Science.gov

Sample records for iron metabolism induced

  1. METABOLISM OF IRON STORES

    PubMed Central

    SAITO, HIROSHI

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since the pioneering research by Shoden in 1953. However, we recently developed a new method for determining ferritin iron and hemosiderin iron by computer-assisted serum ferritin kinetics. Serum ferritin increase or decrease curves were measured in patients with normal storage iron levels (chronic hepatitis C and iron deficiency anemia treated by intravenous iron injection), and iron overload (hereditary hemochromatosis and transfusion dependent anemia). We thereby confirmed the existence of two iron pathways where iron flows followed the numbered order (1) labile iron, (2) ferritin and (3) hemosiderin in iron deposition and mobilization among many previously proposed but mostly unproven routes. We also demonstrated the increasing and decreasing phases of ferritin iron and hemosiderin iron in iron deposition and mobilization. The author first demonstrated here the change in proportion between pre-existing ferritin iron and new ferritin iron synthesized by removing iron from hemosiderin in the course of iron removal. In addition, the author disclosed the cause of underestimation of storage iron turnover rate which had been reported by previous investigators in estimating storage iron turnover rate of normal subjects. PMID:25741033

  2. Iron metabolism and cell membranes. III. Iron-induced alterations in HeLa cells.

    PubMed Central

    Jauregui, H. O.; Bradford, W. D.; Arstila, A. U.; Kinney, T. D.; Trump, B. F.

    1975-01-01

    The morphologic characteristics of acute iron loading were studied in HeLa cells incubated in an iron-enriched Eagle's medium containing 500 mug/ml of iron. Chemical studies showed that ferritin synthesis was rapidly induced and the concentration of intracellular ferritin increased up to 72 hours. Closely coupled with an increase in HeLa cell ferritin was a marked decrease in the rate of cell multiplication. The significant ultrastructural findings of iron-induced HeLa cell injury are characterized by the appearance of both autophagic multivesicular and residual bodies over the first 72 hours of iron incubation. The prominence of multivesicular bodies was noted after only 4 hours' incubation, with iron and myelin figures first appearing after 6 hours. Thus, the partial arrest of cell multiplication was associated with an increase in cytoplasmic residual bodies containing iron and other debris. The distribution of intracellular ferritin within HeLa cells differs significantly from the distribution described previously in hepatic parenchymal cells. In HeLa cells, ferritin particles were confined to lysosomal vesicles and were not identified in cell sap, endoplasmic reticulum, or Golgi apparatus. Images Figure 8 Figure 1 Figure 9 Figure 10 Figure 11 Figure 12 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1155583

  3. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress.

    PubMed

    Koskenkorva-Frank, Taija S; Weiss, Günter; Koppenol, Willem H; Burckhardt, Susanna

    2013-12-01

    Production of minute concentrations of superoxide (O2(*-)) and nitrogen monoxide (nitric oxide, NO*) plays important roles in several aspects of cellular signaling and metabolic regulation. However, in an inflammatory environment, the concentrations of these radicals can drastically increase and the antioxidant defenses may become overwhelmed. Thus, biological damage may occur owing to redox imbalance-a condition called oxidative and/or nitrosative stress. A complex interplay exists between iron metabolism, O2(*-), hydrogen peroxide (H2O2), and NO*. Iron is involved in both the formation and the scavenging of these species. Iron deficiency (anemia) (ID(A)) is associated with oxidative stress, but its role in the induction of nitrosative stress is largely unclear. Moreover, oral as well as intravenous (iv) iron preparations used for the treatment of ID(A) may also induce oxidative and/or nitrosative stress. Oral administration of ferrous salts may lead to high transferrin saturation levels and, thus, formation of non-transferrin-bound iron, a potentially toxic form of iron with a propensity to induce oxidative stress. One of the factors that determine the likelihood of oxidative and nitrosative stress induced upon administration of an iv iron complex is the amount of labile (or weakly-bound) iron present in the complex. Stable dextran-based iron complexes used for iv therapy, although they contain only negligible amounts of labile iron, can induce oxidative and/or nitrosative stress through so far unknown mechanisms. In this review, after summarizing the main features of iron metabolism and its complex interplay with O2(*-), H2O2, NO*, and other more reactive compounds derived from these species, the potential of various iron therapies to induce oxidative and nitrosative stress is discussed and possible underlying mechanisms are proposed. Understanding the mechanisms, by which various iron formulations may induce oxidative and nitrosative stress, will help us

  4. Hepatic iron metabolism.

    PubMed

    Anderson, Gregory J; Frazer, David M

    2005-11-01

    The liver performs three main functions in iron homeostasis. It is the major site of iron storage, it regulates iron traffic into and around the body through its production of the peptide hepcidin, and it is the site of synthesis of major proteins of iron metabolism such as transferrin and ceruloplasmin. Most of the iron that enters the liver is derived from plasma transferrin under normal circumstances, and transferrin receptors 1 and 2 play important roles in this process. In pathological situations, non-transferrin-bound iron, ferritin, and hemoglobin/haptoglobin and heme/hemopexin complexes assume greater importance in iron delivery to the organ. Iron is stored in the liver as ferritin and, with heavy iron loading, as hemosiderin. The liver can divest itself of iron through the plasma membrane iron exporter ferroportin 1, a process that also requires ceruloplasmin. Hepcidin can regulate this iron release through its interaction with ferroportin. PMID:16315136

  5. Physiology of Iron Metabolism

    PubMed Central

    Waldvogel-Abramowski, Sophie; Waeber, Gérard; Gassner, Christoph; Buser, Andreas; Frey, Beat M.; Favrat, Bernard; Tissot, Jean-Daniel

    2014-01-01

    Summary A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. ‘Ironomics’ certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism. PMID:25053935

  6. Mitochondrial ferritin suppresses MPTP-induced cell damage by regulating iron metabolism and attenuating oxidative stress.

    PubMed

    You, Lin-Hao; Li, Zhen; Duan, Xiang-Lin; Zhao, Bao-Lu; Chang, Yan-Zhong; Shi, Zhen-Hua

    2016-07-01

    Our previous work showed that mitochondrial ferritin (MtFt) played an important role in preventing neuronal damage in 6-OHDA-induced Parkinson's disease (PD). However, the role of MtFt in a PD model induced by MPTP is not clear. Here, we found that methyl-4-phenyl-1, 2, 3, 6-tetra-pyridine (MPTP) significantly upregulated MtFt in the mouse hippocampus, substantia nigra (SN) and striatum. To explore the effect of MtFt upregulation on the MPTP-mediated injury to neural cells, MtFt-/- mice and MtFt-overexpressing cells were used to construct models of PD induced by MPTP. Our results showed that MPTP dramatically downregulated expression of transferrin receptor 1 (TfR1) and tyrosine hydroxylase and upregulated L-ferritin expression in the mouse striatum and SN. Interestingly, MPTP induced high levels of MtFt in these tissues, indicating that MtFt was involved in iron metabolism and influenced dopamine synthesis induced by MPTP. Meanwhile, the Bcl2/Bax ratio was decreased significantly by MPTP in the striatum and SN of MtFt knockout (MtFt-/-) mice compared with controls. Overexpression of MtFt increased TfR1 and decreased ferroportin 1 induced by 1-methyl-4-phenylpyridinium ions (MPP+). MtFt strongly inhibited mitochondrial damage through maintaining the mitochondrial membrane potential and protecting the integrity of the mitochondrial membrane. It also suppressed the increase of the labile iron pool, decreased production of reactive oxygen species and dramatically rescued the apoptosis induced by MPP+. In conclusion, this study demonstrates that MtFt plays an important role in preventing neuronal damage in the MPTP-induced parkinsonian phenotype by inhibiting cellular iron accumulation and subsequent oxidative stress. PMID:27017962

  7. Iron metabolism in mammalian cells.

    PubMed

    Walker, B L; Tiong, J W; Jefferies, W A

    2001-01-01

    Most living things require iron to exist. Iron has many functions within cells but is rarely found unbound because of its propensity to catalyze the formation of toxic free radicals. Thus the regulation of iron requirements by cells and the acquisition and uptake of iron into tissues in multicellular organisms is tightly regulated. In humans, understanding iron transport and utility has recently been advanced by a "great conjunction" of molecular genetics in simple organisms, identifying genes involved in genetic diseases of metal metabolism and by the application of traditional cell physiology approaches. We are now able to approach a rudimentary understanding of the "iron cycle" within mammals. In the future, this information will be applied toward modulating the outcome of therapies designed to overcome diseases involving metals. PMID:11597005

  8. Iron metabolism: current facts and future directions

    PubMed Central

    Tandara, Leida; Salamunic, Ilza

    2012-01-01

    Iron metabolism has been intensively examined over the last decade and there are many new players in this field which are worth to be introduced. Since its discovery many studies confirmed role of liver hormone hepcidin as key regulator of iron metabolism and pointed out liver as the central organ of system iron homeostasis. Liver cells receive multiple signals related to iron balance and respond by transcriptional regulation of hepcidin expression. This liver hormone is negative regulator of iron metabolism that represses iron efflux from macrophages, hepatocytes and enterocytes by its binding to iron export protein ferroportin. Ferroportin degradation leads to cellular iron retention and decreased iron availability. At level of a cell IRE/IRP (iron responsive elements/iron responsive proteins) system allows tight regulation of iron assimilation that prevents an excess of free intracellular iron which could lead to oxidative stress and damage of DNA, proteins and lipid membranes by ROS (reactive oxygen species). At the same time IRE/IRP system provides sufficient iron in order to meet the metabolic needs. Recently a significant progress in understanding of iron metabolism has been made and new molecular participants have been characterized. Article gives an overview of the current understanding of iron metabolism: absorption, distribution, cellular uptake, release, and storage. We also discuss mechanisms underlying systemic and cellular iron regulation with emphasis on central regulatory hormone hepcidin. PMID:23092063

  9. Mechanisms of iron metabolism in Caenorhabditis elegans

    PubMed Central

    Anderson, Cole P.; Leibold, Elizabeth A.

    2014-01-01

    Iron is involved in many biological processes essential for sustaining life. In excess, iron is toxic due to its ability to catalyze the formation of free radicals that damage macromolecules. Organisms have developed specialized mechanisms to tightly regulate iron uptake, storage and efflux. Over the past decades, vertebrate model organisms have led to the identification of key genes and pathways that regulate systemic and cellular iron metabolism. This review provides an overview of iron metabolism in the roundworm Caenorhabditis elegans and highlights recent studies on the role of hypoxia and insulin signaling in the regulation of iron metabolism. Given that iron, hypoxia and insulin signaling pathways are evolutionarily conserved, C. elegans provides a genetic model organism that promises to provide new insights into mechanisms regulating mammalian iron metabolism. PMID:24904417

  10. Crosstalk between Iron Metabolism and Erythropoiesis

    PubMed Central

    Li, Huihui; Ginzburg, Yelena Z.

    2010-01-01

    Iron metabolism and erythropoiesis are inextricably linked. The majority of iron extracted from circulation daily is used for hemoglobin synthesis. In the last 15 years, major advances have been made in understanding the pathways regulating iron metabolism. Hepcidin is a key regulator of iron absorption and recycling and is itself regulated by erythropoiesis. While several viable candidates have been proposed, elucidating the “erythroid regulator” of hepcidin continues to generate significant experimental activity in the field. Although the mechanism responsible for sensing iron demand for erythropoiesis is still incompletely understood, evaluating diseases in which disordered erythropoiesis and/or iron metabolism are showcased has resulted in a more robust appreciation of potential candidates coordinated erythroid iron demand with regulators of iron supply. We present data drawn from four different conditions—iron deficiency, congenital hypotransferrinemia, beta-thalassemia, and hereditary hemochromatosis—both in human and non-human models of disease, together suggesting that erythroid iron demand exerts a stronger influence on circulating iron supply than systemic iron stores. Greater understanding of the interplay between the key factors involved in the regulation of iron metabolism and erythropoiesis will help develop more effective therapies for disorders of iron overload, iron deficiency, and hemoglobin synthesis. PMID:20631898

  11. A Systems Biology Approach to Iron Metabolism

    PubMed Central

    Chifman, J.; Laubenbacher, R.; Torti, S.V.

    2015-01-01

    Iron is critical to the survival of almost all living organisms. However, inappropriately low or high levels of iron are detrimental and contribute to a wide range of diseases. Recent advances in the study of iron metabolism have revealed multiple intricate pathways that are essential to the maintenance of iron homeostasis. Further, iron regulation involves processes at several scales, ranging from the subcellular to the organismal. This complexity makes a systems biology approach crucial, with its enabling technology of computational models based on a mathematical description of regulatory systems. Systems biology may represent a new strategy for understanding imbalances in iron metabolism and their underlying causes. PMID:25480643

  12. In vivo iron metabolism by IRMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron isotopes are used in both biological and geological investigations. Three low-abundance stable isotopes are available for human studies. They have been widely used to study iron metabolism. They have provided valuable insights into iron deficiency, one of the most common micronutrient deficienc...

  13. Mammalian iron metabolism and its control by iron regulatory proteins☆

    PubMed Central

    Anderson, Cole P.; Shen, Lacy; Eisenstein, Richard S.; Leibold, Elizabeth A.

    2013-01-01

    Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP–IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22610083

  14. Iron utilization and metabolism in plants.

    PubMed

    Briat, Jean-François; Curie, Catherine; Gaymard, Frédéric

    2007-06-01

    The solubilization and long-distance allocation of iron between organs and tissues, as well as its subcellular compartmentalization and remobilization, involve various chelation and oxidation/reduction steps, transport activities and association with soluble proteins that store and buffer this metal. Maintaining iron homeostasis is an important determinant in building prosthetic groups such as heme and Fe-S clusters, and in assembling them into apoproteins, which are major components of plant metabolism. Such processes require complex protein machineries located in mitochondria and plastids. An essential role for iron metabolism and utilization in plant productivity is evidenced by the strong iron requirement for proper photosynthetic reactions. PMID:17434791

  15. [Phosphate metabolism and iron deficiency].

    PubMed

    Yokoyama, Keitaro

    2016-02-01

    Autosomal dominant hypophosphatemic rickets(ADHR)is caused by gain-of-function mutations in FGF23 that prevent its proteolytic cleavage. Fibroblast growth factor 23(FGF23)is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. Low iron status plays a role in the pathophysiology of ADHR. Iron deficiency is an environmental trigger that stimulates FGF23 expression and hypophosphatemia in ADHR. It was reported that FGF23 elevation in patients with CKD, who are often iron deficient. In patients with nondialysis-dependent CKD, treatment with ferric citrate hydrate resulted in significant reductions in serum phosphate and FGF23. PMID:26813504

  16. Diversity and Evolutionary History of Iron Metabolism Genes in Diatoms

    PubMed Central

    Groussman, Ryan D.; Parker, Micaela S.; Armbrust, E. Virginia

    2015-01-01

    Ferroproteins arose early in Earth’s history, prior to the emergence of oxygenic photosynthesis and the subsequent reduction of bioavailable iron. Today, iron availability limits primary productivity in about 30% of the world’s oceans. Diatoms, responsible for nearly half of oceanic primary production, have evolved molecular strategies for coping with variable iron concentrations. Our understanding of the evolutionary breadth of these strategies has been restricted by the limited number of species for which molecular sequence data is available. To uncover the diversity of strategies marine diatoms employ to meet cellular iron demands, we analyzed 367 newly released marine microbial eukaryotic transcriptomes, which include 47 diatom species. We focused on genes encoding proteins previously identified as having a role in iron management: iron uptake (high-affinity ferric reductase, multi-copper oxidase, and Fe(III) permease); iron storage (ferritin); iron-induced protein substitutions (flavodoxin/ferredoxin, and plastocyanin/cytochrome c6) and defense against reactive oxygen species (superoxide dismutases). Homologs encoding the high-affinity iron uptake system components were detected across the four diatom Classes suggesting an ancient origin for this pathway. Ferritin transcripts were also detected in all Classes, revealing a more widespread utilization of ferritin throughout diatoms than previously recognized. Flavodoxin and plastocyanin transcripts indicate possible alternative redox metal strategies. Predicted localization signals for ferredoxin identify multiple examples of gene transfer from the plastid to the nuclear genome. Transcripts encoding four superoxide dismutase metalloforms were detected, including a putative nickel-coordinating isozyme. Taken together, our results suggest that the majority of iron metabolism genes in diatoms appear to be vertically inherited with functional diversity achieved via possible neofunctionalization of paralogs. This

  17. Nitric oxide induces hypoxia ischemic injury in the neonatal brain via the disruption of neuronal iron metabolism.

    PubMed

    Lu, Qing; Harris, Valerie A; Rafikov, Ruslan; Sun, Xutong; Kumar, Sanjiv; Black, Stephen M

    2015-12-01

    We have recently shown that increased hydrogen peroxide (H2O2) generation is involved in hypoxia-ischemia (HI)-mediated neonatal brain injury. H2O2 can react with free iron to form the hydroxyl radical, through Fenton Chemistry. Thus, the objective of this study was to determine if there was a role for the hydroxyl radical in neonatal HI brain injury and to elucidate the underlying mechanisms. Our data demonstrate that HI increases the deposition of free iron and hydroxyl radical formation, in both P7 hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD), and the neonatal rat exposed to HI. Both these processes were found to be nitric oxide (NO) dependent. Further analysis demonstrated that the NO-dependent increase in iron deposition was mediated through increased transferrin receptor expression and a decrease in ferritin expression. This was correlated with a reduction in aconitase activity. Both NO inhibition and iron scavenging, using deferoxamine administration, reduced hydroxyl radical levels and neuronal cell death. In conclusion, our results suggest that increased NO generation leads to neuronal cell death during neonatal HI, at least in part, by altering iron homeostasis and hydroxyl radical generation. PMID:26209813

  18. Nitric oxide induces hypoxia ischemic injury in the neonatal brain via the disruption of neuronal iron metabolism

    PubMed Central

    Lu, Qing; Harris, Valerie A.; Rafikov, Ruslan; Sun, Xutong; Kumar, Sanjiv; Black, Stephen M.

    2015-01-01

    We have recently shown that increased hydrogen peroxide (H2O2) generation is involved in hypoxia–ischemia (HI)-mediated neonatal brain injury. H2O2 can react with free iron to form the hydroxyl radical, through Fenton Chemistry. Thus, the objective of this study was to determine if there was a role for the hydroxyl radical in neonatal HI brain injury and to elucidate the underlying mechanisms. Our data demonstrate that HI increases the deposition of free iron and hydroxyl radical formation, in both P7 hippocampal slice cultures exposed to oxygen–glucose deprivation (OGD), and the neonatal rat exposed to HI. Both these processes were found to be nitric oxide (NO) dependent. Further analysis demonstrated that the NO-dependent increase in iron deposition was mediated through increased transferrin receptor expression and a decrease in ferritin expression. This was correlated with a reduction in aconitase activity. Both NO inhibition and iron scavenging, using deferoxamine administration, reduced hydroxyl radical levels and neuronal cell death. In conclusion, our results suggest that increased NO generation leads to neuronal cell death during neonatal HI, at least in part, by altering iron homeostasis and hydroxyl radical generation. PMID:26209813

  19. [Iron metabolism: pathophysiology and biomarkers in elderly population].

    PubMed

    Gavazzi, Gaëtan

    2014-06-01

    Iron deficiency is frequent in elderly population and is responsable for numerous clinical situations. Because of the frequent association of inflammatory diseases, chronic diseases associated with iron loss, diagnosis of iron deficiency is often difficult in elderly population. For the last ten years, new biomarkers of iron physiology lead to better understand physiology and pathophysiology of iron metabolism particularly in iron deficiency. This overview aims to show modifications of iron metabolism with ageing, pathophysiological mecanisms associated with iron deficiency and give a stratification of the use of biomarkers as diagnostic tools differentiating absolute deficiency or functional deficeincy. PMID:25031216

  20. Cellular iron metabolism in prognosis and therapy of breast cancer.

    PubMed

    Torti, Suzy V; Torti, Frank M

    2013-01-01

    Despite many recent advances, breast cancer remains a clinical challenge. Current issues include improving prognostic evaluation and increasing therapeutic options for women whose tumors are refractory to current frontline therapies. Iron metabolism is frequently disrupted in breast cancer, and may offer an opportunity to address these challenges. Iron enhances breast tumor initiation, growth and metastases. Iron may contribute to breast tumor initiation by promoting redox cycling of estrogen metabolites. Up-regulation of iron import and down-regulation of iron export may enable breast cancer cells to acquire and retain excess iron. Alterations in iron metabolism in macrophages and other cells of the tumor microenvironment may also foster breast tumor growth. Expression of iron metabolic genes in breast tumors is predictive of breast cancer prognosis. Iron chelators and other strategies designed to limit iron may have therapeutic value in breast cancer. The dependence of breast cancer on iron presents rich opportunities for improved prognostic evaluation and therapeutic intervention. PMID:23879588

  1. Update on iron metabolism and molecular perspective of common genetic and acquired disorder, hemochromatosis.

    PubMed

    Yun, Seongseok; Vincelette, Nicole D

    2015-07-01

    Iron is an essential component of erythropoiesis and its metabolism is tightly regulated by a variety of internal and external cues including iron storage, tissue hypoxia, inflammation and degree of erythropoiesis. There has been remarkable improvement in our understanding of the molecular mechanisms of iron metabolism past decades. The classical model of iron metabolism with iron response element/iron response protein (IRE/IRP) is now extended to include hepcidin model. Endogenous and exogenous signals funnel down to hepcidin via wide range of signaling pathways including Janus Kinase/Signal Transducer and Activator of Transcription 3 (JAK/STAT3), Bone Morphogenetic Protein/Hemojuvelin/Mothers Against Decapentaplegic Homolog (BMP/HJV/SMAD), and Von Hippel Lindau/Hypoxia-inducible factor/Erythropoietin (VHL/HIF/EPO), then relay to ferroportin, which directly regulates intra- and extracellular iron levels. The successful molecular delineation of iron metabolism further enhanced our understanding of common genetic and acquired disorder, hemochromatosis. The majority of the hereditary hemochromatosis (HH) patients are now shown to have mutations in the genes coding either upstream or downstream proteins of hepcidin, resulting in iron overload. The update on hepcidin centered mechanisms of iron metabolism and their clinical perspective in hemochromatosis will be discussed in this review. PMID:25737209

  2. Effects of Pregnancy and Lactation on Iron Metabolism in Rats

    PubMed Central

    Gao, Guofen; Liu, Shang-Yuan; Wang, Hui-Jie; Zhang, Tian-Wei; Yu, Peng; Duan, Xiang-Lin; Zhao, Shu-E; Chang, Yan-Zhong

    2015-01-01

    In female, inadequate iron supply is a highly prevalent problem that often leads to iron-deficiency anemia. This study aimed to understand the effects of pregnancy and lactation on iron metabolism. Rats with different days of gestation and lactation were used to determine the variations in iron stores and serum iron level and the changes in expression of iron metabolism-related proteins, including ferritin, ferroportin 1 (FPN1), ceruloplasmin (Cp), divalent metal transporter 1 (DMT1), transferrin receptor 1 (TfR1), and the major iron-regulatory molecule—hepcidin. We found that iron stores decline dramatically at late-pregnancy period, and the low iron store status persists throughout the lactation period. The significantly increased FPN1 level in small intestine facilitates digestive iron absorption, which maintains the serum iron concentration at a near-normal level to meet the increase of iron requirements. Moreover, a significant decrease of hepcidin expression is observed during late-pregnancy and early-lactation stages, suggesting the important regulatory role that hepcidin plays in iron metabolism during pregnancy and lactation. These results are fundamental to the understanding of iron homeostasis during pregnancy and lactation and may provide experimental bases for future studies to identify key molecules expressed during these special periods that regulate the expression of hepcidin, to eventually improve the iron-deficiency status. PMID:26788496

  3. METABOLIC CAPACITY REGULATES IRON HOMEOSTATIS IN ENDOTHELIAL CELLS

    EPA Science Inventory

    The sensitivity of endothelial cells to oxidative stress and the high concentrations of iron in mitochondria led us to test the hypotheses that (1) changes in respiratory capacity alter iron homeostasis, and (2) lack of aerobic metabolism decreases labile iron stores and attenuat...

  4. Alginate-Iron Speciation and Its Effect on In Vitro Cellular Iron Metabolism

    PubMed Central

    Horniblow, Richard D.; Dowle, Miriam; Iqbal, Tariq H.; Latunde-Dada, Gladys O.; Palmer, Richard E.

    2015-01-01

    Alginates are a class of biopolymers with known iron binding properties which are routinely used in the fabrication of iron-oxide nanoparticles. In addition, alginates have been implicated in influencing human iron absorption. However, the synthesis of iron oxide nanoparticles employs non-physiological pH conditions and whether nanoparticle formation in vivo is responsible for influencing cellular iron metabolism is unclear. Thus the aims of this study were to determine how alginate and iron interact at gastric-comparable pH conditions and how this influences iron metabolism. Employing a range of spectroscopic techniques under physiological conditions alginate-iron complexation was confirmed and, in conjunction with aberration corrected scanning transmission electron microscopy, nanoparticles were observed. The results infer a nucleation-type model of iron binding whereby alginate is templating the condensation of iron-hydroxide complexes to form iron oxide centred nanoparticles. The interaction of alginate and iron at a cellular level was found to decrease cellular iron acquisition by 37% (p < 0.05) and in combination with confocal microscopy the alginate inhibits cellular iron transport through extracellular iron chelation with the resulting complexes not internalised. These results infer alginate as being useful in the chelation of excess iron, especially in the context of inflammatory bowel disease and colorectal cancer where excess unabsorbed luminal iron is thought to be a driver of disease. PMID:26378798

  5. Disorders of Iron Metabolism and Anemia in Chronic Kidney Disease.

    PubMed

    Panwar, Bhupesh; Gutiérrez, Orlando M

    2016-07-01

    Dysregulated iron homeostasis plays a central role in the development of anemia of chronic kidney disease (CKD) and is a major contributor toward resistance to treatment with erythropoiesis-stimulating agents. Understanding the underlying pathophysiology requires an in-depth understanding of normal iron physiology and regulation. Recent discoveries in the field of iron biology have greatly improved our understanding of the hormonal regulation of iron trafficking in human beings and how its alterations lead to the development of anemia of CKD. In addition, emerging evidence has suggested that iron homeostasis interacts with bone and mineral metabolism on multiple levels, opening up new avenues of investigation into the genesis of disordered iron metabolism in CKD. Building on recent advances in our understanding of normal iron physiology and abnormalities in iron homeostasis in CKD, this review characterizes how anemia related to disordered iron metabolism develops in the setting of CKD. In addition, this review explores our emerging recognition of the connections between iron homeostasis and mineral metabolism and their implications for the management of altered iron status and anemia of CKD. PMID:27475656

  6. Recent Advances in Iron Metabolism: Relevance for Health, Exercise, and Performance.

    PubMed

    Buratti, Paolo; Gammella, Elena; Rybinska, Ilona; Cairo, Gaetano; Recalcati, Stefania

    2015-08-01

    Iron is necessary for physiological processes essential for athletic performance, such as oxygen transport, energy production, and cell division. However, an excess of "free" iron is toxic because it produces reactive hydroxyl radicals that damage biological molecules, thus leading to cell and tissue injury. Therefore, iron homeostasis is strictly regulated; and in recent years, there have been important advancements in our knowledge of the underlying processes. Hepcidin is the central regulator of systemic iron homeostasis and exerts its function by controlling the presence of the iron exporter ferroportin on the cell membrane. Hepcidin binding induces ferroportin degradation, thus leading to cellular iron retention and decreased levels of circulating iron. As iron is required for hemoglobin synthesis, the tight link between erythropoiesis and iron metabolism is particularly relevant to sports physiology. The iron needed for hemoglobin synthesis is ensured by inhibiting hepcidin to increase ferroportin activity and iron availability and hence to make certain that efficient blood oxygen transport occurs for aerobic exercise. However, hepcidin expression is also affected by exercise-associated conditions, such as iron deficiency, anemia or hypoxia, and, particularly, inflammation, which can play a role in the pathogenesis of sports anemia. Here, we review recent advances showing the relevance of iron for physical exercise and athletic performance. Low body iron levels can cause anemia and thus limit the delivery of oxygen to exercising muscle, but tissue iron deficiency may also affect performance by, for example, hampering muscle oxidative metabolism. Accordingly, a hemoglobin-independent effect of iron on exercise capacity has been demonstrated in animal models and humans. Here, we review recent advances showing the relevance of iron for physical exercise and athletic performance. PMID:25494391

  7. Drug-Induced Metabolic Acidosis

    PubMed Central

    Pham, Amy Quynh Trang; Xu, Li Hao Richie; Moe, Orson W.

    2015-01-01

    Metabolic acidosis could emerge from diseases disrupting acid-base equilibrium or from drugs that induce similar derangements. Occurrences are usually accompanied by comorbid conditions of drug-induced metabolic acidosis, and clinical outcomes may range from mild to fatal. It is imperative that clinicians not only are fully aware of the list of drugs that may lead to metabolic acidosis but also understand the underlying pathogenic mechanisms. In this review, we categorized drug-induced metabolic acidosis in terms of pathophysiological mechanisms, as well as individual drugs’ characteristics. PMID:26918138

  8. Drug-Induced Metabolic Acidosis.

    PubMed

    Pham, Amy Quynh Trang; Xu, Li Hao Richie; Moe, Orson W

    2015-01-01

    Metabolic acidosis could emerge from diseases disrupting acid-base equilibrium or from drugs that induce similar derangements. Occurrences are usually accompanied by comorbid conditions of drug-induced metabolic acidosis, and clinical outcomes may range from mild to fatal. It is imperative that clinicians not only are fully aware of the list of drugs that may lead to metabolic acidosis but also understand the underlying pathogenic mechanisms. In this review, we categorized drug-induced metabolic acidosis in terms of pathophysiological mechanisms, as well as individual drugs' characteristics. PMID:26918138

  9. Molecular and Cellular Bases of Iron Metabolism in Humans.

    PubMed

    Milto, I V; Suhodolo, I V; Prokopieva, V D; Klimenteva, T K

    2016-06-01

    Iron is a microelement with the most completely studied biological functions. Its wide dissemination in nature and involvement in key metabolic pathways determine the great importance of this metal for uni- and multicellular organisms. The biological role of iron is characterized by its indispensability in cell respiration and various biochemical processes providing normal functioning of cells and organs of the human body. Iron also plays an important role in the generation of free radicals, which under different conditions can be useful or damaging to biomolecules and cells. In the literature, there are many reviews devoted to iron metabolism and its regulation in pro- and eukaryotes. Significant progress has been achieved recently in understanding molecular bases of iron metabolism. The purpose of this review is to systematize available data on mechanisms of iron assimilation, distribution, and elimination from the human body, as well as on its biological importance and on the major iron-containing proteins. The review summarizes recent ideas about iron metabolism. Special attention is paid to mechanisms of iron absorption in the small intestine and to interrelationships of cellular and extracellular pools of this metal in the human body. PMID:27301283

  10. Iron and the liver. Acute and long-term effects of iron-loading on hepatic haem metabolism.

    PubMed Central

    Bonkowsky, H L; Healey, J F; Sinclair, P R; Sinclair, J F; Pomeroy, J S

    1981-01-01

    We have determined the dose-response curves (100-900 mg of Fe/kg body wt.) and the time course over 84 days for the effects of a single injection of iron-dextran on rat hepatic 5-aminolaevulinate synthetase, cytochrome P-450, iron content, and GSH (reduced glutathione). Porphyrins in liver and urine have also been measured. (1) At 2 days after treatment, a dose of 500 mg of Fe/kg produced a 20-fold increase in iron concentration, which was maintained for 14 days. Total hepatic iron remained constant over 63 days, falling slightly by 84 days. (2) The activity of 5-aminolaevulinate synthetase was maximally increased (6-fold) 12-24 h after iron treatment. By 48 h the activity fell to less than twice the control value and thereafter remained slightly above the control value (1.1-1.5-fold) until 84 days after iron treatment. Liver GSH concentrations were unaffected by iron. Porphyrins in liver and urine were either unchanged or decreased. (3) Hepatic cytochrome P-450 decreased after iron treatment to a minimum (63% of control) at 48 h after iron administration and gradually returned to the control value by 28 days. (4) Iron-dextran potentiated 2 allyl-2-isopropyl-acetamide-induced synthesis of hepatic 5-aminolaevulinate. Potentiation occurred if the drug was given at the same time or 36 h after iron administration, but did not occur if the drug was given 14 or 64 days after iron administration. (5) The results are discussed in relation to proposed mechanisms for the effects of iron on hepatic haem metabolism. PMID:7306080

  11. Divergence of iron metabolism in wild Malaysian yeast.

    PubMed

    Lee, Hana N; Mostovoy, Yulia; Hsu, Tiffany Y; Chang, Amanda H; Brem, Rachel B

    2013-12-01

    Comparative genomic studies have reported widespread variation in levels of gene expression within and between species. Using these data to infer organism-level trait divergence has proven to be a key challenge in the field. We have used a wild Malaysian population of S. cerevisiae as a test bed in the search to predict and validate trait differences based on observations of regulatory variation. Malaysian yeast, when cultured in standard medium, activated regulatory programs that protect cells from the toxic effects of high iron. Malaysian yeast also showed a hyperactive regulatory response during culture in the presence of excess iron and had a unique growth defect in conditions of high iron. Molecular validation experiments pinpointed the iron metabolism factors AFT1, CCC1, and YAP5 as contributors to these molecular and cellular phenotypes; in genome-scale sequence analyses, a suite of iron toxicity response genes showed evidence for rapid protein evolution in Malaysian yeast. Our findings support a model in which iron metabolism has diverged in Malaysian yeast as a consequence of a change in selective pressure, with Malaysian alleles shifting the dynamic range of iron response to low-iron concentrations and weakening resistance to extreme iron toxicity. By dissecting the iron scarcity specialist behavior of Malaysian yeast, our work highlights the power of expression divergence as a signpost for biologically and evolutionarily relevant variation at the organismal level. Interpreting the phenotypic relevance of gene expression variation is one of the primary challenges of modern genomics. PMID:24142925

  12. New developments and controversies in iron metabolism and iron chelation therapy

    PubMed Central

    Kontoghiorghe, Christina N; Kontoghiorghes, George J

    2016-01-01

    Iron is essential for all organisms including microbial, cancer and human cells. More than a quarter of the human population is affected by abnormalities of iron metabolism, mainly from iron deficiency and iron overload. Iron also plays an important role in free radical pathology and oxidative damage which is observed in almost all major diseases, cancer and ageing. New developments include the complete treatment of iron overload and reduction of morbidity and mortality in thalassaemia using deferiprone and selected deferiprone/deferoxamine combinations and also the use of the maltol iron complex in the treatment of iron deficiency anaemia. There is also a prospect of using deferiprone as a universal antioxidant in non iron overloaded diseases such as neurodegenerative, cardiovascular, renal, infectious diseases and cancer. New regulatory molecules of iron metabolism such as endogenous and dietary chelating molecules, hepcidin, mitochondrial ferritin and their role in health and disease is under evaluation. Similarly, new mechanisms of iron deposition, removal, distribution and toxicity have been identified using new techniques such as magnetic resonance imaging increasing our understanding of iron metabolic processes and the targeted treatment of related diseases. The uniform distribution of iron in iron overload between organs and within each organ is no longer valid. Several other controversies such as the toxicity impact of non transferrin bound iron vs injected iron, the excess levels of iron in tissues causing toxicity and the role of chelation on iron absorption need further investigation. Commercial interests of pharmaceutical companies and connections to leading journals are playing a crucial role in shaping worldwide medical opinion on drug sales and use but also patients’ therapeutic outcome and safety. Major controversies include the selection criteria and risk/benefit assessment in the use of deferasirox in thalassaemia and more so in idiopathic

  13. New developments and controversies in iron metabolism and iron chelation therapy.

    PubMed

    Kontoghiorghe, Christina N; Kontoghiorghes, George J

    2016-03-26

    Iron is essential for all organisms including microbial, cancer and human cells. More than a quarter of the human population is affected by abnormalities of iron metabolism, mainly from iron deficiency and iron overload. Iron also plays an important role in free radical pathology and oxidative damage which is observed in almost all major diseases, cancer and ageing. New developments include the complete treatment of iron overload and reduction of morbidity and mortality in thalassaemia using deferiprone and selected deferiprone/deferoxamine combinations and also the use of the maltol iron complex in the treatment of iron deficiency anaemia. There is also a prospect of using deferiprone as a universal antioxidant in non iron overloaded diseases such as neurodegenerative, cardiovascular, renal, infectious diseases and cancer. New regulatory molecules of iron metabolism such as endogenous and dietary chelating molecules, hepcidin, mitochondrial ferritin and their role in health and disease is under evaluation. Similarly, new mechanisms of iron deposition, removal, distribution and toxicity have been identified using new techniques such as magnetic resonance imaging increasing our understanding of iron metabolic processes and the targeted treatment of related diseases. The uniform distribution of iron in iron overload between organs and within each organ is no longer valid. Several other controversies such as the toxicity impact of non transferrin bound iron vs injected iron, the excess levels of iron in tissues causing toxicity and the role of chelation on iron absorption need further investigation. Commercial interests of pharmaceutical companies and connections to leading journals are playing a crucial role in shaping worldwide medical opinion on drug sales and use but also patients' therapeutic outcome and safety. Major controversies include the selection criteria and risk/benefit assessment in the use of deferasirox in thalassaemia and more so in idiopathic

  14. Oxidative Stress and the Homeodynamics of Iron Metabolism

    PubMed Central

    Bresgen, Nikolaus; Eckl, Peter M.

    2015-01-01

    Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress. PMID:25970586

  15. Minocycline Attenuates Iron-Induced Brain Injury.

    PubMed

    Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya

    2016-01-01

    Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p < 0.05). The co-injection of minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p < 0.01). Albumin, a marker of BBB disruption, was measured by Western blot analysis. Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p < 0.01). Iron-handling protein levels in the brain, including ceruloplasmin and transferrin, were reduced in the minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism. PMID:26463975

  16. Metabolic response to subacute and subchronic iron overload in a rat model.

    PubMed

    Adham, Khadiga G; Farhood, Manal H; Daghestani, Maha H; Aleisa, Nadia A; Alkhalifa, Ahlam A; El Amin, Maha H; Virk, Promy; Al-Obeid, Mai A; Al-Humaidhi, Eman M H

    2015-12-01

    One of the common causes of iron overload is excessive iron intake in cases of iron-poor anemia, where iron saccharate complex (ISC) is routinely used to optimize erythropoiesis. However, non-standardized ISC administration could entail the risk of iron overload. To induce iron overload, Wistar rats were intraperitoneally injected with subacute (0.2 mg kg⁻¹) and subchronic (0.1 mg kg⁻¹) overdoses of ISC for 2 and 4 weeks, respectively. Iron status was displayed by an increase in transferrin saturation (up to 332%) and serum and liver iron burden (up to 19.3 μmol L⁻¹ and 13.2 μmol g⁻¹ wet tissue, respectively) together with a drop in total and unsaturated iron binding capacities "TIBC, UIBC" as surrogate markers of transferrin activity. Iron-induced leukocytosis (up to 140%), along with the decline in serum transferrin markers (up to 43%), respectively, mark positive and negative acute phase reactions. Chemical stress was demonstrated by a significant rise (p > 0.05) in indices of the hemogram (erythrocytes, hemoglobin, hematocrit, leukocytes) and stress metabolites [corticosterone (CORT) and lactate]. Yet, potential causes of the unexpected decline in serum activities of ALT, AST and LDH (p > 0.05) might include decreased hepatocellular enzyme production and/or inhibition or reduction of the enzyme activities. The current findings highlight the toxic role of elevated serum and liver iron in initiating erythropoiesis and acute phase reactions, modifying iron status and animal organ function, changing energy metabolism and bringing about accelerated glycolysis and impaired lactate clearance supposedly by decreasing anaerobic threshold and causing premature entering to the anaerobic system. PMID:26616369

  17. Iron uptake and metabolism in pseudomonads.

    PubMed

    Cornelis, Pierre

    2010-05-01

    Pseudomonads are ubiquitous Gram-negative gamma proteobacteria known for their extreme versatility and adaptability. Some are plant pathogens (Pseudomonas syringae) which have to survive on the surface of leaves while others can colonize the rhizosphere or survive in soil (Pseudomonas fluorescens, Pseudomonas putida), and one species, Pseudomonas entomophila, is an insect pathogen. The most investigated species, Pseudomonas aeruginosa, is known to be an opportunistic pathogen able to infect plants, nematodes, insects, and mammals, including humans. Like for other bacteria, iron is a key nutrient for pseudomonads. The fluorescent pseudomonads produce siderophores, the best known being the fluorescent high-affinity peptidic pyoverdines. Often diverse secondary siderophores of lower affinity are produced as well (pyochelin, pseudomonin, corrugatins and ornicorrugatins, yersiniabactin, and thioquinolobactin). Reflecting their large capacity of adaptation to changing environment and niche colonization, pseudomonads are able to obtain their iron from heme or from siderophores produced by other microorganisms (xenosiderophores) via the expression of outer membrane TonB-dependent receptors. As expected, iron uptake is exquisitely and hierarchically regulated in these bacteria. In this short review, the diversity of siderophores produced, receptors, and finally the way iron homeostasis is regulated in P. aeruginosa, P. syringae, P. putida, and P. fluorescens, will be presented and, when possible, put in relation with the lifestyle and the ecological niche. PMID:20352420

  18. [Heme metabolism as an integral part of iron homeostasis].

