Science.gov

Sample records for iron garnets

  1. Unconventional Superfluidity in Yttrium Iron Garnet Films.

    PubMed

    Sun, Chen; Nattermann, Thomas; Pokrovsky, Valery L

    2016-06-24

    We argue that the magnon condensate in yttrium iron garnet may display experimentally observable superfluidity at room temperature despite the 100 times dominance of the normal density over superfluid ones. The superfluidity has a more complicated nature than in known superfluids since the U(1) symmetry of the global phase shift is violated by the dipolar interaction leading to the exchange of spin moment between the condensate and the crystal lattice. It produces periodic inhomogeneity in the stationary superfluid flow. We discuss the manner of observation and possible applications of magnon superfluidity. It may strongly enhance the spin-torque effects and reduce the energy consumption of the magnonic devices. PMID:27391750

  2. Unconventional Superfluidity in Yttrium Iron Garnet Films

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Nattermann, Thomas; Pokrovsky, Valery L.

    2016-06-01

    We argue that the magnon condensate in yttrium iron garnet may display experimentally observable superfluidity at room temperature despite the 100 times dominance of the normal density over superfluid ones. The superfluidity has a more complicated nature than in known superfluids since the U(1) symmetry of the global phase shift is violated by the dipolar interaction leading to the exchange of spin moment between the condensate and the crystal lattice. It produces periodic inhomogeneity in the stationary superfluid flow. We discuss the manner of observation and possible applications of magnon superfluidity. It may strongly enhance the spin-torque effects and reduce the energy consumption of the magnonic devices.

  3. Thermochromism in yttrium iron garnet compounds.

    PubMed

    Serier-Brault, Hélène; Thibault, Lucile; Legrain, Magalie; Deniard, Philippe; Rocquefelte, Xavier; Leone, Philippe; Perillon, Jean-Luc; Le Bris, Stéphanie; Waku, Jean; Jobic, Stéphane

    2014-12-01

    Polycrystalline yttrium iron garnet (Y3Fe5O12, hereafter labeled YIG) has been synthesized by solid-state reaction, characterized by X-ray diffraction, Mössbauer spectroscopy, and UV-vis-NIR diffuse reflectance spectroscopy, and its optical properties from room temperature (RT) to 300 °C are discussed. Namely, its greenish color at RT is assigned to an O(2-) → Fe(3+) ligand-to-metal charge transfer at 2.57 eV coupled with d-d transitions peaking at 1.35 and 2.04 eV. When the temperature is raised, YIG displays a marked thermochromic effect; i.e., the color changes continuously from greenish to brownish, which offers opportunities for potential application as a temperature indicator for everyday uses. The origin of the observed thermochromism is assigned to a gradual red shift of the ligand-to-metal charge transfer with temperature while the positioning in energy of the d-d transitions is almost unaltered. Attempts to achieve more saturated colors via doping (e.g., Al(3+), Ga(3+), Mn(3+), ...) remained unsuccessful except for chromium. Indeed, Y3Fe5O12:Cr samples exhibit at RT the same color than the undoped garnet at 200 °C. The introduction of Cr(3+) ions strongly impacts the color of the Y3Fe5O12 parent either by an inductive effect or, more probably, by a direct effect on the electronic structure of the undoped material with formation of a midgap state. PMID:25382733

  4. Combinatorial pulsed laser deposition of doped yttrium iron garnet films on yttrium aluminium garnet

    SciTech Connect

    Sposito, A. Eason, R. W.; Gregory, S. A.; Groot, P. A. J. de

    2014-02-07

    We investigate the crystalline growth of yttrium iron garnet (YIG) films doped with bismuth (Bi) and cerium (Ce) by combinatorial pulsed laser deposition, co-ablating a YIG target and either a Bi{sub 2}O{sub 3} or a CeO{sub 2} target, for applications in microwave and optical communications. Substrate temperature is critical for crystalline growth of YIG with simultaneous inclusion of Bi in the garnet lattice, whereas Ce is not incorporated in the garnet structure, but forms a separate CeO{sub 2} phase.

  5. Heat capacity of rare-earth cuprates, orthovanadates, and aluminum garnets, gallium garnets, and iron garnets

    NASA Astrophysics Data System (ADS)

    Denisova, L. T.; Kargin, Yu. F.; Denisov, V. M.

    2015-08-01

    The correlation between the heat capacities of rare-earth cuprates, orthovanadates, and garnets with ionic radius R 3+ has been analyzed. It has been shown that the values of C {/p 0} change consistently depending on the radius R 3+ within the corresponding tetrads (La-Nd, Pm-Gd, Gd-Ho, Eu-Lu).

  6. Structure and thermodynamics of uranium-containing iron garnets

    DOE PAGESBeta

    Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.; Engelhard, Mark H.; Lanzirotti, Antonio; Newville, Matthew; Ilton, Eugene S.; Sutton, Stephen R.; Xu, Hongwu

    2016-06-14

    Use of crystalline garnet as a waste form phase appears to be advantageous for accommodating actinides from nuclear waste. Previous studies show that large amounts of uranium (U) and its analogues such as cerium (Ce) and thorium (Th) can be incorporated into the garnet structure. In this study, we synthesized U loaded garnet phases, Ca3UxZr2–xFe3O12 (x = 0.5–0.7), along with the endmember phase, Ca3(Zr2)SiFe3+2O12, for comparison. The oxidation states of U were determined by X-ray photoelectron and absorption spectroscopies, revealing the presence of mixed pentavalent and hexavalent uranium in the phases with x = 0.6 and 0.7. The oxidation statesmore » and coordination environments of Fe were measured using transmission 57Fe-Mössbauer spectroscopy, which shows that all iron is tetrahedrally coordinated Fe3+. U substitution had a significant effect on local environments, the extent of U substitution within this range had a minimal effect on the structure, and unlike in the x = 0 sample, Fe exists in two different environments in the substituted garnets. The enthalpies of formation of garnet phases from constituent oxides and elements were first time determined by high temperature oxide melt solution calorimetry. The results indicate that these substituted garnets are thermodynamically stable under reducing conditions. Furthermore, our structural and thermodynamic analysis further provides explanation for the formation of natural uranium garnet, elbrusite-(Zr), and supports the potential use of Ca3UxZr2–xFe3O12 as viable waste form phases for U and other actinides.« less

  7. Structure and thermodynamics of uranium-containing iron garnets

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.; Engelhard, Mark H.; Lanzirotti, Antonio; Newville, Matthew; Ilton, Eugene S.; Sutton, Stephen R.; Xu, Hongwu

    2016-09-01

    Use of crystalline garnet as a waste form phase appears to be advantageous for accommodating actinides from nuclear waste. Previous studies show that large amounts of uranium (U) and its analogues such as cerium (Ce) and thorium (Th) can be incorporated into the garnet structure. In this study, we synthesized U loaded garnet phases, Ca3UxZr2-xFe3O12 (x = 0.5-0.7), along with the endmember phase, Ca3(Zr2)SiFe3+2O12, for comparison. The oxidation states of U were determined by X-ray photoelectron and absorption spectroscopies, revealing the presence of mixed pentavalent and hexavalent uranium in the phases with x = 0.6 and 0.7. The oxidation states and coordination environments of Fe were measured using transmission 57Fe-Mössbauer spectroscopy, which shows that all iron is tetrahedrally coordinated Fe3+. U substitution had a significant effect on local environments, the extent of U substitution within this range had a minimal effect on the structure, and unlike in the x = 0 sample, Fe exists in two different environments in the substituted garnets. The enthalpies of formation of garnet phases from constituent oxides and elements were first time determined by high temperature oxide melt solution calorimetry. The results indicate that these substituted garnets are thermodynamically stable under reducing conditions. Our structural and thermodynamic analysis further provides explanation for the formation of natural uranium garnet, elbrusite-(Zr), and supports the potential use of Ca3UxZr2-xFe3O12 as viable waste form phases for U and other actinides.

  8. Solitons in yttrium iron garnet thin films with localized gain

    NASA Astrophysics Data System (ADS)

    Pal, Ritu; Loomba, Shally; Kumar, C. N.

    2016-05-01

    We present the exact analytical solutions of cubic-quintic nonlinear Schrödinger equation with localized gain. We have demonstrated that the bright and dark solitons exist for the repulsive cubic and attractive quintic nonlinearity. These solutions have been obtained for those values of parameters which support the formation of solitons in Yttrium iron garnet thin films. Our results may be useful to understand the nonlinear pulse excitations in thin films.

  9. Features of optical anisotropy of europium and terbium iron garnets

    NASA Astrophysics Data System (ADS)

    Tsidaeva, N. I.; Abaeva, V. V.; Enaldieva, E. V.; Magkoev, T. T.; Ramonova, A. G.; Butkhuzi, T. G.; Kesaev, V. I.; Turiev, A. M.

    2013-08-01

    The results of investigation of magnetic linear birefringence (MLB) and magnetic linear dichroism of Tb3Fe5O12 (TbIG) iron garnet (IG) on 7F-7F and 7F-7F optical transitions and Eu3Fe5O12 (EuIG) iron garnet on 7F-7F at the variation of the directions of the magnetization vector I relative to the electric vector E linearly polarized light that propagates through single crystal iron garnets are presented. The measurements were made on Tb3Fe5О12 and Eu3Fe5O12 single-crystal samples in the form of plates 100 μm thick cut in the (1 1 0) and (1 0 0) plane a temperature of T = 82 K and in a magnetic field H = 22 kOe. The absorption spectra of the linearly polarized light were studied. It is shown that MLB and dichroism in the region of the 7F-7F and 7F-7F absorption bands reach values 10-3. The nonreciprocity of MLB spectra and dichroism with the change of the relative orientation of the magnetization vector I and the light wave vector is first experimentally discovered. This effect may be used as a base for the design of the different transducers such as a magnetooptical optical channels commutator.

  10. Thick-Film Yttrium Iron Garnet Coatings via Aerosol Deposition

    NASA Astrophysics Data System (ADS)

    Johnson, Scooter D.; Glaser, Evan R.; Cheng, Shu-Fan; Eddy, Charles R.; Kub, Fritz; Gorzkowski, Edward P.

    2016-03-01

    Aerosol deposition is a thick-film deposition process that can produce layers up to several hundred micrometers thick with densities greater than 95 pct of the theoretical value. The primary advantage of aerosol deposition is that the deposition takes place entirely at room temperature, thereby enabling film growth in material systems with disparate melting temperatures. We show representative characterization results of yttrium iron garnet thick films deposited onto a <111> gadolinium gallium garnet substrate by aerosol deposition using scanning electron microscopy, X-ray diffraction, profilometry, vibrating sample magnetometry, and ferromagnetic resonance. To further elucidate the effect of density and grain size on the magnetic properties, we perform post-deposition annealing of the films to study the effect on the structural and magnetic properties of the films. Our results indicate that our system can successfully deposit dense, thick yttrium iron garnet films and that with moderate annealing the films can achieve a ferromagnetic resonance linewidth comparable to that reported for polycrystalline films deposited by other higher temperature growth techniques.

  11. Sublattice Magnetic Relaxation in Rare Earth Iron Garnets

    SciTech Connect

    McCloy, John S.; Walsh, Brian

    2013-07-08

    The magnetic properties of rare earth garnets make them attractive materials for applications ranging from optical communications to magnetic refrigeration. The purpose of this research was to determine the AC magnetic properties of several rare earth garnets, in order to ascertain the contributions of various sublattices. Gd3Fe5O¬12, Gd3Ga5O12, Tb3Fe5O12, Tb3Ga5O12, and Y3Fe5O12 were synthesized by a solid state reaction of their oxides and verified by x-ray diffraction. Frequency-dependent AC susceptibility and DC magnetization were measured versus temperature (10 – 340 K). Field cooling had little effect on AC susceptibility, but large effect on DC magnetization, increasing magnetization at the lowest temperature and shifting the compensation point to lower temperatures. Data suggest that interaction of the two iron lattices results in the two frequency dependent magnetic relaxations in the iron garnets, which were fit using the Vogel-Fulcher and Arrhenius laws.

  12. Investigation of optical properties of epitaxial yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Paranin, V. D.

    2016-04-01

    In work we investigated yttrium iron garnet epitaxial films with a thickness of 10 µm and 55 µm which were grown on the surface of garnet substrate. Using the polarizing microscopy method the branching domain structure of films was shown with the period of domains 21.5 µm and 42.5 µm. Disappearance of domains at presence of an external magnetic field up to 100 Oe was noted. The optical transmission of films for the polarized beam of HeNe laser is investigated and zero diffraction order and odd diffraction rings orders were shown. Interconnection of the period of chaotically oriented domains with angles of axially symmetric diffraction rings orders was shown. Diffraction patterns at various longitudinal magnetic fields are investigated. Disappearance of odd diffraction orders and increasing in intensity of zero diffraction order were fixed. Optical transmission of epitaxial films was measured in range of 500 - 900 nm.

  13. Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits

    SciTech Connect

    Goto, Taichi; Ross, C. A.; Eto, Yu; Kobayashi, Keiichi; Haga, Yoji; Inoue, Mitsuteru

    2013-05-07

    Polycrystalline cerium-substituted yttrium iron garnet (CeYIG) showing large Faraday rotation (FR) in the near-IR region was grown on non-garnet (synthetic fused silica, Si, and Si-on-insulator) substrates by sputtering followed by thermal annealing in vacuum. The FR of the films is comparable to the single crystal value. Structural characterization, magnetic properties, refractive index, extinction coefficient, surface topography, and FR vs. wavelength were measured and the magnetooptical figure of merit was compared with that of CeYIG films on garnet substrates.

  14. Enhanced spin pumping at yttrium iron garnet/Au interfaces

    SciTech Connect

    Burrowes, C.; Heinrich, B.; Kardasz, B.; Montoya, E. A.; Girt, E.; Sun Yiyan; Song, Young-Yeal; Wu Mingzhong

    2012-02-27

    Spin injection across the ferrimagnetic insulator yttrium iron garnet (YIG)/normal metal Au interface was studied using ferromagnetic resonance. The spin mixing conductance was determined by comparing the Gilbert damping parameter {alpha} in YIG/Au and YIG/Au/Fe heterostructures. The main purpose of this study was to correlate the spin pumping efficiency with chemical modifications of the YIG film surface using in situ etching and deposition techniques. By means of Ar{sup +} ion beam etching, one is able to increase the spin mixing conductance at the YIG/Au interface by a factor of 5 compared to the untreated YIG/Au interface.

  15. Current sensing using bismuth rare-earth iron garnet films

    NASA Astrophysics Data System (ADS)

    Ko, Michael; Garmire, Elsa

    1995-04-01

    Ferrimagnetic iron garnet films are investigated as current-sensing elements. The Faraday effect within the films permits measurement of the magnetic field or current by a simple polarimetric technique. Polarized diffraction patterns from the films have been observed that arise from the presence of magnetic domains in the films. A physical model for the diffraction is discussed, and results from a mathematical analysis are in good agreement with the experimental observations. A method of current sensing that uses this polarized diffraction is demonstrated.

  16. Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrites prepared by microemulsion method

    NASA Astrophysics Data System (ADS)

    Akhtar, Majid Niaz; Bakar Sulong, Abu; Khan, Muhammad Azhar; Ahmad, Mukhtar; Murtaza, Ghulam; Raza, M. R.; Raza, R.; Saleem, M.; Kashif, M.

    2016-03-01

    Yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrite samples were synthesized by microemulsion method. The effect of sintering was examined by heating the samples at 900, 1000, and 1100 °C. The YIG and YAIG samples were then characterized using X-ray diffraction and field-emission scanning electron microscopy. Static and dynamic magnetic properties were measured by evaluating initial permeability, Q factor, and vibrating sample magnetometry properties of YIG and YAIG samples. YIG samples sintered at 1100 °C showed higher initial permeability and Q factor compared with YAIG samples. However, hysteresis loops also showed variations in the saturation magnetization, remanence, and coercivity of YIG and YAIG samples sintered at 900, 1000, and 1100 °C. The observed magnetic parameter such as saturation magnetization, coercivity and initial permeability are strongly affected by increasing temperature. The saturation magnetization and coercivity of YIG and YAIG nanoferrites were found in the range 11.56-19.92 emu/g and 7.30-87.70 Oe respectively. Furthermore, the decreasing trends in the static and magnetic properties of YAIG samples may be due to the introduction of Al ions in the YIG crystal lattice. Thus, YIG and YAIG sintered at 1100 °C can be used for wide-ranging frequency applications.

  17. RBS and XRD Characterization of Yttrium Iron Garnet Thin Films

    NASA Astrophysics Data System (ADS)

    Mansour, M.; Roumie, M.; Abdel Samad, B.; Basma, H.; Korek, M.

    2015-03-01

    Magnetic materials such as yttrium iron garnet (YIG or Y3Fe5O12) present a great importance for their magneto-optic properties. They are potential materials used for applications in the domain of optical telecommunications for example. In this work, we have investigated YIG thin films deposited on substrates of quartz and GGG (gadolinium gallium garnet or Gd3Ga5O12). Using Rutherford backscattering spectrometry (RBS) we characterized the performed layers (thickness and stoichiometry) in order to correlate the films preparation conditions with the quality of the final material. We determined the optimal energy of the alpha particles beam used for RBS measurements and we fitted the experimental spectra using the SIMNRA simulated code. Our RBS results showed that the films have a stoichiometry close to that of the starting material. In addition, we found that the film thickness is proportional to deposition time but inversely proportional to the substrate temperature. Moreover, using x-ray diffraction (XRD) we determined the annealing effect on the structure of the profile of our thin films.

  18. Ferromagnetic resonance of sputtered yttrium iron garnet nanometer films

    SciTech Connect

    Liu, Tao; Chang, Houchen; Sun, Yiyan; Kabatek, Michael; Wu, Mingzhong; Vlaminck, Vincent; Hoffmann, Axel; Deng, Longjiang

    2014-05-07

    Growth of nm-thick yttrium iron garnet (YIG) films by sputtering and ferromagnetic resonance (FMR) properties in the films were studied. The FMR linewidth of the YIG film decreased as the film thickness was increased from several nanometers to about 100 nm. For films with very smooth surfaces, the linewidth increased linearly with frequency. In contrast, for films with big grains on the surface, the linewidth-frequency response was strongly nonlinear. Films in the 7–26 nm thickness range showed a surface roughness between 0.1 nm and 0.4 nm, a 9.48-GHz FMR linewidth in the 6–10 Oe range, and a damping constant of about 0.001.

  19. Cavity mediated coherent coupling between yttrium iron garnet magnets

    NASA Astrophysics Data System (ADS)

    Lambert, Nicholas; Haigh, James; Langenfeld, Stefan; Doherty, Andrew; Ferguson, Andrew

    Strong coupling between the magnetostatic modes of an yttrium iron garnet (YIG) magnet and a microwave frequency electromagnetic cavity is now readily achievable. Recently, coupling between a magnon and a superconducting qubit mediated by a cavity has also been demonstrated. In this talk, we describe dispersive measurement of the cavity-mediated coupling of magnetostatic modes in two YIG magnets. We find they are strongly coupled even when detuned from the cavity modes. We study the strength of the coupling as a function of the detuning, and find a 1 / Δ dependence when close to individual cavity modes. Dark states of the coupled magnets are observed, in which the symmetry of the microwave drive does not match that of the new eigenstates. Our results are described well within the framework of circuit QED. Such an approach to coupling magnets might be used to phase-lock many spatially separated magnetic oscillators, such as those in spin-torque nano-oscillators or magnetic metamaterials.

  20. Phase Diagram for Magnon Condensate in Yttrium Iron Garnet Film

    PubMed Central

    Li, Fuxiang; Saslow, Wayne M.; Pokrovsky, Valery L.

    2013-01-01

    Recently, magnons, which are quasiparticles describing the collective motion of spins, were found to undergo Bose-Einstein condensation (BEC) at room temperature in films of Yttrium Iron Garnet (YIG). Unlike other quasiparticle BEC systems, this system has a spectrum with two degenerate minima, which makes it possible for the system to have two condensates in momentum space. Recent Brillouin Light Scattering studies for a microwave-pumped YIG film of thickness d = 5 μm and field H = 1 kOe find a low-contrast interference pattern at the characteristic wavevector Q of the magnon energy minimum. In this report, we show that this modulation pattern can be quantitatively explained as due to unequal but coherent Bose-Einstein condensation of magnons into the two energy minima. Our theory predicts a transition from a high-contrast symmetric state to a low-contrast non-symmetric state on varying the d and H, and a new type of collective oscillation. PMID:23455849

  1. Magnetic and magnetodielectric properties of erbium iron garnet ceramic

    SciTech Connect

    Maignan, A.; Singh, K.; Simon, Ch.; Lebedev, O. I.; Martin, C.

    2013-01-21

    An Er{sub 3}Fe{sub 5}O{sub 12} ceramic has been sintered in oxygen atmosphere at 1400 Degree-Sign C for dielectric measurements. Its structural quality at room temperature has been checked by combining transmission electron microscopy and X-ray diffraction. It crystallizes in the cubic space group Ia3d with a = 12.3488(1). The dielectric permittivity ({epsilon} Prime ) and losses (tan {delta}) measurements as a function of temperature reveal the existence of two anomalies, a broad one between 110 K and 80 K, attributed to the Er{sup 3+} spin reorientation, and a second sharper feature at about 45 K associated to the appearance of irreversibility on the magnetic susceptibility curves. In contrast to the lack of magnetic field impact on {epsilon} Prime for the former anomaly, a complex magnetic field effect has been evidenced below 45 K. The isothermal {epsilon} Prime (H) curves show the existence of positive magnetodielectric effect, reaching a maximum of 0.14% at 3 T and 10 K. Its magnitude decreases as H is further increased. Interestingly, for the lowest H values, a linear regime in the {epsilon} Prime (H) curve is observed. From this experimental study, it is concluded that the {epsilon} Prime anomaly, starting above the compensation temperature T{sub c} (75 K) and driven by the internal magnetic field, is not sensitive to an applied external magnetic field. Thus, below 45 K, it is the magnetic structure which is responsible for the coupling between spin and charge in this iron garnet.

  2. Study of Y and Lu iron garnets using Bethe-Peierls-Weiss method

    NASA Astrophysics Data System (ADS)

    Goveas, Neena; Mukhopadhyay, G.; Mukhopadhyay, P.

    1994-11-01

    We study here the magnetic properties of Y- and Lu- Iron Garnets using the Bethe- Peierls-Weiss method modified to suit complex systems like these Garnets. We consider these Garnets as described by Heisenberg Hamiltonian with two sublattices (a,d) and determine the exchange interaction parameters Jad, Jaa and Jdd by matching the exerimental susceptibility curves. We find Jaa and Jdd to be much smaller than those determined by Néel theory, and consistent with those obtained by the study of spin wave spectra; the spin wave dispersion relation constant obtained using these parameters gives good agreement with the experimental values.

  3. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    DOEpatents

    Duncan, Paul G.

    2002-01-01

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  4. Electrically driven magnetization dynamics in yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Jungfleisch, Matthias Benjamin

    Creation and manipulation of magnetization states by spin-orbital torques are important for novel spintronics applications. Magnetic insulators were mostly ignored for this particular purpose, despite their low Gilbert damping, which makes them outstanding materials for magnonic applications and investigation of nonlinear spin-wave phenomena. Here, we demonstrate the propagation of spin-wave modes in micro-structured yttrium iron garnet (Y3Fe5O12,YIG) stripes. Spin waves propagating along the long side of the stripe are detected by means of spatially-resolved Brillouin light scattering (BLS) microscopy. The propagation distance of spin waves is determined in the linear regime, where an exponential decay of 10 μm is observed. We also explored the possibility of driving magnetization dynamics with spin Hall effects (SHE) in bilayers of YIG/Pt microstructures. For this purpose we adopted a spin-transfer torque ferromagnetic resonance (ST-FMR) approach. Here a rf charge current is passed through the Pt layer, which generates a spin-transfer torque at the interface from an oscillating spin current via the SHE. This gives rise to a resonant excitation of the magnetization dynamics. In all metallic systems the magnetization dynamics is detected via the homodyne anisotropic magnetoresistance of the ferromagnetic layer. However, since there is no charge flowing through ferromagnetic insulators there is no anisotropic magnetoresistance. Instead, we show that for the case of YIG/Pt the spin Hall magnetoresistance can be used. Our measured voltage spectra can be well fitted to an analytical model evidencing that the ST-FMR concept can be extended to insulating systems. Furthermore, we employ spatially-resolved BLS spectroscopy to map the ST-FMR driven spin dynamics. We observe the formation of a strong, self-localized spin-wave intensity in the center of the sample. This spin-wave `bullet' is created due to nonlinear cross coupling of eigenmodes existing in the magnetic

  5. The nature of photoinduced changes in the magnetostriction of yttrium-iron garnet single crystals

    SciTech Connect

    Vorob'eva, N. V.

    2011-05-15

    A model of the occurrence of photoinduced changes in linear magnetostriction is proposed based on a complex experimental study of magnetostrictive strains in yttrium-iron garnets Y{sub 3}Fe{sub 5}O{sub 12} with low contents of different impurities. Analytical expressions for calculating the magnetostriction in yttrium-iron garnet single crystals with different types of doping are presented. The correlation of the photoinduced change in the magnetostriction with the crystallographic features of the samples is demonstrated. The changes in the magnetostriction constants are analyzed quantitatively for samples prepared in different ways.

  6. Temperature evolution of electromotive force from Pt on yttrium-iron-garnet under ferromagnetic resonance

    SciTech Connect

    Ohshima, Ryo; Emoto, Hiroyuki; Shinjo, Teruya; Ando, Yuichiro; Shiraishi, Masashi

    2015-05-07

    Temperature evolution of electromotive force from Pt due to the inverse spin Hall effect is studied. Pure spin current is injected from yttrium-iron-garnet by using spin pumping technique. The electromotive force from the Pt monotonically decreases with decreasing temperature, and it is showed that there is a deviation between the measured and the calculated electromotive forces.

  7. Spectrally resolved optical probing of laser induced magnetization dynamics in bismuth iron garnet

    NASA Astrophysics Data System (ADS)

    Koene, Benny; Deb, Marwan; Popova, Elena; Keller, Niels; Rasing, Theo; Kirilyuk, Andrei

    2016-07-01

    The spectrally resolved magnetization dynamics in bismuth iron garnet shows a fluence dependent light induced modification of the magneto-optical Faraday spectrum. It is demonstrated that the relative contributions from the tetrahedral and octahedral iron sites to the Faraday spectrum change due to the impact of the pump pulse. This change explains the observed deviation from a linear dependence of the amplitude of the oscillations on the fluence, as expected for the inverse Faraday effect.

  8. Spectrally resolved optical probing of laser induced magnetization dynamics in bismuth iron garnet.

    PubMed

    Koene, Benny; Deb, Marwan; Popova, Elena; Keller, Niels; Rasing, Theo; Kirilyuk, Andrei

    2016-07-13

    The spectrally resolved magnetization dynamics in bismuth iron garnet shows a fluence dependent light induced modification of the magneto-optical Faraday spectrum. It is demonstrated that the relative contributions from the tetrahedral and octahedral iron sites to the Faraday spectrum change due to the impact of the pump pulse. This change explains the observed deviation from a linear dependence of the amplitude of the oscillations on the fluence, as expected for the inverse Faraday effect. PMID:27213266

  9. Optical recording aspects of rf magnetron-sputtered iron-garnet films

    NASA Astrophysics Data System (ADS)

    Krumme, J.-P.; Doormann, V.; Hansen, P.; Baumgart, H.; Petruzzello, J.; Viegers, M. P. A.

    1989-11-01

    The intrinsic magneto-optical readout performance in reflection is calculated for bismuth and cobalt-substituted iron-garnet films on a multilayer interference mirror at 800-, 633-, 488-, and 420-nm wavelengths and is compared with that of a trilayer medium composed of an antireflection layer, a rare-earth transition-metal film, and a metallic mirror. It is found, when disregarding inhomogeneities, like irregular domain shape, ripple of the magnetic anisotropy, and surface roughness, that iron garnets are superior to rare-earth transition-metal films at blue to near-ultraviolet wavelengths if operated at thicknesses where optical interference occurs in the magnetic layer. Optical transmittance at these thicknesses is sufficiently high so that multilevel recording media can be conceived. In contrast, the optical absorption of rare-earth transition-metal alloys is much higher so that only thicknesses much above interference conditions are feasible, thus precluding them from multilevel recording. This comparative study is supplemented by calculating the magneto-optical performance in reflection of a recently reported multilayer medium composed of an antireflection coating and a periodically repeated sandwich of 4-Å Co and 9-Å Pt layers. In contrast to conventional rare-earth transition-metal films, the magneto-optical Kerr effects of this material do not degrade when decreasing the wavelength from 800 to 400 nm, but still do not reach the performance of bismuth-iron garnets in the green to ultraviolet spectrum. For the garnet system Y3-xBixFe5O12 the spectra of the real and imaginary parts of the diagonal and off-diagonal component of the dielectric tensor ɛij are reported in the range of photon energies between 1 and 5 eV, i.e., 1240- and 248-nm wavelengths and a bismuth concentration up x=1.4 Bi3+ atoms per garnet formula. In addition, the off-diagonal components ɛ'12 and ɛ■12 are parametrized in terms of paramagnetic optical transitions, taking the spectra

  10. Bonding mechanism of a yttrium iron garnet film on Si without the use of an intermediate layer

    SciTech Connect

    Pantzas, Konstantinos; Patriarche, Gilles; Talneau, Anne; Youssef, Jamal Ben

    2014-10-06

    Direct bonding of yttrium iron garnet (YIG) on silicon without the use of an intermediate bonding layer is demonstrated and characterized using scanning transmission electron microscopy and energy-dispersive x-ray spectroscopy. During the bonding experiment, the garnet is reduced in the presence of oxide-free silicon. As a result, a 5 nm thick SiO{sub 2}/amorphous-YIG bilayer is formed and welds the garnet to silicon.

  11. Growth of epitaxial bismuth and gallium substituted lutetium iron garnet films by pulsed laser deposition

    SciTech Connect

    Leitenmeier, Stephan; Heinrich, Andreas; Lindner, Joerg K. N.; Stritzker, Bernd

    2006-04-15

    Epitaxial bismuth and gallium substituted lutetium iron garnet thin films have been grown on (100) oriented gadolinium gallium garnet Gd{sub 3}Ga{sub 5}O{sub 12} substrates by pulsed laser deposition. The films have been studied using x-ray diffraction, high resolution x-ray diffraction, Rutherford backscattering spectroscopy, transmission electron microscopy, and electron diffraction. We obtained smooth films with thicknesses between 0.3 and 1.0 {mu}m showing good crystalline quality and epitaxial growth.

  12. Shock wave compression of iron-silicate garnet.

    NASA Technical Reports Server (NTRS)

    Graham, E. K.; Ahrens, T. J.

    1973-01-01

    Shock wave compression data to over 650 kb are presented for single-crystal almandine garnet. The data indicate the initiation of a phase transformation near 200 kb. Total transition to the high-pressure polymorph occurs at approximately 300 kb. The elastic properties of the high-pressure phase are calculated from the metastable Hugoniot data by using the linear shock velocity-particle velocity relationships. The overall results obtained strongly suggest that upper mantle minerals are likely to occur in the ilmenite structure over a substantial part of the lower mantle.

  13. Generalized stochastic Landau-Lifshitz-Gilbert equation for yttrium-iron garnet films

    NASA Astrophysics Data System (ADS)

    Rückriegel, Andreas; Kopietz, Peter

    2015-03-01

    We derive a generalization of the well-known stochastic Landau-Lifshitz-Gilbert equation starting from a microscopic Heisenberg model coupled to the lattice degrees of freedom. By integrating out the phonons we obtain a non-Markovian, stochastic equation of motion for the spin degrees of freedom satisfying a Fluctuation-Dissipation theorem. We apply our theory to study the parametric pumping and thermalization of spin excitations in thin yttrium-iron garnet films.

  14. Properties of epitaxial (210) iron garnet films exhibiting the magnetoelectric effect

    SciTech Connect

    Arzamastseva, G. V.; Balbashov, A. M.; Lisovskii, F. V. Mansvetova, E. G.; Temiryazev, A. G.; Temiryazeva, M. P.

    2015-04-15

    The properties of epitaxial magnetic (LuBi){sub 3}(FeGa){sub 5}O{sub 12} iron garnet films grown on (210) substrates, which exhibit the magnetoelectric effect, are experimentally studied. The induced anisotropy and the behavior of the domain structure in the films are investigated in uniform and nonuniform external fields. The existing hypotheses about the nature of the magnetoelectric coupling in such films are critically analyzed.

  15. Observation of spin rectification in Pt/yttrium iron garnet bilayer

    SciTech Connect

    Rao, Jinwei; Fan, Xiaolong Zhou, Hengan; Zhao, Xiaobing; Zhao, Jing; Zhang, Fengzhen; Xue, Desheng; Ma, Li; Zhou, Shiming

    2015-05-07

    We used the ferromagnetic resonance (FMR) to study the dc voltage generation in Pt 20 nm layer deposited on yttrium iron garnet. Although the main contribution to the FMR voltage comes from the inverse spin Hall effect associated with spin pumping, the spin rectification would also contribute the resonance signal via the “new” magnetoresistance effect in Pt layer. Based on a symmetry consideration, we can separate those two effects through angular dependent resonance amplitude.

  16. Spin wave localization in one-dimensional magnonic microcavity comprising yttrium iron garnet

    SciTech Connect

    Kanazawa, Naoki; Goto, Taichi Inoue, Mitsuteru

    2014-08-28

    We demonstrate the localization of magnetostatic surface waves, i.e., spin waves, in a one-dimensional magnonic microcavity substantialized with periodical conductivity modulation. The narrow localized state is observed inside band gaps and is responsible for a sharp transmission peak. The experimental results strongly agree with the theoretical prediction made with the shape magnetic anisotropy of the propagating medium composed of yttrium iron garnet taken into account.

  17. Hybrid yttrium iron garnet-ferromagnet structures for spin-wave devices

    NASA Astrophysics Data System (ADS)

    Papp, A.; Porod, W.; Csaba, G.

    2015-05-01

    We study coupled ferromagnetic layers, which could facilitate low loss, sub 100 nm wavelength spin-wave propagation and manipulation. One of the layers is a low-loss garnet film (such as yttrium iron garnet (YIG)) that enables long-distance, coherent spin-wave propagation. The other layer is made of metal-based (Permalloy, Co, and CoFe) magnetoelectronic structures that can be used to generate, manipulate, and detect the spin waves. Using micromagnetic simulations, we analyze the interactions between the spin waves in the YIG and the metallic nanomagnet structures and demonstrate the components of a scalable spin-wave based signal processing device. We argue that such hybrid-metallic ferromagnet structures can be the basis of potentially high-performance, ultra low-power computing devices.

  18. Thickness- and temperature-dependent magnetodynamic properties of yttrium iron garnet thin films

    SciTech Connect

    Haidar, M. Ranjbar, M.; Balinsky, M.; Dumas, R. K.; Khartsev, S.; Åkerman, J.

    2015-05-07

    The magnetodynamical properties of nanometer-thick yttrium iron garnet films are studied using ferromagnetic resonance as a function of temperature. The films were grown on gadolinium gallium garnet substrates by pulsed laser deposition. First, we found that the damping coefficient increases as the temperature increases for different film thicknesses. Second, we found two different dependencies of the damping on film thickness: at room temperature, the damping coefficient increases as the film thickness decreases, while at T = 8 K, we find the damping to depend only weakly on the thickness. We attribute this behavior to an enhancement of the relaxation of the magnetization by impurities or defects at the surfaces.

  19. Exquisite growth control and magnetic properties of yttrium iron garnet thin films

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Aldosary, Mohammed; Jiang, Zilong; Chang, Houchen; Madon, Benjamin; Chan, Kyle; Wu, Mingzhong; Garay, Javier E.; Shi, Jing

    2016-03-01

    A layer-by-layer epitaxial growth up to 227 atomic layers of ferrimagnetic insulator yttrium iron garnet (YIG) thin films is achieved on (110)-oriented gadolinium gallium garnet substrates using pulsed laser deposition. Atomically smooth terraces are observed on YIG films up to 100 nm in thickness. The root-mean-square roughness is as low as 0.067 nm. The easy-axis lies in the film plane, indicating the dominance of shape anisotropy. For (110)-YIG films, there is well-defined two-fold in-plane anisotropy, with the easiest axis directed along [001]. The Gilbert damping constant is determined to be 1.0 × 10-4 for 100 nm thick films.

  20. Hybrid yttrium iron garnet-ferromagnet structures for spin-wave devices

    SciTech Connect

    Papp, A.; Porod, W. Csaba, G.

    2015-05-07

    We study coupled ferromagnetic layers, which could facilitate low loss, sub 100 nm wavelength spin-wave propagation and manipulation. One of the layers is a low-loss garnet film (such as yttrium iron garnet (YIG)) that enables long-distance, coherent spin-wave propagation. The other layer is made of metal-based (Permalloy, Co, and CoFe) magnetoelectronic structures that can be used to generate, manipulate, and detect the spin waves. Using micromagnetic simulations, we analyze the interactions between the spin waves in the YIG and the metallic nanomagnet structures and demonstrate the components of a scalable spin-wave based signal processing device. We argue that such hybrid-metallic ferromagnet structures can be the basis of potentially high-performance, ultra low-power computing devices.

  1. Platinum/yttrium iron garnet inverted structures for spin current transport

    NASA Astrophysics Data System (ADS)

    Aldosary, Mohammed; Li, Junxue; Tang, Chi; Xu, Yadong; Zheng, Jian-Guo; Bozhilov, Krassimir N.; Shi, Jing

    2016-06-01

    30-80 nm thick yttrium iron garnet (YIG) films are grown by pulsed laser deposition on a 5 nm thick sputtered Pt atop gadolinium gallium garnet substrate (GGG) (110). Upon post-growth rapid thermal annealing, single crystal YIG(110) emerges as if it were epitaxially grown on GGG(110) despite the presence of the intermediate Pt film. The YIG surface shows atomic steps with the root-mean-square roughness of 0.12 nm on flat terraces. Both Pt/YIG and GGG/Pt interfaces are atomically sharp. The resulting YIG(110) films show clear in-plane uniaxial magnetic anisotropy with a well-defined easy axis along <001> and a peak-to-peak ferromagnetic resonance linewidth of 7.5 Oe at 9.32 GHz, similar to YIG epitaxially grown on GGG. Both spin Hall magnetoresistance and longitudinal spin Seebeck effects in the inverted bilayers indicate excellent Pt/YIG interface quality.

  2. Faraday effect of bismuth iron garnet thin film prepared by mist CVD method

    NASA Astrophysics Data System (ADS)

    Yao, Situ; Sato, Takafumi; Kaneko, Kentaro; Murai, Shunsuke; Fujita, Koji; Tanaka, Katsuhisa

    2015-06-01

    Metastable bismuth iron garnet (BIG, an abbreviation of Bi3Fe5O12), one kind of garnet-type ferrites, is known to manifest very large Faraday rotation as well as low optical absorption in the visible to infrared region. We report on successful synthesis of thin film composed of single-phase BIG epitaxially grown on single-crystalline gadolinium gallium garnet (Gd3Ga5O12, GGG) substrate by using mist chemical vapor deposition (CVD) method, which is an emerging technique for preparation of thin films. The crystal structure, surface morphology, and magnetic, optical and magneto-optical properties of the resultant thin films have been explored. The BIG thin film has a relatively flat surface free from roughness compared to those prepared by other vapor deposition methods. Saturation magnetization is about 1620 G at room temperature, which is close to that expected from the ideal magnetic structure of BIG. The maximum value of Faraday rotation angle reaches 54.3 deg/µm at a wavelength of 424 nm. This value is rather large when compared with those reported for BIG thin films prepared by other techniques. The wavelength dependence of Faraday rotation angle is analyzed well in terms of the crystal electric field (CEF) level schema. Our result suggests that the mist CVD method is a simple and effective technique to synthesize BIG thin film with excellent magneto-optical properties.

  3. Large magneto-optic enhancement in ultra-thin liquid-phase-epitaxy iron garnet films

    SciTech Connect

    Levy, Miguel; Chakravarty, A.; Huang, H.-C.; Osgood, R. M.

    2015-07-06

    Significant departures from bulk-like magneto-optic behavior are found in ultra-thin bismuth-substituted iron-garnet films grown by liquid-phase-epitaxy. These changes are due, at least in part, to geometrical factors and not to departures from bulk-composition in the transient layer at the film-substrate interface. A monotonic increase in specific Faraday rotation with reduced thickness is the signature feature of the observed phenomena. These are traced to size-dependent modifications in the diamagnetic transition processes responsible for the Faraday rotation. These processes correspond to the electronic transitions from singlet {sup 6}S ground states to spin-orbit split excited states of the Fe{sup 3+} ions in the garnet. A measurable reduction in the corresponding ferrimagnetic resonance linewidths is found, thus pointing to an increase in electronic relaxation times and longer lived excitations at reduced thicknesses. These changes together with a shift in vibrational frequency of the Bi-O bonds in the garnet at reduced thicknesses result in greatly enhanced magneto-optical performance. These studies were conducted on epitaxial monocrystalline Bi{sub 0.8}Gd{sub 0.2}Lu{sub 2}Fe{sub 5}O{sub 12} films.

  4. Spin-wave excitation and propagation in microstructured waveguides of yttrium iron garnet/Pt bilayers

    NASA Astrophysics Data System (ADS)

    Pirro, P.; Brächer, T.; Chumak, A. V.; Lägel, B.; Dubs, C.; Surzhenko, O.; Görnert, P.; Leven, B.; Hillebrands, B.

    2014-01-01

    We present an experimental study of spin-wave excitation and propagation in microstructured waveguides consisting of a 100 nm thick yttrium iron garnet/platinum (Pt) bilayer. The life time of the spin waves is found to be more than an order of magnitude higher than in comparably sized metallic structures, despite the fact that the Pt capping enhances the Gilbert damping. Utilizing microfocus Brillouin light scattering spectroscopy, we reveal the spin-wave mode structure for different excitation frequencies. An exponential spin-wave amplitude decay length of 31 μm is observed which is a significant step towards low damping, insulator based micro-magnonics.

  5. Effect of reversible adsorption on the magnetic properties of iron garnet films

    SciTech Connect

    Zubov, V. E. Kudakov, A. D.; Levshin, N. L.; Vlasov, M. A.

    2013-05-15

    The reversible change in the domain structure and the magnetic domain width in bismuth-containing iron garnet films with an easy magnetization axis oriented normal to their surface during adsorption caused by hydrogen bonds is studied by a magnetooptical method. The dependence of the domain width on the vapor pressure of methyl alcohol or water in a cell with a sample is determined, and the time dependence of the domain width induced by the adsorption-desorption processes occurring between methyl alcohol molecules or water molecules on the film surface is studied. A model is proposed to explain the detected effects.

  6. Ultrafast optical control of magnetization dynamics in polycrystalline bismuth doped iron garnet thin films

    SciTech Connect

    Deb, Marwan Vomir, Mircea; Rehspringer, Jean-Luc; Bigot, Jean-Yves

    2015-12-21

    Controlling the magnetization dynamics on the femtosecond timescale is of fundamental importance for integrated opto-spintronic devices. For industrial perspectives, it requires to develop simple growth techniques for obtaining large area magneto-optical materials having a high amplitude ultrafast Faraday or Kerr response. Here we report on optical pump probe studies of light induced spin dynamics in high quality bismuth doped iron garnet polycrystalline film prepared by the spin coating method. We demonstrate an ultrafast non-thermal optical control of the spin dynamics using both circularly and linearly polarized pulses.

  7. Unidirectional anisotropy in the spin pumping voltage in yttrium iron garnet/platinum bilayers

    NASA Astrophysics Data System (ADS)

    Vilela-Leão, L. H.; Salvador, C.; Azevedo, A.; Rezende, S. M.

    2011-09-01

    Detailed measurements of the dc voltage generated in a thin Pt layer deposited on films of yttrium iron garnet (YIG) have been carried out to study the spin pumping effect produced by magnetostatic (MS) modes excited by a microwave field. In relatively thick YIG films the modes are far apart so that one can identify clearly the spin pumping voltage in VSP produced by each MS mode. We have discovered that when the sputter deposition of the thin Pt layer is made on the YIG film magnetized by a static magnetic field, VSP exhibits a strong unidirectional anisotropy.

  8. Enhanced spin pumping damping in yttrium iron garnet/Pt bilayers

    NASA Astrophysics Data System (ADS)

    Rezende, S. M.; Rodríguez-Suárez, R. L.; Soares, M. M.; Vilela-Leão, L. H.; Ley Domínguez, D.; Azevedo, A.

    2013-01-01

    Detailed measurements of the magnetic relaxation expressed in the linewidth of the ferromagnetic resonance (FMR) absorption in thick films of yttrium iron garnet (YIG) and in YIG/Pt bilayers carried out at room temperature reveal a very large increase in the relaxation rate with the deposition of a Pt layer. The additional relaxation increases linearly with the microwave frequency characteristics of the spin pumping mechanism. The value of the spin mixing conductance obtained from the data is one order of magnitude larger than the largest possible value determined from measurements of the voltage generated by FMR spin-pumping.

  9. Amplification of spin waves in yttrium iron garnet films through the spin Hall effect

    NASA Astrophysics Data System (ADS)

    Padrón-Hernández, E.; Azevedo, A.; Rezende, S. M.

    2011-11-01

    We demonstrate that spin waves propagating in a film of yttrium iron garnet (YIG) can be amplified by a dc current in an adjacent Pt layer by means of the spin Hall effect. The experiments are done at room temperature using pulsed currents to avoid sample heating. Amplification occurs only for surface like modes propagating in a direction perpendicular to the applied in-plane field. The results are interpreted with a model for spin-wave propagation in a YIG film with magnetic losses and subject to a spin-transfer torque due to spin currents created by the spin Hall effect in the Pt layer.

  10. Effects of diamagnetic Ga dilution on the Faraday response of bismuth-doped iron garnet films

    NASA Astrophysics Data System (ADS)

    Garzarella, A.; Shinn, M. A.; Wu, Dong Ho

    2016-06-01

    In bismuth-doped iron garnets, diamagnetic dilution of Fe with Ga is a well-known method to increase the Faraday rotation response under externally applied magnetic fields. It is found, however, that while this method improves responsivity at larger field strengths, the responsivity under smaller fields (which are more typical in sensing applications) is generally unaffected by Ga doping. The data indicate that the low-field responsivity is limited by anomalous pinning effects in the rotational magnetization process of the ferromagnetic domains. To overcome this, a magnetic biasing technique was developed, which enhances responsivity by activating Barkhausen steps in the films to free the domains from their pinning sites.

  11. Spin-wave excitation and propagation in microstructured waveguides of yttrium iron garnet/Pt bilayers

    SciTech Connect

    Pirro, P.; Chumak, A. V.; Lägel, B.; Leven, B.; Hillebrands, B.; Brächer, T.; Dubs, C.; Surzhenko, O.; Görnert, P.

    2014-01-06

    We present an experimental study of spin-wave excitation and propagation in microstructured waveguides consisting of a 100 nm thick yttrium iron garnet/platinum (Pt) bilayer. The life time of the spin waves is found to be more than an order of magnitude higher than in comparably sized metallic structures, despite the fact that the Pt capping enhances the Gilbert damping. Utilizing microfocus Brillouin light scattering spectroscopy, we reveal the spin-wave mode structure for different excitation frequencies. An exponential spin-wave amplitude decay length of 31 μm is observed which is a significant step towards low damping, insulator based micro-magnonics.

  12. High temperature magneto-electric effect in yittrium iron garnet (YIG)

    NASA Astrophysics Data System (ADS)

    Saha, J.; Chaudhary, S.; Majumdar, P.; Kuanr, B. K.; Patnaik, S.

    2016-05-01

    We report a study on potential multiferroic characteristics of Yttrium Iron Garnet (YIG). The emergence of ferroelectricity in YIG is in debate but we provide evidence for strong magneto-electric coupling above room temperature from dielectric constant measurement with and without magnetic field. We find that the apparent pseudo-ferroelectric crossover temperature in YIG varies with frequency. For higher frequency the transition shifts towards higher temperature. This is indicative of relaxor behavior. We have also measured the dielectric constant in the presence of external magnetic field at high temperature that confirms interdependence of magnetic and dielectric properties.

  13. Full spin polarization of complex ferrimagnetic bismuth iron garnet probed by magneto-optical Faraday spectroscopy

    NASA Astrophysics Data System (ADS)

    Deb, Marwan; Popova, Elena; Fouchet, Arnaud; Keller, Niels

    2013-06-01

    We investigate the spin-dependent electronic density of states near and above the Fermi level in bismuth iron garnet (BIG), Bi3Fe5O12, by magnetic circular dichroism and magneto-optical Faraday spectroscopy. BIG is a recently synthesized material, as its preparation requires special nonequilibrium conditions. Its scientific and applicative interest resides in huge specific Faraday rotation of the incident light, useful for magneto-optic applications. We show experimentally the presence of spin gaps in the conduction band as recently predicted theoretically by Oikawa [T. Oikawa, S. Suzuki, and K. Nakao, J. Phys. Soc. Jpn.JUPSAU0031-901510.1143/JPSJ.74.401 74, 401 (2005)]. In the range of photon energies, where full spin polarization is expected, completely asymmetric Faraday hysteresis loops were observed, similar to those observed in half-metals such as (Pr,La)0.7Ca0.3MnO3 and Fe3O4. These results were modeled using even and odd (with respect to magnetization) contributions into hysteresis loops. The odd contribution appears only in the energy ranges where the density of states is fully spin polarized and vanishes at the Curie temperature. These results open a new perspective for the use of bismuth iron garnet in optic spintronics at room temperature and above.

  14. Optical and magneto-optical properties of nanostructured yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Gizhevskiĭ, B. A.; Sukhorukov, Yu. P.; Gan'shina, E. A.; Loshkareva, N. N.; Telegin, A. V.; Lobachevskaya, N. I.; Gaviko, V. S.; Pilyugin, V. P.

    2009-09-01

    Bulk dense samples of nanostructured yttrium iron garnet Y3Fe5O12 with crystallite sizes of 20-40 nm are prepared by high-pressure torsion from a garnet powder with micron grains. The absorption and Faraday rotation spectra in the IR range and the transverse Kerr effect spectra in the visible spectral range for these samples are measured. The absorption and magneto-optical effect spectra are in agreement with the corresponding spectra of single crystals. The appearance of additional absorption bands at 2 and 3 μm is associated with the violation of the stoichiometry of the nanogarnet and the possible contamination of the initial material. The specific Faraday rotation in the transparency window is approximately 1.5 times smaller than the corresponding quantity for single crystals. The extrema in the Kerr effect spectra coincide with those for single crystals, are smaller in magnitude, and are smeared. On the whole, the prepared bulk samples are transparent in the IR spectral range and exhibit optical and magneto-optical characteristics comparable to the corresponding parameters for single crystals. The high density of point defects of the nanogarnet is primarily due to the violation of the stoichiometry and the valence state of iron ions.

  15. Cerium Substitution in Yttrium Iron Garnet: Valence State, Structure, and Energetics

    SciTech Connect

    Guo, Xiaofeng; Tavakoli, Amir H.; Sutton, Steve; Kukkadapu, Ravi K.; Qi, Liang; Lanzirotti, Anthony; Newville, Mathew; Asta, Mark D.; Navrotsky, Alexandra

    2014-01-28

    The garnet structure is a promising nuclear waste form because it can accommodate various actinide elements. Y3Fe5O12 (YIG) is a model composition for such substitutions. Since cerium (Ce) can be considered an analogue of actinide elements such as thorium (Th), plutonium (Pu), and uranium (U), studying the local structure and thermodynamic stability of Ce-substituted YIG (Ce:YIG) can provide insights into the structural and energetic aspects of large ion substitution in garnets. Single phases of yttrium iron garnet with Ce substitution up to 20 mol % (Y3-xCexFe5O12 with 0 ≤ x ≤ 0.2) were synthesized through a citrate-nitrate combustion method. The oxidation state of cerium was examined by X-ray absorption near edge structure spectroscopy (XANES); the oxidation state and site occupancy of Fe as a function of Ce loading also was monitored by 57Fe-Mössbauer spectroscopy. These measurements establish that Ce is predominantly in the trivalent state at low substitution levels, while a mixture of trivalent and tetravalent states are observed at higher concentrations. Fe was predominately trivalent and exists in multiple environments. High temperature oxide melt solution calorimetry was used to determine the enthalpy of formation of these Ce-substituted YIG garnets. The thermodynamic analysis demonstrated that, although there is an entropic driving force for the substitution of Ce for Y, the substitution reaction is enthalpically unfavorable. The experimental results are complemented by electronic structure calculations performed within the framework of density functional theory (DFT) with Hubbard-U corrections, which reproduce the observed increase in the tendency for tetravalent Ce to be present with higher loading of Ce. The DFT+U results suggest that the energetics underlying the formation of tetravalent Ce involves a competition between an unfavorable energy to oxidize Ce and reduce Fe, and a favorable contribution due to strain-energy reduction. The structural

  16. Untangling the contributions of cerium and iron to the magnetism of Ce-doped yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Casals, Blai; Espínola, Marina; Cichelero, Rafael; Geprägs, Stephan; Opel, Matthias; Gross, Rudolf; Herranz, Gervasi; Fontcuberta, Josep

    2016-03-01

    The remarkable magnetic properties of yttrium iron garnets (YIGs) underpin the use of these materials in a broad scope of spintronic and photonic applications. In particular, the addition of rare earth metals in the structure enhances to a great extent the magneto-optical activity, which is beneficial for the development of nonreciprocal optical devices. Exploiting the wavelength selectivity of magneto-optics, we have identified a range of frequencies at which one can unravel the individual contributions to the magnetism and gyrotropic response arising from cerium and iron. We envision that this outcome may pave the way to further experiments to assess quantitatively the effect on the optical properties of rare earth incorporation into YIG.

  17. Induced magnetism in exfoliated graphene via proximity effect with yttrium iron garnet thin films

    NASA Astrophysics Data System (ADS)

    Amado, Mario; Li, Yang; di Bernardo, Angelo; Lombardo, Antonio; Ferrari, Andrea C.; Robinson, Jason

    The recent discovery of the quantum anomalous Hall effect (QAHE) in magnetically doped topological insulators cooled below in the milikelvin regime represents breakthrough in the field of spintronics. Theoretically, the QAHE should occur in graphene proximity coupled to a ferromagnetic insulato but with the promise of much higher operating temperatures for practical applications. Hints of proximity-induced magnetism in graphene coupled to yttrium iron garnet (YIG) films have been reported although the QAHE remains unobserved; the lack of a fully developed plateau in graphene/YIG devices can be attributed to poor interfacial coupling and therefore a dramatically reduced magnetic proximity effect. Here we report the deposition and characterisation of epitaxial thin-films of YIG on lattice-matched gadolinium gallium garnet substrates by pulsed laser deposition. Pristine exfoliated graphene flakes transferred mechanically onto the YIG are reported alongside results that correlate the effects of YIG morphology on the electronic and crystal properties of graphene by electrical (low temperature magnetoresistance measurements in Hall-bar-like configuration) and optical (Raman) means.

  18. Magnetooptics of single and microresonator iron-garnet films at low temperatures

    NASA Astrophysics Data System (ADS)

    Shaposhnikov, A. N.; Prokopov, A. R.; Berzhansky, V. N.; Mikhailova, T. V.; Karavainikov, A. V.; Kharchenko, M. F.; Belotelov, V. I.; Lukienko, I. M.; Miloslavskaya, O. V.; Kharchenko, Yu. M.

    2016-02-01

    We have investigated the low-temperature behavior of the optical and magneto-optical properties of (Bi, Gd, Al)-substituted yttrium iron-garnet films that are either single or microresonator, i.e. sandwiched between two dielectric Bragg mirrors. It was shown that the magneto-optical properties of the microresonators with a magnetic film core are mainly determined by the properties of the constituent magnetic films. Special attention was paid to the compositions possessing magnetic compensation temperatures. The phenomenon of the temperature hysteresis was found and discussed for several samples. This testifies the fact that the magnetic moment reorientation in a magnetic field occurs by the full cycle of the first-order phase transitions "collinear phase - non-collinear phase - collinear phase". The Faraday hysteresis curves at around magnetic compensation temperatures are demonstrated to be very informative concerning composition of a sample. In particular, the hysteresis curves measured for the magnetic films on the garnet substrates showed bursts that indicates formation of a transition layer.

  19. Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering

    NASA Astrophysics Data System (ADS)

    Boudiar, Toufik; Payet-Gervy, Beatrice; Blanc-Mignon, Marie-Francoise; Rousseau, Jean-Jacques; Le Berre, Martine; Joisten, H.; Canut, Bruno

    2004-02-01

    Thin films of Yttrium Iron Garnet (YIG) are grown by radio frequency magnetron non reactive sputtering system. Thin films are crystallised by heat-treatment to obtain magneto-optical properties. On quartz substrate, the network of cracks observed on the annealed samples can be explained by the difference between the thermal expansion coefficient of substrate and YIG. The Faraday rotation of thin films is measured with a classical ellipsometric system based in transmission which allows us to obtained an accuracy of 0.01°. We studied the variation of Faraday rotation versus the applied magnetic field. The variation of the Faraday rotation is the same that this obtained by VSM (vibrating sample magnetometer) analysis. With a quartz substrate, maximum Faraday rotation is observed to be 1900°/cm at the wavelength of 594 nm for an annealing of 740°C. The variation of the Faraday rotation versus the wavelength is studied. The obtained values are comparable to those of the literature for the bulk material. In order to eliminate the stress due to the heat-treatment, we made some films on Gadolinium Gallium Garnet (GGG) which thermal expansion coefficient is near than the YIG one. The material crystallises with no cracks and the Faraday effect is equivalent.

  20. Thermally induced transparency for short spin wave pulses in yttrium iron garnet (YIG) films

    NASA Astrophysics Data System (ADS)

    Ordonez Romero, Cesar Leonardo; Kolokoltsev, Oleg; Gomez Arista, Ivan; Qureshi, Naser; Monsiváis Galindo, Guillermo; Vargas Hernández, Hesiquio

    2014-03-01

    The compensation of spin wave propagation losses plays a very important role in the development of novel magnonic devices. Up to now, however, most of the known amplification methods present relative narrow frequency bandwidths due to their resonant nature. In this work, we present compensation of the propagation losses or pseudo-amplification of travelling spin waves by tailoring the bias magnetic field profile. The thermally-induced non-uniform profile of the magnetization introduced on an Yttrium Iron Garnet (YIG) thin film by a localized spot of a cw argon-ion laser creates the conditions to observe the complete compensation of the spin wave propagation losses. The spin wave evolution was mapped with a time and spaced resolved inductive magneto-dynamic prove system. The experiment was carried out using a uniform sample of single-crystal YIG film grown on a gallium-gadolinium garnet (GGG) substrate. The 2mm-wide, 20mm-long and 6microns-thick YIG strip was saturated with an external magnetic field enabling the set up for the propagation of magneto-static surface waves. This work was supported by the UNAM-DGAPA-PAPIIT IA100413.

  1. Nanomechanical Detection of Magnetic Hysteresis of a Single-crystal Yttrium Iron Garnet Micromagnetic Disk

    NASA Astrophysics Data System (ADS)

    Losby, Joseph; Diao, Zhu; Burgess, Jacob; Compton, Shawn; Fani Sani, Fatemeh; Firdous, Tayyaba; Vick, Douglas; Belov, Miro; Hiebert, Wayne; Freeman, Mark

    2013-03-01

    A micromagnetic disk was milled from a monocrystalline yttrium iron garnet film using a focused ion beam and micromanipulated onto a nanoscale torsional resonator. Nanomechanical torque magnetometry results show a unipolar magnetic hysteresis characteristic of a magnetic vortex state. Landau-Lifshitz-Gilbert-based micromagnetic simulations of the disk show a rich, flux-enclosed, three-dimensional domain structure. On the top and bottom faces of the disk, a skewed vortex state exists with a very small core. The core region extends through the thickness of the disk with a smooth variation in core diameter reaching a maximum along the midplane of the disk. The single crystalline nature of the disk lends to an observed absence of Barkhausen-like steps in the magnetization-versus-field curves, qualitatively different in comparison to the magnetometry results of an individual polycrystalline permalloy microdisk. Prospects for the mechanical detection of spin dynamical modes in these structures will also be discussed.

  2. Quantum theory of the anisotropy of the magnetic properties of ferrimagnetic holmium iron garnet single crystals.

    PubMed

    Yang, Jiehui; Ma, Shengcan; Xu, You

    2009-03-01

    The pronounced anisotropy of the magnetization caused by the Ho(3+) ions in the ferrimagnetic holmium iron garnet has been investigated based on quantum theory. The strong anisotropy of the magnetization of the Ho(3+) ions originates mainly from the effect of the crystal field upon the Ho(3+) ions and the anisotropic Ho(3+)-Fe(3+) superexchange interaction. Following the expression of the Yb(3+)-Fe(3+) exchange interaction used by Alben, the anisotropy of the Ho(3+)-Fe(3+) exchange interaction is defined by three principal values of the exchange tensor G. Because the six Ho(3+) sublattices are magnetically non-equivalent, we calculate the magnetic quantities of the Ho(3+) at the six sublattices and compare the average value of the so-obtained six quantities with the measured values. The calculated results are in good agreement with experiments. An interpretation on the anisotropy of the magnetic properties of HoIG is given. PMID:21817410

  3. Spin valve effect of the interfacial spin accumulation in yttrium iron garnet/platinum bilayers

    SciTech Connect

    Jin, Lichuan; Zhang, Dainan; Zhang, Huaiwu Tang, Xiaoli; Bai, Feiming; Zhong, Zhiyong; Fan, Xin; Xiao, John Q.

    2014-09-29

    We report the spin valve effect in yttrium iron garnet/platinum (YIG/Pt) bilayers. The spin Hall effect (SHE) generates spin accumulation at the YIG/Pt interface and can be opened/closed by magnetization switching in the electrical insulator YIG. The interfacial spin accumulation was measured in both YIG/Pt and YIG/Cu/Pt structures using a planar Hall configuration. The spin valve effect remained, even after a 2 nm thick Cu layer was inserted between the YIG and Pt layers, which aimed to exclude the induced magnetization at the YIG/Pt interface. The transverse Hall voltage and switching field were dependent on the applied charge current density. The origin of this behavior can be explained by the SHE induced torque exerted on the domain wall, caused by the transfer of the spin angular momentum from the spin-polarized current to the YIG magnetic moment.

  4. Angular dependence of the FMR linewidth and the anisotropy of the relaxation time in iron garnets

    NASA Astrophysics Data System (ADS)

    Kobelev, A. V.; Shvachko, Yu. N.; Ustinov, V. V.

    2016-01-01

    This work is devoted to the problem of extracting the contribution of the anisotropy of relaxation to the angular dependence of the FMR linewidth and to the opportunity of determining the values of the parameters of relaxation. The results of the FMR study of films based on the yttrium iron garnet prepared by the method of liquid-phase epitaxy are given. The orientational dependence of the linewidth has been calculated using the traditional method of measuring an FMR spectrum and a method based on scanning at an angle to the resonance field for obtaining the minimum linewidth. A model for calculating the linewidth has been proposed that takes into account the anisotropy of the relaxation term in the equation of motion of the magnetic moment. The model leads to a dependence that agrees well with the experimental data, which makes it possible to state that the anisotropy of relaxation most likely takes place in the samples under consideration at the temperatures employed.

  5. The effects of the sputtering conditions on bismuth doped gadolinium iron garnet films

    SciTech Connect

    Eppler, W.; Kryder, M.H. )

    1989-09-01

    The effects of the sputtering conditions on the magnetic and magneto-optic properties of bismuth substituted gadolinium iron garnet (GdIG) films are studied. GdIG films with uniaxial perpendicular anisotropy and room temperature coercivities greater than 1 kOe have been deposited on glass substrates by rf magnetron sputtering. These films have Faraday rotations between 0.6 */{mu}m and 1.3 */{mu}/m and temperature dependent coercivities similar to rare earth-transition metal alloys. Increasing the rf power or argon bleeding pressure results in an increase in the compensation temperature (T/sub comp/) with little change in the Curie temperature (T/sub c/).

  6. Phase-controllable spin wave generation in iron garnet by linearly polarized light pulses

    SciTech Connect

    Yoshimine, Isao; Iida, Ryugo; Shimura, Tsutomu; Satoh, Takuya; Stupakiewicz, Andrzej; Maziewski, Andrzej

    2014-07-28

    A phase-controlled spin wave was non-thermally generated in bismuth-doped rare-earth iron garnet by linearly polarized light pulses. We controlled the initial phase of the spin wave continuously within a range of 180° by changing the polarization azimuth of the excitation light. The azimuth dependences of the initial phase and amplitude of the spin wave were attributed to a combination of the inverse Cotton-Mouton effect and photoinduced magnetic anisotropy. Temporally and spatially resolved spin wave propagation was observed with a CCD camera, and the waveform was in good agreement with calculations. A nonlinear effect of the spin excitation was observed for excitation fluences higher than 100 mJ/cm{sup 2}.

  7. Superstrong coupling of a microwave cavity to yttrium iron garnet magnons

    NASA Astrophysics Data System (ADS)

    Kostylev, Nikita; Goryachev, Maxim; Tobar, Michael E.

    2016-02-01

    Multiple-post reentrant 3D lumped cavity modes have been realized to design the concept of a discrete Whispering Gallery and Fabry-Pérot-like Modes for multimode microwave Quantum Electrodynamics experiments. Using the magnon spin-wave resonance of a submillimeter-sized Yttrium-Iron-Garnet sphere at millikelvin temperatures and a four-post cavity, we demonstrate the ultra-strong coupling regime between discrete Whispering Gallery Modes and a magnon resonance with a strength of 1.84 GHz. By increasing the number of posts to eight and arranging them in a D4 symmetry pattern, we expand the mode structure to that of a discrete Fabry-Pérot cavity and modify the Free Spectral Range (FSR). We reach the superstrong coupling regime, where spin-photon coupling strength is larger than FSR, with coupling strength in the 1.1 to 1.5 GHz range.

  8. Spin wave excitation in yttrium iron garnet films with micron-sized antennas

    SciTech Connect

    Khivintsev, Y. V. Filimonov, Y. A.; Nikitov, S. A.

    2015-02-02

    In this paper, we explore spin waves excitation in monolithic structures based on yttrium iron garnet (YIG) films with micro-sized antennas. Samples based on plain and patterned YIG film were fabricated and tested for tangential bias field geometries. We observed spin wave excitation and propagation with wave numbers up to 3.5 × 10{sup 4} rad/cm. The corresponding wavelength is thus shorter more than by one order of magnitude compared to previous experiments with such films. For the sample with a periodic array of nanotrenches, we observed the effect of the shape anisotropy resulting in the shift of the spin wave propagation band in comparison to the unpatterned YIG film. Our results are very promising for the exploitation of short spin waves in YIG and provide great opportunity for significant miniaturization of YIG film based microwave devices.

  9. Giant enhancement of Kerr rotation in two-dimensional Bismuth iron garnet/Ag photonic crystals

    NASA Astrophysics Data System (ADS)

    Liang, Hong; Liu, Huan; Zhang, Qiang; Fu, Shu-Fang; Zhou, Sheng; Wang, Xuan-Zhang

    2015-06-01

    Kerr effects of two-dimensional (2D) Bismuth iron garnet (BIG)/Ag photonic crystals (PCs) combined magnetic and plasmonic functionalities is investigated with the effective medium theory. An analytical expression of Kerr rotation angles is derived, in which the effects of the surface pasmons polaritons (SPP) on magneto-optical (MO) activities are reflected. The largest enhancement of Kerr rotation up to now is demonstrated, which is improved three orders of magnitude compared with that of BIG film. When λ < 750 nm all of the reflection are over 10% for the arbitrary filling ratio f1, in addition, the enhancement of Kerr rotation angles are at least one order of magnitude. Project supported by the National Natural Science Foundation of China (Grant Nos. 11104050, 10947168, 11204056, and 11304068).

  10. Nonlinear dynamics of three-magnon process driven by ferromagnetic resonance in yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Cunha, R. O.; Holanda, J.; Vilela-Leão, L. H.; Azevedo, A.; Rodríguez-Suárez, R. L.; Rezende, S. M.

    2015-05-01

    We report an investigation of the dynamics of the three-magnon splitting process associated with the ferromagnetic resonance (FMR) in films of the insulating ferrimagnet yttrium iron garnet (YIG). The experiments are performed with a 6 μm thick YIG film close to a microstrip line fed by a microwave generator operating in the 2-6 GHz range. The magnetization precession is driven by the microwave rf magnetic field perpendicular to the static magnetic field, and its dynamics is observed by monitoring the amplitude of the FMR absorption peak. The time evolution of the amplitude reveals that if the frequency is lowered below a critical value of 3.3 GHz, the FMR mode pumps two magnons with opposite wave vectors that react back on the FMR, resulting in a nonlinear dynamics of the magnetization. The results are explained by a model with coupled nonlinear equations describing the time evolution of the magnon modes.

  11. Static and dynamic photoinduced magnetic effects in yttrium-iron garnet lightly doped with barium ions

    SciTech Connect

    Vorob'eva, N. V. Khalilov, R. Z.

    2012-04-15

    In yttrium-iron garnet lightly doped with barium, direct measurements of the photoinduced changes in magnetostrictive strains disagree with those in magnetostriction constants at 78-100 K. This is attributed to a considerable photoinduced modification of the initial state in this sample due to a redistribution of the charge (during illumination) between cations of the ferromagnetic octahedral sublattice. In the same sample, the temperature dependence of the photoinduced disaccomodation of magnetic permeability characterizing the initial demagnetized state is measured and calculated. A change in the electron mechanism of the phenomenon during the transition to room temperature is shown. The conclusion about the promising prospects for using such samples for remagnetization by light is advanced.

  12. Spin valve effect of the interfacial spin accumulation in yttrium iron garnet/platinum bilayers

    NASA Astrophysics Data System (ADS)

    Jin, Lichuan; Zhang, Dainan; Zhang, Huaiwu; Tang, Xiaoli; Bai, Feiming; Zhong, Zhiyong; Fan, Xin; Xiao, John Q.

    2014-09-01

    We report the spin valve effect in yttrium iron garnet/platinum (YIG/Pt) bilayers. The spin Hall effect (SHE) generates spin accumulation at the YIG/Pt interface and can be opened/closed by magnetization switching in the electrical insulator YIG. The interfacial spin accumulation was measured in both YIG/Pt and YIG/Cu/Pt structures using a planar Hall configuration. The spin valve effect remained, even after a 2 nm thick Cu layer was inserted between the YIG and Pt layers, which aimed to exclude the induced magnetization at the YIG/Pt interface. The transverse Hall voltage and switching field were dependent on the applied charge current density. The origin of this behavior can be explained by the SHE induced torque exerted on the domain wall, caused by the transfer of the spin angular momentum from the spin-polarized current to the YIG magnetic moment.

  13. Nonlinear dynamics of three-magnon process driven by ferromagnetic resonance in yttrium iron garnet

    SciTech Connect

    Cunha, R. O.; Holanda, J.; Azevedo, A.; Rezende, S. M.; Vilela-Leão, L. H.; Rodríguez-Suárez, R. L.

    2015-05-11

    We report an investigation of the dynamics of the three-magnon splitting process associated with the ferromagnetic resonance (FMR) in films of the insulating ferrimagnet yttrium iron garnet (YIG). The experiments are performed with a 6 μm thick YIG film close to a microstrip line fed by a microwave generator operating in the 2–6 GHz range. The magnetization precession is driven by the microwave rf magnetic field perpendicular to the static magnetic field, and its dynamics is observed by monitoring the amplitude of the FMR absorption peak. The time evolution of the amplitude reveals that if the frequency is lowered below a critical value of 3.3 GHz, the FMR mode pumps two magnons with opposite wave vectors that react back on the FMR, resulting in a nonlinear dynamics of the magnetization. The results are explained by a model with coupled nonlinear equations describing the time evolution of the magnon modes.

  14. Spin waves in micro-structured yttrium iron garnet nanometer-thick films

    SciTech Connect

    Jungfleisch, Matthias B. Zhang, Wei; Jiang, Wanjun; Wu, Stephen M.; Pearson, John E.; Bhattacharya, Anand; Hoffmann, Axel; Chang, Houchen; Wu, Mingzhong; Sklenar, Joseph; Ketterson, John B.

    2015-05-07

    We investigated the spin-wave propagation in a micro-structured yttrium iron garnet waveguide of 40 nm thickness. Utilizing spatially-resolved Brillouin light scattering microscopy, an exponential decay of the spin-wave amplitude of (10.06 ± 0.83) μm was observed. This leads to an estimated Gilbert damping constant of α=(8.79±0.73)×10{sup −4}, which is larger than damping values obtained through ferromagnetic resonance measurements in unstructured films. The theoretically calculated spatial interference of waveguide modes was compared to the spin-wave pattern observed experimentally by means of Brillouin light scattering spectroscopy.

  15. Growth of epitaxial films of iron oxide, nickel oxide, cobalt oxide, strontium hexagonal ferrite, and yttrium iron garnet by laser ablation (abstract)

    SciTech Connect

    Kennedy, R.J.

    1996-04-01

    Thin films of iron oxide, nickel oxide, cobalt oxide, strontium hexagonal ferrite, and yttrium iron garnet have been grown by laser ablation. With the exception of Co{sub 3}O{sub 4} deposited on LaAlO{sub 3}, the first three materials deposited on [100] LaAlO{sub 3}, SrTiO{sub 3}, and MgO result in high quality {ital c} axis [100] growth. Co{sub 3}O{sub 4} deposited on LaAlO{sub 3} produces highly oriented but random in-plane growth. Similar highly oriented but random in-plane growth occurs for all three materials deposited on glass. The same three materials deposited on cubic zirconia grow [111] oriented and twinned. Strontium hexagonal ferrite and yttrium iron garnet have been deposited on [111] large lattice constant garnet. Epitaxial [0001] films are obtained for the former while the latter gives [111]-oriented films. For yttrium iron garnet the closeness of lattice match to the substrate necessitates that the mosaicity (rocking curves) obtained from area maps be compared to the growth temperatures and pressures to determine the optimum growth conditions for epitaxiality. {copyright} {ital 1996 American Institute of Physics.}

  16. Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Costantini, Jean-Marc; Miro, Sandrine; Beuneu, François; Toulemonde, Marcel

    2015-12-01

    Pure and (Ca and Si)-substituted yttrium iron garnet (Y3Fe5O12 or YIG) epitaxial layers and amorphous films on gadolinium gallium garnet (Gd3Ga5O12, or GGG) single crystal substrates were irradiated by 50 MeV 32Si and 50 MeV (or 60 MeV) 63Cu ions for electronic stopping powers larger than the threshold value (~4 MeV μm-1) for amorphous track formation in YIG crystals. Conductivity data of crystalline samples in a broad ion fluence range (1011-1016 cm-2) are modeled with a set of rate equations corresponding to the amorphization and recrystallization induced in ion tracks by electronic excitations. The data for amorphous layers confirm that a recrystallization process takes place above ~1014 cm-2. Cross sections for both processes deduced from this analysis are discussed in comparison to previous determinations with reference to the inelastic thermal-spike model of track formation. Micro-Raman spectroscopy was also used to follow the related structural modifications. Raman spectra show the progressive vanishing and randomization of crystal phonon modes in relation to the ion-induced damage. For crystalline samples irradiated at high fluences (⩾1014 cm-2), only two prominent broad bands remain like for amorphous films, thereby reflecting the phonon density of states of the disordered solid, regardless of samples and irradiation conditions. The main band peaked at ~660 cm-1 is assigned to vibration modes of randomized bonds in tetrahedral (FeO4) units.

  17. Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet.

