Science.gov

Sample records for iron corrosion products

  1. Diffusion of corrosion products of iron in compacted bentonite

    SciTech Connect

    Idemitsu, K.; Furuya, H.; Inagaki, Y.

    1993-12-31

    Carbon steel is one of the candidate overpack materials for high-level waste disposal. The corrosion rate of carbon steel is reduced by the presence of buffer materials such as bentonite and seems to be affected by the diffusion of corrosive materials and corrosion products through the buffer material. The apparent diffusivities of corrosion product of iron were measured in some bentonite specimens in contact with carbon steel. The apparent diffusivities of iron were also measured without carbon steel. The apparent diffusivities of iron were also measured without carbon steel for comparison. The apparent diffusivities of corrosion product were on the order of 10{sup -12} m{sup 2}/s and showed a tendency to decrease with increasing density of the bentonite specimen. There was no significant effect of silica sand on the apparent diffusivities. The apparent diffusivities of iron in the system without carbon steel were in the range of 10{sup -14} m{sup 2}/s and showed a tendency to increase with increasing silica sand content. The difference of the diffusivities between corrosion product and iron without carbon steel seems to be due to the difference of diffusing species. The color of the corrosion product was dark-green during contact with bentonite specimens and became red on exposure to air in a few minutes. Gas bubbles were also observed in the corrosion product. This suggests hydrogen generation during corrosion of the carbon steel. Thus the diffusing species seems to be in a reduced state, probably ferrous ion. On the other hand, the diffusing species of iron without carbon steel was probably a ferric hydroxide complex that was negatively charged. This suggests that ferrous ion could diffuse in the surface water adsorbed on bentonite, while ferric complex was excluded.

  2. Degradation of trichloronitromethane by iron water main corrosion products.

    PubMed

    Lee, Jeong-Yub; Pearson, Carrie R; Hozalski, Raymond M; Arnold, William A

    2008-04-01

    Halogenated disinfection byproducts (DBPs) may undergo reduction reactions at the corroded pipe wall in drinking water distribution systems consisting of cast or ductile iron pipe. Iron pipe corrosion products were obtained from several locations within two drinking water distribution systems. Crystalline-phase composition of freeze-dried corrosion solids was analyzed using X-ray diffraction, and ferrous and ferric iron contents were determined via multiple extraction methods. Batch experiments demonstrated that trichloronitromethane (TCNM), a non-regulated DBP, is rapidly reduced in the presence of pipe corrosion solids and that dissolved oxygen (DO) slows the reaction. The water-soluble iron content of the pipe solids is the best predictor of TCNM reaction rate constant. These results indicate that highly reactive DBPs that are able to compete with oxygen and residual disinfectant for ferrous iron may be attenuated via abiotic reduction in drinking water distribution systems. PMID:18207489

  3. Speciation and distribution of vanadium in drinking water iron pipe corrosion by-products

    SciTech Connect

    Gerke, Tammie L.; Scheckel, Kirk G.; Maynard, J. Barry

    2010-11-12

    Vanadium (V) when ingested from drinking water in high concentrations (> 15 {micro}g L{sup -1}) is a potential health risk and is on track to becoming a regulated contaminant. High concentrations of V have been documented in lead corrosion by-products as Pb{sub 5}(V{sup 5+}O{sub 4}){sub 3}Cl (vanadinite) which, in natural deposits is associated with iron oxides/oxyhydroxides, phases common in iron pipe corrosion by-products. The extent of potential reservoirs of V in iron corrosion by-products, its speciation, and mechanism of inclusion however are unknown. The aim of this study is to assess these parameters in iron corrosion by-products, implementing synchrotron-based {mu}-XRF mapping and {mu}-XANES along with traditional physiochemical characterization. The morphologies, mineralogies, and chemistry of the samples studied are superficially similar to typical iron corrosion by-products. However, we found V present as discrete grains of Pb{sub 5}(V{sup 5+}O{sub 4}){sub 3}Cl likely embedded in the surface regions of the iron corrosion by-products. Concentrations of V observed in bulk XRF analysis ranged from 35 to 899 mg kg{sup -1}. We calculate that even in pipes with iron corrosion by-products with low V concentration, 100 mg kg{sup -1}, as little as 0.0027% of a 0.1-cm thick X 100-cm long section of that corrosion by-product needs to be disturbed to increase V concentrations in the drinking water at the tap to levels well above the 15 {micro}g L{sup -1} notification level set by the State of California and could adversely impact human health. In addition, it is likely that large reservoirs of V are associated with iron corrosion by-products in unlined cast iron mains and service branches in numerous drinking water distribution systems.

  4. Formation and Release Behavior of Iron Corrosion Products under the Influence of Bacterial Communities in a Simulated Water Distribution System

    EPA Science Inventory

    Understanding the effects of biofilm on the iron corrosion, iron release and associated corrosion by-products is critical for maintaining the water quality and the integrity of drinking water distribution system (DWDS). In this work, iron corrosion experiments under sterilized a...

  5. Effect of natural and synthetic iron corrosion products on silicate glass alteration processes

    NASA Astrophysics Data System (ADS)

    Dillmann, Philippe; Gin, Stéphane; Neff, Delphine; Gentaz, Lucile; Rebiscoul, Diane

    2016-01-01

    Glass long term alteration in the context of high-level radioactive waste (HLW) storage is influenced by near-field materials and environmental context. As previous studies have shown, the extent of glass alteration is strongly related to the presence of iron in the system, mainly provided by the steel overpack around surrounding the HLW glass package. A key to understanding what will happen to the glass-borne elements in the geological disposal lies in the relationship between the iron-bearing phases and the glass alteration products formed. In this study, we focus on the influence of the formation conditions (synthetized or in-situ) and the age of different iron corrosion products on SON68 glass alteration. Corrosion products obtained from archaeological iron artifacts are considered here to be true analogues of the corrosion products in a waste disposal system due to the similarities in formation conditions and physical properties. These representative corrosion products (RCP) are used in the experiment along with synthetized iron anoxic corrosion products and pristine metallic iron. The model-cracks of SON68 glass were altered in cell reactors, with one of the different iron-sources inserted in the crack each time. The study was successful in reproducing most of the processes observed in the long term archaeological system. Between the different systems, alteration variations were noted both in nature and intensity, confirming the influence of the iron-source on glass alteration. Results seem to point to a lesser effect of long term iron corrosion products (RCP) on the glass alteration than that of the more recent products (SCP), both in terms of general glass alteration and of iron transport.

  6. Mini-review: the morphology, mineralogy and microbiology of accumulated iron corrosion products.

    PubMed

    Little, Brenda J; Gerke, Tammie L; Lee, Jason S

    2014-09-01

    Despite obvious differences in morphology, substratum chemistry and the electrolyte in which they form, accumulations of iron corrosion products have the following characteristics in common: stratification of iron oxides/hydroxides with a preponderance of α-FeOOH (goethite) and accumulation of metals. Bacteria, particularly iron-oxidizing and sulfate-reducing bacteria have been identified in some accumulations. Both biotic and abiotic mechanisms have been used to rationalize observations for particular sets of environmental data. This review is the first to compare observations and interpretations. PMID:25271874

  7. Mini-review: the morphology, mineralogy and microbiology of accumulated iron corrosion products

    PubMed Central

    Little, Brenda J.; Gerke, Tammie L.; Lee, Jason S.

    2014-01-01

    Despite obvious differences in morphology, substratum chemistry and the electrolyte in which they form, accumulations of iron corrosion products have the following characteristics in common: stratification of iron oxides/hydroxides with a preponderance of α-FeOOH (goethite) and accumulation of metals. Bacteria, particularly iron-oxidizing and sulfate-reducing bacteria have been identified in some accumulations. Both biotic and abiotic mechanisms have been used to rationalize observations for particular sets of environmental data. This review is the first to compare observations and interpretations. PMID:25271874

  8. Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility.

    PubMed

    Wakai, Satoshi; Ito, Kimio; Iino, Takao; Tomoe, Yasuyoshi; Mori, Koji; Harayama, Shigeaki

    2014-10-01

    Elemental iodine is produced in Japan from underground brine (fossil salt water). Carbon steel pipes in an iodine production facility at Chiba, Japan, for brine conveyance were found to corrode more rapidly than those in other facilities. The corroding activity of iodide-containing brine from the facility was examined by immersing carbon steel coupons in "native" and "filter-sterilized" brine samples. The dissolution of iron from the coupons immersed in native brine was threefold to fourfold higher than that in the filter-sterilized brine. Denaturing gradient gel electrophoresis analyses revealed that iodide-oxidizing bacteria (IOBs) were predominant in the coupon-containing native brine samples. IOBs were also detected in a corrosion deposit on the inner surface of a corroded pipe. These results strongly suggested the involvement of IOBs in the corrosion of the carbon steel pipes. Of the six bacterial strains isolated from a brine sample, four were capable of oxidizing iodide ion (I(-)) into molecular iodine (I(2)), and these strains were further phylogenetically classified into two groups. The iron-corroding activity of each of the isolates from the two groups was examined. Both strains corroded iron in the presence of potassium iodide in a concentration-dependent manner. This is the first report providing direct evidence that IOBs are involved in iron corrosion. Further, possible mechanisms by which IOBs corrode iron are discussed. PMID:24863130

  9. The Corrosion and Preservation of Iron Antiques.

    ERIC Educational Resources Information Center

    Walker, Robert

    1982-01-01

    Discusses general corrosion reactions (iron to rust), including corrosion of iron, sulfur dioxide, chlorides, immersed corrosion, and underground corrosion. Also discusses corrosion inhibition, including corrosion inhibitors (anodic, cathodic, mixed, organic); safe/dangerous inhibitors; and corrosion/inhibition in concrete/marble, showcases/boxes,…

  10. Speciation And Distribution Of Vanadium In Drinking Water Iron Pipe Corrosion By-Products

    EPA Science Inventory

    Vanadium (V) when ingested from drinking water in high concentrations (> 15 µg L-1) is a potential health risk and is on track to becoming a regulated contaminant. High concentrations of V have been documented in lead corrosion by-products as Pb5(V5+

  11. Hibbingite(Beta-Fe2(OH)3Cl), a Chlorine-rich Corrosion Product in Meteorites and Ancient Iron Objects

    NASA Astrophysics Data System (ADS)

    Buchwald, V. F.; Koch, C. B.

    1995-09-01

    In a continuing survey over the corrosion of meteorites[1-3], the role of chlorine has in particular been examined. It has been shown that even under pristine antarctic conditions, akaganeite, the chlorine containing Beta-FeOOH will form[1,2], and that akaganeite is a common mineral in terrestrial corrosion also under temperate and sub-tropic conditions. Especially when an (iron) meteorite is transported from its soil environment to the laboratory or the museum, akaganeite formation may be violent and lead to destruction of the material. One way of improving the resistance to deterioration is to remove chlorine by exposing the sample to a hydrogen plasma[4]. Chlorine is present at a higher content, 18 wt%, in the compound Beta-Fe(sub)2(OH)(sub)3Cl. This compound was identified in the corroded parts of the iron meteorites Jerslev, Carbo, Odessa, Sardis, Toluca, Waverly, Willamette and Yamato 791694. The research was mainly carried out in The National Museum of Natural History, Washington, in 1988. The mineral is remarkable as being the only corrosion product that contains iron solely in the oxidation state II[1]. The mineral has later been identified in terrestrial rocks and it has been named hibbingite[5]. Hibbingite in iron meteorites occurs as thin films and as up to 1 x 0.1 mm veins and void-fillings. The mineral appears greenish under the microscope. It is softer than the iron matrix and adjacent goethite and magnetite, but it withstands routine preparation of sections and wet polishing operations. It is often associated with akaganeite, but is greenish as compared to the orangered color of akaganeite. Hibbingite belongs to a small group of hexagonal metalhydroxyhalogenides, Me(sub)2(OH)(sub)3X, where Me may be Cu(II), Co(II), Ni(II) and Fe(II), and X may be Cl, Br and I. In meteorites hibbingite is surprisingly pure -compared to e.g. akaganeite- since the lattice only accepts nickel (0-6 wt%) in substitution for iron. Hibbingite has also been identified by

  12. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    PubMed

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. PMID:25150521

  13. Corrosion performance of iron aluminides

    SciTech Connect

    Natesan, K.

    1993-03-01

    Iron aluminides are being developed for use as structural materials and/or cladding alloys in fossil energy systems. Extensive development has been in progress on Fe[sub 3]Al-based alloys to improve the engineering ductility of these alloys. This paper describes results from the ongoing program to evaluate the corrosion performance of these alloys. The experimental program at Argonne National Laboratory involvesthermogravimetric analyses of alloys exposed to environments that simulate coal gasification and fluidized-bed combustion. Experiments were conducted at 650--1000[degrees]C in simulated oxygen/sulfur gas mixtures. In addition, oxidation/sulfidation behavior of several alumina-forming Fe-Al and Fe-Cr-Ni-Al alloys was determined for comparison with the corrosion rates obtained on iron aluminides. Other aspects of the program are corrosion evaluation of the aluminides in the presence of HC1-containing gases and in the presence of slag from a slogging gasifier. Results are used to establish threshold Al levels in the alloys for development of protective alumina scales. Thermal cycling tests are used to examine the spalling resistance of the scales.

  14. Corrosion performance of iron aluminides

    SciTech Connect

    Natesan, K.

    1993-03-01

    Iron aluminides are being developed for use as structural materials and/or cladding alloys in fossil energy systems. Extensive development has been in progress on Fe{sub 3}Al-based alloys to improve the engineering ductility of these alloys. This paper describes results from the ongoing program to evaluate the corrosion performance of these alloys. The experimental program at Argonne National Laboratory involvesthermogravimetric analyses of alloys exposed to environments that simulate coal gasification and fluidized-bed combustion. Experiments were conducted at 650--1000{degrees}C in simulated oxygen/sulfur gas mixtures. In addition, oxidation/sulfidation behavior of several alumina-forming Fe-Al and Fe-Cr-Ni-Al alloys was determined for comparison with the corrosion rates obtained on iron aluminides. Other aspects of the program are corrosion evaluation of the aluminides in the presence of HC1-containing gases and in the presence of slag from a slogging gasifier. Results are used to establish threshold Al levels in the alloys for development of protective alumina scales. Thermal cycling tests are used to examine the spalling resistance of the scales.

  15. Corrosion of iron under alternating wet and dry conditions

    SciTech Connect

    Dunn, D.S.; Bogart, M.B.; Brossia, C.S.; Cragnolino, G.A.

    2000-05-01

    In-situ alternating current (AC) and direct current (DC) electrochemical techniques were used to determine the corrosion rate and corrosion potential of high-purity iron under alternate wet and dry conditions. Comparisons between DC electrochemical measurements and weight loss were conducted to verify the validity of the corrosion rate measurements. Identification of the corrosion products was performed using Raman spectroscopy. Corrosion products contained layers of iron oxides and oxyhydroxides. At low Cl{sup {minus}} concentrations, corrosion products consisted of lepidocrocite ({gamma}-FeOOH) and magnetite (Fe{sub 3}O{sub 4}). At higher Cl{sup {minus}} concentrations, the formation of akaganeite ({beta}-FeOOH) was observed. Corrosion rates and corrosion potentials fluctuated through-out the wet cycles depending on electrolyte layer thickness, ionic strength, and wetting cycle. Accelerated corrosion rates of high-purity iron, up to three times those observed under continuously immersed conditions, were the result of Fe(III) reduction in the corrosion product layer, increased Cl{sup {minus}} concentration during evaporation, and accelerated oxygen transport across the thin electrolyte layer.

  16. Corrosion of iron under alternating wet and dry conditions

    SciTech Connect

    Dunn, D.S.; Bogart, M.B.; Brossia, C.S.; Cragnolino, G.A.

    1999-11-01

    In-situ AC and DC electrochemical techniques were used to determine the corrosion rate and corrosion potential of high purity iron under alternate wet and dry conditions. Comparisons between DC electrochemical measurements and weight loss were also performed to verify the validity of the corrosion rate measurements. Identification of the corrosion products was performed using Raman spectroscopy. The corrosion products were found to contain layers of iron oxides and oxyhydroxides. At low chloride concentrations the corrosion products consisted of {gamma}-FeOOH and Fe{sub 3}O{sub 4}, whereas at higher chloride concentrations the formation of {beta}-FeOOH was observed. Corrosion rates and corrosion potentials fluctuated throughout the wet cycles based on electrolyte layer thickness, ionic strength, and wetting cycle. Accelerated corrosion rates of high purity iron up to 3 times that observed under continuously immersed conditions were found to be the result of Fe(III) reduction in the corrosion product layer, increased chloride concentration during evaporation, and accelerated oxygen transport across the thin electrolyte layer.

  17. Corrosion resistance of iron aluminides

    SciTech Connect

    Natesan, K.

    1992-04-01

    Iron aluminides are being developed for use as structural materials and/or cladding alloys in fossil energy systems. Extensive development has been in progress on Fe{sub 3}Al-based alloys to improve their engineering ductility. This paper describes the corrosion performance of these alloys, determined at Argonne Naitonal Laboratory, in environments that simulate coal gasification and fluidized-bed combustion. Thermogravimetric analysis (TGA) was conducted at temperatures of 650--1000{degrees}C in air, 1 vol. % CO-CO{sub 2}, and H{sub 2}-H{sub 2}S environments at two sulfur activities. Upon completion of the kinetic runs, the morphology and structure of the scales formed on the alloy surface were evaluated by scanning electron microscopy and energy-dispersive X-ray analysis. Corrosion tests in simulated combustion environments were conducted at 900{degrees}C in the presence of reagent-grade CaSO{sub 4} and circulating-fluidized-bed deposits for 1000 and 3000 h. The test data on the aluminides from the TGA and combustion tests were compared with the corrosion performance of Type 310 stainless steel tested under similar conditions.

  18. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron

    NASA Technical Reports Server (NTRS)

    Furukawa, Yoko; Kim, Jin-Wook; Watkins, Janet; Wilkin, Richard T.

    2002-01-01

    Ferrihydrite, which is known to form in the presence of oxygen and to be stabilized by the adsorption of Si, PO4 and SO4, is ubiquitous in the fine-grained fractions of permeable reactive barrier (PRB) samples from the U.S. Coast Guard Support Center (Elizabeth City, NC) and the Denver Federal Center (Lakewood, CO) studied by high-resolution transmission electron microscopy and selected area electron diffraction. The concurrent energy-dispersive X-ray data indicate a strong association between ferrihydrite and metals such as Si, Ca, and Cr. Magnetite, green rust 1, aragonite, calcite, mackinawite, greigite and lepidocrocite were also present, indicative of a geochemical environment that is temporally and spatially heterogeneous. Whereas magnetite, which is known to form due to anaerobic Fe0 corrosion, passivates the Fe0 surface, ferrihydrite precipitation occurs away from the immediate Fe0 surface, forming small (<0.1 microm) discrete clusters. Consequently, Fe0-PRBs may remain effective for a longer period of time in slightly oxidized groundwater systems where ferrihydrite formation occurs compared to oxygen-depleted systems where magnetite passivation occurs. The ubiquitous presence of ferrihydrite suggests that the use of Fe0-PRBs may be extended to applications that require contaminant adsorption rather than, or in addition to, redox-promoted contaminant degradation.

  19. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron.

    PubMed

    Furukawa, Yoko; Kim, Jin-Wook; Watkins, Janet; Wilkin, Richard T

    2002-12-15

    Ferrihydrite, which is known to form in the presence of oxygen and to be stabilized by the adsorption of Si, PO4 and SO4, is ubiquitous in the fine-grained fractions of permeable reactive barrier (PRB) samples from the U.S. Coast Guard Support Center (Elizabeth City, NC) and the Denver Federal Center (Lakewood, CO) studied by high-resolution transmission electron microscopy and selected area electron diffraction. The concurrent energy-dispersive X-ray data indicate a strong association between ferrihydrite and metals such as Si, Ca, and Cr. Magnetite, green rust 1, aragonite, calcite, mackinawite, greigite and lepidocrocite were also present, indicative of a geochemical environment that is temporally and spatially heterogeneous. Whereas magnetite, which is known to form due to anaerobic Fe0 corrosion, passivates the Fe0 surface, ferrihydrite precipitation occurs away from the immediate Fe0 surface, forming small (<0.1 microm) discrete clusters. Consequently, Fe0-PRBs may remain effective for a longer period of time in slightly oxidized groundwater systems where ferrihydrite formation occurs compared to oxygen-depleted systems where magnetite passivation occurs. The ubiquitous presence of ferrihydrite suggests that the use of Fe0-PRBs may be extended to applications that require contaminant adsorption rather than, or in addition to, redox-promoted contaminant degradation. PMID:12521177

  20. Microbial iron respiration: impacts on corrosion processes.

    PubMed

    Lee, A K; Newman, D K

    2003-08-01

    In this review, we focus on how biofilms comprising iron-respiring bacteria influence steel corrosion. Specifically, we discuss how biofilm growth can affect the chemistry of the environment around the steel at different stages of biofilm development, under static or dynamic fluid regimes. We suggest that a mechanistic understanding of the role of biofilm metabolic activity may facilitate corrosion control. PMID:12734693

  1. Interaction of sulfuric acid corrosion and mechanical wear of iron

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Friction and wear experiments were conducted with elemental iron sliding on aluminum oxide in aerated sulfuric acid at concentrations ranging from very dilute (0.00007 N; i.e., 4 ppm) to very concentrated (96 percent acid). Load and reciprocating sliding speed were kept constant. With the most dilute acid concentration of 0.00007 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At slightly higher concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent (1 N), the well-established high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid and decreased somewhat to 50 percent acid in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It was apparent that the normal passivating film was being worn away and a galvanic cell established that rapidly attacked the wear area. Under the conditions where direct corrosion losses were highest, the coefficient of friction was the lowest.

  2. Interaction of sulfuric acid corrosion and mechanical wear of iron

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1986-01-01

    Friction and wear experiment were conducted with elemental iron sliding on aluminum oxide in aerated sulfuric acid at concentrations ranging from very dilute (0.00007 N; i.e., 4 ppm) to very concentrated (96 percent acid). Load and reciprocating sliding speed were kept constant. With the most dilute acid concentration of 0.00007 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At slightly higher concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent (1 N), the well-established high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid and decreased somewhat to 50 percent acid in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It was apparent that the normal passivating film was being worn away and a galvanic cell established that rapidly attacked the wear area. Under the conditions where direct corrosion losses were highest, the coefficient of friction was the lowest.

  3. Reactivity of Tannic Acid with Common Corrosion Products and Its Influence on the Hydrolysis of Iron in Alkaline Solutions

    NASA Astrophysics Data System (ADS)

    Jaén, J. A.; Araúz, E. Y.; Iglesias, J.; Delgado, Y.

    2003-06-01

    To ascertain the role of tannic acid in the anticorrosive protection of steels, the reaction between 5% tannic acid aqueous solutions with lepidocrocite, goethite, superparamagnetic goethite, akaganeite, poorly crystalline maghemite, magnetite and hematite was studied using color changes, infrared and Mössbauer spectroscopy. After three months of interaction with lepidocrocite, the formation of an iron tannate complex was detected by its dark blue color and confirmed by infrared and Mössbauer analysis. Evidence for the chemical transformation was obtained for goethite in nanoparticles and poorly crystalline maghemite after reaction for six months. The other iron compounds do not transform to another oxide or phase upon treatment with the tannic acid solution. These results showed that lepidocrocite is the most reactive phase and that the size and degree of crystallinity have strong influence on the formation of the tannate complexes. The precipitation of iron phases from alkaline solutions of iron (II) sulfate heptahydrate containing different amount of tannic acid and potassium nitrate as oxidative agent was also studied. Mössbauer and infrared results show that in the absence of tannic acid some common rust components are obtained (viz. goethite, superparamagnetic goethite, maghemite and non-stoichiometric magnetite). The presence of 0.1% tannic acid in a low alkalinity solution results in the precipitation of iron oxyhydroxides and some iron tannates. Concentrations of 1% tannic acid are required for the formation of the tannates complexes as main reaction product.

  4. High-temperature corrosion of iron aluminides

    SciTech Connect

    Natesan, K.; Cho, W.D.

    1994-04-01

    Iron aluminides are being developed for use as structural materials and/or cladding alloys in fossil energy systems. Extensive development has been in progress on Fe{sub 3}Al-based alloys to improve their engineering ductility. This paper describes results from an ongoing program to evaluate the corrosion performance of these alloys. The experimental program at Argonne involves thermogravimetric analyses of alloys exposed to environments that simulate coal gasification and coal combustion. Corrosion experiments were conducted to determine the effect of gas flow rate and different levels of HCl at a gas temperature of 650 C on three heats of aluminide material, namely, FA 61, FA 129, and FAX. In addition, specimens of Type 316 stainless steel with an overlay alloying of iron aluminide were prepared by electrospark deposition and tested for their corrosion resistance. Detailed microstructural evaluations of tested specimens were performed. Results are used to assess the corrosion resistance of various iron aluminides for service in fossil energy systems that utilize coal as a feedstock.

  5. The iron powder test for naphthenic acid corrosion studies

    SciTech Connect

    Hau, J.L.; Yepez, O.; Specht, M.I.; Lorenzo, R.

    1999-11-01

    In the course of an ongoing investigation into the phenomenon of naphthenic acid corrosion, a new test method has evolved and is currently being further developed to substitute the total acid number (TAN or neutralization number) as an indicator for naphthenic acid corrosion potential. It can also be used to complement conventional autoclave corrosion tests in high temperature environments, which are based on weight loss of steel coupons. In this new method an oil sample reacts with pure iron powder within an autoclave heated to the testing temperature. The result is based on the amount of dissolved iron found in the oil sample. The oil sample can dissolve an amount of iron for a given time at a given temperature, depending on the naphthenic acid corrosion, since these acids react with iron to produce oil soluble iron naphthenates. This paper describes the method, compares it with conventional crude corrosiveness testing, and proposes it as a new way of measuring naphthenic acid corrosion potential.

  6. IN DRIFT CORROSION PRODUCTS

    SciTech Connect

    D.M. Jolley

    1999-12-02

    As directed by a written development plan (CRWMS M&O 1999a), a conceptual model for steel and corrosion products in the engineered barrier system (EBS) is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). This document provides the conceptual framework for the in-drift corrosion products sub-model to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. However, the concepts discussed within this report may also apply to some near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts.

  7. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem

    PubMed Central

    Garrelfs, Julia

    2014-01-01

    About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen (“chemical microbially influenced corrosion”; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons (“electrical microbially influenced corrosion”; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments. PMID:24317078

  8. Microbial Iron Respiration Can Protect Steel from Corrosion

    PubMed Central

    Dubiel, M.; Hsu, C. H.; Chien, C. C.; Mansfeld, F.; Newman, D. K.

    2002-01-01

    Microbiologically influenced corrosion (MC) of steel has been attributed to the activity of biofilms that include anaerobic microorganisms such as iron-respiring bacteria, yet the mechanisms by which these organisms influence corrosion have been unclear. To study this process, we generated mutants of the iron-respiring bacterium Shewanella oneidensis strain MR-1 that were defective in biofilm formation and/or iron reduction. Electrochemical impedance spectroscopy was used to determine changes in the corrosion rate and corrosion potential as a function of time for these mutants in comparison to the wild type. Counter to prevailing theories of MC, our results indicate that biofilms comprising iron-respiring bacteria may reduce rather than accelerate the corrosion rate of steel. Corrosion inhibition appears to be due to reduction of ferric ions to ferrous ions and increased consumption of oxygen, both of which are direct consequences of microbial respiration. PMID:11872499

  9. Microbial iron respiration can protect steel from corrosion.

    PubMed

    Dubiel, M; Hsu, C H; Chien, C C; Mansfeld, F; Newman, D K

    2002-03-01

    Microbiologically influenced corrosion (MC) of steel has been attributed to the activity of biofilms that include anaerobic microorganisms such as iron-respiring bacteria, yet the mechanisms by which these organisms influence corrosion have been unclear. To study this process, we generated mutants of the iron-respiring bacterium Shewanella oneidensis strain MR-1 that were defective in biofilm formation and/or iron reduction. Electrochemical impedance spectroscopy was used to determine changes in the corrosion rate and corrosion potential as a function of time for these mutants in comparison to the wild type. Counter to prevailing theories of MC, our results indicate that biofilms comprising iron-respiring bacteria may reduce rather than accelerate the corrosion rate of steel. Corrosion inhibition appears to be due to reduction of ferric ions to ferrous ions and increased consumption of oxygen, both of which are direct consequences of microbial respiration. PMID:11872499

  10. Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study.

    PubMed

    Lee, Hongshin; Lee, Hye-Jin; Kim, Hyung-Eun; Kweon, Jihyang; Lee, Byeong-Dae; Lee, Changha

    2014-01-30

    In aqueous solution, zero-valent iron (ZVI, Fe(0)) is known to activate oxygen (O2) into reactive oxidants such as hydroxyl radical and ferryl ion capable of oxidizing contaminants. However, little is known about the effect of the particle size of ZVI on the yield of reactive oxidants. In this study, the production of reactive oxidants from nanoparticulate and microparticulate ZVIs (denoted as nZVI and mZVI, respectively) was comparatively investigated in the presence of O2 and EDTA. To quantify the oxidant yield, excess amount of methanol was employed, and the formation of its oxidation product, formaldehyde (HCHO), was monitored. The concentration of HCHO in the nZVI/O2 system rapidly reached the saturation value, whereas that in the mZVI/O2 system gradually increased throughout the entire reaction time. The mZVI/O2 system exhibited higher yields of HCHO than the nZVI/O2 system under both acidic and neutral pH conditions. The higher oxidant yields in the mZVI/O2 system are mainly attributed to the less reactivity of the mZVI surface with hydrogen peroxide (H2O2) relative to the surface of nZVI, which minimize the loss of H2O2 by ZVI (i.e., the two-electron reduction of H2O2 into water). In addition, the slow dissolution of Fe(II) from mZVI was found to be partially responsible for the higher oxidant yields at neutral pH. PMID:24361799

  11. Phosphine by bio-corrosion of phosphide-rich iron.

    PubMed

    Glindemann, D; Eismann, F; Bergmann, A; Kuschk, P; Stottmeister, U

    1998-01-01

    Phosphine is a toxic agent and part of the phosphorus cycle. A hitherto unknown formation mechanism for phosphine in the environment was investigated. When iron samples containing iron phosphide were incubated in corrosive aquatic media affected by microbial metabolites, phosphine was liberated and measured by gas chromatography. Iron liberates phosphine especially in anoxic aquatic media under the influence of sulfide and an acidic pH. A phosphine-forming mechanism is suggested: Phosphate, an impurity of iron containing minerals, is reduced abioticly to iron phosphide. When iron is exposed to the environment (e.g. as outdoor equipment, scrap, contamination in iron milled food or as iron meteorites) and corrodes, the iron phosphide present in the iron is suspended in the medium and can hydrolyze to phosphine. Phosphine can accumulate to measurable quantities in anoxic microbial media, accelerating corrosion and preserving the phosphine formed from oxidation. PMID:19005813

  12. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    NASA Astrophysics Data System (ADS)

    Zhang, Haiya; Tian, Yimei; Wan, Jianmei; Zhao, Peng

    2015-12-01

    Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  13. Influence of compositional modifications on the corrosion of iron aluminides of molten nitrate salts

    SciTech Connect

    Tortorelli, P.F.; Bishop, P.S.

    1991-01-01

    The corrosion of iron-aluminum alloys by molten nitrate salt as a function of aluminum, chromium, and other minor elements has been studied as part of an alloy design effort aimed at the development of a strong, ductile, corrosion-resistant FeAl type of aluminide. Short- term weight change data were used to examine the compositional dependence of the corrosion processes that occurred upon exposure of iron aluminides to highly oxidizing nitrate salts of 650{degrees}C. Corrosion resistance was found to increase with increasing aluminum concentrations of the alloy up to approximately 30 at. % Al. Chromium additions to the aluminide were not detrimental and may have improved the corrosion behavior for certain aluminum concentrations. No effects of minor alloying additions (C, B, Ti, and Zr) could be determined. The best overall corrosion resistance as measured by weight change results were obtained for an Fe-35.8 at. % Al aluminide containing some chromium. Based on linear weight loss kinetics, the weight change measurements for the most resistant compositions predict corrosion rates of 300 {mu}m/year or less at 650{degrees}C. These rates are substantially better than typical nickel-based alloys and stainless steels. From a consideration of the weight changes; the microstructural, thermodynamic, and X-ray diffraction data; and the salt analyses, corrosion of iron aluminides by the molten nitrate salt appears to be controlled by oxidation of base metal components and a slow release of material from an aluminum-rich product layer into the salt. The rate of release was substantially lower than that previously found for iron and iron-based alloys. This would imply that corrosion of iron aluminides could be minimized by maximizing the surface coverage of this aluminum-rich layer either by alloying or by an appropriate preoxidation treatment.

  14. Detection of iron corrosion by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Wu, Di-bo; Zhan, Hong-lei; Sun, Qing; Zhao, Kun

    2015-11-01

    The iron tablets, which were exposed in salt spray with different periods, were investigated in the 0.2~2.0 THz using reflection-type terahertz time-domain spectroscopy (THz-TDS) in vacuum environment at room temperature. The sample signals are attenuated in comparison to the reference signals with increasing the corrosion time. The THz spectroscopy peak EP and reflectivity (R) of samples strongly depended on corrosion time t with EP ∝ t-1 and R ∝ t-1. The THz characteristics of iron sheets in salt spray indicate that reflection THz-TDS will contribute to the development of non-destructive testing of corrosion in pipelines.

  15. An in situ corrosion study of Middle Ages wrought iron bar chains in the Amiens Cathedral

    NASA Astrophysics Data System (ADS)

    Grassini, S.; Angelini, E.; Parvis, M.; Bouchar, M.; Dillmann, P.; Neff, D.

    2013-12-01

    The corrosion behaviour of Middle Ages wrought iron bar chains exposed to indoor atmospheric corrosion for hundred of years in the Notre Dame Cathedral of Amiens (France) has been evaluated by means of Electrochemical Impedance Spectroscopy (EIS), a well-established electrochemical technique extensively used for testing anticorrosive properties of metal coatings. The measurements have been performed in situ with a portable EIS instrument designed to work as a standalone device, in six different areas of the wrought iron bar chains characterized by different aesthetical appearance. Moreover, a properly designed electrochemical cell has been employed to carry out the impedance measurements without affecting the artefacts surfaces. The wrought iron bar chains, as evidenced by μ-Raman and microscopic analyses, are covered by corrosion products constituted by iron oxides and oxyhydroxides, such as goethite, lepidocrocite, maghemite, akaganeite, organized in complex layered structures. In situ EIS allows one to investigate the phenomena involved at the electrochemical interfaces among the various corrosion products and to assess and predict their corrosion behaviour. From the analysis of the experimental findings of this monitoring campaign, EIS measurements can be proposed to restorers/conservators as a reliable indicator of dangerous situations on which they must act for the preservation of the iron artefacts.

  16. Iron corrosion in Callovo Oxfordian argilite: From experiments to thermodynamic/kinetic modelling

    NASA Astrophysics Data System (ADS)

    de Combarieu, G.; Barboux, P.; Minet, Y.

    Many designs for high-level nuclear waste deep geological disposal include steel waste canister and low-alloy steel overpacks. The container and overpack corrosion products may affect the alteration kinetics of nuclear waste glass and contaminant retention properties due to mineralogical transformation in the surrounding clay. To better quantify the effect of corrosion on the mineralogical alteration of the clay, the present study reports the corrosion of pure iron in raw Callovo-Oxfordian argilite. Batch experiments have been carried out at 90 °C, from one to six months, under oxygen-free atmosphere. Iron corrosion kinetics and secondary mineral formation have been studied with quantitative XRD measurements. Chemical analyses have been performed by ICP-AES, ICP-MS and ionic chromatography. Eh and pH have also been monitored along with the reaction progress. The phases formed from the Fe release in solution are magnetite and Fe-rich silicate from the serpentine group (greenalite or cronstedtite) or chlorite. These phases are associated to the dissolution of quartz, illite and interstratified illite/smectite mixed layers. Solution analyses show that the Si, Fe, Mg and Al concentrations are controlled at a very low level by the precipitation of newly formed phases, although a noticeable pH increase (from 7 to 10 at 90 °C) is associated to iron corrosion. In the conditions of the experiments, the iron corrosion rate has been measured ( Riron = 6 × 10 -9 mol/m 2/s equivalent to 1.4 μm/year) and is in good agreement with previous works. The use of the geochemical code CHESS based on (i) solution analysis, (ii) mineral quantification and (iii) determination of kinetic data for iron corrosion allows to reproduce accurately this reaction-path. Fractionation of dissolved iron between iron silicate and magnetite can be correctly predicted, as well as the pH, Eh and other minerals stability.

  17. Hypersensitivity from intravenous iron products.

    PubMed

    Bircher, Andreas J; Auerbach, Michael

    2014-08-01

    In the last several years, intravenous therapy with iron products has been more widely used. Although it has been a standard procedure in dialysis-associated anemia since the early 1990s, its use is expanding to a host of conditions associated with iron deficiency, especially young women with heavy uterine bleeding and pregnancy. Free iron is associated with unacceptable high toxicity inducing severe, hemodynamically significant symptoms. Subsequently, formulations that contain the iron as an iron carbohydrate nanoparticle have been designed. With newer formulations, including low-molecular-weight iron dextran, iron sucrose, ferric gluconate, ferumoxytol, iron isomaltoside, and ferric carboxymaltose, serious adverse events are rare. PMID:25017687

  18. The impact of gallic acid on iron gall ink corrosion

    NASA Astrophysics Data System (ADS)

    Rouchon-Quillet, V.; Remazeilles, C.; Bernard, J.; Wattiaux, A.; Fournes, L.

    Many old manuscripts suffer from iron-gall ink corrosion, threatening our graphic heritage. Corroded papers become brown and brittle with age. The chemical reactions involved in this corrosion are relatively well known: they include both acidic hydrolysis and oxidation catalysed by free iron(II). Yet, a great variety of iron-gall ink recipes, including a wide range of constituents can be found in the literature and the visual aspect of old inks, can be very different from one inscription to another, even if they have been written on the same sheet of paper. This suggests that even if the free iron(II) plays a dominant role in the paper alteration, the contribution of other ingredients should not be neglected. For this reason, we explored the impact gallic acid may have on the corrosion mechanisms and in particular on the oxidation reactions. These investigations were carried out on laboratory probes prepared with paper sheets immersed in different solutions, all containing the same amount of iron sulphate, and different gallic acid concentrations. These probes were then artificially aged and their degradation state was evaluated by bursting strength measurements, FTIR spectrometry and Mössbauer spectrometry. All these analyses lead us to conclude that gallic acid has an influence on the iron(III)/iron(II) ratio, probably because of its reducing properties.

  19. Green rust', iron solubility and the role of chloride in the corrosion of steel at high pH

    SciTech Connect

    Sagoe-Crentsil, K.K.; Glasser, F.P. . Department of Chemistry)

    1993-07-01

    The solubility of iron, as well as nature of the solid corrosion products, influences greatly the kinetics and mechanism of reaction of steel embedded in cement or concrete. At high pH, ferric iron has a very low solubility, corrosion product. However, at pH [approximately]13, low chloride ion concentrations are inimical to spinel formation; the solubility-limiting solid corrosion product is instead green rust'', a layer-structured hydrate containing both Fe[sup 2+] and Fe[sup 3+] and Cl[sup [minus

  20. Microbial extracellular electron transfer and its relevance to iron corrosion.

    PubMed

    Kato, Souichiro

    2016-03-01

    Extracellular electron transfer (EET) is a microbial metabolism that enables efficient electron transfer between microbial cells and extracellular solid materials. Microorganisms harbouring EET abilities have received considerable attention for their various biotechnological applications, including bioleaching and bioelectrochemical systems. On the other hand, recent research revealed that microbial EET potentially induces corrosion of iron structures. It has been well known that corrosion of iron occurring under anoxic conditions is mostly caused by microbial activities, which is termed as microbiologically influenced corrosion (MIC). Among diverse MIC mechanisms, microbial EET activity that enhances corrosion via direct uptake of electrons from metallic iron, specifically termed as electrical MIC (EMIC), has been regarded as one of the major causative factors. The EMIC-inducing microorganisms initially identified were certain sulfate-reducing bacteria and methanogenic archaea isolated from marine environments. Subsequently, abilities to induce EMIC were also demonstrated in diverse anaerobic microorganisms in freshwater environments and oil fields, including acetogenic bacteria and nitrate-reducing bacteria. Abilities of EET and EMIC are now regarded as microbial traits more widespread among diverse microbial clades than was thought previously. In this review, basic understandings of microbial EET and recent progresses in the EMIC research are introduced. PMID:26863985

  1. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite.

    PubMed

    Kaufhold, Stephan; Hassel, Achim Walter; Sanders, Daniel; Dohrmann, Reiner

    2015-03-21

    Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na-bentonites compared to the Ca-bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe-silicate. Up to now it is not clear why and how the patina formed. It, however, may be relevant as a corrosion inhibitor. PMID:25536393

  2. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    SciTech Connect

    Serdar, Marijana; Meral, Cagla; Kunz, Martin; Bjegovic, Dubravka; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2015-05-15

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM.

  3. A Theoretical Study of Carbohydrates as Corrosion Inhibitors of Iron

    NASA Astrophysics Data System (ADS)

    Khalil, Salim M.; Ali-Shattle, Elbashir E.; Ali, Nozha M.

    2013-09-01

    The inhibitive effect of fructose, glucose, lactose, maltose, and sucrose against the iron corrosion is investigated using density functional theory at the B3LYP/6-31 G level (d) to search the relation between the molecular structure and corrosion inhibition. The electronic properties such as the energy of the highest occupied molecular orbital (HOMO), the energy of lowest unoccupied orbital (LUMO), the energy gap (LUMO-HOMO), quantum chemical parameters such as hardness, softness, the fraction of the electron transferred, and the electrophilicity index are reported. The inhibition efficiency of the investigated carbohydrates follows the trend: maltose

  4. Electrochemical corrosion of iron-magnesium-alumina spinel (FMAS) in molten potassium salts and coal slag

    SciTech Connect

    Marchant, D.D.; Griffin, C.W.; Bates, J.L.

    1981-01-01

    Iron, magnesium-alumina spinel (FMAS) (0.25 Fe/sub 3/O/sub 4/ . 0.75 MgAl/sub 2/O/sub 4/) has been considered for use as an electrode in magnetohydrodynamic (MHD) generator channels. Predominantly an electronic conductor, FMAS has adequate electrical conductivity (>1 S/m) above 520/sup 0/K. In addition, FMAS can be easily fabricated into a form and sintered in air to >90% theoretical density and has a melting point of 2124 +- 20/sup 0/K. Laboratory tests to measure both the electrochemical and chemical corrosion of FMAS in molten K/sub 2/CO/sub 3/, K/sub 2/SO/sub 4/ and coal slags were developed at the Pacific Northwest Laboratory to evaluate the relative corrosion of FMAS. Under isothermal conditions, a direct electric current was passed between an anode and a cathode through a molten electrolyte. The molten coal slags were synthetic high-calcium, low-iron Montana Rosebud and low-calcium, high-iron Illinois No. 6. Evaluations of electrochemical corrosion were made as functions of current density, temperature, and slag composition. These results were compared to those of FMAS tested without electric current. The corrosion rates and reaction products were investigated by optical microscopy and scanning electron microscopy. Overall, FMAS has too-high an electrochemical corrosion rate to be considered as MHD electrodes in Montana Rosebud coal slag or in systems where only molten potassium salts are present. However, FMAS may be considered for use in high-iron coal slags although the corrosion rates are still quite high even in these slags.

  5. Enhanced Corrosion Resistance of Iron-Based Amorphous Alloys

    SciTech Connect

    Rebak, R B; Day, S D; Lian, T; Aprigliano, L F; Hailey, P D; Farmer, J C

    2007-02-18

    Iron-based amorphous alloys possess enhanced hardness and are highly resistant to corrosion, which make them desirable for wear applications in corrosive environments. It was of interest to examine the behavior of amorphous alloys during anodic polarization in concentrated salt solutions and in the salt-fog testing. Results from the testing of one amorphous material (SAM2X5) both in ribbon form and as an applied coating are reported here. Cyclic polarization tests were performed on SAM2X5 ribbon as well as on other nuclear engineering materials. SAM2X5 showed the highest resistance to localized corrosion in 5 M CaCl{sub 2} solution at 105 C. Salt fog tests of 316L SS and Alloy 22 coupons coated with amorphous SAM2X5 powder showed resistance to rusting. Partial devitrification may be responsible for isolated pinpoint rust spots in some coatings.

  6. Aqueous corrosion characteristics and corrosion-related cracking susceptibilities of Fe sub 3 Al-type iron aluminides

    SciTech Connect

    Buchanan, R.A.; Kim, J.G. . Dept. of Materials Science and Engineering)

    1991-04-01

    In certain fossil-energy applications, iron aluminides may be subjected to ambient-temperature aqueous corrosion conditions. In the present project, the aqueous corrosion characteristics and the cracking tendencies under aqueous-corrosion conditions were studied. In these studies, electrochemical, immersion and electrochemical-mechanical evaluation techniques were employed. For a range of iron-aluminide compositions, cyclic anodic polarization tests were conducted in a number of electrolytes to provide information on anodic dissolution characteristics including tendencies for either active uniform corrosion, localized corrosion, or passivation. Average corrosion penetration rates were determined by application of Tafel methods or the polarization-resistance method in combination with Faraday's law. Immersion test methods were employed to verify corrosion behavior as determined by electrochemical methods and to evaluate localized-corrosion initiation times. U-bend corrosion tests were conducted at open-circuit corrosion potentials and at potentiostatically-controlled anodic and cathodic potentials to investigate the cracking tendencies of selected iron aluminides and to provide information on the cracking mechanism. And finally, slow-strain-rate corrosion tests were conducted at open-circuit and potentiostatically-controlled cathodic potentials to study the ductility response as related to cracking tendencies and the mechanism responsible. 32 refs., 19 figs., 11 tabs.

  7. Iron Corrosion Observations: Pu(VI)-Fe Reduction Studies

    SciTech Connect

    Reed, Donald T.; Swanson, Juliet S.; Richmann, Michael K.; Lucchini, Jean-Francois; Borkowski, Marian

    2012-09-11

    Iron and Pu Reduction: (1) Very different appearances in iron reaction products were noted depending on pH, brine and initial iron phase; (2) Plutonium was associated with the Fe phases; (3) Green rust was often noted at the higher pH; (4) XANES established the green rust to be an Fe2/3 phase with a bromide center; and (5) This green rust phase was linked to Pu as Pu(IV).

  8. Investigation on corrosion stratigraphy and morphology in some Iron Age bronze alloys vessels by OM, XRD and SEM-EDS methods

    NASA Astrophysics Data System (ADS)

    Oudbashi, Omid; Hasanpour, Ata; Davami, Parviz

    2016-04-01

    The recently study of the corrosion in some bronze artefacts from the Sangtarashan Iron Age site, western Iran, was established to identify corrosion morphology and mechanism in these objects. The corrosion layers in 22 samples were studied by optical microscopy, scanning electron microscopy-energy-dispersive X-ray spectroscopy and X-ray diffraction methods. The results showed that a thin corrosion crust has formed on the surface of bronzes with a triple-layer structure, including two internal and one external corrosion layers. The formation of these layers is due to copper leaching from the bronze surface. The internal corrosion part has been a compact, tin-rich corrosion/oxidation product (noble patina) with some evidences from original metallurgical aspects of the bronze as well as a very thin layer beneath the tin-rich layer. External corrosion products have been identified as basic copper carbonates, malachite and azurite. Based on the results, the corrosion morphology in the Sangtarashan Iron Age bronzes is due to long-term burial in an appropriate environment in a moderately corrosive soil. Although it is the first time to investigate Iron Age bronzes from Iran, this corrosion morphology is partially similar to type I corrosion morphology observed in archaeological bronze objects; nevertheless, some deviations are visible in comparison with previously established patterns.

  9. Glass corrosion in the presence of iron-bearing materials and potential corrosion suppressors

    SciTech Connect

    Reiser, Joelle T.; Neill, Lindsay; Weaver, Jamie L.; Parruzot, Benjamin; Musa, Christopher; Neeway, James J.; Ryan, Joseph V.; Qafoku, Nikolla; Gin, Stephane; Wall, Nathalie

    2015-07-16

    A complete understanding of radioactive waste glass interactions with near-field materials is essential for appropriate nuclear waste repository performance assessment. In many geologic repository designs, Fe is present in both the natural environment and in the containers that will hold the waste glasses. In this paper we discuss investigations into the alteration of International Simple Glass (ISG) in the presence of Fe0 foil and hematite (Fe2O3). ISG alteration is more pronounced in the presence of Fe0 than with hematite. Additionally, minimal glass corrosion is observed for distances equal to 5 mm between Fe materials and ISG, but substantial glass corrosion is observed for systems exhibiting full contact between Fe0 material and ISG. Diatomaceous earth appears to be a better corrosion suppressant than silica when present with iron and ISG.

  10. Corrosion resistant iron aluminides exhibiting improved mechanical properties and corrosion resistance

    DOEpatents

    Liu, Chain T.; McKamey, Claudette G.; Tortorelli, Peter F.; David, Stan A.

    1994-01-01

    The specification discloses a corrosion-resistant intermetallic alloy comprising, in atomic percent, an FeAl iron aluminide containing from about 30 to about 40% aluminum alloyed with from about 0.01 to 0.4% zirconium and from 0.01 to about 0.8% boron. The alloy exhibits considerably improved room temperature ductility for enhanced usefulness in structural applications. The high temperature strength and fabricability is improved by alloying with molybdenum, carbon, chromium and vanadium.

  11. Corrosion resistant iron aluminides exhibiting improved mechanical properties and corrosion resistance

    DOEpatents

    Liu, C.T.; McKamey, C.G.; Tortorelli, P.F.; David, S.A.

    1994-06-14

    The specification discloses a corrosion-resistant intermetallic alloy comprising, in atomic percent, an FeAl iron aluminide containing from about 30 to about 40% aluminum alloyed with from about 0.01 to 0.4% zirconium and from 0.01 to about 0.8% boron. The alloy exhibits considerably improved room temperature ductility for enhanced usefulness in structural applications. The high temperature strength and fabricability is improved by alloying with molybdenum, carbon, chromium and vanadium. 9 figs.

  12. Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater.

    PubMed

    Jin, Juntao; Wu, Guangxue; Zhang, Zhenhua; Guan, Yuntao

    2014-08-01

    Microorganisms were cultured in the R2A medium with inoculum from biofilm in a reclaimed wastewater distribution system and then extracellular polymeric substances (EPS) were extracted from the culture. Characterization of EPS and their effects on the corrosion of cast iron were examined. EPS extracted from different culturing stages contained different proportions of protein and polysaccharide but with similar functional groups. All types of EPS could inhibit cast iron corrosion and the EPS from the stationary stage had the highest inhibition efficiency. The inhibition efficiency was increased with addition of a small amount of EPS while decreased with excessive amount of EPS. EPS formed a protective film on the metal surface, which retarded the cathodic reduction of oxygen. Excessive amount of EPS promoted anodic dissolution through EPS-Fe binding. The CO and C(O, N) in EPS could be the anodic electrochemical sites with possible products of C(C, H). PMID:24618284

  13. Corrosion performance of iron aluminides in single- and multioxidant environments.

    SciTech Connect

    Natesan, K.

    1998-06-22

    Iron aluminide intermetallics are being developed for use as structural materials and/or as cladding for conventional engineering alloys. In addition to their strength advantages, these materials exhibit excellent resistance to corrosion in single- and multioxidant environments at elevated temperatures through the formation of slow-growing, adherent alumina scales. Even though these intermetallics develop protective oxide scales in single-oxidant environments, the simultaneous presence of several reactants in the environment (typical of practical systems) can lead to development of oxide scales that are nonprotective and that undergo breakaway corrosion, or to nonoxide scales that are detrimental to the performance of the underlying alloy. This paper describes the corrosion performance of Fe-Al intermetallics in environments that contain sulfur, carbon, chlorine, and oxygen and that are typical of fossil energy systems. Emphasis is on mechanisms of scale development and breakdown, performance envelopes for long-term usage of these materials, and approaches to modifying the surfaces of engineering alloys by cladding or coating them with intermetallics to improve their corrosion resistance.

  14. Corrosion performance of iron aluminides in fossil energy environments

    SciTech Connect

    Natesan, K.

    1997-12-01

    Corrosion of metallic structural materials in complex gas environments of coal gasification and combustion is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}S or SO{sub 2} and chlorine as HCl. This paper presents a comprehensive review of the current status of the corrosion performance of alumina scales that are thermally grown on Fe-base alloys, including iron aluminides, in multicomponent gas environments of typical coal-conversion systems. Mechanisms of scale development/breakdown, performance envelopes for long-term usage of these materials, approaches to modifying the surfaces of engineering alloys by cladding or coating them with intermetallics, and in-service experience with these materials are emphasized. The results are compared with the performance of chromia-forming alloys in similar environments. The paper also discusses the available information on corrosion performance of alloys whose surfaces were enriched with Al by the electrospark deposition process or by weld overlay techniques.

  15. Effect of multiphase slug flow on the stability of corrosion product layer

    SciTech Connect

    Gopal, M.; Rajappa, S.

    1999-11-01

    Corrosion experiments were carried out under iron carbonate scale-forming conditions in a large diameter, multiphase flow system. Both oil/water and oil/water/gas slug flows were studied at pressures up to 0.79 MPa and temperatures of 60 C and 80 C. It was found that with increasing iron concentration, the corrosion rates were reduced to negligible values in oil/water flows. However, significant corrosion was seen in slug flow with clear evidence of damage to the corrosion product layer due to impact and possible collapse of gas bubbles and a considerable reduction in the layer thickness. Details of corrosion rates and corrosion coupon surface analysis are presented.

  16. Determining the Effect of Environmental Conditions on Iron Corrosion by Atomic Absorption

    ERIC Educational Resources Information Center

    Malel, Esteban; Shalev, Deborah E.

    2013-01-01

    Iron corrosion is a complex process that occurs when iron is exposed to oxygen and humidity and is exacerbated by the presence of chloride ions. The deterioration of iron structures or other components can be costly to society and is usually evaluated by following the properties of the corroding material. Here, the iron ions released into solution…

  17. Corrosion, stress corrosion cracking, and electrochemistry of the iron and nickel base alloys in caustic environments

    SciTech Connect

    Koehler, R.; Beck, F. H.; Agrawal, A. K.; Soendjasmono, B.; Staehle, R. W.

    1980-02-01

    The electrochemical behavior of high purity (99.95% to 99.99%) iron in 0.6M NaCl and 1.0M Na/sub 2/SO/sub 4/ containing H/sub 2/S (50 ppM to 34,000 ppM) was studied using cyclic voltammetry, chronoamperometry, and slow scan rate polarization. Results have indicated that iron does undergo passivation in sulfate solutions containing H/sub 2/S. Iron dissolution depends on the presence of Cl/sup -/, the concentration of H/sub 2/S and solution pH. An equation is given that describes the anodic Tafel current densities. The slow strain rate test was used to evaluate the effect of electrode potential on the susceptibility of 2-1/4Cr, Mo steel to stress corrosion cracking in boiling 50% NaOH solution. Susceptibility decreased and general corrosion increased with increasing potentials. Failures contained a combination of ductile and brittle fracture. Time-to-failure was longest for controlled potentials of -700 and -600mV (Hg/HgO reference) in the -1100 to -400mV range used in this study.

  18. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes

    EPA Science Inventory

    The stability of iron corrosion products and the bacterial composition of biofilm in drinking water distribution systems (DWDS) could have great impact on the water safety at the consumer ends. In this work, pipe loops were setup to investigate the transformation characteristics ...

  19. Corrosion behavior of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants.

    PubMed

    Ashassi-Sorkhabi, H; Moradi-Haghighi, M; Zarrini, G; Javaherdashti, R

    2012-02-01

    In this work, two novel iron oxidizing bacteria (IOB), namely Gordonia sp. MZ-89 and Enterobacter sp. M01101, were isolated from sewage treatment plants and identified by biochemical and molecular methods. Then, microbially influenced corrosion (MIC) of carbon steel in the presence of these bacteria was investigated. The electrochemical techniques such as potentiodynamic polarization measurements and electrochemical impedance spectroscopy (EIS) were used to measure the corrosion rate and observe the corrosion mechanism. The results showed that the existence of these microorganisms decreased the corrosion potential and enhanced the corrosion rate. Scanning electron microscopy (SEM) images revealed the ground boundary attacks and pitting on carbon steel samples in the presence of these bacteria after polarization. Corrosion scales were identified with X-ray diffraction (XRD). It was demonstrated that these bacteria can greatly affect the crystalline phase of corrosion products that also confirmed by SEM results. It was inferred that these bacteria were responsible for the corrosion of carbon steel, especially in the form of localized corrosion. PMID:21695454

  20. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    SciTech Connect

    Charlot, L.A.; Westerman, R.E.

    1981-07-01

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allows its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt.

  1. Wear of iron and nickel in corrosive liquid environments

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Rengstorff, George W. P.

    1987-01-01

    Friction and wear behavior of Fe and Ni sliding on aluminum oxide in aerated sulfuric acid and hydrochloric acid were investigated. The results show that the concentration of acid is an important factor in controlling the metal loss caused by wear corrosion processes in the acids. At very dilute acid concentration (10 to the -4 N), Fe behaves differently from Ni. Fe develops a soft, friable deposit, while Ni develops no corrosion layer. The formation and removal of the corrosion deposit on Fe resulted in high metal loss and coefficient of friction, as compared to the relatively low metal loss and coefficient of friction observed for Ni. At slightly higher acid concentration (10 to the -3 and 10 to the -2 N), no corrosion products were produced on both Fe and Ni. Wear of Fe and Ni was generally at a minimum. At higher acid concentration (10 to the -1 N and above), loss of Fe and Ni increased as the acid concentration increased. In sulfuric acid the maximum loss of both Fe and Ni was at 7.5 N (30%) concentration, and the metal losses of both Fe and Ni dropped markedly at 15 N (50%) and above. In hydrochloric acid, however, the Fe loss continued to increase with the increase of acid concentration, and the maximum Fe loss occurred in the most concentrated acid (12.1 N, 37%). There were variations in loss with Ni from specimen to specimen examined in hydrochloric acids (10 to the -1 N and above). The coefficient of friction for Ni increased slightly with an increase in acid concentration up to 10 to the -2 N. When corrosion started to dominate in the wear-corrosion process, the coefficient of friction decreased in both sulfuric and hydrochloric acids at 10 to the -1 N and above.

  2. Corrosion Product Film-Induced Stress Facilitates Stress Corrosion Cracking.

    PubMed

    Wang, Wenwen; Zhang, Zhiliang; Ren, Xuechong; Guan, Yongjun; Su, Yanjing

    2015-01-01

    Finite element analyses were conducted to clarify the role of corrosion product films (CPFs) in stress corrosion cracking (SCC). Flat and U-shaped edge-notched specimens were investigated in terms of the CPF-induced stress in the metallic substrate and the stress in the CPF. For a U-shaped edge-notched specimen, the stress field in front of the notch tip is affected by the Young's modulus of the CPF and the CPF thickness and notch geometry. The CPF-induced tensile stress in the metallic substrate is superimposed on the applied load to increase the crack tip strain and facilitate localized plasticity deformation. In addition, the stress in the CPF surface contributes to the rupture of the CPFs. The results provide physical insights into the role of CPFs in SCC. PMID:26066367

  3. Corrosion Product Film-Induced Stress Facilitates Stress Corrosion Cracking

    PubMed Central

    Wang, Wenwen; Zhang, Zhiliang; Ren, Xuechong; Guan, Yongjun; Su, Yanjing

    2015-01-01

    Finite element analyses were conducted to clarify the role of corrosion product films (CPFs) in stress corrosion cracking (SCC). Flat and U-shaped edge-notched specimens were investigated in terms of the CPF-induced stress in the metallic substrate and the stress in the CPF. For a U-shaped edge-notched specimen, the stress field in front of the notch tip is affected by the Young’s modulus of the CPF and the CPF thickness and notch geometry. The CPF-induced tensile stress in the metallic substrate is superimposed on the applied load to increase the crack tip strain and facilitate localized plasticity deformation. In addition, the stress in the CPF surface contributes to the rupture of the CPFs. The results provide physical insights into the role of CPFs in SCC. PMID:26066367

  4. Friction and Wear of Iron in Corrosive Media

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1982-01-01

    Friction and wear experiments were conducted with elemental iron exposed to various corrosive media including two acids, base, and a salt. Studies involved various concentrations of nitric and sulfuric acids, sodium hydroxide, and sodium chloride. Load and reciprocating sliding speed were kept constant. With the base NaOH an increase in normality beyond 0.01 N resulted in a decrease in both friction and wear. X-ray photoelectron spectroscopy (XPS) analysis of the surface showed a decreasing concentration of ferric oxide (Fe2O3) on the iron surface with increasing NaOH concentration. With nitric acid (HNO3) friction decreased in solutions to 0.05 N, beyond which no further change in friction was observed. The concentration of Fe2O3 on the surface continued to increase with increasing normality. XPS analysis revealed the presence of sulfates in addition of Fe2O3 on surfaces exposed to sulfuric acid and iron chlorides but no sodium on surfaces exposed to NaCl.