    PubMed

    Lipiński, Paweł; Starzyński, Rafał R; Styś, Agnieszka; Gajowiak, Anna; Staroń, Robert

    2014-01-01

    Heme, a ferrous iron protoporphyrin IX complex, is employed as a prosthetic group in a number of diverse heme proteins that participate in important cellular and systemic physiological processes. Provision of an adequate amount of iron for heme biosynthesis is one of the elemental hallmarks of intracellular iron homeostasis. In the cell the bioavailability of iron for the two main iron biological pathways--heme synthesis and the biogenesis of iron-sulfur clusters ([Fe-S])--is mainly regulated by the IRP/IRE posttranscriptional system. The biogenesis of [Fe-S] centers is crucial for heme synthesis because these co-factors determine the activity of IRP1 and that of ferrochelatase, an enzyme responsible for the insertion of an iron into protoporphyrin IX to produce heme. On the other hand, delivery of iron for heme and hemoglobin synthesis in erythroblasts, precursors of erythrocytes in bone marrow, is an indispensable element of body iron homeostasis. This process relies on the recovery of iron from senescent red blood cells through the enzymatic degradation of heme molecules and recycling of iron to the circulation. Molecular coordination of these processes involves the activity of heme oxygenase 1, IRP1 and IRP2 as well as the functioning of the hepcidin-ferroportin regulatory axis. Recent studies show in mammals the existence of an expanded system of proteins involved in the transport of intact heme molecules at the cellular and systemic levels. The biological role of this system is of particular importance when the concentration of free heme reaches a toxic level in the body (intravascular hemolysis) as well as locally in cells having intensive heme metabolism such as erythroblasts and macrophages. PMID:24864106

  19. [Iron metabolism: current concepts of an essential micronutrient].

    PubMed

    Boccio, Jose; Salgueiro, Jimena; Lysionek, Alexis; Zubillaga, Marcela; Goldman, Cinthia; Weill, Ricardo; Caro, Ricardo

    2003-06-01

    Iron is an essential micronutrient involved in multiple biochemical and physiological process. In this review we discuss the most relevant aspect of its metabolism in order to reach a better comprehension of the relevant roll that this micronutrient plays in human health. PMID:14528601

  20. Modulation of iron metabolism by iron chelation regulates intracellular calcium and increases sensitivity to doxorubicin

    PubMed Central

    Yalcintepe, Leman; Halis, Emre

    2016-01-01

    Increased intracellular iron levels can both promote cell proliferation and death, as such; iron has a “two-sided effect” in the delicate balance of human health. Though the role of iron in the development of cancer remains unclear, investigations of iron chelators as anti-tumor agents have revealed promising results. Here, we investigated the influence of iron and desferrioxamine (DFO), the iron chelating agent on intracellular calcium in a human leukemia cell line, K562. Iron uptake is associated with increased reactive oxygen species (ROS) generation. Therefore, we showed that iron also caused dose-dependent ROS generation in K562 cells. The measurement of intracellular calcium was determined using Furo-2 with a fluorescence spectrophotometer. The iron delivery process to the cytoplasmic iron pool was examined by monitoring the fluorescence of cells loaded with calcein-acetoxymethyl. Our data showed that iron increased intracellular calcium, and this response was 8 times higher when cells were incubated with DFO. K562 cells with DFO caused a 3.5 times increase of intracellular calcium in the presence of doxorubicin (DOX). In conclusion, DFO induces intracellular calcium and increases their sensitivity to DOX, a chemotherapeutic agent. PMID:26773173

  1. Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation

    PubMed Central

    Martelli, Alain; Puccio, Hélène

    2014-01-01

    Friedreich ataxia (FRDA) is the most common recessive ataxia in the Caucasian population and is characterized by a mixed spinocerebellar and sensory ataxia frequently associating cardiomyopathy. The disease results from decreased expression of the FXN gene coding for the mitochondrial protein frataxin. Early histological and biochemical study of the pathophysiology in patient's samples revealed that dysregulation of iron metabolism is a key feature of the disease, mainly characterized by mitochondrial iron accumulation and by decreased activity of iron-sulfur cluster enzymes. In the recent past years, considerable progress in understanding the function of frataxin has been provided through cellular and biochemical approaches, pointing to the primary role of frataxin in iron-sulfur cluster biogenesis. However, why and how the impact of frataxin deficiency on this essential biosynthetic pathway leads to mitochondrial iron accumulation is still poorly understood. Herein, we review data on both the primary function of frataxin and the nature of the iron metabolism dysregulation in FRDA. To date, the pathophysiological implication of the mitochondrial iron overload in FRDA remains to be clarified. PMID:24917819

  2. A high-fat diet modulates iron metabolism but does not promote liver fibrosis in hemochromatotic Hjv⁻/⁻ mice.

    PubMed

    Padda, Ranjit Singh; Gkouvatsos, Konstantinos; Guido, Maria; Mui, Jeannie; Vali, Hojatollah; Pantopoulos, Kostas

    2015-02-15

    Hemojuvelin (Hjv) is a membrane protein that controls body iron metabolism by enhancing signaling to hepcidin. Hjv mutations cause juvenile hemochromatosis, a disease of systemic iron overload. Excessive iron accumulation in the liver progressively leads to inflammation and disease, such as fibrosis, cirrhosis, or hepatocellular cancer. Fatty liver (steatosis) may also progress to inflammation (steatohepatitis) and liver disease, and iron is considered as pathogenic cofactor. The aim of this study was to investigate the pathological implications of parenchymal iron overload due to Hjv ablation in the fatty liver. Wild-type (WT) and Hjv(-/-) mice on C57BL/6 background were fed a standard chow, a high-fat diet (HFD), or a HFD supplemented with 2% carbonyl iron (HFD+Fe) for 12 wk. The animals were analyzed for iron and lipid metabolism. As expected, all Hjv(-/-) mice manifested higher serum and hepatic iron and diminished hepcidin levels compared with WT controls. The HFD reduced iron indexes and promoted liver steatosis in both WT and Hjv(-/-) mice. Notably, steatosis was attenuated in Hjv(-/-) mice on the HFD+Fe regimen. Hjv(-/-) animals gained less body weight and exhibited reduced serum glucose and cholesterol levels. Histological and ultrastructural analysis revealed absence of iron-induced inflammation or liver fibrosis despite early signs of liver injury (expression of α-smooth muscle actin). We conclude that parenchymal hepatic iron overload does not suffice to trigger progression of liver steatosis to steatohepatitis or fibrosis in C57BL/6 mice. PMID:25501544

  3. HERC2 Targets the Iron Regulator FBXL5 for Degradation and Modulates Iron Metabolism

    PubMed Central

    Moroishi, Toshiro; Yamauchi, Takayoshi; Nishiyama, Masaaki; Nakayama, Keiichi I.

    2014-01-01

    FBXL5 (F-box and leucine-rich repeat protein 5) is the F-box protein subunit of, and therefore responsible for substrate recognition by, the SCFFBXL5 ubiquitin-ligase complex, which targets iron regulatory protein 2 (IRP2) for proteasomal degradation. IRP2 plays a central role in the maintenance of cellular iron homeostasis in mammals through posttranscriptional regulation of proteins that contribute to control of the intracellular iron concentration. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo, given that mice lacking FBXL5 die during early embryogenesis as a result of unrestrained IRP2 activity and oxidative stress attributable to excessive iron accumulation. Despite its pivotal role in the control of iron homeostasis, however, little is known of the upstream regulation of FBXL5 activity. We now show that FBXL5 undergoes constitutive ubiquitin-dependent degradation at the steady state. With the use of a proteomics approach to the discovery of proteins that regulate the stability of FBXL5, we identified the large HECT-type ubiquitin ligase HERC2 (HECT and RLD domain containing E3 ubiquitin protein ligase 2) as an FBXL5-associated protein. Inhibition of the HERC2-FBXL5 interaction or depletion of endogenous HERC2 by RNA interference resulted in the stabilization of FBXL5 and a consequent increase in its abundance. Such accumulation of FBXL5 in turn led to a decrease in the intracellular content of ferrous iron. Our results thus suggest that HERC2 regulates the basal turnover of FBXL5, and that this ubiquitin-dependent degradation pathway contributes to the control of mammalian iron metabolism. PMID:24778179

  4. HERC2 targets the iron regulator FBXL5 for degradation and modulates iron metabolism.

    PubMed

    Moroishi, Toshiro; Yamauchi, Takayoshi; Nishiyama, Masaaki; Nakayama, Keiichi I

    2014-06-01

    FBXL5 (F-box and leucine-rich repeat protein 5) is the F-box protein subunit of, and therefore responsible for substrate recognition by, the SCF(FBXL5) ubiquitin-ligase complex, which targets iron regulatory protein 2 (IRP2) for proteasomal degradation. IRP2 plays a central role in the maintenance of cellular iron homeostasis in mammals through posttranscriptional regulation of proteins that contribute to control of the intracellular iron concentration. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo, given that mice lacking FBXL5 die during early embryogenesis as a result of unrestrained IRP2 activity and oxidative stress attributable to excessive iron accumulation. Despite its pivotal role in the control of iron homeostasis, however, little is known of the upstream regulation of FBXL5 activity. We now show that FBXL5 undergoes constitutive ubiquitin-dependent degradation at the steady state. With the use of a proteomics approach to the discovery of proteins that regulate the stability of FBXL5, we identified the large HECT-type ubiquitin ligase HERC2 (HECT and RLD domain containing E3 ubiquitin protein ligase 2) as an FBXL5-associated protein. Inhibition of the HERC2-FBXL5 interaction or depletion of endogenous HERC2 by RNA interference resulted in the stabilization of FBXL5 and a consequent increase in its abundance. Such accumulation of FBXL5 in turn led to a decrease in the intracellular content of ferrous iron. Our results thus suggest that HERC2 regulates the basal turnover of FBXL5, and that this ubiquitin-dependent degradation pathway contributes to the control of mammalian iron metabolism. PMID:24778179

  5. Human macrophage hemoglobin-iron metabolism in vitro

    SciTech Connect

    Custer, G.; Balcerzak, S.; Rinehart, J.

    1982-01-01

    An entirely in vitro technique was employed to characterize hemoglobin-iron metabolism by human macrophages obtained by culture of blood monocytes and pulmonary alveolar macrophages. Macrophages phagocytized about three times as many erythrocytes as monocytes and six times as many erythrocytes as pulmonary alveolar macrophages. The rate of subsequent release of /sup 59/Fe to the extracellular transferrin pool was two- to fourfold greater for macrophages as compared to the other two cell types. The kinetics of /sup 59/Fe-transferrin release were characterized by a relatively rapid early phase (hours 1-4) followed by a slow phase (hours 4-72) for all three cell types. Intracellular movement of iron was characterized by a rapid shift from hemoglobin to ferritin that was complete with the onset of the slow phase of extracellular release. A transient increase in /sup 59/Fe associated with an intracellular protein eluting with transferrin was also observed within 1 hour after phagocytosis. The process of hemoglobin-iron release to extracellular transferrin was inhibited at 4 degrees C but was unaffected by inhibitory of protein synthesis, glycolysis, microtubule function, and microfilament function. These data emphasize the rapidity of macrophage hemoglobin iron metabolism, provide a model for characterization of this process in vitro, and in general confirm data obtained utilizing in vivo animal models.

  6. Iron-induced nickel deficiency in pecan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economic loss due to nickel (Ni) deficiency can occur in horticultural and agronomic crops. This study assesses impact of excessive iron (Fe) on expression of Ni deficiency in pecan [Carya illinoinensis (Wangenh.) K. Koch]. Field and greenhouse experiments found Ni deficiency to be inducible by ei...

  7. DNA cleavage during ethanol metabolism: Role of superoxide radicals and catalytic iron

    SciTech Connect

    Rajasinghe, H.; Jayatilleke, E.; Shaw, S. )

    1990-01-01

    The generation of superoxide and related free radicals and the mobilization of catalytic iron due to ethanol metabolism have been suggested as mechanisms of alcohol-induced liver injury as well as of the increased risk of cancer observed in alcoholics. Cleavage of double stranded DNA is produced by both free radicals as well as by catalytic iron. The effects of ethanol metabolism on DNA cleavage were therefore studied in vitro as well as in vivo in isolated hepatocytes. Intactness of double stranded DNA was studied by measuring ethidium bromide fluorescence after DNA electrophoresis. In vitro, the metabolism of acetaldehyde by aldehyde oxidase caused cleavage of lambda phage DNA. Cleavage was inhibited by both superoxide dismutase and desferrioxamine indicating the role of superoxide radicals and catalytic iron respectively. Studies with HIND III digests of the lambda phage indicate a lack of specificity in the breaks with respect to nucleotide sequences. Addition of EDTA greatly enhanced cleavage. In vivo, ethanol metabolism caused minimal breakage in hepatocyte DNA and addition of acetaldehyde markedly enhanced cleavage; all cleavage was inhibited by desferrioxamine.

  8. [Effect of hepcidin on iron metabolism in athletes].

    PubMed

    Domínguez, Raúl; Garnacho-Castaño, Manuel Vicente; Maté-Muñoz, José Luis

    2014-01-01

    The role of iron in the human body is essential, and athletes must always try to keep an adequate iron status. Hepcidin is proposed as the main hormone responsible for the control of iron reserves in the body, given its ability to induce degradation of ferroportin. The action of hepcidin on ferroportin leads to a decreased dietary iron absorption, as well as to a decrease in macrophages. Several factors such as the iron status, the amount of dietary iron, the inflammation, the hypoxia, the testosterone and the physical exercise have been pointed out as affecting the synthesis of hepcidin. This study has aimed at analysing the researches on hepcidin response to exercise, as well as designing a specific strategy to prevent a potential ferropenic status in athletes. The main findings are an association between exercise at an intensity over 65% VO2max and transient increases in the synthesis of hepcidin, and a possible regulatory effect of intermittent hypoxic stimuli in the early post-exercise recovery. Other factors such as the training volume, sex, kind of exercise or the type of surface where the training takes place do not seem to affect the response of hepcidin to exercise. PMID:25433101

  9. Iron metabolism in aerobes: managing ferric iron hydrolysis and ferrous iron autoxidation

    PubMed Central

    Kosman, Daniel J.

    2012-01-01

    Aerobes and anaerobes alike express a plethora of essential iron enzymes; in the resting state, the iron atom(s) in these proteins are in the ferrous state. For aerobes, ferric iron is the predominant environmental valence form which, given ferric iron’s aqueous chemistry, occurs as ‘rust’, insoluble, bio-inert polymeric ferric oxide that results from the hydrolysis of [Fe(H2O)6]3+. Mobilizing this iron requires bio-ferrireduction which in turn requires managing the rapid autoxidation of the resulting FeII which occurs at pH > 6. This review examines the aqueous redox chemistry of iron and the mechanisms evolved in aerobes to suppress the ‘rusting out’ of FeIII and the ROS-generating autoxidation of FeII so as to make this metal ion available as the most ubiquitous prosthetic group in metallobiology. PMID:23264695

  10. Phosphorus and iron deficiencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria×ananassa.

    PubMed

    Valentinuzzi, Fabio; Pii, Youry; Vigani, Gianpiero; Lehmann, Martin; Cesco, Stefano; Mimmo, Tanja

    2015-10-01

    Strawberries are a very popular fruit among berries, for both their commercial and economic importance, but especially for their beneficial effects for human health. However, their bioactive compound content is strictly related to the nutritional status of the plant and might be affected if nutritional disorders (e.g. Fe or P shortage) occur. To overcome nutrient shortages, plants evolved different mechanisms, which often involve the release of root exudates. The biochemical and molecular mechanisms underlying root exudation and its regulation are as yet still poorly known, in particular in woody crop species. The aim of this work was therefore to characterize the pattern of root exudation of strawberry plants grown in either P or Fe deficiency, by investigating metabolomic changes of root tissues and the expression of genes putatively involved in exudate extrusion. Although P and Fe deficiencies differentially affected the total metabolism, some metabolites (e.g. raffinose and galactose) accumulated in roots similarly under both conditions. Moreover, P deficiency specifically affected the content of galactaric acid, malic acid, lysine, proline, and sorbitol-6-phosphate, whereas Fe deficiency specifically affected the content of sucrose, dehydroascorbic acid, galactonate, and ferulic acid. At the same time, the citrate content did not change in roots under both nutrient deficiencies with respect to the control. However, a strong release of citrate was observed, and it increased significantly with time, being +250% and +300% higher in Fe- and P-deficient plants, respectively, compared with the control. Moreover, concomitantly, a significant acidification of the growth medium was observed in both treatments. Gene expression analyses highlighted for the first time that at least two members of the multidrug and toxic compound extrusion (MATE) transporter family and one member of the plasma membrane H(+)-ATPase family are involved in the response to both P and Fe

  11. Oral iron treatment has a positive effect on iron metabolism in elite soccer players.

    PubMed

    Villanueva, Jesús; Soria, Marisol; González-Haro, Carlos; Ezquerra, Laura; Nieto, José L; Escanero, Jesús F

    2011-09-01

    The purpose of this study was to assess the effects of oral iron supplementation on hematological and iron metabolism in elite soccer players. Thirty-five members of the Real Zaragoza SAD soccer team took part in this study: group A (GA, n = 24; Spanish Premier League) took an oral iron supplement of 80 mg day(-1) for 3 weeks, and group B (GB, n = 11; Spanish Third Division League) did not receive any supplementation. In GA, the parameters were measured before and after giving the iron supplements, while in GB, measurements were only made at the time of collecting the second set of data from GA. After supplementation, GA showed an increase in serum iron (SI) (P < 0.05), serum ferritin (Ftn) (P < 0.01), and transferrin saturation (Sat) (P < 0.01) with respect to the basal values. In addition, GA showed higher values of hematocrit (P < 0.01), mean corpuscular volume (P < 0.01), Ftn (P < 0.01), and Sat (P < 0.01) than GB. No significant differences were found in any other parameters. More specifically, a higher percentage of players had Ftn levels above upper limits in GA vs. GB (P < 0.05), and GB had a higher incidence of Ftn below lower limits with respect to subjects in GA (P < 0.01). Further, after treatment, 58.3% of GA had >800 mg of SI, while all players in GB presented levels below the lower limits. In conclusion, iron supplementation with 80 mg·day(-1) for 3 weeks, before the start of the soccer season, can be recommended for elite soccer players. PMID:20798998

  12. Sleep disorders: A review of the interface between restless legs syndrome and iron metabolism

    PubMed Central

    Daubian-Nosé, Paulo; Frank, Miriam K.; Esteves, Andrea Maculano

    2014-01-01

    Restless legs syndrome (RLS) is characterized by unpleasant sensations mainly in the legs. 43% of RLS-associated conditions have also been associated with systemic iron deficiency. The objective of this study was to review in the literature the relationship between iron metabolism and RLS. With an initial search using the keywords combination “Iron Metabolism OR Iron Deficiency AND Restless Legs Syndrome,” 145 articles were screened, and 20 articles were selected. Few studies were found for this review in the period of 2001–2014, however, the correlation between RLS and iron was evident. PMID:26483934

  13. Influence of microRNA on the Maintenance of Human Iron Metabolism

    PubMed Central

    Davis, McKale; Clarke, Stephen

    2013-01-01

    Iron is an essential nutrient critical for many cellular functions including DNA synthesis, ATP generation, and cellular proliferation. Though essential, excessive iron may contribute to the generation of free radicals capable of damaging cellular lipids, proteins, and nucleic acids. As such, the maintenance and control of cellular iron homeostasis is critical to prevent either iron deficiency or iron toxicity conditions. The maintenance of cellular iron homeostasis is largely coordinated by a family of cytosolic RNA binding proteins known as Iron Regulatory Proteins (IRP) that function to post-transcriptionally control the translation and/or stability of mRNA encoding proteins required for iron uptake, storage, transport, and utilization. More recently, a class of small non-coding RNA known as microRNA (miRNA) has also been implicated in the control of iron metabolism. To date, miRNA have been demonstrated to post-transcriptionally regulate the expression of genes associated with iron acquisition (transferrin receptor and divalent metal transporter), iron export (ferroportin), iron storage (ferritin), iron utilization (ISCU), and coordination of systemic iron homeostasis (HFE and hemojevelin). Given the diversity of miRNA and number of potential mRNA targets, characterizing factors that contribute to alterations in miRNA expression, biogenesis, and processing will enhance our understanding of mechanisms by which cells respond to changes in iron demand and/or iron availability to control cellular iron homeostasis. PMID:23846788

  14. Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism

    PubMed Central

    Korolnek, Tamara; Hamza, Iqbal

    2014-01-01

    Heme is an iron-containing porphyrin ring that serves as a prosthetic group in proteins that function in diverse metabolic pathways. Heme is also a major source of bioavailable iron in the human diet. While the synthesis of heme has been well-characterized, the pathways for heme trafficking remain poorly understood. It is likely that heme transport across membranes is highly regulated, as free heme is toxic to cells. This review outlines the requirement for heme delivery to various subcellular compartments as well as possible mechanisms for the mobilization of heme to these compartments. We also discuss how these trafficking pathways might function during physiological events involving inter- and intra-cellular mobilization of heme, including erythropoiesis, erythrophagocytosis, heme absorption in the gut, as well as heme transport pathways supporting embryonic development. Lastly, we aim to question the current dogma that heme, in toto, is not mobilized from one cell or tissue to another, outlining the evidence for these pathways and drawing parallels to other well-accepted paradigms for copper, iron, and cholesterol homeostasis. PMID:24926267

  15. Coupling Heme and Iron Metabolism via Ferritin H Chain

    PubMed Central

    2014-01-01

    Abstract Significance: Inflammation and immunity can be associated with varying degrees of heme release from hemoproteins, eventually leading to cellular and tissue iron (Fe) overload, oxidative stress, and tissue damage. Presumably, these deleterious effects contribute to the pathogenesis of systemic infections. Recent Advances: Heme release from hemoglobin sensitizes parenchyma cells to undergo programmed cell death in response to proinflammatory cytokines, such as tumor necrosis factor. This cytotoxic effect is driven by a mechanism involving intracellular accumulation of free radicals, which sustain the activation of the c-Jun N-terminal kinase (JNK) signaling transduction pathway. While heme catabolism by heme oxygenase-1 (HO-1) prevents programmed cell death, this cytoprotective effect requires the co-expression of ferritin H (heart/heavy) chain (FTH), which controls the pro-oxidant effect of labile Fe released from the protoporphyrin IX ring of heme. This antioxidant effect of FTH restrains JNK activation, whereas JNK activation inhibits FTH expression, a cross talk that controls metabolic adaptation to cellular Fe overload associated with systemic infections. Critical Issues and Future Directions: Identification and characterization of the mechanisms via which FTH provides metabolic adaptation to tissue Fe overload should provide valuable information to our current understanding of the pathogenesis of systemic infections as well as other immune-mediated inflammatory diseases. Antioxid. Redox Signal. 20, 1754–1769. PMID:24124891

  16. New strategies to target iron metabolism for the treatment of beta thalassemia.

    PubMed

    Oikonomidou, Paraskevi Rea; Casu, Carla; Rivella, Stefano

    2016-03-01

    Iron is one of the most abundant elements in the Earth and a fundamental component of enzymes and other proteins that participate in a wide range of biological processes. As the human body has no mechanisms to eliminate the excess of iron, its metabolism needs to be tightly controlled in order to avoid all the sequelae associated with high iron levels. Iron overload is the main cause of morbidity and mortality in beta thalassemia. The master regulator of iron homeostasis, hepcidin, is chronically repressed in this disorder, leading to increased intestinal iron absorption and consequent iron overload. Many groups have focused on obtaining a better understanding of the pathways involved in iron regulation. New molecules have recently been synthesized and used in animal models of dysregulated iron metabolism, demonstrating their ability to target and reduce iron load. Antisense oligonucleotides, as well as lipid nanoparticle-formulated small interfering RNAs and minihepcidins peptides, are novel agents that have already proved to be efficient in modulating iron metabolism in mouse models and are therefore promising candidates for the treatment of patients affected by iron disorders. PMID:26919168

  17. Metabolic alterations accompanying oncogene-induced senescence

    PubMed Central

    Aird, Katherine M; Zhang, Rugang

    2014-01-01

    Senescence is defined as a stable cell growth arrest. Oncogene-induced senescence (OIS) occurs in normal primary human cells after activation of an oncogene in the absence of other cooperating oncogenic stimuli. OIS is therefore considered a bona fide tumor suppression mechanism in vivo. Indeed, overcoming OIS-associated stable cell growth arrest can lead to tumorigenesis. Although cells that have undergone OIS do not replicate their DNA, they remain metabolically active. A number of recent studies report significant changes in cellular metabolism during OIS, including alterations in nucleotide, glucose, and mitochondrial metabolism and autophagy. These alterations may be necessary for stable senescence-associated cell growth arrest, and overcoming these shifts in metabolism may lead to tumorigenesis. This review highlights what is currently known about alterations in cellular metabolism during OIS and the implication of OIS-associated metabolic changes in cellular transformation and the development of cancer therapeutic strategies. PMID:27308349

  18. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli.

    PubMed

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem; O'Brien, Edward J; Szubin, Richard; Palsson, Bernhard O

    2014-01-01

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response to iron availability using genome-wide measurements. Integrative data analysis reveals that a total of 81 genes in 42 transcription units are directly regulated by three different modes of Fur regulation, including apo- and holo-Fur activation and holo-Fur repression. We show that Fur connects iron transport and utilization enzymes with negative-feedback loop pairs for iron homeostasis. In addition, direct involvement of Fur in the regulation of DNA synthesis, energy metabolism and biofilm development is found. These results show how Fur exhibits a comprehensive regulatory role affecting many fundamental cellular processes linked to iron metabolism in order to coordinate the overall response of E. coli to iron availability. PMID:25222563

  19. Duodenal Cytochrome b (DCYTB) in Iron Metabolism: An Update on Function and Regulation

    PubMed Central

    Lane, Darius J. R.; Bae, Dong-Hun; Merlot, Angelica M.; Sahni, Sumit; Richardson, Des R.

    2015-01-01

    Iron and ascorbate are vital cellular constituents in mammalian systems. The bulk-requirement for iron is during erythropoiesis leading to the generation of hemoglobin-containing erythrocytes. Additionally, both iron and ascorbate are required as co-factors in numerous metabolic reactions. Iron homeostasis is controlled at the level of uptake, rather than excretion. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance non-heme iron absorption in the gut, ascorbate regulates iron homeostasis. The involvement of ascorbate in dietary iron absorption extends beyond the direct chemical reduction of non-heme iron by dietary ascorbate. Among other activities, intra-enterocyte ascorbate appears to be involved in the provision of electrons to a family of trans-membrane redox enzymes, namely those of the cytochrome b561 class. These hemoproteins oxidize a pool of ascorbate on one side of the membrane in order to reduce an electron acceptor (e.g., non-heme iron) on the opposite side of the membrane. One member of this family, duodenal cytochrome b (DCYTB), may play an important role in ascorbate-dependent reduction of non-heme iron in the gut prior to uptake by ferrous-iron transporters. This review discusses the emerging relationship between cellular iron homeostasis, the emergent “IRP1-HIF2α axis”, DCYTB and ascorbate in relation to iron metabolism. PMID:25835049

  20. Multiple-shocks induced nanocrystallization in iron

    SciTech Connect

    Matsuda, Tomoki; Hirose, Akio; Sano, Tomokazu; Arakawa, Kazuto

    2014-07-14

    We found that multiple shots of femtosecond laser-driven shock pulses changed coarse crystalline iron grains with a size of 140 μm into nanocrystals with a high density of dislocations, which had never been observed in conventional shock processes. We performed metallurgical microstructure observations using transmission electron microscopy (TEM) and hardness measurements using nanoindentation on cross-sections of shocked iron. TEM images showed that grains with sizes from 10 nm through 1 μm exist within 2 μm of the surface, where the dislocation density reached 2 × 10{sup 15 }m{sup −2}. Results of the hardness measurements showed a significant increase in hardness in the nanocrystallized region. We suggest that the formation of a high density of dislocations, which is produced by a single shock, induces local three-dimensional pile-up by the multiple-shocks, which causes grain refinement at the nanoscale.

  1. Oxidation inhibits iron-induced blood coagulation.

    PubMed

    Pretorius, Etheresia; Bester, Janette; Vermeulen, Natasha; Lipinski, Boguslaw

    2013-01-01

    Blood coagulation under physiological conditions is activated by thrombin, which converts soluble plasma fibrinogen (FBG) into an insoluble clot. The structure of the enzymatically-generated clot is very characteristic being composed of thick fibrin fibers susceptible to the fibrinolytic degradation. However, in chronic degenerative diseases, such as atherosclerosis, diabetes mellitus, cancer, and neurological disorders, fibrin clots are very different forming dense matted deposits (DMD) that are not effectively removed and thus create a condition known as thrombosis. We have recently shown that trivalent iron (ferric ions) generates hydroxyl radicals, which subsequently convert FBG into abnormal fibrin clots in the form of DMDs. A characteristic feature of DMDs is their remarkable and permanent resistance to the enzymatic degradation. Therefore, in order to prevent thrombotic incidences in the degenerative diseases it is essential to inhibit the iron-induced generation of hydroxyl radicals. This can be achieved by the pretreatment with a direct free radical scavenger (e.g. salicylate), and as shown in this paper by the treatment with oxidizing agents such as hydrogen peroxide, methylene blue, and sodium selenite. Although the actual mechanism of this phenomenon is not yet known, it is possible that hydroxyl radicals are neutralized by their conversion to the molecular oxygen and water, thus inhibiting the formation of dense matted fibrin deposits in human blood. PMID:23170793

  2. Hepcidin and HFE protein: Iron metabolism as a target for the anemia of chronic kidney disease.

    PubMed

    Canavesi, Elena; Alfieri, Carlo; Pelusi, Serena; Valenti, Luca

    2012-12-01

    The anemia of chronic kidney disease and hemodialysis is characterized by chronic inflammation and release of cytokines, resulting in the upregulation of the iron hormone hepcidin, also increased by iron therapy and reduced glomerular filtration, with consequent reduction in iron absorption, recycling, and availability to the erythron. This response proves advantageous in the short-term to restrain iron availability to pathogens, but ultimately leads to severe anemia, and impairs the response to erythropoietin (Epo) and iron. Homozygosity for the common C282Y and H63D HFE polymorphisms influence iron metabolism by hampering hepcidin release by hepatocytes in response to increased iron stores, thereby resulting in inadequate inhibition of the activity of Ferroportin-1, inappropriately high iron absorption and recycling, and iron overload. However, in hemodialysis patients, carriage of HFE mutations may confer an adaptive benefit by decreasing hepcidin release in response to iron infusion and inflammation, thereby improving iron availability to erythropoiesis, anemia control, the response to Epo, and possibly survival. Therefore, anti-hepcidin therapies may improve anemia management in hemodialysis. However, HFE mutations directly favor hemoglobinization independently of hepcidin, and reduce macrophages activation in response to inflammation, whereas hepcidin might also play a beneficial anti-inflammatory and anti-microbic action during sepsis, so that direct inhibition of HFE-mediated regulation of iron metabolism may represent a valuable alternative therapeutic target. Genetic studies may offer a valuable tool to test these hypotheses and guide the research of new therapies. PMID:24175256

  3. Candida albicans Hap43 Is a Repressor Induced under Low-Iron Conditions and Is Essential for Iron-Responsive Transcriptional Regulation and Virulence ▿

    PubMed Central

    Hsu, Po-Chen; Yang, Cheng-Yao; Lan, Chung-Yu

    2011-01-01

    Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in immunocompromised patients. In addition to innate and adaptive immunities, hosts also resist microbial infections by developing a mechanism of “natural resistance” that maintains a low level of free iron to restrict the growth of invading pathogens. C. albicans must overcome this iron-deprived environment to cause infections. There are three types of iron-responsive transcriptional regulators in fungi; Aft1/Aft2 activators in yeast, GATA-type repressors in many fungi, and HapX/Php4 in Schizosaccharomyces pombe and Aspergillus species. In this study, we characterized the iron-responsive regulator Hap43, which is the C. albicans homolog of HapX/Php4 and is repressed by the GATA-type repressor Sfu1 under iron-sufficient conditions. We provide evidence that Hap43 is essential for the growth of C. albicans under low-iron conditions and for C. albicans virulence in a mouse model of infection. Hap43 was not required for iron acquisition under low-iron conditions. Instead, it was responsible for repression of genes that encode iron-dependent proteins involved in mitochondrial respiration and iron-sulfur cluster assembly. We also demonstrated that Hap43 executes its function by becoming a transcriptional repressor and accumulating in the nucleus in response to iron deprivation. Finally, we found a connection between Hap43 and the global corepressor Tup1 in low-iron-induced flavinogenesis. Taken together, our data suggest a complex interplay among Hap43, Sfu1, and Tup1 to coordinately regulate iron acquisition, iron utilization, and other iron-responsive metabolic activities. PMID:21131439

  4. The MRI marker gene MagA attenuates the oxidative damage induced by iron overload in transgenic mice.

    PubMed

    Guan, Xiaoying; Jiang, Xinhua; Yang, Chuan; Tian, Xiumei; Li, Li

    2016-06-01

    We aimed to create transgenic (Tg) mice engineered for magnetic resonance imaging (MRI). To ascertain if MagA expression contributes to oxidative stress and iron metabolism, we report the generation of Tg mice in which ubiquitous expression of MagA can be detected by MRI in vivo. Expression of MagA in diverse tissues of Tg mice was assessed, and iron accumulation and deposition of nanoparticles in tissues were analyzed. Levels of antioxidant enzymes, lipid peroxidation and cytokine production were determined, and iron metabolism-related proteins were also detected. MagA Tg showed no apparent pathologic symptoms and no histologic changes compared with wild-type (WT) mice. Overexpression of MagA resulted in specific alterations of the transverse relaxation rate (R2) of water. Transgene-dependent changes in R2 were detectable by MRI in iron-overloaded mice. We also evaluated antioxidant abilities between WT and Tg groups or two iron-overloaded groups. Together with the data of cytokines and iron metabolism-related proteins, we inferred that MagA could regulate nanoparticle production and thus attenuate the oxidative damage induced by iron overload. The novel MagA Tg mouse, which expresses an MRI reporter in many tissues, would be a valuable model of MagA molecular imaging in which to study diseases related to iron metabolism. PMID:26488480

  5. Perinatal iron deficiency results in altered developmental expression of genes mediating energy metabolism and neuronal morphogenesis in hippocampus.

    PubMed

    Carlson, Erik S; Stead, John D H; Neal, Charles R; Petryk, Anna; Georgieff, Michael K

    2007-01-01

    The human and rat hippocampus is highly susceptible to iron deficiency (ID) during the late fetal, early neonatal time period which is a peak time of regulated brain iron uptake and utilization. ID during this period alters cognitive development and is characterized by distinctive, long-term changes in hippocampal cellular growth and function. The fundamental processes underlying these changes are not entirely understood. In this study, ID-induced changes in expression of 25 genes implicated in iron metabolism, including cell growth and energy metabolism, dendrite morphogenesis, and synaptic connectivity were assessed from postnatal day (P) 7 to P65 in hippocampus. All 25 genes showed altered expression during the period of ID (P7, 15, and 30); 10 had changes on P65 after iron repletion. ID caused long-term diminished protein levels of four factors critical for hippocampal neuron differentiation and plasticity, including CamKII alpha, Fkbp1a (Fkbp12), Dlgh4 (PSD-95), and Vamp1 (Synaptobrevin-1). ID altered gene expression in the mammalian target of rapamycin (mTOR) pathway and in a gene network implicated in Alzheimer disease etiology. ID during late fetal and early postnatal life alters the levels and timing of expression of critical genes involved in hippocampal development and function. The study provides targets for future studies in elucidating molecular mechanisms underpinning iron's role in cognitive development and function. PMID:17546681

  6. The Ins and Outs of Bacterial Iron Metabolism

    PubMed Central

    Frawley, Elaine R.; Fang, Ferric C.

    2014-01-01

    Summary Iron is a critical nutrient for the growth and survival of most bacterial species. Accordingly, much attention has been paid to the mechanisms by which host organisms sequester iron from invading bacteria and how bacteria acquire iron from their environment. However, under oxidative stress conditions such as those encountered within phagocytic cells during the host immune response, iron is released from proteins and can act as a catalyst for Fenton chemistry to produce cytotoxic reactive oxygen species. The transitory efflux of free intracellular iron may be beneficial to bacteria under such conditions. The recent discovery of putative iron efflux transporters in Salmonella enterica serovar Typhimurium is discussed in the context of cellular iron homeostasis. PMID:25040830

  7. Sphingolipid metabolism and obesity-induced inflammation.

    PubMed

    Kang, Se-Chan; Kim, Bo-Rahm; Lee, Su-Yeon; Park, Tae-Sik

    2013-01-01

    Obesity is a metabolic disorder developed by overnutrition and a major cause for insulin resistance and cardiovascular events. Since adipose tissue is one of the major sites for the synthesis and secretion of cytokines, enlarged adipose tissue in obese condition alters inflammatory state leading to pathophysiological conditions such as type 2 diabetes and increased cardiovascular risk. A plausible theory for development of metabolic dysregulation is that obesity increases secretion of inflammatory cytokines from adipose tissue and causes a chronic inflammation in the whole body. Additionally accumulation of lipids in non-adipose tissues elevates the cellular levels of bioactive lipids that inhibit the signaling pathways implicated in metabolic regulation together with activated inflammatory response. Recent findings suggest that obesity-induced inflammatory response leads to modulation of sphingolipid metabolism and these bioactive lipids may function as mediators for increased risk of metabolic dysfunction. Importantly, elucidation of mechanism regarding sphingolipid metabolism and inflammatory disease will provide crucial information to development of new therapeutic strategies for the treatment of obesity-induced pathological inflammation. PMID:23761785

  8. Changes in certain iron metabolism variables after a single blood donation.

    PubMed

    Liedén, G; Höglund, S; Ehn, L

    1975-01-01

    Signs of iron deficiency have been studied after the first blood donation in 11 healthy men. Six were given 100 mg iron daily, and five received placebo tablets. The total iron-binding capacity and iron absoprtion remained raised for more than 26 days, but had almost returned to the initial values after 70 days. A significant decrease in the stainable bone marrow iron could be shown in all subjects after 26 days; later some restitution was seen in subjects given iron supplements, but not in those given placebo. As the restitution times are long, the interval after blood donation must be taken into account when judging iron metabolism variables in active donors. PMID:1092130

  9. The Metabolic Status Drives Acclimation of Iron Deficiency Responses in Chlamydomonas reinhardtii as Revealed by Proteomics Based Hierarchical Clustering and Reverse Genetics*

    PubMed Central

    Höhner, Ricarda; Barth, Johannes; Magneschi, Leonardo; Jaeger, Daniel; Niehues, Anna; Bald, Till; Grossman, Arthur; Fufezan, Christian; Hippler, Michael

    2013-01-01

    Iron is a crucial cofactor in numerous redox-active proteins operating in bioenergetic pathways including respiration and photosynthesis. Cellular iron management is essential to sustain sufficient energy production and minimize oxidative stress. To produce energy for cell growth, the green alga Chlamydomonas reinhardtii possesses the metabolic flexibility to use light and/or carbon sources such as acetate. To investigate the interplay between the iron-deficiency response and growth requirements under distinct trophic conditions, we took a quantitative proteomics approach coupled to innovative hierarchical clustering using different “distance-linkage combinations” and random noise injection. Protein co-expression analyses of the combined data sets revealed insights into cellular responses governing acclimation to iron deprivation and regulation associated with photosynthesis dependent growth. Photoautotrophic growth requirements as well as the iron deficiency induced specific metabolic enzymes and stress related proteins, and yet differences in the set of induced enzymes, proteases, and redox-related polypeptides were evident, implying the establishment of distinct response networks under the different conditions. Moreover, our data clearly support the notion that the iron deficiency response includes a hierarchy for iron allocation within organelles in C. reinhardtii. Importantly, deletion of a bifunctional alcohol and acetaldehyde dehydrogenase (ADH1), which is induced under low iron based on the proteomic data, attenuates the remodeling of the photosynthetic machinery in response to iron deficiency, and at the same time stimulates expression of stress-related proteins such as NDA2, LHCSR3, and PGRL1. This finding provides evidence that the coordinated regulation of bioenergetics pathways and iron deficiency response is sensitive to the cellular and chloroplast metabolic and/or redox status, consistent with systems approach data. PMID:23820728

  10. Use of carbonyl iron to induce iron loading in the mussel Mytilus edulis

    SciTech Connect

    Bootsma, N.; Macey, D.J.; Webb, J.; Talbot, V. )

    1990-02-01

    It is now recognized that in organisms such as marine mussels, the prior presence of one metal can be important in determining the ultimate toxicological response to a second challenge by a different metal species. Thus, for example, the presence of iron in the mussel Mytilus edulis profoundly affects the subsequent accumulation of zinc. To determine these synergistic (or indeed antagonistic) effects in an organism such as the mussel, it is important to be able to both load the animal rapidly, and ensure that the metal ends up in a form which is ultimately the same as that found in the animal in the natural environment. Unfortunately, considerable problems have arisen with the form in which iron has been loaded into mussels. Recently, carbonyl iron has been used to induce iron loading in rats. This form of iron is prepared by reacting elemental iron at high temperatures with carbon monoxide to form iron pentacarbonyl. This study was thus undertaken to determine whether carbonyl iron could be used for the rapid non-toxic iron loading of the mussel Mytilus edulis. Such loading could subsequently be used for the investigation of synergistic metal accumulation in mussels, a topic of considerable interest due to their use as marine pollution indicator organisms. Biochemical aspects of this tissue iron loading, including the isolation and characterization of the major metal-binding protein ferritin, have been reported previously.