    PubMed

    Costantini, Jean-Marc; Miro, Sandrine; Beuneu, François; Toulemonde, Marcel

    2015-12-16

    Pure and (Ca and Si)-substituted yttrium iron garnet (Y3Fe5O12 or YIG) epitaxial layers and amorphous films on gadolinium gallium garnet (Gd3Ga5O12, or GGG) single crystal substrates were irradiated by 50 MeV (32)Si and 50 MeV (or 60 MeV) (63)Cu ions for electronic stopping powers larger than the threshold value (~4 MeV μm(-1)) for amorphous track formation in YIG crystals. Conductivity data of crystalline samples in a broad ion fluence range (10(11)-10(16) cm(-2)) are modeled with a set of rate equations corresponding to the amorphization and recrystallization induced in ion tracks by electronic excitations. The data for amorphous layers confirm that a recrystallization process takes place above ~10(14) cm(-2). Cross sections for both processes deduced from this analysis are discussed in comparison to previous determinations with reference to the inelastic thermal-spike model of track formation. Micro-Raman spectroscopy was also used to follow the related structural modifications. Raman spectra show the progressive vanishing and randomization of crystal phonon modes in relation to the ion-induced damage. For crystalline samples irradiated at high fluences (⩾10(14) cm(-2)), only two prominent broad bands remain like for amorphous films, thereby reflecting the phonon density of states of the disordered solid, regardless of samples and irradiation conditions. The main band peaked at ~660 cm(-1) is assigned to vibration modes of randomized bonds in tetrahedral (FeO4) units. PMID:26580459

  18. Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering

    NASA Astrophysics Data System (ADS)

    Boudiar, T.; Payet-Gervy, B.; Blanc-Mignon, M.-F.; Rousseau, J.-J.; Le Berre, M.; Joisten, H.

    2004-12-01

    Thin films of yttrium iron garnet (YIG) are grown by radio frequency magnetron non reactive sputtering system. Thin films are crystallised by heat-treatment to obtain magneto-optical properties. On quartz substrate, the network of cracks observed on the annealed samples can be explained by the difference between the thermal expansion coefficient of substrate and YIG. Physico-chemical analysis shown that the obtained material has a correct stoichiometry and is crystallised as FCC. The Faraday rotation of thin films is measured with a classical ellipsometric system based on transmission which allows us to obtained an accuracy of 0.01 ° . The variation of Faraday rotation is studied on the one hand versus radio frequency power applied to the cathode during the deposition and on the other hand versus the applied magnetic field. The results are compared with those obtained by vibrating sample magnetometer analysis in perpendicular configuration. A maximum Faraday rotation is observed to be 1900 ° / cm at the wavelength of 594 nm for a YIG thin film formed on quartz substrate and annealed at 740 ° C . The values of the Faraday rotation coefficients obtained in the study versus the wavelength are comparable to those of the literature for the bulk material. In order to eliminate the stress due to the heat-treatment, we made some films on single crystals of gadolinium gallium garnet (1 1 1) substrates for which thermal expansion coefficient is near than the YIG one. The material crystallises with no crackles and the Faraday effect is equivalent.

  19. Untangling the contributions of cerium- and iron- sublattices to the magnetism of Ce-doped yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Herranz, Gervasi; Casals, Blai; Espinola, Marina; Cichelero, Rafael; Fontcuberta, Josep; Geprags, Stephan; Opel, Matthias; Gross, Rudolf

    The remarkable magnetic properties of yttrium iron garnets (YIGs) underpin the use of these materials in a broad scope of spintronic and photonic applications. In particular, the addition of rare-earth metals in the structure enhances to a great extent the magneto-optical activity, which is beneficial for the development of nonreciprocal devices for communication along optical fibers. Yet, the physical mechanisms that lead to the observed enhanced gyrotropic response of doped YIG are not fully unveiled. Here we present a methodology based on magneto-optical spectroscopy that may be instrumental to better understand the optical response of these materials. In particular, we have exploited the wavelength selectivity of magneto-optics to identify a range of frequencies at which one can unravel the individual contributions to the magnetism and gyrotropic response arising from the individual cerium and iron sublattices. The approach outlined here paves the way to assess quantitatively the effect on the optical properties of rare-earth incorporation into YIG, providing an instrumental methodology towards tailoring the functional properties of YIG.

  20. Identification of spin wave modes in yttrium iron garnet strongly coupled to a co-axial cavity

    SciTech Connect

    Lambert, N. J.; Ferguson, A. J.; Haigh, J. A.

    2015-02-07

    We demonstrate, at room temperature, the strong coupling of the fundamental and non-uniform magnetostatic modes of an yttrium iron garnet ferrimagnetic sphere to the electromagnetic modes of a co-axial cavity. The well-defined field profile within the cavity yields a specific coupling strength for each magnetostatic mode. We experimentally measure the coupling strength for the different magnetostatic modes and, by calculating the expected coupling strengths, we are able to identify the modes themselves.

  1. Optical spectroscopy of sputtered nanometer-thick yttrium iron garnet films

    SciTech Connect

    Jakubisova-Liskova, Eva Visnovsky, Stefan; Chang, Houchen; Wu, Mingzhong

    2015-05-07

    Nanometer (nm)-thick yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films present interest for spintronics. This work employs spectral ellipsometry and magneto-optic Kerr effect (MOKE) spectra to characterize nm-thick YIG films grown on single-crystal Gd{sub 3}Ga{sub 5}O{sub 12} substrates by magnetron sputtering. The thickness (t) of the films ranges between 10 nm and 40 nm. Independent on t, the polar MOKE hysteresis loops saturate in the field of about 1.8 kOe, consistent with the saturation magnetization in bulk YIG (4πM{sub s} ≈ 1.75 kG). The MOKE spectrum measured at photon energies between 1.3 eV and 4.5 eV on the 38-nm-thick film agrees with that measured on single-crystal YIG bulk materials. The MOKE spectrum of the 12-nm-thick film still preserves the structure of the bulk YIG but its amplitude at lower photon energies is modified due to the fact that the radiation penetration depth exceeds 20 nm. The t dependence of the MOKE amplitude is consistent with MOKE calculations. The results indicate that the films are stoichiometric, strain free, without Fe{sup 2+}, and preserve bulk YIG properties down to t ≈ 10 nm.

  2. Yttrium Iron Garnet Thin Films with Very Low Damping Obtained by Recrystallization of Amorphous Material

    PubMed Central

    Hauser, Christoph; Richter, Tim; Homonnay, Nico; Eisenschmidt, Christian; Qaid, Mohammad; Deniz, Hakan; Hesse, Dietrich; Sawicki, Maciej; Ebbinghaus, Stefan G.; Schmidt, Georg

    2016-01-01

    We have investigated recrystallization of amorphous Yttrium Iron Garnet (YIG) by annealing in oxygen atmosphere. Our findings show that well below the melting temperature the material transforms into a fully epitaxial layer with exceptional quality, both structural and magnetic. In ferromagnetic resonance (FMR) ultra low damping and extremely narrow linewidth can be observed. For a 56 nm thick layer a damping constant of α = (6.15 ± 1.50) · 10−5 is found and the linewidth at 9.6 GHz is as small as 1.30 ± 0.05 Oe which are the lowest values for PLD grown thin films reported so far. Even for a 20 nm thick layer a damping constant of α = (7.35 ± 1.40) · 10−5 is found which is the lowest value for ultrathin films published so far. The FMR linewidth in this case is 3.49 ± 0.10 Oe at 9.6 GHz. Our results not only present a method of depositing thin film YIG of unprecedented quality but also open up new options for the fabrication of thin film complex oxides or even other crystalline materials. PMID:26860816

  3. Manipulation of Spin Waves in Yttrium Iron Garnet Thin Films through Interfacial Spin Scattering

    NASA Astrophysics Data System (ADS)

    Wu, Mingzhong

    2012-02-01

    Spin waves in magnetic films have many properties that can be utilized for microwave signal processing and logic operations. These applications, however, are bottlenecked by the damping of spin waves. This presentation reports on a new method for the amplification of spin waves. Specifically, the presentation reports the electric manipulation of spin waves in yttrium iron garnet (YIG) thin films via interfacial spin scattering (ISS). Experiments used a 4.6 μm-thick YIG film strip with a 20 nm-thick Pt capping layer. A dc pulse was applied to the Pt film that produced a spin current along the Pt thickness direction via the spin-Hall effect. As the spin current scatters off the surface of the YIG film, it exerts a torque on the YIG surface spins. Due to the dipolar and exchange interactions, the effect of this torque is extended to other spins across the YIG thickness and thereby to spin-wave pulses traveling in the YIG film. The net effect of the ISS process depends critically on the relative orientation of (1) the magnetic moments of the electrons in the Pt layer that scatter off the YIG surface and (2) the precession axis of the magnetic moments on the YIG surface. When they are anti-parallel, the spin-wave damping is reduced and the amplitude of a traveling spin-wave pulse is increased. In a parallel configuration, the pulse experiences an enhanced attenuation.

  4. Structure-substitution limit correlation study on Cr3+ substituted polycrystalline yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Modi, K. B.; Sharma, P. U.; Lakhani, V. K.; Vasoya, N. H.; Saija, K. G.; Pathak, T. K.; Zankat, K. B.

    2016-05-01

    Polycrystalline samples of Cr3+ - substituted yttrium iron garnet (Y3Fe5O12) system with general chemical formula, Y3Fe5-xCrxO12, x = 0.0, 0.2, 0.4 and 0.6 were synthesized by double sintering ceramic technique and characterized by X-ray powder diffractometry. The Rietveld fitted X-ray diffraction patterns analysis revealed mono phase formation for x = 0.0 - 0.4 compositions while x = 0.6 composition possesses mixed phase character. The observed substitution limit has been discussed in the light of ionic size of substituent, electrostatic energy, electronic configuration and synthesis parameters. These observations strongly suggest that the electronic configuration of Cr3+, which is favorable to the formation of d2sp3 (octahedral) type bonds, must be important. In the case of Cr3+, the substitution does not appear to proceed well for x much greater than 0.5, this limitation probably is a consequence of the strong preference of a smaller ion Cr3+, for a larger octahedral site which quickly leads to a condition not comparable with the requirement of the structure. The distribution of cations, mean ionic radii and theoretical lattice constant values have been determined.

  5. Non-local thermal spin injection to study spin diffusion in yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Giles, Brandon; Yang, Zihao; Jamison, John; Myers, Roberto

    Understanding the generation, detection, and manipulation of spin current is critical for the development of devices that depend on spin transport for information processing and storage. Recent studies have shown that spin transport over long distances is possible in the magnetic insulator yttrium iron garnet (YIG) through the diffusion of non-equilibrium magnons. Electrically excited magnons have been shown to diffuse up to 40um at room temperature, while thermally injected magnons were detected at ranges greater than 125um at 23K. However, much work is still required to fully understand the processes responsible for magnon diffusion. Here, we present an in-depth study of the diffusion of magnons in YIG. By using the non-local thermal spin detection method, we analyze spin transport as a function of temperature. Spin diffusion maps, which can be used to experimentally determine the spin diffusion length in YIG as a function of temperature, are presented Work supported by the Army Research Office MURI W911NF-14-1-0016.

  6. Synthesis of nanocrystalline yttrium iron garnet by low temperature solid state reaction

    SciTech Connect

    Yu Hongtao Zeng Liwen; Lu Chao; Zhang Wenbo; Xu Guangliang

    2011-04-15

    In this work, nanocrystalline yttrium iron garnet powders were produced by low temperature solid state reaction. The phase evolution during the procedure was determined from the thermogravimetric and differential thermal analysis, and the x-ray diffraction patterns. The results of transmission electron microscopy indicated that the prepared powders exhibited grain size at the nano-level of 20 {approx} 40 nm. Dense ceramics with a theoretical density of around 98% were obtained from the prepared powders after sintering at 1280 deg. C, a relative low sintering temperature compared with conventional ceramic processes, and the saturation magnetizations of sintered samples were also determined. - Research Highlights: {yields}No sol or gel form during the synthesis processing using nitrates and citric acid as raw materials. {yields}The synthesis method needs a low heating temperature (700 deg. C) compared with conventional solid state reaction. {yields}The product is a single phase with homogeneous size distribution and nano grains (20 {approx} 40 nm) confirmed by TEM. {yields}Dense YIG ceramic can be sintered at a low temperature (1280 deg. C) compared with that in conventional processing.

  7. Spin-to-charge-current conversion in yttrium iron garnet-graphene hybrid structure

    NASA Astrophysics Data System (ADS)

    Mendes, Joaquim; Alves Santos, Obed; Meireles, Leonel; Lacerda, Rodrigo; Vilela-Leão, Luis; Machado, Fernando; Rodríguez-Suárez, Roberto; Azevedo, Antonio; Rezende, Sergio

    The use of graphene in spintronic devices depends, among other things, on its ability to convert a spin excitation into an electric charge signal, a phenomenon that requires a spin-orbit coupling (SOC). In this work we report the observation of two effects that show the existence of SOC in large-area CVD grown single-layer graphene (SLG) deposited on a single crystal film of the ferrimagnetic insulator yttrium iron garnet (YIG). The first is a magnetoresistance of graphene induced by the magnetic proximity effect with YIG. The second is the detection of a DC voltage along the graphene layer resulting from the conversion of the spin current generated by spin pumping from microwave driven FMR into charge current. We interpret the spin-to-charge conversion as arising from the inverse Rashba-Edelstein effect (IREE) made possible by the extrinsic spin-orbit coupling in graphene. These observations show that spin orbit coupling can be extrinsically enhanced in graphene by the proximity effect with a ferromagnetic layer. This result opens new possibilities for the use of graphene in spintronic devices with unique functionalities. Research supported in Brazil by the agencies CNPq, CAPES, FINEP, FAPEMIG, FACEPE, and in Chile by FONDECYT No. 1130705.

  8. Dual pumping of magnetostatic and spin-wave modes in yttrium-iron-garnet spheres

    NASA Astrophysics Data System (ADS)

    Araújo, W.; de Aguiar, F. M.; Azevedo, A.; Rezende, S. M.

    2003-05-01

    In ferrimagnetic materials subjected to a static magnetic field H, a parallel rf magnetic field h gives rise to nonlinear absorption due to the unstable growth of certain spin waves when exceeding a parametric instability threshold (PIT), h=hc. The excited spin waves have half the pumping frequency and a wave number k that depends on H, such that the curve hc vs H resembles the Greek symbol ν and is thus called a "butterfly curve." Recent experiments in a yttrium-iron-garnet sphere have shown that the PIT is resonantly reduced in the presence of a simultaneous perpendicular rf field at half the parallel-pumping frequency only on the right wing of the butterfly curve, where "volume" magnetostatic modes (k˜0) are primarily excited. Here, dual pumping experiments are reported at lower frequencies (8.882 and 4.441 GHz), allowing the presence of "surface" magnetostatic modes on the left wing and corresponding resonant PIT reduction in that region, where spin waves with k˜105 cm-1 are primarily excited by the parallel-pumping field. The results qualitatively agree with a model that put no restriction on the pumping frequency, thus extending earlier calculations by White and Schlömann [R. M. White and Schlömann, J. Appl. Phys. 33, 2437 (1962)].

  9. Growth-induced anisotropy in bismuth - Rare-earth iron garnets

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Slusky, S. E. G.; Brandle, C. D.; Norelli, M. P.

    1986-01-01

    The bismuth-doped rare-earth iron garnets, (R3-x-yBixPby)Fe5O12 (Bi:RIG, R = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y), were prepared under constant growth conditions to investigate the influence of ionic species on the bismuth-based growth-induced uniaxial anisotropy K(u) exp g. The effect of ionic species on growth-induced anisotropy in Bi:RIG was not consistent with the ionic size model of site ordering. In particular, Bi:SmIG, Bi:EuIG, and Bi:TbIG displayed high growth-induced anisotropies, up to 331,000 erg/cu cm at room temperature for x of about 0.5. The temperature dependence of these K(u) exp gs was somewhat higher than that of the well studied Bi:YIG. The site ordering of Bi can be modeled by assuming that small, low-oxygen-coordination BiOw exp +3-2 w melt complexes have a strong site selectivity for small, high-oxygen coordination sites at the growth interface.

  10. Microwave and magneto-optic properties of bismuth-substituted yttrium iron garnet thin films

    NASA Astrophysics Data System (ADS)

    Butler, J. C.; Kramer, J. J.; Esman, R. D.; Craig, A. E.; Lee, J. N.; Ryuo, T.

    1990-05-01

    Microwave and magneto-optic measurements have been made on bismuth-substituted yttrium iron garnet (BiYIG) films. Forward-volume (FV) magnetostatic-wave (MSW) attenuation has been measured from ferrimagnetic resonance and from pulse delay data. We report the indirect observation of FV MSW in BiYIG using two independent techniques: a pulse transmission technique and a passband measurement technique. Faraday rotation in the films was also recorded at a wavelength of 1.3 μm. The bismuth-substituted films are grown on carefully cleaned substrates and have yttrium:bismuth ratios of 1:1. The composition of the bismuth substituted films is Y1.5Bi1.5Fe5O12 deduced from lattice parameters and absolute Faraday rotation. These films show particular promise for use in waveguide-type high-speed MSW-optical devices where low MSW attenuation and high Faraday rotation are among the necessary criteria for successful operation.

  11. Yttrium Iron Garnet Thick Films Formed by the Aerosol Deposition Method for Microwave Inductors

    NASA Astrophysics Data System (ADS)

    Johnson, Scooter; Newman, Harvey; Glaser, E. R.; Cheng, Shu-Fan; Tadjer, Marko; Kub, Fritz; Eddy, Charles, Jr.

    2014-03-01

    We have employed the aerosol deposition method (ADM) to direct-write 40 μm-thick polycrystalline films of yttrium iron garnet (YIG, Y3Fe5O12) at room temperature onto patterned gold inductors on sapphire substrates at a deposition rate of 1-3 μm/min as a first step toward integration into microwave magnetic circuits. A challenge to integrating magnetic films into current semiconductor technology is the high-temperature regime (900-1400°C) at which conventional ferrite preparation takes place. The ability of the ADM to form dense, thick films at room temperature makes this a promising approach for integrated magnetics where low-temperature deposition and thick films are required. The ADM YIG film has an rms roughness of 3-4 μm, is comprised of nano-crystalline grains with a density 50% of the theoretical value. XRD patterns of the as-deposited film and starting powder indicate a polycrystalline single-phase film. In-plane VSM and FMR measurements reveal a saturation of 22 emu/g, coercivity of 27 Oe, and linewidth of 360 Oe. Early measurements of air-filled and YIG-filled gold inductors between 0.01-10 GHz indicate an improved inductance of nearly a factor of 2 at low frequency. At higher frequency, resonance effects diminish this improvement. This work is sponsored by the Office of Naval Research under program number N0001413WX20845 (Dr. Daniel Green, Program Manager).

  12. Preparing magnetic yttrium iron garnet nanodot arrays by ultrathin anodic alumina template on silicon substrate

    SciTech Connect

    Zheng, Hui; Han, Mangui Deng, Longjiang; Zheng, Liang; Zheng, Peng; Qin, Huibin; Wu, Qiong

    2015-08-10

    Ultrahigh density periodically ordered magnetic yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) nanodot arrays have been prepared by pulsed laser deposition through an ultrathin alumina mask (UTAM). UTAM having periodically ordered circularly shaped holes with 350 nm in diameter, 450 nm in inter-pore distance, and 700 nm in height has been prepared on silicon substrate. Furthermore, the microstructure and magnetic properties of YIG nanodot arrays have been characterized. Nanodot arrays with a sharp distribution in diameter centered at 340 nm with standard deviation of 10 nm have been fabricated. Moreover, typical hysteresis loops and ferromagnetic resonance spectra in in-plane and out-of-plane revealed that this unique structure greatly influences the magnetics properties of YIG. First, coercivity of YIG nanodot arrays in in-plane was increased about from 15 Oe of YIG films to 500 Oe. Then, the degree of uniformity about nanodot height decided that two or more resonance peaks in out-of-plane were detected in the spectra. The peak-to-peak linewidth values were about 94 Oe and 40 Oe in the parallel and perpendicular directions, respectively, which indicated that the values were larger by the two-magnon scattering. Consequently, this pattering method creates opportunities for studying physics in oxide nanomagnets and may be applied in spin-wave devices.

  13. Electronic structure and thermodynamic stability of uranium-doped yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Rák, Zs; Ewing, R. C.; Becker, U.

    2013-12-01

    The electronic and thermodynamic properties of yttrium iron garnet (Y3Fe5O12, YIG), as a possible uranium-bearing phase, have been investigated using first-principles and semi-empirical methods. The electronic structures of pure and U-doped YIG were calculated and compared in order to obtain a fundamental understanding of the incorporation mechanism and stability of U in a YIG matrix. Uranium at the A-site is in 4 + oxidation state, acting as a single donor and introducing a localized defect state in the band gap. The ionic relaxations show U at the A-site is an off-center impurity. At the B-site, uranium is in 5 + oxidation state giving rise to two localized defect states in the middle of the band gap. At thermodynamic equilibrium the incorporation of U is limited by (i) the relatively narrow stability domain of the host YIG and (ii) the precipitation of uranium oxides as secondary phases. Under Y-rich growth conditions, YIG is unstable with respect to competing phases such as the iron oxides, Y2O3 and YFeO3. Under O-rich conditions, the incorporation U is obstructed by the formation of uranium-oxide precipitates. Under Fe-rich growth conditions, the formation energies of UY (U at the A-site) and UFe (U at the B-site) become negative for 0 ≤ EF ≤ 0.62 eV and 0 ≤ EF ≤ 0.77 eV, respectively, indicating that U might be incorporated in p-type YIG.

  14. Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization

    SciTech Connect

    Onbasli, M. C. Kim, D. H.; Ross, C. A.; Kehlberger, A.; Jakob, G.; Kläui, M.; Chumak, A. V.; Hillebrands, B.

    2014-10-01

    Yttrium iron garnet (YIG, Y {sub 3}Fe{sub 5}O{sub 12}) films have been epitaxially grown on Gadolinium Gallium Garnet (GGG, Gd{sub 3}Ga{sub 5}O{sub 12}) substrates with (100) orientation using pulsed laser deposition. The films were single-phase, epitaxial with the GGG substrate, and the root-mean-square surface roughness varied between 0.14 nm and 0.2 nm. Films with thicknesses ranging from 17 to 200 nm exhibited low coercivity (<2 Oe), near-bulk room temperature saturation moments (∼135 emu cm{sup −3}), in-plane easy axis, and damping parameters as low as 2.2 × 10{sup −4}. These high quality YIG thin films are useful in the investigation of the origins of novel magnetic phenomena and magnetization dynamics.

  15. Low-relaxation spin waves in laser-molecular-beam epitaxy grown nanosized yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Lutsev, L. V.; Korovin, A. M.; Bursian, V. E.; Gastev, S. V.; Fedorov, V. V.; Suturin, S. M.; Sokolov, N. S.

    2016-05-01

    Synthesis of nanosized yttrium iron garnet (Y3Fe5O12, YIG) films followed by the study of ferromagnetic resonance (FMR) and spin wave propagation in these films is reported. The YIG films were grown on gadolinium gallium garnet substrates by laser molecular beam epitaxy. It has been shown that spin waves propagating in YIG deposited at 700 °C have low damping. At the frequency of 3.29 GHz, the spin-wave damping parameter is less than 3.6 × 10-5. Magnetic inhomogeneities of the YIG films give the main contribution to the FMR linewidth. The contribution of the relaxation processes to the FMR linewidth is as low as 1.2%.

  16. Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films

    NASA Astrophysics Data System (ADS)

    Vertruyen, B.; Cloots, R.; Abell, J. S.; Jackson, T. J.; da Silva, R. C.; Popova, E.; Keller, N.

    2008-09-01

    We have studied the influence of the stoichiometry on the structural, magnetic, and magneto-optical properties of bismuth iron garnet (Bi3Fe5O12) thin films grown by pulsed laser deposition. Films with different stoichiometries have been obtained by varying the Bi/Fe ratio of the target and the oxygen pressure during deposition. Stoichiometry variations influence the Curie temperature TC by tuning the (Fe)-O-[Fe] geometry: TC increases when the lattice parameter decreases, contrary to what happens in the case of stoichiometric rare-earth iron garnets. The thermal variation of the magnetization, the Faraday rotation, and the Faraday ellipticity have been analyzed in the frame of the Néel two-sublattice magnetization model giving energies of -48K (4.1 meV), -29K (2.5 meV), and 84 K (7.3 meV) for the three magnetic exchange integrals jaa , jdd , and jad , respectively. Magneto-optical spectroscopy linked to compositional analysis by Rutherford backscattering spectroscopy shows that Bi and/or Fe deficiencies also affect the spectral variation (between 1.77 and 3.1 eV). Our results suggest that bismuth deficiency has an effect on the magneto-optical response of the tetrahedral Fe sublattice, whereas small iron deficiencies affect predominantly the magneto-optical response of the octahedral sublattice.

  17. Spin-wave band-pass filters based on yttrium iron garnet films for tunable microwave photonic oscillators

    NASA Astrophysics Data System (ADS)

    Ustinov, A. B.; Drozdovskii, A. V.; Nikitin, A. A.; Kalinikos, B. A.

    2015-12-01

    The paper reports on development of tunable band-pass microwave filters for microwave photonic generators. The filters were fabricated with the use of epitaxial yttrium iron garnet films. Principle of operation of the filters was based on excitation, propagation, and reception of spin waves. In order to obtain narrow pass band, the filtering properties of excitation and reception antennas were exploited. The filters demonstrated insertion losses of 2-3 dB, bandwidth of 25-35 MHz, and tuning range of up to 1.5 GHz in the range 3-7 GHz.

  18. An antidot array as an edge for total non-reflection of spin waves in yttrium iron garnet films

    SciTech Connect

    Gieniusz, R. Guzowska, U.; Maziewski, A.; Bessonov, V. D.; Stognii, A. I.

    2014-02-24

    An array of antidots has been used as an edge to create the phenomenon of total non-reflection of spin waves in yttrium iron garnet films. At the critical angle between the line of antidots and the magnetic field, we observe a high-intensity beam of spin waves moving along the line of antidots. The properties of these waves are investigated experimentally by Brillouin light scattering spectroscopy. The conditions required for the occurrence of this phenomenon based on an analysis of the properties of the isofrequency dependencies are presented. The numerical simulations are in good agreement with those of the experimental measurements.

  19. Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range

    SciTech Connect

    Tsutaoka, Takanori Fukuyama, Koki; Kinoshita, Hideaki; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2013-12-23

    The relative complex permittivity and permeability spectra of the coagulated copper and yttrium iron garnet (Cu/YIG) hybrid granular composite materials have been studied in the microwave range. The insulator to metal transition was observed at the percolation threshold of Cu particle content (φ{sub Cu} = 16.0 vol. %) in the electrical conductivity. In the percolation threshold, the low frequency plasmonic state caused by the metallic Cu particle networks was observed. The percolated Cu/YIG granular composites show simultaneous negative permittivity and permeability spectra under external magnetic fields.

  20. Laser MBE-grown yttrium iron garnet films on GaN: characterization of the crystal structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Kaveev, A. K.; Bursian, V. E.; Gastev, S. V.; Krichevtsov, B. B.; Suturin, S. M.; Volkov, M. P.; Sokolov, N. S.

    2016-07-01

    Yttrium iron garnet (YIG) films were grown on GaN substrates using the laser molecular beam epitaxy method. X-ray diffraction data showed polycrystalline YIG layers without additional structural modifications. The magnetic properties of the YIG films were studied at room temperature with the aid of a vibration sample magnetometer, the magneto-optical Kerr effect and ferromagnetic resonance methods. ‘Easy-plane’-type magnetic anisotropy was found in the films. The gyromagnetic ratio and 4 πMS value were calculated.

  1. Iron site populations from Mössbauer spectroscopy in Ti-bearing garnets from Mt Vulture (Italy)

    NASA Astrophysics Data System (ADS)

    Ortalli, I.; Pedrazzi, G.; Schingaro, E.; Scordari, F.

    1994-12-01

    The present work concerns the determination of the cation site populations and crystal chemical formulae of some Ti-rich silicate garnets. The samples come from Mt. Vulture, a volcanic complex located on the east side of the Lucania Apennines (south Italy). Mössbauer spectroscopy (MS) has been used in order to obtain the iron site occupancies. Two different models for interpreting the Fe2+ peak positions in the Mössbauer spectra are compared, and some methodological aspects are discussed. The derived iron distributions have then been combined with the data obtained by electron probe microanalysis (EPMA) and single-crystal X-ray diffraction analysis (XRD) to obtain consistent crystal chemical formulae for these compounds.

  2. Fabrication and characterization of Bismuth-Cerium composite iron garnet epitaxial films for magneto optical applications

    SciTech Connect

    Chandra Sekhar, M.; Singh, Mahi R.

    2012-10-15

    The Bi{sub x}Ce{sub 3-x}Fe{sub 5}O{sub 12} (x = 0.8) epitaxial films of high quality were grown by means of pulsed laser deposition on paramagnetic substrates of Gadolinium Gallium Garnet. We study the modifications of substitutions in the parent garnet Y{sub 3}Fe{sub 5}O{sub 12} that produces a higher magneto-optical response at communication wavelengths. These films displayed a strong in plane textures which are treated in argon as well as reduced atmosphere conditions. The elemental constituents of these films were confirmed by energy dispersive-X ray analysis, elastic recoil detection system, Rutherford backscattering spectroscopy, and X-ray photoelectron spectroscopy measurements. The transmittance spectra were measured and found these films exhibit good transmittance values. The transmittance-spectra were fitted with the theoretical model and the optical constants such as refractive index and absorption edge were evaluated. The highest (negative) Faraday rotation was found for these films treated in the environment of Ar + H{sub 2}. A density matrix theory has been developed for the Faraday rotation and a good agreement between the theory and experiment is found. These epitaxial garnet films can be used in a wide range of frequencies from visible to infrared spectra making them ideal for many magneto optical applications. Therefore, these films may overcome many issues in fabricating all optical isolators which is the viable solution for integrated photonics.

  3. Preparation and structural and magnetic characterization of yttrium-iron garnets by sol-gel techniques and microemulsions

    NASA Astrophysics Data System (ADS)

    Rodriguez, Paz Vaqueiro

    Yttrium iron garnet (YIG) has been synthesized by five different techniques. First, the garnet was prepared by solid-state reaction; furthermore the material was prepared by two sol-gel techniques: the citrate gel method and the malonate gel method, and by two techniques in microemulsion: sol-gel in microemulsion and coprecipitation in microemulsion. The properties of the material as obtained by solid-state reaction are those typical of the bulk material. By the two sol-gel techniques one obtain a fine divided material, composed of small particles. Depending on the annealing time and temperature, the mean particle size of the particles range from 30 to 500 nm. The lattice parameter of the material synthesized by sol-gel techniques is larger than that of the bulk material, and a lattice expansion occurs when the mean crystallite size decreases. The magnetic properties of the nanoparticles depend also on the mean particle size. The coercive field depends on the particle size, and at room temperature a maximum value occurs for a particle size around 150 nm. The saturation magnetization of the material decreases with the mean particle size, due to the existence of a noncollinear spin arrangement at the surface of the particles. Using microemulsion as a reaction medium, we hoped to improve the control on the particle size and on the particle size distribution. However, we did not obtain a material with a good quality (pure material and with a short particle size distribution).

  4. Nonreciprocity of spin waves in magnonic crystals created by surface acoustic waves in structures with yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Kryshtal, R. G.; Medved, A. V.

    2015-12-01

    Experimental results of investigations of nonreciprocity for surface magnetostatic spin waves (SMSW) in the magnonic crystal created by surface acoustic waves (SAW) in yttrium iron garnet films on a gallium gadolinium garnet substrate as without metallization and with aluminum films with different electrical conductivities (thicknesses) are presented. In structures without metallization, the frequency of magnonic gaps is dependent on mutual directions of propagation of the SAW and SMSW, showing nonreciprocal properties for SMSW in SAW - magnonic crystals even with the symmetrical dispersion characteristic. In metalized SAW - magnonic crystals the shift of the magnonic band gaps frequencies at the inversion of the biasing magnetic field was observed. The frequencies of magnonic band gaps as functions of SAW frequency are presented. Measured dependencies, showing the decrease of magnonic gaps frequency and the expansion of the magnonic band gap width with the decreasing of the metal film conductivity are given. Such nonreciprocal properties of the SAW - magnonic crystals are promising for signal processing in the GHz range.

  5. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    NASA Astrophysics Data System (ADS)

    Sokolov, N. S.; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Maksimova, K. Yu.; Grunin, A. I.; Bursian, V. E.; Lutsev, L. V.; Tabuchi, M.

    2016-01-01

    Pulsed laser deposition has been used to grow thin (10-84 nm) epitaxial layers of Yttrium Iron Garnet Y3Fe5O12 (YIG) on (111)-oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.

  6. Reflection and Transmission Coefficient of Yttrium Iron Garnet Filled Polyvinylidene Fluoride Composite Using Rectangular Waveguide at Microwave Frequencies

    PubMed Central

    Soleimani, Hassan; Abbas, Zulkifly; Yahya, Noorhana; Shameli, Kamyar; Soleimani, Hojjatollah; Shabanzadeh, Parvaneh

    2012-01-01

    The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer. PMID:22942718

  7. Spin-Current to Charge-Current Conversion and Magnetoresistance in a Hybrid Structure of Graphene and Yttrium Iron Garnet

    NASA Astrophysics Data System (ADS)

    Mendes, J. B. S.; Alves Santos, O.; Meireles, L. M.; Lacerda, R. G.; Vilela-Leão, L. H.; Machado, F. L. A.; Rodríguez-Suárez, R. L.; Azevedo, A.; Rezende, S. M.

    2015-11-01

    The use of graphene in spintronic devices depends, among other things, on its ability to convert a spin excitation into an electric charge signal, a phenomenon that requires a spin-orbit coupling (SOC). Here we report the observation of two effects that show the existence of SOC in large-area CVD grown single-layer graphene deposited on a single crystal film of the ferrimagnetic insulator yttrium iron garnet (YIG). The first is a magnetoresistance of graphene induced by the magnetic proximity effect with YIG. The second is the detection of a dc voltage along the graphene layer resulting from the conversion of the spin current generated by spin pumping from microwave driven ferromagnetic resonance into a charge current, which is attributed to the inverse Rashba-Edelstein effect.

  8. Brillouin light scattering study of transverse mode coupling in confined yttrium iron garnet/barium strontium titanate multiferroic

    SciTech Connect

    Sadovnikov, A. V. Nikitov, S. A.; Beginin, E. N.; Bublikov, K. V.; Grishin, S. V.; Sheshukova, S. E.; Sharaevskii, Yu. P.

    2015-11-28

    Using the space-resolved Brillouin light scattering spectroscopy we study the transformation of dynamic magnetization patterns in a bilayer multiferroic structure. We show that in the comparison with a single yttrium iron garnet (YIG) film magnetization distribution is transformed in the bilayer structure due to the coupling of waves propagating both in an YIG film (magnetic layer) and in a barium strontium titanate slab (ferroelectric layer). We present a simple electrodynamic model using the numerical finite element method to show the transformation of eigenmode spectrum of confined multiferroic. In particular, we demonstrate that the control over the dynamic magnetization and the transformation of spatial profiles of transverse modes in magnetic film of the bilayer structure can be performed by the tuning of the wavevectors of transverse modes. The studied confined multiferroic stripe can be utilized for fabrication of integrated dual tunable functional devices for magnonic applications.

  9. Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin-orbit torque

    NASA Astrophysics Data System (ADS)

    Collet, M.; de Milly, X.; D'Allivy Kelly, O.; Naletov, V. V.; Bernard, R.; Bortolotti, P.; Ben Youssef, J.; Demidov, V. E.; Demokritov, S. O.; Prieto, J. L.; Muñoz, M.; Cros, V.; Anane, A.; de Loubens, G.; Klein, O.

    2016-01-01

    In recent years, spin-orbit effects have been widely used to produce and detect spin currents in spintronic devices. The peculiar symmetry of the spin Hall effect allows creation of a spin accumulation at the interface between a metal with strong spin-orbit interaction and a magnetic insulator, which can lead to a net pure spin current flowing from the metal into the insulator. This spin current applies a torque on the magnetization, which can eventually be driven into steady motion. Tailoring this experiment on extended films has proven to be elusive, probably due to mode competition. This requires the reduction of both the thickness and lateral size to reach full damping compensation. Here we show clear evidence of coherent spin-orbit torque-induced auto-oscillation in micron-sized yttrium iron garnet discs of thickness 20 nm. Our results emphasize the key role of quasi-degenerate spin-wave modes, which increase the threshold current.

  10. Thermal properties of magnons and the spin Seebeck effect in yttrium iron garnet/normal metal hybrid structures

    NASA Astrophysics Data System (ADS)

    Rezende, S. M.; Rodríguez-Suárez, R. L.; Lopez Ortiz, J. C.; Azevedo, A.

    2014-04-01

    In the study of the spin Seebeck effect (SSE) in structures with a ferromagnetic insulator (FMI) in contact with a normal metal it is important to know the distributions of the temperatures of the magnon, phonon, and electron systems. Studies of the SSE in yttrium iron garnet (YIG) have relied on the thermal properties of magnons in YIG calculated with expressions valid for low temperatures. Here we present a calculation of the magnon specific heat and thermal conductivity in YIG and show that the values at room temperature are very discrepant from numbers used in the literature. With our values we calculate the temperature profiles of the magnon and phonon systems in a FMI subject to a temperature gradient in the configurations used to study the transverse and longitudinal SSE. In both cases the results are quite different from those obtained in previous studies.

  11. Tuning of the spin pumping in yttrium iron garnet/Au bilayer system by fast thermal treatment

    SciTech Connect

    Jin, Lichuan E-mail: hwzhang@uestc.edu.cn; Zhang, Huaiwu E-mail: hwzhang@uestc.edu.cn; Yang, Qinghui; Tang, Xiaoli; Zhong, Zhiyong; Zhang, Dainan; Xiao, John Q.

    2014-05-07

    In this Letter, we investigated the influence of the fast thermal treatment on the spin pumping in ferromagnetic insulator yttrium iron garnet (YIG)/normal metal Au bilayer system. The YIG/Au bilayer thin films were treated by fast annealing process with different temperatures from 0 to 800 °C. The spin pumping was studied using ferromagnetic resonance. The surface evolution was investigated using a high resolution scanning microscopy and an atomic force microscopy. A strong thermal related spin pumping in YIG/Au bilayer system has been revealed. It was found that the spin pumping process can be enhanced by using fast thermal treatment due to the thermal modifications of the Au surface. The effective spin-mixing conductance of the fast thermal treated YIG/Au bilayer has been obtained.

  12. Radiotherapeutic bandage based on electrospun polyacrylonitrile containing holmium-166 iron garnet nanoparticles for the treatment of skin cancer.

    PubMed

    Munaweera, Imalka; Levesque-Bishop, Daniel; Shi, Yi; Di Pasqua, Anthony J; Balkus, Kenneth J

    2014-12-24

    Radiation therapy is used as a primary treatment for inoperable tumors and in patients that cannot or will not undergo surgery. Radioactive holmium-166 ((166)Ho) is a viable candidate for use against skin cancer. Nonradioactive holmium-165 ((165)Ho) iron garnet nanoparticles have been incorporated into a bandage, which, after neutron-activation to (166)Ho, can be applied to a tumor lesion. The (165)Ho iron garnet nanoparticles ((165)HoIG) were synthesized and introduced into polyacrylonitrile (PAN) polymer solutions. The polymer solutions were then electrospun to produce flexible nonwoven bandages, which are stable to neutron-activation. The fiber mats were characterized using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and inductively coupled plasma mass spectrometry. The bandages are stable after neutron-activation at a thermal neutron-flux of approximately 3.5 × 10(12) neutrons/cm(2)·s for at least 4 h and 100 °C. Different amounts of radioactivity can be produced by changing the amount of the (165)HoIG nanoparticles inside the bandage and the duration of neutron-activation, which is important for different stages of skin cancer. Furthermore, the radioactive bandage can be easily manipulated to irradiate only the tumor site by cutting the bandage into specific shapes and sizes that cover the tumor prior to neutron-activation. Thus, exposure of healthy cells to high energy β-particles can be avoided. Moreover, there is no leakage of radioactive material after neutron activation, which is critical for safe handling by healthcare professionals treating skin cancer patients. PMID:25396281

  13. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2001-01-01

    A general overview of the industrial garnet industry is provided. About 20 percent of global industrial garnet production takes place in the U.S. During 2000, an estimated 300 kt of industrial garnets were produced worldwide. The U.S. is the world's largest consumer of industrial garnet, consuming 56.9 kt in 2000.

  14. Electrically and magnetically tunable phase shifters based on a barium strontium titanate-yttrium iron garnet layered structure

    NASA Astrophysics Data System (ADS)

    Leach, J. H.; Liu, H.; Avrutin, V.; Rowe, E.; Özgür, Ü.; Morkoç, H.; Song, Y.-Y.; Wu, M.

    2010-09-01

    We report on the tuning of permittivity and permeability of a ferroelectric/ferromagnetic bilayer structure which can be used as a microwave phase shifter with two degrees of tuning freedom. The structure was prepared by the growth of a yttrium iron garnet (YIG) layer on a gadolinium gallium garnet substrate by liquid phase epitaxy, the growth of a barium strontium titanate (BST) layer on the YIG layer through pulsed laser deposition, and then the fabrication of a coplanar waveguide on the top of BST through e-beam evaporation and trilayer liftoff techniques. The phase shifters exhibit a differential phase shift of 38°/cm at 6 GHz through permittivity tuning under an applied electric field of ˜75 kV/cm and a static magnetic field of 1700 Oe. By tuning the permeability through the applied magnetic field we increase the differential phase shift to 52°/cm and simultaneously obtain a better match to the zero applied electric field condition, resulting in an improvement in the return loss from 22.4 to 24.9 dB. Additionally, we demonstrate the use of a lead magnesium niobate-lead titanate (PMN-PT) layer to tune the permeability of the YIG layer. This tuning relies on the piezoelectric and magnetostrictive effects of PMN-PT and YIG, respectively. Tuning of the ferromagnetic response through strain and magnetostriction as opposed to applied magnetic field can potentially pave the way for low power consumption, continuously and rapidly tunable, impedance matched phase shifters.

  15. Fabrication, characterisation and magneto-optical enhancement of thin-film bismuth gallium:dysprosium iron garnet

    NASA Astrophysics Data System (ADS)

    Teggart, Brian Joseph

    This thesis describes the production of BiGa:Dy Iron garnet thins films by the processes of both pulsed laser deposition and r.f. magnetron sputtering. High quality films with large magneto-optical effects, perpendicular magnetic anisotropy, square hysteresis loops and smooth surfaces with small grain size have been produced by both methods from the same Bi2.3Dy0.8 Fe4.0Ga0.9O12 target. The optimised PLD conditions required to produce films of maximum MO activity onto GGG(111) substrates included a substrate temperature of 590°C and an oxygen pressure of 0.2mbar. Film composition exhibited the same stoichiometry as the target material. The films produced by r.f. magnetron sputtering displayed a low bismuth content, compared to those of the PLD films. Optimised conditions, including a post annealing temperature of 690°C and an argon pressure of 0.04mbar, produced films of composition Bi1.2Dy1.3Fe4.4Ga 1.1O12. Optical and MO characterisation of both types of film, in terms of the intrinsic complex refractive index (n) and Voigt parameter (Q), throughout the visible region, revealed the increased Bi content harvested from the PLD process led to significantly larger optical absorption and MO effects. However, the sputtering technique produced films with superior surface quality, and film uniformity over a larger area. The optical and MO characterisation enabled the design and fabrication of multilayer enhancement structures to maximise the Kerr rotation, whilst minimising the Kerr ellipticity for a given reflectance value at a chosen wavelength. Large MO enhancement proved possible towards higher wavelengths (>500nm) where the absorption of the garnet was low, despite the much lower intrinsic MO activity displayed at these wavelengths.

  16. Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability

    SciTech Connect

    Sung, S.-Y.; Qi Xiaoyuan; Stadler, Bethanie J.H.

    2005-09-19

    Magneto-optical garnets (Y{sub 3}Fe{sub 5}O{sub 12} or YIG) were grown monolithically by a novel reactive radio-frequency sputtering method that used a partial pressure differential to increase sputtering rates. MgO and quartz substrates were used as they are good buffer layers and optical claddings for integration. A wide single-phase field for annealed YIG was found (26.9-43.2 at % Y), and the magnetic properties were measured. The films had refractive indices of 2.1 and out-of-plane Faraday rotations up to 0.2 deg. /{mu}m at 633 nm. The dielectric matrix was used to calculate the difference in the propagation constants of forward and backward traveling light ({delta}{beta}=1.999x10{sup -5})

  17. Canted ferrimagnetism in Ca2+Sc3+ substituted yttrium-iron-garnet

    NASA Astrophysics Data System (ADS)

    Pardavi-Horváth, M.; Thavendrarajah, A.; Wigen, P. E.; DeGasperis, P.

    1988-11-01

    The temperature dependence of the magnetization of Y3-y-zCayLuzFe5-xScxO12 (0.6≤x≤1.2, 0≤y≤0.3, 0≤z≤0.9) epitaxial garnet films was measured from 4.2 K up to the Curie temperature. For x=0.7 and T≥50 K, 4πMs is enhanced by about 10% compared to the magnetization of Sc0.7 YIG. At T<50 K, a reduction of the magnetization, increasing with increasing substitution, was observed for all the measured samples. Agreement between the experimental results and molecular field models was obtained by taking into account the canting of the unsubstituted sublattice, the presence of charge compensating Fe4+ ions, a low-temperature ordering of Fe3+ ions with less than two magnetic nearest neighbors, and assuming a lattice parameter-dependent exchange interaction ratio with d(Jdd/Jad)/da =28 nm.-1 For x=1.2 and T<10 K the magnetization can be influenced by cooling through the Curie point in a magnetic field.

  18. The effect of gallium substitution on the microstructure and magnetic properties of yttrium iron garnet

    SciTech Connect

    Zaini, N. Z. M. Ibrahim, N. B.

    2015-09-25

    Y{sub 3}Fe{sub (5-y)}Ga{sub y}O{sub 12} (y = 0, 0.4, 1.4 and 2,4) thin films were prepared by sol-gel method and annealed for 2h in oxygen. The thin film’s characteristic were studied by an X-ray diffraction (XRD), a field emission scanning electron microscope (FESEM) and a vibration sample magnetometer (VSM). The XRD show that all films have the garnet phase structure. The grain size particles measured using FESEM were between 45.08 nm to 51.58 nm, and the thickness were between 42 nm to 90 nm. The magnetic properties measured using VSM showed that result was shown with hysteresis loop. The magnetization saturation decreased from 144.26 to 2.76 emu/cm{sup 3} with the increasing substitution gallium. The substitution for y = 2.4 was shown the saturation magnetization was very low. The coercivity increased 35 to 75 Oe due the the increasing grain size.

  19. Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers

    NASA Astrophysics Data System (ADS)

    Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing

    2016-03-01

    Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin-orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon. The transmitted signal scales linearly with the driving current without a threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics.

  20. Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers

    DOE PAGESBeta

    Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing

    2016-03-02

    Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon.more » The transmitted signal scales linearly with the driving current without a threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Lastly, our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics.« less

  1. Mean field analysis of the high temperature magnetic properties of terbium iron garnet in strong DC fields

    NASA Astrophysics Data System (ADS)

    Lahoubi, Mahieddine; Wang, Wei

    2015-11-01

    This paper is devoted to the description of the magnetic phase diagrams (MPD) together with a special interest to the determination of more precise values of some reliable parameters at the compensation point, Tcomp=243.5±0.5 K of the terbium iron garnet, Tb3Fe5O12 or TbIG. Using isothermal magnetizations performed on single crystal in strong DC magnetic fields up to 200 kOe applied along the <111>, <110> and <100> directions within the temperature range 128-295 K, field-induced phase transitions between collinear and canted phases are observed in the vicinity of Tcomp at critical fields, Hc2. In comparison with the measurement at zero external magnetic field, the specific heat, Cp(T) at 80 kOe along <111> shows an excess around Tcomp characterized by an anomaly which has a width in the boundaries of the canted phase and a maximum at 252 K, the more accurate value of the critical temperature, TC* of the MPD in the (Hc2-T) plane. Better determinations of the molecular field coefficients which represent the magnetic interactions on the Tb sublattice are obtained by an improved molecular field model based on the saturation effects of the Tb sublattice and the differential susceptibility contribution due to the Fe sublattices to the total magnetic susceptibility of TbIG. The results are discussed in terms of the previous theoretical studies of the MPD predicted for weakly anisotropic ferrimagnets.

  2. Investigation of the unidirectional spin heat conveyer effect in a 200 nm thin Yttrium Iron Garnet film.

    PubMed

    Wid, Olga; Bauer, Jan; Müller, Alexander; Breitenstein, Otwin; Parkin, Stuart S P; Schmidt, Georg

    2016-01-01

    We have investigated the unidirectional spin wave heat conveyer effect in sub-micron thick yttrium iron garnet (YIG) films using lock-in thermography (LIT). Although the effect is small in thin layers this technique allows us to observe asymmetric heat transport by magnons which leads to asymmetric temperature profiles differing by several mK on both sides of the exciting antenna, respectively. Comparison of Damon-Eshbach and backward volume modes shows that the unidirectional heat flow is indeed due to non-reciprocal spin-waves. Because of the finite linewidth, small asymmetries can still be observed when only the uniform mode of ferromagnetic resonance is excited. The latter is of extreme importance for example when measuring the inverse spin-Hall effect because the temperature differences can result in thermovoltages at the contacts. Because of the non-reciprocity these thermovoltages reverse their sign with a reversal of the magnetic field which is typically deemed the signature of the inverse spin-Hall voltage. PMID:27311931

  3. Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers

    PubMed Central

    Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing

    2016-01-01

    Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon. The transmitted signal scales linearly with the driving current without a threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics. PMID:26932316

  4. Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque

    PubMed Central

    Collet, M.; de Milly, X.; d'Allivy Kelly, O.; Naletov, V. V.; Bernard, R.; Bortolotti, P.; Ben Youssef, J.; Demidov, V. E.; Demokritov, S. O.; Prieto, J. L.; Muñoz, M.; Cros, V.; Anane, A.; de Loubens, G.; Klein, O.

    2016-01-01

    In recent years, spin–orbit effects have been widely used to produce and detect spin currents in spintronic devices. The peculiar symmetry of the spin Hall effect allows creation of a spin accumulation at the interface between a metal with strong spin–orbit interaction and a magnetic insulator, which can lead to a net pure spin current flowing from the metal into the insulator. This spin current applies a torque on the magnetization, which can eventually be driven into steady motion. Tailoring this experiment on extended films has proven to be elusive, probably due to mode competition. This requires the reduction of both the thickness and lateral size to reach full damping compensation. Here we show clear evidence of coherent spin–orbit torque-induced auto-oscillation in micron-sized yttrium iron garnet discs of thickness 20 nm. Our results emphasize the key role of quasi-degenerate spin-wave modes, which increase the threshold current. PMID:26815737

  5. Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin-orbit torque.

    PubMed

    Collet, M; de Milly, X; d'Allivy Kelly, O; Naletov, V V; Bernard, R; Bortolotti, P; Ben Youssef, J; Demidov, V E; Demokritov, S O; Prieto, J L; Muñoz, M; Cros, V; Anane, A; de Loubens, G; Klein, O

    2016-01-01

    In recent years, spin-orbit effects have been widely used to produce and detect spin currents in spintronic devices. The peculiar symmetry of the spin Hall effect allows creation of a spin accumulation at the interface between a metal with strong spin-orbit interaction and a magnetic insulator, which can lead to a net pure spin current flowing from the metal into the insulator. This spin current applies a torque on the magnetization, which can eventually be driven into steady motion. Tailoring this experiment on extended films has proven to be elusive, probably due to mode competition. This requires the reduction of both the thickness and lateral size to reach full damping compensation. Here we show clear evidence of coherent spin-orbit torque-induced auto-oscillation in micron-sized yttrium iron garnet discs of thickness 20 nm. Our results emphasize the key role of quasi-degenerate spin-wave modes, which increase the threshold current. PMID:26815737

  6. Indium-substitution and indium-less case effects on structural and magnetic properties of yttrium-iron garnet

    NASA Astrophysics Data System (ADS)

    Nazlan, Rodziah; Hashim, Mansor; Ibrahim, Idza Riati; Idris, Fadzidah Mohd; Ismail, Ismayadi; Ab Rahman, Wan Norailiana Wan; Abdullah, Nor Hapishah; Zulkimi, Muhammad Misbah Muhammad; Mustaffa, Muhammad Syazwan

    2015-10-01

    The effect of indium (In) substitution in the dynamics of structure and ferrimagnetism of yttrium iron garnet (YIG) employing sintering temperature as a temporary agent of composition and structural changes was reported in this study. The nanoparticles of YIG powder samples with various In content (x=0.0-0.4) were prepared via the mechanical alloying (MA) technique. A brief, yet revealing characterization of the samples was carried out via transmission electron microscope, X-ray diffraction, Raman spectroscopy, B-H Hysteresisgraph, and LCR-metre. The X-ray diffraction analysis of the samples prepared via the MA indicates the formation of single phase YIG structure at much lower sintering temperature than that in the conventional ceramic technique. The lattice constant increases as In content increases which obeys Vegard's Law due to the larger In3+ ions replacing the smaller Fe3+ ions. The saturation induction increased reaching about 699.1 G for x=0.3 and decreased with further In substitution. Three stages of ordered magnetism formation were identified which attributed to development of crystallinity and larger grains for magnetic domain accommodation. The Curie temperature shows a decrement in their values with In content due to weakening of superexchange interactions. Raman shifts from 268.1 to 272.2 cm-1 with increasing In content were observed due to stress developed in the YIG crystal structure.

  7. Controlling the relaxation of propagating spin waves in yttrium iron garnet/Pt bilayers with thermal gradients

    NASA Astrophysics Data System (ADS)

    Cunha, R. O.; Padrón-Hernández, E.; Azevedo, A.; Rezende, S. M.

    2013-05-01

    The spin currents generated by thermal gradients through the spin Seebeck effect (SSE) are usually detected by the voltage generated in a normal metal by means of the inverse spin Hall effect. Here, we present a detailed account of an experimental investigation of the action of spin currents due to SSE on the relaxation rate of spin waves. Propagating spin-wave packets with a frequency in the range of 1-2 GHz are launched in film strips of single-crystal yttrium iron garnet, Y3Fe5O12 (YIG) while a thermal gradient is applied across the thickness in the so-called longitudinal SSE configuration. No change in damping is observed in bare YIG films. However, if the YIG film is covered with an ultrathin platinum layer, we observe a striking change in the amplitude of the detected spin-wave pulses. Depending on the sign of the gradient, the spin-wave relaxation rate can be increased or decreased, leading in the latter case to an apparent amplification. The change in the relaxation rate is attributed to the action of a spin current generated in the YIG film by the SSE while the role of the Pt layer is to supply or absorb the flow of spins.

  8. Spin current injection by spin Seebeck and spin pumping effects in yttrium iron garnet/Pt structures

    NASA Astrophysics Data System (ADS)

    da Silva, G. L.; Vilela-Leão, L. H.; Rezende, S. M.; Azevedo, A.

    2012-04-01

    It is reported an investigation of pure spin current injection in Pt strips deposited on yttrium iron garnet (YIG) films by means of the spin pumping (SPE) and spin Seebeck (SSE) effects. Both effects were characterized by measuring the DC voltage created along the Pt strips by means of the inverse spin Hall effect (VISHE). SPE and SSE are simultaneously activated by exciting the ferromagnetic resonance (FMR) of the YIG film at the same time that a temperature gradient is created along the sample length. While the FMR signal is little affected by the temperature gradient, the voltage measured at the Pt strip placed at the lower temperature end exhibits a very challenging behavior. The voltage excited by the FMR uniform mode increases by six times as the temperature difference (ΔT) between the two ends of the YIG slab changes from 0 to 12 K. In contrast the VISHE generated by other magnetostatic spin-wave modes decreases to zero as ΔT varies from 0 to 12 K.

  9. Investigation of the unidirectional spin heat conveyer effect in a 200 nm thin Yttrium Iron Garnet film

    PubMed Central

    Wid, Olga; Bauer, Jan; Müller, Alexander; Breitenstein, Otwin; Parkin, Stuart S. P.; Schmidt, Georg

    2016-01-01

    We have investigated the unidirectional spin wave heat conveyer effect in sub-micron thick yttrium iron garnet (YIG) films using lock-in thermography (LIT). Although the effect is small in thin layers this technique allows us to observe asymmetric heat transport by magnons which leads to asymmetric temperature profiles differing by several mK on both sides of the exciting antenna, respectively. Comparison of Damon-Eshbach and backward volume modes shows that the unidirectional heat flow is indeed due to non-reciprocal spin-waves. Because of the finite linewidth, small asymmetries can still be observed when only the uniform mode of ferromagnetic resonance is excited. The latter is of extreme importance for example when measuring the inverse spin-Hall effect because the temperature differences can result in thermovoltages at the contacts. Because of the non-reciprocity these thermovoltages reverse their sign with a reversal of the magnetic field which is typically deemed the signature of the inverse spin-Hall voltage. PMID:27311931

  10. Significant reduction in spin pumping efficiency in a platinum/yttrium iron garnet bilayer at low temperature

    NASA Astrophysics Data System (ADS)

    Shigematsu, Ei; Ando, Yuichiro; Ohshima, Ryo; Dushenko, Sergey; Higuchi, Yukio; Shinjo, Teruya; Jürgen von Bardeleben, Hans; Shiraishi, Masashi

    2016-05-01

    The temperature evolution of a direct-current electromotive force (EMF) generated by spin pumping and the inverse-spin Hall effect in a platinum (Pt)/yttrium iron garnet (YIG) bilayer was investigated down to 80 K. The magnitude of the EMF decreased significantly with decreasing temperature and disappeared at approximately 80 K. 40-nm-thick YIG films fabricated by a metal organic decomposition method exhibited single-peak ferrimagnetic resonance (FMR) spectra without any spin wave resonance, which allowed us to precisely analyze the FMR spectra. We determined that the temperature evolution of the Gilbert damping constant is the dominant factor in the temperature dependence of the EMF. The comparison of the FMR linewidth between the X- and Q-bands revealed that an increase in Gilbert damping constant at low temperatures is not due to the enhancement of the spin pumping efficiency but due to an additional spin relaxation in the YIG film itself, which reduces the precession angle of the magnetization under the FMR conditions.

  11. Investigation of the unidirectional spin heat conveyer effect in a 200 nm thin Yttrium Iron Garnet film

    NASA Astrophysics Data System (ADS)

    Wid, Olga; Bauer, Jan; Müller, Alexander; Breitenstein, Otwin; Parkin, Stuart S. P.; Schmidt, Georg

    2016-06-01

    We have investigated the unidirectional spin wave heat conveyer effect in sub-micron thick yttrium iron garnet (YIG) films using lock-in thermography (LIT). Although the effect is small in thin layers this technique allows us to observe asymmetric heat transport by magnons which leads to asymmetric temperature profiles differing by several mK on both sides of the exciting antenna, respectively. Comparison of Damon-Eshbach and backward volume modes shows that the unidirectional heat flow is indeed due to non-reciprocal spin-waves. Because of the finite linewidth, small asymmetries can still be observed when only the uniform mode of ferromagnetic resonance is excited. The latter is of extreme importance for example when measuring the inverse spin-Hall effect because the temperature differences can result in thermovoltages at the contacts. Because of the non-reciprocity these thermovoltages reverse their sign with a reversal of the magnetic field which is typically deemed the signature of the inverse spin-Hall voltage.

  12. Growth and characterization of Bi, Pr- and Bi, Sc-substituted lutetium iron garnet films with planar magnetization for magneto-optic visualization

    NASA Astrophysics Data System (ADS)

    Syvorotka, Igor M.; Ubizskii, Sergii B.; Kucera, Miroslav; Kuhn, Marcus; Vértesy, Zofia

    2001-04-01

    The series of epitaxial garnet films of general composition Lu3-x-yBixPryFe5- zAlzO12 and Lu3-xBixFe5-y- zScyAlzO12 were grown on (111) oriented GGG (gadolinium gallium garnet) substrates by the liquid phase epitaxy. Their magnetic and magneto-optical properties were studied using both experimental techniques and modelling. All obtained films demonstrated generally a magnetic anisotropy close to the easy-plane type. The Pr-containing films exhibited large negative uniaxial anisotropy and significant cubic anisotropy. The latter causes a distortion of magnetization curves in samples magnetized in a direction normal to the film plane, especially at low temperatures. The large negative uniaxial anisotropy of Pr-substituted iron garnets allows us to increase the saturation field up to 0.5 T at liquid nitrogen temperature. The Sc-doped films displayed small positive uniaxial anisotropy that did not exceed the shape anisotropy. The magnetization curves of these films did not show any distortion due to the cubic anisotropy. The suitability of Pr- and Sc-doped garnets that meet the requirements for indicator layers for magneto-optic visualization at liquid nitrogen temperature is discussed.

  13. Heat capacities, order-disorder transitions, and thermodynamic properties of rare-earth orthoferrites and rare-earth iron garnets

    SciTech Connect

    Parida, S.C. Rakshit, S.K.; Singh, Ziley

    2008-01-15

    Rare-earth orthoferrites, RFeO{sub 3}, and rare-earth iron garnets (RIGs) R{sub 3}Fe{sub 5}O{sub 12} (R=rare-earth elements) were prepared by citrate-nitrate gel combustion method and characterized by X-ray diffraction method. Isobaric molar heat capacities of these oxides were determined by using differential scanning calorimetry from 130 to 860 K. Order-disorder transition temperatures were determined from the heat capacity measurements. The Neel temperatures (T{sub N}) due to antiferromagentic to paramagnetic transitions in orthoferrites and the Curie temperatures (T{sub C}) due to ferrimagnetic to paramagnetic transitions in garnets were determined from the heat capacity data. Both T{sub N} and T{sub C} systematically decrease with increasing atomic number of R across the series. Lattice, electronic and magnetic contributions to the total heat capacity were calculated. Debye temperatures as a function of absolute temperature were calculated for these compounds. Thermodynamic functions like C{sub p,m}{sup o}, S{sub m}{sup o}, H{sup o}, G{sup o}, (H{sub T}{sup o}-H{sub 0}{sup o}), (H{sub T}{sup o}-H{sub 298.15K}{sup o}), -(G{sub T}{sup o}-H{sub 298.15K}{sup o})/T, {delta}{sub f}H{sub m}{sup o}, and {delta}{sub f}G{sub m}{sup o} have been generated for the compounds RFeO{sub 3}(s) and R{sub 3}Fe{sub 5}O{sub 12}(s) based on the experimental data obtained in this study and the available data in the literature. - Graphical abstract: Plot of molar heat capacities (C{sub p,m}{sup o}) of R{sub 3}Fe{sub 5}O{sub 12}(s) (R=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) against temperature (T). The inset shows the magnified portion of the heat capacity plot near the transition region indicating nearly same values of Curie temperatures for different R{sub 3}Fe{sub 5}O{sub 12}(s)

  14. Investigation of nanostructural, optical and magnetic properties of cerium-substituted yttrium iron garnet films prepared by a sol gel method

    NASA Astrophysics Data System (ADS)

    Ibrahim, N. B.; Arsad, A. Z.

    2016-03-01

    Cerium substituted yttrium iron garnet films with a chemical formula Y3-xCexFe5O12 (x=0.0-0.3) have been successfully prepared by a sol-gel method. The microstructure analysis showed that all films exist in the cubic garnet structure. The lattice parameter and grain size increased with the increment of Ce concentrations up to 0.25, indicating the complete Ce substitution in yttrium site. For a film with x=0.3, the lattice parameter remained unchanged and grain size decreased. The film thickness increased and surface roughness varied with the increment of Ce content. All of the films have high optical transparency (above 80%). The Ce content reduced the saturation magnetization of the film up to a certain limit where above this limit the value increased. Overall, the findings showed that the films with x≤0.25 exhibited very excellent properties, hence they are promising materials for magneto-optical devices.

  15. Garnet polycrystals

    NASA Astrophysics Data System (ADS)

    Whitney, Donna; Seaton, Nca

    2010-05-01

    Electron backscattered diffraction (EBSD) studies have revealed complex microstructures in garnet, including features developed during crystal growth and/or deformation. New data show that garnets commonly grow as clusters of grains (polycrystals) juxtaposed by high-angle boundaries. Garnet polycrystals may form at any stage of metamorphism following nucleation of garnet: polycrystals may form early as a result of close spacing of nuclei, or later via impingement of larger grains. EBSD analysis of garnets in metamorphic rocks from 9 localities in the US, Canada, Turkey, Iran, and Colombia detected polycrystals at every site. Evidence for internal deformation of garnet was observed in only one sample, a calc-pelite dominated by plagioclase; all other samples are mica schists. Three sites displayed garnet shape-preferred orientation, but none had a crystallographic preferred orientation of garnet. In some samples, polycrystals comprise ~20-30% of garnets analyzed. Some early-coalescing polycrystals exhibit growth zoning concentric about the geometric center of the polycrystal; i.e., zoning is unrelated to the location of internal grain boundaries. In other polycrystals, Fe-Mn-Mg zoning has a different pattern than that of Ca. Some polycrystals are characterized by high-angle misorientation boundaries in special orientations, indicating that these polycrystals are not random clusters of grains. Special boundaries were detected in 0-60% of garnets analyzed. Polycrystal formation may relate to the presence of chemical or textural heterogeneities (e.g. precursor phases, deformation features) that allowed close spacing of garnet nuclei. It is important to recognize polycrystals because internal grain boundaries may affect diffusion pathways and length scales and may facilitate communication of garnet interiors with matrix phases, thereby influencing reaction history and garnet composition and zoning.

  16. Data consistencies of swift heavy ion induced damage creation in yttrium iron garnet analyzed by different techniques

    NASA Astrophysics Data System (ADS)

    Meftah, A.; Benhacine, H.; Benyagoub, A.; Grob, J. J.; Izerrouken, M.; Kadid, S.; Khalfaoui, N.; Stoquert, J. P.; Toulemonde, M.; Trautmann, C.

    2016-01-01

    Pronounced swelling is observed when single crystals of yttrium iron garnet Y3Fe5O12 (YIG) are irradiated in the electronic energy loss regime with various swift heavy ions. The out-of-plane swelling was measured by scanning across the border line between an irradiated and a virgin area of the sample surface with the tip of a profilometer. The step height varied between 20 and 600 nm depending on fluence, electronic energy loss and total range of the ions. The step height divided by the ion range as a function of the ion fluence exhibits a linear increase in the initial phase and saturates at high fluences leading to a density decrease of around 1.7%. With complementary channeling-Rutherford-backscattering experiments (c-RBS), the damage fraction and the corresponding damage cross section were extracted and compared to the cross section deduced from swelling measurements. Irradiation effects were also characterized by scanning force microscopy (SFM). A threshold for damage creation as deduced from all the present physical characterizations is 5.5 ± 1.0 keV/nm. The value is in full agreement with previous measurements confirming that swelling and SFM characterizations can provide information concerning the electronic energy loss threshold for track formation. In contrast, track radii deduced from swelling measurements are smaller and radii from SFM are larger than deduced from c-RBS analysis. The results of Y3Fe5O12 of this work are compared with data obtained for other crystalline oxides and for ionic crystals.

  17. Domain self-organization in iron garnet films in pulsed magnetic fields with a frequency between 0.001 and 25 Hz

    NASA Astrophysics Data System (ADS)

    Osadchenko, V. Kh.; Kandaurova, G. S.; Pashko, A. G.

    2007-04-01

    The results of studying processes of self-organization in a domain structure of highly anisotropic iron garnet films with perpendicular anisotropy in an ac magnetic field of a symmetrical meander type (with rectangular pulses with a frequency of 0.001-25 Hz and an amplitude H 0 = 0-70 Oe are reported for the first time. In the frequency range from 0.01 to 25 Hz, there has been observed an anger (excited) state, which is characterized by the formation of a close packing of spiral dynamic domains.

  18. Enhancement of spin wave excitation by spin currents due to thermal gradient and spin pumping in yttrium iron garnet/Pt

    NASA Astrophysics Data System (ADS)

    da Silva, G. L.; Vilela-Leão, L. H.; Rezende, S. M.; Azevedo, A.

    2013-01-01

    We investigate the interplay between spin currents produced by thermal gradients and spin pumping in hybrid yttrium iron garnet/Pt structures (YIG/Pt). By combining a spin pumping experiment with the application of a temperature gradient, we observe the excitation of local spin wave modes at the YIG/Pt interface. Strong enhancement of these modes was observed when the temperature gradient was applied along one direction and attenuation was observed by reversing the temperature gradient. The results provide support for a recent theoretical proposal, in which some spin wave modes are preferentially excited by spin currents traversing a YIG/Pt interface.

  19. The influence of the iron content on the reductive decomposition of A3-xFexAl2Si3O12 garnets (A = Mg, Mn; 0.47 ≤ x ≤ 2.85)

    NASA Astrophysics Data System (ADS)

    Aparicio, Claudia; Filip, Jan; Mashlan, Miroslav; Zboril, Radek

    2014-10-01

    Thermally-induced reductive decomposition of natural iron-bearing garnets of the almandine-pyrope and almandine-spessartine series were studied at temperatures up to 1200 °C (heating rate of 10 °C/min) under atmosphere of forming gas (10% of H2 in N2). Crystallochemical formula of the studied garnet was calculated as VIII( A3-xFex2+)VI( Al , Fe3+)2Si3O12, where the amount of Fe3+ in the octahedral sites is negligible with the exception of pyrope, A = Mg, Mn, and 0.47 ≤ x ≤ 2.85. The observed decomposition temperature, determined from differential scanning calorimetry and thermogravimetry, is greater than 1000 °C in all cases and showed almost linear dependence on the iron content in the dodecahedral sites of the studied garnets, with the exception of garnet with a near-pyrope composition (Prp80Alm20). The initial garnet samples and decomposition products were characterized in details by means of X-ray powder diffraction and 57Fe Mössbauer spectroscopy. We found that all studied garnets have common decomposition products such as metallic iron (in general, rounded particles below 4 μm) and Fe-spinel; the other identified decomposition products depend on starting chemical composition of the garnet: Fe-cordierite, olivine (fayalite or tephroite), cristobalite, pyroxene (enstatite or pigeonite), and anorthite. Anorthite and pigeonite were only present in garnets with Ca in the dodecahedral site. All the identified phases were usually well crystallized.

  20. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2011-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet's angular fractures, relatively high hardness and specific gravity, chemical inertness and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  1. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2012-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet's angular fractures, relatively high hardness and specific gravity, chemical inertness, and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  2. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2010-01-01

    In 2009, U.S. production of crude garnet concentrate for industrial use was estimated to be 56.5 kt (62,300 st), valued at about $8.85 million. This was a 10-percent decrease in quantity compared with 2008 production. Refined garnet material sold or used was 28 kt (31,000 st) valued at $7.96 million.

  3. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2006-01-01

    In 2005, US production of crude garnet concentrate for industrial use was 28.4 kt valued at $3.05 million. Refined garnet material sold or used was 30.4 kt valued at $10 million. For the year, the US was one of the world's leading consumers of industrial garnet. Domestic values for crude concentrates for different applications ranged from about $53 to $120/t. In the short term, excess production capacity, combined with suppliers that vary in quality, grain size and mineral type, will keep prices down.

  4. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2000-01-01

    The state of the global industrial garnet industry in 1999 is discussed. Industrial garnet mined in the U.S., which accounts for approximately one-third of the world's total, is usually a solid-solution of almandine and pyrope. The U.S. is the largest consumer of industrial garnet, using an estimated 47,800 st in 1999 as an abrasive and as a filtration medium in the petroleum industry, filtration plants, aircraft and motor vehicle manufacture, shipbuilding, wood furniture finishing operations, electronic component manufacture, ceramics manufacture, and glass production. Prices for crude concentrates ranged from approximately $50 to $110/st and refined garnet from $50 to $215/st in 1999, depending on type, source, quantity purchased, quality, and application.

  5. Red Shift of Faraday Rotation in Thin Films of Completely Bismuth-Substituted Iron Garnet Bi3Fe5O12

    NASA Astrophysics Data System (ADS)

    Chern, Ming-Yau; Lo, Fang-Yuh; Liu, Da-Ren; Yang, Kuang; Liaw, Juin-Sen

    1999-12-01

    The magnetooptical Faraday rotations of epitaxial films of BixY3-xFe5O12 (Bi:YIG) grown on [111]-oriented gadolinium gallium garnet (GGG) substrates by pulsed laser deposition (PLD) were studied with bismuth content x = 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0. The Faraday rotation angles, θF, of the films were measured by the method of rotating analyzer ellipsometry (RAE) with the photon energy varied from 1.5 to 3.5 eV. It was shown that in addition to the increase of the Faraday rotation with increasing x, the peaks of θF shifted toward the red region as x changed from 1.0 to 1.5. The peak positions of θF for the completely Bi-substituted iron garnet, Bi3Fe5O12 (BIG), were found at 2.4 and 2.8 eV with peak values as large as -23 deg/µm and 44 deg/µm, respectively

  6. Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm

    PubMed Central

    Onbasli, Mehmet C.; Beran, Lukáš; Zahradník, Martin; Kučera, Miroslav; Antoš, Roman; Mistrík, Jan; Dionne, Gerald F.; Veis, Martin; Ross, Caroline A.

    2016-01-01

    Magneto-optical cerium-substituted yttrium iron garnet (Ce:YIG) thin films display Faraday and Kerr rotation (rotation of light polarisation upon transmission and reflection, respectively) as well as a nonreciprocal phase shift due to their non-zero off-diagonal permittivity tensor elements, and also possess low optical absorption in the near-infrared. These properties make Ce:YIG useful in providing nonreciprocal light propagation in integrated photonic circuits, which is essential for accomplishing energy-efficient photonic computation and data transport architectures. In this study, 80 nm-thick Ce:YIG films were grown on Gadolinium Gallium Garnet substrates with (100), (110) and (111) orientations using pulsed laser deposition. The films had bulk-like structural and magnetic quality. Faraday and Kerr spectroscopies along with spectroscopic ellipsometry were used to deduce the complete permittivity tensor of the films in the ultraviolet, visible and near-infrared spectral region, and the magneto-optical figure of merit as a function of wavelength was determined. The samples showed the highest IR Faraday rotation reported for thin films of Ce:YIG, which indicates the importance of this material in development of nonreciprocal photonic devices. PMID:27025269

  7. Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm

    NASA Astrophysics Data System (ADS)

    Onbasli, Mehmet C.; Beran, Lukáš; Zahradník, Martin; Kučera, Miroslav; Antoš, Roman; Mistrík, Jan; Dionne, Gerald F.; Veis, Martin; Ross, Caroline A.

    2016-03-01

    Magneto-optical cerium-substituted yttrium iron garnet (Ce:YIG) thin films display Faraday and Kerr rotation (rotation of light polarisation upon transmission and reflection, respectively) as well as a nonreciprocal phase shift due to their non-zero off-diagonal permittivity tensor elements, and also possess low optical absorption in the near-infrared. These properties make Ce:YIG useful in providing nonreciprocal light propagation in integrated photonic circuits, which is essential for accomplishing energy-efficient photonic computation and data transport architectures. In this study, 80 nm-thick Ce:YIG films were grown on Gadolinium Gallium Garnet substrates with (100), (110) and (111) orientations using pulsed laser deposition. The films had bulk-like structural and magnetic quality. Faraday and Kerr spectroscopies along with spectroscopic ellipsometry were used to deduce the complete permittivity tensor of the films in the ultraviolet, visible and near-infrared spectral region, and the magneto-optical figure of merit as a function of wavelength was determined. The samples showed the highest IR Faraday rotation reported for thin films of Ce:YIG, which indicates the importance of this material in development of nonreciprocal photonic devices.

  8. Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200-1770 nm.

