, AND COPPER TARTRATE COMPLEXES IN ALKALI MEDIA (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyatnitskii, I.V.; Kostyshina, A.P.

    1959-06-01

    The stability of aluminum, copper, iron, titunium, and vanadium tartrate complexes was determined using bond magnitudes as criteria (the ratio between the concentrations of complexed and free ions at a certain standard acid condition). A method is suggested for determining the ratio of the bonds combining the complexes of two metals. The partition constaats of aluminum, copper, iron(III), and vanadium hydroxyquinolinates between the aqueous solution and chloroform were 2.6 x 10/sup -33/, 7.3 x 10/sup -23/, 1.5 x 10/sup -37/, and 4.2 x 10/sup -23/, respectively. The relative stability of copper and iron turtrate complexes in alkali solution (pH 13)more » and aluminum, iron(III), titunium, and vanadium(IV) tartrate complexes in ammonium solution (pH 9.5) was determined. (R.V.J.)« less

  17. Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials.

    PubMed

    Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan

    2011-12-23

    Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Reaction of an Iron(IV) Nitrido Complex with Cyclohexadienes: Cycloaddition and Hydrogen-Atom Abstraction

    PubMed Central

    2015-01-01

    The iron(IV) nitrido complex PhB(MesIm)3Fe≡N reacts with 1,3-cyclohexadiene to yield the iron(II) pyrrolide complex PhB(MesIm)3Fe(η5-C4H4N) in high yield. The mechanism of product formation is proposed to involve sequential [4 + 1] cycloaddition and retro Diels–Alder reactions. Surprisingly, reaction with 1,4-cyclohexadiene yields the same iron-containing product, albeit in substantially lower yield. The proposed reaction mechanism, supported by electronic structure calculations, involves hydrogen-atom abstraction from 1,4-cyclohexadiene to provide the cyclohexadienyl radical. This radical is an intermediate in substrate isomerization to 1,3-cyclohexadiene, leading to formation of the pyrrolide product. PMID:25068927

  19. Experimental study of iron-chloride complexing in hydrothermal fluids

    USGS Publications Warehouse

    Fein, J.B.; Hemley, J.J.; d'Angelo, W. M.; Komninou, A.; Sverjensky, D.A.

    1992-01-01

    Mineral assemblage solubilities were measured in cold-seal pressure vessels as a function of pressure, temperature, and potassium chloride concentration in order to determine the nature and thermodynamic properties of iron-chloride complexes under hydrothermal conditions. The assemblage pyritepyrrhotite-magnetite was used to buffer f{hook}S2 and f{hook}O2, and K+ H+ ratios were buffered at reasonable geologic values using the assemblage potassium feldspar-muscovite (or andalusite)-quartz. The pressure-temperature ranges were 0.5-2.0 kbar and 300-600??C, and initial fluid compositions ranged from 0.01-2.0 molal KCl. With all other factors constant, the concentration of iron in solution increases with increasing temperature, with decreasing pressure, and with increasing total potassium chloride concentration. Changes in iron concentrations as a function of KCl concentration, in conjunction with charge balance, mass action, and mass balance constraints on the system, place constraints on the stoichiometry of the important iron-chloride complexes under each of the experimental conditions. Using least-squared linear regression fits to determine these slopes, the calculations yield values for the average ligand numbers that are in the range 1.2-1.9, with uncertainties ranging from ??0.1-0.6 at the several PT conditions considered. The slopes of the regressed fits to the data suggest that both FeCl+ and FeCl20 are important in the experimental fluids, with FeCl20 becoming dominant at the higher temperatures. Theoretical calculations, however, indicate that FeCl+ does not contribute significantly to the solubility. Because of the large uncertainties associated with some of the calculated average ligand numbers, we base our data analysis on the theoretical calculations. A statistical analysis is applied to the solubility data in order to determine the values and uncertainties of the dissociation constant for FeCl20 that best fit the data at each of the experimental

  20. New insights into iron acquisition by cyanobacteria: an essential role for ExbB-ExbD complex in inorganic iron uptake

    PubMed Central

    Jiang, Hai-Bo; Lou, Wen-Jing; Ke, Wen-Ting; Song, Wei-Yu; Price, Neil M; Qiu, Bao-Sheng

    2015-01-01

    Cyanobacteria are globally important primary producers that have an exceptionally large iron requirement for photosynthesis. In many aquatic ecosystems, the levels of dissolved iron are so low and some of the chemical species so unreactive that growth of cyanobacteria is impaired. Pathways of iron uptake through cyanobacterial membranes are now being elucidated, but the molecular details are still largely unknown. Here we report that the non-siderophore-producing cyanobacterium Synechocystis sp. PCC 6803 contains three exbB-exbD gene clusters that are obligatorily required for growth and are involved in iron acquisition. The three exbB-exbDs are redundant, but single and double mutants have reduced rates of iron uptake compared with wild-type cells, and the triple mutant appeared to be lethal. Short-term measurements in chemically well-defined medium show that iron uptake by Synechocystis depends on inorganic iron (Fe′) concentration and ExbB-ExbD complexes are essentially required for the Fe′ transport process. Although transport of iron bound to a model siderophore, ferrioxamine B, is also reduced in the exbB-exbD mutants, the rate of uptake at similar total [Fe] is about 800-fold slower than Fe′, suggesting that hydroxamate siderophore iron uptake may be less ecologically relevant than free iron. These results provide the first evidence that ExbB-ExbD is involved in inorganic iron uptake and is an essential part of the iron acquisition pathway in cyanobacteria. The involvement of an ExbB-ExbD system for inorganic iron uptake may allow cyanobacteria to more tightly maintain iron homeostasis, particularly in variable environments where iron concentrations range from limiting to sufficient. PMID:25012898

  1. Deferasirox-Iron Complex Formation Ratio as an Indicator of Long-term Chelation Efficacy in β-Thalassemia Major.

    PubMed

    Lu, Meng-Yao; Lin, Ting-Hao; Chiang, Po-Hung; Kuo, Pei-Hsin; Wang, Ning; Wu, Wen-Hsin; Lin, Kai-Hsin; Wu, Tzu-Hua

    2017-04-01

    β-Thalassemia major patients with higher total drug levels [deferasirox (DEFR) plus its iron complex] do not yield better serum ferritin (SF) control. This study aimed to determine the concentrations of DEFR and its iron complex (Fe-[DEFR]2) in thalassemia patients to predict the chelation efficacy in terms of SF and cardiac T2* values. Patients' steady-state drug levels at trough (Ctrough) and 2 hours postdose (C2h) were determined. Because iron deposition may cause changes in the hepatic metabolism of amino acids, the concentrations of 40 amino acids in plasma were also assayed at 2 hours postdose. A total of 28 patients either dosing daily or twice daily were recruited. After a 1-month DEFR maintenance therapy, 38.8% and 30% of patients from groups of once-daily and twice-daily, respectively, had a plasma DEFR-iron complex formation ratio higher than 0.05 [High Chelation Ratio, (HCR)]. After a 6-month follow-up, those patients who had a HCR (n = 10) at C2h showed more favorable median changes in SF and cardiac T2* values (-388.0, +10.1) than those with a low DEFR-iron complex formation ratio (Low Chelation Ratio; n = 18; +10.5; +4.5) compared with the baseline. The levels of plasma L-arginine, L-alanine, L-glycine, L-norleucine, and L-serine were significantly lower in patients with the low Chelation Ratio condition than the levels in HCR patients. This therapeutic drug monitoring study revealed that a DEFR-iron complex formation ratio at C2h might be an applicable indicator of the efficacy of long-term DEFR iron chelation therapy. A better iron-control response to DEFR was observed in the patients with HCRs. The trends for the ratio might have value in dose-setting and need to be validated in a larger cohort.

  2. Polyaminoquinoline iron chelators for vectorization of antiproliferative agents: design, synthesis, and validation.

    PubMed

    Corcé, Vincent; Morin, Emmanuelle; Guihéneuf, Solène; Renault, Eric; Renaud, Stéphanie; Cannie, Isabelle; Tripier, Raphaël; Lima, Luís M P; Julienne, Karine; Gouin, Sébastien G; Loréal, Olivier; Deniaud, David; Gaboriau, François

    2012-09-19

    Iron chelation in tumoral cells has been reported as potentially useful during antitumoral treatment. Our aim was to develop new polyaminoquinoline iron chelators targeting tumoral cells. For this purpose, we designed, synthesized, and evaluated the biological activity of a new generation of iron chelators, which we named Quilamines, based on an 8-hydroxyquinoline (8-HQ) scaffold linked to linear polyamine vectors. These were designed to target tumor cells expressing an overactive polyamine transport system (PTS). A set of Quilamines bearing variable polyamine chains was designed and assessed for their ability to interact with iron. Quilamines were also screened for their cytostatic/cytotoxic effects and their selective uptake by the PTS in the CHO cell line. Our results show that both the 8-HQ moiety and the polyamine part participate in the iron coordination. HQ1-44, the most promising Quilamine identified, presents a homospermidine moiety and was shown to be highly taken up by the PTS and to display an efficient antiproliferative activity that occurred in the micromolar range. In addition, cytotoxicity was only observed at concentrations higher than 100 μM. We also demonstrated the high complexation capacity of HQ1-44 with iron while much weaker complexes were formed with other cations, indicative of a high selectivity. We applied the density functional theory to study the binding energy and the electronic structure of prototypical iron(III)-Quilamine complexes. On the basis of these calculations, Quilamine HQ1-44 is a strong tridentate ligand for iron(III) especially in the form of a 1:2 complex.

  3. Pentachlorophenol dechlorination with zero valent iron: a Raman and GCMS study of the complex role of surficial iron oxides.

    PubMed

    Gunawardana, Buddhika; Swedlund, Peter J; Singhal, Naresh; Nieuwoudt, Michel K

    2018-04-20

    The dechlorination of chlorinated organic pollutants by zero valent iron (ZVI) is an important water treatment process with a complex dependence on many variables. This complexity means that there are reported inconsistencies in terms of dechlorination with ZVI and the effect of ZVI acid treatment, which are significant and are as yet unexplained. This study aims to decipher some of this complexity by combining Raman spectroscopy with gas chromatography-mass spectrometry (GC-MS) to investigate the influence of the mineralogy of the iron oxide phases on the surface of ZVI on the reductive dechlorination of pentachlorophenol (PCP). Two electrolytic iron samples (ZVI-T and ZVI-H) were found to have quite different PCP dechlorination reactivity in batch reactors under anoxic conditions. Raman analysis of the "as-received" ZVI-T indicated the iron was mainly covered with the ferrous oxide (FeO) wustite, which is non-conducting and led to a low rate of PCP dechlorination. In contrast, the dominant oxide on the "as-received" ZVI-H was magnetite which is conducting and, compared to ZVI-T, the ZVI-H rate of PCP dechlorination was four times faster. Treating the ZVI-H sample with 1 N H 2 SO 4 made small change to the composition of the oxide layers and also minute change to the rate of PCP dechlorination. However, treating the ZVI-T sample with H 2 SO 4 led to the loss of wustite so that magnetite became the dominant oxide and the rate of PCP dechlorination increased to that of the ZVI-H material. In conclusion, this study clearly shows that iron oxide mineralogy can be a contributing factor to apparent inconsistencies in the literature related to ZVI performance towards dechlorination and the effect of acid treatment on ZVI reactivity.

  4. Vertical movement of iron-cyanide complexes in soils of a former Manufactured Gas Plant site

    NASA Astrophysics Data System (ADS)

    Sut, Magdalena; Repmann, Frank; Raab, Thomas

    2015-04-01

    In Germany, soil and groundwater at more than a thousand sites are contaminated with iron-cyanide complexes. These contaminations originate from the gas purification process that was conducted in Manufactured Gas Plants (MGP). The phenomenon of iron-cyanide complexes mobility in soil, according to the literature, is mainly governed by the dissolution and precipitation of ferric ferrocyanide, which is only slightly soluble (< 1 mg L-1) under acidic conditions. This study suggests vertical transport of a colloidal ferric ferrocyanide, in the excess of iron and circum-neutral pH conditions, as an alternative process that influences the retardation of the pollutant movement through the soil profile. Preliminary in situ investigations of the two boreholes implied transport of ferric ferricyanide from the initial deposition in the wastes layer towards the sandy loam material (secondary accumulation), which possibly retarded the mobility of cyanide (CN). The acidic character of the wastes and the accumulation of the blue patches suggested the potential filter function of a sandy loam material due to colloidal transport of the ferric ferricyanide. Series of batch and column experiments, using sandy loam soil, revealed reduction of CN concentration due to mechanical filtration of precipitated solid iron-cyanide complexes and due to the formation of potassium manganese iron-cyanide (K2Mn[Fe(CN)6]).

  5. Micro practices of coordination based on complex adaptive systems: user needs and strategies for coordinating public health in Denmark.

    PubMed

    Terkildsen, Morten Deleuran; Wittrup, Inge; Burau, Viola

    2015-01-01

    Many highly formalised approaches to coordination poorly fit public health and recent studies call for coordination based on complex adaptive systems. Our contribution is two-fold. Empirically, we focus on public health, and theoretically we build on the patient perspective and treat coordination as a process of contingent, two-level negotiations of user needs. The paper draws on the concept of user needs-based coordination and sees coordination as a process, whereby needs emerging from the life world of the user are made amenable to the health system through negotiations. The analysis is based on an explorative case study of a health promotion initiative in Denmark. It adopts an anthropological qualitative approach and uses a range of qualitative data. The analysis identifies four strategies of coordination: the coordinator focusing on the individual user or on relations with other professionals; and the manager coaching the coordinator or providing structural support. Crucially, the coordination strategies by management remain weak as they do not directly relate to specific user needs. In process of bottom-up negotiations user needs become blurred and this is especially a challenge for management. The study therefore calls for an increased focus on the level nature of negotiations to bridge the gap that currently weakens coordination strategies by management.

  6. Lanthanide complex coordination polyhedron geometry prediction accuracies of ab initio effective core potential calculations.

    PubMed

    Freire, Ricardo O; Rocha, Gerd B; Simas, Alfredo M

    2006-03-01

    lanthanide coordination compounds efficiently and accurately is central for the design of new ligands capable of forming stable and highly luminescent complexes. Accordingly, we present in this paper a report on the capability of various ab initio effective core potential calculations in reproducing the coordination polyhedron geometries of lanthanide complexes. Starting with all combinations of HF, B3LYP and MP2(Full) with STO-3G, 3-21G, 6-31G, 6-31G* and 6-31+G basis sets for [Eu(H2O)9]3+ and closing with more manageable calculations for the larger complexes, we computed the fully predicted ab initio geometries for a total of 80 calculations on 52 complexes of Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III) and Tm(III), the largest containing 164 atoms. Our results indicate that RHF/STO-3G/ECP appears to be the most efficient model chemistry in terms of coordination polyhedron crystallographic geometry predictions from isolated lanthanide complex ion calculations. Moreover, both augmenting the basis set and/or including electron correlation generally enlarged the deviations and aggravated the quality of the predicted coordination polyhedron crystallographic geometry. Our results further indicate that Cosentino et al.'s suggestion of using RHF/3-21G/ECP geometries appears to be indeed a more robust, but not necessarily, more accurate recommendation to be adopted for the general lanthanide complex case. [Figure: see text].

  7. Hypotensive Effect and Accumulation of Dinitrosyl Iron Complexes in Blood and Tissues after Intravenous and Subcutaneous Injection.

    PubMed

    Timoshin, A A; Lakomkin, V L; Abramov, A A; Ruuge, E K; Vanin, A F

    2016-12-01

    Subcutaneous injection of Oxacom with glutathione-bound dinitrosyl iron complex as the active principle produced a slower drop of mean BP and longer accumulation of protein-bound dinitrosyl iron complexes in whole blood and tissues than intravenous injection of this drug, while durations of hypotensive effect in both cases were practically identical. In contrast to intravenous injection of the drug, its subcutaneous administration was not characterized by a high concentration of protein-bound dinitrosyl iron complexes in the blood at the onset of experiment; in addition, accumulation of these NO forms in the lungs was more pronounced after subcutaneous injection than after intravenous one.

  8. Thiolate-bridged dinuclear ruthenium and iron complexes as robust and efficient catalysts toward oxidation of molecular dihydrogen in protic solvents.

    PubMed

    Yuki, Masahiro; Sakata, Ken; Hirao, Yoshifumi; Nonoyama, Nobuaki; Nakajima, Kazunari; Nishibayashi, Yoshiaki

    2015-04-01

    Thiolate-bridged dinuclear ruthenium and iron complexes are found to work as efficient catalysts toward oxidation of molecular dihydrogen in protic solvents such as water and methanol under ambient reaction conditions. Heterolytic cleavage of the coordinated molecular dihydrogen at the dinuclear complexes and the sequential oxidation of the produced hydride complexes are involved as key steps to promote the present catalytic reaction. The catalytic activity of the dinuclear complexes toward the chemical oxidation of molecular dihydrogen achieves up to 10000 TON (turnover number), and electrooxidation of molecular dihydrogen proceeds quite rapidly. The result of the density functional theory (DFT) calculation on the reaction pathway indicates that a synergistic effect between the two ruthenium atoms plays an important role to realize the catalytic oxidation of molecular dihydrogen efficiently. The present dinuclear ruthenium complex is found to work as an efficient organometallic anode catalyst for the fuel cell. It is noteworthy that the present dinuclear complex worked not only as an effective catalyst toward chemical and electrochemical oxidation of molecular dihydrogen but also as a good anode catalyst for the fuel cell. We consider that the result described in this paper provides useful and valuable information to develop highly efficient and low-cost transition metal complexes as anode catalysts in the fuel cell.

  9. Seventeen-Coordinate Actinide Helium Complexes.

    PubMed

    Kaltsoyannis, Nikolas

    2017-06-12

    The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe 17 3+ , ThHe 17 4+ , and PaHe 17 4+ are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHe n 3+ (n=1-17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge-induced dipole bonding. Excellent correlations (R 2 >0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac-He distances, and also with the incremental He binding energies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. QM/MM structural and spectroscopic analysis of the di-iron(II) and di-iron(III) ferroxidase site in M ferritin.

    PubMed

    Harris, Travis V; Morokuma, Keiji

    2013-08-05

    Ferritins are cage-like proteins composed of 24 subunits that take up iron(II) and store it as an iron(III) oxide mineral core. A critical step is the ferroxidase reaction, in which oxygen reacts with a di-iron(II) site, proceeding through a peroxo intermediate, to form μ-oxo/hydroxo-bridged di-iron(III) products. The recent crystal structures of copper(II)- and iron(III)-bound frog M ferritin at 2.8 Å resolution [Bertini; et al. J. Am. Chem. Soc. 2012, 134, 6169-6176] provided an opportunity to theoretically investigate the detailed structures of the reactant state and products. In this study, the quantum mechanical/molecular mechanical ONIOM method is used to structurally optimize a series of single-subunit models with various hydration, protonation, and coordination states of the ferroxidase site. Calculated exchange coupling constants (J), Mössbauer parameters, and time-dependent density functional theoretical (TD-DFT) circular dichroism spectra with electronic embedding are compared with the available experimental data. The di-iron(II) model with the most experimentally consistent structural and spectroscopic parameters has 5-coordinate iron centers with Glu23, Glu58, His61, and two waters completing one coordination sphere, and His54, Glu58, Glu103, and Asp140 completing the other. In contrast to a previously proposed structure, Gln137 is not directly coordinated, but it is involved in hydrogen bonding with several iron ligands. For the di-iron(III) products, we find that a μ-oxo-bridged and two doubly bridged (μ-hydroxo and μ-oxo/hydroxo) species are likely coproduced. Although four quadrupole doublets were observed experimentally, we find that two doublets may arise from a single asymmetrically coordinated ferroxidase site. These proposed key structures will help to explore the pathway connecting the di-Fe(II) state to the peroxo intermediate and the branching mechanisms leading to the multiple products.

  11. Coordination Chemistry of Homoleptic Actinide(IV)-Thiocyanate Complexes

    DOE PAGES

    Carter, Tyler J.; Wilson, Richard E.

    2015-09-10

    Here, the synthesis, X-ray crystal structure, vibrational and optical spectroscopy for the eight-coordinate thiocyanate compounds, [Et 4N] 4[Pu IV(NCS) 8], [Et 4N] 4[Th IV(NCS) 8], and [Et 4N] 4[Ce III(NCS) 7(H 2O)] are reported. Thiocyanate was found to rapidly reduce plutonium to Pu III in acidic solutions (pH<1) in the presence of NCS –. The optical spectrum of [Et 4N][SCN] containing Pu III solution was indistinguishable from that of aquated Pu III suggesting that inner-sphere complexation with [Et 4N][SCN] does not occur in water. However, upon concentration, the homoleptic thiocyanate complex [Et 4N] 4[Pu IV(NCS) 8] was crystallized when amore » large excess of [Et 4N][NCS] was present. This compound, along with its U IV analogue, maintains inner-sphere thiocyanate coordination in acetonitrile based on the observation of intense ligand-to-metal charge-transfer bands. Spectroscopic and crystallographic data do not support the interaction of the metal orbitals with the ligand π system, but support an enhanced An IV–NCS interaction, as the Lewis acidity of the metal ion increases from Th to Pu.« less

  12. Spectroscopic investigation and direct comparison of the reactivities of iron pyridyl oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Song, Yang; Mayes, Howard G.; Queensen, Matthew J.; Bauer, Eike B.; Dupureur, Cynthia M.

    2017-03-01

    The growing interest in green chemistry has fueled attention to the development and characterization of effective iron complex oxidation catalysts. A number of iron complexes are known to catalyze the oxidation of organic substrates utilizing peroxides as the oxidant. Their development is complicated by a lack of direct comparison of the reactivities of the iron complexes. To begin to correlate reactivity with structural elements, we compare the reactivities of a series of iron pyridyl complexes toward a single dye substrate, malachite green (MG), for which colorless oxidation products are established. Complexes with tetradentate, nitrogen-based ligands with cis open coordination sites were found to be the most reactive. While some complexes reflect sensitivity to different peroxides, others are similarly reactive with either H2O2 or tBuOOH, which suggests some mechanistic distinctions. [Fe(S,S-PDP)(CH3CN)2](SbF6)2 and [Fe(OTf)2(tpa)] transition under the oxidative reaction conditions to a single intermediate at a rate that exceeds dye degradation (PDP = bis(pyridin-2-ylmethyl) bipyrrolidine; tpa = tris(2-pyridylmethyl)amine). For the less reactive [Fe(OTf)2(dpa)] (dpa = dipicolylamine), this reaction occurs on a timescale similar to that of MG oxidation. Thus, the spectroscopic method presented herein provides information about the efficiency and mechanism of iron catalyzed oxidation reactions as well as about potential oxidative catalyst decomposition and chemical changes of the catalyst before or during the oxidation reaction.

  13. Iron-sulfur Proteins Are the Major Source of Protein-bound Dinitrosyl Iron Complexes Formed in Escherichia coli Cells under Nitric Oxide Stress

    PubMed Central

    Landry, Aaron P.; Duan, Xuewu; Huang, Hao; Ding, Huangen

    2011-01-01

    Protein-bound dinitrosyl iron complexes (DNICs) have been observed in prokaryotic and eukaryotic cells under nitric oxide (NO) stress. The identity of proteins that bind DNICs, however, still remains elusive. Here we demonstrate that iron-sulfur proteins are the major source of protein-bound DNICs formed in Escherichia coli cells under NO stress. Expression of recombinant iron-sulfur proteins, but not the proteins without iron-sulfur clusters, almost doubles the amount of protein-bound DNICs formed in E. coli cells after NO exposure. Purification of recombinant proteins from the NO-exposed E. coli cells further confirms that iron-sulfur proteins, but not the proteins without iron-sulfur clusters, are modified forming protein-bound DINCs. Deletion of the iron-sulfur cluster assembly proteins IscA and SufA to block the [4Fe-4S] cluster biogenesis in E. coli cells largely eliminates the NO-mediated formation of protein-bound DNICs, suggesting that iron-sulfur clusters are mainly responsible for the NO-mediated formation of protein-bound DNICs in cells. Furthermore, depletion of “chelatable iron pool” in the wild-type E. coli cells effectively removes iron-sulfur clusters from proteins and concomitantly diminishes the NO-mediated formation of protein-bound DNICs, indicating that iron-sulfur clusters in proteins constitute at least part of “chelatable iron pool” in cells. PMID:21420489

  14. SREBP Coordinates Iron and Ergosterol Homeostasis to Mediate Triazole Drug and Hypoxia Responses in the Human Fungal Pathogen Aspergillus fumigatus

    PubMed Central

    Willger, Sven D.; Beckmann, Nicola; Blosser, Sara J.; Cornish, Elizabeth J.; Mazurie, Aurelien; Grahl, Nora; Haas, Hubertus; Cramer, Robert A.

    2011-01-01

    Sterol regulatory element binding proteins (SREBPs) are a class of basic helix-loop-helix transcription factors that regulate diverse cellular responses in eukaryotes. Adding to the recognized importance of SREBPs in human health, SREBPs in the human fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus are required for fungal virulence and susceptibility to triazole antifungal drugs. To date, the exact mechanism(s) behind the role of SREBP in these observed phenotypes is not clear. Here, we report that A. fumigatus SREBP, SrbA, mediates regulation of iron acquisition in response to hypoxia and low iron conditions. To further define SrbA's role in iron acquisition in relation to previously studied fungal regulators of iron metabolism, SreA and HapX, a series of mutants were generated in the ΔsrbA background. These data suggest that SrbA is activated independently of SreA and HapX in response to iron limitation, but that HapX mRNA induction is partially dependent on SrbA. Intriguingly, exogenous addition of high iron or genetic deletion of sreA in the ΔsrbA background was able to partially rescue the hypoxia growth, triazole drug susceptibility, and decrease in ergosterol content phenotypes of ΔsrbA. Thus, we conclude that the fungal SREBP, SrbA, is critical for coordinating genes involved in iron acquisition and ergosterol biosynthesis under hypoxia and low iron conditions found at sites of human fungal infections. These results support a role for SREBP–mediated iron regulation in fungal virulence, and they lay a foundation for further exploration of SREBP's role in iron homeostasis in other eukaryotes. PMID:22144905

  15. The coordination- and photochemistry of copper(i) complexes: variation of N^N ligands from imidazole to tetrazole.

    PubMed

    Bergmann, Larissa; Braun, Carolin; Nieger, Martin; Bräse, Stefan

    2018-01-02

    The prediction of coordination modes is of high importance when structure-property relationships are discussed. Herein, the coordination chemistry of copper(i) with pyridine-amines with a varying number of coordinating N-atoms, namely pyridine-benzimidazole, -triazole and -tetrazole, or their deprotonated analogues, and different phosphines was systematically studied and the photoluminescence properties of all synthesized complexes examined and related to DFT data. Each complex was characterized by single-crystal X-ray analysis and elemental analysis, and a set of prediction rules derived for the coordination chemistry of copper(i) with these ligands. A mononuclear cationic coordination motif was found for PPh 3 or DPEPhos with all N^N ligands, which exhibits blue to green luminescence of MLCT character d(Cu) → π*(pyridine-amine ligand) with quantum yields up to 46%. With the deprotonated N^N ligands, mononuclear neutral complexes were only expected with DPEPhos. The emission's nature of this complex type is strongly dependent on the electronic effects of the N^N ligand and was characterized as (ML + IL)CT transition. In contrast to the high quantum yields up to 78% for the tetrazolate complexes (as reported before), the triazolate and imidazolate based complexes show much lower emission efficiencies below 10%. Besides the mononuclear copper(i) complexes, cluster-type complexes were obtained, which show moderate luminescence in the blue to green region of the visible spectrum (469-505 nm).

  16. Growth, structural, optical, thermal and dielectric properties of lanthanum chloride—thiourea—L tartaric acid coordinated complex

    NASA Astrophysics Data System (ADS)

    Slathia, Goldy; Bamzai, K. K.

    2017-11-01

    Lanthanum chloride—thiourea—l tartaric acid coordinated complex was grown in the form of single crystal by slow evaporation of supersaturated solutions at room temperature. This coordinated complex crystallizes in orthorhombic crystal system having space group P nma. The crystallinity and purity was tested by powder x-ray diffraction. Fourier transform infra red and Raman spectroscopy analysis provide the evidences on structure and mode of coordination. The scanning electron microscopy (SEM) analysis shows the morphology evolution as brought by the increase in composition of lanthanum chloride. The band transitions due to C=O and C=S chromophores remain active in grown complexes and are recorded in the UV-vis optical spectrum. The thermal effects such as dehydration, melting and decomposition were observed by the thermogravimetric and differential thermo analytical (TGA/DTA) analysis. Electrical properties were studied by dielectric analysis in frequency range 100-30 MHz at various temperatures. Increase in values of dielectric constant was observed with change in lanthanum concentration in the coordinated complex.

  17. Acquisition of haemoglobin-bound iron by strains of the Actinobacillus minor/"porcitonsillarum" complex.

    PubMed

    Arya, Gitanjali; Niven, Donald F

    2011-03-24

    Members of the Actinobacillus minor/"porcitonsillarum" complex are common inhabitants of the swine respiratory tract. Although avirulent or of low virulence for pigs, these organisms, like pathogens, do grow in vivo and must, therefore, be able to acquire iron within the host. Here, we investigated the abilities of six members of the A. minor/"porcitonsillarum" complex to acquire iron from transferrin and various haemoglobins. Using growth assays, all six strains were shown to acquire iron from porcine, bovine and human haemoglobins but not from porcine transferrin. Analyses of whole genome sequences revealed that A. minor strains NM305(T) and 202, unlike the swine-pathogenic actinobacilli, A. pleuropneumoniae and A. suis, lack not only the transferrin-binding protein genes, tbpA and tbpB, but also the haemoglobin-binding protein gene, hgbA. Strains NM305(T) and 202, however, were found to possess other putative haemin/haemoglobin-binding protein genes that were predicted to encode mature proteins of ∼ 72 and ∼ 75 kDa, respectively. An affinity procedure based on haemin-agarose allowed the isolation of ∼ 65 and ∼ 67 kDa iron-repressible outer membrane polypeptides from membranes derived from strains NM305(T) and 202, respectively, and mass spectrometry revealed that these polypeptides were the products of the putative haemin/haemoglobin-binding protein genes. PCR approaches allowed the amplification and sequencing of homologues of both haemin/haemoglobin-binding protein genes from each of the other four strains, strains 33PN and 7ATS of the A. minor/"porcitonsillarum" complex and "A. porcitonsillarum" strains 9953L55 and 0347, suggesting that such proteins are involved in the utilization of haemoglobin-bound iron, presumably as surface receptors, by all six strains investigated. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide-natural organic matter complexes.

    PubMed

    Yan, Jinlong; Jiang, Tao; Yao, Ying; Wang, Jun; Cai, Yuanli; Green, Nelson W; Wei, Shiqiang

    2017-05-01

    The phosphorus (P) fraction distribution and formation mechanism in the supernatant after P adsorption onto iron oxides and iron oxide-humic acid (HA) complexes were analyzed using the ultrafiltration method in this study. With an initial P concentration of 20mg/L (I=0.01mol/L and pH=7), it was shown that the colloid (1kDa-0.45μm) component of P accounted for 10.6%, 11.6%, 6.5%, and 4.0% of remaining total P concentration in the supernatant after P adsorption onto ferrihydrite (FH), goethite (GE), ferrihydrite-humic acid complex (FH-HA), goethite-humic acid complex (GE-HA), respectively. The <1kDa component of P was still the predominant fraction in the supernatant, and underestimated colloidal P accounted for 2.2%, 55.1%, 45.5%, and 38.7% of P adsorption onto the solid surface of FH, FH-HA, GE and GE-HA, respectively. Thus, the colloid P could not be neglected. Notably, it could be interpreted that Fe 3+ hydrolysis from the adsorbents followed by the formation of colloidal hydrous ferric oxide aggregates was the main mechanism for the formation of the colloid P in the supernatant. And colloidal adsorbent particles co-existing in the supernatant were another important reason for it. Additionally, dissolve organic matter dissolved from iron oxide-HA complexes could occupy large adsorption sites of colloidal iron causing less colloid P in the supernatant. Ultimately, we believe that the findings can provide a new way to deeply interpret the geochemical cycling of P, even when considering other contaminants such as organic pollutants, heavy metal ions, and arsenate at the sediment/soil-water interface in the real environment. Copyright © 2016. Published by Elsevier B.V.

  19. Which is the best oxidant for complexed iron removal from groundwater: The Kogalym case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munter, R.; Overbeck, P.; Sutt, J.

    2008-07-01

    A short overview of the significance of a preoxidation stage groundwater treatment is presented. As an example the case of complexed iron removal from Kogalym groundwater (Tjumen, Siberia, Russian Federation) using different preoxidants (ozone, oxygen, chlorine, hydrogen peroxide, and potassium permanganate) is discussed. The key problem is stable di- and trivalent iron-organic complexes in groundwater which after aeration tend to pass through the hydroanthracite-sand gravity filters. The total organic carbon (TOC) content in raw groundwater is in the range of 3.2-6.4 mg/L, total iron content 2.7-6.0 mg/L and divalent iron content 2.4-4.0 mg/L. Separation from Kogalym groundwater by XAD-16 adsorbentmore » humic matter fraction was homogeneous, with only 1 peak on the chromatogram with maximum Rt = 10.75 min and corresponding molecular mass 1911 ({lt} 2000). The final developed treatment technology is based on the water oxidation/reduction potential (ORP) optimization according to the iron system pE-pH diagram and consists of intensive aeration of raw water in the Gas-Degas Treatment (GDT) unit with the following sequence: filtration through the hydroanthracite and special anthracite Everzit, with intermediate enrichment of water with pure oxygen between the filtration stages.« less

  20. Formation of novel transition metal hydride complexes with ninefold hydrogen coordination

    PubMed Central

    Takagi, Shigeyuki; Iijima, Yuki; Sato, Toyoto; Saitoh, Hiroyuki; Ikeda, Kazutaka; Otomo, Toshiya; Miwa, Kazutoshi; Ikeshoji, Tamio; Orimo, Shin-ichi

    2017-01-01

    Ninefold coordination of hydrogen is very rare, and has been observed in two different hydride complexes comprising rhenium and technetium. Herein, based on a theoretical/experimental approach, we present evidence for the formation of ninefold H- coordination hydride complexes of molybdenum ([MoH9]3−), tungsten ([WH9]3−), niobium ([NbH9]4−) and tantalum ([TaH9]4−) in novel complex transition-metal hydrides, Li5MoH11, Li5WH11, Li6NbH11 and Li6TaH11, respectively. All of the synthesized materials are insulated with band gaps of approximately 4 eV, but contain a sufficient amount of hydrogen to cause the H 1s-derived states to reach the Fermi level. Such hydrogen-rich materials might be of interest for high-critical-temperature superconductivity if the gaps close under compression. Furthermore, the hydride complexes exhibit significant rotational motions associated with anharmonic librations at room temperature, which are often discussed in relation to the translational diffusion of cations in alkali-metal dodecahydro-closo-dodecaborates and strongly point to the emergence of a fast lithium conduction even at room temperature. PMID:28287143

  1. Investigating the pharmacodynamic and magnetic properties of pyrophosphate-bridged coordination complexes

    NASA Astrophysics Data System (ADS)

    Ikotun, Oluwatayo (Tayo) F.

    The multidentate nature of pyrophosphate makes it an attractive ligand for complexation of metal cations. The participation of pyrophosphate in a variety of biological pathways and its metal catalyzed hydrolysis has driven our investigation into its coordination chemistry. We have successfully synthesized a library of binuclear pyrophosphate bridge coordination complexes. The problem of pyrophosphate hydrolysis to phosphate in the presence of divalent metal ions was overcome by incorporating capping ligands such as 1,10-phenanthroline and 2,2'-bipyridine prior to the addition of the pyrophosphate. The magnetic properties of these complexes was investigated and magneto-structural analysis was conducted. The biological abundance of pyrophosphate and the success of metal based drugs such as cisplatin, prompted our investigation of the cytotoxic properties of M(II) pyrophosphate dimeric complexes (where M(II) is CoII, CuII, and NiII) in adriamycin resistant human ovarian cancer cells. Thess compounds were found to exhibit toxicity in the nanomolar to picomolar range. We conducted in vitro stability studies and the mechanism of cytoxicity was elucidated by performing DNA mobility and binding assays, enzyme inhibition assays, and in vitro oxidative stress studies.

  2. The Rieske Iron-Sulfur Protein: Import and Assembly into the Cytochrome bc(1) Complex of Yeast Mitochondria.

    PubMed

    Conte, Laura; Zara, Vincenzo

    2011-01-01

    The Rieske iron-sulfur protein, one of the catalytic subunits of the cytochrome bc(1) complex, is involved in electron transfer at the level of the inner membrane of yeast mitochondria. The Rieske iron-sulfur protein is encoded by nuclear DNA and, after being synthesized in the cytosol, is imported into mitochondria with the help of a cleavable N-terminal presequence. The imported protein, besides incorporating the 2Fe-2S cluster, also interacts with other catalytic and non-catalytic subunits of the cytochrome bc(1) complex, thereby assembling into the mature and functional respiratory complex. In this paper, we summarize the most recent findings on the import and assembly of the Rieske iron-sulfur protein into Saccharomyces cerevisiae mitochondria, also discussing a possible role of this protein both in the dimerization of the cytochrome bc(1) complex and in the interaction of this homodimer with other complexes of the mitochondrial respiratory chain.

  3. The Rieske Iron-Sulfur Protein: Import and Assembly into the Cytochrome bc 1 Complex of Yeast Mitochondria

    PubMed Central

    Conte, Laura; Zara, Vincenzo

    2011-01-01

    The Rieske iron-sulfur protein, one of the catalytic subunits of the cytochrome bc 1 complex, is involved in electron transfer at the level of the inner membrane of yeast mitochondria. The Rieske iron-sulfur protein is encoded by nuclear DNA and, after being synthesized in the cytosol, is imported into mitochondria with the help of a cleavable N-terminal presequence. The imported protein, besides incorporating the 2Fe-2S cluster, also interacts with other catalytic and non-catalytic subunits of the cytochrome bc 1 complex, thereby assembling into the mature and functional respiratory complex. In this paper, we summarize the most recent findings on the import and assembly of the Rieske iron-sulfur protein into Saccharomyces cerevisiae mitochondria, also discussing a possible role of this protein both in the dimerization of the cytochrome bc 1 complex and in the interaction of this homodimer with other complexes of the mitochondrial respiratory chain. PMID:21716720

  4. Two zinc(II) coordination complexes based on an asymmetric multidentate ligand: syntheses, structures, selective fluorescence sensing of iron(III) ions and thermal analyses.

    PubMed

    Liu, Yaru; Liu, Lan; Zhang, Xiao; Liang, Guorui; Gong, Xuebing

    2018-01-01

    The rational selection of ligands is vitally important in the construction of coordination complexes. Two novel Zn II complexes, namely bis(acetato-κO)bis[1-(1H-benzotriazol-1-ylmethyl)-2-propyl-1H-imidazole-κN 3 ]zinc(II) monohydrate, [Zn(C 13 H 15 N 5 ) 2 (C 2 H 3 O 2 ) 2 ]·H 2 O, (1), and bis(azido-κN 1 )bis[1-(1H-benzotriazol-1-ylmethyl)-2-propyl-1H-imidazole-κN 3 ]zinc(II), [Zn(C 13 H 15 N 5 ) 2 (N 3 ) 2 ], (2), constructed from the asymmetric multidentate imidazole ligand, have been synthesized under mild conditions and characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction analysis. Both complexes exhibit a three-dimensional supramolecular network directed by different intermolecular interactions between discrete mononuclear units. The complexes were also investigated by fluorescence and thermal analyses. The experimental results show that (1) is a promising fluorescence sensor for detecting Fe 3+ ions and (2) is effective as an accelerator of the thermal decomposition of ammonium perchlorate.

  5. The binuclear form of dinitrosyl iron complexes with thiol-containing ligands in animal tissues.

    PubMed

    Mikoyan, Vasak D; Burgova, Evgeniya N; Borodulin, Rostislav R; Vanin, Anatoly F

    2017-01-30

    It has been established that treatment of mice with sodium nitrite, S-nitrosoglutathione and the water-soluble nitroglycerine derivative isosorbide dinitrate (ISDN) as NO donors initiates in vivo synthesis of significant amounts of EPR-silent binuclear dinitrosyl iron complexes (B-DNIC) with thiol-containing ligands in the liver and other tissues of experimental mice. This effect is especially apparent if NO donors are administered to mice simultaneously with the Fe 2+ -citrate complex. Similar results were obtained in experiments on isolated liver and other mouse tissues treated with gaseous NО in vitro and during stimulation of endogenous NO synthesis in the presence of inducible NO synthase. B-DNIC appeared in mouse tissues after in vitro treatment of tissue samples with an aqueous solution of diethyldithiocarbamate (DETC), which resulted in the transfer of iron-mononitrosyl fragments from B-DNIC to the thiocarbonyl group of DETC and the formation of EPR-detectable mononitrosyl iron complexes (MNIC) with DETC. EPR-Active MNIC with N-methyl-d-glucamine dithiocarbamate (MGD) were synthesized in a similar way. MNIC-MGD were also formed in the reaction of water-soluble MGD-Fe 2+ complexes with sodium nitrite, S-nitrosoglutathione and ISDN. Copyright © 2016. Published by Elsevier Inc.

  6. Erythrocyte haemolysate interacts with ATP-Fe to form a complex containing iron, ATP and 13 800 MW polypeptide.

    PubMed

    Weaver, J; Zhan, H; Pollack, S

    1993-01-01

    Iron first entering the reticulocyte is bound to ATP in the low MW cytosolic pool; some is also 'loosely bound' to haemoglobin, coeluting with haemoglobin from a molecular sieve column though not incorporated into haem. When haemolysate is mixed with ATP-Fe in vitro a similar high MW iron-containing complex is formed: the ATP-Fe interacts with a non-haemoglobin constituent of the haemolysate to form a high MW ATP-Fe complex in which the ratio of ATP:Fe (originally 6:1) is reversed, so that the complex contains more iron than ATP. The high MW ATP-Fe complex is formed even when ATP is in 150-fold molar excess and is formed without detectable hydrolysis of the ATP. The activity of haemolysate in forming the high MW ATP-Fe complex is not diminished by dialysis; all of the activity is recovered in the haemoglobin-containing fraction obtained from an Ultrogel AcA 44 column. The activity does not derive from haemoglobin since 85% of the activity is removed when haemoglobin is purified from haemolysate with DEAE-Sephadex. The chelatable iron pool of the cell probably includes both the high MW ATP-Fe complex and low MW ATP-Fe. Shunting of ATP-Fe to a high MW aggregate reduces the amount of iron present in the highly reactive low MW form and thus probably serves to limit the formation of cell damaging radicals.

  7. Evolutionary dynamics of the traveler's dilemma and minimum-effort coordination games on complex networks.

    PubMed

    Iyer, Swami; Killingback, Timothy

    2014-10-01

    The traveler's dilemma game and the minimum-effort coordination game are social dilemmas that have received significant attention resulting from the fact that the predictions of classical game theory are inconsistent with the results found when the games are studied experimentally. Moreover, both the traveler's dilemma and the minimum-effort coordination games have potentially important applications in evolutionary biology. Interestingly, standard deterministic evolutionary game theory, as represented by the replicator dynamics in a well-mixed population, is also inadequate to account for the behavior observed in these games. Here we study the evolutionary dynamics of both these games in populations with interaction patterns described by a variety of complex network topologies. We investigate the evolutionary dynamics of these games through agent-based simulations on both model and empirical networks. In particular, we study the effects of network clustering and assortativity on the evolutionary dynamics of both games. In general, we show that the evolutionary behavior of the traveler's dilemma and minimum-effort coordination games on complex networks is in good agreement with that observed experimentally. Thus, formulating the traveler's dilemma and the minimum-effort coordination games on complex networks neatly resolves the paradoxical aspects of these games.

  8. Evolutionary dynamics of the traveler's dilemma and minimum-effort coordination games on complex networks

    NASA Astrophysics Data System (ADS)

    Iyer, Swami; Killingback, Timothy

    2014-10-01

    The traveler's dilemma game and the minimum-effort coordination game are social dilemmas that have received significant attention resulting from the fact that the predictions of classical game theory are inconsistent with the results found when the games are studied experimentally. Moreover, both the traveler's dilemma and the minimum-effort coordination games have potentially important applications in evolutionary biology. Interestingly, standard deterministic evolutionary game theory, as represented by the replicator dynamics in a well-mixed population, is also inadequate to account for the behavior observed in these games. Here we study the evolutionary dynamics of both these games in populations with interaction patterns described by a variety of complex network topologies. We investigate the evolutionary dynamics of these games through agent-based simulations on both model and empirical networks. In particular, we study the effects of network clustering and assortativity on the evolutionary dynamics of both games. In general, we show that the evolutionary behavior of the traveler's dilemma and minimum-effort coordination games on complex networks is in good agreement with that observed experimentally. Thus, formulating the traveler's dilemma and the minimum-effort coordination games on complex networks neatly resolves the paradoxical aspects of these games.

  9. First iron and cobalt(II) hexabromoclathrochelates: structural, magnetic, redox, and electrocatalytic behavior.

    PubMed

    Dolganov, Alexander V; Belov, Alexander S; Novikov, Valentin V; Vologzhanina, Anna V; Romanenko, Galina V; Budnikova, Yulia G; Zelinskii, Genrikh E; Buzin, Michail I; Voloshin, Yan Z

    2015-02-07

    Template condensation of dibromoglyoxime with n-butylboronic acid on the corresponding metal ion as a matrix under vigorous reaction conditions afforded iron and cobalt(ii) hexabromoclathrochelates. The paramagnetic cobalt clathrochelate was found to be a low-spin complex at temperatures below 100 K, with a gradual increase in the effective magnetic moment at higher temperatures due to the temperature 1/2↔3/2 spin crossover and a gap caused by the structure phase transition. The multitemperature X-ray and DSC studies of this complex and its iron(ii)-containing analog also showed temperature structural transitions. The variation of an encapsulated metal ion's radius, electronic structure and spin state caused substantial differences in the geometry of its coordination polyhedron; these differences increase with the decrease in temperature due to Jahn-Teller distortion of the encapsulated cobalt(ii) ion with an electronic configuration d(7). As follows from CV and GC data, these cage iron and cobalt complexes undergo both oxidation and reduction quasireversibly, and showed an electrocatalytic activity for hydrogen production in different producing systems.

  10. Incorporation of organometallic Ru complexes into apo-ferritin cage.

    PubMed

    Takezawa, Yusuke; Böckmann, Philipp; Sugi, Naoki; Wang, Ziyue; Abe, Satoshi; Murakami, Tatsuya; Hikage, Tatsuo; Erker, Gerhard; Watanabe, Yoshihito; Kitagawa, Susumu; Ueno, Takafumi

    2011-03-14

    Spherical protein cages such as an iron storage protein, ferritin, have great potential as nanometer-scale capsules to assemble and store metal ions and complexes. We report herein the synthesis of a composite of an apo-ferritin cage and Ru(p-cymene) complexes. Ru complexes were efficiently incorporated into the ferritin cavity without degradation of its cage structure. X-Ray crystallography revealed that the Ru complexes were immobilized on the interior surface of the cage mainly by the coordination of histidine residues.

  11. XAFS study of copper(II) complexes with square planar and square pyramidal coordination geometries

    NASA Astrophysics Data System (ADS)

    Gaur, A.; Klysubun, W.; Nitin Nair, N.; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2016-08-01

    X-ray absorption fine structure of six Cu(II) complexes, Cu2(Clna)4 2H2O (1), Cu2(ac)4 2H2O (2), Cu2(phac)4 (pyz) (3), Cu2(bpy)2(na)2 H2O (ClO4) (4), Cu2(teen)4(OH)2(ClO4)2 (5) and Cu2(tmen)4(OH)2(ClO4)2 (6) (where ac, phac, pyz, bpy, na, teen, tmen = acetate, phenyl acetate, pyrazole, bipyridine, nicotinic acid, tetraethyethylenediamine, tetramethylethylenediamine, respectively), which were supposed to have square pyramidal and square planar coordination geometries have been investigated. The differences observed in the X-ray absorption near edge structure (XANES) features of the standard compounds having four, five and six coordination geometry points towards presence of square planar and square pyramidal geometry around Cu centre in the studied complexes. The presence of intense pre-edge feature in the spectra of four complexes, 1-4, indicates square pyramidal coordination. Another important XANES feature, present in complexes 5 and 6, is prominent shoulder in the rising part of edge whose intensity decreases in the presence of axial ligands and thus indicates four coordination in these complexes. Ab initio calculations were carried out for square planar and square pyramidal Cu centres to observe the variation of 4p density of states in the presence and absence of axial ligands. To determine the number and distance of scattering atoms around Cu centre in the complexes, EXAFS analysis has been done using the paths obtained from Cu(II) oxide model and an axial Cu-O path from model of a square pyramidal complex. The results obtained from EXAFS analysis have been reported which confirmed the inference drawn from XANES features. Thus, it has been shown that these paths from model of a standard compound can be used to determine the structural parameters for complexes having unknown structure.

  12. Design of magnetic coordination complexes for quantum computing.

    PubMed

    Aromí, Guillem; Aguilà, David; Gamez, Patrick; Luis, Fernando; Roubeau, Olivier

    2012-01-21

    A very exciting prospect in coordination chemistry is to manipulate spins within magnetic complexes for the realization of quantum logic operations. An introduction to the requirements for a paramagnetic molecule to act as a 2-qubit quantum gate is provided in this tutorial review. We propose synthetic methods aimed at accessing such type of functional molecules, based on ligand design and inorganic synthesis. Two strategies are presented: (i) the first consists in targeting molecules containing a pair of well-defined and weakly coupled paramagnetic metal aggregates, each acting as a carrier of one potential qubit, (ii) the second is the design of dinuclear complexes of anisotropic metal ions, exhibiting dissimilar environments and feeble magnetic coupling. The first systems obtained from this synthetic program are presented here and their properties are discussed.