  5. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  6. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  7. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  8. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  9. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  10. Can Dynamic Bubble Templating Play a Role in Corrosion Product Morphology?

    SciTech Connect

    Gerke, T.L.; Scheckel, K.G.; Ray, R.I.; Little, B.J.

    2012-05-09

    Dynamic templating as a result of cathodic hydrogen gas production is suggested as a possible mechanism for the formation of tube-like corrosion products on an unlined cast iron pipe in a drinking water distribution system. Mounds of corrosion product, with protruding tubes and freestanding tubes, were observed within a single 30 cm section of piping. Internal morphologies for all shapes were texturally complex although mineralogically simple, composed of two iron oxide/oxyhydroxides minerals: {alpha}-FeOOH (goethite) and Fe{sub 3}O{sub 4} (magnetite). Static templating by either microorganisms or minerals was rejected as a possible mechanism for tube formation in this study.

  11. Thermodynamic Development of Corrosion Rate Modeling in Iron Phosphate Glasses

    SciTech Connect

    Schlesinger, Mark; Brow, Richard

    2011-10-31

    A two-year research program investigated links between the thermodynamic properties of phosphate glasses and their corrosion rates in different solutions. Glasses in the Na2O-CaO-P2O5 and Na2O-Fe2O3-PO5 systems were prepared and characterized. These glasses were then exposed in bulk and powder form to acid (0.1M HCl), basic (0.1M KOH) and neutral (deionized water) solutions at varying exposure times and temperatures. Analysis of the solution and the glass after exposure determined the rate and type of corrosion that occurred. Simultaneously, efforts were made to determine the thermodynamic properties of solid iron phosphate compounds. This included measurement of low temperature (5-300 K) heat capacities, measured at Brigham Young University; the attempted use of a Parr calorimeter to measure ambient temperature enthalpies of formation; and attempted measurement of temperature heat capacities. Only the first of the three tasks was successfully accomplished. In lieu of experimental measurement of enthalpies of formation, first-principles calculation of enthalpies of formation was performed at Missouri S&T; these results will be used in subsequent modeling efforts.

  12. Numerical study: Iron corrosion-resistance in lead-bismuth eutectic coolant by molecular dynamics method

    SciTech Connect

    Arkundato, Artoto; Su'ud, Zaki; Abdullah, Mikrajuddin; Widayani,; Celino, Massimo

    2012-06-06

    In this present work, we report numerical results of iron (cladding) corrosion study in interaction with lead-bismuth eutectic coolant of advanced nuclear reactors. The goal of this work is to study how the oxygen can be used to reduce the corrosion rate of cladding. The molecular dynamics method was applied to simulate corrosion process. By evaluating the diffusion coefficients, RDF functions, MSD curves of the iron and also observed the crystal structure of iron before and after oxygen injection to the coolant then we concluded that a significant and effective reduction can be achieved by issuing about 2% number of oxygen atoms to lead-bismuth eutectic coolant.

  13. Pitting corrosion of iron in weakly alkaline chloride solutions

    SciTech Connect

    Makar, G.L.; Tromans, D.

    1996-04-01

    Chloride-induced pitting corrosion of iron at pH 10.5 and 25 C was examined by conducting quasi-steady-state (potentiostatic) polarization experiments in borate-buffered 0.1 M sodium chloride solutions with buffer concentrations from 0 M to 0.075 M. Values of the film breakdown potential (E{sub b}) were scattered at each buffer concentration, and the scatter band moved to higher potentials with increasing concentrations, indicating increased resistance to pitting. Consistent with this, pitting did not always occur at the higher buffer concentrations. E{sub b} measurements, optical and electron microscopy, X-ray microanalysis, and supplementary polarization experiments in lower-pH borate solutions suggested pitting in the iron -Cl{sup {minus}} system initiated within occluded regions, such as matrix-inclusion interfaces and exposed voids, where pH control was lost because of an inadequate local supply of buffer species. Pitting behavior was consistent with a mechanism dominated by mass transport, in which the presence of Cl{sup {minus}} prevented buffering of occluded regions by the borate specie H{sub 2}BO{sub 3}{sup {minus}}, allowing the ph to be driven into an acidic domain where the solubilities of ferrous hydroxide and ferric hydroxide are high.

  14. Corrosion Mechanisms of Steel and Cast Iron by Molten Aluminum

    NASA Astrophysics Data System (ADS)

    Balloy, David; Tissier, Jean-Charles; Giorgi, Marie-Laurence; Briant, Marc

    2010-09-01

    The corrosion mechanisms by liquid aluminum of three industrial materials have been studied: unalloyed steel (UAS), and ferritic and modified pearlitic cast irons (FCI and PCI, respectively). The behavior of these materials when in contact with liquid aluminum is different. Aluminum diffuses deep into the UAS and forms intermetallic compounds with iron at the surface and in the steel matrix. At the surface, only Fe2Al5 and FeAl3 are found. In the matrix, FeAl2 also is formed in agreement with the equilibrium Fe-Al diagram. From the matrix to FeAl2, the Al content in the ferrite increases progressively until Al saturation is reached. At this step, black elongated precipitates (Al4C3 and/or graphite) appear. Graphite lamellas present in both FCI and PCI constitute an efficient barrier to the Al diffusion. The high silicon content of the FCI leads to the formation of a phase free from Al and saturated in Si. For the PCI, a thin layer rich in Al and Si, which is formed between the matrix and Fe2Al5, limits the diffusion of atoms. The effects of Cr and P added in the PCI also are discussed.

  15. Iron production maintenance effectiveness system

    SciTech Connect

    Augstman, J.J.

    1996-12-31

    In 1989, an internal study in the Coke and Iron Maintenance Department identified the opportunities available to increase production, by decreasing unscheduled maintenance delays from 4.6%. A five year front loaded plan was developed, and presented to the company president. The plan required an initial investment of $1.4 million and a conservative break-even point was calculated to be 2.5 years. Due to budget restraints, it would have to be self-funded, i.e., generate additional production or savings, to pay for the program. The program began in 1991 at number 2 coke plant and the blast furnaces. This paper will describe the Iron Production Maintenance Effectiveness System (ME), which began with the mechanical and pipefitting trades.

  16. Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program

    SciTech Connect

    Farmer, J

    2007-07-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  17. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development

    SciTech Connect

    Farmer, J C; Choi, J S; Saw, C; Haslam, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

    2008-01-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  18. Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development

    NASA Astrophysics Data System (ADS)

    Farmer, Joseph; Choi, Jor-Shan; Saw, Cheng; Haslam, Jeffrey; Day, Dan; Hailey, Phillip; Lian, Tiangan; Rebak, Raul; Perepezko, John; Payer, Joe; Branagan, Daniel; Beardsley, Brad; D'Amato, Andy; Aprigliano, Lou

    2009-06-01

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was cosponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the U.S. Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition, materials synthesis, thermal stability, corrosion resistance, environmental cracking, mechanical properties, damage tolerance, radiation effects, and important potential applications. Amorphous alloys identified as SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) and SAM1651 (Fe48Mo14Cr15Y2C15B6) have been produced as meltspun ribbons (MSRs), dropcast ingots, and thermal-spray coatings. Chromium (Cr), molybdenum (Mo), and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of MSRs and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently, thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests; good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while the open-circuit corrosion potentials (OCPs) were simultaneously monitored; reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber and suitable for criticality-control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and Ni-based materials, and are proving to have excellent wear

  19. Intravenous iron-containing products: EMA procrastination.

    PubMed

    2014-07-01

    A European reassessment has led to identical changes in the summaries of product characteristics (SPCs) for all intravenous iron-containing products: the risk of serious adverse effects is now highlighted, underlining the fact that intravenous iron-containing products should only be used when the benefits clearly outweigh the harms. Unfortunately, iron dextran still remains on the market despite a higher risk of hypersensitivity reactions than with iron sucrose. PMID:25162093

  20. Effects of 1000 C oxide surfaces on room temperature aqueous corrosion and environmental embrittlement of iron aluminides

    SciTech Connect

    Buchanan, R.A.; Perrin, R.L.

    1997-12-01

    Results of electrochemical aqueous-corrosion studies at room temperature indicate that retained in-service-type high-temperature surface oxides (1000 C in air for 24 hours) on FA-129, FAL and FAL-Mo iron aluminides cause major reductions in pitting corrosion resistance in a mild acid-chloride solution designed to simulate aggressive atmospheric corrosion. Removal of the oxides by mechanical grinding restores the corrosion resistance. In a more aggressive sodium tetrathionate solution, designed to simulate an aqueous environment contaminated by sulfur-bearing combustion products, only active corrosion occurs for both the 1000 C oxide and mechanically cleaned surfaces at FAL. Results of slow-strain-rate stress-corrosion-cracking tests on FA-129, FAL and FAL-Mo at free-corrosion and hydrogen-charging potentials in the mild acid chloride solution indicate somewhat higher ductilities (on the order of 50%) for the 1000 C oxides retard the penetration of hydrogen into the metal substrates and, consequently, are beneficial in terms of improving resistance to environmental embrittlement. In the aggressive sodium tetrathionate solution, no differences are observed in the ductilities produced by the 1000 C oxide and mechanically cleaned surfaces for FAL.

  1. Modeling of corrosion product migration in the secondary circuit of nuclear power plants with WWER-1200

    NASA Astrophysics Data System (ADS)

    Kritskii, V. G.; Berezina, I. G.; Gavrilov, A. V.; Motkova, E. A.; Zelenina, E. V.; Prokhorov, N. A.; Gorbatenko, S. P.; Tsitser, A. A.

    2016-04-01

    Models of corrosion and mass transfer of corrosion products in the pipes of the condensate-feeding and steam paths of the secondary circuit of NPPs with WWER-1200 are presented. The mass transfer and distribution of corrosion products over the currents of the working medium of the secondary circuit were calculated using the physicochemical model of mass transfer of corrosion products in which the secondary circuit is regarded as a cyclic system consisting of a number of interrelated elements. The circuit was divided into calculated regions in which the change in the parameters (flow rate, temperature, and pressure) was traced and the rates of corrosion and corrosion products entrainment, high-temperature pH, and iron concentration were calculated. The models were verified according to the results of chemical analyses at Kalinin NPP and iron corrosion product concentrations in the feed water at different NPPs depending on pH at 25°C (pH25) for service times τ ≥ 5000 h. The calculated pH values at a coolant temperature t (pH t ) in the secondary circuit of NPPs with WWER-1200 were presented. The calculation of the distribution of pH t and ethanolamine and ammonia concentrations over the condensate feed (CFC) and steam circuits is given. The models are designed for developing the calculation codes. The project solutions of ATOMPROEKT satisfy the safety and reliability requirements for power plants with WWER-1200. The calculated corrosion and corrosion product mass transfer parameters showed that the model allows the designer to choose between the increase of the correcting reagent concentration, the use of steel with higher chromium contents, and intermittent washing of the steam generator from sediments as the best solution for definite regions of the circuit.

  2. Corrosion of iron: A study for radioactive waste canisters

    NASA Astrophysics Data System (ADS)

    Lagha, S. Ben; Crusset, D.; Mabille, I.; Tran, M.; Bernard, M. C.; Sutter, E.

    2007-05-01

    The purpose of this study is to examine the risks of atmospheric corrosion of steel waste canisters following their deep geological disposal in the temperature range from 303 to 363 K. The work was performed using iron samples deposited as thin films on a quartz crystal microbalance (QCM) and disposed in a climatic chamber. The experiments showed that, in the temperature under study (298-363 K), the mass increase due to the formation of oxide/hydroxide rose sharply above 70% RH, as is commonly observed at room temperatures, indicating that the phenomenon remains electrochemical in nature. Ex situ Raman spectrometric analyses indicate the formation of magnetite, maghemite and oxyhydroxides species in the 298-363 K temperature range, and for oxygen contents above 1 vol.%, whereas only Fe3O4 and γ-Fe2O3 are detected at 363 K. In this work, the kinetics of the rust growth is discussed, on the bases of the rate of mass increase and of the composition of the rust, as a function of the climatic parameters and the oxygen content of the atmosphere.

  3. Behavior of tritium permeation induced by water corrosion of alpha iron around room temperature

    SciTech Connect

    Otsuka, T.; Hashizume, K.

    2015-03-15

    Tritium (T) permeation leakage to surroundings is a great safety concern in fission and fusion reactor systems. T permeation potentially occurs from T contaminated water through cooling tubes or storage tank made of metals which dissolve some T evolved by water corrosion. In order to understand behaviors of hydrogen uptake and permeation in pure α-iron (αFe) during water corrosion around room temperature, hydrogen permeation experiments for an αFe membrane have been conducted by means of tritium tracer techniques. The present study suggests that hydrogen produced by water corrosion of αFe is trapped in product oxide layers to delay hydrogen uptake in αFe for a moment. However, the oxide layers do not work as a sufficient barrier for hydrogen uptake. Some of hydrogen dissolved in αFe normally diffuses and permeates through the bulk in the early stage of permeation. In a later stage, hydrogen permeation could be apparently stopped by the disappearance of concentration difference of tritium. Hydrogen partial pressure at the water/αFe interface could be ranged from 0.7 to 9.5 kPa around room temperature.

  4. CURRENT CORROSION BY-PRODUCTS AND CORROSION CONTROL RESEARCH

    EPA Science Inventory

    USEPA research in the area of corrosion control consists of a combination of in-house research and extramural projects. he extramural projects have recently addressed the corrosion of solder in some Long Island water supplies, impacts of municipal ion-exchange softening on corros...

  5. Erosion-corrosion behavior of austenitic cast iron in an acidic slurry medium

    NASA Astrophysics Data System (ADS)

    Yang, Ke; Sun, Lan; Liu, Yu-zhen; Fan, Hong-yuan

    2015-06-01

    A series of austenitic cast iron samples with different compositions were cast and a part of nickel in the samples was replaced by manganese for economic reason. Erosion-corrosion tests were conducted under 2wt% sulfuric acid and 15wt% quartz sand. The results show that the matrix of cast irons remains austenite after a portion of nickel is replaced with manganese. (Fe,Cr)3C is a common phase in the cast irons, and nickel is the main alloying element in high-nickel cast iron; whereas, (Fe,Mn)3C is observed with the increased manganese content in low-nickel cast iron. Under erosion-corrosion tests, the weight-loss rates of the cast irons increase with increasing time. Wear plays a more important role than corrosion in determining the weight loss. It is indicated that the processes of weight loss for the cast irons with high and low nickel contents are different. The erosion resistance of the cast iron containing 7.29wt% nickel and 6.94wt% manganese is equivalent to that of the cast iron containing 13.29wt% nickel.

  6. Corrosion of iron, aluminum and copper-base alloys in glycols under simulated solar collector conditions

    SciTech Connect

    Beavers, J.A.; Diegle, R.B.

    1981-10-01

    The corrosion behavior of iron, aluminum and copperbase alloys was studied in uninhibited glycol solutions under conditions that simulate those found in non-concentrating solar collectors. It was found that only Type 444 stainless steel exhibited adequate corrosion resistance; there was no evidence of pitting, crevice corrosion, or galvanic attack, and general corrosion rates were low. The general corrosion rate of CDA 122 copper was high (greater than 200 ..mu..m/y) under some test conditions, but copper was resistant to pitting and crevice attack. General corrosion rates of the aluminum alloys (1100, 3003 and 6061) were low, but these alloys were susceptible to pitting and crevice attack. The propensity for pitting was greatest in the presence of chlorides but it also was severe in the absence of chlorides following long exposures. The onset of pitting of the aluminum alloys in chloride-free solutions was attributed to degradation of the glycols.

  7. Impact of iron-reducing bacteria on the corrosion rate of carbon steel under simulated geological disposal conditions.

    PubMed

    Schütz, Marta K; Schlegel, Michel L; Libert, Marie; Bildstein, Olivier

    2015-06-16

    The current projects for the disposal of high-level radioactive waste rely on underground burial and confinement by metallic envelopes that are susceptible to corrosion processes. The impact of microbial activity must be fully clarified in order to provide biological parameters for predictive reactive transport models. This study investigates the impact of hydrogenotrophic iron-reducing bacteria (Shewanella oneidensis strain MR-1) on the corrosion rate of carbon steel under simulated geological disposal conditions by using a geochemical approach. It was found that corrosion damage changes mostly according to the experimental solution (i.e., chemical composition). Magnetite and vivianite were identified as the main corrosion products. In the presence of bacteria, the corrosion rate increased by a factor of 1.3 (according to weight loss analysis) to 1.8 (according to H2 measurements), and the detected amount of magnetite diminished. The mechanism likely to enhance corrosion is the destabilization and dissolution of the passivating magnetite layer by reduction of structural Fe(III) coupled to H2 oxidation. PMID:25988515

  8. Inhibition of iron corrosion in sulfuric acid at elevated temperatures by bismuth(III) compounds

    SciTech Connect

    Nakai, K.; Nishihara, H.; Aramaki, K.

    1997-09-01

    Inhibition effects of bismuth(III) chloride (BiCl{sub 3}), bismuth(III) iodide (BiI{sub 3}), and a mixture of BiI{sub 3} and benzyl thiocyanate (C{sub 6}H{sub 5}CH{sub 2}SCN or BTC) on corrosion of iron (Fe) in 0.5 M sulfuric acid (H{sub 2}SO{sub 4}) at elevated temperatures were investigated using polarization measurements. The film formed on the Fe surface was analyzed by x-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA). Because the anodic process of Fe corrosion was not suppressed, BiCl{sub 3} was an ineffective inhibitor at > 70 C. Since the anodic process was inhibited by specific adsorption of I{sup {minus}}, BiI{sub 3} at 1 {times} 10{sup {minus}4} M was highly efficient for inhibition of Fe corrosion in 0.5 M H{sub 2}SO{sub 4} at 90 C. The synergistic inhibitory effect of 1 {times} 10{sup {minus}4} M BiI{sub 3} and 4 {times} 10{sup {minus}3} M BTC resulted in a significantly high inhibitor efficiency (I{sub eff}) of 99.1% for Fe corrosion in 0.5 M H{sub 2}SO{sub 4} at 90 C. The cathodic process was suppressed by covering most of the surface with metallic bismuth (Bi). The anodic process was inhibited by coverage with the oxidative addition product of BTC at small spots uncoated with the Bi layer.

  9. Application of Mössbauer spectroscopy to the study of tannins inhibition of iron and steel corrosion

    NASA Astrophysics Data System (ADS)

    Jaén, Juan A.; de Obaldía, J.; Rodríguez, M. V.

    2011-11-01

    The inhibitory effect of tannins was investigated using, among others, potentiodynamic polarizations and Mössbauer spectroscopy. These techniques confirmed that the nature, pH and concentration of tannic solution are of upmost importance in the inhibitory properties of the solutions. It is observed that at low tannin concentration or pH, both, hydrolizable and condensed tannins, effectively inhibit iron corrosion, due to the redox properties of tannins. At pH ≈ 0, Mössbauer spectra of the frozen aqueous solutions of iron(III) with the tannin solutions showed that iron is in the form of a monomeric species [Fe(H2O)6]3 + , without coordination with the functional hydroxyl groups of the tannins. The suspended material consisted of amorphous ferric oxide and oxyhydroxides, though with quebracho tannin partly resulted in complex formation and in an iron (II) species from a redox process. Other tannins, such as chestnut hydrolysable tannins, do not complex iron at this low pH. Tannins react at high concentrations or pH (3 and 5) to form insoluble blue-black amorphous complexes of mono-and bis-type tannate complexes, with a relative amount of the bis-ferric tannate generally increasing with pH. Some Fe2 + in the form of hydrated polymeric ferrous tannate could be obtained. At pH 7, a partially hydrolyzed ferric tannate complex was also formed. The latter two phases do not provide corrosion protection. Tannin solutions at natural pH react with electrodeposited iron films (approx. 6 μm) to obtain products consisting only on the catecholate mono-complex of ferric tannate. Some aspects of the mechanism of tannins protection against corrosion are discussed.

  10. The corrosion inhibition of iron and aluminum by various naturally occurring biological molecules

    SciTech Connect

    McCafferty, E.; Hansen, D.C.

    1995-12-31

    Biological polymers that exhibit a strong affinity for metal surfaces are increasingly becoming the focus of research toward the development of environmentally friendly corrosion inhibitors. This paper deals with the use of various naturally occurring organic molecules as corrosion inhibitors for iron or aluminum. Among the organic molecules considered are catecholate and hydroxamate siderophores isolated from bacteria, the adhesive protein from the blue mussel Mytilus edulis L, and caffeic acid and chlorogenic acid. FTIR analysis, anodic polarization curves, and AC impedance measurements were used to determine the adsorption and effectiveness of the various organic molecules as corrosion inhibitors. Parabactin, a catecholate siderophore, was effective in inhibiting both the corrosion of iron in hydrochloric acid and the pitting of aluminum in 0.1 M sodium chloride. The adhesive protein from the blue mussel was also effective in inhibiting the pitting of aluminum.

  11. EFFECT OF BACTERIAL SULFATE REDUCTION ON IRON-CORROSION SCALES

    EPA Science Inventory

    Iron-sulfur geochemistry is important in many natural and engineered environments including drinking water systems. In the anaerobic environment beneath scales of corroding iron drinking water distribution system pipes, sulfate reducing bacteria (SRB) produce sulfide from natura...

  12. OSCAR-Na: A New Code for Simulating Corrosion Product Contamination in SFR

    NASA Astrophysics Data System (ADS)

    Génin, J.-B.; Brissonneau, L.; Gilardi, T.

    2016-07-01

    A code named OSCAR-Na has been developed to calculate the mass transfer of corrosion products in the primary circuit of sodium fast reactors (SFR). It is based on a solution/precipitation model, including diffusion in the steel (enhanced under irradiation), diffusion through the sodium boundary layer, equilibrium concentration of each element, and velocity of the interface (bulk corrosion or deposition). The code uses a numerical method for solving the diffusion equation in the steel and the complete mass balance in sodium for all elements. Corrosion and deposition rates are mainly determined by the iron equilibrium concentration in sodium and its oxygen-enhanced dissolution rate. All parameters of the model have been assessed from a literature review, but iron solubility had to be adjusted. A simplified primary system description of PHENIX French SFR was able to assess the correct amounts and profiles of contamination on heat exchanger surfaces for the main radionuclides.

  13. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOEpatents

    Natesan, Krishnamurti

    1992-01-01

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9-30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000.degree.-1100.degree. C.

  14. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOEpatents

    Natesan, K.

    1992-11-17

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9--30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000--1100 C. 7 figs.

  15. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    SciTech Connect

    Cockeram, B.V.

    1999-11-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods.

  16. Development and Testing of a Linear Polarization Resistance Corrosion Rate Probe for Ductile Iron Pipe (Web Report 4361)

    EPA Science Inventory

    The North American water and wastewater community has hundreds of millions of feet of ductile iron pipe in service. Only a portion of the inventory has any form of external corrosion control. Ductile iron pipe, in certain environments, is subject to external corrosion.Linear Pola...

  17. In vitro and in vivo corrosion properties of new iron-manganese alloys designed for cardiovascular applications.

    PubMed

    Drynda, Andreas; Hassel, Thomas; Bach, Friedrich Wilhelm; Peuster, Matthias

    2015-04-01

    The principle of biodegradation for the production of temporary implant materials (e.g. stents) plays an important role in the treatment of congenital heart defects. In the last decade several attempts have been made with different alloy materials-mainly based on iron and magnesium. None of the currently available materials in this field have demonstrated satisfying results and have therefore not found entry into broad clinical practice. While magnesium or magnesium alloy systems corrode too fast, the corrosion rate of pure iron-stents is too slow for cardiovascular applications. In the last years FeMn alloy systems were developed with the idea that galvanic effects, caused by different electrochemical properties of Fe and Mn, would increase the corrosion rate. In vitro tests with alloys containing up to 30% Mn showed promising results in terms of biocompatibility. This study deals with the development of new FeMn alloy systems with lower Mn concentrations (FeMn 0.5 wt %, FeMn 2.7 wt %, FeMn 6.9 wt %) to avoid Mn toxicity. Our results show, that these alloys exhibit good mechanical features as well as suitable in vitro biocompatibility and corrosion properties. In contrast, the evaluation of these alloys in a mouse model led to unexpected results-even after 9 months no significant corrosion was detectable. Preliminary SEM investigations showed that passivation layers (FeMn phosphates) might be the reason for corrosion resistance. If this can be proved in further experiments, strategies to prevent or dissolve those layers need to be developed to expedite the in vivo corrosion of FeMn alloys. PMID:24976236

  18. Corrosion Characterization of Iron-Based High-Performance Amorphous-Metal Thermal-Spray Coatings

    SciTech Connect

    Farmer, J C; Haslam, J J; Day, S D; Branagan, D J; Blue, C A; Rivard, J K; Aprigliano, L F; Yang, N; Perepezko, J H; Beardsley, M B

    2005-03-21

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. One of these compositions, SAM1651, is discussed in detail to illustrate the promise of this general class of materials.

  19. Effect of High Temperature Aging on the Corrosion Resistance of Iron Based Amorphous Alloys

    SciTech Connect

    Day, S D; Haslam, J J; Farmer, J C; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys can be more resistant to corrosion than polycrystalline materials of similar compositions. However, when the amorphous alloys are exposed to high temperatures they may recrystallize (or devitrify) thus losing their resistance to corrosion. Four different types of amorphous alloys melt spun ribbon specimens were exposed to several temperatures for short periods of time. The resulting corrosion resistance was evaluated in seawater at 90 C and compared with the as-prepared ribbons. Results show that the amorphous alloys can be exposed to 600 C for 1-hr. without losing the corrosion resistance; however, when the ribbons were exposed at 800 C for 1-hr. their localized corrosion resistance decreased significantly.

  20. Activated Corrosion Product Analysis. Analytical Approach.

    SciTech Connect

    Golubov, Stanislav I; Busby, Jeremy T; Stoller, Roger E

    2010-01-01

    The presence of activated corrosion products (ACPs) in a water cooling system is a key factor in the licensing of ITER and affects nuclear classification, which governs design and operation. The objective of this study is to develop a method to accurately estimate radionuclide concentrations during ITER operation in support of nuclear classification. A brief overview of the PACTITER numerical code, which is currently used for ACP estimation, is presented. An alternative analytical approach for calculation of ACPs, which can also be used for validation of existing numerical codes, including PACTITER, has been proposed. A continuity equation describing the kinetics of accumulation of radioactive isotopes in a water cooling system in the form of a closed ring has been formulated, taking into account the following processes: production of radioactive elements and their decay, filtration, and ACP accumulation in filter system. Additional work is needed to more accurately assess the ACP inventory in the cooling water system, including more accurate simulation of the Tokamak cooling water system (TCWS) operating cycle and consideration of material corrosion, release, and deposition rates.

  1. THE EFFECT OF SMECTITE ON THE CORROSION OF IRON METAL

    SciTech Connect

    Balko, Barbara A.; Bosse, Stephanie A.; Cade, Anne E.; Jones-Landry, Elise F.; Amonette, James E.; Daschbach, John L.

    2012-04-24

    The combination of zero-valent iron and a clay-type amendment is often observed to have a synergistic effect on the rate of reduction reactions. In this paper, electrochemical techniques are used to determine the mechanism of interaction between the iron and smectite clay minerals. Iron electrodes coated with an evaporated smectite suspension (clay-modified iron electrodes, CMIEs) were prepared using five different smectites: SAz-1, SWa-1, STx-1, SWy-1, and SHCa-1. All the smectites were exchanged with Na+ and one sample of SWy-1 was also exchanged with Mg2+. Potentiodynamic potential scans and cyclic voltammograms were taken using the CMIEs and uncoated but passivated iron electrodes. These electrochemical experiments, along with measurements of the amount of Fe2+ and Fe3+ sorbed in the smectite coating, suggested that the smectite removed the passive layer of the underlying iron electrode during the evaporation process. Cyclic voltammograms taken after the CMIEs were biased at the active-passive transition potential for varying amounts of time suggested that the smectite limited growth of a passive layer, preventing passivation. These results are attributed to the Broensted acidity of the smectite as well as to its ability to sorb iron cations. Oxides that did form on the surface of the iron in the presence of the smectite when it was biased anodically seemed to be different than those that form on the surface of an uncoated iron electrode under otherwise similar conditions; this difference suggested that the smectite reacted with the Fe2+ formed from the oxidation of the underlying iron. No significant correlation could be found between the ability of the smectite to remove the iron passive film and the smectite type. The results have implications for the mixing of sediments and iron particles in permeable reactive barriers, underground storage of radioactive waste in steel canisters, and the use of smectite supports in preventing aggregation of nano-sized zero

  2. Effects of the Exposure to Corrosive Salts on the Frictional Behavior of Gray Cast Iron and a Titanium-Based Metal Matrix Composite

    SciTech Connect

    Blau, Peter Julian; Truhan, Jr., John J; Kenik, Edward A

    2007-01-01

    The introduction of increasingly aggressive road-deicing chemicals has created significant and costly corrosion problems for the trucking industry. From a tribological perspective, corrosion of the sliding surfaces of brakes after exposure to road salts can create oxide scales on the surfaces that affect friction. This paper describes experiments on the effects of exposure to sodium chloride and magnesium chloride sprays on the transient frictional behavior of cast iron and a titanium-based composite sliding against a commercial brake lining material. Corrosion scales on cast iron initially act as abrasive third-bodies, then they become crushed, spread out, and behave as a solid lubricant. The composition and subsurface microstructures of the corrosion products on the cast iron were analyzed. Owing to its greater corrosion resistance, the titanium composite remained scale-free and its frictional response was markedly different. No corrosion scales were formed on the titanium composite after aggressive exposure to salts; however, a reduction in friction was still observed. Unlike the crystalline sodium chloride deposits that tended to remain dry, hygroscopic magnesium chloride deposits absorbed ambient moisture from the air, liquefied, and retained a persistent lubricating effect on the titanium surfaces.

  3. Corrosion and environmental-mechanical characterization of iron-base nuclear waste package structural barrier materials. Annual report, FY 1984

    SciTech Connect

    Westerman, R.E.; Haberman, J.H.; Pitman, S.G.; Pulsipher, B.A.; Sigalla, L.A.

    1986-03-01

    Disposal of high-level nuclear waste in deep underground repositories may require the development of waste packages that will keep the radioisotopes contained for up to 1000 y. A number of iron-base materials are being considered for the structural barrier members of waste packages. Their uniform and nonuniform (pitting and intergranular) corrosion behavior and their resistance to stress-corrosion cracking in aqueous environments relevant to salt media are under study at Pacific Northwest Laboratory. The purpose of the work is to provide data for a materials degradation model that can ultimately be used to predict the effective lifetime of a waste package overpack in the actual repository environment. The corrosion behavior of the candidate materials was investigated in simulated intrusion brine (essentially NaCl) in flowing autoclave tests at 150/sup 0/C, and in combinations of intrusion/inclusion (high-Mg) brine environments in moist salt tests, also at 150/sup 0/C. Studies utilizing a /sup 60/Co irradiation facility were performed to determine the corrosion resistance of the candidate materials to products of brine radiolysis at dose rates of 2 x 10/sup 3/ and 1 x 10/sup 5/ rad/h and a temperature of 150/sup 0/C. These irradiation-corrosion tests were ''overtests,'' as the irradiation intensities employed were 10 to 1000 times as high as those expected at the surface of a thick-walled waste package. With the exception of the high general corrosion rates found in the tests using moist salt containing high-Mg brines, the ferrous materials exhibited a degree of corrosion resistance that indicates a potentially satisfactory application to waste package structural barrier members in a salt repository environment.

  4. ALKALINITY, PH, AND COPPER CORROSION BY-PRODUCT RELEASE

    EPA Science Inventory

    Contrary to expectations, higher bicarbonate concentrations exacerbate copper corrosion rates and by-product release. In fact, as illustrated by monitoring experiences of large utilities and by laboratory data, the concentration of copper corrosion by-products in drinking water i...

  5. Microelectrodes Based investigation of the Impacts of Water Chemistry on Copper and Iron Corrosion

    EPA Science Inventory

    The effect of bulk drinking water quality on copper and iron pipe corrosion has been extensively studied. Despite past research, many have argued that bulk water quality does not necessarily reflect water quality near the water-metal interface and that such knowledge is necessary...

  6. SURVEY OF FOULING, FOAM, CORROSION, AND SCALING CONTROL IN IRON AND STEEL INDUSTRY RECYCLE SYSTEMS

    EPA Science Inventory

    The report gives results of a review of the state-of-the-art for fouling, foaming, corrosion, and scaling control in the treatment and recycle of process waters of integrated iron and steel mills. Areas examined were: (1) the character of the wastewaters generated in the differen...

  7. Iron contamination causes stress corrosion cracking in stainless steels

    SciTech Connect

    Khatak, H.S.; Bharasi, N.S.; Gnanamoorthy, J.B. . Metallurgy Div.)

    1994-06-01

    Iron-contaminated U-bend samples of types 316 and 304 stainless steels (SS) were exposed to a sodium chloride solution in the laboratory at room temperature. Two of the four samples of 304 SS and one of the four samples of 316 SS showed cracking. The cracks initiated in the iron-contaminated regions. Based on the results of these tests, the failure of many components in industries can be explained and the importance of carrying out pickling and passivation immediately after fabrication to remove possible iron contamination is highlighted.

  8. Correlation Of 2-Chlorobiphenyl Dechlorination By Fe/Pd With Iron Corrosion At Different pH

    EPA Science Inventory

    The rate of 2-chlorobiphenyl dechlorination by palladized iron (Fe/Pd) decreased with increasing pH until pH > 12.5. Iron corrosion potential (Ec) and current (jc), obtained from polarization curves of a rotating disk electrode of iron, followed the Tafel e...

  9. Fe sub 3 Al-type iron aluminides: Aqueous corrosion properties in a range of electrolytes and slow-strain-rate ductilities during aqueous corrosion

    SciTech Connect

    Buchanan, R.A.; Kim, J.G. . Dept. of Materials Science and Engineering)

    1992-08-01

    The Fe{sub 3}Al-type iron aluminides have undergone continued development at the Oak Ridge National Laboratory for enhancement of mechanical and corrosion properties. Improved alloys and thermomechanical processing methods have evolved. The overall purpose of the project herein described was to evaluate the aqueous corrosion properties of the most recent alloy compositions in a wide range of possibly-aggressive solutions and under several different types of corrosion-test conditions. The work supplements previous aqueous-corrosion studies on iron aluminides by the present authors. Four stages of this one-year aqueous-corrosion investigation are described. First the corrosion properties of selected iron aluminides were evaluated by means of electrochemical tests and longer-time immersion tests in a range of acidic, basic and chloride solutions. Theses tests were performed under non-crevice conditions, i.e. the specimens were not designed to contain crevice geometries. Second, the iron-aluminide alloy that proved most resistance to chloride-induced localized corrosion under non-crevice conditions was further evaluated under more-severe crevice conditions by electrochemical and immersion testing. Third, in order to study the relative roles of Fe, Al, Cr and Mo in the formation of passive films, the chemical compositions of passive films were determined by X-ray photoelectron spectroscopy (XPS). And fourth, in order to study aqueous-corrosion effects on the ductilities of iron aluminides as related to hydrogen embrittlement and/or stress-corrosion cracking, slow-strain-rate corrosion (SSRC) tests were conducted over a range of electrochemical potentials.

  10. Fe{sub 3}Al-type iron aluminides: Aqueous corrosion properties in a range of electrolytes and slow-strain-rate ductilities during aqueous corrosion

    SciTech Connect

    Buchanan, R.A.; Kim, J.G.

    1992-08-01

    The Fe{sub 3}Al-type iron aluminides have undergone continued development at the Oak Ridge National Laboratory for enhancement of mechanical and corrosion properties. Improved alloys and thermomechanical processing methods have evolved. The overall purpose of the project herein described was to evaluate the aqueous corrosion properties of the most recent alloy compositions in a wide range of possibly-aggressive solutions and under several different types of corrosion-test conditions. The work supplements previous aqueous-corrosion studies on iron aluminides by the present authors. Four stages of this one-year aqueous-corrosion investigation are described. First the corrosion properties of selected iron aluminides were evaluated by means of electrochemical tests and longer-time immersion tests in a range of acidic, basic and chloride solutions. Theses tests were performed under non-crevice conditions, i.e. the specimens were not designed to contain crevice geometries. Second, the iron-aluminide alloy that proved most resistance to chloride-induced localized corrosion under non-crevice conditions was further evaluated under more-severe crevice conditions by electrochemical and immersion testing. Third, in order to study the relative roles of Fe, Al, Cr and Mo in the formation of passive films, the chemical compositions of passive films were determined by X-ray photoelectron spectroscopy (XPS). And fourth, in order to study aqueous-corrosion effects on the ductilities of iron aluminides as related to hydrogen embrittlement and/or stress-corrosion cracking, slow-strain-rate corrosion (SSRC) tests were conducted over a range of electrochemical potentials.

  11. Physicochemical studies of glucose, gellan gum, and hydroxypropyl cellulose--inhibition of cast iron corrosion.

    PubMed

    Rajeswari, Velayutham; Kesavan, Devarayan; Gopiraman, Mayakrishnan; Viswanathamurthi, Periasamy

    2013-06-01

    Glucose, gellan gum, and hydroxypropyl cellulose were studied against the acid corrosion of cast iron by means of weight loss, potentiodynamic polarization, and AC impedance spectroscopy techniques. The inhibition efficiency was found to increase with increasing concentration of the inhibitors. The effect of immersion time and temperature were also studied. The addition of potassium iodide to the corrosion-inhibition system showed both antagonism and synergism toward inhibition efficiency. Polarization studies revealed the mixed-type inhibiting nature of the carbohydrates. The adsorption of inhibitors on the cast iron surface obeys Langmuir adsorption isotherm model, both in presence and absence of KI. Physical interaction between the inhibitor molecules and the iron surface was suggested by the thermochemical parameters, rather than chemical interaction. PMID:23618271

  12. Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility.

    PubMed

    Vigneron, Adrien; Alsop, Eric B; Chambers, Brian; Lomans, Bartholomeus P; Head, Ian M; Tsesmetzis, Nicolas

    2016-04-01

    Offshore oil production facilities are frequently victims of internal piping corrosion, potentially leading to human and environmental risks and significant economic losses. Microbially influenced corrosion (MIC) is believed to be an important factor in this major problem for the petroleum industry. However, knowledge of the microbial communities and metabolic processes leading to corrosion is still limited. Therefore, the microbial communities from three anaerobic biofilms recovered from the inside of a steel pipe exhibiting high corrosion rates, iron oxide deposits, and substantial amounts of sulfur, which are characteristic of MIC, were analyzed in detail. Bacterial and archaeal community structures were investigated by automated ribosomal intergenic spacer analysis, multigenic (16S rRNA and functional genes) high-throughput Illumina MiSeq sequencing, and quantitative PCR analysis. The microbial community analysis indicated that bacteria, particularly Desulfovibrio species, dominated the biofilm microbial communities. However, other bacteria, such as Pelobacter, Pseudomonas, and Geotoga, as well as various methanogenic archaea, previously detected in oil facilities were also detected. The microbial taxa and functional genes identified suggested that the biofilm communities harbored the potential for a number of different but complementary metabolic processes and that MIC in oil facilities likely involves a range of microbial metabolisms such as sulfate, iron, and elemental sulfur reduction. Furthermore, extreme corrosion leading to leakage and exposure of the biofilms to the external environment modify the microbial community structure by promoting the growth of aerobic hydrocarbon-degrading organisms. PMID:26896143

  13. Erosion-corrosion for carbon steel in sweet production with sand: Modeling and experiments

    NASA Astrophysics Data System (ADS)

    Al-Mutahar, Faisal M.

    In the oil and gas production industry, carbon steel tubing and piping are susceptible to erosion-corrosion damage due to the erosive and corrosive nature of the flow. The combined effect of sand erosion and corrosion can be very significant. One form of erosion-corrosion of carbon steels occurs when impinging sand particles remove part or all of a protective iron carbonate (FeCO3) scale allowing corrosion rates to increase to bare metal rates. The role of a FeCO3 layer in reducing corrosion rates in sand-free environments has been studied by many investigators. However, the protection offered by FeCO3 scale when sand is produced is not well defined. A mechanistic approach for predicting metal loss due to sand erosion and CO2 corrosion of carbon steel was developed in the research presented in this thesis. The main contributions of the research were to develop: (1) a mechanistic model of the competition between FeCO 3 scale growth by precipitation and scale removal by erosion; (2) a procedure for predicting erosion-corrosion rates in oil and gas production and transportation systems; and, (3) a computer program to facilitate the prediction of the erosion-corrosion rates. Models from the literature for quantifying iron carbonate scale precipitation and growth rates, and diffusion rates of cathodic reactants and corrosion product species through iron carbonate scale were adapted to this purpose. The solid particle erosion resistance of FeCO3 scale produced under a range of environmental and flow conditions was characterized by direct impingement experiments. Dry and wet FeCO3 scales were subjected to direct impingement by sand at various impingement angles. Scales were pre-formed in a flow loop at 150-200°F (65-93°C), from 6.1-6.5 pH, and 2.4 bar CO2 pressure and then removed from the flow loop for direct impingement testing. The erosion pattern of the scale was characterized by scanning electron microscopy (SEM). Specimens with iron carbonate scale were partially

  14. Evaluation of steel corrosion products in tropical climates

    SciTech Connect

    Rincon, A.; Rincon, O.T. de; Haces, C.; Furet, N.R.; Corvo, F.

    1997-11-01

    Phase variations occurring in corrosion products obtained in steels exposed to different zones of tropical climate in Cuba and Venezuela were determined to establish their relationship to corrosion phenomena. Steel corrosion products were obtained at four test stations in both countries with marine, industrial, and rural characteristics. Phase composition was determined using x-ray diffraction (XRD), infrared (IR) spectroscopy, and Moessbauer spectroscopy. In the rural climate of both countries, the predominant phase was lepidocrocite ({gamma}-FeOOH), which was in agreement with reported corrosion rates. In the marine environments, corrosion products varied in composition. In Adicora, Venezuela, akaganeite ({beta}-FeOOH) was found, but in Cuba, this phase was nonexistent. Results were discussed in light of the contamination present and meteorological parameters recorded in the test zones.

  15. Characterization of biofilm and corrosion of cast iron pipes in drinking water distribution system with UV/Cl2 disinfection.

    PubMed

    Zhu, Ying; Wang, Haibo; Li, Xiaoxiao; Hu, Chun; Yang, Min; Qu, Jiuhui

    2014-09-01

    The effect of UV/Cl2 disinfection on the biofilm and corrosion of cast iron pipes in drinking water distribution system were studied using annular reactors (ARs). Passivation occurred more rapidly in the AR with UV/Cl2 than in the one with Cl2 alone, decreasing iron release for higher corrosivity of water. Based on functional gene, pyrosequencing assays and principal component analysis, UV disinfection not only reduced the required initial chlorine dose, but also enhanced denitrifying functional bacteria advantage in the biofilm of corrosion scales. The nitrate-reducing bacteria (NRB) Dechloromonas exhibited the greatest corrosion inhibition by inducing the redox cycling of iron to enhance the precipitation of iron oxides and formation of Fe3O4 in the AR with UV/Cl2, while the rhizobia Bradyrhizobium and Rhizobium, and the NRB Sphingomonas, Brucella producing siderophores had weaker corrosion-inhibition effect by capturing iron in the AR with Cl2. These results indicated that the microbial redox cycling of iron was possibly responsible for higher corrosion inhibition and lower effect of water Larson-Skold Index (LI) changes on corrosion. This finding could be applied toward the control of water quality in drinking water distribution systems. PMID:24859195

  16. COUPLED IRON CORROSION AND CHROMATE REDUCTION: MECHANISMS FOR SUBSURFACE REMEDIATION

    EPA Science Inventory

    The reduction of chromium from the Cr(VI) to the Cr- (Ill) state by the presence of elemental, or zero-oxidation-state, iron metal was studied to evaluate the feasibility of such a process for subsurface chromate remediation. Reactions were studied in systems of natural aquifer m...

  17. Long-Term Corrosion Processes of Iron and Steel Shipwrecks in the Marine Environment: A Review of Current Knowledge

    NASA Astrophysics Data System (ADS)

    Moore, James D.

    2015-12-01

    Methodologies for examining the corrosion behavior of iron and steel shipwrecks have steadily progressed since the 1970s, but the analytical techniques utilized since then are comparatively site-specific, and the overall quantity of data available for independent review is seemingly limited. Laudable advancements in the fields of maritime archaeology, oceanography, and corrosion science support the determination that microbiologically-influenced corrosion primarily controls the degradation rates of iron and steel shipwrecks over archaeological timescales. Future in situ analyses performed on these shipwreck sites need to consider the overreaching impacts that microbiological metabolism have on long-term corrosion rates. The corrosion behavior of an iron or steel archaeological shipwreck site should also not be readily applied to similar sites or to other wrecked vessels that are in close proximity.

  18. Corrosion Testing of Carbon Steel in Oxalic Acid that Contains Dissolved Iron

    SciTech Connect

    Wiersma, Bruce J.; Mickalonis, John I.; Subramanian, Karthik H.

    2012-10-11

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid (OA) will be used to chemically clean the tanks after waste retrieval is completed. The waste tanks at SRS were constructed from carbon steel materials and thus are vulnerable to corrosion in acidic media. In addition to structural impacts, the impact of corrosion on the hydrogen generated during the process must be assessed. Electrochemical and coupon immersion tests were used to investigate the corrosion mechanism at anticipated process conditions. The testing showed that the corrosion rates were dependent upon the reduction of the iron species that had dissolved in solution. Initial corrosion rates were elevated due to the reduction of the ferric species to ferrous species. At later times, as the ferric species depleted, the corrosion rate decreased. On the other hand, the hydrogen evolution reaction became more dominant.

  19. Development of weldable, corrosion-resistant iron-aluminide alloys

    SciTech Connect

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L.

    1995-05-01

    Corrosion-resistant, weldable FeAl alloys have been developed with improved high-temperature strength industrial applications. Previous processing difficulties with these alloys led to their evaluation as weld-overlay claddings on conventional structural steels to take advantage of their good properties now. Simplified and better processing methods for monolithic FeAl components are also currently being developed so that components for industrial testing can be made. Other avenues for producing FeAl coatings are currently being explored. Neutron scattering experiments residual stress distributions in the FeAl weld-overlay cladding began in FY 1993 and continued this year.

  20. High-Performance Corrosion-Resistant Iron-Based Amorphous Metals: The Effects of Composition, Structure and Environment on Corrosion Resistance

    SciTech Connect

    Farmer, J; Choi, J S; Haslam, J; Lian, T; Day, S; Yang, N; Blue, C; Peters, W; Bayles, R; Lewandowski, J; Perepezko, J; Hildal, K; Lavernia, E; Ajdelsztajn, A; Grave, O; Aprigliano, L; Kaufman, L; Boudreau, J; Branagan, D J; Beardsley, B

    2006-04-11

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative thermal phase stability, microstructure, mechanical properties, damage tolerance, and corrosion resistance. Some alloy additions are known to promote glass formation and to lower the critical cooling rate [F. Guo, S. J. Poon, Applied Physics Letters, 83 (13) 2575-2577, 2003]. Other elements are known to enhance the corrosion resistance of conventional stainless steels and nickel-based alloys [A. I. Asphahani, Materials Performance, Vol. 19, No. 12, pp. 33-43, 1980] and have been found to provide similar benefits to iron-based amorphous metals. Many of these materials can be cast as relatively thick ingots, or applied as coatings with advanced thermal spray technology. A wide variety of thermal spray processes have been developed by industry, and can be used to apply these new materials as coatings. Any of these can be used for the deposition of the formulations discussed here, with varying degrees of residual porosity and crystalline structure. Thick protective coatings have now been made that are fully dense and completely amorphous in the as-sprayed condition. An overview of the High-Performance Corrosion Resistant Materials (HPCRM) Project will be given, with particular emphasis on the corrosion resistance of several different types of iron-based amorphous metals in various environments of interest. The salt fog test has been used to compare the performance of various wrought alloys, melt-spun ribbons, arc-melted drop-cast ingots, and thermal-spray coatings for their susceptibility to corrosion in marine environments. Electrochemical tests have also been performed in seawater. Spontaneous breakdown of the passive film and localized corrosion require that the open-circuit corrosion potential exceed the critical potential. The resistance to localized corrosion is seawater has been

  1. Metallic plate corrosion and uptake of corrosion products by nafion in polymer electrolyte membrane fuel cells.

    PubMed

    Bozzini, Benedetto; Gianoncelli, Alessandra; Kaulich, Burkhard; Kiskinova, Maya; Prasciolu, Mauro; Sgura, Ivonne

    2010-07-19

    Nafion contamination by ferrous-alloy corrosion products, resulting in dramatic drops of the Ohmic potential, is a suspected major failure mode of polymer electrolyte membrane fuel cells that make use of metallic bipolar plates. This study demonstrates the potential of scanning transmission X-ray microscopy combined with X-ray absorption and fluorescence microspectroscopy for exploring corrosion processes of Ni and Fe electrodes in contact with a hydrated Nafion film in a thin-layer cell. The imaged morphology changes of the Ni and Fe electrodes and surrounding Nafion film that result from relevant electrochemical processes are correlated to the spatial distribution, local concentration, and chemical state of Fe and Ni species. The X-ray fluorescence maps and absorption spectra, sampled at different locations, show diffusion of corrosion products within the Nafion film only in the case of the Fe electrodes, whereas the Ni electrodes appear corrosion resistant. PMID:20564283

  2. Wear, corrosion, and cavitation erosion characteristics of laser-surface-alloyed gray cast iron

    NASA Astrophysics Data System (ADS)

    Bransden, Antony S.; Tomlinson, W. J.

    1990-10-01

    There is significant industrial interest in methods to improve the surface properties of cast iron. This paper describes investigations of laser treatments to enhance cast iron surfaces by alloying with the elements chromium, nickel or cobalt, or a cobalt/chromium mixture. The coatings achieved are of high integrity, low porosity and uniform in composition, microstructure and hardness. Alloyed surfaces have been subjected to corrosion testing in a range of acids and to wear and cavitation erosion in distilled and salt waters. The data show substantial improvements over those obtained from unalloyed material. Results are presented and discussed including the response of the microstructure to the testing environments.

  3. Influence of poly(aminoquinone) on corrosion inhibition of iron in acid media

    NASA Astrophysics Data System (ADS)

    Jeyaprabha, C.; Sathiyanarayanan, S.; Phani, K. L. N.; Venkatachari, G.

    2005-11-01

    The inhibitor performance of chemically synthesized water soluble poly(aminoquinone) (PAQ) on iron corrosion in 0.5 M sulphuric acid was studied in relation to inhibitor concentration using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. On comparing the inhibition performance of PAQ with that of the monomer o-phenylenediamine (OPD), the OPD gave an efficiency of 80% for 1000 ppm while it was 90% for 100 ppm of PAQ. PAQ was found to be a mixed inhibitor. Besides, PAQ was able to improve the passivation tendency of iron in 0.5 M H 2SO 4 markedly.

  4. Evaluation of Iron Aluminide Weld Overlays for Erosion-Corrosion Resistant Boiler Tube Coatings in Low NOx Boilers

    SciTech Connect

    Regina, J.R.; Lim, M.; Barbosa, N., DuPont, J.N.; Marder, A.R.

    2000-04-28

    Iron aluminide weld overlays containing ternary additions and thermal spray coatings are being investigated for corrosion protection of boiler tubes in Low NO{sub x} burners. The primary objective of the research is to identify overlay and thermal spray compositions that provide corrosion protection of waterwall boiler tubes.

  5. Superhydrophobic surface fabricated on iron substrate by black chromium electrodeposition and its corrosion resistance property

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Feng, Haitao; Lin, Feng; Wang, Yabin; Wang, Liping; Dong, Yaping; Li, Wu

    2016-08-01

    The fabrication of superhydrophobic surface on iron substrate is carried out through 20 min black chromium electrodeposition, followed by immersing in 0.05 M ethanolic stearic acid solution for 12 h. The resultant superhydrophobic complex film is characterized by scanning electron microscope (SEM), disperse Spectrometer (EDS), atomic force microscope (AFM), water contact angle (CA), sliding angle (SA) and X-ray photoelectron spectroscope (XPS), and its corrosion resistance property is measured with cyclic voltammetry (CV), linear polarization and electrochemical impedance spectroscopy (EIS). The results show that the fabricated superhydrophobic film has excellent water repellency (CA, 158.8°; SA, 2.1°) and significantly high corrosion resistance (1.31 × 106 Ω cm-2) and excellent corrosion protection efficiency (99.94%).

  6. Inhibition of iron corrosion in 0.5 M sulphuric acid by metal cations

    NASA Astrophysics Data System (ADS)

    Sathiyanarayanan, S.; Jeyaprabha, C.; Muralidharan, S.; Venkatachari, G.

    2006-09-01

    Corrosion inhibitors are widely used in acid solutions during pickling and descaling. Mostly organic compounds containing N, O, and S groups are employed as inhibitors. In this study, the inhibition performance of metal cations such as Zn 2+, Mn 2+ and Ce 4+ ions in the concentration range 1-10 × 10 -3 M has been found out. The corrosion behaviour of iron in 0.5 M H 2SO 4 in the presence of metal cations is studied using polarization and impedance methods. It is found that the addition of these metal cations inhibits the corrosion markedly. The inhibition effect is in the following order Ce 4+ ≫ Mn 2+ > Zn 2+.

  7. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report

    SciTech Connect

    Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

    2009-03-16

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  8. Effects of surface condition on aqueous corrosion and environmental embrittlement of iron aluminides

    SciTech Connect

    Perrin, R.L.; Buchanan, R.A.

    1996-08-01

    Effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion and environmental-embrittlement characteristics of Fe{sub 3}Al-based iron aluminides (FA-84, FA-129 and FAL-Mo), a FeAl-based iron aluminide (FA-385), and a disordered low-aluminum Fe-Al alloy (FAPY) were evaluated. All tests were conducted at room temperature in a mild acid-chloride solution. In cyclic-anodic-polarization testing for aqueous-corrosion behavior, the surface conditions examined were: as-received (i.e., with the retained high-temperature oxides), mechanically cleaned and chemically cleaned. For all materials, the polarization tests showed the critical pitting potentials to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. These results indicate detrimental effects of the retained high-temperature oxides in terms of increased susceptibilities to localized corrosion. In 200-hour U-bend stress-corrosion-cracking tests for environmental-embrittlement behavior, conducted at open-circuit corrosion potentials and at a hydrogen-charging potential of {minus}1500 mV (SHE), the above materials (except FA-385) were examined with retained oxides and with mechanically cleaned surfaces. At the open-circuit corrosion potentials, none of the materials in either surface condition underwent cracking. At the hydrogen-charging potential, none of the materials with retained oxides underwent cracking, but FA-84, FA-129 and FAL-Mo in the mechanically cleaned condition did undergo cracking. These results suggest beneficial effects of the retained high-temperature oxides in terms of increased resistance to environmental hydrogen embrittlement.

  9. Microbially-Promoted Solubilization of Steel Corrosion Products and Fate of Associated Actinides

    SciTech Connect

    Gill Geesey; Timothy Magnuson; Andrew Neal

    2002-06-15

    Microorganisms have the capacity to modify iron oxides during anaerobic respiration. When the dissimilatory sulfate-reducing bacterium Desulfovibrio desulfuricans G20 respires soluble sulfate during colonization of the solid-phase iron oxide hematite, the sulfide product reacts with the iron to produce the insoluble iron sulfide, pyrrhotite. When soluble uranium is present as uranyl ion, these microorganisms reduce the U(VI) to U(IV) as insoluble uraninite on the hematite surface. There is also evidence that a stable form of U is produced under these conditions that displays an oxidation state between U(VI) and U(iv). The dissimilatory iron reducing bacterium, Shewanella oneidensis MR1 can utilize insoluble hematite as the sole electron acceptor for anaerobic respiration during growth and biofilm development on the mineral. The growth rate, maximum cell density and detachment rate for this bacterium are significantly greater on hematite than on magnetite (111) and (100). The difference could not be attributed to iron site density in the iron oxide. A gene (ferA) encoding a c-tyoe cytochrome involved in dissimulatory iron reduction in the bacterium Geobacter sulfurreducens was completed sequenced and characterized. The sequence information was used to develop an in-situ reverse transcriptase polymerase chain reaction assay that could detect expression of the gene during growth and biofilm development on ferrihydrite at the single cell and microcolony level. X-ray photoelectron spectroscopic analysis revealed that the ferrihydrite was reduced during expression of this gene. The assay was extended to detect expression of genes involved in sulfate reduction and hydrogen reduction in sulfate-reducing bacteria. This assay will be useful to assess mechanisms of biotransformation of minerals including corrosion products on buried metal containers containing radionuclide waste. In summary, the research has shown that dissimilatory sulfate and iron reducing bacteria can

  10. ROLE OF IRON (II, III) HYDROXYCARBONATE GREEN RUST IN ARSENIC REMEDIATION USING ZEROVALENT IRON IN COLUMN TESTS

    EPA Science Inventory

    We examined corrosion products of zerovalent iron (Peerless iron) that was used in three column tests for removing arsenic under dynamic flow conditions with and without added phosphate and silicate. Iron(II, III) hydroxycarbonate and magnetite were major iron corrosion products...

  11. Effect of bacterial communities on the formation of cast iron corrosion tubercles in reclaimed water.

    PubMed

    Jin, Juntao; Wu, Guangxue; Guan, Yuntao

    2015-03-15

    To understand the role bacterial communities play in corrosion scale development, the morphological and physicochemical characteristics of corrosion scales in raw and disinfected reclaimed water were systematically investigated. Corrosion tubercles were found in raw reclaimed water while thin corrosion layers formed in disinfected reclaimed water. The corrosion tubercles, composed mainly of α-FeOOH, γ-FeOOH, and CaCO3, consisted of an top surface; a shell containing more magnetite than other layers; a core in association with stalks produced by bacteria; and a corroded layer. The thin corrosion layers also had layered structures. These had a smooth top, a dense middle, and a corroded layer. They mostly consisted of the same main components as the tubercles in raw reclaimed water, but with different proportions. The profiles of the dissolved oxygen (DO) concentration, redox potential, and pH in the tubercles were different to those in the corrosion layers, which demonstrated that these parameters changed with a shift in the microbial processes in the tubercles. The bacterial communities in the tubercles were found to be dominated by Proteobacteria (56.7%), Bacteroidetes (10.0%), and Nitrospira (6.9%). The abundance of sequences affiliated to iron-reducing bacteria (IRB, mainly Geothrix) and iron-oxidizing bacteria (mainly Aquabacterium) was relatively high. The layered characteristics of the corrosion layers was due to the blocking of DO transfer by the development of the scales themselves. Bacterial communities could at least promote the layering process and formation of corrosion tubercles. Possible mechanisms might include: (1) bacterial communities mediated the pH and redox potential in the tubercles (which helped to form shell-like and core layers), (2) the metabolism of IRB and magnetic bacteria (Magnetospirillum) might contribute to the presence of Fe3O4 in the shell-like layer, while IRB contributed to green rust in the core layer, and (3) the diversity of

  12. Microstructure Aspects of a Newly Developed, Low Cost, Corrosion-Resistant White Cast Iron

    NASA Astrophysics Data System (ADS)

    Sain, P. K.; Sharma, C. P.; Bhargava, A. K.

