Science.gov

Sample records for iron nitrates

  1. Iron, nitrate uptake by phytoplankton, and mermaids

    NASA Astrophysics Data System (ADS)

    Banse, Karl

    1991-11-01

    The critique by Martin et al. (this issue) of my recalculation of rates of nitrate uptake, and hence of algal division, from the Gulf of Alaska is shown to be incorrect. Neither can iron deficiency, if any, be shown to be connected with the demise of mermen and mermaids, although for different reasons.

  2. The nature of heme/iron-induced protein tyrosine nitration

    PubMed Central

    Bian, Ka; Gao, Zhonghong; Weisbrodt, Norman; Murad, Ferid

    2003-01-01

    Recently, substantial evidence has emerged that revealed a very close association between the formation of nitrotyrosine and the presence of activated granulocytes containing peroxidases, such as myeloperoxidase. Peroxidases share heme-containing homology and can use H2O2 to oxidize substrates. Heme is a complex of iron with protoporphyrin IX, and the iron-containing structure of heme has been shown to be an oxidant in several model systems where the prooxidant effects of free iron, heme, and hemoproteins may be attributed to the formation of hypervalent states of the heme iron. In the current study, we have tested the hypothesis that free heme and iron play a crucial role in NO2-Tyr formation. The data from our study indicate that: (i) heme/iron catalyzes nitration of tyrosine residues by using hydrogen peroxide and nitrite, a reaction that revealed the mechanism underlying the protein nitration by peroxidase, H2O2, and NO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{2}^{-}}}\\end{equation*}\\end{document}; (ii) H2O2 plays a key role in the protein oxidation that forms the basis for the protein nitration, whereas nitrite is an essential element that facilitates nitration by the heme(Fe), H2O2, and the NO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{2}^{-}}}\\end{equation*}\\end{document} system; (iii) the formation of a Fe(IV) hypervalent compound may be essential for heme(Fe)-catalyzed nitration, whereas O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage

  3. Anoxic Iron Cycling Bacteria from an Iron Sulfide- and Nitrate-Rich Freshwater Environment

    PubMed Central

    Haaijer, Suzanne C. M.; Crienen, Gijs; Jetten, Mike S. M.; Op den Camp, Huub J. M.

    2012-01-01

    In this study, both culture-dependent and culture-independent methods were used to determine whether the iron sulfide mineral- and nitrate-rich freshwater nature reserve Het Zwart Water accommodates anoxic microbial iron cycling. Molecular analyses (16S rRNA gene clone library and fluorescence in situ hybridization, FISH) showed that sulfur-oxidizing denitrifiers dominated the microbial population. In addition, bacteria resembling the iron-oxidizing, nitrate-reducing Acidovorax strain BrG1 accounted for a major part of the microbial community in the groundwater of this ecosystem. Despite the apparent abundance of strain BrG1-like bacteria, iron-oxidizing nitrate reducers could not be isolated, likely due to the strictly autotrophic cultivation conditions adopted in our study. In contrast an iron-reducing Geobacter sp. was isolated from this environment while FISH and 16S rRNA gene clone library analyses did not reveal any Geobacter sp.-related sequences in the groundwater. Our findings indicate that iron-oxidizing nitrate reducers may be of importance to the redox cycling of iron in the groundwater of our study site and illustrate the necessity of employing both culture-dependent and independent methods in studies on microbial processes. PMID:22347219

  4. Nitrate Controls on Iron and Arsenic in an Urban Lake

    NASA Astrophysics Data System (ADS)

    Senn, David B.; Hemond, Harold F.

    2002-06-01

    Aquatic ecosystems are often contaminated by multiple substances. Nitrate, a common aquatic pollutant, strongly influenced the cycling of arsenic (As) under anoxic conditions in urban Upper Mystic Lake (Massachusetts, USA) by oxidizing ferrous iron [Fe(II)] to produce As-sorbing particulate hydrous ferric oxides and causing the more oxidized As(V), which is more particle-reactive than As(III) under these conditions, to dominate. This process is likely to be important in many natural waters.

  5. AN EFFICIENT AND ECOFRIENDLY OXIDATION OF ALKENES USING IRON NITRATE AND MOLECULAR OXYGEN

    EPA Science Inventory

    An environmentally friendly solventless oxidation of alkenes is accomplished efficiently using relatively benign iron nitrate as catalyst in the pressence of molecular oxygen under pressurized conditions.

  6. Influence of Microbial Iron and Nitrate Reduction on Subsurface Iron Biogeochemistry and Contaminant Metal Mobilization

    SciTech Connect

    Flynn Picardal

    2002-04-14

    Although toxic metal and radionuclide contaminants can not be destroyed, their toxicity and mobility can be dramatically altered by microbial activity. In addition to toxic metals, many contaminated sites contain both iron-containing minerals and co-contaminants such as nitrate (NO3-). Successful implementation of metal and radionuclide bioremediation strategies in such environments requires an understanding of the complex microbial and geochemical interactions that influence the redox speciation and mobility of toxic metals. Our specific objectives have been to (1) determine the effect of iron oxide mineral reduction on the mobility of sorbed, representative toxic metals (Zn2+), (2) study the biogeochemical interactions that may occur during microbial reduction of NO3- and iron oxide minerals, and (3) evaluate the kinetics of NO3--dependent, microbial oxidation of ferrous iron (Fe2+).

  7. Influence of Microbial Iron and Nitrate Reduction on Subsurface Iron Biogeochemistry and Contaminant Metal Mobilization

    SciTech Connect

    Flynn W. Picardal

    2002-04-10

    Although toxic metal and radionuclide contaminants can not be destroyed, their toxicity and mobility can be dramatically altered by microbial activity. In addition to toxic metals, many contaminated sites contain both iron-containing minerals and co-contaminants such as nitrate NO{sub 3}{sup -}. Successful implementation of metal and radionuclide bioremediation strategies in such environments requires an understanding of the complex microbial and geochemical interactions that influence the redox speciation and mobility of toxic metals. Our specific objectives have been to (1) determine the effect of iron oxide mineral reduction on the mobility of sorbed, representative toxic metals (Zn{sup 2+}), (2) study the biogeochemical interactions that may occur during microbial reduction of NO{sub 3}{sup -} and iron oxide minerals, and (3) evaluate the kinetics of NO{sub 3}{sup -}-dependent, microbial oxidation of ferrous iron (Fe{sup 2+}).

  8. Arsenic, nitrate, iron, and hardness in ground water, Chena Ridge vicinity, Fairbanks, Alaska

    USGS Publications Warehouse

    Krumhardt, Andrea P.

    1979-01-01

    The report presents all data on hardness, iron, nitrate and arsenic in well water in the Chena Ridge area of Fairbanks, Alaska, through June 1979. Concentrations range as follows: arsenic - 0 to 28 micrograms per liter; nitrate - 0 to 20 milligrams per liter; iron - 0 to 18 milligrams per liter and hardness - 72 to 1,400 milligrams per liter. Values at the upper ends of the ranges for iron and nitrate exceed limits recommended by the Environmental Protection Agency for public water supplies. A map of the area showing the location of sampled wells and a table of chemical analysis are included. (Kosco-USGS)

  9. RESPONSE OF THE PHOTOSYNTHETIC APPARATUS OF PHAEODACTYLYM TRICORNUTUM (BACILLARIOPHYCEAE) TO NITRATE, PHOSPHATE OR IRON STARVATION

    EPA Science Inventory

    The effects of nitrate, phosphate, and iron starvation and resupply on photosynthetic pigments, selected photosynthetic proteins, and photosystem II (PSII) photochemistry were examined in the diatom Phaeodactylum tricornutum Bohlin (CCMP1327). lthough cell chlorophyll a (chl a) c...

  10. NITRATE REDUCTION BY ZEROVALENT IRON: EFFECTS OF FORMATE, OXALATE, CITRATE, CHLORIDE, SULFATE, BORATE, AND PHOSPHATE

    EPA Science Inventory

    Recent studies have shown that zerovalent iron (Fe0) may potentially be used as a chemical medium in permeable reactive barriers (PRBs) for nitrate remediation in groundwater; however, the effects of commonly found organic and inorganic ligands in soil and sediments on nitrate re...

  11. Ammonium nitrate and iron nutrition effects on some nitrogen assimilation enzymes and metabolites in Spirulina platensis.

    PubMed

    Esen, Merve; Ozturk Urek, Raziye

    2015-01-01

    The effect of various concentrations of ammonium nitrate (5-60 mM), an economical nitrogen source, on the growth, nitrate-ammonium uptake rates, production of some pigments and metabolites, and some nitrogen assimilation enzymes such as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in Spirulina platensis (Gamont) Geitler was investigated. Ten millimolars of ammonium nitrate stimulated the growth, production of pigments and the other metabolites, and enzyme activities, whereas 30 and 60 mM ammonium nitrate caused inhibition. In the presence of 10 mM ammonium nitrate, different concentrations of iron were tried in the growth media of S. platensis. After achieving the best growth, levels of metabolite and pigment production, and enzyme activities in the presence of 10 mM ammonium nitrate as a nitrogen source, different iron concentrations (10-100 µM) were tried in the growth medium of S. platensis. The highest growth, pigment and metabolite levels, and enzyme activities were determined in the medium containing 50 µM iron and 10 mM ammonium nitrate. In this optimum condition, the highest dry biomass level, chlorophyll a, and pyruvate contents were obtained as 55.42 ± 3.8 mg mL(-1) , 93.114 ± 7.9 µg g(-1) , and 212.5 ± 18.7 µg g(-1) , respectively. The highest NR, NiR, GS, and GOGAT activities were 67.16 ± 5.1, 777.92 ± 52, 0.141 ± 0.01, and 44.45 ± 3.6, respectively. Additionally, 10 mM ammonium nitrate is an economical and efficient nitrogen source for nitrogen assimilation of S. platensis, and 50 µM iron is optimum for the growth of S. platensis. PMID:25425155

  12. Remediation of Nitrate-contaminated Groundwater by a Mixture of Iron and Activated Carbon

    NASA Astrophysics Data System (ADS)

    Huang, Guoxin; Liu, Fei; Jin, Aifang; Qin, Xiaopeng

    2010-11-01

    Nitrate contamination in groundwater has become a major environmental and health problem worldwide. The aim of the present study is to remediate groundwater contaminated by nitrate and develop potential reactive materials to be used in PRBs (Permeable Reactive Barriers). A new approach was proposed for abiotic groundwater remediation by reactive materials of iron chips and granular activated carbon particles. Batch tests were conducted and remediation mechanisms were discussed. The results show that nitrate decreases from 86.31 to 33.79 mgṡL-1 under the conditions of near neutral pH and reaction time of 1h. The combination of iron chips and activated carbon particles is cost-effective and suitable for further use as denitrification media in PRBs. Nitrogen species don't change significantly with the further increase in reaction time (>1 h). The iron-activated carbon-water-nitrate system tends to be steady-state. Small amounts of ammonium and nitrite (0.033-0.039 and 0.14-3.54 mgṡL-1, respectively) appear at reaction time from 0 h to 5 h. There is no substantial accumulation of nitrogen products in the system. The removal rate of nitrate only reaches 16.11% by sole iron chips at reaction time of 5 h, while 63.57% by the mixture of iron chips and activated carbon particles. There is significantly synergistic and promotive effect of mixing the two different types of materials on nitrate treatment. Fe/C ratio (1/1.5-1/2.5) doesn't cause dramatically different residual nitrate concentrations (24.09-26.70 mgṡL-1). Nitrate can't be limitlessly decreased with decreasing Fe/C ratio. The concomitant occurrences of chemical reduction, galvanic cell reaction, electrophoretic accumulation, chemical coagulation, and physical adsorption are all responsible for the overall nitrate removal by iron allied with activated carbon. To accurately quantify various nitrogen species, further studies on adsorption mechanisms of nitrite and nitrate are needed.

  13. Effects of nitrate addition and iron speciation on trace element transfer in coastal food webs under phosphate and iron enrichment.

    PubMed

    Li, Shun-Xing; Liu, Feng-Jiao; Zheng, Feng-Ying; Zuo, Yue-Gang; Huang, Xu-Guang

    2013-06-01

    Coastal organisms are often exposed to both iron enrichment and eutrophication. Trace elements transfer in coastal food webs are critical for marine life and therefore influence coastal ecosystem function and the global carbon cycle. However, how these exposures affect algal element uptake and the subsequent element transfer to marine copepods (Tigriopus japonicus) is unknown. Here we investigated the effects of nitrate addition and iron speciation (Fe (OH)3 or EDTA-Fe) on the biological uptake of Cu, Zn, and Se under phosphate and iron enrichment, using Thalassiosira weissflogii, Skeletonema costatum, and Chlorella vulgaris as model marine algae. Algal element adsorption/absorption generally increased with increasing macronutrient concentrations. Algal element assimilation efficiencies depended on iron speciation and marine algae species. Element assimilation efficiencies of copepods were significantly correlated to the intracellular element concentrations in algal cells. Element uptake and transfer were controlled by eutrophication, iron speciation, and algal species in coastal food webs. PMID:23332676

  14. SOLVENT FREE OXIDATION OF ALCOHOLS USING IRON (III) NITRATE NONAHYDRATE

    EPA Science Inventory

    Oxidation of alcohols have been conducted with metal nitrate reagents on various mineral supports such as clay, silica and zeolite etc. To circumvent the limitations of these supported reagents namely their preparation using solvents and short shelf-life, we explored the use of i...

  15. Arsenic, nitrate, iron, and hardness in ground water, Fairbanks area, Alaska

    USGS Publications Warehouse

    Johnson, Paula R.; Wilcox, D.E.; Morgan, W.D.; Merto, Josephine; McFadden, Ruth

    1979-01-01

    Well water with concentrations of arsenic and nitrate exceeding U.S. Environmental Protection Agency standards occurs sporadically throughout the hills north of Fairbanks, Alaska. The arsenic contamination has not been correlated with placer or other mining activity. The high levels of nitrate do not generally appear related to septic waste contamination. Few wells in the Fairbanks area yield water with low concentrations of iron or low hardness. Iron concentrations are consistently greater than 3 mg/L on the flood plain. In the uplands, concentrations of both iron and hardness are lowest near the ridgetops and increase downslope. The report includes a map of the area showing the location of sampled wells and a table of chemical analysis. (Woodard-USGS)

  16. Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria.

    PubMed

    Kappler, A; Johnson, C M; Crosby, H A; Beard, B L; Newman, D K

    2010-05-10

    Iron isotope fractionations produced during chemical and biological Fe(II) oxidation are sensitive to the proportions and nature of dissolved and solid-phase Fe species present, as well as the extent of isotopic exchange between precipitates and aqueous Fe. Iron isotopes therefore potentially constrain the mechanisms and pathways of Fe redox transformations in modern and ancient environments. In the present study, we followed in batch experiments Fe isotope fractionations between Fe(II)(aq) and Fe(III) oxide/hydroxide precipitates produced by the Fe(III) mineral encrusting, nitrate-reducing, Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Isotopic fractionation in (56)Fe/(54)Fe approached that expected for equilibrium conditions, assuming an equilibrium Δ(56)Fe(Fe(OH)3 - Fe(II)aq) fractionation factor of +3.0 ‰. Previous studies have shown that Fe(II) oxidation by this Acidovorax strain occurs in the periplasm, and we propose that Fe isotope equilibrium is maintained through redox cycling via coupled electron and atom exchange between Fe(II)(aq) and Fe(III) precipitates in the contained environment of the periplasm. In addition to the apparent equilibrium isotopic fractionation, these experiments also record the kinetic effects of initial rapid oxidation, and possible phase transformations of the Fe(III) precipitates. Attainment of Fe isotope equilibrium between Fe(III) oxide/hydroxide precipitates and Fe(II)(aq) by neutrophilic, Fe(II)-oxidizing bacteria or through abiologic Fe(II)(aq) oxidation is generally not expected or observed, because the poor solubility of their metabolic product, i.e. Fe(III), usually leads to rapid precipitation of Fe(III) minerals, and hence expression of a kinetic fractionation upon precipitation; in the absence of redox cycling between Fe(II)(aq) and precipitate, kinetic isotope fractionations are likely to be retained. These results highlight the distinct Fe isotope fractionations that are produced by different pathways of

  17. Degradation of TCE with iron: The role of competing chromate and nitrate reduction

    SciTech Connect

    Schlicker, O.; Ebert, M.; Fruth, M.; Weidner, M.; Wuest, W.; Dahmke, A.

    2000-06-01

    This study evaluates the potential of using granular iron metal for the abiotic removal of the organic ground water pollutant trichloroethene (TCE) in the presence of the common inorganic co-contaminants chromate and nitrate, respectively. Their long-term column experiments indicate a competitive process between TCE dechlorination and reductive transformation of chromate and nitrate, which is reflected in a significantly delayed onset of TCE dechlorination. Delay times and therefore the ranges of the nonreactive flowpaths increased with increasing experimental duration, resulting in a migration of the contaminants through the iron metal treatment zone. The present investigation also indicates that the calculated migration rates of TCE and the added cocontaminants chromate and nitrate are linearly related to the initial content of the cocontaminants. With an average pore water velocity of 0.6 m/d and a surface area concentration of 0.55 m{sup 2}/mL in the column, the calculated migration rates varied between 0.10 cm/d and 5.86 cm/d. The particular similarity between the values of TCE migration and the migration of the strong oxidants chromate and nitrate and the long-term steady state of the TCE dechlorination in the absence of the chromate and nitrate indicates that these competitive transformations are the driving force for the gradual passivation of the granular iron due to the buildup of an electrically insulating Fe(III)-oxyhydroxide. Based on these passivation processes, general formulae were developed that allow a simplified approximation of breakthrough times for the contaminants TCE, chromate, and nitrate.

  18. Influence of compositional modifications on the corrosion of iron aluminides of molten nitrate salts

    SciTech Connect

    Tortorelli, P.F.; Bishop, P.S.

    1991-01-01

    The corrosion of iron-aluminum alloys by molten nitrate salt as a function of aluminum, chromium, and other minor elements has been studied as part of an alloy design effort aimed at the development of a strong, ductile, corrosion-resistant FeAl type of aluminide. Short- term weight change data were used to examine the compositional dependence of the corrosion processes that occurred upon exposure of iron aluminides to highly oxidizing nitrate salts of 650{degrees}C. Corrosion resistance was found to increase with increasing aluminum concentrations of the alloy up to approximately 30 at. % Al. Chromium additions to the aluminide were not detrimental and may have improved the corrosion behavior for certain aluminum concentrations. No effects of minor alloying additions (C, B, Ti, and Zr) could be determined. The best overall corrosion resistance as measured by weight change results were obtained for an Fe-35.8 at. % Al aluminide containing some chromium. Based on linear weight loss kinetics, the weight change measurements for the most resistant compositions predict corrosion rates of 300 {mu}m/year or less at 650{degrees}C. These rates are substantially better than typical nickel-based alloys and stainless steels. From a consideration of the weight changes; the microstructural, thermodynamic, and X-ray diffraction data; and the salt analyses, corrosion of iron aluminides by the molten nitrate salt appears to be controlled by oxidation of base metal components and a slow release of material from an aluminum-rich product layer into the salt. The rate of release was substantially lower than that previously found for iron and iron-based alloys. This would imply that corrosion of iron aluminides could be minimized by maximizing the surface coverage of this aluminum-rich layer either by alloying or by an appropriate preoxidation treatment.

  19. Mesophilic, Circumneutral Anaerobic Iron Oxidation as a Remediation Mechanism for Radionuclides, Nitrate and Perchlorate

    NASA Astrophysics Data System (ADS)

    Bose, S.; Thrash, J. C.; Coates, J. D.

    2008-12-01

    Iron oxidation is a novel anaerobic metabolism where microorganisms obtain reducing equivalents from the oxidization of Fe(II) and assimilate carbon from organic carbon compounds or CO2. Recent evidence indicates that in combination with the activity of dissimilatory Fe(III)-reducing bacteria, anaerobic microbial Fe(II) oxidation can also contribute to the global iron redox cycle. Studies have also proved that Fe(II)- oxidation is ubiquitous in diverse environments and produce a broad range of insoluble iron forms as end products. These biogenic Fe(III)-oxides and mixed valence Fe minerals have a very high adsorption capacity of heavy metals and radionuclides. Adsorption and immobilization by these biogenic Fe phases produced at circumneutral pH, is now considered a very effective mode of remediation of radionuclides like Uranium, especially under variable redox conditions. By coupling soluble and insoluble Fe(II) oxidation with nitrate and perchlorate as terminal electron acceptors in-situ, anaerobic Fe-oxidation can also be used for environmental cleanup of Fe through Fe-mineral precipitation, as well as nitrate and perchlorate through reduction. Coupling of Fe as the sole electron and energy source to the reduction of perchlorate or nitrate boosts the metabolism without building up biomass hence also taking care of biofouling. To understand the mechanisms by which microorganisms can grow at circumneutral pH by mesophilic, anaerobic iron oxidation and the ability of microorganisms to reduce nitrate and perchlorate coupled to iron oxidation recent work in our lab involved the physiological characterization of Dechlorospirillum strain VDY which was capable of anaerobic iron-oxidation with either nitrate or perchlorate serving as terminal electron acceptor. Under non-growth conditions, VDY oxidized 3mM Fe(II) coupled to nitrate reduction, and 2mM Fe(II) coupled to perchlorate reduction, in 24 hours. It contained a copy of the RuBisCO cbbM subunit gene which was

  20. [Simultaneous Biotransformation of Ammonium and Nitrate via Zero-Valent Iron on Anaerobic Conditions].

    PubMed

    Zhou, Jian; Huang, Yong; Yuan, Yi; Liu, Xin; Li, Xiang; Shen, Jie; Yang, Peng-bing

    2015-12-01

    Zero-valent iron (ZVI) was used to improve the biological autotrophic denitrification process between nitrate and ammonia by anaerobic ammonia oxidation ( ANAMMOX) bacteria. With the addition of ZVI, the biological autotrophic denitrification process could be reacted in the influent condition of pH was 7-8, at 35°C ±0.5°C, the concentration of ammonia was 50-100 mg · L⁻¹ and the concentration of nitrate was 50-100 mg · L⁻¹. The highest conversion rate could be reached to 17.2 mg · (L·h) ⁻¹. With the change of reaction time and the molar ratio of nitrate and ammonia in influent, the final molar conversion ratio of nitrate and ammonia in effluent fluctuated between 1.2-3. 5. The result showed that this autotrophic denitrification process was not belonged to elementary reaction. The mechanism of this autotrophic denitrification process could be summarized that with the reduction of ZVI, the nitrate could be reduced to nitrite. Hereafter, the ANAMMOX process reacted between the nitrite and ammonia. PMID:27011992

  1. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater.

    PubMed

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie

    2015-01-01

    Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3-6 mmol/L in temperature range of 30-40 °C, 6-10 mmol/L in temperature range of 15-30 °C and 10-14 mmol/L in temperature range of 5-15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency. PMID:26199053

  2. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater

    NASA Astrophysics Data System (ADS)

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie

    2015-07-01

    Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3-6 mmol/L in temperature range of 30-40 °C, 6-10 mmol/L in temperature range of 15-30 °C and 10-14 mmol/L in temperature range of 5-15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency.

  3. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater

    PubMed Central

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie

    2015-01-01

    Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3–6 mmol/L in temperature range of 30–40 °C, 6–10 mmol/L in temperature range of 15–30 °C and 10–14 mmol/L in temperature range of 5–15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency. PMID:26199053

  4. Reduction of nitrate by resin-supported nanoscale zero-valent iron.

    PubMed

    Park, Heesu; Park, Yong-Min; Yoo, Kyoung-Min; Lee, Sang-Hyup

    2009-01-01

    For environmental remediation of a contaminated groundwater, the use of nanosized zero-valent iron (nZVI) represents one of the latest innovative technologies. However, nZVI gets easily agglomerated due to its colloidal characteristics and has limited applications. To overcome this drawback, nZVI was immobilized on a supporting material. In this study, nZVI was formed and bound to ion-exchange resin spheres at the same time through the borohydride reduction of an iron salt. The pore structures and physical characteristics of the supported nZVI were investigated and its reactivity was measured using nitrate. The degradation of nitrate appeared to be a pseudo first-order reaction with the observed reaction rate constant of 0.425 h(-1) without pH control. The reduction process continued but at a much lower rate with a rate constant of 0.044 h(-1). When the simulated groundwater was used to assess the effects of coexisting ions, the rate constant was 0.078 h(-1) and it also reduced to 0.0021 h(-1) in later phase. The major limitation of ZVI use for nitrate reduction is ammonium production. By using a support material with ion-exchange capacity, this problem can be solved. The ammonium was not detected in our batch tests. PMID:19494454

  5. REMOVAL OF ADDED NITRATE IN THE SINGLE, BINARY, AND TERNARY SYSTEMS OF COTTON BURR COMPOST, ZEROVALENT IRON, AND SEDIMENT: IMPLICATIONS FOR GROUNDWATER NITRATE REMEDIATION USING PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    Recent research has shown that carbonaceous solid materials and zerovalent iron (Fe0) may potentially be used as media in permeable reactive barriers (PRBs) to degrade groundwater nitrate via heterotrophic denitrification in the solid carbon system, and via abiotic reduction and ...

  6. Enumeration and Detection of Anaerobic Ferrous Iron-Oxidizing, Nitrate-Reducing Bacteria from Diverse European Sediments

    PubMed Central

    Straub, Kristina L.; Buchholz-Cleven, Berit E. E.

    1998-01-01

    Anaerobic, nitrate-dependent microbial oxidation of ferrous iron was recently recognized as a new type of metabolism. In order to study the occurrence of three novel groups of ferrous iron-oxidizing, nitrate-reducing bacteria (represented by strains BrG1, BrG2, and BrG3), 16S rRNA-targeted oligonucleotide probes were developed. In pure-culture experiments, these probes were shown to be suitable for fluorescent in situ hybridization, as well as for hybridization analysis of denaturing gradient gel electrophoresis (DGGE) patterns. However, neither enumeration by in situ hybridization nor detection by the DGGE-hybridization approach was feasible with sediment samples. Therefore, the DGGE-hybridization approach was combined with microbiological methods. Freshwater sediment samples from different European locations were used for enrichment cultures and most-probable-number (MPN) determinations. Bacteria with the ability to oxidize ferrous iron under nitrate-reducing conditions were detected in all of the sediment samples investigated. At least one of the previously described types of bacteria was detected in each enrichment culture. MPN studies showed that sediments contained from 1 × 105 to 5 × 108 ferrous iron-oxidizing, nitrate-reducing bacteria per g (dry weight) of sediment, which accounted for at most 0.8% of the nitrate-reducing bacteria growing with acetate. Type BrG1, BrG2, and BrG3 bacteria accounted for an even smaller fraction (0.2% or less) of the ferrous iron-oxidizing, nitrate-reducing community. The DGGE patterns of MPN cultures suggested that more organisms than those isolated thus far are able to oxidize ferrous iron with nitrate. A comparison showed that among the anoxygenic phototrophic bacteria, organisms that have the ability to oxidize ferrous iron also account for only a minor fraction of the population. PMID:9835573

  7. Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface.