    PubMed

    Onbasli, Mehmet C; Beran, Lukáš; Zahradník, Martin; Kučera, Miroslav; Antoš, Roman; Mistrík, Jan; Dionne, Gerald F; Veis, Martin; Ross, Caroline A

    2016-01-01

    Magneto-optical cerium-substituted yttrium iron garnet (Ce:YIG) thin films display Faraday and Kerr rotation (rotation of light polarisation upon transmission and reflection, respectively) as well as a nonreciprocal phase shift due to their non-zero off-diagonal permittivity tensor elements, and also possess low optical absorption in the near-infrared. These properties make Ce:YIG useful in providing nonreciprocal light propagation in integrated photonic circuits, which is essential for accomplishing energy-efficient photonic computation and data transport architectures. In this study, 80 nm-thick Ce:YIG films were grown on Gadolinium Gallium Garnet substrates with (100), (110) and (111) orientations using pulsed laser deposition. The films had bulk-like structural and magnetic quality. Faraday and Kerr spectroscopies along with spectroscopic ellipsometry were used to deduce the complete permittivity tensor of the films in the ultraviolet, visible and near-infrared spectral region, and the magneto-optical figure of merit as a function of wavelength was determined. The samples showed the highest IR Faraday rotation reported for thin films of Ce:YIG, which indicates the importance of this material in development of nonreciprocal photonic devices. PMID:27025269

  9. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque

    NASA Astrophysics Data System (ADS)

    Evelt, M.; Demidov, V. E.; Bessonov, V.; Demokritov, S. O.; Prieto, J. L.; Muñoz, M.; Ben Youssef, J.; Naletov, V. V.; de Loubens, G.; Klein, O.; Collet, M.; Garcia-Hernandez, K.; Bortolotti, P.; Cros, V.; Anane, A.

    2016-04-01

    We study experimentally with submicrometer spatial resolution the propagation of spin waves in microscopic waveguides based on the nanometer-thick yttrium iron garnet and Pt layers. We demonstrate that by using the spin-orbit torque, the propagation length of the spin waves in such systems can be increased by nearly a factor of 10, which corresponds to the increase in the spin-wave intensity at the output of a 10 μm long transmission line by three orders of magnitude. We also show that, in the regime, where the magnetic damping is completely compensated by the spin-orbit torque, the spin-wave amplification is suppressed by the nonlinear scattering of the coherent spin waves from current-induced excitations.

  10. Active tuning of a microstrip hairpin-line microwave bandpass filter on a polycrystalline yttrium iron garnet substrate using small magnetic fields

    NASA Astrophysics Data System (ADS)

    Gillette, S. M.; Geiler, A. L.; Chen, Z.; Chen, Y.; Arruda, T.; Xie, C.; Wang, L.; Zhu, X.; Liu, M.; Mukerjee, S.; Vittoria, C.; Harris, V. G.

    2011-04-01

    Active magnetic tuning of a microstrip hairpin-line coupled resonator bandpass filter fabricated on a polycrystalline yttrium iron garnet substrate has been demonstrated. The filter exhibits a five-pole Chebyshev response with passband center frequency tunability from 8.3 to 9 GHz under low applied H fields of 50-200 Oe. The instantaneous bandwidth was measured to be approximately 1 GHz. During tuning, passband center frequency insertion loss varies between 1 and 1.4 dB. Good agreement between simulated and measured device performance was demonstrated. Advantages of the proposed filter design include planar geometry, compact size, low insertion loss, and low field tunability. The proposed design approach lends itself to the implementation of a wide range of filter responses, including low pass, high pass, bandpass, and band stop, as well as passband characteristics, including center frequency, fractional bandwidth, passband ripple, out-of-band rejection, etc.

  11. A comparative transport study of Bi{sub 2}Se{sub 3} and Bi{sub 2}Se{sub 3}/yttrium iron garnet

    SciTech Connect

    Jiang, Zilong; Tang, Chi; Shi, Jing; Katmis, Ferhat; Wei, Peng; Moodera, Jagadeesh S.

    2014-06-02

    Bilayers of 20 quintuple layer Bi{sub 2}Se{sub 3} on 30 nm thick yttrium iron garnet (YIG) have been grown with molecular beam epitaxy in conjunction with pulsed laser deposition. The presence of the ferri-magnetic insulator YIG causes additional scattering to the surface states of the Bi{sub 2}Se{sub 3} topological insulator layer, as indicated by the temperature dependence of the resistivity. From the two-channel analysis of the Hall data, we find that the surface contribution in the bilayer samples is greatly reduced. Furthermore, the weak antilocalization effect from the surface states is clearly suppressed due to the presence of the YIG layer.

  12. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2013-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet’s angular fractures, relatively high hardness and specific gravity, chemical inertness and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  13. Enhancement of the electron electric dipole moment in gadolinium garnets

    SciTech Connect

    Mukhamedjanov, T.N.; Dzuba, V.A.; Sushkov, O.P.

    2003-10-01

    Effects caused by the electron electric dipole moment (EDM) in gadolinium garnets are considered. Experimental studies of these effects could improve the current upper limit on the electron EDM by several orders of magnitude. We suggest a consistent theoretical model and perform calculations of observable effects in gadolinium gallium garnet and gadolinium iron garnet. Our calculation accounts for both direct and exchange diagrams.

  14. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2007-01-01

    World production of industrial garnet was about 326 kt in 2006, with the U.S. producing about 11 percent of this total. U.S. consumption, imports, and exports were estimated at 74.3 kt, 52.3 kt, and 13.2 kt, respectively. The most important exporters are Australia, China, and India. Although demand is expected to rise over the next 5 years, prices are expected to remain low in the short term.

  15. 50 MeV, Li3+ - ion irradiation effect on magnetic ordering of Y3+ - substituted yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Sharma, P. U.; Zankat, K. B.; Dolia, S. N.; Modi, K. B.

    2016-05-01

    This communication presents the effect of non-magnetic Y3+ ions substitution for magnetic Fe3+ ions and 50 MeV, Li3+ ion irradiation (fluence: 5 × 1013 ions/cm2) on magnetic ordering and Neel temperature of Y3+xFe5-xO12 (x = 0.0, 0.2, 0.4 and 0.6) garnet system, studied by means of X-ray powder diffractometry and thermal variation of low field (0.5 Oe) ac susceptibility measurements. The un-irradiated compositions exhibit normal ferrimagnetic behavior with decrease in transition temperature (TN) on increasing Y3+-concentration (x). The irradiated counterparts are characterized by tailing effect indicative of non-uniform effect of irradiation and lower value of TN. The results have been discussed based on the weakening of magnetic exchange interactions and cumulative effect of redistribution of cations and fractional creation of localized paramagnetic centers resulting from swift heavy ion irradiation. The Neel temperatures and exchange integrals have been calculated theoretically.

  16. Non-local detection of spin dynamics via spin rectification effect in yttrium iron garnet/SiO{sub 2}/NiFe trilayers near simultaneous ferromagnetic resonance

    SciTech Connect

    Soh, Wee Tee Ong, C. K.; Peng, Bin

    2015-08-15

    The spin rectification effect (SRE), a phenomenon that generates dc voltages from ac microwave fields incident onto a conducting ferromagnet, has attracted widespread attention due to its high sensitivity to ferromagnetic resonance (FMR) as well as its relevance to spintronics. Here, we report the non-local detection of yttrium iron garnet (YIG) spin dynamics by measuring SRE voltages from an adjacent conducting NiFe layer up to 200 nm thick. In particular, we detect, within the NiFe layer, SRE voltages stemming from magnetostatic surface spin waves (MSSWs) of the adjacent bulk YIG which are excited by a shorted coaxial probe. These non-local SRE voltages within the NiFe layer that originates from YIG MSSWs are present even in 200 nm-thick NiFe films with a 50 nm thick SiO{sub 2} spacer between NiFe and YIG, thus strongly ruling out the mechanism of spin-pumping induced inverse spin Hall effect in NiFe as the source of these voltages. This long-range influence of YIG dynamics is suggested to be mediated by dynamic fields generated from YIG spin precession near YIG/NiFe interface, which interacts with NiFe spins near the simultaneous resonance of both spins, to generate a non-local SRE voltage within the NiFe layer.

  17. Determination of the easy axis of magnetization in terbium-yttrium iron garnet Tb1Y2Fe5O12 at low temperatures

    NASA Astrophysics Data System (ADS)

    Lahoubi, Mahieddine; Wang, Wei; Pu, Shengli

    2015-11-01

    Experimental investigations have been carried out on a spherical single crystal of terbium yttrium iron garnet (Tb1Y2Fe5O12) by means of magnetization measurements in strong dc magnetic fields up to 200 kOe applied along the <111>, <110> and <100> crystallographic directions at low temperatures (T<20 K) with a high degree of resolution both in field and temperature. The strong anisotropic magnetic behavior which appears at 4.2 K is due to the competition between <111> and <100> directions to be the easy axis of spontaneous magnetization while the <110> direction remains the more difficult axis. The magnetization measurement at 4.2 K leaving the sample to rotate freely on itself suggests that the easy axis of spontaneous magnetization is along the <100> direction. However, due to the magnetic anisotropy energies associated with both <100> and <111> directions which are close to each other, the phase <111> becomes more stable as soon as the magnetic field exceeds 10 kOe or the temperature is higher than 10 K. The results are compared with previous works.

  18. Non-local detection of spin dynamics via spin rectification effect in yttrium iron garnet/SiO2/NiFe trilayers near simultaneous ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Soh, Wee Tee; Peng, Bin; Ong, C. K.

    2015-08-01

    The spin rectification effect (SRE), a phenomenon that generates dc voltages from ac microwave fields incident onto a conducting ferromagnet, has attracted widespread attention due to its high sensitivity to ferromagnetic resonance (FMR) as well as its relevance to spintronics. Here, we report the non-local detection of yttrium iron garnet (YIG) spin dynamics by measuring SRE voltages from an adjacent conducting NiFe layer up to 200 nm thick. In particular, we detect, within the NiFe layer, SRE voltages stemming from magnetostatic surface spin waves (MSSWs) of the adjacent bulk YIG which are excited by a shorted coaxial probe. These non-local SRE voltages within the NiFe layer that originates from YIG MSSWs are present even in 200 nm-thick NiFe films with a 50 nm thick SiO2 spacer between NiFe and YIG, thus strongly ruling out the mechanism of spin-pumping induced inverse spin Hall effect in NiFe as the source of these voltages. This long-range influence of YIG dynamics is suggested to be mediated by dynamic fields generated from YIG spin precession near YIG/NiFe interface, which interacts with NiFe spins near the simultaneous resonance of both spins, to generate a non-local SRE voltage within the NiFe layer.

  19. Localized excitation of magnetostatic surface spin waves in yttrium iron garnet by shorted coaxial probe detected via spin pumping and rectification effect

    SciTech Connect

    Soh, Wee Tee Ong, C. K.; Peng, Bin

    2015-04-21

    We demonstrate the localized excitation and dc electrical detection of magnetostatic surface spin waves (MSSWs) in yttrium iron garnet (YIG) by a shorted coaxial probe. Thin films of NiFe and Pt are patterned at different regions onto a common bulk YIG substrate. A shorted coaxial probe is used to excite spin precession locally near various patterned regions. The dc voltages across the corresponding regions are recorded. For excitation of the Pt regions, the dc voltage spectra are dominated by the spin pumping of MSSWs from YIG, where various modes can be clearly distinguished. For the NiFe region, it is also found that spin pumping from MSSWs generated in YIG dominated the spectra, indicating that the spin pumped currents are dissipated into charge currents via the inverse Spin Hall effect (ISHE) in NiFe. For all regions, dc signals from YIG MSSWs are observed to be much stronger than the ferromagnetic resonance (FMR) uniform mode, likely due to the nature of the microwave excitation. The results indicate the potential of this probe for microwave imaging via dc detection of spin dynamics in continuous and patterned films.

  20. Effect of grossular on garnet-biotite, Fe Mg exchange reactions: evidence from garnet with mixed growth and diffusion zoning

    NASA Astrophysics Data System (ADS)

    Alcock, J.

    1996-07-01

    Garnets that exhibit mixed growth and diffusion zoning are used to evaluate the effect of grossular content on garnet Fe Mg exchange reactions. These garnets from the uppermost amphibolite-facies to granulite-facies gneiss of the Wissahickon Group, southeastern Pennsylvania, show variation in grossular content (0.035< X Ca<0.14) but nearly constant Mg? ( X Mg/( X Mg+ X Fe) and X Mn through the interior indicating re-equilibration of garnet and matrix minerals with respect to iron, magnesium, and manganese. Mg? is not correlated with calcium content, evidence that the effect of calcium on garnet Fe Mg exchange reactions is small or is offset by other interactions in almandine-rich garnets. In either case, the data presented here indicate that correction for calcium content of garnets in the application of garnet-biotite geothermometry to high-grade metapelites is unnecessary and may lead to an overestimate of peak temperature.

  1. Mössbauer Spectral Properties of Yttrium Iron Garnet, Y3Fe5O12, and Its Isovalent and Nonisovalent Yttrium-Substituted Solid Solutions.

    PubMed

    Long, Gary J; Grandjean, Fernande; Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K

    2016-04-01

    Several high-resolution Mössbauer spectra of yttrium iron garnet, Y3Fe5O12, have been fit as a function of temperature with a new model based on a detailed analysis of the spectral changes that result from a reduction from the cubic Ia3̅d space group to the trigonal R3̅ space group. These spectral fits indicate that the magnetic sextet arising from the 16a site in cubic symmetry is subdivided into three sextets arising from the 6f, the 3d, 3d, and the 1a, 1b, 2c sites in rhombohedral-axis trigonal symmetry. The 24d site in cubic Ia3̅d symmetry is subdivided into four sextets arising from four different 6f sites in R3̅ rhombohedral-axis trigonal symmetry, sites that differ only by the angles between the principal axis of the electric field gradient tensor and the magnetic hyperfine field assumed to be parallel with the magnetic easy axis. This analysis, when applied to the potential nuclear waste storage compounds Y(3-x)Ca(0.5x)Th(0.5x)Fe5O12 and Y(3-x)Ca(0.5x)Ce(0.5x)Fe5O12, indicates virtually no perturbation of the structural, electronic, and magnetic properties upon substitution of small amounts of calcium(II) and thorium(IV) or cerium(IV) onto the yttrium(III) 24c site as compared with Y3Fe5O12. The observed broadening of the four different 6f sites derived from the 24d site results from the substitution of yttrium(III) with calcium(II) and thorium(IV) or cerium(IV) cations on the next-nearest neighbor 24c site. In contrast, the same analysis applied to Y(2.8)Ce(0.2)Fe5O12 indicates a local perturbation of the magnetic exchange pathways as a result of the presence of cerium(IV) in the 24c next-nearest neighbor site of the iron(III) 24d site. PMID:26998613

  2. The influence of the iron content on the reductive decomposition of A{sub 3−x}Fe{sub x}Al{sub 2}Si{sub 3}O{sub 12} garnets (A = Mg, Mn; 0.47 ≤ x ≤ 2.85)

    SciTech Connect

    Aparicio, Claudia Filip, Jan Mashlan, Miroslav Zboril, Radek

    2014-10-27

    Thermally-induced reductive decomposition of natural iron-bearing garnets of the almandine-pyrope and almandine-spessartine series were studied at temperatures up to 1200 °C (heating rate of 10 °C/min) under atmosphere of forming gas (10% of H{sub 2} in N{sub 2}). Crystallochemical formula of the studied garnet was calculated as {sup VIII}(A{sub 3−x}Fe{sub x}{sup 2+}){sup VI}(Al,Fe{sup 3+}){sub 2}Si{sub 3}O{sub 12}, where the amount of Fe{sup 3+} in the octahedral sites is negligible with the exception of pyrope, A = Mg, Mn, and 0.47 ≤ x ≤ 2.85. The observed decomposition temperature, determined from differential scanning calorimetry and thermogravimetry, is greater than 1000 °C in all cases and showed almost linear dependence on the iron content in the dodecahedral sites of the studied garnets, with the exception of garnet with a near-pyrope composition (Prp{sub 80}Alm{sub 20}). The initial garnet samples and decomposition products were characterized in details by means of X-ray powder diffraction and {sup 57}Fe Mössbauer spectroscopy. We found that all studied garnets have common decomposition products such as metallic iron (in general, rounded particles below 4 μm) and Fe-spinel; the other identified decomposition products depend on starting chemical composition of the garnet: Fe-cordierite, olivine (fayalite or tephroite), cristobalite, pyroxene (enstatite or pigeonite), and anorthite. Anorthite and pigeonite were only present in garnets with Ca in the dodecahedral site. All the identified phases were usually well crystallized.

  3. Empirical garnet muscovite geothermometry in metapelites

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Ming; Wang, Xin-She; Yang, Chong-Hui; Geng, Yuan-Sheng; Liu, Fu-Lai

    2002-05-01

    Two empirical garnet-muscovite geothermometers, assuming no ferric iron (Model A) and 50% ferric iron (Model B) in muscovite, respectively, were calibrated under the physical conditions of P=3.0-14.0 kbar and T=530-700 °C. The input temperatures and pressures were determined by simultaneously applying the garnet-biotite thermometer [Am. Mineral. 85 (2000) 881.] and the GASP geobarometer [Am. Mineral. 86 (2001) 1117.] to natural metapelites. To confirm internal thermodynamic consistency, Holdaway's [Am. Mineral. 85 (2000) 881.] garnet mixing properties were adopted. Muscovite was treated as a symmetric Fe-Mg-Al VI ternary solid solution, and its Margules parameters were derived in this work. The resulting two formulae reproduced the input garnet-biotite temperatures well within ±50 °C, and gave identical results for a great body of natural samples. Moreover, they successfully distinguished the systematic changes of temperatures of different grade rocks from a prograde sequence, inverted metamorphic zone, and thermal contact aureole. Pressure estimation has almost no effect on the two formalisms of the garnet-muscovite geothermometer. Assuming analytical error of ±5% for the relevant components of both garnet and muscovite, the total random uncertainty of the two formulations will generally be within ±5 °C. The two thermometers derived in this work may be used as practical tools to metamorphic pelites under the conditions of 480 to 700 °C, low- to high-pressure, in the composition ranges Xalm=0.51-0.82, Xpyr=0.04-0.22, and Xgros=0.03-0.24 in garnet, and Fe tot=0.03-0.17, and Mg=0.04-0.14 atoms p.f.u. in muscovite.

  4. Effects of an interaction of magnetostatic and elastic waves in structures with a tangentially magnetized submicron-thickness film of yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Andreev, A. S.; Zilberman, P. E.; Kravchenko, V. B.; Ogrin, Iu. F.; Temiriazev, A. G.; Filimonova, L. M.

    1984-01-01

    The first observation of a resonant electrostrictive interaction of magnetostatic waves with Lamb elastic waves in structures that include a tangentially saturation-magnetized YIG film of submicron thickness on a substrate of gadolinium-gallium garnet is reported. Also reported are distinctive features of the propagation of a magnetostatic-wave pulse in such structures as the result of magnetoelastic coupling. A sweep-frequency generator tunable over the 2-4 GHz range was used for measurements in the continuous mode.

  5. Mercury'S Radar Bright Region C: Mg-rich Orthopyroxene And Olivine, K-spar, Iron-free Tio2, Ca- And Mg-garnet Indicate Possible Deep Crust Or Mantle Rock Exposures

    NASA Astrophysics Data System (ADS)

    Kozlowski, Richard W.; Donaldson Hanna, K. L.; Sprague, A. L.; Helbert, J.; Maturilli, A.

    2008-09-01

    We identify mineral phases and approximate abundances on Mercury's surface for a large (600 by 600 km) region at and around radar bright region C (Harmon, 1997, Adv. Space Res.). Our results are obtained by fitting spectra obtained with the Mid-Infrared Spectrometer and Imager (MIRSI) at the Infrared Telescope Facility (IRTF) using an established spectral deconvolution algorithm (Ramsey 1996, Ph.D. Dissertation, ASU; Ramsey and Christiansen 1998, JGR). We have assembled several laboratory mineral spectral libraries (JHU, Salisbury et al. 1987, Open-File Report 87-263, USGS; JPL, http://speclib.jpl.nasa.gov; RELAB, http://www.planetary.brown.edu/relab; ASU, Christensen et al. 2000, JGR; BED, Helbert et al. 2007, Adv. Space Res.; USGS, Clark et al. 2007, USGS digital spectral library) with a wide range of known mineral compositions with grain sizes ranging from the finest separates, 0 - 45 µm, incrementally increasing to 250 - 400 µm. For the region 110° to 130° E longitude and 0° to 20° N latitude we find enstatite and Mg-rich hypersthene, K-spar (either sanidine or orthoclase), intermediate plagioclase compositions, Mg-rich olivine, an iron-free opaque phase of either (TiO2) or perovskite (CaTiO3). Small abundances of Mg- and Ca- rich garnet are also apparently present. These minerals are indicative of possible excavated upper mantle material that may be causing the high radar backscatter at this location. This work was funded by NSF AST0406796.

  6. The effect of Ce doping on the structure, surface morphology and magnetic properties of Dy doped-yttrium iron garnet films prepared by a sol-gel method

    NASA Astrophysics Data System (ADS)

    Arsad, A. Z.; Ibrahim, N. B.

    2016-07-01

    Cerium substitute Y2.8-xDy0.2CexFe5O12 (x=0, 0.2, 0.25, 0.3, 0.35) films have been prepared on quartz substrates by a simple sol-gel method and followed by a spin-coating technique. The crystalline structures, surface and magnetic properties of the films has been investigated by an X-ray diffractometer (XRD), a field emission scanning electron microscope (FESEM), an atomic force microscope (AFM) and a vibrating sample magnetometer (VSM). The XRD analysis revealed that the films have garnet structure. The lattice parameter increased as Ce content was increased up to 0.25 due to the Ce3+ ions completely substituted for Y3+ ions. For films x≥0.3, the lattice parameter decreased. The FESEM results showed that the average grains were small, ranging from 11 to 14 nm and the thickness of films increased with the increment of Ce contents. VSM results for both in and out-plane magnetic measurement showed the film with x=0 has the highest saturation magnetization (Ms) values. With the increment of Ce contents, the Ms of films decreased due to the substitution of Ce3+, Dy3+ ions in the c-site. For films x≥0.3 the reduction of Ms values was due to the presence of CeO2 in the film. The films with x=0-0.25 exhibited increases in Hc values. The improvement of coercivity value, small grain size and high crystalline structure of film with x=0.25 has a potential to be used in magneto optical (MO) memory storage applications.

  7. Hydroxyl in garnets from Garnet Ridge, northern Arizona

    NASA Astrophysics Data System (ADS)

    Ogasawara, Y.; Sakamaki, K.; Koga, I.

    2012-12-01

    Various kinds of garnets and garnet-bearing rocks occur in Garnet Ridge, northern Arizona. These garnets have diverse origins such as mantle peridotite, subducted oceanic slab and crustal level metasomatic products (Koga & Ogasawara, 2012, AGU Fall Meeting Abstract). A typical garnet from Garnet Ridge, called "Navajo Ruby" is Cr-bearing pyrope-rich garnet that could be of the mantle peridotite origin, and another interesting garnet occurs in eclogite xenoliths of subducted slab origin, probably of Farallon plate origin (Usui et al., 2003). To understand the water behavior underneath the Colorado Plateau, we measured micro FT-IR spectra for several kinds of garnets from Garnet Ridge. The samples for micro FT-IR analyses are thick sections (50 - 500 micrometer in thickness). The size of analyzed areas is 50 x 50 μm square. We detected significant amounts of OH in "Navajo Ruby" garnets and in other types of garnets; however, OH in the garnet in eclogite xenolith was negligible or below detection limit. The peridotitic garnets (up to 2 cm across) look purplish to red brownish and are rich in pyrope component (up to 78 mol%) with significant amounts of Cr2O3 (up to 5.9 wt%) without chemical zonation. The inclusions of olivine, clinopyroxene, orthopyroxene and apatite were confirmed by laser Raman spectroscopy. The representative FT-IR absorption spectra of this type garnet are: 1) grain A (Pyp52 Alm29 Sps1 Grs14 And2 Uv2) shows two very strong IR absorption bands by OH centered at 3575 and 3660 cm-1, 2) grain B (Pyp63 Alm14 Sps0 Grs12 And1 Uv10) shows a very strong IR absorption at 3575 cm-1, and 3) grain C (Pyp62 Alm20 Sps1 Grs12 And0 Uv5) did not show IR absorption by OH. No heterogeneity of IR absorption by OH was detected in a single grain. The garnets in eclogite xenolith show clear prograde chemical zonation; core (Pyp6 Alm54 Sps1 Grs34 And5 Uv0) to rim (Pyp21 Alm64 Sps2 Grs15 And1 Uv0). The well developed rim of this garnet has no IR absorption band by OH

  8. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  9. Mineral of the month: garnet

    USGS Publications Warehouse

    Olson, Donald

    2005-01-01

    Garnet is the general name given to a group of complex silicate minerals, all with isometric crystal structure, similar properties and chemical compositions. Garnet occurs in every color of the spectrum except blue, but it is most commonly red, purple, brown and green. Garnet necklaces dating from the Bronze Age have been found in graves and also among the ornaments adorning the oldest Egyptian mummies.

  10. Phase stable rare earth garnets

    SciTech Connect

    Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.

    2013-06-11

    A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.

  11. Two-garnet rodingite from Amador County, California

    USGS Publications Warehouse

    Duffield, W.A.; Beeson, M.H.

    1973-01-01

    Two distinct phases of garnet have been discovered in rodingite from Amador County, Calif. The two garnets are hydrogrossular and (hydro?) grossular-andradite. Only one, generally hydrogrossular, has been reported in rodingitcs studied by other workers. The rodingite of this study formed from a mafic dike with abundant euhedral plagioclase laths. The hydrogrossular is concentrated within the areas of these laths and is volumetrically about as abundant. The (hydro?) grossular-andradite is concentrated in the groundmass and as incursions into the plagioclase laths. The garnets apparently grew during one general episode of metasomatism, and their spatial distribution and compositions were controlled principally by the unequal distribution of iron and aluminum caused by the presence of plagioclase laths (and mafic minerals?) in the original unaltered dike.

  12. IRON

    EPA Science Inventory

    The document surveys the effects of organic and inorganic iron that are relevant to humans and their environment. The biology and chemistry of iron are complex and only partially understood. Iron participates in oxidation reduction processes that not only affect its geochemical m...

  13. Characteristics of epitaxial garnets grown by CVD using single metal alloy sources. [Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Besser, P. J.; Hamilton, T. N.; Mee, J. E.; Stermer, R. L.

    1974-01-01

    Single metal alloys have been explored as the cation source in the chemical vapor deposition (CVD) of iron garnets. Growth of good quality single crystal garnet films containing as many as five different cations has been achieved over a wide range of deposition conditions. The relationship of film composition to alloy compositions and deposition conditions has been determined for several materials. By proper choice of the alloy composition and the deposition conditions, uncrazed deposits were grown on (111) gadolinium gallium garnet (GGG) substrates. Data on physical, magnetic and optical properties of representative films is presented and discussed.

  14. An Appraisal of Endmember Energy and Mixing Properties of Rare Earth Garnets

    NASA Astrophysics Data System (ADS)

    Moretti, R.; Ottonello, G.

    1998-04-01

    The thermodynamic properties of rare earth aluminum (REE 3Al 5O 12), iron (REE 3Fe 5O 12), and gallium (REE 3Ga 5O 12) garnets are assessed by means of critical evaluation of the existing experimental data and thermodynamic treatment of their vibrational, static and volumetric properties. The mixing properties of the various REE garnet components are calculated from these endmember thermodynamic data and the interionic static potential model developed earlier for major silicate garnet components. These results permit evaluation of the solubility behavior for REE in natural phases. The results suggest that the mixing of REE garnet components at trace level (i.e., below about 10 2 ppm) with major silicate garnet components is virtually ideal, but strong positive deviations, associated with generalized polyhedral distortion of the host phase at higher concentration level of the solute, prevent bulk REE solubility from exceeding a few hundreds ppm. The computed rare earth element fractionations between garnet and supercritical fluid at various P, T conditions put in evidence the main control operated by the intrinsic energy properties of REE-garnet end members in determining the light REE/heavy REE (LREE/HREE) fractionation observed in natural garnet specimens.

  15. Study of RE-garnets using BPW method

    NASA Astrophysics Data System (ADS)

    Goveas, Neena; Mukhopadhyay, P.; Mukhopadhyay, G.

    1995-02-01

    The magnetic susceptibility of rare-earth (Y and Lu) iron garnets is studied using a modified Bethe-Peierls-Weiss (BPW) approximation. The modifications enable us to incorporate the three exchange parameters Jad, Jaa and Jdd necessary to describe the systems. We get excellent fits to the experimental susceptibilities from which we determined the J-values. These also give excellent agreement with the spin wave dispersion relation constant D.

  16. Crystal Chemistry of Melanite Garnet

    NASA Technical Reports Server (NTRS)

    Nguyen, Dawn Marie

    1999-01-01

    This original project resulted in a detailed crystal chemical data map of a titanium rich garnet (melanite) suite that originates from the Crowsnest Volcanics of Alberta Canada. Garnet is typically present during the partial melting of the earth's mantle to produce basalt. Prior studies conducted at Youngstown State University have yielded questions as to the crystal structure of the melanite. In the Studies conducted at Youngstown State University, through the use of single crystal x-ray diffraction, the c-axis appears to be distorted creating a tetragonal crystal instead of the typical cubic crystal of garnets. The micro probe was used on the same suite of titanium rich garnets as used in the single crystal x-ray diffraction. The combination of the single crystal x-ray research and the detailed microprobe research will allow us to determine the exact crystal chemical structure of the melanite garnet. The crystal chemical data was gathered through the utilization of the SX100 Electron Probe Micro Analyzer. Determination of the exact chemical nature may prove useful in modeling the ultramafic source rock responsible for the formation of the titanium rich lunar basalts.

  17. Iron

    MedlinePlus

    ... organ failure, coma, convulsions, and death. Child-proof packaging and warning labels on iron supplements have greatly ... levodopa that the body absorbs, making it less effective. Levodopa, found in Sinemet® and Stalevo®, is used ...

  18. Faraday polarisation mode conversion in semiconductor waveguides incorporating periodic garnet claddings

    NASA Astrophysics Data System (ADS)

    Hutchings, David C.; Zhang, Cui; Holmes, Barry M.; Dulal, Prabesh; Block, Andrew D.; Stadler, Bethanie J. H.

    2016-02-01

    We report on our progress towards the integration of nonreciprocal optical elements in, for example, an integrated optical waveguide isolator on conventional semiconductor photonic platforms. Our approach uses an evanescent interaction with a magneto-optic iron garnet upper cladding. Specifically, cerium- and bismuth- substituted yttrium and terbium iron garnets were investigated. Device fabrication incorporates RF sputtering, mask lift-off to form a grating for a quasi-phase-matched interaction and thermal anneal. A non-reciprocal polarisation-mode conversion was observed.

  19. Constraints on transport and kinetics in hydrothermal systems from zoned garnet crystals.

    PubMed

    Jamtveit, B; Hervig, R L

    1994-01-28

    Zonation of oxygen isotope ratios, fluorine, and rare earth element abundances across garnet crystals from the Permian Oslo Rift reflect temporal variation of the hydrothermal system in which the garnets grew. A sharp rimward decrease in the (18)O/(16)O ratio (of 5 per mil) across the interface between aluminum-rich garnet cores and iron-rich rims indicates influx of meteoric fluids to a system initially dominated by magmatic fluids. This influx may record the transition from ductile to brittle deformation of the hydrothermally altered rocks. In contrast, fluorine and light rare earth element concentrations increase at the core-rim interface. These data may reflect enhanced advective transport and notable kinetic control on trace element uptake by the garnets during brittle deformation. PMID:17754883

  20. Garnet Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Random-access memory (RAM) devices of proposed type exploit magneto-optical properties of magnetic garnets exhibiting perpendicular anisotropy. Magnetic writing and optical readout used. Provides nonvolatile storage and resists damage by ionizing radiation. Because of basic architecture and pinout requirements, most likely useful as small-capacity memory devices.

  1. Chapter L: U.S. Industrial Garnet

    USGS Publications Warehouse

    Evans, James G.; Moyle, Phillip R.

    2006-01-01

    The United States presently consumes about 16 percent of global production of industrial garnet for use in abrasive airblasting, abrasive coatings, filtration media, waterjet cutting, and grinding. As of 2005, domestic garnet production has decreased from a high of 74,000 t in 1998, and imports have increased to the extent that as much as 60 percent of the garnet used in the United States in 2003 was imported, mainly from India, China, and Australia; Canada joined the list of suppliers in 2005. The principal type of garnet used is almandite (almandine), because of its specific gravity and hardness; andradite is also extensively used, although it is not as hard or dense as almandite. Most industrial-grade garnet is obtained from gneiss, amphibolite, schist, skarn, and igneous rocks and from alluvium derived from weathering and erosion of these rocks. Garnet mines and occurrences are located in 21 States, but the only presently active (2006) mines are in northern Idaho (garnet placers; one mine), southeastern Montana (garnet placers; one mine), and eastern New York (unweathered bedrock; two mines). In Idaho, garnet is mined from Tertiary and (or) Quaternary sedimentary deposits adjacent to garnetiferous metapelites that are correlated with the Wallace Formation of the Proterozoic Belt Supergroup. In New York, garnet is mined from crystalline rocks of the Adirondack Mountains that are part of the Proterozoic Grenville province, and from the southern Taconic Range that is part of the northern Appalachian Mountains. In Montana, sources of garnet in placers include amphibolite, mica schist, and gneiss of Archean age and younger granite. Two mines that were active in the recent past in southwestern Montana produced garnet from gold dredge tailings and saprolite. In this report, we review the history of garnet mining and production and describe some garnet occurrences in most of the Eastern States along the Appalachian Mountains and in some of the Western States where

  2. The origin of garnet in the anorthosite-charnockite suite of the Adirondacks

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1977-01-01

    Detailed analysis of textural and chemical criteria in rocks of the anorthosite-charnockite suite of the Adirondack Highlands suggests that development of garnet in silica-saturated rocks of the suite occurs according to the reaction: {Mathematical expression}, where ?? is a function of the distribution of Fe and Mg between the several coexisting ferromagnesian phases. Depending upon the relative amounts of Fe and Mg present, quartz may be either a reactant or a product. Using an aluminum-fixed reference frame, this reaction can be restated in terms of a set of balanced partial reactions describing the processes occurring in spatially separated domains within the rock. The fact that garnet invariably replaces plagioclase as opposed to the other reactant phases indicates that the aluminum-fixed model is valid as a first approximation. This reaction is univariant and produces unzoned garnet. It differs from a similar equation proposed by de Waard (1965) for the origin of garnet in Adirondack metabasic rocks, i.e. 6 Orthopyroxene+2 Anorthite = Clinopyroxene+Garnet+2 Quartz, the principle difference being that iron oxides (ilmenite and/or magnetite) are essential reactant phases in the present reactions. The product assemblage (garnet+clinopyroxene+plagioclase ?? orthopyroxene ?? quartz) is characteristic of the clinopyroxene-almandine subfacies of the granulite facies. ?? 1977 Springer-Verlag.

  3. Garnet Porphyroblastesis: Growing Inward or Outward?

    NASA Astrophysics Data System (ADS)

    Cho, M.; Kim, Y.

    2008-12-01

    The microstructure, composition and crystallographic orientation of a garnet porphyroblast in the garnet-zone schist, Imjingang belt, Korea, were investigated in order to delineate chemical and microstructural processes during the crystallization. This garnet hypidioblast is ~1 mm in size, and consists of relatively inclusion- poor core and inclusion-rich rim. The inclusion minerals, mainly composed of quartz together with minor ilmenite and clinozoisite, are distributed in complex patterns. In general, inclusion trails are discontinuous in the core region of garnet, but apparently curved to wrap around the core. The presence of TiO2 needles in the core part suggests that garnet replaced a Ti-bearing precursor such as biotite. Compositional zoning profile of the garnet porphyroblast is characterized by bimodal distribution of the spessartine component: e.g., Mn-poor core and rim bounded by Mn-rich intermediate part. The zoning pattern of grossular varies in an antithetic fashion to that of spessartine. These microstructural and compositional features are different from those of the majority of other garnet porphyroblasts in metapelites, including: (1) relatively inclusion-rich core of syn-kinematic garnet growing mainly at the expense of chlorite; (2) post- kinematic garnet overgrowth replacing the biotite porphyroblast; and (3) monotonous decrease in the spessartine content towards the rim. Electron back-scattered diffraction analyses of garnet reveal multiple, intracrystalline domains, less than 200 μm in size. These domains show small angular differences (1°-2°) in orientation across narrow boundaries, and are common in the Mn-rich intermediate part of garnet. However, they are absent in the Mn-poor core region. The lack of compositional anomalies and nearly identical crystallographic orientations in the intracrystalline domains suggest an absence of multiple nuclei, but the implications for this crystallographic feature are uncertain. All the above

  4. Effects of high-temperature annealing on ESR properties of solid solutions of garnet minerals

    NASA Astrophysics Data System (ADS)

    Gundu Rao, T. K.; Cano, Nilo F.; Chubaci, Jose F. D.; Watanabe, S.

    2016-04-01

    A garnet (G7) silicate mineral belonging to pyralspite subgroup was studied using the technique of electron spin resonance (ESR). This study shows that iron is present in G7 as isolated species as well as species coupled by dipolar interactions. The ESR data shows a gradual increase of cluster of Fe3+ ions accompanied by decrease of dipolar interactions and increase of possible exchange interactions at high temperature. The Fe2+→Fe3+ oxidation process occurs in the garnets as a function of annealing temperature. Thermoluminescence (TL) peaks at approximately 190 and 340 °C are observed in the irradiated G7 garnet. Investigations using the technique of ESR were carried out to identify the centers involved in the TL process.

  5. Chemical properties of Garnets from Garnet Ridge, Navajo volcanic field in the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Koga, I.; Ogasawara, Y.

    2012-12-01

    Significant amounts of garnet crystals have derived from kimberlitic diatremes at Garnet Ridge in northern Arizona. These garnets are chemically diverse and their origins have been still controversial. The diatremes at Garnet Ridge were dated at 30Ma (Smith et al., 2004). Coesite-bearing lawsonite eclogite reported by Usui et al., (2003) is important evidence for subduction of the Fallaron Plate below the Colorado plateau. This study characterized various kinds of garnets with several origins by petrographical observations and electron microprobe analyses (JXA-8900 WDS mode and JXA-733 EDS mode). On the basis of the chemical compositions and other features, the garnets were classified into the following 8 groups (A to H). Inclusions and exsolved phases were identified by laser Raman spectroscopy. (A) Garnet crystals (5-8 mm) with purple color are called ''Navajo Ruby''. A significant amount of Cr2O3 is a typical feature (up to ~5.9 wt. %). These garnet were rich in pyrope (66-78 mol. %). Olivine, Cpx, and exsolved lamellae of rutile were contained. (B) Reddish brown garnets were Pyp-rich (60-75 mol. %), and contained a minor amount of Cr2O3 (less than ~1 wt. %). The inclusions were rod-shaped rutile , Cpx, Opx, zircon, olivine and exsolved lamellae of apatite. (C) Garnet megacrysts (8-12 cm) were plotted near the center of Prp-Alm-Grs triangle (Pyp30-35 Alm28-33 Grs29-35). Exsolved apatite lamellae were confirmed. (D) Some of reddish brown garnets were plotted on same area as the Type-C. (E) Garnets in eclogite have Alm-rich composition (Pyp6-22 Alm52-65 Grs16-42). They clearly showed prograde chemical zonation; MgO: 1.4 to 5.4 wt. %, CaO: 14.0 to 5.6 wt. % both from core to rim. (F) Garnets in altered or metasomatized eclogite had a wide range of chemical composition (Pyp7-38 Alm52-69 Grs4-31) with similar prograde zonation. The cores were plotted near the rim of Type-E garnet. (G) Garnets in unidentified rock (strongly altered) had Alm-rich composition near Alm

  6. Raman spectroscopy of garnet-group minerals

    USGS Publications Warehouse

    Mingsheng, P.; Mao, Ho-kwang; Dien, L.; Chao, E.C.T.

    1994-01-01

    The Raman spectra of the natural end members of the garnet-group minerals, which include pyrope, almandine and spessarite of Fe-Al garnet series and grossularite, andradite and uvarovite of Ca-Fe garnet series, have been studied. Measured Raman spectra of these minerals are reasonably and qualitatively assigned to the internal modes, translational and rotatory modes of SiO4 tetrahedra, as well as the translational motion of bivalent cations in the X site. The stretch and rotatory Alg modes for the Fe-Al garnet series show obvious Raman shifts as compared with those for the Ca-Fe garnet series, owing to the cations residing in the X site connected with SiO4 tetrahedra by sharing the two edges. The Raman shifts of all members within either of the series are attributed mainly to the properties of cations in the X site for the Fe-Al garnet series and in the Y site for the Ca-Fe garnet series. ?? 1994 Institute of Geochemistry, Chinese Academy of Sciences.

  7. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  8. Intercomparison of garnet barometers and implications for garnet mixing models

    SciTech Connect

    Anovitz, L.M.; Essene, E.J.

    1985-01-01

    Several well-calibrated barometers are available in the system Ca-Fe-Ti-Al-Si-O, including: Alm+3Ru-3Ilm+Sil+2Qtz (GRAIL), 2Alm+Grreverse arrow6Ru=6Ilm+3An+3Qtz (GRIPS); 2Alm+Gr=3Fa+3An (FAG); 3AnGr+Ky+Qtz (GASP); 2Fs-Fa+Qtz (FFQ); and Gr+Qtz=An+2Wo (WAGS). GRIPS, GRAIL and GASP form a linearly dependent set such that any two should yield the third given an a/X model for the grossular/almandine solid-solution. Application to barometry of garnet granulite assemblages from the Grenville in Ontario yields average pressures 0.1 kb lower for GRIPS and 0.4 kb higher for FAGS using our mixing model. Results from Parry Island, Ontario, yield 8.7 kb from GRAIL as opposed to 9.1 kb using Ganguly and Saxena's model. For GASP, Parry Island assemblages yield 8.4 kb with the authors calibration. Ganguly and Saxena's model gives 5.4 kb using Gasparik's reversals and 8.1 kb using the position of GASP calculated from GRIPS and GRAIL. These corrections allow GRIPS, GRAIL, GASP and FAGS to yield consistent pressures to +/- 0.5 kb in regional metamorphic terranes. Application of their mixing model outside of the fitted range 700-1000 K is not encouraged as extrapolation may yield erroneous results.

  9. Experimental Constraints on the Partitioning and Valence of V and Cr in Garnet and Coexisting Glass

    NASA Technical Reports Server (NTRS)

    Righter, K.; Sutton, S.; Berthet, S.; Newville, M.

    2008-01-01

    A series of experiments with garnet and coexisting melt have been carried out across a range of oxygen fugacities (near hematite-magnetite (HM) to below the iron-wustite (IW) buffers) at 1.7 GPa to study the partitioning and valence of Cr and V in both phases. Experiments were carried out in a non end loaded piston cylinder apparatus, and the run products were analyzed with electron microprobe and xray absorption near edge structure (XANES) analysis at beamline 13-ID at the Advanced Photon Source of Argonne National Lab. The valence of vanadium and chromium were determined using the position and intensity of the Ka pre-edge peaks, calibrated on a series of Cr and Vbearing standard glasses. This technique has been applied to V and Cr in glasses and V in spinels previously, and in these isotropic phases there are no orientational effects on the XANES spectra (Righter et al., 2006, Amer. Mineral. 91, 1643-1656). We also now demonstrate this to be true for V and Cr in garnet. Also, previous work has shown that V has a higher valence in the glass (or melt) than in the coexisting spinel. This is also true for V in garnet-glass pairs in this study. Vanadium valence in garnets varies from 2.7 below the IW buffer to 3.7 near HM, and for coexisting glass it varies from 3.2 to 4.3. Vanadium valence measured in some natural garnets from mantle localities indicates V in the more reduced range at 2.5. Comparisons will be made between fO2 estimated from V valence and other methods for garnet-bearing mantle samples. In contrast, Cr valence measured in garnet and coexisting glass for all experimental and natural samples is 2.9- 3.0, suggesting that the valence of Cr does not vary within either phase across a large fO2 range. These results demonstrate that while V varies from 2+ to 3+ to 4+ in garnet-melt systems, Cr does not, and this will ultimately affect the partitioning behavior of these two elements in natural systems. Garnet/melt D(Cr) are between 12 and 17 across this range

  10. Polycrystalline magnetic garnet films comprising weakly coupled crystallites for piezoelectrically-driven magneto-optic spatial light modulators

    SciTech Connect

    Mito, S.; Sakurai, H.; Takagi, H.; Inoue, M.; Baryshev, A. V.

    2012-04-01

    We have investigated the magnetization process of the polycrystalline magnetic garnet films in order to determine the most suitable composition of garnet films for piezoelectrically-driven magneto-optic spatial light modulators (MOSLMs). For experiment, the bismuth-dysprosium-aluminum-substituted yttrium iron (Bi{sub 1.3}Dy{sub 0.7}Y{sub 1.0}Fe{sub 3.1}Al{sub 1.9}O{sub 12}) garnet films were deposited by an RF magnetron sputter and annealed at 700 deg. C in air. The annealing time was varied in a range of several minutes to control the grain size. The saturation magnetization, the remanent magnetization and the composition of the fabricated garnet films slightly changed versus the annealing time. Experiments showed that the coercivity and the grain size increased at longer annealing; the coercivity was larger for films with bigger grains. This work shows that garnet films with smaller coercivity are most suitable for controlling the magnetization of garnet and, correspondingly, the magneto-optical rotation of MOSLM pixels driven by piezoelectrics.

  11. Garnet ships in a quartzite sea

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Rice, A. Hugh N.; Grasemann, Bernhard; Huet, Benjamin

    2016-04-01

    During progressive deformation, a strong inclusion in a weaker matrix causes a stress concentration that may result in strain localization, seen in a matrix grain-size reduction. A superb example of this phenomena, but rather more complex, has been observed in north Norwegian Caledonides. A probably subvertical metadolerite dyke has been rotated to lie parallel to the penetrative regional low-angled foliation during the emplacement of the overlying nappe. The metadolerite, now only ~1.4 cm thick and lying between two quartzite layers has been retrogressed to a biotite schist with an assemblage of biotite, titanite, epidote group, garnet and quartz. Garnets are from 0.2 mm to 4 cm in size, subhedral and have two growth zones, with inclusions of predominantly titanite and rare amphibole. The country-rock metasedimentary schists contain staurolite, indicating mid-amphibolite-facies conditions (~550 °C and 6 kbar). During late deformation, some garnets were forced into the quartzite, resulting in the development of pronounced gouges (tectoglyphs), up to 70 mm long, 14 mm wide and 14 mm deep, deepening in the direction of movement. Quartz was pushed up at the sides of the gouges and forms a pronounced bow-wave at the front of the garnets. Where garnets are gouged into the quartzite, intense strain localization occurs. Both in front of and under the garnet, a up to 18 mm wide zone of quartz mylonite developed. The mylonitic foliation curves around the garnet, with a relatively sharp boundary to the adjacent quartzite that preserves an older random fabric. Deformation in the mylonite, which shows a strong crystallographic preferred orientation, seems to have occurred by (1) intense dislocation glide followed by (2) subgrain rotation resulting in an almost foam-like fabric. The grain size of the mylonite (at the quartzite-biotite schist interface) increases with increasing distance behind the present position of the garnets. This observation is consistent with an expected

  12. Rare earth garnet selective emitter

    SciTech Connect

    Lowe, R.A.; Chubb, D.L.; Farmer, S.C.; Good, B.S.

    1994-09-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon{sub {lambda}}) approximately equal to 0.74, ((4)l{sub 15/2}) - ((4)l{sub 13/2}), for Er-YAG and epsilon{sub {lambda}} approximately equal to 0.65, ((5)l{sub 7})-((5)l{sub 8}) for (Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper the authors present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon{sub {lambda}} measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  13. Rare earth garnet selective emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  14. Water contents of garnets from the Garnet Ridge, northern Arizona: H2O behavior underneath the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Ogasawara, Y.; Sakamaki, K.; Sato, Y.

    2013-12-01

    Kimberlitic volcanism at the Garnet Ridge delivered a wide variety of garnets and garnet-associated rocks in large vertical range from the deep mantle to shallow depths underneath the Colorado Plateau (Smith et al., 2004). Koga and Ogasawara (2012) classified the garnets at the Garnet Ridge into the following nine groups; (a) Cr and pyrope-rich garnet, (b) pyrope-rich reddish brown garnet, (c) reddish brown garnet, (d) garnet in eclogite, (e) garnet in metasomatized eclogite, (f) garnet aggregate, (g) garnet megacryst, (h) garnet in metasomatic rock I, (i) garnet in metasomatic rock II. They regarded these garnets as the four origins: mantle peridotite (a, b), subducted oceanic crust (d, e), high-pressure metasomatism (c, f, g), low-pressure metasomatism (h, i). On the garnets (a, b, d), Sakamaki et al. (2012) preliminary reported OH qualitatively using micro FT-IR spectroscopy. In garnets (a, b), OH was detected clearly, but in garnet (d) OH was below detection limit because the thickness of a doubly polished section of garnet (d) was too small (thickness: ~70 μm) and the concentration was too low. Using micro FT-IR method, this study conducted the quantitative analysis of H2O for 20 grains of group (a), 18 grains of group (b) and 6 grains of group (d). The garnet samples were prepared as doubly polished thick sections (thicknesses of 0.1-1.3 mm). An IR absorption coefficient of 8770 L/mol/cm2 (Katayama et al., 2005) for garnets was used. Significant amounts of hydroxyl were detected in garnets (a, b, d); clear OH bands were identified in garnets (a, b), but very week and extremely broad OH bands in garnet (d). In the analyzed garnets, no zonal distribution of OH was identified. Garnet (a): the IR spectra have a main OH band at 3575 cm-1 and often with a week band at 3675 cm-1. The resultant H2O contents range from the below detection limit to 119 ppm wt. and are distributed at 0~10 and at ca. 100 ppm wt., bimodally. Garnet (b): the IR spectra have a main OH band

  15. Formation of Garnet Granulite in the Lower Crust of a paleo-Island Arc

    NASA Astrophysics Data System (ADS)

    Garrido, Carlos J.; Padrón-Navarta, José Alberto; López Sánchez-Vizcaíno, Vicente; Bodinier, Jean-Louis; Bosch, Delphine; Marchesi, Claudio; Hidas, Károly

    2016-04-01

    The Jijal complex (Kohistan paleo-island arc complex, NW Pakistan) is a unique occurrence of high-pressure (HP), mafic, opx-free, garnet granulite formed in the lower crust of an island arc. The upper part of the Jijal Granulitic Gabbro Unit (GGU) records the arrested transformation of hornblende gabbronorite to garnet granulite, involving the coeval breakdown of amphibole and orthopyroxene, and the formation of garnet and quartz. Close to the transformation front (2-3 cm), clinopyroxene from the granulite displays a strong Ca-tschermak zoning with lower Al-contents at rims. REE zoning of clinopyroxene and pseudosection diagrams indicate that only clinopyroxene rims reflect chemical equilibrium with garnet in the reaction front (P = 1.1 ± 0.1 GPa, T = 800 ± 50 °C), whereas the cores retained high-Al contents inherited from precursor gabbronorite clinopyroxene and remained in chemical disequilibrium within a few centimeters of the garnet granulite assemblage. Clinopyroxene of garnet granulites from the Jijal lower GGU are completely re-equilibrated with garnet (P = 1.5 ± 0.1 GPa, T = 800 ± 50 °C). If ferric iron corrections are disregarded, equilibration pressure and temperature are highly overestimated yielding exceedingly high pressures for an island arc setting. The pressure difference between the upper and lower Jijal GGU granulites (~0.4 GPa) and its current thickness (<5 km) implies delamination of the denser parts of Jijal crust. Thermodynamically computed phase diagram sections for upper GGU bulk compositions show that, at the equilibration conditions of Jijal garnet granulite, the equilibrium assemblage is orthopyroxene-free and amphibole-free garnet granulite coexisting with melt or a fluid phase, depending on the water activity at the onset of amphibole breakdown. Pseudosections indicate that hornblende gabbronorite assemblages are highly metastable at lower arc crust depths. The transformation to garnet granulite was therefore substantially

  16. 19. General view showing garneting machine number eight on right, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. General view showing garneting machine number eight on right, and garneting machines numbers four through seven on left in background - Norfolk Manufacturing Company Cotton Mill, 90 Milton Street, Dedham, Norfolk County, MA

  17. Hydrous Na-garnet from Garnet Ridge; products of mantle metasomatism underneath the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Sakamaki, Kunihiko; Sato, Yuto; Ogasawara, Yoshihide

    2016-12-01

    This is the first report on amphibole exsolution in pyrope from the Colorado Plateau. Pyrope crystals delivered from mantle depths underneath the Colorado Plateau by kimberlitic volcanism at 30 Ma were collected at Garnet Ridge, northern Arizona. The garnet grains analyzed in this study occur as discrete crystals (without adjacent rock matrix) and are classified into two major groups, Cr-rich pyrope and Cr-poor pyrope. The Cr-poor pyrope group is divided into four subgroups based on exsolved phases: amphibole lamella type, ilmenite lamella type, dense lamellae type, and clinopyroxene/amphibole lamellae type. Exsolved amphibole occurs in amphibole lamella type, dense lamellae type, and clinopyroxene/amphibole lamellae type of Cr-poor pyrope. The amphibole crystals tend to have preferred orientations in their garnet hosts and occur as monomineralic hexagonal or rhombic prisms and tablets, and as multimineralic needles or blades with other exsolved phases. Exsolved amphibole has pargasitic compositions (Na2O up to 1.6 apfu based on 23 oxygen). Garnet host crystals that have undergone amphibole exsolution have low OH contents (2-42 ppmw H2O) compared to garnets that do not have amphibole lamellae (up to 115 ppmw H2O). The low OH contents of garnets hosting amphibole lamellae suggest loss of OH from garnet during amphibole exsolution. Amphibole exsolution from pyrope resulted from breakdown of a precursor "hydrous Na-garnet" composition (Mg,Na+ x)3(Al2 - x, Mgx)2Si3O12 - 2x(OH)2x. Exsolution of amphibole and other phases probably occurred during exhumation to depths shallower than 100 km prior to volcanic eruption.

  18. Inhibitors in LPE growth of garnets

    NASA Astrophysics Data System (ADS)

    De Roode, W. H.; Robertson, J. M.

    1983-09-01

    The growth rate of LPE growth garnets can be reduced considerably by the addition of small amounts of group II oxides. This effect can be helpful for the controlled growth of very thin garnet films for sub-micron bubbles and optical devices. The largest effect was found with the addition of Mg 2+ and Ca 2+, resulting in a maximum decrease of the growth rate of approximately 70%. A semi-empirical formula was used to describe the growth rate as a function of the dipping temperature. The change in the growth rate on the addition of the inhibitor ion at constant temperature was found to be proportional to ( aMO)/( aMO+2 Ln 2O 3), where M is a group II element, Ln 2O 2 is the sum of the yttrium and RE oxides in the melt, and a is the inhibitor factor. The value of the inhibitor factor depends on both the inhibitor ion as well as the composition of the garnet. The lowering of the growth rate on the addition of an inhibitor ion is explained by the introduction of an extra growth resistance due to the charge compensation mechanism of the divalent ions. The influence of the different charge compensation possibilities in the garnet system is examined and the relative importance of these possibilities for charge compensation is discussed.

  19. Domain Collapse in Grooved Magnetic Garnet Material

    NASA Technical Reports Server (NTRS)

    Peredo, J.; Fedyunin, Y.; Patterson, G.

    1995-01-01

    Domain collapse fields in grooved garnet material were investigated by experimental observation and numerical simulation. The results indicate that the change in domain collapse field is largely due to magnetostatic effects produced by the groove edge. A simplified model based on the effective field produced at a groove edge, and local changes in the material thickness explain the observed trends very well.!.

  20. A generalized garnet-forming reaction for metaigneous rocks in the Adirondacks

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    A generalized reaction is presented to account for garnet formation in a variety of Adirondack metaigneous rocks. This reaction, which is the sum of five partial reactions written in aluminum-fixed frames of reference, is given by: 4(y+1+w)Anorthite+4 k(y+1+2 w)Olivine +4(1-k)(y+1+2 w)Fe-oxide+(8(y+1) -4 k(y+1+2 w))Orthopyroxene = 2(y+1)Garnet +2(y+1+2 w)Clinopyroxene+4 wSpinel where y is a function of plagioclase composition, k refers to the relative amounts of olivine and Fe-oxide participating in the reaction, and w is a measure of silicon mobility. When mass balanced for Mg and Fe, this reaction is found to be consistent with analyzed mineral compositions in a wide range of Adirondack metaigneous rocks. The reaction applies equally well whether the garnets were formed directly from the rectants given above or went through an intermadiate stage involving the formation of spinel, orthopyroxene, and clinopyroxene. The actual reactions which have produced garnet in both undersaturated and quartz-bearing rocks are special cases of the above general reaction. The most important special cases appear to be those in which the reactants include either olivine alone (k=1) or Fe-oxide alone (k=0). Silicon is relatively immobile (w =2) in olivine bearing, magnesium-rich rocks (k???1), and this correlates with the increased intensity in spinel clouding of plagioclase in these rocks. Silicon mobility apparently increases in the more iron-rich rocks, which also tend to contain clear or lightly clouded plagioclase. In all the rocks studied the most common composition of metamorphic plagioclase is close to An33 (i.e., y=1). Plagioclase of lower anorthite content may be too sodic to participate in garnet formation at the P-T conditions involved. ?? 1980 Springer-Verlag.

  1. Purplish-red almandine garnets with alexandrite-like effect: causes of colors and color-enhancing treatments

    NASA Astrophysics Data System (ADS)

    Krambrock, K.; Guimarães, F. S.; Pinheiro, M. V. B.; Paniago, R.; Righi, A.; Persiano, A. I. C.; Karfunkel, J.; Hoover, D. B.

    2013-07-01

    Fine gem-quality, purplish-red garnets from the Tocantins State, Brazil, were investigated for their crystal chemistry and optical properties by several spectroscopic techniques, including electron microprobe analysis, Mössbauer, Raman spectroscopy and optical absorption. Although most garnets are purplish-red, some specimens show color zoning, with deep red color in the core and purple in the outer parts. Electron microprobe analysis showed that these garnets are principally almandine-pyrope solid solution at the rim. However, at the red core, they contain also up to 7 % of spessartine. Mössbauer spectroscopy reveals that the iron content is predominantly Fe2+ (>99 %) in the natural garnets. The optical absorption spectra are dominated by spin-allowed and unusual high-intense spin-forbidden transitions from eightfold coordinated Fe(II) in the near infrared and visible spectral region, respectively. For the red core, in addition, three sharp bands centered in the blue part of the visible spectral range and a broad charge transfer band in the near-UV region are observed. All garnets with purplish colors show also a remarkable color-changing effect from purple in daylight light to red in incandescent light called alexandrite-like effect. Heat treatments in the 700-900 °C temperature range in oxidizing and reducing atmospheres lead to reversible and irreversible color changes which are discussed based on the microscopic changes in the Fe ion coordination and valence states.

  2. Valid garnet biotite (GB) geothermometry and garnet aluminum silicate plagioclase quartz (GASP) geobarometry in metapelitic rocks

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Ming; Cheng, Ben-He

    2006-06-01

    At present there are many calibrations of both the garnet-biotite (GB) thermometer and the garnet-aluminum silicate-plagioclase-quartz (GASP) barometer that may confuse geologists in choosing a reliable thermometer and/or barometer. To test the accuracy of the GB thermometers we have applied the various GB thermometers to reproduce the experimental data and data from natural metapelitic rocks of various prograde sequences, inverted metamorphic zones and thermal contact aureoles. We have concluded that the four GB thermometers (Perchuk, L.L., Lavrent'eva, I.V., 1983. Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In: Saxena, S.K. (ed.) Kinetics and equilibrium in mineral reactions. Springer-Verlag New York, Berlin, Heidelberg. pp. 199-239.; Kleemann, U., Reinhardt, J., 1994. Garnet-biotite thermometry revised: the effect of Al VI and Ti in biotite. European Journal of Mineralogy 6, 925-941.; Holdaway, M.J., 2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist 85, 881-892., Model 6AV; Kaneko, Y., Miyano, T., 2004. Recalibration of mutually consistent garnet-biotite and garnet-cordierite geothermometers. Lithos 73, 255-269. Model B) are the most valid and reliable of this kind of thermometer. More specifically, we prefer the Holdaway (Holdaway, M.J., 2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist 85, 881-892.) and the Kleemann and Reinhardt (Kleemann, U., Reinhardt, J., 1994. Garnet-biotite thermometry revised: the effect of Al VI and Ti in biotite. European Journal of Mineralogy 6, 925-941.) calibrations due to their small errors in reproducing the experimental temperatures and good accuracy in successfully discerning the systematic temperature changes of the different sequences. In addition, after applying the GASP barometer to 335 natural metapelitic samples containing one kind

  3. FMR study of Co-substituted yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Jabłoński, R.; Maziewski, A.; Tekielak, M.; Desvignes, J. M.

    1996-07-01

    Ferromagnetic resonance has been studied in Y 3- zCa zFe 5- x-yCo xGe yO 12 films grown on the (001) plane of a GGG substrate. Temperature-induced spin-reorientation phase transitions were observed. On cooling the sample, the easy magnetization axes orientations changed from directions near [111] to [100], and the [001] direction had the lowest energy. The FMR signal was practically non-measurable below 60 and 120 K when the magnetic field was applied along the [110] and [100] axes, respectively.

  4. Garnet phosphors prepared via hydrothermal synthesis

    SciTech Connect

    Phillips, M.L.F.; Walko, R.J.; Shea, L.E.

    1996-05-01

    This project studied hydrothermal synthesis as a route to producing green-emitting cathodoluminescent phosphorus isostructural with yttrium aluminum garnet (Y{sub 3}Al{sub 5}O{sub 12}, or YAG). Aqueous precipitation of Y, Gd, Al, Ga, and Tb salts produced amorphous gels, which were heated with water at 600 C and 3,200 bar to produce crystalline YAG:Tb, Y{sub 3}Ga{sub 5}O{sub 12}:Tb, Y{sub 3}Al{sub 3}Ga{sub 2}O{sub 12}:Tb, and Gd{sub 3}Ga{sub 5}O{sub 12}:Tb powders. Process parameters were identified that yielded submicron YAG:Tb and Y{sub 3}Ga{sub 5}O{sub 12}:Tb powders without grinding. Cathodoluminescent efficiencies were measured as functions of power density at 600 V, using both the hydrothermal garnets and identical phosphor compositions synthesized at high temperatures. Saturation behavior was independent of synthetic technique, however, the hydrothermal phosphorus were less susceptible to damage (irreversible efficiency loss) at very high power densities (up to 0.1 W/cm{sup 2}). The fine grain sizes available with hydrothermal synthesis make it an attractive method for preparing garnet phosphorus for field emission, projection, and head-up displays.

  5. Polycrystalline Garnet Porphyroblasts, an EBSD Study

    NASA Astrophysics Data System (ADS)

    Seaton, N. C.; Whitney, D. L.; Anderson, C.; Alpert, A.

    2008-12-01

    Polycrystalline garnet porphyroblasts (PGP's) are significant because their formation provides information about metamorphic crystalline mechanisms, in particular during early stages of crystal growth, which may differ from those governing later stages; and because their existence may affect the chemical and structural evolution of metamorphic rocks. For example, the extent of element exchange between the garnet interior and the matrix may be affected by the presence of grain boundaries within PGP's. There have been several previous studies of PGP's but important questions about them remain; e.g. whether early coalescence is a common method by which garnets crystallize, whether grains rotate during growth to attain an energetically favorable grain-grain contact, and whether deformation and/or precursor minerals or other chemical or mechanical heterogeneities influence the formation of PGP's. PGP's have been detected by us in several different localities including; micaschist from SE Vermont (USA), including locality S35j of Rosenfeld (1968); the Solitude Range (British Columbia, Canada); the Southern Menderes Massif (Turkey); and three zones (garnet, staurolite, kyanite) from the Dutchess County Barrovian sequence in NY (USA). We have identified two types of PGP: cryptic and morphologically distinct. Cryptic PGP have no obvious morphological expression of the high angle boundaries within them and appear to be a single crystal. Morphologically distinct PGP have an obvious depression in the outer grain boundary where it is intersected by the internal grain boundary. Most PGP's contain inclusion trails and the high angle grain boundaries crosscut the trend of these as well as the inclusions themselves. PGP also show major element growth zoning that is not influenced by the internal grain boundaries except in rare cases. PGP's comprise ~ 5-35% of the garnet populations analyzed. More than 95% of the PGP's we have analyzed are comprised of 2-3 domains; the rest contain

  6. Pressure-induced diffusion in natural garnets

    NASA Astrophysics Data System (ADS)

    Floess, David; Vrijmoed, Johannes; Baumgartner, Lukas; Podladchikov, Yuri

    2015-04-01

    Recent efforts in metamorphic petrology suggest that significant pressure gradients exist on the grain-scale and provide tools for its quantification [1,2]. Here we propose that pressure gradients around coesite inclusions induced diffusion of major elements within garnet crystals upon exhumation. This is based on the fact that the molar mass of garnet endmembers vary between 403 and 497 g/mol, thus up to 23 %. Whiteschists from the Dora Maira Massive in the Western Alps underwent eclogite facies metamorphism (3.3-4.3 GPa, 720-780 °C) during the Alpine event at 35 Ma [3]. Coesite included in garnet (py0.96gr0.02alm0.02) during the HP stage was partially transformed to quartz during the subsequent, rapid exhumation (from 3.5 to 1 GPa within 2 Ma [4]). Coesite is preserved by maintaining a high pressure on the inclusion wall due to the large volume change of the phase transition. The surface of the host garnet experiences a lower pressure controlled by the exhumation P-T path. This pressure difference should induce diffusion of major elements in the garnet surrounding the inclusion. Element distribution maps show well-defined Fe-rich, Ca-poor halos surrounding the coesite-inclusions. The observed diffusion profiles are in agreement with predictions, assuming a positive ΔP around the inclusions. The results are based on thermodynamic equilibrium calculations assuming heterogeneous pressure [5]. Hence, the observed profiles are interpreted as an equilibrium state reflecting the pressure (stress) distribution within the crystal and can be used as tool to constrain the exhumation path. Understanding the effect of pressure gradients on diffusion and, alternatively, the generation of pressure due to relaxation of chemical gradients by diffusion, is crucial for interpreting P-T-t paths of zoned minerals correctly. [1] Baumgartner et al. (2010), GSA meeting Denver. [2] Tajčmanová et al. (2014) CMP 32, 195-207. [3] Compagnoni & Rolfo (2003), UHP Metamorphism - EMU notes 5

  7. Coexisting cummingtonite and aluminous hornblende from garnet amphibolite, Boehls Butte area, Idaho, USA

    USGS Publications Warehouse

    Hietanen, A.

    1973-01-01

    Electron microprobe analyses of green hornblende and coexisting cummingtonite from garnet amphibolite show identical Fe/Mg ratios ( = 0.9). Cummingtonite is iron-magnesium silicate with very little calcium and aluminum and practically no alkalies. In contrast, the hornblende has 1.5 tetrahedral Al, 0.9 octahedral Al and a considerable amount of Ca and alkalies. Comparison with the hornblendes from the Sierra Nevada shows a higher relative amount of tschemakite molecule in the hornblendes from Idaho where pressures during the recrystallization were higher. ?? 1973.

  8. Inclusion/lamella mineralogy and chemical characteristics of garnets from the Garnet Ridge in the Colorado Plateau, northern Arizona

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Ogasawara, Y.

    2013-12-01

    A wide variety of garnets as xenocrysts and those in xenoliths, come from kimberlitic diatreme (Smith et al. 2004), occurs at the Garnet Ridge. Koga and Ogasawara (2012) classified these garnets into 9 groups: (a) Cr and pyrope-rich garnet, (b) pyrope-rich reddish brown garnet, (c) reddish brown garnet, (d) garnet in eclogite, (e) garnet in metasomatized eclogite, (f) garnet aggregate, (g) garnet megacryst, (h) garnet in metasomatic rock I, (i) garnet in metasomatic rock II. They divided genetically these groups into four: mantle peridotite (a, b), subducted oceanic crust (d, e), high-pressure metasomatism (c, f, g), low-pressure metasomatism (h, i).In this study, the following 4 groups (a, b, f, g) were chose for inclusion mineralogy by laser Raman spectroscopy. Groups (a) and (b): pyrope-rich garnets (a: 45-82, b: 61-80 Prp mol%) both Cr-rich and Cr-poor (a: 1.0-5.9, b: 0.0-1.0 wt.% Cr2O3) are Ca-poor (1.5-7.0 wt.% CaO) and single-crystals of 5-15 mm in diameter. Group (a) is identical to chrome-pyrope based on the classification of kimberlitic garnets by Dawson and Stephens (1975). CaO-Cr2O3 ratio of (a, b) indicates lherzorite origin (Turkin and Sobolev 2009). Wang et al. (1999) have reported the detailed inclusion and lamella mineralogy of pyrope-rich garnets from the Garnet Ridge. We identified inclusions of Chl (OH: 3450, 3582, 3679 cm-1), Amp (OH: 3685, 3711 cm-1), Ol, Opx, Cpx, Rt (OH: 3295 cm-1), Mgs, Dol, Cal, sulfides, fluid (OH: 3445 cm-1) and spherical composite inclusions of Amp, Ap, Dol, Mgs, Rt and sulfides, and oriented lamellae (presumable exsolution) of Qz, Ol, Opx, Cpx, Amp, Chl, Rt, Ilm, crichtonite (6-7 Peaks at 120-820 cm-1), carmichaelite (710-782 cm-1, OH: 3340 cm-1), Ap (OH: 3570 cm-1) and Ti-Chn (OH: 3404, 3527, 3564 cm-1) adjacent to the oriented Ol. The mineral assemblages of the inclusion and lamella show a correlation with the host garnet compositions; inclusions: (a, b) Ol + Opx + Cpx × composite, (b, low Mg) Opx + Cpx + Amp

  9. Oxygen isotope zonation of a single garnet from UHPM calcsilicate rock of Kokchetav Massif, Kazakhstan: a window into the geochemical nature of deeply subducted crustal rocks

    NASA Astrophysics Data System (ADS)

    Sobolev, N. V.; Schertl, H.; Valley, J. W.; Page, F.; Kita, N.; Spicuzza, M.; Neuser, R. D.; Logvinova, A. M.

    2009-12-01

    Calcsilicates (dolomite marbles) and garnet-pyroxene rocks with Mg-calcite matrix represent the most unusual rock types within dominant UHPM diamondiferous biotite gneisses and schists of the Kokchetav Massif. They are characterized by extremely high diamond grade (up to 3,000 carats per metric ton) and an unusual assemblage of very high Mg-garnet (Mg# up to 93.7) with varied Ca-numbers (42.5 - 66.5) and K-bearing diopside. A calcsilicate sample with alternating layers showing different lithologies with considerable amounts of garnet and clinopyroxene in dolomite or Mg-calcite matrix was selected for careful oxygen isotope and EPMA study of garnets and pyroxenes. A grain of fresh garnet with a luminescent core indicating very low iron contents (Mg# 92.6 - 93.7) and a non-luminescent part (Mg# 87.1 - 88.2) was selected for the study of δ18O with a CAMECA IMS-1280 ion probe (10 micron spot). No cracks were found within the selected layered sample, which is a “micro-outcrop” of several rock types at cm-scale. In parts, a symplectite composed of pyroxene and spinel is developed around studied garnet. A significant difference in δ18O between 12.9 - 13.5‰ VSMOW for high Mg luminescent core and 11.9 - 12.6 for non-luminescent overgrowth was found. Additional separates of hand-picked garnet and clinopyroxene grains from different parts of the same 0.1 kg-size sample fragment (selected by color differences) were analyzed for δ18O by laser fluorination at mm-scale. Values of δ18O measured in this work vary between 6.25 and 10.63, demonstrating δ18O-gradients of over 7‰ in garnets over distances of less than 2 cm. Thus oxygen isotopic ratios of garnets and clinopyroxenes of one hand specimen are heterogeneous and even can vary within single crystals. The δ18O values for the garnets analyzed here belong to the highest observed for UHP-origin (both for metamorphic rocks and for kimberlites). The unusual zonation in δ18O within mineral grains of the same species

  10. Significance of hydrous silicate lamellae in pyrope-rich garnets from the Garnet Ridge in the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Ogasawara, Y.; Sakamaki, K.; Sato, Y.

    2014-12-01

    Pyrope-rich garnets originated from the upper mantle underneath the Colorado Plateau occur at the Garnet Ridge. These garnets contain the following lamellae of hydrous and anhydrous minerals; Rt, Ilm, crichtonites, Cr-Spl, Amp, Cpx, Chl, rarely Apt, srilankite and carmichealite. The origin of these lamellae in the garnets is controversial; exsolved origin or epitaxial growth. We emphasize here the close relations between the presence of hydrous lamellae and the OH concentrations in the host garnets. Lamella phases were identified with a standard-less quantitative EDS system and a laser Raman spectrometer with Ar+ laser (514.5 nm). OH concentrations in garnets were quantitated on the basis of IR absorption spectra of garnet by micro FT-IR method using IR absorption coefficient (8770 L/mol/cm2, Katayama et al., 2006). Pyrope-rich reddish brown garnet (group B by Sato et al., AGU2014F) has large variations of major chemical compositions (Prp: 49-76, Alm: 6-43, Grs: 6-26 mol%), and OH contents (2-177 ppm wt. H2O). Among this group garnets, Ca-rich ones (Prp: 49-66; Alm: 18-28; Grs: 16-26 mol%) have lamellae of both hydrous (Amp and Chl) and anhydrous (Rt, Ilm, and Cpx) minerals. Amp and Chl lamellae are pargasitic amphibole and clinochlore, respectively, and their host garnets contain significantly low amounts of OH (2-42 ppm). Cr and pyrope-rich garnet (group A by Sato et al., AGU2014F) has chemical compositions of Prp: 67-74, Alm: 13-18, Grs: 7-11 mol% with Cr2O3 up to 5.9 wt.%, and contains lamellae of anhydrous minerals (Rt, Ilm, crichtonites, and Cr-Spl). The host garnet with these anhydrous lamellae contains a little higher OH ranging 24 to 115 ppm. Summarizing the present results, the OH contents of the host garnets depend on the presence of hydrous silicate lamella phase; OH in the garnet with hydrous silicate lamellae is lower than that in the garnet with anhydrous lamellae. The precursor OH incorporated in the host garnet structure was exsolved as hydrous

  11. Mineralogical controls on garnet composition in the cratonic mantle

    NASA Astrophysics Data System (ADS)

    Hill, P. J. A.; Kopylova, M.; Russell, J. K.; Cookenboo, H.

    2015-02-01

    Garnet concentrates are a rich source of geochemical information on the mantle, but the mineralogical implications of wide ranging garnet compositions are poorly understood. We model chemical reactions between mantle minerals that may buffer the Ca-Cr lherzolitic garnet trend common in the lithospheric mantle. A harzburgitic trend of garnet compositions featuring a lower increase in Cr with Ca relative to the conventional lherzolitic trend is reported for the first time. Representation of garnet chemistry in terms of additive and exchange components in the Thompson space shows that the lherzolitic and harzburgitic trends are controlled by the cation exchanges MgFeAl ↔ Ca2Cr and MgFeAl4 ↔ Ca2Cr4, respectively. Various equilibrium reactions are presented to explain the trends assuming a closed or open system mantle. The compositional variability of the natural garnets from the Canastra 8 kimberlite (Brazil) is modeled by a linear system of mass balance equations. The solution returns the reaction coefficients of products (positive values) and reactants (negative values), which are then evaluated against the observed mantle mineralogy. In the isochemical mantle, the lherzolitic trend can form in the absence of clinopyroxene, but requires the presence of spinel and reflects the thickness of the spinel-garnet transition zone. This requirement contradicts observations on natural occurrences of the trend and the thermobarometry of the host peridotites. In the preferred model of a variably depleted mantle, the lherzolitic trend critically depends on the presence of clinopyroxene. The occurrence of lherzolitic garnet compositions in harzburgite can be explained by exhaustion of clinopyroxene as a result of garnet buffering. The open system behavior of the peridotitic mantle also provides a better explanation for the harzburgitic trend in garnet compositions. In an isochemical mantle, the trend can be controlled by many possible reactions, and no single mineral is

  12. Interface Engineering of Garnet Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Cheng, Lei

    Solid lithium ion conductors represent a promising class of materials for next generation high energy density batteries, with the potential for enabling use of high capacity Li metal anodes and providing opportunities for novel lithium-free cathode materials. However, highly resistive interfaces stymie their practical use. This urgent scientific challenge requires mechanistic understanding of ion transport at interfaces, as well as development of novel processes to achieve low interfacial resistances. The goal of this PhD dissertation was to generate fundamental understandings of garnet-structured Al substituted Li7La3Zr2O 12 (LLZO) electrolyte surfaces and interfaces with lithium metal electrodes. Specifically in this research, the topmost surface microstructure, local chemical environment, and surface chemistry were carefully studied. The ceramic processing of garnet is discussed and ways to control the sintering behavior and microstructures were explored and successfully demonstrated. Factors contributing to high interfacial resistance were systematically studied. The source of the high interfacial impedance has been traced to the presence of Li2CO 3 on pellet surfaces resulting from air exposure after processing. In addition, it was discovered that surface grain boundaries are surprisingly fast ion transport pathways and surface microstructure is critically important to lithium ion transport at interfaces. Complex homo- and heterostructured LLZO solid electrolytes with controllable surface and bulk microstructures were successfully fabricated, which allowed the comparison and separation of the contribution from the surface and the bulk. Engineered pellet surfaces allowed us to achieve the lowest interfacial resistance ever reported for this composition, resulting in significantly improved cycling behavior. Lastly, it was found that LLZO surfaces can be effectively stabilized under air exposure conditions, preventing Li2CO3 formation and maintaining low

  13. Elastic moduli of pyrope rich garnets

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Pandey, A. K.; Singh, C. K.

