Science.gov

Sample records for iron nitrates

  1. Iron, nitrate uptake by phytoplankton, and mermaids

    NASA Astrophysics Data System (ADS)

    Banse, Karl

    1991-11-01

    The critique by Martin et al. (this issue) of my recalculation of rates of nitrate uptake, and hence of algal division, from the Gulf of Alaska is shown to be incorrect. Neither can iron deficiency, if any, be shown to be connected with the demise of mermen and mermaids, although for different reasons.

  2. The nature of heme/iron-induced protein tyrosine nitration

    PubMed Central

    Bian, Ka; Gao, Zhonghong; Weisbrodt, Norman; Murad, Ferid

    2003-01-01

    Recently, substantial evidence has emerged that revealed a very close association between the formation of nitrotyrosine and the presence of activated granulocytes containing peroxidases, such as myeloperoxidase. Peroxidases share heme-containing homology and can use H2O2 to oxidize substrates. Heme is a complex of iron with protoporphyrin IX, and the iron-containing structure of heme has been shown to be an oxidant in several model systems where the prooxidant effects of free iron, heme, and hemoproteins may be attributed to the formation of hypervalent states of the heme iron. In the current study, we have tested the hypothesis that free heme and iron play a crucial role in NO2-Tyr formation. The data from our study indicate that: (i) heme/iron catalyzes nitration of tyrosine residues by using hydrogen peroxide and nitrite, a reaction that revealed the mechanism underlying the protein nitration by peroxidase, H2O2, and NO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{2}^{-}}}\\end{equation*}\\end{document}; (ii) H2O2 plays a key role in the protein oxidation that forms the basis for the protein nitration, whereas nitrite is an essential element that facilitates nitration by the heme(Fe), H2O2, and the NO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{2}^{-}}}\\end{equation*}\\end{document} system; (iii) the formation of a Fe(IV) hypervalent compound may be essential for heme(Fe)-catalyzed nitration, whereas O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage

  3. Anoxic Iron Cycling Bacteria from an Iron Sulfide- and Nitrate-Rich Freshwater Environment

    PubMed Central

    Haaijer, Suzanne C. M.; Crienen, Gijs; Jetten, Mike S. M.; Op den Camp, Huub J. M.

    2012-01-01

    In this study, both culture-dependent and culture-independent methods were used to determine whether the iron sulfide mineral- and nitrate-rich freshwater nature reserve Het Zwart Water accommodates anoxic microbial iron cycling. Molecular analyses (16S rRNA gene clone library and fluorescence in situ hybridization, FISH) showed that sulfur-oxidizing denitrifiers dominated the microbial population. In addition, bacteria resembling the iron-oxidizing, nitrate-reducing Acidovorax strain BrG1 accounted for a major part of the microbial community in the groundwater of this ecosystem. Despite the apparent abundance of strain BrG1-like bacteria, iron-oxidizing nitrate reducers could not be isolated, likely due to the strictly autotrophic cultivation conditions adopted in our study. In contrast an iron-reducing Geobacter sp. was isolated from this environment while FISH and 16S rRNA gene clone library analyses did not reveal any Geobacter sp.-related sequences in the groundwater. Our findings indicate that iron-oxidizing nitrate reducers may be of importance to the redox cycling of iron in the groundwater of our study site and illustrate the necessity of employing both culture-dependent and independent methods in studies on microbial processes. PMID:22347219

  4. Nitrate Controls on Iron and Arsenic in an Urban Lake

    NASA Astrophysics Data System (ADS)

    Senn, David B.; Hemond, Harold F.

    2002-06-01

    Aquatic ecosystems are often contaminated by multiple substances. Nitrate, a common aquatic pollutant, strongly influenced the cycling of arsenic (As) under anoxic conditions in urban Upper Mystic Lake (Massachusetts, USA) by oxidizing ferrous iron [Fe(II)] to produce As-sorbing particulate hydrous ferric oxides and causing the more oxidized As(V), which is more particle-reactive than As(III) under these conditions, to dominate. This process is likely to be important in many natural waters.

  5. AN EFFICIENT AND ECOFRIENDLY OXIDATION OF ALKENES USING IRON NITRATE AND MOLECULAR OXYGEN

    EPA Science Inventory

    An environmentally friendly solventless oxidation of alkenes is accomplished efficiently using relatively benign iron nitrate as catalyst in the pressence of molecular oxygen under pressurized conditions.

  6. Influence of Microbial Iron and Nitrate Reduction on Subsurface Iron Biogeochemistry and Contaminant Metal Mobilization

    SciTech Connect

    Flynn W. Picardal

    2002-04-10

    Although toxic metal and radionuclide contaminants can not be destroyed, their toxicity and mobility can be dramatically altered by microbial activity. In addition to toxic metals, many contaminated sites contain both iron-containing minerals and co-contaminants such as nitrate NO{sub 3}{sup -}. Successful implementation of metal and radionuclide bioremediation strategies in such environments requires an understanding of the complex microbial and geochemical interactions that influence the redox speciation and mobility of toxic metals. Our specific objectives have been to (1) determine the effect of iron oxide mineral reduction on the mobility of sorbed, representative toxic metals (Zn{sup 2+}), (2) study the biogeochemical interactions that may occur during microbial reduction of NO{sub 3}{sup -} and iron oxide minerals, and (3) evaluate the kinetics of NO{sub 3}{sup -}-dependent, microbial oxidation of ferrous iron (Fe{sup 2+}).

  7. Influence of Microbial Iron and Nitrate Reduction on Subsurface Iron Biogeochemistry and Contaminant Metal Mobilization

    SciTech Connect

    Flynn Picardal

    2002-04-14

    Although toxic metal and radionuclide contaminants can not be destroyed, their toxicity and mobility can be dramatically altered by microbial activity. In addition to toxic metals, many contaminated sites contain both iron-containing minerals and co-contaminants such as nitrate (NO3-). Successful implementation of metal and radionuclide bioremediation strategies in such environments requires an understanding of the complex microbial and geochemical interactions that influence the redox speciation and mobility of toxic metals. Our specific objectives have been to (1) determine the effect of iron oxide mineral reduction on the mobility of sorbed, representative toxic metals (Zn2+), (2) study the biogeochemical interactions that may occur during microbial reduction of NO3- and iron oxide minerals, and (3) evaluate the kinetics of NO3--dependent, microbial oxidation of ferrous iron (Fe2+).

  8. Arsenic, nitrate, iron, and hardness in ground water, Chena Ridge vicinity, Fairbanks, Alaska

    USGS Publications Warehouse

    Krumhardt, Andrea P.

    1979-01-01

    The report presents all data on hardness, iron, nitrate and arsenic in well water in the Chena Ridge area of Fairbanks, Alaska, through June 1979. Concentrations range as follows: arsenic - 0 to 28 micrograms per liter; nitrate - 0 to 20 milligrams per liter; iron - 0 to 18 milligrams per liter and hardness - 72 to 1,400 milligrams per liter. Values at the upper ends of the ranges for iron and nitrate exceed limits recommended by the Environmental Protection Agency for public water supplies. A map of the area showing the location of sampled wells and a table of chemical analysis are included. (Kosco-USGS)

  9. RESPONSE OF THE PHOTOSYNTHETIC APPARATUS OF PHAEODACTYLYM TRICORNUTUM (BACILLARIOPHYCEAE) TO NITRATE, PHOSPHATE OR IRON STARVATION

    EPA Science Inventory

    The effects of nitrate, phosphate, and iron starvation and resupply on photosynthetic pigments, selected photosynthetic proteins, and photosystem II (PSII) photochemistry were examined in the diatom Phaeodactylum tricornutum Bohlin (CCMP1327). lthough cell chlorophyll a (chl a) c...

  10. NITRATE REDUCTION BY ZEROVALENT IRON: EFFECTS OF FORMATE, OXALATE, CITRATE, CHLORIDE, SULFATE, BORATE, AND PHOSPHATE

    EPA Science Inventory

    Recent studies have shown that zerovalent iron (Fe0) may potentially be used as a chemical medium in permeable reactive barriers (PRBs) for nitrate remediation in groundwater; however, the effects of commonly found organic and inorganic ligands in soil and sediments on nitrate re...

  11. Ammonium nitrate and iron nutrition effects on some nitrogen assimilation enzymes and metabolites in Spirulina platensis.

    PubMed

    Esen, Merve; Ozturk Urek, Raziye

    2015-01-01

    The effect of various concentrations of ammonium nitrate (5-60 mM), an economical nitrogen source, on the growth, nitrate-ammonium uptake rates, production of some pigments and metabolites, and some nitrogen assimilation enzymes such as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in Spirulina platensis (Gamont) Geitler was investigated. Ten millimolars of ammonium nitrate stimulated the growth, production of pigments and the other metabolites, and enzyme activities, whereas 30 and 60 mM ammonium nitrate caused inhibition. In the presence of 10 mM ammonium nitrate, different concentrations of iron were tried in the growth media of S. platensis. After achieving the best growth, levels of metabolite and pigment production, and enzyme activities in the presence of 10 mM ammonium nitrate as a nitrogen source, different iron concentrations (10-100 µM) were tried in the growth medium of S. platensis. The highest growth, pigment and metabolite levels, and enzyme activities were determined in the medium containing 50 µM iron and 10 mM ammonium nitrate. In this optimum condition, the highest dry biomass level, chlorophyll a, and pyruvate contents were obtained as 55.42 ± 3.8 mg mL(-1) , 93.114 ± 7.9 µg g(-1) , and 212.5 ± 18.7 µg g(-1) , respectively. The highest NR, NiR, GS, and GOGAT activities were 67.16 ± 5.1, 777.92 ± 52, 0.141 ± 0.01, and 44.45 ± 3.6, respectively. Additionally, 10 mM ammonium nitrate is an economical and efficient nitrogen source for nitrogen assimilation of S. platensis, and 50 µM iron is optimum for the growth of S. platensis. PMID:25425155

  12. Remediation of Nitrate-contaminated Groundwater by a Mixture of Iron and Activated Carbon

    NASA Astrophysics Data System (ADS)

    Huang, Guoxin; Liu, Fei; Jin, Aifang; Qin, Xiaopeng

    2010-11-01

    Nitrate contamination in groundwater has become a major environmental and health problem worldwide. The aim of the present study is to remediate groundwater contaminated by nitrate and develop potential reactive materials to be used in PRBs (Permeable Reactive Barriers). A new approach was proposed for abiotic groundwater remediation by reactive materials of iron chips and granular activated carbon particles. Batch tests were conducted and remediation mechanisms were discussed. The results show that nitrate decreases from 86.31 to 33.79 mgṡL-1 under the conditions of near neutral pH and reaction time of 1h. The combination of iron chips and activated carbon particles is cost-effective and suitable for further use as denitrification media in PRBs. Nitrogen species don't change significantly with the further increase in reaction time (>1 h). The iron-activated carbon-water-nitrate system tends to be steady-state. Small amounts of ammonium and nitrite (0.033-0.039 and 0.14-3.54 mgṡL-1, respectively) appear at reaction time from 0 h to 5 h. There is no substantial accumulation of nitrogen products in the system. The removal rate of nitrate only reaches 16.11% by sole iron chips at reaction time of 5 h, while 63.57% by the mixture of iron chips and activated carbon particles. There is significantly synergistic and promotive effect of mixing the two different types of materials on nitrate treatment. Fe/C ratio (1/1.5-1/2.5) doesn't cause dramatically different residual nitrate concentrations (24.09-26.70 mgṡL-1). Nitrate can't be limitlessly decreased with decreasing Fe/C ratio. The concomitant occurrences of chemical reduction, galvanic cell reaction, electrophoretic accumulation, chemical coagulation, and physical adsorption are all responsible for the overall nitrate removal by iron allied with activated carbon. To accurately quantify various nitrogen species, further studies on adsorption mechanisms of nitrite and nitrate are needed.

  13. Effects of nitrate addition and iron speciation on trace element transfer in coastal food webs under phosphate and iron enrichment.

    PubMed

    Li, Shun-Xing; Liu, Feng-Jiao; Zheng, Feng-Ying; Zuo, Yue-Gang; Huang, Xu-Guang

    2013-06-01

    Coastal organisms are often exposed to both iron enrichment and eutrophication. Trace elements transfer in coastal food webs are critical for marine life and therefore influence coastal ecosystem function and the global carbon cycle. However, how these exposures affect algal element uptake and the subsequent element transfer to marine copepods (Tigriopus japonicus) is unknown. Here we investigated the effects of nitrate addition and iron speciation (Fe (OH)3 or EDTA-Fe) on the biological uptake of Cu, Zn, and Se under phosphate and iron enrichment, using Thalassiosira weissflogii, Skeletonema costatum, and Chlorella vulgaris as model marine algae. Algal element adsorption/absorption generally increased with increasing macronutrient concentrations. Algal element assimilation efficiencies depended on iron speciation and marine algae species. Element assimilation efficiencies of copepods were significantly correlated to the intracellular element concentrations in algal cells. Element uptake and transfer were controlled by eutrophication, iron speciation, and algal species in coastal food webs. PMID:23332676

  14. SOLVENT FREE OXIDATION OF ALCOHOLS USING IRON (III) NITRATE NONAHYDRATE

    EPA Science Inventory

    Oxidation of alcohols have been conducted with metal nitrate reagents on various mineral supports such as clay, silica and zeolite etc. To circumvent the limitations of these supported reagents namely their preparation using solvents and short shelf-life, we explored the use of i...

  15. Arsenic, nitrate, iron, and hardness in ground water, Fairbanks area, Alaska

    USGS Publications Warehouse

    Johnson, Paula R.; Wilcox, D.E.; Morgan, W.D.; Merto, Josephine; McFadden, Ruth

    1979-01-01

    Well water with concentrations of arsenic and nitrate exceeding U.S. Environmental Protection Agency standards occurs sporadically throughout the hills north of Fairbanks, Alaska. The arsenic contamination has not been correlated with placer or other mining activity. The high levels of nitrate do not generally appear related to septic waste contamination. Few wells in the Fairbanks area yield water with low concentrations of iron or low hardness. Iron concentrations are consistently greater than 3 mg/L on the flood plain. In the uplands, concentrations of both iron and hardness are lowest near the ridgetops and increase downslope. The report includes a map of the area showing the location of sampled wells and a table of chemical analysis. (Woodard-USGS)

  16. Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria.

    PubMed

    Kappler, A; Johnson, C M; Crosby, H A; Beard, B L; Newman, D K

    2010-05-10

    Iron isotope fractionations produced during chemical and biological Fe(II) oxidation are sensitive to the proportions and nature of dissolved and solid-phase Fe species present, as well as the extent of isotopic exchange between precipitates and aqueous Fe. Iron isotopes therefore potentially constrain the mechanisms and pathways of Fe redox transformations in modern and ancient environments. In the present study, we followed in batch experiments Fe isotope fractionations between Fe(II)(aq) and Fe(III) oxide/hydroxide precipitates produced by the Fe(III) mineral encrusting, nitrate-reducing, Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Isotopic fractionation in (56)Fe/(54)Fe approached that expected for equilibrium conditions, assuming an equilibrium Δ(56)Fe(Fe(OH)3 - Fe(II)aq) fractionation factor of +3.0 ‰. Previous studies have shown that Fe(II) oxidation by this Acidovorax strain occurs in the periplasm, and we propose that Fe isotope equilibrium is maintained through redox cycling via coupled electron and atom exchange between Fe(II)(aq) and Fe(III) precipitates in the contained environment of the periplasm. In addition to the apparent equilibrium isotopic fractionation, these experiments also record the kinetic effects of initial rapid oxidation, and possible phase transformations of the Fe(III) precipitates. Attainment of Fe isotope equilibrium between Fe(III) oxide/hydroxide precipitates and Fe(II)(aq) by neutrophilic, Fe(II)-oxidizing bacteria or through abiologic Fe(II)(aq) oxidation is generally not expected or observed, because the poor solubility of their metabolic product, i.e. Fe(III), usually leads to rapid precipitation of Fe(III) minerals, and hence expression of a kinetic fractionation upon precipitation; in the absence of redox cycling between Fe(II)(aq) and precipitate, kinetic isotope fractionations are likely to be retained. These results highlight the distinct Fe isotope fractionations that are produced by different pathways of

  17. Degradation of TCE with iron: The role of competing chromate and nitrate reduction

    SciTech Connect

    Schlicker, O.; Ebert, M.; Fruth, M.; Weidner, M.; Wuest, W.; Dahmke, A.

    2000-06-01

    This study evaluates the potential of using granular iron metal for the abiotic removal of the organic ground water pollutant trichloroethene (TCE) in the presence of the common inorganic co-contaminants chromate and nitrate, respectively. Their long-term column experiments indicate a competitive process between TCE dechlorination and reductive transformation of chromate and nitrate, which is reflected in a significantly delayed onset of TCE dechlorination. Delay times and therefore the ranges of the nonreactive flowpaths increased with increasing experimental duration, resulting in a migration of the contaminants through the iron metal treatment zone. The present investigation also indicates that the calculated migration rates of TCE and the added cocontaminants chromate and nitrate are linearly related to the initial content of the cocontaminants. With an average pore water velocity of 0.6 m/d and a surface area concentration of 0.55 m{sup 2}/mL in the column, the calculated migration rates varied between 0.10 cm/d and 5.86 cm/d. The particular similarity between the values of TCE migration and the migration of the strong oxidants chromate and nitrate and the long-term steady state of the TCE dechlorination in the absence of the chromate and nitrate indicates that these competitive transformations are the driving force for the gradual passivation of the granular iron due to the buildup of an electrically insulating Fe(III)-oxyhydroxide. Based on these passivation processes, general formulae were developed that allow a simplified approximation of breakthrough times for the contaminants TCE, chromate, and nitrate.

  18. Influence of compositional modifications on the corrosion of iron aluminides of molten nitrate salts

    SciTech Connect

    Tortorelli, P.F.; Bishop, P.S.

    1991-01-01

    The corrosion of iron-aluminum alloys by molten nitrate salt as a function of aluminum, chromium, and other minor elements has been studied as part of an alloy design effort aimed at the development of a strong, ductile, corrosion-resistant FeAl type of aluminide. Short- term weight change data were used to examine the compositional dependence of the corrosion processes that occurred upon exposure of iron aluminides to highly oxidizing nitrate salts of 650{degrees}C. Corrosion resistance was found to increase with increasing aluminum concentrations of the alloy up to approximately 30 at. % Al. Chromium additions to the aluminide were not detrimental and may have improved the corrosion behavior for certain aluminum concentrations. No effects of minor alloying additions (C, B, Ti, and Zr) could be determined. The best overall corrosion resistance as measured by weight change results were obtained for an Fe-35.8 at. % Al aluminide containing some chromium. Based on linear weight loss kinetics, the weight change measurements for the most resistant compositions predict corrosion rates of 300 {mu}m/year or less at 650{degrees}C. These rates are substantially better than typical nickel-based alloys and stainless steels. From a consideration of the weight changes; the microstructural, thermodynamic, and X-ray diffraction data; and the salt analyses, corrosion of iron aluminides by the molten nitrate salt appears to be controlled by oxidation of base metal components and a slow release of material from an aluminum-rich product layer into the salt. The rate of release was substantially lower than that previously found for iron and iron-based alloys. This would imply that corrosion of iron aluminides could be minimized by maximizing the surface coverage of this aluminum-rich layer either by alloying or by an appropriate preoxidation treatment.

  19. Mesophilic, Circumneutral Anaerobic Iron Oxidation as a Remediation Mechanism for Radionuclides, Nitrate and Perchlorate

    NASA Astrophysics Data System (ADS)

    Bose, S.; Thrash, J. C.; Coates, J. D.

    2008-12-01

    Iron oxidation is a novel anaerobic metabolism where microorganisms obtain reducing equivalents from the oxidization of Fe(II) and assimilate carbon from organic carbon compounds or CO2. Recent evidence indicates that in combination with the activity of dissimilatory Fe(III)-reducing bacteria, anaerobic microbial Fe(II) oxidation can also contribute to the global iron redox cycle. Studies have also proved that Fe(II)- oxidation is ubiquitous in diverse environments and produce a broad range of insoluble iron forms as end products. These biogenic Fe(III)-oxides and mixed valence Fe minerals have a very high adsorption capacity of heavy metals and radionuclides. Adsorption and immobilization by these biogenic Fe phases produced at circumneutral pH, is now considered a very effective mode of remediation of radionuclides like Uranium, especially under variable redox conditions. By coupling soluble and insoluble Fe(II) oxidation with nitrate and perchlorate as terminal electron acceptors in-situ, anaerobic Fe-oxidation can also be used for environmental cleanup of Fe through Fe-mineral precipitation, as well as nitrate and perchlorate through reduction. Coupling of Fe as the sole electron and energy source to the reduction of perchlorate or nitrate boosts the metabolism without building up biomass hence also taking care of biofouling. To understand the mechanisms by which microorganisms can grow at circumneutral pH by mesophilic, anaerobic iron oxidation and the ability of microorganisms to reduce nitrate and perchlorate coupled to iron oxidation recent work in our lab involved the physiological characterization of Dechlorospirillum strain VDY which was capable of anaerobic iron-oxidation with either nitrate or perchlorate serving as terminal electron acceptor. Under non-growth conditions, VDY oxidized 3mM Fe(II) coupled to nitrate reduction, and 2mM Fe(II) coupled to perchlorate reduction, in 24 hours. It contained a copy of the RuBisCO cbbM subunit gene which was

  20. [Simultaneous Biotransformation of Ammonium and Nitrate via Zero-Valent Iron on Anaerobic Conditions].

    PubMed

    Zhou, Jian; Huang, Yong; Yuan, Yi; Liu, Xin; Li, Xiang; Shen, Jie; Yang, Peng-bing

    2015-12-01

    Zero-valent iron (ZVI) was used to improve the biological autotrophic denitrification process between nitrate and ammonia by anaerobic ammonia oxidation ( ANAMMOX) bacteria. With the addition of ZVI, the biological autotrophic denitrification process could be reacted in the influent condition of pH was 7-8, at 35°C ±0.5°C, the concentration of ammonia was 50-100 mg · L⁻¹ and the concentration of nitrate was 50-100 mg · L⁻¹. The highest conversion rate could be reached to 17.2 mg · (L·h) ⁻¹. With the change of reaction time and the molar ratio of nitrate and ammonia in influent, the final molar conversion ratio of nitrate and ammonia in effluent fluctuated between 1.2-3. 5. The result showed that this autotrophic denitrification process was not belonged to elementary reaction. The mechanism of this autotrophic denitrification process could be summarized that with the reduction of ZVI, the nitrate could be reduced to nitrite. Hereafter, the ANAMMOX process reacted between the nitrite and ammonia. PMID:27011992

  1. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater.

    PubMed

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie

    2015-01-01

    Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3-6 mmol/L in temperature range of 30-40 °C, 6-10 mmol/L in temperature range of 15-30 °C and 10-14 mmol/L in temperature range of 5-15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency. PMID:26199053

  2. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater

    NASA Astrophysics Data System (ADS)

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie

    2015-07-01

    Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3-6 mmol/L in temperature range of 30-40 °C, 6-10 mmol/L in temperature range of 15-30 °C and 10-14 mmol/L in temperature range of 5-15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency.

  3. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater

    PubMed Central

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie

    2015-01-01

    Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3–6 mmol/L in temperature range of 30–40 °C, 6–10 mmol/L in temperature range of 15–30 °C and 10–14 mmol/L in temperature range of 5–15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency. PMID:26199053

  4. Reduction of nitrate by resin-supported nanoscale zero-valent iron.

    PubMed

    Park, Heesu; Park, Yong-Min; Yoo, Kyoung-Min; Lee, Sang-Hyup

    2009-01-01

    For environmental remediation of a contaminated groundwater, the use of nanosized zero-valent iron (nZVI) represents one of the latest innovative technologies. However, nZVI gets easily agglomerated due to its colloidal characteristics and has limited applications. To overcome this drawback, nZVI was immobilized on a supporting material. In this study, nZVI was formed and bound to ion-exchange resin spheres at the same time through the borohydride reduction of an iron salt. The pore structures and physical characteristics of the supported nZVI were investigated and its reactivity was measured using nitrate. The degradation of nitrate appeared to be a pseudo first-order reaction with the observed reaction rate constant of 0.425 h(-1) without pH control. The reduction process continued but at a much lower rate with a rate constant of 0.044 h(-1). When the simulated groundwater was used to assess the effects of coexisting ions, the rate constant was 0.078 h(-1) and it also reduced to 0.0021 h(-1) in later phase. The major limitation of ZVI use for nitrate reduction is ammonium production. By using a support material with ion-exchange capacity, this problem can be solved. The ammonium was not detected in our batch tests. PMID:19494454

  5. REMOVAL OF ADDED NITRATE IN THE SINGLE, BINARY, AND TERNARY SYSTEMS OF COTTON BURR COMPOST, ZEROVALENT IRON, AND SEDIMENT: IMPLICATIONS FOR GROUNDWATER NITRATE REMEDIATION USING PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    Recent research has shown that carbonaceous solid materials and zerovalent iron (Fe0) may potentially be used as media in permeable reactive barriers (PRBs) to degrade groundwater nitrate via heterotrophic denitrification in the solid carbon system, and via abiotic reduction and ...

  6. Enumeration and Detection of Anaerobic Ferrous Iron-Oxidizing, Nitrate-Reducing Bacteria from Diverse European Sediments

    PubMed Central

    Straub, Kristina L.; Buchholz-Cleven, Berit E. E.

    1998-01-01

    Anaerobic, nitrate-dependent microbial oxidation of ferrous iron was recently recognized as a new type of metabolism. In order to study the occurrence of three novel groups of ferrous iron-oxidizing, nitrate-reducing bacteria (represented by strains BrG1, BrG2, and BrG3), 16S rRNA-targeted oligonucleotide probes were developed. In pure-culture experiments, these probes were shown to be suitable for fluorescent in situ hybridization, as well as for hybridization analysis of denaturing gradient gel electrophoresis (DGGE) patterns. However, neither enumeration by in situ hybridization nor detection by the DGGE-hybridization approach was feasible with sediment samples. Therefore, the DGGE-hybridization approach was combined with microbiological methods. Freshwater sediment samples from different European locations were used for enrichment cultures and most-probable-number (MPN) determinations. Bacteria with the ability to oxidize ferrous iron under nitrate-reducing conditions were detected in all of the sediment samples investigated. At least one of the previously described types of bacteria was detected in each enrichment culture. MPN studies showed that sediments contained from 1 × 105 to 5 × 108 ferrous iron-oxidizing, nitrate-reducing bacteria per g (dry weight) of sediment, which accounted for at most 0.8% of the nitrate-reducing bacteria growing with acetate. Type BrG1, BrG2, and BrG3 bacteria accounted for an even smaller fraction (0.2% or less) of the ferrous iron-oxidizing, nitrate-reducing community. The DGGE patterns of MPN cultures suggested that more organisms than those isolated thus far are able to oxidize ferrous iron with nitrate. A comparison showed that among the anoxygenic phototrophic bacteria, organisms that have the ability to oxidize ferrous iron also account for only a minor fraction of the population. PMID:9835573

  7. Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface.

    PubMed

    Luo, Jinghuan; Song, Guangyu; Liu, Jianyong; Qian, Guangren; Xu, Zhi Ping

    2014-12-01

    Nitrate reduction by zero-valent iron (Fe(0)) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe(0) powder combined with activated carbon (AC), i.e., Fe(0)/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe(0)/AC system and Fe(0) under near-neutral conditions, showing that the Fe(0)/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe(0) only ∼10%. The effect of Fe(0) to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe(0) and AC as the result of decreasing Fe(0) to AC mass ratio. Ferrous ion and oxidation-reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe(0)/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe(0) to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe(0)/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment. PMID:25217726

  8. Phenol Nitration Induced by an {Fe(NO)2}10 Dinitrosyl Iron Complex

    SciTech Connect

    N Tran; H Kalyvas; K Skodje; T Hayashi; P Moenne-Loccoz; P Callan; J Shearer; L Kirschenbaum; E Kim

    2011-12-31

    Cellular dinitrosyl iron complexes (DNICs) have long been considered NO carriers. Although other physiological roles of DNICs have been postulated, their chemical functionality outside of NO transfer has not been demonstrated thus far. Here we report the unprecedented dioxygen reactivity of a N-bound {l_brace}Fe(NO){sub 2}{r_brace}{sup 10} DNIC, [Fe(TMEDA)(NO){sub 2}] (1). In the presence of O{sub 2}, 1 becomes a nitrating agent that converts 2,4,-di-tert-butylphenol to 2,4-di-tert-butyl-6-nitrophenol via formation of a putative iron-peroxynitrite [Fe(TMEDA)(NO)(ONOO)] (2) that is stable below -80 C. Iron K-edge X-ray absorption spectroscopy on 2 supports a five-coordinated metal center with a bound peroxynitrite in a cyclic bidentate fashion. The peroxynitrite ligand of 2 readily decays at increased temperature or under illumination. These results suggest that DNICs could have multiple physiological or deleterious roles, including that of cellular nitrating agents.

  9. Fine Iron Aerosols Are Internally Mixed with Nitrate in the Urban European Atmosphere.

    PubMed

    Dall'Osto, Manuel; Beddows, D C S; Harrison, Roy M; Onat, Burcu

    2016-04-19

    Atmospheric iron aerosol is a bioavailable essential nutrient playing a role in oceanic productivity. Using aerosol time-of-flight mass spectrometry (ATOFMS), the particle size (0.3-1.5 μm), chemical composition and mixing state of Fe-containing particles collected at two European urban sites (London and Barcelona) were characterized. Out of the six particle types accounting for the entire Fe-aerosol population, that arising from long-range transport (LRT) of fine Fe-containing particles (Fe-LRT, 54-82% across the two sites) was predominant. This particle type was found to be internally mixed with nitrate and not with sulfate, and likely mostly associated with urban traffic activities. This is in profound contrast with previous studies carried out in Asia, where the majority of iron-containing particles are mixed with sulfate and are of coal combustion origin. Other minor fine iron aerosol sources included mineral dust (8-11%), traffic brake wear material (1-17%), shipping/oil (1-6%), biomass combustion (4-13%) and vegetative debris (1-3%). Overall, relative to anthropogenic Asian Fe-sulfate dust, anthropogenic European dust internally mixed with additional key nutrients such as nitrate is likely to play a different role in ocean global biogeochemical cycles. PMID:27002272

  10. Nitrate

    Integrated Risk Information System (IRIS)

    Nitrate ; CASRN 14797 - 55 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  11. Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp.