    PubMed

    Luo, Jinghuan; Song, Guangyu; Liu, Jianyong; Qian, Guangren; Xu, Zhi Ping

    2014-12-01

    Nitrate reduction by zero-valent iron (Fe(0)) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe(0) powder combined with activated carbon (AC), i.e., Fe(0)/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe(0)/AC system and Fe(0) under near-neutral conditions, showing that the Fe(0)/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe(0) only ∼10%. The effect of Fe(0) to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe(0) and AC as the result of decreasing Fe(0) to AC mass ratio. Ferrous ion and oxidation-reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe(0)/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe(0) to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe(0)/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment. PMID:25217726

  8. Phenol Nitration Induced by an {Fe(NO)2}10 Dinitrosyl Iron Complex

    SciTech Connect

    N Tran; H Kalyvas; K Skodje; T Hayashi; P Moenne-Loccoz; P Callan; J Shearer; L Kirschenbaum; E Kim

    2011-12-31

    Cellular dinitrosyl iron complexes (DNICs) have long been considered NO carriers. Although other physiological roles of DNICs have been postulated, their chemical functionality outside of NO transfer has not been demonstrated thus far. Here we report the unprecedented dioxygen reactivity of a N-bound {l_brace}Fe(NO){sub 2}{r_brace}{sup 10} DNIC, [Fe(TMEDA)(NO){sub 2}] (1). In the presence of O{sub 2}, 1 becomes a nitrating agent that converts 2,4,-di-tert-butylphenol to 2,4-di-tert-butyl-6-nitrophenol via formation of a putative iron-peroxynitrite [Fe(TMEDA)(NO)(ONOO)] (2) that is stable below -80 C. Iron K-edge X-ray absorption spectroscopy on 2 supports a five-coordinated metal center with a bound peroxynitrite in a cyclic bidentate fashion. The peroxynitrite ligand of 2 readily decays at increased temperature or under illumination. These results suggest that DNICs could have multiple physiological or deleterious roles, including that of cellular nitrating agents.

  9. Fine Iron Aerosols Are Internally Mixed with Nitrate in the Urban European Atmosphere.

    PubMed

    Dall'Osto, Manuel; Beddows, D C S; Harrison, Roy M; Onat, Burcu

    2016-04-19

    Atmospheric iron aerosol is a bioavailable essential nutrient playing a role in oceanic productivity. Using aerosol time-of-flight mass spectrometry (ATOFMS), the particle size (0.3-1.5 μm), chemical composition and mixing state of Fe-containing particles collected at two European urban sites (London and Barcelona) were characterized. Out of the six particle types accounting for the entire Fe-aerosol population, that arising from long-range transport (LRT) of fine Fe-containing particles (Fe-LRT, 54-82% across the two sites) was predominant. This particle type was found to be internally mixed with nitrate and not with sulfate, and likely mostly associated with urban traffic activities. This is in profound contrast with previous studies carried out in Asia, where the majority of iron-containing particles are mixed with sulfate and are of coal combustion origin. Other minor fine iron aerosol sources included mineral dust (8-11%), traffic brake wear material (1-17%), shipping/oil (1-6%), biomass combustion (4-13%) and vegetative debris (1-3%). Overall, relative to anthropogenic Asian Fe-sulfate dust, anthropogenic European dust internally mixed with additional key nutrients such as nitrate is likely to play a different role in ocean global biogeochemical cycles. PMID:27002272

  10. Nitrate

    Integrated Risk Information System (IRIS)

    Nitrate ; CASRN 14797 - 55 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  11. Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp.

    PubMed

    Liu, Yan; Li, Shibin; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2014-08-01

    Nitrate contamination in drinking water is a major threat to public health. This study investigated the efficiency of denitrification of aqueous solutions in the co-presence of synthesized nanoscale zero-valent iron (nZVI; diameter: 20-80 nm) and a previously isolated Paracoccus sp. strain YF1. Various influencing factors were studied, such as oxygen, pH, temperature, and anaerobic corrosion products (Fe(2+), Fe(3+) and Fe3O4). With slight toxicity to the strain, nZVI promoted denitrification efficiency by providing additional electron sources under aerobic conditions. For example, 50 mg L(-1) nZVI increased the nitrate removal efficiency from 66.9% to 85.2%. However, a high concentration of nZVI could lead to increased production of Fe(2+), a toxic ion which could compromise the removal efficiency. Kinetic studies suggest that denitrification by both free cells, and nZVI-amended cells fitted well to the zero-order model. Temperature and pH are the major factors affecting nitrate removal and cell growth, with or without the presence of nZVI. In this study, nitrate removal and cell growth increased in the pH range of 6.5-8.0, and temperature range of 25-35 °C. These conditions favor the growth of the strain, which dominated denitrification in all scenarios involved. As for anaerobic corrosion products, compared with Fe(2+) and Fe(3+), Fe3O4 promoted denitrification by serving as an electron donor. Finally, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) confirmed attachments of nZVI on the surface of the cell, and the formation of iron oxides. This study indicated that, as an electron donor source with minimal cellular toxicity, nZVI could be used to promote denitrification efficiency under biotic conditions. PMID:24630453

  12. Iron Corrosion Induced by Nonhydrogenotrophic Nitrate-Reducing Prolixibacter sp. Strain MIC1-1

    PubMed Central

    Ito, Kimio; Wakai, Satoshi; Tsurumaru, Hirohito; Ohkuma, Moriya; Harayama, Shigeaki

    2014-01-01

    Microbiologically influenced corrosion (MIC) of metallic materials imposes a heavy economic burden. The mechanism of MIC of metallic iron (Fe0) under anaerobic conditions is usually explained as the consumption of cathodic hydrogen by hydrogenotrophic microorganisms that accelerates anodic Fe0 oxidation. In this study, we describe Fe0 corrosion induced by a nonhydrogenotrophic nitrate-reducing bacterium called MIC1-1, which was isolated from a crude-oil sample collected at an oil well in Akita, Japan. This strain requires specific electron donor-acceptor combinations and an organic carbon source to grow. For example, the strain grew anaerobically on nitrate as a sole electron acceptor with pyruvate as a carbon source and Fe0 as the sole electron donor. In addition, ferrous ion and l-cysteine served as electron donors, whereas molecular hydrogen did not. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MIC1-1 was a member of the genus Prolixibacter in the order Bacteroidales. Thus, Prolixibacter sp. strain MIC1-1 is the first Fe0-corroding representative belonging to the phylum Bacteroidetes. Under anaerobic conditions, Prolixibacter sp. MIC1-1 corroded Fe0 concomitantly with nitrate reduction, and the amount of iron dissolved by the strain was six times higher than that in an aseptic control. Scanning electron microscopy analyses revealed that microscopic crystals of FePO4 developed on the surface of the Fe0 foils, and a layer of FeCO3 covered the FePO4 crystals. We propose that cells of Prolixibacter sp. MIC1-1 accept electrons directly from Fe0 to reduce nitrate. PMID:25548048

  13. Iron(III)-Mediated Radical Nitration of Bisarylsulfonyl Hydrazones: Synthesis of Bisarylnitromethyl Sulfones.

    PubMed

    Sar, Dinabandhu; Bag, Raghunath; Bhattacharjee, Debajyoti; Deka, Ramesh Chandra; Punniyamurthy, Tharmalingam

    2015-07-01

    Iron(III)-mediated radical nitration of bisarylsulfonyl hydrazones is described. In this protocol, the nontoxic and inexpensive Fe(NO3)3·9H2O plays a dual role as catalyst as well as nitro source. The mild conditions, broad substrate scope, and the functional group compatibility are the significant features. The reaction pathway has been demonstrated using DFT calculations, and the products can be subsequently converted into oximes using SnCl2·2H2O in high yields. PMID:26036359

  14. Development of an iron nitrate resistant injector valve for the Space Shuttle orbiter primary thruster

    NASA Technical Reports Server (NTRS)

    Wichmann, Horst; Marquardt, Kaiser; Goforth, Alyssa

    1993-01-01

    Design of a direct-acting valve (DAV) for a primary thruster which is fully interchangeable with a thruster equipped with pilot-operated valves is described. The DAV is based on a bellows to isolate propellants form the actuator for maximum resistance to iron nitrate and other contamination and to select optimum materials for the actuator. It provides improved seal performance under all operating conditions and insensitivity to pressure transients. As compared with the existing pilot-operated valve, the DAV design is much simpler, consists of fewer parts, and will be lower in cost.

  15. Analysis of flow decay potential on Galileo. [oxidizer flow rate reduction by iron nitrate precipitates

    NASA Technical Reports Server (NTRS)

    Cole, T. W.; Frisbee, R. H.; Yavrouian, A. H.

    1987-01-01

    The risks posed to the NASA's Galileo spacecraft by the oxidizer flow decay during its extended mission to Jupiter is discussed. The Galileo spacecraft will use nitrogen tetroxide (NTO)/monomethyl hydrazine bipropellant system with one large engine thrust-rated at a nominal 400 N, and 12 smaller engines each thrust-rated at a nominal 10 N. These smaller thrusters, because of their small valve inlet filters and small injector ports, are especially vulnerable to clogging by iron nitrate precipitates formed by NTO-wetted stainless steel components. To quantify the corrosion rates and solubility levels which will be seen during the Galileo mission, corrosion and solubility testing experiments were performed with simulated Galileo materials, propellants, and environments. The results show the potential benefits of propellant sieving in terms of iron and water impurity reduction.

  16. The role of magnetite nanoparticles in the reduction of nitrate in groundwater by zero-valent iron.

    PubMed

    Cho, Dong-Wan; Song, Hocheol; Schwartz, Franklin W; Kim, Bokseong; Jeon, Byong-Hun

    2015-04-01

    Magnetite nanoparticles were used as an additive material in a zero-valent iron (Fe0) reaction to reduce nitrate in groundwater and its effects on nitrate removal were investigated. The addition of nano-sized magnetite (NMT) to Fe0 reactor markedly increased nitrate reduction, with the rate proportionally increasing with NMT loading. Field emission scanning electron microscopy analysis revealed that NMT aggregates were evenly distributed and attached on the Fe0 surface due to their magnetic properties. The rate enhancement effect of NMT is presumed to arise from its role as a corrosion promoter for Fe0 corrosion as well as an electron mediator that facilitated electron transport from Fe0 to adsorbed nitrate. Nitrate reduction by Fe0 in the presence of NMT proceeded much faster in groundwater (GW) than in de-ionized water. The enhanced reduction of nitrate in GW was attributed to the adsorption or formation of surface complex by the cationic components in GW, i.e., Ca2+ and Mg2+, in the Fe0-H2O interface that promoted electrostatic attraction of nitrate to the reaction sites. Moreover, the addition of NMT imparted superior longevity to Fe0, enabling completion of four nitrate reduction cycles, which otherwise would have been inactivated during the first cycle without an addition of NMT. The results demonstrate the potential applicability of a Fe0/NMT system in the treatment of nitrate-contaminated GW. PMID:25665757

  17. The removal of nitrate by nanoscale iron particles produced using the sodium borohydride method.

    PubMed

    Cho, Hyoung-Chan; Park, Sung Hoon; Ahn, Ho-Geun; Chung, Minchul; Kim, Byungwhan; Kim, Sun-Jae; Seo, Seong-Gyu; Jung, Sang-Chul

    2011-02-01

    This study was conducted to investigate removal of nitrate by nanoscale zero-valent iron (ZVI) particles in aqueous solution. ZVI particles was produced from wasted acid that is by-products of a pickling line at a steel work. The reaction activity of ZVI particles was evaluated through decomposition experiments of NO3-N aqueous solution. Addition of a larger amount of ZVI particles resulted in a higher decomposition rate. ZVI particles showed higher decomposition efficiencies than commercially purchased ZVI particles at all pH values. Both ZVIs showed a higher decomposition rate at a lower pH. Virtually no decomposition reaction was observed at pH of 4 or higher for purchased ZVI. The ZVI particles produced directly from wasted acid by the sodium borohydride method were not easy to handle because they were very small (10-200 nm) and were oxidized easily in the air. PMID:21456267

  18. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems

    USGS Publications Warehouse

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A., III; Yang, Xiaofen; Tuovinen, Olli H.; Dong, Hailiang; Fu, Xiang

    2013-01-01

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO3)2 was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0–24.2 mM Pb(II) added as Pb(NO3)2. Anglesite (PbSO4) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe3(SO4)2(OH)6) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9–17.6 μM regardless of the concentrations of Pb(NO3)2 added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO3)2 addition even when anglesite was removed before inoculation. Experiments with 0–48 mM KNO3 demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO3)2 addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans.

  19. Long-term Fate of Arsenic under the Oxidation of Ferrous Iron by Nitrate.

    NASA Astrophysics Data System (ADS)

    Sun, J.; Prommer, H.; Siade, A. J.; Chillrud, S. N.; Mailloux, B. J.; Bostick, B. C.

    2015-12-01

    In situ precipitation of iron (Fe) minerals can be an effective means of remediating groundwater arsenic (As) contamination. Among different Fe minerals, magnetite is promising as a host-mineral for As in situ immobilization in that it is stable under a wide range of geochemical conditions, including Fe(III) reducing conditions under which As are often mobilized. Our previous laboratory studies suggest that the formation of nanoparticulate magnetite can be achieved by the oxidation of ferrous Fe with nitrate. Magnetite can incorporate As into its structure during formation, in which case desorption and As(V) reduction are less likely. Nanoparticulate magnetite, once formed, can also immobilize As by surface adsorption, and thus serve as a reactive filter when contaminated groundwater migrates through the treatment zone. In this study, a reactive transport model is develop for the magnetite based As immobilization strategy. The initial numerical model development was guided by experimental data and hypothesized processes from the laboratory one-dimensional column studies. Our modeling results suggest that the ratio between Fe(II) and nitrate in the injectant regulates the extent and distribution of magnetite and ferrihydrite formation, and thus regulates the long-term potential of As immobilization. Based on these results, two-dimensional field-scale model scenarios were developed to predict and compare the impact of chemical and operational parameters on the efficiency of the remediation technology. The modeling results, which suggest that long-term groundwater As removal is feasible, favor scenarios that rely on the chromatographic mixing of Fe(II) and nitrate after injection. This study highlights the importance of combining laboratory studies and reactive transport modeling for elucidating the complex hydro-biogeochemical processes that control the fate of As and for up-scaling of the technology.

  20. Association of cardiac injury with iron-increased oxidative and nitrative modifications of the SERCA2a isoform of sarcoplasmic reticulum Ca(2+)-ATPase in diabetic rats.

    PubMed

    Li, Xueli; Li, Wenliang; Gao, Zhonghong; Li, Hailing

    2016-08-01

    The role of iron in the etiology of diabetes complications is not well established. Thus, this study was performed to test whether the iron-induced increase of oxidative/nitrative damage is involved in SERCA2a-related diabetic heart complication. Four randomly divided groups of rats were used: normal control group; iron overload group; diabetes group, and diabetic plus iron overload group. Iron supplementation stimulated cardiomyocyte hypertrophy and led to an increase in cardiac protein carbonyls, nitrotyrosine (3-NT) formation, and iNOS protein expression, thus resulting in abnormal myocardium calcium homeostasis of diabetic rats. The levels of SECA2a oxidation/nitration were significantly increased in the iron overload diabetic rats, along with a decrease in SECA2a expression and activity. In order to elucidate the possible role of iron in SERCA2a dysfunction, the effects of iron (Fe(3+) or hemin) on peroxynitrite (ONOO(-)) induced SERCA2a oxidation and nitration were further investigated in vitro. It was found that tyrosine nitration played more important role in SERCA2a inactivation than thiol oxidation. These results present a potential mechanism in which iron exacerbates the diabetes-induced oxidative/nitrative modification of SERCA2a, which may cause functional deficits in the myocyte associated with diabetic cardiac dysfunction. Our findings may help to further understand the role of iron in the pathogenesis of diabetic complications. PMID:27222135

  1. Arsenic, nitrate, iron, and hardness in ground water, Chena Hot Springs Road, Steele Creek Road, and Gilmore Trail areas, (T.1N., R.1E., FM), Fairbanks, Alaska

    USGS Publications Warehouse

    Krumhardt, Andrea P.

    1982-01-01

    This report presents all data on arsenic, nitrate, iron, and hardness in well water in the Chena Hot Springs Road, Steele Creek Road, and Gilmore Trail area of Fairbanks, Alaska, collected through October 1981. Concentrations range as follows: arsenic - 0 to 5,100 micrograms per liter; nitrate - 0 to 53 milligrams per liter; iron - 0 to 50 milligrams per liter, and hardness - 12 to 1,000 milligrams per liter. The percentage of samples exceeding limits set by the U.S. Environmental Protection Agency are as follows: arsenic - 13%; nitrate - 14%, and iron - 80%. (USGS)

  2. Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron.

    PubMed

    Jiang, Chenghong; Xu, Xuping; Megharaj, Mallavarapu; Naidu, Ravendra; Chen, Zuliang

    2015-10-15

    To investigate the effect of nanoscale zero-valent iron (nZVI) on the growth of Paracoccus sp. strain and biodenitrification under aerobic conditions, specific factors were studied, pH, concentration of nitrate, Fe (II) and carbon dioxide. Low concentration of nZVI (50mg/L) promoted both cell growth and biodegradation of nitrate which rose from 69.91% to 76.16%, while nitrate removal fell to 67.10% in the presence of high nZVI concentration (1000 mg/L). This may be attributed to the ions produced in nZVI corrosion being used as an electron source for the biodegradation of nitrate. However, the excess uptake of Fe (II) causes oxidative damage to the cells. To confirm this, nitrate was completely removed after 20 h when 100mg/L Fe (II) was added to the solution, which is much faster than the control (86.05%, without adding Fe (II)). However, nitrate removal reached only 45.64% after 20 h, with low cell density (OD 600=0.62) in the presence of 300 mg/L Fe (II). Characterization techniques indicated that nZVI adhered to microorganism cell membranes. These findings confirmed that nZVI could affect the activity of the strain and consequently change the biodenitrification. PMID:26047857

  3. Iron availability, nitrate uptake, and exportable new production in the subarctic Pacific. [phytoplankton population growth support and atmospheric CO2 removal

    NASA Technical Reports Server (NTRS)

    Banse, Karl

    1991-01-01

    This paper presents a critique of experimental data and papers by Martin et al. (1989, 1990), who suggested that the phytoplankton growth is iron-limited and that, small additions of iron to large subarctic ocean areas might be a way of removing significant amounts of atmospheric CO2 by increasing phytoplancton growth. Data are presented to show that, in the summer of 1987, the phytoplankton assemblage as a whole was not iron limited, as measured by the bulk removal of nitrate or by the increase of chlorophyll. It is suggested that grazing normally prevents the phytoplankton from reaching concentrations that reduce the iron (and nitrate) to levels that depress division rates drastically.

  4. Arsenic, nitrate, iron, and hardness, in ground water, Goldstream Road, Yankovich Road, and Murphy Dome Road areas (T.1 N, R.2 W, FM), Fairbanks, Alaska

    USGS Publications Warehouse

    Hopkins, Gary C.; Maxwell, Kevin F.

    1985-01-01

    Arsenic, nitrate, iron, and hardness in well water are concerns of homeowners and planners in the Fairbanks North Star Borough, Alaska. Arsenic and nitrate in water may affect human health. Iron and hardness can be aesthetically objectionable, impair plumbing systems, and discolor plumbing fixtures. This report is a compilation of the arsenic, nitrate, iron, and hardness data collected through February 1983 in the Goldstream Road, Murphy Dome Road, and Yankovich-Miller Hill Road areas of Fairbanks. Within these areas, concentrations of arsenic ranged from 0 to 1600 micrograms per liter, nitrate (as nitrogen) ranged from 0 to 78 milligrams per liter, iron ranged from 0 to 46 milligrams per liter, and hardness (as calcium carbonate) ranged from 34 to 1220 milligrams per liter. (USGS)

  5. Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase

    PubMed Central

    Chang, Wei-chen; Layne, Andrew P; Miles, Linde A; Krebs, Carsten

    2014-01-01

    Iron-dependent halogenases employ cis-halo-Fe(IV)-oxo (haloferryl) complexes to functionalize unactivated aliphatic carbon centers, a capability elusive to synthetic chemists. Halogenation requires (1) coordination of a halide anion (Cl− or Br−) to the enzyme's Fe(II) cofactor; (2) coupled activation of O2 and decarboxylation of α-ketoglutarate to generate the haloferryl intermediate; (3) abstraction of hydrogen (H•) from the substrate by the ferryl oxo group; and (4) transfer of the cis halogen as Cl• or Br• to the substrate radical. This enzymatic solution to an unsolved chemical challenge is potentially generalizable to installation of other functional groups, provided that the corresponding anions can support the four requisite steps. We show here that the wild-type halogenase SyrB2 can indeed direct aliphatic nitration and azidation reactions by the same chemical logic. The discovery and enhancement by mutagenesis of these previously unknown reaction types suggests unrecognized or untapped versatility in ferryl-mediated enzymatic C–H-bond activation. PMID:24463698

  6. Simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewater by zero-valent iron.

    PubMed

    Yoshino, Hiroyuki; Tokumura, Masahiro; Kawase, Yoshinori

    2014-01-01

    The zero-valent iron (ZVI) wastewater treatment has been applied to simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewaters. The simultaneous removal occurs by the reactions performed due to the sequential transformation of ZVI under the acidic condition. Fortunately the solution pH of semiconductor acidic wastewaters is low which is effective for the sequential transformation of ZVI. Firstly the reduction of nitrate is taken place by electrons generated by the corrosion of ZVI under acidic conditions. Secondly the ferrous ion generated by the corrosion of ZVI reacts with hydrogen peroxide and generates ·OH radical (Fenton reaction). The Fenton reaction consists of the degradation of hydrogen peroxide and the generation of ferric ion. Finally phosphate precipitates out with iron ions. In the simultaneous removal process, 1.6 mM nitrate, 9.0 mM hydrogen peroxide and 1.0 mM phosphate were completely removed by ZVI within 100, 15 and 15 min, respectively. The synergy among the reactions for the removal of nitrate, hydrogen peroxide and phosphate was found. In the individual pollutant removal experiment, the removal of phosphate by ZVI was limited to 80% after 300 min. Its removal rate was considerably improved in the presence of hydrogen peroxide and the complete removal of phosphate was achieved after 15 min. PMID:24798898

  7. Microbial Iron(II) Oxidation in Littoral Freshwater Lake Sediment: The Potential for Competition between Phototrophic vs. Nitrate-Reducing Iron(II)-Oxidizers

    PubMed Central

    Melton, E. D.; Schmidt, C.; Kappler, A.

    2012-01-01

    The distribution of neutrophilic microbial iron oxidation is mainly determined by local gradients of oxygen, light, nitrate and ferrous iron. In the anoxic top part of littoral freshwater lake sediment, nitrate-reducing and phototrophic Fe(II)-oxidizers compete for the same e− donor; reduced iron. It is not yet understood how these microbes co-exist in the sediment and what role they play in the Fe cycle. We show that both metabolic types of anaerobic Fe(II)-oxidizing microorganisms are present in the same sediment layer directly beneath the oxic-anoxic sediment interface. The photoferrotrophic most probable number counted 3.4·105 cells·g−1 and the autotrophic and mixotrophic nitrate-reducing Fe(II)-oxidizers totaled 1.8·104 and 4.5·104 cells·g−1 dry weight sediment, respectively. To distinguish between the two microbial Fe(II) oxidation processes and assess their individual contribution to the sedimentary Fe cycle, littoral lake sediment was incubated in microcosm experiments. Nitrate-reducing Fe(II)-oxidizing bacteria exhibited a higher maximum Fe(II) oxidation rate per cell, in both pure cultures and microcosms, than photoferrotrophs. In microcosms, photoferrotrophs instantly started oxidizing Fe(II), whilst nitrate-reducing Fe(II)-oxidizers showed a significant lag-phase during which they probably use organics as e− donor before initiating Fe(II) oxidation. This suggests that they will be outcompeted by phototrophic Fe(II)-oxidizers during optimal light conditions; as phototrophs deplete Fe(II) before nitrate-reducing Fe(II)-oxidizers start Fe(II) oxidation. Thus, the co-existence of the two anaerobic Fe(II)-oxidizers may be possible due to a niche space separation in time by the day-night cycle, where nitrate-reducing Fe(II)-oxidizers oxidize Fe(II) during darkness and phototrophs play a dominant role in Fe(II) oxidation during daylight. Furthermore, metabolic flexibility of Fe(II)-oxidizing microbes may play a paramount role in the

  8. Long-term trends in dissolved iron and DOC concentration linked to nitrate depletion in riparian soils

    NASA Astrophysics Data System (ADS)

    Musolff, Andreas; Selle, Benny; Fleckenstein, Jan H.; Oosterwoud, Marieke R.; Tittel, Jörg

    2016-04-01

    The instream concentrations of dissolved organic carbon (DOC) are rising in many catchments of the northern hemisphere. Elevated concentrations of DOC, mainly in the form of colored humic components, increase efforts and costs of drinking water purification. In this study, we evaluated a long-term dataset of 110 catchments draining into German drinking water reservoirs in order to assess sources of DOC and drivers of a potential long-term change. The average DOC concentrations across the wide range of different catchments were found to be well explained by the catchment's topographic wetness index. Higher wetness indices were connected to higher average DOC concentrations, which implies that catchments with shallow topography and pronounced riparian wetlands mobilize more DOC. Overall, 37% of the investigated catchments showed a significant long-term increase in DOC concentrations, while 22% exhibited significant negative trends. Moreover, we found that increasing trends in DOC were positively correlated to trends in dissolved iron concentrations at pH≤6 due to remobilization of DOC previously sorbed to iron minerals. Both, increasing trends in DOC and dissolve iron were found to be connected to decreasing trends and low concentrations of nitrate (below ~6 mg/L). This was especially observed in forested catchments where atmospheric N-depositions were the major source for nitrate availability. In these catchments, we also found long-term increases of phosphate concentrations. Therefore, we argue that dissolved iron, DOC and phosphate were jointly released under iron-reducing conditions when nitrate as a competing electron acceptor was too low in concentrations to prevent the microbial iron reduction. In contrast, we could not explain the observed increasing trends in DOC, iron and phosphate concentrations by the long-term trends of pH, sulfate or precipitation. Altogether this study gives strong evidence that both, source and long-term increases in DOC are

  9. Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles.