  13. The Basic Leucine Zipper Stress Response Regulator Yap5 Senses High-Iron Conditions by Coordination of [2Fe-2S] Clusters

    PubMed Central

    Rietzschel, Nicole; Pierik, Antonio J.; Bill, Eckhard; Mühlenhoff, Ulrich

    2014-01-01

    Iron is an essential, yet at elevated concentrations toxic trace element. To date, the mechanisms of iron sensing by eukaryotic iron-responsive transcription factors are poorly understood. The Saccharomyces cerevisiae transcription factor Yap5, a member of the Yap family of bZIP stress response regulators, administrates the adaptive response to high-iron conditions. Despite the central role of the iron-sensing process for cell viability, the molecule perceived by Yap5 and the underlying regulatory mechanisms are unknown. Here, we show that Yap5 senses high-iron conditions by two Fe/S clusters bound to its activator domain (Yap5-AD). The more stable iron-regulatory Fe/S cluster at the N-terminal cysteine-rich domain (n-CRD) of Yap5 is detected in vivo and in vitro. The second cluster coordinated by the C-terminal CRD can only be shown after chemical reconstitution, since it is bound in a labile fashion. Both clusters are of the [2Fe-2S] type as characterized by UV/visible (UV/Vis), circular dichroism, electron paramagnetic resonance (EPR), and Mössbauer spectroscopy. Fe/S cluster binding to Yap5-AD induces a conformational change that may activate transcription. The cluster-binding motif of the n-CRD domain is highly conserved in HapX-like transcription factors of pathogenic fungi and thus may represent a general sensor module common to many eukaryotic stress response regulators. PMID:25368382

  14. Possible evidence for contribution of arbuscular mycorrhizal fungi (AMF) in phytoremediation of iron-cyanide (Fe-CN) complexes.

    PubMed

    Sut, Magdalena; Boldt-Burisch, Katja; Raab, Thomas

    2016-08-01

    Arbuscular mycorrhizal fungi (AMF) are integral functioning parts of plant root systems and are widely recognized for enhancing contaminants uptake and metabolism on severely disturbed sites. However, the patterns of their influence on the phytoremediation of iron-cyanide (Fe-CN) complexes are unknown. Fe-CN complexes are of great common interest, as iron is one of the most abundant element in soil and water. Effect of ryegrass (Lolium perenne L.) roots inoculation, using mycorrhizal fungi (Rhizophagus irregularis and a mixture of R. irregularis, Funneliformis mosseae, Rhizophagus aggregatus, and Claroideoglomus etunicatum), on iron-cyanide sorption was studied. Results indicated significantly higher colonization of R. irregularis than the mixture of AMF species on ryegrass roots. Series of batch experiments using potassium hexacyanoferrate (II) solutions, in varying concentrations revealed significantly higher reduction of total CN and free CN content in the mycorrhizal roots, indicating greater cyanide decrease in the treatment inoculated with R. irregularis. Our study is a first indication of the possible positive contribution of AM fungi on the phytoremediation of iron-cyanide complexes.

  15. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peresypkina, Eugenia V.; Samsonenko, Denis G.; Novosibirsk State University, Novosibirsk 630090

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [(Mn(acacen)){sub 2}Ru(NO)(CN){sub 5}]{sub n} and two complexes composed of different cyanorhenates, [Ni(cyclam)]{sub 2}[ReO(OH)(CN){sub 4}](ClO{sub 4}){sub 2}(H{sub 2}O){sub 1.25} and [Cu(cyclam)]{sub 2}[Re(CN){sub 7}](H{sub 2}O){sub 12}, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds.more » However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN){sub n}]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu{sub 4}N){sub 2}[Ru(NO)(CN){sub 5}], soluble in organic media. - Graphical abstract: The very first results in the design of 2D coordination polymers based on penta- and heptacyanometallates of 4d and5d transitions metals are presented. - Highlights: • Design of coordination polymers based on penta- and heptacyanometallates. • New Ru and Re cyanide based heterobimetallic coordination complexes. • Hydrolysis and ox/red processes involving [Re(CN){sub 7}]{sup 3+} during crystallization. • High magnetic anisotropy of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2}(H{sub 2}O){sub n}, M=Cu, Ni, complexes.« less

  16. Axial coordination and conformational heterogeneity of nickel(II) tetraphenylprophyrin complexes with nitrogenous bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, S.L.; Song, X.Z.; Ma, J.G.

    1998-08-24

    Axial ligation of nickel(II) 5,10,15,20-tetraphenylporphyrin (NiTPP) with pyrrolidine or piperidine has been investigated using X-ray crystallography, UV-visible spectroscopy, resonance Raman spectroscopy, and molecular mechanics (MM) calculations. Distinct v{sub 4} Raman lines are found for the 4-, 5-, and 6-coordinate species of NiTPP. The equilibrium constants for addition of the first and second pyrrolidine axial ligands are 1.1 and 3.8 M{sup {minus}1}, respectively. The differences in the calculated energies of the conformers having different ligand rotational angles are small so they may coexist in solution. Because of the similarity in macrocyclic structural parameters of these conformers and the free rotation ofmore » the axial ligands, narrow and symmetric v{sub 2} and v{sub 8} Raman lines are observed. Nonetheless, the normal-coordinate structural-decomposition analysis of the nonplanar distortions of the calculated structures and the crystal structure of the bis(piperidine) complex reveals a relationship between the orientations of axial ligand(s) and the macrocyclic distortions. For the 5-coordinate complex with the plane of the axial ligand bisecting the Ni-N{sub pyrrole} bonds, a primarily ruffled deformation results. With the ligand plane eclipsing the Ni-N{sub pyrrole} bonds, a mainly saddled deformation occurs. With the addition of the second axial ligand, the small doming of the 5-coordinate complexes disappears, and ruffling or saddling deformations change depending on the relative orientation of the two axial ligands. The crystal structure of the NiTPP bis(piperidine) complex shows a macrocycle distortion composed of wav(x) and wav(y) symmetric deformations, but no ruffling, saddling, or doming. The difference in the calculated and observed distortions results partly from the phenyl group orientation imposed by crystal packing forces. MM calculations predict three stable conformers (ruf, sad, and planar) for 4-coordinate NiTPP, and resonance

  17. Theoretical study of novel complexed structures for methoxy derivatives of scytonemin: potential biomarkers in iron-rich stressed environments.

    PubMed

    Varnali, Tereza; Edwards, Howell G M

    2013-09-01

    Scytonemin is a cyanobacterial sheath pigment with potent UV (UVA, UVB, and UVC) absorbing properties. Di- and tetramethoxy derivatives of scytonemin have also been found and described in the literature. The importance of these biomolecules is their photoprotective function, which is one of the major survival strategies adopted by extremophiles in environmentally stressed conditions. Also, iron compounds [particularly iron(III) oxides] offer an additional UV-protecting facility to subsurface endolithic biological colonization; hence, banded iron formations (accompanied by zones of depletion of iron) in rock matrices have attracted attention with special interest in the method of transportation of iron compounds through the rock. Di- and tetramethoxyscytonemin and their iron(III) complexes have been modeled and studied computationally by using density functional theory calculations at the level of B3LYP/6-31G** methodology. We propose new structures that could feature in survival strategy and facilitate the movement of iron through the rock especially for iron-rich stressed terrestrial environments exemplified by the Río Tinto system with the added potential of subsurface Mars exploration. This study represents a continuation of our previous work on scytonemin. The calculated Raman spectra of the proposed iron complexes are compared with those of their parent compounds and discussed in relation to structural changes effected in the parent ligand upon complexation. This information leads to new insights to be gained by experimental Raman spectroscopists and the characterization of spectroscopic biosignatures for the database being compiled for the remote Raman analytical interrogation of the martian surface and subsurface being proposed for the ESA ExoMars mission planned for launch in 2018.

  18. Iron-targeting antitumor activity of gallium compounds and novel insights into triapine(®)-metal complexes.

    PubMed

    Chitambar, Christopher R; Antholine, William E

    2013-03-10

    Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine(®) has demonstrated activity against other tumors. Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it.

  19. Nuclear Resonance Vibrational Spectra of Five-Coordinate Imidazole-ligated Iron(II) Porphyrinates

    PubMed Central

    Hu, Chuanjiang; Barabanschikov, Alexander; Ellison, Mary K.; Zhao, Jiyong; Alp, E. Ercan; Sturhahn, Wolfgang; Zgierski, Marek Z.; Sage, J. Timothy; Scheidt, W. Robert

    2012-01-01

    Nuclear resonance vibrational spectra have been obtained for six five-coordinate imidazole-ligated iron(II) porphyrinates, [Fe(Por)(L)] (Por = tetraphenylporphyrinate, octaethylporphyrinate, tetratolylporphyrinate or protoporphyrinate IX and L = 2-methylimidazole or 1,2-dimethylimidazole). Measurements have been made on both powder and oriented crystal samples. The spectra are dominated by strong signals around 200–300 cm−1. Although the in-plane and out-of-plane vibrations are seriously overlapped, oriented crystal spectra allow their deconvolution. Thus, oriented crystal experimental data, along with DFT calculations, enable the assignment of key vibrations in the spectra. Molecular dynamics are also discussed. The nature of the Fe–NIm vibrations has been elaborated further than was possible from resonance Raman studies. Our study suggests that the Fe motions are coupled with the porphyrin core and peripheral groups motions. Both peripheral groups and their conformations have significant influence on the vibrational spectra (position and shape). PMID:22243131

  20. Bio-inspired Self-healing Composite Hydrogel with Iron Oxide Nanoparticle as Coordination Crosslinker

    NASA Astrophysics Data System (ADS)

    Li, Qiaochu; Barret, Devin G.; Messersmith, Phillip B.; Holten-Andersen, Niels

    2014-03-01

    Polymer-nanoparticle (NP) composites have attracted renewed attention due to enhanced mechanical strength combined with various functionalities, but controlling the interfacial chemistry between NPs and polymer matrix, which is crucial for the composite's mechanical behavior, remains a major challenge. Inspired by the adhesion chemistry of mussel fibers, we investigated a novel approach to incorporate Fe3O4 NPs into hydrogel matrix. A polyethylene glycol polymer is designed with both ends conjugated by catechol groups, which have strong coordination affinity to Fe. The polymer network is crosslinked via coordination bonding at the surface of Fe3O4 NPs, yielding a stiff nanocomposite hydrogel. Due to the reversible nature of coordination bonding, the hydrogel presents self-healing behavior. Oscillatory rheology allows comparative kinetic studies of self-healing driven by catechol bonding at Fe3O4 NP interfaces and by catechol-Fe3+ coordination complexes. Furthermore, the superparamagnetic property of Fe3O4 NP is preserved after gelation, allowing for response to external stimuli. This gelation motif can serve as a versatile platform for tuning functional and mechanical properties for future polymer nanocomposite materials.

  1. Coordination Structure and Fragmentation Chemistry of the Tripositive Lanthanide-Thio-Diglycolamide Complexes.

    PubMed

    Chen, Xiuting; Li, Qingnuan; Gong, Yu

    2017-12-14

    Tripositive Ln(TMTDA) 3 3+ complexes (Ln = La-Lu except Pm, TMTDA = tetramethyl 3-thio-diglycolamide) were observed in the gas phase by electrospray ionization of LnCl 3 and TMTDA mixtures. Collision-induced dissociation (CID) was employed to investigate their fragmentation chemistry, which revealed the influence of metal center as well as ligand on the ligated complexes. Ln(TMTDA) 2 (TMTDA-45) 3+ resulting from C carbonyl -N bond cleavage of TMTDA and hydrogen transfer was the major CID product for all Ln(TMTDA) 3 3+ except Eu(TMTDA) 3 3+ , which predominantly formed charge-reducing product Eu II (TMTDA) 2 2+ via electron transfer from TMTDA to Eu 3+ . Density functional theory calculations on the structure of La(TMTDA) 3 3+ and Lu(TMTDA) 3 3+ revealed that Ln 3+ was coordinated by six O carbonyl atoms from three neutral TMTDA ligands, and both complexes possessed C 3h symmetry. The S ether atom deviating from the ligand plane was not coordinated to the metal center. On the basis of the CID results of Ln(TMTDA) 3 3+ , Ln(TMGA) 3 3+ , and Ln(TMOGA) 3 3+ , the fragmentation chemistry associated with the ligand depends on the coordination mode, while the redox chemistry of these tripositive ions is related to the nature of both metal centers and diamide ligands.

  2. A review of iron and cobalt porphyrins, phthalocyanines, and related complexes for electrochemical and photochemical reduction of carbon dioxide

    DOE PAGES

    Manbeck, Gerald F.; Fujita, Etsuko

    2015-03-30

    This review summarizes research on the electrochemical and photochemical reduction of CO₂ using a variety of iron and cobalt porphyrins, phthalocyanines, and related complexes. Metalloporphyrins and metallophthalocyanines are visible light absorbers with extremely large extinction coefficients. However, yields of photochemically-generated active catalysts for CO₂ reduction are typically low owing to the requirement of a second photoinduced electron. This requirement is not relevant to the case of electrochemical CO₂ reduction. Recent progress on efficient and stable electrochemical systems includes the use of FeTPP catalysts that have prepositioned phenyl OH groups in their second coordination spheres. This has led to remarkable progressmore » in carrying out coupled proton-electron transfer reactions for CO₂ reduction. Such ground-breaking research has to be continued in order to produce renewable fuels in an economically feasible manner.« less

  3. Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design.

    PubMed

    Ge, Hongyu; Chen, Xiangyang; Yang, Xinzheng

    2017-07-03

    Density functional theory study of the hydrogenation of carbon dioxide to methanol catalyzed by iron, cobalt, and manganese cyclopentadienone complexes reveals a self-promoted mechanism, which features a methanol- or water-molecule-assisted proton transfer for the cleavage of H 2 . The total free energy barrier of the formation of methanol from CO 2 and H 2 catalyzed by Knölker's iron cyclopentadienone complex, [2,5-(SiMe 3 ) 2 -3,4-(CH 2 ) 4 (η 5 -C 4 COH)]Fe(CO) 2 H, is 26.0 kcal mol -1 in the methanol solvent. We also evaluated the catalytic activities of 8 other experimentally reported iron cyclopentadienone complexes and 37 iron, cobalt, and manganese cyclopentadienone complexes proposed in this study. In general, iron and manganese complexes have relatively higher catalytic activities. Among all calculated complexes, [2,5-(SiMe 3 ) 2 -3,4-CH 3 CHSCH 2 (η 5 -C 4 COH)]Fe(CO) 2 H (1 Fe-Casey-S-CH3 ) is the most active one with a total free energy barrier of 25.1 kcal mol -1 in the methanol solvent. Such a low barrier indicates that 1 Fe-Casey-S-CH3 is a very promising low-cost and high efficiency catalyst for the conversion of CO 2 and H 2 to methanol under mild conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Catalytic Transformation of Aldehydes with Nickel Complexes through η(2) Coordination and Oxidative Cyclization.

    PubMed

    Hoshimoto, Yoichi; Ohashi, Masato; Ogoshi, Sensuke

    2015-06-16

    Chemists no longer doubt the importance of a methodology that could activate and utilize aldehydes in organic syntheses since many products prepared from them support our daily life. Tremendous effort has been devoted to the development of these methods using main-group elements and transition metals. Thus, many organic chemists have used an activator-(aldehyde oxygen) interaction, namely, η(1) coordination, whereby a Lewis or Brønsted acid activates an aldehyde. In the field of coordination chemistry, η(2) coordination of aldehydes to transition metals by coordination of a carbon-oxygen double bond has been well-studied; this activation mode, however, is rarely found in transition-metal catalysis. In view of the distinctive reactivity of an η(2)-aldehyde complex, unprecedented reactions via this intermediate are a distinct possibility. In this Account, we summarize our recent results dealing with nickel(0)-catalyzed transformations of aldehydes via η(2)-aldehyde nickel and oxanickelacycle intermediates. The combination of electron-rich nickel(0) and strong electron-donating N-heterocyclic carbene (NHC) ligands adequately form η(2)-aldehyde complexes in which the aldehyde is highly activated by back-bonding. With Ni(0)/NHC catalysts, processes involving intramolecular hydroacylation of alkenes and homo/cross-dimerization of aldehydes (the Tishchenko reaction) have been developed, and both proceed via the simultaneous η(2) coordination of aldehydes and other π components (alkenes or aldehydes). The results of the mechanistic studies are consistent with a reaction pathway that proceeds via an oxanickelacycle intermediate generated by the oxidative cyclization with a nickel(0) complex. In addition, we have used the η(2)-aldehyde nickel complex as an effective activator for an organosilane in order to generate a silicate reactant. These reactions show 100% atom efficiency, generate no wastes, and are conducted under mild conditions.

  5. A Tertiary Carbon–Iron Bond as an Fe I Cl Synthon and the Reductive Alkylation of Diphosphine-Supported Iron(II) Chloride Complexes to Low-Valent Iron

    DOE PAGES

    Tondreau, Aaron M.; Scott, Brian L.; Boncella, James M.

    2016-05-23

    We explored ligand-induced reduction of ferrous alkyl complexes via homolytic cleavage of the alkyl fragment with simple chelating diphosphines. The reactivities of the sodium salts of diphenylmethane, phenyl(trimethylsilyl)methane, or diphenyl(trimethylsilyl)methane were explored in their reactivity with (py) 4FeCl 2. Furthermore, we prepared a series of monoalkylated salts of the type (py) 2FeRCl and characterized from the addition of 1 equiv of the corresponding alkyl sodium species. These complexes are isostructural and have similar magnetic properties. The double alkylation of (py) 4FeCl 2 resulted in the formation of tetrahedral high-spin iron complexes with the sodium salts of diphenylmethane and phenyl(trimethylsilyl)methane thatmore » readily decomposed. A bis(cyclohexadienyl) sandwich complex was formed with the addition of 2 equiv of the tertiary alkyl species sodium diphenyl(trimethylsilyl)methane. The addition of chelating phosphines to (py) 2FeRCl resulted in the overall transfer of Fe(I) chloride concurrent with loss of pyridine and alkyl radical. (dmpe) 2FeCl was synthesized via addition of 1 equiv of sodium diphenyl(trimethylsilyl)methane, whereas the addition of 2 equiv of the sodium compound to (dmpe) 2FeCl 2 gave the reduced Fe(0) nitrogen complex (dmpe) 2Fe(N 2). Our results demonstrate that iron–alkyl homolysis can be used to afford clean, low-valent iron complexes without the use of alkali metals.« less

  6. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms

    NASA Astrophysics Data System (ADS)

    McQuaid, Jeffrey B.; Kustka, Adam B.; Oborník, Miroslav; Horák, Aleš; McCrow, John P.; Karas, Bogumil J.; Zheng, Hong; Kindeberg, Theodor; Andersson, Andreas J.; Barbeau, Katherine A.; Allen, Andrew E.

    2018-03-01

    In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton. Although most dissolved iron in the marine environment is complexed with organic molecules, picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms. Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron-responsive transcripts, including the ferric iron-concentrating protein ISIP2A, but the mechanism behind the acquisition of picomolar labile iron remains unknown. Here we show that ISIP2A is a phytotransferrin that independently and convergently evolved carbonate ion-coordinated ferric iron binding. Deletion of ISIP2A disrupts high-affinity iron uptake in the diatom Phaeodactylum tricornutum, and uptake is restored by complementation with human transferrin. ISIP2A is internalized by endocytosis, and manipulation of the seawater carbonic acid system reveals a second-order dependence on the concentrations of labile iron and carbonate ions. In P. tricornutum, the synergistic interaction of labile iron and carbonate ions occurs at environmentally relevant concentrations, revealing that carbonate availability co-limits iron uptake. Phytotransferrin sequences have a broad taxonomic distribution and are abundant in marine environmental genomic datasets, suggesting that acidification-driven declines in the concentration of seawater carbonate ions will have a negative effect on this globally important eukaryotic iron acquisition mechanism.

  7. Synthesis and Properties of Ortho-Nitro-Fe Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, A.; Mishra, Niyati; Sharma, R.

    2011-07-15

    Ortho-Nitro-Fe complex (Transition metal complex) has synthesized by chemical route method and properties of made complex has characterized by X-Ray diffraction (XRD), Moessbauer spectroscopy, Fourier transformation infra-red spectroscopy (FTIR) and X-Ray photoelectron spectroscopy (XPS). XRD analysis shows that sample is crystalline in nature and having particle size in the range of few nano meters. Moessbauer spectroscopy at room temperature shows the oxidation state of Iron (central metal ion) after complaxasion. FTIR spectra of the complex confirms the coordination of metal ion with ligand.

  8. The iron complex in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Giménez-García, A.; Torrejón, J. M.; Martínez-Núñez, S.; Rodes-Rocas, J. J.; Bernabéu, G.

    2013-05-01

    An X-ray binary system consists of a compact object (a white dwarf, a neutron star or a black hole) accreting material from an optical companion star. The spectral type of the optical component strongly affects the mass transfer to the compact object. This is the reason why X-ray binary systems are usually divided in High Mass X-ray Binaries (companion O or B type, denoted HMXB) and Low Mass X-ray Binaries (companion type A or later). The HMXB are divided depending on the partner's luminosity class in two main groups: the Supergiant X-ray Binaries (SGXB) and Be X-ray Binaries (BeXB). We introduce the spectral characterization of a sample of 9 High Mass X-ray Binaries in the iron complex (˜ 6-7 keV). This spectral range is a fundamental tool in the study of the surrounding material of these systems. The sources have been divided into three main groups according to their current standard classification: SGXB, BeXB and γ Cassiopeae-like. The purpose of this work is to look for qualitative patterns in the iron complex, around 6-7 keV, in order to discern between current different classes that make up the group of HMXB. We find significant spectral patterns for each of the sets, reflecting differences in accretion physics thereof.

  9. Iron, ferritin, and nutrition.

    PubMed

    Theil, Elizabeth C

    2004-01-01

    Ferritin, a major form of endogenous iron in food legumes such as soybeans, is a novel and natural alternative for iron supplementation strategies where effectiveness is limited by acceptability, cost, or undesirable side effects. A member of the nonheme iron group of dietary iron sources, ferritin is a complex with Fe3+ iron in a mineral (thousands of iron atoms inside a protein cage) protected from complexation. Ferritin illustrates the wide range of chemical and biological properties among nonheme iron sources. The wide range of nonheme iron receptors matched to the structure of the iron complexes that occurs in microorganisms may, by analogy, exist in humans. An understanding of the chemistry and biology of each type of dietary iron source (ferritin, heme, Fe2+ ion, etc.), and of the interactions dependent on food sources, genes, and gender, is required to design diets that will eradicate global iron deficiency in the twenty-first century.

  10. Four-coordinate, 14-electron Ru(II) complexes: unusual trigonal pyramidal geometry enforced by bis(phosphino)silyl ligation.

    PubMed

    MacInnis, Morgan C; McDonald, Robert; Ferguson, Michael J; Tobisch, Sven; Turculet, Laura

    2011-08-31

    Unprecedented diamagnetic, four-coordinate, formally 14-electron (Cy-PSiP)RuX (Cy-PSiP = [κ(3)-(2-R(2)PC(6)H(4))(2)SiMe](-); X = amido, alkoxo) complexes that do not require agostic stabilization and that adopt a highly unusual trigonal pyramidal coordination geometry are reported. The tertiary silane [(2-Cy(2)PC(6)H(4))(2)SiMe]H ((Cy-PSiP)H) reacted with 0.5 [(p-cymene)RuCl(2)](2) in the presence of Et(3)N and PCy(3) to afford [(Cy-PSiP)RuCl](2) (1) in 74% yield. Treatment of 1 with KO(t)Bu led to the formation of (Cy-PSiP)RuO(t)Bu (2, 97% yield), which was crystallographically characterized and shown to adopt a trigonal pyramidal coordination geometry in the solid state. Treatment of 1 with NaN(SiMe(3))(2) led to the formation of (Cy-PSiP)RuN(SiMe(3))(2) (3, 70% yield), which was also found to adopt a trigonal pyramidal coordination geometry in the solid state. The related anilido complexes (Cy-PSiP)RuNH(2,6-R(2)C(6)H(3)) (4, R = H; 5, R = Me) were also prepared in >90% yields by treating 1 with LiNH(2,6-R(2)C(6)H(3)) (R = H, Me) reagents. The solid state structure of 5 indicates a monomeric trigonal pyramidal complex that features a C-H agostic interaction. Complexes 2 and 3 were found to react readily with 1 equiv of H(2)O to form the dimeric hydroxo-bridged complex [(Cy-PSiP)RuOH](2) (6, 94% yield), which was crystallographically characterized. Complexes 2 and 3 also reacted with 1 equiv of PhOH to form the new 18-electron η(5)-oxocyclohexadienyl complex (Cy-PSiP)Ru(η(5)-C(6)H(5)O) (7, 84% yield). Both amido and alkoxo (Cy-PSiP)RuX complexes reacted with H(3)B·NHRR' reagents to form bis(σ-B-H) complexes of the type (Cy-PSiP)RuH(η(2):η(2)-H(2)BNRR') (8, R = R' = H; 9, R = R' = Me; 10, R = H, R' = (t)Bu), which illustrates that such four-coordinate (Cy-PSiP)RuX (X = amido, alkoxo) complexes are able to undergo multiple E-H (E = main group element) bond activation steps. Computational methods were used to investigate structurally related PCP, PPP, PNP, and

  11. Human Calprotectin Is an Iron-Sequestering Host-Defense Protein

    PubMed Central

    Nakashige, Toshiki G.; Zhang, Bo; Krebs, Carsten; Nolan, Elizabeth M.

    2015-01-01

    Human calprotectin (CP) is a metal-chelating antimicrobial protein of the innate immune response. The current working model states that CP sequesters manganese and zinc from pathogens. We report the discovery that CP chelates iron and deprives bacteria of this essential nutrient. Elemental analysis of CP-treated growth medium establishes that CP reduces the concentrations of manganese, iron, and zinc. Microbial growth studies reveal that iron depletion by CP contributes to the growth inhibition of bacterial pathogens. Biochemical investigations demonstrate that CP coordinates Fe(II) at an unusual hexahistidine motif, and the Mössbauer spectrum of 57Fe(II)-bound CP is consistent with coordination of high-spin Fe(II) at this site (δ = 1.20 mm/s, ΔEQ = 1.78 mm/s). In the presence of Ca(II), CP turns on its iron-sequestering function and exhibits sub-picomolar affinity for Fe(II). Our findings expand the biological coordination chemistry of iron and support a previously unappreciated role for CP in mammalian iron homeostasis. PMID:26302479

  12. Coordination polymer nanocapsules prepared using metal-organic framework templates for pH-responsive drug delivery

    NASA Astrophysics Data System (ADS)

    Tang, Lei; Shi, Jiafu; Wang, Xiaoli; Zhang, Shaohua; Wu, Hong; Sun, Hongfan; Jiang, Zhongyi

    2017-07-01

    A facile, efficient, and versatile approach is presented to synthesize pH-responsive nanocapsules (˜120 nm) by combining the advantages of metal-organic frameworks (MOFs) and metal-organic thin films. ZIF-8 nanoparticles are used as templates on which a thin film coating of iron(III)-catechol complexes is derived from the coordination between dopamine-modified alginate (AlgDA) and iron(III) ions. After the template removal, nanocapsules with a pH-responsive wall are obtained. Doxorubicin (Dox), a typical anticancer drug, is first immobilized in ZIF-8 frameworks through coprecipitation and then encapsulated in nanocapsules after the removal of ZIF-8. The structure of the iron(III)-catechol complex varies with pH value, thus conferring the Dox@Nanocapsules with tailored release behavior in vitro. Cytotoxicity tests illustrate the highly effective cytotoxicity of Dox@Nanocapsules towards cancer cells. This study provides a new method for preparing smart nanocapsules and offers more opportunities for the controlled delivery of drugs.

  13. Pi-metal complexes of tetrapyrrolic systems. A novel coordination mode in "porphyrin-like" chemistry.

    PubMed

    Cuesta, Luciano; Sessler, Jonathan L

    2009-09-01

    The coordination chemistry of porphyrins and related tetrapyrrolic ligands has traditionally centered around the ability of these systems to form pyrrole N-ligated complexes via the formation of sigma bonds, either within the N(4) core or displaced above it. In fact, such sigma-complexes are known with almost every metal cation in the periodic table. However, a growing number of pi-complexes derived from tetrapyrrolic ligands have been reported in recent years. The underlying coordination mode, while still novel in the context of "porphyrin-like" chemistry, is already being recognized for the effects it can impart over the reactivity, as well as the spectroscopic, redox, electronic, and optical properties of various oligopyrrolic macrocycles. This critical review summarizes accomplishments made in this fast-emerging field (59 references).

  14. Iron-Targeting Antitumor Activity of Gallium Compounds and Novel Insights Into Triapine®-Metal Complexes

    PubMed Central

    Antholine, William E.

    2013-01-01

    Abstract Significance: Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Recent Advances: Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine® has demonstrated activity against other tumors. Critical Issues: Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. Future Directions: The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it. Antioxid. Redox Signal. 00, 000–000. PMID:22900955

  15. Alginate-Iron Speciation and Its Effect on In Vitro Cellular Iron Metabolism

    PubMed Central

    Horniblow, Richard D.; Dowle, Miriam; Iqbal, Tariq H.; Latunde-Dada, Gladys O.; Palmer, Richard E.

    2015-01-01

    Alginates are a class of biopolymers with known iron binding properties which are routinely used in the fabrication of iron-oxide nanoparticles. In addition, alginates have been implicated in influencing human iron absorption. However, the synthesis of iron oxide nanoparticles employs non-physiological pH conditions and whether nanoparticle formation in vivo is responsible for influencing cellular iron metabolism is unclear. Thus the aims of this study were to determine how alginate and iron interact at gastric-comparable pH conditions and how this influences iron metabolism. Employing a range of spectroscopic techniques under physiological conditions alginate-iron complexation was confirmed and, in conjunction with aberration corrected scanning transmission electron microscopy, nanoparticles were observed. The results infer a nucleation-type model of iron binding whereby alginate is templating the condensation of iron-hydroxide complexes to form iron oxide centred nanoparticles. The interaction of alginate and iron at a cellular level was found to decrease cellular iron acquisition by 37% (p < 0.05) and in combination with confocal microscopy the alginate inhibits cellular iron transport through extracellular iron chelation with the resulting complexes not internalised. These results infer alginate as being useful in the chelation of excess iron, especially in the context of inflammatory bowel disease and colorectal cancer where excess unabsorbed luminal iron is thought to be a driver of disease. PMID:26378798

  16. A monofunctional platinum complex coordinated to a rhodium metalloinsertor selectively binds mismatched DNA in the minor groove.

    PubMed

    Weidmann, Alyson G; Barton, Jacqueline K

    2015-10-05

    We report the synthesis and characterization of a bimetallic complex derived from a new family of potent and selective metalloinsertors containing an unusual Rh-O axial coordination. This complex incorporates a monofunctional platinum center containing only one labile site for coordination to DNA, rather than two, and coordinates DNA nonclassically through adduct formation in the minor groove. This conjugate displays bifunctional, interdependent binding of mismatched DNA via metalloinsertion at a mismatch as well as covalent platinum binding. DNA sequencing experiments revealed that the preferred site of platinum coordination is not the traditional N7-guanine site in the major groove, but rather N3-adenine in the minor groove. The complex also displays enhanced cytotoxicity in mismatch repair-deficient and mismatch repair-proficient human colorectal carcinoma cell lines compared to the chemotherapeutic cisplatin, and it triggers cell death via an apoptotic pathway, rather than the necrotic pathway induced by rhodium metalloinsertors.

  17. Effects of Imidazole Deprotonation on Vibrational Spectra of High-Spin Iron(II) Porphyrinates

    PubMed Central

    Hu, Chuanjiang; Peng, Qian; Silvernail, Nathan J.; Barabanschikov, Alexander; Zhao, Jiyong; Alp, E. Ercan; Sturhahn, Wolfgang; Sage, J. Timothy; Scheidt, W. Robert

    2013-01-01

    The effects of the deprotonation of coordinated imidazole on the dynamics of five-coordinate high-spin iron(II) porphyrinates have been investigated using nuclear resonance vibrational spectroscopy. Two complexes have been studied in detail with both powder and oriented single-crystal measurements. Changes in the vibrational spectra are clearly related to structural differences in the molecular structures that occur when imidazole is deprotonated. Most modes involving the simultaneous motion of iron and imidazolate are unresolved but the one mode that is resolved is found at higher frequency in the imidazolates. These out-of-plane results are in accord with earlier resonance Raman studies of heme proteins. We also show the imidazole vs. imidazolate differences in the in-plane vibrations that are not accessible to resonance Raman studies. The in-plane vibrations are at lower frequency in the imidazolate derivatives; the doming mode shifts are inconclusive. The stiffness, an experimentally determined force constant that averages the vibrational details to quantify the nearest-neighbor interactions, confirms that deprotonation inverts the relative strengths of axial and equatorial coordination. PMID:23470205

  18. Fetal and neonatal iron deficiency but not copper deficiency increases vascular complexity in the developing rat brain

    PubMed Central

    Bastian, Thomas W.; Santarriaga, Stephanie; Nguyen, Thu An; Prohaska, Joseph R.; Georgieff, Michael K.; Anderson, Grant W.

    2015-01-01

    Objectives Anemia caused by nutritional deficiencies, such as iron and copper deficiencies, is a global health problem. Iron and copper deficiencies have their most profound effect on the developing fetus/infant, leading to brain development deficits and poor cognitive outcomes. Tissue iron depletion or chronic anemia can induce cellular hypoxic signaling. In mice, chronic hypoxia induces a compensatory increase in brain blood vessel outgrowth. We hypothesized that developmental anemia, due to iron or copper deficiencies, induces angiogenesis/vasculogenesis in the neonatal brain. Methods To test our hypothesis, three independent experiments were performed where pregnant rats were fed iron- or copper-deficient diets from gestational day 2 through mid-lactation. Effects on the neonatal brain vasculature were determined using qPCR to assess mRNA levels of angiogenesis/vasculogenesis-associated genes and GLUT1 immunohistochemistry (IHC) to assess brain blood vessel density and complexity. Results Iron deficiency, but not copper deficiency, increased mRNA expression of brain endothelial cell- and angiogenesis/vasculogenesis-associated genes (i.e. Glut1, Vwf, Vegfa, Ang2, Cxcl12, and Flk1) in the neonatal brain, suggesting increased cerebrovascular density. Iron deficiency also increased hippocampal and cerebral cortical blood vessel branching by 62% and 78%, respectively. Discussion This study demonstrates increased blood vessel complexity in the neonatal iron-deficient brain, which is likely due to elevated angiogenic/vasculogenic signaling. At least initially, this is probably an adaptive response to maintain metabolic substrate homeostasis in the developing iron-deficient brain. However, this may also contribute to long-term neurodevelopmental deficits. PMID:26177275

  19. Complex regulation of AprA metalloprotease in Pseudomonas fluorescens M114: evidence for the involvement of iron, the ECF sigma factor, PbrA and pseudobactin M114 siderophore.

    PubMed

    Maunsell, Bláithín; Adams, Claire; O'Gara, Fergal

    2006-01-01

    In the soil bacterium Pseudomonas fluorescens M114, extracellular proteolytic activity and fluorescent siderophore (pseudobactin M114) production were previously shown to be co-ordinately negatively regulated in response to environmental iron levels. An iron-starvation extracytoplasmic function sigma factor, PbrA, required for the transcription of siderophore biosynthetic genes, was also implicated in M114 protease regulation. The current study centred on the characterization and genetic regulation of the gene(s) responsible for protease production in M114. A serralysin-type metalloprotease gene, aprA, was identified and found to encode the major, if not only, extracellular protease produced by this strain. The expression of aprA and its protein product were found to be subject to complex regulation. Transcription analysis confirmed that PbrA was required for full aprA transcription under low iron conditions, while the ferric uptake regulator, Fur, was implicated in aprA repression under high iron conditions. Interestingly, the iron regulation of AprA was dependent on culture conditions, with PbrA-independent AprA-mediated proteolytic activity observed on skim milk agar supplemented with yeast extract, when supplied with iron or purified pseudobactin M114. These effects were not observed on skim milk agar without yeast extract. PbrA-independent aprA expression was also observed from a truncated transcriptional fusion when grown in sucrose asparagine tryptone broth supplied with iron or purified pseudobactin M114. Thus, experimental evidence suggested that iron mediated its effects via transcriptional activation by PbrA under low iron conditions, while an as-yet-unidentified sigma factor(s) may be required for the PbrA-independent aprA expression and AprA proteolytic activity induced by siderophore and iron.

  20. Divalent and trivalent gas-phase coordination complexes of californium: evaluating the stability of Cf(II)

    DOE PAGES

    Dau, Phuong D.; Shuh, David K.; Sturzbecher-Hoehne, Manuel; ...

    2016-07-07

    The divalent oxidation state is increasingly stable relative to the trivalent state for the later actinide elements, with californium the first actinide to exhibit divalent chemistry under moderate conditions. Although there is evidence for divalent Cf in solution and solid compounds, there are no reports of discrete complexes in which Cf II is coordinated by anionic ligands. Described here is the divalent Cf methanesulfinate coordination complex, Cf II(CH 3SO 2) 3-, prepared in the gas phase by reductive elimination of CH 3SO 2 from Cf III(CH 3SO 2) 4-. Comparison with synthesis of the corresponding Sm and Cm complexes revealsmore » reduction of CfIII and SmIII, and no evidence for reduction of Cm III. This reflects the comparative 3+/2+ reduction potentials: Cf 3+ (-1.60 V) ≈ Sm 3+ (-1.55 V) >> Cm 3+ (-3.7 V). Association of O 2 to the divalent complexes is attributed to formation of superoxides, with recovery of the trivalent oxidation state. Lastly, the new gas-phase chemistry of californium, now the heaviest element to have been studied in this manner, provides evidence for Cf II coordination complexes and similar chemistry of Cf and Sm.« less

  1. Divalent and trivalent gas-phase coordination complexes of californium: evaluating the stability of Cf(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dau, Phuong D.; Shuh, David K.; Sturzbecher-Hoehne, Manuel

    The divalent oxidation state is increasingly stable relative to the trivalent state for the later actinide elements, with californium the first actinide to exhibit divalent chemistry under moderate conditions. Although there is evidence for divalent Cf in solution and solid compounds, there are no reports of discrete complexes in which Cf II is coordinated by anionic ligands. Described here is the divalent Cf methanesulfinate coordination complex, Cf II(CH 3SO 2) 3-, prepared in the gas phase by reductive elimination of CH 3SO 2 from Cf III(CH 3SO 2) 4-. Comparison with synthesis of the corresponding Sm and Cm complexes revealsmore » reduction of CfIII and SmIII, and no evidence for reduction of Cm III. This reflects the comparative 3+/2+ reduction potentials: Cf 3+ (-1.60 V) ≈ Sm 3+ (-1.55 V) >> Cm 3+ (-3.7 V). Association of O 2 to the divalent complexes is attributed to formation of superoxides, with recovery of the trivalent oxidation state. Lastly, the new gas-phase chemistry of californium, now the heaviest element to have been studied in this manner, provides evidence for Cf II coordination complexes and similar chemistry of Cf and Sm.« less

  2. Anion states of η4-polyene iron tricarbonyl complexes

    NASA Astrophysics Data System (ADS)

    Olthoff, J. K.; Moore, J. H.; Tossell, J. A.; Giordan, J. C.; Baerends, E. J.

    1987-12-01

    Attachment energies of low energy electrons to Fe(CO)5 and to η4 complexes of 1,3-butadiene, 1,3-cyclohexadiene, cyclooctatetraene, and cyclobutadiene with Fe(CO3) have been determined by electron transmission spectroscopy. The spectrum of Fe(CO)5 is similar to that of Cr(CO)6, showing an anion resonance near threshold assigned to predominantly Fe3d orbitals and two resonances between 1 and 3 eV assigned to predominantly COπ* orbitals.The diene complexes show threshold features similar to Fe(CO)5, COπ* resonances around 2 eV, and one or more diene π* resonances. The resonances from the lowest π* orbitals of butadiene, cyclohexadiene, and cyclooctatetraene are little different in the free dienes and the complexes, but higher π* orbitals are substantially destabilized in the complexes, consistent with qualitative symmetry arguments. In the cyclobutadiene complex the π*3 orbital of cyclobutadiene is strongly destabilized by interaction with the Fe3d, giving a resonant feature at 1.2 eV. Dissociative attachment of electrons by the iron tricarbonyl complexes has been observed mass spectrometrically. The phenomenon is observed for electrons of energy less than 2 eV and results primarily in the loss of CO. For the cyclobutadiene complex, however, the attachment of 0 eV electrons results in a complex chemical process leading to the ejection of C2.

  3. Unusual Synthetic Pathway for an {Fe(NO) 2} 9 Dinitrosyl Iron Complex (DNIC) and Insight into DNIC Electronic Structure via Nuclear Resonance Vibrational Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speelman, Amy L.; Zhang, Bo; Silakov, Alexey

    2016-06-06

    Dinitrosyl iron complexes (DNICs) are among the most abundant NO-derived cellular species. Monomeric DNICs can exist in the {Fe(NO) 2} 9 or {Fe(NO) 2} 10 oxidation state (in the Enemark -Feltham notation). However, experimental studies of analogous DNICs in both oxidation states are rare, which prevents a thorough understanding of the di ff erences in the electronic structures of these species. Here, the {Fe(NO) 2} 9 DNIC [Fe(dmp)(NO) 2](OTf) ( 1 ; dmp = 2,9-dimethyl-1,10- phenanthroline) is synthesized from a ferrous precursor via an unusual pathway, involving disproportionation of an {FeNO} 7 complex to yield the {Fe(NO) 2} 9 DNICmore » and a ferric species, which is subsequently reduced by NO gas to generate a ferrous complex that re-enters the reaction cycle. In contrast to most {Fe(NO) 2} 9 DNICs with neutral N-donor ligands, 1 exhibits high solution stability and can be characterized structurally and spectroscopically. Reduction of 1 yields the corresponding {Fe(NO) 2} 10 DNIC [Fe(dmp)(NO) 2](2). The Mo ssbauer isomer shift of 2 is 0.08 mm/s smaller than that of 1 , which indicates that the iron center is slightly more oxidized in the reduced complex. The nuclear resonance vibrational spectra (NRVS) of 1 and 2 are distinct and provide direct experimental insight into di ff erences in bonding in these complexes. In particular, the symmetric out-of-plane Fe -N - O bending mode is shifted to higher energy by 188 cm -1 in 2 in comparison to 1 . Using quantum chemistry centered normal coordinate analysis (QCC-NCA), this is shown to arise from an increase in Fe - NO bond order and a sti ff ening of the Fe(NO) 2 unit upon reduction of 1 to 2 . DFT calculations demonstrate that the changes in bonding arise from an iron- centered reduction which leads to a distinct increase in Fe - NO π -back-bonding in {Fe(NO) 2} 10 DNICs in comparison to the corresponding {Fe(NO) 2} 9 complexes, in agreement with all experimental findings. Finally, the implications of the

  4. Expanding the Therapeutic Potential of the Iron Chelator Deferasirox in the Development of Aqueous Stable Ti(IV) Anticancer Complexes.

    PubMed

    Loza-Rosas, Sergio A; Vázquez-Salgado, Alexandra M; Rivero, Kennett I; Negrón, Lenny J; Delgado, Yamixa; Benjamín-Rivera, Josué A; Vázquez-Maldonado, Angel L; Parks, Timothy B; Munet-Colón, Charlene; Tinoco, Arthur D

    2017-07-17

    The recent X-ray structure of titanium(IV)-bound human serum transferrin (STf) exhibiting citrate as a synergistic anion reveals a difference in Ti(IV) coordination versus iron(III), the metal endogenously delivered by the protein to cells. This finding enriches our bioinspired drug design strategy for Ti(IV)-based anticancer therapeutics, which applies a family of Fe(III) chelators termed chemical transferrin mimetic (cTfm) ligands to inhibit Fe bioavailability in cancer cells. Deferasirox, a drug used for iron overload disease, is a cTfm ligand that models STf coordination to Fe(III), favoring Fe(III) binding versus Ti(IV). This metal affinity preference drives deferasirox to facilitate the release of cytotoxic Ti(IV) intracellularly in exchange for Fe(III). An aqueous speciation study performed by potentiometric titration from pH 4 to 8 with micromolar levels of Ti(IV) deferasirox at a 1:2 ratio reveals exclusively Ti(deferasirox) 2 in solution. The predominant complex at pH 7.4, [Ti(deferasirox) 2 ] 2- , exhibits the one of the highest aqueous stabilities observed for a potent cytotoxic Ti(IV) species, demonstrating little dissociation even after 1 month in cell culture media. UV-vis and 1 H NMR studies show that the stability is unaffected by the presence of biomolecular Ti(IV) binders such as citrate, STf, and albumin, which have been shown to induce dissociation or regulate cellular uptake and can alter the activity of other antiproliferative Ti(IV) complexes. Kinetic studies on [Ti(deferasirox) 2 ] 2- transmetalation with Fe(III) show that a labile Fe(III) source is required to induce this process. The initial step of this process occurs on the time scale of minutes, and equilibrium for the complete transmetalation is reached on a time scale of hours to a day. This work reveals a mechanism to deliver Ti(IV) compounds into cells and trigger Ti(IV) release by a labile Fe(III) species. Cellular studies including other cTfm ligands confirm the Fe(III) depletion

  5. OXIDATION OF CYCLOHEXANE WITH AIR CATALYZED BY A STERICALLY HINDERED IRON (II) COMPLEX

    EPA Science Inventory

    Oxidation of Cyclohexane with Air Catalyzed by a Sterically Hindered Iron(II) Complex.


    Thomas M. Becker, Michael A. Gonzalez*

    United States Environmental Protection Agency; National Risk Management Research Laboratory; Sustainable Technology Division; Clean Pr...

  6. Milk iron content in breast-feeding mothers after administration of intravenous iron sucrose complex.

    PubMed

    Breymann, Christian; von Seefried, Bettina; Stahel, Michele; Geisser, Peter; Canclini, Camillo

    2007-01-01

    To study the transfer of parenteral iron sucrose into maternal milk in the postpartum period. Ten healthy lactating mothers with functional iron deficiency 2-3 days after delivery received 100 mg intravenous iron sucrose and were observed together with a control group (n=5) without iron treatment during four days. Milk samples were taken before the treatment and every day afterwards. Mean milk iron levels at baseline were 0.43 and 0.46 mg/kg in the treatment and control group and decreased until the end of observation in both groups by 0.11 mg/kg. No significant difference between the groups was found on any study day as well as in the mean change from baseline over all four days. We could not show transfer of iron-sucrose into maternal milk for the given dosage. Since parenteral iron sucrose is widely used in obstetrics, the results provide information about safety of parenteral iron sucrose in the lactation period. The findings are also in agreement with other reports on active biological mammary gland regulation of milk iron concentration.

  7. A Monofunctional Platinum Complex Coordinated to a Rhodium Metalloinsertor Selectively Binds Mismatched DNA in the Minor Groove

    PubMed Central

    Weidmann, Alyson G.; Barton, Jacqueline K.

    2015-01-01

    We report the synthesis and characterization of a bimetallic complex derived from a new family of potent and selective metalloinsertors containing an unusual Rh—O axial coordination. This complex incorporates a monofunctional platinum center containing only one labile site for coordination to DNA, rather than two, and coordinates DNA non-classically through adduct formation in the minor groove. This conjugate displays bifunctional, interdependent binding of mismatched DNA via metalloinsertion at a mismatch as well as covalent platinum binding. DNA sequencing experiments revealed that the preferred site of platinum coordination is not the traditional N7-guanine site in the major groove, but rather N3-adenine in the minor groove. The complex also displays enhanced cytotoxicity in mismatch repair-deficient and mismatch repair-proficient human colorectal carcinoma cell lines compared to the chemotherapeutic cisplatin, and triggers cell death via an apoptotic pathway, rather than the necrotic pathway induced by rhodium metalloinsertors. PMID:26397309

  8. Chitosan-Copper (II) complex as antibacterial agent: synthesis, characterization and coordinating bond- activity correlation study

    NASA Astrophysics Data System (ADS)

    Mekahlia, S.; Bouzid, B.

    2009-11-01

    The antimicrobial activity of chitosan is unstable and sensitive to many factors such as molecular weight. Recent investigations showed that low molecular weight chitosan exhibited strong bactericidal activities compared to chitosan with high molecular weight. Since chitosan degradation can be caused by the coordinating bond, we attempt to synthesize and characterize the chitosan-Cu (II) complex, and thereafter study the coordinating bond effect on its antibacterial activity against Salmonella enteritidis. Seven chitosan-copper complexes with different copper contents were prepared and characterized by FT-IR, UV-vis, XRD and atomic absorption spectrophotometry (AAS). Results indicated that for chitosan-Cu (II) complexes with molar ratio close to 1:1, the inhibition rate reached 100%.

  9. Formation of a dinitrosyl iron complex by NorA, a nitric oxide-binding di-iron protein from Ralstonia eutropha H16.

    PubMed

    Strube, Katja; de Vries, Simon; Cramm, Rainer

    2007-07-13

    In Ralstonia eutropha H16, two genes, norA and norB, form a dicistronic operon that is controlled by the NO-responsive transcriptional regulator NorR. NorB has been identified as a membrane-bound NO reductase, but the physiological function of NorA is unknown. We found that, in a NorA deletion mutant, the promoter activity of the norAB operon was increased 3-fold, indicating that NorA attenuates activation of NorR. NorA shows limited sequence similarity to the oxygen carrier hemerythrin, which contains a di-iron center. Indeed, optical and EPR spectroscopy of purified NorA revealed the presence of a di-iron center, which binds oxygen in a similar way as hemerythrin. Diferrous NorA binds two molecules of NO maximally. Unexpectedly, binding of NO to the diferrous NorA required an external reductant. Two different NorA-NO species could be resolved. A minor species (up to 20%) showed an S = (1/2) EPR signal with g( perpendicular) = 2.041, and g( parallel) = 2.018, typical of a paramagnetic dinitrosyl iron complex. The major species was EPR-silent, showing characteristic signals at 420 nm and 750 nm in the optical spectrum. This species is proposed to represent a novel dinitrosyl iron complex of the form Fe(2+)-[NO](2)(2-), i.e. NO is bound as NO(-). The NO binding capacity of NorA in conjunction with its high cytoplasmic concentration (20 mum) suggests that NorA regulates transcription by lowering the free cytoplasmic concentration of NO.

  10. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.

    PubMed

    Ribeiro, Thales P; Fernandes, Christiane; Melo, Karen V; Ferreira, Sarah S; Lessa, Josane A; Franco, Roberto W A; Schenk, Gerhard; Pereira, Marcos D; Horn, Adolfo

    2015-03-01

    Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Synthesis and spectral characterization of trinuclear, oxo-centered, carboxylate-bridged, mixed-valence iron complexes with Schiff bases.