    2013-06-01

    The elastic properties of minerals depend on its composition, crystal structure, temperature and level of defects. The elastic parameters are important for the interpretation of the structure and composition of the garnet rich family. In present work we have calculated the elastic moduli such as isothermal bulk modulus, Young's modulus and Shear modulus over a wide range of temperature from 300 K to 1000 K by using Birch EOS and Poirrier Tarantola equation of state. The obtained results are compared with the experimental results obtained by measuring the elastic moduli of single crystal. The calculated results show that the logarithmic isothermal EOS does not cooperate well with experimental results.

  14. Very high-pressure orogenic garnet peridotites

    PubMed Central

    Liou, J. G.; Zhang, R. Y.; Ernst, W. G.

    2007-01-01

    Mantle-derived garnet peridotites are a minor component in many very high-pressure metamorphic terranes that formed during continental subduction and collision. Some of these mantle rocks contain trace amounts of zircon and micrometer-sized inclusions. The constituent minerals exhibit pre- and postsubduction microstructures, including polymorphic transformation and mineral exsolution. Experimental, mineralogical, petrochemical, and geochronological characterizations using novel techniques with high spatial, temporal, and energy resolutions are resulting in unexpected discoveries of new phases, providing better constraints on deep mantle processes. PMID:17519341

  15. Very high-pressure orogenic garnet peridotites.

    PubMed

    Liou, J G; Zhang, R Y; Ernst, W G

    2007-05-29

    Mantle-derived garnet peridotites are a minor component in many very high-pressure metamorphic terranes that formed during continental subduction and collision. Some of these mantle rocks contain trace amounts of zircon and micrometer-sized inclusions. The constituent minerals exhibit pre- and postsubduction microstructures, including polymorphic transformation and mineral exsolution. Experimental, mineralogical, petrochemical, and geochronological characterizations using novel techniques with high spatial, temporal, and energy resolutions are resulting in unexpected discoveries of new phases, providing better constraints on deep mantle processes. PMID:17519341

  16. Majorite Garnet and Lithosphere Evolution: Kaapvaal Craton

    NASA Astrophysics Data System (ADS)

    Griffin, W. L.; Tessalina, S.; O'Reilly, S. Y.

    2013-12-01

    The uppermost 50-70 km of the subcontinental lithospheric mantle (SCLM) beneath the Kaapvaal Craton (S. Africa) consists largely of highly-depleted chromite harzburgites. These rocks are understudied, mainly because of their uniformity and their lack of indicator minerals such as garnet and clinopyroxene (cpx). Kimberlite-borne xenoliths of these rocks contain rare volumes of cpx-spinel (modal 76/24) symplectite, with smooth grain boundaries; many studies have suggested that these might represent low-pressure breakdown products of garnet (majorite + olivine → cpx + spinel). Our reconstruction of a suite of these grains, using element mapping and EMP analysis of constituent minerals, gives a majoritic garnet with mean composition 21.8% CaO, 15.8% Cr2O3, 9.22% Al2O3, Si=3.118, mg#=0.93. The majorite contents suggest formation at depths of 250-280 km. Ni contents imply temperatures ≥1500 °C, but have large uncertainties related to the subtraction of olivine (ca 20%) during the reconstruction calculation. LAM-ICPMS analyses show strongly sinuous REE patterns with CN Dy/Lu <0.1 and Ce/Dy >100. Most analyses have negative Eu anomalies, consistent with chromite compositions that indicate strongly reducing conditions (ΔfO2(FMQ) = -4 to -5). Melt modeling suggests that the harzburgites are products of 30-40% melting of asthenospheric mantle at 250 km depth, leaving residues of ol+opx+chromite. The presence of the majorites and their overall LREE enrichment are ascribed to the introduction of carbonatitic metasomatic fluids, similar to those recorded by diamond-inclusions (subcalcic garnets), shortly after the depletion. We suggest that the melting, the metasomatism and the ultimate breakdown of the majorite track a process of mantle upwelling, with melt-extraction at depth providing the buoyancy that allowed the residual harzburgites to rise to shallow levels and stabilize the SCLM. Os-isotope analyses of sulfides associated with the majorites give TRD = 2.5-3.4 Ga

  17. Garnet and pyroxene compositions in some diamondiferous eclogites

    NASA Technical Reports Server (NTRS)

    Reid, A. M.; Brown, R. W.; Dawson, J. B.; Whitfield, G. G.; Siebert, J. C.

    1976-01-01

    Analyses are reported for garnet and pyroxene from 17 eclogites that contain diamond. The garnets contain small but significant contents of Na, Ti and P and the pyroxenes contain traces of K. The diamond-bearing eclogites do not constitute a unique compositional group but show a range of mineral compositions consistent with a very high P-T environment.

  18. The Garnet to Majorite Transformation in Mafic Compositions

    NASA Technical Reports Server (NTRS)

    Xirouchakis, D.; Draper, David S.; Agee, C. B.

    2002-01-01

    The garnet to majorite transformation in mafic compositions is controlled by bulk composition and the presence of silicate melt, clinopyroxene, and silicate perovskite as well as pressure. Thus, the use of empirical geobarometers based on garnet Si(4+) and/or [Al(3+) +/- Cr(3+)] (p.f.u) seems unjustified. Additional information is contained in the original extended abstract.

  19. Garnet megacrysts of the Williams diatremes, north-central Montana.

    USGS Publications Warehouse

    McGee, E.S.

    1986-01-01

    The physical characteristics of garnet megacrysts from the Williams diatremes are described, analysed and compared with other garnet megacryst suites. The only correlation found between the physical characteristics and the composition of the megacrysts related deep-red colour to high Cr content.-J.A.Z.

  20. Imaging Domains In Magnetic Garnets By Use Of TSMFM

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.; Wu, Jiin-Chuan; Stadler, Henry L.; Rice, Paul

    1994-01-01

    Tunneling-stabilized magnetic-force microscopy (TSMFM) demonstrated to yield images of magnetic domains in low-coercivity magnetic garnets with perpendicular anisotropy. Ability to generate images of domain walls and minute vertical Bloch lines aids study of vertical-Bloch-line magnetic memory devices that contain garnets. TSMFM provides desired resolution because its resolution not limited by diffraction.

  1. Chemistry and mineralogy of garnet pyroxenites from Sabah, Malaysia

    USGS Publications Warehouse

    Morgan, B.A.

    1974-01-01

    Garnet pyroxenites and corundum-garnet amphibolites from the Dent peninsula of eastern Sabah (North Borneo) occur as blocks in a slump breccia deposit of late Miocene age. The earliest formed minerals include pyrope-almandine garnet, tschermakitic augite, pargasite, and rutile. Cumulate textures are present in two of the six specimens studied. The earlier fabric has been extensively brecciated and partly replaced by plagioclase, ilmenite, and a fibrous amphibole. The bulk composition and mineralogy of these rocks are similar to those of garnet pyroxenite lenses within ultramafic rocks. Estimated temperature and pressure for the origin of the Sabah garnet pyroxenites is 850??150?? C and 19??4 kbar. ?? 1974 Springer-Verlag.

  2. Coupled diffusion of lithium and yttrium (+HREE) in garnet

    NASA Astrophysics Data System (ADS)

    Cahalan, R. C.; Kelly, E. D.; Carlson, W. D.

    2012-12-01

    Partially resorbed garnets from the aureole of the Makhavinekh Lake Pluton (MLP) developed strong compositional gradients at their rims for both major and trace elements, due to restricted intracrystalline diffusion during resorption. Similarities between these stranded diffusion profiles for Li and Y+HREEs, as well as the inversion of expected partitioning relationships for Li between garnet rims and cordierite, provide evidence that the rate of intracrystalline diffusion of Li in garnet is linked to, and thus no more rapid than, the diffusivity of Y+HREEs. This linkage is interpreted to result from the requirement for local charge balance by means of the coupled substitution of Li+ + (Y,HREE)%^{+3} for two divalent cations in dodecahedral sites in garnet. Stranded diffusion profiles for Li, Y, and Yb have been measured on one central section and six non-centered sections through garnets at distances of 1100, 1500, and 2400 m from the intrusive contact, using LA-ICPMS with a rectangular slit (5x50 μm) aperture to achieve optimal spatial resolution. These distances correspond to peak temperatures during resorption of 894, 882, and 846 °C, respectively, at 0.53 GPa. The Li profiles measured in these garnets display nearly homogenous concentrations in the interiors and sharp increases at the rims, across regions 25-50 μm wide. These profiles also correlate strongly with measured Y+HREE profiles, which exhibit flat interiors leading to sharp gradients, with increases starting roughly 25-50 μm from the garnet edge. Dutrow et al. (1986, Contrib Mineral Petrol 94: 496-506) measured equilibrium partitioning of Li among various minerals, including garnet and cordierite, and found that Li normally partitions preferentially into cordierite over garnet. Because cordierite is mineralogically dominant in the reaction coronas of the MLP garnets, the Li build-up at the garnet rims is the inverse of what would normally be expected. The likely explanation for this observation

  3. Geothermobarometric history of subduction recorded by quartz inclusions in garnet

    NASA Astrophysics Data System (ADS)

    Ashley, Kyle T.; Caddick, Mark J.; Steele-MacInnis, Matthew J.; Bodnar, Robert J.; Dragovic, Besim

    2014-02-01

    Burial histories of subduction zone rocks are often difficult to accurately constrain, owing to a lack of robust mineral geobarometers applicable to high pressure mineral assemblages. Knowledge of the depth-histories of subduction is, however, required for our understanding of global geochemical cycles, subduction-related seismicity, and the evolution of destructive tectonic boundaries. The high spatial resolution of quartz inclusion geobarometry can be used to determine pressure evolution during metamorphic growth of individual garnet crystals. Quartz inclusions in garnet from Sifnos, Greece, preserve such a record of the pressure of garnet growth, allowing detailed reconstruction of the metamorphic evolution of these rocks. Pressure-dependent Raman spectra of quartz inclusions were combined with elastic modeling to infer the conditions at which they were trapped during garnet growth. All measured inclusions suggest that garnet growth occurred between 19 and 20.5 kbars, with little evidence for significant pressure variation during the garnet growth interval, which is interpreted to record ˜100°C of heating. Coupled with thermometry and geochronology, these results show that early, cold burial was followed by a phase of rapid heating, which immediately preceded exhumation. Garnet growth occurred primarily during this heating phase.

  4. Terbium photoluminescence in yttrium aluminum garnet xerogels

    SciTech Connect

    Maliarevich, G. K.; Gaponenko, N. V. Mudryi, A. V.; Drozdov, Yu. N.; Stepikhova, M. V.; Stepanova, E. A.

    2009-02-15

    Based on a colloidal solution containing terbium, yttrium, and aluminum metal ions, a powder was synthesized and films of terbium-doped yttrium aluminum garnet Tb{sub 0.15}Y{sub 2.85}Al{sub 5}O{sub 12} were grown on single-crystal silicon and porous anodic alumina. Annealing of the sample in a temperature range from 200-1100 deg. C results in an increase in the photoluminescence intensity in the wavelength range from 480-640 nm, which is caused by Tb{sup 3+} ion intra-atomic transitions {sup 5}D{sub 4}{sup {yields}}{sup 7}F{sub j} (j = 3, 4, 5, 6). Annealing at 900 deg. C and higher temperatures gives rise to low-intensity photoluminescence bands in the region of 667 and 681 nm, which correspond to transitions {sup 5}D{sub 4}{sup {yields}}{sup 7}F{sub 0}, {sup 5}D{sub 4}{sup {yields}}{sup 7}F{sub 1}, and room-temperature Stark term splitting, which suggests the existence of a crystalline environment of Tb{sup 3+} ions. The FWHM of spectral lines in the region of 543 nm decreases from {approx}10 to {approx}(2-3) nm as the xerogel annealing temperature is increased from 700 to 900 deg. C and higher. Three bands with maxima at 280, 330, and 376 nm, which correspond to Tb{sup 3+} ion transitions {sup 7}F{sub 6}{sup {yields}}{sup 5}I{sub 8}, {sup 5}L{sub 6}, {sup 5}G{sub 6}, {sup 5}D{sub 3}, are observed in the photoluminescence excitation spectra of the studied structures for the emission wavelength at 543 nm. X-ray diffraction detected the formation of a crystalline phase for a terbium-doped yttrium aluminum garnet powder after annealing at 1100 deg. C.

  5. Ce-doped single crystal and ceramic garnets for γ ray detection

    SciTech Connect

    Hull, G; Roberts, J; Kuntz, J; Fisher, S; Sanner, R; Tillotson, T; Drobshoff, A; Payne, S; Cherepy, N

    2007-07-30

    Ceramic and single crystal Lutetium Aluminum Garnet scintillators exhibit energy resolution with bialkali photomultiplier tube detection as good as 8.6% at 662 keV. Ceramic fabrication allows production of garnets that cannot easily be grown as single crystals, such as Gadolinium Aluminum Garnet and Terbium Aluminum Garnet. Measured scintillation light yields of Cerium-doped ceramic garnets indicate prospects for high energy resolution.

  6. Magneto-Optical Experiments on Rare Earth Garnet Films.

    ERIC Educational Resources Information Center

    Tanner, B. K.

    1980-01-01

    Describes experiments in which inexpensive or standard laboratory equipment is used to measure several macroscopic magnetic properties of thin rare earth garnet films used in the manufacture of magnetic bubble devices. (Author/CS)

  7. Symplectites in garnet megacrysts captured by alkali mafic magma

    NASA Astrophysics Data System (ADS)

    Aseeva, Anna; Vysotskiy, Sergey; Karabtsov, Alexander; Alexandrov, Igor; Chashchin, Alexander

    2014-05-01

    Megacrysts are widespread in Cenozoic alkali-basalts of many volcanic provinces of the world. Garnet megacrysts containing symplectites are the most interesting, as can be used for reconstruction of physical and chemical conditions in liquid basalt at the moment of garnet crystal capture. The collection of garnet megacrysts and garnet-pyroxene aggregates from Shavaryn-Tsaram (Hangaj plateau, Mongolia) and Bartoj (Dzhida basaltic field, Russia) paleovolcanoes has studied. Cenozoic alkali basaltic volcanism of these two spatially separated areas is considered to be related to a uniform process of lithosphere spreading in Baikal and related Central Asian rift systems. The studying of garnet-pyroxene aggregate and fragments of garnet megacrysts from these two paleovolcanoes revealed two mineral associations: primary and secondary. The former includes garnet and clinopyroxene, the letter (symplectite) is presented by products of garnet disintegration (clinopyroxene remain unaltered). At least two paragenesis can be allocated: 1) shpinel - plagioclase-olivine sometimes with gedrite and orthopyroxene; 2) olivine (with glass). Experimental modeling of decomposition process in garnet megacryst has been carried out with the help of 'Selector' softwear at various P-T parameters. Physical and chemical conditions of this paragenesis occurrence have also been estimated by up-to-date geothermometers and geobarometers (T 950-1000 C, P 4-4.5 kbar. Conclusions: 1. Garnet megacrysts are apparently in non-equilibrium with alkali-basalts. They were formed in conditions corresponding to zones of mantle plums at the bottom of crust, in magmatic chambers at constant infiltration of fluid. Subsequently megacrysts were captured by alkali-basalt magma and taken out to the surface. 2. Kelyphitic rims on garnet megacrysts is a result of partial melting of megacrysts on interaction with the hosting alkali basaltic rock. During melting garnet transforms with the formation of Na-K glass and Mg

  8. Garnet--An Essential Industrial Mineral and January's Birthstone

    USGS Publications Warehouse

    Evans, James G.; Moyle, Phillip R.; Frank, David G.; Olson, Donald W.

    2006-01-01

    Garnet is one of the most common minerals in the world. Occurring in almost any color, it is most widely known for its beauty as a gem stone. Because of its hardness and other properties, garnet is also an essential industrial mineral used in abrasive products, non-slip surfaces, and filtration. To help manage our Nation's resources of such essential minerals, the U.S. Geological Survey (USGS) provides crucial data and scientific information to industry, policymakers, and the public.

  9. Indus Basin sediment provenance constrained using garnet geochemistry

    NASA Astrophysics Data System (ADS)

    Alizai, Anwar; Clift, Peter D.; Still, John

    2016-08-01

    The chemical and mineralogical diversity of western Himalayan rivers is the result of each of them draining different tectonic and lithologic units, whose character is partly transferred to the sediments carried by those rivers. Garnet geochemistry was employed to discriminate provenance in the Indus River system. We characterized the geochemistry of garnet sediment grains from the modern Indus and all its major tributaries, as well as the related but ephemeral Ghaggar-Hakra River and dune sand from the Thar Desert. Garnet geochemistry displays a unique signature for the Himalayan rivers on the east of the Indus drainage compared to those in the western drainage. The trunk Indus remains distinct because of the dominant arc-type pyrope-garnet derived from Kohistan and the Karakoram. The Jhellum, which lies just east of the modern Indus has modest concentrations of arc-type pyrope garnets, which are more depleted in the other eastern tributaries. Their presence in the Jhellum reflects recycling of trunk Indus garnets through the Miocene Siwalik Group foreland sedimentary rocks. The Thar Desert dune sample contains significant numbers of grains similar to those in the trunk Indus, likely reworked by monsoon winds from the SW. Our data further indicate the presence of a Himalayan river channel east of the present Indus, close to the delta, in the Nara River valley during the middle Holocene. Sands from this channel cannot be distinguished from the Indus on the basis of their garnet geochemistry alone but we favour their sedimentation from an Indus channel rather than reworking of desert sands by another stream. The garnet geochemistry shows some potential as a provenance tool, but cannot be used alone to uniquely discriminate Indus Basin provenance.

  10. Garnets from the Camafuca-Camazambo kimberlite (Angola).

    PubMed

    Correia, Eugénio A; Laiginhas, Fernando A T P

    2006-06-01

    This work presents a geochemical study of a set of garnets, selected by their colors, from the Camafuca-Camazambo kimberlite, located on northeast Angola. Mantle-derived garnets were classified according to the scheme proposed by Grütter et al. (2004) and belong to the G1, G4, G9 and G10 groups. Both sub-calcic (G10) and Ca-saturated (G9) garnets, typical, respectively, of harzburgites and lherzolites, were identified. The solubility limit of knorringite molecule in G10D garnets suggests they have crystallized at a minimum pressure of about 40 to 45 kbar (4-4.5 GPa). The occurrence of diamond stability field garnets (G10D) is a clear indicator of the potential of this kimberlite for diamond. The chemistry of the garnets suggests that the source for the kimberlite was a lherzolite that has suffered a partial melting that formed basaltic magma, leaving a harzburgite as a residue. PMID:16710568

  11. Magnetic and electronic properties of nanocrystalline Gd{sub 3}Fe{sub 5}O{sub 12} garnet

    SciTech Connect

    Lassri, H.; Hlil, E.K.; Prasad, S.; Krishnan, R.

    2011-12-15

    The Gd{sub 3}Fe{sub 5}O{sub 12} nanocrystalline Gadolinium Iron Garnet (GdIG) obtained from a sintered block was milled in a high energy ball mill. We measured the magnetization at 5 K under applied fields up to 12 T. We report here our study of approach to saturation magnetization. The results have been interpreted within the framework of random anisotropy model. From an analysis of the approach to saturation magnetization some fundamental parameters have been extracted. We have determined the anisotropy field H{sub r} and the local magnetic anisotropy constant K{sub L}. In addition, first-principles spin-density functional calculations, using the Full potential Linear Augmented Plane Waves (FLAPW) method are performed to investigate electronic and magnetic structures. All computed parameters are discussed and compared to available experimental data. - Graphical abstract: Random anisotropy fields, random anisotropy constant, substantial interstitial magnetism as well as magnetic quadrupolar feature on oxygen are determined from magnetization, theoretical random magnetic anisotropy model and FLAPW calculations in nanocrystalline Gadolinium Iron Garnet (GdIG). Highlights: Black-Right-Pointing-Pointer Nanocrystalline Gadolinium Iron Garnet (GdIG) prepared by a high energy ball mill. Black-Right-Pointing-Pointer Random magnetic anisotropy model developed for amorphous is used for Nanocrystalline GdIG. Black-Right-Pointing-Pointer Random anisotropy fields and random anisotropy constant are determined. Black-Right-Pointing-Pointer FLAPW calculations performed to investigate both magnetic and electronic structures. Black-Right-Pointing-Pointer Substantial interstitial magnetism and magnetic quadrupolar feature on oxygen are revealed.

  12. Iron Test

    MedlinePlus

    ... detect and help diagnose iron deficiency or iron overload. In people with anemia , these tests can help ... also be ordered when iron deficiency or iron overload is suspected. Early iron deficiency often goes unnoticed. ...

  13. Garnet: a key to unraveling Earth's dynamic lithosphere

    NASA Astrophysics Data System (ADS)

    Smit, M. A.; Scherer, E. E.; Mezger, K.; Lee, J.; Ratschbacher, L.; Kooijman, E.; Stearns, M. A.

    2015-12-01

    Garnet enables constraints on all parameters relevant to lithosphere studies: pressure, temperature, strain, and time. This aspect, in combination with its widespread occurrence in metamorphic rocks and ability to resist retrogression, make the mineral a prime target in research into the dynamics of mountain belts. Garnet-based petrological and geochemical tools have diversified and improved as a result of recent advancements in spatial and analytical resolution. In particular, our ability to obtain precise age constraints using garnet Lu-Hf and Sm-Nd geochronology, and interpret these in a geological context has greatly improved. This contribution highlights a series of recent enhancements to the garnet toolkit and demonstrates its versatility in two case studies set in an archetypal collisional orogen: the Pamir-Himalaya-Tibet mountain chain. To enable a more effective use of garnet geochronology, we investigated the retentiveness of Lu-Hf and Sm-Nd isotope signatures in naturally metamorphosed garnet. Diffusive re-equilibration of these signatures is shown to occur to a minor, if not insignificant, extent during crustal metamorphism, thus firmly establishing these methods as reliable geochronometers. Diffusive major-element zoning analysis of the same garnet led to the development of a new thermometric tool, which was shown to provide reliable temperature estimates for a wide variety of rocks and terranes. We used Lu-Hf garnet geochronology to show that mid-crustal flow and 'Barrovian-type' metamorphism of rocks now exposed in the North Himalayan Gneiss Domes in Central Tibet commenced in the early Eocene. This result is the first to confirm that crustal thickening and contraction in the Tibetan Himalaya was broadly synchronous with the collision between Greater India and Eurasia. Garnet dating and thermometry, and rutile U-Pb thermochronology in the Pamir revealed a history of heating to 750-830 °C, commencing at 37 Ma in the South Pamir and occurring

  14. Evaluation of thermobarometers for garnet peridotites

    NASA Technical Reports Server (NTRS)

    Finnerty, A. A.; Boyd, F. R.

    1984-01-01

    Twenty-one geothermometers and six geobarometers are evaluated for accuracy and precision for garnet lherzolites, with a suite of well-equilibrated xenoliths from kimberlites of northern Lesotho. Accuracy was tested by comparison of P-T estimates for a diamond-bearing and a graphite-bearing xenolith with the experimentally determined diamond-graphite univariant curve and by comparison of P-T estimates for phlogopite-bearing xenoliths to the high-temperature stability limit of phlogopite. Precision was evaluated by measuring the scatter of P-T estimates for each of four xenoliths from a wide range of P and T when many point analyses of the constituent minerals are used for P-T estimation. Most satisfactory is a thermobarometer composed of the uncorrected diopside-enstatite miscibility gap of Lindsley and Dixon (1976), combined with the uncorrected isopleths for aluminum in enstatite coexisting with pyrope of MacGregor (1974). The inflection observed in the northern Lesotho paleogeotherm cannot be an artifact of the method of temperature estimation.

  15. Multistep sintering to synthesize fast lithium garnets

    NASA Astrophysics Data System (ADS)

    Xu, Biyi; Duan, Huanan; Xia, Wenhao; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-01-01

    A multistep sintering schedule is developed to synthesize Li7La3Zr2O12 (LLZO) doped with 0.2 mol% Al3+. The effect of sintering steps on phase, relative density and ionic conductivity of Al-doped LLZO has been evaluated using powder X-Ray diffraction (XRD), scanning electron microscopy (SEM), 27Al magic spinning nuclear magnetic resonance (NMR) spectroscopy and electrochemical impedance spectroscopy (EIS). The results show that by holding the sample at 900 °C for 6 h, the mixture of tetragonal and cubic garnet phases are obtained; by continuously holding at 1100 °C for 6 h, the tetragonal phase completely transforms into cubic phase; by holding at 1200 °C, the relative density increases without decomposition of the cubic phase. The Al-LLZO pellets after multistep sintering exhibit cubic phase, relative density of 94.25% and ionic conductivity of 4.5 × 10-4 S cm-1 at room temperature. Based on the observation, a sintering model is proposed and discussed.

  16. Thermal conductivity of garnet laser crystals

    NASA Astrophysics Data System (ADS)

    Wang, B. S.; Jiang, H. H.; Zhang, Q. L.; Yin, S. T.

    2008-03-01

    The thermal conductivities of nine different synthetic garnet laser crystals at various temperatures, range from 273 to 393 K have been investigated by instantaneous measurement method. The results show that the thermal conductivity of each crystal decreases exponentially with the temperature increasing. It is notable that, different host crystals, such as YAG, GGG, and GSGG have different thermal conductivity, which is attributed to the crucial influence of crystal structure and composition on the absolute value of their thermal conductivity. Moreover, with respect to the same host crystals, the impurity scattering also results in the change of their thermal conductivities. This is because that a higher concentration of doped ions leads to a more phonon scattering modes, which results in a shorter mean free path of the phonons and a lower thermal conductivity. In addition, different host crystals have various dependences of thermal conductivity on dopant concentration. This works provides reliable and useful information for designing high power, high quality, and high stability laser devices.

  17. Thermal conductivity of synthetic garnet laser crystals

    NASA Astrophysics Data System (ADS)

    Wang, B. S.; Jiang, H. H.; Zhang, Q. L.; Yin, S. T.

    2007-07-01

    The thermal conductivities of nine different synthetic garnet laser crystals at various temperatures, range from 273 to 393K have been investigated by instantaneous measurement method. The results show that the thermal conductivity of each crystal decreases exponentially with the temperature increasing. It is notable that, different host crystals, such as YAG, GGG, and GSGG have different thermal conductivity, which is attributed to the crucial influence of crystal structure and composition on the absolute value of their thermal conductivity. Moreover, with respect to the same host crystals, the impurity scattering also results in the change of their thermal conductivities. This is because that a higher concentration of doped ions leads to a more phonon scattering modes, which results in a shorter mean free path of the phonons and a lower thermal conductivity. In addition, different host crystals have various dependences of thermal conductivity on dopant concentration. This works provides reliable and useful information for designing high power, high quality, and high stability laser devices.

  18. Charge-coupled Substituted Garnets (Y3-xCa0.5xM0.5x)Fe5O12 (M = Ce, Th): Structure and Stability as Crystalline Nuclear Waste Forms

    SciTech Connect

    Guo, Xiaofeng; Kukkadapu, Ravi K.; Lanzirotti, Anthony; Newville, Mathew; Engelhard, Mark H.; Sutton , Steven R.; Navrotsky, Alexandra

    2015-04-20

    The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce), and thorium (Th), incorporated by a charge-coupled substitution with calci-um (Ca) for yttrium (Y) in YIG, namely 2Y3+ = Ca2+ + M4+, where M4+ = Ce4+ or Th4+. Single phase garnets Y3-xCa0.5xM0.5xFe5O12, synthesized by the citrate-nitrate combustion method, were obtained up to x = 0.7. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. X-ray diffraction and 57Fe-Mössbauer spectroscopy indicated that the samples are single phase, M4+ and Ca2+ cations are restricted to the c-site, the nature of M4+ has only a minor effect on the structure, and the local environments of both the tetrahedral and octahedral Fe3+ are systematically affected by the extent of substitution, especially on the tetrahedral sublattice. The charge coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases, compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature. These structural and thermodynamic findings shed light on possible incorporation of U in this garnet system.

  19. Presumed Multiple Metasomatism underneath the Colorado Plateau; Decoding from Chemistry and Inclusion/Lamella Mineralogy of Diverse Garnets from the Garnet Ridge, Northern Arizona

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Ogasawara, Y.

    2015-12-01

    Various garnets containing the information on mantle petrology and related metasomatism occur at the Garnet Ridge, Colorado Plateau. The origins of garnets range from deep mantle to shallow continental crust. These garnets were delivered by kimberlitic diatreme of 30 Ma (Smith et al. 2004). We have classified the garnets into 10 groups (A to J, see figure) by naked eye observation, major chemistry, minor Na-Ti-P, inclusion/lamella mineralogy. Among them, groups A to D are of mantle origin, E to G of subducted oceanic crust origin, and H to J of continental crust origin. We summarized results as in the followings. A: Cr and pyrope-rich garnet has Cr2O3(0.8-6.3 wt.%) and inclusions of Ol, Cpx, Opx, Ti-Chu/Chn and carbonates, indicating carbonated garnet lherzolites as host. Cr contents negatively correlates with Na-Ti-P contents and occurrence of exsolved Rt, Ilm and crichtonite. This indicates Cr-rich end-member is the most "primitive" mantle garnet before metasomatism. B: Pyrope-rich reddish brown garnet of peridotitic origins was subdivided into 4 subgroups (B1 to B4, see figure). Compositional range in Ca-Mg-Fe triangle expands to Fe-rich side from group A. Exsolved Na-bearing amphibole and inclusions of Ap, carbonates and fluid were identified. These indicate metasomatism of group A. C: Garnet megacryst is coarse-grained garnet (2-10 cm across) with crystal faces. This garnet has wide chemical variation plotted in the center area of Ca-Mg-Fe triangle. D: Garnet aggregate has similar chemistry of group C and is composed of several grains. Grain boundaries of garnet were recognized by Rt, Ilm and other minerals and oscillatory zonings of Ca, Mg, Fe and Na-Ti-P. Fluid inclusions of groups C and D suggest these garnets might crystalized from fluid. E: Garnet in eclogite and F: Garnet in metasomatized eclogite are xenolith samples (the Fallaron Plate origin?). Aggregate of Zo+Ab contained in group E indicates decomposed precursor lawsonite inclusion. G: Quartz

  20. Discovery of a New Garnet Mineral, Hutcheonite, in the Allende Meteorite

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2013-09-01

    A new titanium-rich garnet mineral has been found in a FUN CAI (a rare type of calcium-aluminum-rich inclusion, CAI) from the Allende carbonaceous chondrite, as reported by the discovery team of Chi Ma (CalTech) and Alexander Krot (University of Hawaii). The mineral, IMA 2013-029, was officially approved in June 2013 by the Commission on New Minerals, Nomenclature, and Classification of the International Mineralogical Association as hutcheonite. The mineral's name honors Ian D. Hutcheon, a researcher at Lawrence Livermore National Laboratory, who is a leading authority in the chronology of the early Solar System, especially known for his significant contributions to the development of instrumentation and techniques for isotopic and elemental microanalysis. Researchers Ma and Krot say hutcheonite in Allende is likely an alteration phase formed by iron-alkali-halogen metasomatism of the primary phases in the FUN CAI.

  1. Dating Subduction Zone Metamorphism with Garnet and Lawsonite Geochronology

    NASA Astrophysics Data System (ADS)

    Mulcahy, S. R.; Vervoort, J. D.

    2013-12-01

    Lawsonite [CaAl2Si2O7(OH)2 H2O] is a critical index mineral for high- to ultrahigh-pressure metamorphism associated with subduction. Lawsonite is an important carrier of water into the mantle, a likely contributor to subduction zone seismicity, and a bearer of trace elements that link metamorphism to arc magmatism. Due to its limited pressure-temperature stability, lawsonite can serve as a powerful petrogenetic indicator of specific metamorphic events. Lu-Hf dating of lawsonite, therefore provides a potentially powerful new tool for constraining subduction zone processes in a pressure-temperature window where few successful geochronometers exist. Broad application of lawsonite Lu-Hf geochronology requires constraining the role of pressure-temperature path, lawsonite forming reactions, and the Lu and Hf systematics within lawsonite and other blueschist facies minerals. We are working to address the role of the metamorphic path on the applicability of lawsonite Lu-Hf geochronology within the Franciscan Complex of California. The Franciscan Complex preserves mafic high-grade exotic blocks in melange that underwent a counterclockwise pressure-temperature path wherein garnet, which strongly partitions heavy rare-earth elements, formed prior to lawsonite. Coherent mafic rocks within the Franciscan Complex, however, underwent a clockwise pressure-temperature path and lawsonite growth occurred prior to garnet. We sampled exotic blocks of garnet-hornblendite, garnet-epidote amphibolite, garnet-epidote blueschist, and lawsonite blueschist from the Berkeley Hills and Tiburon Peninsula of California. We collected four samples from coherent lawsonite blueschist across the lawsonite-pumpellyite-epidote isograds in Ward Creek, near Cazadero California. High-grade blocks give ages similar to existing Franciscan geochronology: multi-stage garnet in hornblendite gives the following ages: 171×1.3 Ma (MSWD 2.8) for the core and 159.4×0.9 Ma (MSWD 2.0) for the corresponding rim; 166

  2. The metapelitic garnet biotite muscovite aluminosilicate quartz (GBMAQ) geobarometer

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Ming; Zhao, Guochun C.

    2007-09-01

    In this contribution we have empirically calibrated the garnet-biotite-muscovite-aluminosilicate-quartz (GBMAQ) barometer using low- to medium-high-pressure, mid-grade metapelites. Application of the barometer suggests that the GBMAQ and GASP barometers show quite similar pressure estimates. Furthermore, metapelites within thermal contact aureole or very limited geographic area show no meaningful pressure diversity determined by the GBMAQ and GASP barometers which is the geological reality. The random error of the GBMAQ barometer is expected to be around ± 0.8 kbar, and this barometer shows no systematic bias with respect to either pressure, or temperature, or Al VI in muscovite, or Fe in biotite, or Fe in garnet. The GBMAQ barometer is thermodynamically consistent with the garnet-biotite geothermometer because they share the same activity models of both garnet and biotite. This barometer is especially useful for assemblages with Ca-poor garnet or Ca-poor plagioclase or plagioclase-absent metapelites. Application of this barometer beyond the calibration ranges, i.e., P- T range and chemical ranges of the minerals, is not encouraged.

  3. Rare Earth Doped Yttrium Aluminum Garnet (YAG) Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie T.; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study presents a spectral emittance model for films and cylinders of rare earth doped yttrium aluminum garnets. Good agreement between experimental and theoretical film spectral emittances was found for erbium and holmium aluminum garnets. Spectral emittances of films are sensitive to temperature differences across the film. For operating conditions of interest, the film emitter experiences a linear temperature variation whereas the cylinder emitter has a more advantageous uniform temperature. Emitter efficiency is also a sensitive function of temperature. For holminum aluminum garnet film the efficiency is 0.35 at 1446K but only 0.27 at 1270 K.

  4. Iron Chelation

    MedlinePlus

    ... iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you have ... may want to perform: How quickly does iron overload happen? This is different for each person. It ...

  5. Garnet compositions and their use as indicators of peraluminous granitoid petrogenesis - southeastern Arabian Shield

    USGS Publications Warehouse

    du Bray, E.A.

    1988-01-01

    Garnet, an uncommon accessory mineral in igneous rocks, occurs in seven small peraluminous granitoid plutons in the southeastern Arabian Shield; textural equilibrium between garnet and other host granitoid minerals indicates that the garnets crystallized from their host magmas. Compositions of the garnets form three groups that reflect host-granitoid compositions, which in turn reflect source compositions and tectonic regimes in which the host magmas were generated. Garnets from the seven plutons have almandine-rich cores and spessartine-rich rims. This reverse zoning depicts host magma compositional evolution; i.e. rimward spessartine enrichment resulted from progressive, host-magma manganese enrichment. The garnets are heavy rare-earth element enriched; (Lu/La)N ranges from 13 to 355 and one of the garnets contains spectacularly elevated abundances of Y, Ta, Th, U, Zn, Zr, Hf, Sn, and Nb. Involvement of garnets with these trace element characteristics in magma genesis or evolution can have dramatic effects on trace element signatures of the resulting magmas. Other researchers suggest that Mn-enriched magmas are most conducive to garnet nucleation. Although the garnetiferous granitoids discussed here are slightly Mn enriched, other genetically similar peraluminous Arabian granitoids lack garnet; Mn enrichment alone does not guarantee garnet nucleation. The presence of excess alumina in the magma may be a prerequisite for garnet nucleation. ?? 1988 Springer-Verlag.

  6. Lu-Hf geochronology on cm-sized garnets using microsampling: New constraints on garnet growth rates and duration of metamorphism during continental collision (Menderes Massif, Turkey)

    NASA Astrophysics Data System (ADS)

    Schmidt, Alexander; Pourteau, Amaury; Candan, Osman; Oberhänsli, Roland

    2015-12-01

    This study shows Lu-Hf geochronology of zoned garnet crystals contained in mica schists from the southern Menderes Massif, Turkey. Selected samples are four 3-5 cm large garnet megacrysts of which several consecutive garnet shells have been sampled with a micro-saw and analyzed for dating. The results are used to extract growth rates of garnet, and also to improve the time constraint for Alpine-aged overprint of the Pan-African basement in the Menderes Massif. Lu-Hf ages of the sampled garnet shells are determined by two-point garnet-only isochrons using the garnets' Lu-depleted rim compositions. This yields a consistent decrease of age information from core to rim segments of individual garnet crystals and the calculated isochron ages propose a time frame of growth between 42.6 ± 1.9 and 34.8 ± 3.1 Ma. Major element profiles in the investigated garnets characterize zoning patterns indicative of prograde conditions: Rayleigh fractionated bell-shaped Mn and decreasing Fe/(Fe + Mg) are recorded by the garnets' core to rim compositions. Therefore the obtained Lu-Hf ages record timing of early prograde growth for the cores of the garnets. Two of the large garnet crystals also yield isochron ages of 58.83 ± 0.69 and 50.16 ± 0.84 Ma in their innermost cores, which appear to record an early nucleation event. This view, however, is not in concordance with the observed major element profiles of these garnets, and therefore is interpreted with caution. Termination of the garnet growth period is determined through the calculation of radial growth rates based on the size of the garnets and the Lu-Hf ages obtained for consecutive shells. Extrapolation of these rates potentially constrains the total duration for garnet growth terminating at 31 ± 6 Ma. Comparison of the growth rates calculated for individual crystals shows a variety of slow and fast growing garnets, and similar results have been previously obtained with the Rb-Sr and Sm-Nd isotope systems. The new data

  7. Charge-coupled substituted garnets (Y 3–x Ca 0.5x M 0.5x )Fe₅O₁₂ (M = Ce, Th): Structure and stability as crystalline nuclear waste forms

    DOE PAGESBeta

    Guo, Xiaofeng; Kukkadapu, Ravi K.; Lanzirotti, Antonio; Newville, Matthew; Engelhard, Mark H.; Sutton, Stephen R.; Navrotsky, Alexandra

    2015-04-20

    The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce) and thorium (Th), incorporated by a charge-coupled substitution with calcium (Ca) for yttrium (Y) in YIG, namely, 2Y³⁺ = Ca²⁺ + M⁴⁺, where M⁴⁺ = Ce⁴⁺ or Th⁴⁺. Single-phase garnets Y3–xCa0.5xM0.5xFe₅O₁₂ (x = 0.1–0.7) were synthesized by the citrate–nitrate combustion method. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. X-ray diffractionmore » and ⁵⁷Fe–Mössbauer spectroscopy indicated that M⁴⁺ and Ca²⁺ cations are restricted to the c site, and the local environments of both the tetrahedral and the octahedral Fe³⁺ are systematically affected by the extent of substitution. The charge-coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high-temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature.« less

  8. Charge-coupled substituted garnets (Y3-xCa0.5xM0.5x)Fe5O12 (M = Ce, Th): structure and stability as crystalline nuclear waste forms.

    PubMed

    Guo, Xiaofeng; Kukkadapu, Ravi K; Lanzirotti, Antonio; Newville, Matthew; Engelhard, Mark H; Sutton, Stephen R; Navrotsky, Alexandra

    2015-04-20

    The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce) and thorium (Th), incorporated by a charge-coupled substitution with calcium (Ca) for yttrium (Y) in YIG, namely, 2Y(3+) = Ca(2+) + M(4+), where M(4+) = Ce(4+) or Th(4+). Single-phase garnets Y3-xCa0.5xM0.5xFe5O12 (x = 0.1-0.7) were synthesized by the citrate-nitrate combustion method. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. X-ray diffraction and (57)Fe-Mössbauer spectroscopy indicated that M(4+) and Ca(2+) cations are restricted to the c site, and the local environments of both the tetrahedral and the octahedral Fe(3+) are systematically affected by the extent of substitution. The charge-coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature. PMID:25853274

  9. William Herschel and the 'garnet' stars: μ Cephei and more

    NASA Astrophysics Data System (ADS)

    Steinicke, Wolfgang

    2015-07-01

    Although William Herschel's 'Garnet Star' (μ Cephei) is a prominent object, the story of the discovery of this famous red star is not well documented. Prior to and after Herschel, the identification of this star was the subject of confusion in various catalogues and atlases. The case is complex and involves other stars in southern Cepheus, including double stars, found by Herschel in the course of his star surveys. It is also fascinating to learn that μ Cephei is not the only star called 'garnet' by him. This study reveals that there are 21 in all, resulting in a 'Herschel Catalogue of Garnet Stars' - the first historical catalogue of red stars. Among them are prominent objects, which in the literature are credited to later observers. This misconception is corrected here, for Herschel was the true discoverer of all of them. The most interesting cases are Hind's 'Crimson Star', Secchi's 'La Superba', John Herschel's 'Ruby Star' and Schmidt's V Aquilae. Finally, we discussed whether Herschel speculated about the physical nature of his garnet stars, many of which are now known to be variable.

  10. Isomorphism of actinides and REE in synthetic ferrite garnets

    NASA Astrophysics Data System (ADS)

    Livshits, T. S.

    2010-02-01

    The reprocessing of spent nuclear fuel (SNF) is accompanied by the formation of liquid high-level radioactive waste (HLW). To increase the safety of handling HLW, it is proposed to extract actinide isotopes (An) and REE from them. These elements may be incorporated into crystalline matrices, e.g., based on ferrites with garnet structure, and then disposed in a geologic repository. The actinide-REE fraction is characterized by a complex composition. In addition to major components (An and REE), Al, Si, Na, and Sn occur therein in small amounts (a few wt %). Possible incorporation of the admixtures into ferrite garnets, as well as their effect on the phase composition of matrices and Th, Ce, Gd, and La contents were studied. It was shown that admixtures enter into garnet by means of isomorphic replacement. The properties of samples change only when admixtures are added in amounts exceeding their concentrations in HLW. The ability of ferrite garnets to accumulate significant amounts of An, REE, and admixture elements makes them suitable for use as matrices in immobilizing actinide-REE HLW of complex composition.

  11. Garnet Porphyroblasts and the Tectonic Evolution of Iberia

    NASA Astrophysics Data System (ADS)

    Aerden, D. G.

    2013-12-01

    Porphyroblast inclusion trails constitute an exceptionally detailed record of deformation histories undergone by metamorphic rocks. Their orientations have been shown to be remarkably consistent in mountain belts and to relate to large-scale orogenic processes. For example, vertical and horizontal preferred orientations are almost universally developed and resulted from multiple gravitational collapse stages that periodically interrupted plate-driven (horizontal) crustal shortening. Over the past 20 years, a large body of orientation data has become available for Foliation Intersection Axes (FIA) defined by inclusion trails in orogenic belts around the world. This data reveals that FIAs in metamorphic regions generally can be grouped into a discrete number of age sets with distinctive geographic trends. Such FIA sequences apparently track shifts in the direction of crustal shortening with time. Garnet is a particularly useful porphyroblastic mineral where it comes to linking deformation and metamorphic paths, due to a unique combination of properties: (1) lengthy growth histories along extended P-T paths and in rocks with variable bulk compositions, (2) sub-spherical crystal shapes and rigid behavior favoring the nucleation of tectonic foliations against garnet edges and their preservation in continued garnet-growth stage, (3) chemical compositions sensitive to changes in metamorphic conditions that can be modeled thermodynamically, (4) abundance of datable micro-inclusions, such as monazite, and (5) the possibility of dating garnet itself via the Sm-Nd or Lu-Hf methods. In Iberia, integrated microstructural and petrological analysis of garnet porphyroblasts in the Betic Cordillera (European Alpine belt) has recently established a sequence of 4 FIA sets. The successive geographic trends of these FIA (NE-SW, NW-SE, ENE-WSW, and NNW-SSE) remarkably correlate with known changes in relative Iberia-Africa plate motion from ca. 50-10Ma. In Hercynian Iberia (Iberian

  12. Combined external-beam PIXE and /μ-Raman characterisation of garnets used in Merovingian jewellery

    NASA Astrophysics Data System (ADS)

    Calligaro, T.; Colinart, S.; Poirot, J.-P.; Sudres, C.

    2002-04-01

    Red garnets were the dominant gemstones used for jewels in Europe during the Early Middle Ages. We have studied over 350 garnets set on 12 jewels unearthed in the royal necropolis of the Saint-Denis Basilica, close to Paris. This famous collection of "cloisonné" style artefacts dates from the Merovingian period (late fifth century AD to early seventh century AD). The archaeological issue addressed is the identification of the geographical origin of these garnets, in view to establish the gem trading routes during the Dark Ages. External beam PIXE was used to determine the major constituents (Mg, Al, Si, Ca, Mn, Fe), specifying the garnet type (composition in various mineralogical end-members, e.g. almandine, pyrope, spessartite, …), and the trace element content (Cr, Y). Three sorts of garnets were identified. Ten jewels are adorned with almandine garnets (Fe-rich). One jewel has intermediate almandine-pyrope garnets ("rhodolite"). The last and most recent jewel is inlaid with pyrope (Mg-rich) garnets. Trace element content and slight differences in major composition allowed to distinguish five different sources: two sources for pyrope garnets (with and without chromium), and two sources for almandine garnets (distinctive calcium, magnesium and yttrium contents). A preliminary comparison with literature data suggested that almandine garnets may have been mined from India while the "rhodolite" garnets may have been imported from Sri Lanka. The sources of pyrope garnets could be the Bohemian deposits (Czech republic). In addition, μ-Raman spectrometry was used to identify most of the mineral inclusions (apatite, zircon, ilmenite, monazite, calcite, quartz) present in almandine garnets. Even if two specific types of inclusions were not identified, due to the lack of corresponding reference spectra in our database, the Raman spectra collected provided an interesting inclusion fingerprint.

  13. Garnet-melt Trace Element Partitioning From 5 to 9 GPa: Onset of Garnet to Majorite Transformation

    NASA Astrophysics Data System (ADS)

    Draper, D. S.; Xirouchakis, D.; Agee, C. B.

    2002-05-01

    Garnet (Gt) and its higher-pressure form, majorite (Mj), are thought to play important roles in the generation of terrestrial Archaean komatiites and of Martian meteorite compositions. Earlier work by Ohtani, Kato, and coworkers on majoritic Gt partitioning at 16-24 GPa showed that DHREE for Mj were somewhat lower, and DLREE somewhat higher, than those for lower-pressure Gt. Thus, REE signatures of Mj fractionation are less pronounced than those for ordinary Gt, and because DHf is less affected, Lu/Hf will be less strongly perturbed by Mj fractionation than by Gt fractionation. In this study, we were motivated to measure Gt-melt trace element partitioning in more iron-rich systems than were used in these earlier studies, which are more relevant to early Martian magmatism. However, our results have general applicability and form a useful comparison with the studies of van Westrenen and coworkers (e.g. 2001, CMP 142:219), who developed predictive relationships for 3+ cation partitioning into the X sites of lower-pressure Gt. We doped a synthetic ultramafic composition, based on the silicate portion of Homestead L5 ordinary chondrite, with various subsets of Nd, Sm, Tb, Yb, Lu, Y, Sc, Zr, and Hf (max total dopant ~2 wt%) for multianvil experiments between 5 and 9 GPa. Gt begins to exhibit the transformation to Mj at 5 GPa, a lower pressure than has been previously reported. This transformation is evidenced by decreasing Al and excess Si per formula unit (e.g. 3.1 to 3.2 Si per 12 oxygens), becoming progressively more majoritic (increasing Si, decreasing Al) with increasing pressure to ~3.3 Si per 12 oxygens at 9 GPa. We have reported elsewhere (Xirouchakis et al., 2002, XXXIII LPSC, 1316) that the Mj transformation is favored at these lower pressures by the presence of silicate melt and the absence of clinopyroxene. We find that DHREE,Y and DTb decrease markedly as Gt begins the transformation to Mj, but that the LREE are less affected. DHf,Zr undergo almost no change

  14. Iron overdose

    MedlinePlus

    Iron is an ingredient in many mineral and vitamin supplements. Iron supplements are also sold by themselves. Types include: Ferrous sulfate (Feosol, Slow Fe) Ferrous gluconate (Fergon) Ferrous fumarate (Femiron, Feostat) Other products may also contain iron.

  15. Wear performance of garnet aluminium composites at high contact pressure

    NASA Astrophysics Data System (ADS)

    Sharma, Anju; Arora, Rama; Kumar, Suresh; Singh, Gurmel; Pandey, O. P.

    2016-05-01

    To satisfy the needs of the engineering sector, researchers and material scientists in this area adopted the development of composites with tailor made properties to enhance efficiency and cost savings in the manufacturing sector. The technology of the mineral industry is shaping the supply and demand of minerals derived materials. The composites are best classified as high performance materials have high strength-to-weight ratios, and require controlled manufacturing environments for optimum performance. Natural mineral garnet was used as the reinforcement of composite because of satisfactory mechanical properties as well as an attractive ecological alternative to others ceramics. For this purpose, samples have been prepared with different sizesof the garnet reinforcement using the mechanical stirring method to achieve the homogeneously dispersed strengthening phase. A systematic study of the effect of high contact pressure on the sliding wear behaviour of garnet reinforced LM13 alloy composites is presented in this paper. The SEM analysis of the worn samples and debris reveals the clues about the wear mechanism. The drastic improvement in the wear resistance of the composites at high contact pressure shows the high potential of the material to be used in engineering applications.

  16. Timing and duration of garnet granulite metamorphism in magmatic arc crust, Fiordland, New Zealand

    USGS Publications Warehouse

    Stowell, H.; Tulloch, A.; Zuluaga, C.; Koenig, A.

    2010-01-01

    Pembroke Granulite from Fiordland, New Zealand provides a window into the mid- to lower crust of magmatic arcs. Garnet Sm-Nd and zircon U-Pb ages constrain the timing and duration of high-P partial melting that produced trondhjemitic high Sr/Y magma. Trace element zoning in large, euhedral garnet is compatible with little post growth modification and supports the interpretation that garnet Sm-Nd ages of 126.1??2.0 and 122.6??2.0. Ma date crystal growth. Integration of the garnet ages with U-Pb zircon ages elucidates a history of intrusion(?) and a protracted period of high-temperature metamorphism and partial melting. The oldest zircon ages of 163 to 150. Ma reflect inheritance or intrusion and a cluster of zircon ages ca. 134. Ma date orthopyroxene-bearing mineral assemblages that may be magmatic or metamorphic in origin. Zircon and garnet ages from unmelted gneiss and garnet reaction zones record garnet granulite facies metamorphism at 128 to 126. Ma. Peritectic garnet and additional zircon ages from trondhjemite veins and garnet reaction zones indicate that garnet growth and partial melting lasted until ca. 123. Ma. Two single fraction garnet ages and young zircon ages suggest continued high-temperature re-equilibration until ca. 95. Ma. Phase diagram sections constrain orthopyroxene assemblages to <0.6 GPa @ 650??C, peak garnet granulite facies metamorphic conditions to 680-815??C @ 1.1-1.4. GPa, and a P-T path with a P increase of???0.5. GPa. These sections are compatible with water contents???0.28wt.%, local dehydration during garnet granulite metamorphism, and <0.3. GPa P increases during garnet growth. Results demonstrate the utility of integrated U-Pb zircon and Sm-Nd garnet ages, and phase diagram sections for understanding the nature, duration, and conditions of deep crustal metamorphism and melting. Geochronologic and thermobarometric data for garnet granulite indicate that thickening of arc crust, which caused high-pressure metamorphism in northern

  17. Overstepping the garnet isograd: a comparison of QuiG barometry and thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Spear, Frank S.; Thomas, Jay B.; Hallett, Benjamin W.

    2014-09-01

    The consequences of overstepping the garnet isograd reaction have been investigated by comparing the composition of garnet formed at overstepped P-T conditions (the overstep or "OS" model) with the P-T conditions that would be inferred by assuming garnet nucleated in equilibrium with the matrix assemblage at the isograd (the equilibrium or "EQ" model). The garnet nucleus composition formed at overstepped conditions is calculated as the composition that produces the maximum decrease in Gibbs free energy from the equilibrated, garnet-absent, matrix assemblage for the bulk composition under study. Isopleths were then calculated for this garnet nucleus composition assuming equilibrium with the matrix assemblage (the EQ model). Comparison of the actual P-T conditions of nucleation (the OS model) with those inferred from the EQ model reveals considerable discrepancy between the two. In general, the inferred garnet nucleation P-T conditions (the EQ model) are at a lower temperature and higher or lower pressure (depending on the coexisting calcic phase(s)) than the actual (OS model) nucleation conditions. Moreover, the degree of discrepancy increases with the degree of overstepping. Independent estimates of the pressure of nucleation of garnet were made using the Raman shift of quartz inclusions in garnet (quartz-in-garnet or QuiG barometry). To test the validity of this method, an experimental synthesis of garnet containing quartz inclusions was made at 800 °C, 20 kbar, and the measured Raman shift reproduced the synthesis conditions to within 120 bars. Raman band shifts from three natural samples were then used to calculate an isochore along which garnet was presumed to have nucleated. Model calculations were made at several temperatures along this isochore (the OS model), and these P-T conditions were compared to those computed assuming equilibrium nucleation (the EQ model) to estimate the degree of overstepping displayed by these samples. A sample from the garnet

  18. Distribution of garnet grain sizes and morphologies across the Moine Supergroup, northern Scottish Caledonides

    NASA Astrophysics Data System (ADS)

    Ashley, Kyle T.; Thigpen, J. Ryan; Law, Richard D.

    2016-04-01

    Garnet is used in a wide range of geologic studies due to its important physical and chemical characteristics. While the mineral is useful for thermobarometry and geochronology constraints and can often be correlated to deformation and fabric development, difficulties remain in making meaningful interpretations of such data. In this study, we characterize garnet grain sizes and crystal morphologies from 141 garnet-bearing metasedimentary rock samples collected from the northern part of the Moine Supergroup in the Scottish Caledonides. Larger, euhedral crystals are indicative of prograde metamorphic growth and are typically associated with the most recent phase of orogenesis (Scandian, ˜430 Ma). Small, rounded ("pin-head") garnets are interpreted as detrital in origin. A subhedral classification is more subjective and is used when garnets contains portions of straight boundaries but have rounded edges or rims that have been altered through retrograde metamorphic reactions. From our collection, 88 samples contain anhedral garnets (maximum measured grain size d = 0.46 ± 0.21 mm), 34 bear subhedral garnets (d = 2.0 ± 1.0 mm), and the remaining 19 samples contain garnets with euhedral grains (d = 4.4 ± 2.6 mm). Plotting the distribution of garnets relative to the mapped thrust contacts reveals an abrupt change in morphology and grain size when traced from the Moine thrust sheet across the Ben Hope and Sgurr Beag thrusts into the higher-grade, more hinterland-positioned thrust sheets. The dominance of anhedral garnets in the Moine thrust sheet suggests that these grains should not be used for peak P ‑ T estimation associated with relatively low temperature (<500 ° C) Scandian metamorphism, as they are likely detrital in origin and contain protolith chemical signatures that would not have been reset due to sluggish diffusivities at greenschist facies temperatures. However, chemical and isotopic data from these grains may provide information into the provenance of

  19. Fluid-aided incorporation of Y into almandine-pyrope garnet via coupled dissolution-reprecipitation

    NASA Astrophysics Data System (ADS)

    Harlov, D. E.

    2009-12-01

    In nature almandine-pyrope garnet is a well-known host for a variety of trace elements including (Y+HREE), Sr, HFSE, as well as LREE such as Sm and Nd; all of which have important roles with regard to various geological processes (Kohn, 2009, GCA, 73, 170). For example, Y exchange between xenotime and garnet has been empirically calibrated as a geothermometer (Pyle and Spear, 2000, CMP, 138, 51). Sm/Nd and Lu/Hf dating, using garnet, is a well-known geochronometer (Thöni et al., 2008, Chem Geol, 254, 216). In general, REE + HFSE + Sr have been used to chart garnet growth and subsequently the evolution of the host rock (Konrad-Schmolke et al., 2008, EPSL, 272, 488). Incorporation of Y into garnet is probably the most widely studied trace element. These studies range from stress-induced redistribution of Y in garnet (Røhr et al, 2007, Am Mineral, 92, 1276) to Y zoning during garnet growth (Zeh, 2005, J Petrol, 47, 2335). While the incorporation of Y into garnet has generally been thought to occur either via diffusion or during garnet growth, more recent workers have suggested that incorporation of Y could also be fluid-aided. Fluid-aided incorporation of Y into garnet has been tested in the piston-cylinder apparatus (CaF2 assemblies, cylindrical graphite ovens) at 1000 MPa and 900 °C (8 days duration). Here, 10 mg of 50-200 µm size, inclusion-free, gem quality, fragments of the Gore Mountain garnet (Alm40-49, Py37-43, Gr13-16, Sp1) plus 5 mg 2N NaOH and 2 mg Y2O3 were loaded into a 3 mm diameter, 1 cm long, Au capsule that was then arc-welded shut and placed vertically in the CaF2 assembly such that the NiCr thermocouple tip came halfway up along the Au capsule length. Examination of the garnet fragments after the experiment indicates both high Y mobility and the partial alteration of the garnet in the form of a remobilized Y3Al5O12 component enriching those areas of the garnet along the grain rim. The enriched areas take the form of a series of intergrowths with

  20. An Electron Microprobe Study of Synthetic Aluminosilicate Garnets

    NASA Astrophysics Data System (ADS)

    Fournelle, J.; Geiger, C. A.

    2010-12-01

    The aluminosilicate garnets represent an important mineral group. Common end-members are given by E3Al2Si3O12, where E=Fe2+ (almandine), Mn2+ (spessartine), Mg (pyrope), and Ca (grossular). End-members have been synthesized, but their exact compositions and stoichiometries are generally unknown. Synthetic aluminosilicate garnet can possibly contain minor Fe3+, Mn3+, F- and OH- and possibly vacancies. Slight atomic disorder over the 3 different cation sites may also occur. Natural crystals are considerably more complex. Electron probe microanalysis (EPMA) provides a method to determine garnet chemistry and stoichiometry. However, accurate determinations are not always a simple matter and uncertainties exist. We have started a study on well-characterized synthetic aluminosilicate garnets in order to i) determine more exactly their compositions and stoichiometries and ii) better understand possible complications in EPMA. Synthetic almandine, spessartine, pyrope, and grossular samples were synthesized under varying conditions both hydrothermally and dry and with different starting materials. A closed thermodynamic system was present and the bulk starting material composition represented the exact stoichiometric end-member garnet that was desired. IR, Raman and Mössbauer spectroscopy in some cases and X-ray diffraction were used to characterize the samples. Synthetic pyrope has been investigated with a SX51 with simple oxide/silicate standards (Fo90 olivine for Mg, wollastonite for Si, and both Al2O3 and kyanite for Al). Previously observed problems were reproduced: low stoichiometry for Al and high for Si and Mg. Fournelle (2007, AGU Fall Mtg) noted chemical peak shifts for Al and Mg Ka in garnets; this effect was eliminated here by proper peaking. Earlier suggestions for issues with mass absorption coefficients were not seen, and Probe for EPMA software demonstrated there was not much difference between the most recent FFAST values vs. the older Heinrich values

  1. Magnetooptical and crystalline properties of sputtered garnet ferrite film on spinel ferrite buffer layer

    NASA Astrophysics Data System (ADS)

    Furuya, Akinori; Sasaki, Ai-ichiro; Morimura, Hiroki; Kagami, Osamu; Tanabe, Takaya

    2016-09-01

    The purpose of this study is to provide garnet films for volumetric magnetic holography. Volumetric magnetic holography usually employs an easily obtainable short-wavelength laser (visible light, not infrared light) with a large diffraction intensity. Bi-substituted garnet ferrite with a large Faraday rotation is promising for volumetric magnetic holography applications in the visible light region. However, a garnet film without a deteriorated layer must be obtained because a deteriorated layer (minute polycrystalline grains containing an amorphous phase) is formed during the initial deposition on a glass substrate. In particular, the required magnetooptical properties have not been obtained in a thin garnet film (100 nm or less) after annealing (1 h, 700 °C, oxygen atmosphere). Therefore, there is a need for excellent garnet films with the required magnetooptical (MO) properties even if the films are thin. By using a spinel ferrite buffer layer for garnet film deposition, we could obtain a thin garnet film with excellent MO properties. We determined the effect of the initial buffer layer on the crystallinity of the deposited garnet films by observing the film cross section. In addition, we undertook a qualitative estimation of the influence of the crystallinity and optical properties of the garnet film on a glass substrate with a spinel ferrite buffer layer.

  2. Solution properties of almandine-pyrope garnet as determined by phase equilibrium experiments

    USGS Publications Warehouse

    Koziol, A.M.; Bohlen, S.R.

    1992-01-01

    The thermodynamic mixing properties of almandine-pyrope garnet were derived from phase equilibrium experiments at temperatures of 900 and 1000??C and pressures from 8 to 14 kbar. Almandine has essentially ideal behavior in almandine-pyrope garnet over the composition range Alm89-Alm61 at the above experimental conditions. In all experimental products a systematic partitioning of Fe and Mg between garnet and ilmenite was seen with ln Kd ??? 1.59 which was not temperature sensitive. The results support the use of garnet mixing models that incorporate ideal or nearly ideal Fe-Mg parameters. -from Authors

  3. Native iron in the continental lower crust - petrological and geophysical implications

    SciTech Connect

    Haggerty, S.E.; Toft, P.B.

    1985-08-01

    Lower crustal granulite xenoliths recovered from a kimberlite pipe in western Africa contain native iron (Fe) as a decomposition product of garnet and ilmenite. Magnetic measurements show that less than 0.1 percent (by volume) of iron metal is present. Data from geothermometry and oxygen geobarometry indicate that the oxide and metal phases equilibrated between iron-wuestite and magnetite-wuestite buffers, which may represent the oxidation state of the continental lower crust, and the depleted lithospheric upper mantle. Ferromagnetic native iron could be stable to a depth of about 95 kilometers and should be considered in the interpretation of long-wavelength static magnetic anomalies. 32 references.

  4. Native iron in the continental lower crust - Petrological and geophysical implications

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E.; Toft, P. B.

    1985-01-01

    Lower crustal granulite xenoliths recovered from a kimberlite pipe in western Africa contain native iron (Fe) as a decomposition product of garnet and ilmenite. Magnetic measurements show that less than 0.1 percent (by volume) of iron metal is present. Data from geothermometry and oxygen geobarometry indicate that the oxide and metal phases equilibrated between iron-wuestite and magnetite-wuestite buffers, which may represent the oxidation state of the continental lower crust, and the depleted lithospheric upper mantle. Ferromagnetic native iron could be stable to a depth of about 95 kilometers and should be considered in the interpretation of long-wavelength static magnetic anomalies.

  5. A Calorimetric Study of Almandine: Are the Thermodynamic Properties of the End-Member Aluminosilicate Garnets Finally Known Quantitatively?

    NASA Astrophysics Data System (ADS)

    Dachs, E.; Geiger, C. A.; Benisek, A.

    2012-12-01

    The aluminosilicate garnets (E3Al2Si3O12 with E = Fe2+, Mn2+, Ca, Mg) form an important rock-forming mineral group. Much study has been directed toward determining their thermodynamic properties. The iron end-member almandine (Fe3Al2Si3O12) is a key phase in many petrologic investigations. As part of an ongoing calorimetric and thermodynamic study of the aluminosilicate garnets, the heat capacity of three synthetic well-characterized polycrystalline almandine garnets and one natural almandine-rich single crystal was measured. The various garnets were characterized by optical microscopy, electron-microprobe analysis, X-ray powder diffraction and 57Fe Mössbauer spectroscopy. Heat capacity measurements were performed in the temperature range 3 to 300 K using relaxation calorimetry and between 282 and 764 K using DSC methods. From the former, So values between 336.7 ± 0.8 and 337.8 ± 0.8 J/molK are calculated for the different samples. The smaller value is considered the best So for end-member stoichiometric almandine, because it derives from the "best" Fe3+-free synthetic sample. The Cp behavior for almandine at T > 298 K is given by the polynomial (in J/molK): Cp = 649.06(±4) - 3837.57(±122)T-0.5 - 1.44682(±0.06)107T-2 + 1.94834(±0.09)109T-3, which is calculated using DSC data together with one published heat-content datum determined by transposed-drop calorimetry along with a new determination that gives H1181K - H302K = 415.0 ± 3.2 kJ/mole. Almandine shows a λ-type heat-capacity anomaly at low temperatures resulting from a paramagnetic-antiferromagnetic phase transition at about 9 K. The lattice heat capacity was calculated using the single-parameter phonon dispersion model of Komada and Westrum (1997), which allows the non-lattice heat capacity (Cex) behavior to be modelled. An analysis shows the presence of an electronic heat-capacity contribution (Cel - Schottky anomaly) around 17 K that is superimposed on a larger magnetic heat-capacity effect (Cmag

  6. Iron deficiency.

    PubMed

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world. PMID:1745900

  7. Computational modelling of Er(3+): Garnet laser materials

    NASA Astrophysics Data System (ADS)

    Spangler, Lee H.

    1994-12-01

    The Er(3+) ion has attracted a lot of interest for four reasons: (1) Its (4)I(sub 13/2) yields (4)I(sub 15/2) transition lases in the eyesafe region near 1.5 micron; (2) the (4)I(sub 13/2) transition lases near 2.8 micron, an important wavelength for surgical purposes; (3) it displays surprisingly efficient upconversion with lasing observed at 1.7, 1.2, 0.85, 0.56, 0.55, and 0.47 micron following 1.5 micron pumping; and (4) it has absorption bands at 0.96 and 0.81 micron and thus can be diode pumped. However, properties desirable for upconversion reduce the efficiency of 1.5 and 3 micron laser operation and vice versa. Since all of the processes are influenced by the host via the crystal field induced stark splittings in the Er levels, this project undertook modelling of the host influence on the Er lasinng behavior. While growth and measurement of all ten Er(3+) doped garnets is the surest way of identifying hosts which maximize upconversion (or conversly, 1.5 and 3 micron performance), it is also expensive - costing approximately $10,000/material or approximately $100,000 for the materials computationally investigated here. The calculations were performed using a quantum mechanical point charge model developed by Clyde Morrison at Harry Diamond Laboratories. The programs were used to fit the Er:YAG experimental energy levels so that the crystal field parameters, B(sub nm) could be extracted. From these radial factors, rho (sub n) were determined for Er(3+) in garnets. These, in combination with crystal field components, Anm, available from X-ray data, were used to predict energy levels for Er in the other nine garnet hosts. The levels in Er:YAG were fit with an rms error of 12.2/cm over a 22,000/cm range. Predicted levels for two other garnets for which literature values were available had rms errors of less than 17/cm , showing the calculations to be reliable. Based on resonances between pairs of calculated stark levels, the model predicts GSGG as the best host

  8. Vibrational spectroscopy of end-member silicate garnets

    NASA Astrophysics Data System (ADS)

    Hofmeister, A. M.; Chopelas, A.

    1991-02-01

    Infrared reflectance (IR) and Raman spectra were collected on small (ca. 500 micron) single crystals of 5 natural garnets with nearly end-member compositions: pyrope (98% Mg3Al2Si3O12), almandine (83% Fe3Al2Si3O12), spessartine (98% Mn3Al2Si3O12), grossular (97% Ca3Al2Si3O12), and andradite (99% Ca3Fe2Si3O12). Frequencies and symmetry assignments were determined for all 17 IR modes and all 25 Raman modes. By using factor group analysis and by correlating the bands by their intensities, bands were assigned to either one of the SiO4 internal motions, as a rotation, or to a type of translation. The assignments are supported by (1) the distinct trends of frequencies with cell size and cation masses for each of the different types of motion, (2) the similarity of garnet energies for each of the different types of motion to those of olivine with the same cation, and (3) the closeness of the T 1 u IR frequencies to the T 2 g Raman frequencies. Mode mixing appears to be weak. Correlations between frequencies and structural parameters suggests a direct dependence of force constants on lattice parameter. This relationship arises from bond lengths in the garnet structure being constrained by the size and compressibility of adjacent polyhedra through edge-sharing. Comparison of our endmember data with previous powder IR studies of intermediate garnets indicates that dodecahedral (X) and octahedral (Y) sites alone exhibit two-mode behavior for those solid solutions involving two ions with considerably different masses. However, for solid solutions involving cations of much different ionic radii, two-mode behavior is found for the translations of SiO4 groups. This is the first report of two-mode behavior that is unrelated to mass, and instead is due to significantly different force constants in the pyralspites compared to the ugrandites. Anomalies in mixing volumes are linked to two-mode behavior of the SiO4 translations, which leads to the suggestion that the mixing volume

  9. Meeting report: GARNet/OpenPlant CRISPR-Cas workshop.

    PubMed

    Parry, Geraint; Patron, Nicola; Bastow, Ruth; Matthewman, Colette

    2016-01-01

    Targeted genome engineering has been described as a "game-changing technology" for fields as diverse as human genetics and plant biotechnology. One technique used for precise gene editing utilises the CRISPR-Cas system and is an effective method for genetic engineering in a wide variety of plants. However, many researchers remain unaware of both the technical challenges that emerge when using this technique or of its potential benefits. Therefore in September 2015, GARNet and OpenPlant organized a two-day workshop at the John Innes Centre that provided both background information and hands-on training for this important technology. PMID:26823675

  10. Computational modelling of Er(3+): Garnet laser materials

    NASA Technical Reports Server (NTRS)

    Spangler, Lee H.

    1994-01-01

    The Er(3+) ion has attracted a lot of interest for four reasons: (1) Its (4)I(sub 13/2) yields (4)I(sub 15/2) transition lases in the eyesafe region near 1.5 micron; (2) the (4)I(sub 13/2) transition lases near 2.8 micron, an important wavelength for surgical purposes; (3) it displays surprisingly efficient upconversion with lasing observed at 1.7, 1.2, 0.85, 0.56, 0.55, and 0.47 micron following 1.5 micron pumping; and (4) it has absorption bands at 0.96 and 0.81 micron and thus can be diode pumped. However, properties desirable for upconversion reduce the efficiency of 1.5 and 3 micron laser operation and vice versa. Since all of the processes are influenced by the host via the crystal field induced stark splittings in the Er levels, this project undertook modelling of the host influence on the Er lasinng behavior. While growth and measurement of all ten Er(3+) doped garnets is the surest way of identifying hosts which maximize upconversion (or conversly, 1.5 and 3 micron performance), it is also expensive - costing approximately $10,000/material or approximately $100,000 for the materials computationally investigated here. The calculations were performed using a quantum mechanical point charge model developed by Clyde Morrison at Harry Diamond Laboratories. The programs were used to fit the Er:YAG experimental energy levels so that the crystal field parameters, B(sub nm) could be extracted. From these radial factors, rho (sub n) were determined for Er(3+) in garnets. These, in combination with crystal field components, Anm, available from X-ray data, were used to predict energy levels for Er in the other nine garnet hosts. The levels in Er:YAG were fit with an rms error of 12.2/cm over a 22,000/cm range. Predicted levels for two other garnets for which literature values were available had rms errors of less than 17/cm , showing the calculations to be reliable. Based on resonances between pairs of calculated stark levels, the model predicts GSGG as the best host

  11. Crystallization of pegmatites: Insights from chemistry of garnet, Jacumba pegmatites, San Diego County, California

    NASA Astrophysics Data System (ADS)

    Thompson, M.; Sirbescu, M. C.

    2013-12-01

    Systematic mineral and textural variations from the border zone to the core of a zoned pegmatite sheet may reflect the kinetic or equilibrium fractionation processes that occurred during sequential crystallization of the pegmatite magma. Rhythmic layering, also named 'line rock', is a salient textural feature of world famous San Diego Co. pegmatites, that consists of alternating garnet × tourmaline layers and albite - quartz layers, mm's to cm's thick. Slowly diffusing, incompatible elements in the felsic magma including B, Fe, and Mn may become enriched in boundary layers formed ahead of rapidly crystallized quartzo-felspathic assemblages. This study explores whether the chemistry of garnet concentrated in the border and foot-wall zones and dispersed in the graphic feldspar, core, and pocket zones of Garnet Ledge pegmatite, Jacumba district, might fingerprint the diffusion-controlled oscillatory boundary layers. The lithium-cesium-tantalum (LCT) Jacumba pegmatite district, late product of the Eastern Peninsular Ranges Batholith, consists of numerous subparallel dikes, 3 to 7 m thick, intruding pre-batholitic metasedimentary rocks. The composite aplite-pegmatite dikes are texturally diverse. Comb-textured tourmaline, other unidirectional textures, garnet × tourmaline 'line rock', and coarse graphic K-feldspar crystals occur in the outer zones, followed by massive feldspar-quartz cores, vuggy cleavlandite- euhedral garnet, and miarolitic cavities. The Jacumba pegmatites have produced gem spodumene, beryl, and garnet from several open cuts such as the Beebe Hole and Pack Rat - Garnet Ledge workings. Systematic mineralogical and textural variations, and SEM-EDS garnet compositions were recorded from border to core at Garnet Ledge outcrop and thin section scale, focusing on continuous traverses across the line rock. Garnet from Garnet Ledge belongs to the spessartine-almandine series (Sp42 to Sp65) with minor contents of Mg, Ca, and Ti, consistent with garnet

  12. Variations in Ti coordination and concentration in garnet in response to temperature, pressure and composition

    NASA Astrophysics Data System (ADS)

    Ackerson, M. R.; Tailby, N.; Watson, E. B.; Spear, F. S.