    2013-04-01

    The purpose of this work is to study the influence of heat treatment on the corrosion resistance of a newly developed white cast iron, basically suitable for corrosion- and wear-resistant applications, and to attain a microstructure that is most suitable from the corrosion resistance point of view. The composition was selected with an aim to have austenitic matrix both in as-cast and heat-treated conditions. The difference in electrochemical potential between austenite and carbide is less in comparison to that between austenite and graphite. Additionally, graphitic corrosion which is frequently encountered in gray cast irons is absent in white cast irons. These basic facts encouraged us to undertake this work. Optical metallography, hardness testing, X-ray diffractometry, and SEM-EDX techniques were employed to identify the phases present in the as-cast and heat-treated specimens of the investigated alloy and to correlate microstructure with corrosion resistance and hardness. Corrosion testing was carried out in 5 pct NaCl solution (approximate chloride content of sea water) using the weight loss method. In the investigated alloy, austenite was retained the in as-cast and heat-treated conditions. The same was confirmed by X-ray and EDX analysis. The stability and volume fraction of austenite increased with an increase of heat-treated temperature/time with a simultaneous decrease in the volume fraction of massive carbides. The decrease in volume fraction of massive carbides resulted in the availability of alloying elements. These alloying elements, on increasing the heat treatment temperature or increasing the soaking period at certain temperatures, get dissolved in austenite. As a consequence, austenite gets enriched as well as becomes more stable. On cooling from lower soaking period/temperature, enriched austenite decomposes to lesser enriched austenite and to a dispersed phase due to decreasing solid solubility of alloying elements with decreasing temperature

  13. Changes in the state of iron atoms in Zr alloys during corrosion tests in an autoclave

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Bateev, A. B.; Lauer, Yu. A.; Kargin, N. I.; Petrov, V. I.

    2014-04-01

    Mössbauerinvestigations were carried out on oxide films formed on specimens of zirconium alloys Zr-1.0 %wtFe-1.2 %wtSn-0.5 %wtCr subjected to corrosion in steam-water environment at a temperature of 360 °C and at a pressure of 16.8 MPa with lithium and boron additions, and on Zr-1.4 %wtFe-0.7 %wtCr corroded in steam-water environment at 350 °C and 16.8 MPa as well as in steam-water environment at 500 °C and 10 MPa. In the metal part of the samples, under the oxide film, the iron atoms are in form of intermetallic precipitates of Zr(Fe, Cr)2. The corrosion process decomposes the intermetallic precipitates and particles are formed of metallic iron with inclusions of chromium atoms -Fe(Cr), α-Fe2O3 and Fe3O4 compounds. Part of the iron ions are in divalent and part in trivalent paramagnetic states. It is proposed that some part of the iron containing oxide precipitates in the oxide film may be in the form of nanoparticles which pass from the superparamagnetic to the ferromagnetic state with decreasing temperature.

  14. Corrosion

    ERIC Educational Resources Information Center

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  15. Fracture of concrete caused by the reinforcement corrosion products

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. T.; Millard, A.; Caré, S.; L'Hostis, V.; Berthaud, Y.

    2006-11-01

    One of the most current degradations in reinforced concrete structures is related to the corrosion of the reinforcements. The corrosion products during active corrosion induce a mechanical pressure on the surrounding concrete that leads to cover cracking along the rebar. The objective of this work is to study the cracking of concrete due to the corrosion of the reinforcements. The phenomenon of corrosion/cracking is studied in experiments through tests of accelerated corrosion on plate and cylindrical specimens. A CCD camera is used to take images every hour and the pictures are analyzed by using the intercorrelation image technique (Correli^LMT) to derive the displacement and strain field. Thus the date of appearance of the first through crack is detected and the cinematic crack initiations are observed during the test. A finite element model that allows prediction of the mechanical consequences of the corrosion of steel in reinforced concrete structures is proposed. From the comparison between the test results and numerical simulations, it may be concluded that the model is validated in term of strains up to the moment when the crack becomes visible, and in terms of crack pattern.

  16. Evaluation of Iron Aluminide Weld Overlays for Erosion-Corrosion Resistant Boiler Tube Coatings in Low NOx Boilers

    SciTech Connect

    Regina, J.R.

    2000-05-16

    Iron aluminide weld overlays containing ternary additions and thermal spray coatings are being investigated for corrosion protection of boiler tubes in Low NOx burners. The primary objective of the research is to identify overlay and thermal spray compositions that provide corrosion protection of waterwall boiler tubes. In the current phase of work, preliminary corrosion tests were conducted on a binary Fe-Al alloy in multiple complex gases to determine which gases will be used for testing of the ternary alloys. Preliminary solid-state corrosion tests were also conducted to simulate slag-metal interactions seen in Low NOx furnaces. Two powder compositions were chosen for testing of the ternary alloys. A matrix of alloys to be tested in both gaseous and solid-state corrosion experiments was produced based on corrosion literature.

  17. Facile fabrication of iron-based superhydrophobic surfaces via electric corrosion without bath

    NASA Astrophysics Data System (ADS)

    Sun, Qinghe; Liu, Hongtao; Chen, Tianchi; Wei, Yan; Wei, Zhu

    2016-04-01

    Superhydrophobic surface is of wide application in the field of catalysis, lubrication, waterproof, biomedical materials, etc. The superhydrophobic surface based on hard metal is worth further study due to its advantages of high strength and wear resistance. This paper investigates the fabrication techniques towards superhydrophobic surface on carbon steel substrate via electric corrosion and studies the properties of as-prepared superhydrophobic surface. The hydrophobic properties were characterized by a water sliding angle (SA) and a water contact angle (CA) measured by the Surface tension instrument. A Scanning electron microscope was used to analyze the structure of the corrosion surface. The surface compositions were characterized by an Energy Dispersive Spectrum. The Electrochemical workstation was used to measure its anti-corrosion property. The anti-icing performance was characterized by a steam-freezing test in Environmental testing chamber. The SiC sandpaper and 500 g weight were used to test the friction property. The research result shows that the superhydrophobic surface can be successfully fabricated by electrocorrosion on carbon steel substrate under appropriate process; the contact angle of the as-prepared superhydrophobic surface can be up to 152 ± 0.5°, and the sliding angle is 1-2°; its anti-corrosion property, anti-icing performance and the friction property all show an excellent level. This method provides the possibility of industrialization of superhydrophobic surface based on iron substrate as it can prepare massive superhydrophobic surface quickly.

  18. Modeling the diffusion effects through the iron carbonate layer in the carbon dioxide corrosion of carbon steel

    SciTech Connect

    Rajappa, S.; Zhang, R.; Gopal, M.

    1998-12-31

    A mechanistic model was developed for predicting carbon dioxide corrosion rates of carbon steel pipes in multiphase flow conditions. The model incorporates the chemistry, thermodynamics of carbon dioxide dissolution, multiphase mass transfer, electrochemical kinetics on the metal surface and the presence of a corrosion product film. The predicted corrosion rates show good agreement with the experimental results.

  19. Study of mechanical, physical, and corrosion behavior of 0.5% cobalt alloyed austempered ductile iron

    NASA Astrophysics Data System (ADS)

    Abdullah, Bulan; Jaffar, Ahmed; Alias, Siti Khadijah; Ramli, Abdullah; Izham, Mohd Faizul

    2010-03-01

    Objectives: The purpose of this research was to determine the mechanical properties and corrosion behavior of 0.5% Co-DI before and after heat treatment and compare with commercial ductile iron. Methods: Molten metal of newly developed ductile iron which alloyed with 0.5% Cobalt produced through CO2 sand casting method. The specimens then performed preheat to 500°C in an hour then oil quenched. Specimens then performed annealing to 900°C in half an hour before oil quenched again. 500°C, 600°C and 700°C austempering temperature had been selected subjected to the specimens in half an hour before cooled to room temperature. The tests involved are microstructure analysis which included nodule count and phase analysis, polarization test, spectrometer test, density test, tensile test (ASTM E 8M), hardness test and impact test (ASTM A327) on as cast and austempered specimen. Results: 0.5% Cobalt alloyed austempered ductile iron with 500°C austempered temperature is the optimum temperature for 0.5% Co-ADI. It's not only increase the nodule count in the content, but also improve the mechanical properties such as impact toughness and tensile strength. Corrosion rate of 0.5% Co-DI also improved compare to unalloyed DI.

  20. Study of mechanical, physical, and corrosion behavior of 0.5% cobalt alloyed austempered ductile iron

    NASA Astrophysics Data System (ADS)

    Abdullah, Bulan; Jaffar, Ahmed; Alias, Siti Khadijah; Ramli, Abdullah; Izham, Mohd Faizul

    2009-12-01

    Objectives: The purpose of this research was to determine the mechanical properties and corrosion behavior of 0.5% Co-DI before and after heat treatment and compare with commercial ductile iron. Methods: Molten metal of newly developed ductile iron which alloyed with 0.5% Cobalt produced through CO2 sand casting method. The specimens then performed preheat to 500°C in an hour then oil quenched. Specimens then performed annealing to 900°C in half an hour before oil quenched again. 500°C, 600°C and 700°C austempering temperature had been selected subjected to the specimens in half an hour before cooled to room temperature. The tests involved are microstructure analysis which included nodule count and phase analysis, polarization test, spectrometer test, density test, tensile test (ASTM E 8M), hardness test and impact test (ASTM A327) on as cast and austempered specimen. Results: 0.5% Cobalt alloyed austempered ductile iron with 500°C austempered temperature is the optimum temperature for 0.5% Co-ADI. It's not only increase the nodule count in the content, but also improve the mechanical properties such as impact toughness and tensile strength. Corrosion rate of 0.5% Co-DI also improved compare to unalloyed DI.

  1. Corrosion of iron and low alloyed steel within a water saturated brick of clay under anaerobic deep geological disposal conditions: An integrated experiment

    NASA Astrophysics Data System (ADS)

    Martin, F. A.; Bataillon, C.; Schlegel, M. L.

    2008-09-01

    The aim of this study was to determine the corrosion behaviour of iron and low alloyed steels under simulated geological disposal conditions, related to long-term disposal of nuclear wastes in the site of Bure (Meuse-Haute Marne, Champagne, France). The dedicated experiment was a fully integrated set-up: three different bars of material (iron, steel or nickel) have been introduced inside a solid block of clay, which has been saturated with synthetic Bure water and maintained at 90 °C during 8 months. Two types of clay have been tested: first, a compacted MX80 (Wyoming, USA) and second, argilite directly taken from the Bure site (Callovo-Oxfordian). In situ electrochemistry has been performed: impedance spectra, chronopotentiometry… The samples have been analysed using a combination of techniques, such as SEM, XRD, EDS, μXAS, μRaman, gravimetry after desquamation. In both cases, the steel or the iron seemed to passivate in contact with the clay. Post-processing of the EIS determined the corrosion rates and the changes in the kinetics have been noticed. The post mortem analysis of the corrosion products showed in both cases the presence of an internal layer made of magnetite (Raman, EDX). The external layer was made of partially Ca-substituted siderite (Fe 1-xCa xCO 3), which could play an extra role in the passivation. Moreover, the samples embedded in the Bure argilite presented an intermediate unique layer containing Fe, O, Na and Si. This study suggests the corrosion products started to react with the silica issued from the dissolution of the Bure clay minerals, resulting in clay minerals neo-formation and in corrosion kinetic changes.

  2. Synthesis and Corrosion Study of Zirconia-Coated Carbonyl Iron Particles

    SciTech Connect

    Shen, R.; Shafrir, S.N.; Miao, C.; Wang, M.; Lambropoulos, J.C.; Jacobs, S.D.; Yang, H.

    2010-01-07

    This paper describes the surface modification of micrometer-sized magnetic carbonyl iron particles (CI) with zirconia from zirconium(IV) butoxide using a sol–gel method. Zirconia shells with various thicknesses and different grain sizes and shapes are coated on the surface of CI particles by changing the reaction conditions, such as the amounts of zirconia sol, nitric acid, and CI particles. A silica adhesive layer made from 3-aminopropyl trimethoxysilane (APTMS) can be introduced first onto the surface of CI particles in order to adjust both the size and the shape of zirconia crystals, and thus the roughness of the coating. The microanalyses on these coated particles are studied by field-emission scanning electron microscopy (FE-SEM) and X-ray-diffraction (XRD). Accelerated acid corrosion and air oxidation tests indicate that the coating process dramatically improved oxidation and acid corrosion resistances, which are critical issues in various applications of CI magnetic particles.

  3. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  4. Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth.

    PubMed

    Pasek, Matthew A; Lauretta, Dante S

    2005-08-01

    We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO(3), the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate. PMID:16078869

  5. Aqueous Corrosion of Phosphide Minerals from Iron Meteorites: A Highly Reactive Source of Prebiotic Phosphorus on the Surface of the Early Earth

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew A.; Lauretta, Dante S.

    2005-08-01

    We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO3, the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.

  6. Corrosion behavior of surface films on boron-implanted high purity iron and stainless steels

    NASA Technical Reports Server (NTRS)

    Kim, H. J.; Carter, W. B.; Hochman, R. F.; Meletis, E. I.

    1985-01-01

    Boron (dose, 2 x 10 to the 17th ions/sq cm) was implanted into high purity iron, AISI 316 austenitic stainless steel, and AISI 440C martensitic stainless steel, at 40 keV. The film structure of implanted samples was examined and characterized by contrast and diffraction analyses utilizing transmission electron microscopy. The effect of B(+) ion implantation on the corrosion behavior was studied using the potentiodynamic polarization technique. Tests were performed in deaerated 1 N H2SO4 and 0.1 M NaCl solutions. Scanning electron microscopy was used to examine the morphology of the corroded surfaces after testing.

  7. High-temperature corrosion-resistant iron-aluminide (FeAl) alloys exhibiting improved weldability

    DOEpatents

    Maziasz, P.J.; Goodwin, G.M.; Liu, C.T.

    1996-08-13

    This invention relates to improved corrosion-resistant iron-aluminide intermetallic alloys. The alloys of this invention comprise, in atomic percent, from about 30% to about 40% aluminum alloyed with from about 0.1% to about 0.5% carbon, no more than about 0.04% boron such that the atomic weight ratio of boron to carbon in the alloy is in the range of from about 0.01:1 to about 0.08:1, from about 0.01 to about 3.5% of one or more transition metals selected from Group IVB, VB, and VIB elements and the balance iron wherein the alloy exhibits improved resistance to hot cracking during welding. 13 figs.

  8. High-temperature corrosion-resistant iron-aluminide (FeAl) alloys exhibiting improved weldability

    DOEpatents

    Maziasz, Philip J.; Goodwin, Gene M.; Liu, Chain T.

    1996-01-01

    This invention relates to improved corrosion-resistant iron-aluminide intermetallic alloys. The alloys of this invention comprise, in atomic percent, from about 30% to about 40% aluminum alloyed with from about 0.1% to about 0.5% carbon, no more than about 0.04% boron such that the atomic weight ratio of boron to carbon in the alloy is in the range of from about 0.01:1 to about 0.08:1, from about 0.01 to about 3.5% of one or more transition metals selected from Group IVB, VB, and VIB elements and the balance iron wherein the alloy exhibits improved resistance to hot cracking during welding.

  9. Corrosion protection

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  10. A comparative study of the corrosion of tin-free steel and iron in sodium bisulfite

    SciTech Connect

    Seshadri, G.; Bower, K.A.; Brooks, R.W.; Kelber, J.A.

    1995-03-01

    The authors have examined the electrochemical behavior of tin-free steel chromium type (TFS-CT) and polycrystalline iron electrodes in sodium bisulfite containing Perchlorate and nitrate solutions. Their experiments indicate that TFS-CT corrodes on exposure to sodium bisulfite. The extent to which passivation is prevented depends on the supporting electrolyte. A very interesting feature that the authors have observed is that TFS-CT exhibits a ``memory`` of exposure to sodium bisulfite, in that it does not repassivate when subsequently cycled in a bisulfite-free supporting electrolyte. This ``memory effect`` and the extent of corrosion depend on the supporting electrolyte used. Polycrystalline iron electrodes on the other hand, corrode on exposure to sodium bisulfite, but repassivate when returned to a supporting electrolyte that is free of bisulfite. The results indicate that bisulfite attacks the protective chrome oxide coating partially or completely, inhibiting subsequent passivation even in bisulfite-free electrolytes. The results also indicate that reactions of the bisulfite exposed surface with Perchlorate or nitrate anions significantly affect corrosion behavior.

  11. CORA-II model of PWR corrosion-product transport

    SciTech Connect

    Kang, S.; Sejvar, J.

    1985-09-01

    The revised CORA-II computer code, which predicts corrosion-product transport and radiation field buildup in PWRs, incorporates recent advances in scientific understanding of these processes. Designers and engineers can use the code to assess the relative effects of plant design, operation, and coolant chemistry changes on radiation-field buildup.

  12. Effects of iron-reducing bacteria on carbon steel corrosion induced by thermophilic sulfate-reducing consortia.

    PubMed

    Valencia-Cantero, Eduardo; Peña-Cabriales, Juan José

    2014-02-28

    Four thermophilic bacterial species, including the iron-reducing bacterium Geobacillus sp. G2 and the sulfate-reducing bacterium Desulfotomaculum sp. SRB-M, were employed to integrate a bacterial consortium. A second consortium was integrated with the same bacteria, except for Geobacillus sp. G2. Carbon steel coupons were subjected to batch cultures of both consortia. The corrosion induced by the complete consortium was 10 times higher than that induced by the second consortium, and the ferrous ion concentration was consistently higher in iron-reducing consortia. Scanning electronic microscopy analysis of the carbon steel surface showed mineral films colonized by bacteria. The complete consortium caused profuse fracturing of the mineral film, whereas the non-iron-reducing consortium did not generate fractures. These data show that the iron-reducing activity of Geobacillus sp. G2 promotes fracturing of mineral films, thereby increasing steel corrosion. PMID:24225375

  13. A study of the corrosion products of mild steel in high ionic strength brines.

    PubMed

    Wang, Z; Moore, R C; Felmy, A R; Mason, M J; Kukkadapu, R K

    2001-01-01

    The corrosion layer on steel surfaces that formed after exposure to waste isolation pilot plant (WIPP) brines under anoxic conditions was characterized for chemical composition, thickness and phase composition. The chemical composition of the corrosion layer was determined both by X-ray photoelectron spectroscopy (XPS) and by chemical analysis of acid solutions used to remove the corrosion layer. Atomic force microscopic (AFM) images indicated that the brine-corroded surface layer shows extensive granulation along the contours of the steel surface that is characteristic of sharp polishing marks. The corrosion layer seemed to be porous and could be dissolved and detached in dilute hydrochloric acid. The corrosion layer appears to be composed of iron oxides with some ionic substitutions from the brines. The 77 K Mössbauer spectrum recorded for iron powder leached under similar conditions indicated the corrosion layer was comprised principally of green rust. PMID:11300533

  14. Effects of high temperature surface oxides on room temperature aqueous corrosion and environmental embrittlement of iron aluminides

    SciTech Connect

    Buchanan, R.A.; Perrin, R.L.

    1996-09-01

    Studies were conducted to determine the effects of high-temperature surface oxides, produced during thermomechanical processing, heat treatment (750 {degrees}C in air, one hour) or simulated in-service-type oxidation (1000{degrees}C in air, 24 hours) on the room-temperature aqueous-corrosion and environmental-embrittlement characteristics of iron aluminides. Materials evaluated included the Fe{sub 3}Al-based iron aluminides, FA-84, FA-129, FAL and FAL-Mo, a FeAl-based iron aluminide, FA-385, and a disordered low-aluminum Fe-Al alloy, FAPY. Tests were performed in a mild acid-chloride solution to simulate aggressive atmospheric corrosion. Cyclic-anodic-polarization tests were employed to evaluate resistances to localized aqueous corrosion. The high-temperature oxide surfaces consistently produced detrimental results relative to mechanically or chemically cleaned surfaces. Specifically, the pitting corrosion resistances were much lower for the as-processed and 750{degrees} C surfaces, relative to the cleaned surfaces, for FA-84, FA-129, FAL-Mo, FA-385 and FAPY. Furthermore, the pitting corrosion resistances were much lower for the 1000{degrees}C surfaces, relative to cleaned surfaces, for FA-129, FAL and FAL-Mo.

  15. Slippery liquid-infused porous surface based on perfluorinated lubricant/iron tetradecanoate: Preparation and corrosion protection application

    NASA Astrophysics Data System (ADS)

    Yang, Shengsheng; Qiu, Ri; Song, Hongqing; Wang, Peng; Shi, Zhiqiang; Wang, Yanfang

    2015-02-01

    Corrosion and fouling have been two major enemies for materials immersed in seawater. Fluid including gas and liquid as coating for marine corrosion protection has attracted much attention, since it can also exert antifouling capability in seawater environment. Combining gas and solid phases, superhydrophobic surface is promising to protect the underlying metal from corrosion. However, the intrinsically short sustainability in underwater environment has hindered its practical application, so that its corrosion protection ability is only temporary. Originated from liquid and solid phases, slippery liquid-infused porous surface (SLIPS) has spurred wide interest due to its prominent performance in different fields. However, the exploration of corrosion protection efficiency from SLIPS remains rare. In this research, SLIPS is constructed onto steel surface via a facile two-step protocol. First, based on a dissolution-deposition strategy, iron tetradecanoate is formed by an electrochemical route. After that, fluid lubricant is infused onto the deposit, whose rough surface acts as the reservoir to entrap the fluid to form a static liquid coating. Compared to the bare and hydrophobic deposit covering low alloy steel, the SLIPS composed perfluorinated lubricant and iron tetradecanoate endows good corrosion protection property.

  16. ARSENIC INTERACTION WITH IRON (II, III) HYDROXYCARBONATE GREEN RUST: IMPLICATIONS FOR ARSENIC REMEDIATION

    EPA Science Inventory

    Zerovalent iron is being used in permeable reactive barriers (PRBs) to remediate groundwater arsenic contamination. Iron(II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron under anaerobic conditions. The interaction between arsenic and this green...

  17. Effect of carbon on stress corrosion cracking and anodic oxidation of iron in NaOH solutions

    SciTech Connect

    Flis, J.; Ziomek-Moroz, Margaret

    2008-06-01

    Anodic behaviour of decarburised iron and of quenched Fe–C materials with up to 0.875 wt% C was examined in 8.5 M NaOH at 100 °C to explain the role of carbon in caustic stress corrosion cracking (SCC) of plain steels. Removal of carbon from Armco iron strongly reduced its intergranular SCC. Slip steps on grains did not initiate cracks. It has been shown that carbon at low contents deteriorates the passivation of iron, whereas at high contents it promotes the formation of magnetite. High resistance to SCC of high carbon steels can be explained by an intense formation of magnetite on these steels.

  18. Characterization of reaction products of iron and iron salts and aqueous plant extracts

    NASA Astrophysics Data System (ADS)

    Jaén, J. A.; García de Saldaña, E.; Hernández, C.

    1999-11-01

    The complexes formed in aqueous solution as a result of a reaction of iron and iron salts (Fe2+ and Fe3+) and some plant extracts were analyzed using Mössbauer spectroscopy and Fourier transform infrared. The extracts were obtained from Opuntia elatior mill., Acanthocereus pentagonus (L.) Britton, Mimosa tenuiflora, Caesalpinia coriaria (Jacq.) Willd., Bumbacopsis quinata (Jacq.) Dugand and Acacia mangium Willd., plants growing wildly in different zones of the Isthmus of Panama. Results suggest the formation of mono- and bis-type complexes, and in some cases, the occurrence of a redox reaction. The feasibility of application of the studied extracts as atmospheric corrosion inhibitors is discussed.

  19. Characterization of Corrosion Product Layers from CO2 Corrosion of 13Cr Stainless Steel in Simulated Oilfield Solution

    NASA Astrophysics Data System (ADS)

    Yin, Z. F.; Wang, X. Z.; Liu, L.; Wu, J. Q.; Zhang, Y. Q.

    2011-10-01

    The influence of temperature and flow rate on the characterization and mechanisms of corrosion product layers from CO2 corrosion of 13Cr stainless steel was carried out in simulated oilfield solution. Cyclic potentiodynamic polarization method as well as weight loss tests in autoclave were utilized to investigate pitting corrosion behavior at various temperatures. Weight loss tests were performed at 100 and 160 °C under dynamic and static flow conditions. At the same time, the significant pitting parameters such as E corr, E pit, E pp, ∆ E, and I pass in cyclic polarization curves at various temperatures were analyzed and compared for revealing the pitting behavior of 13Cr stainless steel. The surface measurement techniques such as SEM, XRD, and XPS were used to detect the corrosion product layers. The results showed that both temperature and flow rate had significant effects on characterization of corrosion product layers or passive films formed on 13Cr stainless steel in CO2 corrosion system. At high temperature, lots of pits were formed at the localized corrosion areas of metal surfaces. Corrosion rates under the condition of 5 m/s were higher than those under the static condition regardless of the test temperatures.

  20. High-temperature corrosion and applications of nickel and iron aluminides in coal-conversion power systems

    SciTech Connect

    Natesan, K.; Tortorelli, P.F.

    1996-10-01

    Nickel and iron aluminide intermetallics are being developed for use as structural materials and/or as cladding for conventional engineering alloys. In addition to strength advantages, these materials exhibit excellent resistance to corrosion in single- and multioxidant environments at elevated temperatures by the formation of slow-growing, adherent alumina scales. Corrosion resistance in a given environment is strongly dependent on the composition of the alloy and on the nature of the corrosive species prevalent in the service environment. This paper presents a comprehensive review of the current status of the corrosion performance of these intermetallics in oxidizing, sulfidizing, and multicomponent gas environments of typical coal-conversion systems. Mechanisms of scale development/breakdown, performance envelopes for long-term usage of these materials, approaches to modifying the surfaces of engineering alloys by cladding or coating them with intermetallics, and in-service experience with these materials are emphasized.

  1. Iron Corrosion Induced by Nonhydrogenotrophic Nitrate-Reducing Prolixibacter sp. Strain MIC1-1

    PubMed Central

    Ito, Kimio; Wakai, Satoshi; Tsurumaru, Hirohito; Ohkuma, Moriya; Harayama, Shigeaki

    2014-01-01

    Microbiologically influenced corrosion (MIC) of metallic materials imposes a heavy economic burden. The mechanism of MIC of metallic iron (Fe0) under anaerobic conditions is usually explained as the consumption of cathodic hydrogen by hydrogenotrophic microorganisms that accelerates anodic Fe0 oxidation. In this study, we describe Fe0 corrosion induced by a nonhydrogenotrophic nitrate-reducing bacterium called MIC1-1, which was isolated from a crude-oil sample collected at an oil well in Akita, Japan. This strain requires specific electron donor-acceptor combinations and an organic carbon source to grow. For example, the strain grew anaerobically on nitrate as a sole electron acceptor with pyruvate as a carbon source and Fe0 as the sole electron donor. In addition, ferrous ion and l-cysteine served as electron donors, whereas molecular hydrogen did not. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MIC1-1 was a member of the genus Prolixibacter in the order Bacteroidales. Thus, Prolixibacter sp. strain MIC1-1 is the first Fe0-corroding representative belonging to the phylum Bacteroidetes. Under anaerobic conditions, Prolixibacter sp. MIC1-1 corroded Fe0 concomitantly with nitrate reduction, and the amount of iron dissolved by the strain was six times higher than that in an aseptic control. Scanning electron microscopy analyses revealed that microscopic crystals of FePO4 developed on the surface of the Fe0 foils, and a layer of FeCO3 covered the FePO4 crystals. We propose that cells of Prolixibacter sp. MIC1-1 accept electrons directly from Fe0 to reduce nitrate. PMID:25548048

  2. Effect of surface condition on the aqueous corrosion behavior of iron aluminies

    SciTech Connect

    Buchanan, R.A.; Perrin, R.L.

    1995-08-01

    The effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion characteristics of Fe-Al-based alloys were evaluated by electrochemical methods. Cyclic anodic polarization evaluations were conducted at room temperature in a mild acid-chloride solution (pH = 4,200 ppm Cl{sup {minus}}) on the Fe{sub 3}Al-based iron aluminides, FA-84 (Fe-28Al-2Cr-0.05B, at %), FA-129 (Fe-28Al-5Cr-0.5Nb-0.2C, at %), and FAL-Mo (Fe-28Al-5Cr-1Mo-0.04B-0.08Zr, at %), on the FeAl-based iron aluminide, FA-385 (Fe-35.65Al-0.20Mo-0.05Zr-0.11C, at %). The surface conditions evaluated were: As received (i.e. with the retained high-temperature oxides), mechanically cleaned (ground through 600-grit SiC paper), and chemically cleaned (10% HNO{sub 3}, 2%HF, at 43 {degree}C). The principal electrochemical parameter of interest was the critical putting potential with lower values indicating less resistance to chloride-induced localized corrosion. For all materials evaluated, the critical pitting potential was found to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. Mechanisms responsible for the detrimental high-temperature-oxide effect are under study.

  3. Corrosion fatigue of iron-chromium-nickel alloys: Fracture mechanics, microstructure and chemistry

    SciTech Connect

    Wei, R.P.

    1992-01-29

    This progress report briefly summarizes the research performed under the referenced grant for the period from 1 December 1990 to 31 December 1991, and contains a cumulative listing of technical presentations and publications dating back to 1 June 1988. Under this grant, a multi-disciplinary research program is undertaken to address certain fundamental issues relating to corrosion fatigue crack growth in structurally important alloys in aqueous environments. The principal goal of the research is to develop and expand the scientific understanding of the processes that control corrosion fatigue crack growth, particularly for ferrous alloys in terms of the controlling mechanical and chemical/electrochemical processes and their interactions with the microstructure. Focus is placed upon the austenitic iron-chromium-nickel (FeCrNi) alloys because of the need to resolve certain mechanistic issues and because of extensive utilization of these alloys in the power generation and chemical industries. Emphasis is given to the growth of short (small) cracks at low growth rates because crack growth in this regime is expected to be more sensitive to changes in external chemical/electrochemical variables.

  4. Erosion-Corrosion of Iron and Nickel Alloys at Elevated Temperature in a Combustion Gas Environment

    SciTech Connect

    Tylczak, Joseph

    2014-05-02

    This paper reports on the results of a study that compares the erosion-corrosion behavior of a variety of alloys (Fe- 2¼Cr 1Mo, 304 SS, 310 SS, Incoloy 800, Haynes 230 and a Fe3Al) in a combustion environment. Advanced coal combustion environments, with higher temperatures, are driving re-examination of traditional and examination of new alloys in these hostile environments. In order to simulate conditions in advanced coal combustion boilers, a special erosion apparatus was used to allow for impingement of particles under a low abrasive flux in a gaseous environment comprised of 20 % CO2, 0.05 % HCl, 77 % N2, 3 % O2, and 0.1 % SO2. Tests were conducted at room temperature and 700 °C with ~ 270 μm silica, using an impact velocity of 20 m/s in both air and the simulated combustion gas environment. The erosion-corrosion behavior was characterized by gravimetric measurements and by examination of the degraded surfaces optically and by scanning electron microscopy (SEM). At room temperature most of the alloys had similar loss rates. Not surprisingly, at 700 °C the lower chrome-iron alloy had a very high loss rate. The nickel alloys tended to have higher loss rates than the high chrome austenitic alloys.

  5. Scanning Electrochemical Microscopy for the Investigation of Galvanic Corrosion of Iron with Zinc in 0.1 M NaCl Solution

    NASA Astrophysics Data System (ADS)

    Joseph Raj, X.; Nishimura, T.

    2016-02-01

    Scanning electrochemical microscopy was used to monitor microscopic aspects of the electrochemical processes at the iron-zinc couple immersed in 0.1 M NaCl aqueous solution. The SECM measured the concentration of chemical species relevant to the corrosion processes. The electrochemical behavior of galvanic Fe/Zn coupling was investigated as a function of time using SECM microelectrode both as Fe/Zn joined together as well as away from each other. SECM amperometric line scan curves were obtained over the Fe/Zn at a constant distance. In the first case, the chemical species participating in the corrosion reactions at the sample are detected at the SECM tip by applying appropriate potential values to the microelectrode. The release of Zn2+ ionic species into the solution phase from local anodic sites, as well as the consumption of dissolved oxygen at the corresponding cathodic locations, was successfully monitored. The results revealed that the galvanic couple where Fe/Zn is close to each other will show higher corrosion rate of zinc than that of galvanic couple away from each other. The Fe/Zn couple away from each other showed a decrease in current values with time. This is due to the formation of oxide layer of Zn over the Fe followed by the protection of the corrosion products with further exposure times.

  6. The influence of relative humidity on iron corrosion under proton irradiation

    NASA Astrophysics Data System (ADS)

    Lapuerta, S.; Bérerd, N.; Moncoffre, N.; Millard-Pinard, N.; Jaffrézic, H.; Crusset, D.; Féron, D.

    2008-03-01

    With regard to the storage for high-level radioactive waste and the reversible period of a geological repository, the influence of proton irradiation on the indoor atmospheric corrosion of iron has been investigated in relation to the relative humidity (RH) in the atmosphere. Irradiation experiments were performed using a 3-MeV extracted proton beam. Relative humidity varies from 0% to 85%. Before and after each irradiation, the surfaces of the sample were characterised by Rutherford backscattering spectrometry in order to determine oxygen concentrations in the metal. The maximum oxidation rate was observed for 45% RH in air under proton irradiation and was compared with literature data without irradiation where the maximum oxidation rate was observed at 95% RH. The experimental results are discussed on the basis of the Langmuir-Hinshelwood (LH) model: they are explained by the contrast between the adsorption of O 2 and H 2O species on the active cathodic sites of the iron surface and by the formation of H +(H 2O) n.

  7. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.

    PubMed

    Zuo, Rongjun; Wood, Thomas K

    2004-11-01

    A gramicidin-S-producing Bacillus brevis 18-3 biofilm was shown to reduce corrosion rates of mild steel by inhibiting both the sulfate-reducing bacterium Desulfosporosinus orientis and the iron-oxidizing bacterium Leptothrix discophora SP-6. When L. discophora SP-6 was introduced along with D. orientis to a non-antimicrobial-producing biofilm control, Paenibacillus polymyxa ATCC 10401, a corrosive synergy was created and mild steel coupons underwent more severe corrosion than when only D. orientis was present, showing a 2.3-fold increase via electrochemical impedance spectroscopy (EIS) and a 1.8-fold difference via mass-loss measurements. However, when a gramicidin-S-producing, protective B. brevis 18-3 biofilm was established on mild steel, the metal coupons were protected against the simultaneous attack of D. orientis and L. discophora SP-6. EIS data showed that the protective B. brevis 18-3 biofilm decreased the corrosion rate about 20-fold compared with the non-gramicidin-producing P. polymyxa ATCC 10401 biofilm control. The mass loss for the protected mild steel coupons was also significantly lower than that for the unprotected ones (4-fold decrease). Scanning electron microscope images corroborated the corrosion inhibition by the gramicidin-S-producing B. brevis biofilm on mild steel by showing that the metal surface remained untarnished, i.e., the polishing grooves were still visible after exposure to the simultaneous attack of the sulfate-reducing bacterium and the iron-oxidizing bacterium. PMID:15278311

  8. X-rays absorption study on medieval corrosion layers for the understanding of very long-term indoor atmospheric iron corrosion

    NASA Astrophysics Data System (ADS)

    Monnier, J.; Réguer, S.; Vantelon, D.; Dillmann, P.; Neff, D.; Guillot, I.

    2010-05-01

    The study and prediction of very long-term atmospheric corrosion behaviour of ferrous alloys is of great importance in different fields. First the conservation of metallic artefacts in museum and the corrosion diagnosis on ferrous reinforcement used in ancient monuments since medieval times needs reliable data to understand the mechanisms. Second, in the frame of the interim storage of nuclear waste in France, it is necessary to model the long-term corrosion of low alloy steel overcontainer. The nature of phases and elements constituting the corrosion layers can greatly influence the corrosion mechanisms. On the one hand, it is crucial to precisely determine the nature of microscopic phases that can be highly reactive. On the other hand, some elements as P and S could modify this reactivity. To clarify this point and complementary to other studies using Raman micro spectroscopy technique, X-rays Absorption Spectroscopy (XAS) under synchrotron radiation plays a crucial role. It allows one to precisely identify the reactive phases in the corrosion layers. Micro-XAS was required in order to refine the spatial variation, at micrometer scale, of the predominant Fe oxidation state and to characterise the corresponding corrosion products. Moreover, the role of minor elements on phase’s stability and the chemical form of these elements in the rust layer, especially phosphorus and sulphur, was investigated.

  9. Neutrophilic Iron-Oxidizing “Zetaproteobacteria” and Mild Steel Corrosion in Nearshore Marine Environments ▿ †

    PubMed Central

    McBeth, Joyce M.; Little, Brenda J.; Ray, Richard I.; Farrar, Katherine M.; Emerson, David

    2011-01-01

    Microbiologically influenced corrosion (MIC) of mild steel in seawater is an expensive and enduring problem. Little attention has been paid to the role of neutrophilic, lithotrophic, iron-oxidizing bacteria (FeOB) in MIC. The goal of this study was to determine if marine FeOB related to Mariprofundus are involved in this process. To examine this, field incubations and laboratory microcosm experiments were conducted. Mild steel samples incubated in nearshore environments were colonized by marine FeOB, as evidenced by the presence of helical iron-encrusted stalks diagnostic of the FeOB Mariprofundus ferrooxydans, a member of the candidate class “Zetaproteobacteria.” Furthermore, Mariprofundus-like cells were enriched from MIC biofilms. The presence of Zetaproteobacteria was confirmed using a Zetaproteobacteria-specific small-subunit (SSU) rRNA gene primer set to amplify sequences related to M. ferrooxydans from both enrichments and in situ samples of MIC biofilms. Temporal in situ incubation studies showed a qualitative increase in stalk distribution on mild steel, suggesting progressive colonization by stalk-forming FeOB. We also isolated a novel FeOB, designated Mariprofundus sp. strain GSB2, from an iron oxide mat in a salt marsh. Strain GSB2 enhanced uniform corrosion from mild steel in laboratory microcosm experiments conducted over 4 days. Iron concentrations (including precipitates) in the medium were used as a measure of corrosion. The corrosion in biotic samples (7.4 ± 0.1 mM) was significantly higher than that in abiotic controls (5.0 ± 0.1 mM). These results have important implications for the role of FeOB in corrosion of steel in nearshore and estuarine environments. In addition, this work shows that the global distribution of Zetaproteobacteria is far greater than previously thought. PMID:21131509

  10. Changes of the corrosion potential of iron in stagnation and flow conditions and their relationship with metal release.

    PubMed

    Fabbricino, Massimiliano; Korshin, Gregory V

    2014-10-01

    This study examined the behavior of corrosion potential (Ecorr) of iron exposed to drinking water during episodes of stagnation and flow. These measurements showed that during stagnation episodes, Ecorr values decrease prominently and consistently. This decrease is initially rapid but it becomes slower as the stagnation time increases. During flow episodes, the Ecorr values increase and reach a quasi-steady state. Experiments with varying concentrations of dissolved oxygen showed that the decrease of Ecorr values characteristic for stagnation is likely to be associated with the consumption of dissolved oxygen by the exposed metal. The corrosion potential of iron and its changes during stagnation were sensitive to the concentrations of sulfate and chloride ions. Measurements of iron release showed that both the absolute values of Ecorr measured prior to or after stagnation episodes were well correlated with the logarithms of concentrations of total iron. The slope of this dependence showed that the observed correlations between Ecorr values and Fe concentrations corresponded to the coupling between the oxidant consumption and changes of Fe redox status. These results demonstrate that in situ Ecorr measurements can be a sensitive method with which to ascertain effects of hydrodynamic conditions and short-term variations of water chemistry on metal release and corrosion in drinking water. This approach is valuable practically because Ecorr measurements are precise, can be carried out in situ with any desired time resolution, do not affect the state of exposed surface in any extent and can be carried out with readily available equipment. PMID:24950460

  11. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes.

    PubMed

    Jin, Juntao; Guan, Yuntao

    2014-10-01

    New insights into the biocorrosion process may be gained through understanding of the interaction between extracellular polymeric substances (EPS) and iron. Herein, the effect of iron ions on the formation of biofilms and production of EPS was investigated. Additionally, the impact of EPS on the corrosion of cast iron coupons was explored. The results showed that a moderate concentration of iron ions (0.06 mg/L) promoted both biofilm formation and EPS production. The presence of EPS accelerated corrosion during the initial stage, while inhibited corrosion at the later stage. The functional groups of EPS acted as electron shuttles to enable the binding of iron ions. Binding of iron ions with EPS led to anodic dissolution and promoted corrosion, while corrosion was later inhibited through oxygen reduction and availability of phosphorus from EPS. The presence of EPS also led to changes in crystalline phases of corrosion products. PMID:25069092

  12. Surface analysis and depth profiling of corrosion products formed in lead pipes used to supply low alkalinity drinking water.

    PubMed

    Davidson, C M; Peters, N J; Britton, A; Brady, L; Gardiner, P H E; Lewis, B D

    2004-01-01

    Modern analytical techniques have been applied to investigate the nature of lead pipe corrosion products formed in pH adjusted, orthophosphate-treated, low alkalinity water, under supply conditions. Depth profiling and surface analysis have been carried out on pipe samples obtained from the water distribution system in Glasgow, Scotland, UK. X-ray diffraction spectrometry identified basic lead carbonate, lead oxide and lead phosphate as the principal components. Scanning electron microscopy/energy-dispersive x-ray spectrometry revealed the crystalline structure within the corrosion product and also showed spatial correlations existed between calcium, iron, lead, oxygen and phosphorus. Elemental profiling, conducted by means of secondary ion mass spectrometry (SIMS) and secondary neutrals mass spectrometry (SNMS) indicated that the corrosion product was not uniform with depth. However, no clear stratification was apparent. Indeed, counts obtained for carbonate, phosphate and oxide were well correlated within the depth range probed by SIMS. SNMS showed relationships existed between carbon, calcium, iron, and phosphorus within the bulk of the scale, as well as at the surface. SIMS imaging confirmed the relationship between calcium and lead and suggested there might also be an association between chloride and phosphorus. PMID:14982163

  13. Iron nutrition, biomass production, and plant product quality.

    PubMed

    Briat, Jean-François; Dubos, Christian; Gaymard, Frédéric

    2015-01-01

    One of the grand challenges in modern agriculture is increasing biomass production, while improving plant product quality, in a sustainable way. Of the minerals, iron (Fe) plays a major role in this process because it is essential both for plant productivity and for the quality of their products. Fe homeostasis is an important determinant of photosynthetic efficiency in algae and higher plants, and we review here the impact of Fe limitation or excess on the structure and function of the photosynthetic apparatus. We also discuss the agronomic, plant breeding, and transgenic approaches that are used to remediate Fe deficiency of plants on calcareous soils, and suggest ways to increase the Fe content and bioavailability of the edible parts of crops to improve human diet. PMID:25153038

  14. Mössbauer spectroscopy study of iron corrosion underneath painting system

    NASA Astrophysics Data System (ADS)

    Nigam, R. K.; Hajela, B. P.; Sengupta, S.; Srivastava, B. C.; Gupta, K. M.

    1986-02-01

    The effect of pigments on the development of corrosion products between the painting system and metal surface when exposed to marine environments has been discussed. The pigments studied were; Red Mud Zinc chromate, Zinc chromate, Red oxide Zinc Phosphate, Manganese Phosphate Barium chromate and Basic Lead Silico Chromate. Mossbauer Spectroscopy revealed that the upper rust layer in all the cases consisted of γ-Fe203, γ-FeOOH and α-FeOOH. The lower rust layer immediately in contact with the metal surface consisted of an asymmetrical doublet due to γ-FeOOH.

  15. Characterization of uranium corrosion products involved in the March 13, 1998 fuel manufacturing facility pyrophoric event.

    SciTech Connect

    Totemeier, T.C.

    1999-04-26

    Uranium metal corrosion products from ZPPR fuel plates involved in the March 13, 1998 pyrophoric event in the Fuel Manufacturing Facility at Argonne National Laboratory-West were characterized using thermo-gravimetric analysis, X-ray diffraction, and BET gas sorption techniques. Characterization was performed on corrosion products in several different conditions: immediately after separation from the source metal, after low-temperature passivation, after passivation and extended vault storage, and after burning in the pyrophoric event. The ignition temperatures and hydride fractions of the corrosion product were strongly dependent on corrosion extent. Corrosion products from plates with corrosion extents less than 0.7% did not ignite in TGA testing, while products from plates with corrosion extents greater than 1.2% consistently ignited. Corrosion extent is defined as mass of corrosion products divided by the total mass of uranium. The hydride fraction increased with corrosion extent. There was little change in corrosion product properties after low-temperature passivation or vault storage. The burned products were not reactive and contained no hydride; the principal constituents were UO{sub 2} and U{sub 3}O{sub 7}. The source of the event was a considerable quantity of reactive hydride present in the corrosion products. No specific ignition mechanism could be conclusively identified. The most likely initiator was a static discharge in the corrosion product from the 14th can as it was poured into the consolidation can. The available evidence does not support scenarios in which the powder in the consolidation can slowly self-heated to the ignition point, or in which the powder in the 14th can was improperly passivated.

  16. Influence of hydrogen absorption on the electrochemical potential noise of an iron electrode under corrosion with gas evolution

    SciTech Connect

    Huet, F.; Jerome, M.; Manolatos, P.; Wenger, F.

    1996-12-31

    Using the electrochemical permeation technique and a model for hydrogen diffusion in a metal, the fluctuations of the concentration, {Delta}C(t), of hydrogen absorbed in the first atomic layers of an Armco iron membrane, under cathodic polarization and at the corrosion potential in sulfuric acid solution, were measured. The fluctuations of the electrode potential, {Delta}E(t), and of the electrolyte resistance, {Delta}R{sub e}(t), induced by bubble evolution were also simultaneously recorded. Under cathodic potential, {Delta}E(t) and {Delta}C(t) are clearly induced by the evolution of big hydrogen gas bubbles. However, at the corrosion potential, another source of {Delta}E(t) and {Delta}C(t) must be proposed. It has been shown that this difference is related to the influence of an intermediate reaction species which partly blocks the hydrogen absorption under cathodic polarization and disappears at the corrosion potential.

  17. Corrosion related properties of iron (100) surface in liquid lead and bismuth environments: A first-principles study

    NASA Astrophysics Data System (ADS)

    Song, Chi; Li, Dong-Dong; Xu, Yi-Chun; Pan, Bi-Cai; Liu, Chang-Song; Wang, Zhi-Guang

    2014-05-01

    The corrosion of steels in liquid metal lead (Pb) and bismuth (Bi) is a critical challenge in the development of accelerator driven systems (ADS). Using a first-principles method with a slab model, we theoretically investigate the interaction between the Pb (Bi) atom and the iron (Fe) (100) surface to assess the fundamental corrosion properties. Our investigation demonstrates that both Pb and Bi atoms favorably adsorb on the (100) surface. Such an adsorption decreases the energy required for the dissociation of an Fe atom from the surface, enhancing the dissolution tendency significantly. The segregation of six common alloying elements (Cr, Al, Mn, Ni, Nb, and Si) to the surface and their impacts on the corrosion properties are also considered. The present results reveal that Si seems to have a relatively good performance to stabilize the surface and alleviate the dissolving trend caused by Pb and Bi.

  18. Methanogens rapidly transition from methane production to iron reduction.

    PubMed

    Sivan, O; Shusta, S S; Valentine, D L

    2016-03-01

    Methanogenesis, the microbial methane (CH4 ) production, is traditionally thought to anchor the mineralization of organic matter as the ultimate respiratory process in deep sediments, despite the presence of oxidized mineral phases, such as iron oxides. This process is carried out by archaea that have also been shown to be capable of reducing iron in high levels of electron donors such as hydrogen. The current pure culture study demonstrates that methanogenic archaea (Methanosarcina barkeri) rapidly switch from methanogenesis to iron-oxide reduction close to natural conditions, with nitrogen atmosphere, even when faced with substrate limitations. Intensive, biotic iron reduction was observed following the addition of poorly crystalline ferrihydrite and complex organic matter and was accompanied by inhibition of methane production. The reaction rate of this process was of the first order and was dependent only on the initial iron concentrations. Ferrous iron production did not accelerate significantly with the addition of 9,10-anthraquinone-2,6-disulfonate (AQDS) but increased by 11-28% with the addition of phenazine-1-carboxylate (PCA), suggesting the possible role of methanophenazines in the electron transport. The coupling between ferrous iron and methane production has important global implications. The rapid transition from methanogenesis to reduction of iron-oxides close to the natural conditions in sediments may help to explain the globally-distributed phenomena of increasing ferrous concentrations below the traditional iron reduction zone in the deep 'methanogenic' sediment horizon, with implications for metabolic networking in these subsurface ecosystems and in past geological settings. PMID:26762691

  19. M"ossbauer study of corrosion and abrasion products in oil transporting pipes

    NASA Astrophysics Data System (ADS)

    Gomez, Raul W.; Perez Mazariego, Jose Luis; Marquina, Vivianne; Marquina, Ma. Luisa; Ridaura, Rosalia; Martinez, Lorenzo

    2012-02-01

    It is known that one of the main technological problems in carbon steel oleoducts is the corrosion produced by different substances, such as water, carbon dioxide, sulfur, and microorganisms. In addition, if in such mixture there is sand, aggressive sludge can be form that abrasions material from the oleoduct. A room temperature M"ossbauer study of corroded material taken from different sites of oleoducts is presented. Most of the M"ossbauer spectra reveal the presence of nanoparticles, indicating that in these pipes the abrasion problem is severe. A preliminary identification of the oxidized samples suggests the presence of magnetite, and some Iron hydroxides. Further studies are in course in order to identify unambiguously the products present in the corroded materials.

  20. Examination of Corrosion Products and the Alloy Surface After Crevice Corrosion of a Ni-Cr-Mo- Alloy

    SciTech Connect

    X. Shan; J.H. Payer

    2006-06-09

    The objective of this study is to investigate the composition of corrosion products and the metal surface within a crevice after localized corrosion. The analysis provides insight into the propagation, stifling and arrest processes for crevice corrosion and is part of a program to analyze the evolution of localized corrosion damage over long periods of time, i.e. 10,000 years and longer. The approach is to force the initiation of crevice corrosion by applying anodic polarization to a multiple crevice assembly (MCA). Results are reported here for alloy C-22, a Ni-Cr-Mo alloy, exposed to a high temperature, concentrated chloride solution. Controlled crevice corrosion tests were performed on C-22 under highly aggressive, accelerated condition, i.e. 4M NaCl, 100 C and anodic polarization to -0.15V-SCE. The crevice contacts were by either a polymer tape (PTFE) compressed by a ceramic former or by a polymer (PTFE) crevice former. Figure 1 shows the polarization current during a crevice corrosion test. After an incubation period, several initiation-stifle-arrest events were indicated. The low current at the end of the test indicated that the metal surface had repassivated.

  1. Production of iron from metallurgical waste

    DOEpatents

    Hendrickson, David W; Iwasaki, Iwao

    2013-09-17

    A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

  2. IRON COATED URANIUM AND ITS PRODUCTION

    DOEpatents

    Gray, A.G.

    1960-03-15

    A method of applying a protective coating to a metallic uranium article is given. The method comprises etching the surface of the article with an etchant solution containlng chloride ions, such as a solution of phosphoric acid and hydrochloric acid, cleaning the etched surface, electroplating iron thereon from a ferrous ammonium sulfate electroplating bath, and soldering an aluminum sheath to the resultant iron layer.

  3. Evaluation of iron aluminide weld overlays for erosion - corrosion resistant boiler tube coatings in low NO{sub x} boilers

    SciTech Connect

    DuPont, J.N.; Banovic, S.W.; Marder, A.R.

    1996-08-01

    Low NOx burners are being installed in many fossil fired power plants in order to comply with new Clean Air Regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion is often enhanced and premature tube failures can occur. Failures due to oxidation and solid particle erosion are also a concern. A program was initiated in early 1996 to evaluate the use of iron aluminide weld overlays for erosion/corrosion protection of boiler tubes in Low NOx boilers. Composite iron/aluminum wires will be used with the Gas Metal Arc Welding (GMAW) process to prepare overlays on boiler tubes steels with aluminum contents from 8 to 16wt%. The weldability of the composite wires will be evaluated as a function of chemical composition and welding parameters. The effect of overlay composition on corrosion (oxidation and sulfidation) and solid particle erosion will also be evaluated. The laboratory studies will be complemented by field exposures of both iron aluminide weld overlays and co-extruded tubing under actual boiler conditions.

  4. Technical investigation of a pyrophoric event involving corrosion products from HEU ZPPR fuel plates

    SciTech Connect

    Totemeier, T. C.

    2000-02-02

    A pyrophoric event recently occurred which involved corrosion products collected from highly-enriched uranium (HEU) fuel plates used in the Zero Power Physics Reactor (ZPPR). This paper summarizes the event and its background, and presents the results of an investigation into its source and mechanism. The investigation focused on characterization of corrosion product samples similar to those involved in the event using thermo-gravimetric analysis (TGA). Burning curve TGA tests were performed to measure the ignition temperature and hydride fractions of corrosion products in several different conditions to assess the effects of passivation treatment and long-term storage on chemical reactivity. The hydride fraction and ignition temperature of the corrosion products were found to be strongly dependent on the corrosion extent of the source metal. The results indicate that the energy source for the event was a considerable quantity of uranium hydride present in the corrosion products, but the specific ignition mechanism could not be identified.

  5. Application of iron electrode corrosion enhanced electrokinetic-Fenton oxidation to remediate diesel contaminated soils: A laboratory feasibility study

    NASA Astrophysics Data System (ADS)

    Tsai, Tzai-Tang; Sah, Jygau; Kao, Chih-Ming

    2010-01-01

    SummaryDiesel soil contamination on gas stations or refinery plants is a worldwide environmental problem. The main objectives of this study were to (1) evaluate the efficiency of electrokinetic (EK) by using different electrode materials (graphite and iron rods) and electrolytes (tap water, 0.01 M NaCl, and 0.1 M NaCl) on the remediation of diesel contaminated soils, and (2) evaluate the feasibility of total petroleum hydrocarbon-diesel (TPH-D) reducing in soils via EK-Fenton oxidation enhanced by corroded iron electrode. The EK and EK-Fenton experiments were conducted in batch and sand box experiments, respectively. Batch experiments reveal that the most appropriate electrolyte was 0.1 M NaCl when iron electrode was used in the EK system. Sand box experiments indicate that the TPH-D concentration dropped from 10,000 to 300 mg kg -1 when amorphous iron/total iron (Fe o/Fe t) ratio increased from 0.1 to 0.33, with the addition of 8% of H 2O 2 and 0.1 M NaCl after 60 days of EK-Fenton operation. Electrokinetically enhanced oxidation with the presence of both H 2O 2 and Fe 3O 4 (iron electrode corrosion) resulted in higher TPH-D removal efficiency (97%) compared to the efficiencies observed from EK (55%) or Fenton oxidation (27%) alone. This demonstrates that EK-Fenton oxidation catalyzed by iron electrode corrosion is a valuable direction to efficiently and effectively remediate diesel contaminated soils.

  6. Influence of pH on the localized corrosion of iron

    SciTech Connect

    Webley, R.; Henry, R.

    1986-06-01

    The influence of pH on the pitting corrosion of iron in chloride and sulfate solutions was determined using two artificial pit apparatuses to obtain the pH near the surface of the pit bottom. A glass membrane electrode and an antimony electrode were used to measure pH in the two apparatuses. Using solutions of NaCl and Na/sub 2/SO/sub 4/ at current densities of 0.5, 5.0, and 10 mA/cm/sup 2/ pH's in the range 5 to 6 were obtained with the first apparatus. The antimony probe did not measure pH accurately in solutions of 1 N NaCl and 1 N Na/sub 2/SO/sub 4/ and had an error of approximately 2 pH units. A one-dimensional transport model was developed to predict pH variations around the pit mouth and inside the pit. The validity of this model was not verified due to the relative lack of precision with pH measurement techniques.

  7. Nitride precipitation during high temperature corrosion of ductile cast irons in synthetic exhaust gases

    NASA Astrophysics Data System (ADS)

    Tholence, F.; Norell, M.

    2005-02-01

    Internal nitrides form in two ductile cast irons (SiMo and Ni-Resist) intended for exhaust systems in vehicles. Samples oxidised at 650 1050 °C for 50 h in modified synthetic exhaust gases were analysed by using AES and FEG-SEM. No nitrides formed in absence of NOx. In dry petrol gas coarse nitrides (<20 μm) precipitated heterogeneously deep (600 μm at 950 °C) into SiMo. It is argued that the accommodation of volume change, preferential diffusion paths and increased N solubility as Si was depleted contribute to a self-accelerating process. The Si depletion around the coarse nitrides lowered the microhardness and the corrosion resistance of the alloy. In diesel and in normal petrol gases μ-sized MgSiN2 form in SiMo in cell boundaries where Mg segregates. This also occurs in Ni-Resist in both dry and normal petrol whereas no nitrides were observed in Ni-Resist exposed to diesel gases.

  8. Iron in East Antarctic snow: Implications for atmospheric iron deposition and algal production in Antarctic waters

    NASA Astrophysics Data System (ADS)

    Edwards, Ross; Sedwick, Peter

    To evaluate the deposition and solubility of aerosol iron in the Antarctic seasonal sea ice zone (SSIZ), iron was measured in snow samples collected from three areas in the SSIZ (Prydz Bay, Dumont d'Urville Sea and Ross Sea) and one continental area (Princess Elizabeth Land) of East Antarctica. Concentrations of total-dissolvable iron (that soluble at pH ˜2) ranged from 20-2950 pg g-1, with the lowest concentrations measured in snow from the Dumont d'Urville Sea. Using estimates of snow accumulation rates, we calculate atmospheric iron deposition fluxes of 0.017-0.11 mg m-2 yr-1 (0.30-2.0 µmol m-2 yr-1), which are generally lower than previously published estimates. Measurements of iron in filtered meltwaters of snow samples from Prydz Bay and Princess Elizabeth Land suggest that ˜10-90% of the total atmospheric iron is readily soluble. Assuming our results to be broadly representative of atmospheric deposition over seasonally ice-covered, high-nutrient Antarctic waters, we use our mean estimates of atmospheric iron deposition (1.1 µmol m-2 yr-1) and solubility (32%) to calculate that atmospheric iron potentially supports annual phytoplankton production of 1.1 × 1012 mole C in the Antarctic SSIZ, which is less than 5% of the estimated total annual primary production in this ocean region.

  9. Study of MHD Corrosion and Transport of Corrosion Products of Ferritic/Martensitic Steels in the Flowing PbLi and its Application to Fusion Blanket

    NASA Astrophysics Data System (ADS)

    Saeidi, Sheida

    Two important components of a liquid breeder blanket of a fusion power reactor are the liquid breeder/coolant and the steel structure that the liquid is enclosed in. One candidate combination for such components is Lead-Lithium (PbLi) eutectic alloy and advanced Reduced Activation Ferritic/Martensitic (RAFM) steel. The research performed here is aimed at: (1) better understanding of corrosion processes in the system including RAFM steel and flowing PbLi in the presence of a strong magnetic field and (2) prediction of corrosion losses in conditions of a Dual Coolant Lead Lithium (DCLL) blanket, which is at present the key liquid metal blanket concept in the US. To do this, numerical and analytical tools have been developed and then applied to the analysis of corrosion processes. First, efforts were taken to develop a computational suite called TRANSMAG (Transport phenomena in Magnetohydrodynamic Flows) as an analysis tool for corrosion processes in the PbLi/RAFM system, including transport of corrosion products in MHD laminar and turbulent flows. The computational approach in TRANSMAG is based on simultaneous solution of flow, energy and mass transfer equations with or without a magnetic field, assuming mass transfer controlled corrosion and uniform dissolution of iron in the flowing PbLi. Then, the new computational tool was used to solve an inverse mass transfer problem where the saturation concentration of iron in PbLi was reconstructed from the experimental data resulting in the following correlation: CS = e 13.604--12975/T, where T is the temperature of PbLi in K and CS is in wppm. The new correlation for saturation concentration was then used in the analysis of corrosion processes in laminar flows in a rectangular duct in the presence of a strong transverse magnetic field. As shown in this study, the mass loss increases with the magnetic field such that the corrosion rate in the presence of a magnetic field can be a few times higher compared to purely

  10. Study of MHD Corrosion and Transport of Corrosion Products of Ferritic/Martensitic Steels in the Flowing PbLi and its Application to Fusion Blanket

    NASA Astrophysics Data System (ADS)

    Saeidi, Sheida

    Two important components of a liquid breeder blanket of a fusion power reactor are the liquid breeder/coolant and the steel structure that the liquid is enclosed in. One candidate combination for such components is Lead-Lithium (PbLi) eutectic alloy and advanced Reduced Activation Ferritic/Martensitic (RAFM) steel. The research performed here is aimed at: (1) better understanding of corrosion processes in the system including RAFM steel and flowing PbLi in the presence of a strong magnetic field and (2) prediction of corrosion losses in conditions of a Dual Coolant Lead Lithium (DCLL) blanket, which is at present the key liquid metal blanket concept in the US. To do this, numerical and analytical tools have been developed and then applied to the analysis of corrosion processes. First, efforts were taken to develop a computational suite called TRANSMAG (Transport phenomena in Magnetohydrodynamic Flows) as an analysis tool for corrosion processes in the PbLi/RAFM system, including transport of corrosion products in MHD laminar and turbulent flows. The computational approach in TRANSMAG is based on simultaneous solution of flow, energy and mass transfer equations with or without a magnetic field, assuming mass transfer controlled corrosion and uniform dissolution of iron in the flowing PbLi. Then, the new computational tool was used to solve an inverse mass transfer problem where the saturation concentration of iron in PbLi was reconstructed from the experimental data resulting in the following correlation: CS = e 13.604--12975/T, where T is the temperature of PbLi in K and CS is in wppm. The new correlation for saturation concentration was then used in the analysis of corrosion processes in laminar flows in a rectangular duct in the presence of a strong transverse magnetic field. As shown in this study, the mass loss increases with the magnetic field such that the corrosion rate in the presence of a magnetic field can be a few times higher compared to purely

  11. A Scanning Auger Microprobe analysis of corrosion products associated with sulfate reducing bacteria

    SciTech Connect

    Sadowski, R.A.; Chen, G.; Clayton, C.R.; Kearns, J.R.; Gillow, J.B.; Francis, A.J.