    PubMed

    Su, Yiming; Adeleye, Adeyemi S; Huang, Yuxiong; Sun, Xiaoya; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei; Keller, Arturo A

    2014-10-15

    Nanoscale zerovalent iron (nZVI) has demonstrated high efficacy for treating nitrate or cadmium (Cd) contamination, but its efficiency for simultaneous removal of nitrate and Cd has not been investigated. This study evaluated the reactivity of nZVI to the co-contaminants and by-product formation, employed different catalysts to reduce nitrite yield from nitrate, and examined the transformation of nZVI after reaction. Nitrate reduction resulted in high solution pH, negatively charged surface of nZVI, formation of Fe3O4 (a stable transformation of nZVI), and no release of ionic iron. Increased pH and negative charge contributed to significant increase in Cd(II) removal capacity (from 40 mg/g to 188 mg/g) with nitrate present. In addition, nitrate reduction by nZVI could be catalyzed by Cd(II): while 30% of nitrate was reduced by nZVI within 2 h in the absence of Cd(II), complete nitrate reduction was observed in the presence of 40 mg-Cd/L due to the formation of Cd islands (Cd(0) and CdO) on the nZVI particles. While nitrate was reduced mostly to ammonium when Cd(II) was not present or at Cd(II) concentrations ≥ 40 mg/L, up to 20% of the initial nitrate was reduced to nitrite at Cd(II) concentrations < 40 mg/L. Among nZVI particles doped with 1 wt. % Cu, Ag, or Au, nZVI deposited with 1 wt. % Au reduced nitrite yield to less than 3% of the initial nitrate, while maintaining a high Cd(II) removal capacity. PMID:24999115

  10. Potential application of microbial iron redox cycles in nitrate removal and their effects on clay mineral properties

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Dong, H.; Kukkadapu, R. K.; Briggs, B. R.; Zeng, Q.

    2014-12-01

    Phyllosilicates that are ubiquitous in subsurface can serve as an iron source for microbial respiration. The objective of this research is to determine the ability of the phyllosilicate Fe to remove nitrate in subsurface undergoing microbial-driven redox cycles. In this study, thus, a well-characterized reference clay (NAu-2; nontronite), was subjected to redox cycles in a system containing dissimilatory Fe(III)-reducing bacteria, Shewanella putrefaciens CN32, and nitrate-dependent Fe(II)-oxidizing bacteria, Pseudogulbenkiania sp. Strain 2002. Three redox cycles were conducted in bicarbonate- and PIPES-buffered medium. The extents of Fe(III) reduction, Fe(II) oxidation, nitrate reduction, and its various intermediate products were measured by wet chemical methods. For each cycle, Electron Energy Loss Spectroscopy and Mossbauer spectroscopy confirmed Fe oxidation state. Mineralogical changes were identified by using X-ray diffraction (XRD), 57Fe-Mössbauer spectroscopy, and infrared absorption spectroscopy. For all three cycles, nitrate was completely reduced to nitrogen gas under both bicarbonate- and PIPES- buffered conditions. As redox cycle increased, bio-reduction extents of Fe(III) in NAu-2 decreased by 33% and 48% in PIPES- and bicarbonate-buffered medium, respectively; however, bio-oxidation extents increased by 66% and 55% in the same medium, respectively. Despite the change of OH-stretching vibration band and OH-bending vibration bands in NAu-2 structure along Fe redox cycles, XRD data showed interlayer spacing of NAu-2 to be constant along the same Fe redox cycle. 57Fe-Mössbauer spectroscopy indicated complex reduction and re-oxidation pathways. For example, a distinct Fe(II) doublet and a Fe2.5+ feature due to interfacial Fe(II)-Fe(III) electron transfer on clay mineral are prominent in their RT spectra. Both these Fe(II) are partially oxidized by Fe(II)-oxidizing bacteria. The result of this study shows that Fe in biogenically reduced or oxidized NAu-2

  11. Biological Redox Cycling Of Iron In Nontronite And Its Potential Application In Nitrate Removal

    SciTech Connect

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.; Zeng, Qiang; Edelmann, Richard E.; Pentrak, Martin; Agrawal, Abinash

    2015-05-05

    Redox cycling of structural Fe in phyllosilicates provides a potential method to remediate nitrate contamination in natural environment. Past research has only studied chemical redox cycles or a single biologically mediated redox cycle of Fe in phyllosilicates. The objective of this research was to study three microbially driven redox cycles of Fe in one phyllosilicate, nontronite (NAu-2). During the reduction phase structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacteria Shewanella putrefaciens CN32 as mediator in bicarbonate-buffered and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served an electron donor, nitrate as electron acceptor, and nitrate-dependent Fe(II)-oxidizing bacteria Pseudogulbenkiania sp. strain 2002 as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo 3 redox cycles without significant reductive or oxidative dissolution. X-ray diffraction and scanning and transmission electron microscopy revealed that NAu-2 was the dominant residual mineral throughout the 3 redox cycles with some dissolution textures but no significant secondary mineralization. Mössbauer spectroscopy revealed that Fe(II) in bio-reduced samples likely occurred in two distinct environments, at edges and the interior of the NAu-2 structure. Nitrate was completely reduced to nitrogen gas under both buffer conditions and this extent and rate did not change with Fe redox cycles. Mössbauer spectroscopy further revealed that nitrate reduction was coupled to predominant/preferred oxidation of edge Fe(II). These results suggest that structural Fe in phyllosilicates may represent a renewable source to continuously remove nitrate in natural environments.

  12. [Effect of cooking on content of nitrates, vitamin C, magnesium and iron in spinach].

    PubMed

    Astier-Dumas, M

    1975-01-01

    Cooking is known to lower the mineral and vitaminic content of foodstuffs. Recently, contaminant became to be a problem in foods, and it was proposed to use blanching or boiling to diminish contaminant residues in foods, specially vegetables. An example of this attitude is given by the use of blanching to lower nitrates levels in spinach specially prepared for baby foods. PMID:1211733

  13. Nitrate-Dependent Ferrous Iron Oxidation by Anaerobic Ammonium Oxidation (Anammox) Bacteria

    PubMed Central

    Oshiki, M.; Ishii, S.; Yoshida, K.; Fujii, N.; Ishiguro, M.; Satoh, H.

    2013-01-01

    We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3− to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1 min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+ mg protein−1 min−1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3− by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3− ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3− reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1 min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2− to consumed NH4+ (ΔNO2−/ΔNH4+) and produced NO3− to consumed NH4+ (ΔNO3−/ΔNH4+). These reactions are preferable to the application of anammox processes for wastewater treatment. PMID:23624480

  14. Enhanced and Stabilized Arsenic Retention in Microcosms through the Microbial Oxidation of Ferrous Iron by Nitrate

    PubMed Central

    SUN, JING; CHILLRUD, STEVEN N.; MAILLOUX, BRIAN J.; STUTE, MARTIN; SINGH, RAJESH; DONG, HAILIANG; LEPRE, CHRISTOPHER J.; BOSTICK, BENJAMIN C.

    2016-01-01

    Magnetite strongly retains As, and is relatively stable under Fe(III)-reducing conditions common in aquifers that release As. Here, laboratory microcosm experiments were conducted to investigate a potential As remediation method involving magnetite formation, using groundwater and sediments from the Vineland Superfund site. The microcosms were amended with various combinations of nitrate, Fe(II)(aq)(as ferrous sulfate) and lactate, and were incubated for more than 5 weeks. In the microcosms enriched with 10 mM nitrate and 5 mM Fe(II)(aq), black magnetic particles were produced, and As removal from solution was observed even under sustained Fe(III) reduction stimulated by the addition of 10 mM lactate. The enhanced As retention was mainly attributed to co-precipitation within magnetite and adsorption on a mixture of magnetite and ferrihydrite. Sequential chemical extraction, X-ray absorption spectroscopy and magnetic susceptibility measurements showed that these minerals formed at pH 6 – 7 following nitrate-Fe(II) addition, and As-bearing magnetite was stable under reducing conditions. Scanning electron microscopy and X-ray diffraction indicated that nano-particulate magnetite was produced as coatings on fine sediments, and no aging effect was detected on morphology over the course of incubation. These results suggest that a magnetite based strategy may be a long-term remedial option for As-contaminated aquifers. PMID:26454120

  15. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate.

    PubMed

    Sun, Jing; Chillrud, Steven N; Mailloux, Brian J; Stute, Martin; Singh, Rajesh; Dong, Hailiang; Lepre, Christopher J; Bostick, Benjamin C

    2016-02-01

    Magnetite strongly retains As, and is relatively stable under Fe(III)-reducing conditions common in aquifers that release As. Here, laboratory microcosm experiments were conducted to investigate a potential As remediation method involving magnetite formation, using groundwater and sediments from the Vineland Superfund site. The microcosms were amended with various combinations of nitrate, Fe(II) (aq) (as ferrous sulfate) and lactate, and were incubated for more than 5 weeks. In the microcosms enriched with 10 mM nitrate and 5 mM Fe(II) (aq), black magnetic particles were produced, and As removal from solution was observed even under sustained Fe(III) reduction stimulated by the addition of 10 mM lactate. The enhanced As retention was mainly attributed to co-precipitation within magnetite and adsorption on a mixture of magnetite and ferrihydrite. Sequential chemical extraction, X-ray absorption spectroscopy and magnetic susceptibility measurements showed that these minerals formed at pH 6-7 following nitrate-Fe(II) addition, and As-bearing magnetite was stable under reducing conditions. Scanning electron microscopy and X-ray diffraction indicated that nano-particulate magnetite was produced as coatings on fine sediments, and no aging effect was detected on morphology over the course of incubation. These results suggest that a magnetite based strategy may be a long-term remedial option for As-contaminated aquifers. PMID:26454120

  16. Inhibition of nitrate reduction by NaCl adsorption on a nano-zero-valent iron surface during a concentrate treatment for water reuse.

    PubMed

    Hwang, Yuhoon; Kim, Dogun; Shin, Hang-Sik

    2015-01-01

    Nanoscale zero-valent iron (NZVI) has been considered as a possible material to treat water and wastewater. However, it is necessary to verify the effect of the matrix components in different types of target water. In this study, different effects depending on the sodium chloride (NaCl) concentration on reductions of nitrates and on the characteristics of NZVI were investigated. Although NaCl is known as a promoter of iron corrosion, a high concentration of NaCl (>3 g/L) has a significant inhibition effect on the degree of NZVI reactivity towards nitrate. The experimental results were interpreted by a Langmuir-Hinshelwood-Hougen-Watson reaction in terms of inhibition, and the decreased NZVI reactivity could be explained by the increase in the inhibition constant. As a result of a chloride concentration analysis, it was verified that 7.7-26.5% of chloride was adsorbed onto the surface of NZVI. Moreover, the change of the iron corrosion product under different NaCl concentrations was investigated by a surface analysis of spent NZVI. Magnetite was the main product, with a low NaCl concentration (0.5 g/L), whereas amorphous iron hydroxide was observed at a high concentration (12 g/L). Though the surface was changed to permeable iron hydroxide, the Fe(0) in the core was not completely oxidized. Therefore, the inhibition effect of NaCl could be explained as the competitive adsorption of chloride and nitrate. PMID:25358487

  17. Biodegradation of phenols in a sandstone aquifer under aerobic conditions and mixed nitrate and iron reducing conditions

    NASA Astrophysics Data System (ADS)

    Broholm, Mette M.; Arvin, Erik

    2000-08-01

    Ammonia liquor with very high concentrations of phenol and alkylated phenols is known to have leaked into the subsurface at a former coal carbonization plant in the UK, giving high concentrations of ammonium in the groundwater. In spite of this, no significant concentrations of phenols were found in the groundwater. The potential for biodegradation of the phenols in the sandstone aquifer at the site has been investigated in laboratory microcosms under aerobic (oxygen amended) and mixed nitrate and iron reducing (nitrate enriched and unamended) anaerobic conditions, at a range of concentrations (low: ˜5 mg l -1, high: ˜60 mg l -1, and very high: ˜600 mg l -1) and in the presence of other organic coal-tar compounds (mono- and polyaromatic hydrocarbons (BTEXs and PAHs) and heterocyclic compounds (NSOs)) and ammonia liquor. Sandstone cores and groundwater for the microcosms were collected from within the anaerobic ammonium plume at the field site. Fast and complete degradation of phenol, o- and p-cresol, 2,5- and 3,4-xylenol with no or very short initial lag-phases was observed under aerobic conditions at low concentrations. 2,6- and 3,5-Xylenol were degraded more slowly and 3,5-xylenol degradation was only just complete after about 1 year. The maximum rates of total phenols degradation in duplicate aerobic microcosms were 1.06 and 1.76 mg l -1 day -1. The degradation of phenols in nitrate enriched and unamended anaerobic microcosms was similar. Fast and complete biodegradation of phenol, cresols, 3,4-xylenol and 3,5-xylenol was observed after short lag-phases in the anaerobic microcosms. 2,5-xylenol was partially degraded after a longer lag-phase and 2,6-xylenol persisted throughout the 3 month long experiments. The maximum rates of total phenols degradation in duplicate nitrate enriched and unamended anaerobic microcosms were 0.30-0.38 and 0.29-0.31 mg l -1 day -1, respectively. The highest phenols concentrations in the anaerobic microcosms apparently required

  18. Impact of orchard and tillage management practices on soil leaching of atrazine, potassium, magnesium, manganese, iron, ammonium, nitrates and phosphates

    NASA Astrophysics Data System (ADS)

    Szajdak, L.; Lipiec, J.; Siczek, A.; Kotowska, U.; Nosalewicz, A.

    2009-04-01

    The experiments were carried out on an Orthic Luvisol developed from loess, over limestone, at the experimental field of Lublin Agricultural University in Felin (51o15'N, 22o35'E), Poland. The investigation deals with the problems of leaching's rate of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,2,3-triazine), potassium, magnesium, manganese, iron, ammonium, nitrates and phosphates from two management systems of soil: (i) conventionally tilled field with main tillage operations including stubble cultivator (10 cm) + harrowing followed by mouldboard ploughing to 20 cm depth, and crop rotation including selected cereals, root crops and papillionaceous crops, (ii) 35-year-old apple orchard field (100x200m) with a permanent sward that was mown in the inter-rows during the growing season. The conventionally tilled plot was under the current management practice for approximately 30 years. Field sites were close to each other (about 150 m). Core samples of 100 cm3 volume and 5 cm diameter were taken from two depths 0-10 cm and 10-20 cm, and were used to determine the soil water characteristic curve. It was observed that management practices impacted on the physic-chemical properties of soils. pH (in H2O) in tilled soil ranged from 5.80 to 5.91. However soil of orchard soil revealed higher values of pH than tilled soil and ranged from 6.36 to 6.40. The content of organic carbon for tilled soil ranged from 1.13 to 1.17%, but in orchard soil from 1.59 to 1.77%. Tillled soil showed broader range of bulk density 1.38-1.62 mg m-3, than orchard soil 1.33-134 mg m-3. The first-order kinetic reaction model was fitted to the experimental atrazine, potassium, magnesium, manganese, iron, nitrates, ammonium and phosphates leaching vs. time data. The concentrations of leached chemical compounds revealed linear curves. The correlation coefficients ranged from -0.873 to -0.993. The first-order reaction constants measured for the orchard soils were from 3.8 to 19 times higher than

  19. Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation

    NASA Astrophysics Data System (ADS)

    Miot, Jennyfer; Li, Jinhua; Benzerara, Karim; Sougrati, Moulay Tahar; Ona-Nguema, Georges; Bernard, Sylvain; Jumas, Jean-Claude; Guyot, François

    2014-08-01

    Biomineralization of magnetite is a central geomicrobiological process that might have played a primordial role over Earth’s history, possibly leaving traces of life in the geological record or controlling trace metal(loid)s and organic pollutants mobility in modern environments. Magnetite biomineralization has been attributed to two main microbial pathways to date (namely magnetotactic bacteria and dissimilatory iron-reducing bacteria). Here, we uncover a new route of magnetite biomineralization involving the anaerobic nitrate-reducing iron(II) oxidizing bacterium Acidovorax sp. strain BoFeN1. Using transmission electron microscopy, scanning transmission X-ray microscopy, transmission Mössbauer spectroscopy and rock magnetic analyses, this strain is shown to promote the transformation of hydroxychloride green rust in equilibrium with dissolved Fe(II) to (1) periplasmic lepidocrocite (γ-FeOOH) and (2) extracellular magnetite, thus leading to strong redox heterogeneities at the nanometer scale. On the one hand, lepidocrocite was associated with protein moieties and exhibited an anisotropic texture, with the elongated axis parallel to the cell wall. On the other hand, magnetite crystals exhibited grain sizes and magnetic properties consistent with stable single domain particles. By comparison, abiotic controls led to a very slow (4 months vs. 2 days in BoFeN1 cultures) and incomplete oxidation of hydroxychloride green rust towards magnetite. As this abiotic magnetite exhibited the same size and magnetic properties (stable single domain particles) as magnetite produced in BoFeN1 cultures, only the co-occurrence of textured Fe(III)-oxides and magnetite, associated with the persistence of organic carbon molecules, might constitute valuable biosignatures to be looked for in the geological record. Our results furthermore contribute to a more complex picture of Fe redox cycling in the environment, providing an additional process of Fe(II)-bearing phase

  20. Plasma levels of aminothiols, nitrite, nitrate, and malondialdehyde in myelodysplastic syndromes in the context of clinical outcomes and as a consequence of iron overload.

    PubMed

    Pimková, Kristýna; Chrastinová, Leona; Suttnar, Jiří; Štikarová, Jana; Kotlín, Roman; Čermák, Jaroslav; Dyr, Jan Evangelista

    2014-01-01

    The role of oxidative stress in the initiation and progression of myelodysplastic syndromes (MDS) as a consequence of iron overload remains unclear. In this study we have simultaneously quantified plasma low-molecular-weight aminothiols, malondialdehyde, nitrite, and nitrate and have studied their correlation with serum iron/ferritin levels, patient treatment (chelation therapy), and clinical outcomes. We found significantly elevated plasma levels of total, oxidized, and reduced forms of cysteine (P < 0.001), homocysteine (P < 0.001), and cysteinylglycine (P < 0.006) and significantly depressed levels of total and oxidized forms of glutathione (P < 0.03) and nitrite (P < 0.001) in MDS patients compared to healthy donors. Moreover, total (P < 0.032) and oxidized cysteinylglycine (P = 0.029) and nitrite (P = 0.021) differed significantly between the analyzed MDS subgroups with different clinical classifications. Malondialdehyde levels in plasma correlated moderately with both serum ferritin levels (r = 0.78, P = 0.001) and serum free iron levels (r = 0.60, P = 0.001) and were significantly higher in patients with iron overload. The other analyzed compounds lacked correlation with iron overload (represented by serum iron/ferritin levels). For the first time our results have revealed significant differences in the concentrations of plasma aminothiols in MDS patients, when compared to healthy donors. We found no correlation of these parameters with iron overload and suggest the role of oxidative stress in the development of MDS disease. PMID:24669287

  1. Dynamic global patterns of nitrate, phosphate, silicate, and iron availability and phytoplankton community composition from remote sensing data

    NASA Astrophysics Data System (ADS)

    Kamykowski, Daniel; Zentara, Sara-Joan; Morrison, John M.; Switzer, Anne C.

    2002-12-01

    Satellites routinely provide frequent, large-scale, near-surface views of many oceanographic variables pertinent to plankton ecology, but nutrient fertility remains problematic. A recently derived set of nitrate (N), phosphate (P), and silicate (S) nutrient depletion temperatures (NDT) were subtracted from AVHRR-derived sea surface temperatures for March 1999 through June 2000 to determine eight categories of temporally varying N, P, and S presence/absence in the world ocean. Complementary midmonth, aerosol optical thickness (70°N to 70°S) and precipitation (40°N to 40°S), obtained from the AVHRR Pathfinder effort and the TRMM microwave imager, respectively, represented iron (F) presence (>10%)/absence (<10%) in the world ocean as dry and wet (40°N to 40°S) or just dry (40°N-70°N and 40°S-70°S) deposition of atmospheric dust. The resulting 16 N, P, S, and F presence/absence categories provided a dynamic view of seasonal and interannual nutrient variability in the world ocean. SeaWiFS chlorophyll a maps for April, July, and October 1999 and January 2000 were compared to the N, P, S, and F categories from these months. Phytoplankton cell size and taxonomic composition categories linked to each of the 16 nutrient availability categories translated the nutrient associations with chlorophyll a into an inferred phytoplankton community structure. Consideration of additional bottom-up (like solar irradiance exposure) and top-down (like grazing by zooplankton) influences on size and species/class specific net phytoplankton growth can improve the assignment of inferred phytoplankton community structure. The proposed dynamic approach toward monitoring nutrient availability can contribute to refined estimates of biogeochemical fluxes in the world ocean.

  2. Denitrification-coupled iron(ii) oxidation: a key process regulating the fate and transport of nitrate, phosphate, and arsenic in a wastewater-contaminated aquifer

    USGS Publications Warehouse

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Hart, C. P.

    2008-01-01

    Denitrification in the subsurface is often viewed as a heterotrophic process. However, some denitrifiers can also utilize inorganic electron donors. In particular, Fe(II), which is common in many aquifers, could be an important reductant for contaminant nitrate. Anoxic iron oxidation would have additional consequences, including decreased mobility for species like arsenic and phosphate, which bind strongly to hydrous Fe(III) oxide. A study was conducted in a wastewater contaminant plume on Cape Cod to assess the potential for denitrification- coupled Fe(II) oxidation. Previous changes in wastewater disposal upgradient of the study area had resulted in nitrate being transported into a portion of the anoxic zone of the plume and decreased concentrations of Fe(II), phosphate, and arsenic. A series of anoxic tracers (groundwater + nitrate + bromide) were injected into the unaffected, Fe(II)-containing zone under natural gradient conditions. Denitrification was stimulated within 1 m of transport (4 days) for both low and high (100 & 1000 μM) nitrate additions, initially producing stiochiometric quantities of nitrous oxide (>300 μM N) and trace amounts of nitrite. Subsequent injections at the same site reduced nitrate even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and this was accompanied by an increase in colloidal Fe(III) and decreases in pH, total arsenic, and phosphate concentrations. All plume constituents returned to background levels several weeks after the tracer tests were completed. Groundwater microorganisms collected on filters during the tracer test rapidly and immediately reduced nitrite and oxidized Fe(II) in 3-hr laboratory incubations. Several pure cultures of Fe(II)-oxidizing denitrifying bacteria were isolated from core material and subsequently characterized. All of the isolates were mixotrophic, simultaneously oxidizing organic carbon and Fe

  3. Denitrification-Coupled Iron(II) Oxidation: A Key Process Regulating the Fate and Transport of Nitrate, Phosphate, and Arsenic in a Wastewater-Contaminated Aquifer

    NASA Astrophysics Data System (ADS)

    Smith, R. L.; Kent, D. B.; Repert, D. A.; Hart, C. P.

    2007-12-01

    Denitrification in the subsurface is often viewed as a heterotrophic process. However, some denitrifiers can also utilize inorganic electron donors. In particular, Fe(II), which is common in many aquifers, could be an important reductant for contaminant nitrate. Anoxic iron oxidation would have additional consequences, including decreased mobility for species like arsenic and phosphate, which bind strongly to hydrous Fe(III) oxide. A study was conducted in a wastewater contaminant plume on Cape Cod to assess the potential for denitrification- coupled Fe(II) oxidation. Previous changes in wastewater disposal upgradient of the study area had resulted in nitrate being transported into a portion of the anoxic zone of the plume and decreased concentrations of Fe(II), phosphate, and arsenic. A series of anoxic tracers (groundwater + nitrate + bromide) were injected into the unaffected, Fe(II)-containing zone under natural gradient conditions. Denitrification was stimulated within 1 m of transport (4 days) for both low and high (100 & 1000 μM) nitrate additions, initially producing stiochiometric quantities of nitrous oxide (>300 μM N) and trace amounts of nitrite. Subsequent injections at the same site reduced nitrate even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and this was accompanied by an increase in colloidal Fe(III) and decreases in pH, total arsenic, and phosphate concentrations. All plume constituents returned to background levels several weeks after the tracer tests were completed. Groundwater microorganisms collected on filters during the tracer test rapidly and immediately reduced nitrite and oxidized Fe(II) in 3-hr laboratory incubations. Several pure cultures of Fe(II)-oxidizing denitrifying bacteria were isolated from core material and subsequently characterized. All of the isolates were mixotrophic, simultaneously oxidizing organic carbon and Fe

  4. 2′-Deoxymugineic acid promotes growth of rice (Oryza sativa L.) by orchestrating iron and nitrate uptake processes under high pH conditions

    PubMed Central

    Araki, Ryoichi; Kousaka, Kayoko; Namba, Kosuke; Murata, Yoshiko; Murata, Jun

    2015-01-01

    Poaceae plants release 2′-deoxymugineic acid (DMA) and related phytosiderophores to chelate iron (Fe), which often exists as insoluble Fe(III) in the rhizosphere, especially under high pH conditions. Although the molecular mechanisms behind the biosynthesis and secretion of DMA have been studied extensively, little information is known about whether DMA has biological roles other than chelating Fe in vivo. Here, we demonstrate that hydroponic cultures of rice (Oryza sativa) seedlings show almost complete restoration in shoot height and soil-plant analysis development (SPAD) values after treatment with 3–30 μm DMA at high pH (pH 8.0), compared with untreated control seedlings at normal pH (pH 5.8). These changes were accompanied by selective accumulation of Fe over other metals. While this enhanced growth was evident under high pH conditions, DMA application also enhanced seedling growth under normal pH conditions in which Fe was fairly accessible. Microarray and qRT-PCR analyses revealed that exogenous DMA application attenuated the increased expression levels of various genes related to Fe transport and accumulation. Surprisingly, despite the preferential utilization of ammonium over nitrate as a nitrogen source by rice, DMA application also increased nitrate reductase activity and the expression of genes encoding high-affinity nitrate transporters and nitrate reductases, all of which were otherwise considerably lower under high pH conditions. These data suggest that exogenous DMA not only plays an important role in facilitating the uptake of environmental Fe, but also orchestrates Fe and nitrate assimilation for optimal growth under high pH conditions. PMID:25393516

  5. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  6. Enhanced reduction of nitrate by supported nanoscale zero-valent iron prepared in ethanol-water solution.