    PubMed

    Singh, Atresh Kumar; Singh, Alok Kumar

    2012-10-01

    Some novel trinuclear, oxo-centered, carboxylate-bridged, mixed-valence iron complexes of the general formula [Fe(3)O(OOCR)(3)(SB)(3)L(3)] (where R=C(13)H(27), C(15)H(31) or C(17)H(35,) HSB=Schiff bases and L=Ethanol) have been synthesized by the stepwise substitutions of acetate ions from μ(3)-oxo-hexa(acetato)tri(aqua)iron(II)diiron(III), first with straight chain carboxylic acids and then with Schiff bases. The complexes were characterized by elemental analyses, molecular weight determinations and spectral (electronic, infrared, FAB mass, Mössbauer and powder XRD) studies. Molar conductance measurements indicated the complexes to be non-electrolytes in nitrobenzene. Bridging nature of carboxylate and Schiff base anions in the complexes was established by their infrared spectra. Mössbauer spectroscopic studies indicated two quadrupole-split doublets due to Fe(II) and Fe(III) ions at 80, 200 and 295K, confirming the complexes are mixed-valence species. This was also supported by the observed electronic spectra of the complexes. Magnetic susceptibility measurements displayed octahedral geometry around iron in mixed-valence state and a net antiferromagnetic exchange coupling via μ-oxo atom. Trinuclear nature of the complexes was confirmed by their molecular weight determination and FAB mass spectra. A plausible structure for these complexes has been established on the basis of spectral and magnetic moment data. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Candida albicans Hap43 Is a Repressor Induced under Low-Iron Conditions and Is Essential for Iron-Responsive Transcriptional Regulation and Virulence ▿

    PubMed Central

    Hsu, Po-Chen; Yang, Cheng-Yao; Lan, Chung-Yu

    2011-01-01

    Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in immunocompromised patients. In addition to innate and adaptive immunities, hosts also resist microbial infections by developing a mechanism of “natural resistance” that maintains a low level of free iron to restrict the growth of invading pathogens. C. albicans must overcome this iron-deprived environment to cause infections. There are three types of iron-responsive transcriptional regulators in fungi; Aft1/Aft2 activators in yeast, GATA-type repressors in many fungi, and HapX/Php4 in Schizosaccharomyces pombe and Aspergillus species. In this study, we characterized the iron-responsive regulator Hap43, which is the C. albicans homolog of HapX/Php4 and is repressed by the GATA-type repressor Sfu1 under iron-sufficient conditions. We provide evidence that Hap43 is essential for the growth of C. albicans under low-iron conditions and for C. albicans virulence in a mouse model of infection. Hap43 was not required for iron acquisition under low-iron conditions. Instead, it was responsible for repression of genes that encode iron-dependent proteins involved in mitochondrial respiration and iron-sulfur cluster assembly. We also demonstrated that Hap43 executes its function by becoming a transcriptional repressor and accumulating in the nucleus in response to iron deprivation. Finally, we found a connection between Hap43 and the global corepressor Tup1 in low-iron-induced flavinogenesis. Taken together, our data suggest a complex interplay among Hap43, Sfu1, and Tup1 to coordinately regulate iron acquisition, iron utilization, and other iron-responsive metabolic activities. PMID:21131439

  13. Transition metal coordination chemistry ofN,N-bis(2-{pyrid-2-ylethyl})hydroxylamine.

    PubMed

    Belock, Christopher W; Cetin, Anil; Barone, Natalie V; Ziegler, Christopher J

    2008-08-18

    Although directly relevant to metal mediated biological nitrification as well as the coordination chemistry of peroxide, the metal complexes of hydroxylamines and their functionalized variants remain largely unexplored. The chelating hydroxylamine ligand N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine can be readily generated via a solvent free reaction in high purity; however, the ligand is prone to decomposition which can hamper metal reaction. N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine forms stable complexes with chromium(III), manganese(II), nickel(II), and cadmium(II) ions, coordinating in a side-on mode in the case of chromium and via the nitrogen in the case of the latter three metal ions. The hydroxylamine ligand can also be reduced to form N,N-bis(2-{pyrid-2-ylethyl})amine upon exposure to a stoichiometric amount of the metal salts cobalt(II) nitrate, vanadium(III) chloride, and iron(II) chloride. In the reaction with cobalt nitrate, the reduced ligand then chelates to the metal to form [N,N-bis(2-{pyrid-2-ylethyl})amine]dinitrocobalt(II). Upon reaction with vanadium(III) chloride and iron(III) chloride, the reduced ligand is isolated as the protonated free base, resulting from a metal-mediated decomposition reaction.

  14. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    NASA Astrophysics Data System (ADS)

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-Dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-12-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest--and more attractive--systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination--without nanoparticle aggregation and without complex dissociation--of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude.

  15. The structure of the BfrB-Bfd complex reveals protein-protein interactions enabling iron release from bacterioferritin

    PubMed Central

    Yao, Huili; Wang, Yan; Lovell, Scott; Kumar, Ritesh; Ruvinsky, Anatoly M.; Battaile, Kevin P.; Vakser, Ilya A.; Rivera, Mario

    2012-01-01

    Ferritin-like molecules are unique to cellular iron homeostasis because they can store iron at concentrations much higher than those dictated by the solubility of Fe3+. Very little is known about the protein interactions that deliver iron for storage, or promote the mobilization of stored iron from ferritin-like molecules. Here, we report the X-ray crystal structure of Pseudomonas aeruginosa bacterioferritin (Pa-BfrB) in complex with bacterioferritin-associated ferredoxin (Pa-Bfd) at 2.0 Å resolution. As the first example of a ferritin-like molecule in complex with a cognate partner, the structure provides unprecedented insight into the complementary interface that enables the [2Fe-2S] cluster of Pa-Bfd to promote heme-mediated electron transfer through the BfrB protein dielectric (~18 Å), a process that is necessary to reduce the core ferric mineral and facilitate mobilization of Fe2+. The Pa-BfrB-Bfd complex also revealed the first structure of a Bfd, thus providing a first view to what appears to be a versatile metal binding domain ubiquitous to the large Fer2_BFD family of proteins and enzymes with diverse functions. Residues at the Pa-BfrB-Bfd interface are highly conserved in Bfr and Bfd sequences from a number of pathogenic bacteria, suggesting that the specific recognition between Pa-BfrB and Pa-Bfd is of widespread significance to the understanding of bacterial iron homeostasis. PMID:22812654

  16. Dynamic Changes of IsiA-Containing Complexes during Long-Term Iron Deficiency in Synechocystis sp. PCC 6803.

    PubMed

    Ma, Fei; Zhang, Xin; Zhu, Xi; Li, Tianpei; Zhan, Jiao; Chen, Hui; He, Chenliu; Wang, Qiang

    2017-01-09

    Iron stress-induced protein A (IsiA), a major chlorophyll-binding protein in the thylakoid membrane, is significantly induced under iron deficiency conditions. Using immunoblot analysis and 77 K fluorescence spectroscopy combined with sucrose gradient fractionation, we monitored dynamic changes of IsiA-containing complexes in Synechocystis sp. PCC 6803 during exposure to long-term iron deficiency. Within 3 days of exposure to iron deficiency conditions, the initially induced free IsiA proteins preferentially conjugated to PS I trimer to form IsiA 18 -PS I trimers, which serve as light energy collectors for efficiently transmitting energy to PS I. With prolonged iron deficiency, IsiA proteins assembled either into IsiA aggregates or into two other types of IsiA-PS I supercomplexes, namely IsiA-PS I high fluorescence supercomplex (IHFS) and IsiA-PS I low fluorescence supercomplex (ILFS). Further analysis revealed a role for IsiA as an energy dissipater in the IHFS and as an energy collector in the ILFS. The trimeric structure of PS I mediated by PsaL was found to be indispensable for the formation of IHFS/ILFS. Dynamic changes in IsiA-containing complexes in cyanobacteria during long-term iron deficiency may represent an adaptation to iron limitation stress for flexible light energy distribution, which balances electron transfer between PS I and PS II, thus minimizing photooxidative damage. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  17. A diketiminate-bound diiron complex with a bridging carbonate ligand

    PubMed Central

    Sadique, Azwana R.; Brennessel, William W.; Holland, Patrick L.

    2009-01-01

    Reduction of carbon dioxide by a diiron(I) complex gives μ-carbonato-κ3 O:O′,O′′-bis­{[2,2,6,6-tetra­methyl-3,5-bis­(2,4,6-triisopropyl­phenyl)heptane-2,5-diiminate(1−)-κ2 N,N′]iron(II)} toluene disolvate, [Fe2(C41H65N)2(CO3)]·2C7H8, a diiron(II) species with a bridging carbonate ligand. The asymmetric unit contains one diiron complex and two cocrystallized toluene solvent mol­ecules that are distributed over three sites, one with atoms in general positions and two in crystallographic sites. Both FeII atoms are η2-coordinated to diketiminate ligands, but η1- and η2-coordinated to the bridging carbonate ligand. Thus, one FeII center is three-coordinate and the other is four-coordinate. The bridging carbonate ligand is nearly perpendicular to the iron–diketiminate plane of the four-coordinate FeII center and parallel to the plane of the three-coordinate FeII center. PMID:19407402

  18. Interactions between iron(III)-hydroxide polymaltose complex and commonly used medications / laboratory studies in rats.

    PubMed

    Funk, Felix; Canclini, Camillo; Geisser, Peter

    2007-01-01

    Simple iron salts, such as iron sulphate, often interact with food and other medications reducing bioavailability and tolerability. Iron(III)-hydroxide polymaltose complex (IPC, Maltofer) provides a soluble form of non-ionic iron, making it an ideal form of oral iron supplementation. The physicochemical properties of IPC predict a low potential for interactions. The effects of co-administration with aluminium hydroxide (CAS 21645-51-2), acetylsalicylic acid (CAS 50-78-2), bromazepam (CAS 1812-30-2), calcium acetate (CAS 62-54-4), calcium carbonate (CAS 471-34-1), auranofin (CAS 34031-32-8), magnesium-L-aspartate hydrochloride (CAS 28184-71-6), methyldopa sesquihydrate (CAS 41372-08-1), paracetamol (CAS 103-90-2), penicillamine (CAS 52-67-5), sulfasalazine (CAS 599-79-1), tetracycline hydrochloride (CAS 64-75-5), calcium phosphate (CAS 7757-93-9) in combination with vitamin D3 (CAS 67-97-0), and a multi-vitamin preparation were tested in rats fed an iron-deficient diet. Uptake of iron from radiolabelled IPC with and without concomitant medications was compared. None of the medicines tested had a significant effect on iron uptake. Iron-59 retrieval from blood and major storage organs was 64-76% for IPC alone compared with 59-85% following co-administration with other medications. It is concluded that, under normal clinical conditions, IPC does not interact with these medications.

  19. Mössbauer effect study of iron(III) inidazolidine nitroxyl-free radical ligand complex

    NASA Astrophysics Data System (ADS)

    Mulaba, A.; Kiremire, E.; Pollak, H.; Boeyens, J.

    1999-09-01

    A new complex, [Fe(acac)L2], bearing inidazolidine nitroxyl-free radical ligand (L-) was recently synthesised for biological studies. It proved to be biologically active against African sleeping sickness, plasmodium falciparum (malaria), leishmaniasis and chaga disease causative agents. Three ESR well resolved peaks indicated the presence of a free (unpaired) and chemically active electron in the complex. The structural complex ferric iron was found at the centre of two electric gradient whose the biggest is suggested to be initiated by the unpaired charge. No distinction between different cis isomers could be made.

  20. Novel spin transition between S = 5/2 and S = 3/2 in highly saddled iron(III) porphyrin complexes at extremely low temperatures.

    PubMed

    Ohgo, Yoshiki; Chiba, Yuya; Hashizume, Daisuke; Uekusa, Hidehiro; Ozeki, Tomoji; Nakamura, Mikio

    2006-05-14

    A novel spin transition between S = 5/2 and S = 3/2 has been observed for the first time in five-coordinate, highly saddled iron(III) porphyrinates by EPR and SQUID measurements at extremely low temperatures.

  1. EPR Characterization of Dinitrosyl Iron Complexes with Thiol-Containing Ligands as an Approach to Their Identification in Biological Objects: An Overview.

    PubMed

    Vanin, Anatoly F

    2018-06-01

    The overview demonstrates how the use of only one physico-chemical approach, viz., the electron paramagnetic resonance method, allowed detection and identification of dinitrosyl iron complexes with thiol-containing ligands in various animal and bacterial cells. These complexes are formed in biological objects in the paramagnetic (electron paramagnetic resonance-active) mononuclear and diamagnetic (electron paramagnetic resonance-silent) binuclear forms and control the activity of nitrogen monoxide, one of the most universal regulators of metabolic processes in the organism. The analysis of electronic and spatial structures of dinitrosyl iron complex sheds additional light on the mechanism whereby dinitrosyl iron complex with thiol-containing ligands function in human and animal cells as donors of nitrogen monoxide and its ionized form, viz., nitrosonium ions (NO + ).

  2. Iron Isotope Systematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dauphas, Nicolas; John, Seth G.; Rouxel, Olivier

    Iron is a ubiquitous element with a rich (i.e., complex) chemical behavior. It possesses three oxidation states, metallic iron (Fe0), ferrous iron (Fe2+) and ferric iron (Fe3+). The distribution of these oxidation states is markedly stratified in the Earth.

  3. The potential for phytoremediation of iron cyanide complex by willows.

    PubMed

    Yu, Xiao-Zhang; Zhou, Pu-Hua; Yang, Yong-Miao

    2006-07-01

    Hybrid willows (Salix matsudana Koidz x Salix alba L.), weeping willows (Salix babylonica L.) and hankow willows (Salix matsudana Koidz) were exposed to potassium ferrocyanide to determine the potential of these plants to extract, transport and metabolize this iron cyanide complex. Young rooted cuttings were grown in hydroponic solution at 24.0 +/- 0.5 degrees C for 144 h. Ferrocyanide in solution, air, and aerial tissues of plants was analyzed spectrophotometrically. Uptake of ferrocyanide from the aqueous solution by plants was evident for all treatments and varied with plant species, ranging from 8.64 to 15.67% of initial mass. The uptake processes observed from hydroponic solution showed exponential disappearance kinetics. Very little amounts of the applied ferrocyanide were detected in all parts of plant materials, confirming passage of ferrocyanide through the plants. No ferrocyanide in air was found due to plant transpiration. Mass balance analysis showed that a large fraction of the reduction of initial mass in hydroponic solution was metabolized during transport within the plant materials. The difference in the metabolic rate of ferrocyanide between the three plant species was comparably small, indicating transport of ferrocyanide from hydroponic solution to plant materials and further transport within plant materials was a limiting step for assimilating this iron cyanide complex. In conclusion, phytoremediation of ferrocyanide by the plants tested in this study has potential field application.

  4. The Role of Care Coordinator for Children with Complex Care Needs: A Systematic Review

    PubMed Central

    Hillis, Rowan; Larkin, Philip J; Cawley, Des; Connolly, Michael

    2016-01-01

    Introduction: This systematic review seeks to identify the intended components of the role of care coordinator for children with complex care needs and the factors that determine its composition in practice. Theory and methods: The initial search identified 1,157 articles, of which 37 met the inclusion criteria. They were quality assessed using the SIGN hierarchy of evidence structure. Results: Core components of the role include: coordination of care needs, planning and assessment, specialist support, emotional support, administration and logistics and continuing professional development. Influencing factors on the role include the external environment (political and socio-economic), the internal environment (organisational structure and funding protocols), the skills, qualifications and experience of the coordinator, the family circumstances and the nature of the interaction between the care coordinator and the family. Discussion: The lack of consistent terminology creates challenges and there is a need for greater consensus on this issue. Organisations and healthcare professionals need to recognise the extent to which contextual factors influence the role of a care coordinator in practice and plan accordingly. Despite evidence that suggests that the role is pivotal in ensuring that care needs are sustained, there remains great variability in the understanding of the role of a care coordinator for this population. Conclusions: As the provision of care increasingly moves closer to home there is a need for greater understanding of the nature and composition of the interaction between care coordinators and families to determine the extent to which appropriate services are being provided. Further work in this area should take into consideration any potential variance in service provision, for example any potential inequity arising due to geographic location. It is also imperative, where appropriate, to seek the views of children with complex care needs and their

  5. Near-unity thermally activated delayed fluorescence efficiency in three- and four-coordinate Au(i) complexes with diphosphine ligands.

    PubMed

    Osawa, Masahisa; Aino, Masa-Aki; Nagakura, Takaki; Hoshino, Mikio; Tanaka, Yuya; Akita, Munetaka

    2018-05-14

    The synthesis and photoluminescence properties of three-coordinate Au(i) complexes with rigid diphosphine ligands LMe {1,2-bis[bis(2-methylphenyl)phosphino]benzene}, LEt {1,2-bis[bis(2-ethylphenyl)phosphino]benzene}, and LiPr {1,2-bis[bis(2-isopropylphenyl)phosphino]benzene} are investigated. The LMe and LEt ligands afford two types of complexes: dinuclear complexes [μ-LMe(AuCl)2] (1d) and [μ-LEt(AuCl)2] (2d) with an Au(i)-Au(i) bond and mononuclear three-coordinate Au(i) complexes LMeAuCl (1) and LEtAuCl (2). On the other hand, the bulkiest ligand, LiPr, affords three-coordinate Au(i) complexes, LiPrAuCl (3) and LiPrAuI (4), but no dinuclear complexes. X-ray analysis suggests that both 3 and 4 possess a highly distorted trigonal planar geometry. Moreover, luminescence data reveal that at room temperature, 3 and 4 exhibit yellow-green thermally activated delayed fluorescence in the crystalline state with maximum emission wavelengths at 558 and 549 nm, respectively. The emission yields are close to unity. Quantum chemical calculations suggest that the emission of 4 originates from the (σ + X) → π* excited state that possesses strong intraligand charge-transfer character. The luminescent properties of four-coordinate Au(i) complex (5) possessing a tetrahedral geometry are discussed on the basis of the emission spectra and decay times measured in a temperature range of 309-77 K.

  6. An electron transfer driven magnetic switch: ferromagnetic exchange and spin delocalization in iron verdazyl complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brook, David J. R.; Fleming, Connor; Chung, Dorothy

    A single electron reduction of an iron bis(verdazyl) complex results in a large change in spin multiplicity resulting from a combination of spin crossover and exceptionally strong ferromagnetic exchange.

  7. An electron transfer driven magnetic switch: ferromagnetic exchange and spin delocalization in iron verdazyl complexes

    DOE PAGES

    Brook, David J. R.; Fleming, Connor; Chung, Dorothy; ...

    2018-01-01

    A single electron reduction of an iron bis(verdazyl) complex results in a large change in spin multiplicity resulting from a combination of spin crossover and exceptionally strong ferromagnetic exchange.

  8. Chronic exposure to nitric oxide alters the free iron pool in endothelial cells: Role of mitochondrial respiratory complexes and heat shock proteins

    PubMed Central

    Ramachandran, Anup; Ceaser, Erin; Darley-Usmar, Victor M.

    2004-01-01

    The mechanisms of nitric oxide (NO) signaling include binding to the iron centers in soluble guanylate cyclase and cytochrome c oxidase and posttranslational modification of proteins by S-nitrosation. Low levels of NO control mitochondrial number in cells, but little is known of the impact of chronic exposure to high levels of NO on mitochondrial function in endothelial cells. The focus of this study is the interaction of NO with mitochondrial respiratory complexes in cell culture and the effect this has on iron homeostasis. We demonstrate that chronic exposure of endothelial cells to NO decreased activity and protein levels of complexes I, II, and IV, whereas citrate synthase and ATP synthase were unaffected. Inhibition of these respiratory complexes was accompanied by an increase in cellular S-nitrosothiol levels, modification of cysteines residues, and an increase in the labile iron pool. The NO-dependent increase in the free iron pool and inhibition of complex II was prevented by inhibition of mitochondrial protein synthesis, consistent with a major contribution of the organelle to iron homeostasis. In addition, inhibition of mitochondrial protein synthesis was associated with an increase in heat shock protein 60 levels, which may be an additional mechanism leading to preservation of complex II activity. PMID:14691259

  9. Synthesis, spectroscopic, and antibacterial activity of tetraazamacrocyclic complexes of trivalent chromium, manganese, and iron.

    PubMed

    Singh, D P; Malik, Vandna; Kumar, Ramesh; Singh, Jitender

    2009-10-01

    A new series of macrocyclic complexes of type [M(TML)X]X(2), where M = Cr(III), Mn(III), or Fe(III), TML is tetradentate macrocyclic ligand, and X = Cl(-), NO(3)(-), CH(3)COO(-) for Cr(III), Fe(III) and X = CH(3)COO(-) for Mn (III), has been synthesized by condensation of benzil and succinyldihydrazide in the presence of metal salt. The complexes have been so formulated due to the 1:2 electrolytic nature of these complexes as shown by conductivity measurements. The complexes have been characterized with the help of various physicochemical techniques such as elemental analysis, molar conductance, electronic and infrared spectral studies, and magnetic susceptibility. On the basis of these studies, a five-coordinate distorted square pyramidal geometry, in which two nitrogens and two carbonyl oxygen atoms are suitably placed for coordination toward the metal ion, has been proposed for all the complexes. The complexes have been tested for their in vitro antibacterial activity. Some of the complexes show remarkable antibacterial activities against some selected bacterial strains. The minimum inhibitory concentrations shown by these complexes have been compared with those shown by some standard antibiotics such as linezolid and cefaclor.

  10. Architecture of the Yeast Mitochondrial Iron-Sulfur Cluster Assembly Machinery

    PubMed Central

    Ranatunga, Wasantha; Gakh, Oleksandr; Galeano, Belinda K.; Smith, Douglas Y.; Söderberg, Christopher A. G.; Al-Karadaghi, Salam; Thompson, James R.; Isaya, Grazia

    2016-01-01

    The biosynthesis of Fe-S clusters is a vital process involving the delivery of elemental iron and sulfur to scaffold proteins via molecular interactions that are still poorly defined. We reconstituted a stable, functional complex consisting of the iron donor, Yfh1 (yeast frataxin homologue 1), and the Fe-S cluster scaffold, Isu1, with 1:1 stoichiometry, [Yfh1]24·[Isu1]24. Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional reconstruction of this complex at a resolution of ∼17 Å. In addition, via chemical cross-linking, limited proteolysis, and mass spectrometry, we identified protein-protein interaction surfaces within the complex. The data together reveal that [Yfh1]24·[Isu1]24 is a roughly cubic macromolecule consisting of one symmetric Isu1 trimer binding on top of one symmetric Yfh1 trimer at each of its eight vertices. Furthermore, molecular modeling suggests that two subunits of the cysteine desulfurase, Nfs1, may bind symmetrically on top of two adjacent Isu1 trimers in a manner that creates two putative [2Fe-2S] cluster assembly centers. In each center, conserved amino acids known to be involved in sulfur and iron donation by Nfs1 and Yfh1, respectively, are in close proximity to the Fe-S cluster-coordinating residues of Isu1. We suggest that this architecture is suitable to ensure concerted and protected transfer of potentially toxic iron and sulfur atoms to Isu1 during Fe-S cluster assembly. PMID:26941001

  11. Local environment of iron in garden soil Vs Plants

    NASA Astrophysics Data System (ADS)

    Dehipawala, Sunil; Dong, Chaojung; Smith, Stephen; Schneider, Patricia; Gafney, Harry

    2015-03-01

    Iron is an essential nutrient not only for humans, but also for all types of plants. Plants use iron for chlorophyll formation, RNA metabolism, and transpiration process regulation. Iron is one of the most abundant metals in the soil and occurs in a wide range of chemical forms. The correlation between the iron species presents in soil and in Petroselinum crispum (parsley) plants were investigated using the room temperature Mossbauer spectroscopy. Mossbauer spectrum of garden soil consists of two doublets. Based on the established isomer shift and quadrupole splitting values of iron, these doublets can be identified as due to octahedrally coordinated Fe3+ and tetrahedrally coordinated Fe2+. Most of the iron present in the parsley has the form Fe3+ or electron density at the site of the iron nucleus similar to that of Fe3+. These findings will help establish soil conditions necessary to increase Fe2+ intake by plants similar to the form of iron present in most supplements. Sunil Dehipawala acknowledges financial support provided by PSC-CUNY.

  12. Iron oxide and iron carbide particles produced by the polyol method

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Shimizu, R.; Kobayashi, Y.

    2016-12-01

    Iron oxide ( γ-Fe2O3) and iron carbide (Fe3C) particles were produced by the polyol method. Ferrocene, which was employed as an iron source, was decomposed in a mixture of 1,2-hexadecandiol, oleylamine, and 1-octadecene. Particles were characterized using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. It was found that oleylamine acted as a capping reagent, leading to uniform-sized (12-16 nm) particles consisting of γ-Fe 2O3. On the other hand, 1-octadecene acted as a non-coordinating solvent and a carbon source, which led to particles consisting of Fe3C and α-Fe with various sizes.

  13. Investigation of iron(III) complex with crown-porphyrin

    NASA Astrophysics Data System (ADS)

    Pankratov, Denis A.; Dolzhenko, Vladimir D.; Stukan, Reonald A.; Al Ansari, Yana F.; Savinkina, Elena V.; Kiselev, Yury M.

    2013-08-01

    Iron complex of 5-(4-(((4'-hydroxy-benzo-15-crown-5)-5'-yl)diazo)phenyl)-10,15,20-triphenylporphyrin was investigated by 57Fe Mössbauer spectroscopy and EPR. Two Fe sites were identified; they give two differing signals, doublet and wide absorption in a large velocity interval. EPR spectra of solutions of the complex in chloroform at room temperature also show two signals with g = 2.064, AFe = 0.032 cm - 1; g = 2.015, AFe = 0.0034 cm - 1. The doublet asymmetry is studied vs. temperature and normal angle to the sample plane and gamma-beam. The isomer shift δ in the doublet varies from 0.25 to 0.41 mm/s in the 360-5 K temperature range, whereas quadruple splitting value is constant, Δ ˜ 0.65 mm/s. The relax absorption may be described as a wide singlet ( δ = 0.30- 0.44 mm/s and Γ = 2.83-3.38 mm/s); its relative area strongly depends on temperature. According to δ, both signals are assigned to Fe(III).

  14. Siderophores in Cloud Waters and Potential Impact on Atmospheric Chemistry: Photoreactivity of Iron Complexes under Sun-Simulated Conditions.

    PubMed

    Passananti, Monica; Vinatier, Virginie; Delort, Anne-Marie; Mailhot, Gilles; Brigante, Marcello

    2016-09-06

    In the present work, the photoreactivity of a mixture of iron(III)–pyoverdin (Fe(III)–Pyo) complexes was investigated under simulated cloud conditions. Pyoverdins are expected to complex ferric ions naturally present in cloudwater, thus modifying their availability and photoreactivity. The spectroscopic properties and photoreactivity of Fe(III)-Pyo were investigated, with particular attention to their fate under solar irradiation, also studied through simulations. The photolysis of the Fe(III)–Pyo complex leads to the generation of Fe(II), with rates of formation (RFe(II)f) of 6.98 and 3.96 × 10–9 M s–1 at pH 4.0 and 6.0, respectively. Interestingly, acetate formation was observed during the iron-complex photolysis, suggesting that fragmentation can occur after the ligand-to-metal charge transfer (LMCT) via a complex reaction mechanism. Moreover, photogenerated Fe(II) represent an important source of hydroxyl radical via the Fenton reaction in cloudwater. This reactivity might be relevant for the estimation of the rates of formation and steady-state concentrations of the hydroxyl radical by cloud chemistry models and for organic matter speciation in the cloud aqueous phase. In fact, the conventional models, which describe the iron photoreactivity in terms of iron–aqua and oxalate complexes, are not in accordance with our results.

  15. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen-Doped Carbon-Supported Iron Catalysts.

    PubMed

    Li, Jiang; Liu, Jun-Ling; Zhou, Hong-Jun; Fu, Yao

    2016-06-08

    Iron-based heterogeneous catalysts, which were generally prepared by pyrolysis of iron complexes on supports at elevated temperature, were found to be capable of catalyzing the transfer hydrogenation of furfural (FF) to furfuryl alcohol (FFA). The effects of metal precursor, nitrogen precursor, pyrolysis temperature, and support on catalytic performance were examined thoroughly, and a comprehensive study of the reaction parameters was also performed. The highest selectivity of FFA reached 83.0 % with a FF conversion of 91.6 % under the optimal reaction condition. Catalyst characterization suggested that iron cations coordinated by pyridinic nitrogen functionalities were responsible for the enhanced catalytic activity. The iron catalyst could be recycled without significant loss of catalytic activity for five runs, and the destruction of the nitrogen-iron species, the presence of crystallized Fe2 O3 phase, and the pore structure change were the main reasons for catalyst deactivation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A comparative study of the spectral, fluorometric properties and photostability of natural curcumin, iron- and boron- complexed curcumin

    NASA Astrophysics Data System (ADS)

    Mohammed, Fatima; Rashid-Doubell, Fiza; Cassidy, Seamas; Henari, Fryad

    2017-08-01

    Curcumin is a yellow phenolic compound with a wide range of reported biological effects. However, two main obstacles hinder the use of curcumin therapeutically, namely its poor bioavailability and photostability. We have synthesized two curcumin complexes, the first a boron curcumin complex (B-Cur2) and the second an iron (Fe-Cur3) complex of curcumin. Both derivatives showed high fluorescence efficiency (quantum yield) and greater photostability in solution. The improved photostability could be attributed to the coordination structures and the removal of β-diketone group from curcumin. The fluorescence and ultra violet/visible absorption spectra of curcumin, B-Cur2 and Fe-Cur3 all have a similar spectral pattern when dissolved in the same organic solvent. However, a shift towards a lower wavelength was observed when moving from polar to non-polar solvents, possibly due to differences in solvent polarity. A plot of Stokes' shift vs the orientation polarity parameter (Δf) or vs the solvent polarity parameter (ET 30) showed an improved correlation between the solvent polarity parameter than with the orientation polarity parameter and indicating that the red shift observed could be due to hydrogen-bonding between the solvent molecules. A similar association was obtained when Stokes' shift was replaced by maximum synchronous fluorescence. Both B-Cur2 and Fe-Cur3 had larger quantum yields than curcumin, suggesting they may be good candidates for medical imaging and in vitro studies.

  17. Donor/acceptor coupling in mixed-valent dinuclear iron polypyridyl complexes: experimental and theoretical considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, C.M.; Derr, D.L.; Ferrere, S.

    1996-06-05

    Coupling between donor and acceptor orbitals for optically-induced intervalence electron transfer processes has been considered for a series of rigid mixed-valent dinuclear tris(2,2`-bipyridine)iron complexes. Each of the four complexes considered ontains three saturated bridges which link the two tris(2,2`-bipyridine)iron moieties. The bridging linkages are -CH{sub 2}CH{sub 2}-, -CH{sub 2}CH{sub 2}CH{sub 2}-, -CH{sub 2}OCH{sub 2}-. Despite differences in the composition of the bridges X-ray diffraction and/or molecular dynamics calculations show that the metal-metal separation and relative bipyridine orientations among all four complexes are nearly identical. Consequently, the only factor which differs significantly among these complexes and which might affect the donor-acceptormore » coupling in the mixed-valent forms is their connectivity. Theses complexes thus provide a unique opportunity to focus on potential superexchange coupling in the absence of ambiguities introduced by other structural and energetic considerations. Theories developed by Mulliken and Hush have been applied to intervalence charge-transfer transitions in order to obtain values of the coupling matrix elements, H{sub 12}. Configuration interaction calculations were also carried out for each of the [Fe{sub 2}(L){sub 3}]{sub 5+} complexes to provide theoretical values of H{sub 12} and the effective donor/acceptor separation distances (r{sub DA}). Experimental and theoretical results for H{sub 12} are in excellent agreement. 31 refs., 3 figs., 4 tabs.« less

  18. Coordinated Regulation of Species-Specific Hydroxycinnamic Acid Degradation and Siderophore Biosynthesis Pathways in Agrobacterium fabrum

    PubMed Central

    Baude, Jessica; Vial, Ludovic; Villard, Camille; Campillo, Tony; Lavire, Céline; Nesme, Xavier

    2016-01-01

    ABSTRACT The rhizosphere-inhabiting species Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to degrade hydroxycinnamic acids (HCAs), especially ferulic acid and p-coumaric acid, via the novel A. fabrum HCA degradation pathway. Gene expression profiles of A. fabrum strain C58 were investigated in the presence of HCAs, using a C58 whole-genome oligoarray. Both ferulic acid and p-coumaric acid caused variations in the expression of more than 10% of the C58 genes. Genes of the A. fabrum HCA degradation pathway, together with the genes involved in iron acquisition, were among the most highly induced in the presence of HCAs. Two operons coding for the biosynthesis of a particular siderophore, as well as genes of the A. fabrum HCA degradation pathway, have been described as being specific to the species. We demonstrate here their coordinated expression, emphasizing the interdependence between the iron concentration in the growth medium and the rate at which ferulic acid is degraded by cells. The coordinated expression of these functions may be advantageous in HCA-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. The present results confirm that there is cooperation between the A. fabrum-specific genes, defining a particular ecological niche. IMPORTANCE We previously identified seven genomic regions in Agrobacterium fabrum that were specifically present in all of the members of this species only. Here we demonstrated that two of these regions, encoding the hydroxycinnamic acid degradation pathway and the iron acquisition pathway, were regulated in a coordinated manner. The coexpression of these functions may be advantageous in hydroxycinnamic acid-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. These data support the view that bacterial genomic species

  19. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mena, Natalia P.; Millennium Institute of Cell Dynamics and Biotechnology, Santiago; Bulteau, Anne Laure

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters aremore » involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given

  20. Neutral six-coordinate bis(dithiocarbamato)silicon(iv) complexes with an SiCl2S4 skeleton.

    PubMed

    Baus, Johannes A; Tacke, Reinhold

    2017-07-11

    Treatment of SiCl 4 with lithium dithiocarbamates of the formula type Li[R 2 NCS 2 ] (R = Ph, iPr) in a molar ratio of 1 : 2 afforded the respective six-coordinate silicon(iv) complexes [Ph 2 NCS 2 ] 2 SiCl 2 (3) and [iPr 2 NCS 2 ] 2 SiCl 2 (4), which were isolated as the solvates 3·MeCN and 4·MeCN. Compounds 3·MeCN and 4·MeCN were structurally characterised by single-crystal X-ray diffraction and multinuclear NMR spectroscopic studies in the solid state and in solution. In this study, dithiocarbamato ligands were implemented in silicon coordination chemistry for the first time. Compounds 3 and 4 represent the first six-coordinate silicon(iv) complexes with an SiCl 2 S 4 skeleton.

  1. Reactivity of molecular dioxygen towards a series of isostructural dichloroiron(III) complexes with tripodal tetraamine ligands: general access to mu-oxodiiron(III) complexes and effect of alpha-fluorination on the reaction kinetics.

    PubMed

    Thallaj, Nasser K; Rotthaus, Olaf; Benhamou, Leila; Humbert, Nicolas; Elhabiri, Mourad; Lachkar, Mohammed; Welter, Richard; Albrecht-Gary, Anne-Marie; Mandon, Dominique

    2008-01-01

    We have synthesized the mono, di-, and tri-alpha-fluoro ligands in the tris(2-pyridylmethyl)amine (TPA) series, namely, FTPA, F(2)TPA and F(3)TPA, respectively. Fluorination at the alpha-position of these nitrogen-containing tripods shifts the oxidation potential of the ligand by 45-70 mV per added fluorine atom. The crystal structures of the dichloroiron(II) complexes with FTPA and F(2)TPA reveal that the iron center lies in a distorted octahedral geometry comparable to that already found in TPAFeCl(2). All spectroscopic data indicate that the geometry is retained in solution. These three isostructural complexes all react with molecular dioxygen to yield stable mu-oxodiiron(III) complexes. Crystal structure analyses are reported for each of these three mu-oxo compounds. With TPA, a symmetrical structure is obtained for a dicationic compound with the tripod coordinated in the kappa(4)N coordination mode. With FTPA, the compound is a neutral mu-oxodiiron(III) complex with a kappa(3)N coordination mode of the ligand. Oxygenation of the F(2)TPA complex gave a neutral unsymmetrical compound, the structure of which is reminiscent of that already found with the trifluorinated ligand. On reduction, all mu-oxodiiron(III) complexes revert to the starting iron(II) species. The oxygenation reaction parallels the well-known formation of mu-oxo derivatives from dioxygen in the chemistry of porphyrins reported almost three decades ago. The striking feature of the series of iron(II) precursors is the effect of the ligand on the kinetics of oxygenation of the complexes. Whereas the parent complex undergoes 90 % conversion over 40 h, the monofluorinated ligand provides a complex that has fully reacted after 30 h, whereas the reaction time for the complex with the difluorinated ligand is only 10 h. Analysis of the spectroscopic data reveals that formation of the mu-oxo complexes proceeds in two distinct reversible kinetic steps with k(1) approximately 10 k(2). For TPAFeCl(2) and

  2. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity.

    PubMed

    Mena, Natalia P; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C; Núñez, Marco T

    2011-06-03

    Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex I and iron accumulation are hallmarks of idiopathic Parkinson's disease, the findings reported here may have relevance for understanding the pathophysiology of this disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Mössbauer study of novel iron(II) complexes synthesized with Schiff bases

    NASA Astrophysics Data System (ADS)

    Várhelyi, Cs.; Lengyel, A.; Homonnay, Z.; Szalay, R.; Pokol, Gy.; Szilágyi, I.-M.; Huszthy, P.; Papp, J.; Goga, F.; Golban, L.-M.; Várhelyi, M.; Tomoaia-Cotisel, M.; Szőke, Á.; Kuzmann, E.

    2017-11-01

    Novel [Fe(4-benzyl-2-hydroxyphenyl-propylidene)2ethylene-diamine], and [Fe (2,4,6-trihydroxy-benzyl-4-metoxiphenyl-methylidene)2ethylene-diamine] complexes were synthesized by reacting FeII salt with the indicated Schiff-base ligands. The compounds were characterized by57Fe Mössbauer spectroscopy, FTIR, UV-VIS, TG-DTA-DTG, MS, AFM, XRD, cyclic voltammetry and biological activity measurements. 295 K and 78 K Mössbauer spectra revealed that iron is dominantly in high spin FeII state in both complexes while simultaneously a minor low spin FeII was also present in both complexes, furthermore a minor high spin FeIII was observed in [Fe(2,4,6-trihydroxy-benzyl-4-metoxiphenyl- methylidene) 2ethylene-diamine], too.

  4. Iron(IV)hydroxide pK(a) and the role of thiolate ligation in C-H bond activation by cytochrome P450.

    PubMed

    Yosca, Timothy H; Rittle, Jonathan; Krest, Courtney M; Onderko, Elizabeth L; Silakov, Alexey; Calixto, Julio C; Behan, Rachel K; Green, Michael T

    2013-11-15

    Cytochrome P450 enzymes activate oxygen at heme iron centers to oxidize relatively inert substrate carbon-hydrogen bonds. Cysteine thiolate coordination to iron is posited to increase the pK(a) (where K(a) is the acid dissociation constant) of compound II, an iron(IV)hydroxide complex, correspondingly lowering the one-electron reduction potential of compound I, the active catalytic intermediate, and decreasing the driving force for deleterious auto-oxidation of tyrosine and tryptophan residues in the enzyme's framework. Here, we report on the preparation of an iron(IV)hydroxide complex in a P450 enzyme (CYP158) in ≥90% yield. Using rapid mixing technologies in conjunction with Mössbauer, ultraviolet/visible, and x-ray absorption spectroscopies, we determine a pK(a) value for this compound of 11.9. Marcus theory analysis indicates that this elevated pK(a) results in a >10,000-fold reduction in the rate constant for oxidations of the protein framework, making these processes noncompetitive with substrate oxidation.

  5. The coordination structure of the extracted copper(II) complex with a synergistic mixture containing dinonylnaphthalene sulfonic acid and n-hexyl 3-pyridinecarboxylate ester

    NASA Astrophysics Data System (ADS)

    Zhu, Shan; Hu, Huiping; Hu, Jiugang; Li, Jiyuan; Hu, Fang; Wang, Yongxi

    2017-09-01

    In continuation of our interest in the coordination structure of the nickel(II) complex with dinonylnaphthalene sulfonic acid (HDNNS) and 2-ethylhexyl 4-pyridinecarboxylate ester (4PC), it was observed that the coordination sphere was completed by the coordination of two N atoms of pyridine rings in ligands 4PC and four water molecules while no direct interaction between Ni(II) and deprotonated HDNNS was observed. To investigate whether the coordination structure of nickel(II) with the synergistic mixture containing HDNNS and 4PC predominates or not in the copper(II) complex with the synergistic mixtures containing HDNNS and pyridinecarboxylate esters, a copper(II) synergist complex with n-hexyl 3-pyridinecarboxylate ester (L) and naphthalene-2-sulfonic acid (HNS, the short chain analogue of HDNNS), was prepared and studied by X-ray single crystal diffraction, elemental analyses and thermo gravimetric analysis (TGA), respectively. It was shown that the composition of the copper(II) synergist complex was [Cu(H2O)2(L)2(NS)2] and formed a trans-form distorted octahedral coordination structure. Two oxygen atoms of the two coordinated water molecules and two N atoms of the pyridine rings in the ligands L defined the basal plane while two O atoms from two sulfonate anions of the deprotonated HNS ligands occupied the apical positions by direct coordination with Cu(II), which was distinguished from the coordination structure of the nickel(II) synergist complex as reported in our previous work. In the crystal lattice, neighboring molecules [Cu(H2O)2L2(NS)2] were linked through the intermolecular hydrogen bonds between the hydrogen atoms of the coordinated water molecules and the oxygen atoms of the sulfonate anions in the copper(II) synergist complex to form a 2D plane. In order to bridge the gap between the solid state structure of the copper(II) synergist complex and the solution structure of the extracted copper(II) complex with the actual synergistic mixture containing

  6. Planar Perovskite Solar Cells with High Open-Circuit Voltage Containing a Supramolecular Iron Complex as Hole Transport Material Dopant.

    PubMed

    Saygili, Yasemin; Turren-Cruz, Silver-Hamill; Olthof, Selina; Saes, Bartholomeus Wilhelmus Henricus; Pehlivan, Ilknur Bayrak; Saliba, Michael; Meerholz, Klaus; Edvinsson, Tomas; Zakeeruddin, Shaik M; Grätzel, Michael; Correa-Baena, Juan-Pablo; Hagfeldt, Anders; Freitag, Marina; Tress, Wolfgang

    2018-04-26

    In perovskite solar cells (PSCs), the most commonly used hole transport material (HTM) is spiro-OMeTAD, which is typically doped by metalorganic complexes, for example, based on Co, to improve charge transport properties and thereby enhance the photovoltaic performance of the device. In this study, we report a new hemicage-structured iron complex, 1,3,5-tris(5'-methyl-2,2'-bipyridin-5-yl)ethylbenzene Fe(III)-tris(bis(trifluoromethylsulfonyl)imide), as a p-type dopant for spiro-OMeTAD. The formal redox potential of this compound was measured as 1.29 V vs. the standard hydrogen electrode, which is slightly (20 mV) more positive than that of the commercial cobalt dopant FK209. Photoelectron spectroscopy measurements confirm that the iron complex acts as an efficient p-dopant, as evidenced in an increase of the spiro-OMeTAD work function. When fabricating planar PSCs with the HTM spiro-OMeTAD doped by 5 mol % of the iron complex, a power conversion efficiency of 19.5 % (AM 1.5G, 100 mW cm -2 ) is achieved, compared to 19.3 % for reference devices with FK209. Open circuit voltages exceeding 1.2 V at 1 sun and reaching 1.27 V at 3 suns indicate that recombination at the perovskite/HTM interface is low when employing this iron complex. This work contributes to recent endeavors to reduce recombination losses in perovskite solar cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Polynuclear complexes of copper(I) halides: coordination chemistry and catalytic transformations of alkynes

    NASA Astrophysics Data System (ADS)

    Mykhalichko, B. M.; Temkin, Oleg N.; Mys'kiv, M. G.

    2000-11-01

    Characteristic features of the coordination chemistry of Cu(I) and mechanisms of catalytic conversions of alkynes in the CuCl-MCl-H2O-HC≡CR system (MCl is alkali metal or ammonium chloride or amine hydrochloride; R=H, CH2OH, CH=CH2, etc.) are analysed based on studies of the compositions and structures of copper(I) chloride (bromide) complexes, alkyne π-complexes and ethynyl organometallic polynuclear compounds formed in this system in solutions and in the crystalline state. The role of polynuclear complexes in various reactions of alkynes is discussed. The bibliography includes 149 references.

  8. Iron(II) porphyrins induced conversion of nitrite into nitric oxide: A computational study.

    PubMed

    Zhang, Ting Ting; Liu, Yong Dong; Zhong, Ru Gang

    2015-09-01

    Nitrite reduction to nitric oxide by heme proteins was reported as a protective mechanism to hypoxic injury in mammalian physiology. In this study, the pathways of nitrite reduction to nitric oxide mediated by iron(II) porphyrin (P) complexes, which were generally recognized as models for heme proteins, were investigated by using density functional theory (DFT). In view of two type isomers of combination of nitrite and Fe(II)(P), N-nitro- and O-nitrito-Fe(II)-porphyrin complexes, and two binding sites of proton to the different O atoms of nitrite moiety, four main pathways for the conversion of nitrite into nitric oxide mediated by iron(II) porphyrins were proposed. The results indicate that the pathway of N-bound Fe(II)(P)(NO2) isomer into Fe(III)(P)(NO) and water is similar to that of O-bound isomer into nitric oxide and Fe(III)(P)(OH) in both thermodynamical and dynamical aspects. Based on the initial computational studies of five-coordinate nitrite complexes, the conversion of nitrite into NO mediated by Fe(II)(P)(L) complexes with 14 kinds of proximal ligands was also investigated. Generally, the same conclusion that the pathways of N-bound isomers are similar to those of O-bound isomer was obtained for iron(II) porphyrin with ligands. Different effects of ligands on the reduction reactions were also found. It is notable that the negative proximal ligands can improve reactive abilities of N-nitro-iron(II) porphyrins in the conversion of nitrite into nitric oxide compared to neutral ligands. The findings will be helpful to expand our understanding of the mechanism of nitrite reduction to nitric oxide by iron(II) porphyrins. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Influence of Arbuscular Mycorrhizal Fungus (AMF) on degradation of iron-cyanide complexes

    NASA Astrophysics Data System (ADS)

    Sut, Magdalena; Boldt-Burisch, Katja; Raab, Thomas

    2015-04-01

    Soil contamination in the vicinities of former Manufactured Gas Plant (MGP) sites is a worldwide known environmental issue. The pollutants, in form of iron-cyanide complexes, originating from the gas purification process, create a risk for human health due to potential release of toxic free cyanide, CN(aq) and HCN(g), (aq).The management and remediation of cyanide contaminated soil can be very challenging due to the complex chemistry and toxicity of CN compounds. The employment of phytoremediation to remove or stabilize contaminants at a former MGP site is an inexpensive process, but can be limited through shallow rotting, decreased biomass, poor growing and the risk of secondary accumulation. However, this adaptation may be enhanced via arbuscular mycorrhizal fungi (AMF) activity, which may cooperate on the degradation, transformation or uptake of the contaminants. We would like to present our preliminary results from the ongoing project concerning toxic substrate-AMF-plant relation, based on studying the site of a former MGP site. In situ experiments contributed to identifying those fungi that are likely to persist in extremely acidic and toxic conditions. Subsequently, commercially available Rhizophagus irregularis was grown in sterilized, un-spiked soil with the roots of the host plant Calamagrostis epigejos. Extracted roots and AMF hyphae were used in the batch experiment, were the potential of this association on degradation of iron-cyanide complexes, in form of potassium ferrocyanide solution, was assessed.

  10. Soybean Ferritin Expression in Saccharomyces cerevisiae Modulates Iron Accumulation and Resistance to Elevated Iron Concentrations

    PubMed Central

    de Llanos, Rosa; Martínez-Garay, Carlos Andrés; Fita-Torró, Josep; Romero, Antonia María; Martínez-Pastor, María Teresa

    2016-01-01

    ABSTRACT Fungi, including the yeast Saccharomyces cerevisiae, lack ferritin and use vacuoles as iron storage organelles. This work explored how plant ferritin expression influenced baker's yeast iron metabolism. Soybean seed ferritin H1 (SFerH1) and SFerH2 genes were cloned and expressed in yeast cells. Both soybean ferritins assembled as multimeric complexes, which bound yeast intracellular iron in vivo and, consequently, induced the activation of the genes expressed during iron scarcity. Soybean ferritin protected yeast cells that lacked the Ccc1 vacuolar iron detoxification transporter from toxic iron levels by reducing cellular oxidation, thus allowing growth at high iron concentrations. Interestingly, when simultaneously expressed in ccc1Δ cells, SFerH1 and SFerH2 assembled as heteropolymers, which further increased iron resistance and reduced the oxidative stress produced by excess iron compared to ferritin homopolymer complexes. Finally, soybean ferritin expression led to increased iron accumulation in both wild-type and ccc1Δ yeast cells at certain environmental iron concentrations. IMPORTANCE Iron deficiency is a worldwide nutritional disorder to which women and children are especially vulnerable. A common strategy to combat iron deficiency consists of dietary supplementation with inorganic iron salts, whose bioavailability is very low. Iron-enriched yeasts and cereals are alternative strategies to diminish iron deficiency. Animals and plants possess large ferritin complexes that accumulate, detoxify, or buffer excess cellular iron. However, the yeast Saccharomyces cerevisiae lacks ferritin and uses vacuoles as iron storage organelles. Here, we explored how soybean ferritin expression influenced yeast iron metabolism, confirming that yeasts that express soybean seed ferritin could be explored as a novel strategy to increase dietary iron absorption. PMID:26969708

  11. Electrochemistry of Simple Organometallic Models of Iron-Iron Hydrogenases in Organic Solvent and Water.

    PubMed

    Gloaguen, Frederic

    2016-01-19

    Synthetic models of the active site of iron-iron hydrogenases are currently the subjects of numerous studies aimed at developing H2-production catalysts based on cheap and abundant materials. In this context, the present report offers an electrochemist's view of the catalysis of proton reduction by simple binuclear iron(I) thiolate complexes. Although these complexes probably do not follow a biocatalytic pathway, we analyze and discuss the interplay between the reduction potential and basicity and how these antagonist properties impact the mechanisms of proton-coupled electron transfer to the metal centers. This question is central to any consideration of the activity at the molecular level of hydrogenases and related enzymes. In a second part, special attention is paid to iron thiolate complexes holding rigid and unsaturated bridging ligands. The complexes that enjoy mild reduction potentials and stabilized reduced forms are promising iron-based catalysts for the photodriven evolution of H2 in organic solvents and, more importantly, in water.