    1995-03-01

    A Scanning Auger Microprobe analysis was performed on the corrosion products of an austenitic AISI type 304 SS after a potentiostatic polarization of one volt for ten minutes in a modified Postgate`s C media containing sulfate reducing bacteria. The corrosion products were characterized and mapped in local regions where pitting was observed. A critical evaluation of the applicability of this technique for the examination of microbially influenced corrosion (MIC) is presented.

  12. Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria

    SciTech Connect

    Xu Congmin; Zhang Yaoheng; Cheng Guangxu Zhu Wensheng

    2008-03-15

    Pitting corrosion behavior of 316L SS was investigated in the presence of aerobic and anaerobic bacteria isolated from cooling water system in oil refinery using polarization measurement, electrochemical impedance spectroscopy, scanning electron microscopy examinations and energy dispersive spectrum analysis. The results show the corrosion potential (E{sub corr}), pitting potential (E{sub pit}) and polarization resistance (R{sub P}) of 316L SS had a distinct decrease in the presence of bacteria, in comparison with those observed in the sterile medium for the same exposure time interval. Micrometer-scale pitting was observed on the 316L SS surface in the presence of bacteria. The combination of SRB and IOB demonstrated higher corrosion rates than SRB or IOB alone. The synergy of 0.01 M NaCl + SRB + IOB yielded the highest corrosion rate. The synergies between the metal surface, abiotic corrosion products, chloride anion, and bacterial cells and their metabolic products increased the corrosion damage degree of the passive film and accelerated pitting propagation.

  13. Environment-induced embrittlement: Stress corrosion cracking and metal-induced embrittlement; Environmental embrittlement of iron aluminide alloys

    SciTech Connect

    Heldt, L.A.; Milligan, W.W.; White, C.L.

    1991-01-01

    This research program has included two thrusts. The first addressed environment-induced embrittlement in a parallel study of stress corrosion cracking and metal-induced embrittlement. This work has examined (1) mechanical properties as influenced by embrittling environments, (2) fractography and crystallography or transgranular cracking, (3) the mechanics of cracking, (4) the extent and role of local plastic flow, and (5) local chemistry within stress corrosion and metal-induced cracks. The embrittlement of iron aluminide alloys by air was addressed by determining the effect of water and hydrogen upon the mechanical properties. Slow strain rate testing in aqueous environments was carried out at controlled anodic and cathodic potentials. The effect of cathodically charged hydrogen and the effect of subsequent baking were measured. Environmental susceptibility was measured as affected by alloy composition, microstructure and degree of ordering.

  14. Iron Depletion Enhances Production of Antimicrobials by Pseudomonas aeruginosa

    PubMed Central

    Nguyen, Angela T.; Jones, Jace W.; Ruge, Max A.; Kane, Maureen A.

    2015-01-01

    ABSTRACT Cystic fibrosis (CF) is a heritable disease characterized by chronic, polymicrobial lung infections. While Staphylococcus aureus is the dominant lung pathogen in young CF patients, Pseudomonas aeruginosa becomes predominant by adulthood. P. aeruginosa produces a variety of antimicrobials that likely contribute to this shift in microbial populations. In particular, secretion of 2-alkyl-4(1H)-quinolones (AQs) contributes to lysis of S. aureus in coculture, providing an iron source to P. aeruginosa both in vitro and in vivo. We previously showed that production of one such AQ, the Pseudomonas quinolone signal (PQS), is enhanced by iron depletion and that this induction is dependent upon the iron-responsive PrrF small RNAs (sRNAs). Here, we demonstrate that antimicrobial activity against S. aureus during coculture is also enhanced by iron depletion, and we provide evidence that multiple AQs contribute to this activity. Strikingly, a P. aeruginosa ΔprrF mutant, which produces very little PQS in monoculture, was capable of mediating iron-regulated growth suppression of S. aureus. We show that the presence of S. aureus suppresses the ΔprrF1,2 mutant's defect in iron-regulated PQS production, indicating that a PrrF-independent iron regulatory pathway mediates AQ production in coculture. We further demonstrate that iron-regulated antimicrobial production is conserved in multiple P. aeruginosa strains, including clinical isolates from CF patients. These results demonstrate that iron plays a central role in modulating interactions of P. aeruginosa with S. aureus. Moreover, our studies suggest that established iron regulatory pathways of these pathogens are significantly altered during polymicrobial infections. IMPORTANCE Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are a significant cause of morbidity and mortality, as the interplay between these two organisms exacerbates infection. This is in part due to enhanced

  15. Sensory acceptability of iron-fortified millet products.

    PubMed

    Tripathi, Bhumika; Ravi, R; Prakash, Maya; Platel, Kalpana

    2011-09-01

    Fortification of millet flours with iron might be beneficial in combating iron deficiency. In this investigation, two products prepared from finger millet and sorghum flours fortified with iron and ethylene diamine tetraacetic acid and stored for up to 60 days were evaluated for sensory quality attributes using quantitative descriptive analysis, and their texture was measured using a texture analyzer. Fortification did not cause any significant change in the hardness of dumpling or the shearing effect of the roti prepared from either of the millet flours. There was no significant effect of the fortificant on the texture and aroma of the products prepared from the fortified flours up to a period of 60 days. However, a discoloration was perceived in the dumplings prepared from the same flours. The overall quality of the roti prepared was acceptable to the sensory panelists. Finger millet and sorghum flours seem to be suitable as vehicles for fortification with iron. PMID:21568824

  16. 77 FR 24221 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission... countervailing duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to...

  17. Excellent anti-corrosive pretreatment layer on iron substrate based on three-dimensional porous phytic acid/silane hybrid

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Lu, Ke; Xu, Lei; Xu, Hua; Lu, Haifeng; Gao, Feng; Hou, Shifeng; Ma, Houyi

    2016-01-01

    A novel, highly effective and environmentally friendly film-forming material, phytic acid (PA)/silane (denoted as PAS) hybrid with a three-dimensional (3D) network structure, was prepared through a condensation reaction of PA with methyltrihydroxysilane generated from the hydrolysis of methyltriethoxysilane (MTES). Two kinds of PAS-based pretreatment layers, namely NaBrO3-free and NaBrO3-doped PAS layers, were fabricated on iron substrates using the dip-coating method. SEM and AFM observations showed that the as-fabricated PAS-based layers possessed a 3D porous microstructure at the nanoscale and a rough surface morphology. X-ray photoelectron spectroscopic (XPS) and attenuated total reflection infrared (ATR-IR) spectroscopic characterization demonstrated that the above PAS layers bound to the iron surface via the -P-O- bond. Moreover, analyses of steady-state polarization curves and electrochemical impedance spectroscopic (EIS) data indicated that the corrosion rates of the iron substrates decreased considerably in the presence of the two PAS-based pretreatment layers. In particular, the NaBrO3-dosed PAS layer displayed the better corrosion resistance ability as well as maintaining the original microstructure and surface morphology. The PAS-based pretreatment layers are expected to act as substitutes for chromate and phosphate conversion layers and will find widespread application in the surface pretreatment of iron and steel materials due to the advantages of being environmentally friendly, the rapid film-forming process, and, especially, the nanoporous microstructure and rough surface morphology.A novel, highly effective and environmentally friendly film-forming material, phytic acid (PA)/silane (denoted as PAS) hybrid with a three-dimensional (3D) network structure, was prepared through a condensation reaction of PA with methyltrihydroxysilane generated from the hydrolysis of methyltriethoxysilane (MTES). Two kinds of PAS-based pretreatment layers, namely Na

  18. GEOCHEMISTRY OF SULFUR IN IRON CORROSION SCALES FOUND IN DRINKING WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Iron-sulfur geochemistry is important in many natural and engineered environments, including drinking water systems. In the anaerobic environment beneath scales of corroding iron drinking water distribution system pipes, sulfate reducing bacteria (SRB) produce sulfide from natu...

  19. Excellent anti-corrosive pretreatment layer on iron substrate based on three-dimensional porous phytic acid/silane hybrid.

    PubMed

    Gao, Xiang; Lu, Ke; Xu, Lei; Xu, Hua; Lu, Haifeng; Gao, Feng; Hou, Shifeng; Ma, Houyi

    2016-01-21

    A novel, highly effective and environmentally friendly film-forming material, phytic acid (PA)/silane (denoted as PAS) hybrid with a three-dimensional (3D) network structure, was prepared through a condensation reaction of PA with methyltrihydroxysilane generated from the hydrolysis of methyltriethoxysilane (MTES). Two kinds of PAS-based pretreatment layers, namely NaBrO3-free and NaBrO3-doped PAS layers, were fabricated on iron substrates using the dip-coating method. SEM and AFM observations showed that the as-fabricated PAS-based layers possessed a 3D porous microstructure at the nanoscale and a rough surface morphology. X-ray photoelectron spectroscopic (XPS) and attenuated total reflection infrared (ATR-IR) spectroscopic characterization demonstrated that the above PAS layers bound to the iron surface via the -P-O- bond. Moreover, analyses of steady-state polarization curves and electrochemical impedance spectroscopic (EIS) data indicated that the corrosion rates of the iron substrates decreased considerably in the presence of the two PAS-based pretreatment layers. In particular, the NaBrO3-dosed PAS layer displayed the better corrosion resistance ability as well as maintaining the original microstructure and surface morphology. The PAS-based pretreatment layers are expected to act as substitutes for chromate and phosphate conversion layers and will find widespread application in the surface pretreatment of iron and steel materials due to the advantages of being environmentally friendly, the rapid film-forming process, and, especially, the nanoporous microstructure and rough surface morphology. PMID:26689810

  20. TEM characterization of corrosion products formed on a SS-15ZR alloy.

    SciTech Connect

    Luo, J. S.; Abraham, D. P.

    2000-01-04

    The corrosion products formed on a stainless steel-15Zr (SS-15Zr) alloy have been characterized by transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDS). Examination of alloy particles that were immersed in 90 C deionized water for two years revealed that different corrosion products were formed on the stainless steel and intermetallic phases. Two corrosion products were identified on an austenite particle: trevorite (NiFe{sub 2}O{sub 4}) in the layer close to the metal and maghemite (Fe{sub 2}O{sub 3}) in the outer layer. The corrosion layer formed on the intermetallic was uniform, adherent, and amorphous. The EDS analysis indicated that the layer was enriched in zirconium when compared with the intermetallic composition. High-resolution TEM images of the intermetallic-corrosion layer interface show an interlocking metal-oxide interface which may explain the relatively strong adherence of the corrosion layer to the intermetallic surface. These results will be used to evaluate corrosion mechanisms and predict long-term corrosion behavior of the alloy waste form.

  1. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel

    SciTech Connect

    Young, J.S.

    1986-07-01

    Two sets of experiments were conducted to determine if corrosion products from radioactive Type 347 stainless steel could be biologically transferred from sediment through a marine food chain, and whether corrosion products dissolved in seawater could be bioaccumulated and then eliminated. Corrosion products containing /sup 60/Co and /sup 63/Ni from the radioactive stainless steel were introduced into marine sediments. Infaunal polychaete worms exposed to these sediments bioaccumulated the radionuclides. The feeding of these worms to shrimp and fish resulted in a trophic transfer of the radioactive products across a one-step food chain. The magnitude of the transfers are described in terms of transfer factors. Dissolved corrosion products as measured by the radionuclides were also bioaccumulated by shrimp and fish concentrating more than fish. Concentration factors were calculated.

  2. 77 FR 13093 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... administrative review of the countervailing duty (``CVD'') order on corrosion-resistant carbon steel flat... Review'' below. \\1\\ See Corrosion-Resistant Carbon Steel Flat Products from the Republic of...

  3. 76 FR 77775 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... countervailing duty order on corrosion-resistant carbon steel flat products from the Republic of Korea covering the period January 1, 2009, through December 31, 2009. See Corrosion-Resistant Carbon Steel...

  4. Spontaneous activation of CO2 and corrosion pathways on iron surface Fe(100): a quantum mechanical study informed by DFT-based dynamics

    NASA Astrophysics Data System (ADS)

    Glezakou, V. A.; McGrail, P.; Dang, L. X.

    2009-12-01

    Because of the rapidly increasing interest in technologies for capturing and permanently sequestering CO2 as part of a climate change mitigation strategy, understanding the interaction of CO2 with materials that comprise a sequestration system (steels, cements, silicate minerals, etc.) is of fundamental importance. The majority of models for corrosion of metals involve water-mediated processes, with CO2 dissolved in the aqueous phase playing a minor role in the process. In contrast, recent experiments with mild steels have shown that much greater corrosivity actually occurs in the dense CO2 phase, provided sufficient molecular water is present in the CO2 phase to catalyse certain reactions. In our study, we use DFT-based dynamics to study the internal structure of the the super-critical CO2/(H2O)n system, with n=0-4. While water does not disturb the super-critical CO2 phase, it also gives rise to short-lived CO2...H2O bonds which are likely to facilitate the activation of CO2 on the surface, but otherwise maintains its molecular form. We also use DFT methods to probe the fundamental interactions of CO2 or SO2 and H2O with clean or doped iron surfaces and determine the reactive pathways that lead to CO2 chemisorption, dissociation and further formation of corrosion products in the form of carbonates or sulfites. DFT-based molecular dynamics are employed to sample the configurational space of reactants and products more efficiently. CO2 adsorbs readily on the surface assuming a bent geometry, indicative of charge transfer from the surface to CO2, which closely resembles a CO2- moiety. Once CO2 is adsorbed, it can decompose to adsorbed O+CO, which further reacts with CO2 or SO2 to form corrosion products. Molecularly adsorbed water acts as catalyst to lower these reaction barriers. Clearly, the reactive pathways on the surface are quite different than those in aqueous solution. Battelle operates Pacific Northwest National Laboratory for the US Department of Energy.

  5. Method for forming a layer of synthetic corrosion products on tubing surfaces

    DOEpatents

    Lane, Michael H.; Salamon, Eugene J. M.

    1996-01-01

    A method is provided for forming a synthetic corrosion product layer on tube surfaces. The method utilizes two dissimilar materials with different coefficients of thermal expansion. An object tube and sacrificial tube are positioned one inside the other such that an annular region is created between the two tubes' surfaces. A slurry of synthetic corrosion products is injected into this annular region and the assembly is heat treated. This heat causes the tubes to expand, the inner tube with the higher coefficient of expansion expanding more than the outer tube, thereby creating internal pressures which consolidate the corrosion products and adhere the corrosion products to the tubing surfaces. The sacrificial tube may then be removed by conventional chemical etching or mechanical methods.

  6. FINAL REPORT. MICROBIALLY PROMOTED SOLUBILIZATION OF STEEL CORROSION PRODUCTS AND FATE OF ASSOCIATED ACTINIDES

    EPA Science Inventory

    This research project investigated processes related to the microbial reductive dissolution of mild and stainless steel corrosion products and the fate of associated radionuclide and metal contaminants. The general goals were to (1) develop an improved understanding of microbial ...

  7. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    SciTech Connect

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-09-20

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  8. Iron management and production of electricity by microorganisms.

    PubMed

    Folgosa, Filipe; Tavares, Pedro; Pereira, Alice S

    2015-10-01

    The increasing dependency on fossil fuels has driven researchers to seek for alternative energy sources. Renewable energy sources such as sunlight, wind, or water are the most common. However, since the 1990s, other sources for energy production have been studied. The use of microorganisms such as bacteria or archaea to produce energy is currently in great progress. These present several advantages even when compared with other renewable energy sources. Besides the energy production, they are also involved in bioremediation such as the removal of heavy metal contaminants from soils or wastewaters. Several research groups have demonstrated that these organisms are able to interact with electrodes via heme and non-heme iron proteins. Therefore, the role of iron as well as iron metabolism in these species must be of enormous relevance. Recently, the influence of cellular iron regulation by Fur in the Geobacter sulfurreducens growth and ability to produce energy was demonstrated. In this review, we aim to briefly describe the most relevant proteins involved in the iron metabolism of bacteria and archaea and relate them and their biological function with the ability of selected organisms to produce energy. PMID:26278535

  9. Inhibitory properties of ocean vegetation products in the corrosion of steel

    SciTech Connect

    Popelyukh, G.M.; Talavira, L.I.

    1988-05-01

    The inhibitory properties of byproducts from the processing of Black Sea red algae Phyllophora nervosa were investigated in solutions of sulfuric and nitric acids, tap water, and sea water. Corrosion tests were conducted gravimetrically on St3, St40, and St60 steels, and on titanium alloy VT-1. Inhibitor effectiveness was measured by corrosion rate, the inhibition coefficient, and the extent of protection. A complete factor matrix was taken. Experimental results were expressed as a partial quadratic equation. The behavior of iron ions in the corrosion process was assessed. Tests established that the byproducts, referred to as inhibitor IFKhI, can be used in steel pickling treatments in sulfuric acid solutions over a wide temperature range.

  10. LITERATURE REVIEW ON THE SORPTION OF PLUTONIUM, URANIUM, NEPTUNIUM, AMERICIUM AND TECHNETIUM TO CORROSION PRODUCTS ON WASTE TANK LINERS

    SciTech Connect

    Li, D.; Kaplan, D.

    2012-02-29

    The Savannah River Site (SRS) has conducted performance assessment (PA) calculations to determine the risk associated with closing liquid waste tanks. The PA estimates the risk associated with a number of scenarios, making various assumptions. Throughout all of these scenarios, it is assumed that the carbon-steel tank liners holding the liquid waste do not sorb the radionuclides. Tank liners have been shown to form corrosion products, such as Fe-oxyhydroxides (Wiersma and Subramanian 2002). Many corrosion products, including Fe-oxyhydroxides, at the high pH values of tank effluent, take on a very strong negative charge. Given that many radionuclides may have net positive charges, either as free ions or complexed species, it is expected that many radionuclides will sorb to corrosion products associated with tank liners. The objective of this report was to conduct a literature review to investigate whether Pu, U, Np, Am and Tc would sorb to corrosion products on tank liners after they were filled with reducing grout (cementitious material containing slag to promote reducing conditions). The approach was to evaluate radionuclides sorption literature with iron oxyhydroxide phases, such as hematite ({alpha}-Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), goethite ({alpha}-FeOOH) and ferrihydrite (Fe{sub 2}O{sub 3} {center_dot} 0.5H{sub 2}O). The primary interest was the sorption behavior under tank closure conditions where the tanks will be filled with reducing cementitious materials. Because there were no laboratory studies conducted using site specific experimental conditions, (e.g., high pH and HLW tank aqueous and solid phase chemical conditions), it was necessary to extend the literature review to lower pH studies and noncementitious conditions. Consequently, this report relied on existing lower pH trends, existing geochemical modeling, and experimental spectroscopic evidence conducted at lower pH levels. The scope did not include evaluating the appropriateness

  11. Integrating Mobile Phones into Science Teaching to Help Students Develop a Procedure to Evaluate the Corrosion Rate of Iron in Simulated Seawater

    ERIC Educational Resources Information Center

    Moraes, Edgar P.; Confessor, Mario R.; Gasparotto, Luiz H. S.

    2015-01-01

    This article proposes an indirect method to evaluate the corrosion rate of iron nail in simulated seawater. The official procedure is based on the direct measurement of the specimen's weight loss over time; however, a highly precise scale is required and such equipment may not be easily available. On the other hand, mobile phones equipped with…

  12. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    NASA Astrophysics Data System (ADS)

    Feliu, S.; Llorente, I.

    2015-08-01

    This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS.

  13. Pacific patterns of dust deposition, iron supply and export production

    NASA Astrophysics Data System (ADS)

    Winckler, G.; Anderson, R. F.; Park, J.; Schwartz, R.; Pahnke, K.; Struve, T.; Lamy, F.; Gersonde, R.

    2015-12-01

    The scarcity of iron limits marine export production and carbon uptake in about a quarter of the global ocean where the surface concentration of nitrate and phosphate is high, as biological utilization of these macronutrients is incomplete. Of these high nutrient low chlorophyll (HNLC) regions, the Southern Ocean is the region where variations in iron availability can have the largest effect on Earth's carbon cycle through its fertilizing effect on marine ecosystems, both in the modern and in the past. Recent work in the Subantarctic South Atlantic (Martínez-Garcia et al., 2009, 2014, Anderson et al., 2014) suggests that dust-driven iron fertilization lowered atmospheric CO2 by up to 40 ppm in the latter half of each glacial cycle of the late Pleistocene, with the increase in Subantarctic productivity consuming a greater fraction of the surface nutrients and thus driving more storage of carbon in the ocean interior. The other sectors of the Southern Ocean remain poorly constrained, including the Pacific Sector, that accounts for the largest surface area of the Subantarctic Southern Ocean. Here we report records of dust deposition, iron supply and export production from a set of cores from the Subantarctic Pacific (PS75, Lamy et al 2014) and initial results about the origin of dust transported to the Subantarctic Pacific Ocean from radiogenic isotopes and rare earth elements. We test how tightly dust and biological productivity are coupled over glacial/interglacial and millennial timescales in the Subantarctic Pacific and place the region in a context of global patterns of biological productivity, nutrient utilization and iron fertilization by dust, including comparisons to the other Pacific HNLC regions, the Subarctic North Pacific and equatorial Pacific.

  14. Corrosion fatigue of iron-chromium-nickel alloys: Fracture mechanics and chemistry

    SciTech Connect

    Wei, R.P.

    1990-11-29

    Peak bare-surface current densities based on the scratched electrode test are seriously in error and repasivation rates grossly overestimated. Influences of potential and pH on reactions of bare surfaces are better understood. Correlation between charge transfer and corrosion fatigue crack growth response was established for Fe18Cr12Ni alloy in deaerated 0.6N NaCl at RT. Strong correlation was established between morphology of corrosion fatigue fracture surfaces and cracking in hydrogen charged samples. Attempts at growing bicrystals by strain annealing were not successful.

  15. An investigation of the corrosion of polycrystalline iron by XPS, TMS and CEMS

    NASA Astrophysics Data System (ADS)

    Idczak, K.; Idczak, R.; Konieczny, R.

    2016-06-01

    The room temperature studies of polycrystalline iron exposed to air at various temperatures were performed using: the transmission Mössbauer spectroscopy (TMS), the conversion electron Mössbauer spectroscopy (CEMS) and the X-ray photoelectron spectroscopy (XPS). The unique combination of these techniques allows to determine changes of chemical composition and content of iron oxides simultaneously on the surface region, the 300 nm pre-surface region and the bulk of the samples. The results show that the chemical composition of samples changes significantly and it is strongly dependent on temperature at which the iron sample is exposed to air as well as on investigated region.

  16. A Comparison of the Corrosion Resistance of Iron-Based Amorphous Metals and Austenitic Alloys in Synthetic Brines at Elevated Temperature

    SciTech Connect

    Farmer, J C

    2008-11-25

    Several hard, corrosion-resistant and neutron-absorbing iron-based amorphous alloys have now been developed that can be applied as thermal spray coatings. These new alloys include relatively high concentrations of Cr, Mo, and W for enhanced corrosion resistance, and substantial B to enable both glass formation and neutron absorption. The corrosion resistances of these novel alloys have been compared to that of several austenitic alloys in a broad range of synthetic brines, with and without nitrate inhibitor, at elevated temperature. Linear polarization and electrochemical impedance spectroscopy have been used for in situ measurement of corrosion rates for prolonged periods of time, while scanning electron microscopy (SEM) and energy dispersive analysis of X-rays (EDAX) have been used for ex situ characterization of samples at the end of tests. The application of these new coatings for the protection of spent nuclear fuel storage systems, equipment in nuclear service, steel-reinforced concrete will be discussed.

  17. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    DOEpatents

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  18. Iron atoms redistribution in oxide films of Zr-Fe, Zr-Fe-Cu alloys during corrosion in autoclave at 350°C

    NASA Astrophysics Data System (ADS)

    Filippov, V.; Bateev, A.

    2016-04-01

    The data on changes of iron atoms state in the oxide films of binary Zr-1.24 mas.%Fe and ternary Zr-1.39 mas.%Fe-0.60 mas.%Cu zirconium alloys are obtained. Alloys are subjected to corrosion tests under autoclave conditions at 350°C temperature in a steam-water environment under pressure p = 16.8 MPa. In initial specimens of the alloys the iron atoms are in the form of intermetallic compounds. In oxide films the decomposition of intermetallic compounds and formation of new compounds occurs with structural phase distortion. In the oxide films metallic the metallic iron particles α-Fe, iron oxide in the form of hematite α-Fe2O3, solid solutions of iron ions in ZrO2 are formed. The phase composition of the oxide films depends on the alloy composition and changes during the growth process of the oxide film.

  19. Alkalinity, pH, and copper corrosion by-product release

    SciTech Connect

    Edwards, M.; Meyer, T.E.; Schock, M.R.

    1996-03-01

    Contrary to expectations, higher bicarbonate concentrations exacerbate copper corrosion rates and by-product release. In fact, as illustrated by monitoring experiences of large utilities and by laboratory data, the concentration of copper corrosion by-products in drinking water increases linearly with bicarbonate concentration at constant pH. This relationship implicates cupric hydroxide solubility in control of copper release from relatively new (less than a few years old) copper plumbing. Decision-marking guidance from a traditional Larson`s ratio or Langelier index approach can aggravate copper corrosion problems; consequently, their use should be discontinued for copper corrosion mitigation. In contrast, aeration-CO{sub 2} stripping is a particularly attractive strategy because benefits from higher pH are realized without adverse effects from higher alkalinity.

  20. Corrosion consequences and inhibition of galvanic couples in petroleum production equipment

    SciTech Connect

    Martin, R.L.

    1995-06-01

    Electrochemical potential and polarization behavior measurements made in the laboratory, along with zero resistance ammeter (ZRA) measurements made under laboratory and field conditions, were used to delineate galvanic behavior in petroleum production equipment. These measurements, confirmed by electrode weight loss data, were used to predict corrosion rates for brass/carbon steel and stainless steel/carbon steel couples in the presence and absence of a corrosion inhibitor.

  1. Surface area and chemical reactivity characteristics of uranium metal corrosion products.

    SciTech Connect

    Totemeier, T. C.

    1998-02-17

    The results of an initial characterization of hydride-containing corrosion products from uranium metal Zero Power Physics Reactor (ZPPR) fuel plates are presented. Sorption analyses using the BET method with a Kr adsorbate were performed to measure the specific areas of corrosion product samples. The specific surface areas of the corrosion products varied from 0.66 to 1.01 m{sup 2}/g. The reactivity of the products in Ar-9%O{sub 2} and Ar-20%O{sub 2} were measured at temperatures between 35 C and 150 C using a thermo-gravimetric analyzer. Ignition of the products occurred at temperatures of 150 C and above. The oxidation rates below ignition were comparable to rates observed for uranium metal.

  2. Siderophore production in high iron environments

    NASA Astrophysics Data System (ADS)

    Bennett, S. A.; Hoffman, C. L.; Moffett, J. W.; Edwards, K. J.

    2010-12-01

    Up until recently, the geochemical cycling of Fe in deep sea hydrothermal plumes has assumed to be inorganically dominated, resulting in quantitative precipitation of all hydrothermally sourced Fe to the seafloor. Recent detection of organic Fe binding ligands within both the dissolved and particulate phase (Bennett et al., 2008; Toner et al., 2009), suggests that hydrothermally sourced Fe may be important on a global scale (Tagliabue et al., 2010). The source of these organic ligands is currently unknown; hypotheses include the possible entrainment of organic carbon from the biologically rich diffuse flow areas, or in-situ production from microbial processes. However, the microbial production of organic ligands is only expected when Fe is a limited micronutrient, which is not the case in the hydrothermal environment. The importance of Fe cycling microorganisms within hydrothermal systems was previously overlooked due to the poor energetics with regards to Fe oxidation and reduction. But their recent detection within the hydrothermal system, both around low temperature Fe rich mineral deposits and within hydrothermal plumes (Edwards et al., 2004; Sylvan et al., In prep) suggests that they may have an important role in the hydrothermal Fe cycle, potentially resulting in an interplay between Fe and organic carbon. Within the laboratory, we have carried out experiments to investigate an Fe oxidizing bacteria in a variety of high Fe environments. We have detected both the production of siderophores and an increase in reduced Fe when the Fe oxidizing bacteria is exposed to both Fe(III) and Fe(II) rich minerals. The role of these microbes in the mineral dissolution of Fe sulfides along the seafloor and within the hydrothermal plume, may have important implications on the speciation of Fe and the role of siderophores in the marine environment. Bennett, S.A. et al. 2008. EPSL, 270: 157-167. Edwards, K.J. et al. 2004. Geomicrobiology Journal, 21: 393-404. Sylvan, J.B. et al

  3. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  4. Characterization of corrosion products from atmospheric exposures for up to 5 years

    SciTech Connect

    Hernandez, L.S.; Miranda, J.M.; Narvaez, L.; Garcia, G.

    1998-12-31

    Four metallic materials of economic significance were exposed to an urban atmosphere up to five years. These materials were low carbon steel, zinc (as galvanized steel), copper and aluminum all of commercial quality. The corrosion rate was measured after 1, 2, 3 and 5 years using a weight loss method. Sulfur dioxide deposition rate and climatological parameters were determined monthly. At the same time, different techniques were used to characterize the corrosion products developed on the above materials. Results obtained by polarization resistance technique (Rp) in a 0.1 M Na{sub 2}SO{sub 4} solution revealed that, the longer the exposure time, the greater the corrosion products protection, as result of broadening and compactness of such products, this was verified by scanning electron microscopy (SEM). Through x-rays diffraction (XRD), the expected crystalline compounds on steel and copper were identified and also, the transformation of middling protective initial products into other more protective was followed. For aluminum and zinc it was not possible to identify the crystalline compounds perhaps due to the very thin corrosion products layers. So, these materials were analyzed by means of Raman spectroscopy. a-Al{sub 2}O, was identified on an aluminum sample whereas on zinc any corrosion product could not be identified due to excessive fluorescence.

  5. Corrosion of aluminides by molten nitrate salt

    SciTech Connect

    Tortorelli, P.F.; Bishop, P.S.

    1990-01-01

    The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

  6. Corrosion inhibitor testing and selection for exploration and production: A user's perspective

    SciTech Connect

    Kapusta, S.D.

    1999-06-01

    Inhibitor users need simple, reliable, and representative tests to select the best product from a number of candidates. This article describes a procedure that can help users test and select inhibitors for carbon dioxide/hydrogen sulfide (CO[sub 2]/H[sub 2]S) corrosion in oil and gas production, in a fast and cost-effective manner. The selection is based on two criteria: performance (effectiveness) against corrosion, and compatibility with other chemicals. The compatibility of the inhibitor with the injection and production systems must be confirmed.

  7. Characterization of uranium corrosion product colloids by dynamic light scattering.

    SciTech Connect

    Mertz, C.; Bowers, D.; Goldberg, M.; Shelton-Davis, C.

    2000-11-16

    The Department of Energy plans to dispose of approximately 2100 metric tons of spent metallic uranium fuel in the mined repository at Yucca Mountain. Laboratory studies at Argonne National Laboratory have shown that corrosion of metallic uranium fuel with groundwater generates significant quantities of stable colloids. This finding is considered very important in light of the recent report (1) of rapid subsurface transport of radionuclides at the Nevada Test Site via colloids. Thus, sparingly soluble radionuclides can be transported with the colloids through the subsurface aqueous environment to much greater distances than is predicted based on the aqueous volubility of the radionuclides alone. Accordingly, characterization of colloids generated by fuel corrosion is necessary for assessing the long-term fate and transport of radionuclides in the repository environment.

  8. 76 FR 3613 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Countervailing Duty Determinations: Certain Steel Products from Korea, 58 FR 43752 (August 17, 1993). On... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... review of the countervailing duty (CVD) order on corrosion-resistant carbon steel flat products...

  9. Note: Measuring dezincification of brass by Schottky barrier diodes formed between semiconductor corrosion products and brass

    NASA Astrophysics Data System (ADS)

    Bond, J. W.

    2010-10-01

    A newly developed method is presented for measuring dezincification on the surface of brass from a consideration of the forward and reverse bias potential drop across a Schottky barrier diode formed between n-type zinc oxide or p-type copper (I) oxide corrosion products and the brass substrate. Electrical connection to the corrosion product is made with zinc and platinum tipped probes, approximately 1 mm diameter. Comparison with x-ray photoelectron spectroscopy shows the difference between the forward and reverse bias potential drop to be dependent on the relative abundance of the corrosion products and the work function of the metal probe. This difference, for a zinc tipped probe, gives a statistically significant correlation to the surface zinc to copper ratio and the degree of dezincification. Details of the setup, operation, and testing of a portable instrument designed to measure dezincification of brass by this method are given.

  10. Corrosion fatigue of iron-chromium-nickel alloys: Fracture mechanics, microstructure and chemistry

    SciTech Connect

    Wei, R.P.

    1993-01-25

    Phase transformation and cracking during RT aging of charged, high-purity Fe18Cr12Ni alloy and commerical 304 ss were examined; results show that [epsilon]* (hcp) hydride formed on Fe18Cr12Ni upon charging, and it decomposed rapidly to form first [epsilon] and then [alpha]' martensite. Morphology of fracture surfaces of Fe18Cr12Ni produced by corrosion fatigue in NaCl solutions and in hydrogen was found to be identical. Effort was made to examine the approaches and methodologies used in service life predictions and reliability analyses.

  11. Magnesium and iron nanoparticles production using microorganisms and various salts

    NASA Astrophysics Data System (ADS)

    Kaul, R. K.; Kumar, P.; Burman, U.; Joshi, P.; Agrawal, A.; Raliya, R.; Tarafdar, J. C.

    2012-09-01

    Response of five fungi and two bacteria to different salts of magnesium and iron for production of nanoparticles was studied. Pochonia chlamydosporium, and Aspergillus fumigatus were exposed to three salts of magnesium while Curvularia lunata, Chaetomium globosum, A. fumigatus, A. wentii and the bacteria Alcaligenes faecalis and Bacillus coagulans were exposed to two salts of iron for nanoparticle production. The results revealed that P. chlamydosporium induces development of extracellular nanoparticles in MgCl2 solution while A. fumigatus produces also intracellular nanoparticles when exposed to MgSO4 solution. C. globosum was found as the most effective in producing nanoparticles when exposed to Fe2O3 solution. The FTIR analysis of the nanoparticles obtained from Fe2O3 solution showed the peaks similar to iron (Fe). In general, the species of the tested microbes were selective to different chemicals in their response for synthesis of nanoparticles. Further studies on their characterization and improving the efficiency of promising species of fungi need to be undertaken before tapping their potential as nanonutrients for plants.

  12. Mass Transfer of Corrosion Products in the Nonisothermal Sodium Loop of a Fast Reactor

    NASA Astrophysics Data System (ADS)

    Varseev, E. V.; Alekseev, V. V.

    2014-11-01

    The mass transfer of the products of corrosion of the steel surface of the sodium loop of a fast nuclear power reactor was investigated for the purpose of optimization of its parameters. The problem of deposition of the corrosion products on the surface of the heat-exchange unit of the indicated loop was considered. Experimental data on the rate of accumulation of deposits in the channel of this unit and results of the dispersion analysis of the suspensions contained in the sodium coolant are presented.

  13. Oxygen controlled product formation in CCl{sub 4} dechlorination using zero-valent iron

    SciTech Connect

    Helland, B.R.; Alvarez, P.J.J.; Schnoor, J.L.

    1995-12-01

    Carbon tetrachloride (CCl{sub 4}) was abiotically dechlorinated using zero-valent iron powder (Fe{sup o}) to yield chloroform (CHCl{sub 3}) and methylene chloride (CH{sub 2}Cl{sub 2}), which did not undergo further dechlorination. Dechlorination was rapid and approximated first-order kinetics in the range of concentrations tested (CCl{sub 4}: 1.5 to 5.5 {mu}M; Fe{sup o}: 1 to 10 g per 265 mL distilled deionized water). Initial dechlorination rate coefficients for anoxic batch reactors (0.290 {plus_minus} 0.009 hr{sup -1} for 1 g Fe{sup o}; 1.723 {plus_minus} 0.078 hr{sup -1} for 10 g Fe{sup o}) increased with iron surface area (initially 2.4 {plus_minus} 0.2 m{sup 2}/g). Dechlorination also occurred under oxic conditions, although rates were significantly slower (e.g., 0.085 {plus_minus} 0.041 hr{sup -1} for 1 g Fe{sup o} and 7.4 mg/L initial dissolved oxygen). Rate coefficients increased with time, probably due to an increase in reactive surface area from pitting and dissolution of the iron surface. A rapid pH increase was synchronous to dissolved oxygen consumption, and the pH remained constant after oxygen depletion. This was attributed to the proton and oxygen consuming aerobic corrosion of the Fe{sup o} surface. Recalcitrant CH{sub 2}Cl{sub 2} was decreased in the presence of dissolved oxygen, which reacted with dechlorinated intermediates to yield less environmentally onerous products such as formic acid and carbon monoxide.

  14. Influence of solid corrosion by-products on the consumption of dissolved oxygen in copper pipes

    SciTech Connect

    Vargas, Ignacio T.; Alsina, Marco A.; Pastén, Pablo A.; Pizarro, Gonzalo E.

    2009-06-12

    Research on corrosion of copper pipes has given little consideration to the influence of solid corrosion by-products on the processes occurring at the metal-liquid interface. Consequently, the effect of such solid phases on the rate of dissolved oxygen (DO) consumption remains poorly understood. In-situ experiments were performed in copper pipes under different carbonate concentrations and ageing times. Our results show that the amount of solid corrosion by-products and concentration of hydrogen ions affect the rate of DO consumption during stagnation. Furthermore, our findings support the existing hypothesis that the available concentration of hydrogen ions, rather than DO, is the limiting factor for copper release into drinking water.

  15. Application of Mössbauer spectroscopy on corrosion products of NPP

    NASA Astrophysics Data System (ADS)

    Dekan, J.; Lipka, J.; Slugeň, V.

    2013-04-01

    Steam generator (SG) is generally one of the most important components at all nuclear power plants (NPP) with close impact to safe and long-term operation. Material degradation and corrosion/erosion processes are serious risks for long-term reliable operation. Steam generators of four VVER-440 units at nuclear power plants V-1 and V-2 in Jaslovske Bohunice (Slovakia) were gradually changed by new original "Bohunice" design in period 1994-1998, in order to improve corrosion resistance of SGs. Corrosion processes before and after these design and material changes in Bohunice secondary circuit were studied using Mössbauer spectroscopy during last 25 years. Innovations in the feed water pipeline design as well as material composition improvements were evaluated positively. Mössbauer spectroscopy studies of phase composition of corrosion products were performed on real specimens scrapped from water pipelines or in form of filters deposits. Newest results in our long-term corrosion study confirm good operational experiences and suitable chemical regimes (reduction environment) which results mostly in creation of magnetite (on the level 70 % or higher) and small portions of hematite, goethite or hydrooxides. Regular observation of corrosion/erosion processes is essential for keeping NPP operation on high safety level. The output from performed material analyses influences the optimisation of operating chemical regimes and it can be used in optimisation of regimes at decontamination and passivation of pipelines or secondary circuit components. It can be concluded that a longer passivation time leads more to magnetite fraction in the corrosion products composition.

  16. 78 FR 55057 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea... Requests for Revocation in Part, 77 FR 59168 (September 26, 2012). \\2\\ The period of review (POR) ends...

  17. Study of archaeological artefacts to refine the model of iron long-term indoor atmospheric corrosion

    NASA Astrophysics Data System (ADS)

    Monnier, J.; Legrand, L.; Bellot-Gurlet, L.; Foy, E.; Reguer, S.; Rocca, E.; Dillmann, P.; Neff, D.; Mirambet, F.; Perrin, S.; Guillot, I.

    2008-09-01

    The study of long-term indoor atmospheric corrosion is involved in the field of the interim storage of nuclear wastes. Indeed study of archaeological artefacts is one of the only mean to gather information on very long periods. Concerning ancient items, due to the complexity of the system, it is necessary to couple many analytical techniques from the macro to the microscopic scale. This enables to propose a description of the Amiens cathedral chain rust layers, made of a matrix of goethite, with lepidocrocite and akaganeite locally present and marbling of a poor crystallized phase associated to ferrihydrite. Electrochemical measurements permit to study the reduction capacity of the rust layer and to draw reduction mechanisms of the so-called active phases, by in situ experiments coupled with X-ray diffraction and X-ray absorption spectroscopy.

  18. Research Summary: Corrosion Considerations for Thermochemical Biomass Liquefaction Process Systems in Biofuel Production

    DOE PAGESBeta

    Brady, Michael P; Keiser, James R; Leonard, Donovan N; Whitmer, Lysle; Thomson, Jeffery K

    2014-01-01

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oilsmore » to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. This paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.« less

  19. Corrosion Considerations for Thermochemical Biomass Liquefaction Process Systems in Biofuel Production

    NASA Astrophysics Data System (ADS)

    Brady, M. P.; Keiser, J. R.; Leonard, D. N.; Whitmer, L.; Thomson, J. K.

    2014-12-01

    Thermochemical liquefaction processing of biomass to produce bio-derived fuels (e.g., gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc., to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic oxygenates, including acids, which make the bio-oil a potential source of corrosion issues in transport, storage, and use. Efforts devoted to modified/further processing of bio-oils to make them less corrosive are currently being widely pursued. Another issue that must also be addressed in bio-oil liquefaction is potential corrosion issues in the process equipment. Depending on the specific process, bio-oil liquefaction production temperatures are typically in the 300-600°C range, and the process environment can contain aggressive sulfur and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. This paper summarizes recent, ongoing efforts to assess the extent of corrosion of bio-oil process equipment, with the ultimate goal of providing a basis for the selection of the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.

  20. Corrosion considerations for thermochemical biomass liquefaction process systems in biofuel production

    SciTech Connect

    Brady, Michael P.; Keiser, James R.; Leonard, Donovan N.; Whitmer, Lysle; Thomson, Jeffery K.

    2014-11-11

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oils to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 °C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. Lastly, this paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.

  1. Corrosion considerations for thermochemical biomass liquefaction process systems in biofuel production

    DOE PAGESBeta

    Brady, Michael P.; Keiser, James R.; Leonard, Donovan N.; Whitmer, Lysle; Thomson, Jeffery K.

    2014-11-11

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oilsmore » to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 °C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. Lastly, this paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.« less

  2. Sulphide production and corrosion in seawaters during exposure to FAME diesel.

    PubMed

    Lee, Jason S; Ray, Richard I; Little, Brenda J; Duncan, Kathleen E; Oldham, Athenia L; Davidova, Irene A; Suflita, Joseph M

    2012-01-01

    Experiments were designed to evaluate the corrosion-related consequences of storing/transporting fatty acid methyl ester (FAME) alternative diesel fuel in contact with natural seawater. Coastal Key West, FL (KW), and Persian Gulf (PG) seawaters, representing an oligotrophic and a more organic- and inorganic mineral-rich environment, respectively, were used in 60 day incubations with unprotected carbon steel. The original microflora of the two seawaters were similar with respect to major taxonomic groups but with markedly different species. After exposure to FAME diesel, the microflora of the waters changed substantially, with Clostridiales (Firmicutes) becoming dominant in both. Despite low numbers of sulphate-reducing bacteria in the original waters and after FAME diesel exposure, sulphide levels and corrosion increased markedly due to microbial sulphide production. Corrosion morphology was in the form of isolated pits surrounded by an intact, passive surface with the deepest pits associated with the fuel/seawater interface in the KW exposure. In the presence of FAME diesel, the highest corrosion rates measured by linear polarization occurred in the KW exposure correlating with significantly higher concentrations of sulphur and chlorine (presumed sulphide and chloride, respectively) in the corrosion products. PMID:22594394

  3. Magnetic resonance imaging repercussions of intravenous iron products used for iron-deficiency anemia and dialysis-associated anemia.

    PubMed

    Rostoker, Guy; Cohen, Yves

    2014-01-01

    During the past 2 decades, routine use of recombinant erythropoiesis-stimulating agents (ESAs) has enabled anemia to be corrected in dialysis patients, thereby improving their quality of life and permitting better outcomes. As successful use of ESA requires sufficient available iron, almost all end-stage renal disease patients on ESA now receive concomitant parenteral iron therapy. Radiologists must be aware that iron overload among dialysis patients is now an increasingly recognized clinical situation in the ESA era yet was previously considered rare. The KDIGO Controversies Conference on Iron Management in Chronic Kidney Disease, which took place in San Francisco on March 27 to 30, 2014, recognized the entity of iron overload in hemodialysis patients and called for an agenda of research on this topic, especially by means of magnetic resonance imaging (MRI).It is therefore very likely that radiologists will be heavily solicited in the future by nephrology teams requesting quantitative hepatic MRI in dialysis patients, both for research purposes and for diagnosis and follow-up of iron overload. Radiologists should be aware of the marked differences in the pharmacological properties of available intravenous iron products and their potential interference with MRI. Specific MRI protocols need to be established in radiology divisions for each pharmaceutical iron product, especially for treated dialysis patients. PMID:25229202

  4. IRON

    EPA Science Inventory

    The document surveys the effects of organic and inorganic iron that are relevant to humans and their environment. The biology and chemistry of iron are complex and only partially understood. Iron participates in oxidation reduction processes that not only affect its geochemical m...

  5. Examination of in vivo influences on bioluminescent microbial assessment of corrosion product toxicity.

    PubMed

    Shettlemore, M G; Bundy, K J

    2001-08-01

    The composition of ionically dissolved and precipitated corrosion products from both free corrosion of ASTM F75 Co-Cr-Mo and galvanostatic polarization of Co-Cr-Mo and F138 316L stainless steel was determined using differential pulse polarography and inductively coupled plasma atomic emission spectroscopy. A bacterial bioluminescence assay, Microtox, was used to assess the toxicity of the solid and dissolved corrosion products produced by galvanostatic polarization and the individual ions within them. The role of in vivo salinity, temperature, and protein content as modulators of corrosion product toxicity assessment was investigated empirically and mechanistically. Co-Cr-Mo products were found to be more toxic than those of 316L, and the most toxic ions were Cr6+, Ni2+, and Co2+. Ringer's solution potentiated the toxicity of the more toxic metal ions and reduced the toxicity of the less toxic ions. Using theoretical analysis in conjunction with experimental measurements, the ions in both alloys were found to interact in an antagonistic fashion. The presence of albumin was found to decrease metal toxicity, presumably by chelation. PMID:11456061

  6. ASSESSMENT OF CORROSION PRODUCTS FROM ONCE-THROUGH COOLING SYSTEMS WITH MECHANICAL ANTIFOULING DEVICES

    EPA Science Inventory

    The report gives results of an assessment of corrosion products from steam-electric power plant once-through cooling systems equipped with mechanical antifouling devices. (About 67% of the currently operating plants in the U.S. use once-through cooling systems. Various cleaning m...

  7. Corrosion study of iron-cobalt alloys for MRI-based propulsion embedded in untethered microdevices operating in the vascular network.

    PubMed

    Pouponneau, Pierre; Savadogo, Oumarou; Napporn, Teko; Yahia, L'hocine; Martel, Sylvain

    2010-04-01

    Our group have shown in an experiment performed in the carotid artery of a living swine that magnetic gradients generated by a clinical magnetic resonance imaging (MRI) system could propel and navigate untethered medical microdevices and micro-nanorobots in the human vasculature. The main problem with these devices is that the metal necessary for magnetic propulsion may corrode and induce cytotoxic effects. The challenge, then, is to find an alloy with low corrosion yet providing an adequate magnetization level for propulsion in often stringent physiological conditions. Because of their high magnetization, we studied the corrosion behavior of two iron-cobalt alloys, Permendur (49% Fe, 49% Co, 2% V) and Vacoflux 17 (81% Fe, 17% Co, 2% Cr), in physiological solution by potentiodynamic polarization assay, surface analysis, and corrosion electrolyte analysis. Both alloys exhibited low corrosion parameters such as a corrosion potential (E(corr)) of -0.57 V/SCE and E(corr) of -0.42 V/SCE for Vacoflux 17. The surface of Permendur samples was homogenously degraded. Vacoflux 17 surface was impaired by cracks and crevices. Both alloys had a stoichiometric dissolution in the electrolyte, and they released enough cobalt to induce cytotoxic effects. This study concluded that Fe-Co alloys could be used preferably in medical microdevices if they were coated so as not to come in contact with physiological solutions. PMID:20119943

  8. Corrosion/95 conference papers

    SciTech Connect

    1995-09-01

    The papers in this conference represent the latest technological advances in corrosion control and prevention. The following subject areas are covered: cathodic protection in natural waters; materials for fossil fuel combustion and conversion systems; modern problems in atmospheric corrosion; innovative ideas for controlling the decaying infrastructure; deposits and their effects on corrosion in industry; volatile high temperature and non aqueous corrosion inhibitors; corrosion of light-weight and precoated metals for automotive application; refining industry corrosion; corrosion in pulp and paper industry; arctic/cold weather corrosion; materials selection for waste incinerators and associated equipment; corrosion measurement technology; environmental cracking of materials; advancing technology in the coating industry; corrosion in gas treating; green inhibition; recent advances in corrosion control of rail equipment; velocity effects and erosion corrosion in oil and gas production; marine corrosion; corrosion of materials in nuclear systems; underground corrosion control; corrosion in potable and industrial water systems in buildings and its impact on environmental compliance; deposit related boiler tube failures; boiler systems monitoring and control; recent developments and experiences in reactive metals; microbiologically influenced corrosion; corrosion and corrosion control for steel reinforced concrete; international symposium on the use of 12 and 13 Cr stainless steels in oil and gas production environments; subsea corrosion /erosion monitoring in production facilities; fiberglass reinforced pipe and tubulars in oilfield service; corrosion control technology in power transmission and distribution; mechanisms and methods of scale and deposit control; closing the loop -- results oriented cooling system monitoring and control; and minimization of aqueous discharge.

  9. "A L C L A D" A New Corrosion Resistant Aluminum Product

    NASA Technical Reports Server (NTRS)

    Dix, E H , Jr

    1927-01-01

    Described here is a new corrosion resistant aluminum product which is markedly superior to the present strong alloys. Its use should result in greatly increased life of a structural part. Alclad is a heat-treated aluminum, copper, manganese, magnesium alloy that has the corrosion resistance of pure metal at the surface and the strength of the strong alloy underneath. Of particular importance is the thorough character of the union between the alloy and the pure aluminum. Preliminary results of salt spray tests (24 weeks of exposure) show changes in tensile strength and elongation of Alclad 17ST, when any occurred, to be so small as to be well within the limits of experimental error. Some surface corrosion of the pure metal had taken place, but not enough to cause the specimens to break through those areas.

  10. 1999 F. N. Speller award lecture: Extending the limits of growth through development of corrosion-resistant steel products

    SciTech Connect

    Townsend, H.E. )

    1999-06-01

    The costs of corrosion have been estimated at [approximately]4.2% of the gross domestic product (GDP) or [approximately]$330 billion in 1997 for the United States. However, when the potential effects on extending resource productivity are taken into account, the benefits of corrosion control are substantially greater. Previous reports have suggested that more efficient utilization of resources is essential to avoiding serious economic collapse in the next century. In preventing corrosion losses, corrosion specialists can extend the Earth's materials and energy resources, reduce pollution, and improve the quality of life for future generations. Three examples of achieving significant increases in resource productivity through the development and implementation of corrosion-resistant steel products are: (1) galvanized sheet for automobiles, (2) weathering steel for bridges, and (3) 55% Al-Zn alloy-coated steel sheet for metal buildings.

  11. Optical-fiber-based chemical sensors for detection of corrosion precursors and by-products

    NASA Astrophysics Data System (ADS)

    Elster, Jennifer L.; Greene, Jonathan A.; Jones, Mark E.; Bailey, Timothy A.; Lenahan, Shannon M.; Velander, William H.; VanTassell, Roger; Hodges, William; Perez, Ignacio M.

    1999-02-01

    Optical fiber sensors are a novel and ideal approach for making chemical and physical measurements in a variety of harsh environments. They do not corrode, are resistant to most chemicals, immune to electromagnetic interference, light weight, inherently small and have a flexible geometry. This paper presents recent test results using optical fiber long-period grating (LPG) sensors to monitor corrosion precursors and by-products. With the appropriate coating, the LPG sensor can be designed to identify a variety of environmental target molecules, such as moisture, pH, sulfates, chlorates, nitrates and metal-ions in otherwise inaccessible regions of metallic structures. Detection of these chemicals can be used to determine if the environment within a particular area of an airplane or infrastructure is becoming conducive to corrosion or whether the corrosion process is active. The LPG sensors offer a clear advantage over similar electrochemical sensors since they can be rendered immune to temperature cross-sensitivity, multiplexed along a single fiber, and can be demodulated using a simple, low-cost spectrum analyzer. By coating the LPG sensor with specially designed affinity coatings that selectively absorb target molecules, selective, real-time monitoring of environmental conditions is possible. This sensing platform shows great promise for corrosion by- product detection in pipe networks, civil infrastructure, process control, and petroleum production operations and can be applied as biological sensors for in-vitro detection of pathogens, and chemical sensors for environmental and industrial process monitoring.

  12. 78 FR 16832 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ...-Year (``Sunset'') Review, 77 FR 85 (January 3, 2012). \\2\\ See Corrosion-Resistant Carbon Steel Flat... Corrosion- Resistant Carbon Steel Flat Products From Germany and Korea, 77 FR 301 (January 4, 2012). As a...: Final Results of Expedited Five-Year (``Sunset'') Review of the Countervailing Duty Order, 77 FR...

  13. Comparative study of the corrosion product films formed in biotic and abiotic media

    SciTech Connect

    Videla, H.A.; Mele, M.F.L. de; Swords, C.; Edyvean, R.G.J.; Beech, I.B.

    1999-11-01

    The growth of sulfate-reducing bacteria (SRB) affects several important parameters at the metal/solution interface of carbon steel in liquid media such as pH and redox potential values, as well as modifications of the composition and structure of corrosion product layers. Electrochemical techniques for corrosion assessment and surface analyses by energy dispersion X-ray analysis (EDAX), X-ray photoelectron spectra (XPS), X-ray distraction (XRD) and electron microprobe analysis (EPMA) complemented with scanning electron microscopy (SEM) and atomic force microscopy (MM) observations, were used to study the structure and composition of protective films on carbon steel in abiotic and biotic media containing different sulfur anions. The results revealed that in biotic and abiotic sulfide films the outer layers were formed by both FeS and FeS{sub 2}, although the relative content of these compounds varied in each case. Usually, the corrosion product films biotically formed were more adherent to the metal surface than those developed abiotically. The latter were flaky and loosely adherent, thus differing in their function during the corrosion process.

  14. A study on the corrosion and erosion behavior of electroless nickel and TiAlN/ZrN duplex coatings on ductile iron

    NASA Astrophysics Data System (ADS)

    Lin, Chung-Kwei; Hsu, Cheng-Hsun; Cheng, Yin-Hwa; Ou, Keng-Liang; Lee, Sheng-Long

    2015-01-01

    This study utilized electroless nickel (EN) and cathodic arc evaporation (CAE) technologies to deposit protective coatings onto ductile iron. Polarization corrosion tests were performed in 3.5 wt.% sodium chloride, and also erosion tests were carried out by using Al2O3 particles (∼177 μm in size and Mohr 7 scale) of about 5 g. Surface morphologies of the corroded and eroded specimens were observed separately. To further understand the coating effects on both the corrosive and erosive behavior of ductile iron, coating structure, morphology, and adhesion were analyzed using X-ray diffractormeter, scanning electron microscopy, and Rockwell-C indenter, respectively. The results showed that the EN exhibited an amorphous structure while the CAE-TiAlN/ZrN coating was a multilayered nanocrystalline. When the TiAlN/ZrN coated specimen with EN interlayer could effectively increase the adhesion strength between the CAE coating and substrate. Consequently, the combination of TiAlN/ZrN and EN delivered a better performance than did the monolithic EN or TiAlN/ZrN for both corrosion and erosion protection.

  15. CHEMICAL INTERACTIONS OF ARSENATE, ARSENITE, PHOSPHATE, AND SILICATE WITH IRON (II, III) HYDROXYCARBONATE GREEN RUST

    EPA Science Inventory

    Granular zerovalent iron has been proposed to be used as a medium in permeable reactive barriers (PRBs) to remove arsenic from contaminated groundwater. Iron(II, III) hydroxycarbonate green rust (carbonate green rust, or CGR) is a major corrosion product of zerovalent iron under ...

  16. CHEMICAL INTERACTIONS OF ARSENATE, ARSENITE, PHOSPHATE, AND SILICATE WITH IRON (II,III) HYDROXYCARBONATE GREEN RUST

    EPA Science Inventory

    Granular zerovalent iron has been proposed to be used as a medium in permeable reactive barriers (PRBs) to remove arsenic from contaminated groundwater. Iron(II, III) hydroxycarbonate green rust (carbonate green rust, or CGR) is a major corrosion product of zerovalent iron under ...

  17. ARSENATE AND ARSENITE SORPTION AND ARSENITE OXIDATION BY IRON (II, III) HYDROXYCARBONATE GREEN RUST

    EPA Science Inventory

    Iron (II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron that is being used in permeable reactive barriers to remediate groundwater arsenic contamination. To optimize the design of iron barriers, it is important to evaluate the influence of geoch...

  18. Environment-induced embrittlement: Stress corrosion cracking and metal-induced embrittlement; Environmental embrittlement of iron aluminide alloys. Final report, September 1, 1986--August 31, 1991

    SciTech Connect

    Heldt, L.A.; Milligan, W.W.; White, C.L.

    1991-12-31

    This research program has included two thrusts. The first addressed environment-induced embrittlement in a parallel study of stress corrosion cracking and metal-induced embrittlement. This work has examined (1) mechanical properties as influenced by embrittling environments, (2) fractography and crystallography or transgranular cracking, (3) the mechanics of cracking, (4) the extent and role of local plastic flow, and (5) local chemistry within stress corrosion and metal-induced cracks. The embrittlement of iron aluminide alloys by air was addressed by determining the effect of water and hydrogen upon the mechanical properties. Slow strain rate testing in aqueous environments was carried out at controlled anodic and cathodic potentials. The effect of cathodically charged hydrogen and the effect of subsequent baking were measured. Environmental susceptibility was measured as affected by alloy composition, microstructure and degree of ordering.

  19. A pharmaceutical product as corrosion inhibitor for carbon steel in acidic environments.

    PubMed

    Samide, Adriana

    2013-01-01

    A pharmaceutical product, Trimethoprim (TMP), IUPAC name: 5-(3,4,5-trimethoxybenzyl)pyrimidine-2,4-diamine was investigated, as inhibitor to prevent carbon steel corrosion in acidic environments. The study was performed using weight loss and electrochemical measurements, in temperatures ranging between 25-55°C. The surface morphology before and after corrosion of carbon steel in 1.0 M HCl solution in the presence and absence of TMP was evaluated using scanning electron microscopy (SEM). The inhibition efficiency (IE) increased with the increasing of the inhibitor concentration, reaching a maximum value of 92% at 25°C and 0.9 mM TMP, and decreased with increasing temperature. The inhibition of carbon steel corrosion by TMP can be attributed to the adsorption ability of inhibitor molecules onto the reactive sites of the metal surface. The adsorption is spontaneous and it is best described by the Langmuir isotherm. The apparent activation energy (E(a)) for the corrosion process in the absence and presence of TMP was evaluated from Arrhenius equation, to elucidate its inhibitive properties. PMID:23043337

  20. Associations between iron concentration and productivity in montane streams of the Black Hills, South Dakota

    USGS Publications Warehouse

    Hayer, Cari Ann; Holcomb, Benjamin M.; Chipps, Steven R.