  11. Regulation of Iron Metabolism by Hepcidin under Conditions of Inflammation*

    PubMed Central

    Schmidt, Paul J.

    2015-01-01

    Iron is a redox-active metal required as a cofactor in multiple metalloproteins essential for a host of life processes. The metal is highly toxic when present in excess and must be strictly regulated to prevent tissue and organ damage. Hepcidin, a molecule first characterized as an antimicrobial peptide, plays a critical role in the regulation of iron homeostasis. Multiple stimuli positively influence the expression of hepcidin, including iron, inflammation, and infection by pathogens. In this Minireview, I will discuss how inflammation regulates hepcidin transcription, allowing for sufficient concentrations of iron for organismal needs while sequestering the metal from infectious pathogens. PMID:26055723

  12. Chromosomal intrachanges induced by swift iron ions

    NASA Astrophysics Data System (ADS)

    Horstmann, M.; Durante, M.; Johannes, C.; Obe, G.

    We measured the induction of aberrations in human chromosome 5 by iron ions using the novel technique of multicolor banding in situ hybridization (mBAND). Human lymphocytes isolated from whole blood were exposed in vitro to 500 MeV/n (LET=200 keV/μ m, doses 1 or 4 Gy) 56Fe nuclei at the HIMAC accelerator in Chiba (Japan). Chromosomes were prematurely condensed by calyculin A after 48 h in culture, and slides were painted by mBAND (MetaSystems). We found a frequency of 0.11 and 0.57 residual breakpoints per chromosome 5 after 1 Gy and 4 Gy Fe-ions, respectively. The distribution per unit length were similar in the p- and q-arm of chromosome 5, and >50% of the observed fragments measured <30% of the whole chromosome length. Only small fragments (<40% of the chromosome size) were involved in intra-chromosomal exchanges (interstitial deletions or inversions), whereas fragments up to 75% of the whole chromosome 5 were found in inter-chromosomal exchanges. We measured more inter-changes than intra-changes, and more intra-arm than inter-arm exchanges at both doses. No significant differences in the ratios of these aberrations were detected with respect to X-rays. On the other hand, Fe-ions induced a significantly higher fraction of complex-type exchanges when compared to sparsely ionizing radiation. Work supported by DLR, BMBF, INTAS and NIRS-HIMAC.

  13. The Crossroads of Iron with Hypoxia and Cellular Metabolism. Implications in the Pathobiology of Pulmonary Hypertension

    PubMed Central

    Graham, Brian B.; Rouault, Tracey C.; Tuder, Rubin M.

    2014-01-01

    The pathologic hallmark of pulmonary arterial hypertension (PAH) is pulmonary vascular remodeling, characterized by endothelial cell proliferation, smooth muscle hypertrophy, and perivascular inflammation, ultimately contributing to increased pulmonary arterial pressures. Several recent studies have observed that iron deficiency in patients with various forms of PAH is associated with worsened clinical outcome. Iron plays a key role in many cellular processes regulating the response to hypoxia, oxidative stress, cellular proliferation, and cell metabolism. Given the potential importance of iron supplementation in patients with the disease and the broad cellular functions of iron, we review its role in processes that pertain to PAH. PMID:24988529

  14. MBD5 regulates iron metabolism via methylation-independent genomic targeting of Fth1 through KAT2A in mice.

    PubMed

    Tao, Yunlong; Wu, Qian; Guo, Xin; Zhang, Zhuzhen; Shen, Yuanyuan; Wang, Fudi

    2014-07-01

    Ferritin plays important roles in iron metabolism and controls iron absorption in the intestine. The ferritin subunits ferritin heavy chain (Fth1) and ferritin light chain (Ftl1) are tightly regulated at both the transcriptional and post-transcriptional levels. However, mechanisms of maintaining stable, basal expression of Fth1 are poorly understood. Here, we show that global deletion of Mbd5 in mice induces an iron overload phenotype. Liver and serum iron levels in Mbd5(-/-) mice were 3·2-fold and 1·5-fold higher respectively, than wild-type littermates; moreover, serum ferritin was increased >5-fold in the Mbd5(-/-) mice. Mbd5 encodes a member of the methyl-CpG binding domain family; however, the precise function of this gene is poorly understood. Here, we found that intestinal Fth1 mRNA levels were decreased in Mbd5(-/-) mice. Loss of Fth1 expression in the intestine could lead to iron over-absorption. Furthermore, deleting Mbd5 specifically in the intestine resulted in a phenotype similar to that of conditional deletion of Fth1 mice. An Fth1 promoter-report luciferase assay indicated that overexpression of Mbd5 enhanced Fth1 transcription in a dose-dependent manner. Histone H4 acetylation of the Fth1 promoter was reduced in the intestine of Mbd5(-/-) mice and further analysis showed that histone acetyltransferase KAT2A was essential for MBD5-induced Fth1 transcription. PMID:24750026

  15. Effects of novel neuroprotective and neurorestorative multifunctional drugs on iron chelation and glucose metabolism.

    PubMed

    Pollak, Yulia; Mechlovich, Danit; Amit, Tamar; Bar-Am, Orit; Manov, Irena; Mandel, Silvia A; Weinreb, Orly; Meyron-Holtz, Esther G; Iancu, Theodore C; Youdim, Moussa B H

    2013-01-01

    Iron accumulation and iron-related oxidative stress are involved in several pathological conditions and provide a rationale for the development of iron chelators as novel promising therapeutic strategies. Thus, we have recently synthesized multifunctional non-toxic, brain permeable iron chelating compounds, M30 and HLA20, possessing the neuroprotective N-propargyl moiety of the anti-Parkinsonian drug, monoamine oxidase (MAO)-B inhibitor, rasagiline and the antioxidant-iron chelating moiety of an 8-hydroxyquinoline derivative of the iron chelator, VK28. Here, we examined the hepatic regulatory effects of these novel compounds using two experimental approaches: chelation activity and glucose metabolism parameters. The present study demonstrated that M30 and HLA20 significantly decreased intracellular iron content and reduced ferritin expression levels in iron-loaded hepatoma Hep3B cells. In electron microscopy analysis, M30 was shown to reduce the electron-dense deposits of siderosomes by ~30 %, as well as down-regulate cytosolic ferritin particles observed in iron-overloaded cells. In vivo studies demonstrated that M30 administration (1 mg/kg, P.O. three times a week) reduced hepatic ferritin levels; increased hepatic insulin receptor and glucose transporter-1 levels and improved glucose tolerance in C57BL/6 mice and in a mouse model of type-2 diabetes, the ob/ob (leptin(-/-)). The results clearly indicate that the novel multifunctional drugs, especially M30, display significant capacity of chelating intracellular iron and regulating glucose metabolism parameters. Such effects can have therapeutic significance in conditions with abnormal local or systemic iron metabolism, including neurological diseases. PMID:22446839

  16. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse

    PubMed Central

    Pellegrino, Rosa Maria; Boda, Enrica; Montarolo, Francesca; Boero, Martina; Mezzanotte, Mariarosa; Saglio, Giuseppe; Buffo, Annalisa; Roetto, Antonella

    2016-01-01

    The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits. PMID:27477597

  17. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse.

    PubMed

    Pellegrino, Rosa Maria; Boda, Enrica; Montarolo, Francesca; Boero, Martina; Mezzanotte, Mariarosa; Saglio, Giuseppe; Buffo, Annalisa; Roetto, Antonella

    2016-01-01

    The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits. PMID:27477597

  18. Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates ( Iron Snow )

    SciTech Connect

    Lu, S; Chourey, Karuna; REICHE, M; Nietzsche, S; Shah, Manesh B; Hettich, Robert {Bob} L; Kusel, K

    2013-01-01

    Metaproteomics combined with total nucleic acid-based methods aided in deciphering the roles of microorganisms in the formation and transformation of iron-rich macroscopic aggregates (iron snow) formed in the redoxcline of an acidic lignite mine lake. Iron snow had high total bacterial 16S rRNA gene copies, with 2 x 109 copies g (dry wt)-1 in the acidic (pH 3.5) central lake basin and 4 x 1010 copies g (dry wt)-1 in the less acidic (pH 5.5) northern lake basin. Active microbial communities in the central basin were dominated by Alphaproteobacteria (36.6%) and Actinobacteria (21.4%), and by Betaproteobacteria (36.2%) in the northern basin. Microbial Fe-cycling appeared to be the dominant metabolism in the schwertmannite-rich iron snow, because cloning and qPCR assigned up to 61% of active bacteria as Fe-cycling bacteria (FeB). Metaproteomics revealed 70 unique proteins from central basin iron snow and 283 unique proteins from 43 genera from northern basin. Protein identification provided a glimpse into in situ processes, such as primary production, motility, metabolism of acidophilic FeB, and survival strategies of neutrophilic FeB. Expression of carboxysome shell proteins and RubisCO indicated active CO2 fixation by Fe(II) oxidizers. Flagellar proteins from heterotrophs indicated their activity to reach and attach surfaces. Gas vesicle proteins related to CO2-fixing Chlorobium suggested that microbes could influence iron snow sinking. We suggest that iron snow formed by autotrophs in the redoxcline acts as a microbial parachute, since it is colonized by motile heterotrophs during sinking which start to dissolve schwertmannite.

  19. Neuroferritinopathy: a new inborn error of iron metabolism

    PubMed Central

    Keogh, Michael J.; Jonas, Patricia; Coulthard, Alan; Chinnery, Patrick F.; Burn, John

    2014-01-01

    Neuroferritinopathy is an autosomal dominant progressive movement disorder which occurs due to mutations in the ferritin light chain gene (FTL1). It presents in mid-adult life and is the only autosomal dominant disease in a group of conditions termed neurodegeneration with brain iron accumulation (NBIA). We performed brain MRI scans on 12 asymptomatic descendants of known mutation carriers. All three harbouring the pathogenic c.460InsA mutation showed iron deposition; these findings show pathological iron accumulation begins in early childhood which is of major importance in understanding and developing treatment for NBIA. PMID:22278127

  20. Neuroprotective effects of ginkgetin against neuroinjury in Parkinson's disease model induced by MPTP via chelating iron.

    PubMed

    Wang, Y-Q; Wang, M-Y; Fu, X-R; Peng-Yu; Gao, G-F; Fan, Y-M; Duan, X-L; Zhao, B-L; Chang, Y-Z; Shi, Z-H

    2015-01-01

    Disruption of neuronal iron homeostasis and oxidative stress are closely related to the pathogenesis of Parkinson's disease (PD). Ginkgetin, a natural biflavonoid isolated from leaves of Ginkgo biloba L, has many known effects, including anti-inflammatory, anti-influenza virus, and anti-fungal activities, but its underlying mechanism of the neuroprotective effects in PD remains unclear. The present study utilized PD models induced by 1-methyl-4-phenylpyridinium (MPP(+)) and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to explore the neuroprotective ability of ginkgetin in vivo and in vitro. Our results showed that ginkgetin could provide significant protection from MPP(+)-induced cell damage in vitro by decreasing the levels of intracellular reactive oxygen species and maintaining mitochondrial membrane potential. Meanwhile, ginkgetin dramatically inhibited cell apoptosis induced by MPP+ through the caspase-3 and Bcl2/Bax pathway. Moreover, ginkgetin significantly improved sensorimotor coordination in a mouse PD model induced by MPTP by dramatically inhibiting the decrease of tyrosine hydroxylase expression in the substantia nigra and superoxide dismutase activity in the striatum. Interestingly, ginkgetin could strongly chelate ferrous ion and thereby inhibit the increase of the intracellular labile iron pool through downregulating L-ferritin and upregulating transferrin receptor 1. These results indicate that the neuroprotective mechanism of ginkgetin against neurological injury induced by MPTP occurs via regulating iron homeostasis. Therefore, ginkgetin may provide neuroprotective therapy for PD and iron metabolism disorder related diseases. PMID:25968939

  1. Red blood cell and iron metabolism during space flight.

    PubMed

    Smith, Scott M

    2002-10-01

    Space flight anemia is a widely recognized phenomenon in astronauts. Reduction in circulating red blood cells and plasma volume results in a 10% to 15% decrement in circulatory volume. This effect appears to be a normal physiologic adaptation to weightlessness and results from the removal of newly released blood cells from the circulation. Iron availability increases, and (in the few subjects studied) iron stores increase during long-duration space flight. The consequences of these changes are not fully understood. PMID:12361780

  2. Red blood cell and iron metabolism during space flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2002-01-01

    Space flight anemia is a widely recognized phenomenon in astronauts. Reduction in circulating red blood cells and plasma volume results in a 10% to 15% decrement in circulatory volume. This effect appears to be a normal physiologic adaptation to weightlessness and results from the removal of newly released blood cells from the circulation. Iron availability increases, and (in the few subjects studied) iron stores increase during long-duration space flight. The consequences of these changes are not fully understood.

  3. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli

    PubMed Central

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem; O’Brien, Edward J.; Szubin, Richard; Palsson, Bernhard O.

    2014-01-01

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response to iron availability using genome-wide measurements (ChIP-exo and RNA-seq). Integrative data analysis reveals that a total of 81 genes in 42 transcription units are directly regulated by three different modes of Fur regulation, including apo- and holo-Fur activation and holo-Fur repression. We show that Fur connects iron transport and utilization enzymes with negative-feedback loop pairs for iron homeostasis. In addition, direct involvement of Fur in the regulation of DNA synthesis, energy metabolism, and biofilm development is found. These results show how Fur exhibits a comprehensive regulatory role affecting many fundamental cellular processes linked to iron metabolism in order to coordinate the overall response of E. coli to iron availability. PMID:25222563

  4. Effects of dietary manganese and iron on manganese and iron metabolism during infancy

    SciTech Connect

    Kiehl, H.; Loennerdal, B. )

    1991-03-15

    To derive a better understanding of the metabolism of Mn during infancy, infant formulas with different levels of Mn and Fe were labeled with {sup 54}Mn and {sup 59}Fe and administered orally to suckling rats: control low-Fe formula; control with 100-times Mn; and control with 100-times Fe. Another group received 200 {mu}g MnCl{sub 2} daily during infancy. 12 hr post-dosing, the pattern of {sup 54}Mn distribution in the tissues paralleled that of {sup 59}Fe. An excess of either mineral decreased overall retention but led to higher recoveries of both elements in the proximal intestine and liver. Conversely, these recoveries in pups given Mn from birth were lower than in controls. Analysis of the cytosolic fractions from intestine and liver using FPLC gel filtration demonstrated the impact of the mineral loads on protein profiles. In all cases except the high-Mn dose, dietary manipulations resulted in greater relative levels of a high molecular weight protein with MW similar to ferritin. The high-Mn formula seemed to induce in the hepatocyte a lower MW protein with which most of the {sup 54}Mn and {sup 59}Fe was associated. These results suggest a possible role of Mn as a regulator in the synthesis of cytosolic proteins of the enterocyte and hepatocyte in infants.

  5. Insights into the pathophysiology of iron metabolism in Pythium insidiosum infections.

    PubMed

    Zanette, R A; Bitencourt, P E R; Alves, S H; Fighera, R A; Flores, M M; Wolkmer, P; Hecktheuer, P A; Thomas, L R; Pereira, P L; Loreto, E S; Santurio, J M

    2013-03-23

    Pythium insidiosum causes life-threatening disease in mammals. Animals with pythiosis usually develop anemia, and most human patients are reported to have thalassemia and the major consequence of thalassemia, iron overload. Therefore, this study evaluated the iron metabolism in rabbits experimentally infected with P. insidiosum. Ten infected rabbits were divided into two groups: one groups received a placebo, and the other was treated with immunotherapy. Five rabbits were used as negative controls. The hematological and biochemical parameters, including the iron profile, were evaluated. Microcytic hypochromic anemia was observed in the infected animals, and this condition was more accentuated in the untreated group. The serum iron level was decreased, whereas the transferrin level was increased, resulting in low saturation. The level of stainable iron in hepatocytes was markedly decreased in the untreated group. A high correlation was observed between the total iron binding capacity and the lesion size, and this correlation likely confirms the affinity of P. insidiosum for iron. The data from this study corroborate the previous implications of iron in the pathogenesis of pythiosis in humans and animals. PMID:23182911

  6. Proteomic Analysis Reveals That Iron Availability Alters the Metabolic Status of the Pathogenic Fungus Paracoccidioides brasiliensis

    PubMed Central

    Parente, Ana F. A.; Bailão, Alexandre M.; Borges, Clayton L.; Parente, Juliana A.; Magalhães, Adriana D.; Ricart, Carlos A. O.; Soares, Célia M. A.

    2011-01-01

    Paracoccidioides brasiliensis is a thermodimorphic fungus and the causative agent of paracoccidioidomycosis (PCM). The ability of P. brasiliensis to uptake nutrients is fundamental for growth, but a reduction in the availability of iron and other nutrients is a host defense mechanism many pathogenic fungi must overcome. Thus, fungal mechanisms that scavenge iron from host may contribute to P. brasiliensis virulence. In order to better understand how P. brasiliensis adapts to iron starvation in the host we compared the two-dimensional (2D) gel protein profile of yeast cells during iron starvation to that of iron rich condition. Protein spots were selected for comparative analysis based on the protein staining intensity as determined by image analysis. A total of 1752 protein spots were selected for comparison, and a total of 274 out of the 1752 protein spots were determined to have changed significantly in abundance due to iron depletion. Ninety six of the 274 proteins were grouped into the following functional categories; energy, metabolism, cell rescue, virulence, cell cycle, protein synthesis, protein fate, transcription, cellular communication, and cell fate. A correlation between protein and transcript levels was also discovered using quantitative RT-PCR analysis from RNA obtained from P. brasiliensis under iron restricting conditions and from yeast cells isolated from infected mouse spleens. In addition, western blot analysis and enzyme activity assays validated the differential regulation of proteins identified by 2-D gel analysis. We observed an increase in glycolytic pathway protein regulation while tricarboxylic acid cycle, glyoxylate and methylcitrate cycles, and electron transport chain proteins decreased in abundance under iron limiting conditions. These data suggest a remodeling of P. brasiliensis metabolism by prioritizing iron independent pathways. PMID:21829521

  7. Influence of lead on repetitive behavior and dopamine metabolism in a mouse model of iron overload.

    PubMed

    Chang, JuOae; Kueon, Chojin; Kim, Jonghan

    2014-12-01

    Exposures to lead (Pb) are associated with neurological problems including psychiatric disorders and impaired learning and memory. Pb can be absorbed by iron transporters, which are up-regulated in hereditary hemochromatosis, an iron overload disorder in which increased iron deposition in various parenchymal organs promote metal-induced oxidative damage. While dysfunction in HFE (High Fe) gene is the major cause of hemochromatosis, the transport and toxicity of Pb in Hfe-related hemochromatosis are largely unknown. To elucidate the relationship between HFE gene dysfunction and Pb absorption, H67D knock-in Hfe-mutant and wild-type mice were given drinking water containing Pb 1.6 mg/ml ad libitum for 6 weeks and examined for behavioral phenotypes using the nestlet-shredding and marble-burying tests. Latency to nestlet-shredding in Pb-treated wild-type mice was prolonged compared with non-exposed wild-types (p < 0.001), whereas Pb exposure did not alter shredding latency in Hfe-mutant mice. In the marble-burying test, Hfe-mutant mice showed an increased number of marbles buried compared with wild-type mice (p = 0.002), indicating more repetitive behavior upon Hfe mutation. Importantly, Pb-exposed wild-type mice buried more marbles than non-exposed wild-types, whereas the number of marbles buried by Hfe-mutant mice did not change whether or not exposed to Pb. These results suggest that Hfe mutation could normalize Pb-induced behavioral alteration. To explore the mechanism of repetitive behavior caused by Pb, western blot analysis was conducted for proteins involved in brain dopamine metabolism. The levels of tyrosine hydroxylase and dopamine transporter increased upon Pb exposure in both genotypes, whereas Hfe-mutant mice displayed down-regulation of the dopamine transporter and dopamine D1 receptor with D2 receptor elevated. Taken together, our data support the idea that both Pb exposure and Hfe mutation increase repetitive behavior in mice and further suggest that

  8. Effects of dietary carbohydrate on iron metabolism and cytochrome oxidase activity in copper-deficient rats

    SciTech Connect

    Johnson, M.A.; Henderson, J.

    1986-03-01

    The effects of dietary carbohydrate on the metabolism of iron and the activity of cytochrome oxidase were examined in Cu-deficient and Cu-adequate rats. Male rats (n = 36) were fed one of six diets which varied in copper level (Cu-: < 0.6 ppm or Cu+: 8.2 ppm) and carbohydrate type (cornstarch, sucrose or fructose). After 31 days, Cu- rats had 50% more iron in the liver and 38, 30 and 18% less iron in the tibia, spleen and kidneys, respectively, than Cu+ rats. The activity of cytochrome oxidase in the bone marrow, heart, and liver were 59%, 51%, and 43%, respectively, of the levels in Cu/sup +/ rats. The type of dietary carbohydrate significantly affected the development of anemia during copper deficiency. Cu-rats fed cornstarch, sucrose or fructose had hematocrit levels which were 92, 83 or 73%, respectively, of Cu+ rats. Similarly, the levels of iron in the tibias of Cu- rats fed cornstarch, sucrose or fructose were 69, 66 or 54%, respectively, of Cu+ rats. The hematocrit levels of Cu- rats were positively correlated to both tibia iron levels (r = 0.64, p < 0.005) and liver cytochrome oxidase activities (r = 0.50, p < 0.05). Thus, it appears that changes in the metabolism of iron may be involved with the development of anemia in Cu- rats fed fructose or sucrose.

  9. Iron Metabolism in Field Hockey Players During an Annual Training Cycle

    PubMed Central

    Podgórski, Tomasz; Kryściak, Jakub; Konarski, Jan; Domaszewska, Katarzyna; Durkalec-Michalski, Krzysztof; Strzelczyk, Ryszard; Pawlak, Maciej

    2015-01-01

    Post-physical training changes in iron metabolism in the human body often occur. To fully describe these processes, fifteen male Polish National Team field hockey players (age 27.7 ± 5.2 years, body mass 72.8 ± 7.6 kg and body height 177.1 ± 5.7 cm) were examined in three phases of an annual training cycle: preparatory (T1), competitive (T2) and transition (T3). To assess aerobic fitness, maximal oxygen uptake (VO2max) was evaluated. Based on the iron concentration, the changes in total iron binding capacity (TIBC), unsaturated iron binding capacity (UIBC) and other selected haematological indicators (haemoglobin, erythrocytes, mean corpuscular haemoglobin - MCH) in iron metabolism were estimated. The average values of maximum oxygen uptake increased from 54.97 ± 3.62 ml·kg−1·min−1 in T1 to 59.93 ± 3.55 ml·kg−1·min−1 in T2 (p<0.05) and then decreased to 56.21 ± 4.56 ml·kg−1·min−1 in T3 (p<0.05). No statistically significant changes in the erythrocyte count were noted. The MCH and haemoglobin concentration decreased between T1 and T2. The maximal exercise test caused a significant (p<0.05) increase in the plasma iron concentration during the competition and transition phases. Progressive but non-significant increases in resting iron concentration, TIBC and UIBC in the analysed annual training cycle were noted. To show global changes in iron metabolism in the human body, it is necessary to determine additional variables, i.e. UIBC, TIBC, haemoglobin, MCH or the erythrocyte count. The direction of changes in iron metabolism depends on both the duration and intensity of the physical activity and the fitness level of the subjects. Dietary intake of iron increases the level of this trace element and prevents anaemia associated with training overloads. PMID:26557195

  10. Shock induced magnetic effects in fine particle iron dispersions

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.

    1979-01-01

    Magnetic effects associated with shock induced transformation of fcc antiferromagnetic iron precipitates in polycrystalline copper disks at levels up to 5 GPa in weak magnetic fields (H not greater than 0.5 Oe) were investigated. The demagnetization and anisotropy associated with second order transition, the effects of plastic deformation in imparting magnetic anisotropy and magnetic hardening, and the influence of post shock thermal transients on magnetization associated with recovery, recrystallization and grain growth were studied. It was found that on the microsecond time scale of the shock induced first order transformation, the field sense is recorded in the transformed iron particles. For a given particle size the degree of transformation of fcc iron depends on the level of the shock. For a given shock level the resultant magnetic properties depend on the particle size distribution, with maximum effects noted in specimens with 400 to 600 A particles.

  11. Microbially Induced Iron Oxidation: What, Where, How

    SciTech Connect

    SCHIERMEYER,ELISA M.; PROVENCIO,PAULA P.; NORTHUP,DIANA E.

    2000-08-15

    From the results of the different bacterial cells seen, it is fairly certain that Gallionella is present because of the bean-shaped cells and twisted stalks found with the TEM. The authors cannot confirm, though, what other iron-oxidizing genera exist in the tubes, since the media was only preferential and not one that isolated a specific genus of bacteria. Based on the environment in which they live and the source of the water, they believe their cultures contain Gallionella, Leptothrix, and possibly Crenothrix and Sphaerotilus. They believe the genus Leptothrix rather than Sphaerotilus exist in the tubes because the water source was fresh, unlike the polluted water in which Sphaerotilus are usually found. The TEM preparations worked well. The cryogenic method rapidly froze the cells in place and allowed them to view their morphology. The FAA method, as stated previously, was the best of the three methods because it gave the best contrast. The gluteraldehyde samples did not come out as well. It is possible that the gluteraldehyde the authors prepared was still too concentrated and did not mix well. Although these bacteria were collected from springs and then cultured in an environment containing a presumably pure iron-bearing metal, it seems the tube already containing Manganese Gradient Medium could be used with a piece of metal containing these bacteria. A small piece of corroding metal could then be inserted into the test tube and cultured to study the bacteria.

  12. Using skin to assess iron accumulation in human metabolic disorders

    NASA Astrophysics Data System (ADS)

    Guinote, I.; Fleming, R.; Silva, R.; Filipe, P.; Silva, J. N.; Veríssimo, A.; Napoleão, P.; Alves, L. C.; Pinheiro, T.

    2006-08-01

    The distribution of Fe in skin was assessed to monitor body Fe status in human hereditary hemochromatosis. The paper reports on data from nine patients with hemochromatosis that were studied along the therapeutic programme. Systemic evaluation of Fe metabolism was carried out by measuring with PIXE technique the Fe concentration in plasma and blood cells, and by determining with biochemical methods the indicators of Fe transport in serum (ferritin and transferrin). The Fe distribution and concentration in skin was assessed by nuclear microscopy and Fe deposits in liver estimated through nuclear magnetic resonance. Elevated Fe concentrations in skin were related to increased plasma Fe (p < 0.004), serum ferritin content (p < 0.01) and Fe deposits in liver (p < 0.004). The relationship of Fe deposits in organs and metabolism markers may help to better understand Fe pools mobilisation and to establish the quality of skin as a marker for the disease progression and therapy efficacy.

  13. Oxidation-Induced Degradable Nanogels for Iron Chelation

    PubMed Central

    Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.

    2016-01-01

    Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells. PMID:26868174

  14. Iron-Induced Changes in the Proteome of Trichomonas vaginalis Hydrogenosomes

    PubMed Central

    Beltrán, Neritza Campo; Horváthová, Lenka; Jedelský, Petr L.; Šedinová, Miroslava; Rada, Petr; Marcinčiková, Michaela; Hrdý, Ivan; Tachezy, Jan

    2013-01-01

    Iron plays a crucial role in metabolism as a key component of catalytic and redox cofactors, such as heme or iron-sulfur clusters in enzymes and electron-transporting or regulatory proteins. Limitation of iron availability by the host is also one of the mechanisms involved in immunity. Pathogens must regulate their protein expression according to the iron concentration in their environment and optimize their metabolic pathways in cases of limitation through the availability of respective cofactors. Trichomonas vaginalis, a sexually transmitted pathogen of humans, requires high iron levels for optimal growth. It is an anaerobe that possesses hydrogenosomes, mitochondrion-related organelles that harbor pathways of energy metabolism and iron-sulfur cluster assembly. We analyzed the proteomes of hydrogenosomes obtained from cells cultivated under iron-rich and iron-deficient conditions employing two-dimensional peptide separation combining IEF and nano-HPLC with quantitative MALDI-MS/MS. We identified 179 proteins, of which 58 were differentially expressed. Iron deficiency led to the upregulation of proteins involved in iron-sulfur cluster assembly and the downregulation of enzymes involved in carbohydrate metabolism. Interestingly, iron affected the expression of only some of multiple protein paralogues, whereas the expression of others was iron independent. This finding indicates a stringent regulation of differentially expressed multiple gene copies in response to changes in the availability of exogenous iron. PMID:23741475

  15. Multiscale Modeling of Shock-Induced Phase Transitions in Iron

    NASA Astrophysics Data System (ADS)

    Carter, Emily; Caspersen, Kyle; Lew, Adrian; Ortiz, Michael

    2004-03-01

    Multiscale Modeling of Shock-Induced Phase Transitions in Iron Emily Carter, Kyle Caspersen, Adrian Lew and Michael Ortiz We investigate the bcc to hcp phase transition in iron under both pressure and shear. We use DFT to map out the energy landscape of uniformly deformed iron, including its equation of state and its elastic moduli as a function of volume. >From these data we construct a nonlinear-elastic energy density which gives the energy density for arbitrary - not necessarily small - deformations. The energy density contains two wells corresponding to the bcc and hcp phases. We take this multi-well energy density as a basis for the investigation of the effect of shear on the phase diagram of iron. We allow for mixed states consisting alternating lamellae of bcc and hcp phases, and, for each macroscopic deformation, we determine the optimal microstructure of the mixed state by energy minimization using a sequential-lamination algorithm. We find that the superposition of shearing deformation on a volume change has the effect of inducing mixed states of varying spatial complexity, and of markedly lowering the critical transformation pressure. Indeed, we find that shear must be taken into consideration in order to obtain agreement with measured transformation pressures. Finally, we demonstrate how the microstructure model can be integrated into large-scale finite element calculations of shocked iron.

  16. Deregulation of genes related to iron and mitochondrial metabolism in refractory anemia with ring sideroblasts.

    PubMed

    del Rey, Mónica; Benito, Rocío; Fontanillo, Celia; Campos-Laborie, Francisco J; Janusz, Kamila; Velasco-Hernández, Talía; Abáigar, María; Hernández, María; Cuello, Rebeca; Borrego, Daniel; Martín-Zanca, Dionisio; De Las Rivas, Javier; Mills, Ken I; Hernández-Rivas, Jesús M

    2015-01-01

    The presence of SF3B1 gene mutations is a hallmark of refractory anemia with ring sideroblasts (RARS). However, the mechanisms responsible for iron accumulation that characterize the Myelodysplastic Syndrome with ring sideroblasts (MDS-RS) are not completely understood. In order to gain insight in the molecular basis of MDS-RS, an integrative study of the expression and mutational status of genes related to iron and mitochondrial metabolism was carried out. A total of 231 low-risk MDS patients and 81 controls were studied. Gene expression analysis revealed that iron metabolism and mitochondrial function had the highest number of genes deregulated in RARS patients compared to controls and the refractory cytopenias with unilineage dysplasia (RCUD). Thus mitochondrial transporters SLC25 (SLC25A37 and SLC25A38) and ALAD genes were over-expressed in RARS. Moreover, significant differences were observed between patients with SF3B1 mutations and patients without the mutations. The deregulation of genes involved in iron and mitochondrial metabolism provides new insights in our knowledge of MDS-RS. New variants that could be involved in the pathogenesis of these diseases have been identified. PMID:25955609

  17. Deregulation of Genes Related to Iron and Mitochondrial Metabolism in Refractory Anemia with Ring Sideroblasts

    PubMed Central

    del Rey, Mónica; Benito, Rocío; Fontanillo, Celia; Campos-Laborie, Francisco J.; Janusz, Kamila; Velasco-Hernández, Talía; Abáigar, María; Hernández, María; Cuello, Rebeca; Borrego, Daniel; Martín-Zanca, Dionisio; De Las Rivas, Javier; Mills, Ken I.; Hernández-Rivas, Jesús M.

    2015-01-01

    The presence of SF3B1 gene mutations is a hallmark of refractory anemia with ring sideroblasts (RARS). However, the mechanisms responsible for iron accumulation that characterize the Myelodysplastic Syndrome with ring sideroblasts (MDS-RS) are not completely understood. In order to gain insight in the molecular basis of MDS-RS, an integrative study of the expression and mutational status of genes related to iron and mitochondrial metabolism was carried out. A total of 231 low-risk MDS patients and 81 controls were studied. Gene expression analysis revealed that iron metabolism and mitochondrial function had the highest number of genes deregulated in RARS patients compared to controls and the refractory cytopenias with unilineage dysplasia (RCUD). Thus mitochondrial transporters SLC25 (SLC25A37 and SLC25A38) and ALAD genes were over-expressed in RARS. Moreover, significant differences were observed between patients with SF3B1 mutations and patients without the mutations. The deregulation of genes involved in iron and mitochondrial metabolism provides new insights in our knowledge of MDS-RS. New variants that could be involved in the pathogenesis of these diseases have been identified. PMID:25955609

  18. Iron metabolism and oxidative profile of dogs naturally infected by Ehrlichia canis: Acute and subclinical disease.

    PubMed

    Bottari, Nathieli B; Crivellenti, Leandro Z; Borin-Crivellenti, Sofia; Oliveira, Jéssica R; Coelho, Stefanie B; Contin, Catarina M; Tatsch, Etiane; Moresco, Rafael N; Santana, Aureo E; Tonin, Alexandre A; Tinucci-Costa, Mirela; Da Silva, Aleksandro S

    2016-03-01

    The aim of this study was to evaluate the oxidant profile and iron metabolism in serum of dogs infected by Ehrlichia canis. Banked sera samples of dogs were divided into two groups: negative control (n = 17) and infected by E. canis on acute (n = 24), and subclinical (n = 18) phases of the disease. The eritrogram, leucogram, and platelet counts were evaluate as well as iron, ferritin, and transferrin levels, latent iron binding capacity (LIBC), and transferrin saturation index (TSI) concentration. In addition, the advanced oxidation protein products (AOPP) and ferric reducing ability of plasma (FRAP) in sera were also analyzed. Blood samples were examined for the presence of E. canis by PCR techniques. History and clinical signals were recorded for each dog. During the acute phase of the disease, infected animals showed thrombocytopenia and anemia when compared to healthy animals (P < 0.05) as a consequence of lower iron levels. Ferritin and transferrin levels were higher in both phases (acute and subclinical) of the disease. The AOPP and FRAP levels increased in infected animals on the acute phase; however, the opposite occurred in the subclinical phase. We concluded that dogs naturally infected by E. canis showed changes in the iron metabolism and developed an oxidant status in consequence of disease pathophysiology. PMID:26724737

  19. Multiple mechanisms of iron-induced amyloid beta-peptide accumulation in SHSY5Y cells: protective action of negletein.

    PubMed

    Banerjee, Priyanjalee; Sahoo, Arghyadip; Anand, Shruti; Ganguly, Anirban; Righi, Giuliana; Bovicelli, Paolo; Saso, Luciano; Chakrabarti, Sasanka

    2014-12-01

    The increased accumulation of iron in the brain in Alzheimer's disease (AD) is well documented, and excess iron is strongly implicated in the pathogenesis of the disease. The adverse effects of accumulated iron in AD brain may include the oxidative stress, altered amyloid beta-metabolism and the augmented toxicity of metal-bound amyloid beta 42. In this study, we have shown that exogenously added iron in the form of ferric ammonium citrate (FAC) leads to considerable accumulation of amyloid precursor protein (APP) without a corresponding change in the concerned gene expression in cultured SHSY5Y cells during exposure up to 48 h. This phenomenon is also associated with increased β-secretase activity and augmented release of amyloid beta 42 in the medium. Further, the increase in β-secretase activity, in SHSY5Y cells, upon exposure to iron apparently involves reactive oxygen species (ROS) and NF-κB activation. The synthetic flavone negletein (5,6-dihydroxy-7-methoxyflavone), which is a known chelator for iron, can significantly prevent the effects of FAC on APP metabolism in SHSY5Y cells. Further, this compound inhibits the iron-dependent formation of ROS and also blocks the iron-induced oligomerization of amyloid beta 42 in vitro. In concentrations used in this study, negletein alone appears to have only marginal toxic effects on cell viability, but, on the other hand, the drug is capable of ameliorating the iron-induced loss of cell viability considerably. Our results provide the initial evidence of potential therapeutic effects of negletein, which should be explored in suitable animal models of AD. PMID:25249289

  20. Aggregatibacter actinomycetemcomitans QseBC is activated by catecholamines and iron and regulates genes encoding proteins associated with anaerobic respiration and metabolism

    PubMed Central

    Weigel, WA; Demuth, DR; Torres-Escobar, A; Juárez-Rodríguez, MD

    2015-01-01

    Aggregatibacter actinomycetemcomitans QseBC regulates its own expression and is essential for biofilm growth and virulence. However, the signal that activates the QseC sensor has not been identified and the qseBC regulon has not been defined. In this study, we show that QseC is activated by catecholamine hormones and iron but not by either component alone. Activation of QseC requires an EYRDD motif in the periplasmic domain of the sensor and site-specific mutations in EYRDD or the deletion of the periplasmic domain inhibits catecholamine/iron-dependent induction of the ygiW-qseBC operon. Catecholamine/iron-dependent induction of transcription also requires interaction of the QseB response regulator with its binding site in the ygiW-qseBC promoter. Whole genome microarrays were used to compare gene expression profiles of A. actinomycetemcomitans grown in a chemically defined medium with and without catecholamine and iron supplementation. Approximately 11.5% of the A. actinomycetemcomitans genome was differentially expressed by at least two-fold upon exposure to catecholamines and iron. The expression of ferritin was strongly induced, suggesting that intracellular iron storage capacity is increased upon QseBC activation. Consistent with this, genes encoding iron binding and transport proteins were down-regulated by QseBC. Strikingly, 57% of the QseBC up-regulated genes (56/99) encode proteins associated with anaerobic metabolism and respiration. Most of these up-regulated genes were recently reported to be induced during in vivo growth of A. actinomycetemcomitans. These results suggest that detection of catecholamines and iron by QseBC may alter the cellular metabolism of A. actinomycetemcomitans for increased fitness and growth in an anaerobic host environment. PMID:25923132

  1. Increase in cellular pool of low-molecular-weight iron during ethanol metabolism in rat hepatocyte cultures. Relationship with lipid peroxidation.