  12. A Mössbauer spectroscopic study of the six-coordinate high-spin ferrous compound (meso-tetraphenylporphinato) bis(tetrahydrofuran) iron(II)

    NASA Astrophysics Data System (ADS)

    Boso, Brian; Lang, George; Reed, Christopher A.

    1983-03-01

    Mössbauer spectra of a polycrystalline form of the six-coordinate high-spin ferrous compound (meso-tetraphenylporphinato) bis(tetrahydrofuran) iron (II) have been recorded over a range of temperatures (4.2-195 K) and magnetic fields (0-6.0 T). Analysis of the spectra using a phenomenological model of the internal magnetic field and using an S=2 spin Hamiltonian, where applicable, yield the sign of Vzz negative, η=0.4, D=6.0 cm-1, E/D=0.1, and Ã*/g*N βN =(-7.2, -7.2, and -24.3 T). These results suggest that the iron experiences an octahedral crystal field, trigonally distorted in the (1, 1, 1) direction, producing a prolate orbital dz2 as the ground state. Crystal field calculations confirm this interpretation by reproducing the spin Hamiltonian parameters listed above. The calculation predicts an orbital doublet 1667 cm-1 above the ground state. Comparisons with deoxyheme proteins and their synthetic analogs suggest some common gross features of the orbital state and structure-related trends in the character of the ground quintet.

  13. Synthesis, chemical and biological studies on new Fe(3+)-glycosilated beta-diketo complexes for the treatment of iron deficiency.

    PubMed

    Arezzini, Beatrice; Ferrali, Marco; Ferrari, Erika; Frassineti, Chiara; Lazzari, Sandra; Marverti, Gaetano; Spagnolo, Ferdinando; Saladini, Monica

    2008-11-01

    A simple synthetic pathway to obtain glycosilated beta-diketo derivatives is proposed. These compounds show a good iron(III) affinity therefore we may suggest the use of their Fe(3+)-complexes as oral iron supplements in the treatment of anaemia. The glycosilated compounds (6-GlcH, 6-GlcOH and 6-GlcOCH(3)) are characterized by means of spectroscopic (UV, (1)H and (13)C NMR) and potentiometric techniques; they have a good water solubility, are kinetically stable in physiological condition (t(1/2)>100h) and show a low cytotoxicity also in high concentrations (IC(50)>400 microM). They are able to bind Fe(3+) ion in acid condition (pH approximately 2) forming complex species thermodynamically more stable than those of other ligands commonly used in the treatment of iron deficiency. The iron complexes show also a good kinetic stability both in acidic and physiological pH and have a good lypophilicity (logP>-0.7) that suggests an efficient gastrointestinal absorption in view of their possible use in oral therapy. In addition they demonstrate a poor affinity for competitive biological metal ion such as Ca(2+), and in particular 6-GlcOCH(3) is able to inhibit lipid peroxidation.

  14. Molecular-orbital models for the catalytic activity and selectivity of coordinatively unsaturated platinum surfaces and complexes

    NASA Astrophysics Data System (ADS)

    Balazs, A. C.; Johnson, K. H.

    1982-01-01

    Electronic structures have been calculated for 5-, 6-, and 10-atom Pt clusters, as well as for a Pt(PH 3) 4 coordination complex, using the self-consistent-field X-alpha scattered-wave (SCF-Xα-SW) molecular-orbital technique. The 10-atom cluster models the local geometry of a flat, unreconstructed Pt(100) surface, while the 5- and 6-atom clusters show features of a stepped Pt surface. Pt(PH 3) 4 resembles the chemically similar homogeneous catalyst Pt(PPh 3) 4. Common to all these coordinatively unsaturated complexes are orbitals lying near or coinciding with the highest occupied molecular orbital ("Fermi level") which show pronounced d lobes pointing directly into the vacuum. Under the hypothesis that these molecular orbitals are mainly responsible for the chemical activities of the above species, one can account for the relative similarities and differences in catalytic activity and selectivity displayed by unreconstructed Pt(100) surfaces, stepped Pt surfaces or particles, and isolated Pt(PPh 3) 4 coordination complexes. The relevance of these findings to catalyst-support interactions is also discussed. Finally, relativistic corrections to the electronic structures are calculated and their implications on catalytic properties discussed.

  15. Iron phosphate glasses: Bulk properties and atomic scale structure

    NASA Astrophysics Data System (ADS)

    Joseph, Kitheri; Stennett, Martin C.; Hyatt, Neil C.; Asuvathraman, R.; Dube, Charu L.; Gandy, Amy S.; Govindan Kutty, K. V.; Jolley, Kenny; Vasudeva Rao, P. R.; Smith, Roger

    2017-10-01

    Bulk properties such as glass transition temperature, density and thermal expansion of iron phosphate glass compositions, with replacement of Cs by Ba, are investigated as a surrogate for the transmutation of 137Cs to 137Ba, relevant to the immobilisation of Cs in glass. These studies are required to establish the appropriate incorporation rate of 137Cs in iron phosphate glass. Density and glass transition temperature increases with the addition of BaO indicating the shrinkage and reticulation of the iron phosphate glass network. The average thermal expansion coefficient reduces from 19.8 × 10-6 K-1 to 13.4 × 10-6 K-1, when 25 wt. % of Cs2O was replaced by 25 wt. % of BaO in caesium loaded iron phosphate glass. In addition to the above bulk properties, the role of Ba as a network modifier in the structure of iron phosphate glass is examined using various spectroscopic techniques. The FeII content and average coordination number of iron in the glass network was estimated using Mössbauer spectroscopy. The FeII content in the un-doped iron phosphate glass and barium doped iron phosphate glasses was 20, 21 and 22 ± 1% respectively and the average Fe coordination varied from 5.3 ± 0.2 to 5.7 ± 0.2 with increasing Ba content. The atomic scale structure was further probed by Fe K-edge X-ray absorption spectroscopy. The average coordination number provided by extended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure was in good agreement with that given by the Mössbauer data.

  16. Iron chemistry at the service of life.

    PubMed

    Sánchez, Manu; Sabio, Laura; Gálvez, Natividad; Capdevila, Mercè; Dominguez-Vera, Jose M

    2017-06-01

    Iron is an essential element for almost all organisms on Earth. It is necessary for a number of crucial processes such as hemoglobin and myoglobin transport and storage of oxygen in mammals; electron transfer support in a variety of iron-sulfur protein or cytochrome reactions; and activation and catalysis of reactions of a wide range of substrate like alkanes, olefins, and alcohols. Living organisms adopted iron as the main metal to carry out all of these functions due to the rich coordination chemistry of its two main redox states, Fe 2+ and Fe 3+ , and because of its abundance in the Earth's crust and oceans. This paper presents an overview of the coordination chemistry of iron that makes it suitable for a large variety of functions within biological systems. Despite iron's chemical advantages, organisms were forced to manage with some drawbacks: Fe 3+ insolubility and the formation of toxic radicals, especially the hydroxyl radical. Iron chemistry within biology is an example of how organisms evolved by creating molecular machinery to overcome these difficulties and perform crucial processes with extraordinary elegance and efficiency. © 2017 IUBMB Life, 69(6):382-388, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  17. η2-SO2 Linkage Photoisomer of an Osmium Coordination Complex.

    PubMed

    Cole, Jacqueline M; Velazquez-Garcia, Jose de J; Gosztola, David J; Wang, SuYin Grass; Chen, Yu-Sheng

    2018-03-05

    We report the discovery of an η 2 -SO 2 linkage photoisomer in the osmium pentaammine coordination complex, [Os(NH 3 ) 5 (SO 2 )][Os(NH 3 ) 5 (HSO 3 )]Cl 4 (1). Its dark- and light-induced crystal structures are determined via synchrotron X-ray crystallography, at 100 K, where the photoinduced state is metastable in a single crystal that has been stimulated by 505 nm light for 2.5 h. The SO 2 photoisomer in the [Os(NH 3 ) 5 (SO 2 )] 2+ cation contrasts starkly with the photoinactivity of the HSO 3 ligand in its companion [Os(NH 3 ) 5 (HSO 3 )] + cation within the crystallographic asymmetric unit of this single crystal. Panchromatic optical absorption characteristics of this single crystal are revealed in both dark- and light-induced states, using concerted absorption spectroscopy and optical microscopy. Its absorption halves across most of its visible spectrum, upon exposure to 505 nm light. The SO 2 ligand seems to be responsible for this photoinduced bleaching effect, judging from a comparison of the dark- and light-induced crystal structures of 1. The SO 2 photoisomerism is found to be thermally reversible, and so 1 presents a rare example of an osmium-based solid-state optical switch. Such switching in an osmium complex is significant because bottom-row transition metals stand to offer linkage photoisomerism with the greatest photoconversion levels and thermal stability. The demonstration of η 2 -SO 2 bonding in this complex also represents a fundamental contribution to osmium coordination chemistry.

  18. Nitrogen Monoxide (NO) Storage and Transport by Dinitrosyl-Dithiol-Iron Complexes: Long-lived NO That Is Trafficked by Interacting Proteins*

    PubMed Central

    Suryo Rahmanto, Yohan; Kalinowski, Danuta S.; Lane, Darius J. R.; Lok, Hiu Chuen; Richardson, Vera; Richardson, Des R.

    2012-01-01

    Nitrogen monoxide (NO) markedly affects intracellular iron metabolism, and recent studies have shown that molecules traditionally involved in drug resistance, namely GST and MRP1 (multidrug resistance-associated protein 1), are critical molecular players in this process. This is mediated by interaction of these proteins with dinitrosyl-dithiol-iron complexes (Watts, R. N., Hawkins, C., Ponka, P., and Richardson, D. R. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 7670–7675; Lok, H. C., Suryo Rahmanto, Y., Hawkins, C. L., Kalinowski, D. S., Morrow, C. S., Townsend, A. J., Ponka, P., and Richardson, D. R. (2012) J. Biol. Chem. 287, 607–618). These complexes are bioavailable, have a markedly longer half-life compared with free NO, and form in cells after an interaction between iron, NO, and glutathione. The generation of dinitrosyl-dithiol-iron complexes acts as a common currency for NO transport and storage by MRP1 and GST P1-1, respectively. Understanding the biological trafficking mechanisms involved in the metabolism of NO is vital for elucidating its many roles in cellular signaling and cytotoxicity and for development of new therapeutic targets. PMID:22262835

  19. Transgenic Petunia with the Iron(III)-Phytosiderophore Transporter Gene Acquires Tolerance to Iron Deficiency in Alkaline Environments

    PubMed Central

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2′-deoxymugineic acid complex, free 2′-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2′-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to

  20. Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    PubMed

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to diverse

  1. Malfunctioning of the iron-sulfur cluster assembly machinery in Saccharomyces cerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes.

    PubMed

    Gomez, Mauricio; Pérez-Gallardo, Rocío V; Sánchez, Luis A; Díaz-Pérez, Alma L; Cortés-Rojo, Christian; Meza Carmen, Victor; Saavedra-Molina, Alfredo; Lara-Romero, Javier; Jiménez-Sandoval, Sergio; Rodríguez, Francisco; Rodríguez-Zavala, José S; Campos-García, Jesús

    2014-01-01

    Biogenesis and recycling of iron-sulfur (Fe-S) clusters play important roles in the iron homeostasis mechanisms involved in mitochondrial function. In Saccharomyces cerevisiae, the Fe-S clusters are assembled into apoproteins by the iron-sulfur cluster machinery (ISC). The aim of the present study was to determine the effects of ISC gene deletion and consequent iron release under oxidative stress conditions on mitochondrial functionality in S. cerevisiae. Reactive oxygen species (ROS) generation, caused by H2O2, menadione, or ethanol, was associated with a loss of iron homeostasis and exacerbated by ISC system dysfunction. ISC mutants showed increased free Fe2+ content, exacerbated by ROS-inducers, causing an increase in ROS, which was decreased by the addition of an iron chelator. Our study suggests that the increment in free Fe2+ associated with ROS generation may have originated from mitochondria, probably Fe-S cluster proteins, under both normal and oxidative stress conditions, suggesting that Fe-S cluster anabolism is affected. Raman spectroscopy analysis and immunoblotting indicated that in mitochondria from SSQ1 and ISA1 mutants, the content of [Fe-S] centers was decreased, as was formation of Rieske protein-dependent supercomplex III2IV2, but this was not observed in the iron-deficient ATX1 and MRS4 mutants. In addition, the activity of complexes II and IV from the electron transport chain (ETC) was impaired or totally abolished in SSQ1 and ISA1 mutants. These results confirm that the ISC system plays important roles in iron homeostasis, ROS stress, and in assembly of supercomplexes III2IV2 and III2IV1, thus affecting the functionality of the respiratory chain.

  2. Design and its limitations in the construction of bi- and poly-nuclear coordination complexes and coordination polymers (aka MOFs): a personal view.

    PubMed

    Robson, R

    2008-10-14

    This article, presented from a personal point of view, is concerned with the design of ligands intended to give specifically either binuclear or tetranuclear metal complexes or coordination polymers. No attempt is made to provide a comprehensive coverage of these topics, the focus being mainly upon results from our laboratory. Some emphasis is placed upon aspects of the historical development of the deliberate construction of coordination polymers (aka MOFs)--materials promising useful applications, the study of which continues to expand exponentially. Some of our recent research is described in which the carbonate ion and the tetracyanoquinodimethane dianion are used as bridging ligands to generate targeted coordination polymers. It is intended that Dalton Perspectives be easily comprehensible to non-specialists in the field; an average second year university chemistry student should be easily able to understand the present contribution.

  3. Silver(i) complexes with 1'-(diphenylphosphino)-1-cyanoferrocene: the art of improvisation in coordination.

    PubMed

    Škoch, Karel; Uhlík, Filip; Císařová, Ivana; Štěpnička, Petr

    2016-06-28

    1'-(Diphenylphosphino)-1-cyanoferrocene () reacts with silver(i) halides at a 1 : 1 metal-to-ligand ratio to afford the heterocubane complexes [Ag(μ3-X)(-κP)]4, where X = Cl (), Br (), and I (). In addition, the reaction with AgCl with 2 equiv. of leads to chloride-bridged dimer [(μ-Cl)2{Ag(-κP)2}2] () and, presumably, also to [(μ(P,N)-){AgCl(-κP)}]2 (). While similar reactions with AgCN furnished only the insoluble coordination polymer [(-κP)2Ag(NC)Ag(CN)]n (), those with AgSCN afforded the heterocubane [Ag(-κP)(μ-SCN-S,S,N)]4 () and the thiocyanato-bridged disilver(i) complex [Ag(-κP)2(μ-SCN-S,N)]2 (), thereby resembling reactions in the AgCl- system. Attempted reactions with AgF led to ill-defined products, among which [Ag(-κP)2(μ-HF2)]2 () and [(μ-SiF6){Ag(-κP)2}2] () could be identified. The latter compound was prepared also from Ag2[SiF6] and . Reactions between and AgClO4 or Ag[BF4] afforded disilver complexes [(μ(P,N)-)Ag(ClO4-κO)]2 () and [(μ(P,N)-)Ag(BF4-κF)]2 () featuring pseudolinear Ag(i) centers that are weakly coordinated by the counter anions. A similar reaction with Ag[SbF6] followed by crystallization from ethyl acetate produced an analogous complex, albeit with coordinated solvent, [(μ(P,N)-)Ag(AcOEt-κO)]2[SbF6]2 (). Ultimately, a compound devoid of any additional ligands at the Ag(i) centers, [(μ(P,N)-)Ag]2[B(C6H3(CF3)2-3,5)4]2 (), was obtained from the reaction of with silver(i) tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. The reaction of Ag[BF4] with two equivalents of produced unique coordination polymer [Ag(-κP)(μ(P,N)-)]n[BF4]n (), the structure of which contained one of the phosphinoferrocene ligands coordinated as a P,N-chelate and the other forming a bridge to an adjacent Ag(i) center. All of these compounds were structurally characterized by single-crystal X-ray crystallography, revealing that the lengths of the bonds between silver and its anionic ligand(s) typically exceed the sum of the respective

  4. Characterization of Ce SUP 3+-tributyl phosphate coordination complexes produced by fused droplet electrospray ionization with a target capillary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary S. Groenewold; Jean-Jacques Gaumet

    2011-12-01

    Coordination complexes containing Ce(III) and tri-n-butyl phosphate (TBP) in the 1+, 2+ and 3+ charge states were generated using desorption electrospray ionization (DESI) mass spectrometry, in which the analyte solutions were supplied via a target capillary orthogonally situated with respect to the electrospray. Comparison with direct electrospray (ESI) showed that the same coordination complexes were produced in each experiment, and could be described by the general formula [Ce(NO3)m=0-2(TBP)n](3-m)+. This result indicates that DESI has utility for measuring metal speciation for metal ligand solutions where the gas-phase complexes generated by ESI have been correlated with solution speciation. Such an application wouldmore » be useful for analyses where it is desirable to limit the total amount of metal being handled, or that have solvent systems that are not readily amenable to ESI. Both the direct ESI and DESI mass spectra showed similar trends with respect to the TBP:Ce ratio, viz. high values tend to favor formation of a larger fraction of the 1+ species, and the 2+ and 3+ species become relatively more important as the ratio is decreased. Within individual charge state ion envelopes, lower TBP:Ce ratios produce coordination complexes with fewer ligands, a trend also seen using both approaches. These trends again point toward strong similarity between the direct ESI and DESI analyses of the metal-ligand solutions. The DESI experiments were less sensitive for measuring the coordination complexes compared to the direct ESI experiments, by a factor of 10 - 100 depending on whether minimum detectable concentration or absolute ion abundances were considered. Nevertheless, mid-picomolar quantities of coordination complexes were measured using the target capillary, indicating that sensitivity would be sufficient for measuring species in many industrial separations processes.« less

  5. Spectroscopic and Computational Investigation of Iron(III) Cysteine Dioxygenase: Implications for the Nature of the Putative Superoxo-Fe(III) Intermediate

    PubMed Central

    2015-01-01

    Cysteine dioxygenase (CDO) is a mononuclear, non-heme iron-dependent enzyme that converts exogenous cysteine (Cys) to cysteine sulfinic acid using molecular oxygen. Although the complete catalytic mechanism is not yet known, several recent reports presented evidence for an Fe(III)-superoxo reaction intermediate. In this work, we have utilized spectroscopic and computational methods to investigate the as-isolated forms of CDO, as well as Cys-bound Fe(III)CDO, both in the absence and presence of azide (a mimic of superoxide). An analysis of our electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance data of the azide-treated as-isolated forms of CDO within the framework of density functional theory (DFT) computations reveals that azide coordinates directly to the Fe(III), but not the Fe(II) center. An analogous analysis carried out for Cys-Fe(III)CDO provides compelling evidence that at physiological pH, the iron center is six coordinate, with hydroxide occupying the sixth coordination site. Upon incubation of this species with azide, the majority of the active sites retain hydroxide at the iron center. Nonetheless, a modest perturbation of the electronic structure of the Fe(III) center is observed, indicating that azide ions bind near the active site. Additionally, for a small fraction of active sites, azide displaces hydroxide and coordinates directly to the Cys-bound Fe(III) center to generate a low-spin (S = 1/2) Fe(III) complex. In the DFT-optimized structure of this complex, the central nitrogen atom of the azide moiety lies within 3.12 Å of the cysteine sulfur. A similar orientation of the superoxide ligand in the putative Fe(III)-superoxo reaction intermediate would promote the attack of the distal oxygen atom on the sulfur of substrate Cys. PMID:25093959

  6. Ultra-small iron-gallic acid coordination polymer nanoparticles for chelator-free labeling of 64Cu and multimodal imaging-guided photothermal therapy.

    PubMed

    Jin, Qiutong; Zhu, Wenjun; Jiang, Dawei; Zhang, Rui; Kutyreff, Christopher J; Engle, Jonathan W; Huang, Peng; Cai, Weibo; Liu, Zhuang; Cheng, Liang

    2017-08-31

    Cancer nanotechnology has become the hot topic nowadays. While various kinds of nanomaterials have been widely explored for innovative cancer imaging and therapy applications, safe multifunctional nano-agents without long-term retention and toxicity are still demanded. Herein, iron-gallic acid coordination nanoparticles (Fe-GA CPNs) with ultra-small sizes are successfully synthesized by a simple method for multimodal imaging-guided cancer therapy. After surface modification with polyethylene glycol (PEG), the synthesized Fe-GA-PEG CPNs show high stability in various physiological solutions. Taking advantage of high near-infrared (NIR) absorbance as well as the T 1 -MR contrasting ability of Fe-GA-PEG CPNs, in vivo photoacoustic tomography (PAT) and magnetic resonance (MR) bimodal imaging are carried out, revealing the efficient passive tumor targeting of these ultra-small CPNs after intravenous (i.v.) injection. Interestingly, such Fe-GA-PEG CPNs could be labeled with the 64 Cu isotope via a chelator-free method for in vivo PET imaging, which also illustrates the high tumor uptake of Fe-GA CPNs. We further utilize Fe-GA-PEG CPNs for in vivo photothermal therapy and achieve highly effective tumor destruction after i.v. injection of Fe-GA-PEG CPNs and the following NIR laser irradiation of the tumors, without observing any apparent toxicity of such CPNs to the treated animals. Our work highlights the promise of ultra-small iron coordination nanoparticles for imaging-guided cancer therapy.

  7. Iron-mediated stabilization of soil carbon amplifies the benefits of ecological restoration in degraded lands.

    PubMed

    Silva, Lucas C R; Doane, Timothy A; Corrêa, Rodrigo S; Valverde, Vinicius; Pereira, Engil I P; Horwath, William R

    2015-07-01

    Recent observations across a 14-year restoration chronosequence have shown an unexpected accumulation of soil organic carbon in strip-mined areas of central Brazil. This was attributed to the rapid plant colonization that followed the incorporation of biosolids into exposed regoliths, but the specific mechanisms involved in the stabilization of carbon inputs from the vegetation remained unclear. Using isotopic and elemental analyses, we tested the hypothesis that plant-derived carbon accumulation was triggered by the formation of iron-coordinated complexes, stabilized into physically protected (occluded) soil fractions. Confirming this hypothesis, we identified a fast formation of microaggregates shortly after the application of iron-rich biosolids, which was characterized by a strong association between pyrophosphate-extractable iron and plant-derived organic matter. The formation of microaggregates preceded the development of macroaggregates, which drastically increased soil carbon content (-140 Mg C/ha) a few years after restoration. Consistent with previous theoretical work, iron-coordinated organic complexes served as nuclei for aggregate formation, reflecting the synergistic effect of biological, chemical, and physical mechanisms of carbon stabilization in developing soils. Nevertheless, iron was not the only factor affecting soil carbon content. The highest carbon accumulation was observed during the period of highest plant diversity (> 30 species; years 3-6), declining significantly with the exclusion of native species by invasive grasses (years 9-14). Furthermore, the increasing dominance of invasive grasses was associated with a steady decline in the concentration of soil nitrogen and phosphorus per unit of accumulated carbon. These results demonstrate the importance of interdependent ecological and biogeochemical processes, and the role of soil-plant interactions in determining the success of restoration efforts. In contrast with previous but

  8. Bioinspired Design and Computational Prediction of Iron Complexes with Pendant Amines for the Production of Methanol from CO2 and H2.

    PubMed

    Chen, Xiangyang; Yang, Xinzheng

    2016-03-17

    Inspired by the active site structure of [FeFe]-hydrogenase, we built a series of iron dicarbonyl diphosphine complexes with pendant amines and predicted their potentials to catalyze the hydrogenation of CO2 to methanol using density functional theory. Among the proposed iron complexes, [(P(tBu)2N(tBu)2H)FeH(CO)2(COOH)](+) (5COOH) is the most active one with a total free energy barrier of 23.7 kcal/mol. Such a low barrier indicates that 5COOH is a very promising low-cost catalyst for high-efficiency conversion of CO2 and H2 to methanol under mild conditions. For comparison, we also examined Bullock's Cp iron diphosphine complex with pendant amines, [(P(tBu)2N(tBu)2H)FeHCp(C5F4N)](+) (5Cp-C5F4N), as a catalyst for hydrogenation of CO2 to methanol and obtained a total free energy barrier of 27.6 kcal/mol, which indicates that 5Cp-C5F4N could also catalyze the conversion of CO2 and H2 to methanol but has a much lower efficiency than our newly designed iron complexes.

  9. Fungal Iron Availability during Deep Seated Candidiasis Is Defined by a Complex Interplay Involving Systemic and Local Events

    PubMed Central

    Potrykus, Joanna; Stead, David; MacCallum, Donna M.; Urgast, Dagmar S.; Raab, Andrea; van Rooijen, Nico; Feldmann, Jörg; Brown, Alistair J. P.

    2013-01-01

    Nutritional immunity – the withholding of nutrients by the host – has long been recognised as an important factor that shapes bacterial-host interactions. However, the dynamics of nutrient availability within local host niches during fungal infection are poorly defined. We have combined laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS), MALDI imaging and immunohistochemistry with microtranscriptomics to examine iron homeostasis in the host and pathogen in the murine model of systemic candidiasis. Dramatic changes in the renal iron landscape occur during disease progression. The infection perturbs global iron homeostasis in the host leading to iron accumulation in the renal medulla. Paradoxically, this is accompanied by nutritional immunity in the renal cortex as iron exclusion zones emerge locally around fungal lesions. These exclusion zones correlate with immune infiltrates and haem oxygenase 1-expressing host cells. This local nutritional immunity decreases iron availability, leading to a switch in iron acquisition mechanisms within mature fungal lesions, as revealed by laser capture microdissection and qRT-PCR analyses. Therefore, a complex interplay of systemic and local events influences iron homeostasis and pathogen-host dynamics during disease progression. PMID:24146619

  10. Heme versus non-heme iron-nitroxyl {FeN(H)O}⁸ complexes: electronic structure and biologically relevant reactivity.

    PubMed

    Speelman, Amy L; Lehnert, Nicolai

    2014-04-15

    Researchers have completed extensive studies on heme and non-heme iron-nitrosyl complexes, which are labeled {FeNO}(7) in the Enemark-Feltham notation, but they have had very limited success in producing corresponding, one-electron reduced, {FeNO}(8) complexes where a nitroxyl anion (NO(-)) is formally bound to an iron(II) center. These complexes, and their protonated iron(II)-NHO analogues, are proposed key intermediates in nitrite (NO2(-)) and nitric oxide (NO) reducing enzymes in bacteria and fungi. In addition, HNO is known to have a variety of physiological effects, most notably in the cardiovascular system. HNO may also serve as a signaling molecule in mammals. For these functions, iron-containing proteins may mediate the production of HNO and serve as receptors for HNO in vivo. In this Account, we highlight recent key advances in the preparation, spectroscopic characterization, and reactivity of ferrous heme and non-heme nitroxyl (NO(-)/HNO) complexes that have greatly enhanced our understanding of the potential biological roles of these species. Low-spin (ls) heme {FeNO}(7) complexes (S = 1/2) can be reversibly reduced to the corresponding {FeNO}(8) species, which are stable, diamagnetic compounds. Because the reduction is ligand (NO) centered in these cases, it occurs at extremely negative redox potentials that are at the edge of the biologically feasible range. Interestingly, the electronic structures of ls-{FeNO}(7) and ls-{FeNO}(8) species are strongly correlated with very similar frontier molecular orbitals (FMOs) and thermodynamically strong Fe-NO bonds. In contrast, high-spin (hs) non-heme {FeNO}(7) complexes (S = 3/2) can be reduced at relatively mild redox potentials. Here, the reduction is metal-centered and leads to a paramagnetic (S = 1) {FeNO}(8) complex. The increased electron density at the iron center in these species significantly decreases the covalency of the Fe-NO bond, making the reduced complexes highly reactive. In the absence of

  11. The use of XAFS to determine the nature of interaction of iron and molybdenum metal salts within PS-b-P2VP micelles.

    PubMed

    Riskin, Alexander; Beale, Andrew M; Boyen, Hans-Gerhard; Vantomme, André; Hardy, An; Van Bael, Marlies K

    2013-02-07

    The poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) micelle route is a well established method for the preparation of bimetallic nanoparticles used for the catalysis of carbon nanotubes and other applications like ultrahigh density storage devices, yet to date no information is available concerning the internal structure of the P2VP-metal salt complex. For the first time, XAFS measurements were performed on micelles loaded with either iron(III) chloride or molybdenum(V) chloride and a combination of both. Analysis of the data revealed that iron is tetrahedrally coordinated within the core, whereas molybdenum is octahedrally coordinated in the pure loaded micelles and trigonally coordinated in the mixed micelles. For the bimetallic samples, analysis of the Fe and Mo K-edge data revealed the existence of an interaction between iron and molybdenum. This approach to obtain detailed structural information during the preparation of these catalyst samples will allow for a deeper understanding of the effects of structure on the function of catalysts used for CNT growth i.e. to explain differences in yield as well as potentially providing a deeper understanding of the CNT growth mechanism itself.

  12. Thermodynamic, spectroscopic, and computational studies of lanthanide complexation with Diethylenetriaminepentaacetic acide: temperature effect and coordination modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guoxin Tian; Leigh R. Martin; Zhiyong Zhang

    2011-04-01

    Stability constants of two DTPA (diethylenetriaminepentaacetic acid) complexes with lanthanides (ML2- and MHL-, where M stands for Nd and Eu and L stands for diethylenetriaminepentaacetate) at 10, 25, 40, 55, and 70 degrees C were determined by potentiometry, absorption spectrophotometry, and luminescence spectroscopy. The enthalpies of complexation at 25 degrees C were determined by microcalorimetry. Thermodynamic data show that the complexation of Nd3þ and Eu3þ with DTPA is weakened at higher temperatures, a 10-fold decrease in the stability constants of ML2- and MHL- as the temperature is increased from 10 to 70 degrees C. The effect of temperature is consistentmore » with the exothermic enthalpy of complexation directly measured by microcalorimetry. Results by luminescence spectroscopy and density functional theory (DFT) calculations suggest that DTPA is octa-dentate in both the EuL2- and EuHL- complexes and, for the first time, the coordination mode in the EuHL- complex was clarified by integration of the experimental data and DFT calculations. In the EuHL- complex, the Eu is coordinated by an octa-dentate H(DTPA) ligand and a water molecule, and the protonation occurs on the oxygen of a carboxylate group.« less

  13. Iron Isotope Systematics of the Bushveld Complex, South Africa: Initial Results

    NASA Astrophysics Data System (ADS)

    Stausberg, N.; Lesher, C. E.; Hoffmann-Barfod, G.; Glessner, J. J.; Tegner, C.

    2014-12-01

    Iron isotopes show systematic changes in igneous rocks that have been ascribed to fractional crystallization, partial melting, as well as, diffusion effects. Layered mafic intrusions, such as the Paleoproterozoic Bushveld Igneous Complex, are ideally suited to investigate stable isotope fractionation arising principally by fractional crystallization. The upper 2.1km of the Bushveld Complex (Upper and Upper Main Zone, UUMZ) crystallized from a basaltic magma produced by a major recharge event, building up a sequence of tholeiitic, Fe-rich, gabbroic cumulate rocks that display systematic variations in mineralogy and mineral compositions consistent with fractional crystallization. Within this sequence, magnetite joins the liquidus assemblage at ˜260m, followed by olivine at 460m and apatite at 1000m. Here, we present iron isotope measurements of bulk cumulate rocks from the Bierkraal drill core of UUMZ of the western limb. Iron was chemically separated from its matrix and analyzed for δ56Fe (relative to IRMM- 014) with a Nu plasma MC-ICPMS at the University of California, Davis, using (pseudo-) high resolution and sample-standard bracketing. The δ56Fe values for Bushveld cumulates span a range from 0.04‰ to 0.36‰, and systematically correlate with the relative abundance of pyroxene + olivine, magnetite and plagioclase. Notably, the highest δ56Fe values are found in plagioclase-rich cumulates that formed prior to magnetite crystallization. δ56Fe is also high in magnetite-rich cumulates at the onset of magnetite crystallization, while subsequent cumulates exhibit lower and variable δ56Fe principally reflecting fractionation of and modal variations in magnetite, pyroxene and fayalitic olivine. The overall relationships for δ56Fe are consistent with positive mineral - liquid Fe isotope fractionation factors for magnetite and plagioclase, and negative to near zero values for pyroxene and olivine. These initial results are being integrated into a forward model of

  14. Mononuclear nickel (II) and copper (II) coordination complexes supported by bispicen ligand derivatives: Experimental and computational studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nirupama; Niklas, Jens; Poluektov, Oleg

    2017-01-01

    The synthesis, characterization and density functional theory calculations of mononuclear Ni and Cu complexes supported by the N,N’-Dimethyl-N,N’-bis-(pyridine-2-ylmethyl)-1,2-diaminoethane ligand and its derivatives are reported. The complexes were characterized by X-ray crystallography as well as by UV-visible absorption spectroscopy and EPR spectroscopy. The solid state structure of these coordination complexes revealed that the geometry of the complex depended on the identity of the metal center. Solution phase characterization data are in accord with the solid phase structure, indicating minimal structural changes in solution. Optical spectroscopy revealed that all of the complexes exhibit color owing to d-d transition bands in the visiblemore » region. Magnetic parameters obtained from EPR spectroscopy with other structural data suggest that the Ni(II) complexes are in pseudo-octahedral geometry and Cu(II) complexes are in a distorted square pyramidal geometry. In order to understand in detail how ligand sterics and electronics affect complex topology detailed computational studies were performed. The series of complexes reported in this article will add significant value in the field of coordination chemistry as Ni(II) and Cu(II) complexes supported by tetradentate pyridyl based ligands are rather scarce.« less

  15. Dinitrosyl iron complexes with thiolate ligands: physico-chemistry, biochemistry and physiology.

    PubMed

    Vanin, Anatoly F

    2009-08-01

    Some present-day concepts on the origin and functional activities of dinitrosyl iron complexes (DNIC) with thiolate ligands are considered. Nitric oxide (NO) including to DNIC increases its stability and ensures effective targeting of NO to organs and tissues. DNIC have a square-planar structure; unpaired electron is localized on the d(z2) orbital of the d(7) iron atom. The formula of DNIC appears as [(RS(-))(2)Fe(+)(NO(+))(2)....((-)SR)(2)](-); electron spin is S=1/2. Conversion of an originally diamagnetic group, Fe(2+)(NO)(2) with electron configuration d(8), into a paramagnetic Fe(+)(NO(+))(2) group is a result of disproportionation of NO ligands and substitution of newly generated NO(-) for NO. The nitrosonium ions present in DNIC impart to them high nitrosylating activity, e.g., ability to induce S-nitrosylation of thiols. The ability of S-nitrosothiols to form DNIC in a direct reaction with bivalent iron is a prerequisite to effective mutual conversions of DNIC and S-nitrosothiols. In this work, I consider some mechanisms of destructive effects of low-molecular DNIC on active centers of iron-sulfur proteins, ability of DNIC to express certain genes, to activate guanylate cyclase, to exert hypotensive, vasodilator effects, to inhibit platelet aggregation, to accelerate wound healing and to produce potent erective action. Recently a stabilized powder-like polymeric composition based on dimeric glutathione DNIC the water-soluble polymer in which was used as a filling agent was designed. The advantages of this stable DNIC-glutathione preparation include their ability to retain their physico-chemical and functional activities within at least one year. At present, the preparation undergo testing as a base for the design of a wide variety of broad-spectrum drugs.

  16. One-step assembly of coordination complexes for versatile film and particle engineering.

    PubMed

    Ejima, Hirotaka; Richardson, Joseph J; Liang, Kang; Best, James P; van Koeverden, Martin P; Such, Georgina K; Cui, Jiwei; Caruso, Frank

    2013-07-12

    The development of facile and versatile strategies for thin-film and particle engineering is of immense scientific interest. However, few methods can conformally coat substrates of different composition, size, shape, and structure. We report the one-step coating of various interfaces using coordination complexes of natural polyphenols and Fe(III) ions. Film formation is initiated by the adsorption of the polyphenol and directed by pH-dependent, multivalent coordination bonding. Aqueous deposition is performed on a range of planar as well as inorganic, organic, and biological particle templates, demonstrating an extremely rapid technique for producing structurally diverse, thin films and capsules that can disassemble. The ease, low cost, and scalability of the assembly process, combined with pH responsiveness and negligible cytotoxicity, makes these films potential candidates for biomedical and environmental applications.

  17. Synthesis and reactivity of iron complexes with a new pyrazine-based pincer ligand, and application in catalytic low-pressure hydrogenation of carbon dioxide.

    PubMed

    Rivada-Wheelaghan, Orestes; Dauth, Alexander; Leitus, Gregory; Diskin-Posner, Yael; Milstein, David

    2015-05-04

    A novel pincer ligand based on the pyrazine backbone (PNzP) has been synthesized, (2,6-bis(di(tert-butyl)phosphinomethyl)pyrazine), tBu-PNzP. It reacts with FeBr2 to yield [Fe(Br)2(tBu-PNzP)], 1. Treatment of 1 with NaBH4 in MeCN/MeOH gives the hydride complex [Fe(H)(MeCN)2(tBu-PNzP)][X] (X = Br, BH4), 2·X. Counterion exchange and exposure to CO atmosphere yields the complex cis-[Fe(H)(CO)(MeCN)(tBu-PNzP)][BPh4] 4·BPh4, which upon addition of Bu4NCl forms [Fe(H)(Cl)(CO)(tBu-PNzP)] 5. Complex 5, under basic conditions, catalyzes the hydrogenation of CO2 to formate salts at low H2 pressure. Treatment of complex 5 with a base leads to aggregates, presumably of dearomatized species B, stabilized by bridging to another metal center by coordination of the nitrogen at the backbone of the pyrazine pincer ligand. Upon dissolution of compound B in EtOH the crystallographically characterized complex 7 is formed, comprised of six iron units forming a 6-membered ring. The dearomatized species can activate CO2 and H2 by metal-ligand cooperation (MLC), leading to complex 8, trans-[Fe(PNzPtBu-COO)(H)(CO)], and complex 9, trans-[Fe(H)2(CO)(tBu-PNzP)], respectively. Our results point at a very likely mechanism for CO2 hydrogenation involving MLC.

  18. Talking about the institutional complexity of the integrated rehabilitation system-the importance of coordination.

    PubMed

    Miettinen, Sari; Ashorn, Ulla; Lehto, Juhani

    2013-01-01

    Rehabilitation in Finland is a good example of functions divided among several welfare sectors, such as health services and social services. The rehabilitation system in Finland is a complex one and there have been many efforts to create a coordinated entity. The purpose of this study is to open up a complex welfare system at the upper policy level and to understand the meaning of coordination at the level of service delivery. We shed light in particular on the national rehabilitation policy in Finland and how the policy has tried to overcome the negative effects of institutional complexity. In this study we used qualitative content analysis and frame analysis. As a result we identified four different welfare state frames with distinct features of policy problems, policy alternatives and institutional failure. The rehabilitation policy in Finland seems to be divided into different components which may cause problems at the level of service delivery and thus in the integration of services. Bringing these components together could at policy level enable a shared view of the rights of different population groups, effective management of integration at the level of service delivery and also an opportunity for change throughout the rehabilitation system.

  19. X-ray Emission Spectroscopy of Biomimetic Mn Coordination Complexes.

    PubMed

    Jensen, Scott C; Davis, Katherine M; Sullivan, Brendan; Hartzler, Daniel A; Seidler, Gerald T; Casa, Diego M; Kasman, Elina; Colmer, Hannah E; Massie, Allyssa A; Jackson, Timothy A; Pushkar, Yulia

    2017-06-15

    Understanding the function of Mn ions in biological and chemical redox catalysis requires precise knowledge of their electronic structure. X-ray emission spectroscopy (XES) is an emerging technique with a growing application to biological and biomimetic systems. Here, we report an improved, cost-effective spectrometer used to analyze two biomimetic coordination compounds, [Mn IV (OH) 2 (Me 2 EBC)] 2+ and [Mn IV (O)(OH)(Me 2 EBC)] + , the second of which contains a key Mn IV ═O structural fragment. Despite having the same formal oxidation state (Mn IV ) and tetradentate ligands, XES spectra from these two compounds demonstrate different electronic structures. Experimental measurements and DFT calculations yield different localized spin densities for the two complexes resulting from Mn IV -OH conversion to Mn IV ═O. The relevance of the observed spectroscopic changes is discussed for applications in analyzing complex biological systems such as photosystem II. A model of the S 3 intermediate state of photosystem II containing a Mn IV ═O fragment is compared to recent time-resolved X-ray diffraction data of the same state.

  20. Monomeric Yeast Frataxin is an Iron-Binding Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook,J.; Bencze, K.; Jankovic, A.

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50 000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly)more » share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron.« less

  1. Monomeric Yeast Frataxin is an Iron Binding Protein†

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, J.; Bencze, K; Jankovic, A

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) sharemore » requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron.« less

  2. Identification of the iron oxidation state and coordination geometry in iron oxide- and zeolite-based catalysts using pre-edge XAS analysis.

    PubMed

    Boubnov, Alexey; Lichtenberg, Henning; Mangold, Stefan; Grunwaldt, Jan Dierk

    2015-03-01

    Analysis of the oxidation state and coordination geometry using pre-edge analysis is attractive for heterogeneous catalysis and materials science, especially for in situ and time-resolved studies or highly diluted systems. In the present study, focus is laid on iron-based catalysts. First a systematic investigation of the pre-edge region of the Fe K-edge using staurolite, FePO4, FeO and α-Fe2O3 as reference compounds for tetrahedral Fe(2+), tetrahedral Fe(3+), octahedral Fe(2+) and octahedral Fe(3+), respectively, is reported. In particular, high-resolution and conventional X-ray absorption spectra are compared, considering that in heterogeneous catalysis and material science a compromise between high-quality spectroscopic data acquisition and simultaneous analysis of functional properties is required. Results, which were obtained from reference spectra acquired with different resolution and quality, demonstrate that this analysis is also applicable to conventionally recorded pre-edge data. For this purpose, subtraction of the edge onset is preferentially carried out using an arctangent and a first-degree polynomial, independent of the resolution and quality of the data. For both standard and high-resolution data, multiplet analysis of pre-edge features has limitations due to weak transitions that cannot be identified. On the other hand, an arbitrary empirical peak fitting assists the analysis in that non-local transitions can be isolated. The analysis of the oxidation state and coordination geometry of the Fe sites using a variogram-based method is shown to be effective for standard-resolution data and leads to the same results as for high-resolution spectra. This method, validated by analysing spectra of reference compounds and their well defined mixtures, is finally applied to track structural changes in a 1% Fe/Al2O3 and a 0.5% Fe/BEA zeolite catalyst during reduction in 5% H2/He. The results, hardly accessible by other techniques, show that Fe(3+) is

  3. A strategy for the study of the interactions between metal-dyes and proteins with QM/MM approaches: the case of iron-gall dye.

    PubMed

    Jurinovich, Sandro; Degano, Ilaria; Mennucci, Benedetta

    2012-11-15

    Historical textiles dyed with tannins usually show more extended degradation than fabrics dyed with other coloring materials. In order to shed light on this phenomenon we investigated the molecular interactions between tannin dyes and protein-based textiles using quantum-mechanical tools. In particular, we focused on the iron-gall complex with a fragment of α-helix wool keratin. We developed a step by step protocol which moves from the simplest ternary complexes with free amino acids (all treated quantum mechanically) to the more realistic system of the polypeptide fragment (treated at QM/MM level), passing through an intermediate model of interacting sites to evaluate the local environmental effects. The analysis of the interactions between the iron-gall complexes and free amino acids allowed us to identify possible coordination modes as well as determining their relative geometries. However, we also showed that only with the addition of the proteic environment a detailed picture of the interaction sites and binding modes can be achieved. An important role is in fact played by the microenvironment which can favor specific coordinations with respect to others due to both structural and electronic changes in the possible interaction sites.

  4. Synthesis and reactivity of mononuclear iron models of [Fe]-hydrogenase that contain an acylmethylpyridinol ligand.

    PubMed

    Hu, Bowen; Chen, Dafa; Hu, Xile

    2014-02-03

    [Fe]-hydrogenase has a single iron-containing active site that features an acylmethylpyridinol ligand. This unique ligand environment had yet to be reproduced in synthetic models; however the synthesis and reactivity of a new class of small molecule mimics of [Fe]-hydrogenase in which a mono-iron center is ligated by an acylmethylpyridinol ligand has now been achieved. Key to the preparation of these model compounds is the successful C-O cleavage of an alkyl ether moiety to form the desired pyridinol ligand. Reaction of solvated complex [(2-CH2CO-6-HOC5H3N)Fe(CO)2(CH3CN)2](+)(BF4)(-) with thiols or thiophenols in the presence of NEt3 yielded 5-coordinate iron thiolate complexes. Further derivation produced complexes [(2-CH2CO-6-HOC5H3N)Fe(CO)2(SCH2CH2OH)] and [(2-CH2CO-6-HOC5H3N)Fe(CO)2(CH3COO)], which can be regarded as models of FeGP cofactors of [Fe]-hydrogenase extracted by 2-mercaptoethanol and acetic acid, respectively. When the derivative complexes were treated with HBF4 ⋅Et2O, the solvated complex was regenerated by protonation of the thiolate ligands. The reactivity of several models with CO, isocyanide, cyanide, and H2 was also investigated. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fe-S cluster biogenesis in isolated mammalian mitochondria: coordinated use of persulfide sulfur and iron and requirements for GTP, NADH, and ATP.

    PubMed

    Pandey, Alok; Pain, Jayashree; Ghosh, Arnab K; Dancis, Andrew; Pain, Debkumar

    2015-01-02

    Iron-sulfur (Fe-S) clusters are essential cofactors, and mitochondria contain several Fe-S proteins, including the [4Fe-4S] protein aconitase and the [2Fe-2S] protein ferredoxin. Fe-S cluster assembly of these proteins occurs within mitochondria. Although considerable data exist for yeast mitochondria, this biosynthetic process has never been directly demonstrated in mammalian mitochondria. Using [(35)S]cysteine as the source of sulfur, here we show that mitochondria isolated from Cath.A-derived cells, a murine neuronal cell line, can synthesize and insert new Fe-(35)S clusters into aconitase and ferredoxins. The process requires GTP, NADH, ATP, and iron, and hydrolysis of both GTP and ATP is necessary. Importantly, we have identified the (35)S-labeled persulfide on the NFS1 cysteine desulfurase as a genuine intermediate en route to Fe-S cluster synthesis. In physiological settings, the persulfide sulfur is released from NFS1 and transferred to a scaffold protein, where it combines with iron to form an Fe-S cluster intermediate. We found that the release of persulfide sulfur from NFS1 requires iron, showing that the use of iron and sulfur for the synthesis of Fe-S cluster intermediates is a highly coordinated process. The release of persulfide sulfur also requires GTP and NADH, probably mediated by a GTPase and a reductase, respectively. ATP, a cofactor for a multifunctional Hsp70 chaperone, is not required at this step. The experimental system described here may help to define the biochemical basis of diseases that are associated with impaired Fe-S cluster biogenesis in mitochondria, such as Friedreich ataxia. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Iron and boron removal from sodium silicate using complexation methods

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Suharty, N. S.; Pramono, E.; Ramelan, A. H.; Sasongko, B.; Dewi, A. O. T.; Hidayat, R.; Sulistyono, E.; Handayani, M.; Firdiyono, F.

    2018-05-01

    Silica purification of other materials is needed to improve the purity of silica that suitable for solar cells requirement. The silica is obtained from roasting of sand minerals in sodium silicate form. Iron (Fe) and boron (B) are an impurity that must be separated to obtain high pure silica. Separation of Fe and B used complexation methods. Chitosan-EDTA is used to remove Fe component and curcumin is used to remove B component. The elemental analysis with Atomic Absorption Spectrophotometer (AAS) showed the amount of Fe in sodium silicate decreased after binding to Chitosan EDTA. The contact duration between sodium silicate and chitosan-EDTA at baseline did not affect the results. Then the removal of B from sodium silicate using curcumin was done under basic conditions. B-Curcumin complexes were known from the wavelength number shifts of O-H, C-O, and C = O vibrational in the IR spectrum. The results showed that the optimum concentration of curcumin for removal B was 2 × 10-7 M.

  7. Iron ion and iron hydroxide adsorption to charge-neutral phosphatidylcholine templates

    DOE PAGES

    Wang, Wenjie; Zhang, Honghu; Feng, Shuren; ...