    2013-01-01

    Iron is an important micronutrient found in aquatic systems that can influence nutrient availability (e.g., phosphorus) and primary productivity. In streams, high iron concentrations often are associated with low pH as a result of acid mine drainage, which is known to affect fish and invertebrate communities. Streams in the Black Hills of South Dakota are generally circumneutral in pH, yet select streams exhibit high iron concentrations associated with natural iron deposits. In this study, we examined relationships among iron concentration, priphyton biomass, macroinvertebrate abundance, and fish assemblages in four Black Hills streams. The stream with the highest iron concentration (~5 mg Fe/L) had reduced periphyton biomass, invertebrate abundance, and fish biomass compared to the three streams with lower iron levels (0.1 to 0.6 mg Fe/L). Reduced stream productivity was attributed to indirect effects of ferric iron Fe+++), owing to iron-hydroxide precipitation that influenced habitat quality (i.e., substrate and turbidity) and food availability (periphyton and invertebrates) for higher trophic levels (e.g., fish). Additionally, reduced primary and secondary production was associated with reduced standing stocks of salmonid fishes. Our findings suggested that naturally occurring iron deposits may constrain macroinvertebrate and fish production.

  1. A High-Performance Corrosion-Resistant Iron-Based Amorphous Metal - The Effects of Composition, Structure and Environment on Corrosion Resistance

    SciTech Connect

    Farmer, J.; Haslam, J.; Day, D.; Lian, T.; Saw, C.; Hailey, P.; Choi, J.S.; Rebak, R.; Yang, N.; Bayles, R.; Aprigliano, L.; Payer, J.; Perepezko, J.; Hildal, K.; Lavernia, E.; Ajdelsztajn, L.; Branagan, D.; Beardsley, B.

    2007-07-01

    The passive film stability of several Fe-based amorphous metal formulations have been found to be comparable to that of high-performance Ni-based alloys, and superior to that of stainless steels, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The high boron content of this particular amorphous metal also makes it an effective neutron absorber, and suitable for criticality control applications, as discussed in companion publications. Corrosion data for SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) is discussed here. (authors)

  2. Intentional synthesis of corrosion inhibitors based on secondary products of sugar cane processing

    SciTech Connect

    Ledovskykh, V.M.

    1988-07-01

    Secondary products of sugar cane processing (mosto, wax, furfurol) were studied as starting raw materials for creating inhibitors for different purposes and temporary means of protecting metals from corrosion. In order to protect metals in different corrosive media the following inhibitors have been developed: an inhibitor for acid solutions (pickling metals, acid washing of the equipment) based on high-tonnage water-soluble waste mosto and combined synergistic inhibitors based on mixtures of it with cation- and anion-active surfactants, including nitrogen- and sulfur-containing substances obtained by intentional synthesis of another secondary product, furfurol; inhibitors for two-phase media (oil recovery and refining) of the carbonic acid amide and 2-alkylimidazoline classes from sugar cane wax; and inhibitors comprised of Li-, Na-, Ca-, and Al-plastic greases from sugar cane wax for atmospheric conditions.

  3. Effect of Phosphate on the Corrosion of Carbon Steel and on the Composition of Corrosion Products in Two-Stage Continuous Cultures of Desulfovibrio desulfuricans†

    PubMed Central

    Weimer, Paul J.; Van Kavelaar, Margaret J.; Michel, Charles B.; Ng, Thomas K.

    1988-01-01

    A field isolate of Desulfovibrio desulfuricans was grown in defined medium in a two-stage continuous culture apparatus with different concentrations of phosphate in the feed medium. The first state (V1) was operated as a conventional chemostat (D = 0.045 h−1) that was limited in energy source (lactate) or phosphate. The second stage (V2) received effluent from V1 but no additional nutrients, and contained a healthy population of transiently starved or resting cells. An increase in the concentration of phosphate in the medium fed to V1 resulted in increased corrosion rates of carbon steel in both V1 and V2. Despite the more rapid corrosion observed in growing cultures relative to that in resting cultures, corrosion products that were isolated under strictly anaerobic conditions from the two culture modes had similar bulk compositions which varied with the phosphate content of the medium. Crystalline mackinawite (Fe9S8), vivianite [Fe3(PO4)2 · 8H2O], and goethite [FeO(OH)] were detected in amounts which varied with the culture conditions. Chemical analyses indicated that the S in the corrosion product was almost exclusively in the form of sulfides, while the P was present both as phosphate and as unidentified components, possibly reduced P species. Some differential localization of S and P was observed in intact corrosion products. Cells from lactate-limited, but not from phosphate-limited, cultures contained intracellular granules that were enriched in P and Fe. The results are discussed in terms of several proposed mechanisms of microbiologically influenced corrosion. Images PMID:16347552

  4. Erosion-corrosion entrainment of iron-containing compounds as a source of deposits in steam generators used at nuclear power plants equipped with VVER reactors

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2011-03-01

    The main stages and processes through which deposits are generated, migrate, and precipitate in the metal-secondary coolant system of power units at nuclear power plants are analyzed and determined. It is shown that substances produced by the mechanism of general erosion-corrosion are the main source of the ionic-colloid form of iron, which is the main component of deposits in a steam generator. Ways for controlling the formation of deposits in a nuclear power plant's steam generator are proposed together with methods for estimating their efficiency.

  5. Iron

    MedlinePlus

    ... organ failure, coma, convulsions, and death. Child-proof packaging and warning labels on iron supplements have greatly ... levodopa that the body absorbs, making it less effective. Levodopa, found in Sinemet® and Stalevo®, is used ...

  6. A Mössbauer and Electrochemical Characterization of the Corrosion Products Formed from Marine and Marine-Antartic Environments

    NASA Astrophysics Data System (ADS)

    Ohanian, M.; Caraballo, R.; Dalchiele, E. A.; Quagliata, E.

    2003-06-01

    Corrosion products formed on low alloy steel under two marine environments are characterised. Both environments are classified as C4 according to the ISO 9223 Standard. The corrosion products are identified and their relative proportion is determined by Mössbauer spectroscopy (transmission geometry). Free potentials of corrosion are measured to evaluate the activity of their surfaces. Structural characterisation by XRD were performed on selected samples. It is concluded that the principal phases are goethite, lepidocrocite, ferrihidrite and maghemite. The relative amount of each of them changes with time and with the atmospheric dynamics of each environment.

  7. Binding of nitrided type 410 stainless steel valve stems caused by corrosion product build-up

    SciTech Connect

    Coffin, S.M.; Hardies, R.O.

    1996-10-01

    Nitrided type 410 stainless steel governor valve stems are used in safety-related reactor core isolation cooling (RCIC) and auxiliary feedwater (AFW) pumps at Boiling Water Reactors and Pressurized Water Reactors, respectively. Corrosion of the governor valve stems in the packing assembly area has been noted in at least seventeen nuclear power plants. Corrosion product build-up between the valve stem and packing assembly has resulted in binding of the valve stem in at least nine of these plants. Nitriding is known to degrade the corrosion resistance of, stainless steels. This is due to the formation of chromium nitrides in the diffusion layer of the hardened case which leave the surrounding matrix depleted in chromium. The rate of corrosion is substantially affected by the presence or absence of a continuous, adherent compound layer. The compound layer is less susceptible to corrosion than the diffusion layer and acts to protect the underlying diffusion layer from being exposed to moisture. At Calvert Cliffs, the original nitrided stem had a continuous, adherent compound layer and a hardened case of approximately 60 microns in depth. This stem performed acceptably for years. In contrast, the replacement nitrided stems did not have a continuous, adherent compound layer and had a hardened case of approximately 10 microns in depth. These stems performed acceptably for three or four months. This difference in performance is attributed primarily to the absence of an adherent, continuous compound layer in the recently-supplied nitrided stems. Since nitrided type 410 stainless steel valve stems will corrode in the presence of moisture (although at substantially different rates), the replacement valve stems will be fabricated from Inconel 718.

  8. [Using Raman spectrum analysis to research corrosive productions occurring in alloy of ancient bronze wares].

    PubMed

    Jia, La-jiang; Jin, Pu-jun

    2015-01-01

    The present paper analyzes the interior rust that occurred in bronze alloy sample from 24 pieces of Early Qin bronze wares. Firstly, samples were processed by grinding, polishing and ultrasonic cleaning-to make a mirror surface. Then, a confocal micro-Raman spectrometer was employed to carry out spectroscopic study on the inclusions in samples. The conclusion indicated that corrosive phases are PbCO3 , PbO and Cu2O, which are common rusting production on bronze alloy. The light-colored circular or massive irregular areas in metallographic structure of samples are proved as Cu2O, showing that bronze wares are not only easy to be covered with red Cu2O rusting layer, but also their alloy is easy to be eroded by atomic oxygen. In other words, the rust Cu2O takes place in both the interior and exterior parts of the bronze alloy. In addition, Raman spectrum analysis shows that the dark grey materials are lead corrosive products--PbCO3 and PbO, showing the corroding process of lead element as Pb -->PbO-->PbCO3. In the texture of cast state of bronze alloy, lead is usually distributed as independent particles between the different alloy phases. The lead particles in bronze alloy would have oxidation reaction and generate PbO when buried in the soil, and then have chemical reaction with CO3(2-) dissolved in the underground water to generate PbCO3, which is a rather stable lead corrosive production. A conclusion can be drawn that the external corrosive factors (water, dissolved oxygen and carbonate, etc) can enter the bronze ware interior through the passageway between different phases and make the alloy to corrode gradually. PMID:25993834

  9. Simulation of the state of carbon steel n years after disposal with n years of corrosion product on its surface in a bentonite environment

    SciTech Connect

    Kojima, Yoichi; Tsujikawa, Shigeo; Hioki, Toshinobu |

    1995-12-31

    The use of bentonite as buffer and carbon steel as overpack material for the geological disposal of nuclear waste is under investigation. To better assess the long term integrity of the carbon steel overpack, a quantitative analysis of the corrosion behavior on the steel surface for time frames beyond that of feasible empirical determination is required. The state n years after disposal, consisting of Carbon Steel/Corrosion products + Bentonite/Water, was simulated and the corrosion behavior of the carbon steel in this state investigated. The following facts became apparent. Both the corrosion rate and the non-uniformity of it increased with increase in the corrosion product content in the compacted bentonite. When the corrosion product layer was formed between the carbon steel and the bentonite, it enabled the corrosion potential and increased the corrosion rate.

  10. Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry

    NASA Astrophysics Data System (ADS)

    Rincon, Hernan E.

    The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations

  11. Significance of Iron(II,III) Hydroxycarbonate Green Rust in Arsenic Remediation Using Zerovalent Iron in Laboratory Column Tests

    EPA Science Inventory

    We examined the corrosion products of zerovalent iron used in three column tests for removing arsenic from water under dynamic flow conditions. Each column test lasted three- to four-months using columns consisting of a 10.3-cm depth of 50 : 50 (w : w, Peerless iron : sand) in t...

  12. Amine-degradation products play no part in corrosion at gas-sweetening plants

    SciTech Connect

    Blanc, C.; Grall, M.; Demarais, G.

    1982-11-15

    Gas-sweetening units using diethanolamine (DEA) and methyldiethanolamine (MDEA) are occasionally subject to corrosion. Discounting the basic degradation products of DEA as the cause, researchers (1) confirmed the presence of formic, oxalic, and acetic acids in used amine solutions, (2) defined oxygen's role in forming these carboxylic acids, and (3) demonstrated that the acid contents of different units are about the same order of magnitude for both DEA and MDEA. In most cases, oxygen can be easily excluded from gas-treating units, especially in storage tanks, thereby limiting the formation of acid products.

  13. Impact of sea ice on the marine iron cycle and phytoplankton productivity

    NASA Astrophysics Data System (ADS)

    Wang, S.; Bailey, D.; Lindsay, K.; Moore, J. K.; Holland, M.

    2014-09-01

    Iron is a key nutrient for phytoplankton growth in the surface ocean. At high latitudes, the iron cycle is closely related to the dynamics of sea ice. In recent decades, Arctic sea ice cover has been declining rapidly and Antarctic sea ice has exhibited large regional trends. A significant reduction of sea ice in both hemispheres is projected in future climate scenarios. In order to adequately study the effect of sea ice on the polar iron cycle, sea ice bearing iron was incorporated in the Community Earth System Model (CESM). Sea ice acts as a reservoir for iron during winter and releases the trace metal to the surface ocean in spring and summer. Simulated iron concentrations in sea ice generally agree with observations in regions where iron concentrations are relatively low. The maximum iron concentrations simulated in Arctic and Antarctic sea ice are much lower than observed, which is likely due to underestimation of iron inputs to sea ice or missing mechanisms. The largest iron source to sea ice is suspended sediments, contributing fluxes of iron of 2.2 × 108 mol Fe month-1 in the Arctic and 4.1 × 106 mol Fe month-1 in the Southern Ocean during summer. As a result of the iron flux from ice, iron concentrations increase significantly in the Arctic. Iron released from melting ice increases phytoplankton production in spring and summer and shifts phytoplankton community composition in the Southern Ocean. Results for the period of 1998 to 2007 indicate that a reduction of sea ice in the Southern Ocean will have a negative influence on phytoplankton production. Iron transport by sea ice appears to be an important process bringing iron to the central Arctic. The impact of ice to ocean iron fluxes on marine ecosystems is negligible in the current Arctic Ocean, as iron is not typically the growth-limiting nutrient. However, it may become a more important factor in the future, particularly in the central Arctic, as iron concentrations will decrease with declining sea

  14. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings Evaluation of Corrosion Reistance FY05 HPCRM Annual Report # Rev. 1DOE-DARPA Co-Sponsored Advanced Materials Program

    SciTech Connect

    Farmer, J C; Haslam, J J; Day, S D

    2007-09-19

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  15. Iron migration from the anode surface in alumina electrolysis

    NASA Astrophysics Data System (ADS)

    Zhuravleva, Elena N.; Drozdova, Tatiana N.; Ponomareva, Svetlana V.; Kirik, Sergei D.

    2013-01-01

    Corrosion destruction of two-component iron-based alloys used as an anode in high-temperature alumina electrolysis in the melt of NaF/KF/AlF3 electrolyte has been considered. Ni, Si, Cu, Cr, Mn, Al, Ti in the amount of up to 10% have been tested as the dopants to an anode alloys. The composition of the corrosion products has been studied using X-ray diffraction, scanning electron microscopy and electron microprobe analysis. It has been established that the anode corrosion is induced by a surface electrochemical polarization and iron atom oxidation. Iron ions come into an exchange interaction with the fluoride components of the melted electrolyte, producing FeF2. The last interacts with oxyfluoride species transforming into the oxide forms: FeAl2O4, Fe3O4, Fe2O3. Due to the low solubility, the iron oxides are accumulated in the near-electrode sheath. The only small part of iron from anode migrates to cathode that makes an production of high purity aluminum of a real task. The alloy dopants are also subjected to corrosion in accordance with electromotive series resulting corrosion tunnels on the anode surface. The oxides are final compounds which collect in the same area. The corrosion products form an anode shell which is electronic conductor at electrolysis temperature. The electrolysis of alumina occurs beyond the corrosion shell. The rate limiting step in the corrosion is the electrolyte penetration through corrosion shell to the anode surface. The participation of the released oxygen in the corrosion has not been observed.

  16. Al-26 and Be-10 production in iron meteorites

    NASA Technical Reports Server (NTRS)

    Aylmer, D.; Bonanno, V.; Herzog, G. F.; Weber, H.; Klein, J.

    1988-01-01

    To compare the Al-26/Ne-21 ages with K-40/K-41 ages, the contents of Al-26 were determined in seven iron meteorites using accelerator mass spectrometry and the light noble gas contents were determined using conventional mass spectrometry, for samples for which these values were not available. In addition, contents of Be-10 were measured. Due to the presence of boron in the samples, the values of Al-26 were found to be at least 30 percent lower than the literature values obtained by low-level counting techniques, while the Be-10 values were 10-15 percent lower. The production rates of these nuclides at different He-4/Ne-21 ratios were estimated, showing that the increase in He-4/Ne-21 ratios corresponded with decreases in Al-26 and Be-10. It was shown that the exposure ages calculated from the Ne-21/Al-26 ratio cannot be calibrated so as to agree with both the K-40/K-41 ages and ages based on the shorter-lived nuclides Ar-39 and Cl-36.

  17. PHOTOCHEICAL PRODUCTION OF HYDROXYL RADICAL IN NATURAL WATER - THE ROLE OF IRON AND DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Photochemical hydroxyl radical (OH) production was measured in several natural waters to investigate the importance of colored dissolved organic matter (CDOM) and iron-CDOM complexes as sources of OH. High rates of OH photoproduction in highly colored, iron-rich, acidic waters a...

  18. Pipe liners for corrosive high temperature oil and gas production applications

    SciTech Connect

    Mason, J.F.

    1997-08-01

    Polyamide-11 has been used for more than twenty years as the chemical and pressure barrier in flexible pipes used in offshore oil and gas production. Recently, polyamide-11 has been used to line and protect carbon steel pipelines carrying corrosive sour raw gas and condensates. The liner was inserted in the field using the well-known roller-box diameter reduction technique. It is being used successfully at temperatures that are not possible with conventional polyethylene liners. Until now, at temperatures above about 45 C only corrosion inhibition programs have proven to be effective in controlling the internal corrosion rates of carbon steel pipes carrying sour raw gas. There is a total of about six kilometers of polyamide-11 now installed in five pipelines located in central and northwestern Alberta, Canada, and operating at temperatures up to about 80 C. The installations and the properties of exposed and aged polyamide-11 liner are discussed. The chemical resistance and mechanical properties of the polyamide-11 that make this application possible are discussed in detail.

  19. 76 FR 20954 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... carbon steel flat products (CORE) from Korea. See Countervailing Duty Orders and Amendments of Final Affirmative Countervailing Duty Determinations: Certain Steel Products from Korea, 58 FR 43752 (August 17... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of...

  20. Fate of corrosion products released from stainless steel in marine sediments and seawater. Part 3. Calcareous ooze

    SciTech Connect

    Schmidt, R.L.

    1982-04-01

    The physicochemical forms and partitioning of corrosion products released from stainless steel upon exposure to selected environmental conditions is the subject of this investigation. This report describes the influence of calcareous sediment on the rate of release and fate of corrosion products produced when neutron-activated stainless steel specimens were exposed to a Globigerina ooze taken from the Northeast Pacific Ocean. The calcareous ooze used in this study consists largely of planktonic formanifera tests and was found to be about 90% CaCO/sub 3/. The trace metal content of this sediment was typical of average deep-sea carbonate sediments, and the ratios of trace elements to Ti were not remarkably different from a coastal clayey silt or a Northeast Pacific pelagic red clay. Most (>80%) of the trace metals extracted by sequential chemical treatment were associated with reductant-soluble materials, i.e., amorphous Mn and Fe oxides, or were incorporated in the carbonate substrate. Specimens of neutron-activated stainless steel exposed to calcareous ooze suspended in seawater under aerated and non-oxygenated conditions released corrosion products at rates of 1.7 and 4.2 ..mu..g year/sup -1/ cm/sup -2/, respectively. Almost 90% of the corrosion products (/sup 60/Co activity) released under aerated conditions were relatively labile. Of these materials, over 80% were soluble upon treatment with a strong complexing agent, DTPA, indicating that adsorption of corrosion products as cations had been the major mechanism of incorporation into the sediment. In the absence of O/sub 2/, a large fraction (approx. 80%) of the corrosion products were also relatively labile. Larger fractions of the corrosion products were soluble, easily dissolved, or present as carbonates or sulfides under non-oxygenated conditions than they were for the aerated treatment.

  1. Iron overdose

    MedlinePlus

    Iron is an ingredient in many mineral and vitamin supplements. Iron supplements are also sold by themselves. Types include: Ferrous sulfate (Feosol, Slow Fe) Ferrous gluconate (Fergon) Ferrous fumarate (Femiron, Feostat) Other products may also contain iron.

  2. Analysis of the magnetic corrosion product deposits on a boiling water reactor cladding

    SciTech Connect

    Orlov, Andrey; Degueldre, Claude; Kaufmann, Wilfried

    2013-01-15

    The buildup of corrosion product deposits (CRUD) on the fuel cladding of the boiling water reactor (BWR) before and after zinc injection has been investigated by applying local experimental analytical techniques. Under the BWR water chemistry conditions, Zn addition together with the presence of Ni and Mn induce the formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}] spinel solid solutions. X-ray absorption spectroscopy (XAS) revealed inversion ratios of cation distribution in spinels deposited from the solid solution. Based on this information, a two-site ferrite spinel solid solution model is proposed. Electron probe microanalysis (EPMA) and extended X-ray absorption fine structure (EXAFS) findings suggest the zinc-rich ferrite spinels formation on BWR fuel cladding mainly at lower pin. - Graphical Abstract: Analysis of spinels in corrosion product deposits on boiling water reactor fuel rod. Combining EPMA and XAFS results: schematic representation of the ferrite spinels in terms of the end members and their extent of inversion. Note that the ferrites are represented as a surface between the normal (upper plane, M[Fe{sub 2}]O{sub 4}) and the inverse (lower plane, Fe[MFe]O{sub 4}). Actual compositions red Black-Small-Square for the specimen at low elevation (810 mm), blue Black-Small-Square for the specimen at mid elevation (1800 mm). The results have an impact on the properties of the CRUD material. Highlights: Black-Right-Pointing-Pointer Buildup of corrosion product deposits on fuel claddings of a boiling water reactor (BWR) are investigated. Black-Right-Pointing-Pointer Under BWR water conditions, Zn addition with Ni and Mn induced formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}]. Black-Right-Pointing-Pointer X-Ray Adsorption Spectroscopy (XAS) revealed inversion of cations in spinel solid solutions. Black-Right-Pointing-Pointer Zinc-rich ferrite spinels are formed on BWR fuel cladding mainly at lower pin elevations.

  3. 49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cast iron or ductile iron lines. 192.487 Section 192.487 Transportation Other Regulations Relating to... iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... the purpose of this paragraph. (b) Localized corrosion pitting. Except for cast iron or ductile...

  4. 49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cast iron or ductile iron lines. 192.487 Section 192.487 Transportation Other Regulations Relating to... iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... the purpose of this paragraph. (b) Localized corrosion pitting. Except for cast iron or ductile...

  5. 49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cast iron or ductile iron lines. 192.487 Section 192.487 Transportation Other Regulations Relating to... iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... the purpose of this paragraph. (b) Localized corrosion pitting. Except for cast iron or ductile...

  6. 49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cast iron or ductile iron lines. 192.487 Section 192.487 Transportation Other Regulations Relating to... iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... the purpose of this paragraph. (b) Localized corrosion pitting. Except for cast iron or ductile...

  7. 49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cast iron or ductile iron lines. 192.487 Section 192.487 Transportation Other Regulations Relating to... iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... the purpose of this paragraph. (b) Localized corrosion pitting. Except for cast iron or ductile...

  8. Iron control in west Texas sour-gas wells provides sustained production increases

    SciTech Connect

    Walker, M.L.; Dill, W.R.; Besler, M.R.; McFatridge, D.G. )

    1991-05-01

    Permian Basin operators have recorded sustained production increases in oil wells by preventing precipitation of iron sulfide and other sulfur-containing species. This improvement has resulted largely from cleaning out tubing before acidizing and from preventing the precipitation of ferrous sulfide and the formation of elemental sulfur by simultaneous use of iron chelants and sulfide-control agents. Previously used methods gave only temporary production increases that terminated when iron dissolved by the stimulation acid reprecipitated in the pay zone and damage the formation after the stimulation acid was spent. This paper describes a method to optimize iron sulfide control, methods to minimize reprecipitation, and case histories from the Permian Basin that show improved methods to control iron in sour-well environments.

  9. Mineralogy and crystal chemistry of iron in the Timan bauxite and products of their technological processing

    NASA Astrophysics Data System (ADS)

    Kotova, O.; Silaev, V.; Lutoev, V.; Vakhrushev, A.

    2016-04-01

    Mineralogical and geochemical features of two series of samples of typical bauxites from two deposits of Middle Timan mining area (Vezhayu-Vorykva and Svetlinskoe) were studied. The phase composition of ferrous bauxites generally is boehmite, hematite, ultradisperse low-ordered goethite and berthierine. In a boehmite and kaolinite structural impurity of iron to 10%, and in the iron oxidehydroxides aluminum impurity is revealed. On iron content bauxites are subdivided into three mineral types for which quantitative data on valence states of ions of iron and proportions of their distribution last on nonequivalent structural positions in hematite, goethite and berthierine are obtained. Noble metals (Ag, Au, Ir, Rh, Pd) concentrating in bauxites are revealed for the first time. Obtained data can lead to decrease of power consumption during aluminum production and high quality ceramics, to provide production of valuable iron oxide, and also to minimize the ecological harm from accumulation of bauxite wastes.

  10. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    SciTech Connect

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  11. Comparison of microbial communities involved in souring and corrosion in offshore and onshore oil production facilities in Nigeria.

    PubMed

    Okoro, Chuma; Smith, Seun; Chiejina, Leo; Lumactud, Rhea; An, Dongshan; Park, Hyung Soo; Voordouw, Johanna; Lomans, Bart P; Voordouw, Gerrit

    2014-04-01

    Samples were obtained from the Obigbo field, located onshore in the Niger delta, Nigeria, from which oil is produced by injection of low-sulfate groundwater, as well as from the offshore Bonga field from which oil is produced by injection of high-sulfate (2,200 ppm) seawater, amended with 45 ppm of calcium nitrate to limit reservoir souring. Despite low concentrations of sulfate (0-7 ppm) and nitrate (0 ppm), sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (NRB) were present in samples from the Obigbo field. Biologically active deposits (BADs), scraped from corrosion-failed sections of a water- and of an oil-transporting pipeline (both Obigbo), had high counts of SRB and high sulfate and ferrous iron concentrations. Analysis of microbial community composition by pyrosequencing indicated anaerobic, methanogenic hydrocarbon degradation to be a dominant process in all samples from the Obigbo field, including the BADs. Samples from the Bonga field also had significant activity of SRB, as well as of heterotrophic and of sulfide-oxidizing NRB. Microbial community analysis indicated high proportions of potentially thermophilic NRB and near-absence of microbes active in methanogenic hydrocarbon degradation. Anaerobic incubation of Bonga samples with steel coupons gave moderate general corrosion rates of 0.045-0.049 mm/year, whereas near-zero general corrosion rates (0.001-0.002 mm/year) were observed with Obigbo water samples. Hence, methanogens may contribute to corrosion at Obigbo, but the low general corrosion rates cannot explain the reasons for pipeline failures in the Niger delta. A focus of future work should be on understanding the role of BADs in enhancing under-deposit pitting corrosion. PMID:24477567

  12. Formation Sequences of Iron Minerals in the Acidic Alteration Products and Variation of Hydrothermal Fluid Conditions

    NASA Astrophysics Data System (ADS)

    Isobe, H.; Yoshizawa, M.

    2008-12-01

    Iron minerals have important role in environmental issues not only on the Earth but also other terrestrial planets. Iron mineral species related to alteration products of primary minerals with surface or subsurface fluids are characterized by temperature, acidity and redox conditions of the fluids. We can see various iron- bearing alteration products in alteration products around fumaroles in geothermal/volcanic areas. In this study, zonal structures of iron minerals in alteration products of the geothermal area are observed to elucidate temporal and spatial variation of hydrothermal fluids. Alteration of the pyroxene-amphibole andesite of Garan-dake volcano, Oita, Japan occurs by the acidic hydrothermal fluid to form cristobalite leaching out elements other than Si. Hand specimens with unaltered or weakly altered core and cristobalite crust show various sequences of layers. XRD analysis revealed that the alteration degree is represented by abundance of cristobalite. Intermediately altered layers are characterized by occurrence including alunite, pyrite, kaolinite, goethite and hematite. A specimen with reddish brown core surrounded by cristobalite-rich white crust has brown colored layers at the boundary of core and the crust. Reddish core is characterized by occurrence of crystalline hematite by XRD. Another hand specimen has light gray core, which represents reduced conditions, and white cristobalite crust with light brown and reddish brown layers of ferric iron minerals between the core and the crust. On the other hand, hornblende crystals, typical ferrous iron-bearing mineral of the host rock, are well preserved in some samples with strongly decolorized cristobalite-rich groundmass. Hydrothermal alteration experiments of iron-rich basaltic material shows iron mineral species depend on acidity and temperature of the fluid. Oxidation states of the iron-bearing mineral species are strongly influenced by the acidity and redox conditions. Variations of alteration

  13. Corrosion product identification and relative rates of corrosion of candidate metals in an irradiated air-steam environment

    SciTech Connect

    Reed, D.T.; Swayambunathan, V.; Tani, B.S. ); Van Konynenburg, R.A. )

    1989-11-03

    Previously reported work by others indicates that dicopper trihydroxide nitrate, Cu{sub 2}NO{sub 3}(OH){sub 3}, forms on copper and copper alloys subjected to irradiated moist air near room temperature. We have performed experiments over a range of temperature and humidity, and have found that this species is formed at temperatures up to at least 150{degree}C if low to intermediate relative humidities are present. At 150{degree}C and 100% relative humidity, only Cu{sub 2}O and CuO were observed. The relative general corrosion rates of the copper materials tested in 1-month experiments at dose rates of 0.7 and 2.0 kGy/h were Cu > 70/30 Cu--Ni > Al-bronze. High-nickel alloy 825 showed no observable corrosion. 29 refs., 4 tabs.

  14. Anomalously deep and fast failure of copper and bronze under the action of the corrosion products existing on them

    NASA Astrophysics Data System (ADS)

    Pozhidaeva, S. D.; Eliseeva, A. Yu.; Ivanov, A. M.

    2015-12-01

    When the corrosion products on copper and bronze are in close contact with a diluted aqueous solution of hydrochloric acid and atmospheric oxygen, they rapidly transform into effective metal (alloy) oxidizers, which provide rapid and deep metal consumption. The metal can be almost fully consumed in a reasonable technological time provided the accumulated solid phase of the products is periodically removed.

  15. 77 FR 25141 - Corrosion-Resistant Carbon Steel Flat Products From Germany and South Korea: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and South Korea... Germany and South Korea (Korea), pursuant to section 751(c) of the Tariff Act of 1930, as amended (the Act...-Resistant Carbon Steel Flat Products from Germany and South Korea: Adequacy Redetermination...

  16. 76 FR 69703 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Extension of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...-resistant carbon steel flat products from Korea, covering the period August 1, 2009, to July 31, 2010. See..., 75 FR 60076 (September 29, 2010). On September 6, 2011, the Department published the...

  17. 76 FR 55004 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... Carbon Steel Flat Products from Korea, 58 FR 44159 (August 19, 1993) (Orders on Certain Steel from Korea... clad on both sides with stainless steel in a 20%-60%-20% ratio. These HTSUS item numbers are provided... International Trade Administration Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic...

  18. Perforation corrosion and its mechanism on galvanized steel sheets on vehicles

    SciTech Connect

    Fujita, Sakae

    1998-12-31

    Mechanism of perforation corrosion on vehicles in the area where deicing salts are dispersed on roads in winter was investigated, using the Gumbel probability plots of the maximum depth of corrosion inside the lapped portion and quantitative analyses of crystalline compositions of the iron rusts which formed on the steel panels of vehicles. It was estimated that perforation occurred in 7 years for zincrometal steel sheet and more than 14 years for galvanized steel sheet with zinc coating weight of 120g/m{sup 2} in the crevice of lapped panel. The composition of the rust in the lapped portion of galvanized steel panels was mainly amorphous at the initial stage of corrosion and moves towards the high content of ({gamma}-FeOOH+Fe{sub 3}O{sub 4}) regions of the non-galvanized parts. Zinc corrosion product prevented the redox reaction of the iron rust and performed as corrosion inhibitor of steel in laboratory simulation tests. Perforation mechanism on vehicles in real environments will be also discussed in the following stages; (1) corrosion of zinc layer, (2) galvanic corrosion of zinc, (3) corrosion of steel under zinc corrosion product, (4) corrosion of steel.

  19. Corrosion resistance of stainless steels during thermal cycling in alkali nitrate molten salts.

    SciTech Connect

    Bradshaw, Robert W.; Goods, Steven Howard

    2001-09-01

    The corrosion behavior of three austenitic stainless steels was evaluated during thermal cycling in molten salt mixtures consisting of NaNO{sub 3} and KNO{sub 3}. Corrosion tests were conducted with Types 316, 316L and 304 stainless steels for more than 4000 hours and 500 thermal cycles at a maximum temperature of 565 C. Corrosion rates were determined by chemically descaling coupons. Metal losses ranged from 5 to 16 microns and thermal cycling resulted in moderately higher corrosion rates compared to isothermal conditions. Type 316 SS was somewhat more corrosion resistant than Type 304 SS in these tests. The effect of carbon content on corrosion resistance was small, as 316L SS corroded only slightly slower than 316 SS. The corrosion rates increased as the dissolved chloride content of the molten salt mixtures increased. Chloride concentrations approximating 1 wt.%, coupled with thermal cycling, resulted in linear weight loss kinetics, rather than parabolic kinetics, which described corrosion rates for all other conditions. Optical microscopy and electron microprobe analysis revealed that the corrosion products consisted of iron-chromium spinel, magnetite, and sodium ferrite, organized as separate layers. Microanalysis of the elemental composition of the corrosion products further demonstrated that the chromium content of the iron-chromium spinel layer was relatively high for conditions in which parabolic kinetics were observed. However, linear kinetics were observed when the spinel layer contained relatively little chromium.

  20. Limiting production rates in C-steel pipes. Removal of inhibitors/corrosion products by fatigue/yield action of liquid or gas/liquid

    SciTech Connect

    Soentvedt, T.

    1996-08-01

    The objective of this paper has been to form a link between the limiting production rates and the strength of the corrosion product formed on carbon steel. This paper has studied the available experimental data related to the failure of corrosion products with and without strengthening by inhibitors. Corrosion products in smooth pipes, bends and weldlike obstacles have been investigated. A model has been developed based on these observations which connects the strength of the corrosion product with the wall shear stress in both liquid and multiphase flow. Given the chemistry, temperature and metallurgy of the material the model allows the transformation from simple liquid tests to different flow conditions in the field. Thus limiting production rates in a field can be determined based on simple model tests. Relationships for the wall shear stress amplitudes, frequencies and mean values for various flow regimes have been developed. These relations are required in the model simulating the strength of the corrosion product. The paper shows why bends and weldlike obstacles constitute exposed areas. This study is the first of its kind. Thus the models developed lack detailed experimental verifications. The paper therefore briefly describes further work which has been initiated in order to verify the hypothesis formed.

  1. Disturbed flow and flow accelerated corrosion in oil and gas production

    SciTech Connect

    Efird, K.D.

    1998-12-31

    The effect of fluid flow on corrosion of steel in oil and gas environments involves a complex interaction of physical and chemical parameters. The basic requirement for any corrosion to occur is the existence of liquid water contacting the pipe wall, which is primarily controlled by the flow regime. The effect of flow on corrosion, or flow accelerated corrosion, is defined by the mass transfer and wall shear stress parameters existing in the water phase that contacts the pipe wall. While existing fluid flow equations for mass transfer and wall shear stress relate to equilibrium conditions, disturbed flow introduces non-equilibrium, steady state conditions not addressed by these equations, and corrosion testing in equilibrium conditions cannot be effectively related to corrosion in disturbed flow. The problem in relating flow effects to corrosion is that steel corrosion failures in oil and gas environments are normally associated with disturbed flow conditions as a result of weld beads, preexisting pits, bends, flanges, valves, tubing connections, etc. Steady state mass transfer and wall shear stress relationships to steel corrosion and corrosion testing are required for their application to corrosion of steel under disturbed flow conditions. A procedure is described to relate the results of a corrosion test directly to corrosion in an operation system where disturbed flow conditions are expected, or must be considered.

  2. Hydroxamate Production as a High Affinity Iron Acquisition Mechanism in Paracoccidioides Spp

    PubMed Central

    Silva-Bailão, Mirelle Garcia; Bailão, Elisa Flávia Luiz Cardoso; Lechner, Beatrix Elisabeth; Gauthier, Gregory M.; Lindner, Herbert; Bailão, Alexandre Melo; Haas, Hubertus; de Almeida Soares, Célia Maria

    2014-01-01

    Iron is a micronutrient required by almost all living organisms, including fungi. Although this metal is abundant, its bioavailability is low either in aerobic environments or within mammalian hosts. As a consequence, pathogenic microorganisms evolved high affinity iron acquisition mechanisms which include the production and uptake of siderophores. Here we investigated the utilization of these molecules by species of the Paracoccidioides genus, the causative agents of a systemic mycosis. It was demonstrated that iron starvation induces the expression of Paracoccidioides ortholog genes for siderophore biosynthesis and transport. Reversed-phase HPLC analysis revealed that the fungus produces and secretes coprogen B, which generates dimerumic acid as a breakdown product. Ferricrocin and ferrichrome C were detected in Paracoccidioides as the intracellular produced siderophores. Moreover, the fungus is also able to grow in presence of siderophores as the only iron sources, demonstrating that beyond producing, Paracoccidioides is also able to utilize siderophores for growth, including the xenosiderophore ferrioxamine. Exposure to exogenous ferrioxamine and dimerumic acid increased fungus survival during co-cultivation with macrophages indicating that these molecules play a role during host-pathogen interaction. Furthermore, cross-feeding experiments revealed that Paracoccidioides siderophores promotes growth of Aspergillus nidulans strain unable to produce these iron chelators. Together, these data denote that synthesis and utilization of siderophores is a mechanism used by Paracoccidioides to surpass iron limitation. As iron paucity is found within the host, siderophore production may be related to fungus pathogenicity. PMID:25157575

  3. Enhanced Carbohydrate Production by Phytoplankton of the Southern Ocean in Response to Iron Fertilization

    NASA Astrophysics Data System (ADS)

    van Oijen, T.; Veldhuis, M. J.; van Leeuwe, M. A.; de Baar, H. J.

    2002-12-01

    Iron concentrations in the Southern Ocean are generally low. At these concentrations microalgal growth, in particular of large diatoms, is affected because iron plays a central role in photosynthesis and several metabolic processes. During the Polarstern 2000 iron release experiment, we studied the effect of in situ iron enrichment on the microalgal production and consumption of water-extractable carbohydrates. The experiment was performed in the Southern Polar Frontal Zone and lasted three weeks. During the course of the experiment, discrete samples were taken along vertical profiles (0-100m), both in the center of the iron enriched patch and outside the patch. In the patch, the carbohydrate concentration in the particulate fraction had doubled at the end of the experiment. An increasing part of the carbohydrates was produced by large diatom cells. Outside the patch, little changes were observed. On day 6, 10 and 19 after the release, seawater from inside and outside the patch was incubated on deck for 24h. In all three deck incubations, the diurnal production and nocturnal consumption of carbohydrates by phytoplankton were higher in iron-enriched bottles. Concluding, carbohydrate production showed to be a sensitive parameter that clearly indicated enhanced phytoplankton growth in response to iron fertilization. This study contributes to a better understanding of factors governing phytoplankton growth in High Nitrogen Low Chlorophyll areas.

  4. Metallic corrosion in the polluted urban atmosphere of Hong Kong.

    PubMed

    Liu, Bo; Wang, Da-Wei; Guo, Hai; Ling, Zhen-Hao; Cheung, Kalam

    2015-01-01

    This study aimed to explore the relationship between air pollutants, particularly acidic particles, and metallic material corrosion. An atmospheric corrosion test was carried out in spring-summer 2012 at a polluted urban site, i.e., Tung Chung in western Hong Kong. Nine types of metallic materials, namely iron, Q235 steel, 20# steel, 16Mn steel, copper, bronze, brass, aluminum, and aluminum alloy, were selected as specimens for corrosion tests. Ten sets of the nine materials were all exposed to ambient air, and then each set was collected individually after exposure to ambient air for consecutive 6, 13, 20, 27, 35, 42, 49, 56, 63, and 70 days, respectively. After the removal of the corrosion products on the surface of the exposed specimens, the corrosion rate of each material was determined. The surface structure of materials was observed using scanning electron microscopy (SEM) before and after the corrosion tests. Environmental factors including temperature, relative humidity, concentrations of gaseous pollutants, i.e., sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), ozone (O₃), and particulate-phase pollutants, i.e., PM₂.₅ (FSP) and PM₁₀ (RSP), were monitored. Correlation analysis between environmental factors and corrosion rate of materials indicated that iron and carbon steel were damaged by both gaseous pollutants (SO₂ and NO₂) and particles. Copper and copper alloys were mainly corroded by gaseous pollutants (SO₂ and O₃), while corrosion of aluminum and aluminum alloy was mainly attributed to NO₂ and particles. PMID:25400029

  5. Zirconium alloys with small amounts of iron and copper or nickel show improved corrosion resistance in superheated steam

    NASA Technical Reports Server (NTRS)

    Greenberg, S.; Youngdahl, C. A.

    1967-01-01

    Heat treating various compositions of zirconium alloys improve their corrosion resistance to superheated steam at temperatures higher than 500 degrees C. This increases their potential as fuel cladding for superheated-steam nuclear-fueled reactors as well as in autoclaves operating at modest pressures.

  6. Development of an Accelerated Test Method for the Determination of Susceptibility to Atmospheric Corrosion

    NASA Technical Reports Server (NTRS)

    Ambrose, John R.

    1991-01-01

    The theoretical rationale is presented for use of a repetitive cyclic current reversal voltammetric technique for characterization of localized corrosion processes, including atmospheric corrosion. Applicability of this proposed experimental protocol is applied to characterization of susceptibility to crevice and pitting corrosion, atmospheric corrosion and stress corrosion cracking. Criteria upon which relative susceptibility is based were determined and tested using two iron based alloys commonly in use at NASA-Kennedy; A36 (a low carbon steel) and 4130 (a low alloy steel). Practicality of the procedure was demonstrated by measuring changes in anodic polarization behavior during high frequency current reversal cycles of 25 cycles per second with 1 mA/sq cm current density amplitude in solutions containing Cl anions. The results demonstrated that, due to excessive polarization which affects conductivity of barrier corrosion product layers, A36 was less resistant to atmospheric corrosion than its 4130 counterpart; behavior which was also demonstrated during exposure tests.

  7. Characterization of corrosion products of AB{sub 5}-type hydrogen storage alloys for nickel-metal hydride batteries

    SciTech Connect

    Maurel, F.; Knosp, B.; Backhaus-Ricoult, M.

    2000-01-01

    To better understand the decrease in storage capacity of AB{sub 5}-type alloys in rechargeable Ni/MH batteries undergoing repeated charge/discharge cycles, the corrosion of a MnNi{sub 3.55}Co{sub 0.75}Mn{sub 0.4}Al{sub 0.3} alloy in aqueous KOH electrolyte was studied. The crystal structure, chemical composition, and distribution of corrosion products were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Hollow and filed needles of a mixed rare earth hydroxide Mn(OH){sub 3} were found to cover a continuous nanocrystalline corrosion scale composed of metal (Ni, Co) solid solution, oxide (Ni,Co)O solid solution and rare earth hydroxide, and a Mn-depleted alloy subscale. Corrosion kinetics were measured for three different temperatures. Growth kinetics of the continuous corrosion scale and of the Mm(OH){sub 3} needles obeyed linear and parabolic rate laws, respectively. Models for the corrosion mechanism were developed on the basis of diffusional transport of Mn and OH through the hydroxide needles and subsequent diffusion along grain boundaries through the nanocrystalline scale.

  8. Corrosion fatigue of iron-chromium-nickel alloys: Fracture mechanics, microstructure and chemistry. Progress report, December 1, 1990--December 31, 1992

    SciTech Connect

    Wei, R.P.

    1992-01-29

    This progress report briefly summarizes the research performed under the referenced grant for the period from 1 December 1990 to 31 December 1991, and contains a cumulative listing of technical presentations and publications dating back to 1 June 1988. Under this grant, a multi-disciplinary research program is undertaken to address certain fundamental issues relating to corrosion fatigue crack growth in structurally important alloys in aqueous environments. The principal goal of the research is to develop and expand the scientific understanding of the processes that control corrosion fatigue crack growth, particularly for ferrous alloys in terms of the controlling mechanical and chemical/electrochemical processes and their interactions with the microstructure. Focus is placed upon the austenitic iron-chromium-nickel (FeCrNi) alloys because of the need to resolve certain mechanistic issues and because of extensive utilization of these alloys in the power generation and chemical industries. Emphasis is given to the growth of short (small) cracks at low growth rates because crack growth in this regime is expected to be more sensitive to changes in external chemical/electrochemical variables.

  9. Deposition of corrosion products from dowels on human dental root surfaces measured with proton microprobe technique

    NASA Astrophysics Data System (ADS)

    Brune, D.; Brunell, G.; Lindh, U.

    1982-06-01

    Distribution of copper, mercury and zinc on human teeth root surfaces adjacent to dowels of gold alloy or brass as well as dowels of brass in conjunction with an amalgam crown has been measured with a proton microprobe using PIXE techniques. Upper limits of the contents of gold and silver on the root surfaces were established. Pronounced concentration profiles of copper and zinc were observed on the root surfaces of teeth prepared with dowels of brass. The dowel of gold alloy revealed only zinc deposition. The major part of copper on the root surfaces is assumed to arise from corrosion of the dowels, and has been transported to the surface by diffusion through the dential tubuli. Zinc in the volume analysed is a constituent of dentin tissue as well as a corrosion product of the brass dowel. Part of the zinc level could also be ascribed to erosion of the zinc phosphate cement matrix. The volumes analysed were (25×25×25)μm 3. The levels of copper, mercury and zinc on the tooth root surfaces attained values up to about 200, 20 and 600 ppm, respectively.

  10. Highly selective determination of copper corrosion products by voltammetric reduction in a strongly alkaline electrolyte.

    PubMed

    Nakayama, Shigeyoshi; Notoya, Takenori; Osakai, Toshiyuki

    2012-01-01

    Until recently, there had been two conflicting views about the order of copper oxides (Cu(2)O and CuO) in their cathodic reduction with a neutral or weak alkaline electrolyte (typically 0.1 M KCl). In 2001, we successfully employed a strongly alkaline electrolyte (SAE; i.e., 6 M KOH + 1 M LiOH) to achieve a perfect separation of the reduction peaks of the two oxides. It was then found that the oxides were reduced in SAE according to a thermodynamic order, i.e., "CuO → Cu(2)O", and also that the reduction of CuO occurred in one step. At an extremely slow scan rate of <0.2 mV s(-1), however, CuO appears to be reduced in two steps via Cu(2)O. It has also been shown that the developed method with SAE can be applied to analysis of various corrosion products, including Cu(2)S, Cu(OH)(2), and patinas. Use of the developed method has allowed researchers to clarify the mechanism of the atmospheric corrosion of copper. PMID:22498457

  11. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    SciTech Connect

    Amitava Sarkar; James K. Neathery; Burtron H. Davis

    2006-12-31

    A fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of operation since the reaction is highly exothermic. Consequently, heavy wax products in one approach may be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase iron-based FTS and is a key factor for optimizing operating costs. The separation problem is further compounded by attrition of iron catalyst particles and the formation of ultra-fine particles.

  12. Production of nickel and iron nanopowders by hydrogen reduction from salts

    NASA Astrophysics Data System (ADS)

    Oglezneva, S. A.; Bulanov, V. Ya.; Kontsevoi, Yu. V.; Ignat'ev, I. E.

    2012-07-01

    The formation of nickel and iron nanoparticles produced by a chemical—metallurgical method and steels made of composite iron powders with nanosized nickel additions is studied. A procedure is developed for calculating the nanopowder particle size and the activation energy of sintering. The results obtained make it possible to decrease the temperature of the process of powder production, to decrease the energy consumed for powder sintering, and to predict the powder nanoparticle size.

  13. Structural and phase transformations, thermal stability, and magnetic and corrosive properties of nanocrystalline iron-based alloys obtained by mechanoactivation in organic media

    NASA Astrophysics Data System (ADS)

    Lomayeva, S. F.

    2007-10-01

    A review of works on the investigations of structural and phase transformations that occur in iron during its mechanical disintegration in the presence of liquid organic media. It is shown that the mechanoactivation of metals in the presence of organic media leads to the formation of a nanocrystalline structure of complex phase composition which is determined by the chemical nature of the milling medium and can include (in different proportions) α-Fe, amorphous phases, carbides, oxides, etc. By varying the composition of the medium, the duration of milling, and the temperature of a subsequent heat treatment, it is possible to obtain nanocrystalline systems with different structural and phase composition, dispersity, and thermal, magnetic and corrosive properties. It has been shown that for the investigation of processes that take place in nanocrystalline materials, it is necessary to use, apart from methods of analysis of the composition and structure of substances at the mesoscopic level (electron microscopy, X-ray diffraction, etc.), also methods which give information at the level of local atomic environment. In this work, Mössbauer spectroscopy was used for the systems on the basis of iron.

  14. Kinetic study for phenol degradation by ZVI-assisted Fenton reaction and related iron corrosion investigated by X-ray absorption spectroscopy.

    PubMed

    Yoon, In-Ho; Yoo, Gursong; Hong, Hye-Jin; Kim, Jungmin; Kim, Min Gyu; Choi, Wang-Kyu; Yang, Ji-Won

    2016-02-01

    In this study, we investigated phenol degradation via zero-valent iron (ZVI)-assisted Fenton reaction through kinetic and spectroscopic analysis. In batch experiments, 100 mg/L of phenol was completely degraded, and 75% of TOC was removed within 3 min under an optimal hydrogen peroxide (H2O2) concentration (50 mM) via the Fenton reaction. In the absence of H2O2, oxygen (O2) was dissolved into the solution and produced H2O2, which resulted in phenol degradation. However, phenol removal efficiency was not very high compared to external H2O2 input. The Fenton reaction rapidly occurred at the surface of ZVI, and then phenol mobility from the solution to the ZVI surface was the rate determining step of the whole reaction. The pseudo-second order adsorption kinetic model well describes phenol removal, and its rate increased according to the H2O2 concentration. X-ray absorption spectroscopic analysis revealed that iron oxide (Fe-O bonding) was formed on ZVI with [H2O2] > 50 mM. A high concentration of H2O2 led to rapid degradation of phenol and caused corrosion on the ZVI surface, indicating that Fe(2+) ions were rapidly oxidized to Fe(3+) ions due to the Fenton reaction and that Fe(3+) was precipitated as iron oxide on the ZVI surface. However, ZVI did not show corroded characteristics in the absence of H2O2 due to the insufficient ZVI-assisted Fenton reaction and oxidation of Fe(2+) to Fe(3+). PMID:26692518

  15. Experimental investigation of solid by-product as sensible heat storage material: Characterization and corrosion study

    NASA Astrophysics Data System (ADS)

    Ortega-Fernández, Iñigo; Faik, Abdessamad; Mani, Karthik; Rodriguez-Aseguinolaza, Javier; D'Aguanno, Bruno

    2016-05-01

    The experimental investigation of water cooled electrical arc furnace (EAF) slag used as filler material in the storage tank for sensible heat storage application was demonstrated in this study. The physicochemical and thermal properties of the tested slags were characterized by using X-ray diffraction, scanning electron microcopy, Fourier transform infrared spectroscopy, Raman spectroscopy and laser flash analysis, respectively. In addition, the chemical compatibility between slags and molten nitrate salt (60 wt. % NaNO3 and 40 wt. % KNO3) was investigated at 565 °C for 500 hrs. The obtained results were clearly demonstrated that the slags showed a good corrosion resistance in direct contact with molten salt at elevated temperature. The present study was clearly indicated that a low-cost filler material used in the storage tank can significantly reduce the overall required quantities of the relatively higher cost molten salt and consequently reduce the overall cost of the electricity production.

  16. Interim report on interaction of waste glass colloids with corrosion products

    SciTech Connect

    Wruck, D A

    1998-02-26

    Thermodynamic data for aqueous reactions of key radionuclides are needed for geochemical modeling studies of the Yucca Mountain Project. This report summarizes progress through February 1999 in a study of waste glass colloid interaction with corrosion product solids. The purpose of the present task is to investigate more directly the exchange behavior of the Pu associated with the waste glass colloids. The goal is to obtain results that will be used to improve models of colloidal transport of Pu from the repository. The major experimental subtasks are (1) synthesis of waste glass colloidal suspensions and (2) batch experiments in which the suspensions are equilibrated with Fe2O3 solids of defined particle size.

  17. Geochemical and mineralogical composition of bog iron ore as a resource for prehistoric iron production - A case study of the Widawa catchment area in Eastern Silesia, Poland

    NASA Astrophysics Data System (ADS)

    Thelemann, Michael; Bebermeier, Wiebke; Hoelzmann, Philipp

    2016-04-01

    Spreading from the Near East in the declining Bronze Age from the 2nd millennium BCE onwards, the technique of iron smelting reached Eastern Silesia, Poland, in approximately the 2nd century BCE (pre-Roman Iron Age). At this time the region of the Widawa catchment area was inhabited by the Przeworsk culture. While the older moraine landscape of the study area lacks ores from geological rock formations, bog iron ores were relatively widespread and, due to their comparatively easy accessibility, were commonly exploited for early iron production. In this poster the mineralogical and elemental composition of local bog iron ore deposits and iron slag finds, as a by-product of the smelting process, are investigated. The crystalline mineralogical composition of local bog iron ores is dominated by quartz (SiO2) and goethite (α FeO(OH)), in contrast to slag samples in which fayalite (Fe2SiO4), wüstite (FeO) and quartz, with traces of goethite, represent the main minerals. Ores and slags are both characterized by notable hematite (Fe2O3), magnetite (Fe3O4) and maghemite (γ-Fe2O3) contents. Analyzed bog iron ore samples show iron contents of up to 64.9 mass% Fe2O3 (45.4 mass% Fe), whereas the iron contents of bloomery slags vary between 48.7 and 72.0 mass% FeO (37.9 and 56.0 mass% Fe). A principal component analysis of the element contents, which were quantified by portable energy-dispersive X-ray fluorescence spectrometry (p-ED-XRF), indicates local variations in the elemental composition. Our results show that bog iron ores are relatively widely distributed with spatially varying iron contents along the Widawa floodplain but present-day formation conditions (e.g. different ground-water levels) are negatively affected by modern land-use practices, such as agriculture and melioration measures.

  18. 77 FR 25405 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... for Revocation in Part, 76 FR 61076 (October 3, 2011). The preliminary results of this review are... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...'') published a notice of initiation of the administrative review of the antidumping duty order on...

  19. 75 FR 25841 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... for Revocation in Part, 74 FR 48224 (September 22, 2009). The preliminary results of this review were... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...'') published a notice of initiation of the administrative review of the antidumping duty order on...

  20. 77 FR 31877 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... proceed (77 FR 24221, April 23, 2012). A record of the Commissioners' votes, the Commission's statement on... amendments took effect on November 7, 2011. See 76 FR 61937 (Oct. 6, 2011) and the newly revised Commission's... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full...

  1. 77 FR 67395 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Revised Schedule for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... these five-year reviews (77 FR 31877, May 30, 2012). As noted in the Commission's original scheduling... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Revised Schedule for...

  2. Mechanism of Corrosion by Naphthenic Acids and Organosulfur Compounds at High Temperatures

    NASA Astrophysics Data System (ADS)

    Jin, Peng

    Due to the law of supply and demand, the last decade has witnessed a skyrocketing in the price of light sweet crude oil. Therefore, refineries are increasingly interested in "opportunity crudes", characterized by their discounted price and relative ease of procurement. However, the attractive economics of opportunity crudes come with the disadvantage of high acid/organosulfur compound content, which could lead to corrosion and even failure of facilities in refineries. However, it is generally accepted that organosulfur compounds may form protective iron sulfide layers on the metal surface and decrease the corrosion rate. Therefore, it is necessary to investigate the corrosive property of crudes at high temperatures, the mechanism of corrosion by acids (naphthenic acids) in the presence of organosulfur compounds, and methods to mitigate its corrosive effect. In 2004, an industrial project was initiated at the Institute for Corrosion and Multiphase Technology to investigate the corrosion by naphthenic acids and organosulfur compounds. In this project, for each experiment there were two experimentation phases: pretreatment and challenge. In the first pretreatment phase, a stirred autoclave was filled with a real crude oil fraction or model oil of different acidity and organosulfur compound concentration. Then, the stirred autoclave was heated to high temperatures to examine the corrosivity of the oil to different materials (specimens made from CS and 5% Cr containing steel were used). During the pretreatment, corrosion product layers were formed on the metal surface. In the second challenge phase, the steel specimens pretreated in the first phase were inserted into a rotating cylinder autoclave, called High Velocity Rig (HVR). The HVR was fed with a high-temperature oil solution of naphthenic acids to attack the iron sulfide layers. Based on the difference of specimen weight loss between the two steps, the net corrosion rate could be calculated and the protectiveness

  3. KINETICS OF SOLUBLE CHROMIUM REMOVAL FROM CONTAMINATED WATER BY ZEROVALENT IRON MEDIA: CORROSION INHIBITION AND PASSIVE OXIDE EFFECTS. (R825223)

    EPA Science Inventory

    Permeable reactive barriers containing zerovalent iron are being increasingly
    employed for in situ remediation of groundwater contaminated with redox active
    metals and chlorinated organic compounds. This research investigated the effect
    of chromate concentration on...

  4. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field

    PubMed Central

    Mand, Jaspreet; Park, Hyung S.; Okoro, Chuma; Lomans, Bart P.; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2016-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC. PMID:26793176

  5. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field.

    PubMed

    Mand, Jaspreet; Park, Hyung S; Okoro, Chuma; Lomans, Bart P; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2015-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC. PMID:26793176

  6. The Impact of Iron on Soil N2O Production Depends on Oxygen Availability

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Doane, T. A.; Burger, M.; Horwath, W. R.

    2014-12-01

    The continuous increase of nitrous oxide (N2O) abundance in the atmosphere is a global concern. Soils are both an important source and sink of N2O, which is produced and consumed through biological processes including ammonia oxidation, heterotrophic denitrification, codenitrification, and through abiotic processes such as chemodenitrification. Iron is the most abundant element in the earth and is also the most prevalent redox-active metal in the biosphere. Its role in both chemical and biochemical reactions in N biogeochemistry cycling is well recognized. However, iron's significance to N2O production is poorly understood, especially under varying O2 concentration. We examined N2O production under different O2 concentrations following amorphous iron (III) oxyhydroxide and ammonical N fertilizer additions in four soil slurries and two static soils (soil moisture was 50% of water holding capacity). Under 21% O2, the addition of iron (III) significantly decreased N2O production in all the soil slurries and static soils, while the opposite phenomenon was observed once the O2 concentration became limited (≤3% in the soil slurry and ≤0.5% in the static soil). Our results show that the influence of iron on soil N2O production depends on O2 availability, which is the dominant controller of N2O production pathways. We hypothesize that under ambient O2 conditions, iron can react with nitrite produced during ammonia oxidation, thus reducing the probability of NO2- being used by nitrifiers as electron acceptor in nitrifier denitrification. In contrast, under anaerobic conditions (O2<0.5%), less nitrite was detected in the presence of the iron addition. Under these conditions, iron may have inhibited N2O reductase, or reduced iron (II) reacted with nitrite, both of which would lead to greater release of N2O.These findings imply that management practices which focus on mitigating N2O emission should avoid the application of iron-rich materials such as biosolids when

  7. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    SciTech Connect

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose; Arora, Salil; Head, Megann; Trembly, Jason; Turk, Brian; Gupta, Raghubir

    2011-09-30

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: • Development of an iron-based catalyst suitable for a circulating fluid-bed reactor • Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production • Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-based catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a

  8. Reduction of iron-bearing lunar minerals for the production of oxygen

    NASA Technical Reports Server (NTRS)

    Massieon, Charles; Cutler, Andrew; Shadman, Farhang

    1992-01-01

    The kinetics and mechanism of the reduction of simulants of the iron-bearing lunar minerals olivine ((Fe,Mg)2SiO4), pyroxene ((Fe,Mg,Ca)SiO3), and ilmenite (FeTiO3) are investigated, extending previous work with ilmenite. Fayalite is reduced by H2 at 1070 K to 1480 K. A layer of mixed silica glass and iron forms around an unreacted core. Reaction kinetics are influenced by permeation of hydrogen through this layer and a reaction step involving dissociated hydrogen. Reaction mechanisms are independent of Mg content. Augite, hypersthene, and hedenbergite are reduced in H2 at the same temperatures. The products are iron metal and lower iron silicates mixed throughout the mineral. Activation energy rises with calcium content. Ilmenite and fayalite are reduced with carbon deposited on partially reduced minerals via the CO disproportionation reaction. Reduction with carbon is rapid, showing the carbothermal reduction of lunar minerals is possible.