    PubMed

    Sergent, O; Morel, I; Cogrel, P; Chevanne, M; Pasdeloup, N; Brissot, P; Lescoat, G; Cillard, P; Cillard, J

    1995-01-01

    Ethanol-induced lipid peroxidation was studied in primary rat hepatocyte cultures supplemented with ethanol at the concentration of 50 mM. Lipid peroxidation was assessed by two indices: (1) conjugated dienes by second-derivative UV spectroscopy in lipid extract of hepatocytes (intracellular content), and (2) free malondialdehyde (MDA) by HPLC-UV detection and quantitation for the incubation medium (extracellular content). In cultures supplemented with ethanol, free MDA increased significantly in culture media, whereas no elevation of conjugated diene level was observed in the corresponding hepatocytes. The cellular pool of low-mol-wt (LMW) iron was also evaluated in the hepatocytes using an electron spin resonance procedure. An early increase of intracellular LMW iron (< or = 1 hr) was observed in ethanol-supplemented cultures; it was inhibited by 4-methylpyrazole, an inhibitor of alcohol dehydrogenase, whereas alpha-tocopherol, which prevented lipid peroxidation, did not inhibit the increase of LMW iron. Therefore, the LMW iron elevation was the result of ethanol metabolism and was not secondarily induced by lipid hydroperoxides. Thus, ethanol caused lipid peroxidation in rat hepatocytes as shown by the increase of free MDA, although no conjugated diene elevation was detected. During ethanol metabolism, an increase in cellular LMW iron was observed that could enhance conjugated diene degradation. PMID:7779546

  2. Investigation on Abnormal Iron Metabolism and Related Inflammation in Parkinson Disease Patients with Probable RBD

    PubMed Central

    Hu, Yang; Yu, Shu-Yang; Zuo, Li-Jun; Piao, Ying-Shan; Cao, Chen-Jie; Wang, Fang; Chen, Ze-Jie; Du, Yang; Lian, Teng-Hong; Liu, Gai-Fen; Wang, Ya-Jie; Chan, Piu; Chen, Sheng-Di; Wang, Xiao-Min; Zhang, Wei

    2015-01-01

    Objective To investigate potential mechanisms involving abnormal iron metabolism and related inflammation in Parkinson disease (PD) patients with probable rapid eye movement sleep behavior disorder (PRBD). Methods Total 210 PD patients and 31 controls were consecutively recruited. PD patients were evaluated by RBD Screening Questionnaire (RBDSQ) and classified into PRBD and probable no RBD (NPRBD) groups. Demographics information were recorded and clinical symptoms were evaluated by series of rating scales. Levels of iron and related proteins and inflammatory factors in cerebrospinal fluid (CSF) and serum were detected. Comparisons among control, NPRBD and PRBD groups and correlation analyses between RBDSQ score and levels of above factors were performed. Results (1)The frequency of PRBD in PD patients is 31.90%. (2)PRBD group has longer disease duration, more advanced disease stage, severer motor symptoms and more non-motor symptoms than NPRBD group. (3)In CSF, levels of iron, transferrin, NO and IL–1β in PRBD group are prominently increased. RBDSQ score is positively correlated with the levels of iron, transferrin, NO and IL–1β in PD group. Iron level is positively correlated with the levels of NO and IL–1β in PD group. (4)In serum, transferrin level is prominently decreased in PRBD group. PGE2 level in PRBD group is drastically enhanced. RBDSQ score exhibits a positive correlation with PGE2 level in PD group. Conclusions PRBD is common in PD patients. PRBD group has severer motor symptoms and more non-motor symptoms. Excessive iron in brain resulted from abnormal iron metabolism in central and peripheral systems is correlated with PRBD through neuroinflammation. PMID:26431210

  3. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling

    SciTech Connect

    R. Quatrini; C. Appia-Ayme; Y. Denis; J. Ratouchniak; F. Veloso; J. Valdes; C. Lefimil; S. Silver; F. Roberto; O. Orellana; F. Denizot; E. Jedlicki; D. Holmes; V. Bonnefoy

    2006-09-01

    Acidithiobacillus ferrooxidans is a well known acidophilic, chemolithoautotrophic, Gram negative, bacterium involved in bioleaching and acid mine drainage. In aerobic conditions, it gains energy mainly from the oxidation of ferrous iron and/or reduced sulfur compounds present in ores. After initial oxidation of the substrate, electrons from ferrous iron or sulfur enter respiratory chains and are transported through several redox proteins to oxygen. However, the oxidation of ferrous iron and reduced sulfur compounds has also to provide electrons for the reduction of NAD(P) that is subsequently required for many metabolic processes including CO2 fixation. To help to unravel the enzymatic pathways and the electron transfer chains involved in these processes, a genome-wide microarray transcript profiling analysis was carried out. Oligonucleotides corresponding to approximately 3000 genes of the A. ferrooxidans type strain ATCC23270 were spotted onto glass-slides and hybridized with cDNA retrotranscribed from RNA extracted from ferrous iron and sulfur grown cells. The genes which are preferentially transcribed in ferrous iron conditions and those preferentially transcribed in sulfur conditions were analyzed. The expression of a substantial number of these genes has been validated by real-time PCR, Northern blot hybridization and/or immunodetection analysis. Our results support and extend certain models of iron and sulfur oxidation and highlight previous observations regarding the possible presence of alternate electron pathways. Our findings also suggest ways in which iron and sulfur oxidation may be co-ordinately regulated. An accompanying paper (Appia-Ayme et al.) describes results pertaining to other metabolic functions.

  4. Effect of Nordic Walking training on iron metabolism in elderly women

    PubMed Central

    Kortas, Jakub; Prusik, Katarzyna; Flis, Damian; Prusik, Krzysztof; Ziemann, Ewa; Leaver, Neil; Antosiewicz, Jedrzej

    2015-01-01

    Background Despite several, well-documented pro-healthy effects of regular physical training, its influence on body iron stores in elderly people remains unknown. At the same time, body iron accumulation is associated with high risk of different morbidities. Purpose We hypothesized that Nordic Walking training would result in pro-healthy changes in an elderly group of subjects by reducing body iron stores via shifts in iron metabolism-regulating proteins. Methods Thirty-seven women aged 67.7±5.3 years participated in this study. They underwent 32 weeks of training, 1-hour sessions three times a week, between October 2012 and May 2013. Fitness level, blood morphology, CRP, vitamin D, ferritin, hepcidin, and soluble Hjv were assessed before and after the training. Results The training program caused a significant decrease in ferritin, which serves as a good marker of body iron stores. Simultaneously, the physical cardiorespiratory fitness had improved. Furthermore, blood hepcidin was positively correlated with the ferritin concentration after the training. The concentration of blood CRP dropped, but the change was nonsignificant. The applied training resulted in a blood Hjv increase, which was inversely correlated with the vitamin D concentration. Conclusion Overall the Nordic Walking training applied in elderly people significantly reduced blood ferritin concentration, which explains the observed decrease in body iron stores. PMID:26664101

  5. Effects of long-distance running on iron metabolism and hematological parameters.

    PubMed

    Seiler, D; Nagel, D; Franz, H; Hellstern, P; Leitzmann, C; Jung, K

    1989-10-01

    In 110 well-trained participants of a 1000-km running competition lasting for 20 days hematological parameters, iron metabolism, and their respective changes during the race were investigated. Thirty-nine men and 11 women were accustomed to wholesome vegetarian food (lacto-ovovegetarian), 52 men and 8 women consumed a conventional western diet. In each group 50% of the runners finished the race. Before the competition started red blood cell count, hematocrit, and hemoglobin were on average below the values observed in the normal population in all groups. Both male and female runners consuming the wholesome diet showed significantly lower ferritin values than those on a western diet. During the first days of the competition hemolysis occurred leading to increased serum concentrations of bilirubin and iron and decreased haptoglobin levels. Hb concentrations showed a constant decrease during the race. Serum ferritin concentration rose about twofold within the first days and then decreased again without reaching pre-race levels. Serum iron concentrations showed a significant decrease between days 3 and 6. Iron loss was caused by hematuria (25% of all urines tested), gastrointestinal blood loss (10% of all stool specimens tested), and by sweating (4.5 micrograms iron/dl sweat). Our results suggest that especially in female long-distance runners it may be difficult to supply sufficient quantities of iron with the diet. PMID:2599724

  6. Acupuncture inhibits ferric iron deposition and ferritin-heavy chain reduction in an MPTP-induced parkinsonism model.

    PubMed

    Choi, Yeong-Gon; Park, Jae-Hyun; Lim, Sabina

    2009-01-30

    This study investigated the effect of acupuncture on iron-related oxidative damage in a mouse model designed as a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism model. To generate the chronic parkinsonism model, mice were intraperitoneally injected with MPTP (20mg/kg, one daily injection) for 30 days and acupuncture was performed at acupoints LR3 (Taichong) and GB34 (Yanglingquan) at 48h intervals. Acupuncture inhibited decreases in the immunoreactivities of tyrosine hydroxylase (TH) and dopamine transporter (DAT) that occurred as a result of MPTP neurotoxicity. The presence of ferric iron (Fe(3+)), but not ferrous iron (Fe(2+)), was strongly increased in the substantia nigra (SN) as a result of chronic loading of MPTP, whereas the ferritin-heavy chain (F-H) was significantly decreased. However, acupuncture treatment inhibited the increase in ferric iron and the decrease in the F-H that was induced by MPTP. Additionally, treatment with MPTP and acupuncture caused no changes in the presence of ferrous iron and ferritin-light chain (F-L) as a result of the treatments. The mRNA of F-H was also not affected. These results suggest that acupuncture may inhibit iron-related oxidative damage and may prevent the deleterious alteration of iron metabolism in the MPTP model. PMID:19056464

  7. Challenges in diagnosing a metabolic disorder: error of pyruvate metabolism or drug induced?

    PubMed

    Mampilly, George Tomy; Mampilly, Tomy Kochuvareed; Christopher, Rita; Chandramohan, Neeradha; Janaki, Vijayalakshmy

    2014-06-01

    Certain drugs are known to cause metabolic changes resulting in altered metabolic profiles. We report here a case where a combination of antiepileptic drugs resulted in a profile that mimicked a metabolic disorder. A 16month-old female child on antiepileptic drugs (valproate and topiramate) was suspected to have the inherited metabolic disorder, dihydrolipoamide dehydrogenase deficiency, based on clinical symptoms and metabolic profile showing hyperalaninemia, elevated branched-chain amino acids, and lactate-pyruvate ratio. Suspecting that the observed metabolic changes could have also arised from medication, current medication was weaned off and replaced with levetiracetam, clonazepam, and levocarnitine (supportive therapy). Metabolic profiling conducted after 47 days showed normal alanine, branched-chain amino acids, ornithine, and lactate-pyruvate ratio, suggesting that the earlier abnormalities could have been medication induced. We stress that metabolic changes resulting from chronic medication should be considered while interpreting a positive result when investigating an inherited metabolic disorder. PMID:23439713

  8. The role of cellular oxidases and catalytic iron in the pathogenesis of ethanol-induced liver injury

    SciTech Connect

    Shaw, S.; Jayatilleke, E. Mount Sinai School of Medicine, New York, NY )

    1992-01-01

    Free radical generation and catalytic iron have been implicated in the pathogenesis of alcohol-induced liver injury but the source of free radicals is a subject of controversy. The mechanism of ethanol-induced liver injury was investigated in isolated hepatocytes from a rodent model of iron loading in which free radical generation was measured by the determination of alkane production. Iron loading increased hepatic non-heme iron 3-fold, increased the prooxidant activity of cytosolic ultrafiltrates 2-fold and doubled ethanol-induced alkane production. The role of cellular oxidases as a source of ethanol induced free radicals was studied through the use of selective inhibitors. In both the presence and absence of iron loading, selective inhibition of xanthine oxidase with oxipurinol diminished ethanol-induced alkane production 0-40%, inhibition of aldehyde oxidase with menadione diminished alkane production 36-75%, while the inhibition of aldehyde and xanthine oxidase by feeding tungstate virtually abolished alkane production. Addition of acetaldehyde to hepatocytes generated alkanes at rates comparable to those achieved with ethanol indicating the importance of acetaldehyde metabolism in free radical generation.

  9. Can valproic acid be an inducer of clozapine metabolism?

    PubMed Central

    Diaz, Francisco J.; Eap, Chin B.; Ansermot, Nicolas; Crettol, Severine; Spina, Edoardo; de Leon, Jose

    2014-01-01

    Introduction Prior clozapine studies indicated no effects, mild inhibition or induction of valproic acid (VPA) on clozapine metabolism. The hypotheses that 1) VPA is a net inducer of clozapine metabolism, and 2) smoking modifies this inductive effect were tested in a therapeutic drug monitoring study. Methods After excluding strong inhibitors and inducers, 353 steady-state total clozapine (clozapine plus norclozapine) concentrations provided by 151 patients were analyzed using a random intercept linear model. Results VPA appeared to be an inducer of clozapine metabolism since total plasma clozapine concentrations in subjects taking VPA were significantly lower (27% lower; 95% confidence interval, 14% to 39%) after controlling for confounding variables including smoking (35% lower, 28% to 56%). Discussion Prospective studies are needed to definitively establish that VPA may 1) be an inducer of clozapine metabolism when induction prevails over competitive inhibition, and 2) be an inducer even in smokers who are under the influence of smoking inductive effects on clozapine metabolism. PMID:24764199

  10. Recombinant human erythropoietin-induced erythropoiesis regulates hepcidin expression over iron status in the rat.

    PubMed

    Ribeiro, Sandra; Garrido, Patrícia; Fernandes, João; Rocha, Susana; Rocha-Pereira, Petronila; Costa, Elísio; Belo, Luís; Reis, Flávio; Santos-Silva, Alice

    2016-07-01

    The crosstalk between several factors controlling hepcidin synthesis is poorly clarified for different physiological and pathological conditions. Our aim was to study the impact of increasing recombinant human erythropoietin (rHuEPO) doses on erythropoiesis, iron metabolism and hepcidin, using a rat model. Male Wistar rats were divided in 5 groups: control (vehicle) and rHuEPO-treated groups (100, 200, 400 and 600IU/kgbody weight/week), 3 times per week, during 3weeks. Hematological and iron data were evaluated. The expression of several genes involved in iron metabolism was analyzed by qPCR. Liver hepcidin protein was evaluated by Western Blot. The rHuEPO treatment induced erythropoiesis and increased transferrin saturation (TSAT) in a dose dependent manner. Tf receptor 2 (TfR2), hemojuvelin (HJV) and bone morphogenetic protein 6 (BMP6) were up-regulated in rHuEPO200 group. Matriptase-2 was down-regulated in rHuEPO200 group, and up-regulated in the other rHuEPO-treated groups. Hepcidin synthesis was increased in rHuEPO200 group, and repressed in the rHuEPO400 and rHuEPO600 groups. Our study showed that when a high erythropoietic stimulus occurs, hepcidin synthesis is mainly regulated by TSAT; however, when the erythropoiesis rate reaches a specific threshold, extramedullary hematopoiesis is triggered, and the control of hepcidin synthesis is switched to matriptase-2, thus inhibiting hepcidin synthesis. PMID:27282570

  11. Aft2, a novel transcription regulator, is required for iron metabolism, oxidative stress, surface adhesion and hyphal development in Candida albicans.

    PubMed

    Xu, Ning; Cheng, Xinxin; Yu, Qilin; Qian, Kefan; Ding, Xiaohui; Liu, Ruming; Zhang, Biao; Xing, Laijun; Li, Mingchun

    2013-01-01

    Morphological transition and iron metabolism are closely relevant to Candida albicans pathogenicity and virulence. In our previous study, we demonstrated that C. albicans Aft2 plays an important role in ferric reductase activity and virulence. Here, we further explored the roles of C. albicans Aft2 in numerous cellular processes. We found that C. albicans Aft2 exhibited an important role in iron metabolism through bi-directional regulation effects on iron-regulon expression. Deletion of AFT2 reduced cellular iron accumulation under iron-deficient conditions. Furthermore, both reactive oxygen species (ROS) generation and superoxide dismutase (SOD) activity were remarkably increased in the aft2Δ/Δ mutant, which were thought to be responsible for the defective responses to oxidative stress. However, we found that over-expression of C. albicans AFT2 under the regulation of the strong PGK1 promoter could not effectively rescue Saccharomyces cerevisiae aft1Δ mutant defects in some cellular processes, such as cell-wall assembly, ion homeostasis and alkaline resistance, suggesting a possibility that C. albicans Aft2 weakened its functional role of regulating some cellular metabolism during the evolutionary process. Interestingly, deletion of AFT2 in C. albicans increased cell surface hydrophobicity, cell flocculation and the ability of adhesion to polystyrene surfaces. In addition, our results also revealed that C. albicans Aft2 played a dual role in regulating hypha-specific genes under solid and liquid hyphal inducing conditions. Deletion of AFT2 caused an impaired invasive growth in solid medium, but an increased filamentous aggregation and growth in liquid conditions. Moreover, iron deficiency and environmental cues induced nuclear import of Aft2, providing additional evidence for the roles of Aft2 in transcriptional regulation. PMID:23626810

  12. Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic bacteria

    NASA Technical Reports Server (NTRS)

    Fischer, U.

    1985-01-01

    Dissimilatory sulfur metabolism in phototrophic sulfur bacteria provides the bacteria with electrons for photosynthetic electron transport chain and, with energy. Assimilatory sulfate reduction is necessary for the biosynthesis of sulfur-containing cell components. Sulfide, thiosulfate, and elemental sulfur are the sulfur compounds most commonly used by phototrophic bacteria as electron donors for anoxygenic photosynthesis. Cytochromes or other electron transfer proteins, like high-potential-iron-sulfur protein (HIPIP) function as electron acceptors or donors for most enzymatic steps during the oxidation pathways of sulfide or thiosulfate. Yet, heme- or siroheme-containing proteins themselves undergo enzymatic activities in sulfur metabolism. Sirohemes comprise a porphyrin-like prosthetic group of sulfate reductase. eenzymatic reactions involve electron transfer. Electron donors or acceptors are necessary for each reaction. Cytochromes and iron sulfur problems, are able to transfer electrons.

  13. Vitamin D, Iron Metabolism, and Diet in Alpinists During a 2-Week High-Altitude Climb.

    PubMed

    Kasprzak, Zbigniew; Śliwicka, Ewa; Hennig, Karol; Pilaczyńska-Szcześniak, Łucja; Huta-Osiecka, Anna; Nowak, Alicja

    2015-09-01

    A defensive mechanism against hypobaric hypoxia at high altitude is erythropoesis. Some authors point to the contribution of vitamin D to the regulation of this process. The aim of the present study was to assess the 25-hydroxycholecalciferol (25(OH)D) level and its associations with iron metabolic and inflammatory indices in participants of a 2-week mountaineering expedition. The study sample included 9 alpinists practicing recreational mountain climbing. Every 2 or 3 days they set up a different base between 3200 and 3616 m with the intention of climbing 4000 m peaks in the Mont Blanc massif. Before their departure for the mountains and 2 days after returning to the sea level anthropometric parameters, hematological parameters, serum levels of 25(OH)D and iron metabolic indices were measured in all the participants. The composition of the participants' diet was also evaluated. The comparative analysis showed a significant decrease in body mass, BMI values, total iron, and 25(OH)D concentrations (p<0.05). Also significant increases in unsaturated iron-binding capacity, hematocrit, and C-reactive protein concentrations (p<0.05) were found. It can be concluded that the 2-week climbing expedition contributed to the reduction of 25(OH)D levels and these changes were associated with modulation of immune processes. Moreover, the climbers' diet requires some serious modifications. PMID:26125641

  14. Leu1 plays a role in iron metabolism and is required for virulence in Cryptococcus neoformans

    PubMed Central

    Do, Eunsoo; Hu, Guanggan; Caza, Mélissa; Oliveira, Debora; Kronstad, James W.; Jung, Won Hee

    2015-01-01

    Amino acid biosynthetic pathways that are absent in mammals are considered an attractive target for antifungal therapy. Leucine biosynthesis is one such target pathway, consisting of a five-step conversion process starting from the valine precursor 2-keto-isovalerate. Isopropylmalate dehydrogenase (Leu1) is an Fe-S cluster protein that is required for leucine biosynthesis in the model fungus Saccharomyces cerevisiae. The human pathogenic fungus Cryptococcus neoformans possesses an ortholog of S. cerevisiae Leu1, and our previous transcriptome data showed that the expression of LEU1 is regulated by iron availability. In this study, we characterized the role of Leu1 in iron homeostasis and the virulence of C. neoformans. We found that deletion of LEU1 caused leucine auxotrophy and that Leu1 may play a role in the mitochondrial-cytoplasmic Fe-S cluster balance. Whereas cytoplasmic Fe-S protein levels were not affected, mitochondrial Fe-S proteins were up- regulated in the leu1 mutant, suggesting that Leu1 mainly influences mitochondrial iron metabolism. The leu1 mutant also displayed increased sensitivity to oxidative stress and cell wall/membrane disrupting agents, which may have been caused by mitochondrial dysfunction. Furthermore, the leu1 mutant was deficient in capsule formation and showed attenuated virulence in a mouse inhalation model of cryptococcosis. Overall, our results indicate that Leu1 plays a role in iron metabolism and is required for virulence in C. neoformans. PMID:25554701

  15. Chemical changes induced by ultrasound in iron

    NASA Astrophysics Data System (ADS)

    Albertini, G.; Calbucci, V.; Cardone, F.; Petrucci, A.; Ridolfi, F.

    2014-03-01

    The focus of this work is a careful chemical investigation of structural damage produced by the exposure of an iron bar to pressure waves generated using an ultrasound machine (called the R-1-S reactor). In addition to the emission of neutron bursts, the ultrasound treatment caused the appearance of zones of macroscopic damage (˜1 mm in size) on the exterior of the bar. Reflected-light optical and environmental scanning electron microscopy (ESEM) has shown that these external damage zones are characterized by microcraters and are covered by a thin layer of cracked amorphous material. Under back scattered electron (BSE) observation, this material shows a lower brightness than the intact ferrite surface. In addition, a zone with a high density of deformed cavities (˜1300 per mm2) with irregular walls and a maximum size of 10 μm was found inside the bar. These deformed microcavities are partially filled with a material composed of a chaotic assemblage of submicron-sized (most likely amorphous) particles. A careful compositional investigation of the chaotic material inside the microcavities using the semi-quantitative data obtained with the ESEM X-ray Energy Dispersive System (EDS) has shown that it is primarily composed of carbon, manganese and chromium. These elements are also found in lower amounts within the intact ferrite matrix. In contrast, the damaged surface surrounding the craters is characterized by elements not found in the ferrite at all (i.e., O, Cl, K, Cu); elements the presence of which cannot be attributed to the occurrence of non-metallic inclusions or to contamination during fabrication. These results are also difficult to explain using the generally accepted laws of physics; however, they do appear to agree with a recent theory predicting the deformation of the local spacetime and the violation of the Local Lorentz Invariance. Such a violation should occur following the collapse of micron-sized discontinuities internal to the materials

  16. Zebrafish in the sea of mineral (iron, zinc, and copper) metabolism

    PubMed Central

    Zhao, Lu; Xia, Zhidan; Wang, Fudi

    2014-01-01

    Iron, copper, zinc, and eight other minerals are classified as essential trace elements because they present in minute in vivo quantities and are essential for life. Because either excess or insufficient levels of trace elements can be detrimental to life (causing human diseases such as iron-deficiency anemia, hemochromatosis, Menkes syndrome and Wilson's disease), the endogenous levels of trace minerals must be tightly regulated. Many studies have demonstrated the existence of systems that maintain trace element homeostasis, and these systems are highly conserved in multiple species ranging from yeast to mice. As a model for studying trace mineral metabolism, the zebrafish is indispensable to researchers. Several large-scale mutagenesis screens have been performed in zebrafish, and these screens led to the identification of a series of metal transporters and the generation of several mutagenesis lines, providing an in-depth functional analysis at the system level. Moreover, because of their developmental advantages, zebrafish have also been used in mineral metabolism-related chemical screens and toxicology studies. Here, we systematically review the major findings of trace element homeostasis studies using the zebrafish model, with a focus on iron, zinc, copper, selenium, manganese, and iodine. We also provide a homology analysis of trace mineral transporters in fish, mice and humans. Finally, we discuss the evidence that zebrafish is an ideal experimental tool for uncovering novel mechanisms of trace mineral metabolism and for improving approaches to treat mineral imbalance-related diseases. PMID:24639652

  17. Knockdown of proteins involved in iron metabolism limits tick reproduction and development

    PubMed Central

    Hajdusek, Ondrej; Sojka, Daniel; Kopacek, Petr; Buresova, Veronika; Franta, Zdenek; Sauman, Ivo; Winzerling, Joy; Grubhoffer, Libor

    2009-01-01

    Ticks are among the most important vectors of a wide range of human and animal diseases. During blood feeding, ticks are exposed to an enormous amount of free iron that must be appropriately used and detoxified. However, the mechanism of iron metabolism in ticks is poorly understood. Here, we show that ticks possess a complex system that efficiently utilizes, stores and transports non-heme iron within the tick body. We have characterized a new secreted ferritin (FER2) and an iron regulatory protein (IRP1) from the sheep tick, Ixodes ricinus, and have demonstrated their relationship to a previously described tick intracellular ferritin (FER1). By using RNA interference-mediated gene silencing in the tick, we show that synthesis of FER1, but not of FER2, is subject to IRP1-mediated translational control. Further, we find that depletion of FER2 from the tick plasma leads to a loss of FER1 expression in the salivary glands and ovaries that normally follows blood ingestion. We therefore suggest that secreted FER2 functions as the primary transporter of non-heme iron between the tick gut and the peripheral tissues. Silencing of the fer1, fer2, and irp1 genes by RNAi has an adverse impact on hatching rate and decreases postbloodmeal weight in tick females. Importantly, knockdown of fer2 dramatically impairs the ability of ticks to feed, thus making FER2 a promising candidate for development of an efficient anti-tick vaccine. PMID:19171899

  18. Iron metabolism in hamsters experimentally infected with Leptospira interrogans serovar Pomona: influence on disease pathogenesis.

    PubMed

    Sobroza, Ânderson O; Tonin, Alexandre A; Da Silva, Alekandro S; Dornelles, Guilherme L; Wolkmer, Patrícia; Duarte, Marta M M F; Hausen, Bruna S; Sangoi, Manuela B; Moresco, Rafael N; Stefani, Lenita M; Mazzantti, Cinthia M; Lopes, Sonia T A; Leal, Marta L R

    2014-12-01

    The aim of this study was to analyze the classic iron markers associated to the storage process in hamsters experimentally infected by Leptospira interrogans serovar Pomona. Four groups with six hamsters each were used; two were negative controls (C7 and C14) and two were composed by infected animals (T7 and T14). Blood samples were collected on the seventh (C7 and T7) and fourteenth days (C14 and T14) post-inoculation. Iron availability was determined in sera samples through the assessment of iron, ferritin, transferrin, and iron binding capacity, whereas the bone marrow was also evaluated for the presence of iron by Pearl's reaction. Additionally, the total antioxidant capacity (TAC) and total oxidant status (TOS) were assessed, along with hepcidin and IL-6 levels. Based on the results, it was possible to observe the onset of an anemic profile, predominantly hemolytic and regenerative. Also, The other parameters showed an increase in seric iron (P<0.01) and ferritin (P<0.01), and a positive Pearl's reaction in T7 and T14, when compared with the control groups. Transferrin levels decreased (P<0.05) in animals of T14 with saturation index. TAC was increased in both periods (P<0.01), while TOS was increased only on T14 (P<0.05). Hepcidin and IL-6 were increased on T7 and T14 (P<0.01). Therefore, it was observed that the serum profile from infected animals showed a strong hemolytic pattern, with some demonstration of ferric tissue sequestration when the infection tended to become chronic. The results show that iron metabolism is activated in hamsters infected by L. interrogans serovar Pomona. PMID:25449998

  19. IRON IN MULTIPLE MYELOMA

    PubMed Central

    VanderWall, Kristina; Daniels-Wells, Tracy R; Penichet, Manuel; Lichtenstein, Alan

    2013-01-01

    Multiple myeloma is a non-curable B cell malignancy in which iron metabolism plays an important role. Patients with this disorder almost universally suffer from a clinically significant anemia, which is often symptomatic, and which is due to impaired iron utilization. Recent studies indicate that the proximal cause of dysregulated iron metabolism and anemia in these patients is cytokine-induced upregulation of hepcidin expression. Malignant myeloma cells are dependent on an increased influx of iron and therapeutic efforts are being made to target this requirement. The studies detailing the characteristics and biochemical abnormalities in iron metabolism causing anemia and the initial attempts to target iron therapeutically are described in this review. PMID:23879589

  20. Iron Regulatory Protein 1 Suppresses Hypoxia-Induced Iron Uptake Proteins Expression and Decreases Iron Levels in HepG2 Cells.

    PubMed

    Cheng, Chun-Ming; Wang, Dan; Cao, Xian; Luo, Qian-Qian; Lu, Ya-Peng; Zhu, Li

    2015-09-01

    Transferrin receptor (TfR1) and divalent metal transporter 1 (DMT1) are important proteins for cellular iron uptake, and both are regulated transcriptionally through the binding of hypoxia-inducible factor 1 (HIF-1) to hypoxia-responsive elements (HREs) under hypoxic conditions. These proteins are also regulated post-transcriptionally through the binding of iron regulatory protein 1 (IRP1) to iron-responsive elements (IREs) located in the mRNA untranslated region (UTR) to control cellular iron homeostasis. In iron-deficient cells, IRP1-IRE interactions stabilize TfR1 and DMT1 mRNAs, enhancing iron uptake. However, little is known about the impact of IRP1 on the regulation of cellular iron homeostasis under hypoxia. Thus, to investigate the role of IRP1 in hypoxic condition, overexpression and knockdown assays were performed using HepG2 cells. The overexpression of IRP1 suppressed the hypoxia-induced increase in TfR1 and DMT1 (+IRE) expression and reduced the stability of TfR1 and DMT1 (+IRE) mRNAs under hypoxia, whereas IRP1 knockdown further increased the hypoxia-induced expression of both proteins, preventing the decrease in IRE-dependent luciferase activity induced by hypoxia. Under hypoxic conditions, ferrous iron uptake, the labile iron pool (LIP), and total intracellular iron reduced when IRP1 was overexpressed and further increased when IRP1 was knocked down. IRP1 expression declined and TfR1/DMT1 (+IRE) expression increased with the time of hypoxia prolonged, whereas the binding of IRP1 to the IRE of TfR1/DMT1 mRNA maintained. In summary, IRP1 suppressed TfR1/DMT1 (+IRE) expression, limited the cellular iron content and decreased lactate dehydrogenase (LDH) release induced by hypoxia. PMID:25727755

  1. Microbial Metabolism Shifts Towards an Adverse Profile with Supplementary Iron in the TIM-2 In vitro Model of the Human Colon

    DOE PAGESBeta

    Kortman, Guus A. M.; Dutilh, Bas E.; Maathuis, Annet J. H.; Engelke, Udo F.; Boekhorst, Jos; Keegan, Kevin P.; Nielsen, Fiona G. G.; Betley, Jason; Weir, Jacqueline C.; Kingsbury, Zoya; et al

    2016-01-06

    Oral iron administration in African children can increase the risk for infections. However, it remains unclear to what extent supplementary iron affects the intestinal microbiome. We here explored the impact of iron preparations on microbial growth and metabolism in the well-controlled TNO's in vitro model of the large intestine (TIM-2). The model was inoculated with a human microbiota, without supplementary iron, or with 50 or 250 μmol/L ferrous sulfate, 50 or 250 μmol/L ferric citrate, or 50 μmol/L hemin. High resolution responses of the microbiota were examined by 16S rDNA pyrosequencing, microarray analysis, and metagenomic sequencing. The metabolome was assessedmore » by fatty acid quantification, gas chromatography-mass spectrometry (GC-MS), and 1H-NMR spectroscopy. Cultured intestinal epithelial Caco-2 cells were used to assess fecal water toxicity. Microbiome analysis showed, among others, that supplementary iron induced decreased levels of Bifidobacteriaceae and Lactobacillaceae, while it caused higher levels of Roseburia and Prevotella. Metagenomic analyses showed an enrichment of microbial motility-chemotaxis systems, while the metabolome markedly changed from a saccharolytic to a proteolytic profile in response to iron. Branched chain fatty acids and ammonia levels increased significantly, in particular with ferrous sulfate. Importantly, the metabolite-containing effluent from iron-rich conditions showed increased cytotoxicity to Caco-2 cells. In conclusion, our explorations indicate that in the absence of host influences, iron induces a more hostile environment characterized by a reduction of microbes that are generally beneficial, and increased levels of bacterial metabolites that can impair the barrier function of a cultured intestinal epithelial monolayer.« less

  2. Microbial Metabolism Shifts Towards an Adverse Profile with Supplementary Iron in the TIM-2 In vitro Model of the Human Colon.

    PubMed

    Kortman, Guus A M; Dutilh, Bas E; Maathuis, Annet J H; Engelke, Udo F; Boekhorst, Jos; Keegan, Kevin P; Nielsen, Fiona G G; Betley, Jason; Weir, Jacqueline C; Kingsbury, Zoya; Kluijtmans, Leo A J; Swinkels, Dorine W; Venema, Koen; Tjalsma, Harold

    2015-01-01

    Oral iron administration in African children can increase the risk for infections. However, it remains unclear to what extent supplementary iron affects the intestinal microbiome. We here explored the impact of iron preparations on microbial growth and metabolism in the well-controlled TNO's in vitro model of the large intestine (TIM-2). The model was inoculated with a human microbiota, without supplementary iron, or with 50 or 250 μmol/L ferrous sulfate, 50 or 250 μmol/L ferric citrate, or 50 μmol/L hemin. High resolution responses of the microbiota were examined by 16S rDNA pyrosequencing, microarray analysis, and metagenomic sequencing. The metabolome was assessed by fatty acid quantification, gas chromatography-mass spectrometry (GC-MS), and (1)H-NMR spectroscopy. Cultured intestinal epithelial Caco-2 cells were used to assess fecal water toxicity. Microbiome analysis showed, among others, that supplementary iron induced decreased levels of Bifidobacteriaceae and Lactobacillaceae, while it caused higher levels of Roseburia and Prevotella. Metagenomic analyses showed an enrichment of microbial motility-chemotaxis systems, while the metabolome markedly changed from a saccharolytic to a proteolytic profile in response to iron. Branched chain fatty acids and ammonia levels increased significantly, in particular with ferrous sulfate. Importantly, the metabolite-containing effluent from iron-rich conditions showed increased cytotoxicity to Caco-2 cells. Our explorations indicate that in the absence of host influences, iron induces a more hostile environment characterized by a reduction of microbes that are generally beneficial, and increased levels of bacterial metabolites that can impair the barrier function of a cultured intestinal epithelial monolayer. PMID:26779139

  3. Microbial Metabolism Shifts Towards an Adverse Profile with Supplementary Iron in the TIM-2 In vitro Model of the Human Colon

    PubMed Central

    Kortman, Guus A. M.; Dutilh, Bas E.; Maathuis, Annet J. H.; Engelke, Udo F.; Boekhorst, Jos; Keegan, Kevin P.; Nielsen, Fiona G. G.; Betley, Jason; Weir, Jacqueline C.; Kingsbury, Zoya; Kluijtmans, Leo A. J.; Swinkels, Dorine W.; Venema, Koen; Tjalsma, Harold

    2016-01-01

    Oral iron administration in African children can increase the risk for infections. However, it remains unclear to what extent supplementary iron affects the intestinal microbiome. We here explored the impact of iron preparations on microbial growth and metabolism in the well-controlled TNO's in vitro model of the large intestine (TIM-2). The model was inoculated with a human microbiota, without supplementary iron, or with 50 or 250 μmol/L ferrous sulfate, 50 or 250 μmol/L ferric citrate, or 50 μmol/L hemin. High resolution responses of the microbiota were examined by 16S rDNA pyrosequencing, microarray analysis, and metagenomic sequencing. The metabolome was assessed by fatty acid quantification, gas chromatography-mass spectrometry (GC-MS), and 1H-NMR spectroscopy. Cultured intestinal epithelial Caco-2 cells were used to assess fecal water toxicity. Microbiome analysis showed, among others, that supplementary iron induced decreased levels of Bifidobacteriaceae and Lactobacillaceae, while it caused higher levels of Roseburia and Prevotella. Metagenomic analyses showed an enrichment of microbial motility-chemotaxis systems, while the metabolome markedly changed from a saccharolytic to a proteolytic profile in response to iron. Branched chain fatty acids and ammonia levels increased significantly, in particular with ferrous sulfate. Importantly, the metabolite-containing effluent from iron-rich conditions showed increased cytotoxicity to Caco-2 cells. Our explorations indicate that in the absence of host influences, iron induces a more hostile environment characterized by a reduction of microbes that are generally beneficial, and increased levels of bacterial metabolites that can impair the barrier function of a cultured intestinal epithelial monolayer. PMID:26779139

  4. Mechanisms of sulfur mustard-induced metabolic injury

    SciTech Connect

    Martens, M.E.; Smith, W.J.

    1993-05-13

    Studies on the mechanism of metabolic injury induced by sulfur mustard (2, 2'- dichlorodiethyl sulfide, HD) have demonstrated that exposure of human epidermal keratinocytes in culture to HD induces time- and dose-dependent NAD+ depletion and inhibition of glucose metabolism (Martens, Biochem. Pharmacol., in press). Both occurred relatively early after alkylation, preceding the loss of membrane integrity that is indicative of metabolic cell death. The inhibition of glycolysis induced by HD was only partially correlated with the depletion of NAD+ and, thus, was not simply of changes in the NAD+ level. Rather, HD appeared to induce complex shifts in the pattern of glucose metabolism that paralleled both the timing and degree of injury. In line with these findings, recent experiments have shown that partial protection against HD-induced NAD+ depletion by 1 mM niacinamide did not protect against the inhibition of glycolysis. In preliminary experiments examining the effect of HD-induced metabolic changes on the cellular energy state, dose-dependent depletion of ATP was seen at 24 hours after exposure, but not at 4 or 8 hours. As seen for glucose metabolism, 1 mM niacinamide did not prevent the loss of high-energy intermediate (ATP). We conclude from these studies that relationships among HD exposure, glucose metabolism, and intracellular NAD and ATP are more complex than originally proposed (Papirmeister et al, Fund. Appl. Toxicol. 5:S134, 1985).

  5. Diet-Induced Metabolic Disturbances As Modulators of Brain Homeostasis

    PubMed Central

    Zhang, Le; Bruce-Keller, Annadora J.; Dasuri, Kalavathi; Nguyen, AnhThao; Liu, Dr Ying; Keller, Jeffrey N.

    2009-01-01

    A number of metabolic disturbances occur in response to the consumption of a high fat Western diet. Such metabolic disturbances can include the progressive development of hyperglycemia, hyperinsulemia, obesity, metabolic syndrome, and diabetes. Cumulatively, diet-induced disturbance in metabolism are known to promote increased morbidity and negatively impact life expectancy through a variety of mechanisms. While the impact of metabolic disturbances on the hepatic, endocrine, and cardiovascular systems are well established there remains a noticeable void in understanding the basis by which the central nervous system (CNS) becomes altered in response to diet-induced metabolic dysfunction. In particular, it remains to be fully elucidated which established features of diet-induced pathogenesis (observed in non-CNS tissues) are recapitulated in the brain, and identification as to whether the observed changes in the brain are a direct or indirect effect of peripheral metabolic disturbances. This review will focus on each of these key issues and identify some critical experimental questions which remain to be elucidated experimentally, as well as provide an outline of our current understanding for how diet-induced alterations in metabolism may impact the brain during aging and age-related diseases of the nervous system. PMID:18926905

  6. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  7. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Mazumder, B.; Fox, P. L.