    PubMed

    Liu, Yan; Li, Shibin; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2014-08-01

    Nitrate contamination in drinking water is a major threat to public health. This study investigated the efficiency of denitrification of aqueous solutions in the co-presence of synthesized nanoscale zero-valent iron (nZVI; diameter: 20-80 nm) and a previously isolated Paracoccus sp. strain YF1. Various influencing factors were studied, such as oxygen, pH, temperature, and anaerobic corrosion products (Fe(2+), Fe(3+) and Fe3O4). With slight toxicity to the strain, nZVI promoted denitrification efficiency by providing additional electron sources under aerobic conditions. For example, 50 mg L(-1) nZVI increased the nitrate removal efficiency from 66.9% to 85.2%. However, a high concentration of nZVI could lead to increased production of Fe(2+), a toxic ion which could compromise the removal efficiency. Kinetic studies suggest that denitrification by both free cells, and nZVI-amended cells fitted well to the zero-order model. Temperature and pH are the major factors affecting nitrate removal and cell growth, with or without the presence of nZVI. In this study, nitrate removal and cell growth increased in the pH range of 6.5-8.0, and temperature range of 25-35 °C. These conditions favor the growth of the strain, which dominated denitrification in all scenarios involved. As for anaerobic corrosion products, compared with Fe(2+) and Fe(3+), Fe3O4 promoted denitrification by serving as an electron donor. Finally, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) confirmed attachments of nZVI on the surface of the cell, and the formation of iron oxides. This study indicated that, as an electron donor source with minimal cellular toxicity, nZVI could be used to promote denitrification efficiency under biotic conditions. PMID:24630453

  12. Iron Corrosion Induced by Nonhydrogenotrophic Nitrate-Reducing Prolixibacter sp. Strain MIC1-1

    PubMed Central

    Ito, Kimio; Wakai, Satoshi; Tsurumaru, Hirohito; Ohkuma, Moriya; Harayama, Shigeaki

    2014-01-01

    Microbiologically influenced corrosion (MIC) of metallic materials imposes a heavy economic burden. The mechanism of MIC of metallic iron (Fe0) under anaerobic conditions is usually explained as the consumption of cathodic hydrogen by hydrogenotrophic microorganisms that accelerates anodic Fe0 oxidation. In this study, we describe Fe0 corrosion induced by a nonhydrogenotrophic nitrate-reducing bacterium called MIC1-1, which was isolated from a crude-oil sample collected at an oil well in Akita, Japan. This strain requires specific electron donor-acceptor combinations and an organic carbon source to grow. For example, the strain grew anaerobically on nitrate as a sole electron acceptor with pyruvate as a carbon source and Fe0 as the sole electron donor. In addition, ferrous ion and l-cysteine served as electron donors, whereas molecular hydrogen did not. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MIC1-1 was a member of the genus Prolixibacter in the order Bacteroidales. Thus, Prolixibacter sp. strain MIC1-1 is the first Fe0-corroding representative belonging to the phylum Bacteroidetes. Under anaerobic conditions, Prolixibacter sp. MIC1-1 corroded Fe0 concomitantly with nitrate reduction, and the amount of iron dissolved by the strain was six times higher than that in an aseptic control. Scanning electron microscopy analyses revealed that microscopic crystals of FePO4 developed on the surface of the Fe0 foils, and a layer of FeCO3 covered the FePO4 crystals. We propose that cells of Prolixibacter sp. MIC1-1 accept electrons directly from Fe0 to reduce nitrate. PMID:25548048

  13. Iron(III)-Mediated Radical Nitration of Bisarylsulfonyl Hydrazones: Synthesis of Bisarylnitromethyl Sulfones.

    PubMed

    Sar, Dinabandhu; Bag, Raghunath; Bhattacharjee, Debajyoti; Deka, Ramesh Chandra; Punniyamurthy, Tharmalingam

    2015-07-01

    Iron(III)-mediated radical nitration of bisarylsulfonyl hydrazones is described. In this protocol, the nontoxic and inexpensive Fe(NO3)3·9H2O plays a dual role as catalyst as well as nitro source. The mild conditions, broad substrate scope, and the functional group compatibility are the significant features. The reaction pathway has been demonstrated using DFT calculations, and the products can be subsequently converted into oximes using SnCl2·2H2O in high yields. PMID:26036359

  14. Development of an iron nitrate resistant injector valve for the Space Shuttle orbiter primary thruster

    NASA Technical Reports Server (NTRS)

    Wichmann, Horst; Marquardt, Kaiser; Goforth, Alyssa

    1993-01-01

    Design of a direct-acting valve (DAV) for a primary thruster which is fully interchangeable with a thruster equipped with pilot-operated valves is described. The DAV is based on a bellows to isolate propellants form the actuator for maximum resistance to iron nitrate and other contamination and to select optimum materials for the actuator. It provides improved seal performance under all operating conditions and insensitivity to pressure transients. As compared with the existing pilot-operated valve, the DAV design is much simpler, consists of fewer parts, and will be lower in cost.

  15. Analysis of flow decay potential on Galileo. [oxidizer flow rate reduction by iron nitrate precipitates

    NASA Technical Reports Server (NTRS)

    Cole, T. W.; Frisbee, R. H.; Yavrouian, A. H.

    1987-01-01

    The risks posed to the NASA's Galileo spacecraft by the oxidizer flow decay during its extended mission to Jupiter is discussed. The Galileo spacecraft will use nitrogen tetroxide (NTO)/monomethyl hydrazine bipropellant system with one large engine thrust-rated at a nominal 400 N, and 12 smaller engines each thrust-rated at a nominal 10 N. These smaller thrusters, because of their small valve inlet filters and small injector ports, are especially vulnerable to clogging by iron nitrate precipitates formed by NTO-wetted stainless steel components. To quantify the corrosion rates and solubility levels which will be seen during the Galileo mission, corrosion and solubility testing experiments were performed with simulated Galileo materials, propellants, and environments. The results show the potential benefits of propellant sieving in terms of iron and water impurity reduction.

  16. The role of magnetite nanoparticles in the reduction of nitrate in groundwater by zero-valent iron.

    PubMed

    Cho, Dong-Wan; Song, Hocheol; Schwartz, Franklin W; Kim, Bokseong; Jeon, Byong-Hun

    2015-04-01

    Magnetite nanoparticles were used as an additive material in a zero-valent iron (Fe0) reaction to reduce nitrate in groundwater and its effects on nitrate removal were investigated. The addition of nano-sized magnetite (NMT) to Fe0 reactor markedly increased nitrate reduction, with the rate proportionally increasing with NMT loading. Field emission scanning electron microscopy analysis revealed that NMT aggregates were evenly distributed and attached on the Fe0 surface due to their magnetic properties. The rate enhancement effect of NMT is presumed to arise from its role as a corrosion promoter for Fe0 corrosion as well as an electron mediator that facilitated electron transport from Fe0 to adsorbed nitrate. Nitrate reduction by Fe0 in the presence of NMT proceeded much faster in groundwater (GW) than in de-ionized water. The enhanced reduction of nitrate in GW was attributed to the adsorption or formation of surface complex by the cationic components in GW, i.e., Ca2+ and Mg2+, in the Fe0-H2O interface that promoted electrostatic attraction of nitrate to the reaction sites. Moreover, the addition of NMT imparted superior longevity to Fe0, enabling completion of four nitrate reduction cycles, which otherwise would have been inactivated during the first cycle without an addition of NMT. The results demonstrate the potential applicability of a Fe0/NMT system in the treatment of nitrate-contaminated GW. PMID:25665757

  17. The removal of nitrate by nanoscale iron particles produced using the sodium borohydride method.

    PubMed

    Cho, Hyoung-Chan; Park, Sung Hoon; Ahn, Ho-Geun; Chung, Minchul; Kim, Byungwhan; Kim, Sun-Jae; Seo, Seong-Gyu; Jung, Sang-Chul

    2011-02-01

    This study was conducted to investigate removal of nitrate by nanoscale zero-valent iron (ZVI) particles in aqueous solution. ZVI particles was produced from wasted acid that is by-products of a pickling line at a steel work. The reaction activity of ZVI particles was evaluated through decomposition experiments of NO3-N aqueous solution. Addition of a larger amount of ZVI particles resulted in a higher decomposition rate. ZVI particles showed higher decomposition efficiencies than commercially purchased ZVI particles at all pH values. Both ZVIs showed a higher decomposition rate at a lower pH. Virtually no decomposition reaction was observed at pH of 4 or higher for purchased ZVI. The ZVI particles produced directly from wasted acid by the sodium borohydride method were not easy to handle because they were very small (10-200 nm) and were oxidized easily in the air. PMID:21456267

  18. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems

    USGS Publications Warehouse

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A., III; Yang, Xiaofen; Tuovinen, Olli H.; Dong, Hailiang; Fu, Xiang

    2013-01-01

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO3)2 was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0–24.2 mM Pb(II) added as Pb(NO3)2. Anglesite (PbSO4) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe3(SO4)2(OH)6) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9–17.6 μM regardless of the concentrations of Pb(NO3)2 added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO3)2 addition even when anglesite was removed before inoculation. Experiments with 0–48 mM KNO3 demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO3)2 addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans.

  19. Long-term Fate of Arsenic under the Oxidation of Ferrous Iron by Nitrate.

    NASA Astrophysics Data System (ADS)

    Sun, J.; Prommer, H.; Siade, A. J.; Chillrud, S. N.; Mailloux, B. J.; Bostick, B. C.

    2015-12-01

    In situ precipitation of iron (Fe) minerals can be an effective means of remediating groundwater arsenic (As) contamination. Among different Fe minerals, magnetite is promising as a host-mineral for As in situ immobilization in that it is stable under a wide range of geochemical conditions, including Fe(III) reducing conditions under which As are often mobilized. Our previous laboratory studies suggest that the formation of nanoparticulate magnetite can be achieved by the oxidation of ferrous Fe with nitrate. Magnetite can incorporate As into its structure during formation, in which case desorption and As(V) reduction are less likely. Nanoparticulate magnetite, once formed, can also immobilize As by surface adsorption, and thus serve as a reactive filter when contaminated groundwater migrates through the treatment zone. In this study, a reactive transport model is develop for the magnetite based As immobilization strategy. The initial numerical model development was guided by experimental data and hypothesized processes from the laboratory one-dimensional column studies. Our modeling results suggest that the ratio between Fe(II) and nitrate in the injectant regulates the extent and distribution of magnetite and ferrihydrite formation, and thus regulates the long-term potential of As immobilization. Based on these results, two-dimensional field-scale model scenarios were developed to predict and compare the impact of chemical and operational parameters on the efficiency of the remediation technology. The modeling results, which suggest that long-term groundwater As removal is feasible, favor scenarios that rely on the chromatographic mixing of Fe(II) and nitrate after injection. This study highlights the importance of combining laboratory studies and reactive transport modeling for elucidating the complex hydro-biogeochemical processes that control the fate of As and for up-scaling of the technology.

  20. Association of cardiac injury with iron-increased oxidative and nitrative modifications of the SERCA2a isoform of sarcoplasmic reticulum Ca(2+)-ATPase in diabetic rats.

    PubMed

    Li, Xueli; Li, Wenliang; Gao, Zhonghong; Li, Hailing

    2016-08-01

    The role of iron in the etiology of diabetes complications is not well established. Thus, this study was performed to test whether the iron-induced increase of oxidative/nitrative damage is involved in SERCA2a-related diabetic heart complication. Four randomly divided groups of rats were used: normal control group; iron overload group; diabetes group, and diabetic plus iron overload group. Iron supplementation stimulated cardiomyocyte hypertrophy and led to an increase in cardiac protein carbonyls, nitrotyrosine (3-NT) formation, and iNOS protein expression, thus resulting in abnormal myocardium calcium homeostasis of diabetic rats. The levels of SECA2a oxidation/nitration were significantly increased in the iron overload diabetic rats, along with a decrease in SECA2a expression and activity. In order to elucidate the possible role of iron in SERCA2a dysfunction, the effects of iron (Fe(3+) or hemin) on peroxynitrite (ONOO(-)) induced SERCA2a oxidation and nitration were further investigated in vitro. It was found that tyrosine nitration played more important role in SERCA2a inactivation than thiol oxidation. These results present a potential mechanism in which iron exacerbates the diabetes-induced oxidative/nitrative modification of SERCA2a, which may cause functional deficits in the myocyte associated with diabetic cardiac dysfunction. Our findings may help to further understand the role of iron in the pathogenesis of diabetic complications. PMID:27222135

  1. Arsenic, nitrate, iron, and hardness in ground water, Chena Hot Springs Road, Steele Creek Road, and Gilmore Trail areas, (T.1N., R.1E., FM), Fairbanks, Alaska

    USGS Publications Warehouse

    Krumhardt, Andrea P.

    1982-01-01

    This report presents all data on arsenic, nitrate, iron, and hardness in well water in the Chena Hot Springs Road, Steele Creek Road, and Gilmore Trail area of Fairbanks, Alaska, collected through October 1981. Concentrations range as follows: arsenic - 0 to 5,100 micrograms per liter; nitrate - 0 to 53 milligrams per liter; iron - 0 to 50 milligrams per liter, and hardness - 12 to 1,000 milligrams per liter. The percentage of samples exceeding limits set by the U.S. Environmental Protection Agency are as follows: arsenic - 13%; nitrate - 14%, and iron - 80%. (USGS)

  2. Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron.

    PubMed

    Jiang, Chenghong; Xu, Xuping; Megharaj, Mallavarapu; Naidu, Ravendra; Chen, Zuliang

    2015-10-15

    To investigate the effect of nanoscale zero-valent iron (nZVI) on the growth of Paracoccus sp. strain and biodenitrification under aerobic conditions, specific factors were studied, pH, concentration of nitrate, Fe (II) and carbon dioxide. Low concentration of nZVI (50mg/L) promoted both cell growth and biodegradation of nitrate which rose from 69.91% to 76.16%, while nitrate removal fell to 67.10% in the presence of high nZVI concentration (1000 mg/L). This may be attributed to the ions produced in nZVI corrosion being used as an electron source for the biodegradation of nitrate. However, the excess uptake of Fe (II) causes oxidative damage to the cells. To confirm this, nitrate was completely removed after 20 h when 100mg/L Fe (II) was added to the solution, which is much faster than the control (86.05%, without adding Fe (II)). However, nitrate removal reached only 45.64% after 20 h, with low cell density (OD 600=0.62) in the presence of 300 mg/L Fe (II). Characterization techniques indicated that nZVI adhered to microorganism cell membranes. These findings confirmed that nZVI could affect the activity of the strain and consequently change the biodenitrification. PMID:26047857

  3. Iron availability, nitrate uptake, and exportable new production in the subarctic Pacific. [phytoplankton population growth support and atmospheric CO2 removal

    NASA Technical Reports Server (NTRS)

    Banse, Karl

    1991-01-01

    This paper presents a critique of experimental data and papers by Martin et al. (1989, 1990), who suggested that the phytoplankton growth is iron-limited and that, small additions of iron to large subarctic ocean areas might be a way of removing significant amounts of atmospheric CO2 by increasing phytoplancton growth. Data are presented to show that, in the summer of 1987, the phytoplankton assemblage as a whole was not iron limited, as measured by the bulk removal of nitrate or by the increase of chlorophyll. It is suggested that grazing normally prevents the phytoplankton from reaching concentrations that reduce the iron (and nitrate) to levels that depress division rates drastically.

  4. Arsenic, nitrate, iron, and hardness, in ground water, Goldstream Road, Yankovich Road, and Murphy Dome Road areas (T.1 N, R.2 W, FM), Fairbanks, Alaska

    USGS Publications Warehouse

    Hopkins, Gary C.; Maxwell, Kevin F.

    1985-01-01

    Arsenic, nitrate, iron, and hardness in well water are concerns of homeowners and planners in the Fairbanks North Star Borough, Alaska. Arsenic and nitrate in water may affect human health. Iron and hardness can be aesthetically objectionable, impair plumbing systems, and discolor plumbing fixtures. This report is a compilation of the arsenic, nitrate, iron, and hardness data collected through February 1983 in the Goldstream Road, Murphy Dome Road, and Yankovich-Miller Hill Road areas of Fairbanks. Within these areas, concentrations of arsenic ranged from 0 to 1600 micrograms per liter, nitrate (as nitrogen) ranged from 0 to 78 milligrams per liter, iron ranged from 0 to 46 milligrams per liter, and hardness (as calcium carbonate) ranged from 34 to 1220 milligrams per liter. (USGS)

  5. Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase

    PubMed Central

    Chang, Wei-chen; Layne, Andrew P; Miles, Linde A; Krebs, Carsten

    2014-01-01

    Iron-dependent halogenases employ cis-halo-Fe(IV)-oxo (haloferryl) complexes to functionalize unactivated aliphatic carbon centers, a capability elusive to synthetic chemists. Halogenation requires (1) coordination of a halide anion (Cl− or Br−) to the enzyme's Fe(II) cofactor; (2) coupled activation of O2 and decarboxylation of α-ketoglutarate to generate the haloferryl intermediate; (3) abstraction of hydrogen (H•) from the substrate by the ferryl oxo group; and (4) transfer of the cis halogen as Cl• or Br• to the substrate radical. This enzymatic solution to an unsolved chemical challenge is potentially generalizable to installation of other functional groups, provided that the corresponding anions can support the four requisite steps. We show here that the wild-type halogenase SyrB2 can indeed direct aliphatic nitration and azidation reactions by the same chemical logic. The discovery and enhancement by mutagenesis of these previously unknown reaction types suggests unrecognized or untapped versatility in ferryl-mediated enzymatic C–H-bond activation. PMID:24463698

  6. Simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewater by zero-valent iron.

    PubMed

    Yoshino, Hiroyuki; Tokumura, Masahiro; Kawase, Yoshinori

    2014-01-01

    The zero-valent iron (ZVI) wastewater treatment has been applied to simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewaters. The simultaneous removal occurs by the reactions performed due to the sequential transformation of ZVI under the acidic condition. Fortunately the solution pH of semiconductor acidic wastewaters is low which is effective for the sequential transformation of ZVI. Firstly the reduction of nitrate is taken place by electrons generated by the corrosion of ZVI under acidic conditions. Secondly the ferrous ion generated by the corrosion of ZVI reacts with hydrogen peroxide and generates ·OH radical (Fenton reaction). The Fenton reaction consists of the degradation of hydrogen peroxide and the generation of ferric ion. Finally phosphate precipitates out with iron ions. In the simultaneous removal process, 1.6 mM nitrate, 9.0 mM hydrogen peroxide and 1.0 mM phosphate were completely removed by ZVI within 100, 15 and 15 min, respectively. The synergy among the reactions for the removal of nitrate, hydrogen peroxide and phosphate was found. In the individual pollutant removal experiment, the removal of phosphate by ZVI was limited to 80% after 300 min. Its removal rate was considerably improved in the presence of hydrogen peroxide and the complete removal of phosphate was achieved after 15 min. PMID:24798898

  7. Microbial Iron(II) Oxidation in Littoral Freshwater Lake Sediment: The Potential for Competition between Phototrophic vs. Nitrate-Reducing Iron(II)-Oxidizers

    PubMed Central

    Melton, E. D.; Schmidt, C.; Kappler, A.

    2012-01-01

    The distribution of neutrophilic microbial iron oxidation is mainly determined by local gradients of oxygen, light, nitrate and ferrous iron. In the anoxic top part of littoral freshwater lake sediment, nitrate-reducing and phototrophic Fe(II)-oxidizers compete for the same e− donor; reduced iron. It is not yet understood how these microbes co-exist in the sediment and what role they play in the Fe cycle. We show that both metabolic types of anaerobic Fe(II)-oxidizing microorganisms are present in the same sediment layer directly beneath the oxic-anoxic sediment interface. The photoferrotrophic most probable number counted 3.4·105 cells·g−1 and the autotrophic and mixotrophic nitrate-reducing Fe(II)-oxidizers totaled 1.8·104 and 4.5·104 cells·g−1 dry weight sediment, respectively. To distinguish between the two microbial Fe(II) oxidation processes and assess their individual contribution to the sedimentary Fe cycle, littoral lake sediment was incubated in microcosm experiments. Nitrate-reducing Fe(II)-oxidizing bacteria exhibited a higher maximum Fe(II) oxidation rate per cell, in both pure cultures and microcosms, than photoferrotrophs. In microcosms, photoferrotrophs instantly started oxidizing Fe(II), whilst nitrate-reducing Fe(II)-oxidizers showed a significant lag-phase during which they probably use organics as e− donor before initiating Fe(II) oxidation. This suggests that they will be outcompeted by phototrophic Fe(II)-oxidizers during optimal light conditions; as phototrophs deplete Fe(II) before nitrate-reducing Fe(II)-oxidizers start Fe(II) oxidation. Thus, the co-existence of the two anaerobic Fe(II)-oxidizers may be possible due to a niche space separation in time by the day-night cycle, where nitrate-reducing Fe(II)-oxidizers oxidize Fe(II) during darkness and phototrophs play a dominant role in Fe(II) oxidation during daylight. Furthermore, metabolic flexibility of Fe(II)-oxidizing microbes may play a paramount role in the

  8. Long-term trends in dissolved iron and DOC concentration linked to nitrate depletion in riparian soils

    NASA Astrophysics Data System (ADS)

    Musolff, Andreas; Selle, Benny; Fleckenstein, Jan H.; Oosterwoud, Marieke R.; Tittel, Jörg

    2016-04-01

    The instream concentrations of dissolved organic carbon (DOC) are rising in many catchments of the northern hemisphere. Elevated concentrations of DOC, mainly in the form of colored humic components, increase efforts and costs of drinking water purification. In this study, we evaluated a long-term dataset of 110 catchments draining into German drinking water reservoirs in order to assess sources of DOC and drivers of a potential long-term change. The average DOC concentrations across the wide range of different catchments were found to be well explained by the catchment's topographic wetness index. Higher wetness indices were connected to higher average DOC concentrations, which implies that catchments with shallow topography and pronounced riparian wetlands mobilize more DOC. Overall, 37% of the investigated catchments showed a significant long-term increase in DOC concentrations, while 22% exhibited significant negative trends. Moreover, we found that increasing trends in DOC were positively correlated to trends in dissolved iron concentrations at pH≤6 due to remobilization of DOC previously sorbed to iron minerals. Both, increasing trends in DOC and dissolve iron were found to be connected to decreasing trends and low concentrations of nitrate (below ~6 mg/L). This was especially observed in forested catchments where atmospheric N-depositions were the major source for nitrate availability. In these catchments, we also found long-term increases of phosphate concentrations. Therefore, we argue that dissolved iron, DOC and phosphate were jointly released under iron-reducing conditions when nitrate as a competing electron acceptor was too low in concentrations to prevent the microbial iron reduction. In contrast, we could not explain the observed increasing trends in DOC, iron and phosphate concentrations by the long-term trends of pH, sulfate or precipitation. Altogether this study gives strong evidence that both, source and long-term increases in DOC are

  9. Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles.

    PubMed

    Su, Yiming; Adeleye, Adeyemi S; Huang, Yuxiong; Sun, Xiaoya; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei; Keller, Arturo A

    2014-10-15

    Nanoscale zerovalent iron (nZVI) has demonstrated high efficacy for treating nitrate or cadmium (Cd) contamination, but its efficiency for simultaneous removal of nitrate and Cd has not been investigated. This study evaluated the reactivity of nZVI to the co-contaminants and by-product formation, employed different catalysts to reduce nitrite yield from nitrate, and examined the transformation of nZVI after reaction. Nitrate reduction resulted in high solution pH, negatively charged surface of nZVI, formation of Fe3O4 (a stable transformation of nZVI), and no release of ionic iron. Increased pH and negative charge contributed to significant increase in Cd(II) removal capacity (from 40 mg/g to 188 mg/g) with nitrate present. In addition, nitrate reduction by nZVI could be catalyzed by Cd(II): while 30% of nitrate was reduced by nZVI within 2 h in the absence of Cd(II), complete nitrate reduction was observed in the presence of 40 mg-Cd/L due to the formation of Cd islands (Cd(0) and CdO) on the nZVI particles. While nitrate was reduced mostly to ammonium when Cd(II) was not present or at Cd(II) concentrations ≥ 40 mg/L, up to 20% of the initial nitrate was reduced to nitrite at Cd(II) concentrations < 40 mg/L. Among nZVI particles doped with 1 wt. % Cu, Ag, or Au, nZVI deposited with 1 wt. % Au reduced nitrite yield to less than 3% of the initial nitrate, while maintaining a high Cd(II) removal capacity. PMID:24999115

  10. Potential application of microbial iron redox cycles in nitrate removal and their effects on clay mineral properties

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Dong, H.; Kukkadapu, R. K.; Briggs, B. R.; Zeng, Q.

    2014-12-01

    Phyllosilicates that are ubiquitous in subsurface can serve as an iron source for microbial respiration. The objective of this research is to determine the ability of the phyllosilicate Fe to remove nitrate in subsurface undergoing microbial-driven redox cycles. In this study, thus, a well-characterized reference clay (NAu-2; nontronite), was subjected to redox cycles in a system containing dissimilatory Fe(III)-reducing bacteria, Shewanella putrefaciens CN32, and nitrate-dependent Fe(II)-oxidizing bacteria, Pseudogulbenkiania sp. Strain 2002. Three redox cycles were conducted in bicarbonate- and PIPES-buffered medium. The extents of Fe(III) reduction, Fe(II) oxidation, nitrate reduction, and its various intermediate products were measured by wet chemical methods. For each cycle, Electron Energy Loss Spectroscopy and Mossbauer spectroscopy confirmed Fe oxidation state. Mineralogical changes were identified by using X-ray diffraction (XRD), 57Fe-Mössbauer spectroscopy, and infrared absorption spectroscopy. For all three cycles, nitrate was completely reduced to nitrogen gas under both bicarbonate- and PIPES- buffered conditions. As redox cycle increased, bio-reduction extents of Fe(III) in NAu-2 decreased by 33% and 48% in PIPES- and bicarbonate-buffered medium, respectively; however, bio-oxidation extents increased by 66% and 55% in the same medium, respectively. Despite the change of OH-stretching vibration band and OH-bending vibration bands in NAu-2 structure along Fe redox cycles, XRD data showed interlayer spacing of NAu-2 to be constant along the same Fe redox cycle. 57Fe-Mössbauer spectroscopy indicated complex reduction and re-oxidation pathways. For example, a distinct Fe(II) doublet and a Fe2.5+ feature due to interfacial Fe(II)-Fe(III) electron transfer on clay mineral are prominent in their RT spectra. Both these Fe(II) are partially oxidized by Fe(II)-oxidizing bacteria. The result of this study shows that Fe in biogenically reduced or oxidized NAu-2

  11. Biological Redox Cycling Of Iron In Nontronite And Its Potential Application In Nitrate Removal

    SciTech Connect

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.; Zeng, Qiang; Edelmann, Richard E.; Pentrak, Martin; Agrawal, Abinash

    2015-05-05

    Redox cycling of structural Fe in phyllosilicates provides a potential method to remediate nitrate contamination in natural environment. Past research has only studied chemical redox cycles or a single biologically mediated redox cycle of Fe in phyllosilicates. The objective of this research was to study three microbially driven redox cycles of Fe in one phyllosilicate, nontronite (NAu-2). During the reduction phase structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacteria Shewanella putrefaciens CN32 as mediator in bicarbonate-buffered and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served an electron donor, nitrate as electron acceptor, and nitrate-dependent Fe(II)-oxidizing bacteria Pseudogulbenkiania sp. strain 2002 as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo 3 redox cycles without significant reductive or oxidative dissolution. X-ray diffraction and scanning and transmission electron microscopy revealed that NAu-2 was the dominant residual mineral throughout the 3 redox cycles with some dissolution textures but no significant secondary mineralization. Mössbauer spectroscopy revealed that Fe(II) in bio-reduced samples likely occurred in two distinct environments, at edges and the interior of the NAu-2 structure. Nitrate was completely reduced to nitrogen gas under both buffer conditions and this extent and rate did not change with Fe redox cycles. Mössbauer spectroscopy further revealed that nitrate reduction was coupled to predominant/preferred oxidation of edge Fe(II). These results suggest that structural Fe in phyllosilicates may represent a renewable source to continuously remove nitrate in natural environments.

  12. [Effect of cooking on content of nitrates, vitamin C, magnesium and iron in spinach].

    PubMed

    Astier-Dumas, M

    1975-01-01

    Cooking is known to lower the mineral and vitaminic content of foodstuffs. Recently, contaminant became to be a problem in foods, and it was proposed to use blanching or boiling to diminish contaminant residues in foods, specially vegetables. An example of this attitude is given by the use of blanching to lower nitrates levels in spinach specially prepared for baby foods. PMID:1211733

  13. Nitrate-Dependent Ferrous Iron Oxidation by Anaerobic Ammonium Oxidation (Anammox) Bacteria

    PubMed Central

    Oshiki, M.; Ishii, S.; Yoshida, K.; Fujii, N.; Ishiguro, M.; Satoh, H.

    2013-01-01

    We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3− to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1 min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+ mg protein−1 min−1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3− by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3− ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3− reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1 min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2− to consumed NH4+ (ΔNO2−/ΔNH4+) and produced NO3− to consumed NH4+ (ΔNO3−/ΔNH4+). These reactions are preferable to the application of anammox processes for wastewater treatment. PMID:23624480

  14. Enhanced and Stabilized Arsenic Retention in Microcosms through the Microbial Oxidation of Ferrous Iron by Nitrate

    PubMed Central

    SUN, JING; CHILLRUD, STEVEN N.; MAILLOUX, BRIAN J.; STUTE, MARTIN; SINGH, RAJESH; DONG, HAILIANG; LEPRE, CHRISTOPHER J.; BOSTICK, BENJAMIN C.

    2016-01-01

    Magnetite strongly retains As, and is relatively stable under Fe(III)-reducing conditions common in aquifers that release As. Here, laboratory microcosm experiments were conducted to investigate a potential As remediation method involving magnetite formation, using groundwater and sediments from the Vineland Superfund site. The microcosms were amended with various combinations of nitrate, Fe(II)(aq)(as ferrous sulfate) and lactate, and were incubated for more than 5 weeks. In the microcosms enriched with 10 mM nitrate and 5 mM Fe(II)(aq), black magnetic particles were produced, and As removal from solution was observed even under sustained Fe(III) reduction stimulated by the addition of 10 mM lactate. The enhanced As retention was mainly attributed to co-precipitation within magnetite and adsorption on a mixture of magnetite and ferrihydrite. Sequential chemical extraction, X-ray absorption spectroscopy and magnetic susceptibility measurements showed that these minerals formed at pH 6 – 7 following nitrate-Fe(II) addition, and As-bearing magnetite was stable under reducing conditions. Scanning electron microscopy and X-ray diffraction indicated that nano-particulate magnetite was produced as coatings on fine sediments, and no aging effect was detected on morphology over the course of incubation. These results suggest that a magnetite based strategy may be a long-term remedial option for As-contaminated aquifers. PMID:26454120

  15. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate.

    PubMed

    Sun, Jing; Chillrud, Steven N; Mailloux, Brian J; Stute, Martin; Singh, Rajesh; Dong, Hailiang; Lepre, Christopher J; Bostick, Benjamin C

    2016-02-01

    Magnetite strongly retains As, and is relatively stable under Fe(III)-reducing conditions common in aquifers that release As. Here, laboratory microcosm experiments were conducted to investigate a potential As remediation method involving magnetite formation, using groundwater and sediments from the Vineland Superfund site. The microcosms were amended with various combinations of nitrate, Fe(II) (aq) (as ferrous sulfate) and lactate, and were incubated for more than 5 weeks. In the microcosms enriched with 10 mM nitrate and 5 mM Fe(II) (aq), black magnetic particles were produced, and As removal from solution was observed even under sustained Fe(III) reduction stimulated by the addition of 10 mM lactate. The enhanced As retention was mainly attributed to co-precipitation within magnetite and adsorption on a mixture of magnetite and ferrihydrite. Sequential chemical extraction, X-ray absorption spectroscopy and magnetic susceptibility measurements showed that these minerals formed at pH 6-7 following nitrate-Fe(II) addition, and As-bearing magnetite was stable under reducing conditions. Scanning electron microscopy and X-ray diffraction indicated that nano-particulate magnetite was produced as coatings on fine sediments, and no aging effect was detected on morphology over the course of incubation. These results suggest that a magnetite based strategy may be a long-term remedial option for As-contaminated aquifers. PMID:26454120

  16. Inhibition of nitrate reduction by NaCl adsorption on a nano-zero-valent iron surface during a concentrate treatment for water reuse.