    2013-12-01

    Titanium concentrations in garnet vary over several orders of magnitude in natural systems-- from trace-element levels in continental metamorphic systems to several weight percent in garnets from mantle xenoliths. Broadly speaking the wide range of concentrations is due to crystallization from diverse environments. Understanding the crystallographic site and Ti-substitution mechanism in garnet is crucial to deciphering concentration trends and how these relate to the petrogenetic history. This study uses XANES spectroscopy to measure Ti coordination in natural and synthetic garnets known to crystallize over a wide range of conditions to investigate whether changes in Ti coordination and concentration correlate with changes T, P and bulk composition. Ti XANES spectroscopy utilizes shifts in the 1s-3d pre-edge feature, which shows systematic shifts in intensity and energy with coordination. Natural and synthetic garnets grown at >800 oC and >1 GPa incorporate Ti almost entirely on the octahedral site in garnet. It is possible that a small amount of Ti substitutes on the tetrahedral site in these garnets, but the concentration is too low to be observed in the spectra. The most feasible mechanism for octahedral substitution involves charge-balanced coupled substitution with an M2+ cation (where M2+=Mg, Fe, Ca, or Mn) resulting in a net loss of two Al for every Ti gained. Substitution of Al onto the tetrahedral site and Ti on the octahedral site is an other feasible mechanism, although the stoichiometric deficit of Al in experimental garnets suggests this mechanism could only account for a small percentage of Ti. Increases in Ti concentration correlate best with increasing Ca content in experimental garnets. Ti solubility also changes in response to T and P. These observations suggest that Ti incorporation on the octahedral site is dependent on the activities of Ti, Al and other M2+ cation system components. This helps to explain some of the differences in Ti

  13. Garnet growth as a proxy for progressive dehydration in subduction zones

    NASA Astrophysics Data System (ADS)

    Caddick, M. J.; Baxter, E. F.

    2012-12-01

    The release of volatiles from subducting lithologies is a crucial triggering process for arc magmatism, seismicity, the growth and maturation of continents, and the global geological H2O-CO2 cycle. While numerous models have been developed to predict slab volatile release, it has proven challenging to reconstruct and test these fluid fluxes released from specific lithologies in the rock record. Here we show that the growth of garnet may be used as a proxy for progressive devolatilization at blueschist to eclogite facies conditions in subduction zones. Generally, as garnet grows in a subducting rock, fluid is produced due to metamorphic dehydration reactions. Using rigorous thermodynamic analysis, which includes the crucial effects of phase fractionation, we model the proportional relationship between garnet and water production in common lithologies (pelitic sediment and hydrated MORB) along three representative subduction geotherms. The results show that several dehydration reactions contribute to garnet growth especially within a crucial span of the subduction zone (~1.5 to 2.5 GPa) within which slab-mantle decoupling has been predicted to occur in some models and volatile fluxes may be focused. The water:garnet production ratio varies during garnet growth, constrained by the specific hydrous reactant phases that are breaking down, but the average water:garnet production ratios are surprisingly consistent regardless of composition and geotherm. Over the garnet growth interval ~400 to 700 C (and corresponding depths for each geotherm) the average production ratio for altered MORB compositions is 0.52 (wt % water per vol % garnet) in cooler geotherms (Honshu and Nicaragua) and 0.27 in hotter (Cascadia) geotherms, with predictably lower ratios if the input basalt previously experienced less hydrous alteration. Over the same interval the water production ratios are approximately 50 % lower for pelite (0.24 and 0.13, respectively). Lower temperature water release is

  14. Empirical calibration of the clinopyroxene-garnet magnesium isotope geothermometer and implications

    NASA Astrophysics Data System (ADS)

    Li, Wang-Ye; Teng, Fang-Zhen; Xiao, Yilin; Gu, Hai-Ou; Zha, Xiang-Ping; Huang, Jian

    2016-07-01

    The large equilibrium Mg isotope fractionation between clinopyroxene and garnet observed in eclogites makes it a potential high-precision geothermometer, but calibration of this thermometer by natural samples is still limited. Here, we report Mg isotopic compositions of eclogite whole rocks as well as Mg and O isotopic compositions of clinopyroxene and garnet separates from 16 eclogites that formed at different temperatures from the Dabie orogen, China. The whole-rock δ26Mg values vary from -1.20 to +0.10 ‰. Among them, 11 samples display limited δ26Mg variations from -0.36 to -0.17 ‰, similar to those of their protoliths. The mineral separates exhibit very different δ26Mg values, from -0.39 to +0.39 ‰ for clinopyroxenes and from -1.94 to -0.81 ‰ for garnets. The clinopyroxene-garnet Mg isotope fractionation (Δ26Mgclinopyroxene-garnet = δ26Mgclinopyroxene-δ26Mggarnet) varies from 1.05 to 2.15 ‰. The clinopyroxene-garnet O isotope fractionation (Δ18Oclinopyroxene-garnet = δ18Oclinopyroxene-δ18Ogarnet) varies from -1.01 to +0.98 ‰. Equilibrium Mg isotope fractionation between clinopyroxene and garnet in the investigated samples is selected based on both the δ26Mgclinopyroxene versus δ26Mggarnet plot and the state of O isotope equilibrium between clinopyroxene and garnet. The equilibrium Δ26Mgclinopyroxene-garnet and corresponding temperature data obtained in this study, together with those available so far in literatures for natural eclogites, are used to calibrate the clinopyroxene-garnet Mg isotope thermometer. This yields a function of Δ26Mgclinopyroxene-garnet = (0.99 ± 0.06) × 106/ T 2, where T is temperature in Kelvin. The refined function not only provides the best empirically calibrated clinopyroxene-garnet Mg isotope thermometer for precise constraints of temperatures of clinopyroxene- and garnet-bearing rocks, but also has potential applications in high-temperature Mg isotope geochemistry.

  15. Radiation effects in Zr and Hf containing garnets

    NASA Astrophysics Data System (ADS)

    Whittle, Karl R.; Blackford, Mark G.; Smith, Katherine L.; Zaluzec, Nestor J.; Weyland, Matthew; Lumpkin, Gregory R.

    2015-07-01

    Garnets have been considered as host phases for the safe immobilisation of high-level nuclear waste, as they have been shown to accommodate a wide range of elements across three different cation sites, such as Ca, Y, Mn on the a-site, Fe, Al, U, Zr, and Ti on the b-site, and Si, Fe, Al on the c-site. Garnets, due to their ability to have variable composition, make ideal model materials for the examination of radiation damage and recovery in nuclear materials, including as potential waste forms. Kimzeyite, Ca3Zr2FeAlSiO12, has been shown naturally to contain up to 30 wt% Zr, and has previously been examined to elucidate both the structure and ordering within the lattice. This study examines the effects of radiation damage and recovery using in-situ ion beam irradiation with 1 MeV Kr ions at the IVEM-TANDEM facility, Argonne National Laboratory. The complementary Hf containing system Ca3Hf2FeAlSiO12 was also examined, and found to have a different response to irradiation damage. A sample of irradiated Ca3Zr2FeAlSiO12, at 1000 K, was characterised using aberration corrected (S)TEM and found to contain discreet, nano-sized, crystalline Fe rich particles, indicating a competing process during recovery is occurring.

  16. Optical and scintillation properties of Nd-doped complex garnet

    NASA Astrophysics Data System (ADS)

    Yanagida, Takayuki; Sato, Hiroki

    2014-12-01

    Nd 1% doped complex garnet scintillators were prepared by Furukawa and their optical and scintillation properties were investigated on a comparison with previously reported Nd-doped YAG. Chemical compositions of newly developed complex garnets were Lu2Y1Al5O12, Lu2Y1Ga3Al2O12, Lu2Gd1Al5O12, Lu2Gd1Ga3Al2O12, Gd1Y2Al5O12, Gd1Y2Ga3Al2O12, and Gd3Ga3Al2O12. They all showed 50-80% transmittance from ultraviolet to near infrared wavelengths with several absorption bands due to Gd3+ or Nd3+ 4f-4f transition. In X-ray induced radioluminescence spectra, all samples exhibited intense lines at 310 nm due to Gd3+ or 400 nm due to Nd3+ depending on their chemical composition. Among them, the highest scintillation light yield was achieved by Lu2Y1Al5O12. Typical scintillation decay times of them resulted 1.5-3 μs. Thermally stimulated glow curve after 1 Gy exposure and X-ray induced afterglow were also investigated.

  17. LASERS: Efficient neodymium-doped gadolinium gallium garnet crystal laser

    NASA Astrophysics Data System (ADS)

    Doroshenko, Maxim E.; Osiko, Vyacheslav V.; Sigachev, V. B.; Timoshechkin, M. I.

    1991-07-01

    An investigation was made of the stimulated emission parameters of a laser utilizing a gadolinium gallium garnet crystal doped with neodymium ions (YAG:Nd) at the 1.062 μm wavelength. The free-running efficiency was the highest so far achieved for flashlamp-pumped lasers utilizing unsensitized garnets. For an active element 8 mm in diameter and 120 mm long the absolute efficiency was 5.4% and the differential efficiency was 5.9%. The average free-running power was 170 W. A comparison was made of the optical powers of thermal lenses in cylindrical GGG:Nd and YAG:Nd active elements and this was found to be 2.4 times higher for a GGG:Nd crystal at the same pump powers. It was shown that by using traditional methods of compensating for the thermal lens in cylindrical active elements, it is possible to develop pulsed GGG:Nd crystal lasers having an average output power higher than 100 W, an efficiency of ~ 4%, and an angular divergence of less than 10 mrad.

  18. UHP kyanite eclogite associated with garnet peridotite and diamond-bearing granulite, northern Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Kotková, Jana; Janák, Marian

    2015-06-01

    Kyanite eclogites enclosed in garnet peridotites may provide important information on P-T evolution of orogenic peridotites in deep subduction and collision zones. Kyanite eclogite interlayered with garnet peridotite occurs in the borehole T-7, in the Saxothuringian basement of the northern part of the Bohemian Massif. This orogenic peridotite of mantle origin is associated with felsic granulites, which contain diamond as a consequence of deep subduction of the continental crust. Here, we report on the metamorphic evolution of kyanite eclogite, which shows a well-preserved peak-pressure mineral assemblage of garnet, omphacite, kyanite and phengite. Conventional geothermobarometry, average PT method and thermodynamic modelling constrain the metamorphic conditions of this assemblage up to 3.5-4.5 GPa at 900-1050 °C. Two compositional types of garnet, i.e., Mg-rich and Ca-rich, have been recognised. Thermodynamic modelling shows that the composition of Ca-rich garnet with XCa (0.35-0.37) in the core corresponds to stability of garnet at 3.5-4.5 GPa. Amphibole and zoisite are preserved as inclusions in garnet cores, and they are stable below 2.5 GPa, indicating that garnet grew at the expense of these phases at increasing P-T conditions during the prograde evolution of the rock. A post-peak metamorphism decompression and cooling are recorded by decrease of Ca-Eskola end-member in omphacite, drop in XMg and XGrs at garnet rim and a very restricted formation of pargasitic amphibole in the matrix. The absence of symplectites after omphacite in the investigated eclogite may be due to a very low content of quartz and possibly also fluid in the rock. Our study suggests that kyanite-bearing eclogite underwent UHP metamorphism as a consequence of subduction, together with interlayered garnet peridotite. Both rocks were incorporated into the subducted continental crust (diamond-bearing granulites) during the Variscan orogeny.

  19. The use of trace element zoning patterns in garnet to infer reaction paths of metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Konrad-Schmolke, Matthias; Witte, Clemens; Dohmen, Ralf; O'Brien, Patrick; Erpel, Lars; Halama, Ralf; Schmidt, Alexander; Ditterova, Hana

    2015-04-01

    Garnet is one of the most versatile minerals in metamorphic petrology. It is stable over a large pressure and temperature range and thus occurs in many metamorphic environments. Garnet has a wide range of chemical compositions and its major and trace element composition well reflects the pressure (P), temperature (T) and chemical conditions (X) as well as the element transport kinetic properties of the host rock during growth. Hence, compositional growth zonations in garnet contain information about most geochemical, mineralogical and petrological properties of metamorphic rocks. However, detailed interpretation of complex zoning patterns in metamorphic garnet was hindered mainly by the lack of knowledge about the various contributions of kinetic and equilibrium effects to the trace element incorporation into garnet. In this contribution we combine thermodynamic equilibrium calculations together with mass balanced trace element distribution among coexisting phases with diffusion models that simulate kinetically controlled element transport in a reacting host rock. Comparison of the model results with natural garnets enables detailed interpretation of commonly observed major and trace element patterns in high-pressure (HP) and ultra-high pressure (UHP) garnets in terms of reaction paths and physico-chemical properties of the host rock. The comparison of our numerical models with a series of well-investigated (U)HP samples shows that the kinetic influence on rare earth element incorporation into garnet is limited in most rocks at the early stages of garnet growth and increases with increasing grade of rock transformation. We show that REE zoning patterns can be used to distinguish between cold (lawsonite-stable) and warm (epidote-stable) prograde reaction paths. REE liberation along a warm P-T trajectory occurs in three breakdown reactions involving chlorite, epidote and amphibole. All three reactions result in characteristic heavy (HREE) and medium (MREE) REE growth

  20. Charge-coupled substituted garnets (Y 3–x Ca 0.5x M 0.5x )Fe₅O₁₂ (M = Ce, Th): Structure and stability as crystalline nuclear waste forms

    SciTech Connect

    Guo, Xiaofeng; Kukkadapu, Ravi K.; Lanzirotti, Antonio; Newville, Matthew; Engelhard, Mark H.; Sutton, Stephen R.; Navrotsky, Alexandra

    2015-04-20

    The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce) and thorium (Th), incorporated by a charge-coupled substitution with calcium (Ca) for yttrium (Y) in YIG, namely, 2Y³⁺ = Ca²⁺ + M⁴⁺, where M⁴⁺ = Ce⁴⁺ or Th⁴⁺. Single-phase garnets Y3–xCa0.5xM0.5xFe₅O₁₂ (x = 0.1–0.7) were synthesized by the citrate–nitrate combustion method. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. X-ray diffraction and ⁵⁷Fe–Mössbauer spectroscopy indicated that M⁴⁺ and Ca²⁺ cations are restricted to the c site, and the local environments of both the tetrahedral and the octahedral Fe³⁺ are systematically affected by the extent of substitution. The charge-coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high-temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature.

  1. Charge-Coupled Substituted Garnets (Y3-xCa0.5xM0.5x)Fe5O12 (M = Ce, Th): Structure and Stability as Crystalline Nuclear Waste Forms

    SciTech Connect

    Guo, Xiaofeng; Kukkadapu, Ravi K.; Lanzirotti, Antonio; Newville, Matthew; Engelhard, Mark H.; Sutton, Stephen R.; Navrotsky, Alexandra

    2015-06-08

    The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce) and thorium (Th), incorporated by a charge-coupled substitution with calcium (Ca) for yttrium (Y) in YIG, namely, 2Y3+ = Ca2+ + M4+, where M4+ = Ce4+ or Th4+. Single-phase garnets Y3–xCa0.5xM0.5xFe5O12 (x = 0.1–0.7) were synthesized by the citrate–nitrate combustion method. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. X-ray diffraction and 57Fe–Mössbauer spectroscopy indicated that M4+ and Ca2+ cations are restricted to the c site, and the local environments of both the tetrahedral and the octahedral Fe3+ are systematically affected by the extent of substitution. The charge-coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature.

  2. Limit on the Electron Electric Dipole Moment in Gadolinium-Iron Garnet

    SciTech Connect

    Heidenreich, B.J.; Elliott, O.T.; Charney, N.D.; Virgien, K.A.; Bridges, A.W.; McKeon, M.A.; Peck, S.K.; Krause, D. Jr.; Gordon, J.E.; Hunter, L.R.; Lamoreaux, S.K.

    2005-12-16

    A new method for the detection of the electron electric dipole moment (EDM) using a solid is described. The method involves the measurement of a voltage induced across the solid by the alignment of the sample's magnetic dipoles in an applied magnetic field, H. A first application of the method to GdIG has resulted in a limit on the electron EDM of 5x10{sup -24}e cm, which is a factor of 40 below the limit obtained from the only previous solid-state EDM experiment. The result is limited by the imperfect discrimination of an unexpectedly large voltage that is even upon the reversal of the sample magnetization.

  3. Limit on the electron electric dipole moment in gadolinium-iron garnet.

    PubMed

    Heidenreich, B J; Elliott, O T; Charney, N D; Virgien, K A; Bridges, A W; McKeon, M A; Peck, S K; Krause, D; Gordon, J E; Hunter, L R; Lamoreaux, S K

    2005-12-16

    A new method for the detection of the electron electric dipole moment (EDM) using a solid is described. The method involves the measurement of a voltage induced across the solid by the alignment of the sample's magnetic dipoles in an applied magnetic field, H. A first application of the method to GdIG has resulted in a limit on the electron EDM of 5 x 10(-24)e cm, which is a factor of 40 below the limit obtained from the only previous solid-state EDM experiment. The result is limited by the imperfect discrimination of an unexpectedly large voltage that is even upon the reversal of the sample magnetization. PMID:16384457

  4. Metal thickness dependence on spin wave propagation in magnonic crystal using yttrium iron garnet

    SciTech Connect

    Kanazawa, Naoki; Goto, Taichi Hoong, Jet Wei; Buyandalai, Altansargai; Takagi, Hiroyuki; Inoue, Mitsuteru

    2015-05-07

    Magnonic crystals (MCs) are key components for spin wave manipulation. MCs realized with periodically metallized surfaces have an advantage in ease of the fabrication, but the effect of the metal thickness has not been studied well. In this work, the metal thickness dependence on the transmission spectra of localized mode spin waves was investigated. The metal thickness over half of the skin depth was necessary to prevent strong attenuation of spin waves.

  5. Effect of Sn doping on the room temperature magnetodielectric properties of yttrium iron garnet

    SciTech Connect

    Zhang, Zhizhi; Chen, Fu; Li, Junnan; Feng, Zekun; Nie, Yan

    2015-10-21

    The structures, magnetic properties, permittivity spectra, and magnetodielectric (MD) effects of polycrystalline Y{sub 3}Fe{sub 5−x}Sn{sub x}O{sub 12} compounds prepared by solid state reactions were systematically investigated. The substitution of Sn{sup 4+} leads to lattice expansion and the donation of excess electrons in ceramics, which affects the concentration of Fe{sup 2+}, space charge, and electric dipole. As a result, as the amount of Sn dopant increases, so does saturation magnetization and permittivity in the low frequency band. The MD coefficient ([ε{sub r}(H) − ε{sub r}(0)]/ε{sub r}(0)) of lightly doped samples (x ≤ 0.05) is negative in the entire frequency band, reaching −2.3% at 350 MHz and 0.6 T for Y{sub 3}Fe{sub 4.95}Sn{sub 0.05}O{sub 12} ceramics. The MD coefficient of heavily doped samples (x > 0.05) is positive in the low frequency band, reaching 0.83% at 10 MHz and 0.6 T for Y{sub 3}Fe{sub 4.925}Sn{sub 0.075}O{sub 12} ceramics, and then decreasing with the increasing frequency, gradually becoming negative in the high frequency band. A detailed explanation is provided based on the origin of permittivity. This study provides a new methodology according to which the MD materials may be designed in order to satisfy the requirements of engineering applications.

  6. Study of yttrium iron garnet rods reveals new magnetostatic echo mode

    NASA Technical Reports Server (NTRS)

    Kedzie, R. W.

    1967-01-01

    Echo mode in YIG rods has different behavior in magnetic fields. This mode, discovered at 8.5 gigahertz, experiences a linear variation. The time delay exhibited is a linear function of the applied magnetic field and the input pulse frequency.

  7. Investigation of the growth of garnet films by liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Moody, J. W.; Shaw, R. W.; Sandfort, R. M.

    1974-01-01

    Liquid phase expitaxy was investigated to determine its applicability to fabricating magnetic rare earth garnet films for spacecraft data recording systems. Two mixed garnet systems were investigated in detail: (1) Gd-Y and (2) Eu-Yb-Y. All films were deposited on Gd3Ga5012 substrates. The uniaxial anisotropy of the Gd-Y garnets is primarily stress-induced. These garnets are characterized by high-domain wall mobility, low coercivity and modest anisotropy. Characteristic length was found to be relatively sensitive to temperature. The Eu-Yb-Y garnets exhibit acceptable mobilities, good temperature stability and reasonable quality factors. The uniaxial anisotropy of these garnets is primarily growth-induced. The system is well suited for compositional "tailoring" to optimize specific desirable properties. Liquid phase epitaxy can be used to deposit Gd3Ga5012 spacing layers on magnetic garnet films and this arrangement possesses certain advantages over more conventional magnetic filmspacing layer combinations. However, it cannot be used if the magnetic film is to be ion implanted.

  8. Lithospheric roots beneath western Laurentia: The geochemical signal in mantle garnets

    USGS Publications Warehouse

    Canil, D.; Schulze, D.J.; Hall, D.; Hearn, B.C., Jr.; Milliken, S.M.

    2003-01-01

    This study presents major and trace element data for 243 mantle garnet xenocrysts from six kimberlites in parts of western North America. The geochemical data for the garnet xenocrysts are used to infer the composition, thickness, and tectonothermal affinity of the mantle lithosphere beneath western Laurentia at the time of kimberlite eruption. The garnets record temperatures between 800 and 1450??C using Ni-in-garnet thermometry and represent mainly lherzolitic mantle lithosphere sampled over an interval from about 110-260 km depth. Garnets with sinuous rare-earth element patterns, high Sr, and high Sc/V occur mainly at shallow depths and occur almost exclusively in kimberlites interpreted to have sampled Archean mantle lithosphere beneath the Wyoming Province in Laurentia, and are notably absent in garnets from kimberlites erupting through the Proterozoic Yavapai Mazatzal and Trans-Hudson provinces. The similarities in depths of equilibration, but differing geochemical patterns in garnets from the Cross kimberlite (southeastern British Columbia) compared to kimberlites in the Wyoming Province argue for post-Archean replacement and (or) modification of mantle beneath the Archean Hearne Province. Convective removal of mantle lithosphere beneath the Archean Hearne Province in a "tEctonic vise" during the Proterozoic terminal collisions that formed Laurentia either did not occur, or was followed by replacement of thick mantle lithosphere that was sampled by kimberlite in the Triassic, and is still observed there seismically today.

  9. A genetic and molecular characterization of the garnet gene of Drosophila melanogaster.

    PubMed

    Lloyd, V K; Sinclair, D A; Wennberg, R; Warner, T S; Honda, B M; Grigliatti, T A

    1999-12-01

    The garnet gene was one of the first genes to be identified in Drosophila melanogaster. Mutations in the garnet gene affect both of the biochemically distinct types of pigments in the eye and disrupt pigmentation of other organs. As an initial step in the analysis of this gene, we have analyzed the pigmentation defects in several of the garnet alleles. We have also cloned the gene and examined its expression in various tissues and at different stages of development. The garnet gene is expressed throughout development and in all tissues examined. Structurally related sequences can be detected in a variety of other eukaryotes. The predicted protein sequence of the garnet product resembles clathrin and nonclathrin adaptin proteins and is highly similar to the delta subunit of the newly isolated mammalian AP-3 adaptin complex, which is associated with the trans-Golgi network and endosomes. This suggests that garnet encodes a protein that acts in the intracellular sorting and trafficking of vesicles from the trans-Golgi network to endosomes, and related specialized organelles such as the pigment granule. This finding provides an explanation for the phenotype of garnet mutations and predicts that other Drosophila eye-colour genes will be a rich resource for the genetic dissection of intracellular vesicle transport. PMID:10659786

  10. Garnetization as a ground preparation process for copper mineralization: evidence from the Mazraeh skarn deposit, Iran

    NASA Astrophysics Data System (ADS)

    Karimzadeh Somarin, Alireza

    2010-03-01

    The Mazraeh Cu-Fe skarn deposit, NW Iran is the result of the intrusion of an Oligocene-Miocene granitic pluton into Cretaceous calcareous rocks. The pluton ranges in composition from monzonite to quartz monzonite, monzogranite, tonalite and granodiorite with I-type, calc-alkaline, and weakly peraluminous characteristics. The Mazraeh pluton was emplaced in a volcanic arc setting in an active continental margin at a depth of ~8 km. Pyroxene skarn, garnet skarn, and epidote skarn zones were formed during the intrusive phase. The garnet skarn developed as exoskarn and endoskarn from the calcareous wall rocks and the pluton, respectively, prior to mineralization. Garnet skarn from the exoskarn zone is identified by relict layering inherited from the precursor calcareous lithologies. Mass balance calculation of garnet skarn in the endoskarn zone indicates that hydrothermal fluids originating from the cooling magma introduced Si, Fe, Mn, Ca, Mg, P, Ag, Cu, Zn, La, Pb, Cd, Mo, and Y. The main mass loss in the garnet skarn was due to destruction of feldspars in the Mazraeh plutonic rocks and leaching of K2O and Na2O. Released Ca has been fixed in the andraditic garnet. Garnetization of the Mazraeh pluton was accompanied by mass and volume increase. The magnitude of these changes depends mainly on the degree of alteration and composition of the precursor. The brittle behavior of the endoskarn zone was increased due to formation of massive garnet which subsequently fractured. These fractures not only facilitated movement of hydrothermal fluids but also provided new locations for Cu mineralization. Therefore locating strongly garnetized zones may be a vector to ore in skarn deposits.

  11. Radiative Performance of Rare Earth Garnet Thin Film Selective Emitters

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Good, Brian S.

    1994-01-01

    In this paper we present the first emitter efficiency results for the thin film 40 percent Er-1.5 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) and 25 percent Ho YAG selective emitter at 1500 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns). Emitter efficiency and power density are significantly improved with the addition of multiple rare earth dopants. Predicted efficiency results are presented for an optimized (equal power density in the Er, (4)I(sub 15/2)-(4)I(sub 13/2) at 1.5 microns, and Ho, (5)I(sub 7)-(5)I(sub 8) at 2.0 micron emission bands) Er-Ho YAG thin film selective emitter.

  12. Synthesis and characterisation of chromium lutetium gallium garnet solid solution

    SciTech Connect

    Galindo, R.; Badenes, J.A. . E-mail: jbadenes@qio.uji.es; Llusar, M.; Tena, M.A.; Monros, G.

    2007-03-22

    The chromium lutetium gallium garnet system has been studied. Samples with 2xCaOxCr{sub 2}O{sub 3}(3 - 2x)Lu{sub 2}O{sub 3}5Ga{sub 2}O{sub 3} (x = 0.025, 0.05, 0.075, 0.1, 0.2 and 0.3,) and xCr{sub 2}O{sub 3}(3 - x)Lu{sub 2}O{sub 3}5Ga{sub 2}O{sub 3} (x = 0, 0.05, 0.075 and 0.3) compositions have been prepared in Ca,Cr:LGG and Cr:LGG systems, respectively. Samples were prepared by ceramic method, fired at 1250 deg. C/6 h and characterised by XRD, lattice parameters, UV-vis-NIR spectroscopy, CIE L * a * b * measurements and SEM/EDX. Results indicate that Ca,Cr:LGG and Cr:LGG solid solutions are obtained. In Cr:LGG system only Cr(III) is stabilised in octahedral positions substituting for Lu(III) and Ga(III). Both Cr(III) and Cr(IV) are present in Ca,Cr:LGG. The calcium is a charge compensator to stabilise Cr(IV) and this is the predominant oxidation state up to x = 0.075 composition. From this composition, Cr(III) becomes more stabilised in garnet lattice. Cr(IV) occupies generally tetrahedral and dodecahedral sites substituting for Ga(III) and Lu(III), while Cr(III) is in octahedral site substituting for Ga(III)

  13. Phosphorus contents in garnet from an ultrahigh pressure, high-temperature eclogite of the Saxonian Erzgebirge

    NASA Astrophysics Data System (ADS)

    Žigovečki Gobac, Željka; Massonne, Hans-Joachim; Theye, Thomas

    2015-04-01

    In the central Saxonian Erzgebirge, ultrahigh pressure rocks occur close to the Saidenbach reservoir. Among these rocks there are eclogites which have experienced metamorphic temperatures in excess of 1000°C (e.g., Massonne, 2013, Elements 9, 267-272). As a result of these high temperatures, the garnet was chemically homogenized with respect to a former growth zonation. Such kind of zonation can be deduced from inclusion minerals such as kyanite, phengite, and (clino)zoisite in garnet cores which point to metamorphic temperatures somewhat below 700°C. In order to test this view of a former prograde zonation in garnet, the content of phosphorus, a presumably much less mobile element at high temperatures compared to the common divalent cations, was determined in this mineral. Concentrations of P in mm-sized garnet in thin sections of eclogite were analyzed by a CAMECA SX100 electron microprobe (EMP). Different instrumental conditions, ranging from beam currents of 50 to 100 nA and counting times of 100 to 600 s on both peak and background at an acceleration voltage of 15 kV, were used in order to find the optimal way to determine this concentration in addition to the concentrations of the common elements at significantly shorter counting times. The interference of the CaKβ 2nd order and PKα 1st order peaks was considered by test measurements on standard material. The calculated detection limit for our P measurements was found to be around 13 ppm at the highest beam current and counting time. Several chemical profiles through a more or less concentrically zoned garnet grain were determined by spot analyses. These measurements on a high temperature eclogite from the Saidenbach reservoir yielded relatively low P contents in the core region of garnet of approximately 150 ppm and a significant increase towards the garnet rim. Maximum P contents were found to be around 350 ppm. In the core of garnet small apatite crystals were included whereas in the matrix no

  14. Aluminum depletion in komatiites and garnet fractionation in the early Archean mantle: Hafnium isotopic constraints

    SciTech Connect

    Gruau, G. Universite de Rennes ); Chauvel, C.; Arndt, N.T. ); Cornichet, J. )

    1990-11-01

    Hafnium isotopic compositions were measured in Al-depleted and Al-enriched komatiites from the 3,450 Ma old Barberton greenstone belt, southern Africa. All samples have initial {var epsilon}{sub Hf} values close to zero. Such values are at variance with the strongly negative or positive values that should be observed if these rocks came from old garnet-depleted or garnet-enriched layers, such as may have formed during the solidification of an ancient terrestrial magma ocean. The garnet fractionation observed in komatiites probably took place during the melting event.

  15. Rates of Metamorphic and Tectonic Processes Derived From Garnet Chemistry and Phase Diagrams

    NASA Astrophysics Data System (ADS)

    Stowell, H. H.

    2005-12-01

    Sm and Nd isotope data for the interior parts of a garnet crystal (core) and the whole rock can be used to calculate the timing of initial growth. Isotope data for the external parts of a garnet crystal (rim) and the rock matrix can be used to calculate the timing of final growth. Similarly, major element chemistry can be used to calculate pressures (P) and temperatures (T) of metamorphism for initial and final garnet growth. Combination of these data allows estimation of garnet growth, heating, and loading rates. Sm-Nd isochrons were constructed for garnet core and whole rock, and for garnet rim and rock matrix (whole rock minus garnet). For core and rim ages that are indistinguishable, uncertainties for a single isochron constrain the duration of garnet growth. P and T were estimated from the intersection of garnet chemical isopleths on P-T phase diagrams for specific rocks (pseudosections), and garnet rim thermobarometry and/or pseudosection peak mineral stability fields. Results from Cretaceous contact and regional metamorphic environments provide preliminary data for comparison. Schist from Garnet Ledge, AK. 20 mm garnet crystals in pelite less than 1 km from a diorite pluton grew during contact metamorphism over ca. 0.5 m.y. during a 70°C increase in T and 0.6 kbar increase in P. Growth, heating, and loading rates are 20 mm/m.y., 140°C/m.y., 1.2 kbar/m.y., respectively. Chiwaukum Schist from near the Mount Stuart batholith, WA. 14 mm garnet crystals in pelite less than 2 km from the Mt. Stuart batholith grew during regional metamorphism over <1.4 m.y. during a 75°C increase in T and 1.2 kbar increase in P. Growth, heating, and loading rates are 5 mm/m.y., 54°C/m.y., 0.9 kbar/m.y., respectively. 5 mm garnet crystals in pelite adjacent to orthogneiss grew during contact metamorphism over <1.8 m.y. while T and P increased to peak conditions of 630°C and 6.8 kbar. Pembroke granulite from Fiordland, New Zealand. 16 mm peritectic garnet crystals in lower

  16. High temperature garnet growth in New England: regional temperature-time trends revealed

    NASA Astrophysics Data System (ADS)

    Sullivan, N.; Ostwald, C.; Chu, X.; Baxter, E. F.; Ague, J. J.; Eckert, J. O.

    2013-12-01

    A series of localized ultrahigh-temperature (UHT)/high-temperature (HT) granulite facies regions have been identified within the regional amphibolite facies metamorphic zone of the Central Maine Terrane stretching from north-central New Hampshire, through central Massachusetts, and into northeastern Connecticut. Here, we aim to constrain the age and peak temperature of metamorphism at three localities within this region: Bristol, NH, Phillipston, MA and Willington, CT. Garnet-forming reactions are linked directly to peak metamorphic temperatures through thermodynamic modeling and/or Zr-in-rutile thermometry. Precise garnet geochronology allows us to identify the timing of these peak temperatures, as well as the duration of garnet growth. Geochronologic and thermodynamic work was done on 12 samples collected throughout a ~5 km2 metamorphic 'hotspot' previously identified in Bristol, NH (Chamberlain and Rumble, 1988; Journal of Petrology). The highest temperature assemblage within this hotspot is characterized by the presence of garnet + sillimanite + K-feldspar + cordierite and reached temperatures >820οC. The lowest temperature periphery of the hotspot is characterized by sillimanite + muscovite + K-feldspar + minor garnet and reached a maximum temperature of 650οC. Bulk garnet ages from samples within the hotspot range significantly from at least 400.0 × 2.5 Ma to 352.7 × 1.8 Ma with the youngest ages associated with the lower temperature samples. This collection of ages indicates a prolonged period (~50 Ma) of >650οC temperatures interspersed by period(s) of garnet growth. Zoned garnet geochronology will help reveal whether garnet growth and related heating was continuous or episodic. Further south, in Phillipston, MA, zoned garnet geochronology performed on a 2.5 cm diameter garnet porphyroblast indicates garnet growth spanning 389 - 363 Ma, reaching peak temperatures at the end of that time span of 920-940οC, followed by a younger event recorded in

  17. Fluorian garnets from the host rocks of the Skaergaard intrusion: implications for metamorphic fluid composition

    USGS Publications Warehouse

    Manning, C.E.; Bird, D.K.

    1990-01-01

    Zoned, silica-deficient, calcic garnets containing up to 5 mol% F substitution for O formed during contact metamorphism of basalts by the Skaergaard intrusion in East Greenland. Fluorian calcic garnets occur as a retrograde alteration of prograde wollastonite and clinopyroxene that fills vesicles and vugs in lavas 30-70 m from the intrusion. The F content of garnet is extremely sensitive to minor changes in fluid composition. The calculations show that a decrease in pH or an increase in log aF- of 0.3 at constant pressure and temperature will decrease the F concentration in garnet from 5 to 0 mol%. The results of this study show that fluorian hydrous grandites provide a mineralogical record of the activities of F species in coexisting metamorphic and hydrothermal fluids. -from Authors

  18. Iron refractory iron deficiency anemia

    PubMed Central

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U.; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach. PMID:23729726

  19. Optical absorption of Ni2+ and Ni3+ ions in gadolinium gallium garnet epitaxial films

    NASA Astrophysics Data System (ADS)

    Vasileva, N. V.; Gerus, P. A.; Sokolov, V. O.; Plotnichenko, V. G.

    2012-12-01

    Single-crystal Ni-doped gadolinium gallium garnet films were grown for the first time from supercooled Bi2O3-B2O3-based melt solutions by liquid-phase epitaxy. Optical absorption bands due to Ni2+, Ni3+ and Bi3+ ions were observed in those films. Interpretation and tabulation of all absorption bands of nickel ions occupying octahedral and tetrahedral sites in the garnet lattice are presented.

  20. Raman imaging of fluid inclusions in garnet from UHPM rocks (Kokchetav massif, Northern Kazakhstan).

    PubMed

    Korsakov, Andrey V; Dieing, Thomas; Golovin, Aleksandr V; Toporski, Jan

    2011-10-01

    Confocal Raman imaging of fluid inclusions in garnet porphyroblasts from diamond-grade metamorphic calc-silicate rocks from the Kumdy-Kol microdiamond deposit (Kokchetav Massif, Northern Kazakhstan) reveals that these fluid inclusions consist of almost pure water with different step-daughter phases (e.g., calcite, mica and rare quartz). These fluid inclusions are characterized by negative crystal shape of the host-garnet and they exclusively occur within the core of garnet porphyroblasts. These observations are consistent with their primary origin, most likely at ultrahigh-pressure (UHP) metamorphic conditions. The euhedral newly formed garnet, different in color and composition, was found to be associated with these fluid inclusions. It is proposed that newly formed garnet and water fluid inclusions appear by reaction between the hydrous fluid and the garnet-host. These fluid inclusions provide an unequivocal record of almost pure H(2)O fluids, indicating water-saturated conditions within subducted continental crust during prograde stage and/or ultrahigh-P metamorphism. PMID:21377920

  1. High-pressure and high-temperature studies on oxide garnets

    NASA Astrophysics Data System (ADS)

    Hua, Hong; Mirov, Sergey; Vohra, Yogesh K.

    1996-09-01

    We report high-pressure and high-temperature studies on a series of oxide garnets of chemical composition A3B2C3O12. The members of this family investigated are gadolinium scandium gallium garnet (GSGG), gadolinium gallium garnet (GGG), and yttrium aluminum garnet (YAG). The GSGG and GGG are doped with both neodymium and chromium while the YAG is doped only with neodymium. Photoluminescence, synchrotron x-ray-diffraction, and laser heating studies were carried out in a diamond-anvil cell. Variety of optical sensors (ruby, Sm-doped YAG) and x-ray pressure marker (copper) were employed for pressure measurement. Pressure-induced amorphization was observed in GSGG at 58+/-3 GPa and GGG at 84+/-4 GPa by x-ray-diffraction studies. The photoluminescence studies show only gradual broadening of emission bands through the amorphization transition. On increasing pressure beyond amorphization, very broad and featureless emission bands were observed in the fluorescence spectra at 77+/-2 GPa for GSGG and at 88+/-2 GPa for GGG. Laser heating of the pressure-induced amorphous phase in GSGG caused recrystallization to the stable cubic phase. High-pressure x-ray study on YAG shows that it retains cubic phase up to 101+/-4 GPa. A pressure-volume relation for each member of the oxide garnet at ambient temperatures is presented, structural transformation mechanisms, and application of oxide garnets as pressure sensors are also discussed.

  2. Amorphization of rare earth aluminate garnets by ionic irradiation and decay of 244Cm admixture

    SciTech Connect

    Livshits, T. S.; Lizin, A. A.; Zhang, J. M.; Ewing, R. C.

    2010-08-29

    The stability of synthetic REE-aluminate garnets irradiated by accelerated Kr2+ ions and affected by alpha decay of ²⁴⁴Cm (T1/2 = 18.1 yr) has been studied. The dose of irradiation sufficient for the complete disordering of the aluminate garnet structure is 0.40–0.55 displacements per atom. This value increases with rising temperature due to the increasing intensity of recovery from radiation damage to the lattice by heating. The critical temperature above which the structure of REE-aluminate is not damaged by radiation is 550°C. The amorphization dose for aluminates with garnet structure is two to three times higher than of that previously studied ferrites; the critical temperature of both is similar. In resistance to radiation, aluminate garnets do not yield to zirconolite and exceed titanate pyrochlore. Heating to 250°C does not lead to substantial recovery from radiation defects in the garnet structure. The radiation impact on matrices of real actinide (An) wastes is lower than that related to ion irradiation and ²⁴⁴Cm doping, and this facilitates a higher radiation resistance of garnets containing HLW.

  3. Metastable garnet in oceanic crust at the top of the lower mantle.

    PubMed

    Kubo, Tomoaki; Ohtani, Eiji; Kondo, Tadashi; Kato, Takumi; Toma, Motomasa; Hosoya, Tomofumi; Sano, Asami; Kikegawa, Takumi; Nagase, Toshiro

    As oceanic tectonic plates descend into the Earth's lower mantle, garnet (in the basaltic crust) and silicate spinel (in the underlying peridotite layer) each decompose to form silicate perovskite-the 'post-garnet' and 'post-spinel' transformations, respectively. Recent phase equilibrium studies have shown that the post-garnet transformation occurs in the shallow lower mantle in a cold slab, rather than at approximately 800 km depth as earlier studies indicated, with the implication that the subducted basaltic crust is unlikely to become buoyant enough to delaminate as it enters the lower mantle. But here we report results of a kinetic study of the post-garnet transformation, obtained from in situ X-ray observations using sintered diamond anvils, which show that the kinetics of the post-garnet transformation are significantly slower than for the post-spinel transformation. Although metastable spinel quickly breaks down at a temperature of 1,000 K, we estimate that metastable garnet should survive of the order of 10 Myr even at 1,600 K. Accordingly, the expectation of where the subducted oceanic crust would be buoyant spans a much wider depth range at the top of the lower mantle, when transformation kinetics are taken into account. PMID:12490946

  4. Crystal chemistry of Ti-bearing garnets with volcanic origin

    NASA Astrophysics Data System (ADS)

    Scordari, F.; Schingaro, E.; Malitesta, C.; Pedrazzi, G.

    2003-04-01

    The crystal chemistry of Ti-bearing andradites ("melanites") belonging to different pyroclastic units of Albani Hills (Lazio, Italy) has been investigated electron probe microanalysis (EPMA), single crystal X-ray diffraction (SCXRD), Mössbauer spectroscopy (MS) and X-ray Photoelectron Spectroscopy (XPS). The aim is to determine the correct cations distribution over the X(8-fold), Y(6-fold) and Z(4-fold) sites and accurate values of cations site populations. The analysed samples are characterized by a low Ti-content ( TiO_2 in the range 1.76-3.59 wt%) and cell edges in the range 11.996(3)-12.014(1). MS investigation reveald Fe to be present predominantly as Fe3+(Y) and subordinately as Fe2+(X). XPS analysis was accomplished according to the procedure developed by Malitesta et al.(1989). The fitting of Ti2p signals seem to indicate that two (octahedral Ti3+ and Ti4+) or three (octahedral Ti3+ and Ti4+, tetrahedral Ti4+) Ti species may occur in these specimen. From the combination of the results from different techniques the distribution of Al over the Y and Z sites has been deduced. By comparing the Albani Hills samples crystal chemistry with that of melanites from Mt. Vulture (Scordari et al., 1999), it has been found that in the latter samples the Z sites is occupied by Si, Fe3+ and Ti4+, whereas in the former by Si,Ti4+ and Al3+. Substitution mechanisms through which Fe and Ti enter the garnet structure are expected to be related to the geologic environment in which they occurr. It has been recently proposed that in samples from volcanic rocks schorlomite substitution, Ti4+(Y) + Fe3+(Z) leftrightarrow Si4+(Z) + Fe3+(Y) is predominant, associated to a low degree of hydrogarnet component, (SiO_4)4- leftrightarrow (O_4H_4)4-; on the contrary Ti-garnets from metamorphic rocks should be affected by morimotoite substitution Ti4+(Y) + Fe2+(Y) leftrightarrow 2Fe3+(Y) and a high degree of hydrogarnet component (Armbruster et al., 1998). The result obtained in the present

  5. REE Zonation in Garnet: new insights from combined Thermodynamic and Diffusion Modelling

    NASA Astrophysics Data System (ADS)

    Witte, C.; Konrad-Schmolke, M.

    2013-12-01

    Compositional variation in garnet provides an excellent record of element transport within their host rocks, as it precisely reflects the interplay between thermodynamically-controlled nutrient demand and kinetically-constrained element availability during growth. Element availability is controlled by (1) the thermodynamically controlled element distribution among co-existing phases and (2) by matrix transport properties. Our task is to distinguish between factors controlling the availability of major- and trace-elements and to quantify their diffusion length scales but this is hindered by the fact that the interplay of different rate-limiting factors on garnet growth and composition are not fully understood. These processes comprise: (1) fractional garnet crystallisation, which continuously changes the effective, i.e. reacting, bulk rock chemistry (EBC), which in turn influences garnet proportion, growth rate and composition; (2) kinetically-controlled element availability, such that grain boundary diffusion in the host rock's interconnecting transport matrix (ITM) or surface processes in reacting phases cannot keep pace with the material required for garnet nucleation and growth in homogeneous thermodynamic equilibrium with the coexisting phase assemblage and (3) reaction-controlled trace element availability in the host rock, which is often reflected in discontinuous trace element zoning patterns in garnet. A 1D diffusion and reaction model was developed to investigate REE distribution patterns in garnet. It combines PERPLEX thermodynamic forward modelling for a bulk rock composition along a P-T-path with control of diffusion rates in the matrix fluid which acts as a transport medium in the intergranular space. Initial REE distribution is controlled by standard distribution coefficients. Reactant phases are the source of REE and product minerals fractionate REE from the transport medium. Thus the uptake of REE in garnet is regulated by: (1) thermodynamically

  6. Olivine Lamellae and Interstitial Blebs of Diopside and Enstatite Exsolved from Majoritic Garnet during Decompression in Multianvil Apparatus

    NASA Astrophysics Data System (ADS)

    Dobrzhinetskaya, L. F.; Green, H. W.

    2003-12-01

    We present preliminary experimental data on the decompression of majoritic garnet primarily synthesized from a mineral mix of garnet peridotite bulk chemistry showing exsolution from majoritic garnet of olivine (Ol) in the form of oriented plates and pyroxenes as interstitial blebs. Experiments conducted at 14GPa/1673K demonstrate that all enstatite (En) and about 85% of diopside (Di) were dissolved into garnet yielding run products of approximately 40% Ol + 55% Grt + 5% Di. Garnet was found to be supersilicic with Si=3.17-3.31 p.f.u. Repeat of such experiments followed immediately by re-annealing at 13 and 12 GPa yielded exsolution of both Di and Ol. Olivine exsolved as micron-size plates nucleated within garnet on low-angle boundaries. In contrast, diopside exsolved abundantly as tiny blebs at garnet grain boundaries, exhibiting no typical exsolution microstructures. Similarly, in specimens annealed at 5 GPa after previous equilibration at 8GPa/1673K, En exsolved as small blebs at garnet boundaries. Under conditions similar to the latter experiments, interstitial blebs of natural enstatite also occur at garnet grain boundaries (Van Roermund et al., 2001) in Norwegian deep-seated (>200 km) subduction zone grt-peridotite. Our experiments show that Ol as well as En and Di may exsolve during decompression of majoritic garnets in the course of Grt peridotite exhumation. Examples of preservation of pyroxene exsolution lamellae in former majoritic garnets come from both xenoliths in kimberlites (Haggerty and Sautter, 1990; Sautter et al., 1991) as well as from very large garnets in subduction-zone peridotites (van Roermund and Drury, 1998). However, many other garnet peridotites from subduction zones contain Di, En, and/or Ol along grain boundaries within larger polycrystalline garnets and within embayments at the margins of smaller amoeboid garnets (e.g. Dobrzhinetskaya et al, 1996, Green and Dobrzhinetskaya, 2003). Such garnets also may contain rounded non

  7. The Friningen Garnet Peridotite (central Swedish Caledonides). A good example of the characteristic PTt path of a cold mantle wedge garnet peridotite

    NASA Astrophysics Data System (ADS)

    Gilio, Mattia; Clos, Frediano; van Roermund, Herman L. M.

    2015-08-01

    We present pseudosections of Cr-bearing garnet peridotite that together with new mineral-chemical data allow quantification of the early PT conditions of the original lithospheric mantle assemblage (M1) of the Friningen Garnet Peridotite (FGP) located in the central/middle belt of the Seve Nappe Complex in central Sweden. Results indicate that the early, coarse grained, olivine + orthopyroxene + clinopyroxene + "high Cr" garnet assemblage (M1a) was formed at 1100 ± 100 °C and 5.0 ± 0.5 GPa. These metamorphic conditions were followed by an inferred late Proterozoic exhumation event down to 850-900 °C and 1.5 GPa (M1b). The latter PT estimate is based on the breakdown of high-Cr M1a garnet (Cr# = 0.065) + olivine into an orthopyroxene + clinopyroxene + spinel (Cr# = 0.15-0.25) ± pargasite kelyphite (M1b) and the exsolution of garnet from Al-rich orthopyroxene and clinopyroxene. The M1b kelyphite is overprinted by an early-Caledonian UHPM mineral assemblage (M2; T = 800 °C and P = 3.0 GPa), equivalent to the earlier discovered UHP assemblage within an eclogitic dyke that cross-cuts FGP. In the garnet peridotite M2 is displayed by low-Cr garnet (Cr# = 0.030) growing together with spinel (Cr# = 0.35-0.45), both these minerals form part of the olivine + orthopyroxene + clinopyroxene + garnet + spinel + pargasite M2 assemblage. The formation of plagioclase + diopside symplectites after omphacite and breakdown of kyanite to sapphirine + albite in internal eclogite and the breakdown of M2 olivine + garnet to amphibole + orthopyroxene + spinel assemblages (M3) in garnet peridotite indicate post-UHP isothermal decompression down to 750-800 °C and 0.8-1.0 GPa (= M3). Multiphase solid-and fluid inclusion assemblages composed of Sr-bearing magnesite, dolomite or carbon decorate linear defect structures within M1a-b minerals and/or form subordinate local assemblages together with M2 minerals. The latter are interpreted as evidence for infiltration of early-Caledonian COH

  8. Graphical representations of the chemistry of garnets in a three-dimensional MATLAB based provenance plot

    NASA Astrophysics Data System (ADS)

    Knierzinger, Wolfgang; Palzer, Markus; Wagreich, Michael; Meszar, Maria; Gier, Susanne

    2016-04-01

    A newly developed, MATLAB based garnet provenance plot allows a three-dimensional tetrahedral representation of the chemistry of garnets for the endmembers almandine, pyrope, spessartine and grossular. Based on a freely accessible database of Suggate & Hall (2013) and additional EPMA-data on the internet, the chemistry of more than 2500 garnets was evaluated and used to create various subfields that correspond to different facies conditions of metapelitic, metasomatic and metaigneous rocks as well as granitic rocks. These triangulated subfields act as reference structures within the tetrahedron, facilitating assignments of garnet chemistries to different lithologies. In comparison with conventional tenary garnet discrimination diagrams by Mange & Morton (2007), Wright/Preston et al. (1938/2002) and Aubrecht et al. (2009), this tetrahedral provenance plot enables a better assessment of the conditions of formation of garnets by reducing the overlapping of certain subfields. In particular, a clearer distinction between greenschist facies rocks, amphibolite facies rocks and granitic rocks can be achieved. First applications of the tetrahedral garnet plot provided new insights on sedimentary processes during the Lower Miocene in the pre-Alpine Molasse basin. Bibliography Aubrecht, R., Meres, S., Sykora, M., Mikus, T. (2009). Provenance of the detrital garnets and spinels from the Albian sediments of the Czorsztyn Unit (Pieniny Klippen Belt , Western Carpathians, Slovakia). In: Geologica Carpathica, Dec. 2009, 60, 6, pp. 463-483. Mange, M.A., Morton, A.C. (2007). Geochemistry of Heavy Minerals. In: Mange, M.A. & Wright, D.T.(2007).Heavy Minerals in Use, Amsterdam, pp. 345-391. Preston, J., Hartley, A., Mange-Rajetzky, M., Hole, M., May, G., Buck, S., Vaughan, L. (2002). The provenance of Triassic continental sandstones from the Beryl Field, northern North Sea: Mineralogical, geochemical and sedimentological constraints. In: Journal of Sedimentary Research, 72, pp. 18

  9. Optical spectroscopy of the Ce-doped multicomponent garnets.

    PubMed

    Canimoglu, A; Karabulut, Y; Ayvacikli, M; Muresan, L E; Perhaita, I; Barbu-Tudoran, L; Garcia Guinea, J; Karali, T; Can, N

    2016-08-01

    Here, we report our results referring to the preparation of Ce doped Y2.22MgGa2Al2SiO12, Y1.93MgAl4SiO12 and Y2.22Gd0.75Ga2Al3O12 using solid state reaction at high temperature. Several complementary methods (i.e. powder x-ray diffraction (XRPD), energy dispersive analysis of X-rays (EDX), scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR)) were studied to examine the effects of the synthesis procedure on the morphology and structure. XRD analyses revealed that all compounds include yttrium aluminate phase with garnet structure. Cathodoluminescence (CL), radioluminescence (RL) and photoluminescence (PL) measurements were carried out for clarification of relationship between host lattice defects and the spectral luminescence emissions. Luminescence emission of phosphors is peaked at 530nm assigned to 5d-4f transitions of the dopant Ce(3+) ions with a broad emission band in 400-700nm range. Under electron irradiation, the emission spectrum of Ce doped (YGd)3Ga2Al3O12 is well defined and has a characteristic fairly narrow and sharp emission band peaking at 312nm and 624nm corresponding to transition of (6)P7/2 →(8)S7/2 and (6)GJ→(6)PJ (Gd(3+)), respectively. We suggest some of phosphors might be excellent phototherapy phosphor materials under electron excitation. PMID:27235885

  10. Low-temperature thermal conductivity of terbium-gallium garnet

    SciTech Connect

    Inyushkin, A. V. Taldenkov, A. N.

    2010-11-15

    Thermal conductivity of paramagnetic Tb{sub 3}Ga{sub 5}O{sub 12} (TbGG) terbium-gallium garnet single crystals is investigated at temperatures from 0.4 to 300 K in magnetic fields up to 3.25 T. A minimum is observed in the temperature dependence {kappa}(T) of thermal conductivity at T{sub min} = 0.52 K. This and other singularities on the {kappa}(T) dependence are associated with scattering of phonons from terbium ions. The thermal conductivity at T = 5.1 K strongly depends on the magnetic field direction relative to the crystallographic axes of the crystal. Experimental data are considered using the Debye theory of thermal conductivity taking into account resonance scattering of phonons from Tb{sup 3+} ions. Analysis of the temperature and field dependences of the thermal conductivity indicates the existence of a strong spin-phonon interaction in TbGG. The low-temperature behavior of the thermal conductivity (field and angular dependences) is mainly determined by resonance scattering of phonons at the first quasi-doublet of the electron spectrum of Tb{sup 3+} ion.

  11. Vertical Bridgman growth of calcium lithium niobium gallium garnet crystals

    NASA Astrophysics Data System (ADS)

    Xu, Xuewu; Chong, Tow-Chong; Zhang, Guangyu; Li, Minghua; Soo, Lay Hiok; Xu, Wei; Freeman, Bill

    2003-03-01

    The growth of calcium lithium niobium gallium garnet (CLNGG) crystal has been carried out using platinum crucibles in a vertical Bridgman (VB) furnace with three resistance-heating zones. Transparent CLNGG crystals grown from the congruent melts with and without weight loss compensation are different in color and are 25 mm in diameter and about 70 mm in length. The phase identification of the sintered raw materials, grown crystals and white compound formed on the side surface of the grown crystal has been done using the powder X-ray diffraction method. The formation of the white compound is related to the {1 0 0} facet growth near the side surface. The naturally selected growth direction of the CLNGG crystal grown without a seed is near <1 1 1> , which is in good agreement with the morphological importance analysis according to the BFDH law. The VB-grown CLNGG also shows a cleavable feature parallel to {1 1 0} face and no absorption peaks in the wavelength range of 1100-1600 nm. The linear thermal-expansion coefficient of the CLNGG crystal along <1 1 1> direction is also reported and compared with that of CNGG, GGG and platinum crucible.

  12. Exsolution halos surrounding ruptured inclusions in garnets from UHT and UHP rocks

    NASA Astrophysics Data System (ADS)

    Axler, Jennifer; Ague, Jay

    2015-04-01

    Distinctive halos of rutile ± apatite needles and/or plates centered on quartz or multiphase inclusions with radial cracks in garnet are investigated. The quartz is likely former coesite and the multiphase inclusions are interpreted to be decrepitated fluid inclusions. We study samples from two localities: (1) ultrahigh-temperature (UHT) metapelitic gneisses from the Central Maine Terrane in Connecticut, USA (Ague et al., 2013) (rutile halos only) and (2) ultrahigh-pressure (UHP) diamondiferous saidenbachite from the Saxonian Erzgebirge (Massonne, 2003) (rutile and apatite halos). The rutile and apatite needles in the halos are typically oriented in three directions. Within the halos, garnet is depleted in Ti (and P if apatite is present). The halos extend about three inclusion radii away from the central quartz or multiphase inclusions. We propose that the inclusion halos of rutile ± apatite formed by exsolution out of garnet due to rupturing of the central inclusions. The internal pressure of an inclusion in garnet can be larger than the surrounding lithostatic pressure if the entrapment pressure is maintained or if a large positive volume phase change occurs. A large pressure difference between an inclusion and host strains the host and causes deformation, which in turn produces dislocations and other defects. During exhumation the pressure difference between inclusions and the surrounding rock matrix can become so great that rupturing of the garnet occurs. The rupturing creates more dislocations and defects in the garnet with the dislocation density highest around the inclusion. The defects in the crystal structure are ideal nucleation sites for exsolved precipitates. Another factor assisting exsolution is the drop in pressure in the surrounding garnet caused by the rupturing which should in turn decrease the solubility of Ti and P in garnet. To test the exsolution hypothesis, chemical reintegration of the Ti or P contents of the garnet in the halos plus the

  13. Origin of garnet peridotites in the lithospheric mantle beneath the Siberian craton

    NASA Astrophysics Data System (ADS)

    Doucet, L. S.; Ionov, D. A.; Brey, G. P.; Golovin, A. V.; Ashchepkov, I. V.

    2012-04-01

    Garnet peridotites represent the largest part of the lithospheric mantle beneath Archean crust, yet the origin of garnet in these rocks continues to be debated. The cratonic mantle is believed to be produced by extensive melt extraction indicated by common low Al and Ca (<1%) and high Mg#WR (≥0.92) of cratonic peridotites [1]. However, even though many garnet peridotites are low in Al and Ca, they usually have lower Mg#WR (<0.92) than spinel harzburgites, which together with common high modal cpx and garnet (>5%) appear to be inconsistent with a residual origin by high degrees of partial melting [2]. To better constraint the origin of garnet in cratonic mantle we report modal, major and trace element compositions for >30 garnet peridotites from the Udachnaya kimberlite in central Siberia (as well as preliminary Nd-isotope data for selected samples). These rocks, unlike many other kimberlite-hosted peridotites worldwide, are unusually fresh, with very low LOI (≤1%) and unaltered minerals [3]. The garnet peridotites in this study are coarse (mostly low-T) to sheared (high-T) harzburgites with Mg#WR of 0.90-0.92 and ≤1% Al2O3 and CaO as well as two lherzolites. Their cpx (2-6%) and garnet (1-9%) have complex REE patterns affected by both melt extraction and various enrichment events. Modal and major oxide compositions of spinel harzburgites from Udachnaya indicate an origin by >35% of partial melting in a broad depth range (2-7 GPa) based on experimental results [4]. By comparison, only 5 out 30 garnet harzburgites in this study plot close to the melting trends defined by spinel harzburgites. The majority of garnet harzburgites in this study (especially high-T) show a range of enrichments in Fe, Si, Ti, HREE etc. relative to pristine melting residues. Moreover, the Nd isotope data for the garnet peridotites (calculated from garnet and cpx analyses) yield an isochron age of 0.8-0.7 Ga, which is much younger than whole-rock Re-Os formation ages (2 Ga [5]). The

  14. Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite

    USGS Publications Warehouse

    Grove, Timothy L.; Holbig, Eva S.; Barr, Jay A.; Till, Christy B.; Krawczynski, Michael J.

    2013-01-01

    Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.

  15. METABOLISM OF IRON STORES

    PubMed Central

    SAITO, HIROSHI

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since the pioneering research by Shoden in 1953. However, we recently developed a new method for determining ferritin iron and hemosiderin iron by computer-assisted serum ferritin kinetics. Serum ferritin increase or decrease curves were measured in patients with normal storage iron levels (chronic hepatitis C and iron deficiency anemia treated by intravenous iron injection), and iron overload (hereditary hemochromatosis and transfusion dependent anemia). We thereby confirmed the existence of two iron pathways where iron flows followed the numbered order (1) labile iron, (2) ferritin and (3) hemosiderin in iron deposition and mobilization among many previously proposed but mostly unproven routes. We also demonstrated the increasing and decreasing phases of ferritin iron and hemosiderin iron in iron deposition and mobilization. The author first demonstrated here the change in proportion between pre-existing ferritin iron and new ferritin iron synthesized by removing iron from hemosiderin in the course of iron removal. In addition, the author disclosed the cause of underestimation of storage iron turnover rate which had been reported by previous investigators in estimating storage iron turnover rate of normal subjects. PMID:25741033

  16. Thermodynamic Properties of Rock-Forming Garnets: How Well Known are They?

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Dachs, E.

    2011-12-01

    Garnet is an important rock-forming mineral whose geological occurrence is widespread. The silicate garnets (E3G2Si3O12) show extensive compositional variability and the various end-members are stable over an enormous range of rock compositions and pressure and temperature conditions. Extensive geothermometry and geobarometry studies involving garnet have been made. Thus, much research has been done to determine garnet's thermodynamic properties. There are now several internally consistent mineralogical thermodynamic databases and their use is widespread. It is common belief in some/many circles that the present databases represent "the final word" on thermodynamic properties at least in terms of most end-member silicates. The question arises - How true is this assumption in the case of garnet? We have been and are presently engaged in investigating the thermodynamic properties of garnet, where volumetric properties and heat-capacity behavior play a central role. The volumes of the various end-member garnets are now known precisely. Only secondary effects arising from extra minor components (e.g., OH-,Fe3+,Mn3+) have yet to be worked out exactly. In terms of heat capacity Cp behavior, new calorimetric data allow improved understanding. Low T calorimetric measurements on spessartine were made recently and show that previous estimates for S° were in error (Dachs et al. 2009). New unpublished calorimetric results on grossular appear to have resolved long-standing uncertainty regarding its precise S° value. S° for silica-free hydrogrossular has also been determined for the first time. Cp measurements are now focusing on almandine and here low T electronic and magnetic properties must be considered. One can conclude that Cp, S°, ΔH°f, V and ΔG°f for the common silicate garnet end-members are now well determined to about 1000 K. Cp behavior above roughly 1000 K is less certain for some garnets (e.g., almandine, spessartine). What about thermodynamic behavior of

  17. Mechanisms and Kinetics of the Post-Garnet Transformation in Pyrope

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Ohtani, E.; Kondo, T.; Kato, T.; Kikegawa, T.; Nagase, T.

    2001-12-01

    Garnet, which is one of the major constituent minerals of the subducting oceanic crust, transforms to perovskite (post-garnet transformation) at the depth of ~600-800 km. Metastability of garnet and changes of microstructures in the post-garnet transformation under subduction zone conditions possibly affect on dynamics of the subducting oceanic crust in the deep mantle. In order to clarify them, we performed high-pressure and high-temperature in-situ X-ray diffraction experiments on the post-garnet transformation kinetics of pyrope. Here we report preliminary results on mechanisms and kinetics of the decomposition reaction of pyrope garnet into aluminous perovskite and corundum. In-situ X-ray diffraction experiments were carried out using sintered-diamond multi-anvil apparatus MAX-III installed at KEK-PF. White X-ray from synchrotron radiation was used as the incident X-ray beam and the diffracted beam was measured by the energy dispersive method. Pressure was evaluated from the equation of state of gold (Anderson, 1989). The starting material is a sintered mixture of Mg3Al2Si3O12 pyrope (grain size is 2-5 μm ) and gold. It was compressed to the desired pressure at room temperature, and then heated to the desired temperature at constant oil pressure. When the temperature reached to the desired value, it was kept constant and time-resolved X-ray diffraction profiles were taken every 10-200 seconds. The transformation proceeded by about 50%\\ in 4 and 130 minutes at 31.0 GPa and 1473K, and 30.3 GPa and 1273K, respectively. When the transformed fraction reached about 50% the transformation rate drastically slowed down. At 26.0 GPa and 1673K, the transformation completed in 10 seconds. These preliminary kinetic data qualitatively suggest that kinetics of the post-garnet transformation in pyrope is significantly slower than those of the post-spinel transformation. SEM and TEM observations of the sample recovered from 30.3 GPa and 1273K revealed the grain

  18. Lithium Behavior during Growth of Metasedimentary Garnets from the Cignana UHP Locality, Italy

    NASA Astrophysics Data System (ADS)

    Bebout, G. E.; Tsujimori, T.; Ota, T.; Shimaki, Y.; Kunihiro, T.; Carlson, W. D.; Nakamura, E.

    2014-12-01

    We investigated major and trace element concentrations and δ7Li in garnets in Lago di Cignana metasedimentary rocks (peak conditions ~550˚C, 2.5-3.0 GPa), following the EPMA-SIMS approach of Tsujimori et al. (2014; IMA conference abstract). Previous work on the devolatilization history of these rocks (Bebout et al., 2013; Cook-Kollars et al., 2014; both in Chemical Geology) provides a petrologic and geochemical context for this study. Lithium is of interest as a tracer of fluid-rock interactions and because of its potential to isotopically fractionate during diffusional processes. All garnets are almandine-rich with strongly decreasing MnO and increasing MgO toward rims. HREEs, Y, and Li also show strong zoning, with elevated concentrations in cores (15-50 ppm Li) and marked high-concentration anomalies (up to 117 ppm Li, 5500 ppm Y), with little or no major element shift, as growth annuli at which some garnets have elevated δ7Li. In all garnets, rutile inclusions appear abruptly at annuli and outward toward rims, accompanied by inclusions of a Ca- and LREE-rich phase and decreased Nb concentrations in garnet. These relationships appear to reflect prograde garnet-forming reaction(s) that in part involved titanite breakdown to stabilize rutile, which resulted in delivery of more abundant Y and HREEs at surfaces of growing garnets to produce growth annuli. The co-enrichment of Li and Y+REEs is attributed to their mutual incorporation via a charge-coupled substitution (Carlson et al., 2014; American Mineralogist); thus the increased Li uptake is a passive consequence of the elevated concentrations of Y+REEs. Distributions of δ7Li are complex, with most garnets showing only subtle core-to-rim variation other than at Y+REE annuli. At annuli, some garnets display elevated δ7Li (by up to 8‰), while others in the same rock do not. Small-scale fluctuations in δ7Li may correlate with abrupt shifts in major and trace element concentrations, suggesting that changes in

  19. Garnet geochronology: improvements and application in studying India-Asia collision

    NASA Astrophysics Data System (ADS)

    Smit, Matthijs; Scherer, Erik; Mezger, Klaus; Lee, Jeffrey; Ratschbacher, Lothar; Kooijman, Ellen; Stearns, Michael

    2016-04-01

    Garnet enables constraints on all parameters relevant to lithosphere studies: pressure, temperature, strain, and time. This aspect, in combination with its widespread occurrence in metamorphic rocks, make the mineral a prime target in research into the dynamics of mountain belts. Our ability to obtain and interpret precise age constraints from garnet Lu-Hf and Sm-Nd data has greatly improved over the years. This contribution highlights recent enhancements in garnet geochronology and demonstrates the versatility of this method in two case studies set in the India-Asia collision zone. To enable a more effective use of garnet geochronology, we investigated the retentiveness of Lu-Hf and Sm-Nd isotope signatures in naturally metamorphosed garnet. A grain-size dependent Lu-Hf and Sm-Nd analysis of garnet was done on a sample of a slowly cooled Archean granulite from the Pikwitonei Granulite Domain, Canada. Comparison of the apparent ages to the known thermal history of this rock allowed constraints on chronometer systematics at high temperature. Diffusive re-equilibration is shown to occur to a small (Sm-Nd) to minor, if not insignificant (Lu-Hf), extent during high temperature metamorphism, thus firmly establishing the Lu-Hf and Sm-Nd chronometers as reliable, well-characterized dating tools. Garnet Lu-Hf chronology was done to show that mid-crustal flow and 'Barrovian-type' metamorphism of rocks now exposed in the North Himalayan Gneiss Domes in Central Tibet commenced in the early Eocene. This result is the first to confirm that crustal thickening and contraction in the Tibetan Himalaya was broadly synchronous with the collision between Greater India and Eurasia. Garnet dating and thermometry, and rutile U-Pb thermochronology on granulites from the Pamir (an exposed segment of deep Asia) revealed a history of heating to 750-830 °C, commencing at 37 Ma in the South Pamir and occurring progressively later northward. The data advocate a causal link between Indian slab

  20. Vapor-Phase Garnet at Yucca Mountain, Nevada: Geochemistry and Oxygen-Isotope Thermometry

    SciTech Connect

    R. J. Moscati; C.A. Johnson; J.F. Whelan

    2001-07-03

    About 20 vapor-phase garnets were studied in two samples of the Topopah Spring Tuff from Yucca Mountain, in southern Nevada. The Miocene-age Topopah Spring Tuff is a 350-m-thick, devitrified, moderately to densely welded ash flow that is compositionally zoned from high-silica rhyolite to quartz latite. During cooling of the tuff, escaping vapor produced lithophysae (former gas cavities) lined with an assemblage of tridymite, cristobalite, alkali feldspar, and locally, hematite and/or garnet. Vapor-phase topaz and economic deposits (such as porphyry molybdenum-tungsten) commonly associated with topaz-bearing rhyolites (characteristically enriched in fluorine) were not found in the Topopah Spring Tuff at Yucca Mountain. The garnets are not primary igneous phenocrysts, but rather crystals that grew from a fluorine-poor magma-derived vapor trapped during emplacement of the tuff. The garnets are euhedral, vitreous, reddish brown, trapezohedral, as large as 2 mm in diameter, and fractured. The garnets also contain inclusions of tridymite. Electron-microprobe analyses of the garnets reveal that they are almandine-spessartine (48.0 and 47.9 mol percent, respectively), have an average chemical formula of (Fe{sub 1.46}, Mn{sub 1.45}, Mg{sub 0.03}, Ca{sub 0.10}) (Al{sub 1.93}, TiO{sub 0.02}) Si{sub 3.01}O{sub 12}, and are homogeneous in Fe and Mn concentrations from core to rim. Composited garnets from each sample site have {delta}{sup 18}O values of 7.2 and 7.4{per_thousand}. The coexisting tridymite, however, has {delta}{sup 18}O values of 17.4 and 17.6{per_thousand} values indicative of reaction with later, low-temperature water. Unaltered tridymite from higher in the stratigraphic section has a {delta}{sup 18}O of 11.1{per_thousand} which, when coupled with the garnet {delta}{sup 18}O values in a quartz-garnet fractionation equation, indicates vapor-phase crystallization at temperatures of almost 600 C. This high-temperature mineralization, formed during cooling of the

  1. High-Pressure Optical Studies of Doped Yttrium Aluminum Garnet

    NASA Astrophysics Data System (ADS)

    Wamsley, Paula

    This thesis demonstrates the application of high pressure spectroscopy to the study of doped insulator laser materials. We investigated transition metal ion and rare -earth ion doped yttrium aluminum garnet (YAG) crystals. Our goal was to explore the relationship between the local bonding environment of the dopant ion and the bulk optical properties of the crystals. Pressure is a useful probe for this type of investigation because pressure changes the local bonding environment of the dopant ion. We conducted laser induced fluorescence experiments and time-resolved laser induced fluorescence experiments on samples in modified Merrill-Basset style diamond anvil cells. We measured the effect of pressure on the laser induced emission of Cr^{3+} and Tm^{3+} in Cr ^{3+}:YAG and Tm^ {3+}:YAG. These experiments provided information about the energy level structure of Cr ^{3+} and Tm^{3+ } as a function of the crystal field strength. In Cr^{3+}:YAG we were able to correlate changes in the emission spectrum to pressure induced changes in the local site-symmetry of the Cr ^{3+} ions. In Tm^ {3+}:YAG we determined that several emission features were incorrectly assigned and observed previously unreported Tm^{3+} emission features. We also measured the time-resolved laser induced emission of Cr^{3+} in Cr^{3+}:YAG and Cr ^{3+}:Tm^{3+ }:YAG. With these measurements we were able to determine the effect of thermal and spin-orbit coupling on the fluorescence properties of Cr^{3+ }. In addition we determined that the fluorescence properties of Cr^{3+} strongly influence the rate of energy transfer and the efficiency of energy transfer from Cr^{3+ } to Tm^{3+} in Cr^{3+}:Tm ^{3+}:YAG.

  2. An experimental study of the Fe oxidation states in garnet and clinopyroxene as a function of temperature in the system CaO-FeO-Fe2O3-MgO-Al2O3-SiO2: implications for garnet-clinopyroxene geothermometry

    NASA Astrophysics Data System (ADS)

    Purwin, Horst; Lauterbach, Stefan; Brey, Gerhard P.; Woodland, Alan B.; Kleebe, Hans-Joachim

    2013-04-01

    Samples with eclogitic composition in the system CaO-FeO-Fe2O3-MgO-Al2O3-SiO2 were produced from various kinds of starting materials held in graphite-lined Pt capsules at a pressure of 2.5-3.0 GPa and temperatures of 800-1,300 °C using a piston-cylinder or Belt apparatus. Garnets and clinopyroxenes were characterized by analytical transmission electron microscopy and electron probe micro-analysis (EPMA). Fe3+/ΣFe ratios determined by electron energy-loss spectroscopy (EELS) decrease in clinopyroxene from 22.2 ± 3.4 % at 800 °C to 13.3 ± 5.4 % at 1,300 °C, while in garnet, they vary between 10.8 ± 1.5 and 15.4 ± 4.7 %, respectively. Temperature estimates according to Krogh (Contrib Mineral Petrol 99:44-48, 1988) reproduce the experimental temperature to ±60 °C without systematic deviations if total iron is used in the calculation. If only the Fe2+ content is used, which was obtained by combining EPMA and EELS results, the experimental temperature is underestimated by 33 °C on average at 800-1,200 °C and overestimated by 77 °C on average at 1,300 °C. These systematic deviations can be explained by the temperature-dependent ratio of Fe2+/ΣFe in garnet divided by that in clinopyroxene. Since the difference between the calculated and experimental temperature is relatively small, a Fe2+-based recalibration of the thermometer appears not to be necessary for the investigated system in the range of pressure, temperature and composition covered by the experiments of this study.

  3. Synthesis of garnet structure compounds using aqueous sol-gel processing

    NASA Astrophysics Data System (ADS)

    Leleckaite, A.; Kareiva, A.

    2004-07-01

    The sol-gel method based on metal chelates in aqueous solvents has been developed to prepare different oxides having garnet crystal structure. This synthetic approach has been used to prepare rare-earth doped yttrium aluminum garnet Y 3Al 5O 12:Ce, Y 3Al 5O 12:Nd, Y 3Al 5O 12:Ho, and Y 3Al 5O 12:Er samples (YAG:Ln). The polycrystalline powders sintered at 1000 °C are formed as single-phase garnet materials. The formation of pure and neodymium-doped lanthanum aluminum garnets (La 3Al 5O 12 (LAG), and La 3Al 5O 12:Nd (LAG:Nd)) at the same synthesis conditions, however, does not proceed. A systematic study of sol-gel technique synthesized Y 3Ga 5O 12 (YGG) is presented using six different complexing agents. These complexing agents were found to influence the characteristics of the end products, in particular the homogeneity. Finally, some specific features of sol-gel derived mixed-metal Y 3Sc xAl 5- x- yGa yO 12 (0⩽ x, y⩽5) (YSAGG) garnets are discussed in the present paper. The phase purity, composition and microstructural features in the polycrystalline samples were studied by XRD analysis, IR spectroscopy and scanning electron microscopy.

  4. Thermodynamics of aluminosilicate garnet solid solution: new experimental data, an optimized model, and thermometric applications

    NASA Astrophysics Data System (ADS)

    Ganguly, J.; Cheng, Weiji; Tirone, Massimiliano

    1996-12-01

    We have experimentally determined the displacement of the equilibrium Grossular + 2 Kyanite + Quartz ⇆ 3 Anorthite (GASP) as a function of garnet composition in the systems Mg-Ca-Mn, Fe-Mg-Ca and Fe-Mg-Ca-Mn at 1000°C. The results were treated along with selected experimental and observational data available in the literature as well as binary parameters from other workers to obtain a set of mutually compatible binary mixing parameters of the quaternary (Fe,Mg,Ca,Mn)- aluminosilicate garnet solid solution. Attempts to determine equilibrium garnet composition in the GASP equilibrium in the Ca-Mg binary were unsuccessful due to the formation of pyroxene. Calculations of binary and ternary miscibility gaps show that the P,T,X combination required for unmixing of garnet solid solution is not realized by natural samples. The solution model was applied to account for compositional effects on Fe-Mg exchange between garnet and ortho- or clino-pyroxene. Applications of the revised thermometric formulations to selected natural assemblages yield P-T conditions which are much less sensitive to compositional effects compared to the other available formulations, and are consistent with independent constraints.