    2016-07-13

    Surface-sensitive X-ray scattering and spectroscopy techniques reveal significant adsorption of iron ions and iron-hydroxide (Fe(III)) complexes to a charge-neutral zwitterionic template of phosphatidylcholine (PC). The PC template is formed by a Langmuir monolayer of dipalmitoyl-PC (DPPC) that is spread on the surface of 2 to 40 μM FeCl 3 solutions at physiological levels of KCl (100 mM). At 40 μM of Fe(III) as many as ~3 iron atoms are associated with each PC group. Grazing incidence X-ray diffraction measurements indicate a significant disruption in the in-plane ordering of DPPC molecules upon iron adsorption. The binding of iron-hydroxide complexes to amore » neutral PC surface is yet another example of nonelectrostatic, presumably covalent bonding to a charge-neutral organic template. Furthermore, the strong binding and the disruption of in-plane lipid structure has biological implications on the integrity of PC-derived lipid membranes, including those based on sphingomyelin.« less

  8. An iron( ii ) hydride complex of a ligand with two adjacent β-diketiminate binding sites and its reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehring, Henrike; Metzinger, Ramona; Braun, Beatrice

    2016-01-13

    After lithiation of PYR-H2 (PYR = [(NC(Me)C(H)C(Me)NC6H3(iPr)2)2(C5H3N)]2-) – the precursor of an expanded β-diketiminato ligand system with two binding pockets – with KN(TMS)2 the reaction of the resulting potassium salt with FeBr2 led to a dinuclear iron(II) bromide complex [(PYR)Fe(μ-Br)2Fe] (1). Through treatment with KHBEt3 the bromide ligands could be replaced by hydrides to yield [PYR)Fe2(μ-H)2] (2), a distorted analogue of known β-diketiminato iron hydride complexes, as evidenced by NMR, Mößbauer and X-ray absorption spectroscopy, as well as by its reactivity: for instance, 2 reacts with the proton source lutidinium triflate via protonation of the hydride ligands to form anmore » iron(II) product [(PYR)Fe2(OTf)2] (4), while CO2 inserts into the Fe–H bonds generating the formate complex [(PYR)Fe2(μ-HCOO)2] (5); in the presence of traces of water partial hydrolysis occurs so that [(PYR)Fe2(μ-OH)(μ-HCOO)] (6) is isolated. Altogether, the iron(II) chemistry supported by the PYR2- ligand is distinctly different from the one of nickel(II), where both, the arrangement of the two binding pockets and the additional pyridyl donor led to diverging features as compared with the corresponding system based on the parent β-diketiminato ligand.« less

  9. The Janus transcription factor HapX controls fungal adaptation to both iron starvation and iron excess

    PubMed Central

    Gsaller, Fabio; Hortschansky, Peter; Beattie, Sarah R; Klammer, Veronika; Tuppatsch, Katja; Lechner, Beatrix E; Rietzschel, Nicole; Werner, Ernst R; Vogan, Aaron A; Chung, Dawoon; Mühlenhoff, Ulrich; Kato, Masashi; Cramer, Robert A; Brakhage, Axel A; Haas, Hubertus

    2014-01-01

    Balance of physiological levels of iron is essential for every organism. In Aspergillus fumigatus and other fungal pathogens, the transcription factor HapX mediates adaptation to iron limitation and consequently virulence by repressing iron consumption and activating iron uptake. Here, we demonstrate that HapX is also essential for iron resistance via activating vacuolar iron storage. We identified HapX protein domains that are essential for HapX functions during either iron starvation or high-iron conditions. The evolutionary conservation of these domains indicates their wide-spread role in iron sensing. We further demonstrate that a HapX homodimer and the CCAAT-binding complex (CBC) cooperatively bind an evolutionary conserved DNA motif in a target promoter. The latter reveals the mode of discrimination between general CBC and specific HapX/CBC target genes. Collectively, our study uncovers a novel regulatory mechanism mediating both iron resistance and adaptation to iron starvation by the same transcription factor complex with activating and repressing functions depending on ambient iron availability. PMID:25092765

  10. First-principles calculations for XAS of infinite-layer iron oxides

    NASA Astrophysics Data System (ADS)

    Kodera, Mitsuru; Shishidou, Tatsuya; Oguchi, Tamio

    2011-03-01

    The oxygen defect perovskite SrFe O3 - x shows various properties such as the giant magnetoresistance effect and the thermoelectric effect. It had been believed that the oxygen content in SrFe O3 - x changes up to x = 0.5 . Recently, Tsujimoto et al . have succeeded in synthesizing the infinite-layer iron oxide SrFe O2 . SrFe O2 has a square-planar oxygen coordination, while the iron oxides usually have the tetrahedral and octahedral coordination. CaFe O2 has also infinite layer structure and the same magnetic ordering as SrFe O2 . However, it is suggested that the oxygen coordination of CaFe O2 is different from that of SrFe O2 . In order to investigate the electronic structure of iron in (Ca, Sr) Fe O2 , the x-ray absorption spectroscopy (XAS) spectrum has been measured. In this work, we perform the calculation for XAS spectrum near the Fe-K edge of (Ca, Sr) Fe O2 using the first-principles calculations. We compare the results with the experiment and discuss the electronic structure of iron in (Ca, Sr) Fe O2 .

  11. Iron deficiency impairs developing hippocampal neuron gene expression, energy metabolism and dendrite complexity

    PubMed Central

    Bastian, Thomas W.; von Hohenberg, William C.; Mickelson, Daniel J.; Lanier, Lorene M.; Georgieff, Michael K.

    2016-01-01

    Iron deficiency (ID), with and without anemia, affects an estimated 2 billion people worldwide. ID is particularly deleterious during early-life brain development, leading to long-term neurological impairments, including deficits in hippocampus-mediated learning and memory. Neonatal rats with fetal/neonatal ID anemia (IDA) have shorter hippocampal CA1 apical dendrites with disorganized branching. ID-induced dendritic structural abnormalities persist into adulthood despite normalization of iron status. However, the specific developmental effects of neuronal iron loss on hippocampal neuron dendrite growth and branching are unknown. Embryonic hippocampal neuron cultures were chronically treated with deferoxamine (DFO, an iron chelator) beginning at 3 days in vitro (DIV). Levels of mRNA for Tfr1 and Slc11a2, iron-responsive genes involved in iron uptake, were significantly elevated in DFO-treated cultures at 11DIV and 18DIV, indicating a similar degree of neuronal ID as seen in rodent ID models. DFO treatment decreased mRNA levels for genes indexing dendritic and synaptic development (i.e., BdnfVI, Camk2a, Vamp1, Psd95, Cfl1, Pfn1, Pfn2, and Gda) and mitochondrial function (i.e., Ucp2, Pink1, and Cox6a1). At 18DIV, DFO reduced key aspects of energy metabolism including basal respiration, maximal respiration, spare respiratory capacity, ATP production, and glycolytic rate, capacity, and reserve. Sholl analysis revealed a significant decrease in distal dendritic complexity in DFO-treated neurons at both 11DIV and 18DIV. At 11DIV, the length of primary dendrites and the number and length of branches in DFO-treated neurons was reduced. By 18DIV, a partial recovery of dendritic branch number in DFO-treated neurons was counteracted by a significant reduction in the number and length of primary dendrites and length of branches. Our findings suggest that early neuronal iron loss, at least partially driven through altered mitochondrial function and neuronal energy metabolism

  12. Interaction of the iron(II) cage complexes with proteins: protein fluorescence quenching study.

    PubMed

    Losytskyy, Mykhaylo Y; Kovalska, Vladyslava B; Varzatskii, Oleg A; Sergeev, Alexander M; Yarmoluk, Sergiy M; Voloshin, Yan Z

    2013-09-01

    Interaction of the iron(II) mono- and bis-clathrochelates with bovine serum albumin (BSA), β-lactoglobulin, lysozyme and insulin was studied by the steady-state and time-resolved fluorescent spectroscopies. These cage complexes do not make significant impact on fluorescent properties of β-lactoglobulin, lysozyme and insulin. At the same time, the monoclathrochelates strongly quench a fluorescence intensity of BSA and substantially decrease its excited state lifetime due to their binding to this protein. This occurs due to the excitation energy transfer from a tryptophan residue to a cage molecule or/and to the change of the tryptophan nearest environment caused by either clathrochelate binding or an alteration of the BSA conformation. The effect of the iron(II) bis-clathrochelate on BSA fluorescence is much weaker as compared to its monomacrobicyclic analogs as a result of an increase in its size.

  13. Iron state in iron nanoparticles with and without zirconium

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Khasanov, A. M.; Lauer, Yu. A.

    2017-11-01

    Mössbauer and X-ray methods are used for investigations of structure, stability and characteristics of pure-iron grain and two iron-zirconium alloys such as Fe + 5 wt.% Zr and Fe + 10 wt.% Zr. The used powder was ground for 24 h in a SPEX Model 8000 mill shaker. Complex nanoparticles are found, which change their properties under milling. Mössbauer spectral parameters are obtained for investigated materials. Milling results in formation of nanosized particles with two states of iron atoms: one main part is pure α-Fe and another part of iron atoms displaced in grain boundaries or defective zones in which hyperfine magnetic splitting decrease to ˜ 30.0 T. In alloys with Zr three iron states are formed in each alloy, main part of iron is in the form of α-Fe and another two states depend on the concentration of Zr and represent iron in grain boundaries with Zr atoms in nearest neighbor. The changing of iron states is discussed.

  14. Controls on the Fate and Speciation of Np(V) During Iron (Oxyhydr)oxide Crystallization.

    PubMed

    Bots, Pieter; Shaw, Samuel; Law, Gareth T W; Marshall, Timothy A; Mosselmans, J Frederick W; Morris, Katherine

    2016-04-05

    The speciation and fate of neptunium as Np(V)O2(+) during the crystallization of ferrihydrite to hematite and goethite was explored in a range of systems. Adsorption of NpO2(+) to iron(III) (oxyhydr)oxide phases was reversible and, for ferrihydrite, occurred through the formation of mononuclear bidentate surface complexes. By contrast, chemical extractions and X-ray absorption spectroscopy (XAS) analyses showed the incorporation of Np(V) into the structure of hematite during its crystallization from ferrihydrite (pH 10.5). This occurred through direct replacement of octahedrally coordinated Fe(III) by Np(V) in neptunate-like coordination. Subsequent analyses on mixed goethite and hematite crystallization products (pH 9.5 and 11) showed that Np(V) was incorporated during crystallization. Conversely, there was limited evidence for Np(V) incorporation during goethite crystallization at the extreme pH of 13.3. This is likely due to the formation of a Np(V) hydroxide precipitate preventing incorporation into the goethite particles. Overall these data highlight the complex behavior of Np(V) during the crystallization of iron(III) (oxyhydr)oxides, and demonstrate clear evidence for neptunium incorporation into environmentally important mineral phases. This extends our knowledge of the range of geochemical conditions under which there is potential for long-term immobilization of radiotoxic Np in natural and engineered environments.

  15. A two-step spin crossover mononuclear iron(II) complex with a [HS-LS-LS] intermediate phase.

    PubMed

    Bonnet, Sylvestre; Siegler, Maxime A; Costa, José Sánchez; Molnár, Gábor; Bousseksou, Azzedine; Spek, Anthony L; Gamez, Patrick; Reedijk, Jan

    2008-11-21

    The two-step spin crossover of a new mononuclear iron(ii) complex is studied by magnetic, crystallographic and calorimetric methods revealing two successive first-order phase transitions and an ordered intermediate phase built by the repetition of the unprecedented [HS-LS-LS] motif.

  16. The Mediator complex: a master coordinator of transcription and cell lineage development.

    PubMed

    Yin, Jing-wen; Wang, Gang

    2014-03-01

    Mediator is a multiprotein complex that is required for gene transcription by RNA polymerase II. Multiple subunits of the complex show specificity in relaying information from signals and transcription factors to the RNA polymerase II machinery, thus enabling control of the expression of specific genes. Recent studies have also provided novel mechanistic insights into the roles of Mediator in epigenetic regulation, transcriptional elongation, termination, mRNA processing, noncoding RNA activation and super enhancer formation. Based on these specific roles in gene regulation, Mediator has emerged as a master coordinator of development and cell lineage determination. Here, we describe the most recent advances in understanding the mechanisms of Mediator function, with an emphasis on its role during development and disease.

  17. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly

    PubMed Central

    Gandin, Valentina; Masvidal, Laia; Cargnello, Marie; Gyenis, Laszlo; McLaughlan, Shannon; Cai, Yutian; Tenkerian, Clara; Morita, Masahiro; Balanathan, Preetika; Jean-Jean, Olivier; Stambolic, Vuk; Trost, Matthias; Furic, Luc; Larose, Louise; Koromilas, Antonis E.; Asano, Katsura; Litchfield, David; Larsson, Ola; Topisirovic, Ivan

    2016-01-01

    Ternary complex (TC) and eIF4F complex assembly are the two major rate-limiting steps in translation initiation regulated by eIF2α phosphorylation and the mTOR/4E-BP pathway, respectively. How TC and eIF4F assembly are coordinated, however, remains largely unknown. We show that mTOR suppresses translation of mRNAs activated under short-term stress wherein TC recycling is attenuated by eIF2α phosphorylation. During acute nutrient or growth factor stimulation, mTORC1 induces eIF2β phosphorylation and recruitment of NCK1 to eIF2, decreases eIF2α phosphorylation and bolsters TC recycling. Accordingly, eIF2β mediates the effect of mTORC1 on protein synthesis and proliferation. In addition, we demonstrate a formerly undocumented role for CK2 in regulation of translation initiation, whereby CK2 stimulates phosphorylation of eIF2β and simultaneously bolsters eIF4F complex assembly via the mTORC1/4E-BP pathway. These findings imply a previously unrecognized mode of translation regulation, whereby mTORC1 and CK2 coordinate TC and eIF4F complex assembly to stimulate cell proliferation. PMID:27040916

  18. Syntheses, structures, photoluminescence of four dicarboxylate-controlled Zn(II) coordination complexes incorporating flexible 1-(4-pyridylmethyl)-benzimidazole ligand

    NASA Astrophysics Data System (ADS)

    Hao, Hong-Jun; Du, Ming-Yue; Wang, Dan-Feng; Sun, Cheng-Jie; Wang, Zhan-Hui; Huang, Rong-Bin; Zheng, Lan-Sun

    2013-09-01

    Four Zn(II) coordination complexes, namely {[Zn(pmbm)2(tpa)]·H2O}n (1), {[Zn(pmbm)(phda)]·2(H2O)}n (2), [Zn(pmbm)(aze)]n (3), {[Zn(pmbm)(1,4-ndc)]·2(CH3OH)}n (4) [pmbm = 1-(4-pyridylmethyl)-benzimidazole, H2tpa = terephthalic acid, H2phda = phenylenediacetic acid, H2aze = azelaic acid, 1,4-ndcH2 = 1,4-naphthalenedicarboxylic acid] have been synthesized by solution phase ultrasonic reactions of Zn(AC)2·2H2O with pmbm and various dicarboxylates ligands under the ammoniacal condition. All the complexes have been characterized by elemental analyses, IR spectra and X-ray diffraction. Complexes 1 and 2 exhibit one-dimensional chains structure and complex 3 and 4 are two-dimensional sheets structure with (4,4) topology. Complexes 1-4 spanning from one-dimensional chains to two-dimensional sheets suggest that dicarboxylates play significant roles in the formation of such coordination architectures. The photoluminescences of the complexes were also investigated in the solid state at room temperature.

  19. Characterization of a Novel Polysaccharide-Iron(III) Complex and Its Anti-Anemia and Nonspecific Immune Regulating Activities.

    PubMed

    Zhang, Yun; Ma, Fanyi; Zhu, Jinhua; Du, Zuliang; Zhao, Ying-Yong; Liu, Xiuhua

    2017-01-01

    Dioscorea opposita Thunb is the famous food and traditional medicine in China and it was rich in polysaccharides. Polysaccharides of Dioscorea Opposita Thunb possess immunoregulatory activity, free radical scavenging activity and anti-diabetic activity. A novel polysaccharide- iron(III) complex (CYPIC) was synthesized by using crude polysaccharide extracted from Dioscorea opposita Thunb. The component, structure, morphology and molecular weights of CYPIC were analysed, and the anti-anemia, acute toxicity and nonspecific immune regulating activities of CYPIC were assayed. The results showed that CYPIC could increase red blood cell count (RBC), hemoglobin (Hb), hematocrit (HCT), thymus and spleen index of mice with iron deficiency anemia (IDA). Although the structure and deeper mechanisms of CYPIC should be further studied, CYPIC has the potential to be used as an iron supplement for the treatment of iron deficiency anemia. The large scale industrial production was suggested due to the simple preparation processing of CYPIC. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. The DREAM complex: Master coordinator of cell cycle dependent gene expression

    PubMed Central

    Sadasivam, Subhashini; DeCaprio, James A.

    2014-01-01

    Preface The dimerization partner (DP), retinoblastoma (RB)-like, E2F and MuvB (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and FOXM1. DREAM mediates gene repression during G0 and coordinates periodic gene expression with peaks during G1/S and G2/M. Perturbations in DREAM regulation shift the balance from quiescence towards proliferation and contribute to increased mitotic gene expression levels frequently observed in cancers with poor prognosis. PMID:23842645

  1. Diverse Cd{sup II} coordination complexes derived from bromide isophthalic acid binding with auxiliary N-donor ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Meng; Dong, Bao-Xia, E-mail: bxdong@yzu.edu.cn; Wu, Yi-Chen

    The coordination characteristics of 4-bromoisophthalic acid (4-Br-H{sub 2}ip) have been investigated in a series of Cd{sup II}-based frameworks. Hydrothermal reactions of Cd{sup II} salts and 4-Br-H{sub 2}ip together with flexible or semiflexible N-donor auxiliary ligands resulted in the formation of four three-dimensional coordination complexes with diverse structures: (Cd(bix){sub 0.5}(bix){sub 0.5}(4-Br-ip)]·H{sub 2}O){sub n} (1), [Cd(bbi){sub 0.5}(bbi){sub 0.5}(4-Br-ip)]{sub n} (2), ([Cd(btx){sub 0.5}(4-Br-ip)(H{sub 2}O)]·0.5CH{sub 3}OH·H{sub 2}O){sub n} (3) and ([Cd(bbt){sub 0.5}(4-Br-ip)(H{sub 2}O)]·3·5H{sub 2}O){sub n} (4). These compounds were characterized by elemental analyses, IR spectra, single-crystal and powder X-ray diffraction. They displayed diverse structures depending on the configuration of the 4-connected metal node, themore » coordination mode of the 4-Br-H{sub 2}ip, the coordination ability and conformationally flexibility of the N-donor auxiliary. Compound 1 exhibits 3-fold interpenetrated 6{sup 6} topology and compound 2 has a 4{sup 12} topology. Compounds 3–4 have similar 3D pillar-layered structures based on 3,4-connected binodal net with the Schläfli symbol of (4·3{sup 8}). The thermal stabilities and photoluminescence properties of them were discussed in detail. - Graphical abstract: Four 3D Cd{sup II} coordination complexes on the basis of 4-bromoisophthalic acid (4-Br-H{sub 2}ip) and two types of flexible (bbi, bbt) and semiflexible (bix, btx) N-donor ligands are prepared. They displayed diverse topology structures of 6{sup 6} (1), 4{sup 12} (2) and 4·3{sup 8} (3−4), depending on the configuration of the 4-connected metal node, the coordination mode of the 4-Br-H{sub 2}ip, the coordination ability and conformationally flexibility of the N-donor auxiliary ligand. - Highlights: • Four 3D Cd{sup II} coordination complexes based on 4-Br-H{sub 2}ip and flexible/semiflexible N-donor ligands have been synthesized. • They

  2. Effects of oral iron(III) hydroxide polymaltose complex supplementation on hemoglobin increase, cognitive function, affective behavior and scholastic performance of adolescents with varying iron status: a single centre prospective placebo controlled study.

    PubMed

    Devaki, Pallaki Baby; Chandra, Ranjit K; Geisser, Peter

    2009-01-01

    To assess the effects of iron supplementation on iron status, cognitive function, affective behavior and scholastic performance in adolescents with varying iron status. Adolescents of both sexes with varying iron status were allocated to four treatment groups by using inclusion criteria. Three of the four groups (iron deficient anemic, iron deficient and control supplement) received iron(III) hydroxide polymaltose complex (IPC, Maltofer) containing 100 mg of elemental iron 6 days a week for 8 months, while the fourth group (control placebo) was given a placebo. Hematological parameters, cognitive function, affective behavior and scholastic performance were assessed at baseline, 4 months and 8 months of supplementation. Cognitive and scholastic performance test scores for the three supplemented groups increased from baseline to 4 months and from 4 months to 8 months (with concomitant increases in hematological parameters), whereas no increase was observed in the placebo group. No increase was seen in affective behavior scores for any of the groups during or after supplementation. IPC supplementation for eight months yielded significant improvements in cognitive function and scholastic performance in Indian adolescents with and without iron deficiency and anemia.

  3. Ferritin iron minerals are chelator targets, antioxidants, and coated, dietary iron.

    PubMed

    Theil, Elizabeth C

    2010-08-01

    Cellular ferritin is central for iron balance during transfusions therapies; serum ferritin is a small fraction of body ferritin, albeit a convenient reporter. Iron overload induces extra ferritin protein synthesis but the protein is overfilled with the extra iron that damages ferritin, with conversion to toxic hemosiderin. Three new approaches that manipulate ferritin to address excess iron, hemosiderin, and associated oxidative damage in Cooley's Anemia and other iron overload conditions are faster removal of ferritin iron with chelators guided to ferritin gated pores by peptides; more ferritin protein synthesis using ferritin mRNA activators, by metal complexes that target mRNA 3D structures; and determining if endocytotic absorption of iron from legumes, which is mostly ferritin, is regulated during iron overload to prevent excess iron entry while providing protein. More of a focus on ferritin features, including protein cage structure, iron mineral, regulatable mRNA, and specific gut absorption properties, will achieve the three novel experimental goals for managing iron homeostasis with transfusion therapies.

  4. Additional oxidative stress reroutes the global response of Aspergillus fumigatus to iron depletion.

    PubMed

    Kurucz, Vivien; Krüger, Thomas; Antal, Károly; Dietl, Anna-Maria; Haas, Hubertus; Pócsi, István; Kniemeyer, Olaf; Emri, Tamás

    2018-05-10

    further supported the view that the ability of A. fumigatus to cause diseases in humans strongly depends on its fitness attributes and less on specific virulence factors. In summary, A. fumigatus is able to mount and coordinate complex and efficient responses to combined stresses like iron deprivation plus H 2 O 2 -induced oxidative stress, which are exploited by immune cells to kill fungal pathogens.

  5. Hydrothermal synthesis, crystal structure, luminescent and magnetic properties of a new mononuclear GdIII coordination complex

    NASA Astrophysics Data System (ADS)

    Coban, Mustafa Burak

    2018-06-01

    A new GdIII coordination complex, {[Gd(2-stp)2(H2O)6].2(4,4'-bipy).4(H2O)}, complex 1, (2-stp = 2-sulfoterephthalate anion and 4,4'-bipy = 4,4'-bipyridine), has been synthesized by hydrothermal method and characterized by elemental analysis, solid state UV-Vis and FT-IR spectroscopy, single-crystal X-ray diffraction, solid state photoluminescence and variable-temperature magnetic measurements. The crystal structure determination shows that GdIII ions are eight coordinated and adopt a distorted square-antiprismatic geometry. Molecules interacting through intra- and intermolecular (O-H⋯O, O-H⋯N) hydrogen bonds in complex 1, give rise to 3D hydrogen bonded structure and the discrete lattice 4,4'-bipy molecules occupy the channel of the 3D structure. π-π stacking interactions also exist 4,4'-bipy-4,4'-bipy and 4,4'-bipy-2-stp molecule rings in 3D structures. Additionally, solid state photoluminescence properties of complex 1 at room temperature have been investigated. Under the excitation of UV light (at 349 nm), the complex 1 exhibited green emissions (at 505 nm) of GdIII ion in the visible region. Furthermore, Variable-temperature magnetic susceptibility and isothermal magnetization as function of external magnetic field studies reveal that complex 1 displays possible antiferromagnetic interaction.

  6. X-ray emission spectroscopy of biomimetic Mn coordination complexes

    DOE PAGES

    Jensen, Scott C.; Davis, Katherine M.; Sullivan,

    2017-05-19

    Understanding the function of Mn ions in biological and chemical redox catalysis requires precise knowledge of their electronic structure. X-ray emission spectroscopy (XES) is an emerging technique with a growing application to biological and biomimetic systems. Here, we report an improved, cost-effective spectrometer used to analyze two biomimetic coordination compounds, [Mn IV(OH) 2(Me 2EBC)] 2+ and [Mn IV(O)(OH)(Me 2EBC)] +, the second of which contains a key Mn IV=O structural fragment. Despite having the same formal oxidation state (Mn IV) and tetradentate ligands, XES spectra from these two compounds demonstrate different electronic structures. Experimental measurements and DFT calculations yield differentmore » localized spin densities for the two complexes resulting from Mn IV–OH conversion to Mn IV=O. The relevance of the observed spectroscopic changes is discussed for applications in analyzing complex biological systems such as photosystem II. In conclusion, a model of the S 3 intermediate state of photosystem II containing a Mn IV=O fragment is compared to recent time-resolved X-ray diffraction data of the same state.« less

  7. [Is iron important in heart failure?].

    PubMed

    Murín, Ján; Pernický, Miroslav

    2015-01-01

    Iron deficiency is a frequent comorbidity in a patient with chronic heart failure, and it associates with a worse pro-gnosis of that patient. Mainly worse quality of life and more rehospitalizations are in these iron deficient patients. Iron metabolism is rather complex and there is some new information concerning this complexity in heart failure. We distinquish an absolute and a functional iron deficiency in heart failure. It is this deficit which is important and not as much is anemia important here. Prevalence of anaemia in heart failure is about 30-50 %, higher it is in patients suffering more frequently heart failure decompensations. Treatment of iron deficiency is important and it improves prognosis of these patients. Most experiences there are with i.v. iron treatment (FERRIC HF, FAIR HF and CONFIRM HF studies), less so with per oral treatment. There are no clinical trials which analysed mortality influences. heart failure - iron metabolism in heart failure - prevalence of iron deficit - treatment of iron deficiency in heart failure.

  8. Prebiotic coordination chemistry: The potential role of transition-metal complexes in the chemical evolution

    NASA Technical Reports Server (NTRS)

    Beck, M.

    1979-01-01

    In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.

  9. Characterizing cosmochemical materials with genetic affinities to the Earth: Genetic and chronological diversity within the IAB iron meteorite complex

    NASA Astrophysics Data System (ADS)

    Worsham, Emily A.; Bermingham, Katherine R.; Walker, Richard J.

    2017-06-01

    The IAB iron meteorite complex consists of a main group (MG) and five chemical subgroups (sLL, sLM, sLH, sHL, and sHH). Here, mass-independent Mo and radiogenic 182W isotope compositions are reported for IAB complex meteorites to evaluate the genetics and chronology, respectively, of the MG and subgroups. Osmium isotopes are used to correct for cosmic ray exposure effects on isotopes of Mo and W. The MG and three subgroups (i.e., sLL, sLM, and sLH), characterized by low Au abundances, have the same Mo isotopic compositions within analytical uncertainty, consistent with a common genetic origin. These meteorites, together with winonaites, are the only cosmochemical materials yet identified with Mo isotopic compositions that are identical to Earth. The Mo isotopic compositions of two subgroups characterized by higher Au abundances (sHL and sHH) are identical to one another within uncertainty, but differ from the low Au subgroups, indicating derivation from genetically distinct materials. The MG has a 182W, post calcium-aluminum inclusion (CAI) formation model age of 3.4 ± 0.7 Ma. One of the low Au subgroups (sLM) is ∼1.7 Ma younger, whereas the high Au subgroups are ∼1.5-3 Ma older. The new Mo-W data, coupled with chemical data, indicate that the MG and the low Au subgroups formed in different impact-generated melts, some of which evidently formed on a chemically disparate, but genetically identical parent body. The high Au subgroups likely formed via core-formation processes on separate, internally-heated parent bodies from other IAB subgroups. The IAB complex meteorites fall on a linear trend defined by 94Mo/96Mo vs. 95Mo/96Mo, along with most other iron meteorite groups. Variation along this line was caused by mixing between at least two nebular components. One component was likely a pure s-process enriched nucleosynthetic carrier, and the other a homogenized nebular component. Sombrerete, currently classified as an sHL iron, has a Mo isotopic composition that

  10. Synthesis and Base Hydrolysis of a Cobalt(III) Complex Coordinated by a Thioether Ligand

    ERIC Educational Resources Information Center

    Roecker, Lee

    2008-01-01

    A two-week laboratory experiment for students in advanced inorganic chemistry is described. Students prepare and characterize a cobalt(III) complex coordinated by a thioether ligand during the first week of the experiment and then study the kinetics of Co-S bond cleavage in basic solution during the second week. The synthetic portion of the…

  11. Compacted graphite iron: Cast iron makes a comeback

    NASA Astrophysics Data System (ADS)

    Dawson, S.

    1994-08-01

    Although compacted graphite iron has been known for more than four decades, the absence of a reliable mass-production technique has resulted in relatively little effort to exploit its operational benefits. However, a proven on-line process control technology developed by SinterCast allows for series production of complex components in high-quality CGI. The improved mechanical properties of compacted graphite iron relative to conventional gray iron allow for substantial weight reduction in gasoline and diesel engines or substantial increases in horsepower, or an optimal combination of both. Concurrent with these primary benefits, CGI also provides significant emissions and fuel efficiency benefits allowing automakers to meet legislated performance standards. The operational and environmental benefits of compacted graphite iron together with its low cost and recyclability reinforce cast iron as a prime engineering material for the future.

  12. Ferritin accumulation under iron scarcity in Drosophila iron cells.

    PubMed

    Mehta, A; Deshpande, A; Bettedi, L; Missirlis, F

    2009-10-01

    Ferritins are highly stable, multi-subunit protein complexes with iron-binding capacities that reach 4500 iron atoms per ferritin molecule. The strict dependence of cellular physiology on an adequate supply of iron cofactors has likely been a key driving force in the evolution of ferritins as iron storage molecules. The insect intestine has long been known to contain cells that are responsive to dietary iron levels and a specialized group of "iron cells" that always accumulate iron-loaded ferritin, even when no supplementary iron is added to the diet. Here, we further characterize ferritin localization in Drosophila melanogaster larvae raised under iron-enriched and iron-depleted conditions. High dietary iron intake results in ferritin accumulation in the anterior midgut, but also in garland (wreath) cells and in pericardial cells, which together filter the circulating hemolymph. Ferritin is also abundant in the brain, where levels remain unaltered following dietary iron chelation, a treatment that depletes ferritin from the aforementioned tissues. We attribute the stability of ferritin levels in the brain to the function of the blood-brain barrier that may shield this organ from systemic iron fluctuations. Most intriguingly, our dietary manipulations demonstrably iron-depleted the iron cells without a concomitant reduction in their production of ferritin. Therefore, insect iron cells may constitute an exception from the evolutionary norm with respect to iron-dependent ferritin regulation. It will be of interest to decipher both the physiological purpose served and the mechanism employed to untie ferritin regulation from cellular iron levels in this cell type.

  13. Similarities between GCS and human motor cortex: complex movement coordination

    NASA Astrophysics Data System (ADS)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos

    2014-07-01

    The "Gran Telescopio de Canarias" (GTC1) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC control system (GCS), the brain of the telescope, is is a distributed object & component oriented system based on RT-CORBA and it is responsible for the management and operation of the telescope, including its instrumentation. On the other hand, the Human motor cortex (HMC) is a region of the cerebrum responsible for the coordination of planning, control, and executing voluntary movements. If we analyze both systems, as far as the movement control of their mechanisms and body parts is concerned, we can find extraordinary similarities in their architectures. Both are structured in layers, and their functionalities are comparable from the movement conception until the movement action itself: In the GCS we can enumerate the Sequencer high level components, the Coordination libraries, the Control Kit library and the Device Driver library as the subsystems involved in the telescope movement control. If we look at the motor cortex, we can also enumerate the primary motor cortex, the secondary motor cortices, which include the posterior parietal cortex, the premotor cortex, and the supplementary motor area (SMA), the motor units, the sensory organs and the basal ganglia. From all these components/areas we will analyze in depth the several subcortical regions, of the the motor cortex, that are involved in organizing motor programs for complex movements and the GCS coordination framework, which is composed by a set of classes that allow to the high level components to transparently control a group of mechanisms simultaneously.

  14. Mononuclear nonheme iron(III) complexes that show superoxide dismutase-like activity and antioxidant effects against menadione-mediated oxidative stress.

    PubMed

    Hitomi, Yutaka; Iwamoto, Yuji; Kashida, Akihiro; Kodera, Masahito

    2015-05-21

    This communication describes the superoxide dismutase (SOD)-like activity of mononuclear iron(III) complexes with pentadentate monocarboxylamido ligands. The SOD activity can be controlled by the electronic nature of the substituent group on the ligand. The nitro-substituted complex showed clear cytoprotective activity against menadione-mediated oxidative stress in cultured cells.

  15. Exploring the oxidation and iron binding profile of a cyclodextrin encapsulated quercetin complex unveiled a controlled complex dissociation through a chemical stimulus.

    PubMed

    Diamantis, Dimitrios A; Ramesova, Sarka; Chatzigiannis, Christos M; Degano, Ilaria; Gerogianni, Paraskevi S; Karadima, Constantina; Perikleous, Sonia; Rekkas, Dimitrios; Gerothanassis, Ioannis P; Galaris, Dimitrios; Mavromoustakos, Thomas; Valsami, Georgia; Sokolova, Romana; Tzakos, Andreas G

    2018-06-07

    Flavonoids possess a rich polypharmacological profile and their biological role is linked to their oxidation state protecting DNA from oxidative stress damage. However, their bioavailability is hampered due to their poor aqueous solubility. This can be surpassed through encapsulation to supramolecular carriers as cyclodextrin (CD). A quercetin- 2HP-β-CD complex has been formerly reported by us. However, once the flavonoid is in its 2HP-β-CD encapsulated state its oxidation potential, its decomplexation mechanism, its potential to protect DNA damage from oxidative stress remained elusive. To unveil this, an array of biophysical techniques was used. The quercetin-2HP-β-CD complex was evaluated through solubility and dissolution experiments, electrochemical and spectroelectrochemical studies (Cyclic Voltammetry) UV-Vis spectroscopy, HPLC-ESI-MS/MS and HPLC-DAD, fluorescence spectroscopy, NMR Spectroscopy, theoretical calculations (density functional theory (DFT)) and biological evaluation of the protection offered against H 2 O 2 -induced DNA damage. Encapsulation of quercetin inside the supramolecule's cavity enhanced its solubility and oxidation profile is retained in its encapsulated state. Although the protective ability of the quercetin-2HP-β-CD complex against H 2 O 2 was diminished, iron serves as a chemical stimulus to dissociate the complex and release quercetin. We found that in a quercetin-2HP-β-CD inclusion complex quercetin retains its oxidation profile similarly to its native state, while iron can operate as a chemical stimulus to release quercetin from its host cavity. The oxidation profile of a natural product once it is encapsulated in a supramolecular cyclodextrin carrier as also it was discovered that decomplexation can be triggered by a chemical stimulus. Copyright © 2018. Published by Elsevier B.V.

  16. Iron Polymerization and Arsenic Removal During In-Situ Iron Electrocoagulation in Synthetic Bangladeshi Groundwater

    NASA Astrophysics Data System (ADS)

    van Genuchten, C. M.; Pena, J.; Addy, S.; Gadgil, A.

    2010-12-01

    Millions of people worldwide are exposed to arsenic-contamination in groundwater drinking supplies. The majority of affected people live in rural Bangladesh. Electrocoagulation (EC) using iron electrodes is a promising arsenic removal strategy that is based on the generation of iron precipitates with a high affinity for arsenic through the electrochemical dissolution of a sacrificial iron anode. Many studies of iron hydrolysis in the presence of co-occurring ions in groundwater such as PO43-, SiO44-, and AsO43- suggest that these ions influence the polymerization and formation of iron oxide phases. However, the combined impact of these ions on precipitates generated by EC is not well understood. X-ray absorption spectroscopy (XAS) was used to examine EC precipitates generated in synthetic Bangladeshi groundwater (SBGW). The iron oxide structure and arsenic binding geometry were investigated as a function of EC operating conditions. As and Fe k-edge spectra were similar between samples regardless of the large range of current density (0.02, 1.1, 5.0, 100 mA/cm2) used during sample generation. This result suggests that current density does not play a large role in the formation EC precipitates in SBGW. Shell-by-shell fits of Fe K-edge data revealed the presence of a single Fe-Fe interatomic distance at approximately 3.06 Å. The absence of longer ranged Fe-Fe correlations suggests that EC precipitates consist of nano-scale chains (polymers) of FeO6 octahedra sharing equatorial edges. Shell-by-shell fits of As K-edge spectra show arsenic bound in primarily bidentate, binuclear corner sharing complexes. In this coordination geometry, arsenic prevents the formation of FeO6 corner-sharing linkages, which are necessary for 3-dimensional crystal growth. The individual and combined effects of other anions, such as PO43- and SiO44- present in SBGW are currently being investigated to determine the role of these ions in stunting crystal growth. The results provided by this

  17. Particle complexation of mitochondrial iron produces superoxide generation and activates MAP kinases, NF-kappa B, nrf-2 in human respiratory epithelial cell

    EPA Science Inventory

    The biological effect of particles is associated with a disruption in cell iron homeostasis. We tested the postulate that complexation of cell iron by silica (Si02) results in both an oxidative stress and biological effect. BEAS-2B cells were exposed to either media or 100 ug/ml....

  18. Iron chelating ligand for iron overload diseases.

    PubMed

    Ozbolat, G; Tuli, A

    2018-01-01

    Iron overloads are a serious clinical condition in the health of humans and are therefore a key target in drug development. In this study, iron(III) complex of 8-hydroxyquinoline-5 sulphonic acid was synthesized and structurally characterized in its solid state and solution state by FT-IR, UV-Vis, elemental analysis, magnetic susceptibility and 1H-NMR. The catalase activities of complex were investigated. It was showed that the complex has the catalase activity. It is suggested that this type of complex may constitute a new and interesting basis for the future search for new and more potential drugs. The electrochemical behaviour patterns of the ligand and complex were examined as supporting electrolyte and platinum electrode for cyclic voltammetry. The electrochemistry studies showed that the reductions in free ligand and complex take place differently.The cytotoxicity was evaluated by MTT assay. The complex exhibited a very high cytotoxic activity and showed a cytotoxic effect that was much better than that of the ligand.The observed cytotoxicity could be pursued to obtain a potential drug. These results indicate that using the 8-hydroxyquinoline-5 sulphonic acid for this aim in further studies is appropriate (Tab. 1, Fig. 4, Ref. 18). Text in PDF www.elis.sk.

  19. Ellagic acid inhibits iron-mediated free radical formation

    NASA Astrophysics Data System (ADS)

    Dalvi, Luana T.; Moreira, Daniel C.; Andrade, Roberto; Ginani, Janini; Alonso, Antonio; Hermes-Lima, Marcelo

    2017-02-01

    Polyphenols are reported to have some health benefits, which are link to their antioxidant properties. In the case of ellagic acid (EA), there is evidence that it has free radical scavenger properties and that it is able to form complexes with metal ions. However, information on a possible link between the formation of iron-EA complexes and their interference in Haber-Weiss/Fenton reactions was not yet determined. Thus, the present study investigated the in vitro antioxidant mechanism of EA in a system containing ascorbate, Fe(III) and different iron ligands (EDTA, citrate and NTA). Iron-mediated oxidative degradation of 2-deoxyribose was poorly inhibited (by 12%) in the presence of EA (50 μM) and EDTA. When citrate or NTA - which form weak iron complexes - were used, the 2-deoxyribose protection increased to 89-97% and 45%, respectively. EA also presented equivalent inhibitory effects on iron-mediated oxygen uptake and ascorbyl radical formation. Spectral analyses of iron-EA complexes show that EA removes Fe(III) from EDTA within hours, and from citrate within 1 min. This difference in the rate of iron-EA complex formation may explain the antioxidant effects of EA. Furthermore, the EA antioxidant effectiveness was inversely proportional to the Fe(III) concentration, suggesting a competition with EDTA. In conclusion, the results indicate that EA may prevent in vitro free radical formation when it forms a complex with iron ions.

  20. Bowl adamanzanes--bicyclic tetraamines: syntheses and crystal structures of complexes with cobalt(III) and chelating coordinated oxo-anions.

    PubMed

    Broge, Louise; Søtofte, Inger; Jensen, Kristian; Jensen, Nicolai; Pretzmann, Ulla; Springborg, Johan

    2007-09-14

    Seven cobalt(III) complexes of the macrobicyclic tetraamine ligand [2(4).3(1)]adamanzane ([2(4).3(1)]adz) are reported along with the crystal structure of six of these complexes. The solid state and solution structures are discussed, and a detailed assignment of the NMR spectra of the sulfato complex is provided. Four of the seven complexes contain a chelate coordinating oxo-anion (sulfate, formiate, nitrate, carbonate). Equilibration of these species with the corresponding diaqua complex is generally slow. The rates of equilibration in 5 mol dm(-3) perchloric acid at 25 degrees C have been measured, yielding half lives of 20 min, 10 min and 3 h for the sulfato, formiato and carbonato species respectively. The corresponding reaction for the nitrato complex occurs with a half life of less than 3 min. The concentration acid dissociation constant for the Co([2(4).3(1)]adz)(HCO(3))(2+) ion has been measured to K(a) = 0.33 mol dm(-3) [25 degrees C, I = 2 mol dm(-3)] and K(a) = 0.15 mol dm(-3) [25 degrees C, I = 5 mol dm(-3)]. The propensity for coordination of sulfate was found to be large enough for a quantitative conversion of the carbonato complex to the sulfato complex to occur in 3 mol dm(-3) triflic acid containing a small sulfate contamination. On this basis the decarboxylation in 5 mol dm(-3) triflic acid of the corresponding cobalt(III) carbonato complex of the larger macrobicyclic tetraamine ligand [3(5)]adz was reinvestigated and found to lead to the sulfato complex as well. The difference in exchange rate of the oxo-anion ligands for the cobalt(III) complexes of the two adamanzane ligands is discussed and attributed to fundamental differences in the molecular structure where an inverted configuration of the secondary non-bridged amine groups is seen for the complexes of the larger [3(5)]adz ligand. The high affinity for chelating coordination of oxo-anions for these two cobalt(iii)-adamanzane-moieties is rationalised on basis of the N-Co-N angles. N

  1. Effect of environmental factors on the complexation of iron and humic acid.

    PubMed

    Fang, Kai; Yuan, Dongxing; Zhang, Lei; Feng, Lifeng; Chen, Yaojin; Wang, Yuzhou

    2015-01-01

    A method of size exclusion chromatography coupled with ultraviolet spectrophotometry and off-line graphite furnace atomic absorption spectrometry was developed to assess the complexation properties of iron (Fe) and humic acid (HA) in a water environment. The factors affecting the complexation of Fe and HA, such as ionic strength, pH, temperature and UV radiation, were investigated. The Fe-HA complex residence time was also studied. Experimental results showed that pH could influence the deprotonation of HA and hydrolysis of Fe, and thus affected the complexation of Fe and HA. The complexation was greatly disrupted by the presence of NaCl. Temperature had some influence on the complexation. The yield of Fe-HA complexes showed a small decrease at high levels of UV radiation, but the effect of UV radiation on Fe-HA complex formation at natural levels could be neglected. It took about 10 hr for the complexation to reach equilibrium, and the Fe-HA complex residence time was about 20 hr. Complexation of Fe and HA reached a maximum level under the conditions of pH 6, very low ionic strength, in the dark and at a water temperature of about 25°C, for 10 hr. It was suggested that the Fe-HA complex could form mainly in freshwater bodies and reach high levels in the warm season with mild sunlight radiation. With changing environmental parameters, such as at lower temperature in winter or higher pH and ionic strength in an estuary, the concentration of the Fe-HA complex would decrease. Copyright © 2014. Published by Elsevier B.V.

  2. Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates Cardiogenesis.

    PubMed

    Luna-Zurita, Luis; Stirnimann, Christian U; Glatt, Sebastian; Kaynak, Bogac L; Thomas, Sean; Baudin, Florence; Samee, Md Abul Hassan; He, Daniel; Small, Eric M; Mileikovsky, Maria; Nagy, Andras; Holloway, Alisha K; Pollard, Katherine S; Müller, Christoph W; Bruneau, Benoit G

    2016-02-25

    Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Complexation of Arsenite with Humic Acid in the Presence of Ferric Iron

    PubMed Central

    Liu, Guangliang; Fernandez, Aymara; Cai, Yong

    2011-01-01

    In the presence of iron (Fe), dissolved organic matter (DOM) may bind considerable amounts of arsenic (As), through formation of Fe-bridged As-Fe-DOM complexes and surface complexation of As on DOM-stabilized Fe-colloids (collectively referred to as As-Fe-DOM complexation). However, direct (e.g., chromatographic and spectroscopic) evidence and fundamental kinetic and stability constants have been rarely reported for this As-Fe-DOM complexation. Using a size exclusion chromatography (SEC)-UV-inductively coupled plasma mass spectrometry (ICP-MS) technique, arsenite (AsIII)-Fe-DOM complexation was investigated after adding AsIII into the priorly prepared Fe-DOM. A series of evidence, including coelution of As, Fe, and DOM from the SEC column and coretention of As, Fe, and DOM by 3 kDa MWCO centrifugal filtration membrane, demonstrated the occurrence of AsIII-Fe-DOM complexation. The kinetic data of AsIII-Fe-DOM complexation were well described by a pseudo-first order rate equation (R2 = 0.95), with the rate constant (k′) being 0.17±0.04 1/h. Stability of AsIII-Fe-DOM complexation was characterized by apparent stability constant (Ks) derived from two-site ligand binding model, with log Ks ranging from 4.4±0.2 to 5.6±0.4. Considering the kinetics (within hours) and stability (similar to typical metal-humates) of AsIII-Fe-DOM complexation, this complexation needs to be included when evaluating As mobility in Fe and DOM rich environments. PMID:21322632

  4. The MYO6 interactome reveals adaptor complexes coordinating early endosome and cytoskeletal dynamics.

    PubMed

    O'Loughlin, Thomas; Masters, Thomas A; Buss, Folma

    2018-04-01

    The intracellular functions of myosin motors requires a number of adaptor molecules, which control cargo attachment, but also fine-tune motor activity in time and space. These motor-adaptor-cargo interactions are often weak, transient or highly regulated. To overcome these problems, we use a proximity labelling-based proteomics strategy to map the interactome of the unique minus end-directed actin motor MYO6. Detailed biochemical and functional analysis identified several distinct MYO6-adaptor modules including two complexes containing RhoGEFs: the LIFT (LARG-Induced F-actin for Tethering) complex that controls endosome positioning and motility through RHO-driven actin polymerisation; and the DISP (DOCK7-Induced Septin disPlacement) complex, a novel regulator of the septin cytoskeleton. These complexes emphasise the role of MYO6 in coordinating endosome dynamics and cytoskeletal architecture. This study provides the first in vivo interactome of a myosin motor protein and highlights the power of this approach in uncovering dynamic and functionally diverse myosin motor complexes. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    NASA Astrophysics Data System (ADS)

    Peresypkina, Eugenia V.; Samsonenko, Denis G.; Vostrikova, Kira E.

    2015-04-01

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [{Mn(acacen)}2Ru(NO)(CN)5]n and two complexes composed of different cyanorhenates, [Ni(cyclam)]2[ReO(OH)(CN)4](ClO4)2(H2O)1.25 and [Cu(cyclam)]2[Re(CN)7](H2O)12, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]3[Re(CN)7]2 (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]3[Re(CN)7]2 complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN)n]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu4N)2[Ru(NO)(CN)5], soluble in organic media.

  6. Copper-based metal coordination complexes with Voriconazole ligand: Syntheses, structures and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Zhao, Yan-Ming; Tang, Gui-Mei; Wang, Yong-Tao; Cui, Yue-Zhi; Ng, Seik Weng

    2018-03-01

    Three new chiral metal coordination complexes, namely, [Cu(FZ)2(CH3COO)2(H2O)]·2H2O (1), [Cu(FZ)2(NO3)2] (2), and [Cu2(FZ)2 (H2O)8](SO4)2·4H2O (3) [FZ = (2R,3S)-2-(2,4-difluorophenyl)-3-(5-fluoro-4-pyrimidiny)-1-(1H-1,2,4-triazol-1-yl)-2-butanol) (Voriconazole)] have been obtained by the reaction of Cu(II) salts and the free ligand FZ at room temperature. Complexes 1-3 were structurally characterized by X-ray single-crystal diffraction, IR, UV-vis, powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). Complex 1 crystallizes in the chiral space group C2, which exhibits a mono-nuclear structure. Both complexes 2 and 3 display a one-dimensional (1D) tape structure, which crystallize in chiral space group P21212 and P212121, respectively. Among these complexes, there exist a variety of hydrogen bonds and stacking interactions, through which a three-dimensional supramolecular architecture will be generated. Compared with the standard (Voriconazole), these Cu-based complexes show the more potent inhibiting efficiency against the species of Candida and Aspergillus. Moreover, among these complexes, complex 1 shows the most excellent efficiency.

  7. Computational and experimental studies of iron-bearing carbonates and silicate glasses at lower mantle pressures

    NASA Astrophysics Data System (ADS)

    Solomatova, N. V.; Jackson, J. M.; Asimow, P. D.; Sturhahn, W.; Rossman, G. R.; Roskosz, M.

    2017-12-01

    the influence of evolving coordination environments with pressure. With the assumption that coordination environments in silicate glasses may serve as a good indicator for those in a melt, this study suggests that ferrous iron in chemically-complex silicate melts likely exists in a high-spin state throughout most of Earth's mantle.

  8. What should be impossible: resolution of the mononuclear gallium coordination complex, Tris(benzohydroxamato)gallium(III).

    PubMed

    Brumaghim, Julia L; Raymond, Kenneth N

    2003-10-08

    Complexes of Ga3+, a d10 metal ion which lacks ligand-field-stabilization energy, are considered labile. In fact, hexaaquagallium(III) has a ligand exchange rate of 403 s-1, 2.5 times that of the analagous Fe3+ complex (Hugi-Cleary, D.; Helm, L.; Merbach, A. E. J. Am. Chem. Soc. 1987, 109, 4444-4450). Given this lability, resolution of Ga3+ complexes should be impossible. Despite this, we report the resolution of the Lambda and Delta isomers of tris(benzohydroxamate)gallium (III) (1), the first resolution of a mononuclear gallium complex. Not only is resolution possible, but these resolved complexes show remarkable resistance to racemization in aprotic solvents. The unprecedented stability of Lambda- and Delta-1 is a surprise, and as such, alters our understanding of classical coordination chemistry.

  9. All-soluble all-iron aqueous redox-flow battery

    DOE PAGES

    Gong, Ke; Xu, Fei; Grunewald, Jonathan B.; ...