    PubMed

    Hwang, Yuhoon; Kim, Dogun; Shin, Hang-Sik

    2015-01-01

    Nanoscale zero-valent iron (NZVI) has been considered as a possible material to treat water and wastewater. However, it is necessary to verify the effect of the matrix components in different types of target water. In this study, different effects depending on the sodium chloride (NaCl) concentration on reductions of nitrates and on the characteristics of NZVI were investigated. Although NaCl is known as a promoter of iron corrosion, a high concentration of NaCl (>3 g/L) has a significant inhibition effect on the degree of NZVI reactivity towards nitrate. The experimental results were interpreted by a Langmuir-Hinshelwood-Hougen-Watson reaction in terms of inhibition, and the decreased NZVI reactivity could be explained by the increase in the inhibition constant. As a result of a chloride concentration analysis, it was verified that 7.7-26.5% of chloride was adsorbed onto the surface of NZVI. Moreover, the change of the iron corrosion product under different NaCl concentrations was investigated by a surface analysis of spent NZVI. Magnetite was the main product, with a low NaCl concentration (0.5 g/L), whereas amorphous iron hydroxide was observed at a high concentration (12 g/L). Though the surface was changed to permeable iron hydroxide, the Fe(0) in the core was not completely oxidized. Therefore, the inhibition effect of NaCl could be explained as the competitive adsorption of chloride and nitrate. PMID:25358487

  17. Biodegradation of phenols in a sandstone aquifer under aerobic conditions and mixed nitrate and iron reducing conditions

    NASA Astrophysics Data System (ADS)

    Broholm, Mette M.; Arvin, Erik

    2000-08-01

    Ammonia liquor with very high concentrations of phenol and alkylated phenols is known to have leaked into the subsurface at a former coal carbonization plant in the UK, giving high concentrations of ammonium in the groundwater. In spite of this, no significant concentrations of phenols were found in the groundwater. The potential for biodegradation of the phenols in the sandstone aquifer at the site has been investigated in laboratory microcosms under aerobic (oxygen amended) and mixed nitrate and iron reducing (nitrate enriched and unamended) anaerobic conditions, at a range of concentrations (low: ˜5 mg l -1, high: ˜60 mg l -1, and very high: ˜600 mg l -1) and in the presence of other organic coal-tar compounds (mono- and polyaromatic hydrocarbons (BTEXs and PAHs) and heterocyclic compounds (NSOs)) and ammonia liquor. Sandstone cores and groundwater for the microcosms were collected from within the anaerobic ammonium plume at the field site. Fast and complete degradation of phenol, o- and p-cresol, 2,5- and 3,4-xylenol with no or very short initial lag-phases was observed under aerobic conditions at low concentrations. 2,6- and 3,5-Xylenol were degraded more slowly and 3,5-xylenol degradation was only just complete after about 1 year. The maximum rates of total phenols degradation in duplicate aerobic microcosms were 1.06 and 1.76 mg l -1 day -1. The degradation of phenols in nitrate enriched and unamended anaerobic microcosms was similar. Fast and complete biodegradation of phenol, cresols, 3,4-xylenol and 3,5-xylenol was observed after short lag-phases in the anaerobic microcosms. 2,5-xylenol was partially degraded after a longer lag-phase and 2,6-xylenol persisted throughout the 3 month long experiments. The maximum rates of total phenols degradation in duplicate nitrate enriched and unamended anaerobic microcosms were 0.30-0.38 and 0.29-0.31 mg l -1 day -1, respectively. The highest phenols concentrations in the anaerobic microcosms apparently required

  18. Impact of orchard and tillage management practices on soil leaching of atrazine, potassium, magnesium, manganese, iron, ammonium, nitrates and phosphates

    NASA Astrophysics Data System (ADS)

    Szajdak, L.; Lipiec, J.; Siczek, A.; Kotowska, U.; Nosalewicz, A.

    2009-04-01

    The experiments were carried out on an Orthic Luvisol developed from loess, over limestone, at the experimental field of Lublin Agricultural University in Felin (51o15'N, 22o35'E), Poland. The investigation deals with the problems of leaching's rate of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,2,3-triazine), potassium, magnesium, manganese, iron, ammonium, nitrates and phosphates from two management systems of soil: (i) conventionally tilled field with main tillage operations including stubble cultivator (10 cm) + harrowing followed by mouldboard ploughing to 20 cm depth, and crop rotation including selected cereals, root crops and papillionaceous crops, (ii) 35-year-old apple orchard field (100x200m) with a permanent sward that was mown in the inter-rows during the growing season. The conventionally tilled plot was under the current management practice for approximately 30 years. Field sites were close to each other (about 150 m). Core samples of 100 cm3 volume and 5 cm diameter were taken from two depths 0-10 cm and 10-20 cm, and were used to determine the soil water characteristic curve. It was observed that management practices impacted on the physic-chemical properties of soils. pH (in H2O) in tilled soil ranged from 5.80 to 5.91. However soil of orchard soil revealed higher values of pH than tilled soil and ranged from 6.36 to 6.40. The content of organic carbon for tilled soil ranged from 1.13 to 1.17%, but in orchard soil from 1.59 to 1.77%. Tillled soil showed broader range of bulk density 1.38-1.62 mg m-3, than orchard soil 1.33-134 mg m-3. The first-order kinetic reaction model was fitted to the experimental atrazine, potassium, magnesium, manganese, iron, nitrates, ammonium and phosphates leaching vs. time data. The concentrations of leached chemical compounds revealed linear curves. The correlation coefficients ranged from -0.873 to -0.993. The first-order reaction constants measured for the orchard soils were from 3.8 to 19 times higher than

  19. Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation

    NASA Astrophysics Data System (ADS)

    Miot, Jennyfer; Li, Jinhua; Benzerara, Karim; Sougrati, Moulay Tahar; Ona-Nguema, Georges; Bernard, Sylvain; Jumas, Jean-Claude; Guyot, François

    2014-08-01

    Biomineralization of magnetite is a central geomicrobiological process that might have played a primordial role over Earth’s history, possibly leaving traces of life in the geological record or controlling trace metal(loid)s and organic pollutants mobility in modern environments. Magnetite biomineralization has been attributed to two main microbial pathways to date (namely magnetotactic bacteria and dissimilatory iron-reducing bacteria). Here, we uncover a new route of magnetite biomineralization involving the anaerobic nitrate-reducing iron(II) oxidizing bacterium Acidovorax sp. strain BoFeN1. Using transmission electron microscopy, scanning transmission X-ray microscopy, transmission Mössbauer spectroscopy and rock magnetic analyses, this strain is shown to promote the transformation of hydroxychloride green rust in equilibrium with dissolved Fe(II) to (1) periplasmic lepidocrocite (γ-FeOOH) and (2) extracellular magnetite, thus leading to strong redox heterogeneities at the nanometer scale. On the one hand, lepidocrocite was associated with protein moieties and exhibited an anisotropic texture, with the elongated axis parallel to the cell wall. On the other hand, magnetite crystals exhibited grain sizes and magnetic properties consistent with stable single domain particles. By comparison, abiotic controls led to a very slow (4 months vs. 2 days in BoFeN1 cultures) and incomplete oxidation of hydroxychloride green rust towards magnetite. As this abiotic magnetite exhibited the same size and magnetic properties (stable single domain particles) as magnetite produced in BoFeN1 cultures, only the co-occurrence of textured Fe(III)-oxides and magnetite, associated with the persistence of organic carbon molecules, might constitute valuable biosignatures to be looked for in the geological record. Our results furthermore contribute to a more complex picture of Fe redox cycling in the environment, providing an additional process of Fe(II)-bearing phase

  20. Plasma levels of aminothiols, nitrite, nitrate, and malondialdehyde in myelodysplastic syndromes in the context of clinical outcomes and as a consequence of iron overload.

    PubMed

    Pimková, Kristýna; Chrastinová, Leona; Suttnar, Jiří; Štikarová, Jana; Kotlín, Roman; Čermák, Jaroslav; Dyr, Jan Evangelista

    2014-01-01

    The role of oxidative stress in the initiation and progression of myelodysplastic syndromes (MDS) as a consequence of iron overload remains unclear. In this study we have simultaneously quantified plasma low-molecular-weight aminothiols, malondialdehyde, nitrite, and nitrate and have studied their correlation with serum iron/ferritin levels, patient treatment (chelation therapy), and clinical outcomes. We found significantly elevated plasma levels of total, oxidized, and reduced forms of cysteine (P < 0.001), homocysteine (P < 0.001), and cysteinylglycine (P < 0.006) and significantly depressed levels of total and oxidized forms of glutathione (P < 0.03) and nitrite (P < 0.001) in MDS patients compared to healthy donors. Moreover, total (P < 0.032) and oxidized cysteinylglycine (P = 0.029) and nitrite (P = 0.021) differed significantly between the analyzed MDS subgroups with different clinical classifications. Malondialdehyde levels in plasma correlated moderately with both serum ferritin levels (r = 0.78, P = 0.001) and serum free iron levels (r = 0.60, P = 0.001) and were significantly higher in patients with iron overload. The other analyzed compounds lacked correlation with iron overload (represented by serum iron/ferritin levels). For the first time our results have revealed significant differences in the concentrations of plasma aminothiols in MDS patients, when compared to healthy donors. We found no correlation of these parameters with iron overload and suggest the role of oxidative stress in the development of MDS disease. PMID:24669287

  1. Dynamic global patterns of nitrate, phosphate, silicate, and iron availability and phytoplankton community composition from remote sensing data

    NASA Astrophysics Data System (ADS)

    Kamykowski, Daniel; Zentara, Sara-Joan; Morrison, John M.; Switzer, Anne C.

    2002-12-01

    Satellites routinely provide frequent, large-scale, near-surface views of many oceanographic variables pertinent to plankton ecology, but nutrient fertility remains problematic. A recently derived set of nitrate (N), phosphate (P), and silicate (S) nutrient depletion temperatures (NDT) were subtracted from AVHRR-derived sea surface temperatures for March 1999 through June 2000 to determine eight categories of temporally varying N, P, and S presence/absence in the world ocean. Complementary midmonth, aerosol optical thickness (70°N to 70°S) and precipitation (40°N to 40°S), obtained from the AVHRR Pathfinder effort and the TRMM microwave imager, respectively, represented iron (F) presence (>10%)/absence (<10%) in the world ocean as dry and wet (40°N to 40°S) or just dry (40°N-70°N and 40°S-70°S) deposition of atmospheric dust. The resulting 16 N, P, S, and F presence/absence categories provided a dynamic view of seasonal and interannual nutrient variability in the world ocean. SeaWiFS chlorophyll a maps for April, July, and October 1999 and January 2000 were compared to the N, P, S, and F categories from these months. Phytoplankton cell size and taxonomic composition categories linked to each of the 16 nutrient availability categories translated the nutrient associations with chlorophyll a into an inferred phytoplankton community structure. Consideration of additional bottom-up (like solar irradiance exposure) and top-down (like grazing by zooplankton) influences on size and species/class specific net phytoplankton growth can improve the assignment of inferred phytoplankton community structure. The proposed dynamic approach toward monitoring nutrient availability can contribute to refined estimates of biogeochemical fluxes in the world ocean.

  2. Denitrification-coupled iron(ii) oxidation: a key process regulating the fate and transport of nitrate, phosphate, and arsenic in a wastewater-contaminated aquifer

    USGS Publications Warehouse

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Hart, C. P.

    2008-01-01

    Denitrification in the subsurface is often viewed as a heterotrophic process. However, some denitrifiers can also utilize inorganic electron donors. In particular, Fe(II), which is common in many aquifers, could be an important reductant for contaminant nitrate. Anoxic iron oxidation would have additional consequences, including decreased mobility for species like arsenic and phosphate, which bind strongly to hydrous Fe(III) oxide. A study was conducted in a wastewater contaminant plume on Cape Cod to assess the potential for denitrification- coupled Fe(II) oxidation. Previous changes in wastewater disposal upgradient of the study area had resulted in nitrate being transported into a portion of the anoxic zone of the plume and decreased concentrations of Fe(II), phosphate, and arsenic. A series of anoxic tracers (groundwater + nitrate + bromide) were injected into the unaffected, Fe(II)-containing zone under natural gradient conditions. Denitrification was stimulated within 1 m of transport (4 days) for both low and high (100 & 1000 μM) nitrate additions, initially producing stiochiometric quantities of nitrous oxide (>300 μM N) and trace amounts of nitrite. Subsequent injections at the same site reduced nitrate even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and this was accompanied by an increase in colloidal Fe(III) and decreases in pH, total arsenic, and phosphate concentrations. All plume constituents returned to background levels several weeks after the tracer tests were completed. Groundwater microorganisms collected on filters during the tracer test rapidly and immediately reduced nitrite and oxidized Fe(II) in 3-hr laboratory incubations. Several pure cultures of Fe(II)-oxidizing denitrifying bacteria were isolated from core material and subsequently characterized. All of the isolates were mixotrophic, simultaneously oxidizing organic carbon and Fe

  3. Denitrification-Coupled Iron(II) Oxidation: A Key Process Regulating the Fate and Transport of Nitrate, Phosphate, and Arsenic in a Wastewater-Contaminated Aquifer

    NASA Astrophysics Data System (ADS)

    Smith, R. L.; Kent, D. B.; Repert, D. A.; Hart, C. P.

    2007-12-01

    Denitrification in the subsurface is often viewed as a heterotrophic process. However, some denitrifiers can also utilize inorganic electron donors. In particular, Fe(II), which is common in many aquifers, could be an important reductant for contaminant nitrate. Anoxic iron oxidation would have additional consequences, including decreased mobility for species like arsenic and phosphate, which bind strongly to hydrous Fe(III) oxide. A study was conducted in a wastewater contaminant plume on Cape Cod to assess the potential for denitrification- coupled Fe(II) oxidation. Previous changes in wastewater disposal upgradient of the study area had resulted in nitrate being transported into a portion of the anoxic zone of the plume and decreased concentrations of Fe(II), phosphate, and arsenic. A series of anoxic tracers (groundwater + nitrate + bromide) were injected into the unaffected, Fe(II)-containing zone under natural gradient conditions. Denitrification was stimulated within 1 m of transport (4 days) for both low and high (100 & 1000 μM) nitrate additions, initially producing stiochiometric quantities of nitrous oxide (>300 μM N) and trace amounts of nitrite. Subsequent injections at the same site reduced nitrate even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and this was accompanied by an increase in colloidal Fe(III) and decreases in pH, total arsenic, and phosphate concentrations. All plume constituents returned to background levels several weeks after the tracer tests were completed. Groundwater microorganisms collected on filters during the tracer test rapidly and immediately reduced nitrite and oxidized Fe(II) in 3-hr laboratory incubations. Several pure cultures of Fe(II)-oxidizing denitrifying bacteria were isolated from core material and subsequently characterized. All of the isolates were mixotrophic, simultaneously oxidizing organic carbon and Fe

  4. 2′-Deoxymugineic acid promotes growth of rice (Oryza sativa L.) by orchestrating iron and nitrate uptake processes under high pH conditions

    PubMed Central

    Araki, Ryoichi; Kousaka, Kayoko; Namba, Kosuke; Murata, Yoshiko; Murata, Jun

    2015-01-01

    Poaceae plants release 2′-deoxymugineic acid (DMA) and related phytosiderophores to chelate iron (Fe), which often exists as insoluble Fe(III) in the rhizosphere, especially under high pH conditions. Although the molecular mechanisms behind the biosynthesis and secretion of DMA have been studied extensively, little information is known about whether DMA has biological roles other than chelating Fe in vivo. Here, we demonstrate that hydroponic cultures of rice (Oryza sativa) seedlings show almost complete restoration in shoot height and soil-plant analysis development (SPAD) values after treatment with 3–30 μm DMA at high pH (pH 8.0), compared with untreated control seedlings at normal pH (pH 5.8). These changes were accompanied by selective accumulation of Fe over other metals. While this enhanced growth was evident under high pH conditions, DMA application also enhanced seedling growth under normal pH conditions in which Fe was fairly accessible. Microarray and qRT-PCR analyses revealed that exogenous DMA application attenuated the increased expression levels of various genes related to Fe transport and accumulation. Surprisingly, despite the preferential utilization of ammonium over nitrate as a nitrogen source by rice, DMA application also increased nitrate reductase activity and the expression of genes encoding high-affinity nitrate transporters and nitrate reductases, all of which were otherwise considerably lower under high pH conditions. These data suggest that exogenous DMA not only plays an important role in facilitating the uptake of environmental Fe, but also orchestrates Fe and nitrate assimilation for optimal growth under high pH conditions. PMID:25393516

  5. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  6. Enhanced reduction of nitrate by supported nanoscale zero-valent iron prepared in ethanol-water solution.

    PubMed

    Park, Heesu; Park, Yong-Min; Oh, Soo-Kyeong; You, Kyoung-Min; Lee, Sang-Hyup

    2009-03-01

    Nanoscale zero-valent iron is famous for its high reactivity originating from its high surface area, and has emerged as an extension of granular zero-valent iron technology. Due to its extremely small size, nanosized iron cannot be used as a medium in a permeable reactive barrier system, which is the most popular application of granular iron. To overcome this shortcoming, supported nanoscale zero-valent iron was created. In addition to this, the preparation solution was modified to enhance the reactivity. An ethanol/water solvent containing a dispersant of polyethylene glycol was used to synthesize nanoscale iron. This preparation was done in the presence of an ion-exchange resin as a supporting material. Nanoscale zero-valent iron was formed and bound to the granular resin at the same time through the borohydride reduction of an iron salt, and the resulting product was compared with that prepared in a conventional way of using water only. Switching the preparation solution increased the supported nanoscale iron's BET surface area and Fe content from 31.63 m2 g(-1) and 18.19 mg Fe g(-1) to 38.10 m2 g(-1) and 22.44 mg Fe g(-1), respectively. Kinetic analysis from batch tests revealed that a higher denitrification rate was achieved by the supported nanoscale zero-valent iron prepared in the modified way. The pseudo-first-order reaction constant of 0.462 h(-1) suggested that the reactivity of the supported iron, prepared in ethanol/water, increased by 61% compared with the one prepared in water. The higher rates of reaction, based on higher specific area and iron content, suggest that this new supported nanoscale iron can be used successfully for permeable reactive barriers. PMID:19438058

  7. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans

    PubMed Central

    Beller, Harry R.; Zhou, Peng; Legler, Tina C.; Chakicherla, Anu; Kane, Staci; Letain, Tracy E.; A. O’Day, Peggy

    2013-01-01

    Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process. PMID:24065960

  8. Structural and Molecular Basis of the Peroxynitrite-mediated Nitration and Inactivation of Trypanosoma cruzi Iron-Superoxide Dismutases (Fe-SODs) A and B

    PubMed Central

    Martinez, Alejandra; Peluffo, Gonzalo; Petruk, Ariel A.; Hugo, Martín; Piñeyro, Dolores; Demicheli, Verónica; Moreno, Diego M.; Lima, Analía; Batthyány, Carlos; Durán, Rosario; Robello, Carlos; Martí, Marcelo A.; Larrieux, Nicole; Buschiazzo, Alejandro; Trujillo, Madia; Radi, Rafael; Piacenza, Lucía

    2014-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, contains exclusively iron-dependent superoxide dismutases (Fe-SODs) located in different subcellular compartments. Peroxynitrite, a key cytotoxic and oxidizing effector biomolecule, reacted with T. cruzi mitochondrial (Fe-SODA) and cytosolic (Fe-SODB) SODs with second order rate constants of 4.6 ± 0.2 × 104 m−1 s−1 and 4.3 ± 0.4 × 104 m−1 s−1 at pH 7.4 and 37 °C, respectively. Both isoforms are dose-dependently nitrated and inactivated by peroxynitrite. Susceptibility of T. cruzi Fe-SODA toward peroxynitrite was similar to that reported previously for Escherichia coli Mn- and Fe-SODs and mammalian Mn-SOD, whereas Fe-SODB was exceptionally resistant to oxidant-mediated inactivation. We report mass spectrometry analysis indicating that peroxynitrite-mediated inactivation of T. cruzi Fe-SODs is due to the site-specific nitration of the critical and universally conserved Tyr35. Searching for structural differences, the crystal structure of Fe-SODA was solved at 2.2 Å resolution. Structural analysis comparing both Fe-SOD isoforms reveals differences in key cysteines and tryptophan residues. Thiol alkylation of Fe-SODB cysteines made the enzyme more susceptible to peroxynitrite. In particular, Cys83 mutation (C83S, absent in Fe-SODA) increased the Fe-SODB sensitivity toward peroxynitrite. Molecular dynamics, electron paramagnetic resonance, and immunospin trapping analysis revealed that Cys83 present in Fe-SODB acts as an electron donor that repairs Tyr35 radical via intramolecular electron transfer, preventing peroxynitrite-dependent nitration and consequent inactivation of Fe-SODB. Parasites exposed to exogenous or endogenous sources of peroxynitrite resulted in nitration and inactivation of Fe-SODA but not Fe-SODB, suggesting that these enzymes play distinctive biological roles during parasite infection of mammalian cells. PMID:24616096

  9. Steady state protein levels in Geobacter metallireducens grown with Iron (III) citrate or nitrate as terminal electron acceptor.

    SciTech Connect

    Ahrendt, A. J.; Tollaksen, S. L.; Lindberg, C.; Zhu, W.; Yates, J. R., III; Nevin, K. P.; Lovley, D.; Giometti, C. S.; Biosciences Division; The Scripps Research Inst.; Univ. of Massachusetts

    2007-01-01

    Geobacter species predominate in aquatic sediments and submerged soils where organic carbon sources are oxidized with the reduction of Fe(III). The natural occurrence of Geobacter in some waste sites suggests this microorganism could be useful for bioremediation if growth and metabolic activity can be regulated. 2-DE was used to monitor the steady state protein levels of Geobacter metallireducens grown with either Fe(III) citrate or nitrate to elucidate metabolic differences in response to different terminal electron acceptors present in natural environments populated by Geobacter. Forty-six protein spots varied significantly in abundance (p<0.05) between the two growth conditions; proteins were identified by tryptic peptide mass and peptide sequence determined by MS/MS. Enzymes involved in pyruvate metabolism and the tricarboxylic acid (TCA) cycle were more abundant in cells grown with Fe(III) citrate, while proteins associated with nitrate metabolism and sensing cellular redox status along with several proteins of unknown function were more abundant in cells grown with nitrate. These results indicate a higher level of flux through the TCA cycle in the presence of Fe(III) compared to nitrate. The oxidative stress response observed in previous studies of Geobacter sulfurreducens grown with Fe(III) citrate was not seen in G. metallireducens.

  10. Genome-Enabled Studies of Anaerobic, Nitrate-Dependent Iron Oxidation in the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Zhou, P.; Legler, T. C.; Chakicherla, A.; O'Day, P. A.

    2013-12-01

    Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. Of the transposon mutants defective in Fe(II) oxidation, one mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process.

  11. IRON

    EPA Science Inventory

    The document surveys the effects of organic and inorganic iron that are relevant to humans and their environment. The biology and chemistry of iron are complex and only partially understood. Iron participates in oxidation reduction processes that not only affect its geochemical m...

  12. Sustaining reactivity of Fe(0) for nitrate reduction via electron transfer between dissolved Fe(2+) and surface iron oxides.

    PubMed

    Han, Luchao; yang, Li; Wang, Haibo; Hu, Xuexiang; Chen, Zhan; Hu, Chun

    2016-05-01

    The mechanism of the effects of Fe(2+)(aq) on the reduction of NO3(-) by Fe(0) was investigated. The effects of initial pH on the rate of NO3(-) reduction and the Fe(0) surface characteristics revealed Fe(2+)(aq) and the characteristics of minerals on the surface of Fe(0) played an important role in NO3(-) reduction. Both NO3(-) reduction and the decrease of Fe(2+)(aq) exhibited similar kinetics and were promoted by each other. This promotion was associated with the types of the surface iron oxides of Fe(0). Additionally, further reduction of NO3(-) produced more surface iron oxides, supplying more active sites for Fe(2+)(aq), resulting in more electron transfer between Fe(2+) and surface iron oxides and a higher reaction rate. Using the isotope specificity of (57)Fe Mossbauer spectroscopy, it was verified that the Fe(2+)(aq) was continuously converted into Fe(3+) oxides on the surface of Fe(0) and then converted into Fe3O4 via electron transfer between Fe(2+) and the pre-existing surface Fe(3+) oxides. Electrochemistry measurements confirmed that the spontaneous electron transfer between the Fe(2+) and structural Fe(3+) species accelerated the interfacial electron transfer between the Fe species and NO3(-). This study provides a new insight into the interaction between Fe species and contaminants and interface electron transfer. PMID:26835898

  13. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  14. Iron

    MedlinePlus

    ... organ failure, coma, convulsions, and death. Child-proof packaging and warning labels on iron supplements have greatly ... levodopa that the body absorbs, making it less effective. Levodopa, found in Sinemet® and Stalevo®, is used ...

  15. Remediation of nitrate-nitrogen contaminated groundwater using a pilot-scale two-layer heterotrophic-autotrophic denitrification permeable reactive barrier with spongy iron/pine bark.

    PubMed

    Huang, Guoxin; Huang, Yuanying; Hu, Hongyan; Liu, Fei; Zhang, Ying; Deng, Renwei

    2015-07-01

    A novel two-layer heterotrophic-autotrophic denitrification (HAD) permeable reactive barrier (PRB) was proposed for remediating nitrate-nitrogen contaminated groundwater in an oxygen rich environment, which has a packing structure of an upstream pine bark layer and a downstream spongy iron and river sand mixture layer. The HAD PRB involves biological deoxygenation, heterotrophic denitrification, hydrogenotrophic denitrification, and anaerobic Fe corrosion. Column and batch experiments were performed to: (1) investigate the NO3(-)-N removal and inorganic geochemistry; (2) explore the nitrogen transformation and removal mechanisms; (3) identify the hydrogenotrophic denitrification capacity; and (4) evaluate the HAD performance by comparison with other approaches. The results showed that the HAD PRB could maintain constant high NO3(-)-N removal efficiency (>91%) before 38 pore volumes (PVs) of operation (corresponding to 504d), form little or even negative NO2(-)-N during the 45 PVs, and produce low NH4(+)-N after 10 PVs. Aerobic heterotrophic bacteria played a dominant role in oxygen depletion via aerobic respiration, providing more CO2 for hydrogenotrophic denitrification. The HAD PRB significantly relied on heterotrophic denitrification. Hydrogenotrophic denitrification removed 10-20% of the initial NO3(-)-N. Effluent total organic carbon decreased from 403.44mgL(-1) at PV 1 to 9.34mgL(-1) at PV 45. Packing structure had a noticeable effect on its denitrification. PMID:25747301

  16. Nitrate reduction

    DOEpatents

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  17. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  18. Iron(III) complexes of 2-(1H-benzo[d]imidazol-2-yl)phenol and acetate or nitrate as catalysts for epoxidation of olefins with hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Dutta, Amit Kumar; Samanta, Suvendu; Dutta, Supriya; Lucas, C. Robert; Dawe, Louise N.; Biswas, Papu; Adhikary, Bibhutosh

    2016-07-01

    Cheap and environmentally friendly Fe(III) catalysts [Fe(L)2(CH3COO)] (1) and [Fe(L)2(NO3)]·2CH3OH (2) where HL = 2-(1H-benzo[d]imidazol-2-yl)phenol for epoxidation of olefins have been developed. The catalysts have been characterized by elemental analyses, IR, UV-Vis spectroscopy and by X-ray crystallography. The X-ray structures reveal mononuclear compounds having a bidentate acetate or nitrate in 1 and 2, respectively. Catalytic epoxidations of styrene and cyclohexene have been carried out homogeneously by using 30% aqueous hydrogen peroxide in acetonitrile in the presence of catalytic amounts of 1 or 2. Yields of the respective epoxides were fair (1) to good (2) and selectivities were good in all cases although 2 produced two to three times the yield, depending on the substrate, than 1 and higher selectivity as well. A hypothesis for these differences in catalytic efficacy between 1 and 2 that is consistent with mechanistic details of related enzymatic and biomimetic model systems is proposed. Herein we report [Fe(L)2(NO3)]·2CH3OH (2) as the first structurally characterized non-heme iron epoxidation catalyst with a bidentate nitrate ligand.

  19. ARSENATE AND ARSENITE REMOVAL BY ZERO-VALENT IRON: EFFECTS OF PHOSPHATE, SILICATE, CARBONATE, BORATE, SULFATE, CHROMATE, MOLYBDATE, AND NITRATE, RELATIVE TO CHLORIDE

    EPA Science Inventory

    Batch tests were performed to evaluate the effects of inorganic anion competition on the kinetics of arsenate (As(V)) and arsenite (As(III)) removal by zerovalent iron (Peerless Fe0) in aqueous solution. The oxyanions underwent either sorption-dominated reactions (phosphate, sil...

  20. Nitrate-Dependent Regulation of Acetate Biosynthesis and Nitrate Respiration by Clostridium thermoaceticum

    PubMed Central

    Arendsen, Alexander F.; Soliman, Mohsin Q.; Ragsdale, Stephen W.

    1999-01-01

    Nitrate has been shown to shunt the electron flow in Clostridium thermoaceticum from CO2 to nitrate, but it did not influence the levels of enzymes involved in the Wood-Ljungdahl pathway (J. M. Fröstl, C. Seifritz, and H. L. Drake, J. Bacteriol. 178:4597–4603, 1996). Here we show that under some growth conditions, nitrate does in fact repress proteins involved in the Wood-Ljungdahl pathway. The CO oxidation activity in crude extracts of nitrate (30 mM)–supplemented cultures was fivefold less than that of nitrate-free cultures, while the H2 oxidation activity was six- to sevenfold lower. The decrease in CO oxidation activity paralleled a decrease in CO dehydrogenase (CODH) protein level, as confirmed by Western blot analysis. Protein levels of CODH in nitrate-supplemented cultures were 50% lower than those in nitrate-free cultures. Western blots analyses showed that nitrate also decreased the levels of the corrinoid iron-sulfur protein (60%) and methyltransferase (70%). Surprisingly, the decrease in activity and protein levels upon nitrate supplementation was observed only when cultures were continuously sparged. Northern blot analysis indicates that the regulation of the proteins involved in the Wood-Ljungdahl pathway by nitrate is at the transcriptional level. At least a 10-fold decrease in levels of cytochrome b was observed with nitrate supplementation whether the cultures were sparged or stoppered. We also detected nitrate-inducible nitrate reductase activity (2 to 39 nmol min−1 mg−1) in crude extracts of C. thermoaceticum. Our results indicate that nitrate coordinately represses genes encoding enzymes and electron transport proteins in the Wood-Ljungdahl pathway and activates transcription of nitrate respiratory proteins. CO2 also appears to induce expression of the Wood-Ljungdahl pathway genes and repress nitrate reductase activity. PMID:10049380

  1. Characterization of toluene and ethylbenzene biodegradation under nitrate-, iron(III)- and manganese(IV)-reducing conditions by compound-specific isotope analysis.