  9. Hydrogen role in stress corrosion cracking process of iron aluminide Fe{sub 3}Al in NaCl solution

    SciTech Connect

    Chiu, H.; Qiao, L.; Mao, X.

    1995-09-01

    The stress corrosion cracking behavior of Fe3AI based intermetallic alloy in 3.5% NaCl solution was studied. The role of hydrogen in the cracking process was also defined. The susceptibility of the alloy to hydrogen embrittlement was first investigated by performing tensile tests in air environment and mineral oil. It was found that ductility increased with increasing strain rate when tested in air, but stayed at a high value when tested in mineral oil. This behavior indicates that the alloy is sensitive to hydrogen embrittlement in air. In 3.5% NaCl solution, the environmental effect was studied by slow strain rate tests that were done at electrochemical potentials ranging from {minus}1,000 mV to 0 mV vs SCE. When tested at anodic potentials, from {minus}500 mV to 0 mV vs SCE, ductility reduced from 8.7% to 3.9%. When tested in cathodic region, from {minus}500 mV to {minus}1,000 mV, the ductility was between 7.3% to 9.1%. Results of tests done on pre-immersed specimens and notched tensile specimens confirmed this material degradation to be caused by stress corrosion cracking (SCC). To identify the mechanism, an electrochemical permeation technique was employed. By measuring the diffusible hydrogen concentration, sensitivity to hydrogen embrittlement has been assessed at different potentials. Anodic dissolution is believed to be the controlling mechanism of the SCC as the alloy is less sensitive to hydrogen embrittlement at anodic potentials. Fracture surfaces were examined under the scanning electron microscope (SEM). Fracture mode was found to be mainly transgranular quasi-cleavage, except the ones tested at anodic potentials on which intergranular fracture area was found near the edge. This intergranular fracture, which increases with increasing anodic potential, is believed to be the stress corrosion cracking area. Pits which corroded intergranularly are the crack initiation sites.

  10. Localized corrosion of 316L stainless steel in tritiated water containing aggressive radiolytic and decomposition products at different temperatures

    NASA Astrophysics Data System (ADS)

    Bellanger, G.

    2008-02-01

    Tritium is one of the more important radionuclides used in nuclear industry as plutonium and uranium. The tritium in tritiated water always causes difficulties in nuclear installations, including equipment corrosion. Moreover, with tritiated water there are, in addition, the radiolytic and decomposition products such as hydrogen peroxide formed during decay, chloride ions produced by degradation of organic seals and oils used for tightness and pumping, and acid pH produced by excitation of nitrogen in air by the β - particle. Highly concentrated tritiated water releases energy and its temperature is about 80 °C, moreover heating is necessary in the tritium processes. These conditions highly facilitate the corrosion of stainless steels by pitting and crevice attack. Corrosion tests were performed by electrochemical analysis methods and by visual inspection of the surface of stainless steel.

  11. Intergranular stress corrosion cracking and selective internal oxidation of nickel-chromium-iron alloys in hydrogenated steam

    NASA Astrophysics Data System (ADS)

    Capell, Brent M.

    2005-07-01

    Selective internal oxidation (SIO) is a mechanism of grain boundary embrittlement through the formation of intergranular oxides of Cr2O3. SIO is proposed as a mechanism to explain intergranular stress corrosion cracking (IGSCC) of Ni-base alloys in pressurized water reactor environments. The purpose of this work is to investigate SIO through a series of experiments using controlled-purity alloys in a controlled, low-pressure steam environment in which the oxygen potential is varied. Five alloys; Ni-9Fe, Ni-5Cr, LCr (Ni-5Cr-9Fe), CD85 (Ni-16Cr-9Fe) and HCr (Ni-30Cr-9Fe), were used in corrosion coupon exposure tests and constant extension rate tensile (CERT) tests at 550°C and 400°C in an environment consisting of a controlled mixture of hydrogen, water vapor and argon. The hydrogen-to-water vapor partial pressure ratio (PPR) was varied between 0.001 and 0.9 to control the oxygen partial pressure. The Ni-9Fe, Ni-5Cr and LCr alloys formed a uniform Ni(OH)2 film at PPR values less than 0.09 while CD85 and HCr formed Cr2O 3 oxide films over the entire PPR range. Corrosion coupon results also show the formation of highly localized oxide particles at grain boundaries. Focused ion beam analysis revealed that intergranular oxides were observed at significant depths (>150 nm) down grain boundaries and the oxide morphology depended on the alloy composition and PPR value. Diffusion of oxygen along the grain boundary accounted for the growth of intergranular oxides. CERT test results showed that intergranular cracking was caused by creep-induced microvoid coalescence only at 550°C and did not depend on PPR. At 400°C, the cracking behavior depended on the PPR and resulted in a mixture of creep-induced microvoid coalescence and brittle intergranular failure. The cracked boundary fraction was higher at a PPR value where a Ni(OH)2 surface film formed. Alloy composition influenced cracking and the cracked boundary fraction decreased as the alloy chromium content increased. The

  12. General corrosion, irradiation-corrosion, and environmental-mechanical evaluation of nuclear waste package structural barrier materials. Progress report

    SciTech Connect

    Westerman, R.E.; Pitman, S.G.; Nelson, J.L.

    1982-09-01

    Pacific Northwest Laboratory is studying the general corrosion, irradiation-corrosion, and environmentally enhanced crack propagation of five candidate materials in high-temperature aqueous environments simulating those expected in basalt and tuff repositories. The materials include three cast ferrous materials (ductile cast iron and two low-alloy Cr-Mo cast steels) and two titanium alloys, titanium Grade 2 (commercial purity) and Grade 12 (a Ti-Ni-Mo alloy). The general corrosion results are being obtained by autoclave exposure of specimens to slowly replenished simulated ground water flowing upward through a bed of the appropriate crushed rock (basalt or tuff), which is maintained at the desired test temperature (usually 250/sup 0/C). In addition, tests are being performed in deionized water. Metal penetration rates of iron-base alloys are being derived by stripping off the corrosion product film and weighing the specimen after the appropriate exposure time. The corrosion of titanium alloy specimens is being determined by weight gain methods. The irradiation-corrosion studies are similar to the general corrosion tests, except that the specimen-bearing autoclaves are held in a /sup 60/Co gamma radiation field at dose rates up to 2 x 10/sup 6/ rad/h. For evaluating the resistance of the candidate materials to environmentally enhanced crack propagation, three methods are being used: U-bend and fracture toughness specimens exposed in autoclaves; slow strain rate studies in repository-relevant environments to 300/sup 0/C; and fatigue crack growth rate studies at ambient pressure and 90/sup 0/C. The preliminary data suggest a 1-in. corrosion allowance for iron-base barrier elements intended for 1000-yr service in basalt or tuff repositories. No evidence has yet been found that titanium Grade 2 or Grade 12 is susceptible to environmentally induced crack propagation or, by extension, to stress corrosion cracking.

  13. Corrosion/96 conference papers

    SciTech Connect

    1996-07-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO{sub 2} corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base.

  14. India's iron and steel industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect

    Schumacher, Katja; Sathaye, Jayant

    1998-10-01

    Historical estimates of productivity growth in India's iron and steel sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both growth accounting and econometric estimates of productivity growth for this sector. Their results show that over the observed period from 1973--74 to 1993--94 productivity declined by 1.71{percent} as indicated by the Translog index. Calculations of the Kendrick and Solow indices support this finding. Using a translog specification the econometric analysis reveals that technical progress in India's iron and steel sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protective policy regarding price and distribution of iron and steel as well as by large inefficiencies in public sector integrated steel plants. Will these trends continue into the future, particularly where energy use is concerned? Most likely they will not. The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with the liberalization of the iron and steel sector, the industry is rapidly moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use in existing and future plants.

  15. PIXE elemental mapping on original manuscripts with an external microbeam. Application to manuscripts damaged by iron-gall ink corrosion

    NASA Astrophysics Data System (ADS)

    Remazeilles, Céline; Quillet, Véronique; Calligaro, Thomas; Claude Dran, Jean; Pichon, Laurent; Salomon, Joseph

    2001-07-01

    Proton-induced X-ray emission (PIXE) mapping and PIXE spot analysis have been performed on three original manuscripts. We observed that the precision of the spot measurements for the analysis of the ink composition is limited by the heterogeneity of the writing. PIXE mapping proved to be a complementary technique which is much more sensitive, and which makes it possible to evaluate the migration of some elements, such as sulphur, iron and calcium around inscriptions.

  16. High temperature corrosion studies. A. Iron: based superalloy in SO/sub 2//O/sub 2/ atmospheres. B. Gas: solid reaction with formation of volatile species

    SciTech Connect

    Liu, T.K.

    1980-03-01

    The thermogravimetric method was used to study high temperature corrosion under SO/sub 2//O/sub 2/ atmosphere applied to Armco 18SR alloys with different heat treatment histories, Armco T310 and pure chromium between 750 and 1100/sup 0/C. The weight gain follows the parabolic rate law. The volatilization of the protective Cr/sub 2/O/sub 3/ layer via formation of CrO/sub 3/ was taken into account above 900/sup 0/C for long time runs. The parabolic rate and the volatilization rate, derived from fitting the experimental data to the modified Tedmon's non-linear model, were correlated using the Arrhenius equation. Armco 18SR-C has the best corrosion resistance of the Armco 18SR alloys. Armco T310 is not protective at high temperatures. The available rate data on the oxidation of chromium oxide, chlorination of chromium, oxidation-chlorination of chromium oxide, chlorination of nickel and chlorination of iron were found to be predictable. The calculation of high temperature volatilization rate was performed using the available fluid correlation equations and the Lennard-Jones parameters derived from the molecule with similar structure and from the low temperature viscosity measurement. The lower predicted volatilization rate is due to the use of the Chapman-Enskog equation with the Lennard-Jones parameters mostly derived from the low temperature viscosity measurement. This was substantiated by comparing the reliable high temperature diffusion rate in the literature with the above mentioned calculational method. The experimental volatilization rates of this study are compared with the other related studies and the mass transfer predictions.

  17. Investigation of the inhibiting action of O-, S- and N-dithiocarbamato(1,4,8,11-tetraazacyclotetradecane)cobalt(III) complexes on the corrosion of iron in HClO 4 acid

    NASA Astrophysics Data System (ADS)

    Babić-Samardžija, K.; Khaled, K. F.; Hackerman, N.

    2005-02-01

    The inhibiting properties of four macrocyclic cobalt(III) complexes of the general formula [Co III(Rdtc)cyclam](ClO 4) 2, where cyclam and Rdtc- refer to 1,4,8,11-tetraazacyclotetradecane and morpholine-, thiomorpholine-, piperazine-, N-methylpiperazine-dithiocarbamates, respectively, has been studied on the corrosion of iron in aerated 0.1 M HClO 4 solutions by potentiodynamic polarization (dc) technique and electrochemical impedance spectroscopy (ac). Inhibitor efficiency for the corrosion of iron is found to be better for cobalt complexes then for related amino-ligands. The impedance increases with inhibitor concentration. Polarization curves indicate that the inhibitors are predominantly mixed-type. Better protection by the complex inhibitors was obtained with longer immersion time. The best fit for inhibitors adsorption is obtained using the Langmuir isotherm model. Molecular modeling calculations were used to correlate structural properties of the complex species and their inhibition efficiency.

  18. Problems Caused by Microbes and Treatment Strategies: Identification of H2S-Producing Bacteria in Corrosion Product of a Gas Pipeline

    NASA Astrophysics Data System (ADS)

    Lutterbach, Márcia T. S.; Contador, Luciana S.

    Microbiologically influenced corrosion (MIC) is characterised by material degradation through the action of microorganisms that can act as accelerators or inducers of the reactions of the electrochemical corrosion process. The corrosion study occurred in the past under an essentially abiotic approach, involving chemical and electrochemical experiments. This approach prevented for many years the proper interpretation of MIC phenomena and our understanding of these processes (Videla, 1991). Today, this type of corrosion receives more attention, arousing great industrial interest, since few industries are free of the occurrence of MIC in their systems. The costs of electrochemical corrosion in the US may reach 3.1% of gross domestic product (Koch et al., 2001). According to some estimates, MIC is responsible for around 20-30% of total corrosion costs (Javaherdashti, 1999).

  19. Modeling iron limitation of primary production in the coastal Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Fiechter, Jerome; Moore, Andrew M.; Edwards, Christopher A.; Bruland, Kenneth W.; Di Lorenzo, Emanuele; Lewis, Craig V. W.; Powell, Thomas M.; Curchitser, Enrique N.; Hedstrom, Kate

    2009-12-01

    A lower trophic level NPZD ecosystem model with explicit iron limitation on nutrient uptake is coupled to a three-dimensional coastal ocean circulation model to investigate the regional ecosystem dynamics of the northwestern coastal Gulf of Alaska (CGOA). Iron limitation is included in the NPZD model by adding governing equations for two micro-nutrient compartments: dissolved iron and phytoplankton-associated iron. The model has separate budgets for nitrate (the limiting macro-nutrient in the standard NPZD model) and for iron, with iron limitation on nitrate uptake being imposed as a function of the local phytoplankton realized Fe:C ratio. While the ecosystem model represents a simple approximation of the complex lower trophic level ecosystem of the northwestern CGOA, simulated chlorophyll concentrations reproduce the main characteristics of the spring bloom, high shelf primary production, and "high-nutrient, low-chlorophyll" (HNLC) environment offshore. Over the 1998-2004 period, model-data correlations based on spatially averaged, monthly mean chlorophyll concentrations are on average 0.7, with values as high as 0.9 and as low as 0.5 for individual years. The model also provides insight on the importance of micro- and macro-nutrient limitation on the shelf and offshore, with the shelfbreak region acting as a transition zone where both nitrate and iron availability significantly impact phytoplankton growth. Overall, the relative simplicity of the ecosystem model provides a useful platform to perform long-term simulations to investigate the seasonal and interannual CGOA ecosystem variability, as well as to conduct sensitivity studies to evaluate the robustness of simulated fields to ecosystem model parameterization and forcing. The ability of the model to differentiate between nitrate-limited, and iron-limited growth conditions, and to identify their spatial and temporal occurrences, is also a first step towards understanding the role of environmental gradients in

  20. SBA-15-Supported Iron Catalysts for Fischer-Tropsch Production of Diesel Fuel

    SciTech Connect

    Kim,D.; Dunn, B.; Huggins, F.; Huffman, G.; Kang, M.; Yie, J.; Eyring, E.

    2006-01-01

    Iron supported on SBA-15, a mesoporous structured silica, has been developed as a catalyst for the Fischer-Tropsch synthesis of hydrocarbons. The catalysts retain the high surface area of the support, {approx}500 m{sup 2}/g, average pore size, and pore volume. Inclusion of aluminum into the SBA-15 did not significantly alter these parameters. XRD, XAFS, and Moessbauer spectroscopies were used to characterize the catalyst before and after being subjected to the reaction conditions. Prior to reaction, the iron was distributed among {alpha}-Fe{sub 2}O{sub 3}3, ferrihydrite, and minor {gamma}-Fe{sub 2}O{sub 3}. After reaction, the iron phases detected were nonmagnetic iron oxides, iron carbide, and metallic iron. The length of the induction period typically seen with iron-based F-T catalysts was strongly dependent on the amount of aluminum present in the catalyst. With no aluminum, the induction period lasted about 25 h, whereas the induction period decreased to less than 5 h with an Al:Si mass ratio of 0.010. A further increase in aluminum content lengthened the induction period, but always remained less than that without aluminum. Catalyst activity and product selectivity were also strongly dependent on aluminum content with the maximum diesel fuel fraction, C{sub 11+}, occurring with the Al:Si ratio of 0.010 and a CO conversion of 37%. The small concentration of aluminum may serve to increase the rate of iron carbide formation, whereas higher concentrations may begin to inhibit the rate.

  1. SBA-15-supported iron catalysts for Fischer-Tropsch production of diesel fuel

    SciTech Connect

    Dae Jung Kim; Brian C. Dunn; Frank Huggins; Gerald P. Huffman; Min Kang; Jae Eui Yie; Edward M. Eyring

    2006-12-15

    Iron supported on SBA-15, a mesoporous structured silica, has been developed as a catalyst for the Fischer-Tropsch synthesis of hydrocarbons. The catalysts retain the high surface area of the support, {approximately}500 m{sup 2}/g, average pore size, and pore volume. Inclusion of aluminum into the SBA-15 did not significantly alter these parameters. XRD, XAFS, and Moessbauer spectroscopies were used to characterize the catalyst before and after being subjected to the reaction conditions. Prior to reaction, the iron was distributed among {alpha}-Fe{sub 2}O{sub 3}, ferrihydrite, and minor {gamma}Fe{sub 2}O{sub 3}. After reaction, the iron phases detected were nonmagnetic iron oxides, iron carbide, and metallic iron. The length of the induction period typically seen with iron-based F-T catalysts was strongly dependent on the amount of aluminum present in the catalyst. With no aluminum, the induction period lasted about 25 h, whereas the induction period decreased to less than 5 h with an Al:Si mass ratio of 0.010. A further increase in aluminum content lengthened the induction period, but always remained less than that without aluminum. Catalyst activity and product selectivity were also strongly dependent on aluminum content with the maximum diesel fuel fraction, C{sub 11+}, occurring with the Al:Si ratio of 0.010 and a CO conversion of 37%. The small concentration of aluminum may serve to increase the rate of iron carbide formation, whereas higher concentrations may begin to inhibit the rate. 23 refs., 6 figs., 2 tabs.

  2. Production, fabrication, and performance of alloy 625 clad steel for aggressive corrosive environments

    SciTech Connect

    Stevens, C.E.; Ross, R.W. Jr.

    1986-06-01

    INCONEL/sup */ alloy 625 is a nickel-chromium-molybdenum-columbium alloy used in aggressive corrosive applications where high strength, fabricability, and outstanding corrosion resistance are required. Because of these properties, the alloy is used by the power and chemical industries in a variety of components in coal-fired, nuclear, and chemical process plants. However, widespread use of INCONEL alloy 625 is limited due to its cost. There is a need, notably in utility flue gas desulfurization systems (scrubbers) for an economical, highly corrosive-resistant material. To satisfy this need, INCONEL alloy 625 thin-gauge clad steel plate was developed by Lukens Steel Company. The corrosion resistance of INCONEL alloy 625 in several aggressive corrosive environments will be reviewed. Additionally, this paper will describe methods used to manufacture, fabricate, and weld INCONEL alloy 625 clad plate. Field test evaluation programs conducted at six power plant scrubber systems will also be reported.

  3. Phormidium autumnale growth and anatoxin-a production under iron and copper stress.

    PubMed

    Harland, Francine M J; Wood, Susanna A; Moltchanova, Elena; Williamson, Wendy M; Gaw, Sally

    2013-12-01

    Studies on planktonic cyanobacteria have shown variability in cyanotoxin production, in response to changes in growth phase and environmental factors. Few studies have investigated cyanotoxin regulation in benthic mat-forming species, despite increasing reports on poisoning events caused by ingestion of these organisms. In this study, a method was developed to investigate changes in cyanotoxin quota in liquid cultures of benthic mat-forming cyanobacteria. Iron and copper are important in cellular processes and are well known to affect growth and selected metabolite production in cyanobacteria and algae. The effect of iron (40-4000 μg L(-1)) and copper (2.5-250 μg L(-1)) on growth and anatoxin-a quota in Phormidium autumnale was investigated in batch culture. These concentrations were chosen to span those found in freshwater, as well as those previously reported to be toxic to cyanobacteria. Anatoxin-a concentrations varied throughout the growth curve, with a maximum quota of between 0.49 and 0.55 pg cell(-1) measured within the first two weeks of growth. Growth rates were significantly affected by copper and iron concentrations (P < 0.0001); however, no statistically significant difference between anatoxin-a quota maxima was observed. When the iron concentrations were 800 and 4000 μg L(-1), the P. autumnale cultures did not firmly attach to the substratum. At 250 μg L(-1) copper or either 40 or 4000 μg L(-1) iron, growth was suppressed. PMID:24351714

  4. WASTE PACKAGE CORROSION STUDIES USING SMALL MOCKUP EXPERIMENTS

    SciTech Connect

    B.E. Anderson; K.B. Helean; C.R. Bryan; P.V. Brady; R.C. Ewing

    2005-10-19

    The corrosion of spent nuclear fuel and subsequent mobilization of radionuclides is of great concern in a geologic repository, particularly if conditions are oxidizing. Corroding A516 steel may offset these transport processes within the proposed waste packages at the Yucca Mountain Repository (YMR) by retaining radionuclides, creating locally reducing conditions, and reducing porosity. Ferrous iron, Fe{sup 2+}, has been shown to reduce UO{sub 2}{sup 2+} to UO{sub 2(s)} [1], and some ferrous iron-bearing ion-exchange materials adsorb radionuclides and heavy metals [2]. Of particular interest is magnetite, a potential corrosion product that has been shown to remove TcO{sub 4}{sup -} from solution [3]. Furthermore, if Fe{sup 2+} minerals, rather than fully oxidized minerals such as goethite, are produced during corrosion, then locally reducing conditions may be present. High electron availability leads to the reduction and subsequent immobilization of problematic dissolved species such as TcO{sub 4}{sup -}, NpO{sub 2}{sup +}, and UO{sub 2}{sup 2+} and can also inhibit corrosion of spent nuclear fuel. Finally, because the molar volume of iron material increases during corrosion due to oxygen and water incorporation, pore space may be significantly reduced over long time periods. The more water is occluded, the bulkier the corrosion products, and the less porosity is available for water and radionuclide transport. The focus of this paper is on the nature of Yucca Mountain waste package steel corrosion products and their effects on local redox state, radionuclide transport, and porosity.

  5. Presence of corrosion products and hypersensitivity-associated reactions in periprosthetic tissue after aseptic loosening of total hip replacements with metal bearing surfaces.

    PubMed

    Huber, Monika; Reinisch, Georg; Trettenhahn, Günter; Zweymüller, Karl; Lintner, Felix

    2009-01-01

    Aseptic loosening of articular implants is frequently associated with tissue reactions to wear particles. Some patients, who had received metal-on-metal articulations, present early symptoms including persistent pain and implant failure. These symptoms raise the suspicion about the development of an immunological response. Furthermore, the generation of rare corrosion products in association with metallic implants has been observed. Corrosion products are known to enhance third-body wear and contribute to the loss of the implant. The purpose of this study was to investigate periprosthetic tissue containing solid corrosion products after aseptic loosening of second-generation metal-on-metal total hip replacements made of low-carbon cobalt-chromium-molybdenum alloy for the presence of immunologically determined tissue changes. Periprosthetic tissue of 11 cases containing uncommon solid deposits was investigated by light microscopy. In order to confirm the presence of corrosion products, additional methods including scanning electron microscopy (SEM) investigation, energy dispersive X-ray (EDX) and Fourier transform infrared microspectroscopy (FTIR) analysis were used. All investigated cases revealed solid chromium orthophosphate corrosion products as well as metallic wear particles to a various extent. Moreover, various intense tissue reactions characteristic of immune response were observed in all cases. The simultaneous presence of corrosion products and hypersensitivity-associated tissue reaction indicates that a relationship between corrosion development and implant-related hypersensitivity may exist. PMID:18725188

  6. SUNLIGHT AND IRON(III)-INDUCED PHOTOCHEMICAL PRODUCTION OF DISSOLVED GASEOUS MERCURY IN FRESHWATER. (R827632)

    EPA Science Inventory

    Mechanistic understanding of sunlight-induced natural processes for
    production of dissolved gaseous mercury (DGM) in freshwaters has remained
    limited, and few direct field tests of the mechanistic hypotheses are available.
    We exposed ferric iron salt-spiked fresh s...

  7. Mercury mass flow in iron and steel production process and its implications for mercury emission control.

    PubMed

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Gao, Wei; Wu, Qingru; Hao, Jiming

    2016-05-01

    The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to 41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%-49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute 29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%-36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven, sintering machine and blast furnace were 0.039-0.047gHg/ton steel, and for the electric furnace it was 0.021gHg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%-73% of total mercury emissions to air. PMID:27155436

  8. Use of Moessbauer spectroscopy to study reaction products of polyphenols and iron compounds

    SciTech Connect

    Gust, J. ); Suwalski, J. )

    1994-05-01

    Moessbauer spectroscopy was used to study parameters of the reaction products of iron compounds (Fe[sup III]) and polyphenols with hydroxyl (OH) groups in ortho positions. Polyphenols used in the reaction were catechol, pyrogallol, gallic acid, and oak tannin. The Fe-containing compounds were hydrated ferric sulfate (Fe[sub 2][SO[sub 4

  9. Atmospheric Corrosion

    PubMed Central

    Eyring, Henry; Robertson, Blake; Chu, Chih Chien; Andersen, Terrell

    1974-01-01

    A model of electrolytic corrosion is developed. It is shown that electrically conducting channels threading through the oxide layer and connecting anodic and cathodic areas, obey the equation for a reactant being catalyzed by its product. The resulting autocatalytic equation is compared with available experimental data and found to be widely applicable and capable of unifying many experimental observations. PMID:16592135

  10. Atmospheric corrosion.

    PubMed

    Eyring, H; Robertson, B; Chu, C C; Andersen, T

    1974-02-01

    A model of electrolytic corrosion is developed. It is shown that electrically conducting channels threading through the oxide layer and connecting anodic and cathodic areas, obey the equation for a reactant being catalyzed by its product. The resulting autocatalytic equation is compared with available experimental data and found to be widely applicable and capable of unifying many experimental observations. PMID:16592135

  11. Surface modification for corrosion protection of steel pipes

    NASA Astrophysics Data System (ADS)

    Morshed, Ali

    Corrosion of carbon steel oil pipelines in the sweet environments has been a well- known problem in the oil industry all over the world and corrosion inhibitors of the film forming type have been widely used to combat this type of corrosion. In this project numerous effort has been made to devise a similar way of corrosion mitigation by producing an impermeable and protective coating made of precipitated iron carbonate scale. Based on the previous works it was suggested that iron carbonate scale as the corrosion product (of carbon steel and CO2) could to some extent offer protection to its substrate and reduce the corrosion rate effectively. However, precipitating an adherent and protective iron carbonate scale has not been an easy job. Our main objectives during this work have been firstly to define the favourable conditions under which an iron carbonate scale would precipitate in the system and then to investigate how the protective characteristics of the scale could be improved. The effects of several environmental variables like solution pH, solution temperature, additives (scale inhibitors), stirring and solution composition on the scale properties such as adhesion, surface coverage, stability and porosity (scale density) have been investigated. Simultaneously, the adverse effects of certain conditions or variables that tended to reduce the scale protectiveness or prevent its precipitation have been investigated and discussed. Some of the presented results are rather qualitative; nevertheless it is believed that they have contributed in the better understanding of the iron carbonate scale properties and its precipitation process. Based on the results and conclusions of this project few suggestions have been made at the end for the possible continuation of this work.

  12. Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate.

    PubMed

    Alemán, Mercedes; Bou, Ricard; Tres, Alba; Polo, Javier; Codony, Rafael; Guardiola, Francesc

    2016-04-01

    Fortification of food products with iron is a common strategy to prevent or overcome iron deficiency. However, any form of iron is a pro-oxidant and its addition will cause off-flavours and reduce a product's shelf life. A highly bioavailable heme iron ingredient was selected to fortify a chocolate cream used to fill sandwich-type cookies. Two different strategies were assessed for avoiding the heme iron catalytic effect on lipid oxidation: ascorbyl palmitate addition and co-spray-drying of heme iron with calcium caseinate. Oxidation development and sensory acceptability were monitored in the cookies over one-year of storage at room temperature in the dark. The addition of ascorbyl palmitate provided protection against oxidation and loss of tocopherols and tocotrienols during the preparation of cookies. In general, ascorbyl palmitate, either alone or in combination with the co-spray-dried heme iron, prevented primary oxidation and hexanal formation during storage. The combination of both strategies resulted in cookies that were acceptable from a sensory point of view after 1year of storage. PMID:26593529

  13. Microbially Promoted Solubilization of Steel Corrosion Products and Fate of Associated Actinides

    SciTech Connect

    Gorby, Yuri A.; Geesey, Gill G.; Caccavo Jr., Frank; Fredrickson, James K.

    2002-06-01

    The U.S. Department of Energy (DOE) statements of need call for ''biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions and microbial processes with potential for decontaminating corroding metal surfaces.'' Improved understanding of the fundamental processes of microbial reductive dissolution of iron oxide scale on corroding carbon steel will support assessment and potential application of an environmentally benign and cost-effective strategy for in situ decontamination of structural metal surfaces and piping. This research is designed to develop a safe and effective biological approach for decontaminating mild and stainless steels that were used in the production, transport, and storage of radioactive materials.

  14. Characterization of cytoprotective and toxic properties of iron chelator SIH, prochelator BSIH and their degradation products.

    PubMed

    Jansová, Hana; Bureš, Jan; Macháček, Miloslav; Hašková, Pavlína; Jirkovská, Anna; Roh, Jaroslav; Wang, Qin; Franz, Katherine J; Kovaříková, Petra; Šimůnek, Tomáš

    2016-03-28

    Free cellular iron catalyzes the formation of toxic hydroxyl radicals and therefore chelation of iron could be a promising therapeutic approach in pathological states associated with oxidative stress. Salicylaldehyde isonicotinoyl hydrazone (SIH) is a strong intracellular iron chelator with well documented potential to protect against oxidative damage both in vitro and in vivo. Due to the short biological half-life of SIH and risk of toxicity due to iron depletion, boronate prochelator BSIH has been designed. BSIH cannot bind iron until it is activated by certain reactive oxygen species to active chelator SIH. The aim of this study was to examine the toxicity and cytoprotective potential of BSIH, SIH, and their decomposition products against hydrogen peroxide-induced injury of H9c2 cardiomyoblast cells. Using HPLC, we observed that salicylaldehyde was the main decomposition products of SIH and BSIH, although a small amount of salicylic acid was also detected. In the case of BSIH, the concentration of formed salicylaldehyde consistently exceeded that of SIH. Isoniazid and salicylic acid were not toxic nor did they provide any antioxidant protective effect in H9c2 cells. In contrast, salicylaldehyde was able to chelate intracellular iron and significantly preserve cellular viability and mitochondrial inner membrane potential induced by hydrogen peroxide. However it was consistently less effective than SIH. The inherent toxicities of salicylaldehyde and SIH were similar. Hence, although SIH - the active chelating agent formed following the BSIH activation - undergoes rapid hydrolysis, its principal decomposition product salicylaldehyde accounts markedly for both cytoprotective and toxic properties. PMID:27046792

  15. Arene activation by a nonheme iron(III)-hydroperoxo complex: pathways leading to phenol and ketone products.

    PubMed

    Faponle, Abayomi S; Banse, Frédéric; de Visser, Sam P

    2016-07-01

    Iron(III)-hydroperoxo complexes are found in various nonheme iron enzymes as catalytic cycle intermediates; however, little is known on their catalytic properties. The recent work of Banse and co-workers on a biomimetic nonheme iron(III)-hydroperoxo complex provided evidence of its involvement in reactivity with arenes. This contrasts the behavior of heme iron(III)-hydroperoxo complexes that are known to be sluggish oxidants. To gain insight into the reaction mechanism of the biomimetic iron(III)-hydroperoxo complex with arenes, we performed a computational (density functional theory) study. The calculations show that iron(III)-hydroperoxo reacts with substrates via low free energies of activation that should be accessible at room temperature. Moreover, a dominant ketone reaction product is observed as primary products rather than the thermodynamically more stable phenols. These product distributions are analyzed and the calculations show that charge interaction between the iron(III)-hydroxo group and the substrate in the intermediate state pushes the transferring proton to the meta-carbon atom of the substrate and guides the selectivity of ketone formation. These studies show that the relative ratio of ketone versus phenol as primary products can be affected by external interactions of the oxidant with the substrate. Moreover, iron(III)-hydroperoxo complexes are shown to selectively give ketone products, whereas iron(IV)-oxo complexes will react with arenes to form phenols instead. PMID:27099221

  16. Arsenate and Arsenite Sorption on Magnetite: Relations to Groundwater Arsenic Treatment Using Zerovalent Iron and Natural Attenuation

    EPA Science Inventory

    Magnetite (Fe3O4) is a zerovalent iron corrosion product; it is also formed in natural soil and sediment. Sorption of arsenate (As(V)) and arsenite (As(III)) on magnetite is an important process of arsenic removal from groundwater using zerovalent iron-based permeable reactive ba...

  17. Cytotoxicity of corrosion products of degradable Fe-based stents: relevance of pH and insoluble products.

    PubMed

    Fagali, Natalia S; Grillo, Claudia A; Puntarulo, Susana; Fernández Lorenzo de Mele, Mónica A

    2015-04-01

    Fe-based biodegradable metallic materials (Fe-BMMs) have been proposed for cardiovascular applications and are expected to disappear via corrosion after an appropriate period. However, in vivo studies showed that Fe ions release leads to accumulation of orange and brownish insoluble products at the biomaterial/cell interface. As an additional consequence, sharp changes in pH may affect the biocompatibility of these materials. In the present work, the experimental protocols were designed with the aim of evaluating the relative importance that these factors have on biocompatibility evaluation of BMMs. Mitochondrial activity (MTT assay) and thiobarbituric acid reactive substances (TBARS) assay on mammalian cells, exposed to 1-5 mM of added Fe3+ salt, were assessed and compared with results linked exclusively to pH effects. Soluble Fe concentration in culture medium and intracellular Fe content were also determined. The results showed that: (i) mitochondrial activity was affected by pH changes over the entire range of concentrations of added Fe3+ assayed, (ii) at the highest added Fe3+ concentrations (≥3 mM), precipitation was detected and the cells were able to incorporate the precipitate, that seems to be linked to cell damage, (iii) the extent of precipitation depends on the Fe/protein concentration ratio; and (iv) lipid peroxidation products were detected over the entire range of concentrations of added Fe3+. Hence, a new approach opens in the biocompatibility evaluation of Fe-based BMMs, since the cytotoxicity would not be solely a function of released (and soluble) ions but of the insoluble degradation product amount and the pH falling at the biomaterial/cell interface. The concentration of Fe-containing products at the interface depends on diffusional conditions in a very complex way that should be carefully analyzed in the future. PMID:25797480

  18. Atmospheric corrosion model and monitor for low cost solar arrays

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.; Mansfeld, F. B.; Jeanjaquet, S. L.; Kendig, M.

    1981-01-01

    An atmospheric corrosion model and corrosion monitoring system has been developed for low cost solar arrays (LSA). The corrosion model predicts that corrosion rate is the product of the surface condensation probability of water vapor and the diffusion controlled corrosion current. This corrosion model is verified by simultaneous monitoring of weather conditions and corrosion rates at the solar array test site at Mead, Nebraska.

  19. Sintered rare earth-iron Laves phase magnetostrictive alloy product and preparation thereof

    DOEpatents

    Malekzadeh, Manoochehr; Pickus, Milton R.

    1979-01-01

    A sintered rare earth-iron Laves phase magnetostrictive alloy product characterized by a grain oriented morphology. The grain oriented morphology is obtained by magnetically aligning powder particles of the magnetostrictive alloy prior to sintering. Specifically disclosed are grain oriented sintered compacts of Tb.sub.x Dy.sub.1-x Fe.sub.2 and their method of preparation. The present sintered products have enhanced magnetostrictive properties.

  20. The problems of mass transfer and formation of deposits of corrosion products on fuel assemblies of a VVER-1200 reactor

    NASA Astrophysics Data System (ADS)

    Rodionov, Yu. A.; Kritskii, V. G.; Berezina, I. G.; Gavrilov, A. V.

    2014-03-01

    On the basis of examination of materials published both in Russia and abroad, as well as their own investigations, the authors explain the reasons for the occurrence of such effects as AOA (Axial Offset Anomalies) and an increase in the coolant pressure difference in the core of nuclear reactors of the VVER type. To detect the occurrence of the AOA effect, the authors suggest using the specific activity of 58Co in the coolant. In the VVER-1200 design the thermohydraulic regime for fuel assemblies in the first year of their service life involves slight boiling of the coolant in the upper part of the core, which may induce the occurrence of the AOA effect, intensification of corrosion of fuel claddings, and abnormal increase in deposition of corrosion products. Radiolysis of the water coolant in the boiling section (boiling in pores of deposits) may intensify not only general corrosion but also a localized (nodular) one. As a result of intensification of the corrosion processes and growth of deposits, deterioration of the radiation situation in the rooms of the primary circuit of a VVER-1200 reactor as compared to that at nuclear power plants equipped with reactors of the VVER-1000 type is possible. Recommendations for preventing the AOA effect at nuclear power plants with VVER-1200 reactors on the matter of the direction of further investigations are made.

  1. Water milling and gas passivation method for production of corrosion resistant Nd-Fe-B-N/C powder and magnets

    NASA Astrophysics Data System (ADS)

    Bogatin, Y.; Robinson, M.; Ormerod, J.

    1991-11-01

    Nd-Fe-B powder produced by conventional methods is pyrophoric, and exhibits poor corrosion resistance. Magnets made from powder are also susceptible to corrosion. Conventional methods of production are complicated, potentially hazardous, and relatively expensive. A novel, low cost, less hazardous method of producing powder and magnets with high corrosion resistance and Curie point is discussed. Nd-Fe-B alloys are milled in water, vacuum dried, and passivated at a suitable temperature in a nitrogen or carbon dioxide medium. During passivation, a protective layer, comprised of nitride and/or carbide phases, is formed in the surface region of the powder particles. This powder is not pyrophoric, and may be stored in a laboratory air environment for an extended period of time with no loss in magnetic properties. Compacted and sintered magnets produced from this powder are also highly corrosion resistant, and exhibit a higher Curie point compared to conventionally produced magnets. A description of the novel technology, and a discussion of the properties of Nd-Fe-B-C/N powder and magnets is given.

  2. Friction and wear of iron in sulfuric acid

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Elemental iron sliding on aluminum oxide in aerated sulfuric acid concentrations ranging from very dilute (0.000007 N; i.e., 4 ppm) to very concentrated (96 percent acid) was studied. Load and reciprocating sliding speeds were kept constant. With the most dilute acid of 0.7 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent, the high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid, and decreased somewhat at 50 percent in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It is apparent that the normal passivating film was being worn away and a galvanic cell established which rapidly attached to the wear area.

  3. Absorption of zinc and iron by rats fed meals containing sorghum food products

    SciTech Connect

    Stuart, S.M.A.; Johnson, P.E.; Hamaker, B.; Kirleis, A.

    1986-03-05

    Zinc and iron absorption from freeze-dried traditionally-prepared sorghum food products was studied in rats. After a period of marginal zinc or iron depletion, rats were fed test meals containing 1 of 4 sorghum foods cooked maize gruel or an inorganic mineral each of which was extrinsically labeled with either /sup 65/Zn or /sup 59/Fe before being added to the diets. Absorption was determined by whole body percent retention of the initial radioisotope dose over a period of 19 days. Iron was highly available from all products tested (75-83%) with no significant differences in absorption among groups (p>0.05). Zinc from fermented Aceta (97%) was more available than that from the other sorghum products (69-78%) or maize gruel (76%). Zinc from acid To (78%) and Aceta (97%) was as available as that from zinc oxide in the control diet (93%) (p>0.05). There were no significant differences in zinc absorption among groups fed Acid To (78%), neutral To (76), alkali To (69%) or maize gruel (76%) (p<0.05). Phytate in the fermented Aceta was 33% lower than in the other sorghum foods. Iron and zinc were highly available from all sorghum foods. Reduction phytate by fermentation increased Zn availability.

  4. Silver isotopic anomalies in iron meteorites - Cosmic-ray production and other possible sources

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.

    1980-01-01

    Sources of excess Ag-107 observed in iron meteorites are investigated with emphasis on reactions of cosmic-ray particles with palladium. Cross sections for the production of the silver isotopes from palladium by energetic cosmic-ray particles are estimated to calculate spallogenic production rates relative to that of Mn-53 from iron. The upper limits for the production rates of Ag-107 and Ag-109 by energetic galactic cosmic-ray particles are 690 and 270 atoms/min/kg(Pd), respectively, and the maximum rate for making excess Ag-107 by spallation reactions is 400 atoms/min/kg(Pd). The excess Ag-107 cannot be produced by a long exposure to cosmic-ray particles, and because it is harder to make the amount of Pd-107 observed in the iron meteorites by an early intense proton irradiation than it is to make the Al-26 observed in other meteorites, it is concluded that the excess Ag-107 is due to the decay of nucleosynthetic Pd-107 in the iron meteorites.

  5. Effect of water chemistry on the dissolution rate of the lead corrosion product hydrocerussite.

    PubMed

    Noel, James D; Wang, Yin; Giammar, Daniel E

    2014-05-01

    Hydrocerussite (Pb3(CO3)2(OH)2) is widely observed as a corrosion product in drinking water distribution systems. Its equilibrium solubility and dissolution rate can control lead concentrations in drinking water. The dissolution rate of hydrocerussite was investigated as a function of pH, dissolved inorganic carbon (DIC), and orthophosphate concentrations at conditions relevant to drinking water distribution using continuously stirred tank reactors (CSTRs). In the absence of DIC and orthophosphate, the dissolution rate decreased with increasing pH. Addition of DIC inhibited the dissolution of hydrocerussite. The addition of orthophosphate significantly decreased the dissolution rate of hydrocerussite. At conditions with orthophosphate and without DIC, a lead(II) phosphate solid hydroxylpyromorphite (Pb5(PO4)3OH) was observed after reaction, and orthophosphate's inhibitory effect can be attributed to the formation of this low-solubility lead(II) phosphate solid. In the presence of both orthophosphate and DIC, no lead(II) phosphate solid was observed, but the rate was still lowered by the presence of orthophosphate, which might be due to the adsorption of orthophosphate to block reactive sites on the hydrocerussite surface. For systems in which hydroxylpyromorphite was present, the steady-state effluent lead concentrations from the CSTRs were close to the predicted equilibrium solubility of hydroxylpyromorphite. In the absence of orthophosphate rapid equilibration of hydrocerussite was observed. PMID:24576699

  6. Marine Mammal Train Oil Production Methods: Experimental Reconstructions of Norwegian Iron Age Slab-Lined Pits

    NASA Astrophysics Data System (ADS)

    Nilsen, Gørill

    2016-08-01

    Seal hunting and whaling have played an important part of people's livelihoods throughout prehistory as evidenced by rock carvings, remains of bones, artifacts from aquatic animals and hunting tools. This paper focuses on one of the more elusive resources relating to such activities: marine mammal blubber. Although marine blubber easily decomposes, the organic material has been documented from the Mesolithic Period onwards. Of particular interest in this article are the many structures in Northern Norway from the Iron Age and in Finland on Kökar, Åland, from both the Bronze and Early Iron Ages in which these periods exhibited traits interpreted as being related to oil rendering from marine mammal blubber. The article discusses methods used in this oil production activity based on historical sources, archaeological investigations and experimental reconstruction of Iron Age slab-lined pits from Northern Norway.

  7. Marine Mammal Train Oil Production Methods: Experimental Reconstructions of Norwegian Iron Age Slab-Lined Pits

    NASA Astrophysics Data System (ADS)

    Nilsen, Gørill

    2016-02-01

    Seal hunting and whaling have played an important part of people's livelihoods throughout prehistory as evidenced by rock carvings, remains of bones, artifacts from aquatic animals and hunting tools. This paper focuses on one of the more elusive resources relating to such activities: marine mammal blubber. Although marine blubber easily decomposes, the organic material has been documented from the Mesolithic Period onwards. Of particular interest in this article are the many structures in Northern Norway from the Iron Age and in Finland on Kökar, Åland, from both the Bronze and Early Iron Ages in which these periods exhibited traits interpreted as being related to oil rendering from marine mammal blubber. The article discusses methods used in this oil production activity based on historical sources, archaeological investigations and experimental reconstruction of Iron Age slab-lined pits from Northern Norway.

  8. Oxygen and iron production by electrolytic smelting of lunar soil

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Haskin, L. A.

    1992-01-01

    Work during the past year involved two aspects: (1) electrolysis experiments on a larger scale than done before, and (2) collaboration with Carbotek Inc. on design for a lunar magma electrolysis cell. It was demonstrated previously that oxygen can be produced by direct electrolysis of silicate melts. Previous experiments using 50-100 mg of melt have succeeded in measuring melt resistivities, oxygen production efficiencies, and have identified the character of metal products. A series of experiments using 1-8 grams of silicate melt, done in alumina and spinel containers sufficiently large that surface tension effects between the melt and the wall are expected to have minor effect on the behavior of the melt in the region of the electrodes were completed. The purpose of these experiments was to demonstrate the durability of the electrode and container materials, demonstrate the energy efficiency of the electrolysis process, further characterize the nature of the expected metal and spinel products, measure the efficiency of oxygen production and compare to that predicted on the basis of the smaller-scale experiments, and identify any unexpected benefits or problems of the process. Four experimental designs were employed. Detailed results of these experiments are given in the appendix ('Summary of scaling-up experiments'); a general report of the results is given in terms of implications of the experiments on container materials, cathode materials, anode materials, bubble formation and frothing of the melt, cell potential, anode-cathode distance, oxygen efficiency, and energy efficiency.

  9. Micro-Raman study of copper hydroxychlorides and other corrosion products of bronze samples mimicking archaeological coins.

    PubMed

    Bertolotti, Giulia; Bersani, Danilo; Lottici, Pier Paolo; Alesiani, Marcella; Malcherek, Thomas; Schlüter, Jochen

    2012-02-01

    Three bronze samples created by CNR-ISMN (National Research Council-Institute of Nanostructured Materials) to be similar to Punic and Roman coins found in Tharros (OR, Sardinia, Italy) were studied to identify the corrosion products on their surfaces and to evaluate the reliability of the reproduction process. Micro-Raman spectroscopy was chosen to investigate the corroded surfaces because it is a non-destructive technique, it has high spatial resolution, and it gives the opportunity to discriminate between polymorphs and to correlate colour and chemical composition. A significant amount of green copper hydroxychlorides (Cu(2)(OH)(3)Cl) was detected on all the coins. Their discrimination by Raman spectroscopy was challenging because the literature on the topic is currently confusing. Thus, it was necessary to determine the characteristic peaks of atacamite, clinoatacamite, and the recently discovered anatacamite by acquiring Raman spectra of comparable natural mineral samples. Clinoatacamite, with different degrees of order in its structure, was the major component identified on the three coins. The most widespread corrosion product, besides hydroxychlorides, was the red copper oxide cuprite (Cu(2)O). Other corrosion products of the elements of the alloy (laurionite, plumbonacrite, zinc carbonate) and those resulting from burial in the soil (anatase, calcite, hematite) were also found. This study shows that identification of corrosion products, including discrimination of copper hydroxychlorides, could be accomplished by micro-Raman on valuable objects, for example archaeological findings or works of art, avoiding any damage because of extraction of samples or the use of a destructive analytical technique. PMID:21805316

  10. Effects of iron electrovalence and species on growth and astaxanthin production of Haematococcus pluvialis

    NASA Astrophysics Data System (ADS)

    Cai, Minggang; Li, Zhe; Qi, Anxiang

    2009-05-01

    To increase the cell concentration and the accumulation of astaxanthin in the cultivation of Haematococcus pluvialis, effects of different iron electrovalencies (Fe2+-EDTA and Fe3+-EDTA) and species (Fe-EDTA, Fe(OH){x/32x} and FeC6H5O7) addition on cell growth and accumulation of astaxanthin were studied. Results show that different iron electrovalencies have various effects on cell growth and astaxanthin accumulation of H. pluvialis. Compared with Fe3+-EDTA, Fe2+-EDTA stimulate more effectively the formation of astaxanthin. The maximum astaxanthin content (30.70 mg/g biomass cell) was obtained under conditions of 18 μmol/L Fe2+-EDTA, despite the lower cell density (2.3×105 cell/ml) in such condition. Fe3+-EDTA is more effective than Fe2+-EDTA in improving the cell growth. Especially, the maximal steady-state cell density, 2.9×105 cell/ml was obtained at 18 μmol/L Fe3+-EDTA addition. On the other hand, all the various species of iron (EDTA-Fe, Fe(OH){x/32x}, FeC6H5O7) are capable to improve the growth of the algae and astaxanthin production. Among the three iron species, FeC6H5O7 performed the best. Under the condition of a higher concentration (36 μmol/L) of FeC6H5O7, the cell density and astaxanthin production is 2 and 7 times higher than those of iron-limited group, respectively. The present study demonstrates that the effects of the stimulation with different iron species increased in the order of FeC6H5O7, Fe(OH){x/32x} and EDTA-Fe.

  11. Characterization of Copper Corrosion Products Formed in Drinking Water by Combining Electrochemical and Surface Analyses

    EPA Science Inventory

    This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...

  12. Characterization of Copper Corrosion Products in Drinking Water by Combining Electrochemical and Surface Analyses

    EPA Science Inventory

    This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...

  13. Enhanced High Temperature Corrosion Resistance in Advanced Fossil Energy Systems by Nano-Passive Layer Formation

    SciTech Connect

    Arnold R. Marder

    2007-06-14

    Due to their excellent corrosion resistance, iron aluminum alloys are currently being considered for use as weld claddings in fossil fuel fired power plants. The susceptibility to hydrogen cracking of these alloys at higher aluminum concentrations has highlighted the need for research into the effect of chromium additions on the corrosion resistance of lower aluminum alloys. In the present work, three iron aluminum alloys were exposed to simulated coal combustion environments at 500 C and 700 C for both short (100 hours) and long (5,000 hours) isothermal durations. Scanning electron microscopy was used to analyze the corrosion products. All alloys exhibited excellent corrosion resistance in the short term tests. For longer exposures, increasing the aluminum concentration was beneficial to the corrosion resistance. The addition of chromium to the binary iron aluminum alloy prevented the formation iron sulfide and resulted in lower corrosion kinetics. A classification of the corrosion products that developed on these alloys is presented. Scanning transmission electron microscopy (STEM) of the as-corroded coupons revealed that chromium was able to form chromium sulfides only on the higher aluminum alloy, thereby preventing the formation of deleterious iron sulfides. When the aluminum concentration was too low to permit selective oxidation of only aluminum (upon initial exposure to the corrosion environment), the formation of chromium oxide alongside the aluminum oxide led to depletion of chromium beneath the oxide layer. Upon penetration of sulfur through the oxide into this depletion layer, iron sulfides (rather than chromium sulfides) were found to form on the low aluminum alloy. Thus, it was found in this work that the role of chromium on alloy corrosion resistance was strongly effected by the aluminum concentration of the alloy. STEM analysis also revealed the encapsulation of external iron sulfide products with a thin layer of aluminum oxide, which may provide a

  14. Modelling Iron-Bentonite Interactions

    NASA Astrophysics Data System (ADS)

    Watson, C.; Savage, D.; Benbow, S.; Wilson, J.

    2009-04-01

    The presence of both iron canisters and bentonitic clay in some engineered barrier system (EBS) designs for the geological disposal of high-level radioactive wastes creates the potential for chemical interactions which may impact upon the long-term performance of the clay as a barrier to radionuclide migration. Flooding of potential radionuclide sorption sites on the clay by ferrous ions and conversion of clay to non-swelling sheet silicates (e.g. berthierine) are two possible outcomes deleterious to long-term performance. Laboratory experimental studies of the corrosion of iron in clay show that corrosion product layers are generally thin (< 1 µm) with magnetite, siderite, or ‘green rust' occurring depending upon temperature and ambient partial pressure of carbon dioxide. In theory, incorporation of iron into clay alteration products could act as a ‘pump' to accelerate corrosion. However, the results of laboratory experiments to characterise the products of iron-bentonite interaction are less than unequivocal. The type and amounts of solid products appear to be strong functions of time, temperature, water/clay ratio, and clay and pore fluid compositions. For example, the products of high temperature experiments (> 250 °C) are dominated by chlorite, whereas lower temperatures produce berthierine, odinite, cronstedtite, or Fe-rich smectite. Unfortunately, the inevitable short-term nature of laboratory experimental studies introduces issues of metastability and kinetics. The sequential formation in time of minerals in natural systems often produces the formation of phases not predicted by equilibrium thermodynamics. Evidence from analogous natural systems suggests that the sequence of alteration of clay by Fe-rich fluids will proceed via an Ostwald step sequence. The computer code, QPAC, has been modified to incorporate processes of nucleation, growth, precursor cannibalisation, and Ostwald ripening to address the issues of the slow growth of bentonite

  15. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to...

  16. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to...

  17. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to...

  18. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to...

  19. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to...

  20. Oxygen and iron production by electrolytic smelting of lunar soil

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Haskin, L. A.

    1991-01-01

    Oxygen, present in abundance in nearly all lunar materials, can theoretically be extracted by molten silicate electrolysis from any known lunar rock. Derivation of oxygen by this method has been amply demonstrated experimentally in silicate melts of a variety of compositions. This work can be divided into three categories: (1) measurement of solubilities of metals (atomic) in silicate melts; (2) electrolysis experiments under various conditions of temperature, container material, electrode configuration, current density, melt composition, and sample mass (100 to 2000 mg) measuring energy required and character of resulting products; and (3) theoretical assessment of compositional requirements for steady state operations of an electrolysis cell.

  1. Iron Complexation to Oxygen Rich Marine Natural Products: A Computational Study

    PubMed Central

    Manning, Thomas J.; Williams, Jimmy; Jarrard, Joey; Gorman, Teresa

    2010-01-01

    The natural products kahalalide F, halichondrin B, and discodermolide are relatively large structures that were originally harvested from marine organisms. They are oxygen rich structures that, to varying degrees, should have the ability to bind iron (II or III) by Fe-O and/or Fe-N bonds. In this semi empirical study, the binding of these natural products to iron (II) is studied and the aqueous stability factor (ASF) is used to determine which bonding configuration is most stable. The energy, the complex charge (+1), the average Fe-O (or Fe-N) bond distances and the dipole moments are used to calculate the ASF. The ASF provides insight to which complex will be the most stable and water soluble, important for a medicinal application. The ability of a molecule with a more than six oxygen and/or nitrogen atoms to bind iron (hexavalent, octahedral) by shifting which six atoms (O/N) are bound to the iron qualifies it as a polarity adaptive molecule. PMID:20161968

  2. Combined production and purification of hydrogen from methanol using steam iron process in fixed bed reactor

    NASA Astrophysics Data System (ADS)

    Campo, R.; Durán, P.; Plou, J.; Herguido, J.; Peña, J. A.

    2013-11-01

    A research work is being conducted to study the combined production and purification of hydrogen by means of redox processes departing from biomass fast pyrolysis oils (bio-oils). To achieve that goal, methanol has been used as featured material because it is the most representative compound of the alcoholic fraction of bio-oils. The study has been carried out in a fixed bed reactor where methanol decomposes in H2 and CO when gets in contact with a reactive solid based in an iron oxide at temperatures above 600 °C. During the first stage of the “steam-iron” process, reactive gases reduce the iron oxide to metallic iron. Afterward, in a following step, the previously reduced iron is reoxidized by steam producing a high purity hydrogen stream. Although coke deposition does exist during the reducing stage, this behaves as inert during the reoxidation process. Coke inert role has been corroborated by GC, SEM and TEM techniques, showing that carbon deposits were constituted by ordered structures (carbon nanotubes). The determination of the hydrogen production along successive cycles allowed the evaluation of the effect of temperature and alternating reactive atmospheres on the stability of the solid, as well as the optimum conditions for such purpose.

  3. 78 FR 55241 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ...: Certain Steel Products From Korea, 58 FR 43752 (August 17, 1993) (Order). \\3\\ See the ``Decision... from Germany and the Republic of Korea: Revocation of Antidumping and Countervailing Duty Orders, 78 FR.... (Dongbu), Hyundai HYSCO Ltd. (HYSCO), and Pohang Iron & Steel Co. Ltd. (POSCO), the companies under...

  4. Influence of hydrogen-oxidizing bacteria on the corrosion of low carbon steel: Local electrochemical investigations.

    PubMed

    Moreira, Rebeca; Schütz, Marta K; Libert, Marie; Tribollet, Bernard; Vivier, Vincent

    2014-06-01

    Low carbon steel has been considered a suitable material for component of the multi-barrier system employed on the geological disposal of high-level radioactive waste (HLW). A non negligible amount of dihydrogen (H2) is expected to be produced over the years within the geological repository due to the anoxic corrosion of metallic materials and also to the water radiolysis. The influence of the activity of hydrogen-oxidizing bacteria (HOB) and iron-reducing bacteria (IRB) on carbon steel corrosion is considered in this study because of the high availability of energetic nutriments (H2, iron oxides and hydroxides) produced in anoxic disposal conditions. Local electrochemical techniques were used for investigating the activity of IRB as a promoter of local corrosion in the presence of H2 as electron donor. A local consumption of H2 by the bacteria has been evidenced and impedance measurements indicate the formation of a thick layer of corrosion products. PMID:24177135

  5. Corrosion and hydrogen permeation of A216 Grade WCA steel in hydrothermal magnesium-containing brines

    SciTech Connect

    Haberman, J.H.; Frydrych, D.J.; Westerman, R.E.

    1988-03-01

    Corrosion rates determined at 1 month in 150/degree/C brine increased with magnesium concentration. The structure of the corrosion product, as determined by x-ray diffraction, depended upon the magnesium concentration. In brines with less than 10,000 ppM magnesium, the primary corrosion product had a spinel structure characteristic of magnetite or magnesioferrite. In brines containing magnesium concentrations greater than 20,000 ppM, the primary corrosion product had the amakinite structure characteristic of a complex iron-magnesium hydroxide. The high corrosion rates observed in brines containing high magnesium concentrations suggest that the corrosion products having the amakinite structure is less protective than corrosion products having the spinel structure. Corrosion rates in high-magnesium (inclusion) brine determined over a 6-month test duration were essentially constant. Hydrogen permeation rates observed in exposing mild steel to high-Mg/sup 2/plus// brine at 150/degree/C could be potentially damaging to a mild steel waste package container. The rate of hydrogen permeation was proportional to the brine flow rate in the autoclave. Thiourea additions to the brine increased the hydrogen permeation rate; sulfate and bromide ion additions did not. The maximum gaseous hydrogen pressure attainable is not known (based on 3Fe /plus/ 4H/sub 2/O /plus/ Fe(sub 3)O /plus/ 4H/sub 2/, would be /approximately/900 atmospheres), and the dependence of permeation rate on temperature is not known. 8 refs., 13 figs., 3 tabs.

  6. Primary productivity, bacterial productivity and nitrogen uptake in response to iron enrichment during the SEEDS II

    NASA Astrophysics Data System (ADS)

    Kudo, Isao; Noiri, Yoshifumi; Cochlan, William P.; Suzuki, Koji; Aramaki, Takafumi; Ono, Tsuneo; Nojiri, Yukihiro

    2009-12-01

    Primary productivity (PP), bacterial productivity (BP) and the uptake rates of nitrate and ammonium were measured using isotopic methods ( 13C, 3H, 15N) during a mesoscale iron (Fe)-enrichment experiment conducted in the western subarctic Pacific Ocean in 2004 (SEEDS II). PP increased following Fe enrichment, reached maximal rates 12 days after the enrichment, and then declined to the initial level on day 17. During the 23-day observation period, we observed the development and decline of the Fe-induced bloom. The surface mixed layer (SML) integrated PP increased by 3-fold, but was smaller than the 5-fold increase observed in the previous Fe-enrichment experiment conducted at almost the same location and season during 2001 (SEEDS). Nitrate uptake rates were enhanced by Fe enrichment but decreased after day 5, and became lower than ammonium uptake rates after day 17. The total nitrogenous nutrient uptake rate declined after the peak of the bloom, and accumulation of ammonium was obvious in the euphotic layer. Nitrate utilization accounted for all the requirements of N for the massive bloom development during SEEDS, whereas during SEEDS II, nitrate accounted for >90% of total N utilization on day 5, declining to 40% by the end of the observation period. The SML-integrated BP increased after day 2 and peaked twice on days 8 and 21. Ammonium accumulation and the delayed heterotrophic activity suggested active regeneration occurred after the peak of the bloom. The SML-integrated PP between days 0 and 23 was 19.0 g C m -2. The SML-integrated BP during the same period was 2.6 g C m -2, which was 14% of the SML-integrated PP. Carbon budget calculation for the whole experimental period indicated that 33% of the whole (particulate plus dissolved) PP (21.5 g C m -2) was exported below the SML and 18% was transferred to the meso-zooplankton (growth). The bacterial carbon consumption (43% of the whole PP) was supported by DOC or POC release from phytoplankton, zooplankton

  7. Coupling FGF23 Production and Cleavage: Iron Deficiency, Rickets and Kidney Disease

    PubMed Central

    Wolf, Myles; White, Kenneth E.