    PubMed

    Park, Heesu; Park, Yong-Min; Oh, Soo-Kyeong; You, Kyoung-Min; Lee, Sang-Hyup

    2009-03-01

    Nanoscale zero-valent iron is famous for its high reactivity originating from its high surface area, and has emerged as an extension of granular zero-valent iron technology. Due to its extremely small size, nanosized iron cannot be used as a medium in a permeable reactive barrier system, which is the most popular application of granular iron. To overcome this shortcoming, supported nanoscale zero-valent iron was created. In addition to this, the preparation solution was modified to enhance the reactivity. An ethanol/water solvent containing a dispersant of polyethylene glycol was used to synthesize nanoscale iron. This preparation was done in the presence of an ion-exchange resin as a supporting material. Nanoscale zero-valent iron was formed and bound to the granular resin at the same time through the borohydride reduction of an iron salt, and the resulting product was compared with that prepared in a conventional way of using water only. Switching the preparation solution increased the supported nanoscale iron's BET surface area and Fe content from 31.63 m2 g(-1) and 18.19 mg Fe g(-1) to 38.10 m2 g(-1) and 22.44 mg Fe g(-1), respectively. Kinetic analysis from batch tests revealed that a higher denitrification rate was achieved by the supported nanoscale zero-valent iron prepared in the modified way. The pseudo-first-order reaction constant of 0.462 h(-1) suggested that the reactivity of the supported iron, prepared in ethanol/water, increased by 61% compared with the one prepared in water. The higher rates of reaction, based on higher specific area and iron content, suggest that this new supported nanoscale iron can be used successfully for permeable reactive barriers. PMID:19438058

  7. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans

    PubMed Central

    Beller, Harry R.; Zhou, Peng; Legler, Tina C.; Chakicherla, Anu; Kane, Staci; Letain, Tracy E.; A. O’Day, Peggy

    2013-01-01

    Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process. PMID:24065960

  8. Structural and Molecular Basis of the Peroxynitrite-mediated Nitration and Inactivation of Trypanosoma cruzi Iron-Superoxide Dismutases (Fe-SODs) A and B

    PubMed Central

    Martinez, Alejandra; Peluffo, Gonzalo; Petruk, Ariel A.; Hugo, Martín; Piñeyro, Dolores; Demicheli, Verónica; Moreno, Diego M.; Lima, Analía; Batthyány, Carlos; Durán, Rosario; Robello, Carlos; Martí, Marcelo A.; Larrieux, Nicole; Buschiazzo, Alejandro; Trujillo, Madia; Radi, Rafael; Piacenza, Lucía

    2014-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, contains exclusively iron-dependent superoxide dismutases (Fe-SODs) located in different subcellular compartments. Peroxynitrite, a key cytotoxic and oxidizing effector biomolecule, reacted with T. cruzi mitochondrial (Fe-SODA) and cytosolic (Fe-SODB) SODs with second order rate constants of 4.6 ± 0.2 × 104 m−1 s−1 and 4.3 ± 0.4 × 104 m−1 s−1 at pH 7.4 and 37 °C, respectively. Both isoforms are dose-dependently nitrated and inactivated by peroxynitrite. Susceptibility of T. cruzi Fe-SODA toward peroxynitrite was similar to that reported previously for Escherichia coli Mn- and Fe-SODs and mammalian Mn-SOD, whereas Fe-SODB was exceptionally resistant to oxidant-mediated inactivation. We report mass spectrometry analysis indicating that peroxynitrite-mediated inactivation of T. cruzi Fe-SODs is due to the site-specific nitration of the critical and universally conserved Tyr35. Searching for structural differences, the crystal structure of Fe-SODA was solved at 2.2 Å resolution. Structural analysis comparing both Fe-SOD isoforms reveals differences in key cysteines and tryptophan residues. Thiol alkylation of Fe-SODB cysteines made the enzyme more susceptible to peroxynitrite. In particular, Cys83 mutation (C83S, absent in Fe-SODA) increased the Fe-SODB sensitivity toward peroxynitrite. Molecular dynamics, electron paramagnetic resonance, and immunospin trapping analysis revealed that Cys83 present in Fe-SODB acts as an electron donor that repairs Tyr35 radical via intramolecular electron transfer, preventing peroxynitrite-dependent nitration and consequent inactivation of Fe-SODB. Parasites exposed to exogenous or endogenous sources of peroxynitrite resulted in nitration and inactivation of Fe-SODA but not Fe-SODB, suggesting that these enzymes play distinctive biological roles during parasite infection of mammalian cells. PMID:24616096

  9. Steady state protein levels in Geobacter metallireducens grown with Iron (III) citrate or nitrate as terminal electron acceptor.

    SciTech Connect

    Ahrendt, A. J.; Tollaksen, S. L.; Lindberg, C.; Zhu, W.; Yates, J. R., III; Nevin, K. P.; Lovley, D.; Giometti, C. S.; Biosciences Division; The Scripps Research Inst.; Univ. of Massachusetts

    2007-01-01

    Geobacter species predominate in aquatic sediments and submerged soils where organic carbon sources are oxidized with the reduction of Fe(III). The natural occurrence of Geobacter in some waste sites suggests this microorganism could be useful for bioremediation if growth and metabolic activity can be regulated. 2-DE was used to monitor the steady state protein levels of Geobacter metallireducens grown with either Fe(III) citrate or nitrate to elucidate metabolic differences in response to different terminal electron acceptors present in natural environments populated by Geobacter. Forty-six protein spots varied significantly in abundance (p<0.05) between the two growth conditions; proteins were identified by tryptic peptide mass and peptide sequence determined by MS/MS. Enzymes involved in pyruvate metabolism and the tricarboxylic acid (TCA) cycle were more abundant in cells grown with Fe(III) citrate, while proteins associated with nitrate metabolism and sensing cellular redox status along with several proteins of unknown function were more abundant in cells grown with nitrate. These results indicate a higher level of flux through the TCA cycle in the presence of Fe(III) compared to nitrate. The oxidative stress response observed in previous studies of Geobacter sulfurreducens grown with Fe(III) citrate was not seen in G. metallireducens.

  10. Genome-Enabled Studies of Anaerobic, Nitrate-Dependent Iron Oxidation in the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Zhou, P.; Legler, T. C.; Chakicherla, A.; O'Day, P. A.

    2013-12-01

    Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. Of the transposon mutants defective in Fe(II) oxidation, one mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process.

  11. IRON

    EPA Science Inventory

    The document surveys the effects of organic and inorganic iron that are relevant to humans and their environment. The biology and chemistry of iron are complex and only partially understood. Iron participates in oxidation reduction processes that not only affect its geochemical m...

  12. Sustaining reactivity of Fe(0) for nitrate reduction via electron transfer between dissolved Fe(2+) and surface iron oxides.

    PubMed

    Han, Luchao; yang, Li; Wang, Haibo; Hu, Xuexiang; Chen, Zhan; Hu, Chun

    2016-05-01

    The mechanism of the effects of Fe(2+)(aq) on the reduction of NO3(-) by Fe(0) was investigated. The effects of initial pH on the rate of NO3(-) reduction and the Fe(0) surface characteristics revealed Fe(2+)(aq) and the characteristics of minerals on the surface of Fe(0) played an important role in NO3(-) reduction. Both NO3(-) reduction and the decrease of Fe(2+)(aq) exhibited similar kinetics and were promoted by each other. This promotion was associated with the types of the surface iron oxides of Fe(0). Additionally, further reduction of NO3(-) produced more surface iron oxides, supplying more active sites for Fe(2+)(aq), resulting in more electron transfer between Fe(2+) and surface iron oxides and a higher reaction rate. Using the isotope specificity of (57)Fe Mossbauer spectroscopy, it was verified that the Fe(2+)(aq) was continuously converted into Fe(3+) oxides on the surface of Fe(0) and then converted into Fe3O4 via electron transfer between Fe(2+) and the pre-existing surface Fe(3+) oxides. Electrochemistry measurements confirmed that the spontaneous electron transfer between the Fe(2+) and structural Fe(3+) species accelerated the interfacial electron transfer between the Fe species and NO3(-). This study provides a new insight into the interaction between Fe species and contaminants and interface electron transfer. PMID:26835898

  13. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  14. Iron

    MedlinePlus

    ... organ failure, coma, convulsions, and death. Child-proof packaging and warning labels on iron supplements have greatly ... levodopa that the body absorbs, making it less effective. Levodopa, found in Sinemet® and Stalevo®, is used ...

  15. Remediation of nitrate-nitrogen contaminated groundwater using a pilot-scale two-layer heterotrophic-autotrophic denitrification permeable reactive barrier with spongy iron/pine bark.

    PubMed

    Huang, Guoxin; Huang, Yuanying; Hu, Hongyan; Liu, Fei; Zhang, Ying; Deng, Renwei

    2015-07-01

    A novel two-layer heterotrophic-autotrophic denitrification (HAD) permeable reactive barrier (PRB) was proposed for remediating nitrate-nitrogen contaminated groundwater in an oxygen rich environment, which has a packing structure of an upstream pine bark layer and a downstream spongy iron and river sand mixture layer. The HAD PRB involves biological deoxygenation, heterotrophic denitrification, hydrogenotrophic denitrification, and anaerobic Fe corrosion. Column and batch experiments were performed to: (1) investigate the NO3(-)-N removal and inorganic geochemistry; (2) explore the nitrogen transformation and removal mechanisms; (3) identify the hydrogenotrophic denitrification capacity; and (4) evaluate the HAD performance by comparison with other approaches. The results showed that the HAD PRB could maintain constant high NO3(-)-N removal efficiency (>91%) before 38 pore volumes (PVs) of operation (corresponding to 504d), form little or even negative NO2(-)-N during the 45 PVs, and produce low NH4(+)-N after 10 PVs. Aerobic heterotrophic bacteria played a dominant role in oxygen depletion via aerobic respiration, providing more CO2 for hydrogenotrophic denitrification. The HAD PRB significantly relied on heterotrophic denitrification. Hydrogenotrophic denitrification removed 10-20% of the initial NO3(-)-N. Effluent total organic carbon decreased from 403.44mgL(-1) at PV 1 to 9.34mgL(-1) at PV 45. Packing structure had a noticeable effect on its denitrification. PMID:25747301

  16. Nitrate reduction

    DOEpatents

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  17. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  18. Iron(III) complexes of 2-(1H-benzo[d]imidazol-2-yl)phenol and acetate or nitrate as catalysts for epoxidation of olefins with hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Dutta, Amit Kumar; Samanta, Suvendu; Dutta, Supriya; Lucas, C. Robert; Dawe, Louise N.; Biswas, Papu; Adhikary, Bibhutosh

    2016-07-01

    Cheap and environmentally friendly Fe(III) catalysts [Fe(L)2(CH3COO)] (1) and [Fe(L)2(NO3)]·2CH3OH (2) where HL = 2-(1H-benzo[d]imidazol-2-yl)phenol for epoxidation of olefins have been developed. The catalysts have been characterized by elemental analyses, IR, UV-Vis spectroscopy and by X-ray crystallography. The X-ray structures reveal mononuclear compounds having a bidentate acetate or nitrate in 1 and 2, respectively. Catalytic epoxidations of styrene and cyclohexene have been carried out homogeneously by using 30% aqueous hydrogen peroxide in acetonitrile in the presence of catalytic amounts of 1 or 2. Yields of the respective epoxides were fair (1) to good (2) and selectivities were good in all cases although 2 produced two to three times the yield, depending on the substrate, than 1 and higher selectivity as well. A hypothesis for these differences in catalytic efficacy between 1 and 2 that is consistent with mechanistic details of related enzymatic and biomimetic model systems is proposed. Herein we report [Fe(L)2(NO3)]·2CH3OH (2) as the first structurally characterized non-heme iron epoxidation catalyst with a bidentate nitrate ligand.

  19. ARSENATE AND ARSENITE REMOVAL BY ZERO-VALENT IRON: EFFECTS OF PHOSPHATE, SILICATE, CARBONATE, BORATE, SULFATE, CHROMATE, MOLYBDATE, AND NITRATE, RELATIVE TO CHLORIDE

    EPA Science Inventory

    Batch tests were performed to evaluate the effects of inorganic anion competition on the kinetics of arsenate (As(V)) and arsenite (As(III)) removal by zerovalent iron (Peerless Fe0) in aqueous solution. The oxyanions underwent either sorption-dominated reactions (phosphate, sil...

  20. Nitrate-Dependent Regulation of Acetate Biosynthesis and Nitrate Respiration by Clostridium thermoaceticum

    PubMed Central

    Arendsen, Alexander F.; Soliman, Mohsin Q.; Ragsdale, Stephen W.

    1999-01-01

    Nitrate has been shown to shunt the electron flow in Clostridium thermoaceticum from CO2 to nitrate, but it did not influence the levels of enzymes involved in the Wood-Ljungdahl pathway (J. M. Fröstl, C. Seifritz, and H. L. Drake, J. Bacteriol. 178:4597–4603, 1996). Here we show that under some growth conditions, nitrate does in fact repress proteins involved in the Wood-Ljungdahl pathway. The CO oxidation activity in crude extracts of nitrate (30 mM)–supplemented cultures was fivefold less than that of nitrate-free cultures, while the H2 oxidation activity was six- to sevenfold lower. The decrease in CO oxidation activity paralleled a decrease in CO dehydrogenase (CODH) protein level, as confirmed by Western blot analysis. Protein levels of CODH in nitrate-supplemented cultures were 50% lower than those in nitrate-free cultures. Western blots analyses showed that nitrate also decreased the levels of the corrinoid iron-sulfur protein (60%) and methyltransferase (70%). Surprisingly, the decrease in activity and protein levels upon nitrate supplementation was observed only when cultures were continuously sparged. Northern blot analysis indicates that the regulation of the proteins involved in the Wood-Ljungdahl pathway by nitrate is at the transcriptional level. At least a 10-fold decrease in levels of cytochrome b was observed with nitrate supplementation whether the cultures were sparged or stoppered. We also detected nitrate-inducible nitrate reductase activity (2 to 39 nmol min−1 mg−1) in crude extracts of C. thermoaceticum. Our results indicate that nitrate coordinately represses genes encoding enzymes and electron transport proteins in the Wood-Ljungdahl pathway and activates transcription of nitrate respiratory proteins. CO2 also appears to induce expression of the Wood-Ljungdahl pathway genes and repress nitrate reductase activity. PMID:10049380

  1. Characterization of toluene and ethylbenzene biodegradation under nitrate-, iron(III)- and manganese(IV)-reducing conditions by compound-specific isotope analysis.

    PubMed

    Dorer, Conrad; Vogt, Carsten; Neu, Thomas R; Stryhanyuk, Hryhoriy; Richnow, Hans-Hermann

    2016-04-01

    Ethylbenzene and toluene degradation under nitrate-, Mn(IV)-, or Fe(III)-reducing conditions was investigated by compound specific stable isotope analysis (CSIA) using three model cultures (Aromatoleum aromaticum EbN1, Georgfuchsia toluolica G5G6, and a Azoarcus-dominated mixed culture). Systematically lower isotope enrichment factors for carbon and hydrogen were observed for particulate Mn(IV). The increasing diffusion distances of toluene or ethylbenzene to the solid Mn(IV) most likely caused limited bioavailability and hence resulted in the observed masking effect. The data suggests further ethylbenzene hydroxylation by ethylbenzene dehydrogenase (EBDH) and toluene activation by benzylsuccinate synthase (BSS) as initial activation steps. Notably, significantly different values in dual isotope analysis were detected for toluene degradation by G. toluolica under the three studied redox conditions, suggesting variations in the enzymatic transition state depending on the available TEA. The results indicate that two-dimensional CSIA has significant potential to assess anaerobic biodegradation of ethylbenzene and toluene at contaminated sites. PMID:26774774

  2. The threshold feeding response of microzooplankton within Pacific high-nitrate low-chlorophyll ecosystem models under steady and variable iron input

    NASA Astrophysics Data System (ADS)

    Leising, Andrew W.; Gentleman, Wendy C.; Frost, Bruce W.

    2003-11-01

    The equatorial Pacific is an HNLC (High-Nitrate Low-Chlorophyll) region. Modeling and in-situ process studies have confirmed the importance of microzooplankton grazing in this ecosystem. Unfortunately, both the parameters and functions representing microzooplankton grazing within current ecosystem models are poorly constrained. We used a simple 4-component food web model to test the assumption that a lower grazing threshold, which is common in many models, is necessary to achieve the HNLC condition. Without the grazing threshold, the model did not reproduce the HNLC condition. However, by raising the half-saturation constant within the microzooplankton functional response with no threshold, it was possible to reproduce the critical dynamics of the HNLC condition under both steady and moderate seasonal variability in nutrient input. It was also possible to reproduce the HNLC system using a sigmoidal functional response for the microzooplankton, with results somewhere between the other two forms of the model, although this version had the highest sensitivity to changes in its parameters. The three models predicted similar phytoplankton biomass and primary productivity under steady nutrient input, but diverge in these metrics as the amplitude of nutrient input variability increases. These three functional responses also imply certain important differences in the microzooplankton community. Whereas the threshold model had the least sensitivity to parameter choice, the high half-saturation constant, no-threshold model may actually be a better approximation when modeling a community of grazers. Ecosystem models that predict carbon production and export in HNLC regions can be very sensitive to assumptions concerning microzooplankton grazing; future studies need to concentrate on the functional responses of microzooplankton before these models can be used for predicting fluxes in times or regions where forcing is beyond that used to constrain the original model.

  3. Ocean iron cycle

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.

    Interest in the biogeochemical cycle of iron has grown rapidly over the last two decades, due to the potential role of this element in modulating global climate in the geological past and ocean productivity in the present day. This trace metal has a disproportionately large effect (1 × 105 C:Fe) on photosynthetic carbon fixation by phytoplankton. In around one third of the open ocean, so-called high-nitrate low-chlorophyll (HNLC) regions, the resident phytoplankton have low growth rates despite an abundance of plant nutrients. This is due to the low supply of iron. Iron is present in the ocean in three phases, dissolved, colloidal, and particulate (biogenic and lithogenic). However, iron chemistry is complex with interactions between chemistry and biology such as the production of iron-binding siderophores by oceanic bacteria. This results in the interplay of inorganic chemistry, photochemistry, and organic complexation. Sources of new iron include dust deposition, upwelling of iron-rich deep waters, and the resuspension and lateral transport of sediments. Sinks for iron are mainly biological as evidenced by the vertical nutrient-like profile for dissolved iron in the ocean. Iron is rapidly recycled by the upper ocean biota within a so-called "ferrous wheel." The fe ratio [(new iron)/(new + regenerated iron)] provides an index of the relative supply of iron to the biota by new versus recycled iron. Over the last 15 years, interest in the potential role of iron in shaping climate in the geological past resulted in some of the most ambitious experiments in oceanography: large-scale (i.e., 50-1000 km2) iron enrichment of HNLC waters. They have provided valuable insights into how iron supply influences the biogeochemical cycles of elements such as carbon, sulfur, silicon, nitrogen, and phosphate.

  4. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  5. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate and potassium nitrate. 181.33... nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued... potassium nitrite, in the production of cured red meat products and cured poultry products....

  6. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  7. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  8. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  9. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  10. Iron Test

    MedlinePlus

    ... detect and help diagnose iron deficiency or iron overload. In people with anemia , these tests can help ... also be ordered when iron deficiency or iron overload is suspected. Early iron deficiency often goes unnoticed. ...

  11. Cylodextrin Polymer Nitrate

    NASA Technical Reports Server (NTRS)

    Kosowski, Bernard; Ruebner, Anja; Statton, Gary; Robitelle, Danielle; Meyers, Curtis

    2000-01-01

    The development of the use of cyclodextrin nitrates as possible components of insensitive, high-energy energetics is outlined over a time period of 12 years. Four different types of cyclodextrin polymers were synthesized, nitrated, and evaluated regarding their potential use for the military and aerospace community. The synthesis of these novel cyclodextrin polymers and different nitration techniques are shown and the potential of these new materials is discussed.

  12. Thermochemical nitrate destruction

    DOEpatents

    Cox, John L.; Hallen, Richard T.; Lilga, Michael A.

    1992-01-01

    A method is disclosed for denitrification of nitrates and nitrates present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200.degree. C. to about 600.degree. C., and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  13. Field determination of nitrate using nitrate reductase

    SciTech Connect

    Campbell, E.R.; Corrigan, J.S.; Campbell, W.H.

    1997-12-31

    Nitrate is routinely measured in a variety of substrates - water, tissues, soils, and foods - both in the field and in laboratory settings. The most commonly used nitrate test methods involve the reduction of nitrate to nitrite via a copper-cadmium reagent, followed by reaction of the nitrite with the Griess dye reagents. The resulting color is translated into a nitrate concentration by comparison with a calibrated color chart or comparator, or by reading the absorbance in a spectrophotometer. This basic method is reliable and sufficiently sensitive for many applications. However, the cadmium reagent is quite toxic. The trend today is for continued increase in concern for worker health and safety; in addition, there are increasing costs and logistical problems associated with regulatory constraints on transport and disposal of hazardous materials. Some suppliers have substituted a zinc-based reagent powder for the cadmium in an effort to reduce toxicity. We describe here an enzyme-based nitrate detection method as an improvement on the basic Griess method that demonstrates equal or superior sensitivity, superior selectivity, and is more environmentally benign. Comparisons between the enzyme-based method and some standard field test kits being used today are made.

  14. Corrosion of aluminides by molten nitrate salt

    SciTech Connect

    Tortorelli, P.F.; Bishop, P.S.

    1990-01-01

    The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

  15. Remediation of nitrate-contaminated water by Fe{sup 0}-promoted processes

    SciTech Connect

    Zawaideh, L.L.; Chew, C.F.; Zhang, T.C.

    1997-12-31

    The feasibility of using zero-valent iron powder to remediate nitrate-contaminated water was studied using bench-scale batch and fixed-bed column reactors. Operational parameters, such as Fe{sup 0} dosage (w/v), initial concentration of nitrate-nitrogen, pH, and the use of an organic buffer (HEPES), were studied to determine the effectiveness of nitrate removal using zero-valent iron powder. Nitrate-nitrogen was removed by 94% when 0.01 M of HEPES was added to a non-shaking batch reactor containing 20 mg/l nitrate-nitrogen and 4% (w/v) of Fe{sup 0}. Shaking was proved to be more efficient than no shaking. Using the response surface methodology it was found that nitrate removal was closely related to pH. At low pH, the nitrate removal was fast and efficient; at high pH the transformation of nitrate was fast and efficient only at low nitrate concentrations in the Fe{sup 0}-H{sub 2}O system; at normal pH range nitrate removal was usually lower than 50% without buffer treatment. The addition of the organic buffer (HEPES) greatly enhanced the nitrate transformation in a wide pH range. Preliminary column experiments verified the batch experimental results on pH and buffer effects.

  16. Thermochemical nitrate destruction

    DOEpatents

    Cox, J.L.; Hallen, R.T.; Lilga, M.A.

    1992-06-02

    A method is disclosed for denitrification of nitrates and nitrites present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200 C to about 600 C, and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  17. The Chilean nitrate deposits.

    USGS Publications Warehouse

    Ericksen, G.E.

    1983-01-01

    The nitrate deposits in the arid Atacama desert of northern Chile consist of saline-cemented surficial material, apparently formed in and near a playa lake that formerly covered the area. Many features of their distribution and chemical composition are unique. The author believes the principal sources of the saline constituents were the volcanic rocks of late Tertiary and Quaternary age in the Andes and that the nitrate is of organic origin. Possible sources of the nitrate, iodate, perchlorate and chromate are discussed. -J.J.Robertson

  18. Iron Chelation

    MedlinePlus

    ... iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you have ... may want to perform: How quickly does iron overload happen? This is different for each person. It ...

  19. Methyltrimethoxysilane (MTMS)-based silica-iron oxide superhydrophobic nanocomposites.

    PubMed

    Nadargi, Digambar; Gurav, Jyoti; Marioni, Miguel A; Romer, Sara; Matam, Santhosh; Koebel, Matthias M

    2015-12-01

    We report a facile synthesis of superhydrophobic silica-iron oxide nanocomposites via a co-precursor sol-gel process. The choice of the silica precursor (Methyltrimethoxysilane, MTMS) in combination with iron nitrate altered the pore structure dramatically. The influence of iron oxide doping on the structural properties of pristine MTMS aerogel is discussed. PMID:26277744

  20. TREATMENT OF 1,2-DIBROMO-3-CHLOROPROPANE AND NITRATE-CONTAMINATED WATER WITH ZERO-VALENT IRON OR HYDROGEN/PALLADIUM CATALYSTS. (R825689C054,R825689C078)

    EPA Science Inventory

    Abstract

    The abilities of zero-valent iron powder and hydrogen with a palladium catalyst (H2/Pd-alumina) to hydrodehalogenate 1,2-dibromo-3-chloropropane (DBCP) to propane under water treatment conditions (ambient temperature and circumneutral pH) were compa...

  1. Electroreduction of nitrate ions in concentrated sodium hydroxide solutions at lead, zinc, nickel, and phthalocyanine-modified electrodes

    SciTech Connect

    Li, H. |; Chambers, J.Q.; Hobbs, D.T.

    1987-12-31

    The electrochemical reduction of nitrate in strongly alkaline solution has been studied using nickel, lead, zinc, and iron cathodes. Intermediate formation of nitrate ion and ammonia product was observed for all electrode materials. Coating a nickel sponge electrode with phthalocyanine renders it less active toward nitrate reduction, while iron electrodes appear to be activated. Electrolysis between a lead cathode and a nickel anode is an efficient means of removing nitrate from strongly alkaline solutions. Electrode pretreatment and solution conditions were chosen to correspond to those that might be encountered in practical applications, for example, the cleanup of radioactive waste solutions.

  2. Nitrate behavior in ground water of the southeastern USA

    SciTech Connect

    Nolan, B.T.

    1999-10-01

    Principal components analysis (PCA) was performed with water-quality data from studies conducted during 1993 to 1995 to explore potential nitrate-attenuation processes in ground waters of the southeastern USA. Nitrate reduction is an important attenuation process in selected areas of the Southeast. A nitrate-reduction component explains 23% of the total variance in the data and indicates that nitrate and dissolved oxygen (DO) are inversely related to ammonium, iron, manganese, and dissolved organic carbon (DOC). Additional components extracted by PCA include calcite dissolution (18% of variance explained) and phosphate dissolution (9% of variance explained). Reducing conditions in ground waters of the region influence nitrate behavior through bacterially mediated reduction in the presence of organic matter, and by inhibition of nitrate formation in anoxic ground water beneath forested areas. Component scores are consistent with observed water-quality conditions in the region. For example, median nitrate concentration in ground-water samples from the Albemarle-Pamlico Drainage Basin (ALBE) Coastal Plain is {lt}0.05 mg L{sup {minus}1}, median DOC concentration is 4.2 mg L{sup {minus}1}, and median DO concentration is 2.1 mg L{sup {minus}1}, consistent with denitrification. Nitrate reduction does not occur uniformly throughout the Southeast. Median DO concentrations in ground-water samples from the Apalachicola-Chattahoochee-Flint River Basin (ACFB) are 6.2 to 7.1 mg L{sup {minus}1}, and median nitrate concentrations are 0.61 to 2.2 mg L{sup {minus}1}, inconsistent with denitrification. Similarly, median DO concentration in samples from the Georgia-Florida Coastal Plain (GAFL) is 6.0 mg L{sup {minus}1} and median nitrate concentration is 5.8 mg L{sup {minus}1}.

  3. Nitrate in groundwater of the United States, 1991-2003

    USGS Publications Warehouse

    Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.

    2010-01-01

    An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.

  4. Iron overdose

    MedlinePlus

    Iron is an ingredient in many mineral and vitamin supplements. Iron supplements are also sold by themselves. Types include: Ferrous sulfate (Feosol, Slow Fe) Ferrous gluconate (Fergon) Ferrous fumarate (Femiron, Feostat) Other products may also contain iron.