    PubMed

    Dorer, Conrad; Vogt, Carsten; Neu, Thomas R; Stryhanyuk, Hryhoriy; Richnow, Hans-Hermann

    2016-04-01

    Ethylbenzene and toluene degradation under nitrate-, Mn(IV)-, or Fe(III)-reducing conditions was investigated by compound specific stable isotope analysis (CSIA) using three model cultures (Aromatoleum aromaticum EbN1, Georgfuchsia toluolica G5G6, and a Azoarcus-dominated mixed culture). Systematically lower isotope enrichment factors for carbon and hydrogen were observed for particulate Mn(IV). The increasing diffusion distances of toluene or ethylbenzene to the solid Mn(IV) most likely caused limited bioavailability and hence resulted in the observed masking effect. The data suggests further ethylbenzene hydroxylation by ethylbenzene dehydrogenase (EBDH) and toluene activation by benzylsuccinate synthase (BSS) as initial activation steps. Notably, significantly different values in dual isotope analysis were detected for toluene degradation by G. toluolica under the three studied redox conditions, suggesting variations in the enzymatic transition state depending on the available TEA. The results indicate that two-dimensional CSIA has significant potential to assess anaerobic biodegradation of ethylbenzene and toluene at contaminated sites. PMID:26774774

  2. The threshold feeding response of microzooplankton within Pacific high-nitrate low-chlorophyll ecosystem models under steady and variable iron input

    NASA Astrophysics Data System (ADS)

    Leising, Andrew W.; Gentleman, Wendy C.; Frost, Bruce W.

    2003-11-01

    The equatorial Pacific is an HNLC (High-Nitrate Low-Chlorophyll) region. Modeling and in-situ process studies have confirmed the importance of microzooplankton grazing in this ecosystem. Unfortunately, both the parameters and functions representing microzooplankton grazing within current ecosystem models are poorly constrained. We used a simple 4-component food web model to test the assumption that a lower grazing threshold, which is common in many models, is necessary to achieve the HNLC condition. Without the grazing threshold, the model did not reproduce the HNLC condition. However, by raising the half-saturation constant within the microzooplankton functional response with no threshold, it was possible to reproduce the critical dynamics of the HNLC condition under both steady and moderate seasonal variability in nutrient input. It was also possible to reproduce the HNLC system using a sigmoidal functional response for the microzooplankton, with results somewhere between the other two forms of the model, although this version had the highest sensitivity to changes in its parameters. The three models predicted similar phytoplankton biomass and primary productivity under steady nutrient input, but diverge in these metrics as the amplitude of nutrient input variability increases. These three functional responses also imply certain important differences in the microzooplankton community. Whereas the threshold model had the least sensitivity to parameter choice, the high half-saturation constant, no-threshold model may actually be a better approximation when modeling a community of grazers. Ecosystem models that predict carbon production and export in HNLC regions can be very sensitive to assumptions concerning microzooplankton grazing; future studies need to concentrate on the functional responses of microzooplankton before these models can be used for predicting fluxes in times or regions where forcing is beyond that used to constrain the original model.

  3. Ocean iron cycle

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.

    Interest in the biogeochemical cycle of iron has grown rapidly over the last two decades, due to the potential role of this element in modulating global climate in the geological past and ocean productivity in the present day. This trace metal has a disproportionately large effect (1 × 105 C:Fe) on photosynthetic carbon fixation by phytoplankton. In around one third of the open ocean, so-called high-nitrate low-chlorophyll (HNLC) regions, the resident phytoplankton have low growth rates despite an abundance of plant nutrients. This is due to the low supply of iron. Iron is present in the ocean in three phases, dissolved, colloidal, and particulate (biogenic and lithogenic). However, iron chemistry is complex with interactions between chemistry and biology such as the production of iron-binding siderophores by oceanic bacteria. This results in the interplay of inorganic chemistry, photochemistry, and organic complexation. Sources of new iron include dust deposition, upwelling of iron-rich deep waters, and the resuspension and lateral transport of sediments. Sinks for iron are mainly biological as evidenced by the vertical nutrient-like profile for dissolved iron in the ocean. Iron is rapidly recycled by the upper ocean biota within a so-called "ferrous wheel." The fe ratio [(new iron)/(new + regenerated iron)] provides an index of the relative supply of iron to the biota by new versus recycled iron. Over the last 15 years, interest in the potential role of iron in shaping climate in the geological past resulted in some of the most ambitious experiments in oceanography: large-scale (i.e., 50-1000 km2) iron enrichment of HNLC waters. They have provided valuable insights into how iron supply influences the biogeochemical cycles of elements such as carbon, sulfur, silicon, nitrogen, and phosphate.

  4. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  5. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate and potassium nitrate. 181.33... nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued... potassium nitrite, in the production of cured red meat products and cured poultry products....

  6. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  7. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  8. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  9. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  10. Iron Test

    MedlinePlus

    ... detect and help diagnose iron deficiency or iron overload. In people with anemia , these tests can help ... also be ordered when iron deficiency or iron overload is suspected. Early iron deficiency often goes unnoticed. ...

  11. Cylodextrin Polymer Nitrate

    NASA Technical Reports Server (NTRS)

    Kosowski, Bernard; Ruebner, Anja; Statton, Gary; Robitelle, Danielle; Meyers, Curtis

    2000-01-01

    The development of the use of cyclodextrin nitrates as possible components of insensitive, high-energy energetics is outlined over a time period of 12 years. Four different types of cyclodextrin polymers were synthesized, nitrated, and evaluated regarding their potential use for the military and aerospace community. The synthesis of these novel cyclodextrin polymers and different nitration techniques are shown and the potential of these new materials is discussed.

  12. Thermochemical nitrate destruction

    DOEpatents

    Cox, John L.; Hallen, Richard T.; Lilga, Michael A.

    1992-01-01

    A method is disclosed for denitrification of nitrates and nitrates present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200.degree. C. to about 600.degree. C., and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  13. Field determination of nitrate using nitrate reductase

    SciTech Connect

    Campbell, E.R.; Corrigan, J.S.; Campbell, W.H.

    1997-12-31

    Nitrate is routinely measured in a variety of substrates - water, tissues, soils, and foods - both in the field and in laboratory settings. The most commonly used nitrate test methods involve the reduction of nitrate to nitrite via a copper-cadmium reagent, followed by reaction of the nitrite with the Griess dye reagents. The resulting color is translated into a nitrate concentration by comparison with a calibrated color chart or comparator, or by reading the absorbance in a spectrophotometer. This basic method is reliable and sufficiently sensitive for many applications. However, the cadmium reagent is quite toxic. The trend today is for continued increase in concern for worker health and safety; in addition, there are increasing costs and logistical problems associated with regulatory constraints on transport and disposal of hazardous materials. Some suppliers have substituted a zinc-based reagent powder for the cadmium in an effort to reduce toxicity. We describe here an enzyme-based nitrate detection method as an improvement on the basic Griess method that demonstrates equal or superior sensitivity, superior selectivity, and is more environmentally benign. Comparisons between the enzyme-based method and some standard field test kits being used today are made.

  14. Corrosion of aluminides by molten nitrate salt

    SciTech Connect

    Tortorelli, P.F.; Bishop, P.S.

    1990-01-01

    The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

  15. Remediation of nitrate-contaminated water by Fe{sup 0}-promoted processes

    SciTech Connect

    Zawaideh, L.L.; Chew, C.F.; Zhang, T.C.

    1997-12-31

    The feasibility of using zero-valent iron powder to remediate nitrate-contaminated water was studied using bench-scale batch and fixed-bed column reactors. Operational parameters, such as Fe{sup 0} dosage (w/v), initial concentration of nitrate-nitrogen, pH, and the use of an organic buffer (HEPES), were studied to determine the effectiveness of nitrate removal using zero-valent iron powder. Nitrate-nitrogen was removed by 94% when 0.01 M of HEPES was added to a non-shaking batch reactor containing 20 mg/l nitrate-nitrogen and 4% (w/v) of Fe{sup 0}. Shaking was proved to be more efficient than no shaking. Using the response surface methodology it was found that nitrate removal was closely related to pH. At low pH, the nitrate removal was fast and efficient; at high pH the transformation of nitrate was fast and efficient only at low nitrate concentrations in the Fe{sup 0}-H{sub 2}O system; at normal pH range nitrate removal was usually lower than 50% without buffer treatment. The addition of the organic buffer (HEPES) greatly enhanced the nitrate transformation in a wide pH range. Preliminary column experiments verified the batch experimental results on pH and buffer effects.

  16. Thermochemical nitrate destruction

    DOEpatents

    Cox, J.L.; Hallen, R.T.; Lilga, M.A.

    1992-06-02

    A method is disclosed for denitrification of nitrates and nitrites present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200 C to about 600 C, and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  17. The Chilean nitrate deposits.

    USGS Publications Warehouse

    Ericksen, G.E.

    1983-01-01

    The nitrate deposits in the arid Atacama desert of northern Chile consist of saline-cemented surficial material, apparently formed in and near a playa lake that formerly covered the area. Many features of their distribution and chemical composition are unique. The author believes the principal sources of the saline constituents were the volcanic rocks of late Tertiary and Quaternary age in the Andes and that the nitrate is of organic origin. Possible sources of the nitrate, iodate, perchlorate and chromate are discussed. -J.J.Robertson

  18. Iron Chelation

    MedlinePlus

    ... iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you have ... may want to perform: How quickly does iron overload happen? This is different for each person. It ...

  19. Methyltrimethoxysilane (MTMS)-based silica-iron oxide superhydrophobic nanocomposites.

    PubMed

    Nadargi, Digambar; Gurav, Jyoti; Marioni, Miguel A; Romer, Sara; Matam, Santhosh; Koebel, Matthias M

    2015-12-01

    We report a facile synthesis of superhydrophobic silica-iron oxide nanocomposites via a co-precursor sol-gel process. The choice of the silica precursor (Methyltrimethoxysilane, MTMS) in combination with iron nitrate altered the pore structure dramatically. The influence of iron oxide doping on the structural properties of pristine MTMS aerogel is discussed. PMID:26277744

  20. TREATMENT OF 1,2-DIBROMO-3-CHLOROPROPANE AND NITRATE-CONTAMINATED WATER WITH ZERO-VALENT IRON OR HYDROGEN/PALLADIUM CATALYSTS. (R825689C054,R825689C078)

    EPA Science Inventory

    Abstract

    The abilities of zero-valent iron powder and hydrogen with a palladium catalyst (H2/Pd-alumina) to hydrodehalogenate 1,2-dibromo-3-chloropropane (DBCP) to propane under water treatment conditions (ambient temperature and circumneutral pH) were compa...

  1. Electroreduction of nitrate ions in concentrated sodium hydroxide solutions at lead, zinc, nickel, and phthalocyanine-modified electrodes

    SciTech Connect

    Li, H. |; Chambers, J.Q.; Hobbs, D.T.

    1987-12-31

    The electrochemical reduction of nitrate in strongly alkaline solution has been studied using nickel, lead, zinc, and iron cathodes. Intermediate formation of nitrate ion and ammonia product was observed for all electrode materials. Coating a nickel sponge electrode with phthalocyanine renders it less active toward nitrate reduction, while iron electrodes appear to be activated. Electrolysis between a lead cathode and a nickel anode is an efficient means of removing nitrate from strongly alkaline solutions. Electrode pretreatment and solution conditions were chosen to correspond to those that might be encountered in practical applications, for example, the cleanup of radioactive waste solutions.

  2. Nitrate behavior in ground water of the southeastern USA

    SciTech Connect

    Nolan, B.T.

    1999-10-01

    Principal components analysis (PCA) was performed with water-quality data from studies conducted during 1993 to 1995 to explore potential nitrate-attenuation processes in ground waters of the southeastern USA. Nitrate reduction is an important attenuation process in selected areas of the Southeast. A nitrate-reduction component explains 23% of the total variance in the data and indicates that nitrate and dissolved oxygen (DO) are inversely related to ammonium, iron, manganese, and dissolved organic carbon (DOC). Additional components extracted by PCA include calcite dissolution (18% of variance explained) and phosphate dissolution (9% of variance explained). Reducing conditions in ground waters of the region influence nitrate behavior through bacterially mediated reduction in the presence of organic matter, and by inhibition of nitrate formation in anoxic ground water beneath forested areas. Component scores are consistent with observed water-quality conditions in the region. For example, median nitrate concentration in ground-water samples from the Albemarle-Pamlico Drainage Basin (ALBE) Coastal Plain is {lt}0.05 mg L{sup {minus}1}, median DOC concentration is 4.2 mg L{sup {minus}1}, and median DO concentration is 2.1 mg L{sup {minus}1}, consistent with denitrification. Nitrate reduction does not occur uniformly throughout the Southeast. Median DO concentrations in ground-water samples from the Apalachicola-Chattahoochee-Flint River Basin (ACFB) are 6.2 to 7.1 mg L{sup {minus}1}, and median nitrate concentrations are 0.61 to 2.2 mg L{sup {minus}1}, inconsistent with denitrification. Similarly, median DO concentration in samples from the Georgia-Florida Coastal Plain (GAFL) is 6.0 mg L{sup {minus}1} and median nitrate concentration is 5.8 mg L{sup {minus}1}.

  3. Nitrate in groundwater of the United States, 1991-2003

    USGS Publications Warehouse

    Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.

    2010-01-01

    An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.

  4. Iron overdose

    MedlinePlus

    Iron is an ingredient in many mineral and vitamin supplements. Iron supplements are also sold by themselves. Types include: Ferrous sulfate (Feosol, Slow Fe) Ferrous gluconate (Fergon) Ferrous fumarate (Femiron, Feostat) Other products may also contain iron.

  5. Nitrate suppresses internal phosphorus loading in an eutrophic lake.

    PubMed

    Hemond, Harold F; Lin, Katherine

    2010-06-01

    The presence of nitrate in the hypolimnion of the eutrophic, dimictic Upper Mystic Lake has been previously shown to suppress the release of arsenic from lake sediments during seasonal anoxia, in large part by oxidizing iron (II) and producing iron oxyhydroxides that sorb inorganic arsenic. Because of the importance of internal phosphorus loading in the phosphorus budget of many eutrophic lakes, the chemical similarities between phosphate and arsenate, and the need to account for internal phosphorus loading as part of many lake restoration strategies, we carried out measurements to determine if the presence of nitrate also suppressed the release of phosphorus from the sediments of this lake during anoxia. Observations showed that this was the case. Arsenic, phosphorus, and iron (II) concentrations were strongly correlated in the water column, as expected, and the depths below which phosphorus and iron concentrations increased relative to epilimnetic values was predicted by the depth at which nitrate concentration approached zero. The results suggest that knowledge of a lake's nitrogen budget may be a useful tool in the design of lake remediation efforts, even though phosphorus is typically the limiting nutrient. PMID:20494392

  6. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  7. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  8. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  9. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  10. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., described and defined as an oxidizer by the regulations of 49 CFR part 173 is handled, stored, stowed...) must be eliminated or plugged. Note: See 49 CFR 176.415 for permit requirements for nitro carbo nitrate... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section...

  11. Draft Genome Sequence of a Potential Nitrate-Dependent Fe(II)-Oxidizing Bacterium, Aquabacterium parvum B6

    PubMed Central

    Zhang, Xiaoxin

    2016-01-01

    Aquabacterium parvum B6 is a potential nitrate-dependent Fe(II)-oxidizing bacterium. The genes related to its denitrifying mechanism and iron metabolisms were unknown. We present the draft genome of Aquabacterium parvum B6, which could provide further insight into the nitrate-dependent Fe(II)-oxidizing mechanism of strain B6. PMID:26823591

  12. Draft Genome Sequence of a Potential Nitrate-Dependent Fe(II)-Oxidizing Bacterium, Aquabacterium parvum B6.

    PubMed

    Zhang, Xiaoxin; Ma, Fang; Szewzyk, Ulrich

    2016-01-01

    Aquabacterium parvum B6 is a potential nitrate-dependent Fe(II)-oxidizing bacterium. The genes related to its denitrifying mechanism and iron metabolisms were unknown. We present the draft genome of Aquabacterium parvum B6, which could provide further insight into the nitrate-dependent Fe(II)-oxidizing mechanism of strain B6. PMID:26823591

  13. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  14. Ammonium nitrate explosive systems

    SciTech Connect

    Coburn, M.D.; Stinecipher, M.M.

    1981-11-17

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  15. Ammonium nitrate explosive systems

    DOEpatents

    Stinecipher, Mary M.; Coburn, Michael D.

    1981-01-01

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  16. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes.

    PubMed

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils; Stief, Peter

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations. PMID:26734001

  17. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes

    PubMed Central

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils; Stief, Peter

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations. PMID:26734001

  18. Southern Ocean Iron Experiment (SOFex)

    SciTech Connect

    Coale, Kenneth H.

    2005-07-28

    The Southern Ocean Iron Experiment (SOFeX) was an experiment decades in the planning. It's implementation was among the most complex ship operations that SIO has been involved in. The SOFeX field expedition was successful in creating and tracking two experimentally enriched areas of the Southern Ocean, one characterized by low silicic acid, one characterized by high silicic acid. Both experimental sites were replete with abundant nitrate. About 100 scientists were involved overall. The major findings of this study were significant in several ways: (1) The productivity of the southern ocean is limited by iron availability. (2) Carbon uptake and flux is therefore controlled by iron availability (3) In spite of low silicic acid, iron promotes non-silicious phytoplankton growth and the uptake of carbon dioxide. (4) The transport of fixed carbon from the surface layers proceeds with a C:N ratio that would indicate differential remineralization of nitrogen at shallow depths. (5) These finding have major implications for modeling of carbon export based on nitrate utilization. (6) The general results of the experiment indicate that, beyond other southern ocean enrichment experiments, iron inputs have a much wider impact of productivity and carbon cycling than previously demonstrated. Scientific presentations: Coale, K., Johnson, K, Buesseler, K., 2002. The SOFeX Group. Eos. Trans. AGU 83(47) OS11A-0199. Coale, K., Johnson, K. Buesseler, K., 2002. SOFeX: Southern Ocean Iron Experiments. Overview and Experimental Design. Eos. Trans. AGU 83 (47) OS22D-01. Buesseler, K.,et al. 2002. Does Iron Fertilization Enhance Carbon Sequestration? Particle flux results from the Southern Ocean Iron Experiment. Eos. Trans. AGU 83 (47), OS22D-09. Johnson, K. et al. 2002. Open Ocean Iron Fertilization Experiments From IronEx-I through SOFeX: What We Know and What We Still Need to Understand. Eos. Trans. AGU 83 (47), OS22D-12. Coale, K. H., 2003. Carbon and Nutrient Cycling During the Southern

  19. Presence of nitrate NO 3 a ects animal production, photocalysis is a possible solution

    NASA Astrophysics Data System (ADS)

    Barba-Molina, Heli; Barba-Ortega, J.; Joya, M. R.

    2016-02-01

    Farmers and ranchers depend on the successful combination of livestock and crops. However, they have lost in the production by nitrate pollution. Nitrate poisoning in cattle is caused by the consumption of an excessive amount of nitrate or nitrite from grazing or water. Both humans and livestock can be affected. It would appear that well fertilised pasture seems to take up nitrogen from the soil and store it as nitrate in the leaf. Climatic conditions, favour the uptake of nitrate. Nitrate poisoning is a noninfectious disease condition that affects domestic ruminants. It is a serious problem, often resulting in the death of many animals. When nitrogen fertilizers are used to enrich soils, nitrates may be carried by rain, irrigation and other surface waters through the soil into ground water. Human and animal wastes can also contribute to nitrate contamination of ground water. A possible method to decontaminate polluted water by nitrates is with methods of fabrication of zero valent iron nanoparticles (FeNps) are found to affect their efficiency in nitrate removal from water.

  20. Iron deficiency.

    PubMed

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world. PMID:1745900

  1. Nitrate biosensors and biological methods for nitrate determination.

    PubMed

    Sohail, Manzar; Adeloju, Samuel B

    2016-06-01

    The inorganic nitrate (NO3‾) anion is present under a variety of both natural and artificial environmental conditions. Nitrate is ubiquitous within the environment, food, industrial and physiological systems and is mostly present as hydrated anion of a corresponding dissolved salt. Due to the significant environmental and toxicological effects of nitrate, its determination and monitoring in environmental and industrial waters are often necessary. A wide range of analytical techniques are available for nitrate determination in various sample matrices. This review discusses biosensors available for nitrate determination using the enzyme nitrate reductase (NaR). We conclude that nitrate determination using biosensors is an excellent non-toxic alternative to all other available analytical methods. Over the last fifteen years biosensing technology for nitrate analysis has progressed very well, however, there is a need to expedite the development of nitrate biosensors as a suitable alternative to non-enzymatic techniques through the use of different polymers, nanostructures, mediators and strategies to overcome oxygen interference. PMID:27130094

  2. Nitrate therapy in the elderly.

    PubMed

    Alpert, J S

    1990-06-01

    Changes in the heart and blood vessels with age alter the response of the cardiovascular system to pharmacologic agents. Nitrate plasma half-life is longer and volume of distribution is larger in older persons. Apparently, these pharmacokinetic differences in older persons lead to increased venous smooth muscle responsivity to nitrates which, in turn, leads to greater reductions in central venous and pulmonary arterial pressures after nitrate administration. This is probably the explanation for the greater frequency of nitrate-induced severe hypotension and bradycardia in elderly patients with myocardial infarction compared with younger patients. Clinicians should be cognizant of the changes in the cardiovascular system which occur with age that sensitize the elderly patient to the action of organic nitrates. Initial dosages of nitrates should accordingly be less than in younger patients. PMID:2112335

  3. COMPARISON OF MUTAGENIC ACTIVITIES OF SEVERAL PEROXYACL NITRATES

    EPA Science Inventory

    Salmonella typhimurium, strain TA100 was exposed to a series of peroxyacyl nitrates including peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), peroxybutyryl nitrate (PBN), peroxybenzoyl nitrate (PBzN), and chloroperoxyacetyl nitrate (CPAN). as-phase concentrations for t...

  4. COMPARISON OF MUTAGENIC ACTIVITIES OF SEVERAL PEROXYACYL NITRATES

    EPA Science Inventory

    Salmonella typhimurium strain TA100 was exposed to a series of peroxyacyl nitrates including peroxyacetyl nitrate (PAN), peroxypropionyl nitrate peroxybutyryl nitrate (PBN), peroxybenzoyl nitrate (PBzN), and chlororoxyacetyl nitrate (CPAN). as phase concentrations for the individ...

  5. Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria

    PubMed Central

    Johnson, D. Barrie; McGinness, Stephen

    1991-01-01

    Fifty mesophilic and five moderately thermophilic strains of acidophilic heterotrophic bacteria were tested for the ability to reduce ferric iron in liquid and solid media under aerobic conditions; about 40% of the mesophiles (but none of the moderate thermophiles) displayed at least some capacity to reduce iron. Both rates and extents of ferric iron reduction were highly strain dependent. No acidophilic heterotroph reduced nitrate or sulfate, and (limited) reduction of manganese(IV) was noted in only one strain (Acidiphilium facilis), an acidophile which did not reduce iron. Insoluble forms of ferric iron, both amorphous and crystalline, were reduced, as well as soluble iron. There was evidence that, in at least some acidophilic heterotrophs, iron reduction was enzymically mediated and that ferric iron could act as a terminal electron acceptor. In anaerobically incubated cultures, bacterial biomass increased with increasing concentrations of ferric but not ferrous iron. Mixed cultures of Thiobacillus ferrooxidans or Leptospirillum ferrooxidans and an acidophilic heterotroph (SJH) produced sequences of iron cycling in ferrous iron-glucose media. PMID:16348395

  6. Analytical Chemistry and Materials Characterization Results for Debris Recovered from Nitrate Salt Waste Drum S855793

    SciTech Connect

    Martinez, Patrick Thomas; Chamberlin, Rebecca M.; Schwartz, Daniel S.; Worley, Christopher Gordon; Garduno, Katherine; Lujan, Elmer J. W.; Borrego, Andres Patricio; Castro, Alonso; Colletti, Lisa Michelle; Fulwyler, James Brent; Holland, Charlotte S.; Keller, Russell C.; Klundt, Dylan James; Martinez, Alexander; Martin, Frances Louise; Montoya, Dennis Patrick; Myers, Steven Charles; Porterfield, Donivan R.; Schake, Ann Rene; Schappert, Michael Francis; Soderberg, Constance B.; Spencer, Khalil J.; Stanley, Floyd E.; Thomas, Mariam R.; Townsend, Lisa Ellen; Xu, Ning

    2015-09-16

    Solid debris was recovered from the previously-emptied nitrate salt waste drum S855793. The bulk sample was nondestructively assayed for radionuclides in its as-received condition. Three monoliths were selected for further characterization. Two of the monoliths, designated Specimen 1 and 3, consisted primarily of sodium nitrate and lead nitrate, with smaller amounts of lead nitrate oxalate and lead oxide by powder x-ray diffraction. The third monolith, Specimen 2, had a complex composition; lead carbonate was identified as the predominant component, and smaller amounts of nitrate, nitrite and carbonate salts of lead, magnesium and sodium were also identified. Microfocused x-ray fluorescence (MXRF) mapping showed that lead was ubiquitous throughout the cross-sections of Specimens 1 and 2, while heteroelements such as potassium, calcium, chromium, iron, and nickel were found in localized deposits. MXRF examination and destructive analysis of fragments of Specimen 3 showed elevated concentrations of iron, which were broadly distributed through the sample. With the exception of its high iron content and low carbon content, the chemical composition of Specimen 3 was within the ranges of values previously observed in four other nitrate salt samples recovered from emptied waste drums.

  7. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume; Kappler, Andreas; Bernard, Sylvain; Obst, Martin; Férard, Céline; Skouri-Panet, Fériel; Guigner, Jean-Michel; Posth, Nicole; Galvez, Matthieu; Brown, Gordon E., Jr.; Guyot, François

    2009-02-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types of precipitates could be discriminated: (1) mineralized filaments at distance from the cells, (2) globules of 100 ± 25 nm in diameter, at the cell surface and (3) a 40-nm thick mineralized layer within the periplasm. All of those phases were shown to be intimately associated with organic molecules. Periplasmic encrustation was accompanied by an accumulation of protein moieties. In the same way, exopolysaccharides were associated with the extracellular mineralized filaments. The evolution of cell encrustation was followed by TEM over the time course of a culture: cell encrustation proceeded progressively, with rapid precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All these findings provide new information to further the understanding of molecular processes involved in iron biomineralization by anaerobic iron-oxidizing bacteria and

  8. TREATMENT OF AMMONIUM NITRATE SOLUTIONS

    DOEpatents

    Boyer, T.W.; MacHutchin, J.G.; Yaffe, L.

    1958-06-10

    The treatment of waste solutions obtained in the processing of neutron- irradiated uranium containing fission products and ammonium nitrate is described. The object of this process is to provide a method whereby the ammonium nitrate is destroyed and removed from the solution so as to permit subsequent concentration of the solution.. In accordance with the process the residual nitrate solutions are treated with an excess of alkyl acid anhydride, such as acetic anhydride. Preferably, the residual nitrate solution is added to an excess of the acetic anhydride at such a rate that external heat is not required. The result of this operation is that the ammonium nitrate and acetic anhydride react to form N/sub 2/ O and acetic acid.

  9. Some History of Nitrates

    NASA Astrophysics Data System (ADS)

    Barnum, Dennis W.

    2003-12-01

    The history of saltpeter is an interesting combination of chemistry, world trade, technology, politics, and warfare. Originally it was obtained from the dirt floors of stables, sheep pens, pigeon houses, caverns, and even peasants' cottages; any place manure and refuse accumulated in soil under dry conditions. When these sources became inadequate to meet demand it was manufactured on saltpeter plantations, located in dry climates, where piles of dirt, limestone, and manure were allowed to stand for three to five years while soil microbes oxidized the nitrogen to nitrate—an example of early bioengineering. Extensive deposits of sodium nitrate were mined in the Atacama Desert in northern Chile from 1830 until the mid 1920s when the mines were displaced by the Haber Ostwald process.

  10. Aniline-induced nitrosative stress in rat spleen: Proteomic identification of nitrated proteins

    SciTech Connect

    Fan Xiuzhen; Wang Jianling; Soman, Kizhake V.; Ansari, G.A.S.; Khan, M. Firoze

    2011-08-15

    Aniline exposure is associated with toxicity to the spleen which is characterized by splenomegaly, hyperplasia, fibrosis, and a variety of sarcomas on chronic exposure in rats. However, mechanisms by which aniline elicits splenotoxic responses are not well understood. Earlier we have shown that aniline exposure leads to increased nitration of proteins in the spleen. However, nitrated proteins remain to be characterized. Therefore, in the current study using proteomic approaches, we focused on characterizing the nitrated proteins in the spleen of aniline-exposed rats. Aniline exposure led to increased tyrosine nitration of proteins, as determined by 2D Western blotting with anti-3-nitrotyrosine specific antibody, compared to the controls. The analyzed nitrated proteins were found in the molecular weight range of 27.7 to 123.6 kDa. A total of 37 nitrated proteins were identified in aniline-treated and control spleens. Among them, 25 were found only in aniline-treated rats, 11 were present in both aniline-treated and control rats, while one was found in controls only. The nitrated proteins identified mainly represent skeletal proteins, chaperones, ferric iron transporter, enzymes, nucleic acids binding protein, and signaling and protein synthesis pathways. Furthermore, aniline exposure led to significantly increased iNOS mRNA and protein expression in the spleen, suggesting its role in increased reactive nitrogen species formation and contribution to increased nitrated proteins. The identified nitrated proteins provide a global map to further investigate alterations in their structural and functional properties, which will lead to a better understanding of the role of protein nitration in aniline-mediated splenic toxicity. - Highlights: > Proteomic approaches are used to identify nitrated proteins in the spleen. > Twenty five nitrated proteins were found only in the spleen of aniline-treated rats. > Aniline exposure led to increased iNOS mRNA and protein expression in

  11. Mortality of nitrate fertiliser workers.

    PubMed

    Al-Dabbagh, S; Forman, D; Bryson, D; Stratton, I; Doll, R

    1986-08-01

    An epidemiological cohort study was conducted to investigate the mortality patterns among a group of workers engaged in the production of nitrate based fertilisers. This study was designed to test the hypothesis that individuals exposed to high concentrations of nitrates might be at increased risk of developing cancers, particularly gastric cancer. A total of 1327 male workers who had been employed in the production of fertilisers between 1946 and 1981 and who had been occupationally exposed to nitrates for at least one year were followed up until 1 March 1981. In total, 304 deaths were observed in this group and these were compared with expected numbers calculated from mortality rates in the northern region of England, where the factory was located. Analysis was also carried out separately for a subgroup of the cohort who had been heavily exposed to nitrates--that is, working in an environment likely to contain more than 10 mg nitrate/m3 for a year or longer. In neither the entire cohort nor the subgroup was any significant excess observed for all causes of mortality or for mortality from any of five broad categories of cause or from four specific types of cancer. A small excess of lung cancer was noted more than 20 years after first exposure in men heavily exposed for more than 10 years. That men were exposed to high concentrations of nitrate was confirmed by comparing concentrations of nitrates in the saliva of a sample of currently employed men with control men, employed at the same factory but not in fertiliser production. The men exposed to nitrate had substantially raised concentrations of nitrate in their saliva compared with both controls within the industry and with men in the general population and resident nearby. The results of this study therefore weight against the idea that exposure to nitrates in the environment leads to the formation in vivo of material amounts of carcinogens. PMID:3015194

  12. Nitrosative Stress and Apoptosis by Intravenous Ferumoxytol, Iron Isomaltoside 1000, Iron Dextran, Iron Sucrose, and Ferric Carboxymaltose in a Nonclinical Model.