    2014-01-01

    Purpose of review High levels of fibroblast growth factor 23 (FGF23) cause rare disorders of hypophosphatemic rickets and are a risk factor for cardiovascular disease and death in patients with chronic kidney disease (CKD). Despite major advances in understanding FGF23 biology, fundamental aspects of FGF23 regulation in health and in CKD remain mostly unknown. Recent findings Autosomal dominant hypophosphatemic rickets (ADHR) is caused by gain-of-function mutations in FGF23 that prevent its proteolytic cleavage, but affected individuals experience a waxing and waning course of phosphate wasting. This led to the discovery that iron deficiency is an environmental trigger that stimulates FGF23 expression and hypophosphatemia in ADHR. Unlike osteocytes in ADHR, normal osteocytes couple increased FGF23 production with commensurately increased FGF23 cleavage to ensure that normal phosphate homeostasis is maintained in the event of iron deficiency. Simultaneous measurement of FGF23 by intact and C-terminal assays supported these breakthroughs by providing minimally invasive insight into FGF23 production and cleavage in bone. These findings also suggest a novel mechanism of FGF23 elevation in patients with CKD, who are often iron deficient and demonstrate increased FGF23 production and decreased FGF23 cleavage, consistent with an acquired state that mimics the molecular pathophysiology of ADHR. Summary Iron deficiency stimulates FGF23 production, but normal osteocytes couple increased FGF23 production with increased cleavage to maintain normal circulating levels of biologically active hormone. These findings uncover a second level of FGF23 regulation within osteocytes, failure of which culminates in elevated levels of biologically active FGF23 in ADHR and perhaps CKD. PMID:24867675

  8. Modeling the Distribution of Acidity within Nuclear Fuel (UO{sub 2}) Corrosion Product Deposits and Porous Sites

    SciTech Connect

    Cheong, W.J.; Keech, P.G.; Wren, J.C.; Shoesmith, D.W.; Qin, Z.

    2007-07-01

    A model for acidity within pores within corrosion products on anodically-dissolving UO{sub 2} was developed using Comsol Multiphysics 3.2 to complement ongoing electrochemical measurements. It was determined that a depression of pH within pores can be maintained if: electrochemically measured dissolution currents used in the calculations are attenuated to reflect very localized pores; corrosion potentials exceed -250 mV (vs. SCE); and pore depths are >1 {mu}m for 300 mV or >100 {mu}m for -50 mV (vs. SCE). Mixed diffusional-chemical equilibria control is suggested through deviations in the shapes between pH-potential and pH-pore depth plots. (authors)

  9. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene

    SciTech Connect

    Farrell, J.; Kason, M.; Melitas, N.; Li, T.

    2000-02-01

    adhering tendency of the corrosion products and not on the overall mass of corrosion products in the columns. The decrease in TCE reaction rates over time can be attributed to anodic control of iron corrosion and not to increasing reactant mass transfer limitations associated with diffusion through porous corrosion products.

  10. Multi-Response Optimization of Carbidic Austempered Ductile Iron Production Parameters using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Dhanapal, P.; Mohamed Nazirudeen, S. S.; Chandrasekar, A.

    2012-04-01

    Carbide Austempered Ductile Iron (CADI) is the family of ductile iron containing wear resistance alloy carbides in the ausferrite matrix. This CADI is manufactured by selecting and characterizing the proper material composition through the melting route done. In an effort to arrive the optimal production parameters of multi responses, Taguchi method and Grey relational analysis have been applied. To analyze the effect of production parameters on the mechanical properties signal-to-noise ratio and Grey relational grade have been calculated based on the design of experiments. An analysis of variance was calculated to find the amount of contribution of factors on mechanical properties and their significance. The analytical results of Taguchi method were compared with the experimental values, and it shows that both are identical.

  11. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    SciTech Connect

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2004-09-30

    In this reporting period, a fundamental filtration study was continued to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. The shakedown phase of the pilot-scale filtration platform was completed at the end of the last reporting period. A study of various molecular weight waxes was initiated to determine the effect of wax physical properties on the permeation rate without catalyst present. As expected, the permeation flux was inversely proportional to the nominal average molecular weight of the polyethylene wax. Even without catalyst particles present in the filtrate, the filtration membranes experience fouling during an induction period on the order of days on-line. Another long-term filtration test was initiated using a batch of iron catalyst that was previously activated with CO to form iron carbide in a separate continuous stirred tank reactor (CSTR) system. The permeation flux stabilized more rapidly than that experienced with unactivated catalyst tests.

  12. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    SciTech Connect

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2005-03-31

    In this reporting period, a fundamental filtration study was continued to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. In this reporting period, a series of crossflow filtration experiments were initiated to study the effect of olefins and oxygenates on the filtration flux and membrane performance. Iron-based FTS reactor waxes contain a significant amount of oxygenates, depending on the catalyst formulation and operating conditions. Mono-olefins and aliphatic alcohols were doped into an activated iron catalyst slurry (with Polywax) to test their influence on filtration properties. The olefins were varied from 5 to 25 wt% and oxygenates from 6 to 17 wt% to simulate a range of reactor slurries reported in the literature. The addition of an alcohol (1-dodecanol) was found to decrease the permeation rate while the olefin added (1-hexadecene) had no effect on the permeation rate. A passive flux maintenance technique was tested that can temporarily increase the permeate rate for 24 hours.

  13. pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water.

    PubMed

    Katsoyiannis, Ioannis A; Ruettimann, Thomas; Hug, Stephan J

    2008-10-01

    Corrosion of zerovalent iron (ZVI) in oxygen-containing water produces reactive intermediates that can oxidize various organic and inorganic compounds. We investigated the kinetics and mechanism of Fenton reagent generation and As(III) oxidation and removal by ZVI (0.1m2/g) from pH 3-11 in aerated water. Observed half-lives for the oxidation of initially 500 microg/L As(III) by 150 mg Fe(0)/L were 26-80 min at pH 3-9. At pH 11, no As(III) oxidation was observed during the first two hours. Dissolved Fe(III) reached 325, 140, and 6 microM at pH 3, 5, and 7. H2O2 concentrations peaked within 10 min at 1.2, 0.4, and < 0.1 microM at pH 3, 5, and 7, and then decreased to undetectable levels. Addition of 2,2'-bipyridine (1-3 mM), prevented Fe(II) oxidation by O2 and H2O2 and inhibited As(III)oxidation. 2-propanol (14 mM), scavenging OH-radicals, quenched the As(III) oxidation at pH 3, but had almost no effect at pH 5 and 7. Experimental data and kinetic modeling suggest that As(III) was oxidized mainly in solution by the Fenton reaction and removed by sorption on newly formed hydrous ferric oxides. OH-radials are the main oxidant for As(III) at low pH, whereas a more selective oxidant oxidizes As(III) at circumneutral pH. PMID:18939581

  14. Bacteria in an intense competition for iron: Key component of the Campylobacter jejuni iron uptake system scavenges enterobactin hydrolysis product.

    PubMed

    Raines, Daniel J; Moroz, Olga V; Blagova, Elena V; Turkenburg, Johan P; Wilson, Keith S; Duhme-Klair, Anne-K

    2016-05-24

    To acquire essential Fe(III), bacteria produce and secrete siderophores with high affinity and selectivity for Fe(III) to mediate its uptake into the cell. Here, we show that the periplasmic binding protein CeuE of Campylobacter jejuni, which was previously thought to bind the Fe(III) complex of the hexadentate siderophore enterobactin (Kd ∼ 0.4 ± 0.1 µM), preferentially binds the Fe(III) complex of the tetradentate enterobactin hydrolysis product bis(2,3-dihydroxybenzoyl-l-Ser) (H5-bisDHBS) (Kd = 10.1 ± 3.8 nM). The protein selects Λ-configured [Fe(bisDHBS)](2-) from a pool of diastereomeric Fe(III)-bisDHBS species that includes complexes with metal-to-ligand ratios of 1:1 and 2:3. Cocrystal structures show that, in addition to electrostatic interactions and hydrogen bonding, [Fe(bisDHBS)](2-) binds through coordination of His227 and Tyr288 to the iron center. Similar binding is observed for the Fe(III) complex of the bidentate hydrolysis product 2,3-dihydroxybenzoyl-l-Ser, [Fe(monoDHBS)2](3-) The mutation of His227 and Tyr288 to noncoordinating residues (H227L/Y288F) resulted in a substantial loss of affinity for [Fe(bisDHBS)](2-) (Kd ∼ 0.5 ± 0.2 µM). These results suggest a previously unidentified role for CeuE within the Fe(III) uptake system of C. jejuni, provide a molecular-level understanding of the underlying binding pocket adaptations, and rationalize reports on the use of enterobactin hydrolysis products by C. jejuni, Vibrio cholerae, and other bacteria with homologous periplasmic binding proteins. PMID:27162326

  15. Bacteria in an intense competition for iron: Key component of the Campylobacter jejuni iron uptake system scavenges enterobactin hydrolysis product

    PubMed Central

    Raines, Daniel J.; Moroz, Olga V.; Blagova, Elena V.; Turkenburg, Johan P.; Wilson, Keith S.

    2016-01-01

    To acquire essential Fe(III), bacteria produce and secrete siderophores with high affinity and selectivity for Fe(III) to mediate its uptake into the cell. Here, we show that the periplasmic binding protein CeuE of Campylobacter jejuni, which was previously thought to bind the Fe(III) complex of the hexadentate siderophore enterobactin (Kd ∼ 0.4 ± 0.1 µM), preferentially binds the Fe(III) complex of the tetradentate enterobactin hydrolysis product bis(2,3-dihydroxybenzoyl-l-Ser) (H5-bisDHBS) (Kd = 10.1 ± 3.8 nM). The protein selects Λ-configured [Fe(bisDHBS)]2− from a pool of diastereomeric Fe(III)-bisDHBS species that includes complexes with metal-to-ligand ratios of 1:1 and 2:3. Cocrystal structures show that, in addition to electrostatic interactions and hydrogen bonding, [Fe(bisDHBS)]2− binds through coordination of His227 and Tyr288 to the iron center. Similar binding is observed for the Fe(III) complex of the bidentate hydrolysis product 2,3-dihydroxybenzoyl-l-Ser, [Fe(monoDHBS)2]3−. The mutation of His227 and Tyr288 to noncoordinating residues (H227L/Y288F) resulted in a substantial loss of affinity for [Fe(bisDHBS)]2− (Kd ∼ 0.5 ± 0.2 µM). These results suggest a previously unidentified role for CeuE within the Fe(III) uptake system of C. jejuni, provide a molecular-level understanding of the underlying binding pocket adaptations, and rationalize reports on the use of enterobactin hydrolysis products by C. jejuni, Vibrio cholerae, and other bacteria with homologous periplasmic binding proteins. PMID:27162326

  16. Breaking a pathogen’s iron will: inhibiting siderophore production as an antimicrobial strategy

    PubMed Central

    Lamb, Audrey L.

    2015-01-01

    The rise of antibiotic resistance is a growing public health crisis. Novel antimicrobials are sought, preferably developing nontraditional chemical scaffolds that do not inhibit standard targets such as cell wall synthesis or the ribosome. Iron scavenging has been proposed as a viable target, because bacterial and fungal pathogens must overcome the nutritional immunity of the host to be virulent. This review highlights the recent work toward exploiting the biosynthetic enzymes of siderophore production for the design of next generation antimicrobials. PMID:25970810

  17. Soluble microbial products decrease pyrite oxidation by ferric iron at pH < 2.

    PubMed

    Yacob, Tesfayohanes; Pandey, Sachin; Silverstein, Joann; Rajaram, Harihar

    2013-08-01

    Research on microbial activity in acid mine drainage (AMD) has focused on transformations of iron and sulfur. However, carbon cycling, including formation of soluble microbial products (SMP) from cell growth and decay, is an important biogeochemical component of the AMD environment. Experiments were conducted to study the interaction of SMP with soluble ferric iron in acidic conditions, particularly the formation of complexes that inhibit its effectiveness as the primary oxidant of pyrite during AMD generation. The rate of pyrite oxidation by ferric iron in sterile suspensions at pH 1.8 was reduced by 87% in the presence of SMP produced from autoclaved cells at a ratio of 0.3 mg DOC per mg total soluble ferric iron. Inhibition of pyrite oxidation by SMP was shown to be comparable to, but weaker than, the effect of a chelating synthetic siderophore, DFAM. Two computational models incorporating SMP complexation were fitted to experimental results. Results suggest that bacterially produced organic matter can play a role in slowing pyrite oxidation. PMID:23777272

  18. Iron: The Forgotten Driver of Nitrous Oxide Production in Agricultural Soil

    PubMed Central

    Zhu, Xia; Silva, Lucas C. R.; Doane, Timothy A.; Horwath, William R.

    2013-01-01

    In response to rising interest over the years, many experiments and several models have been devised to understand emission of nitrous oxide (N2O) from agricultural soils. Notably absent from almost all of this discussion is iron, even though its role in both chemical and biochemical reactions that generate N2O was recognized well before research on N2O emission began to accelerate. We revisited iron by exploring its importance alongside other soil properties commonly believed to control N2O production in agricultural systems. A set of soils from California's main agricultural regions was used to observe N2O emission under conditions representative of typical field scenarios. Results of multivariate analysis showed that in five of the twelve different conditions studied, iron ranked higher than any other intrinsic soil property in explaining observed emissions across soils. Upcoming studies stand to gain valuable information by considering iron among the drivers of N2O emission, expanding the current framework to include coupling between biotic and abiotic reactions. PMID:23555906

  19. Iron particle size effects for direct production of lower olefins from synthesis gas.

    PubMed

    Torres Galvis, Hirsa M; Bitter, Johannes H; Davidian, Thomas; Ruitenbeek, Matthijs; Dugulan, A Iulian; de Jong, Krijn P

    2012-10-01

    The Fischer-Tropsch synthesis of lower olefins (FTO) is an alternative process for the production of key chemical building blocks from non-petroleum-based sources such as natural gas, coal, or biomass. The influence of the iron carbide particle size of promoted and unpromoted carbon nanofiber supported catalysts on the conversion of synthesis gas has been investigated at 340-350 °C, H(2)/CO = 1, and pressures of 1 and 20 bar. The surface-specific activity (apparent TOF) based on the initial activity of unpromoted catalysts at 1 bar increased 6-8-fold when the average iron carbide size decreased from 7 to 2 nm, while methane and lower olefins selectivity were not affected. The same decrease in particle size for catalysts promoted by Na plus S resulted at 20 bar in a 2-fold increase of the apparent TOF based on initial activity which was mainly caused by a higher yield of methane for the smallest particles. Presumably, methane formation takes place at highly active low coordination sites residing at corners and edges, which are more abundant on small iron carbide particles. Lower olefins are produced at promoted (stepped) terrace sites that are available and active, quite independent of size. These results demonstrate that the iron carbide particle size plays a crucial role in the design of active and selective FTO catalysts. PMID:22953753

  20. Nanophase iron production through laser irradiation and magnetic detection of space weathering analogs

    NASA Astrophysics Data System (ADS)

    Markley, Matthew; Kletetschka, Gunther

    2016-04-01

    Airless bodies are constantly exposed to space weathering. The Moon and other similar S-type asteroids physically change through comminution, melting, and agglutinate formation, while spectrally they are darkening, steepening (or reddening) the spectral slope toward longer wavelengths, and reducing silicate mineral absorption bands. In these S-type bodies the production of submicroscopic metallic iron, or nanophase iron (SMFe, npFe0) is a major contributor in these spectral changes. We made a qualitative estimate of both quantity and size distribution of produced metallic iron by space weathered analog, olivine irradiated by laser. Through SEM observation we confirmed that nanoparticles of metallic iron formed in the nm range. Spectroscopic and magnetic susceptibility (MS) through temperature analyses reveal an increasing trend of npFe0 formation, darkening, reddening, and shallowing of the 1 μm olivine absorption band. Olivine that produced the larger end of the size range of npFe0 produced similar effects, except for increased reddening. The magnetic data suggests that with laser irradiation there is both a linear increase of nanoparticles and a logarithmic increase in spectral change with SW time.

  1. Effect of passivated iron powder on final-product distribution in Fe-supported denitrification.

    PubMed

    An, Yi; Zhang, Keqiang; Zhang, Lei; Dong, Qi

    2013-01-01

    An integrated nitrate treatment using passivated iron powder (PIP) and Alcaligenes eutrophus, which is a kind of hydrogenotrophic denitrifying bacteria, was conducted to investigate the effect of iron oxide coating on final-product distribution in hydrogenotrophic denitrification. Based on the results, the autotrophic denitrification supported by PIP could completely remove about 50 mg·L(-1) of nitrate within 4 days, and almost 80% of nitrate was changed into N2O (under acetylene blocking) without residual nitrite or ammonium. While only 53% of the nitrate was removed using acid-washed iron (AWI) instead of PIP, about 70% was converted into ammonium. Furthermore, a layer of FeOOH converted from hematite (α-Fe2O3) and magnetite (Fe3O4), which may block direct chemical nitrate reduction, was observed on the iron surface when PIP was used to support hydrogenotrophic denitrification. In addition, increasing pH from 5 to 8 increased nitrite generation from 1.19 to 4.91%, and decreased ammonium formation from 4.23 to 0%. PMID:23579818

  2. Iron deficiency.

    PubMed

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world. PMID:1745900

  3. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    SciTech Connect

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2004-03-31

    In this reporting period, a fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of production since the reaction is highly exothermic. Consequently, heavy wax products must be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase FTS. The separation problem is further compounded by catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. Existing pilot-scale equipment was modified to include a filtration test apparatus. After undergoing an extensive plant shakedown period, filtration tests with cross-flow filter modules using simulant FTS wax slurry were conducted. The focus of these early tests was to find adequate mixtures of polyethylene wax to simulate FTS wax. Catalyst particle size analysis techniques were also developed. Initial analyses of the slurry and filter permeate particles will be used by the research team to design improved filter media and cleaning strategies.

  4. Synergistic air port corrosion in kraft recovery boilers

    SciTech Connect

    Holcomb, Gordon R.

    2001-08-01

    Localized hot corrosion can occur on the cold-side of air-ports in Kraft recovery boilers. Depending on the basicity of the molten salt, either acidic or basic fluxing takes place, with a solubility minima at the transition between the two reactions. For stainless steel, if the basicity of the fused salt is between the iron and chromium oxide solubility minima, then a synergistic effect can occur that leads to rapid corrosion. The products of one reaction are the reactants of the other, which eliminates the need for rate-controlling diffusion. This effect can explain why stainless steel is attacked more readily than carbon steel.

  5. Effects of iron on growth, antioxidant enzyme activity, bound extracellular polymeric substances and microcystin production of Microcystis aeruginosa FACHB-905.

    PubMed

    Wang, Chao; Wang, Xun; Wang, Peifang; Chen, Bin; Hou, Jun; Qian, Jin; Yang, Yangyang

    2016-10-01

    Toxic cyanobacterial blooms have occurred in various water bodies during recent decades and made serious health hazards to plants, animals and humans. Iron is an important micronutrient for algal growth and recently, the concentration of which has increased remarkably in freshwaters. In this paper, the cyanobacterium Microcystis aeruginosa FACHB-905 was cultivated under non-iron (0μM), iron-limited (10μM) and iron-replete (100μM) conditions to investigate the effects of iron on growth, antioxidant enzyme activity, EPS and microcystin production. The results showed that algal cell density and chlorophyll-a content were maximal at the highest iron concentration. Antioxidant enzymes activity increased notably under all three conditions in the early stage of experiment, of which the SOD activity recovered soon from oxidative stress in 10μM group. The productions of some protein-like substances and humic acid-like substances of bound EPS were inhibited in iron-containing groups in the early stage of experiment while promoted after the adaptation period of Microcystis aeruginosa. Iron addition is a factor affecting the formation of cyanobacterial blooms through its impact on the content of LB-EPS and the composition of TB-EPS. The intracellular MC-LR concentration and the productivity potential of MC-LR were the lowest in 0μM group and highest in 10μM group. No obvious extracellular release of MC-LR was observed during the cultivation time. Therefore, iron addition can promote the physiological activities of M. aeruginosa, but a greater harm could be brought into environment under iron-limited (10μM) condition than under iron-replete (100μM) condition. PMID:27337497

  6. Zero-valent iron and iron oxide-coated sand as a combination for removal of co-present chromate and arsenate from groundwater with humic acid.

    PubMed

    Mak, Mark S H; Rao, Pinhua; Lo, Irene M C

    2011-02-01

    The combination of zero-valent iron (Fe(0)) and iron oxide-coated sand (IOCS) was used to remove Cr(VI) and As(V) from groundwater in this study. The efficiency and the removal mechanism of Cr(VI) and As(V) by using this combination, with the influence of humic acid (HA), were investigated using batch experiments. Results showed that, compared to using Fe(0) or IOCS alone, the Fe(0)-IOCS can perform better on the removal of both Cr(VI) and As(V). Metal extraction studies showed that As(V) was mainly removed by IOCS and iron corrosion products while Cr(VI) was mainly removed by Fe(0) and its corrosion products. Competition was found between Cr(VI) and As(V) for the adsorption sites on the iron corrosion products. HA had shown insignificant effects on Cr(VI) removal but some effects on As(V) removal kinetics. As(V) was adsorbed on IOCS at the earlier stage, but adsorbed/coprecipitated with the iron corrosion products at the later stage. PMID:21130550

  7. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production

    PubMed Central

    David, Valentin; Martin, Aline; Isakova, Tamara; Spaulding, Christina; Qi, Lixin; Ramirez, Veronica; Zumbrennen-Bullough, Kimberly B.; Sun, Chia Chi; Lin, Herbert Y.; Babitt, Jodie L.; Wolf, Myles

    2015-01-01

    Circulating levels of fibroblast growth factor 23 (FGF23) are elevated in patients with chronic kidney disease (CKD), but the mechanisms are poorly understood. Here we tested whether inflammation and iron deficiency regulate FGF23. In wild-type mice, acute inflammation induced by single injections of heat-killed Brucella abortus or interleukin-1β (IL-1β) decreased serum iron within 6 hours, and was accompanied by significant increases in osseous Fgf23 mRNA expression and serum levels of C-terminal FGF23, but no changes in intact FGF23. Chronic inflammation induced by repeated bacteria or IL-1β injections decreased serum iron, increased osseous Fgf23 mRNA and serum C-terminal FGF23, but modestly increased biologically active, intact FGF23 serum levels. Chronic iron deficiency mimicked chronic inflammation. Increased osseous FGF23 cleavage rather than a prolonged half-life of C-terminal FGF23 fragments accounted for the elevated C-terminal FGF23 but near-normal intact FGF23 levels in inflammation. IL-1β injection increased Fgf23 mRNA and C-terminal FGF23 levels similarly in wild-type and Col4a3KO mice with CKD, but markedly increased intact FGF23 levels only in the CKD mice. Inflammation increased Fgf23 transcription by activating Hif1α signaling. Thus, inflammation and iron deficiency stimulate FGF23 production. Simultaneous upregulation of FGF23 cleavage in osteocytes maintains near-normal levels of biologically active, intact circulating FGF23, whereas downregulated or impaired FGF23 cleavage may contribute to elevated intact serum FGF23 in CKD. PMID:26535997

  8. Surface Characterization on Corrosion By-products on Cu in Drinking Water Pipes

    EPA Science Inventory

    Copper is widely used in house-hold plumbing due to its anti-corrosion property. However, as water travels within the distribution system into corroded copper pipes, copper may be released into consumer’s tap causing major problems. In an attempt to understand the mechanism and...

  9. Corrosion behavior and characteristics of the product film of API X100 steel in acidic simulated soil solution

    NASA Astrophysics Data System (ADS)

    Du, Cui-wei; Zhao, Tian-liang; Liu, Zhi-yong; Li, Xiao-gang; Zhang, Da-wei

    2016-02-01

    The short-term corrosion behavior of API X100 steel in an acidic simulated soil was investigated by electrochemical measurements and soaking experiments, followed by corrosion morphology observations and X-ray photoelectron spectroscopy analyses. The results show that X100 steel exhibits an obvious pitting susceptibility in an acidic soil environment. Pits nucleate after approximately 10 h of immersion. Along with the nucleation and growth of the pits, the charge-transfer resistance and open-circuit potential first increase sharply, then decrease slowly, and eventually reach a steady state. The maxima of the charge-transfer resistance and open-circuit potential are attained at approximately 10 h. The evolution of the electrochemical process is confirmed by the analysis of the product film. The product film exhibits a porous and loose structure and could not protect the substrate well. The product film is primarily composed of ferrous carbonate and ferrous hydroxide (Fe(OH)2). The concentration of Fe(OH)2 in the product film increases from the inside to the outside layer.

  10. MICROBIALLY PROMOTED SOLUBILIZATION OF STEEL CORROSION PRODUCTS AND FATE OF ASSOCIATED ACTINIDES

    EPA Science Inventory

    Contaminated surfaces of various metals, including stainless steel, copper, nickel, iron, and carbon steel, pose significant problems to the on going decontamination and decommissioning (D&D) efforts of the Department of Energy. Contamination consisting of nuclear fuel component...

  11. Ca-41 in iron falls, Grant and Estherville - Production rates and related exposure age calculations

    NASA Technical Reports Server (NTRS)

    Fink, D.; Klein, J.; Middleton, R.; Vogt, S.; Herzog, G. F.

    1991-01-01

    Results are presented of the first phase of a Ca-41 cosmogenic studies program aimed at establishing baseline concentrations and trends in selected meteorites and the use of Ca-41 in estimating exposure ages and preatmospheric meteorite radii. The average Ca-41 saturation activity recorded in four small iron falls is 24 +/-1 dpm/kg. This finding, together with measurements at the center and surface of the large iron Grant, indicates that production of Ca-41 from spallation on iron is weakly dependent on shielding to depths as large as 250 g/sq cm. The (K-41)-Ca-41 exposure age of Grant is estimated at 330 +/-50 My, and an upper limit to its terrestrial age of 43 +/-15 ky. A comparison of the Ca-41 contents of stony and metallic material separated from the mesosiderite Estherville identifies low-energy neutron capture on native Ca as a second important channel of production. It is found that the Ca-41 signal in the stone phase from three meteorites correlates with their size, and that the inferred low-energy neutron fluxes vary by a factor of at least 20.

  12. Investigation of iron-containing products from natural and laboratory cultivated Sphaerotilus-Leptothrix bacteria.

    PubMed

    Angelova, R; Groudeva, V; Slavov, L; Iliev, M; Nedkov, I; Sziklai-László, I; Krezhov, K

    2015-09-01

    Bacterial biomass collected from sheath-forming bacteria of the genera Sphaerotilus and Leptothrix was collected from a high-mountain natural stream water source. The elemental constitution and oxide phases of the products after selective cultivation of the bacteria on two different elective media using neutron activation analysis (NAA), electron microscopy (SEM, TEM), and X-ray diffraction (XRD) were studied. A high enrichment level of iron was revealed by the NAA technique in cultivated isolates as compared to the reference sample from nature. Three types of iron oxide compounds were established after cultivation in Adler's medium: lepidocrocite (γ-FeOOH), magnetite (Fe3O4), and goethite (α-FeOOH). The cultivation in the Isolation medium yielded a single phase, that of goethite, excluding one sample with a distinguishable amount of lepidocrocite. XRD and EM investigations show that the biogenic oxides are nanosized. Our study exemplifies the possibilities of the biotechnology approach for obtaining, under artificial conditions, large quantities of iron-containing by-products that could be of further used in appropriate nano- and biotechnologies. PMID:25724989

  13. Method for the production of mineral wool and iron from serpentine ore

    DOEpatents

    O'Connor, William K.; Rush, Gilbert E.; Soltau, Glen F.

    2011-10-11

    Magnesium silicate mineral wools having a relatively high liquidus temperature of at least about 1400.degree. C. and to methods for the production thereof are provided. The methods of the present invention comprise melting a magnesium silicate feedstock (e.g., comprising a serpentine or olivine ore) having a liquidus temperature of at least about 1400.degree. C. to form a molten magnesium silicate, and subsequently fiberizing the molten magnesium silicate to produce a magnesium silicate mineral wool. In one embodiment, the magnesium silicate feedstock contains iron oxide (e.g., up to about 12% by weight). Preferably, the melting is performed in the presence of a reducing agent to produce an iron alloy, which can be separated from the molten ore. Useful magnesium silicate feedstocks include, without limitation, serpentine and olivine ores. Optionally, silicon dioxide can be added to the feedstock to lower the liquidus temperature thereof.

  14. Progress in the development and production of nanoscale iron-coating catalysts

    SciTech Connect

    Matson, D.W.; Linehan, J.C.; Darab, J.G.; Watrob, H.M.; Lui, E.G.; Phelps, M.R.; Hogan, M.O.

    1995-04-01

    At the Pacific Northwest Laboratory (PNL) we have undertaken a program to investigate nanocrystalline ion-based powders as catalytic precursors in a variety of hydrocracking reactions, including coal liquefaction. One ultrafine powder synthesis method developed at PNL, the Rapid of precursors in Solution (RTDS) process, appears to be particularly large scale production of nanocrystalline powders. Using model compounds we have demonstrated that iron-based RTDS powders can be used to produce highly active carbon-carbon bond scission catalysts under reaction conditions relevant to coal liquefaction processes. In this paper we present recent results of attempts at modifying the activity of RTDS-generated iron-based catalyst powders by doping with other metals and the results of scaleup efforts to produce kilogram quantities of active catalyst precursor by this process.

  15. Oxidation of sulphide minerals-VI Ferrous and ferric iron in the water-soluble oxidation products of iron sulphide minerals.

    PubMed

    Steger, H F

    1979-06-01

    A pseudo-kinetic method has been developed for determining the ferrous and ferric iron in the water-soluble oxidation products of pyrrhotite, pyrite and chalcopyrite, and ores and concentrates containing them. Two determinations are required for each material. In one, the total iron is determined with 1,10-phenanthroline after reduction to Fe(II). In the other, the reduction of Fe(III) is retarded by complexation with fluoride. The difference in the amount of ferrous phenanthranoline complex produced in these two determinations is a function of the original FE(III) concentration and of time. PMID:18962467

  16. Response of iron overload to deferasirox in rare transfusion-dependent anaemias: equivalent effects on serum ferritin and labile plasma iron for haemolytic or production anaemias

    PubMed Central

    Porter, John B; Lin, Kai-Hsin; Beris, Photis; Forni, Gian Luca; Taher, Ali; Habr, Dany; Domokos, Gabor; Roubert, Bernard; Thein, Swee Lay

    2011-01-01

    Objectives It is widely assumed that, at matched transfusional iron-loading rates, responses to chelation therapy are similar, irrespective of the underlying condition. However, data are limited for rare transfusion-dependent anaemias, and it remains to be elucidated if response differs, depending on whether the anaemia has a primary haemolytic or production mechanism. Methods The efficacy and safety of deferasirox (Exjade®) in rare transfusion-dependent anaemias were evaluated over 1 yr, with change in serum ferritin as the primary efficacy endpoint. Initial deferasirox doses were 10–30 mg/kg/d, depending on transfusion requirements; 34 patients had production anaemias, and 23 had haemolytic anaemias. Results Patients with production anaemias or haemolytic anaemias had comparable transfusional iron-loading rates (0.31 vs. 0.30 mL red blood cells/kg/d), mean deferasirox dosing (19.3 vs. 19.0 mg/kg/d) and baseline median serum ferritin (2926 vs. 2682 ng/mL). Baseline labile plasma iron (LPI) levels correlated significantly with the transfusional iron-loading rates and with serum ferritin levels in both cohorts. Reductions in median serum ferritin levels were initially faster in the production than the haemolytic anaemias, but at 1 yr, similar significant reductions of 940 and 617 ng/mL were attained, respectively (−26.0% overall). Mean LPI decreased significantly in patients with production (P < 0.0001) and haemolytic (P = 0.037) anaemias after the first dose and was maintained at normal mean levels (<0.4 μm) subsequently. The most common drug-related, investigator-assessed adverse events were diarrhoea (n = 16) and nausea (n = 12). Conclusions At matched transfusional iron-loading rates, the responses of rare transfusion-dependent anaemias to deferasirox are similar at 1 yr, irrespective of the underlying pathogenic mechanism. PMID:21649735

  17. Hydrogen Generation During the Corrosion of Carbon Steel in Oxalic Acid

    SciTech Connect

    WIERSMA, BRUCEJ.

    2004-08-01

    A literature review of the corrosion mechanism for carbon steel in oxalic acid was performed to determine the ratio of moles of iron corroded to moles of hydrogen evolved during the corrosion of iron in oxalic acid. The theory of corrosion of carbon steel in oxalic acid and experimental work were reviewed. It was concluded that the maximum ratio of moles of hydrogen evolved to moles of iron corroded is 1:1. This ratio would be observed in a de-aerated environment. If oxygen or other oxidizing species are present, the ratio could be much less than 1:1. Testing would be necessary to determine how much less than 1:1 the ratio might be. Although the ratio of hydrogen evolution to iron corroded will not exceed 1:1, the total amount of hydrogen evolved can be influenced by such things as a decrease in the exposed surface area, suppression of hydrogen generation by gamma radiation, the presence of corrosion products on steel surface, etc. These and other variables present during chemical cleaning operations of the waste tank have not been examined by the tests reported in the literature i.e., the tests have focused on clean corrosion coupons in oxalic acid solutions. It is expected that most of these variables would reduce the total amount of hydrogen evolved. Further testing would need to be performed to quantify the reduction in hydrogen generation rate associated with these variables.

  18. Carbothermic Reduction of Nickeliferous Laterite Ores for Nickel Pig Iron Production in China: A Review

    NASA Astrophysics Data System (ADS)

    Rao, Mingjun; Li, Guanghui; Jiang, Tao; Luo, Jun; Zhang, Yuanbo; Fan, Xiaohui

    2013-11-01

    Both the consumption and production of crude stainless steel in China rank first in the world. In 2011, the nickel production in China amounted to 446 kilotons, with the proportion of electrolytic nickel and nickel pig iron (NPI) registering 41.5% and 56.5%, respectively. NPI is a low-cost feedstock for stainless steel production when used as a substitute for electrolytic nickel. The existing commercial NPI production processes such as blast furnace smelting, rotary kiln-electric furnace smelting, and Krupp-Renn (Nipon Yakin Oheyama) processes are discussed. As low-temperature (below 1300°C) reduction of nickeliferous laterite ores followed by magnetic separation could provide an alternative avenue without smelting at high temperature (~1500°C) for producing ferronickel with low cost, the fundamentals and recent developments of the low-temperature reduction of nickeliferous laterite ores are reviewed.

  19. Iron and alloys of iron. [lunar resources

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar

    1992-01-01

    All lunar soil contains iron in the metallic form, mostly as an iron-nickel alloy in concentrations of a few tenths of 1 percent. Some of this free iron can be easily separated by magnetic means. It is estimated that the magnetic separation of 100,000 tons of lunar soil would yield 150-200 tons of iron. Agglutinates contain metallic iron which could be extracted by melting and made into powder metallurgy products. The characteristics and potential uses of the pure-iron and iron-alloy lunar products are discussed. Processes for working iron that might be used in a nonterrestrial facility are also addressed.

  20. Utilization of food industry wastes for the production of zero-valent iron nanoparticles.

    PubMed

    Machado, S; Grosso, J P; Nouws, H P A; Albergaria, J T; Delerue-Matos, C

    2014-10-15

    The proper disposal of the several types of wastes produced in industrial activities increases production costs. As a consequence, it is common to develop strategies to reuse these wastes in the same process and in different processes or to transform them for use in other processes. This work combines the needs for new synthesis methods of nanomaterials and the reduction of production cost using wastes from citrine juice (orange, lime, lemon and mandarin) to produce a new added value product, green zero-valent iron nanoparticles that can be used in several applications, including environmental remediation. The results indicate that extracts of the tested fruit wastes (peel, albedo and pulp fractions) can be used to produce zero-valent iron nanoparticles (nZVIs). This shows that these wastes can be an added value product. The resulting nZVIs had sizes ranging from 3 up to 300 nm and distinct reactivities (pulp>peel>albedo extracts). All the studied nanoparticles did not present a significant agglomeration/settling tendency when compared to similar nanoparticles, which indicates that they remain in suspension and retain their reactivity. PMID:25089685

  1. Impact of wine production on the fractionation of copper and iron in Chardonnay wine: Implications for oxygen consumption.

    PubMed

    Rousseva, Michaela; Kontoudakis, Nikolaos; Schmidtke, Leigh M; Scollary, Geoffrey R; Clark, Andrew C

    2016-07-15

    Copper and iron in wine can influence oxidative, reductive and colloidal stability. The current study utilises a solid phase extraction technique to fractionate these metals into hydrophobic, cationic and residual forms, with quantification by ICP-OES. The impact of aspects of wine production on the metal fractions was examined, along with the relationship between metal fractions and oxygen decay rates. Addition of copper and iron to juice, followed by fermentation, favoured an increase in all of their respective metal fractions in the wine, with the largest increase observed for the cationic form of iron. Bentonite fining of the protein-containing wines led to a significant reduction in the cationic fraction of copper and an increase in the cationic form of iron. Total copper correlated more closely with oxygen consumption in the wine compared to total iron, and the residual and cationic forms of copper provided the largest contribution to this impact. PMID:26948636

  2. Characterization and in vivo evaluation of a bio-corrodible nitrided iron stent.

    PubMed

    Feng, Qimao; Zhang, Deyuan; Xin, Chaohua; Liu, Xiangdong; Lin, Wenjiao; Zhang, Wanqian; Chen, Sun; Sun, Kun

    2013-03-01

    A bio-corrodible nitrided iron stent was developed using a vacuum plasma nitriding technique. In the nitrided iron stents, the tensile strength, radial strength, stiffness and in vitro electrochemical corrosion rate were significantly increased compared with those of the control pure iron stent. To evaluate its performance in vivo, the deployment of the nitrided iron stents in juvenile pig iliac arteries was performed. At 3 or 6 months postoperatively, the stented vessels remained patent well; however, slight luminal loss resulting from intimal hyperplasia and relative stenosis of the stented vessel segment with piglets growth were observed by 12 months; no thrombosis or local tissue necrosis was found. At 1 month postoperatively, a nearly intact layer of endothelial cells formed on the stented vessel wall. Additionally, a decreased inflammation scoring, considerably corroded struts and corrosion products accumulation were seen. These findings indicate the potential of this nitrided iron stent as an attractive biodegradable stent. PMID:23183963

  3. SRB seawater corrosion project

    NASA Technical Reports Server (NTRS)

    Bozack, M. J.

    1991-01-01

    The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.

  4. Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines.

    PubMed

    Rajasekar, Aruliah; Anandkumar, Balakrishnan; Maruthamuthu, Sundaram; Ting, Yen-Peng; Rahman, Pattanathu K S M

    2010-01-01

    Microbiologically influenced corrosion is a problem commonly encountered in facilities in the oil and gas industries. The present study describes bacterial enumeration and identification in diesel and naphtha pipelines located in the northwest and southwest region in India, using traditional cultivation technique and 16S rDNA gene sequencing. Phylogenetic analysis of 16S rRNA sequences of the isolates was carried out, and the samples obtained from the diesel and naphtha-transporting pipelines showed the occurrence of 11 bacterial species namely Serratia marcescens ACE2, Bacillus subtilis AR12, Bacillus cereus ACE4, Pseudomonas aeruginosa AI1, Klebsiella oxytoca ACP, Pseudomonas stutzeri AP2, Bacillus litoralis AN1, Bacillus sp., Bacillus pumilus AR2, Bacillus carboniphilus AR3, and Bacillus megaterium AR4. Sulfate-reducing bacteria were not detected in samples from both pipelines. The dominant bacterial species identified in the petroleum pipeline samples were B. cereus and S. marcescens in the diesel and naphtha pipelines, respectively. Therefore, several types of bacteria may be involved in biocorrosion arising from natural biofilms that develop in industrial facilities. In addition, localized (pitting) corrosion of the pipeline steel in the presence of the consortia was observed by scanning electron microscopy analysis. The potential role of each species in biofilm formation and steel corrosion is discussed. PMID:19844704

  5. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    SciTech Connect

    James K. Neathery; Gary Jacobs; Amitava Sarkar; Adam Crawford; Burtron H. Davis

    2006-09-30

    In the previous reporting period, modifications were completed for integrating a continuous wax filtration system for a 4 liter slurry bubble column reactor. During the current reporting period, a shakedown of the system was completed. Several problems were encountered with the progressive cavity pump used to circulate the wax/catalyst slurry though the cross-flow filter element and reactor. During the activation of the catalyst with elevated temperature (> 270 C) the elastomer pump stator released sulfur thereby totally deactivating the iron-based catalyst. Difficulties in maintaining an acceptable leak rate from the pump seal and stator housing were also encountered. Consequently, the system leak rate exceeded the expected production rate of wax; therefore, no online filtration could be accomplished. Work continued regarding the characterization of ultra-fine catalyst structures. The effect of carbidation on the morphology of iron hydroxide oxide particles was the focus of the study during this reporting period. Oxidation of Fe (II) sulfate results in predominantly {gamma}-FeOOH particles which have a rod-shaped (nano-needles) crystalline structure. Carbidation of the prepared {gamma}-FeOOH with CO at atmospheric pressure produced iron carbides with spherical layered structure. HRTEM and EDS analysis revealed that carbidation of {gamma}-FeOOH particles changes the initial nano-needles morphology and generates ultrafine carbide particles with irregular spherical shape.

  6. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism

    USGS Publications Warehouse

    Lovley, D.R.; Stolz, J.F.; Nord, G.L., Jr.; Phillips, E.J.P.

    1987-01-01

    The potential contribution of microbial metabolism to the magnetization of sediments has only recently been recognized. In the presence of oxygen, magnetotactic bacteria can form intracellular chains of magnetite while using oxygen or nitrate as the terminal electron acceptor for metabolism1. The production of ultrafine-grained magnetite by magnetotactic bacteria in surficial aerobic sediments may contribute significantly to the natural remanent magnetism of sediments2-4. However, recent studies on iron reduction in anaerobic sediments suggested that bacteria can also generate magnetite in the absence of oxygen5. We report here on a sediment organism, designated GS-15, which produces copious quantities of ultrafine-grained magnetite under anaerobic conditions. GS-15 is not magnetotactic, but reduces amorphic ferric oxide to extracellular magnetite during the reduction of ferric iron as the terminal electron acceptor for organic matter oxidation. This novel metabolism may be the mechanism for the formation of ultrafine-grained magnetite in anaerobic sediments, and couldaccount for the accumulation of magnetite in ancient iron formations and hydrocarbon deposits. ?? 1987 Nature Publishing Group.

  7. Consequences of the heterogeneous nitriding of. cap alpha. -iron: dislocation production and oriented precipitation

    SciTech Connect

    Straver, W.T.M.; Mittemeijer, E.J.; Rozendaal, M.C.F.

    1984-04-01

    In commercial practice nitriding of a surface layer of workpieces of steel is employed to improve the mechanical properties, such as the fatigue resistance. To study the effects of such a heterogeneous nitriding treatment on microstructure, relatively thin and thick specimens of ..cap alpha..-iron have been nitrided heterogeneously at 833 K in gas mixtures composed of NH/sub 3/ and H/sub 2/. Transmission electron microscopy was applied to investigate the microstructure as a function of depth below the surface. Electron transparent foils parallel to the surface were taken at predefined depths in the nitrogen diffusion zone employing a special preparation technique. On nitriding dislocations were produced in the diffusion zone. The dislocation density varied with location in the zone. After aging followin nitriding, near the surface ..cap alpha..''-Fe/sub 16/N/sub 2/ precipitates in the form of discs aligned along (100) planes of the iron matrix making the smallest angle with the surface at those places where no appreciable dislocation production had occurred. For larger penetration depths precipitates aligned along (100) planes of the iron matrix making the smallest angle with the diffusion direction (perpendicular to the surface). These effects are related to the diffusion-induced state of stress in the specimen.

  8. Influence of oxide scales on the corrosion behaviors of B510L hot-rolled steel strips

    NASA Astrophysics Data System (ADS)

    Man, Cheng; Dong, Chao-fang; Xue, Hui-bin; Xiao, Kui; Li, Xiao-gang; Qi, Hui-bin

    2016-07-01

    The influence of oxide scales on the corrosion behaviors of B510L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of oxide scales on the surface and cross sections of the hot-rolled steel. Raman spectroscopy and X-ray diffraction were used for the phase analysis of the oxide scales and corrosion products. The corrosion potential and impedance were measured by anodic polarization and electrochemical impedance spectroscopy. According to the results, oxide scales on the hot-rolled strips mainly comprise iron and iron oxides. The correlation between mass gain and test time follows a power exponential rule in the damp-heat test. The corrosion products are found to be mainly composed of γ-FeOOH, Fe3O4, α-FeOOH, and γ-Fe2O3. The contents of the corrosion products are different on the surfaces of the steels with and without oxide scales. The steel with oxide scales is found to show a higher corrosion resistance and lower corrosion rate.

  9. The initial release of zinc and aluminum from non-treated Galvalume and the formation of corrosion products in chloride containing media

    NASA Astrophysics Data System (ADS)

    Zhang, Xian; Vu, Thanh-Nam; Volovitch, P.; Leygraf, C.; Ogle, K.; Wallinder, I. Odnevall

    2012-03-01

    This study explores the initial release of zinc and aluminum from non-treated Galvalume and the parallel formation of corrosion products when exposed to synthetic seawater and rainwater of different chloride content. Comparisons were made with long-term field exposures at non-sheltered marine conditions. Observed release rates from short-term conditions agree qualitatively with the long-term findings with a selective release of zinc over aluminum. The release and corrosion processes were intertwined through the formation of corrosion products with properties that influence the long-term release process. Prior to exposure, Al2O3 dominated the entire surface, and was subject to local destruction upon interaction with chloride ions. As a consequence Al2O3 was gradually replaced and covered by zinc-rich corrosion products primarily in interdendritic areas during the first year of marine exposure. This was followed by the gradual formation and integration of aluminum-rich corrosion products, reflected by an increased zinc release rate during the first year, followed by a gradually decreased rate during subsequent years. The importance of Al2O3 was also evident in deaerated synthetic rainwater or seawater, where the formation of Al2O3 was presumably hindered. In synthetic rain water this resulted in a higher ratio between released aluminum and zinc compared with non-deaerated conditions.

  10. X-ray Powder Diffraction in Conservation Science: Towards Routine Crystal Structure Determination of Corrosion Products on Heritage Art Objects.

    PubMed

    Dinnebier, Robert E; Fischer, Andrea; Eggert, Gerhard; Runčevski, Tomče; Wahlberg, Nanna

    2016-01-01

    The crystal structure determination and refinement process of corrosion products on historic art objects using laboratory high-resolution X-ray powder diffraction (XRPD) is presented in detail via two case studies. The first material under investigation was sodium copper formate hydroxide oxide hydrate, Cu4Na4O(HCOO)8(OH)2∙4H2O (sample 1) which forms on soda glass/copper alloy composite historic objects (e.g., enamels) in museum collections, exposed to formaldehyde and formic acid emitted from wooden storage cabinets, adhesives, etc. This degradation phenomenon has recently been characterized as "glass induced metal corrosion". For the second case study, thecotrichite, Ca3(CH3COO)3Cl(NO3)2∙6H2O (sample 2), was chosen, which is an efflorescent salt forming needlelike crystallites on tiles and limestone objects which are stored in wooden cabinets and display cases. In this case, the wood acts as source for acetic acid which reacts with soluble chloride and nitrate salts from the artifact or its environment. The knowledge of the geometrical structure helps conservation science to better understand production and decay reactions and to allow for full quantitative analysis in the frequent case of mixtures. PMID:27341300

  11. Investigation of Stainless Steel Corrosion in Ultrahigh-Purity Water and Steam Systems by Surface Analytical Techniques

    NASA Astrophysics Data System (ADS)

    Dong, Xia; Iacocca, Ronald G.; Bustard, Bethany L.; Kemp, Craig A. J.

    2010-02-01

    Stainless steel pipes with different degrees of rouging and a Teflon®-coated rupture disc with severe corrosion were thoroughly investigated by combining multiple surface analytical techniques. The surface roughness and iron oxide layer thickness increase with increasing rouge severity, and the chromium oxide layer coexists with the iron oxide layer in samples with various degrees of rouging. Unlike the rouging observed for stainless steel pipes, the fast degradation of the rupture disc was caused by a crevice corrosion environment created by perforations in the protective Teflon coating. This failure analysis clearly shows the highly corrosive nature of ultrapure water used in the manufacture of pharmaceutical products, and demonstrates some of the unexpected corrosion mechanisms that can be encountered in these environments.

  12. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect

    Egorov, V.N.; Anikin, G.J.; Gross, M.

    1995-12-01

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  13. Hematite Core Nanoparticles with Carbon Shell: Potential for Environmentally Friendly Production from Iron Mining Sludge

    NASA Astrophysics Data System (ADS)

    Stević, Dragana; Mihajlović, Dijana; Kukobat, Radovan; Hattori, Yoshiyuki; Sagisaka, Kento; Kaneko, Katsumi; Atlagić, Suzana Gotovac

    2016-02-01

    Hematite nanoparticles with amorphous, yet relatively uniform carbon shell, were produced based exclusively on the waste sludge from the iron mine as the raw material. The procedure for acid digestion-based purification of the sludge with the full recovery of acid vapors and the remaining non-toxic rubble is described. Synthesis of the hematite nanoparticles was performed by the arrested precipitation method with cationic surfactant. The particles were thoroughly characterized and the potential of their economical production for the battery industry is indicated.

  14. Iron-sulfur mineralogy of Mars - Magmatic evolution and chemical weathering products

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1990-01-01

    Models are developed for the magmatic evolution and the oxidative weathering of sulfide minerals on Mars, based on petrogenetic associations among komatiitic rock types, Viking geochemical data, SNC meteorites, and terrestrial Fi-Ni deposits. The weathering model was tested by exposing komatiitic pyrrhotites and olivines to sulfuric acid solutions, with or without dissolved ferric iron, and identifying the reaction products by Moessbauer spectroscopy. The results suggest that, on Mars, acidic groundwater has induced oxidative weathering of pyrrhotite, yielding FeS2 and then FeOOH.

  15. An iron-based green approach to 1-h production of single-layer graphene oxide

    NASA Astrophysics Data System (ADS)

    Peng, Li; Xu, Zhen; Liu, Zheng; Wei, Yangyang; Sun, Haiyan; Li, Zheng; Zhao, Xiaoli; Gao, Chao

    2015-01-01

    As a reliable and scalable precursor of graphene, graphene oxide (GO) is of great importance. However, the environmentally hazardous heavy metals and poisonous gases, explosion risk and long reaction times involved in the current synthesis methods of GO increase the production costs and hinder its real applications. Here we report an iron-based green strategy for the production of single-layer GO in 1 h. Using the strong oxidant K2FeO4, our approach not only avoids the introduction of polluting heavy metals and toxic gases in preparation and products but also enables the recycling of sulphuric acid, eliminating pollution. Our dried GO powder is highly soluble in water, in which it forms liquid crystals capable of being processed into macroscopic graphene fibres, films and aerogels. This green, safe, highly efficient and ultralow-cost approach paves the way to large-scale commercial applications of graphene.

  16. An iron-based green approach to 1-h production of single-layer graphene oxide

    PubMed Central

    Peng, Li; Xu, Zhen; Liu, Zheng; Wei, Yangyang; Sun, Haiyan; Li, Zheng; Zhao, Xiaoli; Gao, Chao

    2015-01-01

    As a reliable and scalable precursor of graphene, graphene oxide (GO) is of great importance. However, the environmentally hazardous heavy metals and poisonous gases, explosion risk and long reaction times involved in the current synthesis methods of GO increase the production costs and hinder its real applications. Here we report an iron-based green strategy for the production of single-layer GO in 1 h. Using the strong oxidant K2FeO4, our approach not only avoids the introduction of polluting heavy metals and toxic gases in preparation and products but also enables the recycling of sulphuric acid, eliminating pollution. Our dried GO powder is highly soluble in water, in which it forms liquid crystals capable of being processed into macroscopic graphene fibres, films and aerogels. This green, safe, highly efficient and ultralow-cost approach paves the way to large-scale commercial applications of graphene. PMID:25607686

  17. The production of proton-rich isotopes beyond iron: The γ-process in stars

    NASA Astrophysics Data System (ADS)

    Pignatari, Marco; Göbel, Kathrin; Reifarth, René; Travaglio, Claudia

    2016-04-01

    Beyond iron, a small fraction of the total abundances in the Solar System is made of proton-rich isotopes, the p-nuclei. The clear understanding of their production is a fundamental challenge for nuclear astrophysics. The p-nuclei constrain the nucleosynthesis in core-collapse and thermonuclear supernovae. The γ-process is the most established scenario for the production of the p-nuclei, which are produced via different photodisintegration paths starting on heavier nuclei. A large effort from nuclear physics is needed to access the relevant nuclear reaction rates far from the valley of stability. This review describes the production of the heavy proton-rich isotopes by the γ-process in stars, and explores the state of the art of experimental nuclear physics to provide nuclear data for stellar nucleosynthesis.

  18. DETERMINATION OF THE RATES AND PRODUCTS OF FERROUS IRON OXIDATION IN ARSENIC-CONTAMINATED POND WATER.

    EPA Science Inventory

    Dissolved ferrous iron and arsenic in the presence of insufficient oxygenated ground water is released into a pond. When the mixing of ferrous iron and oxygenated water within the pond occurs, the ferrous iron is oxidized and precipitated as an iron oxide. Groups of experiments...

  19. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    PubMed Central

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-01-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system. PMID:25652244

  20. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    NASA Astrophysics Data System (ADS)

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  1. Modeling methane production by iron-bearing carbonate minerals in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Park, J.; Norman, D.

    2005-12-01

    We measured methane and other major volatiles in fluid inclusions from gold deposits such as Lone Tree, Getchell, Twin Creeks, and Pipeline Carlin-type gold deposits in Nevada by bulk analysis using quadrupole mass spectrometry. Ore-stage fluids are characterized by CO2/CH4 ratios that typically are < 10. Fluid inclusion methane concentrations generally are between 0.1 and 0.5 mol.%; other gaseous species show much wider ranges in composition. Also we commonly measure CO2/CH4 ratios of 10 or less in geothermal fluid inclusions. Similar ratios are reported in some black smokers. Few geothermal systems in production have CH4 in other than trace amounts. Giggenbach (1997) demonstrates that CO2/CH4 ratio in geothermal fluids in equilibrium with granite should vary positively with temperature, but we see no such variation and some fluid inclusion CO2/CH4 in granite-hosted inclusions ratios are an order of magnitude higher than calculated by Giggenbach (1997). This raises the question about the fluid inclusion gas measurements. We have looked at explanations for measurement of fluid inclusion methane that include preferential trapping of hydrocarbon compounds, concentration of methane by boiling, and contamination, but none can explain in all cases the methane concentrations measured. Hence we have modeled geothermal fluid rock reactions using Geochemists Workbench to demonstrate that methane can be a result of fluid-rock reactions. For gold ore wall rocks, we assume that wall rock includes iron-bearing carbonate minerals, epidote, and biotite. For geothermal systems, we assumed fluids with 1 mol.% CO2 and salinity of 1 %. We modeled the reaction of iron-bearing carbonate minerals, epidote, and biotite with the fluid between 100 and 300 °C. The reaction released ferrous iron, and the released ferrous iron is oxidized and precipitated as hematite or magnetite. The precipitation of hematite or magnetite produced acid and the acid dissolved calcite increasing CO2

  2. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    SciTech Connect

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting

  3. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    SciTech Connect

    James K. Neathery; Gary Jacobs; Amitava Sarkar; Burtron H. Davis

    2005-09-30

    In this reporting period, a study of ultra-fine iron catalyst filtration was initiated to study the behavior of ultra-fine particles during the separation of Fischer-Tropsch Synthesis (FTS) liquids filtration. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. The change of particle size during the slurry-phase FTS has monitored by withdrawing catalyst sample at different TOS. The measurement of dimension of the HRTEM images of samples showed a tremendous growth of the particles. Carbon rims of thickness 3-6 nm around the particles were observed. This growth in particle size was not due to carbon deposition on the catalyst. A conceptual design and operating philosophy was developed for an integrated wax filtration system for a 4 liter slurry bubble column reactor to be used in Phase II of this research program. The system will utilize a primary inertial hydroclone followed by a Pall Accusep cross-flow membrane. Provisions for cleaned permeate back-pulsing will be included to as a flux maintenance measure.