  5. Nitrate suppresses internal phosphorus loading in an eutrophic lake.

    PubMed

    Hemond, Harold F; Lin, Katherine

    2010-06-01

    The presence of nitrate in the hypolimnion of the eutrophic, dimictic Upper Mystic Lake has been previously shown to suppress the release of arsenic from lake sediments during seasonal anoxia, in large part by oxidizing iron (II) and producing iron oxyhydroxides that sorb inorganic arsenic. Because of the importance of internal phosphorus loading in the phosphorus budget of many eutrophic lakes, the chemical similarities between phosphate and arsenate, and the need to account for internal phosphorus loading as part of many lake restoration strategies, we carried out measurements to determine if the presence of nitrate also suppressed the release of phosphorus from the sediments of this lake during anoxia. Observations showed that this was the case. Arsenic, phosphorus, and iron (II) concentrations were strongly correlated in the water column, as expected, and the depths below which phosphorus and iron concentrations increased relative to epilimnetic values was predicted by the depth at which nitrate concentration approached zero. The results suggest that knowledge of a lake's nitrogen budget may be a useful tool in the design of lake remediation efforts, even though phosphorus is typically the limiting nutrient. PMID:20494392

  6. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  7. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  8. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  9. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  10. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  11. Draft Genome Sequence of a Potential Nitrate-Dependent Fe(II)-Oxidizing Bacterium, Aquabacterium parvum B6

    PubMed Central

    Zhang, Xiaoxin

    2016-01-01

    Aquabacterium parvum B6 is a potential nitrate-dependent Fe(II)-oxidizing bacterium. The genes related to its denitrifying mechanism and iron metabolisms were unknown. We present the draft genome of Aquabacterium parvum B6, which could provide further insight into the nitrate-dependent Fe(II)-oxidizing mechanism of strain B6. PMID:26823591

  12. Draft Genome Sequence of a Potential Nitrate-Dependent Fe(II)-Oxidizing Bacterium, Aquabacterium parvum B6.

    PubMed

    Zhang, Xiaoxin; Ma, Fang; Szewzyk, Ulrich

    2016-01-01

    Aquabacterium parvum B6 is a potential nitrate-dependent Fe(II)-oxidizing bacterium. The genes related to its denitrifying mechanism and iron metabolisms were unknown. We present the draft genome of Aquabacterium parvum B6, which could provide further insight into the nitrate-dependent Fe(II)-oxidizing mechanism of strain B6. PMID:26823591

  13. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  14. Ammonium nitrate explosive systems

    SciTech Connect

    Coburn, M.D.; Stinecipher, M.M.

    1981-11-17

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  15. Ammonium nitrate explosive systems

    DOEpatents

    Stinecipher, Mary M.; Coburn, Michael D.

    1981-01-01

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  16. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes.

    PubMed

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils; Stief, Peter

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations. PMID:26734001

  17. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes

    PubMed Central

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils; Stief, Peter

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations. PMID:26734001

  18. Southern Ocean Iron Experiment (SOFex)

    SciTech Connect

    Coale, Kenneth H.

    2005-07-28

    The Southern Ocean Iron Experiment (SOFeX) was an experiment decades in the planning. It's implementation was among the most complex ship operations that SIO has been involved in. The SOFeX field expedition was successful in creating and tracking two experimentally enriched areas of the Southern Ocean, one characterized by low silicic acid, one characterized by high silicic acid. Both experimental sites were replete with abundant nitrate. About 100 scientists were involved overall. The major findings of this study were significant in several ways: (1) The productivity of the southern ocean is limited by iron availability. (2) Carbon uptake and flux is therefore controlled by iron availability (3) In spite of low silicic acid, iron promotes non-silicious phytoplankton growth and the uptake of carbon dioxide. (4) The transport of fixed carbon from the surface layers proceeds with a C:N ratio that would indicate differential remineralization of nitrogen at shallow depths. (5) These finding have major implications for modeling of carbon export based on nitrate utilization. (6) The general results of the experiment indicate that, beyond other southern ocean enrichment experiments, iron inputs have a much wider impact of productivity and carbon cycling than previously demonstrated. Scientific presentations: Coale, K., Johnson, K, Buesseler, K., 2002. The SOFeX Group. Eos. Trans. AGU 83(47) OS11A-0199. Coale, K., Johnson, K. Buesseler, K., 2002. SOFeX: Southern Ocean Iron Experiments. Overview and Experimental Design. Eos. Trans. AGU 83 (47) OS22D-01. Buesseler, K.,et al. 2002. Does Iron Fertilization Enhance Carbon Sequestration? Particle flux results from the Southern Ocean Iron Experiment. Eos. Trans. AGU 83 (47), OS22D-09. Johnson, K. et al. 2002. Open Ocean Iron Fertilization Experiments From IronEx-I through SOFeX: What We Know and What We Still Need to Understand. Eos. Trans. AGU 83 (47), OS22D-12. Coale, K. H., 2003. Carbon and Nutrient Cycling During the Southern

  19. Presence of nitrate NO 3 a ects animal production, photocalysis is a possible solution

    NASA Astrophysics Data System (ADS)

    Barba-Molina, Heli; Barba-Ortega, J.; Joya, M. R.

    2016-02-01

    Farmers and ranchers depend on the successful combination of livestock and crops. However, they have lost in the production by nitrate pollution. Nitrate poisoning in cattle is caused by the consumption of an excessive amount of nitrate or nitrite from grazing or water. Both humans and livestock can be affected. It would appear that well fertilised pasture seems to take up nitrogen from the soil and store it as nitrate in the leaf. Climatic conditions, favour the uptake of nitrate. Nitrate poisoning is a noninfectious disease condition that affects domestic ruminants. It is a serious problem, often resulting in the death of many animals. When nitrogen fertilizers are used to enrich soils, nitrates may be carried by rain, irrigation and other surface waters through the soil into ground water. Human and animal wastes can also contribute to nitrate contamination of ground water. A possible method to decontaminate polluted water by nitrates is with methods of fabrication of zero valent iron nanoparticles (FeNps) are found to affect their efficiency in nitrate removal from water.

  20. Iron deficiency.

    PubMed

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world. PMID:1745900

  1. Nitrate biosensors and biological methods for nitrate determination.

    PubMed

    Sohail, Manzar; Adeloju, Samuel B

    2016-06-01

    The inorganic nitrate (NO3‾) anion is present under a variety of both natural and artificial environmental conditions. Nitrate is ubiquitous within the environment, food, industrial and physiological systems and is mostly present as hydrated anion of a corresponding dissolved salt. Due to the significant environmental and toxicological effects of nitrate, its determination and monitoring in environmental and industrial waters are often necessary. A wide range of analytical techniques are available for nitrate determination in various sample matrices. This review discusses biosensors available for nitrate determination using the enzyme nitrate reductase (NaR). We conclude that nitrate determination using biosensors is an excellent non-toxic alternative to all other available analytical methods. Over the last fifteen years biosensing technology for nitrate analysis has progressed very well, however, there is a need to expedite the development of nitrate biosensors as a suitable alternative to non-enzymatic techniques through the use of different polymers, nanostructures, mediators and strategies to overcome oxygen interference. PMID:27130094

  2. Nitrate therapy in the elderly.

    PubMed

    Alpert, J S

    1990-06-01

    Changes in the heart and blood vessels with age alter the response of the cardiovascular system to pharmacologic agents. Nitrate plasma half-life is longer and volume of distribution is larger in older persons. Apparently, these pharmacokinetic differences in older persons lead to increased venous smooth muscle responsivity to nitrates which, in turn, leads to greater reductions in central venous and pulmonary arterial pressures after nitrate administration. This is probably the explanation for the greater frequency of nitrate-induced severe hypotension and bradycardia in elderly patients with myocardial infarction compared with younger patients. Clinicians should be cognizant of the changes in the cardiovascular system which occur with age that sensitize the elderly patient to the action of organic nitrates. Initial dosages of nitrates should accordingly be less than in younger patients. PMID:2112335

  3. COMPARISON OF MUTAGENIC ACTIVITIES OF SEVERAL PEROXYACYL NITRATES

    EPA Science Inventory

    Salmonella typhimurium strain TA100 was exposed to a series of peroxyacyl nitrates including peroxyacetyl nitrate (PAN), peroxypropionyl nitrate peroxybutyryl nitrate (PBN), peroxybenzoyl nitrate (PBzN), and chlororoxyacetyl nitrate (CPAN). as phase concentrations for the individ...

  4. COMPARISON OF MUTAGENIC ACTIVITIES OF SEVERAL PEROXYACL NITRATES

    EPA Science Inventory

    Salmonella typhimurium, strain TA100 was exposed to a series of peroxyacyl nitrates including peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), peroxybutyryl nitrate (PBN), peroxybenzoyl nitrate (PBzN), and chloroperoxyacetyl nitrate (CPAN). as-phase concentrations for t...

  5. Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria

    PubMed Central

    Johnson, D. Barrie; McGinness, Stephen

    1991-01-01

    Fifty mesophilic and five moderately thermophilic strains of acidophilic heterotrophic bacteria were tested for the ability to reduce ferric iron in liquid and solid media under aerobic conditions; about 40% of the mesophiles (but none of the moderate thermophiles) displayed at least some capacity to reduce iron. Both rates and extents of ferric iron reduction were highly strain dependent. No acidophilic heterotroph reduced nitrate or sulfate, and (limited) reduction of manganese(IV) was noted in only one strain (Acidiphilium facilis), an acidophile which did not reduce iron. Insoluble forms of ferric iron, both amorphous and crystalline, were reduced, as well as soluble iron. There was evidence that, in at least some acidophilic heterotrophs, iron reduction was enzymically mediated and that ferric iron could act as a terminal electron acceptor. In anaerobically incubated cultures, bacterial biomass increased with increasing concentrations of ferric but not ferrous iron. Mixed cultures of Thiobacillus ferrooxidans or Leptospirillum ferrooxidans and an acidophilic heterotroph (SJH) produced sequences of iron cycling in ferrous iron-glucose media. PMID:16348395

  6. Analytical Chemistry and Materials Characterization Results for Debris Recovered from Nitrate Salt Waste Drum S855793

    SciTech Connect

    Martinez, Patrick Thomas; Chamberlin, Rebecca M.; Schwartz, Daniel S.; Worley, Christopher Gordon; Garduno, Katherine; Lujan, Elmer J. W.; Borrego, Andres Patricio; Castro, Alonso; Colletti, Lisa Michelle; Fulwyler, James Brent; Holland, Charlotte S.; Keller, Russell C.; Klundt, Dylan James; Martinez, Alexander; Martin, Frances Louise; Montoya, Dennis Patrick; Myers, Steven Charles; Porterfield, Donivan R.; Schake, Ann Rene; Schappert, Michael Francis; Soderberg, Constance B.; Spencer, Khalil J.; Stanley, Floyd E.; Thomas, Mariam R.; Townsend, Lisa Ellen; Xu, Ning

    2015-09-16

    Solid debris was recovered from the previously-emptied nitrate salt waste drum S855793. The bulk sample was nondestructively assayed for radionuclides in its as-received condition. Three monoliths were selected for further characterization. Two of the monoliths, designated Specimen 1 and 3, consisted primarily of sodium nitrate and lead nitrate, with smaller amounts of lead nitrate oxalate and lead oxide by powder x-ray diffraction. The third monolith, Specimen 2, had a complex composition; lead carbonate was identified as the predominant component, and smaller amounts of nitrate, nitrite and carbonate salts of lead, magnesium and sodium were also identified. Microfocused x-ray fluorescence (MXRF) mapping showed that lead was ubiquitous throughout the cross-sections of Specimens 1 and 2, while heteroelements such as potassium, calcium, chromium, iron, and nickel were found in localized deposits. MXRF examination and destructive analysis of fragments of Specimen 3 showed elevated concentrations of iron, which were broadly distributed through the sample. With the exception of its high iron content and low carbon content, the chemical composition of Specimen 3 was within the ranges of values previously observed in four other nitrate salt samples recovered from emptied waste drums.

  7. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume; Kappler, Andreas; Bernard, Sylvain; Obst, Martin; Férard, Céline; Skouri-Panet, Fériel; Guigner, Jean-Michel; Posth, Nicole; Galvez, Matthieu; Brown, Gordon E., Jr.; Guyot, François

    2009-02-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types of precipitates could be discriminated: (1) mineralized filaments at distance from the cells, (2) globules of 100 ± 25 nm in diameter, at the cell surface and (3) a 40-nm thick mineralized layer within the periplasm. All of those phases were shown to be intimately associated with organic molecules. Periplasmic encrustation was accompanied by an accumulation of protein moieties. In the same way, exopolysaccharides were associated with the extracellular mineralized filaments. The evolution of cell encrustation was followed by TEM over the time course of a culture: cell encrustation proceeded progressively, with rapid precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All these findings provide new information to further the understanding of molecular processes involved in iron biomineralization by anaerobic iron-oxidizing bacteria and

  8. TREATMENT OF AMMONIUM NITRATE SOLUTIONS

    DOEpatents

    Boyer, T.W.; MacHutchin, J.G.; Yaffe, L.

    1958-06-10

    The treatment of waste solutions obtained in the processing of neutron- irradiated uranium containing fission products and ammonium nitrate is described. The object of this process is to provide a method whereby the ammonium nitrate is destroyed and removed from the solution so as to permit subsequent concentration of the solution.. In accordance with the process the residual nitrate solutions are treated with an excess of alkyl acid anhydride, such as acetic anhydride. Preferably, the residual nitrate solution is added to an excess of the acetic anhydride at such a rate that external heat is not required. The result of this operation is that the ammonium nitrate and acetic anhydride react to form N/sub 2/ O and acetic acid.

  9. Some History of Nitrates

    NASA Astrophysics Data System (ADS)

    Barnum, Dennis W.

    2003-12-01

    The history of saltpeter is an interesting combination of chemistry, world trade, technology, politics, and warfare. Originally it was obtained from the dirt floors of stables, sheep pens, pigeon houses, caverns, and even peasants' cottages; any place manure and refuse accumulated in soil under dry conditions. When these sources became inadequate to meet demand it was manufactured on saltpeter plantations, located in dry climates, where piles of dirt, limestone, and manure were allowed to stand for three to five years while soil microbes oxidized the nitrogen to nitrate—an example of early bioengineering. Extensive deposits of sodium nitrate were mined in the Atacama Desert in northern Chile from 1830 until the mid 1920s when the mines were displaced by the Haber Ostwald process.

  10. Aniline-induced nitrosative stress in rat spleen: Proteomic identification of nitrated proteins

    SciTech Connect

    Fan Xiuzhen; Wang Jianling; Soman, Kizhake V.; Ansari, G.A.S.; Khan, M. Firoze

    2011-08-15

    Aniline exposure is associated with toxicity to the spleen which is characterized by splenomegaly, hyperplasia, fibrosis, and a variety of sarcomas on chronic exposure in rats. However, mechanisms by which aniline elicits splenotoxic responses are not well understood. Earlier we have shown that aniline exposure leads to increased nitration of proteins in the spleen. However, nitrated proteins remain to be characterized. Therefore, in the current study using proteomic approaches, we focused on characterizing the nitrated proteins in the spleen of aniline-exposed rats. Aniline exposure led to increased tyrosine nitration of proteins, as determined by 2D Western blotting with anti-3-nitrotyrosine specific antibody, compared to the controls. The analyzed nitrated proteins were found in the molecular weight range of 27.7 to 123.6 kDa. A total of 37 nitrated proteins were identified in aniline-treated and control spleens. Among them, 25 were found only in aniline-treated rats, 11 were present in both aniline-treated and control rats, while one was found in controls only. The nitrated proteins identified mainly represent skeletal proteins, chaperones, ferric iron transporter, enzymes, nucleic acids binding protein, and signaling and protein synthesis pathways. Furthermore, aniline exposure led to significantly increased iNOS mRNA and protein expression in the spleen, suggesting its role in increased reactive nitrogen species formation and contribution to increased nitrated proteins. The identified nitrated proteins provide a global map to further investigate alterations in their structural and functional properties, which will lead to a better understanding of the role of protein nitration in aniline-mediated splenic toxicity. - Highlights: > Proteomic approaches are used to identify nitrated proteins in the spleen. > Twenty five nitrated proteins were found only in the spleen of aniline-treated rats. > Aniline exposure led to increased iNOS mRNA and protein expression in

  11. Mortality of nitrate fertiliser workers.

    PubMed

    Al-Dabbagh, S; Forman, D; Bryson, D; Stratton, I; Doll, R

    1986-08-01

    An epidemiological cohort study was conducted to investigate the mortality patterns among a group of workers engaged in the production of nitrate based fertilisers. This study was designed to test the hypothesis that individuals exposed to high concentrations of nitrates might be at increased risk of developing cancers, particularly gastric cancer. A total of 1327 male workers who had been employed in the production of fertilisers between 1946 and 1981 and who had been occupationally exposed to nitrates for at least one year were followed up until 1 March 1981. In total, 304 deaths were observed in this group and these were compared with expected numbers calculated from mortality rates in the northern region of England, where the factory was located. Analysis was also carried out separately for a subgroup of the cohort who had been heavily exposed to nitrates--that is, working in an environment likely to contain more than 10 mg nitrate/m3 for a year or longer. In neither the entire cohort nor the subgroup was any significant excess observed for all causes of mortality or for mortality from any of five broad categories of cause or from four specific types of cancer. A small excess of lung cancer was noted more than 20 years after first exposure in men heavily exposed for more than 10 years. That men were exposed to high concentrations of nitrate was confirmed by comparing concentrations of nitrates in the saliva of a sample of currently employed men with control men, employed at the same factory but not in fertiliser production. The men exposed to nitrate had substantially raised concentrations of nitrate in their saliva compared with both controls within the industry and with men in the general population and resident nearby. The results of this study therefore weight against the idea that exposure to nitrates in the environment leads to the formation in vivo of material amounts of carcinogens. PMID:3015194

  12. Nitrosative Stress and Apoptosis by Intravenous Ferumoxytol, Iron Isomaltoside 1000, Iron Dextran, Iron Sucrose, and Ferric Carboxymaltose in a Nonclinical Model.

    PubMed

    Toblli, J E; Cao, G; Giani, J F; Dominici, F P; Angerosa, M

    2015-07-01

    Iron is involved in the formation as well as in the scavenging of reactive oxygen and nitrogen species. Thus, iron can induce as well as inhibit both oxidative and nitrosative stress. It also has a key role in reactive oxygen and nitrogen species-mediated apoptosis. We assessed the differences in tyrosine nitration and caspase 3 expression in the liver, heart, and kidneys of rats treated weekly with intravenous ferumoxytol, iron isomaltoside 1000, iron dextran, iron sucrose and ferric carboxymaltose (40 mg iron/kg body weight) for 5 weeks. Nitrotyrosine was quantified in tissue homogenates by Western blotting and the distribution of nitrotyrosine and caspase 3 was assessed in tissue sections by immunohistochemistry. Ferric carboxymaltose and iron sucrose administration did not result in detectable levels of nitrotyrosine or significant levels of caspase 3 vs. control in any of the tissue studied. Nitrotyrosine and caspase 3 levels were significantly (p<0.01) increased in all assessed organs of animals treated with iron dextran and iron isomaltoside 1000, as well as in the liver and kidneys of ferumoxytol-treated animals compared to isotonic saline solution (control). Nitrotyrosine and caspase 3 levels were shown to correlate positively with the amount of Prussian blue-detectable iron(III) deposits in iron dextran- and iron isomaltoside 1000-treated rats but not in ferumoxytol-treated rats, suggesting that iron dextran, iron isomaltoside 1000 and ferumoxytol induce nitrosative (and oxidative) stress as well as apoptosis via different mechanism(s). PMID:25050519

  13. Influence of Nitrate on the Hanford 100D Area In Situ Redox Manipulation Barrier Longevity

    SciTech Connect

    Szecsody, Jim E.; Phillips, Jerry L.; Vermeul, Vince R.; Fruchter, Jonathan S.; Williams, Mark D.

    2005-07-15

    The purpose of this laboratory study is to determine the influence of nitrate on the Hanford 100D Area in situ redox manipulation (ISRM) barrier longevity. There is a wide spread groundwater plume of 60 mg/L nitrate upgradient of the ISRM barrier with lower nitrate concentrations downgradient, suggestive of nitrate reduction occurring. Batch and 1-D column experiments showed that nitrate is being slowly reduced to nitrite and ammonia. These nitrate reduction reactions are predominantly abiotic, as experiments with and without bactericides present showed no difference in nitrate degradation rates. Nitrogen species transformation rates determined in experiments covered a range of ferrous iron/nitrate ratios such that the data can be used to predict rates in field scale conditions. Field scale reaction rate estimates for 100% reduced sediment (16 C) are: (a) nitrate degradation = 202 {+-} 50 h (half-life), (b) nitrite production = 850 {+-} 300 h, and (c) ammonia production = 650 {+-} 300 h. Calculation of the influence of nitrate reduction on the 100D Area reductive capacity requires consideration of mass balance and reaction rate effects. While dissolved oxygen and chromate reduction rates are rapid and essentially at equilibrium in the aquifer, nitrate transformation reactions are slow (100s of hours). In the limited (20-40 day) residence time in the ISRM barrier, only a portion of the nitrate will be reduced, whereas dissolved oxygen and chromate are reduced to completion. Assuming a groundwater flow rate of 1 ft/day, it is estimated that the ISRM barrier reductive capacity is 160 pore volumes (with no nitrate), and 85 pore volumes if 60 mg/L nitrate is present (i.e., a 47% decrease in the ISRM barrier longevity). Zones with more rapid groundwater flow will be less influenced by nitrate reduction. For example, a zone with a groundwater flow rate of 3 ft/day and 60 mg/L nitrate will have a reductive capacity of 130 pore volumes. Finally, long-term column experiments

  14. Gallium and its competing roles with iron in biological systems.

    PubMed

    Chitambar, Christopher R

    2016-08-01

    Gallium, a group IIIa metal, shares chemical properties with iron. Studies have shown that gallium-based compounds have potential therapeutic activity against certain cancers and infectious microorganisms. By functioning as an iron mimetic, gallium perturbs iron-dependent proliferation processes in tumor cells. Gallium's action on iron homeostasis leads to disruption of ribonucleotide reductase, mitochondrial function, and the regulation of transferrin receptor and ferritin. In addition, gallium nitrate stimulates an increase in mitochondrial reactive oxygen species in cells which triggers downstream upregulation of metallothionein and hemoxygenase-1. Gallium's anti-infective activity against bacteria and fungi results from disruption of microbial iron utilization through mechanisms which include gallium binding to siderophores and downregulation of bacterial iron uptake. Gallium compounds lack cross-resistance to conventional chemotherapeutic drugs and antibiotics thus making them attractive agents for drug development. This review will focus on the mechanisms of action of gallium with emphasis on its interaction with iron and iron proteins. PMID:27150508

  15. Nitrate concentrations under irrigated agriculture

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    In recent years, considerable interest has been expressed in the nitrate content of water supplies. The most notable toxic effect of nitrate is infant methemoglobinemia. The risk of this disease increases significantly at nitrate-nitrogen levels exceeding 10 mg/l. For this reason, this concentration has been established as a limit for drinking water in many countries. In natural waters, nitrate is a minor ionic constituent and seldom accounts for more than a few percent of the total anions. However, nitrate in a significant concentration may occur in the vicinity of some point sources such as septic tanks, manure pits, and waste-disposal sites. Non-point sources contributing to groundwater pollution are numerous and a majority of them are related to agricultural activities. The largest single anthropogenic input of nitrate into the groundwater is fertilizer. Even though it has not been proven that nitrogen fertilizers are responsible for much of nitrate pollution, they are generally recognized as the main threat to groundwater quality, especially when inefficiently applied to irrigated fields on sandy soils. The biggest challenge facing today's agriculture is to maintain the balance between the enhancement of crop productivity and the risk of groundwater pollution. ?? 1982 Springer-Verlag New York Inc.

  16. Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis).

    PubMed

    Etique, Marjorie; Jorand, Frédéric P A; Zegeye, Asfaw; Grégoire, Brian; Despas, Christelle; Ruby, Christian

    2014-04-01

    Green rusts (GRs) are mixed Fe(II)-Fe(III) hydroxides with a high reactivity toward organic and inorganic pollutants. GRs can be produced from ferric reducing or ferrous oxidizing bacterial activities. In this study, we investigated the capability of Klebsiella mobilis to produce iron minerals in the presence of nitrate and ferrous iron. This bacterium is well-known to reduce nitrate using an organic carbon source as electron donor but is unable to enzymatically oxidize Fe(II) species. During incubation, GR formation occurred as a secondary iron mineral precipitating on cell surfaces, resulting from Fe(II) oxidation by nitrite produced via bacterial respiration of nitrate. For the first time, we demonstrate GR formation by indirect microbial oxidation of Fe(II) (i.e., a combination of biotic/abiotic processes). These results therefore suggest that nitrate-reducing bacteria can potentially contribute to the formation of GR in natural environments. In addition, the chemical reduction of nitrite to ammonium by GR is observed, which gradually turns the GR into the end-product goethite. The nitrogen mass-balance clearly demonstrates that the total amount of ammonium produced corresponds to the quantity of bioreduced nitrate. These findings demonstrate how the activity of nitrate-reducing bacteria in ferrous environments may provide a direct link between the biogeochemical cycles of nitrogen and iron. PMID:24605878

  17. Iron refractory iron deficiency anemia

    PubMed Central

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U.; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach. PMID:23729726

  18. Thermal decomposition of isooctyl nitrate

    SciTech Connect

    Pritchard, H.O.

    1989-03-01

    The diesel ignition improver DII-3, made by Ethyl Corporation, also known as isooctyl nitrate, is a mixture whose principal constituent (about 95%) is 2-ethyl hexyl nitrate. This note describes an investigation of the thermal decomposition that is not exhaustive, but that is intended to provide sufficient information on the rate and the mechanism so as to make possible the educated guesses needed for modeling the effect of isooctyl nitrate on the diesel ignition process. As is the case with other alkyl nitrates, the decomposition of the neat material is a complex one giving a complicated pressure versus time curve, unsuitable for a quick derivation of the rate constant. However, in the presence of toluene, whose intended purpose is to trap reactive free radicals and thereby simplify the overall mechanism, the pressure rises approximately exponentially to a limit; thus, on the assumption that the reaction is homogeneous and of first order, the rate constants can be determined from the half-life.