    PubMed

    Toblli, J E; Cao, G; Giani, J F; Dominici, F P; Angerosa, M

    2015-07-01

    Iron is involved in the formation as well as in the scavenging of reactive oxygen and nitrogen species. Thus, iron can induce as well as inhibit both oxidative and nitrosative stress. It also has a key role in reactive oxygen and nitrogen species-mediated apoptosis. We assessed the differences in tyrosine nitration and caspase 3 expression in the liver, heart, and kidneys of rats treated weekly with intravenous ferumoxytol, iron isomaltoside 1000, iron dextran, iron sucrose and ferric carboxymaltose (40 mg iron/kg body weight) for 5 weeks. Nitrotyrosine was quantified in tissue homogenates by Western blotting and the distribution of nitrotyrosine and caspase 3 was assessed in tissue sections by immunohistochemistry. Ferric carboxymaltose and iron sucrose administration did not result in detectable levels of nitrotyrosine or significant levels of caspase 3 vs. control in any of the tissue studied. Nitrotyrosine and caspase 3 levels were significantly (p<0.01) increased in all assessed organs of animals treated with iron dextran and iron isomaltoside 1000, as well as in the liver and kidneys of ferumoxytol-treated animals compared to isotonic saline solution (control). Nitrotyrosine and caspase 3 levels were shown to correlate positively with the amount of Prussian blue-detectable iron(III) deposits in iron dextran- and iron isomaltoside 1000-treated rats but not in ferumoxytol-treated rats, suggesting that iron dextran, iron isomaltoside 1000 and ferumoxytol induce nitrosative (and oxidative) stress as well as apoptosis via different mechanism(s). PMID:25050519

  13. Influence of Nitrate on the Hanford 100D Area In Situ Redox Manipulation Barrier Longevity

    SciTech Connect

    Szecsody, Jim E.; Phillips, Jerry L.; Vermeul, Vince R.; Fruchter, Jonathan S.; Williams, Mark D.

    2005-07-15

    The purpose of this laboratory study is to determine the influence of nitrate on the Hanford 100D Area in situ redox manipulation (ISRM) barrier longevity. There is a wide spread groundwater plume of 60 mg/L nitrate upgradient of the ISRM barrier with lower nitrate concentrations downgradient, suggestive of nitrate reduction occurring. Batch and 1-D column experiments showed that nitrate is being slowly reduced to nitrite and ammonia. These nitrate reduction reactions are predominantly abiotic, as experiments with and without bactericides present showed no difference in nitrate degradation rates. Nitrogen species transformation rates determined in experiments covered a range of ferrous iron/nitrate ratios such that the data can be used to predict rates in field scale conditions. Field scale reaction rate estimates for 100% reduced sediment (16 C) are: (a) nitrate degradation = 202 {+-} 50 h (half-life), (b) nitrite production = 850 {+-} 300 h, and (c) ammonia production = 650 {+-} 300 h. Calculation of the influence of nitrate reduction on the 100D Area reductive capacity requires consideration of mass balance and reaction rate effects. While dissolved oxygen and chromate reduction rates are rapid and essentially at equilibrium in the aquifer, nitrate transformation reactions are slow (100s of hours). In the limited (20-40 day) residence time in the ISRM barrier, only a portion of the nitrate will be reduced, whereas dissolved oxygen and chromate are reduced to completion. Assuming a groundwater flow rate of 1 ft/day, it is estimated that the ISRM barrier reductive capacity is 160 pore volumes (with no nitrate), and 85 pore volumes if 60 mg/L nitrate is present (i.e., a 47% decrease in the ISRM barrier longevity). Zones with more rapid groundwater flow will be less influenced by nitrate reduction. For example, a zone with a groundwater flow rate of 3 ft/day and 60 mg/L nitrate will have a reductive capacity of 130 pore volumes. Finally, long-term column experiments

  14. Gallium and its competing roles with iron in biological systems.

    PubMed

    Chitambar, Christopher R

    2016-08-01

    Gallium, a group IIIa metal, shares chemical properties with iron. Studies have shown that gallium-based compounds have potential therapeutic activity against certain cancers and infectious microorganisms. By functioning as an iron mimetic, gallium perturbs iron-dependent proliferation processes in tumor cells. Gallium's action on iron homeostasis leads to disruption of ribonucleotide reductase, mitochondrial function, and the regulation of transferrin receptor and ferritin. In addition, gallium nitrate stimulates an increase in mitochondrial reactive oxygen species in cells which triggers downstream upregulation of metallothionein and hemoxygenase-1. Gallium's anti-infective activity against bacteria and fungi results from disruption of microbial iron utilization through mechanisms which include gallium binding to siderophores and downregulation of bacterial iron uptake. Gallium compounds lack cross-resistance to conventional chemotherapeutic drugs and antibiotics thus making them attractive agents for drug development. This review will focus on the mechanisms of action of gallium with emphasis on its interaction with iron and iron proteins. PMID:27150508

  15. Nitrate concentrations under irrigated agriculture

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    In recent years, considerable interest has been expressed in the nitrate content of water supplies. The most notable toxic effect of nitrate is infant methemoglobinemia. The risk of this disease increases significantly at nitrate-nitrogen levels exceeding 10 mg/l. For this reason, this concentration has been established as a limit for drinking water in many countries. In natural waters, nitrate is a minor ionic constituent and seldom accounts for more than a few percent of the total anions. However, nitrate in a significant concentration may occur in the vicinity of some point sources such as septic tanks, manure pits, and waste-disposal sites. Non-point sources contributing to groundwater pollution are numerous and a majority of them are related to agricultural activities. The largest single anthropogenic input of nitrate into the groundwater is fertilizer. Even though it has not been proven that nitrogen fertilizers are responsible for much of nitrate pollution, they are generally recognized as the main threat to groundwater quality, especially when inefficiently applied to irrigated fields on sandy soils. The biggest challenge facing today's agriculture is to maintain the balance between the enhancement of crop productivity and the risk of groundwater pollution. ?? 1982 Springer-Verlag New York Inc.

  16. Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis).

    PubMed

    Etique, Marjorie; Jorand, Frédéric P A; Zegeye, Asfaw; Grégoire, Brian; Despas, Christelle; Ruby, Christian

    2014-04-01

    Green rusts (GRs) are mixed Fe(II)-Fe(III) hydroxides with a high reactivity toward organic and inorganic pollutants. GRs can be produced from ferric reducing or ferrous oxidizing bacterial activities. In this study, we investigated the capability of Klebsiella mobilis to produce iron minerals in the presence of nitrate and ferrous iron. This bacterium is well-known to reduce nitrate using an organic carbon source as electron donor but is unable to enzymatically oxidize Fe(II) species. During incubation, GR formation occurred as a secondary iron mineral precipitating on cell surfaces, resulting from Fe(II) oxidation by nitrite produced via bacterial respiration of nitrate. For the first time, we demonstrate GR formation by indirect microbial oxidation of Fe(II) (i.e., a combination of biotic/abiotic processes). These results therefore suggest that nitrate-reducing bacteria can potentially contribute to the formation of GR in natural environments. In addition, the chemical reduction of nitrite to ammonium by GR is observed, which gradually turns the GR into the end-product goethite. The nitrogen mass-balance clearly demonstrates that the total amount of ammonium produced corresponds to the quantity of bioreduced nitrate. These findings demonstrate how the activity of nitrate-reducing bacteria in ferrous environments may provide a direct link between the biogeochemical cycles of nitrogen and iron. PMID:24605878

  17. Nitrates in Wisconsin ground water.

    PubMed

    Schuknecht, B; Lawton, G W; Steinka, P; Delfino, J J

    1975-01-01

    Nitrate analyses were performed on ground water well samples originating from sources throughout Wisconsin. The data ranged from below the analytical detection limit up to 140 mg NO3-N/1. Over nine percent of all wells sampled has nitrate concentrations in excess of 10 mg NO3-N/1. Six individual counties had more than 10 mg NO3-N/1 in at least twenty percent of the wells covered in this survey. However, data reported for over eight thousand new wells driven in 1971-1972 showed only slightly more than two percent with nitrate levels above 10 mg NO3-N/1. This reflected the trend toward drilling deeper wells which are influenced less by nitrate seepage as well as adherence to new and stricter well construction codes. PMID:1183417

  18. Thermal decomposition of isooctyl nitrate

    SciTech Connect

    Pritchard, H.O.

    1989-03-01

    The diesel ignition improver DII-3, made by Ethyl Corporation, also known as isooctyl nitrate, is a mixture whose principal constituent (about 95%) is 2-ethyl hexyl nitrate. This note describes an investigation of the thermal decomposition that is not exhaustive, but that is intended to provide sufficient information on the rate and the mechanism so as to make possible the educated guesses needed for modeling the effect of isooctyl nitrate on the diesel ignition process. As is the case with other alkyl nitrates, the decomposition of the neat material is a complex one giving a complicated pressure versus time curve, unsuitable for a quick derivation of the rate constant. However, in the presence of toluene, whose intended purpose is to trap reactive free radicals and thereby simplify the overall mechanism, the pressure rises approximately exponentially to a limit; thus, on the assumption that the reaction is homogeneous and of first order, the rate constants can be determined from the half-life.

  19. Iron refractory iron deficiency anemia

    PubMed Central

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U.; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach. PMID:23729726

  20. Enhanced removal of nitrate from water using nZVI@MWCNTs composite: synthesis, kinetics and mechanism of reduction.

    PubMed

    Babaei, Ali Akbar; Azari, Ali; Kalantary, Roshanak Rezaei; Kakavandi, Babak

    2015-01-01

    Herein, multi-wall carbon nanotubes (MWCNTs) were used as the carrier of nano-zero valent iron (nZVI) particles to fabricate a composite known as nZVI@MWCNTs. The composite was then characterized and applied in the nitrate removal process in a batch system under anoxic conditions. The influential parameters such as pH, various concentrations of nitrate and composite were investigated within 240 min of the reaction. The mechanism, kinetics and end-products of nitrate reduction were also evaluated. Results revealed that the removal nitrate percentage for nZVI@MWCNTs composite was higher than that of nZVI and MWCNTs alone. Experimental data from nitrate reduction were fitted to the Langmuir-Hinshelwood kinetic model. The values of observed rate constant (kobs) decreased with increasing the initial concentration of nitrate. Our experiments proved that the nitrate removal efficiency was favorable once both high amounts of nZVI@MWCNTs and low concentrations of nitrate were applied. The predominant end-products of the nitrate reduction were ammonium (84%) and nitrogen gas (15%). Our findings also revealed that ZVI@MWCNTs is potentially a good composite for removal/reduction of nitrate from aqueous solutions. PMID:26606093

  1. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  2. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  3. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  4. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  5. Nitrate attenuation in the Missoula Flood Deposits Aquitard (Willamette Silt) of the Willamette Valley, Oregon

    NASA Astrophysics Data System (ADS)

    Arighi, L.; Haggerty, R.; Myrold, D. D.; Iverson, J.; Baham, J. E.; Madin, I. P.; Arendt, J.

    2005-12-01

    Low-permeability geologic units may offer significant chemical and hydraulic protection of adjacent aquifers, and are important for managing groundwater quality, especially in areas with significant non-point source contamination. Nitrate in the Willamette Valley is attenuated across the Willamette Silt, a semi-confining unit overlying a regionally important aquifer. To quantify the main mechanism responsible for nitrate attenuation, soil cores were taken at 19 locations, and profiles of nitrate concentrations were constructed for each site. In 7 locations a sharp, major geochemical transition - a "redoxcline" - is present near the base of the Willamette Silt; this redoxcline is characterized by a color change from red-brown to blue-gray, an increase in iron(II) concentration, a rise in pH, and the appearance of carbonate minerals. At all sites where a significant surface input of nitrate was detected, the nitrate signal was attenuated before reaching the base of the silt. Denitrifier Enzyme Activity assays from one site show no denitrification potential in the profile, suggesting that a non-biological mechanism is responsible. We suggest that iron(II) is reducing the nitrate abiotically to nitrite, and that the blue-gray reducing zone of Willamette Silt is indicative of the presence of sufficient iron(II) for the reaction to go forward. To increase the usefulness of this study to regional water management agencies, a thickness isopach map of the reduced zone was created both for the northern and southern Willamette Valley to help determine areas where nitrate is most likely to be attenuated.

  6. Simultaneous removal of nitrate and arsenic from drinking water sources utilizing a fixed-bed bioreactor system.

    PubMed

    Upadhyaya, Giridhar; Jackson, Jeff; Clancy, Tara M; Hyun, Sung Pil; Brown, Jess; Hayes, Kim F; Raskin, Lutgarde

    2010-09-01

    A novel bioreactor system, consisting of two biologically active carbon (BAC) reactors in series, was developed for the simultaneous removal of nitrate and arsenic from a synthetic groundwater supplemented with acetic acid. A mixed biofilm microbial community that developed on the BAC was capable of utilizing dissolved oxygen, nitrate, arsenate, and sulfate as the electron acceptors. Nitrate was removed from a concentration of approximately 50 mg/L in the influent to below the detection limit of 0.2 mg/L. Biologically generated sulfides resulted in the precipitation of the iron sulfides mackinawite and greigite, which concomitantly removed arsenic from an influent concentration of approximately 200 ug/L to below 20 ug/L through arsenic sulfide precipitation and surface precipitation on iron sulfides. This study showed for the first time that arsenic and nitrate can be simultaneously removed from drinking water sources utilizing a bioreactor system. PMID:20732708

  7. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  8. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters

    NASA Astrophysics Data System (ADS)

    Takeda, Shigenobu

    1998-06-01

    The major nutrients (nitrate, phosphate and silicate) needed for phytoplankton growth are abundant in the surface waters of the subarctic Pacific, equatorial Pacific and Southern oceans, but this growth is limited by the availability of iron. Under iron-deficient conditions, phytoplankton exhibit reduced uptake of nitrate and lower cellular levels of carbon, nitrogen and phosphorus. Here I describe seawater and culture experiments which show that iron limitation can also affect the ratio of consumed silicate to nitrate and phosphate. In iron-limited waters from all three of the aforementioned environments, addition of iron to phytoplankton assemblages in incubation bottles halved the silicate:nitrate and silicate:phosphate consumption ratios, in spite of the preferential growth of diatoms (silica-shelled phytoplankton). The nutrient consumption ratios of the phytoplankton assemblage from the Southern Ocean were similar to those of an iron-deficient laboratory culture of Antarctic diatoms, which exhibit increased cellular silicon or decreased cellular nitrogen and phosphorus in response to iron limitation. Iron limitation therefore increases the export of biogenic silicon, relative to nitrogen and phosphorus, from the surface to deeper waters. These findings suggest how the sedimentary records of carbon and silicon deposition in the glacial Southern Ocean can be consistent with the idea that changes in productivity, and thus in drawdown of atmospheric CO2, during the last glaciation were stimulated by changes in iron inputs from atmospheric dust.

  9. Reduction of nitrate in Shewanella

    SciTech Connect

    Gao, Haichun; Yang, Zamin Koo; Barua, Sumitra; Reed, SB; Nealson, Kenneth H.; Fredrikson, JK; Tiedje, James; Zhou, Jizhong

    2009-01-01

    In the genome of Shewanella oneidensis, a napDAGHB gene cluster encoding periplasmic nitrate reductase (NapA) and accessory proteins and an nrfA gene encoding periplasmic nitrite reductase (NrfA) have been identified. These two systems seem to be atypical because the genome lacks genes encoding cytoplasmic membrane electron transport proteins, NapC for NAP and NrfBCD/NrfH for NRF, respectively. Here, we present evidence that reduction of nitrate to ammonium in S. oneidensis is carried out by these atypical systems in a two-step manner. Transcriptional and mutational analyses suggest that CymA, a cytoplasmic membrane electron transport protein, is likely to be the functional replacement of both NapC and NrfH in S. oneidensis. Surprisingly, a strain devoid of napB encoding the small subunit of nitrate reductase exhibited the maximum cell density sooner than the wild type. Further characterization of this strain showed that nitrite was not detected as a free intermediate in its culture and NapB provides a fitness gain for S. oneidensis to compete for nitrate in the environments. On the basis results from mutational analyses of napA, napB, nrfA and napBnrfA in-frame deletion mutants, we propose that NapB is able to favor nitrate reduction by routing electrons to NapA exclusively.

  10. Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton

    PubMed Central

    Botebol, Hugo; Lesuisse, Emmanuel; Šuták, Robert; Six, Christophe; Lozano, Jean-Claude; Schatt, Philippe; Vergé, Valérie; Kirilovsky, Amos; Morrissey, Joe; Léger, Thibaut; Camadro, Jean-Michel; Gueneugues, Audrey; Bowler, Chris; Blain, Stéphane; Bouget, François-Yves

    2015-01-01

    In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation. PMID:26553998

  11. Enhanced sensitivity of oceanic CO2 uptake to dust deposition by iron-light colimitation

    NASA Astrophysics Data System (ADS)

    Nickelsen, Levin; Oschlies, Andreas

    2015-01-01

    The iron hypothesis suggests that in large areas of the ocean phytoplankton growth and thus photosynthetic CO2 uptake is limited by the micronutrient iron. Phytoplankton requires iron in particular for nitrate uptake, light harvesting, and electron transport in photosynthesis, suggesting a tight coupling of iron and light limitation. One important source of iron to the open ocean is dust deposition. Previous global biogeochemical modeling studies have suggested a low sensitivity of oceanic CO2 uptake to changes in dust deposition. Here we show that this sensitivity is increased significantly when iron-light colimitation, i.e., the impact of iron bioavailability on light-harvesting capabilities, is explicitly considered. Accounting for iron-light colimitation increases the shift of export production from tropical and subtropical regions to the higher latitudes of subpolar regions at high dust deposition and amplifies iron limitation at low dust deposition. Our results reemphasize the role of iron as a key limiting nutrient for phytoplankton.

  12. Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton.

    PubMed

    Botebol, Hugo; Lesuisse, Emmanuel; Šuták, Robert; Six, Christophe; Lozano, Jean-Claude; Schatt, Philippe; Vergé, Valérie; Kirilovsky, Amos; Morrissey, Joe; Léger, Thibaut; Camadro, Jean-Michel; Gueneugues, Audrey; Bowler, Chris; Blain, Stéphane; Bouget, François-Yves

    2015-11-24

    In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation. PMID:26553998

  13. Microbial and biogeochemical responses to projected future nitrate enrichment in the California upwelling system

    PubMed Central

    Mackey, Katherine R. M.; Chien, Chia-Te; Paytan, Adina

    2014-01-01

    Coastal California is a dynamic upwelling region where nitrogen (N) and iron (Fe) can both limit productivity and influence biogeochemistry over different spatial and temporal scales. With global change, the flux of nitrate from upwelling is expected to increase over the next century, potentially driving additional oceanic regions toward Fe limitation. In this study we explored the effect of changes in Fe/N ratio on native phytoplankton from five currently Fe-replete sites near the major California upwelling centers at Bodega Bay and Monterey Bay using nutrient addition incubation experiments. Despite the high nitrate levels (13–30 μ M) in the upwelled water, phytoplankton at three of the five sites showed increased growth when 10 μ M nitrate was added. None of the sites showed enhanced growth following addition of 10 nM Fe. Nitrate additions favored slow sinking single-celled diatoms over faster sinking chain-forming diatoms, suggesting that future increases in nitrate flux could affect carbon and silicate export and alter grazer populations. In particular, solitary cells of Cylindrotheca were more abundant than the toxin-producing genus Pseudonitzschia following nitrate addition. These responses suggest the biogeochemistry of coastal California could change in response to future increases in nitrate, and multiple stressors like ocean acidification and hypoxia may further result in ecosystem shifts. PMID:25477873

  14. Redfield revisited, 1, Regulation of nitrate, phosphate, and oxygen in the ocean

    NASA Astrophysics Data System (ADS)

    Lenton, Timothy M.; Watson, Andrew J.

    2000-03-01

    The ratio of phosphate and nitrate concentrations in the deep ocean matches closely the Redfield ratio required by phytoplankton growing in the surface ocean. Furthermore, the oxygen available from dissolution in ocean water is, on average, just sufficient for the respiration of the resulting organic matter. We review various feedback mechanisms that have been proposed to account for these remarkable correspondences and construct a model to test their effectiveness. The model's initial steady state is cate responds to perturbation in 1000-2000 years and phosphate in 40,000-60,000 years. However, recently increased estimates oflose to the Redfield ratios and stable against instantaneous changes in the sizes of the nitrate and phosphate reservoirs. When classic flux estimates are adopted, nitr the input and output fluxes of nitrate and phosphate suggest that they respond more rapidly to perturbation, nitrate in 500-1000 years and phosphate in 10,000-15,000 years. Nitrogen fixation tends to maintain nitrate close to Redfield ratio with phosphate, while denitrification tends to keep nitrate as the proximate limiting nutrient and tie it in Redfield ratio to dissolved oxygen. Under increases in phosphorus input to the ocean, the relative responsiveness of nitrogen fixation and denitrification determine whether nitrate remains close to Redfield ratio to phosphate or to oxygen. If nitrogen fixation is strongly limited (e.g., by lack of iron), increasing phosphorus input to the ocean can cause phosphate to deviate above Redfield ratio to nitrate. Hence nitrogen dynamics can control phosphate behavior and nitrate can potentially be the ultimate limiting nutrient over geologic periods of time. When nitrate and phosphate are coupled together by responsive nitrogen fixation, negative feedbacks on organic and calcium-bound phosphorus burial stabilize their concentrations. If anoxia suppresses organic phosphorus burial, the resulting feedbacks on phosphate (positive) and oxygen

  15. Removal of Selenium and Nitrate in Groundwater Using Organic Carbon-Based Reactive Mixtures

    NASA Astrophysics Data System (ADS)

    An, Hyeonsil; Jeen, Sung-Wook

    2016-04-01

    Treatment of selenium and nitrate in groundwater was evaluated through column experiments. Four columns consisting of reactive mixtures, either organic carbon-limestone (OC-LS) or organic carbon-zero valent iron (OC-ZVI), were used to determine the removal efficiency of selenium with different concentrations of nitrate. The source waters were collected from a mine site in Korea or were prepared artificially based on the mine drainage water or deionized water, followed by spiking of elevated concentrations of Se (40 mg/L) and nitrate (100 or 10 mg/L as NO3-N). The results for the aqueous chemistry showed that selenium and nitrate were effectively removed both in the mine drainage water and deionized water-based artificial input solution. However, the removal of selenium was delayed when selenium and nitrate coexisted in the OC-LS columns. The removal of selenium was not significant when the influent nitrate concentration was 100 mg/L as NO3-N, while most of nitrate was gradually removed within the columns. In contrast, 94% of selenium was removed when the influent nitrate concentration was reduced to 10 mg/L as NO3-N. In the OC-ZVI column, selenium and nitrate was removed almost simultaneously and completely even with the high nitrate concentration; however, a high concentration of ammonia was produced as a by-product of abiotic reaction between ZVI and nitrate. The elemental analysis for the solid samples after the termination of the experiments showed that selenium was accumulated in the reactive materials where removal of aqueous-phase selenium mostly occurred. The X-ray absorption near-edge structure (XANES) study indicated that selenium existed in the forms of SeS2 and Se(0) in the OC-LS column, while selenium was present in the forms of FeSe, SeS2 and absorbed Se(IV) in the OC-ZVI column. This study shows that OC-based reactive mixtures have an ability to remove selenium and nitrate in groundwater. However, the removal of selenium was influenced by the high

  16. METABOLISM OF IRON STORES

    PubMed Central

    SAITO, HIROSHI

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since the pioneering research by Shoden in 1953. However, we recently developed a new method for determining ferritin iron and hemosiderin iron by computer-assisted serum ferritin kinetics. Serum ferritin increase or decrease curves were measured in patients with normal storage iron levels (chronic hepatitis C and iron deficiency anemia treated by intravenous iron injection), and iron overload (hereditary hemochromatosis and transfusion dependent anemia). We thereby confirmed the existence of two iron pathways where iron flows followed the numbered order (1) labile iron, (2) ferritin and (3) hemosiderin in iron deposition and mobilization among many previously proposed but mostly unproven routes. We also demonstrated the increasing and decreasing phases of ferritin iron and hemosiderin iron in iron deposition and mobilization. The author first demonstrated here the change in proportion between pre-existing ferritin iron and new ferritin iron synthesized by removing iron from hemosiderin in the course of iron removal. In addition, the author disclosed the cause of underestimation of storage iron turnover rate which had been reported by previous investigators in estimating storage iron turnover rate of normal subjects. PMID:25741033

  17. Dissimilatory Iron Reduction in Microorganisms Growing Near 100 C

    NASA Astrophysics Data System (ADS)

    Feinberg, L.; Holden, J.

    2006-12-01

    Dissimilatory iron reduction for microbial energy-generation has been well studied in mesophilic bacteria, such as Geobacter and Shewanella, but has only recently been found in organisms that grow optimally above 80°C, namely hyperthermophilic archaea. Dissimilatory iron reduction at high temperatures is likely to be widespread in high-temperature, anoxic environments such as deep-sea hydrothermal vents and terrestrial hot springs. Understanding the physiological mechanisms of microbe-metal interactions will help us to interpret the interplay between microorganisms and their geochemical environment. Our studies sought to characterize iron reduction in members of the hyperthermophilic genus Pyrobaculum (Topt 100°C) and the constraints associated with it and alternative terminal electron accepting processes. P. aerophilum and P. islandicum grew on soluble (Fe(III) citrate) and insoluble (Fe(III) oxide hydroxide) forms of iron. In P. aerophilum, ferric reductase and nitrate reductase activities and nitrate reductase abundances varied in iron- and nitrate-grown cultures suggesting that dissimilatory iron and nitrate reduction are regulated. P. aerophilum grew on Fe(III) oxide hydroxide that was separated from the cells by a dialysis membrane (12,000-14,000 MWCO). This suggests that direct contact with insoluble iron was not necessary for growth and that the organism may use an extracellular mediator for iron reduction. A hydroquinone-like molecule (MW = 234 Da) was identified by LC-MS in spent medium from cultures grown on insoluble Fe(III) oxide hydroxide that was far less abundant in spent media with other electron acceptors. P. aerophilum produced c- type cytochromes but genome analyses showed that the organism lacks polyheme c-type cytochromes, which are required for iron reduction in Geobacter and Shewanella species. There were significant differences between Pyrobaculum species with respect to pH and reduction potential preference of the media, which may have

  18. A biological source of oceanic alkyl nitrates

    NASA Astrophysics Data System (ADS)

    Dahl, E. E.; Lewis, C. B.; Velasco, F. L.; Escobar, C.; Kellogg, D.; Velcamp, M.

    2013-12-01

    Alkyl nitrates are an important component of reactive nitrogen in the troposphere. The oceans are a source of alkyl nitrates to the atmosphere, however the source of alkyl nitrates in the oceans is unknown. It has been demonstrated that the reaction of alkyl peroxy radicals (ROO) with nitric oxide (NO) produces alkyl nitrates in the aqueous phase. We hypothesize that alkyl nitrates may be formed by organisms through the same reaction and therefore biological production could be a source of alkyl nitrates to the troposphere. This work focuses on the production of alkyl nitrates by the diatoms Chaetoceros muelleri and Thalassiosira weisfloggi. Using chemostats, we measure alkyl nitrates formed under nitrate limited conditions. We also use triggers and inhibitors of nitric oxide formation to determine if alkyl nitrate formation is affected by changes in NO production. To date, the rates of production of alkyl nitrates in our cultures, lead us to estimate a production rate on the order of femtomolar/day for C1-C3 alkyl nitrates by diatom species in the equatorial Pacific Ocean. This suggests that diatoms may contribute to the overall ocean source of alkyl nitrates; however, it is possible that other types of phytoplankton, such as cyanobacteria, that are more abundant in the open ocean, may contribute to a greater extent.

  19. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability.

    PubMed

    Marchetti, Adrian; Schruth, David M; Durkin, Colleen A; Parker, Micaela S; Kodner, Robin B; Berthiaume, Chris T; Morales, Rhonda; Allen, Andrew E; Armbrust, E Virginia

    2012-02-01

    In vast expanses of the oceans, growth of large phytoplankton such as diatoms is limited by iron availability. Diatoms respond almost immediately to the delivery of iron and rapidly compose the majority of phytoplankton biomass. The molecular bases underlying the subsistence of diatoms in iron-poor waters and the plankton community dynamics that follow iron resupply remain largely unknown. Here we use comparative metatranscriptomics to identify changes in gene expression associated with iron-stimulated growth of diatoms and other eukaryotic plankton. A microcosm iron-enrichment experiment using mixed-layer waters from the northeastern Pacific Ocean resulted in increased proportions of diatom transcripts and reduced proportions of transcripts from most other taxa within 98 h after iron addition. Hundreds of diatom genes were differentially expressed in the iron-enriched community compared with the iron-limited community; transcripts of diatom genes required for synthesis of photosynthesis and chlorophyll components, nitrate assimilation and the urea cycle, and synthesis of carbohydrate storage compounds were significantly overrepresented. Transcripts of genes encoding rhodopsins in eukaryotic phytoplankton were significantly underrepresented following iron enrichment, suggesting rhodopsins help cells cope with low-iron conditions. Oceanic diatoms appear to display a distinctive transcriptional response to iron enrichment that allows chemical reduction of available nitrogen and carbon sources along with a continued dependence on iron-free photosynthetic proteins rather than substituting for iron-containing functional equivalents present within their gene repertoire. This ability of diatoms to divert their newly acquired iron toward nitrate assimilation may underlie why diatoms consistently dominate iron enrichments in high-nitrate, low-chlorophyll regions. PMID:22308424

  20. Short-Term Effects of a High Nitrate Diet on Nitrate Metabolism in Healthy Individuals

    PubMed Central

    Bondonno, Catherine P.; Liu, Alex H.; Croft, Kevin D.; Ward, Natalie C.; Puddey, Ian B.; Woodman, Richard J.; Hodgson, Jonathan M.

    2015-01-01

    Dietary nitrate, through the enterosalivary nitrate-nitrite-NO pathway, can improve blood pressure and arterial stiffness. How long systemic nitrate and nitrite remain elevated following cessation of high nitrate intake is unknown. In 19 healthy men and women, the time for salivary and plasma nitrate and nitrite to return to baseline after 7 days increased nitrate intake from green leafy vegetables was determined. Salivary and plasma nitrate and nitrite was measured at baseline [D0], end of high nitrate diet [D7], day 9 [+2D], day 14 [+7D] and day 21 [+14D]. Urinary nitrite and nitrate was assessed at D7 and +14D. Increased dietary nitrate for 7 days resulted in a more than fourfold increase in saliva and plasma nitrate and nitrite (p < 0.001) measured at [D7]. At [+2D] plasma nitrite and nitrate had returned to baseline while saliva nitrate and nitrite were more than 1.5 times higher than at baseline levels. By [+7D] all metabolites had returned to baseline levels. The pattern of response was similar between men and women. Urinary nitrate and nitrate was sevenfold higher at D7 compared to +14D. These results suggest that daily ingestion of nitrate may be required to maintain the physiological changes associated with high nitrate intake. PMID:25774606

  1. SEPARATION OF SCANDIUM VALUES FORM IRON VALUES BY SOLVENT EXTRACTION

    DOEpatents

    Kuhlman, C.W. Jr.; Lang, G.P.