  5. Prograde garnet-bearing ultramafic rocks from the Tromsø Nappe, northern Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Ravna, Erling J. K.; Kullerud, Kåre; Ellingsen, Edel

    2006-12-01

    Garnet-bearing peridotitic rocks closely associated with eclogite within the Tromsø Nappe of the northern Scandinavian Caledonides show good evidence for prograde metamorphism. Early stages are recognized as inclusions of hornblende and chlorite in the cores of large garnet poikiloblasts. Closer to the garnet rim, clinopyroxene and Cr-poor spinel appear as additional inclusion phases. Four suites of spinel inclusions can be distinguished based on optical properties and chemical composition. The innermost suite (suite 1) has the lowest Cr# and highest Mg#. Further rimward, the spinel inclusions gradually change in composition, with increasing Cr# and decreasing Mg#. Spinel is rare in the matrix, but locally chromitic spinel occurs as larger grains. Garnet poikiloblasts are rimmed by a kelyphite zone consisting of Hbl + Cr-poor Spl or Opx ± Cpx + Cr-poor Spl, and locally an inner zone of Na-rich Hbl + Chl. Matrix assemblage in the garnet-bearing peridotitic rocks is Hbl + Chl + Cpx + Ol ± Cr-rich spinel, defining a strong foliation wrapping around garnets and associated kelyphites. Thin layers of garnet-orthopyroxenite and garnet-hornblende-zoisite-chlorite rocks are presumably coeval with the matrix foliation of the peridotitic rocks. In dunitic to harzburgitic compositions large undulatory grains of Ol + Opx ± Chl + Spl apparently define the maximum- P conditions. This assemblage is succeeded by a recrystallized assemblage of Ol ± Tlc ± Mgs, which in turn is overgrown by strain-free poikiloblasts of orthopyroxene, indicating a temperature increase. This is postdated by Tlc + Ath ± Mgs, and finally serpentine. P- T estimates for the inclusion suites of clinopyroxene and spinel in garnet clearly indicate garnet growth and spinel consumption in a regime of increasing P. The inner suite (suite 1) apparently was in equilibrium with garnet, clinopyroxene and olivine at 1.40 GPa, 675 °C, whereas included spinel with maximum Cr# (suite 4) indicate 2.40 GPa at 740

  6. Garnet/high-silica rhyolite trace element partition coefficients measured by ion microprobe

    USGS Publications Warehouse

    Sisson, T.W.; Bacon, C.R.

    1992-01-01

    Garnet/liquid trace element partition coefficients have been measured in situ by ion microprobe in a rhyolite from Monache Mountain, California. Partition coefficients are reported for La, Ce, Nd, Sm, Dy, Er, Yb, Sc, Ti, V, Cr, Sr, Y, and Zr. The in situ analyses avoid the problem of contamination of the garnet phase by trace element-rich accessory minerals encountered in traditional bulk phenocryst/matrix partitioning studies. The partitioning pattern for the rare earth elements (REEs, excluding Eu) is smooth and rises steeply from the light to the heavy REEs with no sharp kinks or changes in slope, unlike patterns for garnet /silicic liquid REE partitioning determined by bulk methods. This difference suggests that the previous determinations by bulk methods are in error, having suffered from contamination of the phenocryst separates. ?? 1992.

  7. Pressure Induced Amorphization in Garnets investigated by X-ray Diffraction and Spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Hua, Hong; Vohra, Yogesh K.

    1996-03-01

    We report the first direct observation of pressure induced amorphization in garnets GGG and GSGG at ambient temperature(both are Cr^3+, Nd^3+ doped). Laser spectroscopic studies show abrupt disappearance of fluorescent emission peaks at high pressure due to loss of the long range order. The amorphization was confirmed by the synchrotron x-ray diffraction studies at X-17C, NSLS. The amorphization pressure for GSGG is 58±3GPa and for GGG is 90±5GPa. The transformation pressures for the garnets are correlated to the strength of the crystal field. The amorphous phase can be quenched at ambient conditions. The amorphization phenomenon in garnets is explained on the basis of a three-level thermodynamic model. (Supported by NSF Grant No. DMR-9403832)

  8. Solidus and liquidus temperatures and mineralogies for anhydrous garnet-lherzolite to 15 GPa

    NASA Technical Reports Server (NTRS)

    Herzberg, C. T.

    1983-01-01

    Strong convergence is noted, in experimental data for systems pertaining to anhydrous fertile garnet-lherzolite in the 6.5-15 GPa range, either to a common temperature or to temperatures differing by only about 100 C. The major element composition of magmas generated by even minor degrees of partial melting may be similar to the composition of the primordial, bulk silicate earth in an upper mantle stratigraphic column more than 160 km deep. Whether or not the solidus and liquidus intersect, the liquidus mineralogy for undepleted garnet-lherzolite compositions is found to change from olivine, at low pressures, to pyroxene, garnet, or a solid solution of both, at pressures greater than 10-15 GPa.

  9. Diamond and coesite discovered in Saxony-type granulite: solution to the Variscan garnet peridotite enigma?

    NASA Astrophysics Data System (ADS)

    O'Brien, P. J.; Kotkova, J.; Ziemann, M. A.

    2010-12-01

    A characteristic feature of the European Variscides is the presence of units containing felsic HP granulite (orthopyroxene-free, ternary feldspar +quartz +garnet +kyanite rocks of granitic composition) and numerous bodies of garnet peridotite. Several studies have demonstrated the formation conditions of the garnet peridotite and/or enclosed pyroxenite or eclogite layers to lie deep within the coesite and even diamond stability fields. These metamorphic conditions are nothing special for such mantle rocks but their presence in slices of high-grade continental crust requires explanation. Do the peridotites represent metastable segments of deeper mantle transported to shallower levels, by processes such as mantle diapirism, before being incorporated in thickened crustal wedges at pressures below that required for coesite stability? Or, alternatively, were the mantle slices captured by deep subduction of continental crust to coesite- and even diamond-forming depths? Microdiamonds occur in Variscan units of the Central Erzgebirge, Germany, at the Saidenbachtal reservoir in garnet-phengite gneiss: a very unusual and rare rock type that has even been given the special name Saidenbachite. At the same location, coesite has been identified in rare eclogites. Elsewhere in the Bohemian Massif only polycrystalline quartz aggregates proposed to be pseudomorphing former coesite have so far been reported and suggested ultrahigh pressure conditions for unusual grossular-rich garnet-bearing gneisses in Poland and Mg-rich garnet+orthopyroxene rocks from Moravia are again for exotic rocks of very minor extent. We have discovered microdiamonds and coesite in situ in HP granulites of the N Bohemian crystalline basement. Diamond, identified by micro-Raman, was found as single 5-30 μm diameter inclusions in garnet, kyanite and zircon as well as in multi-grain clusters within garnet. Grains range from well-formed octahedra in kyanite to ragged, sub-rounded crystals in places forming

  10. A predictive thermodynamic model of garnet-melt trace element partitioning

    NASA Astrophysics Data System (ADS)

    Westrenen, Wim; Wood, Bernard; Blundy, Jonathan

    2001-08-01

    We have developed a predictive model for the partitioning of magnesium and a range of trivalent trace elements (rare earth elements, Y, In and Sc) between garnet and anhydrous silicate melt as a function of pressure, temperature and bulk composition. The model for the magnesium partition coefficient, DMg, is based on a thermodynamic description of the pyrope (Mg3Al2Si3O12) melting reaction between garnet and melt. Simple activity-composition relations, which take explicit account of garnet non-ideality, link DMg to the free energy of fusion (ΔGf) of pure pyrope without the need to invoke non-ideality in the liquid phase. The resulting predictive equation, based on the compositions of a large set (n=160) of published garnet-melt pairs, produces values of DMg that are within 20% of measured values at temperatures between 1,450 and 1,930 °C, and pressures between 2.5 and 7.5 GPa. The model for trivalent (3+) trace elements is based on the lattice strain approach to partitioning, which describes mineral-melt partition coefficients in terms of three parameters: the effective radius, r0(3+), of the site on which partitioning takes place (in this case, the garnet X-site); the apparent site Young's modulus EX(3+); and the partition coefficient D0(3+) for a fictive trivalent element J3+, with radius r0(3+), that does not strain the crystal lattice when entering the garnet X-site. Analogous to the model for DMg, simple activity-composition relations link D0(3+) to ΔGf of a hypothetical garnet component incorporating a hypothetical rare earth element J3+ through a YAG-type charge-balancing mechanism (J3+Mg2Al3Si2O12). Through analysis of existing garnet-melt rare earth element partitioning data (n=18 garnet-melt pairs), an expression is derived relating D0(3+) to pressure, temperature and DMg. Predicted DREE/Y/Sc values agree to within 5-50% of experimental measurements for all elements except La and Ce, which are liable to large experimental errors, spanning pressures

  11. Compatibility of rhenium in garnet during mantle melting and magma genesis

    PubMed

    Righter; Hauri

    1998-06-12

    Measurements of the partitioning of rhenium (Re) between garnet and silicate liquid from 1.5 to 2.0 gigapascals and 1250 degrees to 1350 degreesC show that Re is compatible in garnet. Oceanic island basalts (OIBs) have lower Re contents than mid-ocean ridge basalt, because garnet-bearing residues of deeper OIB melting will retain Re. Deep-mantle garnetite or eclogite may harbor the missing Re identified in crust-mantle mass balance calculations. Oceanic crust recycled into the upper mantle at subduction zones will retain high Re/Os (osmium) ratios and become enriched in radiogenic 187Os. Recycled eclogite in a mantle source should be easily traced using Re abundances and Os isotopes. PMID:9624048

  12. Iron Dextran Injection

    MedlinePlus

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  13. Garnet-to-perovskite transition in Gd3Sc2Ga3O12 at high pressure and high temperature.

    PubMed

    Lin, Chuanlong; Liu, Jing; Lin, Jung-Fu; Li, Xiaodong; Li, Yanchun; Zhang, Qingli; Xiong, Lun; Li, Rui

    2013-01-01

    The structural phase transition of gadolinium-scandium-gallium garnet (Gd(3)Sc(2)Ga(3)O(12), GSGG) has been studied at high pressure and high temperature using the synchrotron X-ray diffraction technique in a laser-heated diamond anvil cell. The GSGG garnet transformed to an orthorhombic perovskite structure at approximately 24 GPa after laser heating to 1500-2000 K. The garnet-to-perovskite phase transition is associated with an ∼8% volume reduction and an increase in the coordination number of the Ga(3+) or Sc(3+) ion. The orthorhombic perovskite GSGG has bulk modulus B(0) = 194(15) GPa with B(0)' = 5.3(8), exhibiting slightly less compression than the cubic garnet structure of GSGG with B(0) = 157(15) GPa and B(0)' = 6.5(10). Upon compression at room temperature, the cubic GSGG garnet became amorphous at ∼65 GPa. Coupled with the amorphous-to-perovskite phase transition in Y(3)Fe(5)O(12) and Gd(3)Ga(5)O(12) at high-pressure-temperature conditions, we conclude that amorphization should represent a new thermodynamic state resulting from hindrance of the garnet-to-perovskite phase transition, whereas the garnet-to-amorphous transition in rare-earth garnets should be kinetically hindered at room temperature. PMID:23240758

  14. Are Colorado Plateau Eclogite Xenoliths Franciscan?: Oxygen Isotope Evidence From Zoned Garnet

    NASA Astrophysics Data System (ADS)

    Hoover, W. F.; Page, F. Z.; Schulze, D. J.; Kitajima, K.; Valley, J. W.

    2014-12-01

    Eclogite xenoliths from the Moses Rock diatreme, UT, USA are of controversial (Proterozoic or Phanerozoic) age. In this study, seven garnets from four Moses Rock eclogite xenoliths were analyzed for δ18O by ion microprobe. Garnet core δ18O values are 7.8-10.3‰ VSMOW. All samples have a sharp change between cores and rim values of 5.8-6.9‰. These garnets have the first reported oxygen isotope zoning from mantle xenoliths. The core values are well outside the range of garnets equilibrated with the mantle, suggesting that they began growth during subduction from an altered oceanic crustal protolith. Most rim values reach the mantle range. This decrease in δ18O from core to rim is consistent with continued subduction of the eclogites into the mantle. The failure of some garnet rims to reach mantle δ18O values may indicate that they did not equilibrate fully with the mantle, or were exposed to a mixed mantle-slab fluid. Zoning in the samples from this study record a stepped shift from an altered upper oceanic crust protolith, to a mantle-influenced environment. The preservation of zoning in some of the samples from this study suggests that these eclogites were protected within the cool subducting slab and experienced a short mantle residence time. The preservation of cation and oxygen isotope zoning is more consistent with an origin during Franciscan subduction than Proterozoic subduction, unless the zoning is a late feature that formed just prior to volcanic emplacement. This is further supported by the similar patterns of increased pyrope content and decreasing δ18O found in some Franciscan eclogite garnets (e.g., Errico et al., 2013, CMP).

  15. Rare-Earth Garnets and Perovskites for Space-Based ADR Cooling at High T and Low H

    NASA Technical Reports Server (NTRS)

    King, T. T.; Rowlett, B. A.; Ramirez, R. A.; Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Panek, J. S.; Tuttle, J. G.; Shull, R. D.; Fry, R. A.; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    Future NASA satellite detector systems must be cooled to the 0.1 K temperature range to meet the stringent energy resolution and sensitivity requirements demanded by mid-term astronomy missions. The development of adiabatic demagnetization refrigeration (ADR) materials that can efficiently cool from the passive radiative cooling limit of approx. 30 K down to sub-Kelvin under low magnetic fields (H less than or equal to 3 T) would represent a significant improvement in space-based cooling technology. Governed by these engineering goals, our efforts have focused on quantifying the change in magnetic entropy of rare-earth garnets and perovskites. Various compositions within the gadolinium gallium iron garnet solid solution series (GGIG, Gd3Ga(5-x)Fe(x)O12, 0.00 less than or equal to X less than or equal to 5.00) and gadolinium aluminum perovskite (GAP, GdAlO3) have been synthesized via an organometallic complex approach and confirmed with powder x-ray diffraction. The magnetization of the GGIG and GAP materials has been measured as a function of composition (0.00 less than or equal to X less than or equal to 5.00), temperature (2 K less than or equal to T less than or equal to 30 K) and applied magnetic field (0 T less than or equal to H less than or equal to 3 T). The magnetic entropy change (DeltaS(sub mag)) between 0 T and 3 T was determined from the magnetization data. In the GGIG system, DeltaS(sub mag) was compositionally dependent; Fe(sup 3+) additions up to X less than or equal to 2.44 increased DeltaS(sub mag) at T > 5 K. For GAP, DeltaS(sub mag) was similar to that of GGIG, X = 0.00, both in terms of magnitude and temperature dependence at T > 10 K. However, the DeltaS(sub mag) of GAP at T < 10 K was less than the endmember GGIG composition, X = 0.00, and exhibited maximum approx. 5 K.

  16. Potential for diamond in kimberlites from Michigan and Montana as indicated by garnet xenocryst compositions

    USGS Publications Warehouse

    McGee, E.S.

    1988-01-01

    The Williams kimberlite in north-central Montana and the Lake Ellen kimberlite in northern Michigan contain diagnostic xenoliths and xenocrysts which indicate that diamonds may be present. To date, however, no diamonds have been reported from either locality. In this study, particular compositions of garnet xenocrysts which are associated with diamond elsewhere were sought as an indication of the potential for diamond in the Williams and Lake Ellen kimberlites. For this study, garnets were carefully selected for purple color in order to increase the chance of finding the subcalcic chrome-rich compositions that are associated with the presence of diamond. -Author

  17. Effect of Titanium on REE and HFSE Partitioning Between Garnet and Melt

    NASA Astrophysics Data System (ADS)

    Dwarzski, R. E.; Draper, D. S.

    2004-12-01

    Garnet is a strong fractionator of trace elements and plays an important role in the petrogenetic history of planetary interiors at high pressure. In order to model petrogenetic processes that operate within terrestrial planets accurately, it is important to understand how garnet partitions rare earth and high field strength elements. Here we assess the influence of Ti on garnet-melt trace element partitioning with a view both to constrain important crystal-chemical effects and to evaluate possible roles for garnet in lunar petrogenesis. Experiments were performed at ˜5 GPa and 1650-1675° C in a Walker-style multi-anvil high pressure apparatus using an Apollo 14 black picritic glass composition ( ˜17 wt% TiO2) to assess the effect of Ti on garnet partitioning. These experiments were also designed to examine the possible presence of garnet in mare source regions. Experimental charges were analyzed for major and trace elements by EPMA and SIMS, respectively. D-values measured in this study using the Apollo 14 black Ti-rich composition are consistently higher than those measured by Draper et al. (2004, LPSC XXXV:1297), who used Apollo 15 green C glass (<0.5 wt% TiO2). D vs. ionic radii are well-described for the trivalent cations by the lattice-strain partitioning model of Blundy and Wood (1994, Nature 372:452), with D0 = 2.27 ± 0.40, E = 159 ± 58 GPa, and r0 = 0.879 ± 0.044 Å (r2 = 0.957). For comparison, this model applied to the low-Ti experiments of Draper et al. (2004) yields D0 = 2.93 ± 0.25, E = 572 ± 40 GPa, and r0 = 0.926 ± 0.005 Å (r2 = 0.996) at ˜3.5 GPa. Both these fits show significant mismatch to the partitioning predicted by the formulations of van Westrenen et al. (2001, CMP 142:219), as previously shown for Fe-rich systems by Draper et al. (2003, PEPI 139:149). Use of our D-values (for rare earth and high field strength elements in batch-melting models) provisionally supports the hypotheses of Neal (2001, JGR 106:27865) and Neal and

  18. High P-T Elastic Properties of OH-Bearing Majoritic Garnet

    NASA Astrophysics Data System (ADS)

    Lazarz, J. D.; Thomas, S. M.; Tkachev, S. N.; Townsend, J. P.; Bina, C. R.; Jacobsen, S. D.

    2014-12-01

    The mantle transition zone (TZ) is believed to be primarily composed of three constituents: wadsleyite, ringwoodite, and majorite garnet (Ringwood, 1975). Laboratory sound velocity measurements for wadsleyite and ringwoodite alone are too high to match TZ seismological models (Li et al., Science, 1998; Sinogeikin et al., JGR, 1998), while majorite yields significantly lower sound velocities (Sinogeikin et al., GRL, 2002; Gwanmesia et al., PEPI, 2009). Taken together, a compositional model such as pyrolite yields a good fit to seismology within uncertainties, with the major discrepancies being that pyrolite yields slightly larger velocity jumps and shallower velocity gradients than seismology (Li and Liebermann, Science, 2007; Irifune et al., Nature, 2008). Hydration of ringwoodite in the transition zone is expected to reduce seismic velocities. If the lower part of the TZ is hydrated, as some recent studies suggest (Pearson et al., Nature, 2014; Schmandt et al., Science, 2014), the proportions of ringwoodite and majoritic garnet in the TZ should be re-evaluated. Velocity gradients in the TZ are likely related to the gradual eclogite-garnetite transition. Over the TZ pressure range (~13-24 GPa), the dissolution of pyroxene into garnet gradually increases, resulting in a complex depth-varying garnet-majorite solid solution, ranging from M4Si4O12 majorite (Mj) to M3Al2Si3O12 garnet (Gt), where M is Mg, Fe, Ca0.5Mg0.5, etc. (Akaogi and Akimoto, PEPI, 1977; Bina and Wood, GRL, 1984; Gasparik, CMP, 1989). Several studies have considered the compositional dependence of majoritic garnet elastic moduli (Liu et al., PEPI, 2000; Sinogeikin et al., EPSL, 2002; Sinogeikin and Bass, GRL, 2002; Murakami et al., EPSL, 2008), but few have considered both composition and hydration state under the high-pressure and high-temperature conditions of the TZ. Here we combine in situ X-ray and Brillouin measurements to determine the elastic constants of various majoritic garnet compositions

  19. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    PubMed

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection. PMID:20862016

  20. Geochemical Characteristics of Garnets from Tanzanian Kimberlites (Mwadui, Singida, Nyangwale, and Galamba kimberlites)

    NASA Astrophysics Data System (ADS)

    Mandl, Magdalena; Hauzenberger, Christoph; Konzett, Juergen; Jumanne, Richard; Gobba, John; Nguyen, Hoang

    2013-04-01

    More than 350 kimberlite pipes and clusters have been found in Tanzania up to date. Many of the occurrences are found in and around Shinyanga, northern Tanzania. They are characterised by the presence of crater deposits, suggesting that minimal erosion has taken place in this region since Neogene times (~50 Ma) when the kimberlites were emplaced. The kimberlites are typically found in Archean granitic basement and meta-sediments. The most prominent kimberlite pipe, the Mwadui kimberlite, which is mined for diamonds, is one of the worlds largest and measures ~146 ha at surface. Since only weathered crater deposits are exposed, no mantle xenoliths were found in the four visited / sampled kimberlite pipes: 1) Mwadui kimberlite, 2) Singida kimberlite, 3) Nyangwale kimberlite, 4) Galamba kimberlite. However, garnets could be sampled either in heavy mineral separates or as garnet megacrysts. These garnets have been studied using major, trace and rare earth element compositions in order to obtain information on the underlying upper mantle. Garnets from the Williamson diamond mine are cm sized megacrysts. All of these mantle garnet megacrysts are low Cr megacrysts in composition (group G1). The Cr2O3 values are low with 0.6-1.9 wt.%, TiO2 values are high with 0.5-1.2 wt.% and CaO ~4.7 wt.%. Only one megacryst from the Williamson Mine is harzburgitic (G10D diamond facies). The Cr2O3 values are also very low with 1.5 wt. % , TiO2 <0.04 wt.% and CaO ~2.4 wt.%. Garnets are depleted in LREE and enriched in HREE relative to a primitive mantle. Ni in garnet geothermometry for the harzburgitic megacryst shows a temperature of 1015°C. From the Singida kimberlite garnet grains of only a few mm could be recovered. Most of these garnet grains are eclogitic (G3) and low Cr megacrysts (G1), but there are also pyroxenitic (G4) and lherzolitic (G9) grains. The Cr2O3 content: G3= <0.1 wt.%, G1= 0.07-3 wt.%, G4= ~0.5 wt.% and G9= ~3.5 wt.%. TiO2: G3=<0.1 wt.%; G1= ~0.7 wt.%, G4= 0

  1. Rapid eclogitisation of the Dabie-Sulu UHP terrane: Constraints from Lu-Hf garnet geochronology

    NASA Astrophysics Data System (ADS)

    Schmidt, Alexander; Weyer, Stefan; Mezger, Klaus; Scherer, Erik E.; Xiao, Yilin; Hoefs, Jochen; Brey, Gerhard P.

    2008-08-01

    The Qinling-Dabie-Sulu orogenic belt in eastern China is one of the largest ultrahigh-pressure (UHP) terranes worldwide. Mineral Sm-Nd- and zircon U-Pb dating has been widely used to reveal the metamorphic history of this collisional orogen. However, the exact timing of the UHP metamorphic event(s) remains controversial and ages ranging from 245 Ma to 220 Ma have been suggested. We present high precision garnet-cpx Lu-Hf ages for six eclogites from the Dabie and Sulu areas. All ages fall in a narrow range between 219.6 and 224.4 Ma. Five samples define a mean age of 223.0 ± 0.9 Ma and one sample yields a slightly younger age of 219.6 ± 1.4 Ma. This very tight age range is particularly remarkable considering the large regional distribution of sample localities (on the order of 100 km at the time of UHP metamorphism) and the wide variety of garnet and eclogite chemical compositions represented. Two samples yield Sm-Nd ages that are indistinguishable from their Lu-Hf ages, albeit with larger uncertainties. The identical ages of eclogites from both the Dabie and the Sulu region emphasize their close genetic relationship and similar metamorphic histories. The Lu-Hf results appear to date a punctuated event of garnet growth. Alternatively, the Lu-Hf garnet ages may represent the onset of rapid, contemporaneous uplift and subsequent cooling. However, trace element zoning of Lu and Hf is still preserved in garnet porphyroblasts, even in those with a homogeneous major element distribution. Thus, complete re-equilibration of the Lu-Hf system during peak-temperature conditions probably did not occur. The garnet forming event can be placed toward the final stage of the UHP metamorphism, in agreement with some published U-Pb zircon ages. A possible trigger for this short-lived and widespread mineral growth episode may have been a fluid that became available at that stage of the metamorphic history. Although HREE-depleted patterns of older zircon grains may indicate the

  2. Garnet shapes within Kimberlite xenoliths record the tectonic evolution of a cratonic root

    NASA Astrophysics Data System (ADS)

    Michibayashi, K.; Kino, M.; Okamoto, A.; Katayama, I.; Komiya, T.

    2013-12-01

    Interfacial tension and differential stress affect the shape of a mineral grain included within a crystalline host. On this basis, we present a simple numerical model that successfully predicts the progressive change in aspect ratio (L) of garnet inclusions with respect to grain size (R) within peridotite xenoliths, Kimberley, South Africa, over a period of more than 1 billion years. We focused on coarse (>5 mm) granular type peridotite. Five large samples of garnet harzburgite xenoliths were selected for analysis from 35 samples because of the large grain size, and several thin sections were prepared from each sample in each of three orthogonal planes (e.g., parallel to the foliation and lineation, etc.) The calculated equilibrium temperature and pressure are similar among all five samples (~1000 degree C and ~40 kbar). Olivine fabrics are characterized by a point maximum of [010] and girdle distributions of [100] and [001]. Orthopyroxene fabrics are characterized by a point maximum of [001] and girdle distributions of [100] and [001]. Garnet within the five samples varies in both size and shape. Coarser garnet grains (R>=2mm) tend to be more spherical, whereas smaller grains (R<2mm) tend to be spherical and ellipsoidal. Three deformation mechanisms are considered to explain the shape of garnet in the numerical model following to Okamoto and Michibayashi (2005): dislocation creep, interface diffusion creep, and rounding by interface diffusion. The model reveals that the dominant deformation mechanism changes from diffusion creep to dislocation creep with increasing grain size and a two-stage deformation, with a period of high differential stress followed by low differential stress, best explains the observed shapes and grain sizes of garnet. The duration of stage 1 is calculated to have been 10 million years, assuming a temperature of 1000 degree C and a differential stress of 0.1 MPa which was related to the size independency of dislocation creep. The garnet data

  3. Far-infrared spectra of dysprosium doped yttrium aluminum garnet nanopowder

    NASA Astrophysics Data System (ADS)

    Trajić, J.; Rabasović, M. S.; Savić-Šević, S.; Ševic, D.; Babić, B.; Romčević, M.; Ristić-Djurović, J. L.; Paunović, N.; Križan, J.; Romčević, N.

    2016-07-01

    The solution combustion synthesis was used to prepare nanopowders of yttrium aluminum garnet (YAG) and YAG doped with dysprosium ions, Dy3+, (YAG:Dy). The morphology, specific surface area, texture, and optical properties of the prepared materials were studied by the means of scanning electron microscopy (SEM), nitrogen adsorption method, and far-infrared spectroscopy at room temperature in the spectral region between 80 and 600 cm-1. It was established that all the examined samples were microporous. The Maxwell-Garnet formula was used to model dielectric function of YAG and YAG:Dy nanopowders as mixtures of homogenous spherical inclusions in air.

  4. Iron and alloys of iron. [lunar resources

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar

    1992-01-01

    All lunar soil contains iron in the metallic form, mostly as an iron-nickel alloy in concentrations of a few tenths of 1 percent. Some of this free iron can be easily separated by magnetic means. It is estimated that the magnetic separation of 100,000 tons of lunar soil would yield 150-200 tons of iron. Agglutinates contain metallic iron which could be extracted by melting and made into powder metallurgy products. The characteristics and potential uses of the pure-iron and iron-alloy lunar products are discussed. Processes for working iron that might be used in a nonterrestrial facility are also addressed.

  5. Excited state dynamics of thulium ions in yttrium aluminum garnets

    NASA Technical Reports Server (NTRS)

    Armagan, G.; Buoncristiani, A. M.; Dibartolo, B.

    1991-01-01

    The processes that take place in the excited states of a trivalent Thulium (Tm) ion in an Yttrium Aluminum Garnet (YAG) crystal, being relevant to the use of this system for laser applications, have been the object of several studies. We have reexamined this system focusing our attention on the dynamics of Tm following its excitation in the H-3(sub 4) level. Under these conditions the system relaxes through a cross-relaxation process. H-3(sub 4) yields F-3(sub 4), H-3(sub 6) yields F-3(sub 4), whose rate depends upon both the concentration of the Tm ion and the temperature of the crystal. The excitation spectrum obtained by monitoring the 1.8 micron emission of Tm (due to the F-3(sub 4) yields H-3(sub 6) transition) indicates an increase in the contribution to this emission from the H-3(sub 4) level relative to the H-3(sub 5) level as the Tm concentration increases; this shows the increased role played by the H-3(sub 4) level in pumping the infrared emission. Correspondingly, the duration of the luminescence originating in the H-3(sub 4) level is shortened as the concentration of Tm increases. The concentration quenching of this lifetime can be fit to a model which assumes that the cross-relaxation is due to a dipole-dipole interaction; from this fit, the intrinsic Tm lifetime in the absence of cross relaxation can be derived. We have used this lifetime to calculate the rate of the cross-relaxation process. We have evaluated this rate as a function of the temperature and found it to be fastest at 77 K. We have also calculated the microscopic interaction parameters for the cross-relaxation process by using two independent experimental features: (1) the time evolution of the emission from the H-3(sub 4) level; and (2) the spectral overlap between the H-3(sub 4) yields F-3(sub 4) emission and the H-3(sub 6) yields F-3(sub 4) absorption. We have also considered the migration of excitation among the Tm ions in the F-3(sub 4) level and calculated the relevant

  6. Garnet cannibalism provides clues to extensive hydration of lower crustal fragments in a subduction channel (Sesia Zone, Northwestern Alps)

    NASA Astrophysics Data System (ADS)

    Giuntoli, Francesco; Lanari, Pierre; Engi, Martin

    2015-04-01

    The extent to which granulites are transformed to eclogites is thought to impose critical limits on the subduction of continental lower crust. Although it is seldom possible to document such densification processes in detail, the transformation is believed to depend on fluid access and deformation. Remarkably complex garnet porphyroblasts are widespread in eclogite facies micaschists in central parts of the Sesia Zone (Western Italian Alps). They occur in polydeformed samples in assemblages involving phengite+quartz+rutile ±paragonite, Na-amphibole, Na-pyroxene, chloritoid. Detailed study of textural and compositional types reveals a rich inventory of growth and partial resorption zones in garnet. These reflect several stages of the polycyclic metamorphic evolution. A most critical observation is that the relict garnet cores indicate growth at 900 °C and 0.9 GPa. This part of the Eclogitic Micaschist Complex thus derived from granulite facies metapelites of Permian age. These dry rocks must have been extensively hydrated during Cretaceous subduction, and garnet records the conditions of these processes. Garnet from micaschist containing rutile, epidote, paragonite and phengite were investigated in detail. Two types of garnet crystals are found in many thin sections: mm-size porphyroclasts and smaller atoll garnets, some 100 µm in diameter. X-ray maps of the porphyroclasts show complex zoning in garnet: a late Paleozoic HT-LP porphyroclastic core is overgrown by several layers of HP-LT Alpine garnet, these show evidence of growth at the expense of earlier garnet generations. Textures indicate 1-2 stages of resorption, with garnet cores that were fractured and then sealed by garnet veins, rimmed by multiple Alpine overgrowth rims with lobate edges. Garnet rim 1 forms peninsula and embayment structures at the expense of the core. Rim 2 surrounds rim 1, both internally and externally, and seems to have grown mainly at the expense of the core. Rim 3 grew mainly at

  7. Mesoproterozoic syntectonic garnet within Belt Supergroup metamorphic tectonites: Evidence of Grenville-age metamorphism and deformation along northwest Laurentia

    USGS Publications Warehouse

    Nesheim, T.O.; Vervoort, J.D.; McClelland, W.C.; Gilotti, J.A.; Lang, H.M.

    2012-01-01

    Northern Idaho contains Belt-Purcell Supergroup equivalent metamorphic tectonites that underwent two regional deformational and metamorphic events during the Mesoproterozoic. Garnet-bearing pelitic schists from the Snow Peak area of northern Idaho yield Lu-Hf garnet-whole rock ages of 1085??2. Ma, 1198??79. Ma, 1207??8. Ma, 1255??28. Ma, and 1314??2. Ma. Garnet from one sample, collected from the Clarkia area, was micro-drilled to obtain separate core and rim material that produced ages of 1347??10. Ma and 1102??47. Ma. The core versus rim ages from the micro-drilled sample along with the textural and spatial evidence of the other Lu-Hf garnet ages indicate two metamorphic garnet growth events at ~. 1330. Ma (M1) and ~. 1080. Ma (M2) with the intermediate ages representing mixed ages. Some garnet likely nucleated and grew M1 garnet cores that were later overgrown by younger M2 garnet rims. Most garnet throughout the Clarkia and Snow Peak areas are syntectonic with a regional penetrative deformational fabric, preserved as a strong preferred orientation of metamorphic matrix minerals (e.g., muscovite and biotite). The syntectonic garnets are interpreted to represent one regional, coeval metamorphic and deformation event at ~. 1080. Ma, which overlaps in time with the Grenville Orogeny. The older ~. 1330. Ma ages may represent an extension of the East Kootenay Orogeny described in western Canada. These deformational and metamorphic events indicate that western Laurentia (North America) was tectonically active in the Mesoproterozoic and during the assembly of the supercontinent Rodinia. ?? 2011 Elsevier B.V.

  8. Mesoproterozoic syntectonic garnet within Belt Supergroup metamorphic tectonites: Evidence of Grenville-age metamorphism and deformation along northwest Laurentia

    NASA Astrophysics Data System (ADS)

    Nesheim, Timothy O.; Vervoort, Jeffrey D.; McClelland, William C.; Gilotti, Jane A.; Lang, Helen M.

    2012-03-01

    Northern Idaho contains Belt-Purcell Supergroup equivalent metamorphic tectonites that underwent two regional deformational and metamorphic events during the Mesoproterozoic. Garnet-bearing pelitic schists from the Snow Peak area of northern Idaho yield Lu-Hf garnet-whole rock ages of 1085 ± 2 Ma, 1198 ± 79 Ma, 1207 ± 8 Ma, 1255 ± 28 Ma, and 1314 ± 2 Ma. Garnet from one sample, collected from the Clarkia area, was micro-drilled to obtain separate core and rim material that produced ages of 1347 ± 10 Ma and 1102 ± 47 Ma. The core versus rim ages from the micro-drilled sample along with the textural and spatial evidence of the other Lu-Hf garnet ages indicate two metamorphic garnet growth events at ~ 1330 Ma (M1) and ~ 1080 Ma (M2) with the intermediate ages representing mixed ages. Some garnet likely nucleated and grew M1 garnet cores that were later overgrown by younger M2 garnet rims. Most garnet throughout the Clarkia and Snow Peak areas are syntectonic with a regional penetrative deformational fabric, preserved as a strong preferred orientation of metamorphic matrix minerals (e.g., muscovite and biotite). The syntectonic garnets are interpreted to represent one regional, coeval metamorphic and deformation event at ~ 1080 Ma, which overlaps in time with the Grenville Orogeny. The older ~ 1330 Ma ages may represent an extension of the East Kootenay Orogeny described in western Canada. These deformational and metamorphic events indicate that western Laurentia (North America) was tectonically active in the Mesoproterozoic and during the assembly of the supercontinent Rodinia.

  9. Iron and iron derived radicals

    SciTech Connect

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  10. Multistage metasomatism in lithospheric mantle beneath V. Grib pipe (Arkhangelsk diamondiferous province, Russia): evidence from REE patterns in garnet xenocrysts.

    NASA Astrophysics Data System (ADS)

    Shchukina, Elena; Alexei, Agashev; Nikolai, Pokhilenko

    2015-04-01

    150 garnet xenocrysts from V. Grib kimberlite pipe were analyzed for major and trace elements compositions. 70 % of garnet belong to lherzolite field; 14 % - megacrysts and pyroxenites; 11 % - eclogites; 4 % - harzburgite; 1 % (1- wehrlite defined by Sobolev (1973). Harzburgite garnets: sinusoidal REE patterns Smn/Ern > 5 (5.2 - 19.8). low Y (0.5 - 3.9 ppm), Zr (1.1 - 44.6 ppm), Ti (54 - 1322 ppm). Wehrlite garnetd: close to sinusoidal REE patterns, Smn/Ern - 1.8. Megacrysts and pyroxenites garnets: normal REE patterns Smn/Ern < 1 (0.2 - 0.6), high TiO2 (0.9 - 1.3 wt %). Lherzolite garnets 70 % show four groups of REE patterns similar to peridotite xenoliths (Shchukina et al., 2013, 2015). 1-st contains MREE at С1 level, Sm/Ern - 0.03, La/Ybn - 0.002. increasing La -Yb range, low Y, Zr, Ti indicating residual nature. 2-nd: MREE at 2 - 13 chondrite units, Smn/Ern (0.16 - 0.98), La/Ybn - 0.001 - 0.040 and flat pattern from MREE to HREE. 3-rd -MREE at 5 - 14 chondrite units, Sm/Ern > 1 (1.05 - 4.81) La/Ybn - 0.010-0.051 increasing an hump at MREE decreasing to HREE. 4-th: sinusoidal REE, Sm/Ern 4.2 - 27.2. and harzburgite Y, Zr, Ti . Average Cr2O3 content increases from 2-nd to the 3-rd group (3.3 to 5.7 wt%) and 4th (7.9 wt %). Average Y/Zr decreases from 2-nd (0.6) to 3rd (0.2) and 4th group (0.08). REE and Y, Zr, Ti indicate the metasomatic origin of garnets of 2, 3. 4 groups. Modeling of TREfor equilibrated melts and fractional crystallization 2nd group close to Turyino field basalts and 3-rd - to Izmozero field picrites of Arkhangelsk diamondiferous province (ADP). Basing on geochemical data of garnet xenocrysts and garnets and clinopyroxenes in peridotites (Shchukina et al., 2013, 2015) we suppose at least 3 stage of high-temperature metasomatic enrichment. 1st stage - is enrichment of residual garnets (found only in peridotite garnets) in LREE by the influence of carbonatite melt close to the Mela field carbonatites of ADP. REE patterns in clinopyroxenes from

  11. Raman calibration of the HT-7 yttrium aluminum garnet Thomson scattering for electron density measurements

    SciTech Connect

    Zang Qing; Zhao Junyu; Gao Xiang; Shi Lingwei; Zhang Tao; Xi Xiaoqi; Yang Li; Hu Qingsheng; Sajjad, S.

    2007-11-15

    A multipulse neodym doped yttrium aluminum garnet laser Thomson scattering system calibrated by the anti-Stokes rotational Raman scattering from nitrogen gas had been developed in the HT-7 superconducting Tokmak. By virtue of this system, measured electron density results of the plasma were obtained. The results showed good repeatability and its total uncertainty was estimated to be {+-}18%.

  12. Magneto-optical garnet waveguides on semiconductor platforms: Magnetics, mechanics, and photonics

    NASA Astrophysics Data System (ADS)

    Sung, Sang-Yeob; Sharma, Anirudh; Block, Andrew; Keuhn, Katherine; Stadler, Bethanie J. H.

    2011-04-01

    Garnet films with thicknesses of 100-1000 nm and waveguides with widths of 700-2000 nm were grown onto Si to characterize the mechanical stresses that occurred upon crystallization (700-800 °C) by rapid thermal annealing. These magneto-optical garnet films and also photonic crystals have proposed uses in magnetic flux indicator films, integrated photonic devices, such as isolators, circulators, and polarization transformers, because their Verdet constants per unit loss are orders of magnitude better than other magneto-optical materials. However, garnet does not match Si-based materials mechanically with thermal expansion coefficients of 10.4 ppm/°C. These waveguides were optimized to have low losses in the near infrared, including the telecommunication wavelengths (1.0-2.3 dB/mm at 1.3 μm and 0.9-1.7 at 1.55 μm). The waveguide losses increased with waveguide width. Finite difference time domain simulations were used to estimate the number, effective index, and profile of modes in each guide. The polarization and localization of modes near guide surfaces effectively explain the trend in losses versus width. With Faraday rotations of 0.2 dB/μm and 1.0 dB/mm loss, this integrated garnet has great potential for a multitude of photonic devices, including isolators, circulators, and mode converters.

  13. Late Cretaceous UHP metamorphism recorded in kyanite-garnet schists from the Central Rhodope Mountains, Bulgaria

    NASA Astrophysics Data System (ADS)

    Collings, David; Savov, Ivan; Maneiro, Kathryn; Baxter, Ethan; Harvey, Jason; Dimitrov, Iliya

    2016-03-01

    In this study, we report the first discovery of microdiamond inclusions in kyanite-garnet schists from the Central Rhodope Mountains in Bulgaria. These inclusions occur in garnets from metapelites that are part of a meta-igneous and meta-sedimentary mélange hosted by Variscan (Hercynian) orthogneiss. Ultra-high-pressure (UHP) conditions are further supported by the presence of exsolved needles of quartz and rutile in the garnet and by geothermobarometry estimates that suggest peak metamorphic temperatures of 750-800 °C and pressures in excess of 4 GPa. The discovery of UHP conditions in the Central Rhodopes of Bulgaria compliments the well-documented evidence for such conditions in the southernmost (Greek) part of the Rhodope Massif. Dating of garnets from these UHP metapelites (Chepelare Shear Zone) using Sm-Nd geochronology indicates a Late Cretaceous age (70.5-92.7 Ma) for the UHP metamorphic event. This is significantly younger than previously reported ages and suggests that the UHP conditions are associated with the Late Mesozoic subduction of the Vardar Ocean northward beneath the Moesian platform (Europe). The present-day structure of the RM is the result of a series of subduction-exhumation events that span the Cenozoic, alongside subsequent post-orogenic extension and metamorphic core complex formation.

  14. Single and multiphase inclusions in metapelitic garnets of the Rhodope Metamorphic Province, NE Greece.

    PubMed

    Mposkos, Evripidis; Perraki, Maria; Palikari, Sarra

    2009-08-01

    Single and multiphase inclusions in garnet porphyroblasts from the diamond-bearing pelitic gneisses were studied by means of combined Raman Spectroscopy and Electron Scanning Microscopy (SEM/EDX). They are either randomly distributed or with preferred orientation within the garnet host and their dimensions vary from less than 5 up to 60 microm. In the single-phase inclusions quartz, rutile, kyanite and graphite dominate. Biotite, zircon, apatite, monazite and allanite are also common. Two types of multiphase inclusions were recognized, hydrous silicate (Type I) and silicate-carbonate (Type II) ones. The carbon-bearing multiphase inclusions predominantly consist of Mg-siderite+graphite+CO(2)+muscovite+quartz formed by a high density carboniferous fluid rich in Fe, Mg, Si and less Ca, Mn, Al and K trapped in the growing garnet in a prograde stage of metamorphism at high-pressure (HP) conditions. The carbon-free multiphase inclusions predominantly consist of biotite+quartz+rutile+/-kyanite+muscovite formed through decompression-dehydration/melting reactions of pre-existing phengite. Single and multiphase inclusions are characterized by polygonal to negative crystal shape formed by dissolution-reprecipitation mechanism between the garnet host and the inclusions during the long lasting cooling period (>100 Ma) of the Kimi Complex. PMID:19181569

  15. Elasticity and phase stability of pyrope garnet from ab initio computation

    NASA Astrophysics Data System (ADS)

    Kawai, Kenji; Tsuchiya, Taku

    2015-03-01

    We study the high-pressure stability and elastic properties of Mg3Al2Si3O12 pyrope garnet using the density functional first principles computation method. Pyrope garnet is found to dissociate into an assemblage of MgSiO3 Mg-perovskite (Pv) and Al2O3 corundum (Cor) solid solutions at ∼19.7 GPa at static conditions. Then, this assemblage undergoes a phase transition to pyropic (Al-bearing) Pv at ∼65 GPa. The enthalpy of an assemblage of MgAl2O4 calcium ferrite (CF), MgPv, and stishovite (St) is less stable than that of MgPv plus Cor. A continuous reaction in the MgSiO3-Al2O3 system suggested by this study is consistent with previous experimental and computational studies but not with a recently modeled phase diagram. This implies that the formation of pyropic Pv could not cause any seismic scatterers in the mid-lower mantle. The investigated anisotropy of elastic velocities further indicates that pyrope garnet is a very isotropic mineral. Our results suggest that seismological anisotropy inferred in the upper mantle could not be due to garnet.

  16. Garnet Ratios and Provenance in The Glacial Drift of Western New York.

    PubMed

    Connally, G G

    1964-06-19

    The ratio of purple to red garnet identifies drift provenance. Low ratios indicate glacier flow from the central Adirondacks. Ratios of 1.4 or greater indicate flow from Canada, by way of the St. Lawrence lowland. The heavy mineral assemblages were evidently undiluted by local sources in western New York. PMID:17777111

  17. Photon-avalanche upconversion in thulium-doped lutetium aluminum garnet.

    PubMed

    Patel, D N; Reddy, B R; Nash-Stevenson, S K

    1999-05-20

    Strong blue fluorescence at 487 nm corresponding to the (1)G(4) --> (3)H(6) transition was generated from Tm(3+)-doped lutetium aluminum garnet on excitation with a 618-nm dye laser as a result of a photon-avalanche upconversion mechanism. PMID:18319920

  18. Multielemental analyses of isomorphous Indian garnet gemstones by XRD and external pixe techniques.

    PubMed

    Venkateswarulu, P; Srinivasa Rao, K; Kasipathi, C; Ramakrishna, Y

    2012-12-01

    Garnet gemstones were collected from parts of Eastern Ghats geological formations of Andhra Pradesh, India and their gemological studies were carried out. Their study of chemistry is not possible as they represent mixtures of isomorphism nature, and none of the individual specimens indicate independent chemistry. Hence, non-destructive instrumental methodology of external PIXE technique was employed to understand their chemistry and identity. A 3 MeV proton beam was employed to excite the samples. In the present study geochemical characteristics of garnet gemstones were studied by proton induced X-ray emission. Almandine variety of garnet is found to be abundant in the present study by means of their chemical contents. The crystal structure and the lattice parameters were estimated using X-Ray Diffraction studies. The trace and minor elements are estimated using PIXE technique and major compositional elements are confirmed by XRD studies. The technique is found very useful in characterizing the garnet gemstones. The present work, thus establishes usefulness and versatility of the PIXE technique with external beam for research in Geo-scientific methodology. PMID:23041780

  19. Experimental determination of the spinel-garnet boundary in a Martian mantle composition

    NASA Technical Reports Server (NTRS)

    Patera, E. S.; Holloway, J. R.

    1982-01-01

    The high pressure reaction orthopyroxene + clinopyroxene + spinel to garnet + olivine is applicable to the mantle of Mars. Experimental reversals of this reaction in the system CaO-MgO-FeO-Al2O3-SiO2 have been made in the range 1000-1200 C using the bulk composition proposed by Morgan and Anders (1980). At 1000 C, 1100 C, and 1200 C the garnet-out equilibrium is bracketed at 10.8 + or - 0.5, 12.6 + or - 0.5, and 15.2 + or - 0.5 kbars, respectively. A dP/dT slope of 14.0 bar/K at 1000 C increasing to 26.0 bar/K at 1200 C has been inferred. Depending on bulk composition, the mantle of Mars is inferred to have a phase assemblage of either olivine + clinopyroxene + orthopyroxene + garnet or olivine + clinopyroxene + garnet + spinel. In the second, the partial melts will not be buffered by olivine and orthopyroxene and will have markedly lower silica activities than those of the terrestrial mantle.

  20. Native iron in the continental lower crust: petrological and geophysical implications.

    PubMed

    Haggerty, S E; Toft, P B

    1985-08-16

    Lower crustal granulite xenoliths recovered from a kimberlite pipe in western Africa contain native iron (Fe(0)) as a decomposition product of garnet and ilmenite. Magnetic measurements show that less than 0.1 percent (by volume) of iron metal is present. Data from geothermometry and oxygen geobarometry indicate that the oxide and metal phases equilibrated between iron-wüstite and magnetite-wüstite buffers, which may represent the oxidation state of the continental lower crust, and the depleted lithospheric upper mantle. Ferromagnetic native iron could be stable to a depth of approximately 95 kilometers and should be considered in the interpretation of long-wavelength static magnetic anomalies. PMID:17739375

  1. Magnetic properties of oxide glasses containing iron and rare-earth ions

    NASA Astrophysics Data System (ADS)

    Akamatsu, Hirofumi; Kawabata, Jun; Fujita, Koji; Murai, Shunsuke; Tanaka, Katsuhisa

    2011-10-01

    Measurements of fundamental magnetic properties including not only dc and ac susceptibilities but also magnetic aging effects have been performed for aluminoborate glasses with high concentrations of iron and rare-earth R3+ ions (R=Sm, Gd, and Tb) in order to give an insight into the magnetic structures and interactions in amorphous oxides containing both 3d transition metal and 4f rare-earth ions, which manifest magnetic interactions that differ from each other. We demonstrate that the antiferromagnetic interactions between iron and rare-earth ions as well as those between iron ions play a significant role for their magnetic properties, while those between rare-earth ions are of little importance. Most of the rare-earth ions remain paramagnetic even below the spin-freezing temperatures under the strong molecular field caused by the spin-glass freezing of the iron ions, as in the case of rare-earth garnet ferrites.

  2. Garnet - two pyroxene rock from the Gridino complex, Russia: a record of the early metasomatic stage

    NASA Astrophysics Data System (ADS)

    Morgunova, Alena A.; Perchuk, Alexei L.

    2010-05-01

    The Gridino complex is one of the oldest high pressure complexes on the Earth. The most spectacular exposures occur in islands and in a 10-50 m wide belt along the shore of the White Sea in the Gridino area. The exotic blocks show wide range of compositions. In addition to predominating amphibolites and eclogites, there are also peridotites, zoisitites and sapphirine-bearing rocks. The peridotites are represented by garnet - two pyroxene rocks and orthopyroxenites. It this paper we present an intriguing results of the petrological study of the garnet- two pyroxene rock. The garnet- two pyroxene rock considered occurs as elliptical body 4×6 m in size within amphibole-biotite gneiss in the island Visokii. The rock consists of mosaic of coarse-grained primary garnet, clinopyroxene and orthopyroxene. Accessories are represented by magnetite, ilmenite, pyrite and zircon. Garnet contains inclusions of clinopyroxene, Mg-calcite and chlorite. The chlorite inclusions always intergrow with dendritic mineral enriched in REE (mainly Ce) situated on the wall of vacuole which shows the tendency of negative crystal shape. Similar chlorite inclusions are hosted by clino- and orthopyroxenes. The chlorite is of diabantite composition. The inclusions are often surrounded by the two systems of cracks - radial and concentric, which is really exotic phenomenon for crystalline rock. The primary minerals experienced different degree of the retrograde alteration expressed as amphibolization and/or growth of the orthopyroxene-amphibole-garnet symplectites. The retrogression is patchy in the central part of garnet- two pyroxene body, but intensifies towards the rims where primary minerals are absent. Mineral thermobarometry reveals HP rock equilibration at 670-750 оС and 14-20 kbar followed by subisothermal decompression down to 640-740 оС and 6-14 kbar. Specific composition of the chlorite and its association with REE phase in all rock-forming minerals suggests that anhydrous HP

  3. A new statistical analysis of rare earth element diffusion data in garnet

    NASA Astrophysics Data System (ADS)

    Chu, X.; Ague, J. J.

    2015-12-01

    The incorporation of rare earth elements (REE) in garnet, Sm and Lu in particular, links garnet chemical zoning to absolute age determinations. The application of REE-based geochronology depends critically on the diffusion behaviors of the parent and daughter isotopes. Previous experimental studies on REE diffusion in garnet, however, exhibit significant discrepancies that impact interpretations of garnet Sm/Nd and Lu/Hf ages.We present a new statistical framework to analyze diffusion data for REE using an Arrhenius relationship that accounts for oxygen fugacity, cation radius and garnet unit-cell dimensions [1]. Our approach is based on Bayesian statistics and is implemented by the Markov chain Monte Carlo method. A similar approach has been recently applied to model diffusion of divalent cations in garnet [2]. The analysis incorporates recent data [3] in addition to the data compilation in ref. [1]. We also include the inter-run bias that helps reconcile the discrepancies among data sets. This additional term estimates the reproducibility and other experimental variabilities not explicitly incorporated in the Arrhenius relationship [2] (e.g., compositional dependence [3] and water content).The fitted Arrhenius relationships are consistent with the models in ref. [3], as well as refs. [1]&[4] at high temperatures. Down-temperature extrapolation leads to >0.5 order of magnitude faster diffusion coefficients than in refs. [1]&[4] at <750 °C. The predicted diffusion coefficients are significantly slower than ref. [5]. The fast diffusion [5] was supported by a field test of the Pikwitonei Granulite—the garnet Sm/Nd age postdates the metamorphic peak (750 °C) by ~30 Myr [6], suggesting considerable resetting of the Sm/Nd system during cooling. However, the Pikwitonei Granulite is a recently recognized UHT terrane with peak temperature exceeding 900 °C [7]. The revised closure temperature (~730 °C) is consistent with our new diffusion model.[1] Carlson (2012) Am

  4. Diffusion-controlled garnet growth in siliceous dolomites of the Adamello contact aureole, N-Italy

    NASA Astrophysics Data System (ADS)

    Muller, T.; Fiebich, E.; Foster, C. T.

    2012-12-01

    Texture forming processes are controlled by many factors, such as material transport through polycrystalline materials, surface kinetics, fluid flow, and many others. In metamorphic rocks, texture forming processes typically involve local reactions linked to net mass transfer which allows constraining the actual reaction path in more detail. In this study, we present geochemical data combined with textural modeling to constrain the conditions and reaction mechanism during contact metamorphic garnet growth in siliceous dolomites in the southern Adamello Massif, Italy. The metamorphic garnet porphyroblasts are poikiloblastic and idiomorphic in shape with a typical grain size ranging between 0.6-1 cm in diameter sitting in a matrix of calcite+diopside+anorthite+wollastonite. Inclusions in the grossular-rich garnets are almost uniquely diopside. On the hand specimen, garnets are surrounded by visible rims of about 0.6 mm indicating a diffusion-limited reaction mechanism to be responsible for the garnet formation. In the course of this study samples have been characterized by polarization microscopy, element x-ray maps using EMPA, cathodulominescence images and stable isotope analyses of carbon and oxygen of matrix carbonates. In addition, pseudosections have been calculated using the software package PerpleX (Connolly, 2005) based on the bulk chemistry of collected samples. Results indicate that the visible margin consists of a small rim (< 1 mm) purely consisting of recrystallized calcite adjacent to the garnet edge. The major part of the observed halo, however, is characterized by the absence of anorthite and wollastonite. The observed texture of garnet porphyroblasts growing and simultaneously forming an anorthite and wollastonite free margin can successfully be reproduced using the SEG program (Foster, 1993), which assumes diffusive mass transport. Therefore the model constrains the diffusive fluxes of Ca, Mg, Al and Si by mass balance and the local Gibbs

  5. Fluid-induced Crystallization of Majoritic Garnet During Deep Continental Subduction (Western Gneiss Region, Norway)

    NASA Astrophysics Data System (ADS)

    Scambelluri, M.; Pettke, T.; van Roermund, H. L.

    2008-12-01

    In ultrahigh pressure (UHP) rocks, garnet containing pyroxene exsolutions derives from breakdown of majorite crystallized at depths > 200 km. Presence of microdiamonds in some of these rocks [1], including those of the Western Gneiss Region (WGR) of Norway [2], may suggest a fluid-bearing environment for the genesis of majorite. The WGR UHP gneisses host garnet peridotite and websterite recording uplift from extraordinary depths prior to uptake in a subducting slab [2]. These ultramafic rocks (islands of Otrøy and Bardane) derive from depleted Archean transition-zone mantle (350 km depth) upwelled and accreted to a cratonic lithosphere (M2 stage). Evidence for this are decimetric garnets (grt) preserved in Otrøy, hosting up to 20 volume% orthopyroxene (opx) and clinopyroxene (cpx) exsolved from precursor majoritic garnet (M1 stage). The pyroxene lamellae (20-30 ¥ìm thick, hundreds of ¥ìm long) [3] were exsolved under high-T, as shown by the garnet/cpx REE distribution [4]. This Archean-mid Proterozoic record is overprinted by the 425- 390 Ma Scandian continental subduction (M3 stage), forming new grt + cpx + opx + phlogopite (phl) + spinel (sp) that contain diamond-bearing micro-inclusions witnessing deep COH subduction fluids [2]. Here we document formation of new majoritic garnet in the M3 assemblage and in veins at Bardane [5]. Textural characteristics, together with the LREE and LILE enrichments of the M3 minerals, indicate that the new majorite is linked to infiltration of subduction fluids during renewed burial towards sub-lithospheric depths. It represents the deepest occurrence of fluid-related microstructures in mantle rocks. The new majoritic garnet crystallized at grain boundaries and in micro-veins at 7 Gpa and 900-1000 °C. It hosts thin pyroxene needles (5 mm thick, 100 mm long) exsolved under comparatively low-T, as indicated by the garnet/cpx REE distribution. The trace element signature of the majorite-bearing subduction assemblage is LREE

  6. Defects in laser crystals of rare-earth aluminum and gallium garnets

    SciTech Connect

    Vorob`ev, Yu.P.; Goncharov, O.Yu.

    1994-12-01

    Using thermodynamic and crystallochemical analysis of garnets R{sub 3}Ga{sub 5}O{sub 12}(R=Sm - Lu, Y) and R{sub 3}Al{sub 5}O{sub 12} (R = Gd - Lu, Y) and their solid solutions, we characterized point defects present in their structure and, for the first time, estimated their contents. We showed that the garnets under consideration contain cationic defects and oxygen vacancies: (1) In aluminum garnets R{sub 3}Al{sub 5}O{sub 12}, improper-valence ions form at octahedral sites. (2) In gallium garnets R{sub 3}Ga{sub 5}O{sub 12} and Ga-containing solid solutions, there are Ga vacancies at octahedral sites. (3) In Dy{sub 3}(Ga{sub c}Al{sub 1-c}){sub 5}O{sub 12} solid solutions, in addition to the above-mentioned defects typical of gallium garnets, antistructural, substitutional defects (Ga{sup 3+}{sub IV}) are present. The Ga{sup 3+}ions occupy preferentially octahedra; that is, they exhibit a higher affinity for octahedral coordination than Alk{sup 3+} ions, in agreement with Goldschmidt`s crystallochemical approach. The refined solid-solution ranges for R{sub 3}Ga{sub c}Al{sub 1-c}{sub 5}O{sub 12}(R=Nd,Sm,Eu,Gd) are 0.75 {le}c{le} 1 for Nd, 0.5 {le}c{le} 1 for Sm, 0.4 {le}c{le} 1 for Eu, and 0.25 {le}c{le} 1 for Gd.

  7. Localization of submicron inclusion re-equilibration at healed fractures in host garnet

    NASA Astrophysics Data System (ADS)

    Griffiths, T. A.; Habler, G.; Rhede, D.; Wirth, R.; Ram, F.; Abart, R.

    2014-12-01

    Microstructures in Permian inclusion-bearing metapegmatite garnets from the Koralpe (Eastern Alps, Austria) reveal re-equilibration by coarsening of abundant submicron-sized inclusions (1 μm-2 nm diameter) at the site of healed brittle cracks. The microstructures developed during Cretaceous eclogite-facies deformation and the related overprinting of the host-inclusion system. Trails of coarsened inclusions (1-10 μm diameter) crosscut the garnet, defining traces of former fractures with occasional en-echelon overlaps. Trails are flanked by 10- to 100-μm-wide `bleaching zones' characterized by the absence of ≤1-μm-sized inclusions in optical and SE images. FEG-microprobe data show that trails and bleaching zones can form isochemically, although some trails exhibit non-isochemical coarsening. Cross-correlation-based EBSD analysis reveals garnet lattice rotation of up to 0.45°, spatially correlated with bleaching zones. The garnet lattice in the center of trails is misoriented around different axes with respect to the lattice either side of the trail. Elevated dislocation density within bleaching zones is confirmed by TEM observations. Dislocations represent a plastic wake formed by crystal plastic deformation at the crack tip. Fracture enhanced diffusion rates in the lattice adjacent to crack planes by introducing dislocations, priming these areas to behave differently to the bulk of the garnet during Cretaceous metamorphism and facilitating localized coarsening of inclusions. Diffusion within the bleaching zone was enhanced by a minimum factor of 102. The partially closed host-inclusion system records the influence of deformation mechanisms on re-equilibration and contributes to understanding of the interaction between deformation and chemical reaction during metamorphism.

  8. Examples and genetic significance of the formation of iron oxides in the Nigerian banded iron-formations

    NASA Astrophysics Data System (ADS)

    Mücke, A.; Annor, A.

    1993-04-01

    Ore microscopic studies reveal two main parageneses in the banded iron-formations of Nigeria. In the low-grade metamorphic schist belts of northern Nigeria, a magnetitic paragenesis comprising magnetite, silicates (grunerite and garnet), and quartz is developed. Magnetite which sometimes contains carbonate inclusions is markedly martitized. In contrast, the higher-grade metamorphic terrains of central Nigeria exhibit a different paragenesis consisting of hematite (including specularite) and quartz. Here, minerals of the magnetitic paragenesis only occur as relics. The protolith of these banded iron-formation occurrences envisioned as carbonate-containing sediments, with high concentrations of Fe and Si, and lower contents of Ca, Mg, Al (and also Mn where they are associated with gondite) underwent both submarine weathering and metamorphic changes in their evolution. During submarine weathering, sheet silicates and porphyroblasts of Fe-Mn-(Mg-Ca)-carbonate solid solutions, were formed. At the outset of a regional metamorphic episode, grunerite, garnet and porphyroblastic magnetite were developed. Magnetite formed at the expense of carbonate and sheetsilicates but was later martitized under post-metamorphic conditions. In the course of a later heterogeneous tectono-metamorphic event, martitized magnetite was transformed as follows: under low-grade metamorphism, as observed in the northern Nigerian schist belts, recrystallization into coarse-grained martite occurred, while at the higher grades of metamorphism in central Nigeria, recrystallization into hematite and, ultimately, specularite, took place. This relationship between magnetite and hematite has also been observed in many other banded iron-formations from different parts of the world, thus underscoring its widespread significance. Magnetite crystallizes first at the expense of carbonate and silicate minerals and hematite is subsequently derived from it directly or generally through martitization. This

  9. The success and complementarity of Sm-Nd and Lu-Hf garnet geochronology

    NASA Astrophysics Data System (ADS)

    Baxter, E. F.; Scherer, E. E.

    2013-12-01

    Garnet's potential as a direct chronometer of tectonometamorphic processes and conditions was first realized over 30 years ago. Since then, the Sm-Nd and Lu-Hf systems have emerged as the most effective, with both permitting age precision < ×1 Myr. Both have proven successful not merely in dating garnet growth itself, but rather in constraining the ages, durations, and rates of particular earth processes or conditions that can be directly linked to garnet growth via chemical, thermodynamic, or petrographic, means. Appreciating important differences between Sm-Nd and Lu-Hf in terms of contaminant phases, partitioning, daughter element diffusivity, and isotopic analysis makes these two systems powerfully complementary when used and interpreted in concert. Well established, robust analytical methods mitigate the effects of ubiquitous mineral inclusions (monazite is most significant for Sm-Nd; zircon is most significant for Lu-Hf), improving the precision and accuracy of garnet dates from both systems. Parent-daughter ratios tend to be higher for Lu-Hf leading to the potential for better age precision in general. The Lu-176 decay rate is faster than Sm-147, meaning that Lu-Hf provides better age precision potential for young (Cenozoic) samples. However, Sm-Nd provides better precision potential for older (Precambrian) samples primarily because of the higher precisions on the parent-daughter ratios (i.e., 147Sm/144Nd) that can be achieved by ID-TIMS analysis. For dating microsampled zones or growth rings in single garnet crystals, Sm-Nd has proven most successful owing to more uniform distribution of Sm, and established methods to measure <10 ng quantities of Nd at high precision via TIMS. However, new MC-ICP-MS sample introduction technologies are closing this gap for small samples. For analyses of bulk garnet that grew over a protracted interval, Lu-Hf dates are expected to be older than Sm-Nd dates owing to differences in Lu and Sm zonation (i.e. Lu tends to be

  10. Ferrous iron content of intravenous iron formulations.

    PubMed

    Gupta, Ajay; Pratt, Raymond D; Crumbliss, Alvin L

    2016-06-01

    The observed biological differences in safety and efficacy of intravenous (IV) iron formulations are attributable to physicochemical differences. In addition to differences in carbohydrate shell, polarographic signatures due to ferric iron [Fe(III)] and ferrous iron [Fe(II)] differ among IV iron formulations. Intravenous iron contains Fe(II) and releases labile iron in the circulation. Fe(II) generates toxic free radicals and reactive oxygen species and binds to bacterial siderophores and other in vivo sequestering agents. To evaluate whether differences in Fe(II) content may account for some observed biological differences between IV iron formulations, samples from multiple lots of various IV iron formulations were dissolved in 12 M concentrated HCl to dissociate and release all iron and then diluted with water to achieve 0.1 M HCl concentration. Fe(II) was then directly measured using ferrozine reagent and ultraviolet spectroscopy at 562 nm. Total iron content was measured by adding an excess of ascorbic acid to reduce Fe(III) to Fe(II), and Fe(II) was then measured by ferrozine assay. The Fe(II) concentration as a proportion of total iron content [Fe(III) + Fe(II)] in different lots of IV iron formulations was as follows: iron gluconate, 1.4 and 1.8 %; ferumoxytol, 0.26 %; ferric carboxymaltose, 1.4 %; iron dextran, 0.8 %; and iron sucrose, 10.2, 15.5, and 11.0 % (average, 12.2 %). The average Fe(II) content in iron sucrose was, therefore, ≥7.5-fold higher than in the other IV iron formulations. Further studies are needed to investigate the relationship between Fe(II) content and increased risk of oxidative stress and infections with iron sucrose. PMID:26956439

  11. Quantitative Prograde P-T Paths From Inclusion Assemblages in Eclogitic Garnets

    NASA Astrophysics Data System (ADS)

    Essene, E. J.; Page, F. Z.; Mukasa, S. B.

    2003-12-01

    Many workers have used garnet inclusions as qualitative indicators of the early history of tectonically exposed eclogites. Assemblages indicative of crustal facies combined with standard P-T conditions of those facies and thermobarometry on the matrix eclogite constrain the prograde path. However, now that conditions of some blueschist, amphibolite and granulite facies rocks have been extended to much higher pressures, in the range of 10-20 kbar, those assignments are in need of review. While undertaking studies on eclogites from the Blue Ridge of North Carolina and the Franciscan in northern California, the authors have identified key inclusion assemblages of sphene-rutile-epidote-quartz and phengite-omphacite together with garnet that constrain the prograde P-T path based on univariant assemblages corrected for observed solid solutions. Equilibria that have proved most useful are those bounding epidote stability and two key reactions, one involving sphene/rutile: (1) clinozoisite + sphene = grossular + rutile + H2O, and the second being the phengite barometer: garnet + Mg-celadonite = clinopyroxene + muscovite. Reactions (1) and (2) have negative slopes, intersecting with the Mg/Fe KD garnet-clinopyroxene thermometer and providing a reasonable estimate of pre- to syn-eclogite facies P-T. In the case of the Bakersville eclogite samples from North Carolina, the inclusion assemblage yields 10 +/- 2 kbar and 500 +/- 50° C with reaction (1) compared to the peak assemblage at P > 15 +/- 2 kbar and 700 +/- 50° C. These data combined with evidence for a granulite facies overprint indicate a clockwise P-T path for those eclogites. A similar study on the Healdsburg eclogite samples from California yields about 500° C and 12 +/- 1 kbar for the garnet cores, 14 +/- 2 kbar for mantles and 16 +/- 2 kbar for rim-matrix assemblages. The introduction of late glaucophane, epidote and chlorite partially replacing omphacite and garnet implies a retrograde return to the blueschist

  12. Heterovalent substitutions in garnet and their implications for diffusion of Y+REEs and alkalis (Invited)

    NASA Astrophysics Data System (ADS)

    Carlson, W. D.; Gale, J. D.; Wright, K.

    2013-12-01

    Lattice-dynamics calculations in the static limit suggest that large trivalent ions (Y+REEs) are incorporated into garnet primarily by means of substitutions that introduce menzerite and alkali components. The diffusion mechanisms implied by this finding explain otherwise puzzling aspects of recent determinations of diffusion rates for Y+REEs and Li in natural systems, bolstering confidence in the validity of those rates. Several substitution schemes have been proposed to provide the charge-balance required for incorporation of trivalent Y+REEs substituting for divalent cations in dodecahedral sites in aluminosilicate garnet: (1) YAG components, with tetrahedral Al; (2) vacancy components, with one unoccupied dodecahedral site for each two trivalent ions; (3) alkali components, with dodecahedral Na or Li; (4) menzerite components, with octahedral Mg or Fe; and (5) Y2Li components, with octahedral Li compensating for a pair of Y+REE ions. The relative energetic costs of these substitutions were evaluated in pyrope, almandine, spessartine and grossular by means of lattice-dynamics calculations at T = 0 K and P = 0 GPa, using well-established force-field potentials, and referencing exchange energies to the lattice energies of binary oxides as sources/sinks for the exchanged ions. Energies calculated for the incorporation of menzerite and alkali components are appreciably lower than those for the YAG component, and very substantially lower than those for the other components. Provided that the relative energetic costs are similar at elevated T and P to those in the static limit (testing of this assumption is currently underway), the menzerite and alkali substitutions should predominate in natural aluminosilicate garnets, the YAG substitution should play only a subordinate role, and the other substitutions should be near-negligible. As a result, diffusion mechanisms for Y+REEs in garnet require that motion of these elements must be coupled to transport of either

  13. Hepatic iron metabolism.

    PubMed

    Anderson, Gregory J; Frazer, David M

    2005-11-01

    The liver performs three main functions in iron homeostasis. It is the major site of iron storage, it regulates iron traffic into and around the body through its production of the peptide hepcidin, and it is the site of synthesis of major proteins of iron metabolism such as transferrin and ceruloplasmin. Most of the iron that enters the liver is derived from plasma transferrin under normal circumstances, and transferrin receptors 1 and 2 play important roles in this process. In pathological situations, non-transferrin-bound iron, ferritin, and hemoglobin/haptoglobin and heme/hemopexin complexes assume greater importance in iron delivery to the organ. Iron is stored in the liver as ferritin and, with heavy iron loading, as hemosiderin. The liver can divest itself of iron through the plasma membrane iron exporter ferroportin 1, a process that also requires ceruloplasmin. Hepcidin can regulate this iron release through its interaction with ferroportin. PMID:16315136

  14. Iron Sucrose Injection

    MedlinePlus

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due to too little iron) in people with chronic kidney disease (damage to the kidneys which may worsen over ...

  15. Comparison of the erbium-yttrium aluminum garnet and carbon dioxide lasers for in vitro bone and cartilage ablation

    SciTech Connect

    Gonzalez, C.; van de Merwe, W.P.; Smith, M.; Reinisch, L. )

    1990-01-01

    The in vitro bone- and cartilage-ablation characteristics of the solid-state erbium:yttrium aluminum garnet laser were compared to those of the carbon dioxide laser. Ablations of fresh, frozen cadaver septal cartilage and maxillary sinus bone were performed using total energies between 1 and 6 J. Specimens were studied using hematoxylin and eosin stain and digitized, computer-assisted measurements of 35-mm photographs. Erbium-yttrium aluminum garnet-ablated bone averaged 5 microns of adjacent tissue thermal injury, compared with 67 microns with carbon dioxide-ablated bone. Erbium-yttrium aluminum garnet-ablated cartilage averaged 2 microns of adjacent tissue thermal injury, compared with 21 microns with the carbon dioxide-ablated cartilage. The tissue-ablation characteristics of the erbium-yttrium aluminum garnet laser are promising for future otolaryngologic applications.

  16. Precipitation of Oriented Rutile and Ilmenite Needles in Garnet, Northeastern Connecticut, USA: Evidence for Extreme Metamorphic Conditions?

    NASA Astrophysics Data System (ADS)

    Ague, J. J.; Eckert, J. O.

    2011-12-01

    We report the discovery of oriented needles of rutile and, less commonly, ilmenite in the cores of garnets from northeastern CT, USA. The rocks preserve granulite facies mineral assemblages, form part of the Merrimack Synclinorium, and underwent metamorphism and deformation during the Acadian orogeny. The needles appear identical to those reported from a number of extreme P-T environments worldwide, including UHP metamorphic rocks, high-P granulites, and garnet peridotites. The needles are predominantly oriented along <111> directions in garnet. The long axes of the rutile needles commonly do not go extinct parallel to the cross hairs under cross-polarized light (e.g., Griffin et al., 1971). This anomalous extinction indicates that the needles do not preserve a specific crystallographic relationship with their garnet hosts (e.g., Hwang et al., 2007). The needles range from a few hundred nm to a few um in diameter, and can be mm-scale in length. Micrometer-scale plates of rutile, srilankite and crichtonite have also been observed in some garnets together with the Fe-Ti oxide needles. Several origins for the needles have been proposed in the literature; we investigate the hypothesis that they precipitated in situ from originally Ti-rich garnet. Chemical profiles across garnets indicate that some retain Ti zoning, with elevated-Ti concentrations in the cores dropping to low values in the rims. For these zoned garnets, high-resolution, 2-D chemical mapping using the JEOL JXA-8530F field emission gun electron microprobe at Yale University reveals that the needles are surrounded by well-defined Ti-depletion halos. Chemical profiles also document strong depletions of Cr (which is present in both rutile and ilmenite) directly adjacent to needles. The observed Ti-depletions demonstrate that the needles precipitated from Ti-bearing garnet, probably during cooling and/or decompression associated with exhumation. The rutile precipitates must be largely incoherent with respect

  17. Raman spectroscopy of detrital garnet from the (U)HP terrane of eastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Andò, Sergio; Baldwin, Suzanne L.; Fitzgerald, Paul G.; Malusà, Marco G.; Aliatis, Irene; Vezzoli, Giovanni; Garzanti, Eduardo

    2013-04-01

    Garnet is one of the most widespread heavy minerals in sediments derived from orogenic systems. Its chemical composition varies systematically with temperature and pressure conditions, and thus provides information on the metamorphic evolution of source areas that is crucial in tectonic and geodynamic reconstructions. Garnet is easily identified in mineral grain mounts and is relatively stable during burial diagenesis. Raman spectroscopy allows rapid determination of garnet compositions in grain mounts or thin sections of sand and sandstone samples, and can be used to assess their density and chemical composition quite accurately ("MIRAGEM" method of Bersani et al., 2009; Andò et al., 2009). In the D'Entrecastreaux Islands of southeastern Papua New Guinea, the world's youngest (U)HP rocks are exposed. There, mafic rocks and their felsic host gneisses were metamorphosed under eclogite facies conditions from late Miocene to Pliocene, before being exhumed from depths of ~90 km (Baldwin et al., 2004, 2008). The eclogite preserves a peak assemblage of garnet, omphacite, rutile, phengite and Si02 (Hill and Baldwin, 1993). A coesite-eclogite has been found in one small island outcrop. In order to sample garnet populations representative of a larger geographical area, we sampled and studied a heavy-mineral-dominated placer sand (HMC 80) from a beach from SE Goodenough Island. Garnet grains in beach sand are associated with blue-green to subordinately green-brown amphibole and minor epidote, omphacitic clinopyroxene, titanite, apatite and rutile. The subordinate low-density fraction is feldspatho-quartzose with high-rank metamorphic rock fragments and biotite (Q62 F35 Lm2; MI 360). Detrital garnets are mostly classified as almandine with relatively high Mg and Ca and lacking Mn, typical of the eclogite facies (Win et al., 2007; type Ci garnets of Mange and Morton 2007; Andò et al., 2013). In well-described stratigraphic sequences within syn-and post-tectonic basins

  18. Genetics Home Reference: iron-refractory iron deficiency anemia

    MedlinePlus

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  19. Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis

    NASA Astrophysics Data System (ADS)

    Krsmanović, R.; Morozov, V. A.; Lebedev, O. I.; Polizzi, S.; Speghini, A.; Bettinelli, M.; Van Tendeloo, G.