    2016-05-03

    The rapid growth of intermittent renewable energy (e.g., wind and solar) demands low-cost and large-scale energy storage systems for smooth and reliable power output, where redox-flow batteries (RFBs) could find their niche. In this work, we introduce the first all-soluble all-iron RFB based on iron as the same redox-active element but with different coordination chemistries in alkaline aqueous system. The adoption of the same redox-active element largely alleviates the challenging problem of cross-contamination of metal ions in RFBs that use two redox-active elements. An all-soluble all-iron RFB is constructed by combining an iron–triethanolamine redox pair (i.e., [Fe(TEOA)OH] –/[Fe(TEOA)(OH)] 2–) andmore » an iron–cyanide redox pair (i.e., Fe(CN) 6 3–/Fe(CN) 6 4–), creating 1.34 V of formal cell voltage. Furthermore, good performance and stability have been demonstrated, after addressing some challenges, including the crossover of the ligand agent. As exemplified by the all-soluble all-iron flow battery, combining redox pairs of the same redox-active element with different coordination chemistries could extend the spectrum of RFBs.« less

  10. Post-Transcriptional Coordination of the Arabidopsis Iron Deficiency Response is Partially Dependent on the E3 Ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2)*

    PubMed Central

    Pan, I-Chun; Tsai, Huei-Hsuan; Cheng, Ya-Tan; Wen, Tuan-Nan; Buckhout, Thomas J.; Schmidt, Wolfgang

    2015-01-01

    Acclimation to changing environmental conditions is mediated by proteins, the abundance of which is carefully tuned by an elaborate interplay of DNA-templated and post-transcriptional processes. To dissect the mechanisms that control and mediate cellular iron homeostasis, we conducted quantitative high-resolution iTRAQ proteomics and microarray-based transcriptomic profiling of iron-deficient Arabidopsis thaliana plants. A total of 13,706 and 12,124 proteins was identified with a quadrupole-Orbitrap hybrid mass spectrometer in roots and leaves, respectively. This deep proteomic coverage allowed accurate estimates of post-transcriptional regulation in response to iron deficiency. Similarly regulated transcripts were detected in only 13% (roots) and 11% (leaves) of the 886 proteins that differentially accumulated between iron-sufficient and iron-deficient plants, indicating that the majority of the iron-responsive proteins was post-transcriptionally regulated. Mutants harboring defects in the RING DOMAIN LIGASE1 (RGLG1)1 and RING DOMAIN LIGASE2 (RGLG2) showed a pleiotropic phenotype that resembled iron-deficient plants with reduced trichome density and the formation of branched root hairs. Proteomic and transcriptomic profiling of rglg1 rglg2 double mutants revealed that the functional RGLG protein is required for the regulation of a large set of iron-responsive proteins including the coordinated expression of ribosomal proteins. This integrative analysis provides a detailed catalog of post-transcriptionally regulated proteins and allows the concept of a chiefly transcriptionally regulated iron deficiency response to be revisited. Protein data are available via ProteomeXchange with identifier PXD002126. PMID:26253232

  11. Carbonate formation within a nickel dimer: synthesis of a coordinatively unsaturated bis(mu-hydroxo) dinickel complex and its reactivity toward carbon dioxide.

    PubMed

    Wikstrom, Jeffrey P; Filatov, Alexander S; Mikhalyova, Elena A; Shatruk, Michael; Foxman, Bruce M; Rybak-Akimova, Elena V

    2010-03-14

    The tridentate aminopyridine ligand bearing a bulky tert-butyl substituent at the amine nitrogen, tert-butyl-dipicolylamine (tBuDPA), occupies three coordination sites in six-coordinate complexes of nickel(ii), leaving the remaining three sites available for additional ligand binding and activation. New crystallographically characterized complexes include two mononuclear species with 1:1 metal:ligand complexation: a trihydrate solvate (1.3H(2)O) and a monohydrate biacetonitrile solvate (1.H(2)O.2CH(3)CN). Complexation in the presence of sodium hydroxide results in a bis(mu-hydroxo) complex (2), the bridging hydroxide anions of which are labile and become displaced by methoxide anions in methanol solvent, affording bis-methoxo-bridged (4). Nickel(II) centers in 2 are five-coordinate and antiferromagnetically coupled (with J = -31.4(5) cm(-1), H = -2JS(1)S(2), in agreement with Ni-O-Ni angle of 103.7 degrees). Bridging hydroxide or alkoxide anions in coordinatively unsaturated dinuclear nickel(II) complexes with tBuDPA react as active nucleophiles. 2 readily performs carbon dioxide fixation, resulting in the formation of a bis(mu-carbonato) tetrameric complex (3), which features a novel binding geometry in the form of an inverted butterfly-type nickel-carbonate core. Temperature-dependent magnetic measurements of tetranuclear carbonato-bridged revealed relatively weak antiferromagnetic coupling (J(1) = -3.1(2) cm(-1)) between the two nickel centers in the core of the cluster, as well as weak antiferromagnetic pairwise interactions (J(2) = J(3) = -4.54(5) cm(-1)) between central and terminal nickel ions.

  12. Mixed-Valent Dicobalt and Iron-Cobalt Complexes with High-Spin Configurations and Short Metal-Metal Bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zall, Christopher M.; Clouston, Laura J.; Young, Jr., Victor G.

    2013-09-23

    Cobalt–cobalt and iron–cobalt bonds are investigated in coordination complexes with formally mixed-valent [M 2] 3+ cores. The trigonal dicobalt tris(diphenylformamidinate) compound, Co 2(DPhF) 3, which was previously reported by Cotton, Murillo, and co-workers (Inorg. Chim. Acta 1996, 249, 9), is shown to have an energetically isolated, high-spin sextet ground-state by magnetic susceptibility and electron paramagnetic resonance (EPR) spectroscopy. A new tris(amidinato)amine ligand platform is introduced. By tethering three amidinate donors to an apical amine, this platform offers two distinct metal-binding sites. Using the phenyl-substituted variant (abbreviated as L Ph), the isolation of a dicobalt homobimetallic and an iron–cobalt heterobimetallic aremore » demonstrated. The new [Co 2] 3+ and [FeCo] 3+ cores have high-spin sextet and septet ground states, respectively. Their solid-state structures reveal short metal–metal bond distances of 2.29 Å for Co–Co and 2.18 Å for Fe–Co; the latter is the shortest distance for an iron–cobalt bond to date. To assign the positions of iron and cobalt atoms as well as to determine if Fe/Co mixing is occurring, X-ray anomalous scattering experiments were performed, spanning the Fe and Co absorption energies. These studies show only a minor amount of metal-site mixing in this complex, and that FeCoL Ph is more precisely described as (Fe 0.94(1)Co 0.06(1))(Co 0.95(1)Fe 0.05(1))L Ph. The iron–cobalt heterobimetallic has been further characterized by Mössbauer spectroscopy. Its isomer shift of 0.65 mm/s and quadrupole splitting of 0.64 mm/s are comparable to the related diiron complex, Fe 2(DPhF) 3. On the basis of spectroscopic data and theoretical calculations, it is proposed that the formal [M 2] 3+ cores are fully delocalized.« less

  13. Unusual saccharin-N,O (carbonyl) coordination in mixed-ligand copper(II) complexes: Synthesis, X-ray crystallography and biological activity

    NASA Astrophysics Data System (ADS)

    Mokhtaruddin, Nur Shuhada Mohd; Yusof, Enis Nadia Md; Ravoof, Thahira B. S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhi; Tahir, Mohamed Ibrahim Mohamed

    2017-07-01

    Three tridentate Schiff bases containing N and S donor atoms were synthesized via the condensation reaction between S-2-methylbenzyldithiocarbazate with 2-acetyl-4-methylpyridine (S2APH); 4-methyl-3-thiosemicarbazide with 2-acetylpyridine (MT2APH) and 4-ethyl-3-thiosemicarbazide with 2-acetylpyridine (ET2APH). Three new, binuclear and mixed-ligand copper(II) complexes with the general formula, [Cu(sac)(L)]2 (sac = saccharinate anion; L = anion of the Schiff base) were then synthesized, and subsequently characterized by IR and UV/Vis spectroscopy as well as by molar conductivity and magnetic susceptibility measurements. The Schiff bases were also spectroscopically characterized using NMR and MS to further confirm their structures. The spectroscopic data indicated that the Schiff bases behaved as a tridentate NNS donor ligands coordinating via the pyridyl-nitrogen, azomethine-nitrogen and thiolate-sulphur atoms. Magnetic data indicated a square pyramidal environment for the complexes and the conductivity values showed that the complexes were essentially non-electrolytes in DMSO. The X-ray crystallographic analysis of one complex, [Cu(sac)(S2AP)]2 showed that the Cu(II) atom was coordinated to the thiolate-S, azomethine-N and pyridyl-N donors of the S2AP Schiff base and to the saccharinate-N from one anion, as well as to the carbonyl-O atom from a symmetry related saccharinate anion yielding a centrosymmetric binuclear complex with a penta-coordinate, square pyramidal geometry. All the copper(II) saccharinate complexes were found to display strong cytotoxic activity against the MCF-7 and MDA-MB-231 human breast cancer cell lines.

  14. COORDINATING, COMMUNICATING AND PERFORMING COMPLEX RESEARCH THAT IDENTIFIES VULNERABLE STREAM ECOSYSTEM IN THE MID-ATLANTIC REGION

    EPA Science Inventory

    The USEPA's Regional Vulnerability Assessment (ReVA) program was created to advance the scientific basis for protecting vulnerable ecosystems at a regional scale. As a first step, the ReVa program will coordinate, communicate and perform complex research that will identify vulner...

  15. Molecular and electronic structures of mononuclear iron complexes using strongly electron-donating ligands and their oxidized forms.

    PubMed

    Strautmann, Julia B H; George, Serena DeBeer; Bothe, Eberhard; Bill, Eckhard; Weyhermüller, Thomas; Stammler, Anja; Bögge, Hartmut; Glaser, Thorsten

    2008-08-04

    The ligand L (2-) (H 2L = N, N'-dimethyl- N, N'-bis(3,5-di- t-butyl-2-hydroxybenzyl)-1,2-diaminoethane) has been employed for the synthesis of two mononuclear Fe (III) complexes, namely, [LFe(eta (2)-NO 3)] and [LFeCl]. L (2-) is comprised of four strongly electron-donating groups (two tert-amines and two phenolates) that increase the electron density at the coordinated ferric ions. This property should facilitate oxidation of the complexes, that is, stabilization of the oxidized species. The molecular structures in the solid state have been established by X-ray diffraction studies. [LFeCl] is five-coordinate in a square-pyramidal coordination environment with the ligand adopting a trans-conformation, while [LFe(eta (2)-NO 3)] is six-coordinate in a distorted octahedral environment with the ligand in a beta-cis conformation. The electronic structures have been studied using magnetization, EPR, Mossbauer (with and without applied field), UV-vis-NIR, and X-ray absorption spectroscopies, which demonstrate highly anisotropic covalency from the strong sigma- and pi-donating phenolates. This analysis is supported by DFT calculations on [LFeCl]. The variations of the well-understood spectroscopic data in the solid state to the spectroscopic data in solution have been used to obtain insight in the molecular structure of the two complexes in solution. While the molecular structures of the solid states are retained in solutions of nonpolar aprotic solvents, there is, however, one common molecular structure in all protic polar solvents. The analysis of the LMCT transitions and the rhombicity E/ D clearly establish that both compounds exhibit a beta-cis conformation in these protic polar solvents. These two open coordination sites, cis to each other, allow access for two potential ligands in close proximity. Electrochemical analysis establishes two reversible oxidation waves for [LFeCl] at +0.55 V and +0.93 V vs Fc (+)/Fc and one reversible oxidation wave at +0.59 V with an

  16. Iron differentially modulates the CD4-lck and CD8-lck complexes in resting peripheral blood T-lymphocytes.

    PubMed

    Arosa, F A; de Sousa, M

    1995-03-01

    Clinical and experimental studies performed in situations of iron overload have demonstrated that iron impairs several T-cell functions. We have examined the effect of iron in the form of ferric citrate on the CD4-lck and CD8-lck complexes in view of the key role played by the tyrosine kinase p56lck in regulating T-cell functions. Ferric citrate was seen to differentially modulate the CD4-lck and CD8-lck complexes in resting peripheral blood T-lymphocytes (PBLs) cultured in the presence of this metal salt for periods of 20 to 24 hr. Thus, whereas ferric citrate invariably induced a marked decrease in the in vitro activity of the CD4-associated lck by three- to fourfold at 100 microM (P < 3 x 10(-5)), it did not affect significantly the in vitro activity of the CD8-associated lck, although modest decreases were observed in some experiments. Immunoprecipitation and subsequent lck-immunoblotting revealed that the marked decrease in CD4-lck activity induced by 100 microM of ferric citrate was due to a decrease in the amount of p56lck on CD4 immunoprecipitates. Furthermore, flow cytometry analysis showed a decrease in the surface expression of the CD4 molecule in iron-treated PBLs, as judged by a decrease in the mean fluorescence intensity (MFI), that was accompanied by a decrease in the percentage of CD4+ T-lymphocytes. In marked contrast, whereas the surface expression of the CD8 molecule was slightly decreased, the percentage of CD8+ T-lymphocytes remained constant. This differential effect of ferric citrate on the CD4+ and CD8+ T-cell subsets led to a marked decrease in the CD4/CD8 ratios in iron-treated PBLs after the 20- to 24-hr period (P < 0.001). The present results indicate that iron in the form of ferric citrate can modulate key molecules involved in the process of T-cell activation and therefore influence T-cell-mediated functions.

  17. Core-Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries.

    PubMed

    Zhou, Jinqiu; Qian, Tao; Wang, Mengfan; Xu, Na; Zhang, Qi; Li, Qun; Yan, Chenglin

    2016-03-02

    In situ core-shell coating was used to improve the electrochemical performance of Si-based anodes with polypyrrole-Fe coordination complex. The vast functional groups in the organometallic coordination complex easily formed hydrogen bonds when in situ modifying commercial Si nanoparticles. The incorporation of polypyrrole-Fe resulted in the conformal conductive coating surrounding each Si nanoparticle, not only providing good electrical connection to the particles but also promoting the formation of a stable solid-electrolyte-interface layer on the Si electrode surface, enhancing the cycling properties. As an anode material for Li-ion batteries, modified silicon powders exhibited high reversible capacity (3567 mAh/g at 0.3 A/g), good rate property (549.12 mAh/g at 12 A/g), and excellent cycling performance (reversible capacity of 1500 mAh/g after 800 cycles at 1.2 A/g). The constructed novel concept of core-shell coating Si particles presented a promising route for facile and large-scale production of Si-based anodes for extremely durable Li-ion batteries, which provided a wide range of applications in the field of energy storage of the renewable energy derived from the solar energy, hydropower, tidal energy, and geothermal heat.

  18. Fe behavior in iron-bearing phonolitic and pantelleritic melts and its significance for magma dynamics in the volcanic conduits

    NASA Astrophysics Data System (ADS)

    Borovkov, Nikita; Hess, Kai-Uwe; Fehr, Karl-Thomas; Cimarelli, Corrado; Dingwell, Donald Bruce

    2014-05-01

    The style of volcanic eruptions is determined entirely by dynamics of magma ascent in conduits. Physical properties of a silicate melt, particulary viscosity, are responsible for fragmentation processes, bubble growth and their ascent, which are in their turn related to explosivity of eruptions. Therefore, comprehension of the macroscopic properties of silicate melts is required for adequate conduit modelling. Considering eruptions of Mt. Vesuvius, Italy, we observe that eruption style varies from strombolian to plinean and sub-plinean which is related to the changes of melts viscosity in conduits. At Vesuvius the composition of volcanic deposits (III phase) is mainly phonolitic with 5 - 8 wt. % FeO. Fe changes the valence and coordination depending on oxidation state. The changing of iron coordination causes increasing or decreasing viscosity because of the presence of higher or lower amounts of Fe species coordinated with stronger covalence bonds. Mossbauer spectra of iron-bearing natural pantelleritic and phonolitic glasses were studied to get data on speciation and coordination state of iron. Mössbauer spectroscopy measures hyperfine interactions (isomer shift (IS)) and quadrupole splitting (QS)) at Fe atoms embedded in glass structure, which provide the amount of ferric and ferrous iron and their coordination state depending on Redox conditions. Based on these data, we have considered redox-viscosity relationships and also iron coordination effects on viscosity of both mentioned natural melt compositions. For glasses, due to short range order, the Mössbauer spectra were fitted using mathematical procedures based on functional analysis (extended Voight lineshape included in "Recoil" and "Mosslab" software). Mössbauer spectra are deconvoluted in two sites: ferrous iron (IS=0,79-1,00 mm/s; QS= 1,78-2,25 mm/s) and ferric iron (IS=0,26-0,50 mm/s; QS= 0,75-0,95 mm/s). For both sites we observe that IS and QS gradually decrease towards more oxidized conditions

  19. Spectroscopic, potentiometric and theoretical studies on the binding properties of a novel tripodal polycatechol-imine ligand towards iron(III)

    NASA Astrophysics Data System (ADS)

    Kanungo, B. K.; Sahoo, Suban K.; Baral, Minati

    2008-12-01

    A novel multidentate tripodal ligand, cis, cis-1,3,5-tris[(2,3-dihydroxybenzylidene)aminomethyl]cyclohexane (TDBAC, L) containing one catechol unit in each arms of a tripodal amine, cis, cis-1,3,5-tris(aminomethyl)cyclohexane was investigated as a chelator for iron(III) through potentiometric and spectrophotometric methods in an aqueous medium of 0.1N ionic strength and 25 ± 1 °C as well as in ethanol by continuous variation method. From pH metric in water, three protonation constants characterized for the three-hydroxyl groups of the catechol units at ortho were used as input data to evaluate the stability constants of the complexes. Formation of monomeric complexes FeLH 3, FeLH 2, FeLH and FeL were depicted. In ethanol, formation of complexes FeL, Fe 2L and Fe 3L were characterized. Structures of the complexes were explained by using the experimental evidences and predicted through molecular modeling calculations. The ligand showed potential to coordinate iron(III) through three imine nitrogens and three catecholic oxygens at ortho to form a tris(iminocatecholate) type complex.

  20. Density functional theory study of interactions between carbon monoxide and iron tetraaza macrocyclic complexes, FeTXTAA (X = -Cl, -OH, -OCH3, -NH2, and -NO2).

    PubMed

    de Matos Mourão Neto, Isaias; Silva, Adilson Luís Pereira; Tanaka, Auro Atsushi; de Jesus Gomes Varela, Jaldyr

    2017-02-01

    This work describes a DFT level theoretical quantum study using the B3LYP functional with the Lanl2TZ(f)/6-31G* basis set to calculate parameters including the bond distances and angles, electronic configurations, interaction energies, and vibrational frequencies of FeTClTAA (iron-tetrachloro-tetraaza[14]annulene), FeTOHTAA (iron-tetrahydroxy-tetraaza[14]annulene), FeTOCH 3 TAA (iron- tetramethoxy-tetraaza[14]annulene), FeTNH 2 TAA (iron-tetraamino-tetraaza[14]annulene), and FeTNO 2 TAA (iron-tetranitro-tetraaza[14]annulene) complexes, as well as their different spin multiplicities. The calculations showed that the complexes were most stable in the triplet spin state (S = 1), while, after interaction with carbon monoxide, the singlet state was most stable. The reactivity of the complexes was evaluated using HOMO-LUMO gap calculations. Parameter correlations were performed in order to identify the best complex for back bonding (3d xz Fe → 2p x C and 3d yz Fe → 2p z C) with carbon monoxide, and the degree of back bonding increased in the order: FeTNO 2 TAA < FeTClTAA < FeTOHTAA < FeTOCH 3 TAA < FeTNH 2 TAA.

  1. The adsorption of orthophosphate onto casein-iron precipitates.

    PubMed

    Mittal, Vikas A; Ellis, Ashling; Ye, Aiqian; Edwards, Patrick J B; Singh, Harjinder

    2018-01-15

    This study explored the interactions of orthophosphate with casein-iron precipitates. Casein-iron precipitates were formed by adding ferric chloride at ≥10mM to sodium caseinate solutions ranging in concentration from 1 to 3%(w/v). The addition of different concentrations of orthophosphate solution to the casein-iron precipitates resulted in gradual adsorption of the orthophosphate, causing re-dispersion of the casein-iron complexes. The interactions of added orthophosphate with iron in the presence and absence of caseins are postulated, and new mechanisms are proposed. The re-dispersed soluble complexes of casein-iron-orthophosphate generated using this process could be used as novel iron fortificants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Experimental and theoretical vibrational spectroscopy studies of acetohydroxamic acid and desferrioxamine B in aqueous solution: Effects of pH and iron complexation

    NASA Astrophysics Data System (ADS)

    Edwards, David C.; Nielsen, Steen B.; Jarzęcki, Andrzej A.; Spiro, Thomas G.; Myneni, Satish C. B.

    2005-07-01

    The deprotonation and iron complexation of the hydroxamate siderophore, desferrioxamine B (desB), and a model hydroxamate ligand, acetohydroxamic acid (aHa), were studied using infrared, resonance Raman and UV-vis spectroscopy. The experimental spectra were interpreted by a comparison with DFT calculated spectra of aHa (partly hydrated) and desB (reactive groups of unhydrated molecule) at the B3LYP/6-31G* level of theory. The ab initio models include three water molecules surrounding the deprotonation site of aHa to account for partial hydration. Experiments and calculations were also conducted in D 2O to verify spectral assignments. These studies of aHa suggest that the cis-keto-aHa is the dominant form, and its deprotonation occurs at the oxime oxygen atom in aqueous solutions. The stable form of iron-complexed aHa is identified as Fe(aHa) 3 for a wide range of pH conditions. The spectral information of aHa and an ab initio model of desB were used to interpret the chemical state of different functional groups in desB. Vibrational spectra of desB indicate that the oxime and amide carbonyl groups can be identified unambiguously. Vibrational spectral analysis of the oxime carbonyl after deprotonation and iron complexation of desB indicates that the conformational changes between anion and the iron-complexed anion are small. Enhanced electron delocalization in the oxime group of Fe-desB when compared to that of Fe(aHa) 3 may be responsible for higher stability constant of the former.

  3. Reactivity of catecholamine-driven Fenton reaction and its relationships with iron(III) speciation.

    PubMed

    Melin, Victoria; Henríquez, Adolfo; Freer, Juanita; Contreras, David

    2015-03-01

    Fenton reaction is the main source of free radicals in biological systems. The reactivity of this reaction can be modified by several factors, among these iron ligands are important. Catecholamine (dopamine, epinephrine, and norepinephrine) are able to form Fe(III) complexes whose extension in the coordination number depends upon the pH. Fe(III)-catecholamine complexes have been related with the development of several pathologies. In this work, the ability of catecholamines to enhance the oxidative degradation of an organic substrate (veratryl alcohol, VA) through Fenton and Fenton-like reactions was studied. The initial VA degradation rate at different pH values and its relationship to the different iron species present in solution were determined. Furthermore, the oxidative degradation of VA after 24 hours of reaction and its main oxidation products were also determined. The catecholamine-driven Fenton and Fenton-like systems showed higher VA degradation compared to unmodified Fenton or Fenton-like systems, which also showed an increase in the oxidation state of the VA degradation product. All of this oxidative degradation takes place at pH values lower than 5.50, where the primarily responsible species would be the Fe(III) mono-complex. The presence of Fe(III) mono-complex is essential in the ability of catecholamines to increase the oxidative capacity of Fenton systems.

  4. Human Cytomegalovirus Protein US2 Interferes with the Expression of Human HFE, a Nonclassical Class I Major Histocompatibility Complex Molecule That Regulates Iron Homeostasis

    PubMed Central

    Ben-Arieh, Sayeh Vahdati; Zimerman, Baruch; Smorodinsky, Nechama I.; Yaacubovicz, Margalit; Schechter, Chana; Bacik, Igor; Gibbs, Jim; Bennink, Jack R.; Yewdell, Jon W.; Coligan, John E.; Firat, Hüseyin; Lemonnier, François; Ehrlich, Rachel

    2001-01-01

    HFE is a nonclassical class I major histocompatibility complex (MHC) molecule that is mutated in the autosomal recessive iron overload disease hereditary hemochromatosis. There is evidence linking HFE with reduced iron uptake by the transferrin receptor (TfR). Using a panel of HFE and TfR monoclonal antibodies to examine human HFE (hHFE)-expressing cell lines, we demonstrate the expression of stable and fully glycosylated TfR-free and TfR-associated hHFE/β2m complexes. We show that both the stability and assembly of hHFE complexes can be modified by the human cytomegalovirus (HCMV) viral protein US2, known to interfere with the expression of classical class I MHC molecules. HCMV US2, but not US11, targets HFE molecules for degradation by the proteasome. Whether this interference with the regulation of iron metabolism by a viral protein is a means of potentiating viral replication remains to be determined. The reduced expression of classical class I MHC and HFE complexes provides the virus with an efficient tool for altering cellular metabolism and escaping certain immune responses. PMID:11581431

  5. Bonding coordination requirements induce antiferromagnetic coupling between m-phenylene bridged o-iminosemiquinonato diradicals.

    PubMed

    Dei, Andrea; Gatteschi, Dante; Sangregorio, Claudio; Sorace, Lorenzo; Vaz, Maria G F

    2003-03-10

    Triply bridged bis-iminodioxolene dinuclear metal complexes of general formula M(2)(diox-diox)(3), with M = Co, Fe, have been synthesized using the bis-bidentate ligand N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)-1,3-phenylenediamine. These complexes were characterized by means of X-ray, HF-EPR, and magnetic measurements. X-ray structures clearly show that both complexes can be described as containing three bis-iminosemiquinonato ligands acting in a bis-bidentate manner toward tripositive metal ions. The magnetic data show that both of these complexes have singlet ground states. The observed experimental behavior indicates the existence of intraligand antiferromagnetic interactions between the three pairs of m-phenylene units linked iminosemiquinonato radicals (J = 21 cm(-)(1) for the cobalt complex and J = 11 cm(-)(1) for the iron one). It is here suggested that the conditions for the ferromagnetic coupling that is expected to characterize the free diradical ligand are no longer satisfied because of the severe torsional distortion induced by the metal coordination.

  6. A mechanistic study and computational prediction of iron, cobalt and manganese cyclopentadienone complexes for hydrogenation of carbon dioxide.

    PubMed

    Ge, Hongyu; Chen, Xiangyang; Yang, Xinzheng

    2016-10-13

    A series of cobalt and manganese cyclopentadienone complexes are proposed and examined computationally as promising catalysts for hydrogenation of CO 2 to formic acid with total free energies as low as 20.0 kcal mol -1 in aqueous solution. Density functional theory study of the newly designed cobalt and manganese complexes and experimentally reported iron cyclopentadienone complexes reveals a stepwise hydride transfer mechanism with a water or a methanol molecule assisted proton transfer for the cleavage of H 2 as the rate-determining step.

  7. Synthesis and Characterization of A Coordination Complex of Tetrakis(diphenylamine)copper(II) Sulfate Hexahydrate

    NASA Astrophysics Data System (ADS)

    Syaima, H.; Rahardjo, S. B.; Suciningrum, E.

    2018-03-01

    CuSO4·5H2O with diphenylamine formed a complex compound in 1:4 mole ratio of metal to the ligand in methanol. The forming of the complex was indicated by shifting of UV-Vis spectra of CuSO4·5H2O and the complex from 819 nm to 593 nm. The result of analysis Cu(II) in the complex showed the copper content in the complex was 6.43 % therefore the empirical formula of the complex was Cu(diphenylamine)4SO4(H2O)6. The electrical conductivity of complex showed the charge ratio of cation and anion = 1:1. Therefore, the proposed formula of the complex was [Cu(diphenylamine)4]SO4·6H2O. Based on infrared spectra, it was determined that the functional group of N-H of diphenylamine was coordinated to the center ion Cu2+. The electronic spectral study of the complex showed a transition peak on λ = 593 nm (υ = 16863 cm-1) corresponding to the 2B1g → 2A1g transition. The complex was paramagnetic with effective magnetic moment 1.72 B.M. It was indicated square planar geometry around Cu(II).

  8. Phosphate inhibits in vitro Fe3+ loading into transferrin by forming a soluble Fe(III)-phosphate complex: a potential non-transferrin bound iron species.

    PubMed

    Hilton, Robert J; Seare, Matthew C; Andros, N David; Kenealey, Zachary; Orozco, Catalina Matias; Webb, Michael; Watt, Richard K

    2012-05-01

    In chronic kidney diseases, NTBI can occur even when total iron levels in serum are low and transferrin is not saturated. We postulated that elevated serum phosphate concentrations, present in CKD patients, might disrupt Fe(3+) loading into apo-transferrin by forming Fe(III)-phosphate species. We report that phosphate competes with apo-transferrin for Fe(3+) by forming a soluble Fe(III)-phosphate complex. Once formed, the Fe(III)-phosphate complex is not a substrate for donating Fe(3+) to apo-transferrin. Phosphate (1-10mM) does not chelate Fe(III) from diferric transferrin under the conditions examined. Complexed forms of Fe(3+), such as iron nitrilotriacetic acid (Fe(3+)-NTA), and Fe(III)-citrate are not susceptible to this phosphate complexation reaction and efficiently deliver Fe(3+) to apo-transferrin in the presence of phosphate. This reaction suggests that citrate might play an important role in protecting against Fe(III), phosphate interactions in vivo. In contrast to the reactions of Fe(3+) and phosphate, the addition of Fe(2+) to a solution of apo-transferrin and phosphate lead to rapid oxidation and deposition of Fe(3+) into apo-transferrin. These in vitro data suggest that, in principle, elevated phosphate concentrations can influence the ability of apo-transferrin to bind iron, depending on the oxidation state of the iron. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. The F'derik-Zouerate iron district: Mesoarchean and Paleoproterozoic iron formation of the Tiris Complex, Islamic Republic of Mauritania

    USGS Publications Warehouse

    Taylor, Cliff D.; Finn, Carol A.; Anderson, Eric D.; Bradley, Dwight C.; Joud, Mohamed; Taleb Mohamed, Ahmed; Horton, John D.; Johnson, Craig A.; Bouabdellah, Mohammed; Slack, John F.

    2016-01-01

    High-grade hematitic iron ores (of HIF, containing 60-65 wt%Fe) have been mined in Mauritania since 1952 from Superior-type iron deposits of the F'derik-Zouerate district.  Depletion of the high-grade ores in recent years has resulted in new exploration projects focused on lower-grade magnetite ores occurring in Algoma-type banded iron formation (of BIF, containing ca. 35 wt% Fe).  Mauritania is the seventeenth largest iron producer in the world and currently has about 1.1 Gt of crude iron ore reserves. 

  10. DeNOx active iron sites in iron loaded ZSM-5 - a multitechnique analysis of a complex heterogeneous catalyst based on Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Padmalekha, K. G.; Huang, H.; Ellmers, I.; Pérez Vélez, R.; van Leusen, J.; Brückner, A.; Grünert, W.; Schünemann, V.

    2017-11-01

    Iron loaded zeolites like Fe-ZSM-5 are potent candidates for the catalytic abatement of nitrogen oxides from car exhaust, e.g. from Diesel engines. Recent problems in this field show that there is an urgent need in further improvement of such catalysts, for which a full analysis of Fe species present in them under different conditions is highly desirable. We have studied Fe-ZSM-5 catalysts prepared via solid-state ion exchange by using field dependent Mössbauer spectroscopy at low temperature in order to identify the different iron species present in this type of catalyst in the fresh state and after use in catalysis. Mössbauer spectroscopy proved to be the key technique for a full understanding of species structures, but due to the complexity of structures, guidance by parallel EPR experiments and control by SQUID magnetometry were essential to prove reliability of derived species distributions.

  11. Structure of the Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme and enzymatic inactivation by mutation of the heme coordinating residue His-193

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suits,M.; Jaffer, N.; Jia, Z.

    2006-01-01

    Heme oxygenases catalyze the oxidation of heme to biliverdin, CO, and free iron. For pathogenic microorganisms, heme uptake and degradation are critical mechanisms for iron acquisition that enable multiplication and survival within hosts they invade. Here we report the first crystal structure of the pathogenic Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme at 1.45 {angstrom} resolution. When compared with other heme oxygenases, ChuS has a unique fold, including structural repeats and a {beta}-sheet core. Not surprisingly, the mode of heme coordination by ChuS is also distinct, whereby heme is largely stabilized by residues from the C-terminal domain,more » assisted by a distant arginine from the N-terminal domain. Upon heme binding, there is no large conformational change beyond the fine tuning of a key histidine (His-193) residue. Most intriguingly, in contrast to other heme oxygenases, the propionic side chains of heme are orientated toward the protein core, exposing the {alpha}-meso carbon position where O{sub 2} is added during heme degradation. This unique orientation may facilitate presentation to an electron donor, explaining the significantly reduced concentration of ascorbic acid needed for the reaction. Based on the ChuS-heme structure, we converted the histidine residue responsible for axial coordination of the heme group to an asparagine residue (H193N), as well as converting a second histidine to an alanine residue (H73A) for comparison purposes. We employed spectral analysis and CO measurement by gas chromatography to analyze catalysis by ChuS, H193N, and H73A, demonstrating that His-193 is the key residue for the heme-degrading activity of ChuS.« less

  12. Higher coordinate gold(I) complexes with the weak Lewis base tri(4-fluorophenyl) phosphine. Synthesis, structural, luminescence, and DFT studies

    NASA Astrophysics Data System (ADS)

    Agbeworvi, George; Assefa, Zerihun; Sykora, Richard E.; Taylor, Jared; Crawford, Carlos

    2016-03-01

    The structures and spectroscopic properties of two high coordinate gold(I) phosphine complexes with the TFFPP=tri(4-fluorophenyl)phosphine ligand are reported. Synthesis in a 1:3 metal to ligand ratio provided the compound [AuCl(TFFPP)3] (2) that crystallize in the P 1 bar space group, where the asymmetric unit consists of three independent molecules. In all three sites, two sets of bond angles display distinctly different ranges. The three P-Au-P angles have average values of 117.92°, 117.57°, and 114.78° for sites A, B, and C, with the corresponding P-Au-Cl angles of 98.31°, 99.05°, and 103.38°, respectively. The chloride ion coordinates as the fourth ligand, at the corresponding Au-Cl distance of 2.7337, 2.6825, and 2.6951 Å for the three sites. This distance is longer by 0.40-0.45 Å than the Au-Cl distance found in the mono TFFPP complex 1 (2.285 Å) indicating a weakening of the Au-Cl interaction as the coordination number increases. In compound 3, [Au(TFFPP)3]Cl·½CH2Cl2·H2O, the structure consists of three phosphine ligands bound to the gold(I) atom, but the Cl- exists as uncoordinated counter anion. The structural differences observed in the two complexes are attributable to crystal-packing effects caused by the introduction of H-bonding as well as enhanced intra and inter-molecular π-interaction in 3. The photoluminescence of the complexes compared with that of the ligand show ligand centered emission perturbed by the metal coordination. Theoretical DFT studies conducted on these complexes supports assignments of the electronic transitions observed in these systems.

  13. Meeting the Needs of Children with Medical Complexity Using a Telehealth Advanced Practice Registered Nurse Care Coordination Model

    PubMed Central

    Erickson, Mary; Lunos, Scott; Finkelstein, Stanley M.; Looman, Wendy; Celebreeze, Margaret; Garwick, Ann

    2015-01-01

    Effective care coordination is a key quality and safety strategy for populations with chronic conditions, including children with medical complexity (CMC). However, gaps remain in parent report of the need for care coordination help and receipt of care coordination help. New models must close this gap while maintaining family-centered focus. A three-armed randomized controlled trial conducted in an established medical home utilized an advanced practice registered nurse intervention based on Presler’s model of clinic-based care coordination. The model supported families of CMC across settings using telephone only or telephone and video telehealth care coordination. Effectiveness was evaluated from many perspectives and this paper reports on a subset of outcomes that includes family-centered care (FCC), need for care coordination help and adequacy of care coordination help received. FCC at baseline and end of study showed no significant difference between groups. Median FCC scores of 18.0–20.0 across all groups indicated high FCC within the medical home. No significant differences were found in the need for care coordination help within or between groups and over time. No significant difference was found in the adequacy of help received between groups at baseline. However, this indicator increased significantly over time for both intervention groups. These findings suggest that in an established medical home with high levels of FCC, families of CMC have unmet needs for care coordination help that are addressed by the APRN telehealth care coordination model. PMID:25424455

  14. Meeting the needs of children with medical complexity using a telehealth advanced practice registered nurse care coordination model.

    PubMed

    Cady, Rhonda G; Erickson, Mary; Lunos, Scott; Finkelstein, Stanley M; Looman, Wendy; Celebreeze, Margaret; Garwick, Ann

    2015-07-01

    Effective care coordination is a key quality and safety strategy for populations with chronic conditions, including children with medical complexity (CMC). However, gaps remain in parent report of the need for care coordination help and receipt of care coordination help. New models must close this gap while maintaining family-centered focus. A three-armed randomized controlled trial conducted in an established medical home utilized an advanced practice registered nurse intervention based on Presler's model of clinic-based care coordination. The model supported families of CMC across settings using telephone only or telephone and video telehealth care coordination. Effectiveness was evaluated from many perspectives and this paper reports on a subset of outcomes that includes family-centered care (FCC), need for care coordination help and adequacy of care coordination help received. FCC at baseline and end of study showed no significant difference between groups. Median FCC scores of 18.0-20.0 across all groups indicated high FCC within the medical home. No significant differences were found in the need for care coordination help within or between groups and over time. No significant difference was found in the adequacy of help received between groups at baseline. However, this indicator increased significantly over time for both intervention groups. These findings suggest that in an established medical home with high levels of FCC, families of CMC have unmet needs for care coordination help that are addressed by the APRN telehealth care coordination model.

  15. [Complex chronic care situations and socio-health coordination].

    PubMed

    Morilla Herrera, Juan Carlos; Morales Asencio, José Miguel; Kaknani, Shakira; García Mayor, Silvia

    2016-01-01

    Patient-centered healthcare is currently one of the most pursued goals in health services. It is necessary to ensure a sufficient level of cooperative and coordinated work between different providers and settings, including family and social and community resources. Clinical integration occurs when the care provided by health professionals and providers is integrated into a single coherent process through different professions using shared guidelines and protocols. Such coordination can be developed at three levels: macro, which involves the integration of one or more of the three basic elements that support health care (the health plan, primary care and specialty care), with the aim of reducing fragmentation of care; meso, where health and social services are coordinated to provide comprehensive care to elderly and chronic patients; and micro, aimed to improve coordination in individual patients and caregivers. The implementation of new roles, such as Advanced Practice Nursing, along with improvements in family physicians' problem-solving capacity in certain processes, or modifying the place of provision of certain services are key to ensure services adapted to the requirements of chronic patients. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  16. Coordination Complexes as Catalysts: The Oxidation of Anthracene by Hydrogen Peroxide in the Presence of VO(acac)[subscript 2

    ERIC Educational Resources Information Center

    Charleton, Kimberly D. M.; Prokopchuk, Ernest M.

    2011-01-01

    A laboratory experiment aimed at students who are studying coordination chemistry of transition-metal complexes is described. A simple vanadyl acetylacetonate complex can be used as a catalyst in the hydrogen peroxide oxidation of anthracene to produce anthraquinone. The reaction can be performed under a variety of reaction conditions, ideally by…

  17. Integration to Implementation and the Micronutrient Forum: A Coordinated Approach for Global Nutrition. Case Study Application: Safety and Effectiveness of Iron Interventions.

    PubMed

    Raiten, Daniel J; Neufeld, Lynnette M; De-Regil, Luz-Maria; Pasricha, Sant-Rayn; Darnton-Hill, Ian; Hurrell, Richard; Murray-Kolb, Laura E; Nair, K Madhavan; Wefwafwa, Terry; Kupka, Roland; Phall, Modou Cheyassin; Sakr Ashour, Fayrouz A

    2016-01-01

    Paramount among the challenges to our ability to address the role of food and nutrition in health promotion and disease prevention is how to design and implement context-specific interventions and guidance. The Integration to Effective Implementation (I-to-I) concept is intended to address the complexities of the global health context through engagement of the continuum of stakeholders involved in the food and nutrition enterprise. The 2014 Micronutrient Forum (MNF) Global Conference held in Addis Ababa, Ethiopia, in June 2014 offered the opportunity to apply the I-to-I approach with the use of current concerns about the safety and effectiveness of interventions to prevent and treat iron deficiency (ID) as a case study. ID is associated with a range of adverse outcomes, especially in pregnant and nonpregnant women, infants, and primary school-age children. Strategies to combat ID include iron supplementation, multiple micronutrient powders, and food-based interventions to enhance dietary iron intake. Recent reports indicate potential increased adverse risks when iron is provided in areas with high infection burdens (e.g., malaria). This paradox has weakened iron intervention programs. Furthermore, the selection and interpretation of available biomarkers for assessing iron nutrition have been found to be compromised by the inflammatory process. These issues highlight the need for a comprehensive approach that considers basic biology, assessment, interventions, and how these can be translated into appropriate programs and policies. The application of the I-to-I with the use of the MNF offered an opportunity to explore how that might be achieved. © 2016 American Society for Nutrition.

  18. Iron-oxide colloidal nanoclusters: from fundamental physical properties to diagnosis and therapy

    NASA Astrophysics Data System (ADS)

    Kostopoulou, Athanasia; Brintakis, Konstantinos; Lascialfari, Alessandro; Angelakeris, Mavroeidis; Vasilakaki, Marianna; Trohidou, Kalliopi; Douvalis, Alexios P.; Psycharakis, Stylianos; Ranella, Anthi; Manna, Liberato; Lappas, Alexandros

    2014-03-01

    Research on magnetic nanocrystals attracts wide-spread interest because of their challenging fundamental properties, but it is also driven by problems of practical importance to the society, ranging from electronics (e.g. magnetic recording) to biomedicine. In that respect, iron oxides are model functional materials as they adopt a variety of oxidation states and coordinations that facilitate their use. We show that a promising way to engineer further their technological potential in diagnosis and therapy is the assembly of primary nanocrystals into larger colloidal entities, possibly with increased structural complexity. In this context, elevated-temperature nanochemistry (c.f. based on a polyol approach) permitted us to develop size-tunable, low-cytotoxicity iron-oxide nanoclusters, entailing iso-oriented nanocrystals, with enhanced magnetization. Experimental (magnetometry, electron microscopy, Mössbauer and NMR spectroscopies) results supported by Monte Carlo simulations are reviewed to show that such assemblies of surface-functionalized iron oxide nanocrystals have a strong potential for innovation. The clusters' optimized magnetic anisotropy (including microscopic surface spin disorder) and weak ferrimagnetism at room temperature, while they do not undermine colloidal stability, endow them a profound advantage as efficient MRI contrast agents and hyperthermic mediators with important biomedical potential.

  19. Nitrosothiol Formation and Protection against Fenton Chemistry by Nitric Oxide-induced Dinitrosyliron Complex Formation from Anoxia-initiated Cellular Chelatable Iron Increase*

    PubMed Central

    Li, Qian; Li, Chuanyu; Mahtani, Harry K.; Du, Jian; Patel, Aashka R.; Lancaster, Jack R.

    2014-01-01

    Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with •NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged •NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief •NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1–2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief •NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of •NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of •NO. PMID:24891512

  20. Efficient catalytic cycloalkane oxidation employing a "helmet" phthalocyaninato iron(III) complex.

    PubMed

    Brown, Elizabeth S; Robinson, Jerome R; McCoy, Aaron M; McGaff, Robert W

    2011-06-14

    We have examined the catalytic activity of an iron(III) complex bearing the 14,28-[1,3-diiminoisoindolinato]phthalocyaninato (diiPc) ligand in oxidation reactions with three substrates (cyclohexane, cyclooctane, and indan). This modified metallophthalocyaninato complex serves as an efficient and selective catalyst for the oxidation of cyclohexane and cyclooctane, and to a far lesser extent indan. In the oxidations of cyclohexane and cyclooctane, in which hydrogen peroxide is employed as the oxidant under inert atmosphere, we have observed turnover numbers of 100.9 and 122.2 for cyclohexanol and cyclooctanol, respectively. The catalyst shows strong selectivity for alcohol (vs. ketone) formation, with alcohol to ketone (A/K) ratios of 6.7 and 21.0 for the cyclohexane and cyclooctane oxidations, respectively. Overall yields (alcohol + ketone) were 73% for cyclohexane and 92% for cyclooctane, based upon the total hydrogen peroxide added. In the catalytic oxidation of indan under similar conditions, the TON for 1-indanol was 10.1, with a yield of 12% based upon hydrogen peroxide. No 1-indanone was observed in the product mixture.

  1. Ligand iron catalysts for selective hydrogenation

    DOEpatents

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  2. The Mammalian Proteins MMS19, MIP18, and ANT2 Are Involved in Cytoplasmic Iron-Sulfur Cluster Protein Assembly*

    PubMed Central

    van Wietmarschen, Niek; Moradian, Annie; Morin, Gregg B.; Lansdorp, Peter M.; Uringa, Evert-Jan

    2012-01-01

    Iron-sulfur (Fe-S) clusters are essential cofactors of proteins with a wide range of biological functions. A dedicated cytosolic Fe-S cluster assembly (CIA) system is required to assemble Fe-S clusters into cytosolic and nuclear proteins. Here, we show that the mammalian nucleotide excision repair protein homolog MMS19 can simultaneously bind probable cytosolic iron-sulfur protein assembly protein CIAO1 and Fe-S proteins, confirming that MMS19 is a central protein of the CIA machinery that brings Fe-S cluster donor proteins and the receiving apoproteins into proximity. In addition, we show that mitotic spindle-associated MMXD complex subunit MIP18 also interacts with both CIAO1 and Fe-S proteins. Specifically, it binds the Fe-S cluster coordinating regions in Fe-S proteins. Furthermore, we show that ADP/ATP translocase 2 (ANT2) interacts with Fe-S apoproteins and MMS19 in the CIA complex but not with the individual proteins. Together, these results elucidate the composition and interactions within the late CIA complex. PMID:23150669

  3. Glutathione-complexed [2Fe-2S] clusters function in Fe-S cluster storage and trafficking.

    PubMed

    Fidai, Insiya; Wachnowsky, Christine; Cowan, J A

    2016-10-01

    Glutathione-coordinated [2Fe-2S] complex is a non-protein-bound [2Fe-2S] cluster that is capable of reconstituting the human iron-sulfur cluster scaffold protein IscU. This complex demonstrates physiologically relevant solution chemistry and is a viable substrate for iron-sulfur cluster transport by Atm1p exporter protein. Herein, we report on some of the possible functional and physiological roles for this novel [2Fe-2S](GS4) complex in iron-sulfur cluster biosynthesis and quantitatively characterize its role in the broader network of Fe-S cluster transfer reactions. UV-vis and circular dichroism spectroscopy have been used in kinetic studies to determine second-order rate constants for [2Fe-2S] cluster transfer from [2Fe-2S](GS4) complex to acceptor proteins, such as human IscU, Schizosaccharomyces pombe Isa1, human and yeast glutaredoxins (human Grx2 and Saccharomyces cerevisiae Grx3), and human ferredoxins. Second-order rate constants for cluster extraction from these holo proteins were also determined by varying the concentration of glutathione, and a likely common mechanism for cluster uptake was determined by kinetic analysis. The results indicate that the [2Fe-2S](GS4) complex is stable under physiological conditions, and demonstrates reversible cluster exchange with a wide range of Fe-S cluster proteins, thereby supporting a possible physiological role for such centers.

  4. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    PubMed Central

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-01-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest—and more attractive—systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination—without nanoparticle aggregation and without complex dissociation—of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987

  5. [Use of social and health primary care services for older people with complex needs: Comparison of three types of gerontological coordination].

    PubMed

    de Stampa, M; Bagaragaza, E; Herr, M; Aegerter, P; Vedel, I; Bergman, H; Ankri, J

    2014-10-01

    Older people with complex needs live mainly at home. Several types of gerontological coordinations have been established on the French territory to meet their needs and to implement social and primary health care services. But we do not have any information on the use of these services at home as a function of the coordination method used. We compared the use of home care services for older people with complex needs in three types of coordination with 12 months' follow-up. The three coordinations regrouped a gerontological network with case management (n=105 persons), a nursing home service (SSIAD) with a nurse coordination (n=206 persons) and an informal coordination with a non-professional caregiver (n=117 persons). At t0, the older people addressed to the gerontological network had less access to the services offered at home; those followed by the SSIAD had the highest number of services and of weekly interventions. Hours of weekly services were two-fold higher in those with the informal coordination. At t12, there was an improvement in access to services for the network group with case management and an overall increase in the use of professional services at home with no significant difference between the three groups. The use of social and primary health care services showed differences between the three gerontological coordinations. The one-year evolution in the use of home services was comparable between the groups without an explosion in the number of services in the network group with case management. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Synthesis and characterization of bright green terbium coordination complex derived from 1,4-bis(carbonylmethyl)terephthalate: Structure and luminescence properties

    NASA Astrophysics Data System (ADS)

    Ma, Mengjiao; Li, Congcong; Shu, Dengkun; Wang, Chaohua; Xi, Peng

    2018-02-01

    A photoluminescent terbium (Tb) complex involving a novel benzoic-acid compound with a unique coordinated structure, namely 1,4-bis(carbonylmethyl)terephthalate (BCMT), has been designed and synthesized. The new coordinate structure and energy-transfer mechanism between the ligand and Tb(III) ions were investigated in detail. The results demonstrated that the BCMT-Tb(III) complex shows strong fluorescence intensity (4 × 106 a.u.) and long fluorescence lifetime (1.302 ms), owing to the favorable degree of energy matching between the triplet excited level of the ligand and the resonant level of Tb(III) ions. Based on the analysis of three-dimensional luminescence spectra, the as-prepared Tb(III) complex can be effectively excited in the range of 250-310 nm, and it shows high color purity, with a bright green appearance.

  7. Iron homeostasis and its disruption in mouse lung in iron deficiency and overload.

    PubMed

    Giorgi, Gisela; D'Anna, María Cecilia; Roque, Marta Elena

    2015-10-01

    What is the central question of this study? The aim was to explore the role and hitherto unclear mechanisms of action of iron proteins in protecting the lung against the harmful effects of iron accumulation and the ability of pulmonary cells to mobilize iron in iron deficiency. What is the main finding and its importance? We show that pulmonary hepcidin appears not to modify cellular iron mobilization in the lung. We propose pathways for supplying iron to the lung in iron deficiency and for protecting the lung against iron excess in iron overload, mediated by the co-ordinated action of iron proteins, such as divalent metal transporter 1, ZRT-IRE-like-protein 14, transferrin receptor, ferritin, haemochromatosis-associated protein and ferroportin. Iron dyshomeostasis is associated with several forms of chronic lung disease, but its mechanisms of action remain to be elucidated. The aim of the present study was to determine the role of the lung in whole-animal models with iron deficiency and iron overload, studying the divalent metal transporter 1 (DMT1), ZRT-IRE-like protein 14 (ZIP14), transferrin receptor (TfR), haemochromatosis-associated protein (HFE), hepcidin, ferritin and ferroportin (FPN) expression. In each model, adult CF1 mice were divided into the following groups (six mice per group): (i) iron-overload model, iron saccharate i.p. and control group (iron adequate), 0.9% NaCl i.p.; and (ii) iron-deficiency model, induced by repeated bleeding, and control group (sham operated). Proteins were assessed by immunohistochemistry and Western blot. In control mice, DMT1 was localized in the cytoplasm of airway cells, and in iron deficiency and overload it was in the apical membrane. Divalent metal transporter 1 and TfR increased in iron deficiency, without changes in iron overload. ZRT-IRE-like protein 14 decreased in airway cells in iron deficiency and increased in iron overload. In iron deficiency, HFE and FPN were immunolocalized close to the apical membrane

  8. Abrupt spin transition with thermal hysteresis of iron(III) complex [Fe(III)(Him)2(hapen)]AsF6 (Him = imidazole, H2hapen = N,N'-bis(2-hydroxyacetophenylidene)ethylenediamine).