    1961-12-19

    A process is given for separating scandium from trivalent iron values. In this process, an aqueous nitric acid solution is contacted with a water- immiscible alkyl phosphate solution, the aqueous solution containing the values to be separated, whereby the scandium is taken up by the alkyl phosphate. The aqueous so1ution is preferably saturated with magnesium nitrate to retain the iron in the aqueous solution. (AEC)

  2. An electrokinetic/Fe0 permeable reactive barrier system for the treatment of nitrate-contaminated subsurface soils.

    PubMed

    Suzuki, Tasuma; Oyama, Yukinori; Moribe, Mai; Niinae, Masakazu

    2012-03-01

    Effective nitrate removal by Fe(0) permeable reactive barriers (Fe(0) PRB) has been recognized as a challenging task because the iron corrosion product foamed on Fe(0) hinders effective electron transfer from Fe(0) to surface-bound nitrate. The objectives of this study were (i) to demonstrate the effectiveness of an electrokinetic/Fe(0) PRB system for remediating nitrate-contaminated low permeability soils using a bench-scale system and (ii) to deepen the understanding of the behavior and fate of nitrate in the system. Bench-scale laboratory experiments were designed to investigate the influence of the Fe(0) content in the permeable reactive barrier, the pH in the anode well, and the applied voltage on remediation efficiency. The experimental results showed that the major reaction product of nitrate reduction by Fe(0) was ammonium and that nitrate reduction efficiency was significantly influenced by the variables investigated in this study. Nitrate reduction efficiency was enhanced by either increasing the Fe(0) content in the Fe(0) reactive barrier or decreasing the initial anode pH. However, nitrate reduction efficiency was reduced by increasing the applied voltage from 10 V to 40 V due to the insufficient reaction time during nitrate migration through the Fe(0) PRB. For all experimental conditions, nearly all nitrate nitrogen was recovered in either anode or cathode wells as nitrate or ammonium within 100 h, demonstrating the effectiveness of the system for remediating nitrate-contaminated subsurface soils. PMID:22153957

  3. Dietary nitrate and cardiovascular health

    USGS Publications Warehouse

    Ahluwalia, A.; Gladwin, M.T.; Harman, Jane L.; Ward, M.H.; Nolan, Bernard T.

    2014-01-01

    The National Heart, Lung, and Blood Institute convened this workshop to discuss the results of recent research on the effects of inorganic nitrate and nitrite on the cardiovascular system, possible long term effects of these compounds in the diet and drinking water, and future research needs including population-wide effects examined through epidemiological studies.

  4. Anaerobic, Nitrate-Dependent Fe(II) Oxidation Under Advective Flow

    NASA Astrophysics Data System (ADS)

    Weber, K. A.; Coates, J. D.

    2005-12-01

    Microbially-catalyzed nitrate-dependent Fe(II) oxidation has been identified as a ubiquitous biogeochemical process contributing to anaerobic iron redox cycling in sedimentary environments. Most probable number enumeration revealed nitrate-dependent Fe(II) oxidizing microbial communities in groundwater and subsurface sediments in the order of 0 - 2.04 x 103 cells mL-1 and 2.39 x 102 - 1.17 x 103 cells (g wet sediment)-1, respectively. The efficacy of nitrate-dependent Fe(II) oxidation under advective flow was evaluated in a meso-scale column reactor packed with sterile low iron sand amended with subsurface sediments collected from the NABIR FRC background field site (10% mass/mass). Continuous flow of minimal medium mimicked the natural groundwater. Periodic FeCl2 and nitrate injections over a period of 49 days resulted in the retention of 95% of the iron (290 mmol). Extraction of solid-phase Fe revealed a net increase in Fe(III) of 160 mmol above background Fe(III) content indicating that 55% of the injected Fe(II) was oxidized. Differential solubility analysis of 0.5M HCl-extractable Fe and 3M HCl-extractable Fe indicated that the oxidation product was crystalline in nature as only 20% was soluble in 0.5M HCl. This formation of crystalline biogenic Fe(III) oxides is consistent with previous studies. Periodic injections of nitrate and acetate did not result in significant changes in Fe(II) or Fe(III) throughout a control column. Together these results demonstrate that native subsurface sediments harbor microbial communities capable of nitrate-dependent Fe(II) oxidation under advective flow. The biogenic formation of reactive Fe(III) oxide minerals capable of immobilizing heavy metals and radionuclides presents a plausible bioremediative strategy for contaminated subsurface environments.

  5. Biological denitrification of high concentration nitrate waste

    DOEpatents

    Francis, Chester W.; Brinkley, Frank S.

    1977-01-01

    Biological denitrification of nitrate solutions at concentrations of greater than one kilogram nitrate per cubic meter is accomplished anaerobically in an upflow column having as a packing material a support for denitrifying bacteria.

  6. Hydrogeochemical modeling of enhanced benzene, toluene, ethylbenzene, xylene (BTEX) remediation with nitrate

    NASA Astrophysics Data System (ADS)

    Eckert, Paul; Appelo, C. A. J.

    2002-08-01

    During a 5-month field test, active remediation of a benzene, toluene, ethylbenzene, xylene (BTEX)-contaminated aquifer was initiated by injecting water with varying amounts of KNO3. The experiment was performed prior to selecting bioremediation for full-scale cleanup, particularly to evaluate the competing reaction of nitrate with hydrocarbons and reduced sulfur components. The nitrate oxidized sulfides that had precipitated earlier as a result of the natural degradation of BTEX with SO42- from groundwater. When the sulfides were exhausted, BTEX degradation was enhanced by nitrate. A hydrogeochemical model with kinetic oxidation reactions for Fe(II), FeS and BTEX by nitrate was developed to calculate the observed concentration patterns along a flow line in the aquifer. The rates for the kinetic model were based on published kinetic reaction equations for oxidation with oxygen. Nitrate was introduced in the equations in the same form as oxygen, with a premultiplier added to fit the observed concentration changes in the aquifer. The oxidation of Fe(II) with nitrate in the aquifer was 4 times slower than the abiological oxidation reaction with oxygen in water. Similar rates were found for oxidation of FeS with nitrate as for FeS2 with oxygen, but the specific surface area of FeS in the aquifer was larger. The reaction rate for degradation of BTEX compounds was about 107 times faster than for natural organic matter. BTEX release from pools in the aquifer was modeled with a linear driving force equation in which the pollutant/water interfacial area was linked to the mass of BTEX. The release rate and the denitrification rate were used to calculate the initial amounts of BTEX at the start of the KNO3 injection. This study shows that an assessment of the efficiency of nitrate addition for stimulating bioremediation has to consider possible reactions of nitrate with reduced sulfur components and ferrous iron.

  7. A Novel Chemical Nitrate Destruction Process

    SciTech Connect

    Dziewinski, J.; Marczak, S.

    1999-03-01

    Nitrates represent one of the most significant pollutant discharged to the Baltic Sea by the Sliiamae hydrometallurgical plant. This article contains a brief overview of the existing nitrate destruction technologies followed by the description of a new process developed by the authors. The new chemical process for nitrate destruction is cost effective and simple to operate. It converts the nitrate to nitrogen gas which goes to the atmosphere.

  8. Nitrate reduction in sulfate-reducing bacteria.

    PubMed

    Marietou, Angeliki

    2016-08-01

    Sulfate-reducing bacteria (SRBs) gain their energy by coupling the oxidation of organic substrate to the reduction of sulfate to sulfide. Several SRBs are able to use alternative terminal electron acceptors to sulfate such as nitrate. Nitrate-reducing SRBs have been isolated from a diverse range of environments. In order to be able to understand the significance of nitrate reduction in SRBs, we need to examine the ecology and physiology of the nitrate-reducing SRB isolates. PMID:27364687

  9. Plasma nitrate and nitrite are increased by a high nitrate supplement, but not by high nitrate foods in older adults

    PubMed Central

    Miller, Gary D.; Marsh, Anthony P.; Dove, Robin W.; Beavers, Daniel; Presley, Tennille; Helms, Christine; Bechtold, Erika; King, S. Bruce; Kim-Shapiro, Daniel

    2012-01-01

    Little is known about the effect of dietary nitrate on the nitrate/nitrite/NO (nitric oxide) cycle in older adults. We examined the effect of a 3-day control diet vs. high nitrate diet, with and without a high nitrate supplement (beetroot juice), on plasma nitrate and nitrite kinetics, and blood pressure using a randomized four period cross-over controlled design. We hypothesized that the high nitrate diet would show higher levels of plasma nitrate/nitrite and blood pressure compared to the control diet, which would be potentiated by the supplement. Participants were eight normotensive older men and women (5 female, 3 male, 72.5±4.7 yrs) with no overt disease or medications that affect NO metabolism. Plasma nitrate and nitrite levels and blood pressure were measured prior to and hourly for 3 hours after each meal. The mean daily changes in plasma nitrate and nitrite were significantly different from baseline for both control diet+supplement (p<0.001 and =0.017 for nitrate and nitrite, respectively) and high nitrate diet+supplement (p=0.001 and 0.002), but not for control diet (p=0.713 and 0.741) or high nitrate diet (p=0.852 and 0.500). Blood pressure decreased from the morning baseline measure to the three 2 hr post-meal follow-up time-points for all treatments, but there was no main effect for treatment. In healthy older adults, a high nitrate supplement consumed at breakfast elevated plasma nitrate and nitrite levels throughout the day. This observation may have practical utility for the timing of intake of a nitrate supplement with physical activity for older adults with vascular dysfunction. PMID:22464802

  10. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  11. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  12. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  13. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  14. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  15. Modeling nitrate removal in a denitrification bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification beds are being promoted to reduce nitrate concentrations in agricultural drainage water to alleviate the adverse environmental effects associated with nitrate pollution in surface water. In this system, water flows through a trench filled with a carbon media where nitrate is transfor...

  16. Efflux Of Nitrate From Hydroponically Grown Wheat

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1992-01-01

    Report describes experiments to measure influx, and efflux of nitrate from hydroponically grown wheat seedlings. Ratio between efflux and influx greater in darkness than in light; increased with concentration of nitrate in nutrient solution. On basis of experiments, authors suggest nutrient solution optimized at lowest possible concentration of nitrate.

  17. Post-translational Regulation of Nitrate Reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  18. Nitration of Naphthol: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Mowery, Dwight F.

    1982-01-01

    Products of nitrations, upon distillation or steam distillation, may produce dermatitis in some students. A procedure for nitration of beta-naphthol producing a relatively non-volatile product not purified by steam distillation is described. Nitration of alpha-naphthol by the same procedure yields Martius Yellow dye which dyes wool yellow or…

  19. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a...

  20. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium nitrate. 172.160 Section 172.160 Food... ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a curing agent in the processing of...

  1. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  2. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  3. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  4. Method of producing thin cellulose nitrate film

    DOEpatents

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  5. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  6. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  7. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified foods in accordance with...

  8. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  9. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  10. Iron Dextran Injection

    MedlinePlus

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  11. Protective effect of salivary nitrate and microbial nitrate reductase activity against caries.

    PubMed

    Doel, J J; Hector, M P; Amirtham, C V; Al-Anzan, L A; Benjamin, N; Allaker, R P

    2004-10-01

    To test the hypothesis that a combination of high salivary nitrate and high nitrate-reducing capacity are protective against dental caries, 209 children attending the Dental Institute, Barts and The London NHS Trust were examined. Salivary nitrate and nitrite levels, counts of Streptococcus mutans and Lactobacillus spp., and caries experience were recorded. Compared with control subjects, a significant reduction in caries experience was found in patients with high salivary nitrate and high nitrate-reducing ability. Production of nitrite from salivary nitrate by commensal nitrate-reducing bacteria may limit the growth of cariogenic bacteria as a result of the production of antimicrobial oxides of nitrogen, including nitric oxide. PMID:15458501

  12. Iron and alloys of iron. [lunar resources

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar

    1992-01-01

    All lunar soil contains iron in the metallic form, mostly as an iron-nickel alloy in concentrations of a few tenths of 1 percent. Some of this free iron can be easily separated by magnetic means. It is estimated that the magnetic separation of 100,000 tons of lunar soil would yield 150-200 tons of iron. Agglutinates contain metallic iron which could be extracted by melting and made into powder metallurgy products. The characteristics and potential uses of the pure-iron and iron-alloy lunar products are discussed. Processes for working iron that might be used in a nonterrestrial facility are also addressed.

  13. Nitrated fatty acids: Synthesis and measurement

    PubMed Central

    Woodcock, Steven R.; Bonacci, Gustavo; Gelhaus, Stacy L.; Schopfer, Francisco J.

    2012-01-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis, sample extraction from complex biological matrices, and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by LC-MS. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed. PMID:23200809

  14. Continuous flow nitration in miniaturized devices

    PubMed Central

    2014-01-01

    Summary This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed. PMID:24605161

  15. Biological Oxidation of Fe(II) in Reduced Nontronite Coupled with Nitrate Reduction by Pseudogulbenkiania sp. Strain 2002

    SciTech Connect

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.; Agrawal, A.; Liu, Deng; Zhang, Jing; Edelmann, Richard E.

    2013-10-15

    Nitrate contamination in soils, sediments, and water bodies is a significant issue. Although much is known about nitrate degradation in these environments, especially via microbial pathways, a complete understanding of all degradation processes, especially in clay mineral-rich soils, is still lacking. The objective of this study was to study the potential of removing nitrate contaminant using structural Fe(II) in clay mineral nontronite. Specifically, the coupled processes of microbial oxidation of Fe(II) in microbially reduced nontronite (NAu-2) and nitrate reduction by Pseudogulbenkiania species strain 2002 was investigated. Bio-oxidation experiments were conducted in bicarbonate-buffered medium under both growth and nongrowth conditions. The extents of Fe(II) oxidation and nitrate reduction were measured by wet chemical methods. X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and 57Fe-Mössbauer spectroscopy were used to observe mineralogical changes associated with Fe(III) reduction and Fe(II) oxidation in nontronite. The bio-oxidation extent under growth and nongrowth conditions reached 93% and 57%, respectively. Over the same time period, nitrate was completely reduced under both conditions to nitrogen gas (N2), via an intermediate product nitrite. Magnetite was a mineral product of nitrate-dependent Fe(II) oxidation, as evidenced by XRD data and TEM diffraction patterns. The results of this study highlight the importance of iron-bearing clay minerals in the global nitrogen cycle with potential applications in nitrate removal in soils.

  16. Iron and iron derived radicals

    SciTech Connect

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  17. Deconstructing nitrate isotope dynamics in aquifers

    NASA Astrophysics Data System (ADS)

    Granger, J.

    2012-12-01

    The natural abundance N and O stable isotope ratios of nitrate provide an invaluable tool to differentiate N sources to the environment, track their dispersal, and monitor their attenuation by biological transformations. The interpretation of patterns in isotope abundances relies on knowledge of the isotope ratios of the source end-members, as well as on constraints on the isotope discrimination imposed on nitrate by respective biological processes. Emergent observations from mono-culture experiments of denitrifying bacteria reveal nitrate fractionation trends that appear at odds with trends ascribed to denitrification in soils and aquifers. This discrepancy raises the possibility that additional biological N transformations may be acting in tandem with denitrification. Here, the N and O isotope enrichments associated with nitrate removal by denitrification in aquifers are posited to bear evidence of coincident biological nitrate production - from nitrification and/or from anammox. Simulations are presented from a simple time-dependent one-box model of a groundwater mass ageing that is subject to net nitrate loss by denitrification with coincident nitrate production by nitrification or anammox. Within boundary conditions characteristic of freshwater aquifers, the apparent slope of the parallel enrichments in nitrate N and O isotopes associated with net N loss to denitrification can vary in proportion to the nitrate added simultaneous by oxidative processes. Pertinent observations from nitrate plumes in suboxic to anoxic aquifers are examined to validate this premise. In this perspective, nitrate isotope distributions suggest that we may be missing important N fluxes inherent to most aquifers.

  18. Phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, M.; Yoo, C. S.

    2014-05-01

    Ammonium Nitrate (AN) has often subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood -resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 17 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400 °C.

  19. Dietary nitrate supplementation and exercise performance.

    PubMed

    Jones, Andrew M

    2014-05-01

    Dietary nitrate is growing in popularity as a sports nutrition supplement. This article reviews the evidence base for the potential of inorganic nitrate to enhance sports and exercise performance. Inorganic nitrate is present in numerous foodstuffs and is abundant in green leafy vegetables and beetroot. Following ingestion, nitrate is converted in the body to nitrite and stored and circulated in the blood. In conditions of low oxygen availability, nitrite can be converted into nitric oxide, which is known to play a number of important roles in vascular and metabolic control. Dietary nitrate supplementation increases plasma nitrite concentration and reduces resting blood pressure. Intriguingly, nitrate supplementation also reduces the oxygen cost of submaximal exercise and can, in some circumstances, enhance exercise tolerance and performance. The mechanisms that may be responsible for these effects are reviewed and practical guidelines for safe and efficacious dietary nitrate supplementation are provided. PMID:24791915

  20. Maximal Expression of Membrane-Bound Nitrate Reductase in Paracoccus Is Induced by Nitrate via a Third FNR-Like Regulator Named NarR

    PubMed Central

    Wood, Nicholas J.; Alizadeh, Tooba; Bennett, Scott; Pearce, Joanne; Ferguson, Stuart J.; Richardson, David J.; Moir, James W. B.

    2001-01-01

    Respiratory reduction of nitrate to nitrite is the first key step in the denitrification process that leads to nitrate loss from soils. In Paracoccus pantotrophus, the enzyme system that catalyzes this reaction is encoded by the narKGHJI gene cluster. Expression of this cluster is maximal under anaerobic conditions in the presence of nitrate. Upstream from narK is narR, a gene encoding a member of the FNR family of transcriptional activators. narR is transcribed divergently from the other nar genes. Mutational analysis reveals that NarR is required for maximal expression of the membrane-bound nitrate reductase genes and narK but has no other regulatory function related to denitrification. NarR is shown to require nitrate and/or nitrite is order to activate gene expression. The N-terminal region of the protein lacks the cysteine residues that are required for formation of an oxygen-sensitive iron-sulfur cluster in some other members of the FNR family. Also, NarR lacks a crucial residue involved in interactions of this family of regulators with the ς70 subunit of RNA polymerase, indicating that a different mechanism is used to promote transcription. narR is also found in Paracoccus denitrificans, indicating that this species contains at least three FNR homologues. PMID:11371524

  1. Nitration of sym-trichlorobenzene

    SciTech Connect

    Quinlin, W.T.

    1981-02-01

    Basic thermal and kinetic data were obtained for the nitration of 1,3,5-trichlorobenzene to trichlorotrinitrobenzene in the presence of oleum/nitric acid. A limiting specific production rate of 5.4 kg/l/hr was determined for the addition of the first two nitro groups at 130 C and a rate of 0.16 kg/l/hr was obtained at 150 C for the addition of the third nitro group.

  2. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  3. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  4. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  5. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  6. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  7. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  8. Photochemical reduction of uranyl nitrate

    SciTech Connect

    Duerksen, W.K.

    1993-10-20

    The photochemical reduction of uranyl nitrate solutions to tetravalent uranium was investigated as a means of producing uranium dioxide feed for the saltless direct oxide reduction (SDOR) process. At high uranium concentrations, reoxidation of U{sup +4} occurs rapidly. The kinetics of the nitric oxidation of tetravalent uranium depend on the concentrations of hydrogen ion, nitrate ion, nitrous acid, and tetravalent uranium in the same manner as was reported elsewhere for the nitrate oxidation of PU{sup +3}. Reaction rate data were successfully correlated with a mechanism in which nitrogen dioxide is the reactive intermediate. Addition of a nitrous acid scavenger suppresses the reoxidation reaction. An immersion reactor employing a mercury vapor lamp gave reduction times fast enough for routine production usage. Precipitation techniques for conversion of aqueous U(NO{sub 3}){sub 4} to hydrous UO{sub 2} were evaluated. Prolonged dewatering times tended to make the process time consuming. Use of 3- to 4-M aqueous NaOH gave the best dewatering times observed. Reoxidation of the UO{sub 2} by water of hydration was encountered, which required the drying process to be carried out under a reducing atmosphere.

  9. Catalyzed reduction of nitrate in aqueous solutions

    SciTech Connect

    Haas, P.A.

    1994-08-01

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH{sub 3}, hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250{degree}C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs < 4 as HNO{sub 3} or NH{sub 4}NO{sub 3} is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO{sub 3} to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions.

  10. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.; Mao, J.; Naik, V.; Horowitz, L. W.

    2015-09-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for present-day fine nitrate optical depth at 550 nm is 0.006 (0.005-0.008). We only find a modest increase of nitrate optical depth (< 30 %) in response to the projected changes in the emissions of SO2 (-40 %) and ammonia (+38 %) from 2010 to 2050. Nitrate burden is projected to increase in the tropics and in the free troposphere, but to decrease at the surface in the midlatitudes because of lower nitric acid concentrations. Our results suggest that better constraints on the heterogeneous chemistry of nitric acid on dust, on tropical ammonia emissions, and on the transport of ammonia to the free troposphere are needed to improve projections of aerosol optical depth.

  11. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.-Y.; Mao, J.; Naik, V.; Horowitz, L. W.

    2016-02-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for fine nitrate optical depth at 550 nm in 2010 is 0.006 (0.005-0.008). In wintertime, nitrate aerosols are simulated to account for over 30 % of the aerosol optical depth over western Europe and North America. Simulated nitrate optical depth increases by less than 30 % (0.0061-0.010) in response to projected changes in anthropogenic emissions from 2010 to 2050 (e.g., -40 % for SO2 and +38 % for ammonia). This increase is primarily driven by greater concentrations of nitrate in the free troposphere, while surface nitrate concentrations decrease in the midlatitudes following lower concentrations of nitric acid. With the projected increase of ammonia emissions, we show that better constraints on the vertical distribution of ammonia (e.g., convective transport and biomass burning injection) and on the sources and sinks of nitric acid (e.g., heterogeneous reaction on dust) are needed to improve estimates of future nitrate optical depth.

  12. Effect of nitrate on microbial perchlorate reduction

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Coates, J. D.

    2007-12-01

    Over the last decade perchlorate has been recognized as an important emerging water contaminant that poses a significant public health threat. Because of its chemical stability, low ionic charge density, and significant water solubility microbial remediation has been identified as the most feasible method for its in situ attenuation. Our previous studies have demonstrated that dissimilatory perchlorate reducing bacteria (DPRB) capable of the respiratory reduction of perchlorate into innocuous chloride are ubiquitous in soil and sedimentary environments. As part of their metabolism these organisms reduce perchlorate to chlorite which is subsequently dismutated into chloride and molecular oxygen. These initial steps are mediated by the perchlorate reductase and chlorite dismutase enzymes respectively. Previously we found that the activity of these organisms is dependent on the presence of molybdenum and is inhibited by the presence of oxygen and to different extents nitrate. However, to date, there is little understanding of the mechanisms involved in the regulation of perchlorate reduction by oxygen and nitrate. As a continuation of our studies into the factors that control DPRB activity we investigated these regulatory mechanisms in more detail as a model organism, Dechloromonas aromatica strain RCB, transitions from aerobic metabolism through nitrate reduction to perchlorate reduction. In series of growth transition studies where both nitrate and perchlorate were present, preference for nitrate to perchlorate was observed regardless of the nitrate to perchlorate ratio. Even when the organism was pre-grown anaerobically in perchlorate, nitrate was reduced prior to perchlorate. Using non-growth washed cell suspension, perchlorate- grown D. aromatica was capable of reducing both perchlorate and nitrate concomitantly suggesting the preferentially utilization of nitrate was not a result of enzyme functionality. To elucidate the mechanism for preferential utilization of

  13. Identification of periplasmic nitrate reductase Mo(V) EPR signals in intact cells of Paracoccus denitrificans.

    PubMed

    Sears, H J; Bennett, B; Spiro, S; Thomson, A J; Richardson, D J

    1995-08-15

    EPR spectroscopy has been successfully used to detect signals due to molybdenum (V) and ferric iron in intact cells of aerobically grown Paracoccus denitrificans. The signals are ascribed to the catalytic molybdenum centre and to the haem iron of the periplasmic nitrate reductase. These signals are absent from a mutant strain deficient in this enzyme. The Mo(V) signal is due to the High-g Split species which has been well characterized in the purified enzyme. This confirms that the High-g Split is the physiologically relevant signal of a number observed in the previous work on the purified enzyme. PMID:7646461

  14. Fast photolysis of carbonyl nitrates from isoprene

    NASA Astrophysics Data System (ADS)

    Müller, Jean-Francois; Peeters, Jozef; Stavrakou, Trisevgeni

    2014-05-01

    We show that photolysis is, by far, the major atmospheric sink of isoprene-derived carbonyl nitrates. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of α-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections, and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as the likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photorates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methylvinylketone nitrates strongly supports our assumptions of large cross section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications, as carbonyl nitrates constitute an important component of the total organic nitrate pool over vegetated areas: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  15. Skeletal muscle as an endogenous nitrate reservoir

    PubMed Central

    Piknova, Barbora; Park, Ji Won; Swanson, Kathryn M.; Dey, Soumyadeep; Noguchi, Constance Tom; Schechter, Alan N

    2015-01-01

    The nitric oxide synthase (NOS) family of enzymes form nitric oxide (NO) from arginine in the presence of oxygen. At reduced oxygen availability NO is also generated from nitrate in a two step process by bacterial and mammalian molybdopterin proteins, and also directly from nitrite by a variety of five-coordinated ferrous hemoproteins. The mammalian NO cycle also involves direct oxidation of NO to nitrite, and both NO and nitrite to nitrate by oxy-ferrous hemoproteins. The liver and blood are considered the sites of active mammalian NO metabolism and nitrite and nitrate concentrations in the liver and blood of several mammalian species, including human, have been determined. However, the large tissue mass of skeletal muscle had not been generally considered in the analysis of the NO cycle, in spite of its long-known presence of significant levels of active neuronal NOS (nNOS or NOS1). We hypothesized that skeletal muscle participates in the NO cycle and, due to its NO oxidizing heme protein, oxymyoglobin, has high concentrations of nitrate ions. We measured nitrite and nitrate concentrations in rat and mouse leg skeletal muscle and found unusually high concentrations of nitrate but similar levels of nitrite, when compared to the liver. The nitrate reservoir in muscle is easily accessible via the bloodstream and therefore nitrate is available for transport to internal organs where it can be reduced to nitrite and NO. Nitrate levels in skeletal muscle and blood in nNOS−/− mice were dramatically lower when compared with controls, which support further our hypothesis. Although the nitrate reductase activity of xanthine oxidoreductase in muscle is less than that of liver, the residual activity in muscle could be very important in view of its total mass and the high basal level of nitrate. We suggest that skeletal muscle participates in overall NO metabolism, serving as a nitrate reservoir, for direct formation of nitrite and NO, and for determining levels of nitrate

  16. Nitrate Enhanced Microbial Cr(VI) Reduction-Final Report

    SciTech Connect

    John F. Stolz

    2011-06-15

    proteins (Gmet_2478 and Gmet_1641) were up-regulated with exposure to Cr(VI). A nine-heme cytochrome C was purified that could reduce nitrite and could be oxidized by Cr(VI). For D. desulfuricans, we found that confirmed that Cr(VI) induced a prolonged lag period when Cr(VI) was reduced. Over three hundred proteins were unequivocally identified by LC/MS-MS and a significant number of down-regulated proteins for which the levels were changed >2 fold compared to control. Sulfite reductase levels were similar, however, nitrate and nitrite reductase were down-regulated. The supernatant of spent cultures was found to contain a filterable, heat stable compound that rapidly reduced Cr(VI). In addition, desulfoviridin was purified from nitrate grown cells and shown to have nitrite reductase activity that was inhibited by Cr(VI). For S. barnesii, periplasmic nitrate reductase (Nap), nitrite reductase (Nrf), and the metalloid reductase (Rar) were purified and characterized. The supernatant of spent cultures was also found to contain a filterable, heat stable compound that rapidly reduced Cr(VI) but that Rar also reduced Cr(VI). Our results from specific aims 1 through 3 indicate that for G. metallireducens, Cr(VI) inhibits nitrate respiration as it oxidizes cytochromes involved in nitrate respiration. Iron reduction is apparently not affected and the inhibitory affects of Cr(VI) may be attenuated by the addition of sufficient Fe(III) to generate Fe(II) that abiotically reduces the chromium. For S. barnesii, although the enzyme assays indicate that the components of the respiratory pathway for nitrate (e.g. Nap and Nrf) are inhibited by chromate, the organism has a mechanism to prevent this from actually occurring. Our current hypothesis is that the non-specific metalloid reductase (Rar) is providing resistance by reducing the Cr(VI). The strategy here would be to enhance its growth and metabolism in the natural setting. Lactate is a suitable electron donor for S. barnesii but other

  17. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    PubMed

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. PMID:25150521

  18. Nitrates

    MedlinePlus

    ... or interactions with other medicines and vitamin or herbal supplements. This information should not be used as medical ... your doctor about every medicine and vitamin or herbal supplement that you are taking, so he or she ...

  19. Phylogenomics of Mycobacterium Nitrate Reductase Operon.

    PubMed

    Huang, Qinqin; Abdalla, Abualgasim Elgaili; Xie, Jianping

    2015-07-01

    NarGHJI operon encodes a nitrate reductase that can reduce nitrate to nitrite. This process enhances bacterial survival by nitrate respiration under anaerobic conditions. NarGHJI operon exists in many bacteria, especially saprophytic bacteria living in soil which play a key role in the nitrogen cycle. Most actinomycetes, including Mycobacterium tuberculosis, possess NarGHJI operons. M. tuberculosis is a facultative intracellular pathogen that expands in macrophages and has the ability to persist in a non-replicative form in granuloma lifelong. Nitrogen and nitrogen compounds play crucial roles in the struggle between M. tuberculosis and host. M. tuberculosis can use nitrate as a final electron acceptor under anaerobic conditions to enhance its survival. In this article, we reviewed the mechanisms regulating nitrate reductase expression and affecting its activity. Potential genes involved in regulating the nitrate reductase expression in M. tuberculosis were identified. The conserved NarG might be an alternative mycobacterium taxonomic marker. PMID:25980349

  20. Applicability of anaerobic nitrate-dependent Fe(II) oxidation to microbial enhanced oil recovery (MEOR).

    PubMed

    Zhu, Hongbo; Carlson, Han K; Coates, John D

    2013-08-01

    Microbial processes that produce solid-phase minerals could be judiciously applied to modify rock porosity with subsequent alteration and improvement of floodwater sweep in petroleum reservoirs. However, there has been little investigation of the application of this to enhanced oil recovery (EOR). Here, we investigate a unique approach of altering reservoir petrology through the biogenesis of authigenic rock minerals. This process is mediated by anaerobic chemolithotrophic nitrate-dependent Fe(II)-oxidizing microorganisms that precipitate iron minerals from the metabolism of soluble ferrous iron (Fe(2+)) coupled to the reduction of nitrate. This mineral biogenesis can result in pore restriction and reduced pore throat diameter. Advantageously and unlike biomass plugs, these biominerals are not susceptible to pressure or thermal degradation. Furthermore, they do not require continual substrate addition for maintenance. Our studies demonstrate that the biogenesis of insoluble iron minerals in packed-bed columns results in effective hydrology alteration and homogenization of heterogeneous flowpaths upon stimulated microbial Fe(2+) biooxidation. We also demonstrate almost 100% improvement in oil recovery from hydrocarbon-saturated packed-bed columns as a result of this metabolism. These studies represent a novel departure from traditional microbial EOR approaches and indicate the potential for nitrate-dependent Fe(2+) biooxidation to improve volumetric sweep efficiency and enhance both the quality and quantity of oil recovered. PMID:23799785

  1. Photochemistry of nitrate ion in acetonitrile

    NASA Astrophysics Data System (ADS)

    Meera, N.; Ramamurthy, P.