    2007-08-01

    Nanocrystalline powders of undoped and lanthanide (Pr3+, Tm3+)-doped gadolinium gallium garnet, Gd3Ga5O12 (GGG), were prepared by propellant synthesis and studied by x-ray powder diffraction (XRD), electron diffraction (ED), high-resolution electron microscopy (HREM) and luminescence spectroscopy. The x-ray diffraction patterns of the GGG samples were analysed using the Rietveld method. The Rietveld refinement reveals the existence of two garnet-type phases: both are cubic (space group Ia\\bar {3}d ) with a slightly different lattice parameter and probably a slightly different composition. Electron diffraction and electron microscopy measurements confirm the x-ray diffraction results. EDX measurements for lanthanide-doped samples show that stable solid solutions with composition Gd3-xLnxGa5O12, xap0.3 (Ln = Pr; Tm) have been obtained. The luminescence properties of the Tm3+-doped nanocrystalline GGG samples were measured and analysed.

  20. Discovery of natural MgSiO3 tetragonal garnet in a shocked chondritic meteorite.

    PubMed

    Tomioka, Naotaka; Miyahara, Masaaki; Ito, Motoo

    2016-03-01

    MgSiO3 tetragonal garnet, which is the last of the missing phases of experimentally predicted high-pressure polymorphs of pyroxene, has been discovered in a shocked meteorite. The garnet is formed from low-Ca pyroxene in the host rock through a solid-state transformation at 17 to 20 GPa and 1900° to 2000°C. On the basis of the degree of cation ordering in its crystal structure, which can be deduced from electron diffraction intensities, the cooling rate of the shock-induced melt veins from ~2000°C was estimated to be higher than 10(3)°C/s. This cooling rate sets the upper bound for the shock-temperature increase in the bulk meteorite at ~900°C. PMID:27051873

  1. Site-selective spectroscopy of garnet crystals doped with chromium ions.

    PubMed

    Örücü, Hümeyra; Özen, Gönül; Di Bartolo, Baldassare; Collins, John

    2012-09-01

    Site-selective spectroscopy is a tool that can be used to uncover the presence of multiple sites available to optically active ions in host lattices. In this Article, we present techniques that can be applied to appraise the different sites that may occur in systems where charge compensation is required or in systems where such compensation is not present. We then consider some garnet crystals doped with chromium ions. For the Cr-doped garnets (YAG, GGG, GSGG, and CYMGG), we present luminescence and lifetime data over a wide temperature range, and infer not only the presence of different centers, but also the interaction among them as a function of temperature. PMID:22867053

  2. High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal.

    PubMed

    Chen, Zhe; Yang, Lei; Wang, Xiangyong; Yin, Hang

    2016-06-01

    Magneto-optical characteristics of a new magneto-active material, (Tb(1-x)Hox)3Ga5O12 crystal, have been grown by the Czochralski (Cz) method. A high value of the Verdet constant was obtained at room temperature-namely, 214.9 and 77.8  rad·m-1 T-1 for 632.8 and 1064 nm, respectively. The Verdet constant of the Ho-doped terbium gallium garnet crystal at 1064 nm is about 2 times higher than that of terbium gallium garnet crystal. High value of magneto-optical figure-of-merit makes it an attractive next-generation magneto-optics material for high-power Faraday isolators. PMID:27244419

  3. Discovery of natural MgSiO3 tetragonal garnet in a shocked chondritic meteorite

    PubMed Central

    Tomioka, Naotaka; Miyahara, Masaaki; Ito, Motoo

    2016-01-01

    MgSiO3 tetragonal garnet, which is the last of the missing phases of experimentally predicted high-pressure polymorphs of pyroxene, has been discovered in a shocked meteorite. The garnet is formed from low-Ca pyroxene in the host rock through a solid-state transformation at 17 to 20 GPa and 1900° to 2000°C. On the basis of the degree of cation ordering in its crystal structure, which can be deduced from electron diffraction intensities, the cooling rate of the shock-induced melt veins from ~2000°C was estimated to be higher than 103°C/s. This cooling rate sets the upper bound for the shock-temperature increase in the bulk meteorite at ~900°C. PMID:27051873

  4. Thermodynamic property evaluation and magnetic refrigeration cycle analysis for gadolinium gallium garnet

    SciTech Connect

    Murphy, R.W.

    1994-12-01

    Based on relevant material property data and previous model formulations, a magnetothermodynamic property map for gadolinium gallium garnet (Gd{sub 3}Ga{sub 5}O{sub 12}) was adapted for refrigeration cycle analysis in the temperature range 4-40 K and the magnetic field range 0-6 T. Employing methods similar to those previously developed for other materials and temperature ranges, assessments of limitations and relative performance were made for Carnot, ideal regenerative, and pseudo-constant field regenerative cycles. It was found that although Carnot cycle limitations on available temperature lift for gadolinium gallium garnet are not as severe as the limitations for materials previously examined, considerable improvement in cooling capacity and temperature lift combinations can be achieved by using regenerative cycles if serious loss mechanisms are avoided.

  5. Majorite-Garnet Partitioning of the Highly Siderophile Elements: New Results and Application to Mars

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Waeselmann, N.; Humayun, M.

    2015-01-01

    HSE and Os isotopes are used to constrain processes such as accretion, mantle evolution, crustal recycling, and core-mantle mixing, and to constrain the timing and depth of differentiation of Mars. Although showed that the HSE contents of the martian mantle could have been established by metal-silicate equilibrium in early Mars, the role of a cooling magma ocean and associated crystallization in further fractionating the HSEs is unclear. Garnet is thought to have played an important role in controlling trace element concentrations in the martian mantle reservoirs. However, testing these models, including Os isotopes, has been hindered by a dearth of partitioning data for the HSE in deep mantle phases - majorite, wadsleyite, ringwoodite, akimotoite - that may be present in the martian mantle. We examine the partitioning behavior of HSEs between majorite garnet (gt), olivine (oliv), and silicate liquid (melt).

  6. Rotated garnets: a mechanism to explain the high frequency of inclusion trail curvature angles around 90° and 180°

    NASA Astrophysics Data System (ADS)

    Trouw, Rudolph A. J.; Tavares, Felipe M.; Robyr, Martin

    2008-08-01

    This paper presents numerical data from garnets with inclusion trail curvature angles of up to 260°. Three hundred and twenty-five garnets were studied from an outcrop of greenschist facies phyllite in southern Minas Gerais State, Brazil. Apart from the inclusion trail curvature angle α, also the aspect ratio R and the angle between the long axis of the garnets and the foliation, β, were measured. The results show a remarkable concentration of α at 180° and a minor one at 90°. R varies between 1 and 2 showing that the garnets deviate from sphericity and β shows that all garnets have their long axis in the "forward rotated" quadrant, supporting the rotational interpretation. A model is proposed to explain the concentrations of α, based on preferential growth of the garnets into the mica rich strain caps, orthogonal to the foliation, causing elongated crystals that, because of their shape and position would experience accelerated rotation until relatively stable positions with their long axes parallel to the foliation would be attained. Renewed growth, again into the mica-rich strain caps, orthogonal to the foliation would first restore the spherical shape and then produce an elongated shape, again perpendicular to the foliation, forcing a repetition of the process. It is concluded that this model is capable of explaining the concentration of α in multiples of 90°, in a rotational model, where this concentration was considered earlier as an argument in favor of the non-rotational model.

  7. Iron-refractory iron deficiency anemia.

    PubMed

    Yılmaz Keskin, Ebru; Yenicesu, İdil

    2015-03-01

    Iron is essential for life because it is indispensable for several biological reactions, such as oxygen transport, DNA synthesis, and cell proliferation. Over the past few years, our understanding of iron metabolism and its regulation has changed dramatically. New disorders of iron metabolism have emerged, and the role of iron as a cofactor in other disorders has begun to be recognized. The study of genetic conditions such as hemochromatosis and iron-refractory iron deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited to improve treatment of both genetic and acquired iron disorders. IRIDA is caused by mutations in TMPRSS6, the gene encoding matriptase-2, which downregulates hepcidin expression under conditions of iron deficiency. The typical features of this disorder are hypochromic, microcytic anemia with a very low mean corpuscular volume of erythrocytes, low transferrin saturation, no (or inadequate) response to oral iron, and only a partial response to parenteral iron. In contrast to classic iron deficiency anemia, serum ferritin levels are usually low-normal, and serum or urinary hepcidin levels are inappropriately high for the degree of anemia. Although the number of cases reported thus far in the literature does not exceed 100, this disorder is considered the most common of the "atypical" microcytic anemias. The aim of this review is to share the current knowledge on IRIDA and increase awareness in this field. PMID:25805669

  8. Magneto-optical switch with amorphous silicon waveguides on magneto-optical garnet

    NASA Astrophysics Data System (ADS)

    Ishida, Eiichi; Miura, Kengo; Shoji, Yuya; Mizumoto, Tetsuya; Nishiyama, Nobuhiko; Arai, Shigehisa

    2016-08-01

    We fabricated a magneto-optical (MO) switch with a hydrogenated amorphous silicon waveguide on an MO garnet. The switch is composed of a 2 × 2 Mach–Zehnder interferometer (MZI). The switch state is controlled by an MO phase shift through a magnetic field generated by a current flowing in an electrode located on the MZI. The switching operation was successfully demonstrated with an extinction ratio of 11.7 dB at a wavelength of 1550 nm.

  9. Obliterated urethra: holmium:yttrium-aluminum-garnet cut-to-light with urolume stenting.

    PubMed

    Monga, M; Gordon, Z; Alexandrescu, B

    2001-12-01

    Antegrade-retrograde urethrotomy, or the cut-to-light procedure, performed for obliterated urethra is associated with a high rate of recurrence of urethra] stricture. With the goal of reducing the stricture recurrence rate, we performed a modified cut-to-light procedure using a holmium:yttrium-aluminum-garnet laser and UroLume stenting in a 76-year-old man with urethral obliteration. PMID:11763485

  10. Long-Pulsed Neodymium-Doped Yttrium Aluminum Garnet Laser for Glomuvenous Malformations in Adolescents.

    PubMed

    Trost, Jaren; Buckley, Colin; Smidt, Aimee C

    2015-01-01

    Currently there exist few reported cases where lasers are used successfully to treat glomuvenous malformations in adolescents. In the two cases described here, we provide evidence that the long-pulsed neodymium-doped yttrium aluminum garnet laser is an effective and safe alternative treatment for these lesions. Our case series is unique because it focuses on adolescents, the population that most often seeks treatment for this dermatologic condition. PMID:26138991

  11. Crystal growth of large size Dy3Al5O12 garnet single crystals

    NASA Astrophysics Data System (ADS)

    Kimura, Hideo; Sakamoto, Masaru; Numazawa, Takenori; Sato, Mitsunori; Maeda, Hiroshi

    1990-01-01

    Crystal growth conditions using the Czochralski technique were examined in order to be able to grow large-size disprosium-aluminum-garnet single crystals; these are useful as a working material in a practical magnetic refrigeration system. Using the best conditions, large-size bubble-free Dy3Al5O12 single crystals 50 mm in diameter were grown from a stoichiometric melt composition using a seed of Y3Al5O12 single crystal.

  12. Effects of erbium:yttrium-aluminum-garnet and neodymium:yttrium-aluminum-garnet laser hypersensitivity treatment parameters on the bond strength of self-etch adhesives.

    PubMed

    Yazici, E; Gurgan, S; Gutknecht, N; Imazato, S

    2010-07-01

    This in vitro study evaluated the shear bond strength (SBS) of two self-etch adhesives to coronal and root dentin treated with erbium:yttrium-aluminum-garnet (Er:YAG) or neodymium:yttrium-aluminum-garnet (Nd:YAG) lasers for dentin hypersensitivity. The coronal and root dentin surfaces of 60 extracted human cuspids were divided into three groups (n = 20): (1) control (without treatment); (2) treated with Er:YAG; (3) treated with Nd:YAG laser and a one-step (S3) or two-step self-etch adhesive (SE). A nano-composite was applied and SBS tests were performed. The mean SBS values were calculated, failure modes were determined, and data were subjected to statistical analysis (P = 0.05). Control/SE exhibited higher values than did control/S3 and Nd:YAG/S3 on coronal dentin (P < 0.05). No significant differences were observed between the SE and S3 groups in root dentin (P > 0.05). Comparisons of two dentin substrates did not show any difference except control/SE (P < 0.05). The failure modes were mainly adhesive. The SBSs of self-etch adhesives to Er:YAG or Nd:YAG laser-treated surfaces were comparable with control for both coronal and root dentin. PMID:19475475

  13. On the nature and origin of garnet in highly-refractory Archean lithosphere: implications for continent stabilisation

    NASA Astrophysics Data System (ADS)

    Gibson, Sally

    2014-05-01

    The nature and timescales of garnet formation in the Earth's subcontinental lithospheric mantle (SCLM) are important to our understanding of how this rigid outer shell has evolved and stabilised since the Archean. Nevertheless, the widespread occurrence of pyrope garnet in the sub-cratonic mantle remains one of the 'holy grails' of mantle petrology. The paradox is that garnet often occurs in mantle lithologies (dunites and harzburgites) which represent residues of major melting events (up to 40 %) whereas experimental studies on fertile peridotite suggest this phase should be exhausted by <20 % melting. Furthermore, garnets commonly found in mantle peridotite suites have diverse compositions that are typically in equilibrium with high-pressure, small-fraction, mantle melts suggesting they formed as a result of enrichment of the lithospheric mantle following cratonisation. This refertilisation -- which typically involves addition of Fe, incompatible trace elements and volatiles -- affects the lower 30 km of the lithosphere and potentially leads to negative buoyancy and destabilisation. Pyrope garnets found in mantle xenoliths from the eastern margin of the Tanzanian Craton (Lashaine) have diverse compositions and provide major constraints on how the underlying deep (120 to 160 km) mantle stabilised and evolved during the last 3 billion years. The garnets display systematic trends from ultra-depleted to enriched compositions that have not been recognised in peridotite suites from elsewhere (Gibson et al., 2013). Certain harzburgite members of the xenolith suite contain the first reported occurrence of pyrope garnets with rare-earth element (REE) patterns similar to hypothetical garnets proposed by Stachel et al. (2004) to have formed in the Earth's SCLM during the Archean, prior to metasomatism. These rare ultra-depleted low-Cr garnets occur in low temperature (~1050 oC) xenoliths derived from depths of ~120 km and coexist in chemical and textural equilibrium with

  14. Kimberlite and related rocks from Garnet Lake, West Greenland, including their mantle constituents, diamond occurrence, age and provenance

    NASA Astrophysics Data System (ADS)

    Hutchison, Mark T.; Frei, Dirk

    2009-11-01

    Observations of thickness, orientation and morphology and mineral chemistry of the principal diamondiferous intrusive sheet and associated bodies in the vicinity of Garnet Lake, Sarfartoq, West Greenland are reported. The principal body dips to the east on a NE/SW (true) trend and reaches a maximum thickness of 4.25 m. Multiple intrusive events are identified within the main sheet including sub-parallel bands occasionally exhibiting grain size sorting, cross-cutting layers and late-stage carbonate-rich emplacement, particularly at the contacts with country rock. Phenocrystic mineral assemblages and compositional measurements reveal two principal petrological types. The dominant type is an aillikite and the second rock type is a kimberlite. The kimberlite exhibits thin Ba-rich rims (towards kinoshitalite) on Al-rich phlogopite crysts, and an abundance of perovskite. Compositional zonation in groundmass spinels suggest a later transition towards an aillikite component. The aillikite is characterised by abundant phlogopite, heavily zoned with tetraferriphlogopite rims, transitional Type 1-Type 2 spinel compositions, rare Al,Ti-rich groundmass clinopyroxene and occasional exotic Sr-carbonate phases such as olekminskite. The Garnet Lake main sheet is characterised by mantle phases occurring as individual grains, most strikingly as garnet xenocrysts up to 5 mm and disaggregated mantle olivine crysts. Xenoliths occur rarely and are typically garnet dunites and garnet lherzolites. Heavy mineral separation reveals an abundance of G10D garnets and, whilst peridotitic garnets dominate, eclogitic G3D and G4D garnets also occur. Trace element compositions of garnet crysts reveal sinusoidal REE patterns in harzburgitic garnets however a component of flat and REE-enriched G11 garnets is apparent, reflecting significant mantle refertilisation. Thermorbarometric calculations on assemblages in Garnet Lake main sheet garnet lherzolites reveal equilibrium conditions clustering closely

  15. Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films

    NASA Astrophysics Data System (ADS)

    Nakamura, Yuichi; Takagi, Hiroyuki; Lim, Pang Boey; Inoue, Mitsuteru

    2014-09-01

    A holographic memory has been attracting attention as recording media with high recording density and high data transfer rate. We have studied the magnetic garnets as a rewritable and long life media for magnetic holography. However, since the signal intensity of reconstructed image was relatively low, the effects of recording conditions on the diffraction efficiency of magnetic hologram were investigated with experiments and the numerical simulation using COMSOL multi-physics. The diffraction efficiency tends to decrease as increasing the spatial frequency, and the use of short pulse laser with the pulse width of 50 ps was found to be effective to achieve high diffraction efficiency. This suggests that the formation of clear magnetic fringe similar to interference pattern can be obtained by the use of short pulse laser since undesirable heat diffusion during radiation does not occur. On the other hand, the diffraction efficiency increased as increasing the film thickness up to 3.1 μm but was saturated in the garnet film thicker than 3.1 μm in the case of spatial frequency of 1500 line pair/mm. The numerical simulation showed that the effective depth of magnetic fringe was limited about 1.8 μm irrespective of the garnet film thickness because the fringes were connected by thermal diffusion near the surface of the film, and the effective depth is limited due to this connection of the magnetic fringe. Avoiding this fringe connection, much higher diffraction efficiency will be achieved.

  16. Raman mapping of coesite inclusions in garnet from the Kokchetav Massif (Northern Kazakhstan).

    PubMed

    Korsakov, Andrey V; Hutsebaut, Didier; Theunissen, Karel; Vandenabeele, Peter; Stepanov, Alexander S

    2007-12-15

    Coesite inclusions occur in a wide range of lithologies and coesite is therefore a powerful ultrahigh-pressure (UHP) indicator. The transformation of coesite to quartz is evidenced by three optically well identifiable characteristics (e.g. palisade textures, radial crack patterns, polycrystalline quartz pseudomorphs). Under overpressure monomineralic coesite (on an optical basis), lacking the above transformation characteristics may survive. Raman micro-spectroscopy was applied on monomineralic coesite inclusions in garnet porphyroblasts from diamond-bearing garnet-clinozoisite-biotite gneisses of the Barchi-Kol area (Kokchetav Massif, Northern Kazakhstan). These coesite inclusions are euhedral and display a characteristic anisotropic hallo. However, Raman maps and separate spectra of these inclusions display shifted bands for coesite and quartz. Microscopically undetectable, quartz shows on the Raman map as a thin shell around coesite inclusion. Shift of the main coesite band allows to estimate their overpressure: coesite inclusions record 0-2.4 GPa in garnet and zircon. The quartz shell remains under lower pressure 0-1.6 GPa. The possible application of coesite and quartz Raman geobarometers for UHP metamorphic rocks is discussed. PMID:17553735

  17. Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging

    PubMed Central

    Hense, Anika; Prunsche, Benedikt; Gao, Peng; Ishitsuka, Yuji; Nienhaus, Karin; Ulrich Nienhaus, G.

    2015-01-01

    The advancement of far-red emitting variants of the green fluorescent protein (GFP) is crucially important for imaging live cells, tissues and organisms. Despite notable efforts, far-red marker proteins still need further optimization to match the performance of their green counterparts. Here we present mGarnet, a robust monomeric marker protein with far-red fluorescence peaking at 670 nm. Thanks to its large extinction coefficient of 95,000 M−1cm−1, mGarnet can be efficiently excited with 640-nm light on the red edge of its 598-nm excitation band. A large Stokes shift allows essentially the entire fluorescence emission to be collected even with 640-nm excitation, counterbalancing the lower fluorescence quantum yield of mGarnet, 9.1%, that is typical of far-red FPs. We demonstrate an excellent performance as a live-cell fusion marker in STED microscopy, using 640 nm excitation and 780 nm depletion wavelengths. PMID:26648024

  18. Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure.

    PubMed

    Monteseguro, V; Rodríguez-Hernández, P; Ortiz, H M; Venkatramu, V; Manjón, F J; Jayasankar, C K; Lavín, V; Muñoz, A

    2015-04-14

    An ab initio study of the structural, elastic and vibrational properties of the lutetium gallium garnet (Lu3Ga5O12) under pressure has been performed in the framework of the density functional theory, up to 95 GPa. Pressure dependence of the elastic constants and the mechanical stability are analyzed, showing that the garnet structure is mechanically unstable above 87 GPa. Lattice-dynamics calculations in bulk at different pressures have been performed and compared with Raman scattering measurements of the nanocrystalline Tm(3+)-doped Lu3Ga5O12 up to 60 GPa. The theoretical frequencies and pressure coefficients of the Raman active modes for bulk Lu3Ga5O12 are in good agreement with the experimental data measured for the nano-crystals. The contributions of the different atoms to the vibrational modes have been analyzed based on the calculated total and partial phonon density of states. The vibrational modes have been discussed in relation to the internal and external modes of the GaO4 tetrahedron and the GaO6 octahedron. The calculated infrared modes and their pressure dependence are also reported. Our results show that with this nano-garnet size the sample has essentially bulk properties. PMID:25767835

  19. Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging.

    PubMed

    Hense, Anika; Prunsche, Benedikt; Gao, Peng; Ishitsuka, Yuji; Nienhaus, Karin; Nienhaus, G Ulrich

    2015-01-01

    The advancement of far-red emitting variants of the green fluorescent protein (GFP) is crucially important for imaging live cells, tissues and organisms. Despite notable efforts, far-red marker proteins still need further optimization to match the performance of their green counterparts. Here we present mGarnet, a robust monomeric marker protein with far-red fluorescence peaking at 670 nm. Thanks to its large extinction coefficient of 95,000 M(-1)cm(-1), mGarnet can be efficiently excited with 640-nm light on the red edge of its 598-nm excitation band. A large Stokes shift allows essentially the entire fluorescence emission to be collected even with 640-nm excitation, counterbalancing the lower fluorescence quantum yield of mGarnet, 9.1%, that is typical of far-red FPs. We demonstrate an excellent performance as a live-cell fusion marker in STED microscopy, using 640 nm excitation and 780 nm depletion wavelengths. PMID:26648024

  20. Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films

    SciTech Connect

    Nakamura, Yuichi Takagi, Hiroyuki; Lim, Pang Boey; Inoue, Mitsuteru

    2014-09-14

    A holographic memory has been attracting attention as recording media with high recording density and high data transfer rate. We have studied the magnetic garnets as a rewritable and long life media for magnetic holography. However, since the signal intensity of reconstructed image was relatively low, the effects of recording conditions on the diffraction efficiency of magnetic hologram were investigated with experiments and the numerical simulation using COMSOL multi-physics. The diffraction efficiency tends to decrease as increasing the spatial frequency, and the use of short pulse laser with the pulse width of 50 ps was found to be effective to achieve high diffraction efficiency. This suggests that the formation of clear magnetic fringe similar to interference pattern can be obtained by the use of short pulse laser since undesirable heat diffusion during radiation does not occur. On the other hand, the diffraction efficiency increased as increasing the film thickness up to 3.1 μm but was saturated in the garnet film thicker than 3.1 μm in the case of spatial frequency of 1500 line pair/mm. The numerical simulation showed that the effective depth of magnetic fringe was limited about 1.8 μm irrespective of the garnet film thickness because the fringes were connected by thermal diffusion near the surface of the film, and the effective depth is limited due to this connection of the magnetic fringe. Avoiding this fringe connection, much higher diffraction efficiency will be achieved.

  1. [Iron-refractory iron deficiency anemia].

    PubMed

    Kawabata, Hiroshi

    2016-02-01

    The major causes of iron deficiency anemia (IDA) include iron loss due to bleeding, increased iron requirements, and decreased iron absorption by the intestine. The most common cause of IDA in Japanese women is iron loss during menstruation. Autoimmune atrophic gastritis and Helicobacter pylori infection can also cause IDA by reducing intestinal iron absorption. In addition to these common etiologies, germline mutations of TMPRSS6 can cause iron-refractory IDA (IRIDA). TMPRSS6 encodes matriptase-2, a membrane-bound serine protease primarily expressed in the liver. Functional loss of matriptase-2 due to homozygous mutations results in an increase in the expression of hepcidin, which is the key regulator of systemic iron homeostasis. The serum hepcidin increase in turn leads to a decrease in iron supply from the intestine and macrophages to erythropoietic cells. IRIDA is microcytic and hypochromic, but decreased serum ferritin is not observed as in IDA. IRIDA is refractory to oral iron supplementation, but does respond to intravenous iron supplementation to some extent. Because genetic testing is required for the diagnoses of IRIDA, a considerable number of cases may go undiagnosed and may thus be overlooked. PMID:26935626

  2. The Effect of fO2 on Partition Coefficients of U and Th between Garnet and Silicate Melt

    NASA Astrophysics Data System (ADS)

    Huang, F.; He, Z.; Schmidt, M. W.; Li, Q.

    2014-12-01

    Garnet is one of the most important minerals controlling partitioning of U and Th in the upper mantle. U is redox sensitive, while Th is tetra-valent at redox conditions of the silicate Earth. U-series disequilibria have provided a unique tool to constrain the time-scales and processes of magmatism at convergent margins. Variation of garnet/meltDU/Th with fO2 is critical to understand U-series disequilibria in arc lavas. However, there is still no systematic experimental study about the effect of fO2 on partitioning of U and Th between garnet and melt. Here we present experiments on partitioning of U, Th, Zr, Hf, Nb, Ta, and REE between garnet and silicate melts at various fO2. The starting material was hydrous haplo-basalt. The piston cylinder experiments were performed with Pt double capsules with C-CO, MnO-Mn3O4 (MM), and hematite-magnetite (HM) buffers at 3 GPa and 1185-1230 oC. The experiments produced garnets with diameters > 50μm and quenched melt. Major elements were measured by EMPA at ETH Zurich. Trace elements were determined using LA-ICP-MS at Northwestern University (Xi'an, China) and SIMS (Cameca1280 at the Institute of Geology and Geophysics, Beijing, China), producing consistent partition coefficient data for U and Th. With fO2 increasing from CCO to MM and HM, garnet/meltDU decreases from 0.041 to 0.005, while garnet/meltDTh ranges from 0.003 to 0.007 without correlation with fO2. Notably, garnet/meltDTh/U increases from 0.136 at CCO to 0.41 at HM. Our results indicate that U is still more compatible than Th in garnet even at the highest fO2 considered for the subarc mantle wedge (~NNO). Therefore, we predict that if garnet is the dominant phase controlling U-Th partitioning during melting of the mantle wedge, melts would still have 230Th excess over 238U. This explains why most young continental arc lavas have 230Th excess. If clinopyroxene is the dominant residual phase during mantle melting, U could be more incompatible than Th at high fO2

  3. Redox state of deep off-craton lithospheric mantle: new data from garnet and spinel peridotites from Vitim, southern Siberia

    NASA Astrophysics Data System (ADS)

    Goncharov, A. G.; Ionov, D. A.

    2012-11-01

    Oxygen fugacity ( fO2) affects melting, metasomatism, speciation of C-O-H fluids and carbon-rich phases in the upper mantle. fO2 of deep off-craton mantle is poorly known because garnet-peridotite xenoliths are rare in alkali basalts. We examine the redox and thermal state of the lithospheric mantle between the Siberian and North China cratons using new Fe3+/ΣFe ratios in garnet and spinel obtained by Mössbauer spectroscopy, major element data and P- T estimates for 22 peridotite xenoliths as well as published data for 15 xenoliths from Vitim, Russia. Shallow spinel-facies mantle is more oxidized than deep garnet peridotites (average, -0.1 vs. -2.5 Δlog fO2(FMQ)). For intermediate garnet-spinel peridotites, fO2 estimates from spinel-based oxybarometers are 1.5-3.2 Δlog fO2(FMQ) lower than those from garnet-based oxybarometers. These rocks may be out of phase and chemical inter-mineral equilibrium because the spinel-garnet reaction and concomitant changes in mineral chemistry do not keep up with P- T changes (e.g., lithospheric heating by recent volcanism) due to slow diffusion of trivalent cations and because gar-, gar-spl and spl-facies rocks may coexist on centimeter-meter scale. The spinel-based fO2 estimates may not be correct while garnet-based fO2 values provide conditions before the heating. The T (780-1,100 °C) and fO2 ranges of the Vitim xenoliths overlap those of coarse garnet and spinel cratonic peridotites. However, because of a higher geothermal gradient, the deepest Vitim garnet peridotites are more reduced (by 0.5-2.0 Δlog fO2(FMQ)) than cratonic garnet peridotites at similar depths, and the "water maximum" conditions (>80 % H2O) in the off-craton mantle exist in a more shallow and narrow depth range (60-85 km) than in cratonic roots (100-170 km). The base of the off-craton lithospheric mantle (≥90 km) at 2.5 GPa and 1,150 °C has fO2 of -3.0 ∆log fO2(FMQ), with dominant CH4 and H2O and minor H2 in the fluid. Melting near the base of off

  4. Iron deficiency anemia

    MedlinePlus

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  5. Metasomatic Control of Water in Garnet and Pyroxene from Kaapvaal Craton Mantle Xenoliths

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Woodland, Alan B.; Bell, David R.; Lazarov, Marina; Lapen, Thomas J.

    2012-01-01

    Fourier transform infrared spectrometry (FTIR) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) were used to determine water, rare earth (REE), lithophile (LILE), and high field strength (HFSE) element contents in garnet and pyroxene from mantle xenoliths, Kaapvaal craton, southern Africa. Water enters these nominally anhydrous minerals as protons bonded to structural oxygen in lattice defects. Pyroxene water contents (150-400 ppm in clinopyroxene; 40-250 ppm in orthopyroxene) correlate with their Al, Fe, Ca and Na and are homogeneous within a mineral grains and a xenolith. Garnets from Jagersfontein are chemically zoned for Cr, Ca, Ti and water contents. Garnets contain 0 to 20 ppm H2 Despite the fast diffusion rate of H in mantle m inerals, the observations above indicate that the water contents of mantle xenolith minerals were not disturbed during kimberlite entrainment and that the measured water data represent mantle values. Trace elements in all minerals show various degrees of light REE and LILE enrichments indicative of minimal to strong metasomatism. Water contents of peridotite minerals from the Kaapvaal lithosphere are not related to the degree of depletion of the peridotites. Instead, metasomatism exerts a clear control on the amount of water of mantle minerals. Xenoliths from each location record specific types of metasomatism with different outcomes for the water contents of mantle minerals. At pressures . 5.5 GPa, highly alkaline melts metasomatized Liqhobong and Kimberley peridotites, and increased the water contents of their olivine, pyroxenes and garnet. At higher pressures, the circulation of ultramafic melts reacting with peridotite resulted in co-variation of Ca, Ti and water at the edge of garnets at Jagersfontein, overall decreasing their water content, and lowered the water content of olivines at Finsch Mine. The calculated water content of these melts varies depending on whether the water content of the peridotite

  6. Garnet peridotites from Williams kimberlites, north-central Montana, U.S.A

    USGS Publications Warehouse

    Hearn, B.C.; McGee, E.S.

    1983-01-01

    Two Williams kimberlites, 250x350m and 37x390m, in the eastern part of a swarm of 30 middle Eocene alnoitic diatremes in north-central Montana, USA, contain xenoliths of garnet-bearing lherzolites, harzburgites and dunites, in addition to spinel peridotites and upper and lower crustal amphibolites and granulites. Colluvial purple, red, and pink garnets are dominantly Mg- and Cr-rich, indicating their derivation From peridotites or megacrysts, and have CaO and Cr2O3 contents that fall in the lherzolite trend. Temperatures were calculated by the Lindsley-Dixon 20 kb method for lherzolites and by the O'Neill-Wood method for harzburgites and dunites, and pressures were calculated by the MacGregor method, or were assumed to be 50 kb for dunites. Most peridotites equilibrated at 1220-1350?C and 50-60 kb, well above a 44mW/m2 shield geotherm and on or at higher P than the graphite-diamond boundary. Four lherzolites are low T-P (830-990?C, 23-42 kb) and are close to the shield geotherm. All four low T-P lherzolites have coarse textures whereas the high T-P cluster has both coarse and porphyroclastic textures, indicating a range of conditions of deformation and recrystallization in a restricted high T-P range. The tiny size (0.01-0.2 mm) of granulated and euhedral olivines in several xenoliths shows that deformation was occurring just prior to incorporation in kimberlite and that ascent was rapid enough (40-70 km/hr) to retard Further coarsening of fine-grained olivine. For other high T-P peridotites, cessation of deformation and beginning of recrystallization before or during inclusion in kimberlite is suggested by larger (up to 3mm) euhedral olivines in a matrix of fine granulated olivine or by optical continuity of large and nearby small olivines. Two low T-P lherzolites contain distinctive, phlogopite-rimmed, 5-8mm clots of moderate-Cr garnet + Cr-spinel + Cr-diopside + enstatite that are inferred to have formed by reaction of an initial high-Cr garnet brought into the

  7. Single crystal elasticity of majoritic garnet at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Pamato, M. G.; Kurnosov, A.; Boffa Ballaran, T.; Frost, D. J.; Ziberna, L.; Giannini, M.; Trots, D. M.; Tkachev, S. N.; Zhuravlev, K. K.; Prakapenka, V.

    2013-12-01

    Seismological observations are fundamental for understanding the chemistry and structure of the Earth's interior, providing a tangible method for tracing the chemical anomalies caused by the subduction of oceanic lithosphere. The mineral garnet is a dominant component of subducted mid ocean ridge basalts (MORB) in the upper mantle and transition zone and as such can influence its physical-chemical properties. Among garnet minerals, the high pressure structured majoritic garnet, is stable throughout the entire transition zone, being volumetrically the most abundant mineral phase in this region. In order to constrain the seismic appearance and buoyancy of subducting slabs into the Earth's transition zone, the knowledge of the elastic properties and density of majoritic garnet at high pressures and temperatures is of crucial importance. Here, we report for the first time the P-V-T equation of state and Vs and Vp sound velocities of single crystals of majoritic garnet (Mg3.24Al1.53Si3.23O12) simultaneously determined by means of Brillouin spectroscopy and X ray diffraction, up to 30 GPa and 880 K. Measurements were performed on single-crystals synthesized in a multianvil apparatus at 17 GPa and 1900 °C and loaded in a diamond anvil cell with Ne as a pressure transmitting medium. A single crystal of Sm:YAG, whose fluorescence has been calibrated against an absolute pressure determination, was used as a pressure calibrant. In addition, ruby chips were used to accurately derive the temperature inside the cell. A specially designed internal resistive heater was placed around the diamonds for achieving high temperatures. An accurate pressure scale is a major issue in the investigation of physical properties of mantle minerals at the depth and temperature required to understand the Earth's interior. In this study, simultaneous measurements of density and sound velocities at the same conditions, allowed accurate determinations of the absolute pressure. We combine our

  8. Multicomponent diffusion in garnets I: general theoretical considerations and experimental data for Fe-Mg systems

    NASA Astrophysics Data System (ADS)

    Borinski, Sascha André; Hoppe, Ulrich; Chakraborty, Sumit; Ganguly, Jibamitra; Bhowmik, Santanu Kumar

    2012-10-01

    We have carried out a combined theoretical and experimental study of multicomponent diffusion in garnets to address some unresolved issues and to better constrain the diffusion behavior of Fe and Mg in almandine-pyrope-rich garnets. We have (1) improved the convolution correction of concentration profiles measured using electron microprobes, (2) studied the effect of thermodynamic non-ideality on diffusion and (3) explored the use of a mathematical error minimization routine (the Nelder-Mead downhill simplex method) compared to the visual fitting of concentration profiles used in earlier studies. We conclude that incorporation of thermodynamic non-ideality alters the shapes of calculated profiles, resulting in better fits to measured shapes, but retrieved diffusion coefficients do not differ from those retrieved using ideal models by more than a factor of 1.2 for most natural garnet compositions. Diffusion coefficients retrieved using the two kinds of models differ only significantly for some unusual Mg-Mn-Ca-rich garnets. We found that when one of the diffusion coefficients becomes much faster or slower than the rest, or when the diffusion couple has a composition that is dominated by one component (>75 %), then profile shapes become insensitive to one or more tracer diffusion coefficients. Visual fitting and numerical fitting using the Nelder-Mead algorithm give identical results for idealized profile shapes, but for data with strong analytical noise or asymmetric profile shapes, visual fitting returns values closer to the known inputs. Finally, we have carried out four additional diffusion couple experiments (25-35 kbar, 1,260-1,400 °C) in a piston-cylinder apparatus using natural pyrope- and almandine-rich garnets. We have combined our results with a reanalysis of the profiles from Ganguly et al. (1998) using the tools developed in this work to obtain the following Arrhenius parameters in D = D 0 exp{-[ Q 1bar + ( P-1)Δ V +]/ RT} for D {Mg/*} and D {Fe/*}: Mg

  9. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review.

    PubMed

    Thangadurai, Venkataraman; Narayanan, Sumaletha; Pinzaru, Dana

    2014-07-01

    Batteries are electrochemical devices that store electrical energy in the form of chemical energy. Among known batteries, Li ion batteries (LiBs) provide the highest gravimetric and volumetric energy densities, making them ideal candidates for use in portable electronics and plug-in hybrid and electric vehicles. Conventional LiBs use an organic polymer electrolyte, which exhibits several safety issues including leakage, poor chemical stability and flammability. The use of a solid-state (ceramic) electrolyte to produce all-solid-state LiBs can overcome all of the above issues. Also, solid-state Li batteries can operate at high voltage, thus, producing high power density. Various types of solid Li-ion electrolytes have been reported; this review is focused on the most promising solid Li-ion electrolytes based on garnet-type metal oxides. The first studied Li-stuffed garnet-type compounds are Li5La3M2O12 (M = Nb, Ta), which show a Li-ion conductivity of ∼10(-6) at 25 °C. La and M sites can be substituted by various metal ions leading to Li-rich garnet-type electrolytes, such as Li6ALa2M2O12, (A = Mg, Ca, Sr, Ba, Sr0.5Ba0.5) and Li7La3C2O12 (C = Zr, Sn). Among the known Li-stuffed garnets, Li6.4La3Zr1.4Ta0.6O12 exhibits the highest bulk Li-ion conductivity of 10(-3) S cm(-1) at 25 °C with an activation energy of 0.35 eV, which is an order of magnitude lower than that of the currently used polymer, but is chemically stable at higher temperatures and voltages compared to polymer electrolytes. Here, we discuss the chemical composition-structure-ionic conductivity relationship of the Li-stuffed garnet-type oxides, as well as the Li ion conduction mechanism. PMID:24681593

  10. Mammalian iron transport.

    PubMed

    Anderson, Gregory Jon; Vulpe, Christopher D

    2009-10-01

    Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma. PMID:19484405

  11. Strain-dependent evolution of garnets in a high pressure ductile shear zone using Synchroton x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Macente, Alice; Fusseis, Florian; Menegon, Luca; John, Timm

    2016-04-01

    Synkinematic reaction microfabrics carry important information on the kinetics, timing and rheology of tectonometamorphic processes. Despite being routinely interpreted in metamorphic and structural studies, reaction and deformation microfabrics are usually described in two dimensions. We applied Synchrotron-based x-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in 3D. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway) previously described by John et al., (2009), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets. Our microtomographic data allowed us to quantify changes to the garnet volume, their shapes and their spatial arrangement. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analyses to correlate mineral composition and orientation data with the x-ray absorption signal of the same mineral grains. This allowed us to extrapolate our interpretation of the metamorphic microfabric evolution to the third dimension, effectively yielding a 4-dimensional dataset. We found that: - The x-ray absorption contrast between individual mineral phases in our microtomographic data is sufficient to allow the same petrographic observations than in light- and electron microscopy, but extended to 3D. - Amongst the major constituents of the synkinematic reactions, garnet is the only phase that can be segmented confidently from the microtomographic data. - With increasing deformation, the garnet volume increases from about 9% to 25%. - Garnet coronas in the gabbros never completely encapsulate olivine grains. This may indicate that the reaction progressed preferentially in some directions, but also leaves pathways for element transport to and from the olivines that are

  12. Pathways of iron absorption.

    PubMed

    Conrad, Marcel E; Umbreit, Jay N

    2002-01-01

    Iron is vital for all living organisms but excess iron can be lethal because it facilitates free radical formation. Thus iron absorption is carefully regulated to maintain an equilibrium between absorption and body loss of iron. In countries where meat is a significant part of the diet, most body iron is derived from dietary heme because heme binds few of the dietary chelators that bind inorganic iron. Uptake of heme into enterocytes occurs as a metalloporphyrin in an endosomal process. Intracellular iron is released from heme by heme oxygenase to enter plasma as inorganic iron. Ferric iron is absorbed via a beta(3) integrin and mobilferrin pathway (IMP) which is unshared with other nutritional metals. Ferrous iron uptake is facilitated by a DMT-1 pathway which is shared with manganese. In the iron deficient gut, large quantities of both mobilferrin and DMT-1 are found in goblet cells and intraluminal mucins suggesting that they are secreted with mucin into the intestinal lumen to bind iron to facilitate uptake by the cells. In the cytoplasm, IMP and DMT associate in a large protein complex called paraferritin which serves as a ferrireductase. Paraferritin solublizes iron binding proteins and reduces iron to make iron available for production of iron containing proteins such as heme. Iron uptake by intestinal absorptive cells is regulated by the iron concentration within the cell. Except in hemochromatosis it remains in equilibrium with total body stores via transferrin receptors on the basolateral membrane of absorptive cells. Increased intracellular iron either up-regulates or satiates iron binding proteins on regulatory proteins to alter their location in the intestinal mucosa. PMID:12547224

  13. Origin of garnet in aplite and pegmatite from Khajeh Morad in northeastern Iran: A major, trace element, and oxygen isotope approach

    NASA Astrophysics Data System (ADS)

    Samadi, Ramin; Miller, Nathan R.; Mirnejad, Hassan; Harris, Chris; Kawabata, Hiroshi; Shirdashtzadeh, Nargess

    2014-11-01

    Triassic monzogranites and granodiorites of the Khajeh Morad region in northeastern Iran are cut by two types of garnet-bearing intrusive veins: (1) aplite and (2) granitic pegmatite. The former is composed of quartz, feldspar, muscovite, with minor garnet, biotite, and ilmenite. The latter contains quartz, plagioclase (± quartz and muscovite inclusions), alkali feldspar, and muscovite, with minor amounts of garnet, tourmaline, beryl, columbite, and ilmenite. Garnet in both rock types has MnO > 12 wt.% and CaO < ~ 2 wt.% with spessartine-rich cores, and a core-to-rim increase in Fe, Mg, and Ca. Garnet cores are enriched in Y, REE, Zr, Nb, Ta, Hf, and U. The Y, HREE, and Mn concentrations show strong positive correlations in both types of garnet associations and decrease from core-to-rim. These core-to-rim elemental variations can be explained by increasing fluid content and H2O activity in magma, together with decreasing Mn contents of an evolved host melt. Aplite and pegmatite garnet δ18O values are nearly identical (~ 10.3‰, n = 7, SD = 0.09) and are similar to magmatic garnets in granitoids elsewhere. On the basis of calculated δ18O values for magma (~ 12.5 and 12.6‰) and quartz (~ 13.6‰, n = 7, SD = 0.08) as well as the major and trace element characteristics, we suggest that the Khajeh Morad garnets crystallized from a variably fractionated S-type monzogranitic magma.

  14. Cretaceous exhumation history of Cordillera Darwin, southern Patagonia, from patchily recrystallized garnet and U-Th-Pb monazite dating

    NASA Astrophysics Data System (ADS)

    Maloney, K. T.; Clarke, G. L.; Klepeis, K. A.; Fanning, C. M.; Wang, W.

    2010-12-01

    Garnet in amphibolite facies pelitic schists from Bahía Pia of Cordillera Darwin displays patchy textures whereby a single grain may have regions of turbid garnet with comparatively large inclusions of biotite, muscovite, plagioclase and quartz, juxtaposed against a region of clear, “ordinary” garnet. Clear areas with S1 inclusion trails are grossular rich, whereas post-S1 turbid areas are comparatively spessartine-pyrope rich. Raman spectroscopy identified the presence of an aqueous solution in turbid regions of garnet, lacking from clear areas. Turbid patches are associated with the growth of S2 kyanite and staurolite. Pseudosection modelling in Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3 (NCKFMASHTO) is consistent with garnet mode decreasing from c. 5% to less than 1% during exhumation of Cordillera Darwin, coinciding with the growth of S2 kyanite and staurolite at P≈9 kbar and T≈625°C. Turbid garnet in patchy and atoll-style textures is inferred to reflect recrystallization facilitated by fluid ingress whereby garnet cores, formed at higher P-T conditions than the rims, were preferentially recrystallised along grain cracks and boundaries. P-T paths inferred from the modelling indicate higher metamorphic conditions than previously documented, P conditions declining from 12 to 9 kbar over T= 610 to 630°C. U-Th-Pb dating of S2 monazite indicates that rapid exhumation was underway before 72.61±1.13 Ma, reflecting a tectonic shift from burial to uplift of Cordillera Darwin between c. 86 and c. 73 Ma. Sillimanite-bearing assemblages are restricted to contact aureoles associated with the intrusion of the Late Cretaceous Beagle Suite at shallower crustal conditions.

  15. Garnets in porphyry-skarn systems: A LA-ICP-MS, fluid inclusion, and stable isotope study of garnets from the Hongniu-Hongshan copper deposit, Zhongdian area, NW Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Peng, Hui-juan; Zhang, Chang-qing; Mao, Jing-wen; Santosh, M.; Zhou, Yun-man; Hou, Lin

    2015-05-01

    The Late Cretaceous Hongniu-Hongshan porphyry-skarn copper deposit is located in the Zhongdian area of northwestern Yunnan Province, China. Garnets from the deposit have compositions that range from Adr14Grs86 to almost pure andradite (Adr98Grs2) and display two different styles of zoning. The garnets are predominantly of magmatic-hydrothermal origin, as is evidenced by their 18Ofluid (5.4-6.9‰) and low Dfluid (-142‰ to -100‰) values, both of which likely result from late-stage magmatic open-system degassing. Three generations of garnet have been identified in this deposit: (1) Al-rich garnets (Grt I; Adr22-57Grs78-43) are anisotropic, have sector dodecahedral twinning, are slightly enriched in light rare earth elements (LREEs) compared with the heavy rare earth elements (HREEs), have negative or negligible Eu anomalies, and contain high concentrations of F. Fluid inclusions within these Al-rich garnets generally have salinities of 12-39 wt.% NaCl eq. and have liquid-vapor homogenization temperatures (Th) of 272-331 °C. The Grt I are most likely associated with low- to medium-salinity fluids that were generated by the contraction of an ascending vapor phase and that formed during diffusive metasomatism caused by pore fluids equilibrating with the host rocks at low W/R (water/rock) ratios. These garnets formed as a result of the high F activity of the system, which increased the solubility of Al within the magmato-hydrothermal fluids in the system. (2) Fe-rich garnets (Adr75-98Grs25-2) have trapezohedral faces, and are both anisotropic with oscillatory zoning and isotropic. These second-generation Fe-rich garnets (Grt II) have high ΣREE concentrations, are LREE-enriched and HREE-depleted, and generally have positive but variable Eu anomalies. All of the Fe-rich garnets contain high-salinity fluid inclusions with multiple daughter minerals with salinities of 33-80 wt.% NaCl eq. Some of them show higher temperatures of halite dissolution (465-591 °C) than

  16. The Local Structural State of Aluminosilicate Garnet Solid Solutions: An Investigation of Grospydite Garnet from the Roberts Victor Kimberlite Using Paramagnetically Shifted 27Al and 29Si MAS NMR Resonances

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Palke, A. C.; Stebbins, J. F.

    2014-12-01

    Most rock-forming silicates are substitutional solid solutions. Over the years extensive research has been done to determine their structural and crystal chemical properties. Here, the distribution of cations, or order-disorder behavior, is of central importance. In the case of aluminosilicate garnet solid solutions (X3Al2Si3O12 with X = Mg, Fe2+, Mn2+ and Ca) it has been shown that both synthetic and natural crystals have random long-range X-cation disorder in space group Ia-3d, as given by X-ray single-crystal diffraction measurements. However, the structural state of natural garnets at the local scale is not known. Garnet from a grospydite xenolith from the Roberts Victor kimberlite, South Africa, was studied by 27Al and 29Si MAS NMR spectroscopy. The research thrust was placed on measuring and analyzing paramagnetically shifted resonances to determine the local (short range) structural state of the X-cations in a grossular-rich ternary aluminosilicate garnet solid solution. The garnet crystals are compositionally homogeneous based on microprobe analysis, showing no measurable zoning, and have the formula Grs46.7Prp30.0Alm23.3. The garnet is cubic with the standard garnet space group Ia-3d. The 27Al MAS NMR spectrum shows a very broad asymmetric resonance located between about 100 and -50 ppm. It consists of a number of individual overlapping paramagnetically shifted resonances, which are difficult to analyze quantitatively. The 29Si MAS NMR spectrum, showing better resolution, has two observable resonances termed S0 and S4. S0 is located between about -60 ppm and -160 ppm and S4 is centered at roughly 95 ppm. Both S0 and S4 are composite resonances in nature containing many overlapping individual peaks. S0 contains information on local cation configurations whereby an isolated SiO4 group in the garnet structure does not have an edge-shared Fe2+-containing dodecahedron. S4 involves local configurations where there is one edge-shared dodecahedron containing Fe2

  17. A New Type of Kelyphite Produced by Isochemical Breakdown of Garnet, Discovered from the Czech Moldanubian Zone

    NASA Astrophysics Data System (ADS)

    Obata, M.; Ozawa, K.; Naemura, K.; Ueda, T.

    2011-12-01

    Kelyphite is a fine-grained, mineral intergrowth developed around garnet in many mafic and ultramafic rocks of high-pressure origin. Typical mineral assemblage of kelyphites developed in garnet peridotites is Opx+Cpx+spinel ±amphibole, which has been interpreted to be a reaction product between garnet and olivine (Kushiro and Yoder, 1966), which is referred to as kelyphite I. In general, these kelyphites are not isochemical to mother garnet but a significant gain of Mg and loss of Al occur with respect to original garnets (e.g. Obata, 2011). We found, probably for the first time in the world, a new type of kelyphite (named kelyphite II) that appears to have been formed by an isochemical breakdown of garnet inside kelyphite I in a garnet peridotite from the Czech Moldanubian Zone. The garnet peridotite had once equilibrated at 2.3-3.5 GPa, 850-1030°C and were partially re-equilibrated in the spinel-lherzolites facies as it ascended and was incorporated into a thickened lower continental crust (Naemura et al., 2009). The temperature of the kelyphite I formation has been estimated to be 730-770°C by applying two-pyroxene geothermometer. The kelyphite II is much finer-grained and darker-colored than kelyphite I and shows a very straight lamellar structure consisting of Opx, spinel and plagioclase (anorthite), in which spinel occur exclusively within the Opx lamella (less than 1 micron thickness). Furthermore, the kelyphite II is typically separated from adjacent garnet by a thin hydrous zone (10 to 20 micron width) that consists of amphibole and spinel-like fine lamella (named kelyphite III), the bulk of which contains more Ca and Na (and therefore less Mg and Fe) than the garnet. The transitional boundary between the kelyphite I and kelyphite II areas (typically of hundreds of microns width) may be divided into several mineral zones of distinct mineral assemblages that all contain Ca-amphibole (pargasitic hornblende). Microprobe analyses revieled that Opx in

  18. Magnesium isotope fractionation in co-existing clino-pyroxene and garnet: implications for geothermometry and mantle source characterization

    NASA Astrophysics Data System (ADS)

    Chakrabarti, R.; Jacobsen, S. B.; Basu, A. R.

    2011-12-01

    It is now well established that the Mg isotopic composition of the bulk silicate Earth, as represented by olivines, peridotites and basalts is identical to bulk meteorites and the Moon. However, small differences have been documented between co-existing olivines and clino-pyroxenes in mantle xenoliths as well as co-existing hornblendes and biotites in granitoids; spinels show some of the heaviest δ26Mg (deviation of the 26Mg/24Mg ratio from the Dead Sea Metal standard). A recent study has documented a large Mg isotopic fractionation between co-existing omphacite and garnet (Δ26MgOMP-GT = δ26MgOMP - δ26MgGT ~1.14) from eclogites in the Dabie orogen of China. This large equilibrium Mg isotope fractionation is explained by the difference in coordination number of Mg in omphacite (six) and garnet (eight). We report stable Mg isotopic compositions of co-existing garnet and clino-pyroxenes from different mantle-derived rocks. Garnet-omphacite pairs analyzed are from an eclogite xenolith from the Roberts Victor kimberlite pipe, the ultra-high pressure Tso Morari eclogite from the Ladakh Himalayas and the Healdsburg eclogite from the Franciscan Subduction Complex, which have a wide range in estimated temperatures of equilibration. Although, the latter two eclogites were exhumed in orogenic belts, our selective picking of the mineral cores for analysis avoided retrograded compositions. We have also analyzed Cr-diopside and pyrope-rich garnet pairs from several southern African kimberlite pipes. These include granular garnet peridotite xenoliths (P = 30-40 kbar, T =950-10500C) as well as the deeper sheared xenoliths (P = 50-60 kbar, T = 13500C). Rapid quenching of the kimberlite-hosted xenoliths ensures minimal low temperature pervasive alteration of these samples. Also analyzed are samples from the Gore Mt. amphibolite and a wollastonite-diopside-garnet skarn from the Adirondacks with equilibration temperatures of 700-7260C. Minerals were separated by hand-picking under

  19. Oxygen isotope zoning in garnets from Franciscan eclogite blocks: evidence for rock-buffered fluid interaction in the mantle wedge

    NASA Astrophysics Data System (ADS)

    Errico, J. C.; Barnes, J.; Strickland, A.; Valley, J. W.

    2012-12-01

    The oxygen isotope composition of Franciscan Complex eclogite garnets and actinolite rind encasing the high-grade blocks have been analyzed to place constraints on the fluid history of these blocks. In situ SIMS oxygen isotope analysis of single garnet crystals from three eclogite blocks (Ring Mountain, Jenner Beach, Mt. Hamilton) shows an abrupt decrease in the δ18O value by ~1-3‰ from core to rim at ~120 ± 50 μm from the rim at all locations. The δ18O values of two Ring Mountain eclogite garnets decrease from 6.0 ± 0.3‰ to 3.8 ± 0.6‰ from core to rim. Four Mt. Hamilton eclogite garnets decrease from 8.6 ± 0.5‰ to 5.9 ± 0.6‰ from core to rim and two decrease from 7.1 ± 0.2‰ in the core to 5.7 ± 0.5‰ at the rim. Two Jenner Beach eclogite garnets decrease from ~11.0 to ~10‰, whereas two others show little to no variation at 9.9 ± 0.3‰ and 11.4 ± 0.2‰. δ18O values of eclogite garnet cores likely inherit the original oxygen isotope composition of the altered MORB protolith, whereas the abrupt and >1‰ change in the δ18O values of the garnet rims suggest interaction with a lower δ18O value fluid during the final stages of growth. Equilibrium calculations indicate that the temperature change associated with Franciscan eclogite metamorphism (400-600°C) is not likely to account for >~1‰ change in the δ18O value of the growing garnet. Previous work suggests sediments as a potential source of metasomatic fluid during blueschist facies metamorphism (300-350°C); however, these temperatures are too low for garnet growth and sedimentary derived fluids would have high δ18O values. Instead, mantle wedge peridotite is a significant source of lower δ18O material. We suggest that the oxygen composition of infiltrating slab derived fluids is buffered by surrounding ultramafic rock since the volume of ultramafic rock is much greater than that of the fluids. The oxygen isotope composition is recorded in the garnet during final stages of

  20. Mantle refertilization by melts of crustal-derived garnet pyroxenite: Evidence from the Ronda peridotite massif, southern Spain

    NASA Astrophysics Data System (ADS)

    Marchesi, Claudio; Garrido, Carlos J.; Bosch, Delphine; Bodinier, Jean-Louis; Gervilla, Fernando; Hidas, Károly

    2013-01-01

    Geochemical studies of primitive basalts have documented the presence of crustal-derived garnet pyroxenite in their mantle sources. The processes whereby melts with the signature of garnet pyroxenite are produced in the mantle are, however, poorly understood and somewhat controversial. Here we investigate a natural example of the interaction between melts of garnet pyroxenite derived from recycled plagioclase-rich crust and surrounding mantle in the Ronda peridotite massif. Melting of garnet pyroxenite at ˜1.5 GPa generated spinel websterite residues with MREE/HREE fractionation and preserved the positive Eu anomaly of their garnet pyroxenite precursor in whole-rock and clinopyroxene. Reaction of melts from garnet pyroxenite with depleted surrounding peridotite generated secondary fertile spinel lherzolite. These secondary lherzolites differ from common spinel lherzolite from Ronda and elsewhere by their lower-Mg# in clinopyroxene, orthopyroxene and olivine, lower-Cr# in spinel and higher whole-rock Al2O3, CaO, Sm/Yb and FeO* at a given SiO2. Remarkably, secondary spinel lherzolite shows the geochemical signature of ghost plagioclase in the form of positive Eu and Sr anomalies in whole-rock and clinopyroxene, reflecting the transfer of a low-pressure crustal imprint from recycled pyroxenite to hybridized peridotite. Garnet pyroxenite melting and melt-peridotite interaction, as shown in the Ronda massif, may explain how the signature of subducted or delaminated crust is transferred to the mantle and how a garnet pyroxenite component is introduced into the source region of basalts. The efficiency of these processes in conveying the geochemical imprint of crustal-derived garnet pyroxenite to extruded lavas depends on the reactivity of pyroxenite melt with peridotite and the mantle permeability, which may be controlled by prior refertilization reactions similar to those documented in the Ronda massif. Highly fertile heterogeneities produced by pyroxenite

  1. Petrogenesis of Garnet-bearing Rocks in the Grandfather Mountain Window, Blue Ridge Province, Western North Carolina

    NASA Astrophysics Data System (ADS)

    Frushour, A. M.; Abbott, R. N.

    2014-12-01

    The Grandfather Mountain Window in western North Carolina exposes the lowest structural level in the Blue Ridge Province. Rocks in the window constitute a Late Proterozoic basement-cover sequence. The basement consists mainly of Blowing Rock Gneiss (sic, porphyroblastic schist) and Wilson Creek Gneiss, both overlain unconformably by the Grandfather Mountain Formation. All of these rocks have been pervasively overprinted by greenschist facies metamorphism. The typical greenschist mineral assemblage involves combinations of chlorite, muscovite, biotite, actinolite, epidote, calcite, quartz, albite and K-feldspar. Garnet discovered in basement rock calls into question the metamorphic grade. The average garnet (core-rim) is (Fe1.63-1.71Mn0.64-0.77Ca0.52-0.37Mg0.10-0.12)Al1.98-1.96Si3.06-3.04O12; the average biotite is (K0.96Na0.06Ca0.02)(Fe1.73Mg0.87Mn0.02Ti0.04Al0.23)(Si2.83Al1.17)O10(OH)2; the average muscovite is (K1.03Na0.02Ca0.02)(Al1.57Fe0.26Mg0.16Ti0.01)(Si3.31Al0.69)O10(OH)2. Thermometry involving Fe-Mn-Mg components in these minerals gives 766°C (+/- 91°C) at 13.6 kbars (+/- 1.4 kbar), respectively. There are at least four explanations for garnet in these rocks: (1) Garnet may have been stabilized in the greenschist facies by non-AFM components (esp. Mn), but the compositions are not unusual for metamorphic garnet, biotite and muscovite, and the calculated temperatures are too high for greenschist facies. (2) The garnet may be relict from earlier contact metamorphism, but the garnet is not spatially related to otherwise common metamorphosed (greenschist facies) mafic dikes. (3) The garnet is a product of heating during mylonitization. Finally, and most likely, (4) the garnet may be relict from an earlier episode of regional metamorphism. Samples of porphyroblastic schist and greenstone from the same outcrop give low temperature, greenschist facies conditions.

  2. Spectral emissivity measurements of Mercury's surface indicate Mg- and Ca-rich mineralogy, K-spar, Na-rich plagioclase, rutile, with possible perovskite, and garnet

    NASA Astrophysics Data System (ADS)

    Sprague, A. L.; Donaldson Hanna, K. L.; Kozlowski, R. W. H.; Helbert, J.; Maturilli, A.; Warell, J. B.; Hora, J. L.

    2009-03-01

    Mid-infrared 2-D spectroscopic measurements from 8.0 to 12.7 μm of Mercury were taken using Boston University's Mid-Infrared Spectrometer and Imager (MIRSI) mounted on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, 7-11 April 2006. Measurements reported here cover radar bright region C, a dark plains region west of Caloris Basin, and the interior of Caloris Basin. By use of spectral deconvolution with a large spectral library composed of many mineral compositions and grain size separates, we fitted, or "unmixed", the Mercury spectra. We find mineral suites composed of magnesium-rich orthopyroxene and olivine, Ca-, Mg-, Na-rich clinopyroxene, potassium feldspar, and Na-bearing plagioclase feldspar. Both Ca- and Mg-rich garnet (pyrope and grossular, respectively) are apparently present in small amounts. Opaque minerals are required for spectral matching, with rutile (TiO 2) repeatedly providing the "best fit". However, in the case of the radar bright region C, perovskite also contributed to a very good fit. Caloris Basin infill is rich in both potassium feldspar and Na-rich plagioclase. There is little or no olivine in the Caloris interior smooth plains. Together with the high alkali content, this indicates that resurfacing magmas were low to intermediate in SiO 2. Data suggest the dark plains exterior to Caloris are highly differentiated low-iron basaltic magmas resulting in material that might be classified as oligoclase basalts.

  3. Origin of biotite-hornblende-garnet coronas between oxides and plagioclase in olivine metagabbros, Adirondack region, New York

    USGS Publications Warehouse

    Whitney, P.R.; McLelland, J.M.

    1982-01-01

    Complex multivariant reactions involving Fe-Ti oxide minerals, plagioclase and olivine have produced coronas of biotite, hornblende and garnet between ilmenite and plagioclase in Adirondack olivine metagabbros. Both the biotite (6-10% TiO2) and the hornblende (3-6% TiO2) are exceptionally Titanium-rich. The garnet is nearly identical in composition to the garnet in coronas around olivine in the same rocks. The coronas form in two stages: (a) Plagioclase+Fe-Ti Oxides+Olivine+water =Hornblende+Spinel+Orthopyroxene??Biotite +more-sodic Plagioclase (b) Hornblende+Orthopyroxene??Spinel+Plagioclase =Garnet+Clinopyroxene+more-sodic Plagioclase The Orthopyroxene and part of the clinopyroxene form adjacent to olivine. Both reactions are linked by exchange of Mg2+ and Fe2+ with the reactions forming pyroxene and garnet coronas around olivine in the same rocks. The reactions occur under granulite fades metamorphic conditions, either during isobaric cooling or with increasing pressure at high temperature. ?? 1983 Springer-Verlag.

  4. Oxygen isotopes in coexisting garnets, clinopyroxenes and phlogopites of Roberts Victor eclogites: implications for petrogenesis and mantle metasomatism

    NASA Astrophysics Data System (ADS)

    Ongley, Jennifer S.; Basu, Asish R.; Kurtis Kyser, T.

    1987-05-01

    δ 18O values of coexisting garnet, clinopyroxene and phlogopite for twelve compositionally and texturally diverse Roberts Victor eclogite xenoliths range from +3.8 to +7.1, +4.0 to +7.4 and +5.9 to +7.4, respectively. Differences between theδ 18O values of coexisting garnets and clinopyroxenes are normally zero; however, there is some variation in theδ 18O values of different fractions of the same mineral in four samples which suggests the presence of isotopic zonation and inhomogeneity, possibly resulting from the introduction of a secondary fluid which metasomatized the eclogites and resulted in the formation of phlogopite, amphibole and celsian. Theδ 18O value of the metasomatic fluid is generally buffered by the isotopic composition of the primary garnet and clinopyroxene, as indicated by a correlation between the isotopic composition of phlogopite and the primary pyroxene and garnet. The large range inδ 18O values of the eclogites and the similarity in the isotopic composition of coexisting pyroxene and garnet support the interpretation that the Roberts Victor eclogites represent metamorphosed, altered basalts. The eclogites were subjected to infiltration metasomatism in the mantle prior to their incorporation in the kimberlite, and the source of this fluid was probably unrelated to the eclogite.

  5. Compositional controls on spinel clouding and garnet formation in plagioclase of olivine metagabbros, Adirondack Mountains, New York

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38??2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36??4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism. ?? 1980 Springer-Verlag.

  6. Compositional evolution of grossular garnet from leucotonalitic pegmatite at Ruda nad Moravou, Czech Republic; a complex EMPA, LA-ICP-MS, IR and CL study

    NASA Astrophysics Data System (ADS)

    Gadas, Petr; Novák, Milan; Talla, Dominik; Vašinová Galiová, Michaela

    2013-04-01

    Five distinct paragenetic, morphological and compositional types of grossular garnet (G1, G2, G3, G4, G5) were distinguished within the individual (sub)units of the zoned leucotonalitic pegmatite cutting serpentinized lherzolite with rodingite dikes at Žďár near Ruda nad Moravou, Staré Město Unit, Northern Moravia. Detailed study using Electron Microprobe Analysis, Laser Ablation Inductively Coupled Plasma Mass Spectrometry, Cathodoluminiscence and Infrared Spectroscopy revealed distinct compositional trends in major, minor and trace elements. The contents of Fe3+, Mn, Mg and Ti increase from early garnet (G1) in the outermost grossular subunit through the interstitial garnet (G2) in the leucocratic subunit to graphic intergrowths of quartz+garnet (G3) in the coarse-grained unit. Then these constituents decrease in inclusions of garnet (G4) from the blocky unit and large crystals of garnet (G5) from the quartz core. Some trace elements (V, Ni, Y) exhibit the same trends, only Be evidently increases in garnet from border zone to the centre. Fluorine has negative correlation with Fe3+ as well as some trace elements (Ta, Pb). Concentrations of H2O in garnets, up to 0.22 wt.% H2O, are comparable with spessartine-almandine garnets from the Rutherford No. 2 pegmatite, Virginia, and grossular garnets from high-temperature calc-silicate rocks (skarns). Water contents correlate positively with Fe3+, but inversely with F. The use of water contents in garnet to elucidate the fluctuations of activity of H2O during the pegmatite formation is only limited; the incorporation of hydrous defects seems to be controlled instead by crystal-structural constraints. However, the sum of all volatile components (H2O + F) increases about twice from the outermost subunit to the centre of the pegmatite body.

  7. Iron and Diabetes Risk

    PubMed Central

    Simcox, Judith A.; McClain, Donald A.

    2013-01-01

    Iron overload is a risk factor for diabetes. The link between iron and diabetes was first recognized in pathologic conditions—hereditary hemochromatosis and thalassemia—but high levels of dietary iron also impart diabetes risk. Iron plays a direct and causal role in diabetes pathogenesis mediated both by β-cell failure and insulin resistance. Iron is also a factor in the regulation of metabolism in most tissues involved in fuel homeostasis, with the adipocyte in particular serving an iron-sensing role. The underlying molecular mechanisms mediating these effects are numerous and incompletely understood, but include oxidant stress and modulation of adipokines and intracellular signal transduction pathways. PMID:23473030

  8. Iron deficiency in Europe.

    PubMed

    Hercberg, S; Preziosi, P; Galan, P

    2001-04-01

    In Europe, iron deficiency is considered to be one of the main nutritional deficiency disorders affecting large fractions of the population, particularly such physiological groups as children, menstruating women and pregnant women. Some factors such as type of contraception in women, blood donation or minor pathological blood loss (haemorrhoids, gynaecological bleeding...) considerably increase the difficulty of covering iron needs. Moreover, women, especially adolescents consuming low-energy diets, vegetarians and vegans are at high risk of iron deficiency. Although there is no evidence that an absence of iron stores has any adverse consequences, it does indicate that iron nutrition is borderline, since any further reduction in body iron is associated with a decrease in the level of functional compounds such as haemoglobin. The prevalence of iron-deficient anaemia has slightly decreased in infants and menstruating women. Some positive factors may have contributed to reducing the prevalence of iron-deficiency anaemia in some groups of population: the use of iron-fortified formulas and iron-fortified cereals; the use of oral contraceptives and increased enrichment of iron in several countries; and the use of iron supplements during pregnancy in some European countries. It is possible to prevent and control iron deficiency by counseling individuals and families about sound iron nutrition during infancy and beyond, and about iron supplementation during pregnancy, by screening persons on the basis of their risk for iron deficiency, and by treating and following up persons with presumptive iron deficiency. This may help to reduce manifestations of iron deficiency and thus improve public health. Evidence linking iron status with risk of cardiovascular disease or cancer is unconvincing and does not justify changes in food fortification or medical practice, particularly because the benefits of assuring adequate iron intake during growth and development are well established

  9. Type-C olivine LPOs in garnet peridotites in North Qaidam UHP collision belt, NW China

    NASA Astrophysics Data System (ADS)

    Jung, H.; Lee, J.; Ko, B.; Jung, S.; Park, M.; Cao, Y.; Song, S.

    2013-12-01

    Water is known to change the lattice-preferred orientation (LPO) of olivine, which significantly affects seismic anisotropy in the Earth's upper mantle. Research into the LPO of olivine in the deep interior of the Earth has been limited due to inadequate specimens. We report both the water-induced LPOs of olivine and the presence of large quantities of water inside olivine, enstatite, and garnet in garnet peridotites from the North Qaidam ultrahigh-pressure (UHP) collision belt in NW China. We show that the [001] axis of olivine is aligned subparallel to the lineation and that the [100] axis is strongly aligned subnormal to the foliation. This alignment is a known feature of type-C LPO of olivine formed experimentally under water-rich conditions (≥700 ppm H/Si) at high pressure and temperature. Enstatite possessed an LPO with the [001] axis aligned parallel to the lineation and the [100] axis aligned normal to the foliation. FTIR analysis of this specimen revealed that olivine contained concentrations of water up to 1130 × 50 ppm H/Si in clean areas, whereas olivine, enstatite, and garnet contained considerably more water, i.e., 2600 × 100 ppm H/Si, 5000 × 100 ppm H/Si, and 21000 × 200 ppm H/Si, respectively, when exsolved inclusions were visible. Confocal micro-Raman spectroscopy of these exsolved inclusions revealed that they were composed of hornblende and amphiboles. Straight dislocations were also commonly observed in olivine and are characteristic of olivine that had been experimentally deformed under hydrous conditions. These observations suggest that the type-C LPO of olivine in the North Qaidam UHP belt formed under water-rich conditions.

  10. Comments on Evaluation of thermobarometers for garnet peridotites' by A. A. Finnerty and F. R. Boyd

    SciTech Connect

    Ganguly, J. )

    1992-02-01

    In order to evaluate the accuracy of a given combination of thermo-barometer, Finnerty and Boyd (1984) calculated the P-T conditions of two control samples of garnet lherzolite xenoliths, namely BD 2125 and PHN 1569. The importance of the samples lies in the fact that BD 2125 is diamond bearing, whereas PHN 1569 is graphite bearing. The alumina solubility in orthopyroxene (OPx) coexisting with garnet (Gt) is sensitive to both pressure and temperature changes and has thus been used widely, in combination with various geothermometers, for the thermo-barometry of garnet lherzolite xenoliths. Finnerty and Boyd (1984) concluded that the experimental calibrations of alumina solubility in OPx by Akella (1976) and Lane and Ganguly (1980) are as precise as, but probably less accurate than MC74 barometer,' where MC74 referred to the experimental calibration of alumina solubility in OPx by McGregor (1974) in the system MgSiO{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2} (MAS) based on synthesis experiments from glass of appropriate compositions. This conclusion on the accuracy of the above barometers was based on their observation that the use of only MC74 placed the calculated P-T conditions of the control samples in the right field with respect to the diamond-graphite equilibrium boundary, while those of Akella (1976; AK76) and Lane and Ganguly (1980; LG80) yielded P-T conditions that did not exactly satisfy the latter constraint, but were within 2 kb of the phase boundary. While it is clear from thermodynamic considerations that an unambiguous test of the accuracy of the calibrations cannot be carried out without making corrections for the effects of the additional components which are present in the natural samples but not in the experimental charges, the calculations of Finnerty and Boyd (1984) using LG80 are grossly erroneous.

  11. Ocean iron cycle

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.

    Interest in the biogeochemical cycle of iron has grown rapidly over the last two decades, due to the potential role of this element in modulating global climate in the geological past and ocean productivity in the present day. This trace metal has a disproportionately large effect (1 × 105 C:Fe) on photosynthetic carbon fixation by phytoplankton. In around one third of the open ocean, so-called high-nitrate low-chlorophyll (HNLC) regions, the resident phytoplankton have low growth rates despite an abundance of plant nutrients. This is due to the low supply of iron. Iron is present in the ocean in three phases, dissolved, colloidal, and particulate (biogenic and lithogenic). However, iron chemistry is complex with interactions between chemistry and biology such as the production of iron-binding siderophores by oceanic bacteria. This results in the interplay of inorganic chemistry, photochemistry, and organic complexation. Sources of new iron include dust deposition, upwelling of iron-rich deep waters, and the resuspension and lateral transport of sediments. Sinks for iron are mainly biological as evidenced by the vertical nutrient-like profile for dissolved iron in the ocean. Iron is rapidly recycled by the upper ocean biota within a so-called "ferrous wheel." The fe ratio [(new iron)/(new + regenerated iron)] provides an index of the relative supply of iron to the biota by new versus recycled iron. Over the last 15 years, interest in the potential role of iron in shaping climate in the geological past resulted in some of the most ambitious experiments in oceanography: large-scale (i.e., 50-1000 km2) iron enrichment of HNLC waters. They have provided valuable insights into how iron supply influences the biogeochemical cycles of elements such as carbon, sulfur, silicon, nitrogen, and phosphate.

  12. Evidence of dilute ferromagnetism in rare-earth doped yttrium aluminium garnet

    SciTech Connect

    Farr, Warrick G.; Goryachev, Maxim; Le Floch, Jean-Michel; Tobar, Michael E.; Bushev, Pavel

    2015-09-21

    This work demonstrates strong coupling regime between an erbium ion spin ensemble and microwave hybrid cavity-whispering gallery modes in a yttrium aluminium garnet dielectric crystal. Coupling strengths of 220 MHz and mode quality factors in excess of 10{sup 6} are demonstrated. Moreover, the magnetic response of high-Q modes demonstrates behaviour which is unusual for paramagnetic systems. This behaviour includes hysteresis and memory effects. Such qualitative change of the system's magnetic field response is interpreted as a phase transition of rare earth ion impurities. This phenomenon is similar to the phenomenon of dilute ferromagnetism in semiconductors. The clear temperature dependence of the phenomenon is demonstrated.

  13. An occurrence of metastable cristobalite in high-pressure garnet Granulite

    USGS Publications Warehouse

    Darling, R.S.; Chou, I.-Ming; Bodnar, R.J.

    1997-01-01

    High-pressure (0.8 gigapascals) granulite facies garnet from Gore Mountain, New York, hosts multiple solid inclusions containing the low- pressure silica polymorph cristobalite along with albite and minor ilmenite. Identification of cristobalite is based on Raman spectra, electron microprobe analysis, and microthermometric measurements on the ??/?? phase transformation. The cristobalite plus albite inclusions may have originated as small, trapped samples of hydrous sodium-aluminum-siliceous melt. Diffusive loss of water from these inclusions under isothermal, isochoric conditions may have resulted in a large enough internal pressure decrease to promote the metastable crystallization of cristobalite.

  14. Luminescence of Terbium and Neodymium Ions in Yttrium Aluminum Garnet Xerogels on Porous Anodic Alumina

    NASA Astrophysics Data System (ADS)

    Rudenko, M. V.; Gaponenko, N. V.; Mudryi, A. V.; Orekhovskaya, T. I.