    PubMed

    Fujinami, Takeshi; Koike, Masataka; Matsumoto, Naohide; Sunatsuki, Yukinari; Okazawa, Atsushi; Kojima, Norimichi

    2014-02-17

    The solvent-free spin crossover iron(III) complex [Fe(III)(Him)2(hapen)]AsF6 (Him = imidazole, H2hapen = N,N'-bis(2-hydroxyacetophenylidene)ethylenediamine), exhibiting thermal hysteresis, was synthesized and characterized. The Fe(III) ion has an octahedral coordination geometry, with N2O2 donor atoms of the planar tetradentate ligand (hapen) and two nitrogen atoms of two imidazoles at the axial positions. One of two imidazoles is hydrogen-bonded to the phenoxo oxygen atom of hapen of the adjacent unit to give a hydrogen-bonded one-dimensional chain, while the other imidazole group is free from hydrogen bonding. The temperature dependencies of the magnetic susceptibilities and Mössbauer spectra revealed an abrupt spin transition between the high-spin (S = 5/2) and low-spin (S = 1/2) states, with thermal hysteresis.

  9. Identification of Second Shell Coordination in Transition Metal Species Using Theoretical XANES: Example of Ti–O–(C, Si, Ge) Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spanjers, Charles S.; Guillo, Pascal; Tilley, T. Don

    X-ray absorption near-edge structure (XANES) is a common technique for elucidating oxidation state and first shell coordination geometry in transition metal complexes, among many other materials. However, the structural information obtained from XANES is often limited to the first coordination sphere. In this study, we show how XANES can be used to differentiate between C, Si, and Ge in the second coordination shell of Ti–O–(C, Si, Ge) molecular complexes based on differences in their Ti K-edge XANES spectra. Experimental spectra were compared with theoretical spectra calculated using density functional theory structural optimization and ab initio XANES calculations. The unique featuresmore » for second shell C, Si, and Ge present in the Ti K pre-edge XANES are attributed to the interaction between the Ti center and the O–X (X = C, Si, or Ge) antibonding orbitals.« less

  10. Growth-induced anisotropy in bismuth - Rare-earth iron garnets

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Slusky, S. E. G.; Brandle, C. D.; Norelli, M. P.

    1986-01-01

    The bismuth-doped rare-earth iron garnets, (R3-x-yBixPby)Fe5O12 (Bi:RIG, R = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y), were prepared under constant growth conditions to investigate the influence of ionic species on the bismuth-based growth-induced uniaxial anisotropy K(u) exp g. The effect of ionic species on growth-induced anisotropy in Bi:RIG was not consistent with the ionic size model of site ordering. In particular, Bi:SmIG, Bi:EuIG, and Bi:TbIG displayed high growth-induced anisotropies, up to 331,000 erg/cu cm at room temperature for x of about 0.5. The temperature dependence of these K(u) exp gs was somewhat higher than that of the well studied Bi:YIG. The site ordering of Bi can be modeled by assuming that small, low-oxygen-coordination BiOw exp +3-2 w melt complexes have a strong site selectivity for small, high-oxygen coordination sites at the growth interface.

  11. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments

    PubMed Central

    Mey, Alexandra R.; Wyckoff, Elizabeth E.

    2015-01-01

    SUMMARY Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats. PMID:26658001

  12. Iron Pentapyridyl Complexes as Molecular Water Oxidation Catalysts: Strong Influence of a Chloride Ligand and pH in Altering the Mechanism.

    PubMed

    Das, Biswanath; Orthaber, Andreas; Ott, Sascha; Thapper, Anders

    2016-05-23

    The development of molecular water oxidation catalysts based on earth-abundant, non-noble metals is essential for artificial photosynthesis research. Iron, which is the most abundant transition metal in the earth's crust, is a prospective candidate for this purpose. Herein, we report two iron complexes based on the polypyridyl ligand Py5OH (Py5OH=pyridine-2,6-diylbis [di(pyridin-2-yl)methanol]) that can catalyse water oxidation to produce O2 in Ru(III) -induced (at pH 8, highest turnover number (TON)=26.5; turnover frequency (TOF)=2.2 s(-1) ), Ce(IV) -induced (at pH≈1.5 highest TON=16; TOF=0.75 s(-1) ) and photo-induced (at pH 8, highest TON=43.5; TOF=0.6 s(-1) ) reactions. A chloride ligand in one of the iron complexes is shown to affect the activity strongly, improve stability and, thereby, the performance at pH 8 but it inhibits oxygen evolution at pH≈1.5. The observations are consistent with a change in mechanism for catalytic water oxidation with the Fe(Py5OH) complexes between acidic (Ce(IV) ) and near-neutral pH (Ru(III) ). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [The dinitrosyl-iron complexes with cysteine block the development of experimental endometriosis in rats].

    PubMed

    Burgova, E N; Tkachev, N A; Vanin, A F

    2012-01-01

    It has been shown that the administration of 0,5 ml of 5 mM aqueous solution of dinitrosyl-iron complexes (DNIC) with cysteine alleviated the development of experimental endometriosis in rats induced by surgical way: the size of endometriomes decreased 1.85 times when the DNIC was added every day during 10 days. The effect was suggested to be due to cytotoxic action of NO molecules and nitrosonium ions (NO+) released from rapidly decomposed DNIC in animal organism on endometriome tissues.

  14. Neutral and anionic duality of 1,2,4-triazole α-amino acid scaffold in 1D coordination polymers

    NASA Astrophysics Data System (ADS)

    Naik, Anil D.; Dîrtu, Marinela M.; Garcia, Yann

    2012-03-01

    A tiny supramolecular synthon, 4H-1,2,4-triazol-4-yl acetic acid (HGlytrz) which is bifunctional by design having an electronic asymmetry and conformational flexibility has been introduced to synthesize iron(II) complexes. Having 1,2,4-triazole or carboxylic extremities on the same framework HGlytrz could display dual functionality by acting as a neutral as well as anionic ligand based on the possibility of deprotonation of carboxylic group. Four new iron(II) HGlytrz complexes with ClO4- ( 1), NO3- ( 2), BF4- ( 3) and CF3SO3- ( 4) anions were prepared. Formulation of their composition which is complicated due to ligand deprotonation is discussed. Unlike its ester protected counterpart ethyl-4H-1,2,4-triazol-4-yl-acetate ( αGlytrz) which show hysteretic room temperature spin crossover, 1- 4 remain in the high-spin state as revealed by 57Mössbauer spectroscopy. Prospects of such 1D coordination polymers with dangling unbounded carboxylic entities in the realm of self-assembled monolayer (SAM) are discussed.

  15. ^1H NMR studies of the diamagnetic gallium (III) and paramagnetic iron (III) complexes of a chiral macrobicyclic ligand of bicapped tris (binaphtol) type

    NASA Astrophysics Data System (ADS)

    Baret, P.; Beaujolais, V.; Bougault, C.; Gaude, D.; Pierre, J.-L.

    1998-01-01

    ^1H NMR studies of the diamagnetic gallium (III) and paramagnetic iron (III) complexes of a chiral macrobicyclic ligand of bicapped tris (binaphtol) type are described. The study of the gallium complex emphasizes: (i) that the inversion of the octahedral center is not observed and: (ii) the absence of exchange between free ligand and complex, at room temperature. In the case of the iron complex, assignments of the hyperfine shifted resolved resonances are achieved, based on temperature-behavior studies, which evidence the D3 symmetry of the complex. These assignments are in complete agreement with measured T1 values and proton-to-iron distances obtained from molecular modelling. Les complexes du gallium (III) et du fer (III) d'un ligand macrobicyclique chiral impliquant trois sous-unités de type binaphtol sont étudiés en RMN du proton en solution méthanolique. L'étude du complexe (diamagnétique) du gallium permet de montrer que le complexe : (i) ne subit pas d'inversion de la configuration (Δ/Λ) du site octaédrique et : (ii) qu'il n'y a pas d'échange entre ligand libre et complexe à la température ambiante. L'évolution du spectre du complexe paramagnétique du fer avec la température permet une attribution des protons du ligand et met en évidence la symétrie D3 du complexe. Une bonne corrélation est obtenue entre la distance fer-proton (donnée par la modélisation moléculaire) et le T1 du proton considéré.

  16. Influence of a Heterocyclic Nitrogen-Donor Group on the Coordination of Trivalent Actinides and Lanthanides by Aminopolycarboxylate Complexants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Travis S.; Heathman, Colt R.; Jansone-Popova, Santa

    Here, the novel metal chelator N-2-(pyridylmethyl)diethylenetriamine- N,N',N",N"-tetraacetic acid (DTTA-PyM) was designed to replace a single oxygen-donor acetate group of the well-known aminopolycarboxylate complexant diethylenetriamine- N,N,N',N",N"-pentaacetic acid (DTPA) with a nitrogen-donor 2-pyridylmethyl. Potentiometric, spectroscopic, computational, and radioisotope distribution methods show distinct differences for the 4f and 5f coordination environments and enhanced actinide binding due to the nitrogen-bearing heterocyclic moiety. The Am 3+, Cm 3+, and Ln 3+ complexation studies for DTTA-PyM reveal an enhanced preference, relative to DTPA, for trivalent actinide binding. Fluorescence studies indicate no changes to the octadentate coordination of trivalent curium, while evidence of heptadentate complexation of trivalentmore » europium is found in mixtures containing EuHL (aq) complexes at the same aqueous acidity. The denticity change observed for Eu 3+ suggests that complex protonation occurs on the pyridyl nitrogen. Formation of the CmHL (aq) complex is likely due to the protonation of an available carboxylate group because the carbonyl oxygen can maintain octadentate coordination through a rotation. The observed suppressed protonation of the pyridyl nitrogen in the curium complexes may be attributed to stronger trivalent actinide binding by DTTA-PyM. Density functional theory calculations indicate that added stabilization of the actinide complexes with DTTA-PyM may originate from π-back-bonding interactions between singly occupied 5f orbitals of Am 3+ and the pyridyl nitrogen. The differences between the stabilities of trivalent actinide chelates (Am 3+, Cm 3+) and trivalent lanthanide chelates (La 3+–Lu 3+) are observed in liquid–liquid extraction systems, yielding unprecedented 4f/5f differentiation when using DTTA-PyM as an aqueous holdback reagent. In addition, the enhanced nitrogen-donor softness of the new DTTA-PyM chelator was perturbed

  17. Rapid kinetics of iron responsive element (IRE) RNA/iron regulatory protein 1 and IRE-RNA/eIF4F complexes respond differently to metal ions.

    PubMed

    Khan, Mateen A; Ma, Jia; Walden, William E; Merrick, William C; Theil, Elizabeth C; Goss, Dixie J

    2014-06-01

    Metal ion binding was previously shown to destabilize IRE-RNA/IRP1 equilibria and enhanced IRE-RNA/eIF4F equilibria. In order to understand the relative importance of kinetics and stability, we now report rapid rates of protein/RNA complex assembly and dissociation for two IRE-RNAs with IRP1, and quantitatively different metal ion response kinetics that coincide with the different iron responses in vivo. kon, for FRT IRE-RNA binding to IRP1 was eight times faster than ACO2 IRE-RNA. Mn(2+) decreased kon and increased koff for IRP1 binding to both FRT and ACO2 IRE-RNA, with a larger effect for FRT IRE-RNA. In order to further understand IRE-mRNA regulation in terms of kinetics and stability, eIF4F kinetics with FRT IRE-RNA were determined. kon for eIF4F binding to FRT IRE-RNA in the absence of metal ions was 5-times slower than the IRP1 binding to FRT IRE-RNA. Mn(2+) increased the association rate for eIF4F binding to FRT IRE-RNA, so that at 50 µM Mn(2+) eIF4F bound more than 3-times faster than IRP1. IRP1/IRE-RNA complex has a much shorter life-time than the eIF4F/IRE-RNA complex, which suggests that both rate of assembly and stability of the complexes are important, and that allows this regulatory system to respond rapidly to change in cellular iron. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Ultrafast primary processes of an iron-(III) azido complex in solution induced with 266 nm light.

    PubMed

    Vennekate, Hendrik; Schwarzer, Dirk; Torres-Alacan, Joel; Krahe, Oliver; Filippou, Alexander C; Neese, Frank; Vöhringer, Peter

    2012-05-14

    The ultrafast photo-induced primary processes of the iron-(III) azido complex, [Fe(III)N(3)(cyclam-acetato)] PF(6) (1), in acetonitrile solution at room temperature were studied using femtosecond spectroscopy with ultraviolet (UV) excitation and mid-infrared (MIR) detection. Following the absorption of a 266 nm photon, the complex undergoes an internal conversion back to the electronic doublet ground state at a time scale below 2 ps. Subsequently, the electronic ground state vibrationally cools with a characteristic time constant of 13 ps. A homolytic bond cleavage was also observed by the appearance of ground state azide radicals, which were identified by their asymmetric stretching vibration at 1659 cm(-1). The azide radical recombines in a geminate fashion with the iron containing fragment within 20 ps. The cage escape leading to well separated fragments after homolytic Fe-N bond breakage was found to occur with a quantum yield of 35%. Finally, non-geminate recombination at nanosecond time scales was seen to further reduce the photolytic quantum yield to below 20% at a wavelength of 266 nm. This journal is © the Owner Societies 2012

  19. Metal-metal interactions in tetrakis(diphenylphosphino)benzene-bridged dimetallic complexes and their related coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pei-Wei; Fox, M.A.

    1994-06-22

    Electrochemical, EPR, and spectroelectrochemical methods have been used to probe electronic coupling through a 1,2,4,5-tetrakis(diphenylphosphino)benzene bridging ligand connecting metal centers in several Ni-, Pd-, and Pt-containing dimetallic complexes. These dimetalated complexes showed weak intervalence charge transfer (IT) bands and slightly shifted redox potentials in comparison with their monometallic models. A Marcus-Hush analysis of the energies of the IT bands for the electrochemically generated mixed-valence heterodimetallic complexes (Ni{sup o}-Pd{sup II} and Ni{sup o}-Pt{sup II}, respectively) established the magnitude of intermetallic electronic coupling. The weak thermal coupling observed in these dimetalated complexes is consistent with the very low conductivities (10{sup {minus}8}-10{sup {minus}10}{omega}{supmore » -1} cm{sup {minus}1}) observed in the polymeric analogs of these complexes, namely, the newly prepared metal coordination polymers (M = Ni{sup II}, Pd{sup II}, Pt{sup II}) with 1,2,4,5-tetrakis(diphenylphosphino)benzene.« less

  20. [Dinitrosyl iron complexes with glutathione recover rats with experimental endometriosis].

    PubMed

    Adamian, L V; Burgova, E N; Tkachev, N A; Mikoian, V D; Stepanian, A A; Sonova, M M; Vanin, A F

    2013-01-01

    The effect of binuclear dinitrosyl iron complexes (DNIC) with glutathione on endometrioid tumors in rats with experimental endometriosis has been studied. The latter was induced by an autotransplantation model, where two fragments of endometrium with myometrium (2 x 2 mm) from the left uterine horn was grafted to the inner surface of the anterior abdominal wall. The test animals received intraperitoneal injections of 0.5 ml DNIC-glutathione at the dose of 12.5 micromole per kg daily for 12 days 28 days after operation. The injections resulted in more than a 2-fold decrease in the total volume of both large tumors formed from grafts and small additive tumors formed nearby grafts. The disappearance of the additive tumors was also observed in test animals. The EPR signal with g(av) = 2.03 characteristic of protein bound DNIC with thiol-containing ligands was recorded in livers, graft and additive tumors of test and control animals pointing out intensive generation of nitric oxide in rats with experimental endometriosis. Ribonucleotide reductase activation discovered by doublet the EPR signal at g = 2.0 with 2.3 mT hyperfine structure splitting was found in small tumors. The cytotoxic effect of DNIC-glutathione on endometrioid tumors was suggested to be due to DNIC degradation nearby the tumors induced by iron chelating compounds released from the tumors. The degradation resulted in release of a high amount of nitric oxide molecules and nitrosonium ions from DNICs affecting the tumors by way of the cytotoxic effect.

  1. First-row transition metal complexes of ENENES ligands: the ability of the thioether donor to impact the coordination chemistry

    DOE PAGES

    Dub, Pavel A.; Scott, Brian L.; Gordon, John C.

    2015-12-21

    We report the reactions of two variants of ENENES ligands, E(CH 2) 2NH(CH) 2SR, where E = 4-morpholinyl, R = Ph (a), Bn (b) with MCl 2 (M = Mn, Fe, Co, Ni and Cu) in coordinating solvents (MeCN, EtOH) affords isolable complexes, whose magnetic susceptibility measurements suggest paramagnetism and a high-spin formulation. X-Ray diffraction studies of available crystals show that the ligand coordinates to the metal in either a bidentate κ 2[N,N'] or tridentate κ 3[N,N',S] fashion, depending on the nature of ligand and/or identity of the metal atom. In the case of a less basic SPh moiety, amore » bidentate coordination mode was identified for harder metals (Mn, Fe), whereas a tridentate coordination mode was identified in the case of a more basic SBn moiety with softer metals (Ni, Cu). In the intermediate case of Co, ligands a and b coordinate via κ 2[N,N'] and κ 3[N,N',S] coordination modes, which can be conveniently predicted by DFT calculations. Finally, for the softest metal (Cu), ligand a coordinates in a κ 3[N,N',S] fashion.« less

  2. Complex electrical monitoring of biopolymer and iron mineral precipitation for microbial enhanced hydrocarbon recovery

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Hubbard, C. G.; Dong, W.; Hubbard, S. S.

    2011-12-01

    Microbially enhanced hydrocarbon recovery (MEHR) mechanisms are expected to be impacted by processes and properties that occur over a wide range of scales, ranging from surface interactions and microbial metabolism at the submicron scale to changes in wettability and pore geometry at the pore scale to geological heterogeneities at the petroleum reservoir scale. To eventually ensure successful, production-scale implementation of laboratory-developed MEHR procedures under field conditions, it is necessary to develop approaches that can remotely monitor and accurately predict the complex microbially-facilitated transformations that are expected to occur during MEHR treatments in reservoirs (such as the evolution of redox profiles, oil viscosity or matrix porosity/permeability modifications). Our initial studies are focused on laboratory experiments to assess the geophysical signatures of MEHR-induced biogeochemical transformations, with an ultimate goal of using these approaches to monitor field treatments. Here, we explore the electrical signatures of two MEHR processes that are designed to produce end-products that will plug high permeability zones in reservoirs and thus enhance sweep efficiency. The MEHR experiments to induce biopolymers (in this case dextran) and iron mineral precipitates were conducted using flow-through columns. Leuconostoc mesenteroides, a facultative anaerobe, known to produce dextran from sucrose was used in the biopolymer experiments. Paused injection of sucrose, following inoculation and initial microbial attachment, was carried out on daily basis, allowing enough time for dextran production to occur based on batch experiment observations. Electrical data were collected on daily basis and fluid samples were extracted from the column for characterization. Changes in electrical signal were not observed during initial microbial inoculation. Increase of electrical resistivity and decrease of electrical phase response were observed during the

  3. Uranyl ion coordination

    USGS Publications Warehouse

    Evans, H.T.

    1963-01-01

    A review of the known crystal structures containing the uranyl ion shows that plane-pentagon coordination is equally as prevalent as plane-square or plane-hexagon. It is suggested that puckered-hexagon configurations of OH - or H2O about the uranyl group will tend to revert to plane-pentagon coordination. The concept of pentagonal coordination is invoked for possible explanations of the complex crystallography of the natural uranyl hydroxides and the unusual behavior of polynuclear ions in hydrolyzed uranyl solutions.

  4. Combination of optically measured coordinates and displacements for quantitative investigation of complex objects

    NASA Astrophysics Data System (ADS)

    Andrae, Peter; Beeck, Manfred-Andreas; Jueptner, Werner P. O.; Nadeborn, Werner; Osten, Wolfgang

    1996-09-01

    Holographic interferometry makes it possible to measure high precision displacement data in the range of the wavelength of the used laser light. However, the determination of 3D- displacement vectors of objects with complex surfaces requires the measurement of 3D-object coordinates not only to consider local sensitivities but to distinguish between in-plane deformation, i.e. strains, and out-of-plane components, i.e. shears, too. To this purpose both the surface displacement and coordinates have to be combined and it is advantageous to make the data available for CAE- systems. The object surface has to be approximated analytically from the measured point cloud to generate a surface mesh. The displacement vectors can be assigned to the nodes of this surface mesh for visualization of the deformation of the object under test. They also can be compared to the results of FEM-calculations or can be used as boundary conditions for further numerical investigations. Here the 3D-object coordinates are measured in a separate topometric set-up using a modified fringe projection technique to acquire absolute phase values and a sophisticated geometrical model to map these phase data onto coordinates precisely. The determination of 3D-displacement vectors requires the measurement of several interference phase distributions for at least three independent sensitivity directions depending on the observation and illumination directions as well as the 3D-position of each measuring point. These geometric quantities have to be transformed into a reference coordinate system of the interferometric set-up in order to calculate the geometric matrix. The necessary transformation can be realized by means of a detection of object features in both data sets and a subsequent determination of the external camera orientation. This paper presents a consistent solution for the measurement and combination of shape and displacement data including their transformation into simulation systems. The

  5. Nitrosothiol formation and protection against Fenton chemistry by nitric oxide-induced dinitrosyliron complex formation from anoxia-initiated cellular chelatable iron increase.

    PubMed

    Li, Qian; Li, Chuanyu; Mahtani, Harry K; Du, Jian; Patel, Aashka R; Lancaster, Jack R

    2014-07-18

    Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with (•)NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged (•)NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief (•)NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1-2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief (•)NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of (•)NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of (•)NO. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. A Coordination Chemistry Approach to Fine-Tune the Physicochemical Parameters of Lanthanide Complexes Relevant to Medical Applications.

    PubMed

    Le Fur, Mariane; Molnár, Enikő; Beyler, Maryline; Kálmán, Ferenc K; Fougère, Olivier; Esteban-Gómez, David; Rousseaux, Olivier; Tripier, Raphaël; Tircsó, Gyula; Platas-Iglesias, Carlos

    2018-03-02

    The geometric features of two pyclen-based ligands possessing identical donor atoms but different site organization have a profound impact in their complexation properties toward lanthanide ions. The ligand containing two acetate groups and a picolinate arm arranged in a symmetrical fashion (L1) forms a Gd 3+ complex being two orders of magnitude less stable than its dissymmetric analogue GdL2. Besides, GdL1 experiences a much faster dissociation following the acid-catalyzed mechanism than GdL2. On the contrary, GdL1 exhibits a lower exchange rate of the coordinated water molecule compared to GdL2. These very different properties are related to different strengths of the Gd-ligand bonds associated to steric effects, which hinder the coordination of a water molecule in GdL2 and the binding of acetate groups in GdL1. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Integration to Implementation and the Micronutrient Forum: A Coordinated Approach for Global Nutrition. Case Study Application: Safety and Effectiveness of Iron Interventions123

    PubMed Central

    Raiten, Daniel J; Neufeld, Lynnette M; De-Regil, Luz-Maria; Pasricha, Sant-Rayn; Darnton-Hill, Ian; Hurrell, Richard; Murray-Kolb, Laura E; Nair, K Madhavan; Wefwafwa, Terry; Kupka, Roland; Phall, Modou Cheyassin; Sakr Ashour, Fayrouz A

    2016-01-01

    Paramount among the challenges to our ability to address the role of food and nutrition in health promotion and disease prevention is how to design and implement context-specific interventions and guidance. The Integration to Effective Implementation (I-to-I) concept is intended to address the complexities of the global health context through engagement of the continuum of stakeholders involved in the food and nutrition enterprise. The 2014 Micronutrient Forum (MNF) Global Conference held in Addis Ababa, Ethiopia, in June 2014 offered the opportunity to apply the I-to-I approach with the use of current concerns about the safety and effectiveness of interventions to prevent and treat iron deficiency (ID) as a case study. ID is associated with a range of adverse outcomes, especially in pregnant and nonpregnant women, infants, and primary school-age children. Strategies to combat ID include iron supplementation, multiple micronutrient powders, and food-based interventions to enhance dietary iron intake. Recent reports indicate potential increased adverse risks when iron is provided in areas with high infection burdens (e.g., malaria). This paradox has weakened iron intervention programs. Furthermore, the selection and interpretation of available biomarkers for assessing iron nutrition have been found to be compromised by the inflammatory process. These issues highlight the need for a comprehensive approach that considers basic biology, assessment, interventions, and how these can be translated into appropriate programs and policies. The application of the I-to-I with the use of the MNF offered an opportunity to explore how that might be achieved. PMID:26773021

  8. Coordinating complex decision support activities across distributed applications

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1994-01-01

    Knowledge-based technologies have been applied successfully to automate planning and scheduling in many problem domains. Automation of decision support can be increased further by integrating task-specific applications with supporting database systems, and by coordinating interactions between such tools to facilitate collaborative activities. Unfortunately, the technical obstacles that must be overcome to achieve this vision of transparent, cooperative problem-solving are daunting. Intelligent decision support tools are typically developed for standalone use, rely on incompatible, task-specific representational models and application programming interfaces (API's), and run on heterogeneous computing platforms. Getting such applications to interact freely calls for platform independent capabilities for distributed communication, as well as tools for mapping information across disparate representations. Symbiotics is developing a layered set of software tools (called NetWorks! for integrating and coordinating heterogeneous distributed applications. he top layer of tools consists of an extensible set of generic, programmable coordination services. Developers access these services via high-level API's to implement the desired interactions between distributed applications.

  9. On a new coordinate system with astrophysical application: Spiral coordinates

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.; Gil, P. J. S.

    In this presentation are introduced spiral coordinates, which are a particular case of conformal coordinates, i.e. orthogonal curvelinear coordinates with equal factors along all coordinate axis. The spiral coordinates in the plane have as coordinate curves two families of logarithmic spirals, making a constant angle, respectively phi and pi / 2-phi, with all radial lines, where phi is a parameter. They can be obtained from a complex function, representing a spiral potential flow, due to the superposition of a source/sink with a vortex; the parameter phi in this case specifies the ratio of the ass flux of source/sink to the circulation of the vortex. Regardless of hydrodynamical or other interpretations, spiral coordinates are particulary convenient in situation where physical quantities vary only along a logarithmicspiral. The example chosen is the propagation of Alfven waves along a logarithmic spiral, as an approximation to Parker's spiral. The equation of dissipative MHD are written in spiral coordinates, and eliminated to specify the Alfven wave equation in spiral coordinates; the latter is solved exactly in terms of Bessel functions, and the results analyzed for values of the parameters corresponding to the solar wind.

  10. Molecular structure, magnetic properties, cyclic voltammetry of the low-spin iron(III) Bis(4-ethylaniline) complex with the para-chloro substituted meso-tetraphenylporphyrin

    NASA Astrophysics Data System (ADS)

    Dhifaoui, Selma; Mchiri, Chadlia; Quatremare, Pierre; Marvaud, Valérie; Bujacz, Anna; Nasri, Habib

    2018-02-01

    In this study, the preparation of a new iron(III) hexacoordinated metalloporphyrin namely the bis(4-ethylaniline){meso-tetra(para-chlorophenyl)porphyrinato}iron(III) triflate hemi-4-ethylaniline monohydrate with the formula [FeIII(TClPP)(PhEtNH2)2]SO3CF3•1/2PhEtNH2•H2O (I) was reported. This is the first example of an iron(III) metalloporphyrin bis(primary amine) with an aryl group adjacent to the amino group. This species was characterized by elemental, spectroscopic analysis including UV-visible and IR data, cyclic voltammetry, SQUID measurements and X-ray molecular structure. The mean equatorial distance between the iron(III) and the nitrogens of the porphyrin is appropriate for a low-spin (S = 1/2) iron(III) porphyrin complex. The magnetic data confirm the low-spin state of our ferric derivative while the cyclic voltammetry indicates a shift of the half potential E1/2[Fe(III)/Fe(II)] of complex (I) toward more negative value. In the crystal of (I), the [FeIII(TClPP)(PhEtNH2)2]+ ions, the triflate counterions and the water molecules are involved in a number of O__H⋯O, N__H⋯O, C-H⋯O and C__H⋯π intermolecular interactions forming a three-dimension network.

  11. Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron.

    PubMed

    Singh, Sudhir P; Vogel-Mikuš, Katarina; Arčon, Iztok; Vavpetič, Primož; Jeromel, Luka; Pelicon, Primož; Kumar, Jitendra; Tuli, Rakesh

    2013-08-01

    Iron insufficiency is a worldwide problem in human diets. In cereals like wheat, the bran layer of the grains is an important source of iron. However, the dietary availability of iron in wheat flour is limited due to the loss of the iron-rich bran during milling and processing and the presence of anti-nutrients like phytic acid that keep iron strongly chelated in the grain. The present study investigated the localization of iron and phosphorus in grain tissues of wheat genotypes with contrasting grain iron content using synchrotron-based micro-X-ray fluorescence (micro-XRF) and micro-proton-induced X-ray emission (micro-PIXE). X-ray absorption near-edge spectroscopy (XANES) was employed to determine the proportion of divalent and trivalent forms of Fe in the grains. It revealed the abundance of oxygen, phosphorus, and sulphur in the local chemical environment of Fe in grains, as Fe-O-P-R and Fe-O-S-R coordination. Contrasting differences were noticed in tissue-specific relative localization of Fe, P, and S among the different genotypes, suggesting a possible effect of localization pattern on iron bioavailability. The current study reports the shift in iron distribution from maternal to filial tissues of grains during the evolution of wheat from its wild relatives to the present-day cultivated varieties, and thus suggests the value of detailed physical localization studies in varietal improvement programmes for food crops.

  12. Coordination and structure of Ca(II)-acetate complexes in aqueous solution studied by a combination of Raman and XAFS spectroscopies

    NASA Astrophysics Data System (ADS)

    Muñoz Noval, Álvaro; Nishio, Daisuke; Kuruma, Takuya; Hayakawa, Shinjiro

    2018-06-01

    The determination of the structure of Ca(II)-acetate in aqueous solution has been addressed by combining Raman and X-ray absorption fine structure spectroscopies. The pH-dependent speciation of the acetate/Ca(II) system has been studied observing modifications in specific Raman bands of the carboxyl group. The current results evidence the Ca(II)-acetate above acetate pKa forms a bidentate complex and presents a coordination 6, in which the Ca-O shell radius decrease of about 0.1 Å with respect the hydrated Ca2+ with coordination 8. The experimental results show the OCO angle of the carboxyl in the complex is close to 124°, being the OCaO angle about 60°.

  13. Global Identification of Genes Affecting Iron-Sulfur Cluster Biogenesis and Iron Homeostasis

    PubMed Central

    Hidese, Ryota; Kurihara, Tatsuo; Esaki, Nobuyoshi

    2014-01-01

    Iron-sulfur (Fe-S) clusters are ubiquitous cofactors that are crucial for many physiological processes in all organisms. In Escherichia coli, assembly of Fe-S clusters depends on the activity of the iron-sulfur cluster (ISC) assembly and sulfur mobilization (SUF) apparatus. However, the underlying molecular mechanisms and the mechanisms that control Fe-S cluster biogenesis and iron homeostasis are still poorly defined. In this study, we performed a global screen to identify the factors affecting Fe-S cluster biogenesis and iron homeostasis using the Keio collection, which is a library of 3,815 single-gene E. coli knockout mutants. The approach was based on radiolabeling of the cells with [2-14C]dihydrouracil, which entirely depends on the activity of an Fe-S enzyme, dihydropyrimidine dehydrogenase. We identified 49 genes affecting Fe-S cluster biogenesis and/or iron homeostasis, including 23 genes important only under microaerobic/anaerobic conditions. This study defines key proteins associated with Fe-S cluster biogenesis and iron homeostasis, which will aid further understanding of the cellular mechanisms that coordinate the processes. In addition, we applied the [2-14C]dihydrouracil-labeling method to analyze the role of amino acid residues of an Fe-S cluster assembly scaffold (IscU) as a model of the Fe-S cluster assembly apparatus. The analysis showed that Cys37, Cys63, His105, and Cys106 are essential for the function of IscU in vivo, demonstrating the potential of the method to investigate in vivo function of proteins involved in Fe-S cluster assembly. PMID:24415728

  14. Staphylococcus aureus Redirects Central Metabolism to Increase Iron Availability

    PubMed Central

    Pishchany, Gleb; Whitwell, Corbin W; Torres, Victor J; Skaar, Eric P

    2006-01-01

    Staphylococcus aureus pathogenesis is significantly influenced by the iron status of the host. However, the regulatory impact of host iron sources on S. aureus gene expression remains unknown. In this study, we combine multivariable difference gel electrophoresis and mass spectrometry with multivariate statistical analyses to systematically cluster cellular protein response across distinct iron-exposure conditions. Quadruplicate samples were simultaneously analyzed for alterations in protein abundance and/or post-translational modification state in response to environmental (iron chelation, hemin treatment) or genetic (Δfur) alterations in bacterial iron exposure. We identified 120 proteins representing several coordinated biochemical pathways that are affected by changes in iron-exposure status. Highlighted in these experiments is the identification of the heme-regulated transport system (HrtAB), a novel transport system which plays a critical role in staphylococcal heme metabolism. Further, we show that regulated overproduction of acidic end-products brought on by iron starvation decreases local pH resulting in the release of iron from the host iron-sequestering protein transferrin. These findings reveal novel strategies used by S. aureus to acquire scarce nutrients in the hostile host environment and begin to define the iron and heme-dependent regulons of S. aureus. PMID:16933993

  15. IRON DEFICIENCY AND INFANT MOTOR DEVELOPMENT

    PubMed Central

    Shafir, Tal; Angulo-Barroso, Rosa; Jing, Yuezhou; Lu Angelilli, Mary; Jacobson, Sandra W.; Lozoff, Betsy

    2011-01-01

    Background Iron deficiency (ID) during early development impairs myelination and basal ganglia function in animal models. Aims To examine the effects of iron deficiency anemia (IDA) and iron deficiency (ID) without anemia on infant motor skills that are likely related to myelination and basal ganglia function. Study design Observational study. Subjects Full-term inner-city African-American 9- to 10-month-old infants who were free of acute or chronic health problems with iron status indicators ranging from IDA to iron sufficiency (n = 106). Criteria for final iron status classification were met by 77 of these infants: 28 IDA, 28 non-anemic iron-deficient (NA ID), and 21 iron-sufficient (IS). Outcome measures Gross motor developmental milestones, Peabody Developmental Motor Scale, Infant Neurological International Battery (INFANIB), motor quality factor of the Bayley Behavioral Rating Scale, and a sequential/bi-manual coordination toy retrieval task. General linear model analyses tested for linear effects of iron status group and thresholds for effects. Results There were linear effects of iron status on developmental milestones, Peabody gross motor (suggestive trend), INFANIB standing item, motor quality, and toy retrieval. The threshold for effects was ID with or without anemia for developmental milestones, INFANIB standing item, and motor quality and IDA for toy retrieval. Conclusions Using a comprehensive and sensitive assessment of motor development, this study found poorer motor function in ID infants with and without anemia. Poorer motor function among non-anemic ID infants is particularly concerning, since ID without anemia is not detected by common screening procedures and is more widespread than IDA. PMID:18272298

  16. A complex mechanism involving LysR and TetR/AcrR that regulates iron scavenger biosynthesis in Pseudomonas donghuensis HYS.

    PubMed

    Chen, Min; Wang, Panning; Xie, Zhixiong

    2018-04-23

    7-Hydroxytropolone (7-HT) is a symmetrical, seven-membered heteroatomic ring with a carboxyl group and two hydroxyl groups and was recently reported to be an iron scavenger of Pseudomonas donghuensis HYS. Cluster 1 encodes 12 genes related to the synthesis of 7-HT; among these genes, two regulators, ORF1 and ORF12, were predicted to regulate 7-HT biosynthesis and to be LysR-type transcriptional regulators (LTTRs) and TetR/AcrR family transcriptional regulators, respectively. Data from real-time quantitative PCR, β-galactosidase and classical siderophore assays indicated that the transcription levels of orf1 and orf12, as well as those of crucial genes orf6-orf9, were repressed under high-iron conditions. The deletion of orf1 and orf12 led to an absence of 7-HT and a decrease in orf6-orf9 expression. ORF1 and ORF12 were essential for the production of 7-HT through orf6-orf9 These two regulators are regulated by the Gac/Rsm system; ORF1 facilitates the expression of ORF12, and ORF12 concomitantly stimulates the expression of orf6-orf9 to synthesize 7-HT. Overexpression of ORF12 decreased 7-HT yields possibly through decreased orf6-orf9 expression. This work thus outlines a complex mechanism regulating the biosynthesis of the iron scavenger 7-HT in P. donghuensis HYS. The synergy between ORF1 and ORF12 ensures that 7-HT acts as an iron chelator despite being toxic to bacteria and provides new ideas for the novel regulation of dual-functional secondary metabolism and research on 7-HT and its derivates in other bacteria. IMPORTANCE A complex regulation mechanism including two regulators, LysR and TetR/AcrR, of the biosynthesis of the novel iron scavenger 7-HT was verified in Pseudomonas donghuensis HYS. The coaction of LysR ORF1 and TetR/AcrR ORF12 may balance the toxicity and iron chelation of 7-HT in P. donghuensis HYS to overcome iron deficiency, as well as improve the bacterial competitiveness in iron-scarce conditions because of the toxicity of 7-HT toward other

  17. Li{sub 4}FeH{sub 6}: Iron-containing complex hydride with high gravimetric hydrogen density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saitoh, Hiroyuki, E-mail: cyto@spring8.or.jp; Takagi, Shigeyuki; Matsuo, Motoaki

    2014-07-01

    Li{sub 4}FeH{sub 6}, which has the highest gravimetric hydrogen density of iron-containing complex hydrides reported so far, is synthesized by hydrogenation of a powder mixture of iron and LiH above 6.1 GPa at 900 °C. In situ synchrotron radiation X-ray diffraction measurements reveal that while kinetics require high temperature and thus high pressure for the synthesis, Li{sub 4}FeH{sub 6} is expected to be thermodynamically stable slightly below room temperature at ambient pressure; further synthetic studies to suppress the kinetic effects may enable us to synthesize Li{sub 4}FeH{sub 6} at moderate pressures. Li{sub 4}FeH{sub 6} can be recovered at ambient conditions wheremore » Li{sub 4}FeH{sub 6} is metastable.« less

  18. Computational approaches for deciphering the equilibrium and kinetic properties of iron transport proteins.

    PubMed

    Abdizadeh, H; Atilgan, A R; Atilgan, C; Dedeoglu, B

    2017-11-15

    With the advances in three-dimensional structure determination techniques, high quality structures of the iron transport proteins transferrin and the bacterial ferric binding protein (FbpA) have been deposited in the past decade. These are proteins of relatively large size, and developments in hardware and software have only recently made it possible to study their dynamics using standard computational resources. We review computational techniques towards understanding the equilibrium and kinetic properties of iron transport proteins under different environmental conditions. At the level of detail that requires quantum chemical treatments, the octahedral geometry around iron has been scrutinized and it has been established that the iron coordinating tyrosines are in an unusual deprotonated state. At the atomistic level, both the N-lobe and the full bilobal structure of transferrin have been studied under varying conditions of pH, ionic strength and binding of other metal ions by molecular dynamics (MD) simulations. These studies have allowed questions to be answered, among others, on the function of second shell residues in iron release, the role of synergistic anions in preparing the active site for iron binding, and the differences between the kinetics of the N- and the C-lobe. MD simulations on FbpA have led to the detailed observation of the binding kinetics of phosphate to the apo form, and to the conformational preferences of the holo form under conditions mimicking the environmental niches provided by the periplasmic space. To study the dynamics of these proteins with their receptors, one must resort to coarse-grained methodologies, since these systems are prohibitively large for atomistic simulations. A study of the complex of human transferrin (hTf) with its pathogenic receptor by such methods has revealed a potential mechanistic explanation for the defense mechanism that arises in evolutionary warfare. Meanwhile, the motions in the transferrin receptor

  19. Tuning Magnetic Anisotropy Through Ligand Substitution in Five-Coordinate Co(II) Complexes.

    PubMed

    Schweinfurth, David; Krzystek, J; Atanasov, Mihail; Klein, Johannes; Hohloch, Stephan; Telser, Joshua; Demeshko, Serhiy; Meyer, Franc; Neese, Frank; Sarkar, Biprajit

    2017-05-01

    Understanding the origin of magnetic anisotropy and having the ability to tune it are essential needs of the rapidly developing field of molecular magnetism. Such attempts at determining the origin of magnetic anisotropy and its tuning are still relatively infrequent. One candidate for such attempts are mononuclear Co(II) complexes, some of which have recently been shown to possess slow relaxation of their magnetization. In this contribution we present four different five-coordinated Co(II) complexes, 1-4, that contain two different "click" derived tetradentate tripodal ligands and either Cl - or NCS - as an additional, axial ligand. The geometric structures of all four complexes are very similar. Despite this, major differences are observed in their electronic structures and hence in their magnetic properties as well. A combination of temperature dependent susceptibility measurements and high-frequency and -field EPR (HFEPR) spectroscopy was used to accurately determine the magnetic properties of these complexes, expressed through the spin Hamiltonian parameters: g-values and zero-field splitting (ZFS) parameters D and E. A combination of optical d-d absorption spectra together with ligand field theory was used to determine the B and Dq values of the complexes. Additionally, state of the art quantum chemical calculations were applied to obtain bonding parameters and to determine the origin of magnetic anisotropy in 1-4. This combined approach showed that the D values in these complexes are in the range from -9 to +9 cm -1 . Correlations have been drawn between the bonding nature of the ligands and the magnitude and sign of D. These results will thus have consequences for generating novel Co(II) complexes with tunable magnetic anisotropy and hence contribute to the field of molecular magnetism.

  20. Variationally optimal selection of slow coordinates and reaction coordinates in macromolecular systems

    NASA Astrophysics Data System (ADS)

    Noe, Frank

    To efficiently simulate and generate understanding from simulations of complex macromolecular systems, the concept of slow collective coordinates or reaction coordinates is of fundamental importance. Here we will introduce variational approaches to approximate the slow coordinates and the reaction coordinates between selected end-states given MD simulations of the macromolecular system and a (possibly large) basis set of candidate coordinates. We will then discuss how to select physically intuitive order paremeters that are good surrogates of this variationally optimal result. These result can be used in order to construct Markov state models or other models of the stationary and kinetics properties, in order to parametrize low-dimensional / coarse-grained model of the dynamics. Deutsche Forschungsgemeinschaft, European Research Council.

  1. The Organic Complexation of Iron in the Marine Environment: A Review

    PubMed Central

    Gledhill, Martha; Buck, Kristen N.

    2012-01-01

    Iron (Fe) is an essential micronutrient for marine organisms, and it is now well established that low Fe availability controls phytoplankton productivity, community structure, and ecosystem functioning in vast regions of the global ocean. The biogeochemical cycle of Fe involves complex interactions between lithogenic inputs (atmospheric, continental, or hydrothermal), dissolution, precipitation, scavenging, biological uptake, remineralization, and sedimentation processes. Each of these aspects of Fe biogeochemical cycling is likely influenced by organic Fe-binding ligands, which complex more than 99% of dissolved Fe. In this review we consider recent advances in our knowledge of Fe complexation in the marine environment and their implications for the biogeochemistry of Fe in the ocean. We also highlight the importance of constraining the dissolved Fe concentration value used in interpreting voltammetric titration data for the determination of Fe speciation. Within the published Fe speciation data, there appear to be important temporal and spatial variations in Fe-binding ligand concentrations and their conditional stability constants in the marine environment. Excess ligand concentrations, particularly in the truly soluble size fraction, seem to be consistently higher in the upper water column, and especially in Fe-limited, but productive, waters. Evidence is accumulating for an association of Fe with both small, well-defined ligands, such as siderophores, as well as with larger, macromolecular complexes like humic substances, exopolymeric substances, and transparent exopolymers. The diverse size spectrum and chemical nature of Fe ligand complexes corresponds to a change in kinetic inertness which will have a consequent impact on biological availability. However, much work is still to be done in coupling voltammetry, mass spectrometry techniques, and process studies to better characterize the nature and cycling of Fe-binding ligands in the marine environment. PMID

  2. Coordination Complexes of Titanium(IV) and Indium(III) Phthalocyanines with Carbonyl-Containing Dyes: The Formation of Singly Bonded Anionic Squarylium Dimers.

    PubMed

    Konarev, Dmitri V; Kuzmin, Alexey V; Khasanov, Salavat S; Fatalov, Alexey M; Yudanova, Evgenia I; Lyubovskaya, Rimma N

    2018-04-14

    Reduction methods for the preparation of coordination complexes of titanium(IV) and indium(III) phthalocyanines (Pc) with organic dyes such as indigo, thioindigo, and squarylium dye III (SQ) have been developed, which allow one to obtain crystalline {cryptand(K + )}{(cis-indigo-O,O) 2- Ti IV (Pc 2- )}(Cl - )⋅C 6 H 4 Cl 2 (1), {cryptand(K + )}{(cis-thioindigo-O,O) 2- In III (Pc 2- )} - ⋅C 6 H 4 Cl 2 (2), and {cryptand(K + )}{[(SQ) 2 -O,O] 2- In III (Pc 2- )} - ⋅3.5 C 6 H 4 Cl 2 (3) complexes. The formation of these complexes is accompanied by the reduction of the starting dyes to the anionic state. Transition of trans-indigo or trans-thioindigo to the cis conformation in 1 and 2 provides coordination of both carbonyl oxygen atoms of the dye to Ti IV Pc or In III Pc. SQ is reduced to the radical anion state and forms unusual diamagnetic singly bonded (SQ - ) 2 dimers in 3. These dimers have two closely positioned carbonyl oxygen atoms coordinated to In III Pc. Dianionic Pc 2- macrocycles have been found in 1-3. The complexes contain two chromophore molecules at one metal center. However, their optical spectra are defined mainly by absorption bands of the metal phthalocyanines. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Disproportionation of hydroxylamine by water-soluble iron(III) porphyrinate compounds.

    PubMed

    Bari, Sara E; Amorebieta, Valentín T; Gutiérrez, María M; Olabe, José A; Doctorovich, Fabio

    2010-01-01

    The reactions of hydroxylamine (HA) with several water-soluble iron(III) porphyrinate compounds, namely iron(III) meso-tetrakis-(N-ethylpyridinium-2yl)-porphyrinate ([Fe(III)(TEPyP)](5+)), iron(III) meso-tetrakis-(4-sulphonatophenyl)-porphyrinate ([Fe(III)(TPPS)](3-)), and microperoxidase 11 ([Fe(III)(MP11)]) were studied for different [Fe(III)(Porph)]/[HA] ratios, under anaerobic conditions at neutral pH. Efficient catalytic processes leading to the disproportionation of HA by these iron(III) porphyrinates were evidenced for the first time. As a common feature, only N(2) and N(2)O were found as gaseous, nitrogen-containing oxidation products, while NH(3) was the unique reduced species detected. Different N(2)/N(2)O ratios obtained with these three porphyrinates strongly suggest distinctive mechanistic scenarios: while [Fe(III)(TEPyP)](5+) and [Fe(III)(MP11)] formed unknown steady-state porphyrinic intermediates in the presence of HA, [Fe(III)(TPPS)](3-) led to the well characterized soluble intermediate, [Fe(II)(TPPS)NO](4-). Free-radical formation was only evidenced for [Fe(III)(TEPyP)](5+), as a consequence of a metal centered reduction. We discuss the catalytic pathways of HA disproportionation on the basis of the distribution of gaseous products, free radicals formation, the nature of porphyrinic intermediates, the Fe(II)/Fe(III) redox potential, the coordinating capabilities of each complex, and the kinetic analysis. The absence of NO(2)(-) revealed either that no HAO-like activity was operative under our reaction conditions, or that NO(2)(-), if formed, was consumed in the reaction milieu.

  4. Spectroscopic definition of the biferrous and biferric sites in de novo designed four-helix bundle DFsc peptides: implications for O2 reactivity of binuclear non-heme iron enzymes.

    PubMed

    Bell, Caleb B; Calhoun, Jennifer R; Bobyr, Elena; Wei, Pin-Pin; Hedman, Britt; Hodgson, Keith O; Degrado, William F; Solomon, Edward I

    2009-01-13

    DFsc is a single chain de novo designed four-helix bundle peptide that mimics the core protein fold and primary ligand set of various binuclear non-heme iron enzymes. DFsc and the E11D, Y51L, and Y18F single amino acid variants have been studied using a combination of near-IR circular dichroism (CD), magnetic circular dichroism (MCD), variable temperature variable field MCD (VTVH MCD), and X-ray absorption (XAS) spectroscopies. The biferrous sites are all weakly antiferromagnetically coupled with mu-1,3 carboxylate bridges and one 4-coordinate and one 5-coordinate Fe, very similar to the active site of class I ribonucleotide reductase (R2) providing open coordination positions on both irons for dioxygen to bridge. From perturbations of the MCD and VTVH MCD the iron proximal to Y51 can be assigned as the 4-coordinate center, and XAS results show that Y51 is not bound to this iron in the reduced state. The two open coordination positions on one iron in the biferrous state would become occupied by dioxygen and Y51 along the O(2) reaction coordinate. Subsequent binding of Y51 functions as an internal spectral probe of the O(2) reaction and as a proton source that would promote loss of H(2)O(2). Coordination by a ligand that functions as a proton source could be a structural mechanism used by natural binuclear iron enzymes to drive their reactions past peroxo biferric level intermediates.

  5. Rheb may complex with RASSF1A to coordinate Hippo and TOR signaling.

    PubMed

    Nelson, Nicholas; Clark, Geoffrey J

    2016-06-07

    The TOR pathway is a vital component of cellular homeostasis that controls the synthesis of proteins, nucleic acids and lipids. Its core is the TOR kinase. Activation of the TOR pathway suppresses autophagy, which plays a vital but complex role in tumorigenesis. The TOR pathway is regulated by activation of the Ras-related protein Rheb, which can bind mTOR. The Hippo pathway is a major growth control module that regulates cell growth, differentiation and apoptosis. Its core consists of an MST/LATS kinase cascade that can be activated by the RASSF1A tumor suppressor. The TOR and Hippo pathways may be coordinately regulated to promote cellular homeostasis. However, the links between the pathways remain only partially understood. We now demonstrate that in addition to mTOR regulation, Rheb also impacts the Hippo pathway by forming a complex with RASSF1A. Using stable clones of two human lung tumor cell lines (NCI-H1792 and NCI-H1299) with shRNA-mediated silencing or ectopic overexpression of RASSF1A, we show that activated Rheb stimulates the Hippo pathway, but is suppressed in its ability to stimulate the TOR pathway. Moreover, by selectively labeling autophagic vacuoles we show that RASSF1A inhibits the ability of Rheb to suppress autophagy and enhance cell growth. Thus, we identify a new connection that impacts coordination of Hippo and TOR signaling. As RASSF1A expression is frequently lost in human tumors, the RASSF1A status of a tumor may impact not just its Hippo pathway status, but also its TOR pathway status.