  19. Nitrates in Wisconsin ground water.

    PubMed

    Schuknecht, B; Lawton, G W; Steinka, P; Delfino, J J

    1975-01-01

    Nitrate analyses were performed on ground water well samples originating from sources throughout Wisconsin. The data ranged from below the analytical detection limit up to 140 mg NO3-N/1. Over nine percent of all wells sampled has nitrate concentrations in excess of 10 mg NO3-N/1. Six individual counties had more than 10 mg NO3-N/1 in at least twenty percent of the wells covered in this survey. However, data reported for over eight thousand new wells driven in 1971-1972 showed only slightly more than two percent with nitrate levels above 10 mg NO3-N/1. This reflected the trend toward drilling deeper wells which are influenced less by nitrate seepage as well as adherence to new and stricter well construction codes. PMID:1183417

  20. Enhanced removal of nitrate from water using nZVI@MWCNTs composite: synthesis, kinetics and mechanism of reduction.

    PubMed

    Babaei, Ali Akbar; Azari, Ali; Kalantary, Roshanak Rezaei; Kakavandi, Babak

    2015-01-01

    Herein, multi-wall carbon nanotubes (MWCNTs) were used as the carrier of nano-zero valent iron (nZVI) particles to fabricate a composite known as nZVI@MWCNTs. The composite was then characterized and applied in the nitrate removal process in a batch system under anoxic conditions. The influential parameters such as pH, various concentrations of nitrate and composite were investigated within 240 min of the reaction. The mechanism, kinetics and end-products of nitrate reduction were also evaluated. Results revealed that the removal nitrate percentage for nZVI@MWCNTs composite was higher than that of nZVI and MWCNTs alone. Experimental data from nitrate reduction were fitted to the Langmuir-Hinshelwood kinetic model. The values of observed rate constant (kobs) decreased with increasing the initial concentration of nitrate. Our experiments proved that the nitrate removal efficiency was favorable once both high amounts of nZVI@MWCNTs and low concentrations of nitrate were applied. The predominant end-products of the nitrate reduction were ammonium (84%) and nitrogen gas (15%). Our findings also revealed that ZVI@MWCNTs is potentially a good composite for removal/reduction of nitrate from aqueous solutions. PMID:26606093

  1. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  2. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  3. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  4. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  5. Nitrate attenuation in the Missoula Flood Deposits Aquitard (Willamette Silt) of the Willamette Valley, Oregon

    NASA Astrophysics Data System (ADS)

    Arighi, L.; Haggerty, R.; Myrold, D. D.; Iverson, J.; Baham, J. E.; Madin, I. P.; Arendt, J.

    2005-12-01

    Low-permeability geologic units may offer significant chemical and hydraulic protection of adjacent aquifers, and are important for managing groundwater quality, especially in areas with significant non-point source contamination. Nitrate in the Willamette Valley is attenuated across the Willamette Silt, a semi-confining unit overlying a regionally important aquifer. To quantify the main mechanism responsible for nitrate attenuation, soil cores were taken at 19 locations, and profiles of nitrate concentrations were constructed for each site. In 7 locations a sharp, major geochemical transition - a "redoxcline" - is present near the base of the Willamette Silt; this redoxcline is characterized by a color change from red-brown to blue-gray, an increase in iron(II) concentration, a rise in pH, and the appearance of carbonate minerals. At all sites where a significant surface input of nitrate was detected, the nitrate signal was attenuated before reaching the base of the silt. Denitrifier Enzyme Activity assays from one site show no denitrification potential in the profile, suggesting that a non-biological mechanism is responsible. We suggest that iron(II) is reducing the nitrate abiotically to nitrite, and that the blue-gray reducing zone of Willamette Silt is indicative of the presence of sufficient iron(II) for the reaction to go forward. To increase the usefulness of this study to regional water management agencies, a thickness isopach map of the reduced zone was created both for the northern and southern Willamette Valley to help determine areas where nitrate is most likely to be attenuated.

  6. Simultaneous removal of nitrate and arsenic from drinking water sources utilizing a fixed-bed bioreactor system.

    PubMed

    Upadhyaya, Giridhar; Jackson, Jeff; Clancy, Tara M; Hyun, Sung Pil; Brown, Jess; Hayes, Kim F; Raskin, Lutgarde

    2010-09-01

    A novel bioreactor system, consisting of two biologically active carbon (BAC) reactors in series, was developed for the simultaneous removal of nitrate and arsenic from a synthetic groundwater supplemented with acetic acid. A mixed biofilm microbial community that developed on the BAC was capable of utilizing dissolved oxygen, nitrate, arsenate, and sulfate as the electron acceptors. Nitrate was removed from a concentration of approximately 50 mg/L in the influent to below the detection limit of 0.2 mg/L. Biologically generated sulfides resulted in the precipitation of the iron sulfides mackinawite and greigite, which concomitantly removed arsenic from an influent concentration of approximately 200 ug/L to below 20 ug/L through arsenic sulfide precipitation and surface precipitation on iron sulfides. This study showed for the first time that arsenic and nitrate can be simultaneously removed from drinking water sources utilizing a bioreactor system. PMID:20732708

  7. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  8. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters

    NASA Astrophysics Data System (ADS)

    Takeda, Shigenobu

    1998-06-01

    The major nutrients (nitrate, phosphate and silicate) needed for phytoplankton growth are abundant in the surface waters of the subarctic Pacific, equatorial Pacific and Southern oceans, but this growth is limited by the availability of iron. Under iron-deficient conditions, phytoplankton exhibit reduced uptake of nitrate and lower cellular levels of carbon, nitrogen and phosphorus. Here I describe seawater and culture experiments which show that iron limitation can also affect the ratio of consumed silicate to nitrate and phosphate. In iron-limited waters from all three of the aforementioned environments, addition of iron to phytoplankton assemblages in incubation bottles halved the silicate:nitrate and silicate:phosphate consumption ratios, in spite of the preferential growth of diatoms (silica-shelled phytoplankton). The nutrient consumption ratios of the phytoplankton assemblage from the Southern Ocean were similar to those of an iron-deficient laboratory culture of Antarctic diatoms, which exhibit increased cellular silicon or decreased cellular nitrogen and phosphorus in response to iron limitation. Iron limitation therefore increases the export of biogenic silicon, relative to nitrogen and phosphorus, from the surface to deeper waters. These findings suggest how the sedimentary records of carbon and silicon deposition in the glacial Southern Ocean can be consistent with the idea that changes in productivity, and thus in drawdown of atmospheric CO2, during the last glaciation were stimulated by changes in iron inputs from atmospheric dust.

  9. Reduction of nitrate in Shewanella

    SciTech Connect

    Gao, Haichun; Yang, Zamin Koo; Barua, Sumitra; Reed, SB; Nealson, Kenneth H.; Fredrikson, JK; Tiedje, James; Zhou, Jizhong

    2009-01-01

    In the genome of Shewanella oneidensis, a napDAGHB gene cluster encoding periplasmic nitrate reductase (NapA) and accessory proteins and an nrfA gene encoding periplasmic nitrite reductase (NrfA) have been identified. These two systems seem to be atypical because the genome lacks genes encoding cytoplasmic membrane electron transport proteins, NapC for NAP and NrfBCD/NrfH for NRF, respectively. Here, we present evidence that reduction of nitrate to ammonium in S. oneidensis is carried out by these atypical systems in a two-step manner. Transcriptional and mutational analyses suggest that CymA, a cytoplasmic membrane electron transport protein, is likely to be the functional replacement of both NapC and NrfH in S. oneidensis. Surprisingly, a strain devoid of napB encoding the small subunit of nitrate reductase exhibited the maximum cell density sooner than the wild type. Further characterization of this strain showed that nitrite was not detected as a free intermediate in its culture and NapB provides a fitness gain for S. oneidensis to compete for nitrate in the environments. On the basis results from mutational analyses of napA, napB, nrfA and napBnrfA in-frame deletion mutants, we propose that NapB is able to favor nitrate reduction by routing electrons to NapA exclusively.

  10. Enhanced sensitivity of oceanic CO2 uptake to dust deposition by iron-light colimitation

    NASA Astrophysics Data System (ADS)

    Nickelsen, Levin; Oschlies, Andreas

    2015-01-01

    The iron hypothesis suggests that in large areas of the ocean phytoplankton growth and thus photosynthetic CO2 uptake is limited by the micronutrient iron. Phytoplankton requires iron in particular for nitrate uptake, light harvesting, and electron transport in photosynthesis, suggesting a tight coupling of iron and light limitation. One important source of iron to the open ocean is dust deposition. Previous global biogeochemical modeling studies have suggested a low sensitivity of oceanic CO2 uptake to changes in dust deposition. Here we show that this sensitivity is increased significantly when iron-light colimitation, i.e., the impact of iron bioavailability on light-harvesting capabilities, is explicitly considered. Accounting for iron-light colimitation increases the shift of export production from tropical and subtropical regions to the higher latitudes of subpolar regions at high dust deposition and amplifies iron limitation at low dust deposition. Our results reemphasize the role of iron as a key limiting nutrient for phytoplankton.

  11. Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton

    PubMed Central

    Botebol, Hugo; Lesuisse, Emmanuel; Šuták, Robert; Six, Christophe; Lozano, Jean-Claude; Schatt, Philippe; Vergé, Valérie; Kirilovsky, Amos; Morrissey, Joe; Léger, Thibaut; Camadro, Jean-Michel; Gueneugues, Audrey; Bowler, Chris; Blain, Stéphane; Bouget, François-Yves

    2015-01-01

    In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation. PMID:26553998

  12. Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton.

    PubMed

    Botebol, Hugo; Lesuisse, Emmanuel; Šuták, Robert; Six, Christophe; Lozano, Jean-Claude; Schatt, Philippe; Vergé, Valérie; Kirilovsky, Amos; Morrissey, Joe; Léger, Thibaut; Camadro, Jean-Michel; Gueneugues, Audrey; Bowler, Chris; Blain, Stéphane; Bouget, François-Yves

    2015-11-24

    In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation. PMID:26553998

  13. Microbial and biogeochemical responses to projected future nitrate enrichment in the California upwelling system

    PubMed Central

    Mackey, Katherine R. M.; Chien, Chia-Te; Paytan, Adina

    2014-01-01

    Coastal California is a dynamic upwelling region where nitrogen (N) and iron (Fe) can both limit productivity and influence biogeochemistry over different spatial and temporal scales. With global change, the flux of nitrate from upwelling is expected to increase over the next century, potentially driving additional oceanic regions toward Fe limitation. In this study we explored the effect of changes in Fe/N ratio on native phytoplankton from five currently Fe-replete sites near the major California upwelling centers at Bodega Bay and Monterey Bay using nutrient addition incubation experiments. Despite the high nitrate levels (13–30 μ M) in the upwelled water, phytoplankton at three of the five sites showed increased growth when 10 μ M nitrate was added. None of the sites showed enhanced growth following addition of 10 nM Fe. Nitrate additions favored slow sinking single-celled diatoms over faster sinking chain-forming diatoms, suggesting that future increases in nitrate flux could affect carbon and silicate export and alter grazer populations. In particular, solitary cells of Cylindrotheca were more abundant than the toxin-producing genus Pseudonitzschia following nitrate addition. These responses suggest the biogeochemistry of coastal California could change in response to future increases in nitrate, and multiple stressors like ocean acidification and hypoxia may further result in ecosystem shifts. PMID:25477873

  14. Redfield revisited, 1, Regulation of nitrate, phosphate, and oxygen in the ocean

    NASA Astrophysics Data System (ADS)

    Lenton, Timothy M.; Watson, Andrew J.

    2000-03-01

    The ratio of phosphate and nitrate concentrations in the deep ocean matches closely the Redfield ratio required by phytoplankton growing in the surface ocean. Furthermore, the oxygen available from dissolution in ocean water is, on average, just sufficient for the respiration of the resulting organic matter. We review various feedback mechanisms that have been proposed to account for these remarkable correspondences and construct a model to test their effectiveness. The model's initial steady state is cate responds to perturbation in 1000-2000 years and phosphate in 40,000-60,000 years. However, recently increased estimates oflose to the Redfield ratios and stable against instantaneous changes in the sizes of the nitrate and phosphate reservoirs. When classic flux estimates are adopted, nitr the input and output fluxes of nitrate and phosphate suggest that they respond more rapidly to perturbation, nitrate in 500-1000 years and phosphate in 10,000-15,000 years. Nitrogen fixation tends to maintain nitrate close to Redfield ratio with phosphate, while denitrification tends to keep nitrate as the proximate limiting nutrient and tie it in Redfield ratio to dissolved oxygen. Under increases in phosphorus input to the ocean, the relative responsiveness of nitrogen fixation and denitrification determine whether nitrate remains close to Redfield ratio to phosphate or to oxygen. If nitrogen fixation is strongly limited (e.g., by lack of iron), increasing phosphorus input to the ocean can cause phosphate to deviate above Redfield ratio to nitrate. Hence nitrogen dynamics can control phosphate behavior and nitrate can potentially be the ultimate limiting nutrient over geologic periods of time. When nitrate and phosphate are coupled together by responsive nitrogen fixation, negative feedbacks on organic and calcium-bound phosphorus burial stabilize their concentrations. If anoxia suppresses organic phosphorus burial, the resulting feedbacks on phosphate (positive) and oxygen

  15. Removal of Selenium and Nitrate in Groundwater Using Organic Carbon-Based Reactive Mixtures

    NASA Astrophysics Data System (ADS)

    An, Hyeonsil; Jeen, Sung-Wook

    2016-04-01

    Treatment of selenium and nitrate in groundwater was evaluated through column experiments. Four columns consisting of reactive mixtures, either organic carbon-limestone (OC-LS) or organic carbon-zero valent iron (OC-ZVI), were used to determine the removal efficiency of selenium with different concentrations of nitrate. The source waters were collected from a mine site in Korea or were prepared artificially based on the mine drainage water or deionized water, followed by spiking of elevated concentrations of Se (40 mg/L) and nitrate (100 or 10 mg/L as NO3-N). The results for the aqueous chemistry showed that selenium and nitrate were effectively removed both in the mine drainage water and deionized water-based artificial input solution. However, the removal of selenium was delayed when selenium and nitrate coexisted in the OC-LS columns. The removal of selenium was not significant when the influent nitrate concentration was 100 mg/L as NO3-N, while most of nitrate was gradually removed within the columns. In contrast, 94% of selenium was removed when the influent nitrate concentration was reduced to 10 mg/L as NO3-N. In the OC-ZVI column, selenium and nitrate was removed almost simultaneously and completely even with the high nitrate concentration; however, a high concentration of ammonia was produced as a by-product of abiotic reaction between ZVI and nitrate. The elemental analysis for the solid samples after the termination of the experiments showed that selenium was accumulated in the reactive materials where removal of aqueous-phase selenium mostly occurred. The X-ray absorption near-edge structure (XANES) study indicated that selenium existed in the forms of SeS2 and Se(0) in the OC-LS column, while selenium was present in the forms of FeSe, SeS2 and absorbed Se(IV) in the OC-ZVI column. This study shows that OC-based reactive mixtures have an ability to remove selenium and nitrate in groundwater. However, the removal of selenium was influenced by the high

  16. METABOLISM OF IRON STORES

    PubMed Central

    SAITO, HIROSHI

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since the pioneering research by Shoden in 1953. However, we recently developed a new method for determining ferritin iron and hemosiderin iron by computer-assisted serum ferritin kinetics. Serum ferritin increase or decrease curves were measured in patients with normal storage iron levels (chronic hepatitis C and iron deficiency anemia treated by intravenous iron injection), and iron overload (hereditary hemochromatosis and transfusion dependent anemia). We thereby confirmed the existence of two iron pathways where iron flows followed the numbered order (1) labile iron, (2) ferritin and (3) hemosiderin in iron deposition and mobilization among many previously proposed but mostly unproven routes. We also demonstrated the increasing and decreasing phases of ferritin iron and hemosiderin iron in iron deposition and mobilization. The author first demonstrated here the change in proportion between pre-existing ferritin iron and new ferritin iron synthesized by removing iron from hemosiderin in the course of iron removal. In addition, the author disclosed the cause of underestimation of storage iron turnover rate which had been reported by previous investigators in estimating storage iron turnover rate of normal subjects. PMID:25741033

  17. Dissimilatory Iron Reduction in Microorganisms Growing Near 100 C

    NASA Astrophysics Data System (ADS)

    Feinberg, L.; Holden, J.

    2006-12-01

    Dissimilatory iron reduction for microbial energy-generation has been well studied in mesophilic bacteria, such as Geobacter and Shewanella, but has only recently been found in organisms that grow optimally above 80°C, namely hyperthermophilic archaea. Dissimilatory iron reduction at high temperatures is likely to be widespread in high-temperature, anoxic environments such as deep-sea hydrothermal vents and terrestrial hot springs. Understanding the physiological mechanisms of microbe-metal interactions will help us to interpret the interplay between microorganisms and their geochemical environment. Our studies sought to characterize iron reduction in members of the hyperthermophilic genus Pyrobaculum (Topt 100°C) and the constraints associated with it and alternative terminal electron accepting processes. P. aerophilum and P. islandicum grew on soluble (Fe(III) citrate) and insoluble (Fe(III) oxide hydroxide) forms of iron. In P. aerophilum, ferric reductase and nitrate reductase activities and nitrate reductase abundances varied in iron- and nitrate-grown cultures suggesting that dissimilatory iron and nitrate reduction are regulated. P. aerophilum grew on Fe(III) oxide hydroxide that was separated from the cells by a dialysis membrane (12,000-14,000 MWCO). This suggests that direct contact with insoluble iron was not necessary for growth and that the organism may use an extracellular mediator for iron reduction. A hydroquinone-like molecule (MW = 234 Da) was identified by LC-MS in spent medium from cultures grown on insoluble Fe(III) oxide hydroxide that was far less abundant in spent media with other electron acceptors. P. aerophilum produced c- type cytochromes but genome analyses showed that the organism lacks polyheme c-type cytochromes, which are required for iron reduction in Geobacter and Shewanella species. There were significant differences between Pyrobaculum species with respect to pH and reduction potential preference of the media, which may have

  18. A biological source of oceanic alkyl nitrates

    NASA Astrophysics Data System (ADS)

    Dahl, E. E.; Lewis, C. B.; Velasco, F. L.; Escobar, C.; Kellogg, D.; Velcamp, M.

    2013-12-01

    Alkyl nitrates are an important component of reactive nitrogen in the troposphere. The oceans are a source of alkyl nitrates to the atmosphere, however the source of alkyl nitrates in the oceans is unknown. It has been demonstrated that the reaction of alkyl peroxy radicals (ROO) with nitric oxide (NO) produces alkyl nitrates in the aqueous phase. We hypothesize that alkyl nitrates may be formed by organisms through the same reaction and therefore biological production could be a source of alkyl nitrates to the troposphere. This work focuses on the production of alkyl nitrates by the diatoms Chaetoceros muelleri and Thalassiosira weisfloggi. Using chemostats, we measure alkyl nitrates formed under nitrate limited conditions. We also use triggers and inhibitors of nitric oxide formation to determine if alkyl nitrate formation is affected by changes in NO production. To date, the rates of production of alkyl nitrates in our cultures, lead us to estimate a production rate on the order of femtomolar/day for C1-C3 alkyl nitrates by diatom species in the equatorial Pacific Ocean. This suggests that diatoms may contribute to the overall ocean source of alkyl nitrates; however, it is possible that other types of phytoplankton, such as cyanobacteria, that are more abundant in the open ocean, may contribute to a greater extent.

  19. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability.

    PubMed

    Marchetti, Adrian; Schruth, David M; Durkin, Colleen A; Parker, Micaela S; Kodner, Robin B; Berthiaume, Chris T; Morales, Rhonda; Allen, Andrew E; Armbrust, E Virginia

    2012-02-01

    In vast expanses of the oceans, growth of large phytoplankton such as diatoms is limited by iron availability. Diatoms respond almost immediately to the delivery of iron and rapidly compose the majority of phytoplankton biomass. The molecular bases underlying the subsistence of diatoms in iron-poor waters and the plankton community dynamics that follow iron resupply remain largely unknown. Here we use comparative metatranscriptomics to identify changes in gene expression associated with iron-stimulated growth of diatoms and other eukaryotic plankton. A microcosm iron-enrichment experiment using mixed-layer waters from the northeastern Pacific Ocean resulted in increased proportions of diatom transcripts and reduced proportions of transcripts from most other taxa within 98 h after iron addition. Hundreds of diatom genes were differentially expressed in the iron-enriched community compared with the iron-limited community; transcripts of diatom genes required for synthesis of photosynthesis and chlorophyll components, nitrate assimilation and the urea cycle, and synthesis of carbohydrate storage compounds were significantly overrepresented. Transcripts of genes encoding rhodopsins in eukaryotic phytoplankton were significantly underrepresented following iron enrichment, suggesting rhodopsins help cells cope with low-iron conditions. Oceanic diatoms appear to display a distinctive transcriptional response to iron enrichment that allows chemical reduction of available nitrogen and carbon sources along with a continued dependence on iron-free photosynthetic proteins rather than substituting for iron-containing functional equivalents present within their gene repertoire. This ability of diatoms to divert their newly acquired iron toward nitrate assimilation may underlie why diatoms consistently dominate iron enrichments in high-nitrate, low-chlorophyll regions. PMID:22308424

  20. SEPARATION OF SCANDIUM VALUES FORM IRON VALUES BY SOLVENT EXTRACTION

    DOEpatents

    Kuhlman, C.W. Jr.; Lang, G.P.

    1961-12-19

    A process is given for separating scandium from trivalent iron values. In this process, an aqueous nitric acid solution is contacted with a water- immiscible alkyl phosphate solution, the aqueous solution containing the values to be separated, whereby the scandium is taken up by the alkyl phosphate. The aqueous so1ution is preferably saturated with magnesium nitrate to retain the iron in the aqueous solution. (AEC)

  1. Short-Term Effects of a High Nitrate Diet on Nitrate Metabolism in Healthy Individuals

    PubMed Central

    Bondonno, Catherine P.; Liu, Alex H.; Croft, Kevin D.; Ward, Natalie C.; Puddey, Ian B.; Woodman, Richard J.; Hodgson, Jonathan M.

    2015-01-01

    Dietary nitrate, through the enterosalivary nitrate-nitrite-NO pathway, can improve blood pressure and arterial stiffness. How long systemic nitrate and nitrite remain elevated following cessation of high nitrate intake is unknown. In 19 healthy men and women, the time for salivary and plasma nitrate and nitrite to return to baseline after 7 days increased nitrate intake from green leafy vegetables was determined. Salivary and plasma nitrate and nitrite was measured at baseline [D0], end of high nitrate diet [D7], day 9 [+2D], day 14 [+7D] and day 21 [+14D]. Urinary nitrite and nitrate was assessed at D7 and +14D. Increased dietary nitrate for 7 days resulted in a more than fourfold increase in saliva and plasma nitrate and nitrite (p < 0.001) measured at [D7]. At [+2D] plasma nitrite and nitrate had returned to baseline while saliva nitrate and nitrite were more than 1.5 times higher than at baseline levels. By [+7D] all metabolites had returned to baseline levels. The pattern of response was similar between men and women. Urinary nitrate and nitrate was sevenfold higher at D7 compared to +14D. These results suggest that daily ingestion of nitrate may be required to maintain the physiological changes associated with high nitrate intake. PMID:25774606

  2. An electrokinetic/Fe0 permeable reactive barrier system for the treatment of nitrate-contaminated subsurface soils.

    PubMed

    Suzuki, Tasuma; Oyama, Yukinori; Moribe, Mai; Niinae, Masakazu

    2012-03-01

    Effective nitrate removal by Fe(0) permeable reactive barriers (Fe(0) PRB) has been recognized as a challenging task because the iron corrosion product foamed on Fe(0) hinders effective electron transfer from Fe(0) to surface-bound nitrate. The objectives of this study were (i) to demonstrate the effectiveness of an electrokinetic/Fe(0) PRB system for remediating nitrate-contaminated low permeability soils using a bench-scale system and (ii) to deepen the understanding of the behavior and fate of nitrate in the system. Bench-scale laboratory experiments were designed to investigate the influence of the Fe(0) content in the permeable reactive barrier, the pH in the anode well, and the applied voltage on remediation efficiency. The experimental results showed that the major reaction product of nitrate reduction by Fe(0) was ammonium and that nitrate reduction efficiency was significantly influenced by the variables investigated in this study. Nitrate reduction efficiency was enhanced by either increasing the Fe(0) content in the Fe(0) reactive barrier or decreasing the initial anode pH. However, nitrate reduction efficiency was reduced by increasing the applied voltage from 10 V to 40 V due to the insufficient reaction time during nitrate migration through the Fe(0) PRB. For all experimental conditions, nearly all nitrate nitrogen was recovered in either anode or cathode wells as nitrate or ammonium within 100 h, demonstrating the effectiveness of the system for remediating nitrate-contaminated subsurface soils. PMID:22153957

  3. Dietary nitrate and cardiovascular health

    USGS Publications Warehouse

    Ahluwalia, A.; Gladwin, M.T.; Harman, Jane L.; Ward, M.H.; Nolan, Bernard T.

    2014-01-01

    The National Heart, Lung, and Blood Institute convened this workshop to discuss the results of recent research on the effects of inorganic nitrate and nitrite on the cardiovascular system, possible long term effects of these compounds in the diet and drinking water, and future research needs including population-wide effects examined through epidemiological studies.

  4. Anaerobic, Nitrate-Dependent Fe(II) Oxidation Under Advective Flow

    NASA Astrophysics Data System (ADS)

    Weber, K. A.; Coates, J. D.

    2005-12-01

    Microbially-catalyzed nitrate-dependent Fe(II) oxidation has been identified as a ubiquitous biogeochemical process contributing to anaerobic iron redox cycling in sedimentary environments. Most probable number enumeration revealed nitrate-dependent Fe(II) oxidizing microbial communities in groundwater and subsurface sediments in the order of 0 - 2.04 x 103 cells mL-1 and 2.39 x 102 - 1.17 x 103 cells (g wet sediment)-1, respectively. The efficacy of nitrate-dependent Fe(II) oxidation under advective flow was evaluated in a meso-scale column reactor packed with sterile low iron sand amended with subsurface sediments collected from the NABIR FRC background field site (10% mass/mass). Continuous flow of minimal medium mimicked the natural groundwater. Periodic FeCl2 and nitrate injections over a period of 49 days resulted in the retention of 95% of the iron (290 mmol). Extraction of solid-phase Fe revealed a net increase in Fe(III) of 160 mmol above background Fe(III) content indicating that 55% of the injected Fe(II) was oxidized. Differential solubility analysis of 0.5M HCl-extractable Fe and 3M HCl-extractable Fe indicated that the oxidation product was crystalline in nature as only 20% was soluble in 0.5M HCl. This formation of crystalline biogenic Fe(III) oxides is consistent with previous studies. Periodic injections of nitrate and acetate did not result in significant changes in Fe(II) or Fe(III) throughout a control column. Together these results demonstrate that native subsurface sediments harbor microbial communities capable of nitrate-dependent Fe(II) oxidation under advective flow. The biogenic formation of reactive Fe(III) oxide minerals capable of immobilizing heavy metals and radionuclides presents a plausible bioremediative strategy for contaminated subsurface environments.

  5. Biological denitrification of high concentration nitrate waste

    DOEpatents

    Francis, Chester W.; Brinkley, Frank S.

    1977-01-01

    Biological denitrification of nitrate solutions at concentrations of greater than one kilogram nitrate per cubic meter is accomplished anaerobically in an upflow column having as a packing material a support for denitrifying bacteria.

  6. Hydrogeochemical modeling of enhanced benzene, toluene, ethylbenzene, xylene (BTEX) remediation with nitrate

    NASA Astrophysics Data System (ADS)

    Eckert, Paul; Appelo, C. A. J.