    1988-12-01

    The photochemistry of cobalt(II) nitrate in acetonitrile is investigated using steady-state and flash photolysis techniques. Formation of NO 3• radical has been observed as an intermediate by direct photolysis of nitrate ion and the reaction of the nitrate radical with the solvent is observed as a transient absorption around 600 nm in air-equilibrated acetonitrile. Nitrite ion forms as a product through a collision electron transfer complex intermediate.

  2. Iron supply and demand in the upper ocean

    SciTech Connect

    Fung, I.Y.; Meyn, S.K.; Tegen, I.; Doney, S.C.; John, J.; Bishop, J.

    1999-09-29

    Iron is hypothesized to be a limiting micronutrient for ocean primary production. This paper presents an analysis of the iron budget in the upper ocean. The global distribution of annual iron assimilation by phytoplankton was estimated from distributions of satellite-derived oceanic primary production and measured (Fe:C)(cellular) ratios. The distributions of iron supply by upwelling/mixing and aeolian deposition were obtained by applying (Fe:NO3)(dissolved) ratios to the nitrate supply and by assuming the soluble fraction of mineral aerosols. A lower bound on the rate of iron recycling in the photic zone was estimated as the difference between iron assimilation and supply. Global iron assimilation by phytoplankton for the open ocean was estimated to be 12 x 10(9) mol Fe yr(-1). Atmospheric deposition of total Fe is estimated to be 96 x 10(9) mol Fe yr(-1) in the open ocean, with the soluble Fe fraction ranging between 1 and 10 percent (or 1-10 x 10(9) mol Fe yr(-1)). By comparison, the upwelling/entrainment supply of dissolved Fe to the upper ocean is small, similar to 0.7 x 10(9) mol Fe yr(-1). Uncertainties in the aeolian flux and assimilation may be as large as a factor of 5-10 but remain difficult to quantify, as information is limited about the form and transformation of iron from the soil to phytoplankton incorporation. An iron stress index, relating the (Fe:N) demand to the (Fe:N) supply, confirms the production in the high-nitrate low-chlorophyll regions is indeed limited by iron availability.

  3. Trend Analyses of Nitrate in Danish Groundwater

    NASA Astrophysics Data System (ADS)

    Hansen, B.; Thorling, L.; Dalgaard, T.; Erlandsen, M.

    2012-04-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded in decreasing the N surplus by 40% since the mid 1980s while at the same time maintaining crop yields and increasing the animal production of especially pigs. Trend analyses prove that the youngest (0-15 years old) oxic groundwater shows more pronounced significant downward nitrate trends (44%) than the oldest (25-50 years old) oxic groundwater (9%). This amounts to clear evidence of the effect of reduced nitrate leaching on groundwater nitrate concentrations in Denmark. Are the Danish groundwater monitoring strategy obtimal for detection of nitrate trends? Will the nitrate concentrations in Danish groundwater continue to decrease or are the Danish nitrate concentration levels now appropriate according to the Water Framework Directive?

  4. Groundwater nitrate contamination: Factors and indicators

    PubMed Central

    Wick, Katharina; Heumesser, Christine; Schmid, Erwin

    2012-01-01

    Identifying significant determinants of groundwater nitrate contamination is critical in order to define sensible agri-environmental indicators that support the design, enforcement, and monitoring of regulatory policies. We use data from approximately 1200 Austrian municipalities to provide a detailed statistical analysis of (1) the factors influencing groundwater nitrate contamination and (2) the predictive capacity of the Gross Nitrogen Balance, one of the most commonly used agri-environmental indicators. We find that the percentage of cropland in a given region correlates positively with nitrate concentration in groundwater. Additionally, environmental characteristics such as temperature and precipitation are important co-factors. Higher average temperatures result in lower nitrate contamination of groundwater, possibly due to increased evapotranspiration. Higher average precipitation dilutes nitrates in the soil, further reducing groundwater nitrate concentration. Finally, we assess whether the Gross Nitrogen Balance is a valid predictor of groundwater nitrate contamination. Our regression analysis reveals that the Gross Nitrogen Balance is a statistically significant predictor for nitrate contamination. We also show that its predictive power can be improved if we account for average regional precipitation. The Gross Nitrogen Balance predicts nitrate contamination in groundwater more precisely in regions with higher average precipitation. PMID:22906701

  5. Fast photolysis of carbonyl nitrates from isoprene

    NASA Astrophysics Data System (ADS)

    Müller, J.-F.; Peeters, J.; Stavrakou, T.

    2014-03-01

    Photolysis is shown to be a major sink for isoprene-derived carbonyl nitrates, which constitute an important component of the total organic nitrate pool over vegetated areas. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of α-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as a likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photo rates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methyl vinyl ketone nitrates strongly supports our assumptions of large cross-section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~ 3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  6. Fast photolysis of carbonyl nitrates from isoprene

    NASA Astrophysics Data System (ADS)

    Müller, J.-F.; Peeters, J.; Stavrakou, T.

    2013-11-01

    Photolysis is shown to be a major sink for isoprene-derived carbonyl nitrates, which constitute an important component of the total organic nitrate pool over vegetated areas. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of α-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections, and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as the likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photorates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methylvinylketone nitrates strongly supports our assumptions of large cross section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  7. Sampling of nitrates in ambient air

    NASA Astrophysics Data System (ADS)

    Appel, B. R.; Tokiwa, Y.; Haik, M.

    Methods for the measurement of nitric acid, particulate nitrate and total inorganic nitrate (i.e. HNO 3 plus particulate nitrate) are compared using atmospheric samples from the Los Angeles Basin. Nitric acid was measured by (1) the nitrate collected on nylon or NaCl-impregnated cellulose filters after removal of particulate matter with Teflon prefilters, (2) long-path Fourier transform infrared spectroscopy (FTIR) performed by a collaborating investigator, and (3) the difference between total inorganic nitrate (TIN) and particulate nitrate (PN). TIN was measured by the sum of the nitrate collected with a Teflon prefilter and nylon or NaCl-impregnated after-filter. PN was measured by the nitrate able to penetrate a diffusion dénuder coated to remove acidic gases (e.g. HNO 3). Losses of nitrate from Teflon prefilters were determined by comparing the nitrate retained by these filters to the nitrate penetrating the acid gas denuder. TIN and the nitrate collected with glass fiber filters were compared to assess the origin of the artifact particulate nitrate on the latter. Nitric acid measurements using nylon or NaCl-impregnated after-filters were substantially higher than those by the difference technique. This correlated with losses of nitrate from the Teflon prefilters, which exceeded 50 % at high ambient temperature and low relative humidity. Nitric acid by the difference method exceeded that by FTIR by, on average, 20 %. Thus errors inferred in HNO 3 measurements by comparison to the difference measurements are considered minimum values. The high values for HNO 3 by the difference method are consistent with the partial loss of PN in the acid gas denuder. However, no loss of 0.1 μm to 3 μm diameter NH 4NO 3 particles was observed. Thus, if significant, such loss is restricted to coarse particulate nitrate. Heating the filter samplers was shown to increase sampling errors. Nitrate results obtained in short-term, low volume sampling with Gelman A glass fiber

  8. Photochemistry of Nitrate Adsorbed on Mineral Dust

    NASA Astrophysics Data System (ADS)

    Gankanda, A.; Grassian, V. H.

    2013-12-01

    Mineral dust particles in the atmosphere are often associated with adsorbed nitrate from heterogeneous reactions with nitrogen oxides including HNO3 and NO2. Although nitrate ion is a well-studied chromophore in natural waters, the photochemistry of adsorbed nitrate on mineral dust particles is yet to be fully explored. In this study, wavelength dependence of the photochemistry of adsorbed nitrate on different model components of mineral dust aerosol has been investigated using transmission FTIR spectroscopy. Al2O3, TiO2 and NaY zeolite were used as model systems to represent non-photoactive oxides, photoactive semiconductor oxides and porous materials respectively, present in mineral dust aerosol. In this study, adsorbed nitrate is irradiated with 254 nm, 310 nm and 350 nm narrow band light. In the irradiation with narrow band light, NO2 is the only detectable gas-phase product formed from nitrate adsorbed on Al2O3 and TiO2. The NO2 yield is highest at 310 nm for both Al2O3 and TiO2. Unlike Al2O3 and TiO2, in zeolite, adsorbed nitrate photolysis to nitrite is observed only at 310 nm during narrow band irradiation. Moreover gas phase products were not detected during nitrate photolysis in zeolite at all three wavelengths. The significance of these differences as related to nitrate photochemistry on different mineral dust components will be highlighted.

  9. Ferrous iron content of intravenous iron formulations.

    PubMed

    Gupta, Ajay; Pratt, Raymond D; Crumbliss, Alvin L

    2016-06-01

    The observed biological differences in safety and efficacy of intravenous (IV) iron formulations are attributable to physicochemical differences. In addition to differences in carbohydrate shell, polarographic signatures due to ferric iron [Fe(III)] and ferrous iron [Fe(II)] differ among IV iron formulations. Intravenous iron contains Fe(II) and releases labile iron in the circulation. Fe(II) generates toxic free radicals and reactive oxygen species and binds to bacterial siderophores and other in vivo sequestering agents. To evaluate whether differences in Fe(II) content may account for some observed biological differences between IV iron formulations, samples from multiple lots of various IV iron formulations were dissolved in 12 M concentrated HCl to dissociate and release all iron and then diluted with water to achieve 0.1 M HCl concentration. Fe(II) was then directly measured using ferrozine reagent and ultraviolet spectroscopy at 562 nm. Total iron content was measured by adding an excess of ascorbic acid to reduce Fe(III) to Fe(II), and Fe(II) was then measured by ferrozine assay. The Fe(II) concentration as a proportion of total iron content [Fe(III) + Fe(II)] in different lots of IV iron formulations was as follows: iron gluconate, 1.4 and 1.8 %; ferumoxytol, 0.26 %; ferric carboxymaltose, 1.4 %; iron dextran, 0.8 %; and iron sucrose, 10.2, 15.5, and 11.0 % (average, 12.2 %). The average Fe(II) content in iron sucrose was, therefore, ≥7.5-fold higher than in the other IV iron formulations. Further studies are needed to investigate the relationship between Fe(II) content and increased risk of oxidative stress and infections with iron sucrose. PMID:26956439

  10. Phase Diagram of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-06-01

    Ammonium Nitrate (AN) has often been subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood - resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety, in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN, in different chemical environments, at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 15 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 673 K. The present study has been supported by the U.S. DHS under Award Number 2008-ST-061-ED0001.

  11. Peroxyacetyl nitrate and peroxypropionyl nitrate in Porto Alegre, Brazil

    NASA Astrophysics Data System (ADS)

    Grosjean, Eric; Grosjean, Daniel; Woodhouse, Luis F.; Yang, Yueh-Jiun

    For 41 days between 25 May 1996 and 27 March 1997, peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) have been measured by electron capture gas chromatography at Santa Rita near Porto Alegre, RS, Brazil, where light-duty vehicles used either ethanol or a gasoline-MTBE blend. Daily maximum concentrations ranged from 0.19 to 6.67 ppb for PAN and 0.06 to 0.72 ppb for PPN. Linear regression of maximum PPN vs. maximum PAN yielded a slope of 0.105±0.004 ( R2=0.974). Diurnal variations of ambient PAN often followed those of ozone with respect to time of day but not with respect to amplitude. This was reflected in the large relative standard deviations associated with the study-averaged PAN/ozone concentration ratio, 0.037±0.105 (ppb/ppb, n=789) and the maximum PAN/maximum ozone concentration ratio, 0.028±0.015 (ppb/ppb, range 0.005-0.078, n=41). On several days PAN accounted for large fractions of the total ambient NO x in the late morning and afternoon hours, e.g., PAN/NO x⩽0.58 and PAN/(NO x-NO) ⩽0.76 on 27 March 1997. The amount of PAN lost by thermal decomposition (TPAN) was comparable in magnitude to that present in ambient air. The ratios TPAN/(PAN+TPAN) were up to 0.53, 0.67 and 0.64 during the warm afternoons of 25, 26 and 27 March 1997, respectively. The highest calculated value of TPAN was 5.6 ppb on 27 March 1997. On that day the 24 h-averaged value of TPAN (1.01 ppb) was nearly the same as that of PAN (1.09 ppb). Using computer kinetic modeling (SAPRC 97 chemical mechanism) and sensitivity analysis of VOC incremental reactivity, we ranked VOC present in Porto Alegre ambient air for their importance as precursors to PAN and to PPN. Using as input data the averages of VOC concentrations measured in downtown Porto Alegre during the ca. 1 yr period March 1996-April 1997, we calculated that the most important precursors to PAN and PPN were the SAPRC 97 model species ARO2 (which includes the aromatics xylenes, trimethylbenzenes, ethyltoluenes, etc

  12. Hepatic iron metabolism.

    PubMed

    Anderson, Gregory J; Frazer, David M

    2005-11-01

    The liver performs three main functions in iron homeostasis. It is the major site of iron storage, it regulates iron traffic into and around the body through its production of the peptide hepcidin, and it is the site of synthesis of major proteins of iron metabolism such as transferrin and ceruloplasmin. Most of the iron that enters the liver is derived from plasma transferrin under normal circumstances, and transferrin receptors 1 and 2 play important roles in this process. In pathological situations, non-transferrin-bound iron, ferritin, and hemoglobin/haptoglobin and heme/hemopexin complexes assume greater importance in iron delivery to the organ. Iron is stored in the liver as ferritin and, with heavy iron loading, as hemosiderin. The liver can divest itself of iron through the plasma membrane iron exporter ferroportin 1, a process that also requires ceruloplasmin. Hepcidin can regulate this iron release through its interaction with ferroportin. PMID:16315136

  13. Iron Sucrose Injection

    MedlinePlus

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due to too little iron) in people with chronic kidney disease (damage to the kidneys which may worsen over ...

  14. Removal of Nitrate from Groundwater by Cyanobacteria: Quantitative Assessment of Factors Influencing Nitrate Uptake

    PubMed Central

    Hu, Qiang; Westerhoff, Paul; Vermaas, Wim

    2000-01-01

    The feasibility of biologically removing nitrate from groundwater was tested by using cyanobacterial cultures in batch mode under laboratory conditions. Results demonstrated that nitrate-contaminated groundwater, when supplemented with phosphate and some trace elements, can be used as growth medium supporting vigorous growth of several strains of cyanobacteria. As cyanobacteria grew, nitrate was removed from the water. Of three species tested, Synechococcus sp. strain PCC 7942 displayed the highest nitrate uptake rate, but all species showed rapid removal of nitrate from groundwater. The nitrate uptake rate increased proportionally with increasing light intensity up to 100 μmol of photons m−2 s−1, which parallels photosynthetic activity. The nitrate uptake rate was affected by inoculum size (i.e., cell density), fixed-nitrogen level in the cells in the inoculum, and aeration rate, with vigorously aerated, nitrate-sufficient cells in mid-logarithmic phase having the highest long-term nitrate uptake rate. Average nitrate uptake rates up to 0.05 mM NO3− h−1 could be achieved at a culture optical density at 730 nm of 0.5 to 1.0 over a 2-day culture period. This result compares favorably with those reported for nitrate removal by other cyanobacteria and algae, and therefore effective nitrate removal from groundwater using this organism could be anticipated on large-scale operations. PMID:10618214

  15. REDUCTION OF NITRATE THROUGH THE USE OF NITRATE REDUCTASE FOR THE SMARTCHEM AUTOANALYZER

    EPA Science Inventory

    The standard method for the determination of nitrate in drinking water, USEPA Method 353.2 “Determination of Nitrate-Nitrite by Automated Colorimetry,” employs cadmium as the reductant for the conversion of nitrate to nitrite. The nitrite is then analyzed colorimetrically by way ...

  16. Potential nitrate pollution of groundwater in Germany: A supraregional differentiated model

    NASA Astrophysics Data System (ADS)

    Wendland, F.; Albert, H.; Bach, M.; Schmidt, R.

    1994-08-01

    Implemented on behalf of the Federal Ministry for Research and Technology (BMFT), a model is developed to trace the nutrient flow of nitrate in the soil and the groundwater on a supraregional scale. Research work is intended to indicate regionally differentiated hazardous potentials and thereby provide a basis for recommending comprehensive measures to protect groundwater in Germany. The adaption of the model to the hydrogeological and agricultural conditions of other states is possible in principle. This article focuses on the hydrogeological model parts. A high nitrate pollution of groundwater can be expected in all regions with intensive agricultural use of the topsoil. In particular, groundwater in solid rock areas is susceptible to nitrate pollution. There a rapid groundwater turnover and thus a short residence time for the groundwater in the aquifer is typical. Oxidizing aquifer conditions usually prevail in solid rock aquifers, preventing nitrate degradation. In many loose rock areas, in contrast, the groundwater has a low flow velocity and a long residence time in the aquifer. Because of a lack of free oxygen, a complete degradation of nitrate can occur, as long as iron sulfide compounds and/or organic carbon are available in the aquifer. A more detailed presentation of the whole research work is given in Wendland et al. (1993).

  17. Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1989-01-01

    Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)

  18. Genetics Home Reference: iron-refractory iron deficiency anemia

    MedlinePlus

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  19. Nitrate uptake, nitrate reductase distribution and their relation to proton release in five nodulated grain legumes.

    PubMed

    Fan, X H; Tang, C; Rengel, Z

    2002-09-01

    Nitrate uptake, nitrate reductase activity (NRA) and net proton release were compared in five grain legumes grown at 0.2 and 2 mM nitrate in nutrient solution. Nitrate treatments, imposed on 22-d-old, fully nodulated plants, lasted for 21 d. Increasing nitrate supply did not significantly influence the growth of any of the species during the treatment, but yellow lupin (Lupinus luteus) had a higher growth rate than the other species examined. At 0.2 mM nitrate supply, nitrate uptake rates ranged from 0.6 to 1.5 mg N g(-1) d(-1) in the order: yellow lupin > field pea (Pisum sativum) > chickpea (Cicer arietinum) > narrow-leafed lupin (L angustifolius) > white lupin (L albus). At 2 mM nitrate supply, nitrate uptake ranged from 1.7 to 8.2 mg N g(-1) d(-1) in the order: field pea > chickpea > white lupin > yellow lupin > narrow-leafed lupin. Nitrate reductase activity increased with increased nitrate supply, with the majority of NRA being present in shoots. Field pea and chickpea had much higher shoot NRA than the three lupin species. When 0.2 mM nitrate was supplied, narrow-leafed lupinreleased the most H+ per unit root biomass per day, followed by yellow lupin, white lupin, field pea and chickpea. At 2 mM nitrate, narrow-leafed lupin and yellow lupin showed net proton release, whereas the other species, especially field pea, showed net OH- release. Irrespective of legume species and nitrate supply, proton release was negatively correlated with nitrate uptake and NRA in shoots, but not with NRA in roots. PMID:12234143

  20. Nitrate Reduction Functional Genes and Nitrate Reduction Potentials Persist in Deeper Estuarine Sediments. Why?

    PubMed Central

    Papaspyrou, Sokratis; Smith, Cindy J.; Dong, Liang F.; Whitby, Corinne; Dumbrell, Alex J.; Nedwell, David B.

    2014-01-01

    Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This

  1. HEALTH EFFECTS OF NITRATES IN WATER

    EPA Science Inventory

    A multi faceted study of the health effects of nitrate in drinking water using epidemiological and toxicological techniques is reported. The results of the epidemiological studies indicate that infants consuming appreciable amounts of water high in nitrates in the form of powdere...

  2. 76 FR 46907 - Ammonium Nitrate Security Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ...This proposed rule would implement anti-terrorism measures to better secure the homeland. The Department of Homeland Security would regulate the sale and transfer of ammonium nitrate pursuant to section 563 of the Fiscal Year 2008 Department of Homeland Security Appropriations Act with the purpose of preventing the use of ammonium nitrate in an act of terrorism. This proposed rule seeks......

  3. Intravesical silver nitrate for refractory hemorrhagic cystitis

    PubMed Central

    Montgomery, Brian D.; Boorjian, Stephen A.; Ziegelmann, Matthew J.; Joyce, Daniel D.; Linder, Brian J.

    2016-01-01

    Objective Hemorrhagic cystitis is a challenging clinical entity with limited evidence available to guide treatment. The use of intravesical silver nitrate has been reported, though supporting literature is sparse. Here, we sought to assess outcomes of patients treated with intravesical silver nitrate for refractory hemorrhagic cystitis. Material and methods We identified nine patients with refractory hemorrhagic cystitis treated at our institution with intravesical silver nitrate between 2000–2015. All patients had failed previous continuous bladder irrigation with normal saline and clot evacuation. Treatment success was defined as requiring no additional therapy beyond normal saline irrigation after silver nitrate instillation prior to hospital discharge. Results Median patient age was 80 years (IQR 73, 82). Radiation was the most common etiology for hemorrhagic cystitis 89% (8/9). Two patients underwent high dose (0.1%–0.4%) silver nitrate under anesthesia, while the remaining seven were treated with doses from 0.01% to 0.1% via continuous bladder irrigation for a median of 3 days (range 2–4). All nine patients (100%) had persistent hematuria despite intravesical silver nitrate therapy, requiring additional interventions and red blood cell transfusion during the hospitalization. There were no identified complications related to intravesical silver nitrate instillation. Conclusion Although well tolerated, we found that intravesical silver nitrate was ineffective for bleeding control, suggesting a limited role for this agent in the management of patients with hemorrhagic cystitis.

  4. 76 FR 62311 - Ammonium Nitrate Security Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... FR 64280 (advance notice of proposed rulemaking); 76 FR 46908 (notice of proposed rulemaking... Program Web site in mid-October at http://www.dhs.gov/ files/ ] programs/ammonium-nitrate-security-program...; ] DEPARTMENT OF HOMELAND SECURITY Office of the Secretary 6 CFR Part 31 RIN 1601-AA52 Ammonium Nitrate...

  5. Dietary Nitrate, Nitric Oxide, and Cardiovascular Health.

    PubMed

    Bondonno, Catherine P; Croft, Kevin D; Hodgson, Jonathan M

    2016-09-01

    Emerging evidence strongly suggests that dietary nitrate, derived in the diet primarily from vegetables, could contribute to cardiovascular health via effects on nitric oxide (NO) status. NO plays an essential role in cardiovascular health. It is produced via the classical L-arginine-NO-synthase pathway and the recently discovered enterosalivary nitrate-nitrite-NO pathway. The discovery of this alternate pathway has highlighted dietary nitrate as a candidate for the cardioprotective effect of a diet rich in fruit and vegetables. Clinical trials with dietary nitrate have observed improvements in blood pressure, endothelial function, ischemia-reperfusion injury, arterial stiffness, platelet function, and exercise performance with a concomitant augmentation of markers of NO status. While these results are indicative of cardiovascular benefits with dietary nitrate intake, there is still a lingering concern about nitrate in relation to methemoglobinemia, cancer, and cardiovascular disease. It is the purpose of this review to present an overview of NO and its critical role in cardiovascular health; to detail the observed vascular benefits of dietary nitrate intake through effects on NO status as well as to discuss the controversy surrounding the possible toxic effects of nitrate. PMID:25976309

  6. Intermittent nitrate therapy in angina pectoris.

    PubMed

    Reichek, N

    1989-05-01

    The rationale for intermittent nitrate therapy is based on the pathophysiology of nitroglycerin tolerance and the diurnal pattern of symptoms encountered in patients with chronic stable angina. Nitrate tolerance was first observed as tolerance to headache in industrial toxicology. When long-acting nitrates for chronic stable angina became available, similar tolerance was observed but not thought to indicate tolerance to a haemodynamic or therapeutic effect. Subsequently, Needleman and coworkers (J Pharmacol Exp Ther 1973; 187: 324) defined in vitro the phenomenology of vascular smooth muscle tolerance to nitroglycerin-induced relaxation and reversibility was demonstrated. More recently, a potential molecular explanation for nitrate tolerance has been proposed: sulfhydryl group depletion in smooth muscle cells resulting in reduced formation of S-nitrosothiols on nitrate exposure with resultant reduced activation of cyclic GMP. In vivo, other mechanisms, including fluid retention and neurohumoral responses to vasodilation may also be important. The first demonstration that nitrate tolerance affected the therapeutic efficacy of long-acting nitrates was reported by Parker and coworkers in 1982 (Circulation 1987; 76: 572-6). This landmark study was not given much credence at the time because it appeared to be in conflict with earlier reports. However, in the past 6 years development of tolerance has been demonstrated with a variety of oral nitrates, transdermal nitroglycerin and intravenous nitroglycerin. When plasma concentrations are held constant, tolerance to antianginal effects is demonstrable within 24h, but varies markedly in severity from individual to individual.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2501096

  7. COMPARTMENTAL MODEL OF NITRATE RETENTION IN STREAMS

    EPA Science Inventory

    A compartmental modeling approach is presented to route nitrate retention along a cascade of stream reach sections. A process transfer function is used for transient storage equations with first order reaction terms to represent nitrate uptake in the free stream, and denitrifica...

  8. Aerosol-spray diverse mesoporous metal oxides from metal nitrates

    PubMed Central

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  9. Aerosol-spray diverse mesoporous metal oxides from metal nitrates.

    PubMed

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  10. The contributions of nitrate uptake and efflux to isotope fractionation during algal nitrate assimilation

    NASA Astrophysics Data System (ADS)

    Karsh, K. L.; Trull, T. W.; Sigman, D. M.; Thompson, P. A.; Granger, J.

    2014-05-01

    In order to strengthen environmental application of nitrate N and O isotopes, we measured the N and O isotopic fractionation associated with cellular nitrate uptake and efflux in the nitrate-assimilating marine diatom Thalassiosira weissflogii. We isolated nitrate uptake and efflux from nitrate reduction by growing the cells in the presence of tungsten, which substitutes for molybdenum in assimilatory nitrate reductase, yielding an inactive enzyme. After growth on ammonium and then N starvation, cells were exposed to nitrate. Numerical models fit to the evolution of intracellular nitrate concentration and N and O isotopic composition yielded distinct N isotope effects (15ɛ) for nitrate uptake and nitrate efflux (2.0 ± 0.3‰ and 1.2 ± 0.4‰, respectively). The O isotope effects (18ɛ) for nitrate uptake and nitrate efflux were indistinguishable (2.8 ± 0.6‰), yielding a ratio of O to N isotopic fractionation for uptake of 1.4 ± 0.4 and for efflux of 2.3 ± 0.9. The 15ɛ for nitrate uptake can account for at most 40% of the organism-level N isotope effect (15ɛorg) measured in laboratory studies of T. weissflogii and in the open ocean (typically 5‰ or greater). This observation supports previous evidence that most isotope fractionation during nitrate assimilation is due to intracellular nitrate reduction, with nitrate efflux allowing the signal to be communicated to the environment. An O to N fractionation ratio (18ɛorg:15ɛorg) of ˜1 has been measured for nitrate assimilation in algal cultures and linked to the N and O isotope effects of nitrate reductase. Our results suggest that the ratios of O to N fractionation for both nitrate uptake and efflux may be distinct from a ratio of 1, to a degree that could cause the net 18ɛorg:15ɛorg to rise appreciably above 1 when 15ɛorg is low (e.g., yielding a ratio of 1.1 when 15ɛorg is 5‰). However, field and culture studies have consistently measured nearly equivalent fractionation of N and O isotopes in

  11. Vinegar-amended anaerobic biosand filter for the removal of arsenic and nitrate from groundwater.

    PubMed

    Snyder, Kathryn V; Webster, Tara M; Upadhyaya, Giridhar; Hayes, Kim F; Raskin, Lutgarde

    2016-04-15

    The performance of a vinegar-amended anaerobic biosand filter was evaluated for future application as point-of-use water treatment in rural areas for the removal of arsenic and nitrate from groundwater containing common ions. Due to the importance of sulfate and iron in arsenic removal and their variable concentrations in groundwater, influent sulfate and iron concentrations were varied. Complete removal of influent nitrate (50 mg/L) and over 50% removal of influent arsenic (200 μg/L) occurred. Of all conditions tested, the lowest median effluent arsenic concentration was 88 μg/L. Iron removal occurred completely when 4 mg/L was added, and sulfate concentrations were lowered to a median concentration <2 mg/L from influent concentrations of 22 and 50 mg/L. Despite iron and sulfate removal and the establishment of reducing conditions, arsenic concentrations remained above the World Health Organization's arsenic drinking water standard. Further research is necessary to determine if anaerobic biosand filters can be improved to meet the arsenic drinking water standard and to evaluate practical implementation challenges. PMID:26871878

  12. Nitrate-Induced Genes in Tomato Roots. Array Analysis Reveals Novel Genes That May Play a Role in Nitrogen Nutrition1[w

    PubMed Central

    Wang, Yi-Hong; Garvin, David F.; Kochian, Leon V.

    2001-01-01

    A subtractive tomato (Lycopersicon esculentum) root cDNA library enriched in genes up-regulated by changes in plant mineral status was screened with labeled mRNA from roots of both nitrate-induced and mineral nutrient-deficient (−nitrogen [N], −phosphorus, −potassium [K], −sulfur, −magnesium, −calcium, −iron, −zinc, and −copper) tomato plants. A subset of cDNAs was selected from this library based on mineral nutrient-related changes in expression. Additional cDNAs were selected from a second mineral-deficient tomato root library based on sequence homology to known genes. These selection processes yielded a set of 1,280 mineral nutrition-related cDNAs that were arrayed on nylon membranes for further analysis. These high-density arrays were hybridized with mRNA from tomato plants exposed to nitrate at different time points after N was withheld for 48 h, for plants that were grown on nitrate/ammonium for 5 weeks prior to the withholding of N. One hundred-fifteen genes were found to be up-regulated by nitrate resupply. Among these genes were several previously identified as nitrate responsive, including nitrate transporters, nitrate and nitrite reductase, and metabolic enzymes such as transaldolase, transketolase, malate dehydrogenase, asparagine synthetase, and histidine decarboxylase. We also identified 14 novel nitrate-inducible genes, including: (a) water channels, (b) root phosphate and K+ transporters, (c) genes potentially involved in transcriptional regulation, (d) stress response genes, and (e) ribosomal protein genes. In addition, both families of nitrate transporters were also found to be inducible by phosphate, K, and iron deficiencies. The identification of these novel nitrate-inducible genes is providing avenues of research that will yield new insights into the molecular basis of plant N nutrition, as well as possible networking between the regulation of N, phosphorus, and K nutrition. PMID:11553762

  13. Iron-refractory iron deficiency anemia.

    PubMed

    Yılmaz Keskin, Ebru; Yenicesu, İdil

    2015-03-01

    Iron is essential for life because it is indispensable for several biological reactions, such as oxygen transport, DNA synthesis, and cell proliferation. Over the past few years, our understanding of iron metabolism and its regulation has changed dramatically. New disorders of iron metabolism have emerged, and the role of iron as a cofactor in other disorders has begun to be recognized. The study of genetic conditions such as hemochromatosis and iron-refractory iron deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited to improve treatment of both genetic and acquired iron disorders. IRIDA is caused by mutations in TMPRSS6, the gene encoding matriptase-2, which downregulates hepcidin expression under conditions of iron deficiency. The typical features of this disorder are hypochromic, microcytic anemia with a very low mean corpuscular volume of erythrocytes, low transferrin saturation, no (or inadequate) response to oral iron, and only a partial response to parenteral iron. In contrast to classic iron deficiency anemia, serum ferritin levels are usually low-normal, and serum or urinary hepcidin levels are inappropriately high for the degree of anemia. Although the number of cases reported thus far in the literature does not exceed 100, this disorder is considered the most common of the "atypical" microcytic anemias. The aim of this review is to share the current knowledge on IRIDA and increase awareness in this field. PMID:25805669

  14. Nitrate removal from drinking water -- Review

    SciTech Connect

    Kapoor, A.; Viraraghavan, T.