    2016-03-01

    Luminescent structures of yttrium aluminum garnet doped with rare-earth elements Tb and Nd (YAG:Tb3+ and YAG:Nd3+) were formed by the sol-gel route on films of porous anodic alumina. The morphology, phase composition, and luminescence of the fabricated structures were investigated. Photoluminescence spectra of the YAG:Tb3+ and YAG:Nd3+ structures revealed emission bands due to electronic transitions of the relevant rare-earth elements. Fine structure was observed in the luminescence bands of all fabricated samples and was associated with the manifestation of a Stark effect.

  15. Thermo-optical properties of terbium-aluminum garnet ceramics doped with silicon and titanium.

    PubMed

    Starobor, Aleksey; Palashov, Oleg; Zhou, Shengming

    2016-04-01

    The Verdet constant and thermo-optical characteristics of a Si-doped and Ti-doped terbium aluminum garnet ceramics have been investigated. It is shown that the Verdet constant of the samples is ∼40% higher than that of TGG ceramics at 1064 nm. The best samples of Si:TAG have magneto-optical figures of merit more than 1.5 times greater than those of TGG ceramics. Si:TAG is better than TGG ceramics as a medium for high-power Faraday isolators. PMID:27192274

  16. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    SciTech Connect

    Ostafiychuk, B. K.; Yaremiy, I. P. Yaremiy, S. I.; Fedoriv, V. D.; Tomyn, U. O.; Umantsiv, M. M.; Fodchuk, I. M.; Kladko, V. P.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  17. Temperature dependence of the luminescence spectra of garnet crystals doped with chromium ions

    NASA Astrophysics Data System (ADS)

    Orucu, Humeyra; Ozen, Gonul; Collins, John; Di Bartolo, Baldassare

    2009-05-01

    We have investigated the spectral behavior of a number of garnet crystals doped with chromium ions in a range of temperatures from 25 to 800 K. The crystals we considered are, in order of decreasing crystalline field, Y3Al5O12 (YAG), Gd3Ga5O12 (GGG) and Gd3Sc2Ga3O12 (GSGG). By investigating their luminescence spectra, including their vibronic spectra, over a very broad range of temperatures, we attempt to obtain a fuller picture of the processes following excitation.

  18. Towards a greater understanding of hydrothermally grown garnets and sesquioxide crystals for laser applications

    NASA Astrophysics Data System (ADS)

    Moore, Cheryl Ann

    The hydrothermal method of crystal growth offers many benefits over traditional melt-based techniques such as lower temperature requirements relieving detrimental high temperature effects such as stress fracturing and a closed-environment, which limits impurities. The continued study of this type of growth including hydrothermal epitaxy is crucial in our world of constant miniaturization. Presented in this thesis is the hydrothermal growth of crystals of LuAG and Lu2O3 doped with a variety of dopants. Their room-temperature and cryogenic absorption spectra are also presented. Much like Nature uses heat, pressure, water and a nutrient-rich feedstock we have used this hydrothermal technique to produce synthetic crystals of grossular, Ca3Al2(SiO4)3, a naturally occurring garnet as well as other aluminosilicates related to grossular, including a new type of vesuvianite. Other garnets important to the laser industry have also been grown using the hydrothermal technique, such as yttrium aluminum garnet (YAG), lutetium aluminum garnet (LuAG) and the related sesquioxide Lu2O3, (lutetia). The growth and characteristics of Yb-doped lutetia and LuAG, Nd-doped lutetia, and Dy-doped lutetia and YAG are presented herein. These laser crystals have been analyzed by high-resolution absorption spectroscopy at room temperature as well as 250K, 200K, 150K and 80K and absorption coefficients are presented. A coprecipitation technique common in the ceramics field has been adapted for use creating precursors for hydrothermal crystal growth, including phase-pure polycrystalline anorthite and phase-pure gehlenite. Coprecipitation has also been utilized to gain greater control of dopants to create pre-doped feedstocks used for the growth of laser crystal. The versatility of the hydrothermal growth method is also highlighted in a novel epitaxial technique, core growth, which coats the internal surfaces of a seed crystal as well as external surfaces. This can result in multifunctional

  19. Thermal equation of state of garnets along the pyrope-majorite join

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin; Weidner, Donald J.; Zhang, Jianzhong; Gwanrnesia, Gabriel D.; Liebermann, Robert C.

    1998-02-01

    P-V-T relations of two garnet samples along the pyrope (Py)-majorite (Mj) join (Py nMj 1- n, where subscripts indicate molar percent) were measured at pressure and temperature conditions up to 11 GPa and 1163 K, respectively, with energy-dispersive synchrotron X-ray diffraction in a cubic-anvil, DIA-6 type apparatus (SAM-85). For each volume measurement, non-hydrostatic stress was determined from relative shifts of the diffraction lines of NaCl, within which the sample was embedded. Heating to ˜ 1100 K reduced the strength of NaCl below 0.1 GPa, making the measurements nearly hydrostatic. The recovered samples were examined by transmission electron microscopy (TEM) to detect irreversible changes that may affect data quality. For the cubic garnet Py 62Mj 38, no irreversible changes took place during the experiment. A fit using the third-order Birch-Murnaghan equation of state yielded ambient cell volume V0 = 1509.2(3) Å 3 (113.62 cc/mol), isothermal bulk modulus KT0 = 160(3) GPa, and its pressure derivative K' T0 = 4.9(5). Various thermal equations-of-state analyses gave consistent results for the temperature derivative of bulk modulus ( ∂K T/∂T) P = -0.020(1) GPa K -1 pressure derivative for thermal expansion ( ∂α/∂P) T = -7.8 × 10 -7GPa -1 K -1, with the ambient volumetric thermal expansion α0 = 2.5 × 10 -5 K -1. For the tetragonal sample Py 21Mj 79, TEM indicated that micro-twin domains were significantly coarsened after the P-V-T experiment. Stress relaxation may have occurred during the coarsening, thereby compromising the P-V-T data. In addition, the tetragonal distortion in this sample was too small to be resolved by the energy-dispersive technique. Therefore, data for the latter sample were not suitable for accurate equation-of-state analysis. Previous data on pyrope were compiled, analyzed, and compared with the new data on the majoritic garnet. The entire data set enabled us to examine systematics of the thermoelastic properties of garnets

  20. Dynamic electron scattering distinguishes dodecahedral and tetrahedral crystallographic sites in garnet structure

    NASA Astrophysics Data System (ADS)

    Lábár, János L.

    1999-07-01

    It is shown in this letter that, in contrast to the accepted belief in the literature, it is possible to determine if a minority component is located on the dodecahedral, octahedral, or tetrahedral sites in a garnet single crystal. This prediction of ours is based on dynamical Bloch-wave calculations and proved experimentally with x-ray measurements in a transmission electron microscope. The previous literature seemed to agree on the assumption that the dodecahedral and tetrahedral sites are indistinguishable from each other.

  1. High-resolution garnet chronometry and the rates of metamorphic processes

    NASA Astrophysics Data System (ADS)

    Burton, Kevin W.; Keith O'Nions, R.

    1991-12-01

    Garnets in an amphibolite-facies metasediment from Sulitjelma, North Norway yield precise and concordant Sm sbnd Nd, U sbnd Pb and Rb sbnd Sr ages that relate directly to the pressure ( P) and temperature ( T) conditions of mineral growth. Differential mineral reaction between graphitic and non-graphitic layers within this sample preserves a record of the P-T and time ( t) history experienced during Barrovian regional metamorphism. Garnets in graphitic layers grew during prograde metamorphism at 462 ± 16°C and 5.2 ± 0.5 kbar under conditions of low aH 2O , and yield indistinguishable 147Sm sbnd 143Nd and 238U sbnd 206Pb ages of 434.1 ± 1.2 Ma and 433.9 ± 1.0 Ma, respectively. In contrast, garnet growth in adjacent graphite-free layers did not occur until P-T conditions of 540 ± 18°C and 8.0 ± 1.0 kbar were attained, with continued growth in response to minor heating and decompression with final matrix equilibration at 544 ± 16°C and 7.0 ± 1.0 kbar. The inclusion-free garnet rims in this assemblage record indistinguishable 147Sm sbnd 143Nd and 238U sbnd 206Pb ages of 424.6 ± 1.2 Ma and 423.4± 1.7 Ma, respectively. These results provide precise estimates for average heating and burial rates during prograde metamorphism of 8.6 -4.4+7.5°C Ma -1 and 0.8 -0.5+0.9 km Ma -1, respectively. Rb and Sr exchange between coexisting silicates in the graphite-free assemblage continued for some 37 Ma after the "peak" of metamorphism, and require an average cooling rate of about 4.0°C Ma -1 during uplift. These results illustrate a clear relationship between reaction history and the timing of mineral growth and provide definitive constraints on the rates of thermal and tectonic processes accompanying regional metamorphism.

  2. The Assembly of Eastern North America: Using Garnet Zoning to Decipher the Potomac Terrane

    NASA Astrophysics Data System (ADS)

    Stodden, D.; Melson, W. G.

    2001-12-01

    The Sykesville Formation, the focus of this study, is in the easternmost Potomac Terrain between Roosevelt Island and Chain Bridge in the Potomac River Gorge on the Virginia side. The Potomac is one of many as yet poorly understood terranes speculatively added to the late Precambrian margin of North America. The remarkably voluminous Sykesville formation extends 125 km and is typically at least 3 km thick. Hopson (1964) recognized it as a gigantic slump deposit that grades westward into the turbidites of the Wissahickon Formation. The work of Hopson has been expanded upon in the many publications of A. A. Drake, Jr. with additional mapping in northern Virginia. The age of the Sykesville protolith is probably over 500 ma and was obducted on to the North American continent probably over 400 million years ago by collision with a deep-sea trench marginal to a mountainous continent or microcontinent. The source area for the protolith in our study area is overwhelmingly continental. Quartz veins and what appear to be metaorthoquartzite bed are common in the Sykesville. The presumed metaorthoquartzite beds was examined by cathodoluminescence. With this analysis, we discovered relict sand grains preserved in a quartz sample. This presents an enigma: the presence of a pure, mature quartz sediment interbedded in an immature feldspathic sandy slump deposit. Were there two quite different source areas feeding into the protolith? We examined garnets using electron microprobe analysis to examine the P-T history of the Sykesville. The garnets show simple zoning patterns, most clearly, as usual, in MnO. Compositional profiles suggest a single episode of metamorphism followed by retrogression, presumably during uplift and erosion after obduction. The age interval of this metamorphism is uncertain but was latest Precambrian or early Cambrian (Penobscot Orogeny). Future analysis of the chemical composition of the garnets will tell us more about the pressures and temperatures that the

  3. Retinal detachment as a complication of neodymium: yttrium aluminum garnet laser cyclophotocoagulation.

    PubMed

    Geyer, O; Neudorfer, M; Lazar, M

    1993-05-01

    We report a traction retinal detachment that developed within one month of transscleral neodymium: yttrium aluminum garnet (Nd:YAG) laser cyclophotocoagulation, a previously unreported complication of the new cyclodestructive procedure. A 17-year-old boy was referred to our department with uncontrolled aphakic glaucoma OD after having undergone cyclocryotherapy twice. Three treatments with transscleral Nd:YAG cyclophotocoagulation were done over nine months to lower his intraocular pressure. Hypotony and traction retinal detachment occurred after the third laser treatment and was managed successfully by vitrectomy with a fluid-gas exchange. Thus, the possibility of this additional complication should be remembered when doing transscleral Nd:YAG cyclophotocoagulation. PMID:8517586

  4. First findings of monocrystalline aragonite inclusions in garnet from diamond-grade UHPM rocks (Kokchetav Massif, Northern Kazakhstan).

    PubMed

    Korsakov, Andrey V; Vandenabeele, Peter; Perraki, Maria; Moens, Luc

    2011-10-01

    The presence of aragonite inclusions in garnet from diamond-grade metamorphic rocks from the Kokchetav Massif, Northern Kazakhstan was identified for the first time by means of Raman analyses and mapping. Aragonite appears within the inclusions up to 50 μm in size as a single crystal. These inclusions have rounded shape. The grain boundary between the host-garnet is smooth. No cracks occur around the aragonite inclusions. No significant shift in the main aragonite Raman band was measured. These observations indicate that residual pressure within the inclusion is minor. These findings imply either non-UHPM origin of the host garnet or significant plastic deformation of host minerals during retrograde stage. These features should be taken into account for recovery peak metamorphic conditions and modeling of exhumation processes of UHPM complexes. PMID:21247793

  5. Neoarchean metamorphism recorded in high-precision Sm-Nd isotope systematics of garnets from the Jack Hills (Western Australia)

    NASA Astrophysics Data System (ADS)

    Eccles, K. A.; Baxter, E. F.; Mojzsis, S. J.; Marschall, H.; Williams, M. L.; Jercinovic, M. J.

    2013-12-01

    Studies of metasedimentary rocks from the Jack Hills, which host Earth's oldest known detrital minerals, have focused on zircon and occasionally monazite or xenotime, but no attention has been directed toward one of the most common mineral markers of metamorphism: garnet. Garnet can provide a record of the post-depositional, prograde metamorphic history of Archean metasedimentary rocks. Additionally, the use of a newly developed detrital garnet dating technique [1,2] may reveal information about pre-depositional metamorphism that could address lingering questions about the nature and timing of Earth's earliest tectonometamorphic events. Here we investigate garnet from the Jack Hills metasedimentary rocks to test whether they record in situ metamorphism or are a detrital relict of even older metamorphic events. We identified garnet in two bulk quartz-pebble conglomerate samples collected from the 'discovery' outcrop at Eranondoo Hill in the Jack Hills of Western Australia. Electron microprobe analyses of polished grains and SEM measurements of unpolished grain surfaces are consistent, revealing garnet composition indicative of a single generation/population of predominantly almandine-spessartine solid solution (~10-35% mole fraction spessartine). Compositional maps of garnet grains reveal little zoning and no discontinuities, most consistent with a single growth event. Dating Jack Hills' garnet via the Sm-Nd system is possible due to continued development of small sample analysis techniques, including running NdO+ TIMS analyses with Ta2O5 activator [3] permitting <50 ppm 2 sigma analytical precision on a 400pg in-house standard and continued improvement in blanks (<15pg full procedural blanks). Additionally, employing a nondestructive chemical prescreening technique (tabletop SEM) allows for grouping of multiple grains based on chemical similarity. Final Nd loads in the 450-750pg range routinely yield dates with precisions <×10Ma for two point isochrons between

  6. Electron Microprobe Analysis of Fe2+/Fe3+ in Minerals With low Total Iron Concentrations

    NASA Astrophysics Data System (ADS)

    Creighton, S. D.; Matveev, S.; Stachel, T.; Luth, R. W.

    2004-12-01

    The development of the `flank method' by Höfer et al. (1994) has made it possible to quantify ferrous and ferric iron concentrations in minerals using the electron microprobe. The flank method makes use of the changes in both the wavelength and intensity of soft Fe Lα and Fe Lβ X-ray emission lines of minerals containing Fe3+ and Fe2+.By measuring at energies off the peak maxima (on the peaksAƒAøAøâ_sA¬Aøâ_zAø flanks) the differences due to variable ferric iron ratios are maximized, thus making the flank method much more sensitive than methods relying on either peak shifts or peak area ratios. Using a correction for self-absorption, the Fe3+/Fe2+ ratio of minerals may be accurately and precisely determined. The original flank method was developed for minerals with high total iron concentration e.g. Fe-rich garnet end-members (almandine, andradite, and skiagite), and Fe-oxides (wüstite). To make it applicable to minerals with total iron concentrations of less than 10 wt.% as is common in mantle-derived minerals, we have modified, in three ways, the flank method to significantly improve the precision. Firstly, we have increased the number of analyses per mineral grain to 400 thereby providing a far more representative mean. Secondly, because it is necessary to accurately reproduce the exact position of the spectrometer crystal for each flank measurement, we have eliminated the need to reposition the spectrometer by serially measuring each flank position. Thirdly, we compensate for instrumental drift by measuring two 10 μ m by 10 μ m grids (1 μ m spot size and spacing) for both flank positions. Each mineral grain is measured sequentially, collecting 200 analyses on the first flank position. The procedure is identically repeated for measurements on the second flank position. The elapsed time between each grid measurement is the same for all samples and drift for either flank position is eliminated by averaging. Using these modifications to the flank

  7. Iron losses in sweat

    SciTech Connect

    Brune, M.; Magnusson, B.; Persson, H.; Hallberg, L.

    1986-03-01

    The losses of iron in whole body cell-free sweat were determined in eleven healthy men. A new experimental design was used with a very careful cleaning procedure of the skin and repeated consecutive sampling periods of sweat in a sauna. The purpose was to achieve a steady state of sweat iron losses with minimal influence from iron originating from desquamated cells and iron contaminating the skin. A steady state was reached in the third sauna period (second sweat sampling period). Iron loss was directly related to the volume of sweat lost and amounted to 22.5 micrograms iron/l sweat. The findings indicate that iron is a physiological constituent of sweat and derived not only from contamination. Present results imply that variations in the amount of sweat lost will have only a marginal effect on the variation in total body iron losses.

  8. Iron Sucrose Injection

    MedlinePlus

    ... stop working). Iron sucrose injection is in a class of medications called iron replacement products. It works ... hands, feet, ankles, or lower legs; loss of consciousness; or seizures. If you experience a severe reaction, ...

  9. Serum iron test

    MedlinePlus

    ... GM. Disorders of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  10. Total iron binding capacity

    MedlinePlus

    ... GM. Disorders of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  11. Iron and Your Child

    MedlinePlus

    ... 24 months old. Serve iron-rich foods alongside foods containing vitamin C — such as tomatoes, broccoli, oranges, and strawberries — which improves the body's absorption of iron. Avoid serving coffee ...

  12. Iron supplements (image)

    MedlinePlus

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  13. Iron in diet

    MedlinePlus

    Diet - iron; Ferric acid; Ferrous acid; Ferritin ... The human body needs iron to make the oxygen-carrying proteins hemoglobin and myoglobin. Hemoglobin is found in red blood cells and myoglobin is found ...

  14. Preservation of deep Himalayan PT conditions that formed during multiple events in garnet cores: Mylonitization produces erroneous results for rims

    NASA Astrophysics Data System (ADS)

    Sapkota, J.; Sanislav, I. V.

    2013-03-01

    The Kathmandu Thrust Sheet, which overlies the Lesser Himalayas along the southern part of the Main Central Thrust (MCT) and forms the leading edge of the Higher Himalayan crystalline rocks, is folded at a regional scale by the Gorkha-Kathmandu fold couplet in Central Nepal. Garnet porphyroblasts lying close to the MCT within this thrust sheet preserve structural and metamorphic history that predates mylonitization during thrust emplacement. The succession of five FIA sets preserved within these porphyroblasts formed due to changes in the direction of India's motion relative to Asia after they collided. The intersection of Fe, Ca and Mn isopleths for garnet cores reveals that FIA sets 1, 2, 3, 4 and 5 nucleated respectively at 6.2 kbar and 515 °C, 6-7 kbar and 545-550 °C, 6.6 kbar and 530 °C, 5.6-6.2 kbar and 525-550 °C and 6.8-6.9 kbar and 520-560 °C. The average PT mode of THERMOCALC, which relies on equilibrium being achieved between the garnet rims and the matrix, gives pressures around 11 kbar that do not accord with the lengthy succession of lower core pressures. The many foliations in the matrix, which formed during top to the south thrusting plus subsequent deformations that eventually led to these rocks reaching the surface, truncate all foliations preserved within the porphyroblasts that are defined by inclusion trails. This has resulted in the garnet rims not being in equilibrium with the matrix and the anomalously high pressures. The garnet rims may have been affected by slow dissolution and solution transfer over the period of time that the matrix was deforming plastically at high strain rates as the rocks were uplifted. The assumption of equilibrium between garnet rims and surrounding silicates used by various rim geothermobarometric methods does not hold for these rocks.

  15. Trace element partitioning between majoritic garnet and silicate melt at 10-17 GPa: Implications for deep mantle processes

    NASA Astrophysics Data System (ADS)

    Corgne, Alexandre; Armstrong, Lora S.; Keshav, Shantanu; Fei, Yingwei; McDonough, William F.; Minarik, William G.; Moreno, Karen

    2012-09-01

    Melting experiments were performed on a silica-rich peridotite composition at 10-17 GPa to determine majoritic garnet-melt partition coefficients (D) for major and trace elements. Our results show that D for many elements, including Na, Sc, Y and rare earth elements (REE), varies significantly with increasing pressure or proportion of majorite component. Lu and Sc become incompatible at 17 GPa, with D decreasing from 1.5 at 10 GPa to 0.9 at 17 GPa. As predicted from lattice strain, log D for isovalent cations entering the large site of majoritic garnet exhibits a near-parabolic dependence on ionic radius. Our data are used to refine a previously published predictive model for garnet-melt partitioning of trivalent cations, which suffered from a lack of calibration in the 10-20 GPa range. Our results suggest that Archean Al-depleted komatiites from Barberton (South Africa) may have been generated by partial melting of dry peridotite at depths between 200 and 400 km. We also speculate that transition zone diamonds from Kankan (Guinea), which contain inclusions of majoritic garnet, may have formed from the partial reduction of CO2-rich magmas that subsequently transported them to the surface. This hypothesis would provide an explanation for the REE patterns of majoritic garnet trapped within these diamonds, including Eu anomalies. Finally, we show that segregation of majoritic garnet-bearing cumulates during crystallisation of a deep Martian magma ocean could lead to a variety of Lu/Hf and Sm/Nd ratios depending on pressure, leading to a range of ɛ143Nd and ɛ176Hf isotope signatures for potential mantle sources of Martian rocks.

  16. Results of 40Ar/39Ar dating of phlogopites from kelyphitic rims around garnet grains (Udachnaya-Vostochnaya kimberlite pipe)

    NASA Astrophysics Data System (ADS)

    Yudin, D. S.; Tomilenko, A. A.; Alifirova, T. A.; Travin, A. V.; Murzintsev, N. G.; Pokhilenko, N. P.

    2016-07-01

    40Ar/39Ar dating of phlogopite from kelyphitic rims around garnet grains from the Udachnaya-Vostochnaya kimberlite pipe in the Sakha (Yakutia) Republic (Russia) revealed that when this mineral has contact with a kimberlite melt its age corresponds (within error limits) to that of the formation of the kimberlite pipe, thus indicating that the method may be used for dating kimberlites and related rocks. In mantle xenoliths, kelyphitic phlogopites rimming garnet grains partially lose radiogenic Ar, which results in a complex age spectrum. Rejuvenation of the K/Ar system in them is determined by the thermal impact of the kimberlite melt on captured rocks.

  17. IBA investigations of loose garnets from Pietroasa, Apahida and Cluj-Someşeni treasures (5th century AD)

    NASA Astrophysics Data System (ADS)

    Bugoi, R.; Oanţă-Marghitu, R.; Calligaro, T.

    2016-03-01

    This paper reports the archaeometric investigations of 418 loose garnets from Pietroasa and Cluj-Someşeni treasures and Apahida II and III princely grave inventories (5th century AD). The chemical composition of the gems was determined by external beam micro-PIXE technique at the AGLAE accelerator of C2RMF, Paris, France. Complementary observations made by Optical Microscopy revealed details on the gemstones cutting and polishing and permitted to identify certain mineral inclusions. The compositional results evidenced several types of garnets from the pyralspite series, suggesting distinct provenances for these Early Medieval gems.

  18. Garnet peridotite xenoliths in a Montana, U.S.A., kimberlite

    USGS Publications Warehouse

    Carter, Hearn B., Jr.; Boyd, F.R.

    1975-01-01

    Within a swarm of late middle Eocene subsilicic-alkalic diatremes, one diatreme 270 by 370 m and an associated dike contain common xenoliths of granulite and rare xenoliths of spinel peridotite and garnet peridotite. Six garnet lherzolite xenoliths have been found and these show a range of textures. Four are granular, and two are intensely sheared. Phlogopite is absent from the intensely sheared xenoliths and is thought to be primary in part in the granular xenoliths. Estimated temperatures and depths of equilibration of xenolith pyroxenes range from 920??C, 106 km (32 kbar) to 1315??C, 148 km (47 kbar). The xenoliths show increasing amounts of deformation with greater inferred depths of origin. The temperature-depth points suggest a segment of an Eocene geotherm for Montana which is similar in slope to the steep portion of the pyroxene-determined Lesotho geotherm (Boyd and Nixon, this volume) and is considerably steeper than typical calculated shield and continental geotherms at present. The steep trend could be a result of plate-tectonic shearing and magma ascension within an Eocene low-velocity zone. Preservation of intensely sheared textures requires rapid transport of material from about 150 km depth during active deformation of relatively dry rock. The occurrence of monticellite peridotite in this kimberlite diatreme suggests that magmas which crystallized to monticellite peridotite at relatively shallow depth could be one of the primitive types of kimberlite magma. ?? 1975.

  19. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    SciTech Connect

    Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A.

    2015-12-28

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet is mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.

  20. Tectonically emplaced ultra-depleted lithospheric mantle records garnet, spinel and plagioclase facies events

    NASA Astrophysics Data System (ADS)

    Czertowicz, Thomas; Scott, James; Palin, Mike

    2014-05-01

    The poorly studied Anita Ultramafites in western New Zealand represent a several km wide slice of lithospheric mantle that was tectonically emplaced onto the Gondwana supercontinent margin. The peridotites are almost exclusively spinel facies dunite and harzburgite, although spinel-orthopyroxene symplectites indicate the former presence of Cr-garnet. Pyroxenite dikes are uncommon, and there is no sign of an ophiolitic type structure. Olivine (~Fo93) and chromite (~Cr# 70) attest to extreme degrees of melt depletion, likely under hydrous conditions. The rocks were decompressed and equilibrated at the spinel facies. The ultramafites were then refertilised by a fluid that was rich in Si, Ca, K, OH and LREE, and probably equates to a low-degree silicate melt. The occurrence of negative and positive Eu and Sr anomalies in amphibole points to the influence of plagioclase, and suggests that refertilisation occurred at a very shallow lithospheric level. An added complication is that the peridotite was metamorphosed to upper amphibolite facies in the Cretaceous after tectonic emplacement. This generated talc, tremolite and chlorite. P-T conditions from adjacent gneisses indicate that this event occurred at ~ 10-12 kbar in association with crustal thickening. Thus, the peridotite may have been pushed back out of plagioclase facies conditions, partially melted, and re-equilibrated back in the spinel facies. The Anita Ultramafics therefore record a sequence of attempts to equilibrate at garnet - spinel - plagioclase - spinel facies, before final exhumation.

  1. Experimental calibration of a garnet-clinopyroxene geobarometer for mantle eclogites

    NASA Astrophysics Data System (ADS)

    Beyer, C.; Frost, D. J.; Miyajima, N.

    2015-02-01

    Thermodynamic parameters have been calibrated for a geobarometer suitable for use on eclogitic mantle xenoliths. The barometer is based on the incorporation of tetrahedrally coordinated aluminum in clinopyroxene coexisting with garnet and has been calibrated using the results of piston cylinder and multi-anvil experiments performed between pressures of 3 and 7 GPa and temperatures from 1,200 to 1,550 °C. Starting materials were hydrous and anhydrous synthetic mixtures of basaltic bulk compositions that yielded homogeneous bimineralic garnet-clinopyroxene phase assemblages. The experimental data set was expanded by employing results from previous experimental studies conducted in eclogitic systems, which widened the range of applicable conditions and compositions. The calibration reproduces experimental pressures of bimineralic eclogite assemblages, in addition to SiO2-saturated and kyanite-bearing eclogites, to within 0.4 GPa at the 95 % confidence interval. The barometer was then used to examine equilibration pressures recorded by natural mantle eclogites from various xenolith locations covering a wide pressure, temperature, and compositional range.

  2. Basic study of Eu2+-doped garnet ceramic scintillator produced by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Sugiyama, Makoto; Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Ito, Akihiko; Nikl, Martin; Goto, Takashi; Yoshikawa, Akira

    2012-12-01

    We report a new discovery of Eu2+-doped bulk garnet ceramic scintillators based on reduction of Eu3+ ions without additives. Eu2+-doped Y3Al5O12 and Lu3Al5O12 ceramics were prepared by spark plasma sintering (SPS) method. Using SPS, the green and blue luminescence was observed under UV lamp excitation for Eu2+-doped Y3Al5O12 and Lu3Al5O12 ceramics, respectively. Under excitation by 241Am alpha-ray the Eu2+ 5d-4f emission was observed in radioluminescence spectra both samples. For the first time, scintillation response due to Eu2+ 5d-4f luminescence was observed in the bulk garnet oxide materials. In addition, Eu-doped Al2O3 prepared by SPS showed Eu2+ 5d-4f emission in the radioluminescence spectrum. It is confirmed that Al is a key element to reduce Eu3+ as well as highly reductive condition in SPS.

  3. Origin of high Li⁺ conduction in doped Li₇La₃Zr₂O₁₂ garnets

    SciTech Connect

    Chen, Yan; Rangasamy, Ezhiylmurugan; Liang, Chengdu; An, Ke

    2015-08-06

    Substitution of a native ion in the crystals with a foreign ion that differs in valence (aliovalent doping) has been widely attempted to upgrade solid-state ionic conductors for various charge carriers including O²⁻, H⁺, Li⁺, Na⁺, etc. The doping helps promote the high-conductive framework and dredge the tunnel for fast ion transport. The garnet-type Li₇La₃Zr₂O₁₂ (LLZO) is a fast Li⁺ solid conductor, which received much attention as an electrolyte candidate for all-solid-state lithium ion batteries, showing great potential to offer high energy density and minimize battery safety concerns to meet extensive applications in large energy storage systems such as those for electric vehicles and aerospace. In the Li-stuffed garnet framework of LLZO, the 3D pathway formed by the incompletely occupied tetrahedral sites bridged by a single octahedron enables the superior Li⁺ conductivity. For optimal performance, many aliovalent-doping efforts have been made throughout metal elements (Al³⁺, Ta⁵⁺) and metalloid elements (Ga³⁺, Te⁶⁺) in the periodic table with various valences to stabilize the high-conductive phase and increase the Li vacancy concentration.

  4. Origin of high Li⁺ conduction in doped Li₇La₃Zr₂O₁₂ garnets

    DOE PAGESBeta

    Chen, Yan; Rangasamy, Ezhiylmurugan; Liang, Chengdu; An, Ke

    2015-08-06

    Substitution of a native ion in the crystals with a foreign ion that differs in valence (aliovalent doping) has been widely attempted to upgrade solid-state ionic conductors for various charge carriers including O²⁻, H⁺, Li⁺, Na⁺, etc. The doping helps promote the high-conductive framework and dredge the tunnel for fast ion transport. The garnet-type Li₇La₃Zr₂O₁₂ (LLZO) is a fast Li⁺ solid conductor, which received much attention as an electrolyte candidate for all-solid-state lithium ion batteries, showing great potential to offer high energy density and minimize battery safety concerns to meet extensive applications in large energy storage systems such as thosemore » for electric vehicles and aerospace. In the Li-stuffed garnet framework of LLZO, the 3D pathway formed by the incompletely occupied tetrahedral sites bridged by a single octahedron enables the superior Li⁺ conductivity. For optimal performance, many aliovalent-doping efforts have been made throughout metal elements (Al³⁺, Ta⁵⁺) and metalloid elements (Ga³⁺, Te⁶⁺) in the periodic table with various valences to stabilize the high-conductive phase and increase the Li vacancy concentration.« less

  5. An experimental search for the electron Electric Dipole Moment in Gadolinium Gallium Garnet

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Liu, Chen-Yu

    2011-04-01

    A discovery of a permanent electric dipole moment of the electron (eEDM) would provide crucial information about the nature of T-violation and imply new sources of CP-violation beyond the Standard Model. While the leading experimental technique used to measure EDM is based on the nuclear magnetic resonance, we are pursuing research that would improve the present experimental limit of the eEDM using a new technique in solid-state systems at low temperatures. The experiment uses a paramagnetic insulator Gadolinium Gallium Garnet with a large magnetic response. The presence of the eEDM leads to a finite magnetization when the garnet sample is subjected to a strong electric field. The resulting magnetization can be measured using the Superconducting Quantum Interference Device (SQUID) as a sensitive magnetometer. In this talk, we will discuss the progress to control the systematic effects and improve the sensitivity. The major efforts include the design and implementation of a 24-bit data acquisition system with ultra-low level of channel crosstalk, and the control of the high voltage drift from the supply. With these considerable progresses, we report our first background-free experimental limit of the eEDM on the order of 10-24 e.cm.

  6. Grain-size dependence of garnet composition revealed by provenance signatures of modern stream sediments from the western Hohe Tauern (Austria)

    NASA Astrophysics Data System (ADS)

    Krippner, Anne; Meinhold, Guido; Morton, Andrew C.; Russell, Eva; von Eynatten, Hilmar

    2015-05-01

    Heavy minerals are valuable indicators about the geological framework in the source area. The heavy mineral garnet is one of the most widespread heavy minerals in orogenic sediments and its geochemistry provides important information about metamorphic conditions. The application of heavy minerals and garnet geochemistry for sedimentary provenance analysis is tested for modern stream sediments collected along three rivers draining the Eclogite Zone and adjacent geological source units of the western Hohe Tauern area in the central Eastern European Alps. For comparison with the stream sediments, rock outcrops exposed in this area were also sampled. The chosen area is very well investigated and provides an excellent place to constrain the relations between source rocks and sediment in first-order drainages. The influence of grain size is studied in detail by considering grain-size fractions ranging from coarse silt to coarse sand (32 to 1000 μm). In all grain-size fractions the heavy mineral assemblages are characterised to a variable extent by epidote, zoisite, garnet, and green calcic amphibole. In the smaller grain-size fraction apatite is more frequent, whereas in the coarser grain-size fractions an increase of green calcic amphibole and garnet can be observed. Electron microprobe analysis of detrital garnet shows the dominance of almandine-rich garnet. Stream sediments within and downstream of the Eclogite Zone show an increase of pyrope-rich garnets. Interestingly, in all samples, grossular-rich garnets are more frequent in the smaller grain sizes and pyrope-rich garnets are more frequent in the coarser grain sizes. This is controlled by the original finer size distribution of grossular in the source rocks rather than being a hydraulic effect. The heavy mineral assemblages and garnet geochemical data reflect the geological setting of the study area, hence confirming the general strength of these methods in sedimentary provenance analysis. However, the data

  7. Iron, radiation, and cancer.

    PubMed Central

    Stevens, R G; Kalkwarf, D R

    1990-01-01

    Increased iron content of cells and tissue may increase the risk of cancer. In particular, high available iron status may increase the risk of a radiation-induced cancer. There are two possible mechanisms for this effect: iron can catalyze the production of oxygen radicals, and it may be a limiting nutrient to the growth and development of a transformed cell in vivo. Given the high available iron content of the western diet and the fact that the world is changing to the western model, it is important to determine if high iron increases the risk of cancer. PMID:2269234

  8. Iron deficiency anemia

    PubMed Central

    Naigamwalla, Dinaz Z.; Webb, Jinelle A.; Giger, Urs

    2012-01-01

    Iron is essential to virtually all living organisms and is integral to multiple metabolic functions. The most important function is oxygen transport in hemoglobin. Iron deficiency anemia in dogs and cats is usually caused by chronic blood loss and can be discovered incidentally as animals may have adapted to the anemia. Severe iron deficiency is characterized by a microcytic, hypochromic, potentially severe anemia with a variable regenerative response. Iron metabolism and homeostasis will be reviewed, followed by a discussion of diagnostic testing and therapeutic recommendations for dogs and cats with iron deficiency anemia. PMID:22942439

  9. Iron toxicity in yeast.

    PubMed

    Wiśnicka, R; Krzepiłko, A; Wawryn, J; Biliński, T

    1997-01-01

    It has been found that yeast cells are sensitive to iron overload only when grown on glucose as a carbon source. Effective concentration of ferrous iron is much higher than that found in natural environments. Effects of ferrous iron are strictly oxygen dependent, what suggest that the formation of hydroxyl radicals in the Fenton reaction is a cause of the toxicity. Respiratory deficiency and pretreatment of cells with antimycin A prevent toxic effects in the late exponential phase of growth, whereas uncouplers and 2mM magnesium salts completely protect even the most vulnerable exponential cells. Generally, toxic effects correlate with the ability of cells to take up this metal. The results presented suggest that during ferrous iron overload iron is transported through the unspecific divalent cation uptake system which is known in fungi. The data suggest that recently described high and low affinity systems of iron uptake in yeast are the only source of iron in natural environments. PMID:9516981

  10. [Iron function and carcinogenesis].

    PubMed

    Akatsuka, Shinya; Toyokuni, Shinya

    2016-07-01

    Though iron is an essential micronutrient for humans, the excess state is acknowledged to be associated with oncogenesis. For example, iron overload in the liver of the patients with hereditary hemocromatosis highly increases the risk of hepatocellular carcinoma. Also, as to asbestos-related mesothelioma, such kinds of asbestos with a higher iron content are considered to be more carcinogenic. Iron is a useful element, which enables fundamental functions for life such as oxygen carrying and electron transport. However, in the situation where organisms are unable to have good control of it, iron turns into a dangerous element which catalyzes generation of reactive oxygen. In this review, I first outline the relationships between iron and cancer in general, then give an explanation about iron-related animal carcinogenesis models. PMID:27455808

  11. An oxygen isotope record of prograde and retrograde subduction fluids preserved in garnets from eclogite and related rocks from California and Greece

    NASA Astrophysics Data System (ADS)

    Page, F.; Strickland, A.; Essene, E. J.; Valley, J. W.

    2012-12-01

    In situ analysis of oxygen isotopes in garnet formed during subduction metamorphism offers a powerful new tool to unravel fluid histories of eclogite and related rocks. Slow intracrystalline diffusion rates in garnet allow it to preserve primary oxygen isotope ratios, and its utility in thermobarometry and geochronology allows oxygen isotope ratios to be tied to a P-T-t-fluids path. These paths can be used to identify when, in the history of a rock, fluid infiltration took place. Application of this method to orogenic eclogites has demonstrated external fluid interaction during prograde metamorphism (Russell et al., 2012 CMP in press). Analyses of garnets from metamafic and metasedimentary blocks in mélange-type subduction environments reveal a greater diversity in the timing of fluid infiltration events than those found in continental collision zones. Garnets from two glaucophane eclogites from Syros, Greece were found to be homogeneous within analytical uncertainty (δ18O=3.6±0.5‰ 2SD; 4.6±0.4‰). This result is consistant with existing studies in the region demonstrating limited fluid flow in eclogite blocks during metamorphism. Cation and oxygen isotope zoning in garnet from tectonic blocks of eclogite and garnet hornblendite from the Franciscan Formation reveals separate prograde and retrograde fluid histories. Garnet cores preserve a homogeneous prograde δ18O history with both high (11‰) and low (4‰) values in different samples. Multiple episodes of garnet resorption and regrowth record a dramatically changing bulk oxygen composition resulting in 6-7‰ neoformed garnet rims in both samples. Thermobarometry of inclusions (grt+cpx+phg) in eclogite garnet rims yields lower pressure blueschist-facies PT, requiring that low-δ18O fluid infiltration and garnet rim growth post-dates substantial exhumation. Tectonic blocks of metamafic and metasedimentary rocks are found in mélange on Santa Catalina Island. Samples of garnet hornblendite and garnet

  12. Retrograde phase transitions of majoritic garnets included in diamonds: a case study of subcalcic Cr-rich majoritic pyrope from a Snap Lake diamond, Canada

    NASA Astrophysics Data System (ADS)

    Sobolev, N.; Wirth, R.; Logvinova, A. M.; Pokhilenko, N. P.; Kuzmin, D. V.

    2008-12-01

    Majoritic garnets, containing pyroxene solid solution were initially discovered in diamonds from Monastery mine, South Africa (Moore, Gurney, 1985). They are very rare both in limited number of kimberlite pipes and alluvial sources (e.g. Stachel et al., 2005). Most of them are eclogitic, but some peridotitic (U/P-type) of lherzolitic (L) and wehrlitic (W) assemblages were also found (e.g. Sobolev et al., 1997; 2004). Significant percentage (40%) of majoritic garnets among subcalcic Cr-pyrope inclusions in diamonds was discovered in Snap Lake kimberlites (Pokhilenko et al., 2004). We present the results from a revised study of a harzburgitic (H) garnet with highest majorite content (up to 16 mol.%) by TEM techniques using FIB prepared foils (Wirth, 2004). Fine-grained symplectite consisting of low Ca orthopyroxene, clinopyroxene, Cr-spinel and coesite was detected with TEM and confirmed by XRD in the inner part of the garnet grain forming a sharp interface with the host. EMPA showed identical chemical composition of the nanometer-sized symplectite and the garnet. Further polishing of the garnet grain removed the symplectite, which possibly was present as a thin lense within the garnet. Only pyroxene exsolutions from majorite garnet have been documented up to date (Wilding, 1990). The remaining garnet is completely homogeneous and contains unusually high Ni (118 ppm) and very depleted REE patterns, less than 0.8-0.4 Grt/C1-chondrite for MREE and HREE. This demonstrates very high temperature of its origin (1380°C) and pressure about 11 GPa. The detected symplectite represents partial retrograde phase transition of the examined garnet, which was probably caused by plastic deformation of diamond at high temperatures within the Earth's mantle (e.g. Stachel et al., 2005). In this particular sample such plastic deformation and retrograde reaction occurred within coesite stability field at depths no less than 100 km. Wehrlitic garnet containing very high majoritic

  13. The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors.

    PubMed

    Cussen, Edmund J

    2006-01-28

    The structure of the fast lithium-ion conducting garnets Li5La3M2O12 (M = Ta, Nb) reveals Li+ on both tetrahedral and octahedral sites and suggests that the latter are responsible for the observed Li+ mobility via a clustering mechanism. PMID:16493817

  14. 1064 nm laser emission of highly doped Nd: Yttrium aluminum garnet under 885 nm diode laser pumping

    NASA Astrophysics Data System (ADS)

    Lupei, V.; Pavel, N.; Taira, T.

    2002-06-01

    Highly efficient 1064 nm continuous-wave laser emission under 885 nm diode pumping in concentrated Nd: Yttrium aluminum garnet (YAG) crystals (up to 3.5 at. % Nd) and ceramics (up to 3.8 at. % Nd) is reported. A highly doped (2.4 at. %) Nd:YAG laser, passively Q switched by a Cr4+:YAG saturable absorber, is demonstrated.

  15. Garnet-quartz/coesite graphic texture and expansion in the early exhumation of silica-rich UHP crustal rocks

    NASA Astrophysics Data System (ADS)

    Theunissen, K.; Korsakov, A. V.; Smirnova, L. V.

    2003-04-01

    Relying on existing thermobarometric data for garnets (Grtw) from nearby whiteschists, both the compositional and optical zonation patterns of different garnet types (Grt1--3), their relation with fabric-forming minerals and their occurrence in different micaschistous rocks, are explored as a tool in unravelling early stage exhumation mechanisms of ultrahigh-pressure (UHP) metamorphic rocks. Within kyanite-phengite-garnet (Grt1) micaschists, silica-rich lenses are composed of quartz, Grt2 and Grt3 porphyroblasts and minor phengite. Grt3 and quartz granoblasts (Q3) depict a particular Grt3-Q3 graphic texture. All garnet types are prograde zoned with coesite pseudomorphs included in their rim, but only Grt3 bears coesite in its core. Q3 develops as Q3m in the matrix and overprints as large Q3g the densely cracked Grt3 cores, where traces of coesite relics are preserved. In the matrix Q3m is in textural equilibrium with HP phengite, depicting a differentiated S2 schistose fabric. The Grt3-Q3 graphic texture is ascribed to expansion due to coesite-quartz (C-Q) transformation and is considered to occur under HP conditions. Destabilization through expansion is discussed as a suitable deep-seated process or mechanism, contributing in the early stage exhumation of UHP and silica-rich supracrustal Kulet rocks (Kokchetav massif, Kazakhstan). This study was supported by the Russian Foundation for Basic Research (N 01-05-65093) and by the Belgian Government (BOSTCA).

  16. Constituting Antebellum African American Identity: Resistance, Violence, and Masculinity in Henry Highland Garnet's (1843) "Address to the Slaves"

    ERIC Educational Resources Information Center

    Jasinski, James

    2007-01-01

    In August 1843 Presbyterian minister Henry Highland Garnet delivered his "Address to the Slaves of the United States of America" to the National Convention of Colored Citizens in Buffalo, NY. While often read (and almost as often dismissed) as either an unqualified call for a violent slave rebellion or, at the least, a celebration of prior acts of…

  17. An experimental investigation of the stability of majoritic garnet in the Earth's mantle and an improved majorite geobarometer

    NASA Astrophysics Data System (ADS)

    Wijbrans, C. H.; Rohrbach, A.; Klemme, S.

    2016-05-01

    The stability of the majorite component in garnet has been experimentally investigated at high pressure and high temperature, focusing on the effect of bulk composition and temperature. High-pressure experiments were performed in a multi-anvil apparatus, at pressures ranging from 6 to 14.5 GPa, and temperatures between 1400 and 1700 °C. Experiments were performed in a range of bulk compositions in the system SiO2-Al2O3-Cr2O3-CaO-MgO with varying Cr/(Cr + Al) ratios. The majorite content of garnet gradually increases with pressure, and the composition of the garnet, specifically the Cr/(Cr + Al) ratio, exerts a significant effect on the majorite substitution. We found no significant effect of temperature. We use the experimental results in combination with the literature data to derive two empirical geobarometers, which can be used to determine the equilibration pressure of natural majoritic garnets of peridotitic and eclogitic bulk compositions. The barometer for peridotitic compositions is {{P}} = - 77.1 + 27.6 × {{Si}} + 1.67 × {{Cr}} And the barometer for eclogitic compositions is {{P}} = - 29.6 + 11.8 × {{Si}} + 7.81 × {{Na}} + 4.49 × {{Ca}}.

  18. Optimizing white light luminescence in Dy3+-doped Lu3Ga5O12 nano-garnets

    NASA Astrophysics Data System (ADS)

    Haritha, P.; Martín, I. R.; Linganna, K.; Monteseguro, V.; Babu, P.; León-Luis, S. F.; Jayasankar, C. K.; Rodríguez-Mendoza, U. R.; Lavín, V.; Venkatramu, V.

    2014-11-01

    Trivalent dysprosium-doped Lu3Ga5O12 nano-garnets have been prepared by sol-gel method and characterized by X-ray powder diffraction, high-resolution transmission electron microscopy, dynamic light scattering, and laser excited spectroscopy. Under a cw 457 nm laser excitation, the white luminescence properties of Lu3Ga5O12 nano-garnets have been studied as a function of the optically active Dy3+ ion concentration and at low temperature. Decay curves for the 4F9/2 level of Dy3+ ion exhibit non-exponential nature for all the Dy3+ concentrations, which have been well-fitted to a generalized energy transfer model for a quadrupole-quadrupole interaction between Dy3+ ions without diffusion. From these data, a simple rate-equations model can be applied to predict that intense white luminescence could be obtained from 1.8 mol% Dy3+ ions-doped nano-garnets, which is in good agreement with experimental results. Chromaticity color coordinates and correlated color temperatures have been determined as a function of temperature and are found to be within the white light region for all Dy3+ concentrations. These results indicate that 2.0 mol% Dy3+ ions doped nano-garnet could be useful for white light emitting device applications.

  19. Ferric iron budget of Kaapvaal cratonic mantle peridotite

    NASA Astrophysics Data System (ADS)

    Woodland, A.

    2012-04-01

    Oxidation fugacity plays an important role in many geochemical processes, such as partial melting and melt-rock interaction. How mantle peridotite responds during such processes is dependent on the amount of Fe2O3 present, since it occurs in much smaller quantities than Fe2+ and affects buffering capacity. This is particularly the case since redox reactions have been directly implicated in the rejuvenation and eventual breakup of cratons (e.g. Foley 2008, 2011). In addition, oxygen fugacity also influences the incorporation of OH in nominally anhydrous minerals, which can affect the mechanical integrity of cratonic blocks (Peslier et al. 2010). These issues are important for understanding the evolution of the upper mantle beneath the Kaapvaal craton. Canil and coworkers (1994, 1996) reported bulk ferric iron contents for 11 peridotites (10 garnet-bearing and 1 spinel-bearing) from the Kaapvaal. The purpose of this study is to build on their pioneering work to better assess the ferric iron budget of Kaapvaal cratonic mantle and to improve our understanding of how ferric iron is distributed within the peridotitic assemblage. Our data set includes more than 30 additional samples, predominantly garnet peridoites, from 7 localities in South Africa and Lesotho. Bulk Fe2O3 contents were determined by combining measured Fe3+ contents of individual minerals (by Mössbauer spectroscopy) with their respective modal proportion in each sample. Fe3+ contents of garnet and clinopyroxene reported in Woodland & Koch (2003), Lazarov et al. (2009) and Woodland (2009) were combined with new data for orthopyroxene (opx) and modal mineralogy to make this assessment. Opx has Fe3+/Fetot of 0.04-0.1 and Fe3+ contents are comparable between Opx and coexisting Cpx. Calculated whole rock Fe2O3 contents range from 0.02 to 0.29 wt % with contents systematically decreasing with increasing degrees of depletion (as indicated by increasing MgO and decreasing Al2O3 content). For a given MgO content

  20. Metasomatic mantle origin for Mbuji-Mayi and Kundelungu garnet and clinopyroxene megacrysts (Democratic Republic of Congo)

    NASA Astrophysics Data System (ADS)

    Pivin, M.; Féménias, O.; Demaiffe, D.

    2009-11-01

    Mbuji-Mayi (east Kasai province) and Kundelungu (Shaba province) are the two kimberlite fields known for a long time in the Democratic Republic of Congo (DRC). Mbuji-Mayi intrudes the Archean basement (Congo-Kasai Craton) and is diamond-rich, whereas Kundelungu cuts across Paleoproterozoic basement (Bangweulu block) and is diamond-poor. The megacryst suites (or discrete nodule suites) of both fields include garnet and clinopyroxene megacrysts. The pyrope-rich megacrysts can be subdivided in three groups on the basis of their Cr contents: low-Cr (0.00-1.79 wt.%Cr 2O 3; Mg #: 72.8-84.0); medium-Cr (1.93-5.16 wt.%Cr 2O 3; Mg #: 76.2-86.3) and high-Cr (5.42-7.10 wt.%Cr 2O 3; Mg #: 79.2-84.6). There are no significant geochemical differences between the garnets from Mbuji-Mayi and from Kundelungu. Polymineral inclusions composed of K-rich hydrated phases (phlogopite and amphibole), fresh glass and Cr-spinels are identified in garnets from all three groups, in both localities, which suggest a common origin. Two groups of diopside megacrysts from Mbuji-Mayi are distinguished on the basis of their Ca content: low-Ca (Ca #: 39.5-42.1; 0.61-0.92 wt.%Cr 2O 3) and medium-Ca (Ca #: 44.1-48.5; 0.41-1.09 wt.%Cr 2O 3); they differ from a third group of high-Cr diopsides (Ca #: 47.1-49.4; 1.31-2.77 wt.%Cr 2O 3). The major element compositions of DRC megacrysts are distinct from those of many other megacryst suites worldwide: the clinopyroxenes are lower in Fe and Ti and higher in Mg and the garnets contain more Cr and significantly less Ti, Fe and Al. These DRC megacryst compositions are intermediate between those of peridotite minerals and those of kimberlite megacrysts from other localities. Most garnets have "normal" REE profiles ((La/Yb) N = 0.003-0.027), whereas clinopyroxenes display relative LREE enrichment ((La/Yb) N = 5.1-43.2). The REE patterns of garnet and clinopyroxene megacrysts are similar to those from metasomatized South African mantle lherzolites. The differences

  1. Re-equilibration of primary fluid inclusions in peritectic garnet from metapelitic enclaves, El Hoyazo, Spain

    NASA Astrophysics Data System (ADS)

    Ferrero, Silvio; Bodnar, Robert J.; Cesare, Bernardo; Viti, Cecilia

    2011-05-01

    Primary-appearing fluid (FI) and melt (FI) inclusions occur in peritectic garnet from restitic enclaves from El Hoyazo (Spain). The inclusions were trapped under conditions of immiscibility during partial melting of the enclaves. Trapped fluids in Bt-Grt-Sil and Spl-Crd enclaves have been characterized by microthermometric, Raman spectroscopic, electron microprobe (EMP) and transmission electron microprobe (TEM) analyses to better constrain melt and fluid products and pressure conditions of the partial melting event. In Bt-Grt-Sil enclaves, FI are one phase and contain a CO2-N2 mixture, sometimes with graphite as trapped phase. In Spl-Crd enclaves, FI are two phase and contain an H2O-rich (≤ 90 mol%), with minor amounts of CO2, N2, and traces of H2S and CH4. Graphite often occurs as a trapped phase in the H2O-rich FI, and rare carbonates and other accessory minerals are also observed. Although decrepitation features are not recognized during examination with a petrographic microscope, FI densities based on mass balance constraints are always lower than expected at the inferred PT conditions of entrapment, 5-7 kbar and 800-900 °C. Extremely low densities (≈ 0.1 g cm- 1) of FI in Bt-Grt-Sil enclaves suggest a pressure ≤ 500 bar at 800-900 °C, while densities up to 0.53 g cm- 1 in Spl-Crd enclaves indicate P ≤ 3 kbar at 800-900 °C. Re-equilibration is likely to have occurred via partial decrepitation, as suggested by TEM studies that show rare partially annealed sub-μm cracks, containing small cavities, which may have been the pathways for fluid movement out of the inclusions. MI coexisting with FI have a rhyolitic, peraluminous composition, with higher H2O contents of MI in Spl-Crd enclaves (≈ 9 wt.%) compared to MI in Bt-Grt-Sil enclaves (≈ 3 wt.%). Based on published data, peritectic garnet in Spl-Crd enclaves grew in the presence of a leucogranitic melt saturated in an H2O-rich fluid, in good agreement with the inferred garnet PT growth conditions

  2. Garnet lherzolites from Louwrensia, Namibia: Bulk composition and P/T relations

    USGS Publications Warehouse

    Boyd, F.R.; Pearson, D.G.; Hoal, Karin O.; Hoal, B.G.; Nixon, P.H.; Kingston, M.J.; Mertzman, S.A.

    2004-01-01

    Bulk, mineral and trace element analyses of garnet lherzolite xenoliths from the Louwrensia kimberlite pipe, south-central Namibia, together with previously published Re-Os isotopic data [Chem. Geol. (2004)], form the most extensive set of chemical data for off-craton suites from southern Africa. The Louwrensia suite is similar to those from the Kaapvaal craton in that it includes both predominantly coarse-grained, equant-textured peridotites characterised by equilibration temperatures 1200 ??C. Redepletion ages range back to 2.1 Gy, concordant with the age of the crustal basement and about 1 Gy younger than the older peridotites of the adjacent Kaapvaal craton root. The coarse, low-temperature Louwrensia peridotites have an average Mg number for olivine of 91.6 in comparison to 92.6 for low-temperature peridotites from the craton. Orthopyroxene content averages 24 wt.% with a range of 11-40 wt.% for Louwrensia low-temperature peridotites, in comparison to a mean of 31.5 wt.% and a range of 11-44 wt.% for low-temperature peridotites from the Kaapvaal craton. Other major, minor and trace element concentrations in minerals forming Louwrensia lherzolites are more similar to values in corresponding Kaapvaal peridotite minerals than to those in lithospheric peridotites of Phanerozoic age as represented by off-craton basalt-hosted xenoliths and orogenic peridotites. Proportions of clinopyroxene and garnet in both the Louwrensia and Kaapvaal lherzolites overlap in the range up to 10 wt.% forming a trend extending towards pyrolite composition. Disequilibrium element partitioning between clinopyroxene and garnet for some incompatible trace elements is evidence that some of the trend is caused by enrichment following depletion. The disequilibrium is interpreted to have been caused by relatively recent growth of diopside, as previously suggested for cratonic peridotites. Attempts to constrain the depth of melting required to produce the Louwrensia peridotites suggests

  3. The ubiquity of iron.

    PubMed

    Frey, Perry A; Reed, George H

    2012-09-21

    The importance of iron in living systems can be traced to the many complexes within which it is found, to its chemical mobility in undergoing oxidation-reduction reactions, and to the abundance of iron in Earth's crust. Iron is the most abundant element, by mass, in the Earth, constituting about 80% of the inner and outer cores of Earth. The molten outer core is about 8000 km in diameter, and the solid inner core is about 2400 km in diameter. Iron is the fourth most abundant element in Earth's crust. It is the chemically functional component of mononuclear iron complexes, dinuclear iron complexes, [2Fe-2S] and [4Fe-4S] clusters, [Fe-Ni-S] clusters, iron protophorphyrin IX, and many other complexes in protein biochemistry. Metals such as nickel, cobalt, copper, and manganese are present in the crust and could in principle function chemically in place of iron, but they are scarce in Earth's crust. Iron is plentiful because of its nuclear stability in stellar nuclear fusion reactions. It seems likely that other solid planets, formed by the same processes as Earth, would also foster the evolution of life and that iron would be similarly important to life on those planets as it is on Earth. PMID:22845493

  4. Iron deficiency anaemia.

    PubMed

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment. PMID:26314490

  5. Metasomatic processes in the mantle beneath the Arkhangelsk province, Russia: evidence from garnet in mantle peridotite xenoliths, Grib pipe

    NASA Astrophysics Data System (ADS)

    Kargin, Alexei; Sazonova, Lyudmila; Nosova, Anna; Kovalchuk, Elena; Minevrina, Elena

    2015-04-01

    The Arkhangelsk province is located in the northern East European Craton and includes more than 80 bodies of kimberlite, alkaline picrite and other ultramafic and mafic rocks. They erupted through the Archean-Early Proterozoic basement into the Riphean-Paleozoic sedimentary cover. The Grib kimberlite pipe is located in the central part of the Arkhangelsk province in the Verkhotina (Chernoozerskoe) kimberlite field. The age of the Grib kimberlite is 376+-3 Ma (Rb-Sr by phlogopite). The Grib kimberlite pipe is the moderate-Ti kimberlites (TiO2 1-2 wt %) with strongly fractionated REE pattern , (La/Yb)n = 38-87. The Nd isotopic composition of the Grib pipe ranges epsilon Nd from -0.4 to + 1.0 and 87Sr/86Sr(t) from 0.7042 to 0.7069 (Kononova et al., 2006). Geochemical (Jeol JXA-8200 electron microprobe; SIMS; LA-ICP-MS) composition of clinopyroxene and garnet from mantle-derived xenoliths of the Grib kimberlite pipe was studied to provide new insights into metasomatic processes in the mantle beneath the Arkhangelsk province. Based on both major and trace element data, five geochemical groups of peridotitic garnet were distinguished. The partial melting of metasomatic peridotite with crystallization of a garnet-clinopyroxene association, and orthopyroxene assimilation by protokimberlitic melts was simulated and a model of garnet and clinopyroxene metasomatic origin was proposed. The model includes three stages: 1. Mantle peridotite was fertilized by subduction-derived sediment partial melts/fluids at the lithosphere-asthenosphere boundary to yield a CO2-bearing mantle peridotite (source I). 2. The partial melting of the carbonate-bearing mantle source 1 produced carbonatite-like melts (a degree of partial melting was 1,5 %), which could form the carbonatite-kimberlite rocks of the Mela River (Arkhangelsk province, 50 km North-West of Grib kimberlite) and also produce the metasomatic reworking of (carbonate-bearing) mantle peridotite (mantle source II) and form type-1

  6. The origin of coarse garnet peridotites in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia

    NASA Astrophysics Data System (ADS)

    Doucet, Luc S.; Ionov, Dmitri A.; Golovin, Alexander V.

    2013-06-01

    We report new textural and chemical data for 10 garnet peridotite xenoliths from the Udachnaya kimberlite and examine them together with recent data on another 21 xenoliths from the 80-220 km depth range. The samples are very fresh (LOI near zero), modally homogeneous and large (>100 g). Some coarse-grained peridotites show incipient stages of deformation with <10 % neoblasts at grain boundaries of coarse olivine. Such microstructures can only be recognized in very fresh rocks, because fine-grained interstitial olivine is strongly affected by alteration, and may have been overlooked in previous studies of altered peridotite xenoliths in the Siberian and other cratons. Some of the garnet peridotites are similar in composition to low-opx Udachnaya spinel harzburgites (previously interpreted as pristine melt extraction residues), but the majority show post-melting enrichments in Fe and Ti. The least metasomatized coarse peridotites were formed by 30-38 % of polybaric fractional melting between 7 and 4 GPa and ≤1-3 GPa. Our data together with experimental results suggest that garnet in these rocks, as well as in some other cratonic peridotites elsewhere, may be a residual mineral, which has survived partial melting together with olivine and opx. Many coarse and all deformed garnet peridotites from Udachnaya underwent modal metasomatism through interaction of the melting residues with Fe-, Al-, Si-, Ti-, REE-rich melts, which precipitated cpx, less commonly additional garnet. The xenoliths define a complex geotherm probably affected by thermal perturbations shortly before the intrusion of the host kimberlite magmas. The deformation in the lower lithosphere may be linked to metasomatism.

  7. Brain iron homeostasis.

    PubMed

    Moos, Torben

    2002-11-01

    Iron is essential for virtually all types of cells and organisms. The significance of the iron for brain function is reflected by the presence of receptors for transferrin on brain capillary endothelial cells. The transport of iron into the brain from the circulation is regulated so that the extraction of iron by brain capillary endothelial cells is low in iron-replete conditions and the reverse when the iron need of the brain is high as in conditions with iron deficiency and during development of the brain. Whereas there is good agreement that iron is taken up by means of receptor-mediated uptake of iron-transferrin at the brain barriers, there are contradictory views on how iron is transported further on from the brain barriers and into the brain extracellular space. The prevailing hypothesis for transport of iron across the BBB suggests a mechanism that involves detachment of iron from transferrin within barrier cells followed by recycling of apo-transferrin to blood plasma and release of iron as non-transferrin-bound iron into the brain interstitium from where the iron is taken up by neurons and glial cells. Another hypothesis claims that iron-transferrin is transported into the brain by means of transcytosis through the BBB. This thesis deals with the topic "brain iron homeostasis" defined as the attempts to maintain constant concentrations of iron in the brain internal environment via regulation of iron transport through brain barriers, cellular iron uptake by neurons and glia, and export of iron from brain to blood. The first part deals with transport of iron-transferrin complexes from blood to brain either by transport across the brain barriers or by uptake and retrograde axonal transport in motor neurons projecting beyond the blood-brain barrier. The transport of iron and transport into the brain was examined using radiolabeled iron-transferrin. Intravenous injection of [59Fe-125]transferrin led to an almost two-fold higher accumulation of 59Fe than of

  8. Mechanisms of mammalian iron homeostasis

    PubMed Central

    Pantopoulos, Kostas; Porwal, Suheel Kumar; Tartakoff, Alan; Devireddy, L.

    2012-01-01

    Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in acquisition or distribution of the metal causes anemia; whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways, as well as in mechanisms underlying intracellular iron trafficking, an important but less-studied area of mammalian iron homeostasis. PMID:22703180

  9. Iron and transfusion medicine.

    PubMed

    Waldvogel-Abramovski, Sophie; Waeber, Gérard; Gassner, Christoph; Buser, Andreas; Frey, Beat M; Favrat, Bernard; Tissot, Jean-Daniel

    2013-11-01

    Blood bankers have focused their energy to secure blood transfusion, and only recently have studies been published on the effect of blood donation on iron metabolism. In many facilities, hemoglobin measurement is only performed just before or even during blood donation, but the determination of iron stores is largely ignored. The 2013 paradox of transfusion medicine is due to the fact that blood donation may be harmful and leads to iron deficiency with or without anemia, but for other individuals, it may be a healthy measure preventing type 2 diabetes. The purpose of this review is to discuss iron metabolism in the perspective of blood donation, notably regarding their possible genetic profiles that eventually will discriminate "good" iron absorbers from "bad" iron responders. PMID:24148756

  10. IRON IN MULTIPLE MYELOMA

    PubMed Central

    VanderWall, Kristina; Daniels-Wells, Tracy R; Penichet, Manuel; Lichtenstein, Alan

    2013-01-01

    Multiple myeloma is a non-curable B cell malignancy in which iron metabolism plays an important role. Patients with this disorder almost universally suffer from a clinically significant anemia, which is often symptomatic, and which is due to impaired iron utilization. Recent studies indicate that the proximal cause of dysregulated iron metabolism and anemia in these patients is cytokine-induced upregulation of hepcidin expression. Malignant myeloma cells are dependent on an increased influx of iron and therapeutic efforts are being made to target this requirement. The studies detailing the characteristics and biochemical abnormalities in iron metabolism causing anemia and the initial attempts to target iron therapeutically are described in this review. PMID:23879589

  11. Cellular iron transport.

    PubMed

    Garrick, Michael D; Garrick, Laura M

    2009-05-01

    Iron has a split personality as an essential nutrient that also has the potential to generate reactive oxygen species. We discuss how different cell types within specific tissues manage this schizophrenia. The emphasis in enterocytes is on regulating the body's supply of iron by regulating transport into the blood stream. In developing red blood cells, adaptations in transport manage the body's highest flux of iron. Hepatocytes buffer the body's stock of iron. Macrophage recycle the iron from effete red cells among other iron management tasks. Pneumocytes provide a barrier to prevent illicit entry that, when at risk of breaching, leads to a need to handle the dangers in a fashion essentially shared with macrophage. We also discuss or introduce cell types including renal cells, neurons, other brain cells, and more where our ignorance, currently still vast, needs to be removed by future research. PMID:19344751

  12. Low-temperature time-domain terahertz spectroscopy of terbium gallium garnet crystals

    NASA Astrophysics Data System (ADS)

    Mikhaylovskiy, R. V.; Hendry, E.; Ogrin, F. Y.; Kruglyak, V. V.

    2013-03-01

    We report an experimental observation of high frequency magnetic excitations in terbium gallium garnet crystals using terahertz time-domain spectroscopy. We show that precessional modes of terbium magnetic sublattices can be excited by a magnetic field of a terahertz broadband pulse. We study and discuss the dependence of the observed resonances upon the temperature and the strength and orientation of the bias magnetic field. The behavior of the observed magnetic modes is in agreement with the theory of paramagnetic resonance in the multisublattice system. We also show that the illumination of the crystal with intense optical pulses destroys the magnetic ordering. Our results demonstrate that the time-domain terahertz spectroscopy can be a powerful tool by which to study high frequency properties of dielectric magnetic materials, with perceived extensions to studies in femtomagnetism and magnonics.

  13. Laser ceramic materials for subpicosecond solid-state lasers using Nd3+-doped mixed scandium garnets.

    PubMed

    Okada, Hajime; Tanaka, Momoko; Kiriyama, Hiromitsu; Nakai, Yoshiki; Ochi, Yoshihiro; Sugiyama, Akira; Daido, Hiroyuki; Kimura, Toyoaki; Yanagitani, Takagimi; Yagi, Hideki; Meichin, Noriyuki

    2010-09-15

    We have successfully developed and demonstrated broadband emission Nd-doped mixed scandium garnets based on laser ceramic technology. The inhomogeneous broadening of Nd(3+) fluorescence lines results in a bandwidth above 5 nm that is significantly broader than that for Nd:YAG and enables subpicosecond mode-locked pulse durations. We have also found the emission cross section of 7.8 × 10(-20) cm(2) to be adequate for efficient energy extraction and thermal conductivity of 4.7 W/mK from these new Nd-doped laser ceramics. The new laser ceramics are good candidates for laser host material in a diode-pumped subpicosecond laser system with high efficiency and high repetition rate. PMID:20847774

  14. Faraday effect improvement by Dy3+-doping of terbium gallium garnet single crystal

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Yang, Lei; Hang, Yin; Wang, Xiangyong

    2016-01-01

    Highly transparent Dy3+-doped terbium gallium garnet (TGG) single crystal was grown by Czochralski (Cz) method. Phase composition of the crystal was tested by XRD measurements. The distribution coefficient of Dy3+ in the crystal was obtained. The optical and magneto-optical properties were analyzed in detail, and magnetic properties of the Dy3+-TGG crystal were studied. The paramagnetic behavior is observed down to 10 K. The as-grown crystal exhibited high optical transmittance, particularly in the visible region. The Faraday rotation was investigated over visible and near-infrared regions (VIS-NIR) at room temperature. The Verdet constants increase at measured wavelengths and high thermal stability was found in Dy3+-doped TGG, as compared to the properties of pure TGG, indicating that Dy3+-doped crystals are preferable for magneto-active materials used in Faraday devices at VIS-NIR wavelengths.

  15. Garnet and chromite- bearing mantle peridotite xenoliths from Komsomolskaya pipe, Alakit field, Yakutia

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor; Logvinova, Alla; Valdykin, Nikolai; Makovchuk, Igor; Karpenko, Mikhail; Spetsius, Zdislav; Khmelnikova, Olga; Palessky, Stanislav

    2014-05-01

    Fresh xenoliths in Alakit field in Siberian platform are rare. In the xenoliths from Komsomolskaya pipe there were found 30 xenoliths with fresh Cpx, Gar as well as chromites, phlogopites and ilmenites which allows to construct the Cpx - based geotherm which was before constructed for the Yubileynaya pipe (Ashchepkov et al., 2004). The comparison of the garnets from the breccias and porphyric kimberlites show more depleted and Cr- rich varieties of garnets as it is common for the other pipes. Only relatively fresh material from the dark - grey breccia good relatively fresh xenoliths could be used for the mineral thermobarometry. Large xenolths from the Komsomolskaya pipe belong mainly to the Gar harzburgite or refertilized lherzolite types as also detected on the Cr2O3 - CaO diagram where they belong mainly to the 5-11% Cr2O3 interval. The low Cr varieties are mainly referring to the Fe- enriched pyroxenites or to Phl metasomatites. In SCLM beneath Komsomolskaya pipe is essentially more heated then those beneath Yubileynaya and Sytykanskaya pipes and in lower part they are close to the PTXFO2 are closer in conditrions to the ilmenites which determined the . Peridotites from the lithosphere base (7-6GPa) are enriched in Fe and belong to the porphyroclustic or deformed type by chemistry Fe# =0.14-0.15. the relatively HT conditions were determined also for the peridotites from the 5.0-4. GPa. The most of the Cpx- refertilized varieties give the conditions of the middle part of the mantle section. Their garnest are enriched in CaO probably reflection reactions with the Ca- rich protokimberlites. The Na- richterite bearin xenoliths are from the same PT interval The cold clot in the 60-5.5 GPa (34 mwm-2) are represented by the peridotites of low Fe# 7-9 Fe- low peridotites with the garnets of sub-Ca types. But there are also varieties of reduced Cr and the Fe-enriched which are closer to the pyroxenites or Phl metasomatites which in Pt are from the upper part of mantle

  16. Pressure effect on elastic anisotropy of crystals from ab initio simulations: the case of silicate garnets.

    PubMed

    Mahmoud, A; Erba, A; Doll, K; Dovesi, R

    2014-06-21

    A general methodology has been devised and implemented into the solid-state ab initio quantum-mechanical Crystal program for studying the evolution under geophysical pressure of the elastic anisotropy of crystalline materials. This scheme, which fully exploits both translational and point symmetry of the crystal, is developed within the formal frame of one-electron Hamiltonians and atom-centered basis functions. Six silicate garnet end-members, among the most important rock-forming minerals of the Earth's mantle, are considered, whose elastic anisotropy is fully characterized under high hydrostatic compressions, up to 60 GPa. The pressure dependence of azimuthal anisotropy and shear-wave birefringence of seismic wave velocities for these minerals are accurately simulated and compared with available single-crystal measurements. PMID:24952556

  17. Nonlinear domain wall resonance in garnet films with perpendicular anisotropy: Critical role of nonlinear damping

    NASA Astrophysics Data System (ADS)

    Vukadinovic, N.; Ben Youssef, J.; Beaulieu, N.; Castel, V.

    2015-12-01

    Domain wall resonance spectra in the weakly nonlinear regime for garnet films with a perpendicular anisotropy supporting parallel stripe domains have been investigated using micromagnetic simulations and zero-field broadband ferromagnetic resonance experiments. The main characteristics of the 2D numerical micromagnetic approach we developed is to solve the Landau-Lifshitz equation by an iterative method in the frequency domain and to incorporate a nonlinear phenomenological damping term. It is shown that the nonlinear damping affects simultaneously the driving field dependencies of the resonance frequency and the resonance linewidth for the fundamental domain wall resonance of parallel stripe domains, and the critical field for the domain wall resonance foldover. The micromagnetic simulations allow us to reproduce quantitatively both the nonlinear redshift of the domain wall resonance frequency and the nonlinear line broadening experimentally observed for increasing values of the input microwave power.

  18. Solid inclusion thermobarometry under fire: Heating experiments on encapsulated quartz inclusions in garnet

    NASA Astrophysics Data System (ADS)

    Ashley, Kyle T.; Steele-MacInnis, Matthew; Bodnar, Robert J.; Darling, Robert S.

    2016-04-01

    Internal pressures of mineral inclusions (Pincl) result from differences in elastic properties of the inclusion mineral and its host mineral. Recent studies utilize pressure-sensitive Raman spectroscopic waveshifts to determine the retained Pincl and apply elastic theory to estimate pressure (or temperature) conditions of entrapment. Quartz inclusions are commonly utilized because quartz is a "soft," compressible mineral that is ubiquitous as an inclusion phase in continental metamorphic rocks. Garnet is a commonly used host because it is rigid and isotropic. Quartz inclusions trapped in garnet at high-P, low-T conditions will retain high Pincl; whereas those trapped at low-P, high-T conditions yield negative waveshifts equating to "negative" pressure, or net tensile stress on the inclusion. While Pincl can be accurately calculated from Raman data, barometry relies also upon the quality of the elastic model, which fundamentally depends on the quality of the P ‑V ‑T equations of state (EOS) applied. For quartz, EOS modeling is challenging due to the spontaneous strain that develops close to the lambda transition. In this study we conduct heating experiments on quartz inclusions in garnet from natural samples to assess the response of inclusion pressure to varying temperature (at ambient external pressure), and to evaluate predictions based on commonly applied EOS. Experiments were conducted on two quartz standards (a Herkimer "diamond" and Brazillian quartz) and four completely encapsulated inclusions of quartz in garnet from three tectonically diverse terranes, including: (i) a dilated quartz inclusion (Pincl = -4.3 kbar) from Port Leyden, Adirondack Mountains, New York, (ii) a Barrovian-sequence quartz inclusion from northern Scotland (Pincl = 3.1 kbar), and (iii) two high-pressure (blueschist) quartz inclusions from Sifnos, Greece (Pincl = 7.7 and 8.9 kbar). Standards were heated in 25 ° C increments with smaller increments near the lambda transition. Quartz

  19. Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells

    SciTech Connect

    Shao, Guojian; Lou, Chaogang; Kang, Jian; Zhang, Hao

    2015-12-21

    Ce-doped yttrium aluminum garnet (YAG:Ce) thin films as luminescent down shifting (LDS) materials are introduced into the module of crystalline silicon solar cells. The films are deposited by RF magnetron sputtering on the lower surface of the quartz glass. They convert ultraviolet and blue light into yellow light. Experiments show that the introduction of YAG:Ce films improves the conversion efficiency from 18.45% of the cells to 19.27% of the module. The increasing efficiency is attributed to LDS effect of YAG:Ce films and the reduced reflection of short wavelength photons. Two intentionally selected samples with similar reflectivities are used to evaluate roughly the effect of LDS alone on the solar cells, which leads to a relative increase by 2.68% in the conversion efficiency.

  20. Thermally induced depolarization in terbium gallium garnet ceramics rod with natural convection cooling

    NASA Astrophysics Data System (ADS)

    Slezak, Ondrej; Yasuhara, Ryo; Lucianetti, Antonio; Vojna, David; Mocek, Tomas

    2015-06-01

    Thermal birefringence-induced depolarization in terbium gallium garnet (TGG) ceramic rods has been numerically evaluated for the geometry and heating conditions in a previous experiment. In this model, the spatially resolved heat transfer coefficient corresponding to natural convection cooling and the offset of the beam from the rotational axis of the rod have been incorporated and the realistic beam profile used in the experiment has been considered. A resulting beam depolarization ratio of 4.3 × 10-4 has been calculated for an input power of 117 W. The results were found to be in good agreement with the measured values. Furthermore, a parametric study of the depolarization ratio for higher input powers has been performed leading to a depolarization ratio of 3.3 × 10-2 for 1 kW input power.