    2002-08-01

    During a 5-month field test, active remediation of a benzene, toluene, ethylbenzene, xylene (BTEX)-contaminated aquifer was initiated by injecting water with varying amounts of KNO3. The experiment was performed prior to selecting bioremediation for full-scale cleanup, particularly to evaluate the competing reaction of nitrate with hydrocarbons and reduced sulfur components. The nitrate oxidized sulfides that had precipitated earlier as a result of the natural degradation of BTEX with SO42- from groundwater. When the sulfides were exhausted, BTEX degradation was enhanced by nitrate. A hydrogeochemical model with kinetic oxidation reactions for Fe(II), FeS and BTEX by nitrate was developed to calculate the observed concentration patterns along a flow line in the aquifer. The rates for the kinetic model were based on published kinetic reaction equations for oxidation with oxygen. Nitrate was introduced in the equations in the same form as oxygen, with a premultiplier added to fit the observed concentration changes in the aquifer. The oxidation of Fe(II) with nitrate in the aquifer was 4 times slower than the abiological oxidation reaction with oxygen in water. Similar rates were found for oxidation of FeS with nitrate as for FeS2 with oxygen, but the specific surface area of FeS in the aquifer was larger. The reaction rate for degradation of BTEX compounds was about 107 times faster than for natural organic matter. BTEX release from pools in the aquifer was modeled with a linear driving force equation in which the pollutant/water interfacial area was linked to the mass of BTEX. The release rate and the denitrification rate were used to calculate the initial amounts of BTEX at the start of the KNO3 injection. This study shows that an assessment of the efficiency of nitrate addition for stimulating bioremediation has to consider possible reactions of nitrate with reduced sulfur components and ferrous iron.

  7. Nitrate reduction in sulfate-reducing bacteria.

    PubMed

    Marietou, Angeliki

    2016-08-01

    Sulfate-reducing bacteria (SRBs) gain their energy by coupling the oxidation of organic substrate to the reduction of sulfate to sulfide. Several SRBs are able to use alternative terminal electron acceptors to sulfate such as nitrate. Nitrate-reducing SRBs have been isolated from a diverse range of environments. In order to be able to understand the significance of nitrate reduction in SRBs, we need to examine the ecology and physiology of the nitrate-reducing SRB isolates. PMID:27364687

  8. A Novel Chemical Nitrate Destruction Process

    SciTech Connect

    Dziewinski, J.; Marczak, S.

    1999-03-01

    Nitrates represent one of the most significant pollutant discharged to the Baltic Sea by the Sliiamae hydrometallurgical plant. This article contains a brief overview of the existing nitrate destruction technologies followed by the description of a new process developed by the authors. The new chemical process for nitrate destruction is cost effective and simple to operate. It converts the nitrate to nitrogen gas which goes to the atmosphere.

  9. Plasma nitrate and nitrite are increased by a high nitrate supplement, but not by high nitrate foods in older adults

    PubMed Central

    Miller, Gary D.; Marsh, Anthony P.; Dove, Robin W.; Beavers, Daniel; Presley, Tennille; Helms, Christine; Bechtold, Erika; King, S. Bruce; Kim-Shapiro, Daniel

    2012-01-01

    Little is known about the effect of dietary nitrate on the nitrate/nitrite/NO (nitric oxide) cycle in older adults. We examined the effect of a 3-day control diet vs. high nitrate diet, with and without a high nitrate supplement (beetroot juice), on plasma nitrate and nitrite kinetics, and blood pressure using a randomized four period cross-over controlled design. We hypothesized that the high nitrate diet would show higher levels of plasma nitrate/nitrite and blood pressure compared to the control diet, which would be potentiated by the supplement. Participants were eight normotensive older men and women (5 female, 3 male, 72.5±4.7 yrs) with no overt disease or medications that affect NO metabolism. Plasma nitrate and nitrite levels and blood pressure were measured prior to and hourly for 3 hours after each meal. The mean daily changes in plasma nitrate and nitrite were significantly different from baseline for both control diet+supplement (p<0.001 and =0.017 for nitrate and nitrite, respectively) and high nitrate diet+supplement (p=0.001 and 0.002), but not for control diet (p=0.713 and 0.741) or high nitrate diet (p=0.852 and 0.500). Blood pressure decreased from the morning baseline measure to the three 2 hr post-meal follow-up time-points for all treatments, but there was no main effect for treatment. In healthy older adults, a high nitrate supplement consumed at breakfast elevated plasma nitrate and nitrite levels throughout the day. This observation may have practical utility for the timing of intake of a nitrate supplement with physical activity for older adults with vascular dysfunction. PMID:22464802

  10. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  11. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  12. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  13. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  14. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  15. Post-translational Regulation of Nitrate Reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  16. Nitration of Naphthol: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Mowery, Dwight F.

    1982-01-01

    Products of nitrations, upon distillation or steam distillation, may produce dermatitis in some students. A procedure for nitration of beta-naphthol producing a relatively non-volatile product not purified by steam distillation is described. Nitration of alpha-naphthol by the same procedure yields Martius Yellow dye which dyes wool yellow or…

  17. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a...

  18. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium nitrate. 172.160 Section 172.160 Food... ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a curing agent in the processing of...

  19. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  20. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  1. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  2. Modeling nitrate removal in a denitrification bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification beds are being promoted to reduce nitrate concentrations in agricultural drainage water to alleviate the adverse environmental effects associated with nitrate pollution in surface water. In this system, water flows through a trench filled with a carbon media where nitrate is transfor...

  3. Efflux Of Nitrate From Hydroponically Grown Wheat

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1992-01-01

    Report describes experiments to measure influx, and efflux of nitrate from hydroponically grown wheat seedlings. Ratio between efflux and influx greater in darkness than in light; increased with concentration of nitrate in nutrient solution. On basis of experiments, authors suggest nutrient solution optimized at lowest possible concentration of nitrate.

  4. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  5. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  6. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified foods in accordance with...

  7. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  8. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  9. Method of producing thin cellulose nitrate film

    DOEpatents

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  10. Iron Dextran Injection

    MedlinePlus

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  11. Protective effect of salivary nitrate and microbial nitrate reductase activity against caries.

    PubMed

    Doel, J J; Hector, M P; Amirtham, C V; Al-Anzan, L A; Benjamin, N; Allaker, R P

    2004-10-01

    To test the hypothesis that a combination of high salivary nitrate and high nitrate-reducing capacity are protective against dental caries, 209 children attending the Dental Institute, Barts and The London NHS Trust were examined. Salivary nitrate and nitrite levels, counts of Streptococcus mutans and Lactobacillus spp., and caries experience were recorded. Compared with control subjects, a significant reduction in caries experience was found in patients with high salivary nitrate and high nitrate-reducing ability. Production of nitrite from salivary nitrate by commensal nitrate-reducing bacteria may limit the growth of cariogenic bacteria as a result of the production of antimicrobial oxides of nitrogen, including nitric oxide. PMID:15458501

  12. Iron and alloys of iron. [lunar resources

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar

    1992-01-01

    All lunar soil contains iron in the metallic form, mostly as an iron-nickel alloy in concentrations of a few tenths of 1 percent. Some of this free iron can be easily separated by magnetic means. It is estimated that the magnetic separation of 100,000 tons of lunar soil would yield 150-200 tons of iron. Agglutinates contain metallic iron which could be extracted by melting and made into powder metallurgy products. The characteristics and potential uses of the pure-iron and iron-alloy lunar products are discussed. Processes for working iron that might be used in a nonterrestrial facility are also addressed.

  13. Continuous flow nitration in miniaturized devices

    PubMed Central

    2014-01-01

    Summary This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed. PMID:24605161

  14. Nitrated fatty acids: Synthesis and measurement

    PubMed Central

    Woodcock, Steven R.; Bonacci, Gustavo; Gelhaus, Stacy L.; Schopfer, Francisco J.

    2012-01-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis, sample extraction from complex biological matrices, and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by LC-MS. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed. PMID:23200809

  15. Biological Oxidation of Fe(II) in Reduced Nontronite Coupled with Nitrate Reduction by Pseudogulbenkiania sp. Strain 2002

    SciTech Connect

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.; Agrawal, A.; Liu, Deng; Zhang, Jing; Edelmann, Richard E.

    2013-10-15

    Nitrate contamination in soils, sediments, and water bodies is a significant issue. Although much is known about nitrate degradation in these environments, especially via microbial pathways, a complete understanding of all degradation processes, especially in clay mineral-rich soils, is still lacking. The objective of this study was to study the potential of removing nitrate contaminant using structural Fe(II) in clay mineral nontronite. Specifically, the coupled processes of microbial oxidation of Fe(II) in microbially reduced nontronite (NAu-2) and nitrate reduction by Pseudogulbenkiania species strain 2002 was investigated. Bio-oxidation experiments were conducted in bicarbonate-buffered medium under both growth and nongrowth conditions. The extents of Fe(II) oxidation and nitrate reduction were measured by wet chemical methods. X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and 57Fe-Mössbauer spectroscopy were used to observe mineralogical changes associated with Fe(III) reduction and Fe(II) oxidation in nontronite. The bio-oxidation extent under growth and nongrowth conditions reached 93% and 57%, respectively. Over the same time period, nitrate was completely reduced under both conditions to nitrogen gas (N2), via an intermediate product nitrite. Magnetite was a mineral product of nitrate-dependent Fe(II) oxidation, as evidenced by XRD data and TEM diffraction patterns. The results of this study highlight the importance of iron-bearing clay minerals in the global nitrogen cycle with potential applications in nitrate removal in soils.

  16. Iron and iron derived radicals

    SciTech Connect

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  17. Deconstructing nitrate isotope dynamics in aquifers

    NASA Astrophysics Data System (ADS)

    Granger, J.

    2012-12-01

    The natural abundance N and O stable isotope ratios of nitrate provide an invaluable tool to differentiate N sources to the environment, track their dispersal, and monitor their attenuation by biological transformations. The interpretation of patterns in isotope abundances relies on knowledge of the isotope ratios of the source end-members, as well as on constraints on the isotope discrimination imposed on nitrate by respective biological processes. Emergent observations from mono-culture experiments of denitrifying bacteria reveal nitrate fractionation trends that appear at odds with trends ascribed to denitrification in soils and aquifers. This discrepancy raises the possibility that additional biological N transformations may be acting in tandem with denitrification. Here, the N and O isotope enrichments associated with nitrate removal by denitrification in aquifers are posited to bear evidence of coincident biological nitrate production - from nitrification and/or from anammox. Simulations are presented from a simple time-dependent one-box model of a groundwater mass ageing that is subject to net nitrate loss by denitrification with coincident nitrate production by nitrification or anammox. Within boundary conditions characteristic of freshwater aquifers, the apparent slope of the parallel enrichments in nitrate N and O isotopes associated with net N loss to denitrification can vary in proportion to the nitrate added simultaneous by oxidative processes. Pertinent observations from nitrate plumes in suboxic to anoxic aquifers are examined to validate this premise. In this perspective, nitrate isotope distributions suggest that we may be missing important N fluxes inherent to most aquifers.

  18. Phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, M.; Yoo, C. S.

    2014-05-01

    Ammonium Nitrate (AN) has often subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood -resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 17 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400 °C.

  19. Dietary nitrate supplementation and exercise performance.

    PubMed

    Jones, Andrew M

    2014-05-01

    Dietary nitrate is growing in popularity as a sports nutrition supplement. This article reviews the evidence base for the potential of inorganic nitrate to enhance sports and exercise performance. Inorganic nitrate is present in numerous foodstuffs and is abundant in green leafy vegetables and beetroot. Following ingestion, nitrate is converted in the body to nitrite and stored and circulated in the blood. In conditions of low oxygen availability, nitrite can be converted into nitric oxide, which is known to play a number of important roles in vascular and metabolic control. Dietary nitrate supplementation increases plasma nitrite concentration and reduces resting blood pressure. Intriguingly, nitrate supplementation also reduces the oxygen cost of submaximal exercise and can, in some circumstances, enhance exercise tolerance and performance. The mechanisms that may be responsible for these effects are reviewed and practical guidelines for safe and efficacious dietary nitrate supplementation are provided. PMID:24791915

  20. Maximal Expression of Membrane-Bound Nitrate Reductase in Paracoccus Is Induced by Nitrate via a Third FNR-Like Regulator Named NarR

    PubMed Central

    Wood, Nicholas J.; Alizadeh, Tooba; Bennett, Scott; Pearce, Joanne; Ferguson, Stuart J.; Richardson, David J.; Moir, James W. B.

    2001-01-01

    Respiratory reduction of nitrate to nitrite is the first key step in the denitrification process that leads to nitrate loss from soils. In Paracoccus pantotrophus, the enzyme system that catalyzes this reaction is encoded by the narKGHJI gene cluster. Expression of this cluster is maximal under anaerobic conditions in the presence of nitrate. Upstream from narK is narR, a gene encoding a member of the FNR family of transcriptional activators. narR is transcribed divergently from the other nar genes. Mutational analysis reveals that NarR is required for maximal expression of the membrane-bound nitrate reductase genes and narK but has no other regulatory function related to denitrification. NarR is shown to require nitrate and/or nitrite is order to activate gene expression. The N-terminal region of the protein lacks the cysteine residues that are required for formation of an oxygen-sensitive iron-sulfur cluster in some other members of the FNR family. Also, NarR lacks a crucial residue involved in interactions of this family of regulators with the ς70 subunit of RNA polymerase, indicating that a different mechanism is used to promote transcription. narR is also found in Paracoccus denitrificans, indicating that this species contains at least three FNR homologues. PMID:11371524

  1. Nitration of sym-trichlorobenzene

    SciTech Connect

    Quinlin, W.T.

    1981-02-01

    Basic thermal and kinetic data were obtained for the nitration of 1,3,5-trichlorobenzene to trichlorotrinitrobenzene in the presence of oleum/nitric acid. A limiting specific production rate of 5.4 kg/l/hr was determined for the addition of the first two nitro groups at 130 C and a rate of 0.16 kg/l/hr was obtained at 150 C for the addition of the third nitro group.

  2. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  3. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  4. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  5. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  6. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  7. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  8. Catalyzed reduction of nitrate in aqueous solutions

    SciTech Connect

    Haas, P.A.

    1994-08-01

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH{sub 3}, hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250{degree}C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs < 4 as HNO{sub 3} or NH{sub 4}NO{sub 3} is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO{sub 3} to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions.

  9. Photochemical reduction of uranyl nitrate

    SciTech Connect

    Duerksen, W.K.

    1993-10-20

    The photochemical reduction of uranyl nitrate solutions to tetravalent uranium was investigated as a means of producing uranium dioxide feed for the saltless direct oxide reduction (SDOR) process. At high uranium concentrations, reoxidation of U{sup +4} occurs rapidly. The kinetics of the nitric oxidation of tetravalent uranium depend on the concentrations of hydrogen ion, nitrate ion, nitrous acid, and tetravalent uranium in the same manner as was reported elsewhere for the nitrate oxidation of PU{sup +3}. Reaction rate data were successfully correlated with a mechanism in which nitrogen dioxide is the reactive intermediate. Addition of a nitrous acid scavenger suppresses the reoxidation reaction. An immersion reactor employing a mercury vapor lamp gave reduction times fast enough for routine production usage. Precipitation techniques for conversion of aqueous U(NO{sub 3}){sub 4} to hydrous UO{sub 2} were evaluated. Prolonged dewatering times tended to make the process time consuming. Use of 3- to 4-M aqueous NaOH gave the best dewatering times observed. Reoxidation of the UO{sub 2} by water of hydration was encountered, which required the drying process to be carried out under a reducing atmosphere.

  10. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.; Mao, J.; Naik, V.; Horowitz, L. W.

    2015-09-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for present-day fine nitrate optical depth at 550 nm is 0.006 (0.005-0.008). We only find a modest increase of nitrate optical depth (< 30 %) in response to the projected changes in the emissions of SO2 (-40 %) and ammonia (+38 %) from 2010 to 2050. Nitrate burden is projected to increase in the tropics and in the free troposphere, but to decrease at the surface in the midlatitudes because of lower nitric acid concentrations. Our results suggest that better constraints on the heterogeneous chemistry of nitric acid on dust, on tropical ammonia emissions, and on the transport of ammonia to the free troposphere are needed to improve projections of aerosol optical depth.

  11. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.-Y.; Mao, J.; Naik, V.; Horowitz, L. W.

    2016-02-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for fine nitrate optical depth at 550 nm in 2010 is 0.006 (0.005-0.008). In wintertime, nitrate aerosols are simulated to account for over 30 % of the aerosol optical depth over western Europe and North America. Simulated nitrate optical depth increases by less than 30 % (0.0061-0.010) in response to projected changes in anthropogenic emissions from 2010 to 2050 (e.g., -40 % for SO2 and +38 % for ammonia). This increase is primarily driven by greater concentrations of nitrate in the free troposphere, while surface nitrate concentrations decrease in the midlatitudes following lower concentrations of nitric acid. With the projected increase of ammonia emissions, we show that better constraints on the vertical distribution of ammonia (e.g., convective transport and biomass burning injection) and on the sources and sinks of nitric acid (e.g., heterogeneous reaction on dust) are needed to improve estimates of future nitrate optical depth.

  12. Identification of periplasmic nitrate reductase Mo(V) EPR signals in intact cells of Paracoccus denitrificans.

    PubMed

    Sears, H J; Bennett, B; Spiro, S; Thomson, A J; Richardson, D J

    1995-08-15

    EPR spectroscopy has been successfully used to detect signals due to molybdenum (V) and ferric iron in intact cells of aerobically grown Paracoccus denitrificans. The signals are ascribed to the catalytic molybdenum centre and to the haem iron of the periplasmic nitrate reductase. These signals are absent from a mutant strain deficient in this enzyme. The Mo(V) signal is due to the High-g Split species which has been well characterized in the purified enzyme. This confirms that the High-g Split is the physiologically relevant signal of a number observed in the previous work on the purified enzyme. PMID:7646461

  13. Effect of nitrate on microbial perchlorate reduction

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Coates, J. D.

    2007-12-01

    Over the last decade perchlorate has been recognized as an important emerging water contaminant that poses a significant public health threat. Because of its chemical stability, low ionic charge density, and significant water solubility microbial remediation has been identified as the most feasible method for its in situ attenuation. Our previous studies have demonstrated that dissimilatory perchlorate reducing bacteria (DPRB) capable of the respiratory reduction of perchlorate into innocuous chloride are ubiquitous in soil and sedimentary environments. As part of their metabolism these organisms reduce perchlorate to chlorite which is subsequently dismutated into chloride and molecular oxygen. These initial steps are mediated by the perchlorate reductase and chlorite dismutase enzymes respectively. Previously we found that the activity of these organisms is dependent on the presence of molybdenum and is inhibited by the presence of oxygen and to different extents nitrate. However, to date, there is little understanding of the mechanisms involved in the regulation of perchlorate reduction by oxygen and nitrate. As a continuation of our studies into the factors that control DPRB activity we investigated these regulatory mechanisms in more detail as a model organism, Dechloromonas aromatica strain RCB, transitions from aerobic metabolism through nitrate reduction to perchlorate reduction. In series of growth transition studies where both nitrate and perchlorate were present, preference for nitrate to perchlorate was observed regardless of the nitrate to perchlorate ratio. Even when the organism was pre-grown anaerobically in perchlorate, nitrate was reduced prior to perchlorate. Using non-growth washed cell suspension, perchlorate- grown D. aromatica was capable of reducing both perchlorate and nitrate concomitantly suggesting the preferentially utilization of nitrate was not a result of enzyme functionality. To elucidate the mechanism for preferential utilization of

  14. Fast photolysis of carbonyl nitrates from isoprene

    NASA Astrophysics Data System (ADS)

    Müller, Jean-Francois; Peeters, Jozef; Stavrakou, Trisevgeni

    2014-05-01

    We show that photolysis is, by far, the major atmospheric sink of isoprene-derived carbonyl nitrates. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of α-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections, and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as the likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photorates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methylvinylketone nitrates strongly supports our assumptions of large cross section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications, as carbonyl nitrates constitute an important component of the total organic nitrate pool over vegetated areas: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  15. Skeletal muscle as an endogenous nitrate reservoir

    PubMed Central

    Piknova, Barbora; Park, Ji Won; Swanson, Kathryn M.; Dey, Soumyadeep; Noguchi, Constance Tom; Schechter, Alan N

    2015-01-01

    The nitric oxide synthase (NOS) family of enzymes form nitric oxide (NO) from arginine in the presence of oxygen. At reduced oxygen availability NO is also generated from nitrate in a two step process by bacterial and mammalian molybdopterin proteins, and also directly from nitrite by a variety of five-coordinated ferrous hemoproteins. The mammalian NO cycle also involves direct oxidation of NO to nitrite, and both NO and nitrite to nitrate by oxy-ferrous hemoproteins. The liver and blood are considered the sites of active mammalian NO metabolism and nitrite and nitrate concentrations in the liver and blood of several mammalian species, including human, have been determined. However, the large tissue mass of skeletal muscle had not been generally considered in the analysis of the NO cycle, in spite of its long-known presence of significant levels of active neuronal NOS (nNOS or NOS1). We hypothesized that skeletal muscle participates in the NO cycle and, due to its NO oxidizing heme protein, oxymyoglobin, has high concentrations of nitrate ions. We measured nitrite and nitrate concentrations in rat and mouse leg skeletal muscle and found unusually high concentrations of nitrate but similar levels of nitrite, when compared to the liver. The nitrate reservoir in muscle is easily accessible via the bloodstream and therefore nitrate is available for transport to internal organs where it can be reduced to nitrite and NO. Nitrate levels in skeletal muscle and blood in nNOS−/− mice were dramatically lower when compared with controls, which support further our hypothesis. Although the nitrate reductase activity of xanthine oxidoreductase in muscle is less than that of liver, the residual activity in muscle could be very important in view of its total mass and the high basal level of nitrate. We suggest that skeletal muscle participates in overall NO metabolism, serving as a nitrate reservoir, for direct formation of nitrite and NO, and for determining levels of nitrate

  16. Nitrate Enhanced Microbial Cr(VI) Reduction-Final Report

    SciTech Connect

    John F. Stolz

    2011-06-15

    proteins (Gmet_2478 and Gmet_1641) were up-regulated with exposure to Cr(VI). A nine-heme cytochrome C was purified that could reduce nitrite and could be oxidized by Cr(VI). For D. desulfuricans, we found that confirmed that Cr(VI) induced a prolonged lag period when Cr(VI) was reduced. Over three hundred proteins were unequivocally identified by LC/MS-MS and a significant number of down-regulated proteins for which the levels were changed >2 fold compared to control. Sulfite reductase levels were similar, however, nitrate and nitrite reductase were down-regulated. The supernatant of spent cultures was found to contain a filterable, heat stable compound that rapidly reduced Cr(VI). In addition, desulfoviridin was purified from nitrate grown cells and shown to have nitrite reductase activity that was inhibited by Cr(VI). For S. barnesii, periplasmic nitrate reductase (Nap), nitrite reductase (Nrf), and the metalloid reductase (Rar) were purified and characterized. The supernatant of spent cultures was also found to contain a filterable, heat stable compound that rapidly reduced Cr(VI) but that Rar also reduced Cr(VI). Our results from specific aims 1 through 3 indicate that for G. metallireducens, Cr(VI) inhibits nitrate respiration as it oxidizes cytochromes involved in nitrate respiration. Iron reduction is apparently not affected and the inhibitory affects of Cr(VI) may be attenuated by the addition of sufficient Fe(III) to generate Fe(II) that abiotically reduces the chromium. For S. barnesii, although the enzyme assays indicate that the components of the respiratory pathway for nitrate (e.g. Nap and Nrf) are inhibited by chromate, the organism has a mechanism to prevent this from actually occurring. Our current hypothesis is that the non-specific metalloid reductase (Rar) is providing resistance by reducing the Cr(VI). The strategy here would be to enhance its growth and metabolism in the natural setting. Lactate is a suitable electron donor for S. barnesii but other

  17. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    PubMed

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. PMID:25150521

  18. Nitrates

    MedlinePlus

    ... or interactions with other medicines and vitamin or herbal supplements. This information should not be used as medical ... your doctor about every medicine and vitamin or herbal supplement that you are taking, so he or she ...

  19. Phylogenomics of Mycobacterium Nitrate Reductase Operon.

    PubMed

    Huang, Qinqin; Abdalla, Abualgasim Elgaili; Xie, Jianping

    2015-07-01

    NarGHJI operon encodes a nitrate reductase that can reduce nitrate to nitrite. This process enhances bacterial survival by nitrate respiration under anaerobic conditions. NarGHJI operon exists in many bacteria, especially saprophytic bacteria living in soil which play a key role in the nitrogen cycle. Most actinomycetes, including Mycobacterium tuberculosis, possess NarGHJI operons. M. tuberculosis is a facultative intracellular pathogen that expands in macrophages and has the ability to persist in a non-replicative form in granuloma lifelong. Nitrogen and nitrogen compounds play crucial roles in the struggle between M. tuberculosis and host. M. tuberculosis can use nitrate as a final electron acceptor under anaerobic conditions to enhance its survival. In this article, we reviewed the mechanisms regulating nitrate reductase expression and affecting its activity. Potential genes involved in regulating the nitrate reductase expression in M. tuberculosis were identified. The conserved NarG might be an alternative mycobacterium taxonomic marker. PMID:25980349

  20. Applicability of anaerobic nitrate-dependent Fe(II) oxidation to microbial enhanced oil recovery (MEOR).

    PubMed

    Zhu, Hongbo; Carlson, Han K; Coates, John D

    2013-08-01

    Microbial processes that produce solid-phase minerals could be judiciously applied to modify rock porosity with subsequent alteration and improvement of floodwater sweep in petroleum reservoirs. However, there has been little investigation of the application of this to enhanced oil recovery (EOR). Here, we investigate a unique approach of altering reservoir petrology through the biogenesis of authigenic rock minerals. This process is mediated by anaerobic chemolithotrophic nitrate-dependent Fe(II)-oxidizing microorganisms that precipitate iron minerals from the metabolism of soluble ferrous iron (Fe(2+)) coupled to the reduction of nitrate. This mineral biogenesis can result in pore restriction and reduced pore throat diameter. Advantageously and unlike biomass plugs, these biominerals are not susceptible to pressure or thermal degradation. Furthermore, they do not require continual substrate addition for maintenance. Our studies demonstrate that the biogenesis of insoluble iron minerals in packed-bed columns results in effective hydrology alteration and homogenization of heterogeneous flowpaths upon stimulated microbial Fe(2+) biooxidation. We also demonstrate almost 100% improvement in oil recovery from hydrocarbon-saturated packed-bed columns as a result of this metabolism. These studies represent a novel departure from traditional microbial EOR approaches and indicate the potential for nitrate-dependent Fe(2+) biooxidation to improve volumetric sweep efficiency and enhance both the quality and quantity of oil recovered. PMID:23799785

  1. Photochemistry of nitrate ion in acetonitrile

    NASA Astrophysics Data System (ADS)

    Meera, N.; Ramamurthy, P.

    1988-12-01

    The photochemistry of cobalt(II) nitrate in acetonitrile is investigated using steady-state and flash photolysis techniques. Formation of NO 3• radical has been observed as an intermediate by direct photolysis of nitrate ion and the reaction of the nitrate radical with the solvent is observed as a transient absorption around 600 nm in air-equilibrated acetonitrile. Nitrite ion forms as a product through a collision electron transfer complex intermediate.