    2000-01-01

    A role of the copper protein ceruloplasmin (Cp) in iron metabolism is suggested by its ferroxidase activity and by the tissue iron overload in hereditary Cp deficiency patients. In addition, plasma Cp increases markedly in several conditions of anemia, e.g. iron deficiency, hemorrhage, renal failure, sickle cell disease, pregnancy, and inflammation. However, little is known about the cellular and molecular mechanism(s) involved. We have reported that iron chelators increase Cp mRNA expression and protein synthesis in human hepatocarcinoma HepG2 cells. Furthermore, we have shown that the increase in Cp mRNA is due to increased rate of transcription. We here report the results of new studies designed to elucidate the molecular mechanism underlying transcriptional activation of Cp by iron deficiency. The 5'-flanking region of the Cp gene was cloned from a human genomic library. A 4774-base pair segment of the Cp promoter/enhancer driving a luciferase reporter was transfected into HepG2 or Hep3B cells. Iron deficiency or hypoxia increased luciferase activity by 5-10-fold compared with untreated cells. Examination of the sequence showed three pairs of consensus hypoxia-responsive elements (HREs). Deletion and mutation analysis showed that a single HRE was necessary and sufficient for gene activation. The involvement of hypoxia-inducible factor-1 (HIF-1) was shown by gel-shift and supershift experiments that showed HIF-1alpha and HIF-1beta binding to a radiolabeled oligonucleotide containing the Cp promoter HRE. Furthermore, iron deficiency (and hypoxia) did not activate Cp gene expression in Hepa c4 hepatoma cells deficient in HIF-1beta, as shown functionally by the inactivity of a transfected Cp promoter-luciferase construct and by the failure of HIF-1 to bind the Cp HRE in nuclear extracts from these cells. These results are consistent with in vivo findings that iron deficiency increases plasma Cp and provides a molecular mechanism that may help to understand these

  8. Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply

    PubMed Central

    2010-01-01

    Background Plants grown under iron deficiency show different morphological, biochemical and physiological changes. These changes include, among others, the elicitation of different strategies to improve the acquisition of Fe from the rhizosphere, the adjustment of Fe homeostasis processes and a reorganization of carbohydrate metabolism. The application of modern techniques that allow the simultaneous and untargeted analysis of multiple proteins and metabolites can provide insight into multiple processes taking place in plants under Fe deficiency. The objective of this study was to characterize the changes induced in the root tip proteome and metabolome of sugar beet plants in response to Fe deficiency and resupply. Results Root tip extract proteome maps were obtained by 2-D isoelectric focusing polyacrylamide gel electrophoresis, and approximately 140 spots were detected. Iron deficiency resulted in changes in the relative amounts of 61 polypeptides, and 22 of them were identified by mass spectrometry (MS). Metabolites in root tip extracts were analyzed by gas chromatography-MS, and more than 300 metabolites were resolved. Out of 77 identified metabolites, 26 changed significantly with Fe deficiency. Iron deficiency induced increases in the relative amounts of proteins and metabolites associated to glycolysis, tri-carboxylic acid cycle and anaerobic respiration, confirming previous studies. Furthermore, a protein not present in Fe-sufficient roots, dimethyl-8-ribityllumazine (DMRL) synthase, was present in high amounts in root tips from Fe-deficient sugar beet plants and gene transcript levels were higher in Fe-deficient root tips. Also, a marked increase in the relative amounts of the raffinose family of oligosaccharides (RFOs) was observed in Fe-deficient plants, and a further increase in these compounds occurred upon short term Fe resupply. Conclusions The increases in DMRL synthase and in RFO sugars were the major changes induced by Fe deficiency and resupply

  9. Abnormal Brain Iron Metabolism in Irp2 Deficient Mice Is Associated with Mild Neurological and Behavioral Impairments

    PubMed Central

    Zumbrennen-Bullough, Kimberly B.; Becker, Lore; Garrett, Lillian; Hölter, Sabine M.; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J.; Leibold, Elizabeth A.

    2014-01-01

    Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2−/− mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2−/− mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments. PMID:24896637

  10. Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato (Solanum lycopersicum L.) seedlings.

    PubMed

    Paolacci, Anna Rita; Celletti, Silvia; Catarcione, Giulio; Hawkesford, Malcolm J; Astolfi, Stefania; Ciaffi, Mario

    2014-01-01

    Characterization of the relationship between sulfur and iron in both Strategy I and Strategy II plants, has proven that low sulfur availability often limits plant capability to cope with iron shortage. Here it was investigated whether the adaptation to iron deficiency in tomato (Solanum lycopersicum L.) plants was associated with an increased root sulfate uptake and translocation capacity, and modified dynamics of total sulfur and thiols accumulation between roots and shoots. Most of the tomato sulfate transporter genes belonging to Groups 1, 2, and 4 were significantly upregulated in iron-deficient roots, as it commonly occurs under S-deficient conditions. The upregulation of the two high affinity sulfate transporter genes, SlST1.1 and SlST1.2, by iron deprivation clearly suggests an increased root capability to take up sulfate. Furthermore, the upregulation of the two low affinity sulfate transporter genes SlST2.1 and SlST4.1 in iron-deficient roots, accompanied by a substantial accumulation of total sulfur and thiols in shoots of iron-starved plants, likely supports an increased root-to-shoot translocation of sulfate. Results suggest that tomato plants exposed to iron-deficiency are able to change sulfur metabolic balance mimicking sulfur starvation responses to meet the increased demand for methionine and its derivatives, allowing them to cope with this stress. PMID:24119307

  11. Tensile strain-induced softening of iron at high temperature.

    PubMed

    Li, Xiaoqing; Schönecker, Stephan; Simon, Eszter; Bergqvist, Lars; Zhang, Hualei; Szunyogh, László; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2015-01-01

    In weakly ferromagnetic materials, already small changes in the atomic configuration triggered by temperature or chemistry can alter the magnetic interactions responsible for the non-random atomic-spin orientation. Different magnetic states, in turn, can give rise to substantially different macroscopic properties. A classical example is iron, which exhibits a great variety of properties as one gradually removes the magnetic long-range order by raising the temperature towards its Curie point of  TC°= 1043 K. Using first-principles theory, here we demonstrate that uniaxial tensile strain can also destabilise the magnetic order in iron and eventually lead to a ferromagnetic to paramagnetic transition at temperatures far below TC°. In consequence, the intrinsic strength of the ideal single-crystal body-centred cubic iron dramatically weakens above a critical temperature of ~500 K. The discovered strain-induced magneto-mechanical softening provides a plausible atomic-level mechanism behind the observed drop of the measured strength of Fe whiskers around 300-500 K. Alloying additions which have the capability to partially restore the magnetic order in the strained Fe lattice, push the critical temperature for the strength-softening scenario towards the magnetic transition temperature of the undeformed lattice. This can result in a surprisingly large alloying-driven strengthening effect at high temperature as illustrated here in the case of Fe-Co alloy. PMID:26556127

  12. Tensile strain-induced softening of iron at high temperature

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqing; Schönecker, Stephan; Simon, Eszter; Bergqvist, Lars; Zhang, Hualei; Szunyogh, László; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2015-11-01

    In weakly ferromagnetic materials, already small changes in the atomic configuration triggered by temperature or chemistry can alter the magnetic interactions responsible for the non-random atomic-spin orientation. Different magnetic states, in turn, can give rise to substantially different macroscopic properties. A classical example is iron, which exhibits a great variety of properties as one gradually removes the magnetic long-range order by raising the temperature towards its Curie point of  = 1043 K. Using first-principles theory, here we demonstrate that uniaxial tensile strain can also destabilise the magnetic order in iron and eventually lead to a ferromagnetic to paramagnetic transition at temperatures far below . In consequence, the intrinsic strength of the ideal single-crystal body-centred cubic iron dramatically weakens above a critical temperature of ~500 K. The discovered strain-induced magneto-mechanical softening provides a plausible atomic-level mechanism behind the observed drop of the measured strength of Fe whiskers around 300-500 K. Alloying additions which have the capability to partially restore the magnetic order in the strained Fe lattice, push the critical temperature for the strength-softening scenario towards the magnetic transition temperature of the undeformed lattice. This can result in a surprisingly large alloying-driven strengthening effect at high temperature as illustrated here in the case of Fe-Co alloy.

  13. Tensile strain-induced softening of iron at high temperature

    PubMed Central

    Li, Xiaoqing; Schönecker, Stephan; Simon, Eszter; Bergqvist, Lars; Zhang, Hualei; Szunyogh, László; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2015-01-01

    In weakly ferromagnetic materials, already small changes in the atomic configuration triggered by temperature or chemistry can alter the magnetic interactions responsible for the non-random atomic-spin orientation. Different magnetic states, in turn, can give rise to substantially different macroscopic properties. A classical example is iron, which exhibits a great variety of properties as one gradually removes the magnetic long-range order by raising the temperature towards its Curie point of  = 1043 K. Using first-principles theory, here we demonstrate that uniaxial tensile strain can also destabilise the magnetic order in iron and eventually lead to a ferromagnetic to paramagnetic transition at temperatures far below . In consequence, the intrinsic strength of the ideal single-crystal body-centred cubic iron dramatically weakens above a critical temperature of ~500 K. The discovered strain-induced magneto-mechanical softening provides a plausible atomic-level mechanism behind the observed drop of the measured strength of Fe whiskers around 300–500 K. Alloying additions which have the capability to partially restore the magnetic order in the strained Fe lattice, push the critical temperature for the strength-softening scenario towards the magnetic transition temperature of the undeformed lattice. This can result in a surprisingly large alloying-driven strengthening effect at high temperature as illustrated here in the case of Fe-Co alloy. PMID:26556127

  14. JAK2 exon 12 mutant mice display isolated erythrocytosis and changes in iron metabolism favoring increased erythropoiesis.

    PubMed

    Grisouard, Jean; Li, Sai; Kubovcakova, Lucia; Rao, Tata Nageswara; Meyer, Sara C; Lundberg, Pontus; Hao-Shen, Hui; Romanet, Vincent; Murakami, Masato; Radimerski, Thomas; Dirnhofer, Stephan; Skoda, Radek C

    2016-08-11

    Mutations in JAK2 exon 12 are frequently found in patients with polycythemia vera (PV) that do not carry a JAK2-V617F mutation. The majority of these patients display isolated erythrocytosis. We generated a mouse model that expresses JAK2-N542-E543del, the most frequent JAK2 exon 12 mutation found in PV patients. Mice expressing the human JAK2-N542-E543del (Ex12) showed a strong increase in red blood cell parameters but normal neutrophil and platelet counts, and reduced overall survival. Erythropoiesis was increased in the bone marrow and spleen, with normal megakaryopoiesis and absence of myelofibrosis in histopathology. Erythroid progenitors and precursors were increased in hematopoietic tissues, but the numbers of megakaryocytic precursors were unchanged. Phosphorylation Stat3 and Erk1/2 proteins were increased, and a trend toward increased phospho-Stat5 and phospho-Stat1 was noted. However, Stat1 knock out in Ex12 mice induced no changes in platelet or red cell parameters, indicating that Stat1 does not play a central role in mediating the effects of Ex12 signaling on megakaryopoiesis or erythropoiesis. Ex12 mice showed decreased expression of hepcidin and increased expression of transferrin receptor-1 and erythroferrone, suggesting that the strong erythroid phenotype in Ex12 mutant mice is favored by changes in iron metabolism that optimize iron availability to allow maximal production of red cells. PMID:27288519

  15. [Effect of dinitrosyl iron complexes on erythrocyte energy metabolism under thermal trauma conditions].

    PubMed

    Martusevich, A K; Solov'eva, A G; Peretiagin, S P; Vanin, A F

    2014-01-01

    The effect of dinitrosyl iron complexes (DNIC) on the energy metabolism of erythrocytes under combined thermal trauma conditions has been studied on a group of 30 Wistar rats, which was divided into 3 groups: intact (n = 10), control (n = 10), and main (n = 10). Combined thermal trauma (skin burn + thermoinhalation damage) was modeled in animals of the control and main groups. Rats of control group received infusions of sodium chloride solution (n = 10) every day. Rats of the main group obtained infusions of DNIC solution in sodium chloride. Rat blood samples were characterized by the activity of lactate dehydrogenase in direct and reverse reaction, lactate level, and coefficients of the substrate provision and energy reactions balance. It was stated, that DNIC clearly normalized the energy metabolism of erythrocytes beginning with the third day after thermal trauma onset. PMID:24791335

  16. Iron dysregulation combined with aging prevents sepsis-induced apoptosis

    PubMed Central

    Javadi, Pardis; Buchman, Timothy G.; Stromberg, Paul E.; Turnbull, Isaiah R.; Vyas, Dinesh; Hotchkiss, Richard S.; Karl, Irene E.; Coopersmith, Craig M.

    2005-01-01

    Background Sepsis, iron loading and aging cause independent increases in gut epithelial and splenic apoptosis. It is unknown how their combination will affect apoptosis and systemic cytokine levels. Methods Hfe−/− mice (a murine homolog of hemochromatosis) abnormally accumulate iron in their tissues. Aged (24–26 months) or mature (16–18 months) Hfe−/− mice and wild type (WT) littermates were subjected to cecal ligation and puncture (CLP) or sham laparotomy. Intestine, spleen, and blood were harvested 24 hours later and assessed for apoptosis and cytokine levels. Results Gut epithelial and splenic apoptosis were low in both aged septic and sham Hfe−/− mice, regardless of the amount of iron in their diet. Mature septic WT mice had increased apoptosis compared to age-matched sham WT mice. Mature septic Hfe−/− mice had similar levels of intestinal cell death to age-matched septic WT mice but higher levels of splenic apoptosis. Apoptosis was significantly lower in septic aged Hfe−/− mice than septic mature Hfe−/− animals. Interleukin-6 was elevated in septic aged Hfe−/− mice compared to sham mice. Conclusions Although sepsis, chronic iron dysregulation, and aging each increase gut and splenic apoptosis, their combination yields cell death levels similar to sham animals despite the fact that aged Hfe−/− mice are able to mount an inflammatory response following CLP and mature Hfe−/− mice have elevated sepsis-induced apoptosis. Combining sepsis with two risk factors that ordinarily increase cell death and increase mortality in CLP yields an apoptotic response that could not have been predicted based upon each element in isolation. PMID:15921699

  17. The effects of maternal iron deficiency on infant fibroblast growth factor-23 and mineral metabolism.

    PubMed

    Braithwaite, V S; Prentice, A; Darboe, M K; Prentice, A M; Moore, S E

    2016-02-01

    Fibroblast growth factor-23 (FGF23), a phosphate(Phos)-regulating hormone, is abnormally elevated in hypophosphataemic syndromes and an elevated FGF23 is a predictor of mortality in kidney disease. Recent findings suggest iron deficiency as a potential mediator of FGF23 expression and murine studies have shown in utero effects of maternal iron deficiency on offspring FGF23 and phosphate metabolism. Our aim was to investigate the impact of maternal iron status on infant FGF23 and mineral metabolites over the first 2years of life. Infants born to mothers with normal (NIn=25,) and low (LIn=25) iron status during pregnancy, from a mother-infant trial (ISRCTN49285450) in rural Gambia, West Africa, had blood and plasma samples analysed at 12, 24, 52, 78 and 104weeks (wk) of age. Circulating intact-FGF23 (I-FGF23), Phos, total alkaline phosphatase (TALP) and haemoglobin (Hb) decreased and estimated glomerular filtration rate increased over time [all P≤0.0001)]. C-terminal-FGF23 (C-FGF23) and TALP were significantly higher in LI compared with NI, from 52wk for C-FGF23 [Beta coefficient (SE) 18.1 (0.04) %, P=0.04] and from 24wk for TALP [44.7 (29.6) U/L, P=0.04]. Infant Hb was the strongest negative predictor of C-FGF23 concentration [-21% (4%) RU/mL, P≤0.0001], Phos was the strongest positive predictor of I-FGF23 [32.0(3.9) pg/mL, P≤0.0001] and I-FGF23 did not predict C-FGF23 over time [-0.5% (0.5%), P=0.3]. In conclusion, this study suggests that poor maternal iron status is associated with a higher infant C-FGF23 and TALP but similar I-FGF23 concentrations in infants and young children. These findings further highlight the likely public health importance of preventing iron deficiency during pregnancy. Whether or not children who are born to iron deficient mothers have persistently high concentrations of these metabolites and are more likely to be at risk of impaired bone development and pre-disposed to rickets requires further research. PMID:26453792

  18. Low iron availability and phenolic metabolism in a wild plant species (Parietaria judaica L.).

    PubMed

    Tato, Liliana; De Nisi, Patrizia; Donnini, Silvia; Zocchi, Graziano

    2013-11-01

    Plant phenolics encompass a wide range of aromatic compounds and functions mainly related to abiotic and biotic environmental responses. In calcareous soils, the presence of bicarbonate and a high pH cause a decrease in iron (Fe) bioavailability leading to crop yield losses both qualitatively and quantitatively. High increases in phenolics were reported in roots and root exudates as a consequence of decreased Fe bioavailability suggesting their role in chelation and reduction of inorganic Fe(III) contributing to the mobilization of Fe oxides in soil and plant apoplast. Shikimate pathway represents the main pathway to provide aromatic precursors for the synthesis of phenylpropanoids and constitutes a link between primary and secondary metabolism. Thus the increased level of phenolics suggests a metabolic shift of carbon skeletons from primary to secondary metabolism. Parietaria judaica, a spontaneous plant well adapted to calcareous environments, demonstrates a high metabolic flexibility in response to Fe starvation. Plants grown under low Fe availability conditions showed a strong accumulation of phenolics in roots as well as an improved secretion of root exudates. P. judaica exhibits enhanced enzymatic activities of the shikimate pathway. Furthermore, the non-oxidative pentose phosphate pathway, through the transketolase activity supplies erythrose-4-phosphate, is strongly activated. These data may indicate a metabolic rearrangement modifying the allocation of carbon skeletons between primary and secondary metabolism and the activation of a nonoxidative way to overcome a mitochondrial impairment. We suggest that high content of phenolics in P. judaica play a crucial role in its adaptive strategy to cope with low Fe availability. PMID:23769379

  19. Disturbed iron metabolism among workers exposed to organic sulfides in a pulp plant.

    PubMed

    Klingberg, J; Beviz, A; Ohlson, C G; Tenhunen, R

    1988-02-01

    The aim of this study was to investigate a possible relationship between exposure to sulfides and disturbances of the synthesis of heme and the erythrocytes. Eighteen workers exposed to sulfides at a pulp and paper plant were examined and compared with individually matched referents from a thermomechanical pulp plant without such exposure. The exposure levels of methylmercaptan, dimethylsulfide, and dimethyldisulfide were low. However, five subjects were exposed to high levels of short duration, and their data were analyzed separately. The activity of the enzymes delta-aminolevulinic acid synthase and heme synthase in reticulocytes, characteristics of the erythrocytes, and the iron status were analyzed. A minor decrease, not statistically significant, was observed for the enzymes among the five highly exposed subjects. However, the concentrations of iron and transferrin were elevated and the concentration of ferritin was low in comparison to the corresponding levels of the referents. This combination will not occur spontaneously. A previous study indicated that sulfides may inhibit heme synthesis, and the present study suggests that they may also disturb iron metabolism. PMID:3353691

  20. Viability of pyrite pulled metabolism in the ‘iron-sulfur world’ theory: Quantum chemical assessment

    NASA Astrophysics Data System (ADS)

    Michalkova, Andrea; Kholod, Yana; Kosenkov, Dmytro; Gorb, Leonid; Leszczynski, Jerzy

    2011-04-01

    The viability of pyrite-pulled metabolism in the 'iron-sulfur world' theory was assessed using a simple model of iron-nickel sulfide (Fe-Ni-S) surface and data obtained from quantum chemical calculations. We have investigated how the individual reactions in the carbon fixation cycle (carboxylic acids formation) on an Fe-Ni-S surface could have operated to produce carboxylic acids from carbon oxide and water. The proposed model cycle reveals how the individual reactions might have functioned and provides the thermodynamics of each step of the proposed pathway. The feasibility of individual reactions, as well the whole cycle was considered. The reaction of acetic acid production from CH 3SH and CO on an Fe-Ni sulfide surface was revealed to be endergonic with a few partial steps having positive Gibbs free energy. On the other hand, the pyrite formation was found to be slightly exergonic. The significance of the catalytic activity of transition metal sulfides in generation of acetic acid was shown. The Gibbs free energy values indicate that the acetic acid synthesis is unfavorable to proceed on the studied Fe-Ni-S model under simulated conditions. The importance of these results in terms of a primordial chemistry on iron-nickel sulfide surfaces is discussed.

  1. Pregnancy-induced metabolic phenotype variations in maternal plasma.

    PubMed

    Luan, Hemi; Meng, Nan; Liu, Ping; Feng, Qiang; Lin, Shuhai; Fu, Jin; Davidson, Robert; Chen, Xiaomin; Rao, Weiqiao; Chen, Fang; Jiang, Hui; Xu, Xun; Cai, Zongwei; Wang, Jun

    2014-03-01

    Metabolic variations occur during normal pregnancy to provide the growing fetus with a supply of nutrients required for its development and to ensure the health of the woman during gestation. Mass spectrometry-based metabolomics was employed to study the metabolic phenotype variations in the maternal plasma that are induced by pregnancy in each of its three trimesters. Nontargeted metabolomics analysis showed that pregnancy significantly altered the profile of metabolites in maternal plasma. The levels of six metabolites were found to change significantly throughout pregnancy, with related metabolic pathway variations observed in biopterin metabolism, phospholipid metabolism, amino acid derivatives, and fatty acid oxidation. In particular, there was a pronounced elevation of dihydrobiopterin (BH₂), a compound produced in the synthesis of dopa, dopamine, norepinephrine, and epinephrine, in the second trimester, whereas it was markedly decreased in the third trimester. The turnover of BH₂ and tryptophan catabolites indicated that the fluctuations of neurotransmitters throughout pregnancy might reveal the metabolic adaption in the maternal body for the growth of the fetus. Furthermore, 11 lipid classes and 41 carnitine species were also determined and this showed variations in the presence of long-chain acylcarnitines and lysophospholipids in later pregnancy, suggesting changes of acylcarnitines and lysophospholipids to meet the energy demands in pregnant women. To our knowledge, this work is the first report of dynamic metabolic signatures and proposed related metabolic pathways in the maternal plasma for normal pregnancies and provided the basis for time-dependent metabolic trajectory against which disease-related disorders may be contrasted. PMID:24450375

  2. Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in Blastomyces dermatitidis

    PubMed Central

    Marty, Amber J.; Broman, Aimee T.; Zarnowski, Robert; Dwyer, Teigan G.; Bond, Laura M.; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Ntambi, James M.; Keleş, Sündüz; Kendziorski, Christina; Gauthier, Gregory M.

    2015-01-01

    In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s) underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ) fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0–48 hours), gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C) and during the phase transition to mold (22°C). This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition. PMID:26114571

  3. Hepcidin-Induced Iron Deficiency Is Related to Transient Anemia and Hypoferremia in Kawasaki Disease Patients.

    PubMed

    Huang, Ying-Hsien; Kuo, Ho-Chang; Huang, Fu-Chen; Yu, Hong-Ren; Hsieh, Kai-Sheng; Yang, Ya-Ling; Sheen, Jiunn-Ming; Li, Sung-Chou; Kuo, Hsing-Chun

    2016-01-01

    Kawasaki disease (KD) is a type of systemic vasculitis that primarily affects children under the age of five years old. For sufferers of KD, intravenous immunoglobulin (IVIG) has been found to successfully diminish the occurrence of coronary artery lesions. Anemia is commonly found in KD patients, and we have shown that in appropriately elevated hepcidin levels are related to decreased hemoglobin levels in these patients. In this study, we investigated the time period of anemia and iron metabolism during different stages of KD. A total of 100 patients with KD and 20 control subjects were enrolled in this study for red blood cell and hemoglobin analysis. Furthermore, plasma, urine hepcidin, and plasma IL-6 levels were evaluated using enzyme-linked immunosorbent assay in 20 KD patients and controls. Changes in hemoglobin, plasma iron levels, and total iron binding capacity (TIBC) were also measured in patients with KD. Hemoglobin, iron levels, and TIBC were lower (p < 0.001, p = 0.009, and p < 0.001, respectively) while plasma IL-6 and hepcidin levels (both p < 0.001) were higher in patients with KD than in the controls prior to IVIG administration. Moreover, plasma hepcidin levels were positively and significantly correlated with urine hepcidin levels (p < 0.001) prior to IVIG administration. After IVIG treatment, plasma hepcidin and hemoglobin levels significantly decreased (both p < 0.001). Of particular note was a subsequent gradual increase in hemoglobin levels during the three weeks after IVIG treatment; nevertheless, the hemoglobin levels stayed lower in KD patients than in the controls (p = 0.045). These findings provide a longitudinal study of hemoglobin changes and among the first evidence that hepcidin induces transient anemia and hypoferremia during KD's acute inflammatory phase. PMID:27187366

  4. Hepcidin-Induced Iron Deficiency Is Related to Transient Anemia and Hypoferremia in Kawasaki Disease Patients

    PubMed Central

    Huang, Ying-Hsien; Kuo, Ho-Chang; Huang, Fu-Chen; Yu, Hong-Ren; Hsieh, Kai-Sheng; Yang, Ya-Ling; Sheen, Jiunn-Ming; Li, Sung-Chou; Kuo, Hsing-Chun

    2016-01-01

    Kawasaki disease (KD) is a type of systemic vasculitis that primarily affects children under the age of five years old. For sufferers of KD, intravenous immunoglobulin (IVIG) has been found to successfully diminish the occurrence of coronary artery lesions. Anemia is commonly found in KD patients, and we have shown that in appropriately elevated hepcidin levels are related to decreased hemoglobin levels in these patients. In this study, we investigated the time period of anemia and iron metabolism during different stages of KD. A total of 100 patients with KD and 20 control subjects were enrolled in this study for red blood cell and hemoglobin analysis. Furthermore, plasma, urine hepcidin, and plasma IL-6 levels were evaluated using enzyme-linked immunosorbent assay in 20 KD patients and controls. Changes in hemoglobin, plasma iron levels, and total iron binding capacity (TIBC) were also measured in patients with KD. Hemoglobin, iron levels, and TIBC were lower (p < 0.001, p = 0.009, and p < 0.001, respectively) while plasma IL-6 and hepcidin levels (both p < 0.001) were higher in patients with KD than in the controls prior to IVIG administration. Moreover, plasma hepcidin levels were positively and significantly correlated with urine hepcidin levels (p < 0.001) prior to IVIG administration. After IVIG treatment, plasma hepcidin and hemoglobin levels significantly decreased (both p < 0.001). Of particular note was a subsequent gradual increase in hemoglobin levels during the three weeks after IVIG treatment; nevertheless, the hemoglobin levels stayed lower in KD patients than in the controls (p = 0.045). These findings provide a longitudinal study of hemoglobin changes and among the first evidence that hepcidin induces transient anemia and hypoferremia during KD’s acute inflammatory phase. PMID:27187366

  5. Iron Status and Metabolic Syndrome in Patients with Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Ghamarchehreh, Mohammad Ebrahim; Jonaidi-Jafari, Nematollah; Bigdeli, Mohammad; Khedmat, Hossein; Saburi, Amin

    2016-01-01

    BACKGROUND A hypothesis has been presented about the role of serum iron, ferritin and transferrin saturation among patients with non-alcoholic fatty liver disease (NAFLD) and resistance to insulin (metabolic syndrome [MetS]), but there is much controversy. This study aimed at investigating the level of serum iron and demographic characteristics in patients with NAFLD with or without MetS. METHODS A case-control study was conducted on patients with elevated liver enzymes referring to Baqiyatallah clinic, Tehran, Iran during 2010-2011. After ruling out other causes of increased aminotransferases and approving the diagnosis of NAFLD, the patients were divided into two groups of with or without MetS. Then, the individuals’ demographic, sonographic, and laboratory characteristics were recorded. RESULTS This research included 299 patients suffering from NAFLD who were divided into MetS (n=143; 47.8%) and non-MetS (n=156; 52.2%) groups. The age, systolic and diastolic blood pressure, body mass index, waist/hip ratio, glucose tolerance test, serum insulin, C. peptide, triglyceride, and HB A1c were different between MetS and non-MetS groups (p<0.05). There was no significant difference in serum iron and ferritin levels between the two groups, however, a significant correlation was found between serum ferritin and alanine transaminase (p=0.005) and also aspartate aminotransferase (p=0.032). CONCLUSION Our findings did not show a significant relationship between iron, in free or storage form, and the presence of MetS among patients with NAFLD, but serum ferritin can correlate with hepatocytes injuries indicated by raised aminotransferases. Nevertheless, to clarify this relationship further molecular, genomic, and histopathological studies are required. PMID:26933479

  6. Attenuation of Some Metabolic Deteriorations Induced by Diabetes Mellitus Using Carnosine

    NASA Astrophysics Data System (ADS)

    Soliman, K. M.; Mohamed, A. M.; Metwally, N. S.

    The protective ability of carnosine against some metabolic disorders and oxidative stress in Strepotzotocin (STZ) diabetic-induced model was studied. Diabetic rats showed significant increase in serum glucose and cortisol levels indicating disturbance of carbohydrate metabolism, increased triglycerides, total cholesterol, LDL-cholesterol as well as iron level indicating abnormal lipid metabolism and iron overload. Marked increase in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and sorbitol dehydrogenase (SD) were also demonstrated implying impairment of liver function. Concomitantly, the results revealed an impairment of antioxidant status of diabetic animals as evidenced by significant decrease in vitamin E and HDL-C levels. Administration of either two doses of carnosine (10 mg/100 g b.w. or 20 mg/100 g b.w.) two weeks before and after diabetic induction, was effective in ameliorating serum glucose level of diabetic animals and improving the deterioration in the studied parameters. The best results were obtained with the higher dose. No significant changes were noted in serum bilirubin level among the different studied groups. These data suggest that carnosine is a potential multi-protective agent for diabetic complications prevention or therapy.

  7. Metabolic acidosis-induced insulin resistance and cardiovascular risk.

    PubMed

    Souto, Gema; Donapetry, Cristóbal; Calviño, Jesús; Adeva, Maria M

    2011-08-01

    Microalbuminuria has been conclusively established as an independent cardiovascular risk factor, and there is evidence of an association between insulin resistance and microalbuminuria, the former preceding the latter in prospective studies. It has been demonstrated that even the slightest degree of metabolic acidosis produces insulin resistance in healthy humans. Many recent epidemiological studies link metabolic acidosis indicators with insulin resistance and systemic hypertension. The strongly acidogenic diet consumed in developed countries produces a lifetime acidotic state, exacerbated by excess body weight and aging, which may result in insulin resistance, metabolic syndrome, and type 2 diabetes, contributing to cardiovascular risk, along with genetic causes, lack of physical exercise, and other factors. Elevated fruits and vegetables consumption has been associated with lower diabetes incidence. Diseases featuring severe atheromatosis and elevated cardiovascular risk, such as diabetes mellitus and chronic kidney failure, are typically characterized by a chronic state of metabolic acidosis. Diabetic patients consume particularly acidogenic diets, and deficiency of insulin action generates ketone bodies, creating a baseline state of metabolic acidosis worsened by inadequate metabolic control, which creates a vicious circle by inducing insulin resistance. Even very slight levels of chronic kidney insufficiency are associated with increased cardiovascular risk, which may be explained at least in part by deficient acid excretory capacity of the kidney and consequent metabolic acidosis-induced insulin resistance. PMID:21352078

  8. Metabolic Acidosis-Induced Insulin Resistance and Cardiovascular Risk

    PubMed Central

    Souto, Gema; Donapetry, Cristóbal; Calviño, Jesús

    2011-01-01

    Abstract Microalbuminuria has been conclusively established as an independent cardiovascular risk factor, and there is evidence of an association between insulin resistance and microalbuminuria, the former preceding the latter in prospective studies. It has been demonstrated that even the slightest degree of metabolic acidosis produces insulin resistance in healthy humans. Many recent epidemiological studies link metabolic acidosis indicators with insulin resistance and systemic hypertension. The strongly acidogenic diet consumed in developed countries produces a lifetime acidotic state, exacerbated by excess body weight and aging, which may result in insulin resistance, metabolic syndrome, and type 2 diabetes, contributing to cardiovascular risk, along with genetic causes, lack of physical exercise, and other factors. Elevated fruits and vegetables consumption has been associated with lower diabetes incidence. Diseases featuring severe atheromatosis and elevated cardiovascular risk, such as diabetes mellitus and chronic kidney failure, are typically characterized by a chronic state of metabolic acidosis. Diabetic patients consume particularly acidogenic diets, and deficiency of insulin action generates ketone bodies, creating a baseline state of metabolic acidosisworsened by inadequate metabolic control, which creates a vicious circle by inducing insulin resistance. Even very slight levels of chronic kidney insufficiency are associated with increased cardiovascular risk, which may be explained at least in part by deficient acid excretory capacity of the kidney and consequent metabolic acidosis-induced insulin resistance. PMID:21352078

  9. Association between Serum Ferritin and Osteocalcin as a Potential Mechanism Explaining the Iron-Induced Insulin Resistance

    PubMed Central

    Juanola-Falgarona, Martí; Cándido-Fernández, José; Salas-Salvadó, Jordi; Martínez-González, Miguel A.; Estruch, Ramón; Fiol, Miquel; Arija-Val, Victoria

    2013-01-01

    Background Increased iron stores are associated with increased risk of type 2 diabetes, however, the mechanisms underlying these associations are poorly understood. Because a reduction of circulating osteocalcin levels after iron overload have been demonstrated in cell cultures, and osteocalcin is related to glucose and insulin metabolism, the iron-induced osteocalcin reductions could contribute to explain the role of iron metabolism in the development of type 2 diabetes mellitus. Objective To analyzed the associations between serum total and uncarboxylated osteocalcin and adiponectin concentrations with serum ferritin and soluble transferrin receptor (sTfR) in elderly subjects. Design We evaluated a total of 423 subjects from the PREDIMED cohort in a population-based cross-sectional analysis. Extensive clinical, nutritional and laboratory measurements, including total and uncarboxylated osteocalcin, adiponectin, ferritin and sTfR were recorded. Results Serum ferritin was positively correlated with increased glucose and insulin circulating levels but also with HOMA-IR, and was inversely associated with total osteocalcin and adiponectin. A regression analysis revealed that serum ferritin and transferrin receptor levels were significantly associated with a decrease in total and uncarboxylated osteocalcin. Serum sTfR levels were associated with lower uncarboxylated osteocalcin levels in the whole-study subjects and remained significant only in the IFG (impaired fasting glucose) individuals. Conclusions We described, for the first time, an inverse association between serum ferritin and sTfR with osteocalcin and extend previous results on adiponectin, thus supporting that factors related to iron metabolism could contribute to the insulin resistance and the development of type 2 diabetes mellitus. Trial Registration Controlled-Trials.com ISRCTN35739639 . PMID:24167545

  10. Glucose metabolism and hexosamine pathway regulate oncogene-induced senescence.

    PubMed

    Gitenay, D; Wiel, C; Lallet-Daher, H; Vindrieux, D; Aubert, S; Payen, L; Simonnet, H; Bernard, D

    2014-01-01

    Oncogenic stress-induced senescence (OIS) prevents the ability of oncogenic signals to induce tumorigenesis. It is now largely admitted that the mitogenic effect of oncogenes requires metabolic adaptations to respond to new energetic and bio constituent needs. Yet, whether glucose metabolism affects OIS response is largely unknown. This is largely because of the fact that most of the OIS cellular models are cultivated in glucose excess. In this study, we used human epithelial cells, cultivated without glucose excess, to study alteration and functional role of glucose metabolism during OIS. We report a slowdown of glucose uptake and metabolism during OIS. Increasing glucose metabolism by expressing hexokinase2 (HK2), which converts glucose to glucose-6-phosphate (G6P), favors escape from OIS. Inversely, expressing a glucose-6-phosphatase, [corrected] pharmacological inhibition of HK2, or adding nonmetabolizable glucose induced a premature senescence. Manipulations of various metabolites covering G6P downstream pathways (hexosamine, glycolysis, and pentose phosphate pathways) suggest an unexpected role of the hexosamine pathway in controlling OIS. Altogether, our results show that decreased glucose metabolism occurs during and participates to OIS. PMID:24577087

  11. IRON

    EPA Science Inventory

    The document surveys the effects of organic and inorganic iron that are relevant to humans and their environment. The biology and chemistry of iron are complex and only partially understood. Iron participates in oxidation reduction processes that not only affect its geochemical m...

  12. Metabolic consequences of exercise-induced muscle damage.

    PubMed

    Tee, Jason C; Bosch, Andrew N; Lambert, Mike I

    2007-01-01

    Exercise-induced muscle damage (EIMD) is commonly experienced following either a bout of unaccustomed physical activity or following physical activity of greater than normal duration or intensity. The mechanistic factor responsible for the initiation of EIMD is not known; however, it is hypothesised to be either mechanical or metabolic in nature. The mechanical stress hypothesis states that EIMD is the result of physical stress upon the muscle fibre. In contrast, the metabolic stress model predicts that EIMD is the result of metabolic deficiencies, possibly through the decreased action of Ca(2+)-adenosine triphosphatase. Irrespective of the cause of the damage, EIMD has a number of profound metabolic effects. The most notable metabolic effects of EIMD are decreased insulin sensitivity, prolonged glycogen depletion and an increase in metabolic rate both at rest and during exercise. Based on current knowledge regarding the effects that various types of damaging exercise have on muscle metabolism, a new model for the initiation of EIMD is proposed. This model states that damage initiation may be either metabolic or mechanical, or a combination of both, depending on the mode, intensity and duration of exercise and the training status of the individual. PMID:17887809

  13. Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages.

    PubMed

    Harada, Nobuhiko; Kanayama, Masaya; Maruyama, Atsushi; Yoshida, Aruto; Tazumi, Kyoko; Hosoya, Tomonori; Mimura, Junsei; Toki, Tsutomu; Maher, Jonathan M; Yamamoto, Masayuki; Itoh, Ken

    2011-04-01

    Iron is an essential element of hemoglobin, and efficient iron recycling from senescent erythrocytes by splenic macrophages is required for erythrocyte hemoglobin synthesis during erythropoiesis. Ferroportin 1 (Fpn1) is the sole iron exporter in mammals, and it also regulates iron reutilization. In this study, we demonstrated genetically that a redox-sensitive transcription factor, Nrf2, regulates Fpn1 mRNA expression in macrophages. Nrf2 activation by several electrophilic compounds commonly resulted in the upregulation of Fpn1 mRNA in bone marrow-derived and peritoneal macrophages obtained from wild-type mice but not from Nrf2 knockout mice. Further, Nrf2 activation enhanced iron release from the J774.1 murine macrophage cell line. Previous studies showed that inflammatory stimuli, such as LPS, downregulates macrophage Fpn1 by transcriptional and hepcidin-mediated post-translational mechanisms leading to iron sequestration by macrophages. We showed that two Nrf2 activators, diethyl maleate and sulforaphane (SFN; a natural Nrf2 activator found in broccoli), restored the LPS-induced suppression of Fpn1 mRNA in human and mouse macrophages, respectively. Furthermore, SFN counteracted the LPS-induced increase of Hepcidin mRNA by an Nrf2-independent mechanism in mouse peritoneal macrophages. These results demonstrate that Nrf2 regulates iron efflux from macrophages through Fpn1 gene transcription and suggest that Nrf2 may control iron metabolism during inflammation. PMID:21303654

  14. The Effect of the Hemochromatosis (HFE) Genotype on Lead Load and Iron Metabolism among Lead Smelter Workers

    PubMed Central

    Fan, Guangqin; Du, Guihua; Li, Huijun; Lin, Fen; Sun, Ziyong; Yang, Wei; Feng, Chang; Zhu, Gaochun; Li, Yanshu; Chen, Ying; Jiao, Huan; Zhou, Fankun

    2014-01-01

    Background Both an excess of toxic lead (Pb) and an essential iron disorder have been implicated in many diseases and public health problems. Iron metabolism genes, such as the hemochromatosis (HFE) gene, have been reported to be modifiers for lead absorption and storage. However, the HFE gene studies among the Asian population with occupationally high lead exposure are lacking. Objectives To explore the modifying effects of the HFE genotype (wild-type, H63D variant and C282Y variant) on the Pb load and iron metabolism among Asian Pb-workers with high occupational exposure. Methods Seven hundred and seventy-one employees from a lead smelter manufacturing company were tested to determine their Pb intoxication parameters, iron metabolic indexes and identify the HFE genotype. Descriptive and multivariate analyses were conducted. Results Forty-five H63D variant carriers and no C282Y variant carrier were found among the 771 subjects. Compared with subjects with the wild-type genotype, H63D variant carriers had higher blood lead levels, even after controlling for factors such as age, sex, marriage, education, smoking and lead exposure levels. Multivariate analyses also showed that the H63D genotype modifies the associations between the blood lead levels and the body iron burden/transferrin. Conclusions No C282Y variant was found in this Asian population. The H63D genotype modified the association between the lead and iron metabolism such that increased blood lead is associated with a higher body iron content or a lower transferrin in the H63D variant. It is indicated that H63D variant carriers may be a potentially highly vulnerable sub-population if they are exposed to high lead levels occupationally. PMID:24988074

  15. Secondary psychosis induced by metabolic disorders

    PubMed Central

    Bonnot, Olivier; Herrera, Paula M.; Tordjman, Sylvie; Walterfang, Mark

    2015-01-01

    Metabolic disorders are not well-recognized by psychiatrists as a possible source of secondary psychoses. Inborn errors of metabolism (IEMs) are not frequent. Although their prompt diagnosis may lead to suitable treatments. IEMs are well-known to pediatricians, in particular for their most serious forms, having an early expression most of the time. Recent years discoveries have unveiled later expression forms, and sometimes very discreet first physical signs. There is a growing body of evidence that supports the hypothesis that IEMs can manifest as atypical psychiatric symptoms, even in the absence of clear neurological symptoms. In the present review, we propose a detailed overview at schizophrenia-like and autism-like symptoms that can lead practitioners to bear in mind an IEM. Other psychiatric manifestations are also found, as behavioral, cognitive, learning, and mood disorders. However, they are less frequent. Ensuring an accurate IEM diagnosis, in front of these psychiatric symptoms should be a priority, in order to grant suitable and valuable treatment for these pathologies. PMID:26074754

  16. Radiation induced chemical activity at iron and copper oxide surfaces

    NASA Astrophysics Data System (ADS)

    Reiff, Sarah C.