  6. Pharmacokinetic and in vivo evaluation of a self-assembled gadolinium(III)-iron(II) contrast agent with high relaxivity.

    PubMed

    Parac-Vogt, Tatjana N; Vander Elst, Luce; Kimpe, Kristof; Laurent, Sophie; Burtéa, Carmen; Chen, Feng; Van Deun, Rik; Ni, Yicheng; Muller, Robert N; Binnemans, Koen

    2006-01-01

    A high-molecular weight tetrametallic supramolecular complex [(Ln-DTPA-phen)3Fe]- (Ln = Gd, Eu, La) has been obtained upon self-assembly around one iron(II) ion of three 1,10-phenantroline-based molecules substituted in 5'-position with the polyaminocarboxylate diethylenetriamine-N,N,N',N',N'-pentaacetate, DTPA-phen(4-). The ICP-MS measurements indicated that the lanthanide:iron ratio is 3:1. Photoluminescence spectra of [Eu-DTPA-phen](-) and of [(Eu-DTPA-phen)3Fe]- are nearly identical, implying that the first coordination sphere of the lanthanide(III) ion has not been changed upon coordination of phenantroline unit to iron(II) ion. NMRD measurements revealed that at 20 MHz and 310 K the relaxivity of the [(Gd-DTPA-phen)3Fe]- is equal to 9.5 +/- 0.3 s(-1) mM(-1) of Gd (28.5 s(-1) per millimole per liter of complex) which is significantly higher than that for Gd-DTPA (3.9 s(-1) mM(-1)). The pharmacokinetic parameters of [(Gd-DTPA-phen)3Fe]- in rats indicate that the elimination of [(Gd-DTPA-phen)3Fe]- is significantly slower than that of Gd-DTPA and is correlated with a reduced volume of distribution. The low volume of distribution and the longer elimination time (T(e1/2)) suggest that the agent is confined to the blood compartment, so it could have an important potential as a blood pool contrast agent. The biodistribution profile of [(Gd-DTPA-phen)3Fe]- 2 h after injection indicates significantly higher concentrations of [(Gd-DTPA-phen)3Fe]- as compared with Gd-DTPA in kidney, liver, lungs, heart and spleen. The images obtained on rats by MR angiography show the enhancement of the abdominal blood vessels. The signal intensity reaches a maximum of 55% at 7 min post-contrast and remains around 25% after 90 min. MRI-histomorphological correlation studies of [Gd-DTPA-phen]- and [(Gd-DTPA-phen)3Fe]- showed that both agents displayed potent contrast enhancement in organs including the liver. The necrosis avidity tests indicated that, in contrast to the [Gd

  7. New developments and controversies in iron metabolism and iron chelation therapy

    PubMed Central

    Kontoghiorghe, Christina N; Kontoghiorghes, George J

    2016-01-01

    Iron is essential for all organisms including microbial, cancer and human cells. More than a quarter of the human population is affected by abnormalities of iron metabolism, mainly from iron deficiency and iron overload. Iron also plays an important role in free radical pathology and oxidative damage which is observed in almost all major diseases, cancer and ageing. New developments include the complete treatment of iron overload and reduction of morbidity and mortality in thalassaemia using deferiprone and selected deferiprone/deferoxamine combinations and also the use of the maltol iron complex in the treatment of iron deficiency anaemia. There is also a prospect of using deferiprone as a universal antioxidant in non iron overloaded diseases such as neurodegenerative, cardiovascular, renal, infectious diseases and cancer. New regulatory molecules of iron metabolism such as endogenous and dietary chelating molecules, hepcidin, mitochondrial ferritin and their role in health and disease is under evaluation. Similarly, new mechanisms of iron deposition, removal, distribution and toxicity have been identified using new techniques such as magnetic resonance imaging increasing our understanding of iron metabolic processes and the targeted treatment of related diseases. The uniform distribution of iron in iron overload between organs and within each organ is no longer valid. Several other controversies such as the toxicity impact of non transferrin bound iron vs injected iron, the excess levels of iron in tissues causing toxicity and the role of chelation on iron absorption need further investigation. Commercial interests of pharmaceutical companies and connections to leading journals are playing a crucial role in shaping worldwide medical opinion on drug sales and use but also patients’ therapeutic outcome and safety. Major controversies include the selection criteria and risk/benefit assessment in the use of deferasirox in thalassaemia and more so in idiopathic

  8. Quantitative determination of some pharmaceutical piperazine derivatives through complexation with iron(III) chloride.

    PubMed

    Abou-Attia, F M; Issa, Y M; Abdel-Gawad, F M; Abdel-Hamid, S M

    2003-08-01

    A simple, accurate and sensitive spectrophotometric method has been developed for the determination of three pharmaceutical piperazine derivatives, namely ketoconazole (KC), trimetazidine hydrochloride (TMH) and piribedil (PD). This method is based on the formation of yellow orange complexes between iron(III) chloride and the investigated drugs. The optimum reaction conditions, spectral characteristics, conditional stability constants and composition of the water soluble complexes have been established. The method permits the determination of KC, TMH and PD over a concentration range 1-15, 1-12 and 1-12 microg ml(-1), respectively. Sandell sensitivity is found to be 0.016, 0.013 and 0.013 microg cm(-2) for KC, TMH and PD, respectively. The method was sensitive, simple, reproducible and accurate within +/-1.5%. The method is applicable to the assay of the three drugs under investigation in different dosage forms and the results are in good agreement with those obtained by the official methods (USP and JP).

  9. Exploring the practicing-connections hypothesis: using gesture to support coordination of ideas in understanding a complex statistical concept.

    PubMed

    Son, Ji Y; Ramos, Priscilla; DeWolf, Melissa; Loftus, William; Stigler, James W

    2018-01-01

    In this article, we begin to lay out a framework and approach for studying how students come to understand complex concepts in rich domains. Grounded in theories of embodied cognition, we advance the view that understanding of complex concepts requires students to practice, over time, the coordination of multiple concepts, and the connection of this system of concepts to situations in the world. Specifically, we explore the role that a teacher's gesture might play in supporting students' coordination of two concepts central to understanding in the domain of statistics: mean and standard deviation. In Study 1 we show that university students who have just taken a statistics course nevertheless have difficulty taking both mean and standard deviation into account when thinking about a statistical scenario. In Study 2 we show that presenting the same scenario with an accompanying gesture to represent variation significantly impacts students' interpretation of the scenario. Finally, in Study 3 we present evidence that instructional videos on the internet fail to leverage gesture as a means of facilitating understanding of complex concepts. Taken together, these studies illustrate an approach to translating current theories of cognition into principles that can guide instructional design.

  10. Effects of a Telehealth Care Coordination Intervention on Perceptions of Health Care by Caregivers of Children With Medical Complexity: A Randomized Controlled Trial.

    PubMed

    Looman, Wendy S; Antolick, Megan; Cady, Rhonda G; Lunos, Scott A; Garwick, Ann E; Finkelstein, Stanley M

    2015-01-01

    The purpose of this study was to evaluate the effect of advanced practice registered nurse (APRN) telehealth care coordination for children with medical complexity (CMC) on family caregiver perceptions of health care. Families with CMC ages 2 to 15 years (N = 148) were enrolled in a three-armed, 30-month randomized controlled trial to test the effects of adding an APRN telehealth care coordination intervention to an existing specialized medical home for CMC. Satisfaction with health care was measured using items from the Consumer Assessment of Healthcare Providers and Systems survey at baseline and after 1 and 2 years. The intervention was associated with higher ratings on measures of the child's provider, provider communication, overall health care, and care coordination adequacy, compared with control subjects. Higher levels of condition complexity were associated with higher ratings of overall health care in some analyses. APRN telehealth care coordination for CMC was effective in improving ratings of caregiver experiences with health care and providers. Additional research with CMC is needed to determine which children benefit most from high-intensity care coordination. Copyright © 2015 National Association of Pediatric Nurse Practitioners. Published by Elsevier Inc. All rights reserved.

  11. Biogeochemical stability and reactions of iron-organic carbon complexes

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Adhikari, D.; Zhao, Q.; Dunham-Cheatham, S.; Das, K.; Mejia, J.; Huang, R.; Wang, X.; Poulson, S.; Tang, Y.; Obrist, D.; Roden, E. E.

    2017-12-01

    Our core hypothesis is that the degradation rate of soil organic carbon (OC) is governed by the amount of iron (Fe)-bound OC, and the ability of microbial communities to utilize OC as an energy source and electron shuttle for Fe reduction that in turn stimulates reductive release of Fe-bound labile dissolved OC. This hypothesis is being systematically evaluated using model Fe-OC complexes, natural soils, and microcosm system. We found that hematite-bound aliphatic C was more resistant to reduction release, although hematite preferred to sorb more aromatic C. Resistance to reductive release represents a new mechanism that aliphatic soil OC was stabilized by association with Fe oxide. In other studies, pyrogenic OC was found to facilitate the reduction of hematite, by enhancing extracellular electron transport and sorbing Fe(II). For ferrihydrite-OC co-precipitates, the reduction of Fe and release of OC was closely governed by the C/Fe ratio in the system. Based on the XPS, XANES and XAFS analysis, the transformation of Fe speciation was heterogeneous, depending on the conformation and composition of Fe-OC complexes. For natural soils, we investigated the quantity, characteristics, and reactivity of Fe-bound OC in soils collected from 14 forests in the United States. Fe-bound OC contributed up to 57.8% of total OC in the forest soils. Under the anaerobic conditions, the reduction of Fe was positively correlated to the electron accepting capacity of OC. Our findings highlight the closely coupled dynamics of Fe and OC, with broad implications on the turnover of OC and biogeochemical cycles of Fe.

  12. Preparation and surface functionalization of MWCNTs: study of the composite materials produced by the interaction with an iron phthalocyanine complex

    PubMed Central

    2011-01-01

    Carbon nanotubes [CNTs] were synthesized by the catalytic vapor decomposition method. Thereafter, they were functionalized in order to incorporate the oxygen groups (OCNT) and subsequently the amine groups (ACNT). All three CNTs (the as-synthesized and functionalized) underwent reaction with an iron organometallic complex (FePcS), iron(III) phthalocyanine-4,4",4",4""-tetrasulfonic acid, in order to study the nature of the interaction between this complex and the CNTs and the potential formation of nanocomposite materials. Transmission electronic microscopy, N2 adsorption at 77 K, thermogravimetric analysis, temperature-programmed desorption, and X-ray photoelectron spectroscopy were the characterization techniques employed to confirm the successful functionalization of CNTs as well as the type of interaction existing with the FePcS. All results obtained led to the same conclusion: There were no specific chemical interactions between CNTs and the fixed FePcS. PMID:21711881

  13. Preparation and surface functionalization of MWCNTs: study of the composite materials produced by the interaction with an iron phthalocyanine complex

    NASA Astrophysics Data System (ADS)

    Asedegbega-Nieto, Esther; Pérez-Cadenas, María; Carter, Jonathan; Anderson, James A.; Guerrero-Ruiz, Antonio

    2011-04-01

    Carbon nanotubes [CNTs] were synthesized by the catalytic vapor decomposition method. Thereafter, they were functionalized in order to incorporate the oxygen groups (OCNT) and subsequently the amine groups (ACNT). All three CNTs (the as-synthesized and functionalized) underwent reaction with an iron organometallic complex (FePcS), iron(III) phthalocyanine-4,4",4",4""-tetrasulfonic acid, in order to study the nature of the interaction between this complex and the CNTs and the potential formation of nanocomposite materials. Transmission electronic microscopy, N2 adsorption at 77 K, thermogravimetric analysis, temperature-programmed desorption, and X-ray photoelectron spectroscopy were the characterization techniques employed to confirm the successful functionalization of CNTs as well as the type of interaction existing with the FePcS. All results obtained led to the same conclusion: There were no specific chemical interactions between CNTs and the fixed FePcS.

  14. Ascorbate Efflux as a New Strategy for Iron Reduction and Transport in Plants*

    PubMed Central

    Grillet, Louis; Ouerdane, Laurent; Flis, Paulina; Hoang, Minh Thi Thanh; Isaure, Marie-Pierre; Lobinski, Ryszard; Curie, Catherine; Mari, Stéphane

    2014-01-01

    Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled 55Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds. PMID:24347170

  15. Ascorbate efflux as a new strategy for iron reduction and transport in plants.

    PubMed

    Grillet, Louis; Ouerdane, Laurent; Flis, Paulina; Hoang, Minh Thi Thanh; Isaure, Marie-Pierre; Lobinski, Ryszard; Curie, Catherine; Mari, Stéphane

    2014-01-31

    Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled (55)Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds.

  16. Synthesis, structure, biochemical, and docking studies of a new dinitrosyl iron complex [Fe2(μ-SC4H3SCH2)2(NO)4

    NASA Astrophysics Data System (ADS)

    Davidovich, P. B.; Fischer, A. I.; Korchagin, D. V.; Panchuk, V. V.; Shchukarev, A. V.; Garabadzhiu, A. V.; Belyaev, A. N.

    2015-07-01

    A new dinitrosyl iron complex of binuclear structure [Fe2(μ-S-2-methylthiophene)2(NO)4] was first synthesized and structurally characterized by XRD and theoretical methods. Using caspase-3 as an example it was shown that [Fe2(μ-S-2-methylthiophene)2(NO)4] and its analog [Fe2(μ-S-2-methylfurane)2(NO)4] can inhibit the action of active site cysteine proteins; the difference in inhibitory activity was explained by molecular docking studies. Biochemical and in silico studies give grounds that the biological activity of dinitrosyl iron complexes is a μ-SR bridging ligand structure function. Thus the rational design strategy of [Fe2(μ-SR)2(NO)4] complexes can be applied to make NO prodrugs with high affinity to therapeutically significant targets involved in cancer and inflammation.

  17. Systems analysis of iron metabolism: the network of iron pools and fluxes

    PubMed Central

    2010-01-01

    Background Every cell of the mammalian organism needs iron as trace element in numerous oxido-reductive processes as well as for transport and storage of oxygen. The very versatility of ionic iron makes it a toxic entity which can catalyze the production of radicals that damage vital membranous and macromolecular assemblies in the cell. The mammalian organism maintains therefore a complex regulatory network of iron uptake, excretion and intra-body distribution. Intracellular regulation in different cell types is intertwined with a global hormonal signalling structure. Iron deficiency as well as excess of iron are frequent and serious human disorders. They can affect every cell, but also the organism as a whole. Results Here, we present a kinematic model of the dynamic system of iron pools and fluxes. It is based on ferrokinetic data and chemical measurements in C57BL6 wild-type mice maintained on iron-deficient, iron-adequate, or iron-loaded diet. The tracer iron levels in major tissues and organs (16 compartment) were followed for 28 days. The evaluation resulted in a whole-body model of fractional clearance rates. The analysis permits calculation of absolute flux rates in the steady-state, of iron distribution into different organs, of tracer-accessible pool sizes and of residence times of iron in the different compartments in response to three states of iron-repletion induced by the dietary regime. Conclusions This mathematical model presents a comprehensive physiological picture of mice under three different diets with varying iron contents. The quantitative results reflect systemic properties of iron metabolism: dynamic closedness, hierarchy of time scales, switch-over response and dynamics of iron storage in parenchymal organs. Therefore, we could assess which parameters will change under dietary perturbations and study in quantitative terms when those changes take place. PMID:20704761

  18. Macrocyclic Receptor for Precious Gold, Platinum, or Palladium Coordination Complexes.

    PubMed

    Liu, Wenqi; Oliver, Allen G; Smith, Bradley D

    2018-06-06

    Two macrocyclic tetralactam receptors are shown to selectively encapsulate anionic, square-planar chloride and bromide coordination complexes of gold(III), platinum(II), and palladium(II). Both receptors have a preorganized structure that is complementary to its precious metal guest. The receptors do not directly ligate the guest metal center but instead provide an array of arene π-electron donors that interact with the electropositive metal and hydrogen-bond donors that interact with the outer electronegative ligands. This unique mode of supramolecular recognition is illustrated by six X-ray crystal structures showing receptor encapsulation of AuCl 4 - , AuBr 4 - , PtCl 4 -2 , or Pd 2 Cl 6 -2 . In organic solution, the 1:1 association constants correlate with specific supramolecular features identified in the solid state. Technical applications using these receptors are envisioned in a wide range of fields that involve precious metals, including mining, recycling, catalysis, nanoscience, and medicine.

  19. Trivalent scandium, yttrium and lanthanide complexes with thia-oxa and selena-oxa macrocycles and crown ether coordination.

    PubMed

    Champion, Martin J D; Farina, Paolo; Levason, William; Reid, Gillian

    2013-09-28

    Complexes of the oxa-thia macrocycles [18]aneO4S2, [15]aneO3S2 and the oxa-selena macrocycle [18]aneO4Se2 (L) of types [MCl2(L)]FeCl4 (M = Sc or Y) were prepared from [ScCl3(thf)3] or [YCl2(THF)5][YCl4(THF)2] and the ligand in anhydrous MeCN, using FeCl3 as a chloride abstractor. The [MI2(L)]I, [LaI3(L)] and [LuI2(L)]I have been prepared from the ligands and the appropriate anhydrous metal triiodide in MeCN. Complexes of type [LaI3(crown)] and [LuI2(crown)]I (crown = 18-crown-6, 15-crown-5) were made for comparison. Use of the metal iodide results in complexes with high solubility compared to the corresponding chlorides, although also with increased sensitivity to moisture. All complexes were characterised by microanalysis, IR, (1)H, (45)Sc and (77)Se NMR spectroscopy as appropriate. X-ray crystal structures are reported for [ScCl2([18]aneO4S2)][FeCl4], [ScI2([18]aneO4S2)]I, [YCl2(18-crown-6)]3[Y2Cl9], [YCl2([18]aneO4S2)][FeCl4], [LaI3(15-crown-5)], [LaI2(18-crown-6)(MeCN)]I, [LuI(18-crown-6)(MeCN)2]I2, [Lu(15-crown-5)(MeCN)2(OH2)]I3, [LaI3([18]aneO4S2)], [LaI([18]aneO4S2)(OH2)]I2, [LaI3([18]aneO4Se2)] and [LuI2([18]aneO4Se2)]I. In each complex all the neutral donor atoms of the macrocycles are coordinated to the metal centre, showing very rare examples of these oxophilic metal centres coordinated to thioether groups, and the first examples of coordinated selenoether donors. In some cases MeCN or adventitious water displaces halide ligands, but not the S/Se donors from La or Lu complexes. A complex of the oxa-tellura macrocycle [18]aneO4Te2, [ScCl2([18]aneO4Te2)][FeCl4] was isolated, but is unstable in MeCN solution, depositing elemental Te. YCl3 and 18-crown-6 produced [YCl2(18-crown-6)]3[Y2Cl9], the asymmetric unit of which contains two cations with a trans-YCl2 arrangement and a third with a cis-YCl2 group.

  20. Role of coordination geometry in dictating the barrier to hydride migration in d6 square-pyramidal iridium and rhodium pincer complexes.

    PubMed

    Findlater, Michael; Cartwright-Sykes, Alison; White, Peter S; Schauer, Cynthia K; Brookhart, Maurice

    2011-08-10

    Syntheses of the olefin hydride complexes [(POCOP)M(H)(olefin)][BAr(f)(4)] (6a-M, M = Ir or Rh, olefin = C(2)H(4); 6b-M, M = Ir or Rh, olefin = C(3)H(6); POCOP = 2,6-bis(di-tert-butylphosphinito)benzene; BAr(f) = tetrakis(3,5-trifluoromethylphenyl)borate) are reported. A single-crystal X-ray structure determination of 6b-Ir shows a square-pyramidal coordination geometry for Ir, with the hydride ligand occupying the apical position. Dynamic NMR techniques were used to characterize these complexes. The rates of site exchange between the hydride and the olefinic hydrogens yielded ΔG(++) = 15.6 (6a-Ir), 16.8 (6b-Ir), 12.0 (6a-Rh), and 13.7 (6b-Rh) kcal/mol. The NMR exchange data also established that hydride migration in the propylene complexes yields exclusively the primary alkyl intermediate arising from 1,2-insertion. Unexpectedly, no averaging of the top and bottom faces of the square-pyramidal complexes is observed in the NMR spectra at high temperatures, indicating that the barrier for facial equilibration is >20 kcal/mol for both the Ir and Rh complexes. A DFT computational study was used to characterize the free energy surface for the hydride migration reactions. The classical terminal hydride complexes, [M(POCOP)(olefin)H](+), are calculated to be the global minima for both Rh and Ir, in accord with experimental results. In both the Rh ethylene and propylene complexes, the transition state for hydride migration (TS1) to form the agostic species is higher on the energy surface than the transition state for in-place rotation of the coordinated C-H bond (TS2), while for Ir, TS2 is the high point on the energy surface. Therefore, only for the case of the Rh complexes is the NMR exchange rate a direct measure of the hydride migration barrier. The trends in the experimental barriers as a function of M and olefin are in good agreement with the trends in the calculated exchange barriers. The calculated barriers for the hydride migration reaction in the Rh complexes

  1. Exploring Iron Silicate Precursors of Ancient Iron Formations through Rock Record, Laboratory and Field Analogue Investigations

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Rasmussen, B.; Muhling, J.; Benzerara, K.; Jezequel, D.; Cosmidis, J.; Templeton, A. S.

    2016-12-01

    In direct contrast to today's oceans, iron-rich chemical precipitates dominate the deep marine sedimentary record > 2.3 billion years ago. The deposition of these minerals resulted in massive iron formations and indicate that the ocean was previously ferruginous and largely anoxic. To precipitate and concentrate iron in the sediments, many hypotheses have centered on the oxidation of soluble Fe(II) to solid Fe(III)-oxyhydroxides; these ideas have stimulated extensive research using iron-oxidizing bacteria to produce Fe(III)-oxides and trace metal sorption experiments on Fe(III)-oxides, leading to inferences of trace metal availability and implications for enzymatic and microbial evolution as well as pO2 levels and seawater chemistry. However, recent discoveries of disseminated iron-silicate nanoparticles in early-silicifying chert indicate that iron-silicates may have instead been the primary precipitates from these Archean ferruginous oceans (Rasmussen et al, 2015). Considering the significant paradigm shift this discovery implies for interpretations of Archean elemental cycling, redox state and potential microbial metabolisms, we investigated these iron-silicate inclusions and their implications for ancient seawater chemistry in a multi-faceted approach using spectroscopic- and diffraction-based techniques. The crystal structure, Fe oxidation state and Fe coordination environment of iron-silicate nanoparticles have been interrogated using microscale X-ray absorption spectroscopy, TEM and nanoscale scanning transmission X-ray microscopy. To further explore the chemical and potential biological controls on iron-silicate formation, we have also performed laboratory experiments to mimic Archean seawater and precipitate iron-bearing silicate minerals under abiotic conditions and in the presence of iron-oxidizing bacteria. In a complementary study, sediments from a natural Archean analogue system were sampled to determine if iron-silicate minerals form in Mexican

  2. Chitosan-bound pyridinedicarboxylate Ni(II) and Fe(III) complex biopolymer films as waste water decyanidation agents.

    PubMed

    Adewuyi, Sheriff; Jacob, Julianah Modupe; Olaleye, Oluwatoyin Omolola; Abdulraheem, Taofiq Olanrewaju; Tayo, Jubril Ayopo; Oladoyinbo, Fatai Oladipupo

    2016-10-20

    Chitosan is a biopolymer with immense structural advantage for chemical and mechanical modifications to generate novel properties, functions and applications. This work depicts new pyridinedicarboxylicacid (PDC) crosslinked chitosan-metal ion films as veritable material for cyanide ion removal from aqueous solution. The PDC-crosslinked chitosan-metal films (PDC-Chit-Ni(II) and PDC-Chit-Fe(III)) were formed by complexing PDC-crosslinked chitosan film with anhydrous nickel(II) and iron(III) chloride salts respectively. The PDC-Chit and its metal films were characterized employing various analytical and spectroscopic techniques. The FT-IR, UV-vis and the XRD results confirm the presence of the metal ions in the metal coordinated PDC-crosslinked chitosan film. The surface morphological difference of PDC-Chit-Ni(II) film before and after decyanidation was explored with scanning electron microscopy. Furthermore, the quantitative amount of nickel(II) and iron(III) present in the complex were determined using Atomic Absorption Spectrophotometer as 32.3 and 37.2μg/g respectively which portends the biopolymer film as a good complexing agent. Removal of cyanide from aqueous solution with PDC-Chit, PDC-Chit-Ni(II) and PDC-Chit-Fe(III) films was studied with batch equilibrium experiments. At equilibrium, decyanidation capacity (DC) followed the order PDC-Chit-Ni (II)≈PDC-Chit-Fe(III)>PDC-Chit. PDC-Chit-Ni(II) film gave 100% CN(-) removal within 40min decyanidation owing to favorable coordination geometry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Timed non-transferrin bound iron determinations probe the origin of chelatable iron pools during deferiprone regimens and predict chelation response

    PubMed Central

    Aydinok, Yesim; Evans, Patricia; Manz, Chantal Y.; Porter, John B.

    2012-01-01

    Background Plasma non-transferrin bound iron refers to heterogeneous plasma iron species, not bound to transferrin, which appear in conditions of iron overload and ineffective erythropoiesis. The clinical utility of non-transferrin bound iron in predicting complications from iron overload, or response to chelation therapy remains unproven. We undertook carefully timed measurements of non-transferrin bound iron to explore the origin of chelatable iron and to predict clinical response to deferiprone. Design and Methods Non-transferrin bound iron levels were determined at baseline and after 1 week of chelation in 32 patients with thalassemia major receiving deferiprone alone, desferrioxamine alone, or a combination of the two chelators. Samples were taken at baseline, following a 2-week washout without chelation, and after 1 week of chelation, this last sample being taken 10 hours after the previous evening dose of deferiprone and, in those receiving desferrioxamine, 24 hours after cessation of the overnight subcutaneous infusion. Absolute or relative non-transferrin bound iron levels were related to transfusional iron loading rates, liver iron concentration, 24-hour urine iron and response to chelation therapy over the subsequent year. Results Changes in non-transferrin bound iron at week 1 were correlated positively with baseline liver iron, and inversely with transfusional iron loading rates, with deferiprone-containing regimens but not with desferrioxamine monotherapy. Changes in week 1 non-transferrin bound iron were also directly proportional to the plasma concentration of deferiprone-iron complexes and correlated significantly with urine iron excretion and with changes in liver iron concentration over the next 12 months. Conclusions The widely used assay chosen for this study detects both endogenous non-transferrin bound iron and the iron complexes of deferiprone. The week 1 increments reflect chelatable iron derived both from liver stores and from red cell

  4. Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms.

    PubMed

    Kelson, Andrew B; Carnevali, Maia; Truong-Le, Vu

    2013-10-01

    Microbes have evolved elaborate iron-acquisition systems to sequester iron from the host environment using siderophores and heme uptake systems. Gallium(III) is structurally similar to iron(III), except that it cannot be reduced under physiological conditions, therefore gallium has the potential to serve as an iron analog, and thus an anti-microbial. Because Ga(III) can bind to virtually any complex that binds Fe(III), simple gallium salts as well as more complex siderophores and hemes are potential carriers to deliver Ga(III) to the microbes. These gallium complexes represent a new class of anti-infectives that is different in mechanism of action from conventional antibiotics. Simple gallium salts such as gallium nitrate, maltolate, and simple gallium siderophore complexes such as gallium citrate have shown good antibacterial activities. The most studied complex has been gallium citrate, which exhibits broad activity against many Gram negative bacteria at ∼1-5μg/ml MICs, strong biofilm activity, low drug resistance, and efficacy in vivo. Using the structural features of specific siderophore and heme made by pathogenic bacteria and fungi, researchers have begun to evaluate new gallium complexes to target key pathogens. This review will summarize potential iron-acquisition system targets and recent research on gallium-based anti-infectives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Spectroscopic definition of the biferrous and biferric sites of de novo designed 4-helix bundle DFsc peptides: Implications for O2 reactivity of binuclear non-heme iron enzymes

    PubMed Central

    Bell, Caleb B.; Calhoun, Jennifer R.; Bobyr, Elena; Wei, Pin-pin; Hedman, Britt; Hodgson, Keith O.; DeGrado, William F.; Solomon, Edward I.

    2009-01-01

    DFsc is a single chain de novo designed 4-helix bundle peptide that mimics the core protein fold and primary ligand set of various binuclear non-heme iron enzymes. DFsc and the E11D, Y51L and Y18F single amino acid variants have been studied using a combination of near-IR circular dichroism (CD), magnetic circular dichroism (MCD), variable temperature variable field MCD (VTVH MCD) and x-ray absorption (XAS) spectroscopies. The biferrous sites are all weakly antiferromagnetically coupled with μ-1,3 carboxylate bridges and one 4-coordinate and one 5-coordinate Fe, very similar to the active site of Class I ribonucleotide reductase (R2) providing open coordination positions on both irons for dioxygen to bridge. From perturbations of the MCD and VTVH MCD the iron proximal to Y51 can be assigned as the 4-coordinate center and XAS results show that Y51 is not bound to this iron in the reduced state. The two open coordination positions on one iron in the biferrous state would become occupied by dioxygen and Y51 along the O2 reaction coordinate. Subsequent binding of Y51 functions as an internal spectral probe of the O2 reaction and as a proton source that would promote loss of H2O2. Coordination by a ligand that functions as a proton source could be a structural mechanism used by natural binuclear iron enzymes to drive their reactions past peroxo biferric level intermediates. PMID:19090676

  6. Jahn-Teller distortion in the phosphorescent excited state of three-coordinate Au(I) phosphine complexes.

    PubMed

    Barakat, Khaldoon A; Cundari, Thomas R; Omary, Mohammad A

    2003-11-26

    DFT calculations were used to optimize the phosphorescent excited state of three-coordinate [Au(PR3)3]+ complexes. The results indicate that the complexes rearrange from their singlet ground-state trigonal planar geometry to a T-shape in the lowest triplet luminescent excited state. The optimized structure of the exciton contradicts the structure predicted based on the AuP bonding properties of the ground-state HOMO and LUMO. The rearrangement to T-shape is a Jahn-Teller distortion because an electron is taken from the degenerate e' (5dxy, 5dx2-y2) orbital upon photoexcitation of the ground-state D3h complex. The calculated UV absorption and visible emission energies are consistent with the experimental data and explain the large Stokes' shifts while such correlations are not possible in optimized models that constrained the exciton to the ground-state trigonal geometry.

  7. First examples of ternary lanthanide 5-aminoisophthalate complexes: Hydrothermal syntheses and structures of lanthanide coordination polymers with 5-aminoisophthalate and oxalate

    NASA Astrophysics Data System (ADS)

    Liu, Chong-Bo; Wen, Hui-Liang; Tan, Sheng-Shui; Yi, Xiu-Guang

    2008-05-01

    Two new lanthanide coordination polymers with mixed-carboxylates, [Ln(OX)(HAPA)(H 2O)] n[Ln = Eu ( 1), Ho ( 2); H 2APA = 5-aminoisophthalic acid; OX = oxalate] were obtained by hydrothermal reactions, and characterized by single crystal X-ray diffraction, elemental analysis and IR spectra. Complexes 1 and 2 are both 3-D supramolecular structure, in which lanthanide ions are bridged by oxalate and 5-aminoisophthalate ligands forming 2-D metal-organic framework, and 2-D networks are further architectured to form 3-D supramolecular structures by hydrogen bonds. The two carboxylate groups of H 2APA ligand are all deprotonated and exhibit chelating and bridging bidentate coordination modes, respectively, and the amino group in HAPA presents - NH3+ in the titled complexes. The thermogravimetric analysis was carried out to examine the thermal stability of the titled complexes. And the photoluminescence property of 1 was investigated.

  8. Iron does not cause arrhythmias in the guinea pig model of transfusional iron overload.

    PubMed

    Kaiser, Lana; Davis, John; Patterson, Jon; Boyd, Ryan F; Olivier, N Bari; Bohart, George; Schwartz, Kenneth A

    2007-08-01

    Cardiac events, including heart failure and arrhythmias, are the leading cause of death in patients with beta thalassemia. Although cardiac arrhythmias in humans are believed to result from iron overload, excluding confounding factors in the human population is difficult. The goal of the current study was to determine whether cardiac arrhythmias occurred in the guinea pig model of secondary iron overload. Electrocardiograms were recorded by using surgically implanted telemetry devices in guinea pigs loaded intraperitoneally with iron dextran (test animals) or dextran alone (controls). Loading occurred over approximately 6 wk. Electrocardiograms were recorded for 1 wk prior to loading, throughout loading, and for approximately 4 wk after loading was complete. Cardiac and liver iron concentrations were significantly increased in the iron-loaded animals compared with controls and were in the range of those reported for humans with thalassemia. Arrhythmias were rare in both iron-loaded and control guinea pigs. No life-threatening arrhythmias were detected in either group. These data suggest that iron alone may be insufficient to cause cardiac arrhythmias in the iron-loaded guinea pig model and that arrhythmias detected in human patients with iron overload may be the result of a complex interplay of factors.

  9. Diverse CdII coordination complexes derived from bromide isophthalic acid binding with auxiliary N-donor ligands

    NASA Astrophysics Data System (ADS)

    Tang, Meng; Dong, Bao-Xia; Wu, Yi-Chen; Yang, Fang; Liu, Wen-Long; Teng, Yun-Lei

    2016-12-01

    The coordination characteristics of 4-bromoisophthalic acid (4-Br-H2ip) have been investigated in a series of CdII-based frameworks. Hydrothermal reactions of CdII salts and 4-Br-H2ip together with flexible or semiflexible N-donor auxiliary ligands resulted in the formation of four three-dimensional coordination complexes with diverse structures: {Cd(bix)0.5(bix)0.5(4-Br-ip)]·H2O}n (1), [Cd(bbi)0.5(bbi)0.5(4-Br-ip)]n (2), {[Cd(btx)0.5(4-Br-ip)(H2O)]·0.5CH3OH·H2O}n (3) and {[Cd(bbt)0.5(4-Br-ip)(H2O)]·3·5H2O}n (4). These compounds were characterized by elemental analyses, IR spectra, single-crystal and powder X-ray diffraction. They displayed diverse structures depending on the configuration of the 4-connected metal node, the coordination mode of the 4-Br-H2ip, the coordination ability and conformationally flexibility of the N-donor auxiliary. Compound 1 exhibits 3-fold interpenetrated 66 topology and compound 2 has a 412 topology. Compounds 3-4 have similar 3D pillar-layered structures based on 3,4-connected binodal net with the Schläfli symbol of (4·38). The thermal stabilities and photoluminescence properties of them were discussed in detail.

  10. Disassembling Iron Availability to Phytoplankton

    PubMed Central

    Shaked, Yeala; Lis, Hagar

    2012-01-01

    The bioavailability of iron to microorganisms and its underlying mechanisms have far reaching repercussions to many natural systems and diverse fields of research, including ocean biogeochemistry, carbon cycling and climate, harmful algal blooms, soil and plant research, bioremediation, pathogenesis, and medicine. Within the framework of ocean sciences, short supply and restricted bioavailability of Fe to phytoplankton is thought to limit primary production and curtail atmospheric CO2 drawdown in vast ocean regions. Yet a clear-cut definition of bioavailability remains elusive, with elements of iron speciation and kinetics, phytoplankton physiology, light, temperature, and microbial interactions, to name a few, all intricately intertwined into this concept. Here, in a synthesis of published and new data, we attempt to disassemble the complex concept of iron bioavailability to phytoplankton by individually exploring some of its facets. We distinguish between the fundamentals of bioavailability – the acquisition of Fe-substrate by phytoplankton – and added levels of complexity involving interactions among organisms, iron, and ecosystem processes. We first examine how phytoplankton acquire free and organically bound iron, drawing attention to the pervasiveness of the reductive uptake pathway in both prokaryotic and eukaryotic autotrophs. Turning to acquisition rates, we propose to view the availability of various Fe-substrates to phytoplankton as a spectrum rather than an absolute “all or nothing.” We then demonstrate the use of uptake rate constants to make comparisons across different studies, organisms, Fe-compounds, and environments, and for gaging the contribution of various Fe-substrates to phytoplankton growth in situ. Last, we describe the influence of aquatic microorganisms on iron chemistry and fate by way of organic complexation and bio-mediated redox transformations and examine the bioavailability of these bio-modified Fe species. PMID:22529839

  11. Iron(II) complexes of new hexadentate 1,1,1-tris-(iminomethyl)ethane podands, and their 7-methyl-1,3,5-triazaadamantane rearrangement products.

    PubMed

    Diener, Sara A; Santoro, Amedeo; Kilner, Colin A; Loughrey, Jonathan J; Halcrow, Malcolm A

    2012-04-07

    New iron(II) podand complexes have been prepared, by condensation of 2-(aminomethyl)-2-methyl-1,3-diaminopropane with 3 equiv of a heterocyclic aldehyde in the presence of hydrated Fe[BF(4)](2) or Fe[ClO(4)](2) as templates. The 2-(aminomethyl)-2-methyl-1,3-diaminopropane is prepared in situ by deprotonation of its trihydrochloride salt. The chloride must be removed from these reactions by precipitation with silver, to avoid the formation of the alternative 2,4,6-trisubstituted-7-methyl-1,3,5-triazaadamantane condensation products, or their FeCl(2) adducts. The crystal structures of two 2,4,6-tri(pyridyl)-7-methyl-1,3,5-triazaadamantane-containing species are presented, and contain two different geometric isomers of this tricyclic ring with three equatorial, or two equatorial and one axial, pyridyl substituents. Both structures feature strong C-HX (X = Cl or F) hydrogen bonding from the aminal C-H groups in the triazaadamantane ring. Five iron(II) podand complexes were successfully obtained, all of which contain low-spin iron centres.

  12. Roles of Acetone and Diacetone Alcohol in Coordination and Dissociation Reactions of Uranyl Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Daniel; Schoendorff, George E.; Van Stipdonk, Michael J.

    2012-12-03

    Combined collision-induced dissociation mass-spectrometry experiments and DFT calculations were employed to elucidate the molecular structure of "hypercoordinated" species and the energetics of water-elimination reactions of uranyl acetone complexes observed in earlier work (Rios, D.; Rutkowski, P. X.; Van Stipdonk, M. J.; Gibson, J. K. Inorg. Chem. 2011, 50, 4781). It is shown that the "hypercoordinated" species contain diacetone alcohol ligands bonded in either bidentate or monodentate fashion, which are indistinguishable from (acetone)2 in mass spectrometry. Calculations confirm that four diacetone ligands can form stable complexes, but that the effective number of atoms coordinating with uranium in the equatorial plane doesmore » not exceed five. Diacetone alcohol ligands are shown to form mesityl oxide ligands and alkoxide species through the elimination of water, providing an explanation for the observed water-elimination reactions.« less

  13. Insight into magnesium coordination environments in benzoate and salicylate complexes through 25Mg solid-state NMR spectroscopy.

    PubMed

    Burgess, Kevin M N; Xu, Yang; Leclerc, Matthew C; Bryce, David L

    2013-08-01

    We report on the (25)Mg solid-state nuclear magnetic resonance (NMR) characterization of a series of magnesium complexes featuring Mg(2+) ions in organic coordination environments. Six compounds have been synthesized with benzoate and salicylate ligands, which are typically used as linkers in metal organic frameworks (MOFs). The use of ultrahigh-field solid-state NMR has revealed a relatively large range of values for the (25)Mg quadrupolar coupling constant, CQ((25)Mg), in these compounds. In contrast to some previously studied inorganic Mg(2+) complexes, the values of CQ((25)Mg) in organic Mg(2+) complexes are well rationalized by the degree of octahedral strain of the "MgO6" coordination polyhedra. (13)C and (25)Mg isotropic chemical shifts were also found to be sensitive to the binding mode of the carboxylate ligands. The experimental findings are corroborated by gauge-including projector-augmented-wave (GIPAW) density functional theory (DFT) computations, and these have allowed for an interpretation of the experimentally observed trend in the CQ((25)Mg) values and for the visualization of the EFG tensor principal components with respect to the molecular structure. These new insights may prove to be valuable for the understanding and interpretation of (25)Mg NMR data for Mg(2+) ions in organic binding environments such as those found in MOFs and protein-divalent metal binding sites.

  14. Current understanding of iron homeostasis.

    PubMed

    Anderson, Gregory J; Frazer, David M

    2017-12-01

    Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.

  15. Pediatric Care Coordination: Lessons Learned and Future Priorities.

    PubMed

    Cady, Rhonda G; Looman, Wendy S; Lindeke, Linda L; LaPlante, Bonnie; Lundeen, Barbara; Seeley, Amanda; Kautto, Mary E

    2015-09-30

    A fundamental component of the medical home model is care coordination. In Minnesota, this model informed design and implementation of the state's health care home (HCH) model, a key element of statewide healthcare reform legislation. Children with medical complexity (CMC) often require care from multiple specialists and community resources. Coordinating this multi-faceted care within the HCH is challenging. This article describes the need for specialized models of care coordination for CMC. Two models of care coordination for CMC were developed to address this challenge. The TeleFamilies Model of Pediatric Care Coordination uses an advanced practice registered nurse care (APRN) coordinator embedded within an established HCH. The PRoSPer Model of Pediatric Care Coordination uses a registered nurse/social worker care coordinator team embedded within a specialty care system. We describe key findings from implementation of these models, and conclude with lessons learned. Replication of the models is encouraged to increase the evidence base for care coordination for the growing population of children with medical complexities.

  16. Heterobimetallic Complexes That Bond Vanadium to Iron, Cobalt, and Nickel.

    PubMed

    Clouston, Laura J; Bernales, Varinia; Cammarota, Ryan C; Carlson, Rebecca K; Bill, Eckhard; Gagliardi, Laura; Lu, Connie C

    2015-12-21

    Zero-valent iron, cobalt, and nickel were installed into the metalloligand V[N(o-(NCH2P((i)Pr)2)C6H4)3] (1, VL), generating the heterobimetallic trio FeVL (2), CoVL (3), and NiVL (4), respectively. In addition, the one-electron-oxidized analogues [FeVL]X ([2(ox)]X, where X(-) = BPh4 or PF6) and [CoVL]BPh4 ([3(ox)]BPh4) were prepared. The complexes were characterized by a host of physical methods, including cyclic voltammetry, X-ray crystallography, magnetic susceptibility, electronic absorption, NMR, electron paramagnetic resonance (EPR), and Mössbauer spectroscopies. The CoV and FeV heterobimetallic compounds have short M-V bond lengths that are consistent with M-M multiple bonding. As revealed by theoretical calculations, the M-V bond is triple in 2, 2(ox), and 3(ox), double in 3, and dative (Ni → V) in 4. The (d-d)(10) species, 2 and 3(ox), are diamagnetic and exhibit large diamagnetic anisotropies of -4700 × 10(-36) m(3)/molecule. Complexes 2 and 3(ox) are also characterized by intense visible bands at 760 and 610 nm (ε > 1000 M(-1) cm(-1)), respectively, which correspond to an intermetal (M → V) charge-transfer transition. Magnetic susceptibility measurements and EPR characterization establish S = (1)/2 ground states for (d-d)(9) 2(ox) and (d-d)(11) 3, while (d-d)(12) 4 is S = 1 based on Evans' method.

  17. A Systems Biology Approach to Iron Metabolism

    PubMed Central

    Chifman, J.; Laubenbacher, R.; Torti, S.V.

    2015-01-01

    Iron is critical to the survival of almost all living organisms. However, inappropriately low or high levels of iron are detrimental and contribute to a wide range of diseases. Recent advances in the study of iron metabolism have revealed multiple intricate pathways that are essential to the maintenance of iron homeostasis. Further, iron regulation involves processes at several scales, ranging from the subcellular to the organismal. This complexity makes a systems biology approach crucial, with its enabling technology of computational models based on a mathematical description of regulatory systems. Systems biology may represent a new strategy for understanding imbalances in iron metabolism and their underlying causes. PMID:25480643

  18. Interactions between iron and organic matter may influence the fate of permafrost carbon in the Arctic

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Trusiak, A.; Ward, C.; Kling, G. W.; Tfaily, M.; Paša-Tolić, L.; Noel, V.; Bargar, J.

    2017-12-01

    The ongoing thawing of permafrost soils is the only environmental change that allows tremendous stores of organic carbon (C) to be converted into carbon dioxide (CO2) on decadal time scales, thus providing a positive and accelerating feedback to global warming. Evidence suggests that iron enhances abiotic reactions that convert dissolved organic matter (DOM) to CO2 in dark soils and in sunlit surface waters depending on its redox state and association with DOM (i.e., iron-DOM complexation). However, the complexation of iron in surface waters and soils remains too poorly understood to predict how iron influences the rates of oxidation of DOM to CO2. To address this knowledge gap, we characterized iron-DOM complexation in iron-rich soil and surface waters of the Arctic, in combination with measurements of DOM oxidation to CO2. These waters contain high concentrations of dissolved iron and DOM (up to 1 and 2 mM, respectively), and low concentrations of other potential ligands for iron such as sulfide, carbonate, chloride, or bromide. Ultra-high resolution mass spectrometry (FT-ICR MS) was used to identify ligands for iron within the DOM pool, and synchrotron based X-ray analysis (XAS and EXAFS) was used to assess iron's oxidation state, to detect iron complexation, and to constrain the chemical composition of the complexes. Across a natural gradient of dissolved iron and DOM concentrations, many potential ligands were identified within DOM that are expected to complex with iron (e.g., aromatic acids). EXAFS showed substantial complexation of reduced ferrous iron (Fe(II)) to DOM in arctic soil waters, on the basis of comparison to Fe(II)-DOM reference spectra. Identification of iron complexed to DOM in soil waters is consistent with strongly co-varying iron and DOM concentrations in arctic soil and surface waters, and supports our hypothesis that complexation of iron by DOM influences dark and light redox reactions that oxidize DOM to CO2. Understanding the molecular

  19. Heterobimetallic Silver-Iron Complexes Involving Fe(CO)5 Ligands.

    PubMed

    Wang, Guocang; Ceylan, Yavuz S; Cundari, Thomas R; Dias, H V Rasika

    2017-10-11

    Iron(0) pentacarbonyl is an organometallic compound with a long history. It undergoes carbonyl displacement chemistry with various donors (L), leading to molecules of the type Fe(CO) x (L) 5-x . The work reported here illustrates that Fe(CO) 5 can also act as a ligand. The reaction between Fe(CO) 5 with the silver salts AgSbF 6 and Ag[B{3,5-(CF 3 ) 2 C 6 H 3 } 4 ] under appropriate conditions resulted in the formation of [(μ-H 2 O)AgFe(CO) 5 ] 2 [SbF 6 ] 2 and [B{3,5-(CF 3 ) 2 C 6 H 3 } 4 ]AgFe(CO) 5 , respectively, featuring heterobimetallic {Ag-Fe(CO) 5 } + fragments. The treatment of [B{3,5-(CF 3 ) 2 C 6 H 3 } 4 ]AgFe(CO) 5 with 4,4'-dimethyl-2,2'-bipyridine (Me 2 Bipy) and Fe(CO) 5 afforded a heterobimetallic [(Me 2 Bipy)AgFe(CO) 5 ][B{3,5-(CF 3 ) 2 C 6 H 3 } 4 ] species with a Ag-Fe(CO) 5 bond and a heterotrimetallic [{Fe(CO) 5 } 2 (μ-Ag)][B{3,5-(CF 3 ) 2 C 6 H 3 } 4 ] with a (CO) 5 Fe-Ag-Fe(CO) 5 core, respectively, illustrating that it is possible to manipulate the coordination sphere at silver while keeping the Ag-Fe bond intact. The chemistry of [B{3,5-(CF 3 ) 2 C 6 H 3 } 4 ]AgFe(CO) 5 with Et 2 O and PMes 3 (Mes = 2,4,6-trimethylphenyl) has also been investigated, which led to [(Et 2 O) 3 Ag][B{3,5-(CF 3 ) 2 C 6 H 3 } 4 ] and [(Mes 3 P) 2 Ag][B{3,5-(CF 3 ) 2 C 6 H 3 } 4 ] with the displacement of the Fe(CO) 5 ligand. X-ray structural and spectroscopic data of new molecules as well as results of computational analyses are presented. The Fe-Ag bond distances of these metal-only Lewis pairs range from 2.5833(4) to 2.6219(5) Å. These Ag-Fe bonds are of primarily an ionic/electrostatic nature with a modest amount of charge transfer between Ag + and Fe(CO) 5 . The ν̅(CO) bands of the molecules with Ag-Fe(CO) 5 bonds show a notable blue shift relative to those observed for free Fe(CO) 5 , indicating a significant reduction in Fe→CO back-bonding upon its coordination to silver(I).

  20. Care coordination of multimorbidity: a scoping study

    PubMed Central

    Burau, Viola

    2015-01-01

    Background A key challenge in healthcare systems worldwide is the large number of patients who suffer from multimorbidity; despite this, most systems are organized within a single-disease framework. Objective The present study addresses two issues: the characteristics and preconditions of care coordination for patients with multimorbidity; and the factors that promote or inhibit care coordination at the levels of provider organizations and healthcare professionals. Design The analysis is based on a scoping study, which combines a systematic literature search with a qualitative thematic analysis. The search was conducted in November 2013 and included the PubMed, CINAHL, and Web of Science databases, as well as the Cochrane Library, websites of relevant organizations and a hand-search of reference lists. The analysis included studies with a wide range of designs, from industrialized countries, in English, German and the Scandinavian languages, which focused on both multimorbidity/comorbidity and coordination of integrated care. Results The analysis included 47 of the 226 identified studies. The central theme emerging was complexity. This related to both specific medical conditions of patients with multimorbidity (case complexity) and the organization of care delivery at the levels of provider organizations and healthcare professionals (care complexity). Conclusions In terms of how to approach care coordination, one approach is to reduce complexity and the other is to embrace complexity. Either way, future research must take a more explicit stance on complexity and also gain a better understanding of the role of professionals as a prerequisite for the development of new care coordination interventions. PMID:29090157