  2. Iron supply and demand in the upper ocean

    SciTech Connect

    Fung, I.Y.; Meyn, S.K.; Tegen, I.; Doney, S.C.; John, J.; Bishop, J.

    1999-09-29

    Iron is hypothesized to be a limiting micronutrient for ocean primary production. This paper presents an analysis of the iron budget in the upper ocean. The global distribution of annual iron assimilation by phytoplankton was estimated from distributions of satellite-derived oceanic primary production and measured (Fe:C)(cellular) ratios. The distributions of iron supply by upwelling/mixing and aeolian deposition were obtained by applying (Fe:NO3)(dissolved) ratios to the nitrate supply and by assuming the soluble fraction of mineral aerosols. A lower bound on the rate of iron recycling in the photic zone was estimated as the difference between iron assimilation and supply. Global iron assimilation by phytoplankton for the open ocean was estimated to be 12 x 10(9) mol Fe yr(-1). Atmospheric deposition of total Fe is estimated to be 96 x 10(9) mol Fe yr(-1) in the open ocean, with the soluble Fe fraction ranging between 1 and 10 percent (or 1-10 x 10(9) mol Fe yr(-1)). By comparison, the upwelling/entrainment supply of dissolved Fe to the upper ocean is small, similar to 0.7 x 10(9) mol Fe yr(-1). Uncertainties in the aeolian flux and assimilation may be as large as a factor of 5-10 but remain difficult to quantify, as information is limited about the form and transformation of iron from the soil to phytoplankton incorporation. An iron stress index, relating the (Fe:N) demand to the (Fe:N) supply, confirms the production in the high-nitrate low-chlorophyll regions is indeed limited by iron availability.

  3. Ferrous iron content of intravenous iron formulations.

    PubMed

    Gupta, Ajay; Pratt, Raymond D; Crumbliss, Alvin L

    2016-06-01

    The observed biological differences in safety and efficacy of intravenous (IV) iron formulations are attributable to physicochemical differences. In addition to differences in carbohydrate shell, polarographic signatures due to ferric iron [Fe(III)] and ferrous iron [Fe(II)] differ among IV iron formulations. Intravenous iron contains Fe(II) and releases labile iron in the circulation. Fe(II) generates toxic free radicals and reactive oxygen species and binds to bacterial siderophores and other in vivo sequestering agents. To evaluate whether differences in Fe(II) content may account for some observed biological differences between IV iron formulations, samples from multiple lots of various IV iron formulations were dissolved in 12 M concentrated HCl to dissociate and release all iron and then diluted with water to achieve 0.1 M HCl concentration. Fe(II) was then directly measured using ferrozine reagent and ultraviolet spectroscopy at 562 nm. Total iron content was measured by adding an excess of ascorbic acid to reduce Fe(III) to Fe(II), and Fe(II) was then measured by ferrozine assay. The Fe(II) concentration as a proportion of total iron content [Fe(III) + Fe(II)] in different lots of IV iron formulations was as follows: iron gluconate, 1.4 and 1.8 %; ferumoxytol, 0.26 %; ferric carboxymaltose, 1.4 %; iron dextran, 0.8 %; and iron sucrose, 10.2, 15.5, and 11.0 % (average, 12.2 %). The average Fe(II) content in iron sucrose was, therefore, ≥7.5-fold higher than in the other IV iron formulations. Further studies are needed to investigate the relationship between Fe(II) content and increased risk of oxidative stress and infections with iron sucrose. PMID:26956439

  4. Sampling of nitrates in ambient air

    NASA Astrophysics Data System (ADS)

    Appel, B. R.; Tokiwa, Y.; Haik, M.

    Methods for the measurement of nitric acid, particulate nitrate and total inorganic nitrate (i.e. HNO 3 plus particulate nitrate) are compared using atmospheric samples from the Los Angeles Basin. Nitric acid was measured by (1) the nitrate collected on nylon or NaCl-impregnated cellulose filters after removal of particulate matter with Teflon prefilters, (2) long-path Fourier transform infrared spectroscopy (FTIR) performed by a collaborating investigator, and (3) the difference between total inorganic nitrate (TIN) and particulate nitrate (PN). TIN was measured by the sum of the nitrate collected with a Teflon prefilter and nylon or NaCl-impregnated after-filter. PN was measured by the nitrate able to penetrate a diffusion dénuder coated to remove acidic gases (e.g. HNO 3). Losses of nitrate from Teflon prefilters were determined by comparing the nitrate retained by these filters to the nitrate penetrating the acid gas denuder. TIN and the nitrate collected with glass fiber filters were compared to assess the origin of the artifact particulate nitrate on the latter. Nitric acid measurements using nylon or NaCl-impregnated after-filters were substantially higher than those by the difference technique. This correlated with losses of nitrate from the Teflon prefilters, which exceeded 50 % at high ambient temperature and low relative humidity. Nitric acid by the difference method exceeded that by FTIR by, on average, 20 %. Thus errors inferred in HNO 3 measurements by comparison to the difference measurements are considered minimum values. The high values for HNO 3 by the difference method are consistent with the partial loss of PN in the acid gas denuder. However, no loss of 0.1 μm to 3 μm diameter NH 4NO 3 particles was observed. Thus, if significant, such loss is restricted to coarse particulate nitrate. Heating the filter samplers was shown to increase sampling errors. Nitrate results obtained in short-term, low volume sampling with Gelman A glass fiber

  5. Photochemistry of Nitrate Adsorbed on Mineral Dust

    NASA Astrophysics Data System (ADS)

    Gankanda, A.; Grassian, V. H.

    2013-12-01

    Mineral dust particles in the atmosphere are often associated with adsorbed nitrate from heterogeneous reactions with nitrogen oxides including HNO3 and NO2. Although nitrate ion is a well-studied chromophore in natural waters, the photochemistry of adsorbed nitrate on mineral dust particles is yet to be fully explored. In this study, wavelength dependence of the photochemistry of adsorbed nitrate on different model components of mineral dust aerosol has been investigated using transmission FTIR spectroscopy. Al2O3, TiO2 and NaY zeolite were used as model systems to represent non-photoactive oxides, photoactive semiconductor oxides and porous materials respectively, present in mineral dust aerosol. In this study, adsorbed nitrate is irradiated with 254 nm, 310 nm and 350 nm narrow band light. In the irradiation with narrow band light, NO2 is the only detectable gas-phase product formed from nitrate adsorbed on Al2O3 and TiO2. The NO2 yield is highest at 310 nm for both Al2O3 and TiO2. Unlike Al2O3 and TiO2, in zeolite, adsorbed nitrate photolysis to nitrite is observed only at 310 nm during narrow band irradiation. Moreover gas phase products were not detected during nitrate photolysis in zeolite at all three wavelengths. The significance of these differences as related to nitrate photochemistry on different mineral dust components will be highlighted.

  6. Trend Analyses of Nitrate in Danish Groundwater

    NASA Astrophysics Data System (ADS)

    Hansen, B.; Thorling, L.; Dalgaard, T.; Erlandsen, M.

    2012-04-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded in decreasing the N surplus by 40% since the mid 1980s while at the same time maintaining crop yields and increasing the animal production of especially pigs. Trend analyses prove that the youngest (0-15 years old) oxic groundwater shows more pronounced significant downward nitrate trends (44%) than the oldest (25-50 years old) oxic groundwater (9%). This amounts to clear evidence of the effect of reduced nitrate leaching on groundwater nitrate concentrations in Denmark. Are the Danish groundwater monitoring strategy obtimal for detection of nitrate trends? Will the nitrate concentrations in Danish groundwater continue to decrease or are the Danish nitrate concentration levels now appropriate according to the Water Framework Directive?

  7. Groundwater nitrate contamination: Factors and indicators

    PubMed Central

    Wick, Katharina; Heumesser, Christine; Schmid, Erwin

    2012-01-01

    Identifying significant determinants of groundwater nitrate contamination is critical in order to define sensible agri-environmental indicators that support the design, enforcement, and monitoring of regulatory policies. We use data from approximately 1200 Austrian municipalities to provide a detailed statistical analysis of (1) the factors influencing groundwater nitrate contamination and (2) the predictive capacity of the Gross Nitrogen Balance, one of the most commonly used agri-environmental indicators. We find that the percentage of cropland in a given region correlates positively with nitrate concentration in groundwater. Additionally, environmental characteristics such as temperature and precipitation are important co-factors. Higher average temperatures result in lower nitrate contamination of groundwater, possibly due to increased evapotranspiration. Higher average precipitation dilutes nitrates in the soil, further reducing groundwater nitrate concentration. Finally, we assess whether the Gross Nitrogen Balance is a valid predictor of groundwater nitrate contamination. Our regression analysis reveals that the Gross Nitrogen Balance is a statistically significant predictor for nitrate contamination. We also show that its predictive power can be improved if we account for average regional precipitation. The Gross Nitrogen Balance predicts nitrate contamination in groundwater more precisely in regions with higher average precipitation. PMID:22906701

  8. Fast photolysis of carbonyl nitrates from isoprene

    NASA Astrophysics Data System (ADS)

    Müller, J.-F.; Peeters, J.; Stavrakou, T.

    2014-03-01

    Photolysis is shown to be a major sink for isoprene-derived carbonyl nitrates, which constitute an important component of the total organic nitrate pool over vegetated areas. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of α-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as a likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photo rates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methyl vinyl ketone nitrates strongly supports our assumptions of large cross-section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~ 3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  9. Fast photolysis of carbonyl nitrates from isoprene

    NASA Astrophysics Data System (ADS)

    Müller, J.-F.; Peeters, J.; Stavrakou, T.

    2013-11-01

    Photolysis is shown to be a major sink for isoprene-derived carbonyl nitrates, which constitute an important component of the total organic nitrate pool over vegetated areas. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of α-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections, and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as the likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photorates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methylvinylketone nitrates strongly supports our assumptions of large cross section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  10. Phase Diagram of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-06-01

    Ammonium Nitrate (AN) has often been subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood - resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety, in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN, in different chemical environments, at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 15 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 673 K. The present study has been supported by the U.S. DHS under Award Number 2008-ST-061-ED0001.

  11. Peroxyacetyl nitrate and peroxypropionyl nitrate in Porto Alegre, Brazil

    NASA Astrophysics Data System (ADS)

    Grosjean, Eric; Grosjean, Daniel; Woodhouse, Luis F.; Yang, Yueh-Jiun

    For 41 days between 25 May 1996 and 27 March 1997, peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) have been measured by electron capture gas chromatography at Santa Rita near Porto Alegre, RS, Brazil, where light-duty vehicles used either ethanol or a gasoline-MTBE blend. Daily maximum concentrations ranged from 0.19 to 6.67 ppb for PAN and 0.06 to 0.72 ppb for PPN. Linear regression of maximum PPN vs. maximum PAN yielded a slope of 0.105±0.004 ( R2=0.974). Diurnal variations of ambient PAN often followed those of ozone with respect to time of day but not with respect to amplitude. This was reflected in the large relative standard deviations associated with the study-averaged PAN/ozone concentration ratio, 0.037±0.105 (ppb/ppb, n=789) and the maximum PAN/maximum ozone concentration ratio, 0.028±0.015 (ppb/ppb, range 0.005-0.078, n=41). On several days PAN accounted for large fractions of the total ambient NO x in the late morning and afternoon hours, e.g., PAN/NO x⩽0.58 and PAN/(NO x-NO) ⩽0.76 on 27 March 1997. The amount of PAN lost by thermal decomposition (TPAN) was comparable in magnitude to that present in ambient air. The ratios TPAN/(PAN+TPAN) were up to 0.53, 0.67 and 0.64 during the warm afternoons of 25, 26 and 27 March 1997, respectively. The highest calculated value of TPAN was 5.6 ppb on 27 March 1997. On that day the 24 h-averaged value of TPAN (1.01 ppb) was nearly the same as that of PAN (1.09 ppb). Using computer kinetic modeling (SAPRC 97 chemical mechanism) and sensitivity analysis of VOC incremental reactivity, we ranked VOC present in Porto Alegre ambient air for their importance as precursors to PAN and to PPN. Using as input data the averages of VOC concentrations measured in downtown Porto Alegre during the ca. 1 yr period March 1996-April 1997, we calculated that the most important precursors to PAN and PPN were the SAPRC 97 model species ARO2 (which includes the aromatics xylenes, trimethylbenzenes, ethyltoluenes, etc

  12. Hepatic iron metabolism.

    PubMed

    Anderson, Gregory J; Frazer, David M

    2005-11-01

    The liver performs three main functions in iron homeostasis. It is the major site of iron storage, it regulates iron traffic into and around the body through its production of the peptide hepcidin, and it is the site of synthesis of major proteins of iron metabolism such as transferrin and ceruloplasmin. Most of the iron that enters the liver is derived from plasma transferrin under normal circumstances, and transferrin receptors 1 and 2 play important roles in this process. In pathological situations, non-transferrin-bound iron, ferritin, and hemoglobin/haptoglobin and heme/hemopexin complexes assume greater importance in iron delivery to the organ. Iron is stored in the liver as ferritin and, with heavy iron loading, as hemosiderin. The liver can divest itself of iron through the plasma membrane iron exporter ferroportin 1, a process that also requires ceruloplasmin. Hepcidin can regulate this iron release through its interaction with ferroportin. PMID:16315136

  13. Iron Sucrose Injection

    MedlinePlus

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due to too little iron) in people with chronic kidney disease (damage to the kidneys which may worsen over ...

  14. Removal of Nitrate from Groundwater by Cyanobacteria: Quantitative Assessment of Factors Influencing Nitrate Uptake

    PubMed Central

    Hu, Qiang; Westerhoff, Paul; Vermaas, Wim

    2000-01-01

    The feasibility of biologically removing nitrate from groundwater was tested by using cyanobacterial cultures in batch mode under laboratory conditions. Results demonstrated that nitrate-contaminated groundwater, when supplemented with phosphate and some trace elements, can be used as growth medium supporting vigorous growth of several strains of cyanobacteria. As cyanobacteria grew, nitrate was removed from the water. Of three species tested, Synechococcus sp. strain PCC 7942 displayed the highest nitrate uptake rate, but all species showed rapid removal of nitrate from groundwater. The nitrate uptake rate increased proportionally with increasing light intensity up to 100 μmol of photons m−2 s−1, which parallels photosynthetic activity. The nitrate uptake rate was affected by inoculum size (i.e., cell density), fixed-nitrogen level in the cells in the inoculum, and aeration rate, with vigorously aerated, nitrate-sufficient cells in mid-logarithmic phase having the highest long-term nitrate uptake rate. Average nitrate uptake rates up to 0.05 mM NO3− h−1 could be achieved at a culture optical density at 730 nm of 0.5 to 1.0 over a 2-day culture period. This result compares favorably with those reported for nitrate removal by other cyanobacteria and algae, and therefore effective nitrate removal from groundwater using this organism could be anticipated on large-scale operations. PMID:10618214

  15. REDUCTION OF NITRATE THROUGH THE USE OF NITRATE REDUCTASE FOR THE SMARTCHEM AUTOANALYZER

    EPA Science Inventory

    The standard method for the determination of nitrate in drinking water, USEPA Method 353.2 “Determination of Nitrate-Nitrite by Automated Colorimetry,” employs cadmium as the reductant for the conversion of nitrate to nitrite. The nitrite is then analyzed colorimetrically by way ...

  16. Potential nitrate pollution of groundwater in Germany: A supraregional differentiated model

    NASA Astrophysics Data System (ADS)

    Wendland, F.; Albert, H.; Bach, M.; Schmidt, R.

    1994-08-01

    Implemented on behalf of the Federal Ministry for Research and Technology (BMFT), a model is developed to trace the nutrient flow of nitrate in the soil and the groundwater on a supraregional scale. Research work is intended to indicate regionally differentiated hazardous potentials and thereby provide a basis for recommending comprehensive measures to protect groundwater in Germany. The adaption of the model to the hydrogeological and agricultural conditions of other states is possible in principle. This article focuses on the hydrogeological model parts. A high nitrate pollution of groundwater can be expected in all regions with intensive agricultural use of the topsoil. In particular, groundwater in solid rock areas is susceptible to nitrate pollution. There a rapid groundwater turnover and thus a short residence time for the groundwater in the aquifer is typical. Oxidizing aquifer conditions usually prevail in solid rock aquifers, preventing nitrate degradation. In many loose rock areas, in contrast, the groundwater has a low flow velocity and a long residence time in the aquifer. Because of a lack of free oxygen, a complete degradation of nitrate can occur, as long as iron sulfide compounds and/or organic carbon are available in the aquifer. A more detailed presentation of the whole research work is given in Wendland et al. (1993).

  17. Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1989-01-01

    Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)

  18. Genetics Home Reference: iron-refractory iron deficiency anemia

    MedlinePlus

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  19. Nitrate uptake, nitrate reductase distribution and their relation to proton release in five nodulated grain legumes.

    PubMed

    Fan, X H; Tang, C; Rengel, Z

    2002-09-01

    Nitrate uptake, nitrate reductase activity (NRA) and net proton release were compared in five grain legumes grown at 0.2 and 2 mM nitrate in nutrient solution. Nitrate treatments, imposed on 22-d-old, fully nodulated plants, lasted for 21 d. Increasing nitrate supply did not significantly influence the growth of any of the species during the treatment, but yellow lupin (Lupinus luteus) had a higher growth rate than the other species examined. At 0.2 mM nitrate supply, nitrate uptake rates ranged from 0.6 to 1.5 mg N g(-1) d(-1) in the order: yellow lupin > field pea (Pisum sativum) > chickpea (Cicer arietinum) > narrow-leafed lupin (L angustifolius) > white lupin (L albus). At 2 mM nitrate supply, nitrate uptake ranged from 1.7 to 8.2 mg N g(-1) d(-1) in the order: field pea > chickpea > white lupin > yellow lupin > narrow-leafed lupin. Nitrate reductase activity increased with increased nitrate supply, with the majority of NRA being present in shoots. Field pea and chickpea had much higher shoot NRA than the three lupin species. When 0.2 mM nitrate was supplied, narrow-leafed lupinreleased the most H+ per unit root biomass per day, followed by yellow lupin, white lupin, field pea and chickpea. At 2 mM nitrate, narrow-leafed lupin and yellow lupin showed net proton release, whereas the other species, especially field pea, showed net OH- release. Irrespective of legume species and nitrate supply, proton release was negatively correlated with nitrate uptake and NRA in shoots, but not with NRA in roots. PMID:12234143

  20. Nitrate Reduction Functional Genes and Nitrate Reduction Potentials Persist in Deeper Estuarine Sediments. Why?

    PubMed Central

    Papaspyrou, Sokratis; Smith, Cindy J.; Dong, Liang F.; Whitby, Corinne; Dumbrell, Alex J.; Nedwell, David B.

    2014-01-01

    Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This

  1. Intermittent nitrate therapy in angina pectoris.

    PubMed

    Reichek, N

    1989-05-01

    The rationale for intermittent nitrate therapy is based on the pathophysiology of nitroglycerin tolerance and the diurnal pattern of symptoms encountered in patients with chronic stable angina. Nitrate tolerance was first observed as tolerance to headache in industrial toxicology. When long-acting nitrates for chronic stable angina became available, similar tolerance was observed but not thought to indicate tolerance to a haemodynamic or therapeutic effect. Subsequently, Needleman and coworkers (J Pharmacol Exp Ther 1973; 187: 324) defined in vitro the phenomenology of vascular smooth muscle tolerance to nitroglycerin-induced relaxation and reversibility was demonstrated. More recently, a potential molecular explanation for nitrate tolerance has been proposed: sulfhydryl group depletion in smooth muscle cells resulting in reduced formation of S-nitrosothiols on nitrate exposure with resultant reduced activation of cyclic GMP. In vivo, other mechanisms, including fluid retention and neurohumoral responses to vasodilation may also be important. The first demonstration that nitrate tolerance affected the therapeutic efficacy of long-acting nitrates was reported by Parker and coworkers in 1982 (Circulation 1987; 76: 572-6). This landmark study was not given much credence at the time because it appeared to be in conflict with earlier reports. However, in the past 6 years development of tolerance has been demonstrated with a variety of oral nitrates, transdermal nitroglycerin and intravenous nitroglycerin. When plasma concentrations are held constant, tolerance to antianginal effects is demonstrable within 24h, but varies markedly in severity from individual to individual.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2501096

  2. 76 FR 62311 - Ammonium Nitrate Security Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... FR 64280 (advance notice of proposed rulemaking); 76 FR 46908 (notice of proposed rulemaking... Program Web site in mid-October at http://www.dhs.gov/ files/ ] programs/ammonium-nitrate-security-program...; ] DEPARTMENT OF HOMELAND SECURITY Office of the Secretary 6 CFR Part 31 RIN 1601-AA52 Ammonium Nitrate...

  3. HEALTH EFFECTS OF NITRATES IN WATER

    EPA Science Inventory

    A multi faceted study of the health effects of nitrate in drinking water using epidemiological and toxicological techniques is reported. The results of the epidemiological studies indicate that infants consuming appreciable amounts of water high in nitrates in the form of powdere...

  4. 76 FR 46907 - Ammonium Nitrate Security Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ...This proposed rule would implement anti-terrorism measures to better secure the homeland. The Department of Homeland Security would regulate the sale and transfer of ammonium nitrate pursuant to section 563 of the Fiscal Year 2008 Department of Homeland Security Appropriations Act with the purpose of preventing the use of ammonium nitrate in an act of terrorism. This proposed rule seeks......

  5. Intravesical silver nitrate for refractory hemorrhagic cystitis

    PubMed Central

    Montgomery, Brian D.; Boorjian, Stephen A.; Ziegelmann, Matthew J.; Joyce, Daniel D.; Linder, Brian J.

    2016-01-01

    Objective Hemorrhagic cystitis is a challenging clinical entity with limited evidence available to guide treatment. The use of intravesical silver nitrate has been reported, though supporting literature is sparse. Here, we sought to assess outcomes of patients treated with intravesical silver nitrate for refractory hemorrhagic cystitis. Material and methods We identified nine patients with refractory hemorrhagic cystitis treated at our institution with intravesical silver nitrate between 2000–2015. All patients had failed previous continuous bladder irrigation with normal saline and clot evacuation. Treatment success was defined as requiring no additional therapy beyond normal saline irrigation after silver nitrate instillation prior to hospital discharge. Results Median patient age was 80 years (IQR 73, 82). Radiation was the most common etiology for hemorrhagic cystitis 89% (8/9). Two patients underwent high dose (0.1%–0.4%) silver nitrate under anesthesia, while the remaining seven were treated with doses from 0.01% to 0.1% via continuous bladder irrigation for a median of 3 days (range 2–4). All nine patients (100%) had persistent hematuria despite intravesical silver nitrate therapy, requiring additional interventions and red blood cell transfusion during the hospitalization. There were no identified complications related to intravesical silver nitrate instillation. Conclusion Although well tolerated, we found that intravesical silver nitrate was ineffective for bleeding control, suggesting a limited role for this agent in the management of patients with hemorrhagic cystitis.

  6. Dietary Nitrate, Nitric Oxide, and Cardiovascular Health.

    PubMed

    Bondonno, Catherine P; Croft, Kevin D; Hodgson, Jonathan M

    2016-09-01

    Emerging evidence strongly suggests that dietary nitrate, derived in the diet primarily from vegetables, could contribute to cardiovascular health via effects on nitric oxide (NO) status. NO plays an essential role in cardiovascular health. It is produced via the classical L-arginine-NO-synthase pathway and the recently discovered enterosalivary nitrate-nitrite-NO pathway. The discovery of this alternate pathway has highlighted dietary nitrate as a candidate for the cardioprotective effect of a diet rich in fruit and vegetables. Clinical trials with dietary nitrate have observed improvements in blood pressure, endothelial function, ischemia-reperfusion injury, arterial stiffness, platelet function, and exercise performance with a concomitant augmentation of markers of NO status. While these results are indicative of cardiovascular benefits with dietary nitrate intake, there is still a lingering concern about nitrate in relation to methemoglobinemia, cancer, and cardiovascular disease. It is the purpose of this review to present an overview of NO and its critical role in cardiovascular health; to detail the observed vascular benefits of dietary nitrate intake through effects on NO status as well as to discuss the controversy surrounding the possible toxic effects of nitrate. PMID:25976309

  7. COMPARTMENTAL MODEL OF NITRATE RETENTION IN STREAMS

    EPA Science Inventory

    A compartmental modeling approach is presented to route nitrate retention along a cascade of stream reach sections. A process transfer function is used for transient storage equations with first order reaction terms to represent nitrate uptake in the free stream, and denitrifica...

  8. Aerosol-spray diverse mesoporous metal oxides from metal nitrates

    PubMed Central

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  9. Aerosol-spray diverse mesoporous metal oxides from metal nitrates.

    PubMed

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  10. The contributions of nitrate uptake and efflux to isotope fractionation during algal nitrate assimilation

    NASA Astrophysics Data System (ADS)

    Karsh, K. L.; Trull, T. W.; Sigman, D. M.; Thompson, P. A.; Granger, J.

    2014-05-01

    In order to strengthen environmental application of nitrate N and O isotopes, we measured the N and O isotopic fractionation associated with cellular nitrate uptake and efflux in the nitrate-assimilating marine diatom Thalassiosira weissflogii. We isolated nitrate uptake and efflux from nitrate reduction by growing the cells in the presence of tungsten, which substitutes for molybdenum in assimilatory nitrate reductase, yielding an inactive enzyme. After growth on ammonium and then N starvation, cells were exposed to nitrate. Numerical models fit to the evolution of intracellular nitrate concentration and N and O isotopic composition yielded distinct N isotope effects (15ɛ) for nitrate uptake and nitrate efflux (2.0 ± 0.3‰ and 1.2 ± 0.4‰, respectively). The O isotope effects (18ɛ) for nitrate uptake and nitrate efflux were indistinguishable (2.8 ± 0.6‰), yielding a ratio of O to N isotopic fractionation for uptake of 1.4 ± 0.4 and for efflux of 2.3 ± 0.9. The 15ɛ for nitrate uptake can account for at most 40% of the organism-level N isotope effect (15ɛorg) measured in laboratory studies of T. weissflogii and in the open ocean (typically 5‰ or greater). This observation supports previous evidence that most isotope fractionation during nitrate assimilation is due to intracellular nitrate reduction, with nitrate efflux allowing the signal to be communicated to the environment. An O to N fractionation ratio (18ɛorg:15ɛorg) of ˜1 has been measured for nitrate assimilation in algal cultures and linked to the N and O isotope effects of nitrate reductase. Our results suggest that the ratios of O to N fractionation for both nitrate uptake and efflux may be distinct from a ratio of 1, to a degree that could cause the net 18ɛorg:15ɛorg to rise appreciably above 1 when 15ɛorg is low (e.g., yielding a ratio of 1.1 when 15ɛorg is 5‰). However, field and culture studies have consistently measured nearly equivalent fractionation of N and O isotopes in