    The radiolysis of three iron oxides, two copper oxides, and aluminum oxide with varying amounts of water were performed using gamma-rays and 5 MeV 4He ions. The adsorbed water on the surfaces was characterized using temperature programmed desorption and diffuse reflectance infrared spectroscopy, which indicated that all of the oxides had chemisorbed water on the surface. Physisorbed water was observed on the Fe2O 3 and Al2O3 surfaces as well. Molecular hydrogen was produced from adsorbed water only on Fe2O3 and Al 2O3, while the other compounds did not show any hydrogen production due to the low amounts of water on the surfaces. Slurries of varying amounts of water were also examined for hydrogen production, and they showed yields that were greater than the yield for bulk water. However, the yields of hydrogen from the copper compounds were much lower than those of the iron suggesting that the copper oxides are relatively inert to radiation induced damage to nearby water. X-ray diffraction measurements did not show any indication of changes to the bulk crystal structure due to radiolysis for any of the oxides. The surfaces of the oxides were analyzed using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). For the iron samples, FeO and Fe3O4, Raman spectroscopy revealed areas of Fe2O3 had formed following irradiation with He ions. XPS indicated the formation of a new oxygen species on the iron oxide surfaces. Raman spectroscopy of the copper oxides did not reveal any changes in the surface composition, however, XPS measurements showed a decrease in the amount of OH groups on the surface of Cu2O, while for the CuO samples the amount of OH groups were found to increase following radiolysis. Pristine Al2O3 showed the presence of a surface oxyhydroxide layer which was observed to decrease following radiolysis, consistent with the formation of molecular hydrogen.

  17. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    SciTech Connect

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  18. Influence of artistic gymnastics on iron nutritional status and exercise-induced hemolysis in female athletes.

    PubMed

    Sureira, Thaiz Mattos; Amancio, Olga Silverio; Pellegrini Braga, Josefina Aparecida

    2012-08-01

    This study evaluates the relationship between body iron losses and gains in artistic gymnastics female athletes. It shows that despite the low iron intake and exercise-induced hemolysis, iron deficiency or iron-deficiency anemia does not occur, but partial changes in the hematological profile do. The hypothesis that gymnasts' nutritional behavior contributes to anemia, which may be aggravated by exercise-induced hemolysis, led to this cross-sectional study, conducted with 43 female artistic gymnasts 6-16 yr old. The control group was formed by 40 nontraining girls, paired by age. Hemogram, serum iron, ferritin, soluble transferrin receptor, haptoglobin, total and fractional bilirubin, Type I urine, and parasitologic and occult fecal blood tests were evaluated. The athletes presented mean hematimetric and serum iron values (p = .020) higher than those of the control group. The bilirubin result discarded any hemolytic alteration in both groups. The haptoglobin results were lower in the athlete group (p = .002), confirming the incidence of exercise-induced hemolysis. Both groups presented low iron intake. The results suggest that artistic gymnastics practice leads to exercise-induced hemolysis and partially changes the hematological profile, although not causing iron deficiency or iron-deficiency anemia, even in the presence of low iron intake. PMID:22645172

  19. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants.

    PubMed

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K

    2016-03-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. PMID:26685186

  20. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants

    PubMed Central

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K.

    2016-01-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. PMID:26685186

  1. Iron metabolism in African American women during the 2nd and 3rd trimester of a high-risk pregnancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To examine iron metabolism during the 2nd and 3rd trimester in African American women classified as a high-risk pregnancy. Design: Longitudinal. Setting: Large, university-based, urban Midwestern medical center. Participants: Convenience sample of 47 African American women classified a...

  2. Hepcidin, the hormone of iron metabolism, is bound specifically to alpha-2-macroglobulin in blood.

    PubMed

    Peslova, Gabriela; Petrak, Jiri; Kuzelova, Katerina; Hrdy, Ivan; Halada, Petr; Kuchel, Philip W; Soe-Lin, Shan; Ponka, Prem; Sutak, Robert; Becker, Erika; Huang, Michael Li-Hsuan; Suryo Rahmanto, Yohan; Richardson, Des R; Vyoral, Daniel

    2009-06-11

    Hepcidin is a major regulator of iron metabolism. Hepcidin-based therapeutics/diagnostics could play roles in hematology in the future, and thus, hepcidin transport is crucial to understand. In this study, we identify alpha2-macroglobulin (alpha2-M) as the specific hepcidin-binding molecule in blood. Interaction of 125I-hepcidin with alpha2-M was identified using fractionation of plasma proteins followed by native gradient polyacrylamide gel electrophoresis and mass spectrometry. Hepcidin binding to nonactivated alpha2-M displays high affinity (Kd 177 +/- 27 nM), whereas hepcidin binding to albumin was nonspecific and displayed nonsaturable kinetics. Surprisingly, the interaction of hepcidin with activated alpha2-M exhibited a classical sigmoidal binding curve demonstrating cooperative binding of 4 high-affinity (Kd 0.3 microM) hepcidin-binding sites. This property probably enables efficient sequestration of hepcidin and its subsequent release or inactivation that may be important for its effector functions. Because alpha2-M rapidly targets ligands to cells via receptor-mediated endocytosis, the binding of hepcidin to alpha2-M may influence its functions. In fact, the alpha2-M-hepcidin complex decreased ferroportin expression in J774 cells more effectively than hepcidin alone. The demonstration that alpha2-M is the hepcidin transporter could lead to better understanding of hepcidin physiology, methods for its sensitive measurement and the development of novel drugs for the treatment of iron-related diseases. PMID:19380872

  3. Central and Peripheral Metabolic Changes Induced by Gamma-Hydroxybutyrate

    PubMed Central

    Luca, Gianina; Vienne, Julie; Vaucher, Angélique; Jimenez, Sonia; Tafti, Mehdi

    2015-01-01

    Study Objectives: Gamma-hydroxybutyrate (GHB) was originally introduced as an anesthetic but was first abused by bodybuilders and then became a recreational or club drug.1 Sodium salt of GHB is currently used for the treatment of cataplexy in patients with narcolepsy. The mode of action and metabolism of GHB is not well understood. GHB stimulates growth hormone release in humans and induces weight loss in treated patients, suggesting an unexplored metabolic effect. In different experiments the effect of GHB administration on central (cerebral cortex) and peripheral (liver) biochemical processes involved in the metabolism of the drug, as well as the effects of the drug on metabolism, were evaluated in mice. Design: C57BL/6J, gamma-aminobutyric acid B (GABAB) knockout and obese (ob/ob) mice were acutely or chronically treated with GHB at 300 mg/kg. Measurements and Results: Respiratory ratio decreased under GHB treatment, independent of food intake, suggesting a shift in energy substrate from carbohydrates to lipids. GHB-treated C57BL/6J and GABAB null mice but not ob/ob mice gained less weight than matched controls. GHB dramatically increased the corticosterone level but did not affect growth hormone or prolactin. Metabolome profiling showed that an acute high dose of GHB did not increase the brain GABA level. In the brain and the liver, GHB was metabolized into succinic semialdehyde by hydroxyacid-oxoacid transhydrogenase. Chronic administration decreased glutamate, s-adenosylhomocysteine, and oxidized gluthathione, and increased omega-3 fatty acids. Conclusions: Our findings indicate large central and peripheral metabolic changes induced by gamma-hydroxybutyrate (GHB) with important relevance to its therapeutic use. Citation: Luca G, Vienne J, Vaucher A, Jimenez S, Tafti M. Central and peripheral metabolic changes induced by gamma-hydroxybutyrate. SLEEP 2015;38(2):305–313. PMID:25515097

  4. Metabolic Profile of Wound-Induced Changes in Primary Carbon Metabolism in Sugarbeet Root

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Injury to plant products induces respiration rate and increases the demand for respiratory substrates. Alterations in primary carbon metabolism are likely to support the elevated demand for respiratory substrates, although the nature of these alterations is unknown. To gain insight into the metabo...

  5. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    NASA Technical Reports Server (NTRS)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at p< 0

  6. Secoisolariciresinol Diglucoside Abrogates Oxidative Stress-Induced Damage in Cardiac Iron Overload Condition

    PubMed Central

    Puukila, Stephanie; Bryan, Sean; Laakso, Anna; Abdel-Malak, Jessica; Gurney, Carli; Agostino, Adrian; Belló-Klein, Adriane; Prasad, Kailash; Khaper, Neelam

    2015-01-01

    Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG), a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload. PMID:25822525

  7. Iron acquisition in Leishmania and its crucial role in infection.

    PubMed

    Niu, Qinwang; Li, Shihong; Chen, Dali; Chen, Qiwei; Chen, Jianping

    2016-09-01

    Iron is an essential cofactor for many basic metabolic pathways in pathogenic microbes and their hosts. It is also dangerous as it can catalyse the production of reactive free radicals. This dual character makes the host can either limit iron availability to invading microbes or exploit iron to induce toxicity to pathogens. Successful pathogens, including Leishmania species, must possess mechanisms to circumvent host's iron limitation and iron-induced toxicity in order to survive. In this review, we discuss the regulation of iron metabolism in the setting of infection and delineate the iron acquisition strategies used by Leishmania parasites and their subversions to host iron metabolism to overcome host's iron-related defences. PMID:27221985

  8. Reconstruction of Gene Networks of Iron Response in Shewanella oneidensis

    SciTech Connect

    Yang, Yunfeng; Harris, Daniel P; Luo, Feng; Joachimiak, Marcin; Wu, Liyou; Dehal, Paramvir; Jacobsen, Janet; Yang, Zamin Koo; Gao, Haichun; Arkin, Adam; Palumbo, Anthony Vito; Zhou, Jizhong

    2009-01-01

    It is of great interest to study the iron response of the -proteobacterium Shewanella oneidensis since it possesses a high content of iron and is capable of utilizing iron for anaerobic respiration. We report here that the iron response in S. oneidensis is a rapid process. To gain more insights into the bacterial response to iron, temporal gene expression profiles were examined for iron depletion and repletion, resulting in identification of iron-responsive biological pathways in a gene co-expression network. Iron acquisition systems, including genes unique to S. oneidensis, were rapidly and strongly induced by iron depletion, and repressed by iron repletion. Some were required for iron depletion, as exemplified by the mutational analysis of the putative siderophore biosynthesis protein SO3032. Unexpectedly, a number of genes related to anaerobic energy metabolism were repressed by iron depletion and induced by repletion, which might be due to the iron storage potential of their protein products. Other iron-responsive biological pathways include protein degradation, aerobic energy metabolism and protein synthesis. Furthermore, sequence motifs enriched in gene clusters as well as their corresponding DNA-binding proteins (Fur, CRP and RpoH) were identified, resulting in a regulatory network of iron response in S. oneidensis. Together, this work provides an overview of iron response and reveals novel features in S. oneidensis, including Shewanella-specific iron acquisition systems, and suggests the intimate relationship between anaerobic energy metabolism and iron response.

  9. ideR, an Essential Gene in Mycobacterium tuberculosis: Role of IdeR in Iron-Dependent Gene Expression, Iron Metabolism, and Oxidative Stress Response†

    PubMed Central

    Rodriguez, G. Marcela; Voskuil, Martin I.; Gold, Benjamin; Schoolnik, Gary K.; Smith, Issar

    2002-01-01

    The mycobacterial IdeR protein is a metal-dependent regulator of the DtxR (diphtheria toxin repressor) family. In the presence of iron, it binds to a specific DNA sequence in the promoter regions of the genes that it regulates, thus controlling their transcription. In this study, we provide evidence that ideR is an essential gene in Mycobacterium tuberculosis. ideR cannot normally be disrupted in this mycobacterium in the absence of a second functional copy of the gene. However, a rare ideR mutant was obtained in which the lethal effects of ideR inactivation were alleviated by a second-site suppressor mutation and which exhibited restricted iron assimilation capacity. Studies of this strain and a derivative in which IdeR expression was restored allowed us to identify phenotypic effects resulting from ideR inactivation. Using DNA microarrays, the iron-dependent transcriptional profiles of the wild-type, ideR mutant, and ideR-complemented mutant strains were analyzed, and the genes regulated by iron and IdeR were identified. These genes encode a variety of proteins, including putative transporters, proteins involved in siderophore synthesis and iron storage, members of the PE/PPE family, a membrane protein involved in virulence, transcriptional regulators, and enzymes involved in lipid metabolism. PMID:12065475

  10. IscR of Rhodobacter sphaeroides functions as repressor of genes for iron-sulfur metabolism and represents a new type of iron-sulfur-binding protein

    PubMed Central

    Remes, Bernhard; Eisenhardt, Benjamin D; Srinivasan, Vasundara; Klug, Gabriele

    2015-01-01

    IscR proteins are known as transcriptional regulators for Fe–S biogenesis. In the facultatively phototrophic bacterium, Rhodobacter sphaeroides IscR is the product of the first gene in the isc-suf operon. A major role of IscR in R. sphaeroides iron-dependent regulation was suggested in a bioinformatic study (Rodionov et al., PLoS Comput Biol 2:e163, 2006), which predicted a binding site in the upstream regions of several iron uptake genes, named Iron-Rhodo-box. Most known IscR proteins have Fe–S clusters featuring (Cys)3(His)1 ligation. However, IscR proteins from Rhodobacteraceae harbor only a single-Cys residue and it was considered unlikely that they can ligate an Fe–S cluster. In this study, the role of R. sphaeroides IscR as transcriptional regulator and sensor of the Fe–S cluster status of the cell was analyzed. A mutant lacking IscR is more impaired in growth under iron limitation than the wild-type and exhibits significantly increased ROS levels in iron-replete and iron-deplete conditions. Expression studies reveal that R. sphaeroides IscR in its cluster-bound form functions as transcriptional repressor of genes involved in iron metabolism by direct binding to the promoter region of genes preceded by the motif. A total of 110 genes are directly or indirectly affected by IscR. Furthermore, IscR possesses a unique Fe–S cluster ligation scheme with only a single cysteine involved. PMID:26235649

  11. IscR of Rhodobacter sphaeroides functions as repressor of genes for iron-sulfur metabolism and represents a new type of iron-sulfur-binding protein.

    PubMed

    Remes, Bernhard; Eisenhardt, Benjamin D; Srinivasan, Vasundara; Klug, Gabriele

    2015-10-01

    IscR proteins are known as transcriptional regulators for Fe-S biogenesis. In the facultatively phototrophic bacterium, Rhodobacter sphaeroides IscR is the product of the first gene in the isc-suf operon. A major role of IscR in R. sphaeroides iron-dependent regulation was suggested in a bioinformatic study (Rodionov et al., PLoS Comput Biol 2:e163, 2006), which predicted a binding site in the upstream regions of several iron uptake genes, named Iron-Rhodo-box. Most known IscR proteins have Fe-S clusters featuring (Cys)3 (His)1 ligation. However, IscR proteins from Rhodobacteraceae harbor only a single-Cys residue and it was considered unlikely that they can ligate an Fe-S cluster. In this study, the role of R. sphaeroides IscR as transcriptional regulator and sensor of the Fe-S cluster status of the cell was analyzed. A mutant lacking IscR is more impaired in growth under iron limitation than the wild-type and exhibits significantly increased ROS levels in iron-replete and iron-deplete conditions. Expression studies reveal that R. sphaeroides IscR in its cluster-bound form functions as transcriptional repressor of genes involved in iron metabolism by direct binding to the promoter region of genes preceded by the motif. A total of 110 genes are directly or indirectly affected by IscR. Furthermore, IscR possesses a unique Fe-S cluster ligation scheme with only a single cysteine involved. PMID:26235649

  12. Drosophila mitoferrin is essential for male fertility: evidence for a role of mitochondrial iron metabolism during spermatogenesis

    PubMed Central

    2010-01-01

    Background Mammals and Drosophila melanogaster share some striking similarities in spermatogenesis. Mitochondria in spermatids undergo dramatic morphological changes and syncytial spermatids are stripped from their cytoplasm and then individually wrapped by single membranes in an individualization process. In mammalian and fruit fly testis, components of the mitochondrial iron metabolism are expressed, but so far their function during spermatogenesis is unknown. Here we investigate the role of Drosophila mitoferrin (dmfrn), which is a mitochondrial carrier protein with an established role in the mitochondrial iron metabolism, during spermatogenesis. Results We found that P-element insertions into the 5'-untranslated region of the dmfrn gene cause recessive male sterility, which was rescued by a fluorescently tagged transgenic dmfrn genomic construct (dmfrnvenus). Testes of mutant homozygous dmfrnSH115 flies were either small with unorganized content or contained some partially elongated spermatids, or testes were of normal size but lacked mature sperm. Testis squashes indicated that spermatid elongation was defective and electron micrographs showed mitochondrial defects in elongated spermatids and indicated failed individualization. Using a LacZ reporter and the dmfrnvenus transgene, we found that dmfrn expression in testes was highest in spermatids, coinciding with the stages that showed defects in the mutants. Dmfrn-venus protein accumulated in mitochondrial derivatives of spermatids, where it remained until most of it was stripped off during individualization and disposed of in waste bags. Male sterility in flies with the hypomorph alleles dmfrnBG00456 and dmfrnEY01302 over the deletion Df(3R)ED6277 was increased by dietary iron chelation and suppressed by iron supplementation of the food, while male sterility of dmfrnSH115/Df(3R)ED6277 flies was not affected by food iron levels. Conclusions In this work, we show that mutations in the Drosophila mitoferrin gene

  13. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia

    PubMed Central

    2014-01-01

    Background Aberrant energy metabolism is a hallmark of cancer. To fulfill the increased energy requirements, tumor cells secrete cytokines/factors inducing muscle and fat degradation in cancer patients, a condition known as cancer cachexia. It accounts for nearly 20% of all cancer-related deaths. However, the mechanistic basis of cancer cachexia and therapies targeting cancer cachexia thus far remain elusive. A ketogenic diet, a high-fat and low-carbohydrate diet that elevates circulating levels of ketone bodies (i.e., acetoacetate, β-hydroxybutyrate, and acetone), serves as an alternative energy source. It has also been proposed that a ketogenic diet leads to systemic metabolic changes. Keeping in view the significant role of metabolic alterations in cancer, we hypothesized that a ketogenic diet may diminish glycolytic flux in tumor cells to alleviate cachexia syndrome and, hence, may provide an efficient therapeutic strategy. Results We observed reduced glycolytic flux in tumor cells upon treatment with ketone bodies. Ketone bodies also diminished glutamine uptake, overall ATP content, and survival in multiple pancreatic cancer cell lines, while inducing apoptosis. A decrease in levels of c-Myc, a metabolic master regulator, and its recruitment on glycolytic gene promoters, was in part responsible for the metabolic phenotype in tumor cells. Ketone body-induced intracellular metabolomic reprogramming in pancreatic cancer cells also leads to a significantly diminished cachexia in cell line models. Our mouse orthotopic xenograft models further confirmed the effect of a ketogenic diet in diminishing tumor growth and cachexia. Conclusions Thus, our studies demonstrate that the cachectic phenotype is in part due to metabolic alterations in tumor cells, which can be reverted by a ketogenic diet, causing reduced tumor growth and inhibition of muscle and body weight loss. PMID:25228990

  14. Iron starvation induces apoptosis in Rhizopus oryzae in vitro.

    PubMed

    Shirazi, Fazal; Kontoyiannis, Dimitrios P; Ibrahim, Ashraf S

    2015-01-01

    Mortality associated with mucormycosis remains high despite current antifungals. Iron-starvation strategies have been shown to have promising activity against Mucorales. We hypothesized that iron starvation enhances apoptosis in Rhizopus oryzae. Apoptosis was characterized in R. oryzae transformed with RNAi plasmid targeting FTR1 expression (iron permease mutant) or empty plasmid grown in iron rich (0.125% FeCl3) and iron depleted media (YNB+1mM ferrozine and 1 mM ascorbic acid). Increased apoptosis was observed with dihydrorhodamine-123 and rhodamine-123 staining in the iron starved mutant FTR1 when compared to empty plasmid, followed by increased extracellular ATP levels. In addition, DNA fragmentation and metacaspase activity were prominent in FTR1. In contrast, Rhizopus strains grown in iron-rich medium displayed minimal apoptosis. Our results demonstrate a metacaspase dependent apoptotic process in iron deprived condition and further support the role of iron starvation strategies as an adjunct treatment for mucormycosis, a mechanism by which iron starvation affects R. oryzae. PMID:25830548

  15. The effect of BCG on iron metabolism in the early neonatal period: A controlled trial in Gambian neonates.

    PubMed

    Prentice, Sarah; Jallow, Momodou W; Prentice, Andrew M

    2015-06-12

    Bacillus Calmette-Guerin (BCG) vaccination has been reported to protect neonates from non-tuberculous pathogens, but no biological mechanism to explain such effects is known. We hypothesised that BCG produces broad-spectrum anti-microbial protection via a hepcidin-mediated hypoferraemia, limiting iron availability for pathogens. To test this we conducted a trial in 120 Gambian neonates comparing iron status in the first 5-days of life after allocation to: (1) All routine vaccinations at birth (BCG/Oral Polio Vaccine (OPV)/Hepatitis B Vaccine (HBV)); (2) BCG delayed until after the study period (at day 5); and (3) All routine vaccinations delayed until after the study period. Vaccine regime at birth did not significantly impact on any measured parameter of iron metabolism. However, the ability to detect an effect of BCG on iron metabolism may have been limited by short follow-up time and high activation of the inflammatory-iron axis in the study population. PMID:25959747

  16. Cysteine Prevents the Reduction in Keratin Synthesis Induced by Iron Deficiency in Human Keratinocytes.

    PubMed

    Miniaci, Maria Concetta; Irace, Carlo; Capuozzo, Antonella; Piccolo, Marialuisa; Di Pascale, Antonio; Russo, Annapina; Lippiello, Pellegrino; Lepre, Fabio; Russo, Giulia; Santamaria, Rita

    2016-02-01

    L-cysteine is currently recognized as a conditionally essential sulphur amino acid. Besides contributing to many biological pathways, cysteine is a key component of the keratin protein by its ability to form disulfide bridges that confer strength and rigidity to the protein. In addition to cysteine, iron represents another critical factor in regulating keratins expression in epidermal tissues, as well as in hair follicle growth and maturation. By focusing on human keratinocytes, the aim of this study was to evaluate the effect of cysteine supplementation as nutraceutical on keratin biosynthesis, as well as to get an insight on the interplay of cysteine availability and cellular iron status in regulating keratins expression in vitro. Herein we demonstrate that cysteine promotes a significant up-regulation of keratins expression as a result of de novo protein synthesis, while the lack of iron impairs keratin expression. Interestingly, cysteine supplementation counteracts the adverse effect of iron deficiency on cellular keratin expression. This effect was likely mediated by the up-regulation of transferrin receptor and ferritin, the main cellular proteins involved in iron homeostasis, at last affecting the labile iron pool. In this manner, cysteine may also enhance the metabolic iron availability for DNA synthesis without creating a detrimental condition of iron overload. To the best of our knowledge, this is one of the first study in an in vitro keratinocyte model providing evidence that cysteine and iron cooperate for keratins expression, indicative of their central role in maintaining healthy epithelia. PMID:26212225

  17. Cross-species comparison of genomewide gene expression profiles reveals induction of hypoxia-inducible factor-responsive genes in iron-deprived intestinal epithelial cells

    PubMed Central

    Hu, Zihua; Gulec, Sukru

    2010-01-01

    Molecular mechanisms mediating the induction of metal ion homeostasis-related genes in the mammalian intestine during iron deficiency remain unknown. To elucidate relevant regulatory pathways, genomewide gene expression profiles were determined in fully differentiated human intestinal epithelial (Caco-2) cells. Cells were deprived of iron (or not) for 6 or 18 h, and Gene Chip analyses were subsequently performed (Affymetrix). More than 2,000 genes were differentially expressed; genes related to monosaccharide metabolism, regulation of gene expression, hypoxia, and cell death were upregulated, while those related to mitotic cell cycle were downregulated. A large proportion of induced genes are hypoxia responsive, and promoter enrichment analyses revealed a statistical overrepresentation of hypoxia response elements (HREs). Immunoblot experiments demonstrated a >60-fold increase in HIF2α protein abundance in iron-deprived cells; HIF1α levels were unchanged. Furthermore, comparison of the Caco-2 cell data set with a Gene Chip data set from iron-deficient rat intestine revealed 29 common upregulated genes; the majority are hypoxia responsive, and their promoters are enriched for HREs. We conclude that the compensatory response of the intestinal epithelium to iron deprivation relates to hypoxia and that stabilization of HIF2α may be the primary event mediating metabolic and morphological changes observed during iron deficiency. PMID:20702690

  18. Application of circuit simulation method for differential modeling of TIM-2 iron uptake and metabolism in mouse kidney cells.

    PubMed

    Xie, Zhijian; Harrison, Scott H; Torti, Suzy V; Torti, Frank M; Han, Jian

    2013-01-01

    Circuit simulation is a powerful methodology to generate differential mathematical models. Due to its highly accurate modeling capability, circuit simulation can be used to investigate interactions between the parts and processes of a cellular system. Circuit simulation has become a core technology for the field of electrical engineering, but its application in biology has not yet been fully realized. As a case study for evaluating the more advanced features of a circuit simulation tool called Advanced Design System (ADS), we collected and modeled laboratory data for iron metabolism in mouse kidney cells for a H ferritin (HFt) receptor, T cell immunoglobulin and mucin domain-2 (TIM-2). The internal controlling parameters of TIM-2 associated iron metabolism were extracted and the ratios of iron movement among cellular compartments were quantified by ADS. The differential model processed by circuit simulation demonstrated a capability to identify variables and predict outcomes that could not be readily measured by in vitro experiments. For example, an initial rate of uptake of iron-loaded HFt (Fe-HFt) was 2.17 pmol per million cells. TIM-2 binding probability with Fe-HFt was 16.6%. An average of 8.5 min was required for the complex of TIM-2 and Fe-HFt to form an endosome. The endosome containing HFt lasted roughly 2 h. At the end of endocytosis, about 28% HFt remained intact and the rest was degraded. Iron released from degraded HFt was in the labile iron pool (LIP) and stimulated the generation of endogenous HFt for new storage. Both experimental data and the model showed that TIM-2 was not involved in the process of iron export. The extracted internal controlling parameters successfully captured the complexity of TIM-2 pathway and the use of circuit simulation-based modeling across a wider range of cellular systems is the next step for validating the significance and utility of this method. PMID:23761763

  19. Metabolic pathway and distribution of superparamagnetic iron oxide nanoparticles: in vivo study

    PubMed Central

    Schlachter, Eva K; Widmer, Hans Ruedi; Bregy, Amadé; Lönnfors-Weitzel, Tarja; Vajtai, Istvan; Corazza, Nadia; Bernau, Vianney JP; Weitzel, Thilo; Mordasini, Pasquale; Slotboom, Johannes; Herrmann, Gudrun; Bogni, Serge; Hofmann, Heinrich; Frenz, Martin; Reinert, Michael

    2011-01-01

    Background: Experimental tissue fusion benefits from the selective heating of superparamagnetic iron oxide nanoparticles (SPIONs) under high frequency irradiation. However, the metabolic pathways of SPIONs for tissue fusion remain unknown. Hence, the goal of this in vivo study was to analyze the distribution of SPIONs in different organs by means of magnetic resonance imaging (MRI) and histological analysis after a SPION-containing patch implantation. Methods: SPION-containing patches were implanted in rats. Three animal groups were studied histologically over six months. Degradation assessment of the SPION-albumin patch was performed in vivo using MRI for iron content localization and biodistribution. Results: No SPION degradation or accumulation into the reticuloendothelial system was detected by MRI, MRI relaxometry, or histology, outside the area of the implantation patch. Concentrations from 0.01 μg/mL to 25 μg/mL were found to be hyperintense in T1-like gradient echo sequences. The best differentiation of concentrations was found in T2 relaxometry, susceptibility-sensitive gradient echo sequences, and in high repetition time T2 images. Qualitative and semiquantitative visualization of small concentrations and accumulation of SPIONs by MRI are feasible. In histological liver samples, Kupffer cells were significantly correlated with postimplantation time, but no differences were observed between sham-treated and induction/no induction groups. Transmission electron microscopy showed local uptake of SPIONs in macrophages and cells of the reticuloendothelial system. Apoptosis staining using caspase showed no increased toxicity compared with sham-treated tissue. Implanted SPION patches were relatively inert with slow, progressive local degradation over the six-month period. No distant structural alterations in the studied tissue could be observed. Conclusion: Systemic bioavailability may play a role in specific SPION implant toxicity and therefore the local

  20. Iron-contamination-induced performance degradation of an iron-fed fuel cell

    NASA Astrophysics Data System (ADS)

    Sun, Min; Song, Wei; Zhai, Lin-Feng; Tong, Zhong-Hua

    2014-02-01

    The iron-fed fuel cell is an effective technology to recover iron and electricity from acid mine drainage (AMD). However, this technology suffers from the problem of performance degradation which significantly reduces its power output during long-term operation. In this work, the performance degradation of iron-fed fuel cell is comprehensively evaluated with the objective to elucidate the mechanisms involved in such a phenomenon. The iron contamination is identified as the main cause responsible for the performance degradation of fuel cell. The iron contaminant is present in the form of α-FeO(OH), which is the main product recovered by the iron-fed fuel cell. Both the electrode and membrane are deteriorated by iron contamination, whereas the membrane deterioration is more significant. Fed-batch experiments demonstrate the performance loss of fuel cell due to contamination of membrane is more than 50% greater than the performance loss due to contamination of electrode. The α-FeO(OH) contaminant not only forms fouling layers on the surfaces of carbon electrode and membrane, but also migrates into the membrane to damage the membrane structure. As a result, both the charge transfer and mass transfer resistances of fuel cell are dramatically increased, which leads to delayed electro-oxidation kinetics of Fe(II).

  1. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice.

    PubMed

    Cloonan, Suzanne M; Glass, Kimberly; Laucho-Contreras, Maria E; Bhashyam, Abhiram R; Cervo, Morgan; Pabón, Maria A; Konrad, Csaba; Polverino, Francesca; Siempos, Ilias I; Perez, Elizabeth; Mizumura, Kenji; Ghosh, Manik C; Parameswaran, Harikrishnan; Williams, Niamh C; Rooney, Kristen T; Chen, Zhi-Hua; Goldklang, Monica P; Yuan, Guo-Cheng; Moore, Stephen C; Demeo, Dawn L; Rouault, Tracey A; D'Armiento, Jeanine M; Schon, Eric A; Manfredi, Giovanni; Quackenbush, John; Mahmood, Ashfaq; Silverman, Edwin K; Owen, Caroline A; Choi, Augustine M K

    2016-02-01

    Chronic obstructive pulmonary disease (COPD) is linked to both cigarette smoking and genetic determinants. We have previously identified iron-responsive element-binding protein 2 (IRP2) as an important COPD susceptibility gene and have shown that IRP2 protein is increased in the lungs of individuals with COPD. Here we demonstrate that mice deficient in Irp2 were protected from cigarette smoke (CS)-induced experimental COPD. By integrating RNA immunoprecipitation followed by sequencing (RIP-seq), RNA sequencing (RNA-seq), and gene expression and functional enrichment clustering analysis, we identified Irp2 as a regulator of mitochondrial function in the lungs of mice. Irp2 increased mitochondrial iron loading and levels of cytochrome c oxidase (COX), which led to mitochondrial dysfunction and subsequent experimental COPD. Frataxin-deficient mice, which had higher mitochondrial iron loading, showed impaired airway mucociliary clearance (MCC) and higher pulmonary inflammation at baseline, whereas mice deficient in the synthesis of cytochrome c oxidase, which have reduced COX, were protected from CS-induced pulmonary inflammation and impairment of MCC. Mice treated with a mitochondrial iron chelator or mice fed a low-iron diet were protected from CS-induced COPD. Mitochondrial iron chelation also alleviated CS-induced impairment of MCC, CS-induced pulmonary inflammation and CS-associated lung injury in mice with established COPD, suggesting a critical functional role and potential therapeutic intervention for the mitochondrial-iron axis in COPD. PMID:26752519

  2. Iron

    MedlinePlus

    ... organ failure, coma, convulsions, and death. Child-proof packaging and warning labels on iron supplements have greatly ... levodopa that the body absorbs, making it less effective. Levodopa, found in Sinemet® and Stalevo®, is used ...

  3. Base substitution mutations induced by metabolically activated aflatoxin B1.

    PubMed

    Foster, P L; Eisenstadt, E; Miller, J H

    1983-05-01

    We have determined the base substitutions generated by metabolically activated aflatoxin B1 in the lacI gene of a uvrB- strain of Escherichia coli. By monitoring over 70 different nonsense mutation sites, we show that activated aflatoxin B1 specifically induced GxC leads to TxA transversions. One possible pathway leading to this base change involves depurination at guanine residues. We consider this mechanism of mutagenesis in the light of our other findings that the carcinogens benzo[a]pyrene diol epoxide and N-acetoxyacetylaminofluorene also specifically induce GxC leads to TxA transversions. PMID:6405385

  4. Therapeutic effect of deferoxamine on iron overload-induced inhibition of osteogenesis in a zebrafish model.

    PubMed

    Chen, Bin; Yan, Yi-Lin; Liu, Chen; Bo, Lin; Li, Guang-Fei; Wang, Han; Xu, You-Jia

    2014-03-01

    Osteoporosis results from an imbalance in bone remodeling, in which osteoclastic bone resorption exceeds osteoblastic bone formation. Iron has recently been recognized as an independent risk factor for osteoporosis. Reportedly, excess iron could promote osteoclast differentiation and bone resorption through the production of reactive oxygen species (ROS). We evaluated the effect of iron on osteoblast differentiation and bone formation in zebrafish and further investigated the potential benefits of deferoxamine (DFO), a powerful iron chelator, in iron-overloaded zebrafish. The zebrafish model of iron overload described in this study demonstrated an apparent inhibition of bone formation, accompanied by decreased expression of osteoblast-specific genes (runx2a, runx2b, osteocalcin, osteopontin, ALP, and collagen type I). The negative effect of iron on osteoblastic activity and bone formation could be attributed to increased ROS generation and oxidative stress. Most importantly, we revealed that DFO was capable of removing whole-body iron and attenuating oxidative stress in iron-overloaded larval zebrafish, which facilitated larval recovery from the reductions in bone formation and osteogenesis induced by iron overload. PMID:24414856

  5. Protein degradation and iron homeostasis.

    PubMed

    Thompson, Joel W; Bruick, Richard K

    2012-09-01

    Regulation of both systemic and cellular iron homeostasis requires the capacity to sense iron levels and appropriately modify the expression of iron metabolism genes. These responses are coordinated through the efforts of several key regulatory factors including F-box and Leucine-rich Repeat Protein 5 (FBXL5), Iron Regulatory Proteins (IRPs), Hypoxia Inducible Factor (HIF), and ferroportin. Notably, the stability of each of these proteins is regulated in response to iron. Recent discoveries have greatly advanced our understanding of the molecular mechanisms governing iron-sensing and protein degradation within these pathways. It has become clear that iron's privileged roles in both enzyme catalysis and protein structure contribute to its regulation of protein stability. Moreover, these multiple pathways intersect with one another in larger regulatory networks to maintain iron homeostasis. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22349011

  6. The role of iron and zinc in chemotherapy-induced alopecia

    NASA Astrophysics Data System (ADS)

    Buyukavci, Mustafa; Gurol, Ali; Karabulut, Abdulhalik; Budak, Gokhan; Karacan, Mehmet

    2005-10-01

    Chemotherapy-induced alopecia is a common and distressing side effect in children with cancer. Iron and zinc are the well known trace elements which are associated with hair shedding. In this study, we investigated the hair content of iron and zinc in children with cancer consists of two groups: group A, newly diagnosed patients; group B, the patients received a course of chemotherapy. We compared the results between each others and healthy controls. Hair content of iron and zinc was not different between the patient groups. Iron concentrations of patient samples, either at diagnosis or after chemotherapy, were significantly lower than healthy controls. However, there was no statistically significant difference between the groups regarding the zinc values. In conclusion, hair content of iron and zinc do not have a role in chemotherapy-induced alopecia.

  7. Dual preventive benefits of iron elimination by desferal in asbestos-induced mesothelial carcinogenesis.

    PubMed

    Jiang, Li; Chew, Shan-Hwu; Nakamura, Kosuke; Ohara, Yuuki; Akatsuka, Shinya; Toyokuni, Shinya

    2016-07-01

    Asbestos-induced mesothelial carcinogenesis is currently a profound social issue due to its extremely long incubation period and high mortality rate. Therefore, procedures to prevent malignant mesothelioma in people already exposed to asbestos are important. In previous experiments, we established an asbestos-induced rat peritoneal mesothelioma model, which revealed that local iron overload is a major cause of pathogenesis and that the induced genetic alterations are similar to human counterparts. Furthermore, we showed that oral administration of deferasirox modified the histology from sarcomatoid to the more favorable epithelioid subtype. Here, we used i.p. administration of desferal to evaluate its effects on asbestos-induced peritoneal inflammation and iron deposition, as well as oxidative stress. Nitrilotriacetate was used to promote an iron-catalyzed Fenton reaction as a positive control. Desferal significantly decreased peritoneal fibrosis, iron deposition, and nuclear 8-hydroxy-2'-deoxyguanosine levels in mesothelial cells, whereas nitrilotriacetate significantly increased all of them. Desferal was more effective in rat peritoneal mesothelial cells to counteract asbestos-induced cytotoxicity than in murine macrophages (RAW264.7). Furthermore, rat sarcomatoid mesothelioma cells were more dependent on iron for proliferation than rat peritoneal mesothelial cells. Because inflammogenicity of a fiber is proportionally associated with subsequent mesothelial carcinogenesis, iron elimination from the mesothelial environment can confer dual merits for preventing asbestos-induced mesothelial carcinogenesis by suppressing inflammation and mesothelial proliferation simultaneously. PMID:27088640

  8. Tick iron and heme metabolism - New target for an anti-tick intervention.

    PubMed

    Hajdusek, Ondrej; Sima, Radek; Perner, Jan; Loosova, Gabriela; Harcubova, Adela; Kopacek, Petr

    2016-06-01

    Ticks are blood-feeding parasites and vectors of serious human and animal diseases. Ixodes ricinus is a common tick in Europe, transmitting tick-borne encephalitis, Lyme borreliosis, anaplasmosis, or babesiosis. Immunization of hosts with recombinant tick proteins has, in theory, the potential to interfere with tick feeding and block transmission of pathogens from the tick to the host. However, the efficacy of tick antigens has, to date, not been fully sufficient to achieve this. We have focused on 11 in silico identified genes encoding proteins potentially involved in tick iron and heme metabolism. Quantitative real-time PCR (qRT-PCR) expression profiling was carried out to preferentially target proteins that are up-regulated during the blood meal. RNA interference (RNAi) was then used to score the relative importance of these genes in tick physiology. Finally, we performed vaccination screens to test the suitability of these proteins as vaccine candidates. These newly identified tick antigens have the potential to improve the available anti-tick vaccines. PMID:26810909

  9. Mitochondrial iron chelation ameliorates cigarette-smoke induced bronchitis and emphysema in mice

    PubMed Central

    Cloonan, Suzanne M.; Glass, Kimberly; Laucho-Contreras, Maria E.; Bhashyam, Abhiram R.; Cervo, Morgan; Pabón, Maria A.; Konrad, Csaba; Polverino, Francesca; Siempos, Ilias I.; Perez, Elizabeth; Mizumura, Kenji; Ghosh, Manik C.; Parameswaran, Harikrishnan; Williams, Niamh C.; Rooney, Kristen T.; Chen, Zhi-Hua; Goldklang, Monica P.; Yuan, Guo-Cheng; Moore, Stephen C.; Demeo, Dawn L.; Rouault, Tracey A.; D’Armiento, Jeanine M.; Schon, Eric A.; Manfredi, Giovanni; Quackenbush, John; Mahmood, Ashfaq; Silverman, Edwin K.; Owen, Caroline A.; Choi, Augustine M.K.