  4. Iron-binding characterization and polysaccharide production by Klebsiella oxytoca strain isolated from mine acid drainage

    PubMed Central

    Baldi, F; Marchetto, D; Battistel, D; Daniele, S; Faleri, C; De Castro, C; Lanzetta, R

    2009-01-01

    Aims: To investigate Klebsiella oxytoca strain BAS-10 growth on ferric citrate under anaerobic conditions for exopolysaccharide (EPS) production and localization on cell followed by the purification and the EPS determination of the iron-binding stability constant to EPS or biotechnological applications. Methods and Results: Klebsiella oxytoca ferments ferric citrate under anaerobic conditions and produces a ferric hydrogel, whereas ferrous ions were formed in solution. During growth, cells precipitate and a hydrogel formation was observed: the organic material was constituted of an EPS bound to Fe(III) ions, this was found by chemical analyses of the iron species and transmission electron microscopy of the cell cultures. Iron binding to EPS was studied by cyclic voltammetric measurements, either directly on the hydrogel or in an aqueous solutions containing Fe(III)-citrate and purified Fe(III)-EPS. From the voltammetric data, the stability constant for the Fe(III)-EPS complex can be assumed to have values of approx. 1012–1013. It was estimated that this is higher than for the Fe(III)-citrate complex. Conclusions: The production of Fe(III)-EPS under anaerobic conditions is a strategy for the strain to survive in mine drainages and other acidic conditions. This physiological feature can be used to produce large amounts of valuable Fe(III)-EPS, starting from a low cost substrate such as Fe(III)-citrate. Significant and Impact of the Study: The data herein demonstrates that an interesting metal-binding molecule can be produced as a novel catalyst for a variety of potential applications and the EPS itself is a valuable source for rhamnose purification. PMID:19508299

  5. Mentha pulegium extract as a natural product for the inhibition of corrosion. Part I: electrochemical studies.

    PubMed

    Khadraoui, Abdelkader; Khelifa, Abdellah; Boutoumi, Hocine; Hammouti, Belkheir

    2014-01-01

    The inhibitory effect of Mentha pulegium extract (MPE) on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarisation and electrochemical impedance spectroscopy. The inhibition efficiency of MPE was found to increase with the concentration and reached 88% at 33% (v/v). Polarisation measurements show that the natural extract acted as a mixed inhibitor. The remarkable inhibition efficiency of MPE was discussed in terms of blocking of electrode surface by adsorption of inhibitor molecules through active centres. The adsorption of MPE was found to accord with the Temkin isotherm. PMID:24853625

  6. Corrosion in bioprocessing applications.

    PubMed

    Junker, Beth

    2009-01-01

    Corrosion in bioprocessing applications is described for a 25-year-old bioprocessing pilot plant facility. Various available stainless steel alloys differ greatly in properties owing to the impact of specific alloying elements and their concentrations. The alloy property evaluated was corrosion resistance as a function of composition under typical bioprocessing conditions such as sterilization, fermentation, and cleaning. Several non-uniform forms of corrosion relevant to bioprocessing applications (e.g., pitting, crevice corrosion, intergranular attack) were investigated for their typical causes and effects, as well as alloy susceptibility. Next, the corrosion resistance of various alloys to specific bioprocessing-relevant sources of corrosion (e.g., medium components, acids/bases used for pH adjustment, organic acid by-products) was evaluated, along with the impact of temperature on corrosion progression. Best practices to minimize corrosion included considerations for fabrication (e.g., welding, heat treatments) and operational (e.g., sterilization, media component selection, cleaning) approaches. Assessments and repair strategies for observed corrosion events were developed and implemented, resulting in improved vessel and overall facility longevity. PMID:18512080

  7. Hydrogen production by the naked active site of the di-iron hydrogenases in water.

    PubMed

    Zipoli, Federico; Car, Roberto; Cohen, Morrel H; Selloni, Annabella

    2009-10-01

    We explored the reactivity of the active center of the [FeFe]-hydrogenases detached from the enzyme and immersed in acidified water by first-principles Car-Parrinello molecular-dynamics simulations. We focused on the identification of the structures that are stable and metastable in acidified water and on their activity for hydrogen production. Our calculations revealed that the naked active center could be an efficient catalyst provided that electrons are transferred to the cluster. We found that both bridging and terminal isomers are present at equilibrium and that the bridging configuration is essential for efficient hydrogen production. The formation of the hydrogen molecule occurs via sequential protonations of the distal iron and of the N-atom of the S-CH(2)-NH-CH(2)-S chelating group. H(2) desorption does not involve a significant energy barrier, making the process very efficient at room temperature. We established that the bottleneck in the reaction is the direct proton transfer from water to the vacant site of the distal iron. Moreover, we found that even if the terminal isomer is present at the equilibrium, its strong local hydrophobicity prevents poisoning of the cluster. PMID:19737003

  8. The inhibitory effect of soy products on nonheme iron absorption in man.

    PubMed

    Cook, J D; Morck, T A; Lynch, S R

    1981-12-01

    Radioiron absorption studies were performed in male volunteer subjects to determine the effect on nonheme iron absorption of various semipurified proteins. When egg albumen and casein were substituted in protein-equivalent quantities in a semisynthetic meal, similar mean absorptions of 2.5 and 2.7% were observed. In contrast, isolated soy protein reduced absorption sharply, to an average of 0.5%. When egg albumen in the semisynthetic meal was replaced with full fat soy flour, textured soy flour, and isolated soy protein, absorption fell from 5.5 to 1.0, 1.9, and 0.4%, respectively, indicating an inhibitory effect by a wide range of soy products. The effect of substituting textured soy flour for meat in a meal containing a hamburger, french fries, and a milkshake was also evaluated. With 3:1 and 2.1 ratios of meat to unhydrated textured soy flour, absorption decreased by 61 and 53%, respectively. The soy products tested in this study have a pronounced inhibitory effect on the absorption of nonheme iron. PMID:7198374

  9. Laboratory Feasibility Evaluation of a New Modified Iron Product for Use as a Filter Material to Treat Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2010-12-01

    The removal of excess soil water with a subsurface drainage pipe system is a common agricultural practice employed to improve crop yields, especially in the Midwest U.S. However, fertilizer nutrients (nitrate and phosphate) and pesticides applied on farm fields will frequently leach downwards through the soil profile to be intercepted by the buried drainage pipes and then discharged with drainage water into neighboring streams and lakes, oftentimes producing adverse environmental impacts on local, regional, and national scales. On-site drainage water filter treatment systems can potentially be employed to prevent the release of agricultural nutrients/pesticides into adjacent waterways. A recently developed modified iron product may have promise as a filter material used within this type of drainage water treatment system. Therefore, a laboratory study was initiated to directly evaluate the feasibility of employing this new modified iron product as a filter material to treat drainage waters. Laboratory research included saturated falling-head hydraulic conductivity tests, contaminant (nutrient/pesticide) removal batch tests, and saturated solute transport column experiments. The saturated falling-head hydraulic conductivity tests indicate that the unaltered modified iron product by itself has a high enough hydraulic conductivity (> 1.0 x 10-3 cm/s) to normally allow sufficient water flow rates that are needed to make this material hydraulically practical for use in drainage water filter treatment systems. Modified iron hydraulic conductivity can be improved substantially (> 1 x 10-2 cm/s) by using only the portion of this material that is retained on a 100 mesh sieve (particle size > 0.15 mm). Batch test results carried out with spiked drainage water and either unaltered or 100 mesh sieved modified iron showed nitrate reductions of greater than 30% and 100% removal of the pesticide, atrazine. Saturated solute transport columns tests with spiked drainage water

  10. Concentration of lead, cadmium, and iron in sediment dust and total suspended particles before and after initialisation of integral production in iron and steel work plant Zenica.

    PubMed

    Prcanović, Halim; Duraković, Mirnes; Beganović, Sanela

    2012-06-01

    Poor air quality is a common fact for all areas with base industry. The city of Zenica was once the metallurgical centre of Ex-Yugoslavia and is therefore highly polluted at present. Air pollution peaked in 1987 when average concentration of pollutants was extremely high (daily average concentration of SO(2) was 1800 μg m(-3)). With the beginning of the war in 1992, integral production in the steel work plant was shut down, to be re-launched in 2008. Limit values for iron do not exist, but iron has been monitored in Zenica for the past 28 years because of the presence of steel works. Concentrations of cadmium and lead have also been measured because they are very much present in polluted areas with steel works. The concentration of mentioned elements in air deposit and total suspended particles before and after integral production in the steel work plant was re-launched is the subject of this paper. Total suspended particles were measured in two locations using German standard VDI 2463 Blatt 4. Sediment dust was measured in nine locations using Bergerhoff method. The concentration of iron, lead, and cadmium was performed in the chemical laboratory of the Metallurgical Institute "Kemal Kapetanović" Zenica using standard methods. Higher concentrations of these parameters during the period of integral production clearly point to the impact of steel works on Zenica valley. PMID:22728800

  11. Simulation of Radioactive Corrosion Product in Primary Cooling System of Japanese Sodium-Cooled Fast Breeder Reactor

    NASA Astrophysics Data System (ADS)

    Matuo, Youichirou; Miyahara, Shinya; Izumi, Yoshinobu

    Radioactive Corrosion Product (CP) is a main cause of personal radiation exposure during maintenance with no breached fuel in fast breeder reactor (FBR) plants. The most important CP is 54Mn and 60Co. In order to establish techniques of radiation dose estimation for radiation workers in radiation-controlled areas of the FBR, the PSYCHE (Program SYstem for Corrosion Hazard Evaluation) code was developed. We add the Particle Model to the conventional PSYCHE analytical model. In this paper, we performed calculation of CP transfer in JOYO using an improved calculation code in which the Particle Model was added to the PSYCHE. The C/E (calculated / experimentally observed) value for CP deposition was improved through use of this improved PSYCHE incorporating the Particle Model. Moreover, among the percentage of total radioactive deposition accounted for by CP in particle form, 54Mn was estimated to constitute approximately 20 % and 60Co approximately 40 % in the cold-leg region. These calculation results are consistent with the measured results for the actual cold-leg piping in the JOYO.

  12. Experiences in production and corrosion monitoring for a gas condensate field containing CO{sub 2}

    SciTech Connect

    Oberndorfer, M.; Dornstauder, K.; Brunner, W.

    1998-12-31

    The field Hoflein is located 10 km NW of Vienna. Gas condensate is produced out of 9 wells at the dew point of 28.1 MPa and 78 C. The reservoir fluid is lean but contains more than 16% CO{sub 2}. Lab test preceded the selection of the inhibitor for the carbon steel. Critical parts of the installations had 13%Cr steel. This paper describes the inhibitor testing procedures and the monitoring of the corrosion process by OMV Austria. The produced reservoir fluids and the critical components in the water (Cl, Fe, pH, inhibitor concentration) have been recorded over the years in various locations. Fluid analysis, corrosion coupon data visual inspection and caliper measurements of field installation document a high degree of protection. Recently the reservoir underwent a reevaluation in which the reserves could be doubled. This gave the incentive to produce at higher rates (from 8 to probably 16 m/s). Inhibitors of the 3rd generation that work even under high velocities were applied. For this case a test loop in the laboratory is described which allows for emulating the high velocity flow conditions that are planned in the field and where the inhibitors can be tested and selected.

  13. Iron overload accelerates neuronal amyloid-β production and cognitive impairment in transgenic mice model of Alzheimer's disease.

    PubMed

    Becerril-Ortega, Javier; Bordji, Karim; Fréret, Thomas; Rush, Travis; Buisson, Alain

    2014-10-01

    Iron dyshomeostasis is proving increasingly likely to be involved in the pathology of Alzheimer's disease (AD); yet, its mechanism is not well understood. Here, we investigated the AD-related mechanism(s) of iron-sulfate exposure in vitro and in vivo, using cultured primary cortical neurons and APP/PS1 AD-model mice, respectively. In both systems, we observed iron-induced disruptions of amyloid precursor protein (APP) processing, neuronal signaling, and cognitive behavior. Iron overload increased production of amyloidogenic KPI-APP and amyloid beta. Further, this APP misprocessing was blocked by MK-801 in vitro, suggesting the effect was N-methyl-D-aspartate receptor (NMDAR) dependent. Calcium imaging confirmed that 24 hours iron exposure led to disrupted synaptic signaling by augmenting GluN2B-containing NMDAR expression-GluN2B messenger RNA and protein levels were increased and promoting excessing extrasynaptic NMDAR signaling. The disrupted GluN2B expression was concurrent with diminished expression of the splicing factors, sc35 and hnRNPA1. In APP/PS1 mice, chronic iron treatment led to hastened progression of cognitive impairment with the novel object recognition discrimination index, revealing a deficit at the age of 4 months, concomitant with augmented GluN2B expression. Together, these data suggest iron-induced APP misprocessing and hastened cognitive decline occur through inordinate extrasynaptic NMDAR activation. PMID:24863668

  14. Ferrous iron and α-ketoglutarate-dependent dioxygenases in the biosynthesis of microbial natural products.

    PubMed

    Wu, Long-Fei; Meng, Song; Tang, Gong-Li

    2016-05-01

    Apart from its vital role as the terminal electron acceptor in oxidative phosphorylation in nature, dioxygen also serves as a universal agent which diversifies natural products by oxidative transformations. Ferrous iron and α-ketoglutarate (αKG)-dependent dioxygenases (αKGDs) are versatile enzymes that use dioxygen as an oxidant to catalyse various reactions via CH bond activation, including hydroxylation, dealkylation, desaturation, epoxidation, epimerisation, halogenation, cyclisation, peroxide formation, and ring expansion/contraction reactions. This review updates the reported αKGDs that catalyse reactions related to microbial natural product biosynthesis in the past 10 years. We hope that the versatility of αKGDs shown here can serve as an inspiration for future engineering and catalyst design, which could provide alternative methods to meet the on-going demand for fine chemicals and pharmaceutics. PMID:26845569

  15. A complementary set of electrochemical and X-ray synchrotron techniques to determine the passivation mechanism of iron treated in a new corrosion inhibitor solution specifically developed for the preservation of metallic artefacts

    NASA Astrophysics Data System (ADS)

    Mirambet, F.; Reguer, S.; Rocca, E.; Hollner, S.; Testemale, D.

    2010-05-01

    Metallic artefacts of the cultural heritage are often stored in uncontrolled environmental conditions. They are very sensitive to atmospheric corrosion caused by a succession of wet and dry periods due to variations of relative humidity and temperature. To avoid the complete degradation of the metallic artefacts, new preventive strategies must be developed. In this context, we have studied new compounds based on sodium carboxylates solutions CH3(CH2) n-2COO-, Na+ hereafter called NaC n . They allow the formation of a passive layer at the metallic surface composed of a metal-carboxylate complex. To understand the action of those inhibitors in the passivation process of iron we have performed electrochemical measurements and surface characterisation. Moreover, to monitor in real time the growth of the coating, in situ X-ray absorption spectroscopy (XAS) experiments at iron K-edge were carried out in an electrochemical cell. These analyses have shown that in the case of NaC10 solution, the protection of iron surface is correlated to the precipitation of a well-organised layer of FeC10. These experiments confirmed that this compound is a fully oxidised trinuclear Fe(III) complex containing decanoate anions as ligands. Such information concerning the passive layer is a key factor to evaluate its stability and finally the long-term efficiency of the protection treatment.

  16. Effects of Selected Dietary Secondary Metabolites on Reactive Oxygen Species Production Caused by Iron(II) Autoxidation

    PubMed Central

    Chobot, Vladimir; Hadacek, Franz; Kubicova, Lenka

    2015-01-01

    Iron is an essential co-factor for many enzymes that catalyze electron transfer reactions. It is well known that so-called “poorly liganded” iron can increase ROS concentrations and trigger oxidative stress that is capable of initiating apoptosis. Conversely, controlled ROS production has been recognized as an integral part of cellular signaling. Elevated ROS concentrations are associated with aging, inflammatory and degenerative diseases. Anti-aging properties have been attributed especially to antioxidant phenolic plant metabolites that represent food additives in our diet. Consequently, this study explores the effects of flavonoids (quercetin and rutin), several phenolic acids (caffeic, chlorogenic, and protocatechuic acid), and the alkaloid caffeine on iron(II) autoxidation and ROS production in comparison to the standard antioxidants ascorbic acid and Trolox. The iron(II) autoxidation assay was carried out in pH 6.0 (plant apoplast and inflamed human tissue) and 7.4 (cell cytoplasm and human blood plasma). The obtained results accentuate phenolic acids as the more specific antioxidants compared to ascorbic acid and Trolox. Flavonoid redox chemistry depends more on the chemical milieu, specifically on pH. In vivo, the presence of iron cannot be ruled out and “wrongly” or “poorly” complexed iron has been pointed out as causative agent of various age-related diseases. PMID:25470272

  17. Enhanced Biogas Production from Nanoscale Zero Valent Iron-Amended Anaerobic Bioreactors

    PubMed Central

    Carpenter, Alexis Wells; Laughton, Stephanie N.; Wiesner, Mark R.

    2015-01-01

    Abstract Addition of nanoscale zero valent iron (NZVI) to anaerobic batch reactors to enhance methanogenic activity is described. Two NZVI systems were tested: a commercially available NZVI (cNZVI) slurry and a freshly synthesized NZVI (sNZVI) suspension that was prepared immediately before addition to the reactors. In both systems, the addition of NZVI increased pH and decreased oxidation/reduction potential compared with unamended control reactors. Biodegradation of a model brewery wastewater was enhanced as indicated by an increase in chemical oxygen demand removal with both sNZVI and cNZVI amendments at all concentrations tested (1.25–5.0 g Fe/L). Methane production increased for all NZVI-amended bioreactors, with a maximum increase of 28% achieved on the addition of 2.5 and 5.0 g/L cNZVI. Addition of bulk zero-valent iron resulted in only a 5% increase in methane, indicating the advantage of using the nanoscale particles. NZVI amendments further improved produced biogas by decreasing the amount of CO2 released from the bioreactor by approximately 58%. Overall, addition of cNZVI proved more beneficial than the sNZVI at equal iron concentrations, due to decreased colloidal stability and larger effective particle size of sNZVI. Although some have reported cytotoxicity of NZVI to anaerobic microorganisms, work presented here suggests that NZVI of a certain particle size and reactivity can serve as an amendment to anaerobic digesters to enhance degradation and increase the value of the produced biogas, yielding a more energy-efficient anaerobic method for wastewater treatment. PMID:26339183

  18. Prevention of Acid Mine Drainage Through Complexation of Ferric Iron by Soluble Microbial Growth Products

    NASA Astrophysics Data System (ADS)

    Pandey, S.; Yacob, T. W.; Silverstein, J.; Rajaram, H.; Minchow, K.; Basta, J.

    2011-12-01

    Acid mine drainage (AMD) is a widespread environmental problem with deleterious impacts on water quality in streams and watersheds. AMD is generated largely by the oxidation of metal sulfides (i.e. pyrite) by ferric iron. This abiotic reaction is catalyzed by conversion of ferrous to ferric iron by iron and sulfur oxidizing microorganisms. Biostimulation is currently being investigated as an attempt to inhibit the oxidation of pyrite and growth of iron oxidizing bacteria through addition of organic carbon. This may stimulate growth of indigenous communities of acidophilic heterotrophic bacteria to compete for oxygen. The goal of this research is to investigate a secondary mechanism associated with carbon addition: complexation of free Fe(III) by soluble microbial growth products (SMPs) produced by microorganisms growing in waste rock. Exploratory research at the laboratory scale examined the effect of soluble microbial products (SMPs) on the kinetics of oxidation of pure pyrite during shaker flask experiments. The results confirmed a decrease in the rate of pyrite oxidation that was dependent upon the concentration of SMPs in solution. We are using these data to verify results from a pyrite oxidation model that accounts for SMPs. This reactor model involves differential-algebraic equations incorporating total component mass balances and mass action laws for equilibrium reactions. Species concentrations determined in each time step are applied to abiotic pyrite oxidation rate expressions from the literature to determine the evolution of total component concentrations. The model was embedded in a parameter estimation algorithm to determine the reactive surface area of pyrite in an abiotic control experiment, yielding an optimized value of 0.0037 m2. The optimized model exhibited similar behavior to the experiment for this case; the root mean squared of residuals for Fe(III) was calculated to be 7.58 x 10-4 M, which is several orders of magnitude less than the actual

  19. Simulated alteration tests on non-radioactive SON 68 nuclear glass in the presence of corrosion products and environmental materials

    NASA Astrophysics Data System (ADS)

    Jollivet, Patrick; Minet, Yves; Nicolas, Michèle; Vernaz, Étienne

    2000-10-01

    Alteration tests with non-radioactive French SON 68 (R7T7-type) nuclear glass in the presence of simulated metal canister corrosion products (CP) or environmental materials (EM) were simulated using the LIXIVER2 computer code. The code incorporates hypotheses concerning glass alteration in aqueous media based on the first-order kinetic law for total silicon with variable silicon retention in the gel and silicon diffusion in the gel interstitial water, coupled with silicon adsorption and diffusion in the materials in contact with the glass. The canister CP are considered as a localized medium with a mass adsorption capacity Rad, while the EM are considered as a porous medium with a diffusion coefficient Dp and a distribution coefficient Kd. L IXIVER2 simulates these media in one-dimensional Cartesian geometry. The Kd values determined by simulating alteration tests logically increase with the aggressiveness of the materials with respect to the glass.

  20. Products obtained by microbially-induced corrosion of steel in a marine environment: Role of green rust two

    NASA Astrophysics Data System (ADS)

    Génin, J.-M. R.; Olowe, A. A.; Resiak, B.; Confente, M.; Rollet-Benbouzid, N.; L'Haridon, S.; Prieur, D.

    1994-12-01

    An unusual low-water corrosion of steel sheet piles has been systematically investigated in a channel harbour (Boulogne sur Mer, France). An analysis of the environment reveals that all sampling of dark rust taken at different heights above marine sediments and kept in anaerobic conditions present unusual concentrations of sulfate-reducing bacteria. The rust products have been characterized by Mössbauer spectroscopy and X-ray diffraction, comprising the ferrous—ferric sulfated compounds of formula 4Fe(OH)2 · 2FeOOH · FeSO4 · nH2O, called green rust 2, mixed sometimes with magnetite and a small amount of ferrous sulfide.

  1. Tracing iron-fueled microbial carbon production within the hydrothermal plume at the Loihi seamount

    NASA Astrophysics Data System (ADS)

    Bennett, Sarah A.; Hansman, Roberta L.; Sessions, Alex L.; Nakamura, Ko-ichi.; Edwards, Katrina J.

    2011-10-01

    The Loihi hydrothermal plume provides an opportunity to investigate iron (Fe) oxidation and microbial processes in a system that is truly Fe dominated and distinct from mid-ocean ridge spreading centers. The lack of hydrogen sulfide within the Loihi hydrothermal fluids and the presence of an oxygen minimum zone at this submarine volcano's summit, results in a prolonged presence of reduced Fe within the dispersing non-buoyant plume. In this study, we have investigated the potential for microbial carbon fixation within the Loihi plume. We sampled for both particulate and dissolved organic carbon in hydrothermal fluids, microbial mats growing around vents, and the dispersing plume, and carried out stable carbon isotope analysis on the particulate fraction. The δ13C values of the microbial mats ranged from -23‰ to -28‰, and are distinct from those of deep-ocean particulate organic carbon (POC). The mats and hydrothermal fluids were also elevated in dissolved organic carbon (DOC) compared to background seawater. Within the hydrothermal plume, DOC and POC concentrations were elevated and the isotopic composition of POC within the plume suggests mixing between background seawater POC and a 13C-depleted hydrothermal component. The combination of both DOC and POC increasing in the dispersing plume that cannot solely be the result of entrainment and DOC adsorption, provides strong evidence for in-situ microbial productivity by chemolithoautotrophs, including a likelihood for iron-oxidizing microorganisms.

  2. Accumulation of radioactive corrosion products on steel surfaces of VVER-type nuclear reactors. II. 60Co

    NASA Astrophysics Data System (ADS)

    Varga, Kálmán; Hirschberg, Gábor; Németh, Zoltán; Myburg, Gerrit; Schunk, János; Tilky, Péter

    2001-10-01

    In the case of intact fuel claddings, the predominant source of radioactivity in the primary circuits of water-cooled nuclear reactors is the activation of corrosion products in the core. The most important corrosion product radionuclides in the primary coolant of pressurized water reactors (PWRs) are 60Co, 58Co, 51Cr, 54Mn, 59Fe (as well as 110mAg in some Soviet-made VVER-type reactor). The second part of this series is focused on the complex studies of the formation and build-up of 60Co-containing species on an austenitic stainless steel type 08X18H10T (GOST 5632-61) and magnetite-covered carbon steel often to be used in Soviet-planned VVERs. The kinetics and mechanism of the cobalt accumulation were studied by a combination (coupling) of an in situ radiotracer method and voltammetry in a model solution of the primary circuit coolant. In addition, independent techniques such as X-ray photoelectron spectroscopic (XPS) and ICP-OES are also used to analyze the chemical state of Co species in the passive layer formed on stainless steel as well as the chemical composition of model solution. The experimental results have revealed that: (i) The passive behavior of the austenitic stainless steel at open-circuit conditions, the slightly alkaline pH and the reducing water chemistry can be considered to be optimal to minimize the 60Co contamination. (ii) The highly potential dependent deposition of various Co-oxides at E>1.10 V (vs. RHE) offers a unique possibility to elaborate a novel electrochemical method for the decrease or removal of cobalt traces from borate-containing coolants contaminated with 60Co and/or 58Co radionuclides.

  3. Corrosion fatigue of iron-chromium-nickel alloys: Fracture mechanics and chemistry. Progress report, 1 January 1990--30 November 1990

    SciTech Connect

    Wei, R.P.

    1990-11-29

    Peak bare-surface current densities based on the scratched electrode test are seriously in error and repasivation rates grossly overestimated. Influences of potential and pH on reactions of bare surfaces are better understood. Correlation between charge transfer and corrosion fatigue crack growth response was established for Fe18Cr12Ni alloy in deaerated 0.6N NaCl at RT. Strong correlation was established between morphology of corrosion fatigue fracture surfaces and cracking in hydrogen charged samples. Attempts at growing bicrystals by strain annealing were not successful.

  4. Corrosion Resistance of Laser Produced in-situ Particle Reinforced Fe-matrix Composite Coating with High Nickel Content on Spheroidal Graphite Cast Iron

    NASA Astrophysics Data System (ADS)

    Qiwen, W.; Mingxing, M.; Cunyuan, P.; Xiaohui, Y.; Weiming, Z.

    Fe-matrix composite coatings reinforced by in-situ particles with high nickel content were produced on QT450-10 by laser alloying. Coatings with different microstructure proportions and particle distributions were obtained by the adjustment of the content of Ni, Ti and Zr in the alloying powder and the laser parameters. The influence of the content of Ni and the particle distribution on coating's corrosion resistance is studied, which is revealed by the electrochemical characteristics. The results indicate that the alloying coating with more content of nickel and less particles get corroded much harder with a higher corrosion rate.

  5. Maximizing Modern Distribution of Complex Anatomical Spatial Information: 3D Reconstruction and Rapid Prototype Production of Anatomical Corrosion Casts of Human Specimens

    ERIC Educational Resources Information Center

    Li, Jianyi; Nie, Lanying; Li, Zeyu; Lin, Lijun; Tang, Lei; Ouyang, Jun

    2012-01-01

    Anatomical corrosion casts of human specimens are useful teaching aids. However, their use is limited due to ethical dilemmas associated with their production, their lack of perfect reproducibility, and their consumption of original specimens in the process of casting. In this study, new approaches with modern distribution of complex anatomical…

  6. Corrosion resistant coating

    DOEpatents

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  7. Corrosion resistant coating

    DOEpatents

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1997-08-19

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  8. MPK3/MPK6 are involved in iron deficiency-induced ethylene production in Arabidopsis

    PubMed Central

    Ye, Lingxiao; Li, Lin; Wang, Lu; Wang, Shoudong; Li, Sen; Du, Juan; Zhang, Shuqun; Shou, Huixia

    2015-01-01

    Iron (Fe) is an essential micronutrient that participates in various biological processes important for plant growth. Ethylene production induced by Fe deficiency plays important roles in plant tolerance to stress induced by Fe deficiency. However, the activation and regulatory mechanisms of 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) genes in this response are not clear. In this study, we demonstrated that Fe deficiency increased the abundance of ACS2, ACS6, ACS7, and ACS11 transcripts in both leaves and roots as well as the abundance of ACS8 transcripts in leaves and ACS9 transcripts in roots. Furthermore, we investigated the role of mitogen-activated protein kinase 3 and 6 (MPK3/MPK6)-regulated ACS2/6 activation in Fe deficiency-induced ethylene production. Our results showed that MPK3/MPK6 transcript abundance and MPK3/MPK6 phosphorylation are elevated under conditions of Fe deficiency. Furthermore, mpk3 and mpk6 mutants show a lesser induction of ethylene production under Fe deficiency and a greater sensitivity to Fe deficiency. Finally, in mpk3, mpk6, and acs2 mutants under conditions of Fe deficiency, induction of transcript expression of the Fe-deficiency response genes FRO2, IRT1, and FIT is partially compromised. Taken together, our results suggest that the MPK3/MPK6 and ACS2 are part of the Fe starvation-induced ethylene production signaling pathway. PMID:26579185

  9. Corrosion cracking

    SciTech Connect

    Goel, V.S.

    1986-01-01

    Various papers on corrosion cracking are presented. The topics addressed include: unique case studies on hydrogen embrittlement failures in components used in aeronautical industry; analysis of subcritical cracking in a Ti-5Al-2.5Sn liquid hydrogen control valve; corrosion fatigue and stress corrosion cracking of 7475-T7351 aluminum alloy; effects of salt water environment and loading frequency on crack initiation in 7075-T7651 aluminum alloy and Ti-6Al-4V; stress corrosion cracking of 4340 steel in aircraft ignition starter residues. Also discussed are: stress corrosion cracking of a titanium alloy in a hydrogen-free environment; automation in corrosion fatigue crack growth rate measurements; the breaking load method, a new approach for assessing resistance to growth of early stage stress corrosion cracks; stress corrosion cracking properties of 2090 Al-Li alloy; repair welding of cracked free machining Invar 36; radial bore cracks in rotating disks.

  10. Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production.

    PubMed

    Kernan, Timothy; Majumdar, Sudipta; Li, Xiaozheng; Guan, Jingyang; West, Alan C; Banta, Scott

    2016-01-01

    There is growing interest in developing non-photosynthetic routes for the conversion of CO2 to fuels and chemicals. One underexplored approach is the transfer of energy to the metabolism of genetically modified chemolithoautotrophic bacteria. Acidithiobacillus ferrooxidans is an obligate chemolithoautotroph that derives its metabolic energy from the oxidation of iron or sulfur at low pH. Two heterologous biosynthetic pathways have been expressed in A. ferrooxidans to produce either isobutyric acid or heptadecane from CO2 and the oxidation of Fe(2+). A sevenfold improvement in productivity of isobutyric acid was obtained through improved media formulations in batch cultures. Steady-state efficiencies were lower in continuous cultures, likely due to ferric inhibition. If coupled to solar panels, the photon-to-fuel efficiency of this proof-of-principle process approaches estimates for agriculture-derived biofuels. These efforts lay the foundation for the utilization of this organism in the exploitation of electrical energy for biochemical synthesis. PMID:26174759

  11. Enhancing the lipid productivity of yeasts with trace concentrations of iron nanoparticles.

    PubMed

    Pádrová, Karolína; Čejková, Alena; Cajthaml, Tomáš; Kolouchová, Irena; Vítová, Milada; Sigler, Karel; Řezanka, Tomáš

    2016-07-01

    Oxidative stress induced by zero-valent iron nanoparticles (nZVIs) was used to improve lipid accumulation in various oleaginous and non-oleginous yeasts-Candida sp., Kluyveromyces polysporus, Rhodotorula glutinis, Saccharomyces cerevisiae, Torulospora delbrueckii, Trichosporon cutaneum, and Yarrowia lipolytica. The highest lipid yields occurred at 9-13 mg/L nZVIs. Gas chromatography-mass spectrometry was used for the quantitative and qualitative analysis of the fatty acids. It showed an increasing abundance of polyunsaturated fatty acids, especially essential linoleic acid, in the presence of nZVIs. Our results suggest that nZVIs can be used to improve not only lipid production by oleaginous microorganisms but also the nutritional value of biosynthesized unsaturated fatty acids. PMID:26683688

  12. Thermal shock removal of defective glass-enamel coating from cast-iron products

    NASA Astrophysics Data System (ADS)

    Aleutdinov, A. D.; Ghyngazov, S. A.; Mylnikova, T. S.; Luchnikov, P. A.

    2015-04-01

    A setup for light beam exposure has been developed. The setup was used to consider the technology of thermal shock destruction of the coating by pulsed-periodic exposure to powerful focused light from the xenon arc lamp DKsShRB-10000. It is shown that this type of exposure can effectively remove the glass-enamel coating from iron products. The optimal mode of setup operation to efficiently remove the defective glass-enamel coating is found: the diameter of the focused light beams is 2.5-3.5 cm; the lamp arc pulse current is 350-450 A; pulse duration is (0.5-1) s and pulse repetition frequency is (0.15-0.5) s-1.

  13. Iron oxidation kinetics for H-2 and CO production via chemical looping

    SciTech Connect

    Stehle, RC; Bobek, MM; Hahn, DW

    2015-01-30

    Solar driven production of fuels by means of an intermediate reactive metal for species splitting has provided a practical and potentially efficient pathway for disassociating molecules at significantly lower thermal energies. The fuels of interest are of or derive from the separation of oxygen from H2O and CO2 to form hydrogen and carbon monoxide, respectively. The following study focuses on iron oxidation through water and CO2 splitting to explore the fundamental reaction kinetics and kinetic rates that are relevant to these processes. In order to properly characterize the reactive metal potential and to optimize a scaled-up solar reactor system, a monolith-based laboratory reactor was implemented to investigate reaction temperatures over a range from 990 to 1400 K. The presence of a single, solid monolith as a reacting surface allowed for a limitation in mass transport effects in order to monitor kinetically driven reaction steps. The formation of oxide layers on the iron monoliths followed Cabrera-Mott models for oxidation of metals with kinetic rates being measured using real-time mass spectrometry to calculate kinetic constants and estimate oxide layer thicknesses. Activation energies of 47.3 kJ/mol and 32.8 kJ/mol were found for water-splitting and CO2 splitting, respectively, and the conclusions of the independent oxidation reactions where applied to experimental results for syngas (H-2-CO) production to explore ideal process characteristics. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  14. Mars surface weathering products and spectral analogs: Palagonites and synthetic iron minerals

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Morris, R. V.; Lauer, H. V., Jr.

    1992-01-01

    There are several hypotheses regarding the formation of Martian surface fines. These surface fines are thought to be products of weathering processes occurring on Mars. Four major weathering environments of igneous rocks on Mars have been proposed; (1) impact induced hydrothermal alterations; (2) subpermafrost igneous intrusion; (3) solid-gas surface reactions; and (4) subaerial igneous intrusion over permafrost. Although one or more of these processes may be important on the Martian surface, one factor in common for all these processes is the reaction of solid or molten basalt with water (solid, liquid, or gas). These proposed processes, with the exception of solid-gas surface reactions, are transient processes. The most likely product of transient hydrothermal processes are layer silicates, zeolites, hydrous iron oxides and palagonites. The long-term instability of hydrous clay minerals under present Martian conditions has been predicted; however, the persistence of such minerals due to slow kinetics of dehydration, or entrapment in permafrost, where the activity of water is high, can not be excluded. Anhydrous oxides of iron (e.g., hematite and maghemite) are thought to be stable under present Martian surface conditions. Oxidative weathering of sulfide minerals associated with Martian basalts has been proposed. Weathering of sulfide minerals leads to a potentially acidic permafrost and the formation of Fe(3) oxides and sulfates. Weathering of basalts under acidic conditions may lead to the formation of kaolinite through metastable halloysite and metahalloysite. Kaolinite, if present, is thought to be a thermodynamically stable phase at the Martian surface. Fine materials on Mars are important in that they influence the surface spectral properties; these fines are globally distributed on Mars by the dust storms and this fraction will have the highest surface area which should act as a sink for most of the absorbed volatiles near the surface of Mars. Therefore

  15. Combined geochemical and electrochemical methodology to quantify corrosion of carbon steel by bacterial activity.

    PubMed

    Schütz, Marta K; Moreira, Rebeca; Bildstein, Olivier; Lartigue, Jean-Eric; Schlegel, Michel L; Tribollet, Bernard; Vivier, Vincent; Libert, Marie

    2014-06-01

    The availability of respiratory substrates, such as H2 and Fe(II,III) solid corrosion products within nuclear waste repository, will sustain the activities of hydrogen-oxidizing bacteria (HOB) and iron-reducing bacteria (IRB). This may have a direct effect on the rate of carbon steel corrosion. This study investigates the effects of Shewanella oneidensis (an HOB and IRB model organism) on the corrosion rate by looking at carbon steel dissolution in the presence of H2 as the sole electron donor. Bacterial effect is evaluated by means of geochemical and electrochemical techniques. Both showed that the corrosion rate is enhanced by a factor of 2-3 in the presence of bacteria. The geochemical experiments indicated that the composition and crystallinity of the solid corrosion products (magnetite and vivianite) are modified by bacteria. Moreover, the electrochemical experiments evidenced that the bacterial activity can be stimulated when H2 is generated in a small confinement volume. In this case, a higher corrosion rate and mineralization (vivianite) on the carbon steel surface were observed. The results suggest that the mechanism likely to influence the corrosion rate is the bioreduction of Fe(III) from magnetite coupled to the H2 oxidation. PMID:24064199

  16. The role of salt melts on the corrosion of steels and nickel-based alloys in waste incineration plants

    SciTech Connect

    Spiegel, M.

    1999-11-01

    Laboratory experiments were carried out to study the corrosion behavior of steels and nickel-based alloys beneath heavy-metal-rich chloride and sulfate melts. Exposure tests on low- and high alloy steels in (Ca, K, Na, Pb, Zn)-sulfate mixtures in N{sub 2} - 5 vol.% O{sub 2} at 600 C have shown accelerated corrosion after addition of PbSO{sub 4} and ZnSO{sub 4}. The corrosion products were identified as (Fe, Ni)-oxide precipitates in contact with the gas phase and chromium-rich corrosion products close to the metal. Thermogravimetric investigations in He-5 vol.% O{sub 2} with the 2.25Cr-1Mo steel and also Alloy 625 have shown that severe corrosion occurred in the presence of a 50 wt.% ZnCl{sub 2}-50wt.% KCl salt mixture in the temperature range from 300 to 500 C. The corrosion products on 2.25Cr-1Mo were found to be Zn-rich iron-oxide precipitates in contact with the gas phase and a Fe{sub 2}O{sub 3} layer underneath. In contact with the metal, a mixture of iron-chlorides and Fe{sub 2}O{sub 3} was detected, together with variable amounts of K and Zn. A thick scale has formed on Alloy 625, consisting of nickel- and chromium-oxides with some dissolved Mo.

  17. Production and validation of model iron-tannate dyed textiles for use as historic textile substitutes in stabilisation treatment studies

    PubMed Central

    2012-01-01

    Background For millennia, iron-tannate dyes have been used to colour ceremonial and domestic objects shades of black, grey, or brown. Surviving iron-tannate dyed objects are part of our cultural heritage but their existence is threatened by the dye itself which can accelerate oxidation and acid hydrolysis of the substrate. This causes many iron-tannate dyed textiles to discolour and decrease in tensile strength and flexibility at a faster rate than equivalent undyed textiles. The current lack of suitable stabilisation treatments means that many historic iron-tannate dyed objects are rapidly crumbling to dust with the knowledge and value they hold being lost forever. This paper describes the production, characterisation, and validation of model iron-tannate dyed textiles as substitutes for historic iron-tannate dyed textiles in the development of stabilisation treatments. Spectrophotometry, surface pH, tensile testing, SEM-EDX, and XRF have been used to characterise the model textiles. Results On application to textiles, the model dyes imparted mid to dark blue-grey colouration, an immediate tensile strength loss of the textiles and an increase in surface acidity. The dyes introduced significant quantities of iron into the textiles which was distributed in the exterior and interior of the cotton, abaca, and silk fibres but only in the exterior of the wool fibres. As seen with historic iron-tannate dyed objects, the dyed cotton, abaca, and silk textiles lost tensile strength faster and more significantly than undyed equivalents during accelerated thermal ageing and all of the dyed model textiles, most notably the cotton, discoloured more than the undyed equivalents on ageing. Conclusions The abaca, cotton, and silk model textiles are judged to be suitable for use as substitutes for cultural heritage materials in the testing of stabilisation treatments. PMID:22616934

  18. Corrosion of Submerged Artifacts and the Conservation of the USS Monitor

    SciTech Connect

    Cook, Desmond C.; Peterson, Curtiss E.

    2005-04-26

    The USS Monitor, the first ironclad warship to be constructed in the United States, was built in 1862 to serve in the American Civil War. It took part in the infamous battle of Hampton Roads, Virginia with the iron covered Confederate frigate, CSS Virginia. The USS Monitor eventually sank at sea in a storm in 1862, and following its discovery in 1973 many important pieces have been recovered. In order to evaluate the extent of degradation of the iron artifacts due to prolonged seawater submersion, a spectroscopic study of the corrosion products and marine sediments attached to the artifacts has begun, with some of the early findings being reported in this document. It has been determined that under anaerobic, aqueous and high chloride exposure, the predominant rust component formed on the wrought iron artifacts was Corrosion Magnetite, an unstable compound whose Moessbauer signature is different to that of the pure, natural and synthetic forms. The Corrosion Magnetite changed with time of exposure in air, with its oxidation forming non-stoichiometric maghemite. No akaganeite was detected in the anaerobically formed rust, but was identified if the iron artifact was allowed to dry in air. This is an important finding for archaeologists since formation of akaganeite indicates significant effort may be required to remove the insoluble chlorides from an artifact. Analysis of some ocean sediments trapped between wrought iron plates has shown that the pH is low, and the composition is mainly calcite and siderite, with the latter forming as a result of the rusting iron. The sulfur content was high at 1.5 weight percent, indicating the potential presence of microbial activity. Rusticles formed on iron surfaces of the USS Monitor have been identified as a solid outer casing of siderite, lepidocrocite and goethite, and a liquidous inner core of unstable Corrosion Magnetite having a low pH of about 3.

  19. Increased bioclogging and corrosion risk by sulfate addition during iodine recovery at a natural gas production plant.

    PubMed

    Lim, Choon-Ping; Zhao, Dan; Takase, Yuta; Miyanaga, Kazuhiko; Watanabe, Tomoko; Tomoe, Yasuyoshi; Tanji, Yasunori

    2011-02-01

    Iodine recovery at a natural gas production plant in Japan involved the addition of sulfuric acid for pH adjustment, resulting in an additional about 200 mg/L of sulfate in the waste brine after iodine recovery. Bioclogging occurred at the waste brine injection well, causing a decrease in well injectivity. To examine the factors that contribute to bioclogging, an on-site experiment was conducted by amending 10 L of brine with different conditions and then incubating the brine for 5 months under open air. The control case was exposed to open air but did not receive additional chemicals. When sulfate addition was coupled with low iodine, there was a drastic increase in the total amount of accumulated biomass (and subsequently the risk of bioclogging) that was nearly six times higher than the control. The bioclogging-associated corrosion rate of carbon steel was 84.5 μm/year, which is four times higher than that observed under other conditions. Analysis of the microbial communities by denaturing gradient gel electrophoresis revealed that the additional sulfate established a sulfur cycle and induced the growth of phototrophic bacteria, including cyanobacteria and purple bacteria. In the presence of sulfate and low iodine levels, cyanobacteria and purple bacteria bloomed, and the accumulation of abundant biomass may have created a more conducive environment for anaerobic sulfate-reducing bacteria. It is believed that the higher corrosion rate was caused by a differential aeration cell that was established by the heterogeneous distribution of the biomass that covered the surface of the test coupons. PMID:20922384

  20. Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor.

    PubMed

    Hezayen, F F; Rehm, B H; Eberhardt, R; Steinbüchel, A

    2000-09-01

    A novel corrosion-resistant bioreactor composed of polyetherether ketone (PEEK), tech glass and silicium nitrite ceramics was constructed and applied for the cultivation of two newly isolated, extremely halophilic archaea producing poly(gamma-glutamic acid) (PGA), or poly(beta-hydroxy butyric acid) (PHB), respectively. These bacteria were isolated from hypersaline soil close to Aswan (Egypt). The isolate strain 40, which is related to the genus Natrialba, produced large amounts of PGA when cultivated on solid medium. Culture conditions were optimised applying the corrosion-resistant bioreactor. PGA production was dependent on NaCl concentration and occurred about at 20% (w/v) NaCl in the medium. A maximum cell density of about 1.6 g cell dry matter/l was obtained when the bioreactor was stirred and aerated in a batch fermentation process using proteose-peptone medium. The supernatant was monitored with respect to PGA formation, and after 90 h a maximum of 470 mg/l culture volume was detected by HPLC analysis. Culture conditions were optimized for the isolate 56, which accumulated PHB as intracellular granules. Batch fermentations in the stirred and aerated bioreactor applying acetate and n-butyric acid as carbon sources led to cell density of 2.28 g cell dry matter/l and a maximum PHB accumulation contributing to about 53% of cellular dry weight. About 4.6 g PHB were isolated from 10.6 g dried cells of strain 56, which exhibited a weight average molar mass of 2.3 x 10(5) g mol(-1) and a polydispersity of about 1.4. PMID:11030566

  1. Ion activity products of iron sulfides in groundwaters: Implications from the Choshui fan-delta, Western Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Fu; Liu, Tsung-Kwei

    2005-07-01

    Precipitation of iron sulfides is an important process in groundwater geochemistry because it reduces iron mobility in anaerobic aquifers. Iron sulfides occur in various allotropic forms such as amorphous FeS and pyrite, and their solubility products differ up to 13 orders of magnitude. However, few data for ion activity products (IAP) of iron sulfides defined by the equation: H + + FeS (S) = Fe 2+ + HS - in groundwater have been reported in the literature. We computed IAP values of iron sulfides for 46 groundwater samples from the Choshui fan-delta of Taiwan and 65 samples from other areas of the world. The mean of -log(IAP) values obtained for the 46 samples is 3.07 ± 0.34 (1σ), which is consistent with the solubility constant 3.00 ± 0.12 ( Davison et al., 1999) of amorphous FeS, implying that the anaerobic aquifers in the Choshui fan-delta are still undergoing active sulfate-reduction processes and keeping the groundwater saturated with amorphous FeS. We suggest that the -logKsp value 3.91 of amorphous FeS adopted in the databases for WATEQF and PHREEQC computer programs ought to be revised to 3.00. Otherwise, the saturation indices (SI) calculated by the two computer programs will be an order of magnitude too high.

  2. Iron-Sulfide-Associated Products Formed during Reductive Dechlorination of Carbon Tetrachloride.

    PubMed

    Lan, Ying; Butler, Elizabeth C

    2016-06-01

    This paper investigated the mackinawite (FeS)-associated products formed during reaction between FeS and carbon tetrachloride (CT) at pH 7 and 8. At pH 8, reaction of FeS with CT led to formation of abundant spherical particles with diameters between 50 and 400 nm on the FeS surface and in solution; far fewer such particles were observed at pH 7. Analysis of the FeS surface by energy dispersive X-ray spectroscopy after reaction with CT at pH 8 showed decreased sulfur and elevated oxygen compared to unreacted FeS. The spherical particles that formed upon FeS reaction with CT were mostly amorphous with localized areas of poorly crystalline two-line ferrihydrite. X-ray photoelectron spectroscopy indicated that the predominant Fe surface species after reaction with CT at pH 8 was Fe(III)-O, consistent with ferrihydrite and other amorphous iron (hydr)oxides as major products. Powder X-ray diffraction analysis suggested formation of greigite upon reaction of FeS with CT at pH 7. Both ferrihydrite and Fe(2+), which is a product of greigite dissolution, can react with dissolved HS(-) to form FeS, suggesting that, after oxidation by chlorinated aliphatics, FeS can be regenerated by addition or microbial generation of sulfide. PMID:27138348

  3. The effect of soy products in the diet on retention of non-heme iron from radiolabeled test meals fed to marginally iron-deficient young rats

    SciTech Connect

    Thompson, D.B.

    1984-01-01

    Diets based either on casein or soy products and containing about 25 ppm iron were fed to weanling rats for 13 days. Rats were fasted overnight and fed a {sup 59}Fe-radiolabeled casein test meal the morning of day 14. On day 21 less {sup 59}Fe was retained by rats fed various diets based on selected soy products than by rats fed the casein-based diet. A similar adverse effect of diet components on {sup 59}Fe retention from a casein test meal was observed for lactalbumin and for psyllium husk. No adverse effect of diet on {sup 59}Fe retention was observed for the fiber of soy cotyledons or for rapeseed protein concentrate. For a commercial soy protein isolated (SPI) fed throughout the 21-day experiment, the adverse effect of diet on {sup 59}Fe retention was observed to the sum of the effect of dietary SPI previous to the {sup 59}Fe-radiolabeled casein test meal fed on day 14 and the effect of dietary SPI subsequent to the casein test meal. An effect of dietary soy products on {sup 59}Fe retention from a casein test meal was not observed with diets containing higher iron levels (83 ppm) or when diets were fed for a longer period prior to the test meal (56 days). The present work shows that in some circumstances the concept of iron bioavailability must be expanded to include not only the influence of meal composition, but also the influence of diet previous to and subsequent to a meal.

  4. Microbial Corrosion in Linepipe Steel Under the Influence of a Sulfate-Reducing Consortium Isolated from an Oil Field

    NASA Astrophysics Data System (ADS)

    AlAbbas, Faisal M.; Williamson, Charles; Bhola, Shaily M.; Spear, John R.; Olson, David L.; Mishra, Brajendra; Kakpovbia, Anthony E.

    2013-11-01

    This work investigates microbiologically influenced corrosion of API 5L X52 linepipe steel by a sulfate-reducing bacteria (SRB) consortium. The SRB consortium used in this study was cultivated from a sour oil well in Louisiana, USA. 16S rRNA gene sequence analysis indicated that the mixed bacterial consortium contained three phylotypes: members of Proteobacteria ( Desulfomicrobium sp.), Firmicutes ( Clostridium sp.), and Bacteroidetes ( Anaerophaga sp.). The biofilm and the pits that developed with time were characterized using field emission scanning electron microscopy (FE-SEM). In addition, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) and open circuit potential (OCP) were used to analyze the corrosion behavior. Through circuit modeling, EIS results were used to interpret the physicoelectric interactions between the electrode, biofilm and solution interfaces. The results confirmed that extensive localized corrosion activity of SRB is due to a formed biofilm in conjunction with a porous iron sulfide layer on the metal surface. X-ray diffraction (XRD) revealed semiconductive corrosion products predominantly composed of a mixture of siderite (FeCO3), iron sulfide (Fe x S y ), and iron (III) oxide-hydroxide (FeOOH) constituents in the corrosion products for the system exposed to the SRB consortium.

  5. Hepatic iron metabolism.

    PubMed

    Anderson, Gregory J; Frazer, David M

    2005-11-01

    The liver performs three main functions in iron homeostasis. It is the major site of iron storage, it regulates iron traffic into and around the body through its production of the peptide hepcidin, and it is the site of synthesis of major proteins of iron metabolism such as transferrin and ceruloplasmin. Most of the iron that enters the liver is derived from plasma transferrin under normal circumstances, and transferrin receptors 1 and 2 play important roles in this process. In pathological situations, non-transferrin-bound iron, ferritin, and hemoglobin/haptoglobin and heme/hemopexin complexes assume greater importance in iron delivery to the organ. Iron is stored in the liver as ferritin and, with heavy iron loading, as hemosiderin. The liver can divest itself of iron through the plasma membrane iron exporter ferroportin 1, a process that also requires ceruloplasmin. Hepcidin can regulate this iron release through its interaction with ferroportin. PMID:16315136

  6. Corrosion resistance of stainless steels

    SciTech Connect

    Dillon, C.P.

    1995-12-31

    This book reviews the mechanisms and forms of corrosion and examines the corrosion of stainless steels and similar chromium-bearing nickel containing higher alloys, detailing various corrosive environments including atmospheric and fire-side corrosion, corrosion by water and soil, and corrosion caused by particular industrial processes. It provides information on specific groups and grades of stainless steels; summarizes typical applications for specific stainless alloys; describes common corrosion problems associated with stainless steels; presents the acceptable isocorrosion parameters of concentration and temperature for over 250 chemicals for which stainless steels are the preferred materials of construction; discusses product forms and their availability; elucidates fabrication, welding, and joining techniques; and covers the effects of pickling and passivation.

  7. IRON AND {alpha}-ELEMENT PRODUCTION IN THE FIRST ONE BILLION YEARS AFTER THE BIG BANG

    SciTech Connect

    Becker, George D.; Carswell, Robert F.; Sargent, Wallace L. W.; Rauch, Michael E-mail: acalver@ast.cam.ac.uk E-mail: mr@obs.carnegiescience.edu

    2012-01-10

    We present measurements of carbon, oxygen, silicon, and iron in quasar absorption systems existing when the universe was roughly one billion years old. We measure column densities in nine low-ionization systems at 4.7 < z < 6.3 using Keck, Magellan, and Very Large Telescope optical and near-infrared spectra with moderate to high resolution. The column density ratios among C II, O I, Si II, and Fe II are nearly identical to sub-damped Ly{alpha} systems (sub-DLAs) and metal-poor ([M/H] {<=} -1) DLAs at lower redshifts, with no significant evolution over 2 {approx}< z {approx}< 6. The estimated intrinsic scatter in the ratio of any two elements is also small, with a typical rms deviation of {approx}< 0.1 dex. These facts suggest that dust depletion and ionization effects are minimal in our z > 4.7 systems, as in the lower-redshift DLAs, and that the column density ratios are close to the intrinsic relative element abundances. The abundances in our z > 4.7 systems are therefore likely to represent the typical integrated yields from stellar populations within the first gigayear of cosmic history. Due to the time limit imposed by the age of the universe at these redshifts, our measurements thus place direct constraints on the metal production of massive stars, including iron yields of prompt supernovae. The lack of redshift evolution further suggests that the metal inventories of most metal-poor absorption systems at z {approx}> 2 are also dominated by massive stars, with minimal contributions from delayed Type Ia supernovae or winds from asymptotic giant branch stars. The relative abundances in our systems broadly agree with those in very metal-poor, non-carbon-enhanced Galactic halo stars. This is consistent with the picture in which present-day metal-poor stars were potentially formed as early as one billion years after the big bang.

  8. Method for inhibiting corrosion

    SciTech Connect

    Wu, Y.; Stapp, P. R.

    1985-12-03

    A composition comprising the reaction adduct or neutralized product resulting from the reaction of a maleic anhydride and an oil containing a polynuclear aromatic compound is provided which, when applied to a metal surface, forms a corrosion-inhibiting film thereon. The composition is particularly useful in the treatment of down-hole metal surfaces in oil and gas wells to inhibit the corrosion of the metal.

  9. Production of pig iron from red mud waste fines using thermal plasma technology

    NASA Astrophysics Data System (ADS)

    Jayasankar, K.; Ray, P. K.; Chaubey, A. K.; Padhi, A.; Satapathy, B. K.; Mukherjee, P. S.

    2012-08-01

    Red mud, an insoluble residue produced during alkali leaching of bauxite, is considered as a low-grade iron ore containing 30% to 50% iron. The present paper deals with the use of thermal plasma technology for producing pig iron from red mud waste fines. The smelting reduction of red mud was carried out in a 35 kW DC extended arc thermal plasma reactor. Red mud was properly mixed with fluxes and graphite (fixed carbon, 99%) as a reductant as per stoichiometric requirement. The effect of various process parameters like a reductant, fluxes and smelting time on iron recovery was studied and optimized. An optimum condition for the maximum recovery of iron was obtained. A new thermal plasma process applicable to direct iron making from red mud waste fines that would achieve significant utilization of red mud was proposed.

  10. Hot Corrosion at Air-Ports in Kraft Recovery Boilers

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Russell, James H.

    2003-01-01

    Hot corrosion can occur on the cold-side of airports in Kraft recovery boilers. The primary corrosion mechanism involves the migration of sodium hydroxide and potassium hydroxide vapors through leaks in the furnace wall at the airports and their subsequent condensation. It has been reported that stainless steel is attacked much faster than carbon steel in composite tubes, and that carbon steel tubing, when used with a low-chromium refractory, does not exhibit this type of corrosion. For hot corrosion fluxing of metal oxides, either acidic or basic fluxing takes place, with a solubility minimum at the basicity of transition between the two reactions. For stainless steel, if the basicity of the fused salt is between the iron and chromium oxide solubility minima, then a synergistic effect can occur that leads to rapid corrosion. The products of one reaction are the reactants of the other, which eliminates the need for rate-controlling diffusion. This effect can explain why stainless steel is attacked more readily than carbon steel.

  11. The potential role of the osteoblast in the development of periprosthetic osteolysis: review of in vitro osteoblast responses to wear debris, corrosion products, and cytokines and growth factors.

    PubMed

    Vermes, C; Glant, T T; Hallab, N J; Fritz, E A; Roebuck, K A; Jacobs, J J

    2001-12-01

    Limited information is available on the responses of osteoblasts to wear debris, corrosion products, and cytokines and on the roles of altered osteoblast functions in the development of periprosthetic bone loss. Wear debris-challenged osteoblasts exhibit altered functions resulting in the loss of their capacity to produce bone matrix and to replace the resorbed bone. Also, osteoblasts may secrete cytokines, which act in a paracrine fashion to recruit inflammatory cells into the periprosthetic space and to stimulate osteoclastic bone resorption. These effects may be mediated in part by ionic metal dissolution products. We review the mechanisms by which altered osteoblast functions, in response to particulate wear debris, corrosion products, and cytokines and growth factors, may contribute to the development and the progression of periprosthetic osteolysis. PMID:11742458

  12. Production and blast-furnace smelting of boron-alloyed iron-ore pellets

    SciTech Connect

    A.A. Akberdin; A.S. Kim

    2008-08-15

    Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

  13. Iron-sulfur mineralogy of Mars: Magmatic evolution and chemical weathering products

    SciTech Connect

    Burns, R.G.; Fisher, D.S. )

    1990-08-30

    Models for the evolution of sulfide minerals on Mars and reaction pathways to their oxidative weathering products in Martian regolith have been proposed based on petrogenetic associations between komatiitic rock types, Viking geochemical data, SNC meteorites, and terrestrial Fe-Ni sulfide deposits. To test the weathering model, komatiitic pyrrhotites and olivines were exposed to sulfuric acid solutions, with and without dissolved ferric iron added to simulate deep-weathering processes, and the reaction products were identified by Mossbauer spectroscopy. Secondary FeS{sub 2} (pyrite or marcasite), FeOOH (goethite), and possibly jarosite were formed from pyrrhotite, while olivine was oxidized to nanophase goethite. These results suggest that on Mars, acidic groundwater induced pyrrhotite {yields} FeS{sub 2} {yields} FeOOH (+jarosite) oxidative weathering reactions, particularly in the presence of dissolved Fe{sup 3+}. Such gossaniferous materials occurring in Martian regolith were derived mainly from Fe-Ni sulfides associated with komatiitic basalts and not from sulfides occurring in calc-alkaline porphyry copper deposits, granitic hydrothermal veins, sediment-hosted PbS-ZnS ores, etc., which presumably did not evolve on Mars due to the virtual lack of plate tectonic activity there.

  14. Clean iron production and machining technology. Year 1 summary report, January 1--December 31, 1995

    SciTech Connect

    1996-03-05

    The first phase of this project was conducted to develop a technique for evaluating the machinability of gray and ductile iron. That technique was then used to measure the machinability of a variety of irons and determine the processing factors that influenced and controlled machinability. The procedure developed to evaluate machinability involved drilling holes with a feed rate of 0.009 in/rev at various surface speeds. High speed steel drills were used so wear was observed more quickly. Microcarbides present in the irons were found to dominate the machinability. Pearlitic irons considered to have ``acceptable`` machinability (indicated either by tool life measured in the laboratory using high speed steel (HSS) drills or reports from commercial machine shops using other cutters) were found to contain from 8.9 to 10.5% by weight microscopic carbides. The tool wear rate increased when machining at higher surface speeds or machining irons containing higher weight percentage of microcarbides. All irons containing above 11.5% microcarbides consistently exhibited poor machinability. Tool wear results obtained using cubic boron nitride (CBN) cutters paralleled those obtained with HSS. Higher iron microcarbide concentrations produced faster tool wear. Experiments are now being formulated to explore methods of improving iron machinability. Future work will extend the study to ductile irons.

  15. Requirements for inhibition of localized corrosion

    SciTech Connect

    Gunaltun, Y.M.; Chevrot, T.

    1999-11-01

    Localized corrosion is the principal cause of line failure when corrosion is internal. As the inhibition is the most common way to control corrosion in wet gas and oil production lines, the inhibitor should be able to control localized corrosion in all cases where it may occur. Therefore, inhibitor selection philosophy should be based on this approach. Laboratory and field evaluation of corrosion inhibitors showed that some products are almost 100% efficient in preventing localized corrosion if their concentration in the water phase is above a threshold value. The main uncertainty, which then remains, is the inhibitor availability at the pipe surface.

  16. Hydrogen production from the steam-iron process with direct reduction of iron oxide by chemical looping combustion of coal char

    SciTech Connect

    Jing-biao Yang; Ning-sheng Cai; Zhen-shan Li

    2008-07-15

    Experimental results performed with a fluidized-bed reactor supported the feasibility of the three processes including direct reduction of iron oxide by char, H{sub 2} production by the steam-iron process, and the oxidation of Fe{sub 3}O{sub 4} resulting from the steam-iron process to the original Fe{sub 2}O{sub 3} by air. Chars resulting from a Chinese lignite loaded with K{sub 2}CO{sub 3} were used successfully as a reducing material, leading to the reduction of Fe{sub 2}O{sub 3} to FeO and Fe for the steam-iron process, which was confirmed by both the off-gases concentrations and X-ray diffractometer analysis. The reduction of Fe{sub 2}O{sub 3} by K-10-char at 1073 K is desirable from the perspective of the carbon conversion rate and high concentration of CO{sub 2}. The carbon in char was completely converted to CO{sub 2} when the mass ratio of Fe{sub 2}O{sub 3}/K-10-char was increased to 10/0.3. The oxidation rate of K-10-char by Fe{sub 2}O{sub 3} without a gasifying agent was comparable to the K-10-char steam gasification rate. The fractions of FeO and Fe in the reduced residue were 43 and 57%, respectively, in the case of 3 g of Fe{sub 2}O{sub 3} and 0.5 g of K-10-char, which was verified by the total H{sub 2} yield equaling 1000 mL/g K-10-char from the steam-iron process. The time that it took to achieve complete oxidation of Fe{sub 3}O{sub 4} to Fe{sub 2}O{sub 3} by air with an 8.7% O{sub 2} concentration at 1073 K was about 15 min. 53 refs., 19 figs., 5 tabs.

  17. 7 CFR 2902.44 - Corrosion preventatives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Corrosion preventatives. 2902.44 Section 2902.44... Items § 2902.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have a...

  18. 7 CFR 3201.44 - Corrosion preventatives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Corrosion preventatives. 3201.44 Section 3201.44... Designated Items § 3201.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have...

  19. 7 CFR 3201.44 - Corrosion preventatives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Corrosion preventatives. 3201.44 Section 3201.44... Designated Items § 3201.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have...

  20. 7 CFR 3201.44 - Corrosion preventatives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Corrosion preventatives. 3201.44 Section 3201.44... Designated Items § 3201.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have...