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is linked to both cigarette smoking and genetic determinants. We have previously identified iron-responsive element binding protein 2 (IRP2) as an important COPD susceptibility gene, with IRP2 protein increased in the lungs of individuals with COPD. Here we demonstrate that mice deficient in Irp2 were protected from cigarette smoke (CS)-induced experimental COPD. By integrating RIP-Seq, RNA-Seq, gene expression and functional enrichment clustering analysis, we identified IRP2 as a regulator of mitochondrial function in the lung. IRP2 increased mitochondrial iron loading and cytochrome c oxidase (COX), which led to mitochondrial dysfunction and subsequent experimental COPD. Frataxin-deficient mice with higher mitochondrial iron loading had impaired airway mucociliary clearance (MCC) and higher pulmonary inflammation at baseline, whereas synthesis of cytochrome c oxidase (Sco2)-deficient mice with reduced COX were protected from CS-induced pulmonary inflammation and impairment of MCC. Mice treated with a mitochondrial iron chelator or mice fed a low-iron diet were protected from CS-induced COPD. Mitochondrial iron chelation also alleviated CS-impairment of MCC, CS-induced pulmonary inflammation and CS-associated lung injury in mice with established COPD, suggesting a critical functional role and potential therapeutic intervention for the mitochondrial-iron axis in COPD. PMID:26752519

  10. Mutations in the clathrin-assembly gene Picalm are responsible for the hematopoietic and iron metabolism abnormalities in fit1 mice

    PubMed Central

    Klebig, Mitchell L.; Wall, Melissa D.; Potter, Mark D.; Rowe, Erica L.; Carpenter, Donald A.; Rinchik, Eugene M.

    2003-01-01

    Recessive N-ethyl-N-nitrosourea (ENU)-induced mutations recovered at the fitness-1 (fit1) locus in mouse chromosome 7 cause hematopoietic abnormalities, growth retardation, and shortened life span, with varying severity of the defects in different alleles. Abnormal iron distribution and metabolism and frequent scoliosis have also been associated with an allele of intermediate severity (fit14R). We report that fit14R, as well as the most severe fit15R allele, are nonsense point mutations in the mouse ortholog of the human phosphatidylinositol-binding clathrin assembly protein (PICALM) gene, whose product is involved in clathrin-mediated endocytosis. A variety of leukemias and lymphomas have been associated with translocations that fuse human PICALM with the putative transcription factor gene AF10. The Picalmfit1–5R and Picalmfit1–4R mutations are splice-donor alterations resulting in transcripts that are less abundant than normal and missing exons 4 and 17, respectively. These exon deletions introduce premature termination codons predicted to truncate the proteins near the N and C termini, respectively. No mutations in the genes encoding Picalm, clathrin, or components of the adaptor protein complex 2 (AP2) have been previously described in which the suite of disorders present in the Picalmfit1 mutant mice is apparent. These mutants thus provide unique models for exploring how the endocytic function of mouse Picalm and the transport processes mediated by clathrin and the AP2 complex contribute to normal hematopoiesis, iron metabolism, and growth. PMID:12832620

  11. Laser induced vibrational energy transfer in iron pentacarbonyl

    NASA Astrophysics Data System (ADS)

    Langsam, Yedidyah; Ronn, A. M.

    1984-01-01

    The internal kinetics of Fe(CO)5 as well as the kinetics between Fe(CO)5 and other nonreactive species were studied using the technique of laser induced fluorescence. The energy transfer behavior of this large polyatomic is discussed in terms of existing V-V and V-T/R theories and collisional energy transfer. Iron pentacarbonyl's vibrational energy structure is treated by means of a simple three and four level energy transfer scheme. Subsequent to excitation of the 10 μ region by a CO2 laser, infrared fluorescence has been detected from the ˜16, ˜5, and ˜4 μ regions of Fe(CO)5. A single exponential decay rate of 13.6 ms-1 Torr-1 is observed from the ˜5 μ region, in good agreement with other decay rates established for smaller polyatomics possessing similar vibrational level structure. Under conditions of low fluence (˜30 mJ/cm2), this region is activated at a rate of 474 ms-1 Torr-1 suggesting a rapid near resonant collisional energy transfer. Under conditions of high fluence (˜5 J/cm2), the activation of the ˜5 μ region proceeds at a rate of 1250 ms-1 Torr-1 suggesting a different pathway for the determining step of the excitation process. The rare gas deactivation rates as well as those with Ni(CO)4, CO(CO)3No, and CO (as well as the reverse rate) and the crossover rate from excited Fe(CO)5 to CO in high rare gas dilution have also been determined.

  12. Increased cell survival of cells exposed to superparamagnetic iron oxide nanoparticles through biomaterial substrate-induced autophagy.

    PubMed

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Hsu, Shan-Hui

    2016-04-22

    The cellular uptake of nanoparticles (NPs) can be promoted by NP surface modification but cell viability is often sacrificed. Our previous study has shown that intracellular uptake of iron oxide NPs was significantly increased for cells cultured on chitosan. However, the mechanism for having the higher cellular uptake as well as better cell survival on the chitosan surface remains unclear. In this study, we sought to clarify if the autophagic response may contribute to cell survival under excessive NP exposure conditions on chitosan. L929 fibroblasts and neural stem cells (NSCs) were challenged with different concentrations (0-300 μg ml(-1)) of superparamagnetic iron oxide NPs. The autophagic response as well as the metabolic activity of cells was evaluated. Results showed that culturing both types of cells on chitosan substrates significantly enhanced the cellular uptake of NPs. At higher NP concentrations, cells on chitosan showed a greater survival rate than those on TCPS. The expression levels of autophagy-related genes (Atg5 and Atg7 genes) and autophagy associated protein (LC3-II) on chitosan were higher than that on TCPS. The NP exposure further increased the expressions. We suggest that cells cultured on chitosan were more tolerant to NP cytotoxicity because of the increased autophagic response. Moreover, NP exposure increased the metabolic activity of cells grown on chitosan, while it decreased the metabolism of cells cultured on TCPS. In animal studies, iron oxide-labeled NSCs were injected in zebrafish embryos. Results also showed that cells grown on chitosan had better survival after transplantation than those grown on TCPS. Taken together, chitosan as a culture substrate can induce cell autophagy to increase cell survival in particular for NP-labeled cells. This will be valuable for the biomedical application of NPs in cell therapy. PMID:26815305

  13. Iron and exercise induced alterations in antioxidant status. Protection by dietary milk proteins.

    PubMed

    Zunquin, Gautier; Rouleau, Vincent; Bouhallab, Said; Bureau, Francois; Theunynck, Denis; Rousselot, Pierre; Arhan, Pierre; Bougle, Dominique

    2006-05-01

    Lipid peroxidation stress induced by iron supplementation can contribute to the induction of gut lesions. Intensive sports lead to ischemia reperfusion, which increases free radical production. Athletes frequently use heavy iron supplementation, whose effects are unknown. On the other hand, milk proteins have in vitro antioxidant properties, which could counteract these potential side effects. The main aims of the study were: (1) to demonstrate the effects of combined exercise training (ET) and iron overload on antioxidant status; (2) to assess the protective properties of casein in vivo; (3) to study the mechanisms involved in an in vitro model. Antioxidant status was assessed by measuring the activity of antioxidant enzymes (superoxide dismutase (SOD); glutathione peroxidase (GSH-Px)), and on the onset of aberrant crypts (AC) in colon, which can be induced by lipid peroxidation. At day 30, all ET animals showed an increase in the activity of antioxidant enzymes, in iron concentration in colon mucosa and liver and in the number of AC compared to untrained rats. It was found that Casein's milk protein supplementation significantly reduced these parameters. Additional information on protective effect of casein was provided by measuring the extent of TBARS formation during iron/ascorbate-induced oxidation of liposomes. Free casein and casein bound to iron were found to significantly reduce iron-induced lipid peroxidation. The results of the overall study suggest that Iron supplementation during intensive sport training would decrease anti-oxidant status. Dietary milk protein supplementation could at least partly prevent occurrence of deleterious effects to tissue induced by iron overload. PMID:17390518

  14. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    PubMed Central

    Cappelletti, Martina; Presentato, Alessandro; Milazzo, Giorgio; Turner, Raymond J.; Fedi, Stefano; Frascari, Dario; Zannoni, Davide

    2015-01-01

    Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD—coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation—were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria–Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step. PMID:26029173

  15. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes.

    PubMed

    Cappelletti, Martina; Presentato, Alessandro; Milazzo, Giorgio; Turner, Raymond J; Fedi, Stefano; Frascari, Dario; Zannoni, Davide

    2015-01-01

    Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD-coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation-were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria-Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step. PMID:26029173

  16. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria

    PubMed Central

    Rodríguez-Rojas, Alexandro; Makarova, Olga; Müller, Uta; Rolff, Jens

    2015-01-01

    Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the product of a joint action of LL-37 and free iron. By estimating mutation rate, mutant frequencies and assessing mutational spectra in P. aeruginosa treated either with LL-37, iron or a combination of both we demonstrate that mutation rate and mutant frequency were increased only when free iron and LL-37 were present simultaneously. Colistin had the same effect. The addition of an iron chelator completely abolished this mutagenic effect, suggesting that LL-37 enables iron to enter the cells resulting in DNA damage by Fenton reactions. This was also supported by the observation that the mutational spectrum of the bacteria under LL-37-iron regime showed one of the characteristic Fenton reaction fingerprints: C to T transitions. Free iron concentration in nature and within hosts is kept at a very low level, but the situation in infected lungs of cystic fibrosis patients is different. Intermittent bleeding and damage to the epithelial cells in lungs may contribute to the release of free iron that in turn leads to generation of reactive oxygen species and deterioration of the respiratory tract, making it more susceptible to the infection. PMID:26430769

  17. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria.

    PubMed

    Rodríguez-Rojas, Alexandro; Makarova, Olga; Müller, Uta; Rolff, Jens

    2015-10-01

    Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the product of a joint action of LL-37 and free iron. By estimating mutation rate, mutant frequencies and assessing mutational spectra in P. aeruginosa treated either with LL-37, iron or a combination of both we demonstrate that mutation rate and mutant frequency were increased only when free iron and LL-37 were present simultaneously. Colistin had the same effect. The addition of an iron chelator completely abolished this mutagenic effect, suggesting that LL-37 enables iron to enter the cells resulting in DNA damage by Fenton reactions. This was also supported by the observation that the mutational spectrum of the bacteria under LL-37-iron regime showed one of the characteristic Fenton reaction fingerprints: C to T transitions. Free iron concentration in nature and within hosts is kept at a very low level, but the situation in infected lungs of cystic fibrosis patients is different. Intermittent bleeding and damage to the epithelial cells in lungs may contribute to the release of free iron that in turn leads to generation of reactive oxygen species and deterioration of the respiratory tract, making it more susceptible to the infection. PMID:26430769

  18. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    SciTech Connect

    Hubbard, Susan; Personna, Y.R.; Ntarlagiannis, D.; Slater, L.; Yee, N.; O'Brien, M.; Hubbard, S.

    2008-02-15

    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface.We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfo vibriovulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS) sensitive silver-silver chloride (Ag-AgCl) electrodes (630 mV) were diagnostic of induced transitions between an aerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed 10m rad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.

  19. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    NASA Astrophysics Data System (ADS)

    Personna, Yves Robert; Ntarlagiannis, Dimitrios; Slater, Lee; Yee, Nathan; O'Brien, Michael; Hubbard, Susan

    2008-06-01

    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface. We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfovibrio vulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS-) sensitive silver-silver chloride (Ag-AgCl) electrodes (˜-630 mV) were diagnostic of induced transitions between anaerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed ˜10 mrad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.

  20. Effects of nitrogen monoxide and carbon monoxide on molecular and cellular iron metabolism: mirror-image effector molecules that target iron.

    PubMed Central

    Watts, Ralph N; Ponka, Prem; Richardson, Des R

    2003-01-01

    Many effector functions of nitrogen monoxide (NO) and carbon monoxide (CO) are mediated through their high-affinity for iron (Fe). In this review, the roles of NO and CO are examined in terms of their effects on the molecular and cellular mechanisms involved in Fe metabolism. Both NO and CO avidly form complexes with a plethora of Fe-containing molecules. The generation of NO and CO is mediated by the nitric oxide synthase and haem oxygenase (HO) families of enzymes respectively. The effects of NO on Fe metabolism have been well characterized, whereas knowledge of the effects of CO remains within its infancy. In terms of the role of NO in Fe metabolism, one of the best characterized interactions includes its effect on the iron regulatory proteins. These molecules are mRNA-binding proteins that control the expression of the transferrin receptor 1 and ferritin, molecules that are involved in Fe uptake and storage respectively. Apart from this, activated macrophages impart their cytotoxic activity by generating NO, which results in marked Fe mobilization from tumour-cell targets. This deprives the cell of the Fe that is required for DNA synthesis and energy production. Considering that HO degrades haem, resulting in the release of CO, Fe(II) and biliverdin, it is suggested that a CO-Fe complex will form. This may account for the rapid Fe mobilization observed from macrophages after haemoglobin catabolism. Intriguingly, overexpression of HO results in cellular Fe mobilization, suggesting that CO has a similar effect to NO on Fe trafficking. Preliminary evidence suggests that, like NO, CO plays important roles in Fe metabolism. PMID:12423201

  1. Differential Role of Ferritins in Iron Metabolism and Virulence of the Plant-Pathogenic Bacterium Erwinia chrysanthemi 3937▿

    PubMed Central

    Boughammoura, Aïda; Matzanke, Berthold F.; Böttger, Lars; Reverchon, Sylvie; Lesuisse, Emmanuel; Expert, Dominique; Franza, Thierry

    2008-01-01

    During infection, the phytopathogenic enterobacterium Erwinia chrysanthemi has to cope with iron-limiting conditions and the production of reactive oxygen species by plant cells. Previous studies have shown that a tight control of the bacterial intracellular iron content is necessary for full virulence. The E. chrysanthemi genome possesses two loci that could be devoted to iron storage: the bfr gene, encoding a heme-containing bacterioferritin, and the ftnA gene, coding for a paradigmatic ferritin. To assess the role of these proteins in the physiology of this pathogen, we constructed ferritin-deficient mutants by reverse genetics. Unlike the bfr mutant, the ftnA mutant had increased sensitivity to iron deficiency and to redox stress conditions. Interestingly, the bfr ftnA mutant displayed an intermediate phenotype for sensitivity to these stresses. Whole-cell analysis by Mössbauer spectroscopy showed that the main iron storage protein is FtnA and that there is an increase in the ferrous iron/ferric iron ratio in the ftnA and bfr ftnA mutants. We found that ftnA gene expression is positively controlled by iron and the transcriptional repressor Fur via the small antisense RNA RyhB. bfr gene expression is induced at the stationary phase of growth. The σS transcriptional factor is necessary for this control. Pathogenicity tests showed that FtnA and the Bfr contribute differentially to the virulence of E. chrysanthemi depending on the host, indicating the importance of a perfect control of iron homeostasis in this bacterial species during infection. PMID:18165304

  2. Iron-induced Necrotic Brain Cell Death in Rats with Different Aerobic Capacity

    PubMed Central

    Zheng, Mingzhe; Du, Hanjian; Ni, Wei; Koch, Lauren G.; Britton, Steven L.; Keep, Richard F.; Xi, Guohua; Hua, Ya

    2015-01-01

    Brain iron overload has a key role in brain injury after intracerebral hemorrhage (ICH). Our recent study demonstrated that ICH-induced brain injury was greater in low capacity runner (LCR) than in high capacity runner (HCR) rats. The present study examines whether iron-induced brain injury differs between LCRs and HCRs. Adult male LCR and HCR rats had an intracaudate injection of iron or saline. Rats were euthanized at 2 and at 24 hours after T2 magnetic resonance imaging and the brains were used for immunostaining and Western blotting. LCRs had more hemispheric swelling, T2 lesion volumes, blood-brain barrier disruption and neuronal death at 24 hours after iron injection (p < 0.05). Many propidium iodide (PI) positive cells, indicative of necrotic cell death, were observed in the ipsilateral basal ganglia of both HCRs and LCRs at 2 hours after iron injection. PI fluorescence intensity was higher in LCRs than in HCRs. In addition, membrane attack complex (MAC) expression was increased at 2 hours after iron injection and was higher in LCRs than in HCRs. The PI positive cells colocalized with MAC positive cells in the ipsilateral basal ganglia. Iron induces more severe necrotic brain cell death, brain swelling, and blood-brain barrier disruption in LCR rats, which may be related with complement activation and MAC formation. PMID:25649272

  3. Ferric carboxymaltose-mediated attenuation of Doxorubicin-induced cardiotoxicity in an iron deficiency rat model.

    PubMed

    Toblli, Jorge Eduardo; Rivas, Carlos; Cao, Gabriel; Giani, Jorge Fernando; Funk, Felix; Mizzen, Lee; Dominici, Fernando Pablo

    2014-01-01

    Since anthracycline-induced cardiotoxicity (AIC), a complication of anthracycline-based chemotherapies, is thought to involve iron, concerns exist about using iron for anaemia treatment in anthracycline-receiving cancer patients. This study evaluated how intravenous ferric carboxymaltose (FCM) modulates the influence of iron deficiency anaemia (IDA) and doxorubicin (3-5 mg per kg body weight [BW]) on oxidative/nitrosative stress, inflammation, and cardiorenal function in spontaneously hypertensive stroke-prone (SHR-SP) rats. FCM was given as repeated small or single total dose (15 mg iron per kg BW), either concurrent with or three days after doxorubicin. IDA (after dietary iron restriction) induced cardiac and renal oxidative stress (markers included malondialdehyde, catalase, Cu,Zn-superoxide dismutase, and glutathione peroxidase), nitrosative stress (inducible nitric oxide synthase and nitrotyrosine), inflammation (tumour necrosis factor-alpha and interleukin-6), and functional/morphological abnormalities (left ventricle end-diastolic and end-systolic diameter, fractional shortening, density of cardiomyocytes and capillaries, caveolin-1 expression, creatinine clearance, and urine neutrophil gelatinase-associated lipocalin) that were aggravated by doxorubicin. Notably, iron treatment with FCM did not exacerbate but attenuated the cardiorenal effects of IDA and doxorubicin independent of the iron dosing regimen. The results of this model suggest that intravenous FCM can be used concomitantly with an anthracycline-based chemotherapy without increasing signs of AIC. PMID:24876963

  4. Hepatoprotective activity of polyherbal formulation (Normeta) in oxidative stress induced by alcohol, polyunsaturated fatty acids and iron in rats.

    PubMed

    Patere, Shilpa N; Saraf, Madhusudan N; Majumdar, Anuradha S

    2009-09-01

    In recent years, oxidative stress has been implicated in the pathophysiology of a large number of diseases or disorders which are initiated and/or exacerbated by pro-oxidants such as various drugs including alcohol and food additives. The present study was carried out to evaluate the effects of oral treatment with polyherbal formulation Normeta (2 ml and 4 ml/kg) on hepatic damage induced by alcohol 10-30% (blood alcohol was maintained at levels between 150 and 350 mg/dl), thermally oxidized oil (polyunsaturated fatty acids) (15% of diet) and carbonyl iron (1.5-2% of diet) for 30 days in rats. In vitro studies with 1, 1-Diphenyl, 2-Picrylhydrazyl (DPPH), Nitric oxide and Ferric chloride (Fe(+3) ions) showed that Normeta possesses antioxidant and metal chelating activity. Alcohol, polyunsaturated fatty acids and iron feeding produced an increase in serum levels of iron, serum glutamate pyruvate transaminase and decrease in serum proteins. It was also associated with elevated lipid peroxidation (thiobarbituric acid reactive substances) and disruption of antioxidant defence mechanism in liver, decreased body weight and increased liver to body weight ratio. Oral administration of Normeta along with alcohol, polyunsaturated fatty acids and iron decreased the serum iron, serum glutamate pyruvate transaminase levels and increased serum protein levels. The levels of liver thiobarbituric acid reactive substances were decreased and the activities of antioxidant enzymes superoxide dismutase and catalase were increased. Improvement in body weight and liver to body weight ratio was also observed. The effects of Normeta on physico-metabolic parameters were comparable with silymarin. This indicates that Normeta has favourable effect in bringing down the severity of hepatotoxicity. PMID:19486336

  5. Urinary iron excretion induced by intravenous infusion of deferoxamine in beta-thalassemia homozygous patients.

    PubMed

    Boturao-Neto, E; Marcopito, L F; Zago, M A

    2002-11-01

    The purpose of the present study was to identify noninvasive methods to evaluate the severity of iron overload in transfusion-dependent beta-thalassemia and the efficiency of intensive intravenous therapy as an additional tool for the treatment of iron-overloaded patients. Iron overload was evaluated for 26 beta-thalassemia homozygous patients, and 14 of them were submitted to intensive chelation therapy with high doses of intravenous deferoxamine (DF). Patients were classified into six groups of increasing clinical severity and were divided into compliant and non-compliant patients depending on their adherence to chronic chelation treatment. Several methods were used as indicators of iron overload. Total gain of transfusion iron, plasma ferritin, and urinary iron excretion in response to 20 to 60 mg/day subcutaneous DF for 8 to 12 h daily are useful to identify iron overload; however, urinary iron excretion in response to 9 g intravenous DF over 24 h and the increase of urinary iron excretion induced by high doses of the chelator are more reliable to identify different degrees of iron overload because of their correlation with the clinical grades of secondary hemochromatosis and the significant differences observed between the groups of compliant and non-compliant patients. Finally, the use of 3-9 g intravenous DF for 6-12 days led to a urinary iron excretion corresponding to 4.1 to 22.4% of the annual transfusion iron gain. Therefore, continuous intravenous DF at high doses may be an additional treatment for these patients, as a complement to the regular subcutaneous infusion at home, but requires individual planning and close monitoring of adverse reactions. PMID:12426631

  6. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements.

    PubMed

    Swithers, Susan E

    2013-09-01

    The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. This paper discusses these findings and considers the hypothesis that consuming sweet-tasting but noncaloric or reduced-calorie food and beverages interferes with learned responses that normally contribute to glucose and energy homeostasis. Because of this interference, frequent consumption of high-intensity sweeteners may have the counterintuitive effect of inducing metabolic derangements. PMID:23850261

  7. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements

    PubMed Central

    Swithers, Susan E.

    2013-01-01

    The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. This paper discusses these findings and considers the hypothesis that consuming sweet-tasting but noncaloric or reduced-calorie food and beverages interferes with learned responses that normally contribute to glucose and energy homeostasis. Because of this interference, frequent consumption of high-intensity sweeteners may have the counterintuitive effect of inducing metabolic derangements. PMID:23850261

  8. Fumarate induces redox-dependent senescence by modifying glutathione metabolism

    PubMed Central

    Zheng, Liang; Cardaci, Simone; Jerby, Livnat; MacKenzie, Elaine D.; Sciacovelli, Marco; Johnson, T. Isaac; Gaude, Edoardo; King, Ayala; Leach, Joshua D. G.; Edrada-Ebel, RuAngelie; Hedley, Ann; Morrice, Nicholas A.; Kalna, Gabriela; Blyth, Karen; Ruppin, Eytan; Frezza, Christian; Gottlieb, Eyal

    2015-01-01

    Mutations in the tricarboxylic acid (TCA) cycle enzyme fumarate hydratase (FH) are associated with a highly malignant form of renal cancer. We combined analytical chemistry and metabolic computational modelling to investigate the metabolic implications of FH loss in immortalized and primary mouse kidney cells. Here, we show that the accumulation of fumarate caused by the inactivation of FH leads to oxidative stress that is mediated by the formation of succinicGSH, a covalent adduct between fumarate and glutathione. Chronic succination of GSH, caused by the loss of FH, or by exogenous fumarate, leads to persistent oxidative stress and cellular senescence in vitro and in vivo. Importantly, the ablation of p21, a key mediator of senescence, in Fh1-deficient mice resulted in the transformation of benign renal cysts into a hyperplastic lesion, suggesting that fumarate-induced senescence needs to be bypassed for the initiation of renal cancers. PMID:25613188

  9. IDH1 Mutation Induces Reprogramming of Pyruvate Metabolism.

    PubMed

    Izquierdo-Garcia, Jose L; Viswanath, Pavithra; Eriksson, Pia; Cai, Larry; Radoul, Marina; Chaumeil, Myriam M; Blough, Michael; Luchman, H Artee; Weiss, Samuel; Cairncross, J Gregory; Phillips, Joanna J; Pieper, Russell O; Ronen, Sabrina M

    2015-08-01

    Mutant isocitrate dehydrogenase 1 (IDH1) catalyzes the production of 2-hydroxyglutarate but also elicits additional metabolic changes. Levels of both glutamate and pyruvate dehydrogenase (PDH) activity have been shown to be affected in U87 glioblastoma cells or normal human astrocyte (NHA) cells expressing mutant IDH1, as compared with cells expressing wild-type IDH1. In this study, we show how these phenomena are linked through the effects of IDH1 mutation, which also reprograms pyruvate metabolism. Reduced PDH activity in U87 glioblastoma and NHA IDH1 mutant cells was associated with relative increases in PDH inhibitory phosphorylation, expression of pyruvate dehydrogenase kinase-3, and levels of hypoxia inducible factor-1α. PDH activity was monitored in these cells by hyperpolarized (13)C-magnetic resonance spectroscopy ((13)C-MRS), which revealed a reduction in metabolism of hyperpolarized 2-(13)C-pyruvate to 5-(13)C-glutamate, relative to cells expressing wild-type IDH1. (13)C-MRS also revealed a reduction in glucose flux to glutamate in IDH1 mutant cells. Notably, pharmacological activation of PDH by cell exposure to dichloroacetate (DCA) increased production of hyperpolarized 5-(13)C-glutamate in IDH1 mutant cells. Furthermore, DCA treatment also abrogated the clonogenic advantage conferred by IDH1 mutation. Using patient-derived mutant IDH1 neurosphere models, we showed that PDH activity was essential for cell proliferation. Taken together, our results established that the IDH1 mutation induces an MRS-detectable reprogramming of pyruvate metabolism, which is essential for cell proliferation and clonogenicity, with immediate therapeutic implications. PMID:26045167

  10. Bone metabolism induced by denture insertion in positron emission tomography.

    PubMed

    Suenaga, H; Chen, J; Yamaguchi, K; Sugazaki, M; Li, W; Swain, M; Li, Q; Sasaki, K

    2016-03-01

    18F-fluoride positron emission tomogra-phy (PET) can identify subtle functional variation prior to the major structural change detectable by X-ray. This study aims to investigate the mechanobiological bone reaction around the abutment tooth and in the residual ridge, induced by insertion of removable partial denture (RPD) within two different groups of patients: patients without denture experience (Group 1) and patients with denture experience before (Group 2), using 18F-fluoride PET imaging technique. 18F-fluoride PET/computerised tomography (CT) scan was performed to examine the bone metabolic change in mandible before and after the RPD treatment. Region of interests (ROIs) were placed in alveolar bone around abutment tooth and in residual bone beneath the RPD. Standardised uptake value (SUV), reflecting the accumulation of 18F-fluoride, was measured for each ROI. In all subjects of Group 1, SUVs after insertion were higher than before in both alveolar bone and residual bone, while there was less significant change in SUV in subjects of Group 2. This study demonstrated using longitudinal 18F-fluoride PET scans to effectively examine the bone metabolic change in mandible induced by occlusal loading after RPD insertion. Using this technique, within the six subjects in this study, it was shown that bone metabolism around abutment tooth and residual ridge increased after RPD insertion in case of first-time denture user, while there was no big change in the patient with experience of denture before. This study revealed the effectiveness of applying PET to evaluate bone metabolic activity as mechanobiolo-gical reaction. PMID:26431672

  11. The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures.

    PubMed

    Kadar, Eniko; Rooks, Paul; Lakey, Cara; White, Daniel A

    2012-11-15

    Synthetic zero-valent nano-iron (nZVI) compounds are finding numerous applications in environmental remediation owing to their high chemical reactivity and versatile catalytic properties. Studies were carried out to assess the effects of three types of industrially relevant engineered nZVI on phytoplankton growth, cellular micromorphology and metabolic status. Three marine microalgae (Pavlova lutheri, Isochrysis galbana and Tetraselmis suecica) were grown on culture medium fortified with the nano-Fe compounds for 23 days and subsequent alterations in their growth rate, size distribution, lipid profiles and cellular ultrastructure were assessed. The added nano Fe concentrations were either equimolar with the EDTA-Fe conventionally added to the generic f/2 medium (i.e. 1.17 × 10(-5)M), or factor 10 lower and higher, respectively. We provide evidence for the: (1) broad size distribution of nZVI particles when added to the nutrient rich f/2 media with the higher relative percentage of the smallest particles with the coated forms; (2) normal algal growth in the presence of all three types of nZVIs with standard growth rates, cellular morphology and lipid content comparable or improved when compared to algae grown on f/2 with EDTA-Fe; (3) sustained algal growth and normal physiology at nZVI levels 10 fold below that in f/2, indicating preference to nanoparticles over EDTA-Fe; (4) increased total cellular lipid content in T. suecica grown on media enriched with uncoated nZVI25, and in P. lutheri with inorganically coated nZVI(powder), when compared at equimolar exposures; (5) significant change in fatty acid composition complementing the nZVI(powder)-mediated increase in lipid content of P. lutheri; (6) a putative NP uptake mechanism is proposed for I. galbana via secretion of an extracellular matrix that binds nZVIs which then become bioavailable via phagocytotic membrane processes. PMID:23059967

  12. EPO-dependent induction of erythroferrone drives hepcidin suppression and systematic iron absorption under phenylhydrazine-induced hemolytic anemia.

    PubMed

    Jiang, Xingkang; Gao, Ming; Chen, Yue; Liu, Jing; Qi, Shiyong; Ma, Juan; Zhang, Zhihong; Xu, Yong

    2016-05-01

    Hemolytic anemia is a common form of anemia due to hemolysis, resulting in disordered iron homeostasis. In this study, a dose of 40mg/kg phenylhydrazine (PHZ) was injected into mice to successfully establish a pronounced anemia animal model, which resulted in stress erythropoiesis and iron absorption. We found that serum erythropoietin (EPO) concentration was dramatically elevated by nearly 5000-fold for the first 2days, and then drop to the basal level on day 6 after PHZ injection. Mirrored with serum EPO concentration, the mRNA expression of erythroferrone (ERFE) was rapidly increased in the bone marrow and spleen 3days after injection of PHZ, and then gradually decreased but was still higher than baseline on day 6. In addition, we also found that the hepcidin mRNA levels were gradually reduced almost up to 8-fold on day 5, and then was ameliorated compared to the untreated control. Mechanistic investigation manifested that the increase of serum EPO essentially determined the induction of ERFE expression particular at the first 3days after PHZ treatment. Lentiviral mediated ERFE knockdown significantly restrained hepcidin suppression under PHZ treatment. Thus, our data unearthed EPO-dependent ERFE expression acts as an erythropoiesis-driven regulator of iron metabolism under PHZ-induced hemolytic anemia. PMID:27067488

  13. Trivalent iron induced gelation in lambda-carrageenan

    SciTech Connect

    Running, Cordelia A.; Falshaw, Ruth; Janaswamy, Srinivas

    2012-05-24

    This communication reports gelation of lambda-carrageenan, for the first time, in the presence of trivalent iron ions. Kappa-, iota- and lambda-carrageenans are sulfated polysaccharides used extensively in food, pharmaceutical and medical applications. Kappa- and iota-carrageenans show gelation in the presence of mono- and di-valent ions, but lambda-carrageenan yields only viscous solutions. Our results show that gelation in lambda-carrageenan indeed is possible, but with trivalent ions. X-ray fiber diffraction patterns of iron (III)-lambda-carrageenan are characteristic of highly oriented and polycrystalline fibers containing well resolved Bragg reflections. The elastic modulus (G*) of the product is far greater than the loss modulus (G*) indicating the thermal stability of lambda-carrageenan in the presence of iron (III) ions. This novel finding has potential to expand lambda-carrageenan's current utility beyond a viscosifying agent.

  14. Black reefs: iron-induced phase shifts on coral reefs.

    PubMed

    Kelly, Linda Wegley; Barott, Katie L; Dinsdale, Elizabeth; Friedlander, Alan M; Nosrat, Bahador; Obura, David; Sala, Enric; Sandin, Stuart A; Smith, Jennifer E; Vermeij, Mark J A; Williams, Gareth J; Willner, Dana; Rohwer, Forest

    2012-03-01

    The Line Islands are calcium carbonate coral reef platforms located in iron-poor regions of the central Pacific. Natural terrestrial run-off of iron is non-existent and aerial deposition is extremely low. However, a number of ship groundings have occurred on these atolls. The reefs surrounding the shipwreck debris are characterized by high benthic cover of turf algae, macroalgae, cyanobacterial mats and corallimorphs, as well as particulate-laden, cloudy water. These sites also have very low coral and crustose coralline algal cover and are call black reefs because of the dark-colored benthic community and reduced clarity of the overlying water column. Here we use a combination of benthic surveys, chemistry, metagenomics and microcosms to investigate if and how shipwrecks initiate and maintain black reefs. Comparative surveys show that the live coral cover was reduced from 40 to 60% to <10% on black reefs on Millennium, Tabuaeran and Kingman. These three sites are relatively large (>0.75 km(2)). The phase shift occurs rapidly; the Kingman black reef formed within 3 years of the ship grounding. Iron concentrations in algae tissue from the Millennium black reef site were six times higher than in algae collected from reference sites. Metagenomic sequencing of the Millennium Atoll black reef-associated microbial community was enriched in iron-associated virulence genes and known pathogens. Microcosm experiments showed that corals were killed by black reef rubble through microbial activity. Together these results demonstrate that shipwrecks and their associated iron pose significant threats to coral reefs in iron-limited regions. PMID:21881615

  15. Deregulation of proteins involved in iron metabolism in hepcidin-deficient mice.

    PubMed

    Viatte, Lydie; Lesbordes-Brion, Jeanne-Claire; Lou, Dan-Qing; Bennoun, Myriam; Nicolas, Gaël; Kahn, Axel; Canonne-Hergaux, François; Vaulont, Sophie

    2005-06-15

    Evidence is accumulating that hepcidin, a liver regulatory peptide, could be the common pathogenetic denominator of all forms of iron overload syndromes including HFE-related hemochromatosis, the most prevalent genetic disorder characterized by inappropriate iron absorption. To understand the mechanisms whereby hepcidin controls iron homeostasis in vivo, we have analyzed the level of iron-related proteins by Western blot and immunohistochemistry in hepcidin-deficient mice, a mouse model of severe hemochromatosis. These mice showed important increased levels of duodenal cytochrome b (Dcytb), divalent metal transporter 1 (DMT1), and ferroportin compared with control mice. Interestingly, the level of ferroportin was coordinately up-regulated in the duodenum, the spleen, and the liver (predominantly in the Kupffer cells). Finally, we also evidenced a decrease of ceruloplasmin in the liver of hepcidin-deficient mice. We hypothesized that the deregulation of these proteins might be central in the pathogenesis of iron overload, providing key therapeutic targets for iron disorders. PMID:15713792

  16. Differential expression of stress-inducible proteins in chronic hepatic iron overload

    SciTech Connect

    Brown, Kyle E. Broadhurst, Kimberly A.; Mathahs, M. Meleah; Weydert, Jamie

    2007-09-01

    Introduction:: Oxidative stress can trigger a cellular stress response characterized by induction of antioxidants, acute phase reactants (APRs) and heat shock proteins (HSPs), which are presumed to play a role in limiting tissue damage. In rodents, hepatic iron overload causes oxidative stress that results in upregulation of antioxidant defenses with minimal progressive liver injury. The aim of this study was to determine whether iron overload modulates expression of other stress-responsive proteins such as APRs and HSPs that may confer protection against iron-induced damage in rodent liver. Methods:: Male rats received repeated injections of iron dextran or dextran alone over a 6-month period. Hepatic transcript levels for a panel of APRs and HSPs were quantitated by real-time PCR and protein expression was evaluated by Western blot and immunohistochemistry. Results:: Hepatic iron concentrations were increased > 50-fold in the iron-loaded rats compared to controls. Iron loading resulted in striking increases in mRNAs for Hsp32 (heme oxygenase-1; 12-fold increase vs. controls) and metallothionein-1 and -2 (both increased {approx} 6-fold). Transcripts for {alpha}1-acid glycoprotein, the major rat APR, were increased {approx} 3-fold, while expression of other classical APRs was unaltered. Surprisingly, although mRNA levels for the HSPs were not altered by iron, the abundance of Hsp25, Hsp70 and Hsp90 proteins was uniformly reduced in the iron-loaded livers, as were levels of NAD(P)H:quinone oxidoreductase 1, an Hsp70 client protein. Conclusions:: Chronic iron administration elicits a unique pattern of stress protein expression. These alterations may modulate hepatic responses to iron overload, as well as other injury processes.

  17. The heme-p53 interaction: Linking iron metabolism to p53 signaling and tumorigenesis.

    PubMed

    Shen, Jia; Sheng, Xiangpeng; Chang, ZeNan; Wu, Qian; Xie, Dong; Wang, Fudi; Hu, Ronggui

    2016-01-01

    Recently, we reported that heme binds to tumor suppressor p53 protein (TP53, best known as p53) and promotes its nuclear export and cytosolic degradation, whereas iron chelation stabilizes p53 protein and suppresses tumors in a p53-dependent manner. This not only provides mechanistic insights into tumorigenesis associated with iron excess, but also helps guide the administration of chemotherapy based on iron deprivation in the clinic. PMID:27308524

  18. The heme–p53 interaction: Linking iron metabolism to p53 signaling and tumorigenesis

    PubMed Central

    Shen, Jia; Sheng, Xiangpeng; Chang, ZeNan; Wu, Qian; Xie, Dong; Wang, Fudi; Hu, Ronggui

    2016-01-01

    Recently, we reported that heme binds to tumor suppressor p53 protein (TP53, best known as p53) and promotes its nuclear export and cytosolic degradation, whereas iron chelation stabilizes p53 protein and suppresses tumors in a p53-dependent manner. This not only provides mechanistic insights into tumorigenesis associated with iron excess, but also helps guide the administration of chemotherapy based on iron deprivation in the clinic. PMID:27308524

  19. Iron prochelator BSIH protects retinal pigment epithelial cells against cell death induced by hydrogen peroxide.

    PubMed

    Charkoudian, Louise K; Dentchev, Tzvete; Lukinova, Nina; Wolkow, Natalie; Dunaief, Joshua L; Franz, Katherine J

    2008-12-01

    Dysregulation of localized iron homeostasis is implicated in several degenerative diseases, including Parkinson's, Alzheimer's, and age-related macular degeneration, wherein iron-mediated oxidative stress is hypothesized to contribute to cell death. Inhibiting toxic iron without altering normal metal-dependent processes presents significant challenges for standard small molecule chelating agents. We previously introduced BSIH (isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene]-hydrazide) prochelators that are converted by hydrogen peroxide into SIH (salicylaldehyde isonicotinoyl hydrazone) chelating agents that inhibit iron-catalyzed hydroxyl radical generation. Here, we show that BSIH protects a cultured cell model for retinal pigment epithelium against cell death induced by hydrogen peroxide. BSIH is more stable than SIH in cell culture medium and is more protective during long-term experiments. Repetitive exposure of cells to BSIH is nontoxic, whereas SIH and desferrioxamine induce cell death after repeated exposure. Combined, our results indicate that cell protection by BSIH involves iron sequestration that occurs only when the cells are stressed by hydrogen peroxide. These findings suggest that prochelators discriminate toxic iron from healthy iron and are promising candidates for neuro- and retinal protection. PMID:18835041

  20. Hepatic nerve growth factor induced by iron overload triggers defenestration in liver sinusoidal endothelial cells.

    PubMed

    Addo, Lynda; Tanaka, Hiroki; Yamamoto, Masayo; Toki, Yasumichi; Ito, Satoshi; Ikuta, Katsuya; Sasaki, Katsunori; Ohtake, Takaaki; Torimoto, Yoshihiro; Fujiya, Mikihiro; Kohgo, Yutaka

    2015-01-01

    The fenestrations of liver sinusoidal endothelial cells (LSECs) play important roles in the exchange of macromolecules, solutes, and fluid between blood and surrounding liver tissues in response to hepatotoxic drugs, toxins, and oxidative stress. As excess iron is a hepatotoxin, LSECs may be affected by excess iron. In this study, we found a novel link between LSEC defenestration and hepatic nerve growth factor (NGF) in iron-overloaded mice. By Western blotting, NGF was highly expressed, whereas VEGF and HGF were not, and hepatic NGF mRNA levels were increased according to digital PCR. Immunohistochemically, NGF staining was localized in hepatocytes, while TrkA, an NGF receptor, was localized in LSECs. Scanning electron microscopy revealed LSEC defenestration in mice overloaded with iron as well as mice treated with recombinant NGF. Treatment with conditioned medium from iron-overloaded primary hepatocytes reduced primary LSEC fenestrations, while treatment with an anti-NGF neutralizing antibody or TrkA inhibitor, K252a, reversed this effect. However, iron-loaded medium itself did not reduce fenestration. In conclusion, iron accumulation induces NGF expression in hepatocytes, which in turn leads to LSEC defenestration via TrkA. This novel link between iron and NGF may aid our understanding of the development of chronic liver disease. PMID:25460199

  1. Spectrally resolved optical probing of laser induced magnetization dynamics in bismuth iron garnet.

    PubMed

    Koene, Benny; Deb, Marwan; Popova, Elena; Keller, Niels; Rasing, Theo; Kirilyuk, Andrei

    2016-07-13

    The spectrally resolved magnetization dynamics in bismuth iron garnet shows a fluence dependent light induced modification of the magneto-optical Faraday spectrum. It is demonstrated that the relative contributions from the tetrahedral and octahedral iron sites to the Faraday spectrum change due to the impact of the pump pulse. This change explains the observed deviation from a linear dependence of the amplitude of the oscillations on the fluence, as expected for the inverse Faraday effect. PMID:27213266

  2. Spectrally resolved optical probing of laser induced magnetization dynamics in bismuth iron garnet

    NASA Astrophysics Data System (ADS)

    Koene, Benny; Deb, Marwan; Popova, Elena; Keller, Niels; Rasing, Theo; Kirilyuk, Andrei

    2016-07-01

    The spectrally resolved magnetization dynamics in bismuth iron garnet shows a fluence dependent light induced modification of the magneto-optical Faraday spectrum. It is demonstrated that the relative contributions from the tetrahedral and octahedral iron sites to the Faraday spectrum change due to the impact of the pump pulse. This change explains the observed deviation from a linear dependence of the amplitude of the oscillations on the fluence, as expected for the inverse Faraday effect.

  3. Protein Degradation and Iron Homeostasis

    PubMed Central

    Thompson, Joel W.; Bruick, Richard K.

    2013-01-01

    Regulation of both systemic and cellular iron homeostasis requires the capacity to sense iron levels and appropriately modify the expression of iron metabolism genes. These responses are coordinated through the efforts of several key regulatory factors including F-box and Leucine-rich Repeat Protein 5 (FBXL5), Iron Regulatory Proteins (IRPs), Hypoxia Inducible Factor (HIF), and ferroportin. Notably, the stability of each of these proteins is regulated in response to iron. Recent discoveries have greatly advanced our understanding of the molecular mechanisms governing iron-sensing and protein degradation within these pathways. It has become clear that iron’s privileged roles in both enzyme catalysis and protein structure contribute to its regulation of protein stability. Moreover, these multiple pathways intersect with one another in larger regulatory networks to maintain iron homeostasis. PMID:22349011

  4. Relation between iron metabolism and antioxidants enzymes and δ-ALA-D activity in rats experimentally infected by Fasciola hepatica.

    PubMed

    Bottari, Nathieli B; Mendes, Ricardo E; Baldissera, Matheus D; Bochi, Guilherme V; Moresco, Rafael N; Leal, Marta L R; Morsch, Vera M; Schetinger, Maria R C; Christ, Ricardo; Gheller, Larissa; Marques, Éder J; Da Silva, Aleksandro S

    2016-06-01

    The aim of this study was to evaluate the iron metabolism in serum, as well as antioxidant enzymes, in addition to the Delta-Aminolevulinic Acid Dehydratase (δ-ALA-D) activity in the liver of rats experimentally infected by Fasciola hepatica. Thirty male adult rats (Wistar) specific pathogen free were divided into four groups: two uninfected group (CTRL 1 and CTRL 2) with five animals each and two infected groups (INF 1 and INF 2) with 10 animals each. Infection was performed orally with 20 metacercariae at day 1. On day 15 (CTRL 1 and INF 1 groups) and 87 PI (CTRL 2 and INF 2 groups) blood and bone marrow were collected and the animals were subsequently euthanized for liver sampling. Blood was allocated in tubes without anticoagulant for serum acquisition to measure iron, transferrin and unsaturated iron binding capacity (UIBC). δ-ALA-D, superoxide dismutase (SOD), and catalase (CAT) activities were measured in the liver. A decrease in iron, transferrin and UIBC levels was observed in all infected animals compared to control groups (P < 0.05). Furthermore, iron accumulation was observed in bone marrow of infected mice. Infected animals showed an increase in δ-ALA-D activity at 87 post-infection (PI) (INF 2) as well as in SOD activity at days 15 (INF 1) and 87 PI (INF 2). On the other hand, CAT activity was reduced in rats infected by F. hepatica during acute and chronic phase of fasciolosis (INF 1 and INF 2 groups), when moderate (acute) and severe necrosis in the liver histopathology were observed. These results may suggest that oxidative damage to tissues along with antioxidant mechanisms might have taken part in fasciolosis pathogenesis and are also involved in iron deficiency associated to changes in δ-ALA-D activity during chronic phase of disease. PMID:26995536

  5. IRON OXIDE NANOPARTICLE-INDUCED OXIDATIVE STRESS AND INFLAMMATION

    EPA Science Inventory

    1. Nanoparticle Physicochemical Characterizations
    2. We first focused on creating NP systems that could be used to test our hypotheses and assessing their stability in aqueous media. The iron oxide NP systems were not stable in cell culture medium o...

    3. Iron-fortified flour: can it induce lipid peroxidation?

      PubMed

      Abtahi, Mitra; Neyestani, Tirang Reza; Pouraram, Hamed; Siassi, Fereydoun; Dorosty, Ahmad Reza; Elmadfa, Ibrahim; Doustmohammadian, Aazam

      2014-08-01

      This community-based study was conducted to evaluate the effects of iron-fortified bread consumption on certain biomarkers of oxidative stress in an apparently healthy population. Evaluation of food intake, anthropometric and laboratory variables was performed in the beginning and after the 8-month intervention for all participants. There was no significant change in oxidative stress biomarkers in women following 8 months intervention. However, in men, final values of total antioxidant capacity, compared to the initial ones, showed a significant decrease in (p = 0.01) which was accompanied by a significant increase in superoxide dismutase (p = 0.002). It could be concluded that although the short-term period (8 months) of extra iron intake did not show severe effects of lipid per oxidation, significant changes of serum iron and some oxidative stress indices suggested that fortification of flour with iron among non-anemic adults in the long term was not without adverse effects. PMID:24655144

    4. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

      NASA Astrophysics Data System (ADS)

      Feng, Jianghua; Liu, Huili; Zhang, Limin; Bhakoo, Kishore; Lu, Lehui

      2010-10-01

      Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

    5. Local auxin metabolism regulates environment-induced hypocotyl elongation.

      PubMed

      Zheng, Zuyu; Guo, Yongxia; Novák, Ondřej; Chen, William; Ljung, Karin; Noel, Joseph P; Chory, Joanne

      2016-01-01

      A hallmark of plants is their adaptability of size and form in response to widely fluctuating environments. The metabolism and redistribution of the phytohormone auxin play pivotal roles in establishing active auxin gradients and resulting cellular differentiation. In Arabidopsis thaliana, cotyledons and leaves synthesize indole-3-acetic acid (IAA) from tryptophan through indole-3-pyruvic acid (3-IPA) in response to vegetational shade. This newly synthesized auxin moves to the hypocotyl where it induces elongation of hypocotyl cells. Here we show that loss of function of VAS2 (IAA-amido synthetase Gretchen Hagen 3 (GH3).17) leads to increases in free IAA at the expense of IAA-Glu (IAA-glutamate) in the hypocotyl epidermis. This active IAA elicits shade- and high temperature-induced hypocotyl elongation largely independently of 3-IPA-mediated IAA biosynthesis in cotyledons. Our results reveal an unexpected capacity of local auxin metabolism to modulate the homeostasis and spatial distribution of free auxin in specialized organs such as hypocotyls in response to shade and high temperature. PMID:27249562

    6. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo.

      PubMed

      Moroishi, Toshiro; Nishiyama, Masaaki; Takeda, Yukiko; Iwai, Kazuhiro; Nakayama, Keiichi I

      2011-09-01

      Iron-dependent degradation of iron-regulatory protein 2 (IRP2) is a key event for maintenance of an appropriate intracellular concentration of iron. Although FBXL5 (F box and leucine-rich repeat protein 5) is thought to mediate this degradation, the role of FBXL5 in the control of iron homeostasis in vivo has been poorly understood. We have now found that mice deficient in FBXL5 died in utero, associated with excessive iron accumulation. This embryonic mortality was prevented by additional ablation of IRP2, suggesting that impaired IRP2 degradation is primarily responsible for the death of Fbxl5(-)(/-) mice. We also found that liver-specific deletion of Fbxl5 resulted in deregulation of both hepatic and systemic iron homeostasis, leading to the development of steatohepatitis. The liver-specific mutant mice died with acute liver failure when fed a high-iron diet. Thus, our results uncover a major role for FBXL5 in ensuring an appropriate supply of iron to cells. PMID:21907140

    7. Iron-induced remodeling in cultured rat pulmonary artery endothelial cells.

      PubMed

      Gorbunov, Nikolai V; Atkins, James L; Gurusamy, Narasimman; Pitt, Bruce R

      2012-02-01

      Although iron is known to be a component of the pathogenesis and/or maintenance of acute lung injury (ALI) in experimental animals and human subjects, the majority of these studies have focused on disturbances in iron homeostasis in the airways resulting from exposure to noxious gases and particles. Considerably less is known about the effect of increased plasma levels of redox-reactive non-transferrin bound iron (NTBI) and its impact on pulmonary endothelium. Plasma levels of NTBI can increase under various pathophysiological conditions, including those associated with ALI, and multiple mechanisms are in place to affect the [Fe(2+)]/[Fe(3+)] redox steady state. It is well accepted, however, that intracellular transport of NTBI occurs after reduction of [Fe(3+)] to [Fe(2+)] (and is mediated by divalent metal transporters). Accordingly, as an experimental model to investigate mechanisms mediating vascular effects of redox reactive iron, rat pulmonary artery endothelial cells (RPAECs) were subjected to pulse treatment (10 min) with [Fe(2+)] nitriloacetate (30 μM) in the presence of pyrithione, an iron ionophore, to acutely increase intracellular labile pool of iron. Cellular iron influx and cell shape profile were monitored with time-lapse imaging techniques. Exposure of RPAECs to [Fe(2+)] resulted in: (i) an increase in intracellular iron as detected by the iron sensitive fluorophore, PhenGreen; (ii) depletion of cell glutathione; and (iii) nuclear translocation of stress-response transcriptional factors Nrf2 and NFkB (p65). The resulting iron-induced cell alterations were characterized by cell polarization and formation of membrane cuplike and microvilli-like projections abundant with ICAM-1, caveolin-1, and F-actin. The iron-induced re-arrangements in cytoskeleton, alterations in focal cell-cell interactions, and cell buckling were accompanied by decrease in electrical resistance of RPAEC monolayer. These effects were partially eliminated in the presence of N

    8. Iron Metabolism Dysregulation and Cognitive Dysfunction in Pediatric Obesity: Is There a Connection?

      PubMed Central

      Grandone, Anna; Marzuillo, Pierluigi; Perrone, Laura; Miraglia del Giudice, Emanuele

      2015-01-01

      Obesity and iron deficiency (ID) are two of the most common nutritional disorders in the world. In children both conditions deserve particular attention. Several studies revealed an association between obesity and iron deficiency in children and, in some cases, a reduced response to oral supplementation. The connecting mechanism, however, is not completely known. This review is focused on: (1) iron deficiency in obese children and the role of hepcidin in the connection between body fat and poor iron status; (2) iron status and consequences on health, in particular on cognitive function; (3) cognitive function and obesity; (4) suggestion of a possible link between cognitive dysfunction and ID in pediatric obesity; and implications for therapy and future research. PMID:26561830

    9. Molecular pharmacology of the interaction of anthracyclines with iron.

      PubMed

      Xu, X; Persson, H L; Richardson, D R

      2005-08-01

      Although anthracyclines such as doxorubicin are widely used antitumor agents, a major limitation for their use is the development of cardiomyopathy at high cumulative doses. This severe adverse side effect may be due to interactions with cellular iron metabolism, because iron loading promotes anthracycline-induced cell damage. On the other hand, anthracycline-induced cardiotoxicity is significantly alleviated by iron chelators (e.g., desferrioxamine and dexrazoxane). The molecular mechanisms by which anthracyclines interfere with cellular iron trafficking are complex and still unclear. Doxorubicin can directly bind iron and can perturb iron metabolism by interacting with multiple molecular targets, including the iron regulatory proteins (IRP) 1 and 2. The RNA-binding activity of these molecules regulates synthesis of the transferrin receptor 1 and ferritin, which are crucial proteins involved in iron uptake and storage, respectively. At present, it is not clear whether doxorubicin affects IRP1-RNA-binding activity by intracellular formation of doxorubicinol and/or by generation of the doxorubicin-iron(III) complex. Furthermore, doxorubicin prevents the mobilization of iron from ferritin by a mechanism that may involve lysosomal degradation of this protein. Prevention of iron mobilization from ferritin would probably disturb vital cellular functions as a result of inhibition of essential iron-dependent proteins, such as ribonucleotide reductase. This review discusses the molecular interactions of anthracyclines with iron metabolism and the development of cardioprotective strategies such as iron chelators. PMID:15883202

    10. The nature of heme/iron-induced protein tyrosine nitration

      PubMed Central

      Bian, Ka; Gao, Zhonghong; Weisbrodt, Norman; Murad, Ferid

      2003-01-01

      Recently, substantial evidence has emerged that revealed a very close association between the formation of nitrotyrosine and the presence of activated granulocytes containing peroxidases, such as myeloperoxidase. Peroxidases share heme-containing homology and can use H2O2 to oxidize substrates. Heme is a complex of iron with protoporphyrin IX, and the iron-containing structure of heme has been shown to be an oxidant in several model systems where the prooxidant effects of free iron, heme, and hemoproteins may be attributed to the formation of hypervalent states of the heme iron. In the current study, we have tested the hypothesis that free heme and iron play a crucial role in NO2-Tyr formation. The data from our study indicate that: (i) heme/iron catalyzes nitration of tyrosine residues by using hydrogen peroxide and nitrite, a reaction that revealed the mechanism underlying the protein nitration by peroxidase, H2O2, and NO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{2}^{-}}}\\end{equation*}\\end{document}; (ii) H2O2 plays a key role in the protein oxidation that forms the basis for the protein nitration, whereas nitrite is an essential element that facilitates nitration by the heme(Fe), H2O2, and the NO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{2}^{-}}}\\end{equation*}\\end{document} system; (iii) the formation of a Fe(IV) hypervalent compound may be essential for heme(Fe)-catalyzed nitration, whereas O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage

    11. Diet-induced iron deficiency anemia and pregnancy outcome in rhesus monkeys12

      PubMed Central

      Golub, Mari S; Hogrefe, Casey E; Tarantal, Alice F; Germann, Stacey L; Beard, John L; Georgieff, Michael K; Calatroni, Agustin; Lozoff, Betsy

      2006-01-01

      Background Iron deficiency anemia (IDA) is relatively common in the third trimester of pregnancy, but causal associations with low birth weight and compromised neonatal iron status are difficult to establish in human populations. Objective The objective was to determine the effects of diet-induced IDA on intrauterine growth and neonatal iron status in an appropriate animal model for third-trimester IDA in women. Design Hematologic and iron-status measures, pregnancy outcomes, and fetal and neonatal evaluations were compared between pregnant rhesus monkeys (n = 14) fed a diet containing 10 μg Fe/g diet from the time of pregnancy detection (gestation days 28–30) and controls (n = 24) fed 100 μg Fe/g diet. Results By the third trimester, 79% of the iron-deprived dams and 29% of the control monkeys had a hemoglobin concentration <11 g/dL. There were also significant group differences in hematocrit, mean corpuscular volume, transferrin saturation, serum ferritin, and serum iron. At birth, the newborns of monkeys iron-deprived during pregnancy had significantly lower hemoglobin, mean corpuscular volume, and mean corpuscular hemoglobin values and a lower ratio of erythroid to total colony-forming units in bone marrow than did the control newborns. Pregnancy weight gain did not differ significantly between the iron-deprived and control dams, and the fetuses and newborns of the iron-deprived dams were not growth retarded relative to the controls. Gestation length, the number of stillbirths, and neonatal neurobehavioral test scores did not differ significantly by diet group. Conclusion These data indicate that an inadequate intake of iron from the diet during pregnancy in rhesus monkeys can lead to compromised hematologic status of the neonate without indications of growth retardation or impaired neurologic function at birth. PMID:16522913

    12. Cellular responses induced in vitro by iron (Fe) in a central nervous system cell line (U343MGa).

      PubMed

      Alcântara, D D F A; Ribeiro, H F; Matos, L A; Sousa, J M C; Burbano, R R; Bahia, M O

      2013-01-01

      Iron is the most important metallic chemical element on Earth. Poisoning caused by excessive iron in humans has been associated with pulmonary diseases including neoplasms caused by inhalation of iron oxides. The involvement of iron in neurodegenerative processes has already been described. DNA alterations are induced by iron and other chemical compounds containing this metal; however, the data are controversial and the mechanism by which iron induces mutagenesis remains unknown. This study assessed in vitro iron-induced cytotoxic and genotoxic responses in an astrocytic cell line. Short- and long-term cytotoxicity and genotoxicity were evaluated with the Cell Proliferation Kit II and micronucleus test, respectively. Results indicated that the highest concentration of iron sulfate tested was cytotoxic in long-term cytotoxic assays and increased micronucleus frequency in comparison to controls. The significant cytotoxicity observed here might be due to the intrinsic ability of iron to induce apoptosis and possible changes in cell cycle kinetics; the genotoxic effects are probably due to the oxidant properties of iron itself. This was the first study to investigate the induction of micronuclei by iron in central nervous system cells. PMID:23765962

    13. Influence of Iron Chlorosis on Pigment and Protein Metabolism in Leaves of Nicotiana tabacum L. 1

      PubMed Central

      Shetty, A. S.; Miller, G. W.

      1966-01-01

      Experiments were conducted on Nicotiana tabacum, L. to study the relation in the grana among chlorophylls, carotenoids, and proteins. The effect of iron chlorosis on protein and pigment synthesis was studied at different stages of chlorosis using glycine-U-C14. Pigments were separated by thin layer chromatography. Chlorophyll a, chlorophyll b, carotenoid, and protein contents of chloroplasts from chlorotic tissue were less than those of normal tissues. A 25% decrease in protein labeling and a 45% decrease in chlorophyll labeling was noted in deficient tissue compared to normal tissue even before chlorosis was perceptible. Both normal and iron deficient leaf discs which received iron in the incubation medium incorporated higher amounts of radioactive glycine into chlorophyll a and chlorophyll b at all stages of development than their respective counterparts not supplied with iron in the incubation medium. The presence of iron in the incubation medium reduced the amount of glycine incorporated into carotenes and xanthophylls, except where the tissue was severely chlorotic. This may be attributed to active competition for glycine between the iron-dependent- (chlorophyll) and iron-independent-(carotenoid) biosynthetic pathways. Incorporation of glycine into chloroplast pigments was lowest at severe chlorosis, probably due to a reduction in the overall enzyme activity. PMID:16656270

    14. Friction induced surface activity of some simple organic chlorides and hydrocarbons with iron.

      NASA Technical Reports Server (NTRS)

      Buckley, D. H.

      1973-01-01

      Sliding friction studies were conducted on an iron surface with exposure of that surface to various hydrocarbons and organic chlorides. The hydrocarbons included ethane, ethylene, ethyl chloride, methyl chloride and vinyl chloride. Auger cylindrical-mirror analysis was used to follow interactions of the hydrocarbon and organic chlorides with the iron surface. Results with vinyl chloride indicate friction-induced surface reactivity, adsorption to surface oxides, friction sensitivity to concentration and polymerization. Variation in the loads employed influence adsorption and, accordingly, friction. Unlike results with ethyl and vinyl chloride, friction-induced surface reactivity was not observed with ethane and ethylene.

    15. Friction-induced surface activity of some hydrocarbons with clean and oxide-covered iron

      NASA Technical Reports Server (NTRS)

      Buckley, D. H.

      1973-01-01

      Sliding friction studies were conducted on a clean and oxide-covered iron surface with exposure of that surface to various hydrocarbons. The hydrocarbons included ethane, ethylene ethyl chloride, methyl chloride, and vinyl chloride. Auger cylindrical mirror analysis was used to follow interactions of the hydrocarbon with the iron surface. Results with vinyl chloride indicate friction induced surface reactivity, adsorption to surface oxides, friction sensitivity to concentration and polymerization. Variation in the loads employed influence adsorption and accordingly friction. In contrast with ethyl and vinyl chloride, friction induced surface reactivity was not observed with ethane and ethylene.

    16. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

      NASA Astrophysics Data System (ADS)

      Xiao, Xiazi; Terentyev, Dmitry; Yu, Long; Song, Dingkun; Bakaev, A.; Duan, Huiling

      2015-11-01

      Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation.

    17. Induced Disruption of the Iron-Regulatory Hormone Hepcidin Inhibits Acute Inflammatory Hypoferraemia.

      PubMed

      Armitage, Andrew E; Lim, Pei Jin; Frost, Joe N; Pasricha, Sant-Rayn; Soilleux, Elizabeth J; Evans, Emma; Morovat, Alireza; Santos, Ana; Diaz, Rebeca; Biggs, Daniel; Davies, Benjamin; Gileadi, Uzi; Robbins, Peter A; Lakhal-Littleton, Samira; Drakesmith, Hal

      2016-01-01

      Withdrawal of iron from serum (hypoferraemia) is a conserved innate immune antimicrobial strategy that can withhold this critical nutrient from invading pathogens, impairing their growth. Hepcidin (Hamp1) is the master regulator of iron and its expression is induced by inflammation. Mice lacking Hamp1 from birth rapidly accumulate iron and are susceptible to infection by blood-dwelling siderophilic bacteria such as Vibrio vulnificus. In order to study the innate immune role of hepcidin against a background of normal iron status, we developed a transgenic mouse model of tamoxifen-sensitive conditional Hamp1 deletion (termed iHamp1-KO mice). These mice attain adulthood with an iron status indistinguishable from littermate controls. Hamp1 disruption and the consequent decline of serum hepcidin concentrations occurred within hours of a single tamoxifen dose. We found that the TLR ligands LPS and Pam3CSK4 and heat-killed Brucella abortus caused an equivalent induction of inflammation in control and iHamp1-KO mice. Pam3CSK4 and B. abortus only caused a drop in serum iron in control mice, while hypoferraemia due to LPS was evident but substantially blunted in iHamp1-KO mice. Our results characterise a powerful new model of rapidly inducible hepcidin disruption, and demonstrate the critical contribution of hepcidin to the hypoferraemia of inflammation. PMID:27423740

  1. Iron metabolism and resistance to infection by invasive bacteria in the social amoeba Dictyostelium discoideum

    PubMed Central

    Bozzaro, Salvatore; Buracco, Simona; Peracino, Barbara

    2013-01-01

    Dictyostelium cells are forest soil amoebae, which feed on bacteria and proliferate as solitary cells until bacteria are consumed. Starvation triggers a change in life style, forcing cells to gather into aggregates to form multicellular organisms capable of cell differentiation and morphogenesis. As a soil amoeba and a phagocyte that grazes on bacteria as the obligate source of food, Dictyostelium could be a natural host of pathogenic bacteria. Indeed, many pathogens that occasionally infect humans are hosted for most of their time in protozoa or free-living amoebae, where evolution of their virulence traits occurs. Due to these features and its amenability to genetic manipulation, Dictyostelium has become a valuable model organism for studying strategies of both the host to resist infection and the pathogen to escape the defense mechanisms. Similarly to higher eukaryotes, iron homeostasis is crucial for Dictyostelium resistance to invasive bacteria. Iron is essential for Dictyostelium, as both iron deficiency or overload inhibit cell growth. The Dictyostelium genome shares with mammals many genes regulating iron homeostasis. Iron transporters of the Nramp (Slc11A) family are represented with two genes, encoding Nramp1 and Nramp2. Like the mammalian ortholog, Nramp1 is recruited to phagosomes and macropinosomes, whereas Nramp2 is a membrane protein of the contractile vacuole network, which regulates osmolarity. Nramp1 and Nramp2 localization in distinct compartments suggests that both proteins synergistically regulate iron homeostasis. Rather than by absorption via membrane transporters, iron is likely gained by degradation of ingested bacteria and efflux via Nramp1 from phagosomes to the cytosol. Nramp gene disruption increases Dictyostelium sensitivity to infection, enhancing intracellular growth of Legionella or Mycobacteria. Generation of mutants in other “iron genes” will help identify genes essential for iron homeostasis and resistance to pathogens. PMID

  2. Haemolysis and Perturbations in the Systemic Iron Metabolism of Suckling, Copper-Deficient Mosaic Mutant Mice – An Animal Model of Menkes Disease

    PubMed Central

    Lenartowicz, Małgorzata; Starzyński, Rafał R.; Krzeptowski, Wojciech; Grzmil, Paweł; Bednarz, Aleksandra; Ogórek, Mateusz; Pierzchała, Olga; Staroń, Robert; Gajowiak, Anna; Lipiński, Paweł

    2014-01-01

    The biological interaction between copper and iron is best exemplified by the decreased activity of multicopper ferroxidases under conditions of copper deficiency that limits the availability of iron for erythropoiesis. However, little is known about how copper deficiency affects iron homeostasis through alteration of the activity of other copper-containing proteins, not directly connected with iron metabolism, such as superoxide dismutase 1 (SOD1). This antioxidant enzyme scavenges the superoxide anion, a reactive oxygen species contributing to the toxicity of iron via the Fenton reaction. Here, we analyzed changes in the systemic iron metabolism using an animal model of Menkes disease: copper-deficient mosaic mutant mice with dysfunction of the ATP7A copper transporter. We found that the erythrocytes of these mutants are copper-deficient, display decreased SOD1 activity/expression and have cell membrane abnormalities. In consequence, the mosaic mice show evidence of haemolysis accompanied by haptoglobin-dependent elimination of haemoglobin (Hb) from the circulation, as well as the induction of haem oxygenase 1 (HO1) in the liver and kidney. Moreover, the hepcidin-ferroportin regulatory axis is strongly affected in mosaic mice. These findings indicate that haemolysis is an additional pathogenic factor in a mouse model of Menkes diseases and provides evidence of a new indirect connection between copper deficiency and iron metabolism. PMID:25247420

  3. Light-induced point defect reactions of residual iron in crystalline silicon after aluminum gettering

    SciTech Connect

    Abdelbarey, D.; Kveder, V.; Schroeter, W.; Seibt, M.

    2010-08-15

    Deep level transient spectroscopy is used to study light-induced reactions of residual iron impurities after aluminum gettering (AlG) in crystalline silicon. White-light illumination at room temperature leads to the formation of a defect which is associated with a donor level at 0.33 eV above the valence band. This defect is stable up to about 175 deg. C where it dissociates reversibly in case of small iron concentrations and irreversibly for high iron concentrations. Since marker experiments using gold and platinum diffusion show a high vacancy concentration after AlG a tentative identification of the new defect as the metastable iron-vacancy pair is proposed.

  4. Role of retinal metabolism in methanol-induced retinal toxicity

    SciTech Connect

    Garner, C.D. |; Lee, E.W.; Terzo, T.S.; Louis-Ferdinand, R.T.

    1995-08-01

    Methanol is a toxicant that causes systemic and ocular toxicity after acute exposure. The folate-reduced (FR) rat is an excellent animal model that mimics characteristic human methanol toxic responses. The present study examines the role of the methanol metabolites formaldehyde and formate in the initiation of methanol-induced retinal toxicity. After a single oral dose of 3.0 g/kg methanol, blood methanol concentrations were not significantly different in FR rats compared with folate-sufficient (FS) (control) rats. However, FR rats treated with 3.0 g/kg methanol displayed elevated blood (14.6 mM) and vitreous humor (19.5 mM) formate levels and abnormal electroretinograms (loss of b-wave) 48 h postdose. FR rats pretreated with disulfiram (DSF) prior to 3.0 g/kg methanol treatment failed to display these symptoms. Formaldehyde was not detected in blood or vitreous humor with or without DSF treatment, suggesting that formate is the toxic metabolite in methanol-induced retinal toxicity. Additionally, creating a blood formate profile (14.2 mM at 48 h) similar to that observed in methanol-treated rats by iv infusion of pH-buffered formate does not alter the electroretinogram as is observed with methanol treatment. These data suggest that intraretinal metabolism of methanol is necessary for the formate-mediated initiation of methanol-induced retinal toxicity. 31 refs., 5 figs., 2 tabs.

  5. Iron-induced neuronal damage in a rat model of post-traumatic stress disorder.

    PubMed

    Zhao, Ming; Yu, Zhibo; Zhang, Yang; Huang, Xueling; Hou, Jingming; Zhao, YanGang; Luo, Wei; Chen, Lin; Ou, Lan; Li, Haitao; Zhang, Jiqiang

    2016-08-25

    Previous studies have shown that iron redistribution and deposition in the brain occurs in some neurodegenerative diseases, and oxidative damage due to abnormal iron level is a primary cause of neuronal death. In the present study, we used the single prolonged stress (SPS) model to mimic post-traumatic stress disorder (PTSD), and examined whether iron was involved in the progression of PTSD. The anxiety-like behaviors of the SPS group were assessed by the elevated plus maze (EPM) and open field tests, and iron levels were measured by inductively coupled plasma optical emission spectrometer (ICP-OES). Expression of glucocorticoid receptors and transferrin receptor 1 (TfR1) and ferritin (Fn) was detected by Western blot and immunohistochemistry in selected brain areas; TfR1 and Fn mRNA expression were detected by quantitative-polymerase chain reaction (Q-PCR). Ultrastructures of the hippocampus were observed under a transmission electron microscope. Our results showed that SPS exposure induced anxiety-like symptoms and increased the level of serum cortisol and the concentration of iron in key brain areas such as the hippocampus, prefrontal cortex, and striatum. The stress induced region-specific changes in both protein and mRNA levels of TfR1 and Fn. Moreover, swelling mitochondria and cell apoptosis were observed in neurons in brain regions with iron accumulation. We concluded that SPS stress increased iron in some cognition-related brain regions and subsequently cause neuronal injury, indicating that the iron may function in the pathology of PTSD. PMID:27208615

  6. Associations of iron metabolism genes with blood manganese levels: a population-based study with validation data from animal models

    PubMed Central

    2011-01-01

    Background Given mounting evidence for adverse effects from excess manganese exposure, it is critical to understand host factors, such as genetics, that affect manganese metabolism. Methods Archived blood samples, collected from 332 Mexican women at delivery, were analyzed for manganese. We evaluated associations of manganese with functional variants in three candidate iron metabolism genes: HFE [hemochromatosis], TF [transferrin], and ALAD [δ-aminolevulinic acid dehydratase]. We used a knockout mouse model to parallel our significant results as a novel method of validating the observed associations between genotype and blood manganese in our epidemiologic data. Results Percentage of participants carrying at least one copy of HFE C282Y, HFE H63D, TF P570S, and ALAD K59N variant alleles was 2.4%, 17.7%, 20.1%, and 6.4%, respectively. Percentage carrying at least one copy of either C282Y or H63D allele in HFE gene was 19.6%. Geometric mean (geometric standard deviation) manganese concentrations were 17.0 (1.5) μg/l. Women with any HFE variant allele had 12% lower blood manganese concentrations than women with no variant alleles (β = -0.12 [95% CI = -0.23 to -0.01]). TF and ALAD variants were not significant predictors of blood manganese. In animal models, Hfe-/- mice displayed a significant reduction in blood manganese compared with Hfe+/+ mice, replicating the altered manganese metabolism found in our human research. Conclusions Our study suggests that genetic variants in iron metabolism genes may contribute to variability in manganese exposure by affecting manganese absorption, distribution, or excretion. Genetic background may be critical to consider in studies that rely on environmental manganese measurements. PMID:22074419

  7. Mechanism of chronic dietary iron overload-induced liver damage in mice.

    PubMed

    Liu, Dan; He, Huan; Yin, Dong; Que, Ailing; Tang, Lei; Liao, Zhangping; Huang, Qiren; He, Ming

    2013-04-01

    Chronic iron overload may result in hepatic fibrosis and even neoplastic transformation due to a burst of reactive oxygen species (ROS). Mitochondria have been proposed to be important in the production of ROS. The purpose of this study was to investigate the role of the mitochondrial permeability transition pore (mPTP) in the burst of ROS, and to clarify the mechanism whereby ROS induced by iron overload results in hepatic damage. It has been demonstrated that when ferrocene-induced iron-overloaded mice were fed the cyclosporin A (CsA), a specific inhibitor of the mPTP, diet (10 mg/kg/day) for 50 days, liver-to-body weight ratio, serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), ROS production, mitochondrial swelling, loss of mitochondrial membrane potential (Δψ) and hepatocyte apoptosis decreased. However, the total antioxidant status, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase activities, increased. The protective effect of CsA on the liver of iron-overloaded mice may be due to inhibition of the ROS burst and a successive antioxidant effect. To the best of our knowledge, these data provide the first support for the theory that ROS-induced ROS release (RIRR) may be involved in the burst of ROS in the liver and greatly contribute to the hepatic damage initiated by iron overload. PMID:23404080

  8. Low Dose Iron Treatments Induce a DNA Damage Response in Human Endothelial Cells within Minutes

    PubMed Central

    Mollet, Inês G.; Giess, Adam; Paschalaki, Koralia; Periyasamy, Manikandan; Lidington, Elaine C.; Mason, Justin C.; Jones, Michael D.; Game, Laurence; Ali, Simak; Shovlin, Claire L.

    2016-01-01

    Background Spontaneous reports from patients able to report vascular sequelae in real time, and recognition that serum non transferrin bound iron may reach or exceed 10μmol/L in the blood stream after iron tablets or infusions, led us to hypothesize that conventional iron treatments may provoke acute vascular injury. This prompted us to examine whether a phenotype could be observed in normal human endothelial cells treated with low dose iron. Methodology Confluent primary human endothelial cells (EC) were treated with filter-sterilized iron (II) citrate or fresh media for RNA sequencing and validation studies. RNA transcript profiles were evaluated using directional RNA sequencing with no pre-specification of target sequences. Alignments were counted for exons and junctions of the gene strand only, blinded to treatment types. Principal Findings Rapid changes in RNA transcript profiles were observed in endothelial cells treated with 10μmol/L iron (II) citrate, compared to media-treated cells. Clustering for Gene Ontology (GO) performed on all differentially expressed genes revealed significant differences in biological process terms between iron and media-treated EC, whereas 10 sets of an equivalent number of randomly selected genes from the respective EC gene datasets showed no significant differences in any GO terms. After 1 hour, differentially expressed genes clustered to vesicle mediated transport, protein catabolism, and cell cycle (Benjamini p = 0.0016, 0.0024 and 0.0032 respectively), and by 6 hours, to cellular response to DNA damage stimulus most significantly through DNA repair genes FANCG, BLM, and H2AFX. Comet assays demonstrated that 10μM iron treatment elicited DNA damage within 1 hour. This was accompanied by a brisk DNA damage response pulse, as ascertained by the development of DNA damage response (DDR) foci, and p53 stabilization. Significance These data suggest that low dose iron treatments are sufficient to modify the vascular endothelium

  9. A unique antioxidant activity of phosphatidylserine on iron-induced lipid peroxidation of phospholipid bilayers.

    PubMed

    Dacaranhe, C D; Terao, J

    2001-10-01

    The relationship between the antioxidant effect of acidic phospholipids, phosphatidic acid (PA), phosphatidylglycerol (PG) and phosphatidylserine (PS), on iron-induced lipid peroxidation of phospholipid bilayers and their abilities to bind iron ion was examined in egg yolk phosphatidylcholine large unilamellar vesicles (EYPC LUV). The effect of each acidic phospholipid added to the vesicles at 10 mol% was assessed by measuring phosphatidylcholine hydroperoxides (PC-OOH) and thiobarbituric acid-reactive substances. The addition of dipalmitoyl PS (DPPS) showed a significant inhibitory effect, although the other two acidic phospholipids, dipalmitoyl PA (DPPA) and dipalmitoyl PG (DPPG), did not exert the inhibition. Neither dipalmitoyl PC (DPPC) nor dipalmitoyl phophatidylethanolamine (DPPE) showed any remarkable inhibition on this system. None of the tested phospholipids affected the lipid peroxidation rate remarkably when the vesicles were exposed to a water-soluble radical generator. The iron-binding ability of each phospholipid was estimated on the basis of the amounts of iron recovered in the chloroform/methanol phase after separation of the vesicle solution to water/methanol and chloroform/methanol phases. EYPC LUV containing DPPS, DPPA, and DPPG had higher amounts of bound iron than those containing DPPC and DPPE, indicating that these three acidic phospholipids possess an iron-binding ability at a similar level. Nevertheless, only DPPS suppressed iron-dependent decomposition of PC-OOH significantly. Therefore, it is likely that these three acidic phospholipids possess a significant iron-binding ability, although this ability per se does not warrant them antioxidative activities. The ability to suppress the iron-dependent decomposition of PC-OOH may explain the unique antioxidant activity of PS. PMID:11768154

  10. The role of S-methylisothiourea hemisulfate as inducible nitric oxide synthase inhibitor against kidney iron deposition in iron overload rats

    PubMed Central

    Maleki, Maryam; Samadi, Melika; Khanmoradi, Mehrangiz; Nematbakhsh, Mehdi; Talebi, Ardeshir; Nasri, Hamid

    2016-01-01

    Background: Iron dextran is in common use to maintain iron stores. However, it is potentially toxic and may lead to iron deposition (ID) and impair functions of organs. Iron overload can regulate the expression of inducible nitric oxide synthase (iNOS) in some cells that has an important role in tissue destruction. S-methylisothiourea hemisulfate (SMT) is a direct inhibitor of iNOS, and this study was designed to investigate the effect of SMT against kidney ID in iron overload rats. Materials and Methods: 24 Wistar rats (male and female) were randomly assigned to two groups. Iron overloading was performed by iron dextran 100 mg/kg/day every other day for 2 weeks. In addition, during the study, groups 1 and 2 received vehicle and SMT (10 mg/kg, ip), respectively. Finally, blood samples were obtained, and the kidneys were prepared for histopathological procedures. Results: SMT significantly reduced the serum levels of creatinine and blood urea nitrogen. However, SMT did not alter the serum levels of iron and nitrite, and the kidney tissue level of nitrite. Co-administration of SMT with iron dextran did not attenuate the ID in the kidney. Conclusion: SMT, as a specific iNOS inhibitor, could not protect the kidney from ID while it attenuated the serum levels of kidney function biomarkers. PMID:27308268