    1997-04-01

    Nitrate concentrations in surface water and especially in ground water have increased in Canada, the US, Europe, and other areas of the world. This trend has raised concern because nitrates cause methemoglobiinemia in infants. Several treatment processes including ion exchange, biological denitrification, chemical denitrification, reverse osmosis, electrodialysis, and catalytic denitrification can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that ion exchange and biological denitrification are more acceptable for nitrate removal than reverse osmosis. Ion exchange is more viable for ground water while biological denitrification is the preferred alternative for surface water. This paper reviews the developments in the field of nitrate removal processes.

  15. PREPARATION OF DIBASIC ALUMINUM NITRATE

    DOEpatents

    Gresky, A.T.; Nurmi, E.O.; Foster, D.L.; Wischow, R.P.; Savolainen, J.E.

    1960-04-01

    A method is given for the preparation and recovery of basic aluminum nltrates having an OH: Al ratio of at least two, comprising two steps. First, metallic aluminum is dissolved in aqueous Al(NO/sub 3/)/sub 3/, in the presence of a small quantity of elemental or ionic mercury, to increase its Al: NO/sub 3/ ratio into the range 1 to 1.2. The resulting aqueous solution is then added to an excess of a special organic solvent, typically a mixture of five parts methanol and six parts diethyl ether, whereupon the basic aluminum nitrate, e.g. Al/sub 6/(OH)/sub 13/-(NO/sub 3/)/sub 5/, recoverably precipitates.

  16. 70. INTERIOR VIEW OF AMMONIUM NITRATE HOUSE, LOOKING AT AMMONIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. INTERIOR VIEW OF AMMONIUM NITRATE HOUSE, LOOKING AT AMMONIUM NITRATE IN STORAGE. APRIL 18, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  17. Efficient syntheses of climate relevant isoprene nitrates and (1R,5S)-(-)-myrtenol nitrate.

    PubMed

    Bew, Sean P; Hiatt-Gipson, Glyn D; Mills, Graham P; Reeves, Claire E

    2016-01-01

    Here we report the chemoselective synthesis of several important, climate relevant isoprene nitrates using silver nitrate to mediate a 'halide for nitrate' substitution. Employing readily available starting materials, reagents and Horner-Wadsworth-Emmons chemistry the synthesis of easily separable, synthetically versatile 'key building blocks' (E)- and (Z)-3-methyl-4-chlorobut-2-en-1-ol as well as (E)- and (Z)-1-((2-methyl-4-bromobut-2-enyloxy)methyl)-4-methoxybenzene has been achieved using cheap, 'off the shelf' materials. Exploiting their reactivity we have studied their ability to undergo an 'allylic halide for allylic nitrate' substitution reaction which we demonstrate generates (E)- and (Z)-3-methyl-4-hydroxybut-2-enyl nitrate, and (E)- and (Z)-2-methyl-4-hydroxybut-2-enyl nitrates ('isoprene nitrates') in 66-80% overall yields. Using NOESY experiments the elucidation of the carbon-carbon double bond configuration within the purified isoprene nitrates has been established. Further exemplifying our 'halide for nitrate' substitution chemistry we outline the straightforward transformation of (1R,2S)-(-)-myrtenol bromide into the previously unknown monoterpene nitrate (1R,2S)-(-)-myrtenol nitrate. PMID:27340495

  18. Nitrate Transport, Sensing, and Responses in Plants.

    PubMed

    O'Brien, José A; Vega, Andrea; Bouguyon, Eléonore; Krouk, Gabriel; Gojon, Alain; Coruzzi, Gloria; Gutiérrez, Rodrigo A

    2016-06-01

    Nitrogen (N) is an essential macronutrient that affects plant growth and development. N is an important component of chlorophyll, amino acids, nucleic acids, and secondary metabolites. Nitrate is one of the most abundant N sources in the soil. Because nitrate and other N nutrients are often limiting, plants have developed sophisticated mechanisms to ensure adequate supply of nutrients in a variable environment. Nitrate is absorbed in the root and mobilized to other organs by nitrate transporters. Nitrate sensing activates signaling pathways that impinge upon molecular, metabolic, physiological, and developmental responses locally and at the whole plant level. With the advent of genomics technologies and genetic tools, important advances in our understanding of nitrate and other N nutrient responses have been achieved in the past decade. Furthermore, techniques that take advantage of natural polymorphisms present in divergent individuals from a single species have been essential in uncovering new components. However, there are still gaps in our understanding of how nitrate signaling affects biological processes in plants. Moreover, we still lack an integrated view of how all the regulatory factors identified interact or crosstalk to orchestrate the myriad N responses plants typically exhibit. In this review, we provide an updated overview of mechanisms by which nitrate is sensed and transported throughout the plant. We discuss signaling components and how nitrate sensing crosstalks with hormonal pathways for developmental responses locally and globally in the plant. Understanding how nitrate impacts on plant metabolism, physiology, and growth and development in plants is key to improving crops for sustainable agriculture. PMID:27212387

  19. Flow injection spectrophotometric determination of nitrate in electrolyte of lead-acid batteries.

    PubMed

    Rocha, F R; Nóbrega, J A

    1997-12-19

    Electrolytes of lead-acid batteries can contain several impurities that reduce battery performance and lifetime. Nitrate ions are among these species because they can be reduced to ammonium in the lead electrode. In this work, an analytical method was developed to determine this anion in electrolytes of batteries used in telephone systems, in which nitrate concentration must be lower than 10 mg l(-1). The procedure consists in the reduction to nitrite in a copperized cadmium column followed by Griess's modified reaction. Due to the high sensitivity of this methodology, a large dispersion flow diagram (dispersion coefficient = 27.8) was projected. Thus, it was possible to eliminate the Schlieren effect and to obtain a NH (3)NH (+)(4) buffer in the sample zone in a suitable pH for reduction reaction (pH congruent with 8). Negative interference due to iron(III) was overcome by addition of excess iron (200 mg l(-1)). A relocatable filter was used to remove iron(III) hydroxide precipitate. This avoided adsorption on the surface of the filings and increase of back pressure. The analytical frequency is 80 measurements/h and the detection limit was estimated as 0.3 mg l(-1) in a 99.7% confidence level. A 2.2% relative standard deviation was obtained in a repeatability study (n = 10) by using a 25 mg l(-1) nitrate solution in a 3.6 mol l(-1) sulfuric acid medium. Recoveries from 95.5 to 104% were obtained by spiking 5.00 or 10.0 mg l(-1) of nitrate in samples of battery electrolyte. PMID:18967001

  20. Pseudo-constitutivity of nitrate-responsive genes in nitrate reductase mutants

    PubMed Central

    Schinko, Thorsten; Gallmetzer, Andreas; Amillis, Sotiris; Strauss, Joseph

    2013-01-01

    In fungi, transcriptional activation of genes involved in NO3- assimilation requires the presence of an inducer (nitrate or nitrite) and low intracellular concentrations of the pathway products ammonium or glutamine. In Aspergillus nidulans, the two transcription factors NirA and AreA act synergistically to mediate nitrate/nitrite induction and nitrogen metabolite derepression, respectively. In all studied fungi and in plants, mutants lacking nitrate reductase (NR) activity express nitrate-metabolizing enzymes constitutively without the addition of inducer molecules. Based on their work in A. nidulans, Cove and Pateman proposed an “autoregulation control” model for the synthesis of nitrate metabolizing enzymes in which the functional nitrate reductase molecule would act as co-repressor in the absence and as co-inducer in the presence of nitrate. However, NR mutants could simply show “pseudo-constitutivity” due to induction by nitrate which accumulates over time in NR-deficient strains. Here we examined this possibility using strains which lack flavohemoglobins (fhbs), and are thus unable to generate nitrate internally, in combination with nitrate transporter mutations (nrtA, nrtB) and a GFP-labeled NirA protein. Using different combinations of genotypes we demonstrate that nitrate transporters are functional also in NR null mutants and show that the constitutive phenotype of NR mutants is not due to nitrate accumulation from intracellular sources but depends on the activity of nitrate transporters. However, these transporters are not required for nitrate signaling because addition of external nitrate (10 mM) leads to standard induction of nitrate assimilatory genes in the nitrate transporter double mutants. We finally show that NR does not regulate NirA localization and activity, and thus the autoregulation model, in which NR would act as a co-repressor of NirA in the absence of nitrate, is unlikely to be correct. Results from this study instead suggest

  1. Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface

    SciTech Connect

    Wu, Weimin; Carley, Jack M; Green, Stefan; Luo, Jian; Kelly, Shelly D; Van Nostrand, Joy; Lowe, Kenneth Alan; Mehlhorn, Tonia L; Carroll, Sue L; Boonchayanant, Dr. Benjaporn; Loeffler, Frank E; Jardine, Philip M; Criddle, Craig

    2010-06-01

    The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then deceased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption-adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H{sub 2}S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 {mu}M.

  2. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    NASA Astrophysics Data System (ADS)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    where pH remains neutral. The "low-acid" oxidation of sulfides with nitrate as an electron acceptor has been demonstrated at the laboratory scale. In 90-day microcosm respirometry experiments, we exposed a mixture of pulverized quartz and pyrite -rich ore to natural, high-nitrate groundwater and inoculated the microcosms with a culture of aerobic and anaerobic nitrate-dependent iron and sulfur-oxidising microorganisms, which were enriched from ore, groundwater and activated waste water. Incubations were performed under both oxic and anoxic conditions, in addition to abiotic controls. Initial results show that oxidation of the sulfides under nitrate-rich and microbially enhanced conditions does produce less acid than the same material under oxic conditions, and to some degree can match the models as long as oxygen ingress can be controlled. These results are the focus of further research into how this process can be enhanced and whether it can be applied in the field. Nitrate-driven oxidation of sulfides could potentially be used as a new approach to reduce acid generation and leaching of contaminants from waste dumps, in a passive or actively managed process designed to deplete and/or ameliorate (i.e. through surface passivation) the mineralogical hazard. Developing our understanding of biological aspects of these processes may also allow testing of longer-term "bio-caps" for various tailings and dump materials.

  3. Effect of passivated iron powder on final-product distribution in Fe-supported denitrification.

    PubMed

    An, Yi; Zhang, Keqiang; Zhang, Lei; Dong, Qi

    2013-01-01

    An integrated nitrate treatment using passivated iron powder (PIP) and Alcaligenes eutrophus, which is a kind of hydrogenotrophic denitrifying bacteria, was conducted to investigate the effect of iron oxide coating on final-product distribution in hydrogenotrophic denitrification. Based on the results, the autotrophic denitrification supported by PIP could completely remove about 50 mg·L(-1) of nitrate within 4 days, and almost 80% of nitrate was changed into N2O (under acetylene blocking) without residual nitrite or ammonium. While only 53% of the nitrate was removed using acid-washed iron (AWI) instead of PIP, about 70% was converted into ammonium. Furthermore, a layer of FeOOH converted from hematite (α-Fe2O3) and magnetite (Fe3O4), which may block direct chemical nitrate reduction, was observed on the iron surface when PIP was used to support hydrogenotrophic denitrification. In addition, increasing pH from 5 to 8 increased nitrite generation from 1.19 to 4.91%, and decreased ammonium formation from 4.23 to 0%. PMID:23579818

  4. Interaction of inorganic anions with iron-mineral adsorbents in aqueous media--a review.

    PubMed

    Kumar, Eva; Bhatnagar, Amit; Hogland, William; Marques, Marcia; Sillanpää, Mika

    2014-01-01

    A number of inorganic anions (e.g., nitrate, fluoride, bromate, phosphate, and perchlorate) have been reported in alarming concentrations in numerous drinking water sources around the world. Their presence even in very low concentrations may cause serious environmental and health related problems. Due to the presence and significance of iron minerals in the natural aquatic environment and increasing application of iron in water treatment, the knowledge of the structure of iron and iron minerals and their interactions with aquatic pollutants, especially inorganic anions in water are of great importance. Iron minerals have been known since long as potential adsorbents for the removal of inorganic anions from aqueous phase. The chemistry of iron and iron minerals reactions in water is complex. The adsorption ability of iron and iron minerals towards inorganic anions is influenced by several factors such as, surface characteristics of the adsorbent (surface area, density, pore volume, porosity, pore size distribution, pHpzc, purity), pH of the solution, and ionic strength. Furthermore, the physico-chemical properties of inorganic anions (pore size, ionic radius, bulk diffusion coefficient) also significantly influence the adsorption process. The aim of this paper is to provide an overview of the properties of iron and iron minerals and their reactivity with some important inorganic anionic contaminants present in water. It also summarizes the usage of iron and iron minerals in water treatment technology. PMID:24246164

  5. Significant mixed layer nitrification in a natural iron-fertilized bloom of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Fripiat, F.; Elskens, M.; Trull, T. W.; Blain, S.; Cavagna, A.-J.; Fernandez, C.; Fonseca-Batista, D.; Planchon, F.; Raimbault, P.; Roukaerts, A.; Dehairs, F.

    2015-11-01

    Nitrification, the microbially mediated oxidation of ammonium into nitrate, is generally expected to be low in the Southern Ocean mixed layer. This paradigm assumes that nitrate is mainly provided through vertical mixing and assimilated during the vegetative season, supporting the concept that nitrate uptake is equivalent to the new primary production (i.e., primary production which is potentially available for export). Here we show that nitrification is significant (~40-80% of the seasonal nitrate uptake) in the naturally iron-fertilized bloom over the southeast Kerguelen Plateau. Hence, a large fraction of the nitrate-based primary production is regenerated, instead of being exported. It appears that nitrate assimilation (light dependent) and nitrification (partly light inhibited) are spatially separated between the upper and lower parts, respectively, of the deep surface mixed layers. These deep mixed layers, extending well below the euphotic layer, allow nitrifiers to compete with phytoplankton for the assimilation of ammonium. The high contributions of nitrification to nitrate uptake are in agreement with both low export efficiency (i.e., the percentage of primary production that is exported) and low seasonal nitrate drawdown despite high nitrate assimilation.

  6. [Iron-refractory iron deficiency anemia].

    PubMed

    Kawabata, Hiroshi

    2016-02-01

    The major causes of iron deficiency anemia (IDA) include iron loss due to bleeding, increased iron requirements, and decreased iron absorption by the intestine. The most common cause of IDA in Japanese women is iron loss during menstruation. Autoimmune atrophic gastritis and Helicobacter pylori infection can also cause IDA by reducing intestinal iron absorption. In addition to these common etiologies, germline mutations of TMPRSS6 can cause iron-refractory IDA (IRIDA). TMPRSS6 encodes matriptase-2, a membrane-bound serine protease primarily expressed in the liver. Functional loss of matriptase-2 due to homozygous mutations results in an increase in the expression of hepcidin, which is the key regulator of systemic iron homeostasis. The serum hepcidin increase in turn leads to a decrease in iron supply from the intestine and macrophages to erythropoietic cells. IRIDA is microcytic and hypochromic, but decreased serum ferritin is not observed as in IDA. IRIDA is refractory to oral iron supplementation, but does respond to intravenous iron supplementation to some extent. Because genetic testing is required for the diagnoses of IRIDA, a considerable number of cases may go undiagnosed and may thus be overlooked. PMID:26935626

  7. Iron deficiency anemia

    MedlinePlus

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  8. Mammalian iron transport.

    PubMed

    Anderson, Gregory Jon; Vulpe, Christopher D

    2009-10-01

    Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma. PMID:19484405

  9. Modeling nitrate removal in a denitrification bed.

    PubMed

    Ghane, Ehsan; Fausey, Norman R; Brown, Larry C

    2015-03-15

    Denitrification beds are promoted to reduce nitrate load in agricultural subsurface drainage water to alleviate the adverse environmental effects associated with nitrate pollution of surface water. In this system, drainage water flows through a trench filled with a carbon media where nitrate is transformed into nitrogen gas under anaerobic conditions. The main objectives of this study were to model a denitrification bed treating drainage water and evaluate its adverse greenhouse gas emissions. Field experiments were conducted at an existing denitrification bed. Evaluations showed very low greenhouse gas emissions (mean N2O emission of 0.12 μg N m(-2) min(-1)) from the denitrification bed surface. Field experiments indicated that nitrate removal rate was described by Michaelis-Menten kinetics with the Michaelis-Menten constant of 7.2 mg N L(-1). We developed a novel denitrification bed model based on the governing equations for water flow and nitrate removal kinetics. The model evaluation statistics showed satisfactory prediction of bed outflow nitrate concentration during subsurface drainage flow. The model can be used to design denitrification beds with efficient nitrate removal which in turn leads to enhanced drainage water quality. PMID:25638338

  10. Influence of groundwater composition on subsurface iron and arsenic removal.

    PubMed

    Moed, D H; van Halem, D; Verberk, J Q J C; Amy, G L; van Dijk, J C

    2012-01-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L(-1) phosphate, 0.2 mmol L(-1) silicate, and 1 mmol L(-1) nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L(-1) calcium and 0.06 mmol L(-1) manganese. PMID:22678215

  11. Microbial Uranium Immobilization Independent of Nitrate Reduction

    SciTech Connect

    Madden, Andrew; Smith, April; Balkwill, Dr. David; Fagan, Lisa Anne; Phelps, Tommy Joe

    2007-01-01

    At many uranium processing and handling facilities, including sites in the U.S. Department of Energy (DOE) complex, high levels of nitrate are present as co-contamination with uranium in groundwater. The daunting prospect of complete nitrate removal prior to the reduction of uranium provides a strong incentive to explore bioremediation strategies that allow for uranium bioreduction and stabilization in the presence of nitrate. Typical in-situ strategies involving the stimulation of metal-reducing bacteria are hindered by low pH environments at this study site and require that the persistent nitrate must first and continuously be removed or transformed prior to uranium being a preferred electron acceptor. This project investigates the possibility of stimulating nitrate-indifferent, pH-tolerant microorganisms to achieve bioreduction of U(VI) despite nitrate persistence. Successful enrichments from U-contaminated sediments demonstrated nearly complete reduction of uranium with very little loss of nitrate from pH 4.9-5.6 using methanol or glycerol as a carbon source. Higher pH enrichments also demonstrated similar U reduction capacity with 5-30% nitrate loss within one week. Bacterial 16S rRNA genes were amplified from uranium-reducing enrichments (pH 5.7-6.7) and sequenced. Phylogenetic analyses classified the clone sequences into four distinct clusters. Data from sequencing and T-RFLP profiles indicated that the majority of the microorganisms stimulated by these enrichment conditions consisted of low G+C Gram-positive bacteria most closely related to Clostridium and Clostridium-like organisms. This research demonstrates that the stimulation of a natural microbial community to immobilize U through bioreduction is possible without the removal of nitrate.

  12. The Influence of LGM Iron Inputs on the Marine Biological Pump

    NASA Astrophysics Data System (ADS)

    Moore, J. K.

    2008-12-01

    Dust deposition to Antarctica was substantially higher at the Last Glacial Maximum (LGM), and model results suggest that globally dust deposition to the oceans increased approximately fourfold, with larger increases at high southern latitudes. Thus, atmospheric iron inputs to the oceans were greatly increased. However sedimentary iron inputs decreased due to the lower sea level. We examine the impacts of glacial iron inputs from both sources on marine biogeochemical cycling at the LGM, through simulations with the Biogeochemical Elemental Cycling (BEC) ocean model. The BEC model includes several key phytoplankton functional groups (diatoms, diazotrophs, picophytoplankton, and coccolithophores) and multiple potentially growth-limiting nutrients (nitrate, ammonium, phosphate, silicate, and dissolved iron). The increased LGM iron inputs led to increased production and export in the classic High Nitrate, Low Chlorophyll (HNLC) regions known to be iron-limited today. In the simulations there is also an indirect response to increased iron inputs in some low-nutrient, subtropical regions, where iron is the limiting nutrient for the diazotrophs. Increased iron fuels additional nitrogen fixation by this group, reducing the nitrogen stress of the larger phytoplankton community, and increasing production and export. The strengthening of the biological pump due to the direct (HNLC) and indirect (N fixation) pathways substantially lowers atmospheric CO2 concentrations.

  13. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.

    PubMed

    Jeong, Daun; Kim, Kitae; Min, Dae Wi; Choi, Wonyong

    2015-11-01

    Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process. PMID:26444653

  14. Pathways of iron absorption.

    PubMed

    Conrad, Marcel E; Umbreit, Jay N

    2002-01-01

    Iron is vital for all living organisms but excess iron can be lethal because it facilitates free radical formation. Thus iron absorption is carefully regulated to maintain an equilibrium between absorption and body loss of iron. In countries where meat is a significant part of the diet, most body iron is derived from dietary heme because heme binds few of the dietary chelators that bind inorganic iron. Uptake of heme into enterocytes occurs as a metalloporphyrin in an endosomal process. Intracellular iron is released from heme by heme oxygenase to enter plasma as inorganic iron. Ferric iron is absorbed via a beta(3) integrin and mobilferrin pathway (IMP) which is unshared with other nutritional metals. Ferrous iron uptake is facilitated by a DMT-1 pathway which is shared with manganese. In the iron deficient gut, large quantities of both mobilferrin and DMT-1 are found in goblet cells and intraluminal mucins suggesting that they are secreted with mucin into the intestinal lumen to bind iron to facilitate uptake by the cells. In the cytoplasm, IMP and DMT associate in a large protein complex called paraferritin which serves as a ferrireductase. Paraferritin solublizes iron binding proteins and reduces iron to make iron available for production of iron containing proteins such as heme. Iron uptake by intestinal absorptive cells is regulated by the iron concentration within the cell. Except in hemochromatosis it remains in equilibrium with total body stores via transferrin receptors on the basolateral membrane of absorptive cells. Increased intracellular iron either up-regulates or satiates iron binding proteins on regulatory proteins to alter their location in the intestinal mucosa. PMID:12547224

  15. Performance Evaluation of In-Situ Iron Reactive Barriers at the Oak Ridge Y-12 Site

    SciTech Connect

    Watson, D.B.

    2003-12-30

    In November 1997, a permeable iron reactive barrier trench was installed at the S-3 Ponds Pathway 2 Site located at the Y-12 Plant, Oak Ridge, Tennessee. The overall goal of the project is to evaluate the ability of permeable reactive barrier technology to remove uranium, nitrate, and other inorganic contaminants in groundwater and to assess impacts of biogeochemical interactions on long-term performance of the treatment system. Zero-valent iron (Fe0) was used as the reactive medium, which creates a localized zone of reduction or low oxidation reduction potential (ORP), elevated pH, and dissolved H{sub 2} as Fe{sup 0} corrodes in groundwater. These conditions favor the removal of metals and radionuclides (such as uranium and technetium) through redox-driven precipitation and/or sorption to iron corrosion byproducts, such as iron oxyhydroxides. The technology is anticipated to be economical and low in maintenance as compared with conventional pump-and-treat technology. Groundwater monitoring results indicate that the iron barrier is effectively removing uranium and technetium, the primary contaminants of concern, as anticipated from our previous laboratory studies. In addition to uranium and technetium, nitrate, sulfate, bicarbonate, calcium, and magnesium are also found to be removed, either partially or completely by the iron barrier. Elevated concentrations of ferrous ions and sulfide, and pH were observed within the iron barrier. Although ferrous iron concentrations were initially very high after barrier installation, ferrous ion concentrations have decreased to low to non-detectable levels as the pH within the iron has increased over time (as high as 9 or 10). Iron and soil core samples were taken in February 1999 and May 2000 in order to evaluate the iron surface passivation, morphology, mineral precipitation and cementation, and microbial activity within and in the vicinity of the iron barrier. Results indicate that most of the iron filings collected in cores

  16. Measurement and Chemistry of Atmospheric Organic Nitrates

    NASA Astrophysics Data System (ADS)

    Buhr, Martin Patrick

    1990-01-01

    Organic nitrates are important reservoir species for NO_{rm x} (NO + NO_2) in the atmosphere. Typically formed in and around urban areas, the organic nitrates sequester NO_{rm x} and allow it to be transported to rural and remote regions, wherein it may be released into the atmosphere and participate in catalytic cycles leading to the formation of ozone. The research described in this work focusses on two problems related to our understanding of the atmospheric chemistry of the organic nitrates, (1) measuring the organic nitrates contributions to total reactive nitrogen (NO_ {rm y}) in the atmosphere, and (2) determining the conditions under which the organic nitrates release NO_{rm x} into the atmosphere and thereby participate in ozone formation. The work performed included development of measurement methods for the organic nitrates, ambient measurements of several organic nitrates made under a variety of conditions, and data interpretation using a combination of bivariate and multivariate analysis. The instrument development that was performed centered around incorporation of capillary column technology in a gas chromatographic method. Use of a capillary column resulted in improved chromatographic resolution and instrument sensitivity. In addition to the work on the chromatographic separation of the organic nitrates, some work was done regarding the sensitivity of the electron capture detector (ECD) as a function of electrical mode of operation. Ambient measurements of several of the organic nitrates were made during three field experiments in conjunction with NOAA's Aeronomy laboratory, including PAN rm CH_3C(O)O_2NO_2), PPN rm (C_2H_5C(O)O_2NO _2), and the C_1-C _5 alkyl nitrates (RONO_2 ). The measurements were made in conjunction with a wide variety of other chemical and physical parameters. Data interpretation was performed using bivariate analysis in order to understand the diurnal variation of the concentrations of the organic nitrates and their

  17. Photodegradation of Paracetamol in Nitrate Solution

    SciTech Connect

    Meng Cui; Qu Ruijuan; Liang Jinyan; Yang Xi

    2010-11-24

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  18. Photodegradation of Paracetamol in Nitrate Solution

    NASA Astrophysics Data System (ADS)

    Meng, Cui; Qu, Ruijuan; Liang, Jinyan; Yang, Xi

    2010-11-01

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  19. Treatment of Selenium and Nitrate in Acid Mine Drainage: A Column Study

    NASA Astrophysics Data System (ADS)

    An, H.; Jeen, S. W.

    2015-12-01

    Treatment efficiency of selenium and nitrate in acid mine drainage (AMD) by two types of reactive mixtures, i.e., organic carbon-limestone (OC-LS) and organic carbon-zero valent iron (OC-ZVI), was evaluated through column experiments. The influent AMD, collected at an abandoned metal mine site in Korea, had pH of 2.9 and contained 1600 mg/ L of SO42- and elevated concentrations of metals (e.g., Al, Cd, Co, Cu, Fe, Zn). Selenium (40 mg/L) and nitrate (100 mg/L as NO3-N initially and 10 mg/L as NO3-N after 55 days) were spiked into the AMD. The columns were operated for a total of 90 days. The results showed the increase of pH from 2.9 to 7.0 and the decreases in concentrations of most of major ions including selenium and nitrate in both the OC-LS and OC-ZVI columns. The OC-ZVI column had higher removal rates of selenium and nitrate and created a more reduced environment than the OC-LS column due to the abiotic reactions of ZVI. However, a notable amount of ammonia was produced as a reaction product in the OC-ZVI column, while the OC-LS produced a minimum amount of ammonia, suggesting formation of N2 by denitrification. In both columns, removal rates of selenium were substantially increased when the influent NO3-N concentration was changed from 100 mg/L to 10 mg/L. Sulfate was reduced as much as 390 mg/L, as indicated by detection of hydrogen sulfide. The reduction of most metals is considered to be due to precipitation of metal-containing secondary minerals (e.g., sulfides, hydroxides, carbonates). This study shows that treatment of selenium and nitrate in AMD can be achievable using organic carbon-based reactive mixtures through reduction of selenium and nitrate. However, the use of ZVI is not recommended when selenium and nitrate coexist in AMD because of production of ammonia by abiotic reaction between ZVI and nitrate. This study also shows that concentration of nitrate in AMD is an important factor to determine the rate of selenium removal.

  20. Iron fertilization of the Subantarctic ocean during the last ice age.

    PubMed

    Martínez-García, Alfredo; Sigman, Daniel M; Ren, Haojia; Anderson, Robert F; Straub, Marietta; Hodell, David A; Jaccard, Samuel L; Eglinton, Timothy I; Haug, Gerald H

    2014-03-21

    John H. Martin, who discovered widespread iron limitation of ocean productivity, proposed that dust-borne iron fertilization of Southern Ocean phytoplankton caused the ice age reduction in atmospheric carbon dioxide (CO2). In a sediment core from the Subantarctic Atlantic, we measured foraminifera-bound nitrogen isotopes to reconstruct ice age nitrate consumption, burial fluxes of iron, and proxies for productivity. Peak glacial times and millennial cold events are characterized by increases in dust flux, productivity, and the degree of nitrate consumption; this combination is uniquely consistent with Subantarctic iron fertilization. The associated strengthening of the Southern Ocean's biological pump can explain the lowering of CO2 at the transition from mid-climate states to full ice age conditions as well as the millennial-scale CO2 oscillations. PMID:24653031

  1. Phase diagram of ammonium nitrate

    SciTech Connect

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-12-07

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO–AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N{sub 2}, N{sub 2}O, and H{sub 2}O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV{sup ′} transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  2. Electrophilic and free radical nitration of benzene and toluene with various nitrating agents*

    PubMed Central

    Olah, George A.; Lin, Henry C.; Olah, Judith A.; Narang, Subhash C.

    1978-01-01

    Electrophilic nitration of toluene and benzene was studied under various conditions with several nitrating systems. It was found that high orthopara regioselectivity is prevalent in all reactions and is independent of the reactivity of the nitrating agent. The methyl group of toluene is predominantly ortho-para directing under all reaction conditions. Steric factors are considered to be important but not the sole reason for the variation in the ortho/para ratio. The results reinforce our earlier views that, in electrophilic aromatic nitrations with reactive nitrating agents, substrate and positional selectivities are determined in two separate steps. The first step involves a π-aromatic-NO2+ ion complex or encounter pair, whereas the subsequent step is of arenium ion nature (separate for the ortho, meta, and para positions). The former determines substrate selectivity, whereas the latter determines regioselectivity. Thermal free radical nitration of benzene and toluene with tetranitromethane in sharp contrast gave nearly statistical product distributions. PMID:16592503

  3. Iron-mediated changes in phytoplankton photosynthetic competence during SOIREE

    NASA Astrophysics Data System (ADS)

    Boyd, P. W.; Abraham, E. R.

    Active fluorescence (fast repetition rate fluorometry, FRRF) was used to follow the photosynthetic response of the phytoplankton community during the 13-day Southern Ocean Iron RElease Experiment (SOIREE). This in situ iron enrichment was conducted in the polar waters of the Australasian-Pacific sector of the Southern Ocean in February 1999. Iron fertilisation of these high nitrate low chlorophyll (HNLC) waters resulted in an increase in the photosynthetic competence ( Fv/ Fm) of the resident cells from around 0.20 to greater than 0.60 (i.e. close to the theoretical maximum) by 10/11 days after the first enrichment. Although a significant iron-mediated response in Fv/ Fm was detected as early as 24 h after the initial fertilisation, the increase in Fv/ Fm to double ambient levels took 6 days. This response was five-fold slower than observed in iron enrichments (in situ and in vitro) in the HNLC waters of the subarctic and equatorial Pacific. Although little is known about the relationship between water temperature and Fv/ Fm, it is likely that low water temperatures — and possibly the deep mixed layer — were responsible for this slow response time. During SOIREE, the photosynthetic competence of the resident phytoplankton in iron-enriched waters increased at dissolved iron levels above 0.2 nM, suggesting that iron limitation was alleviated at this concentration. Increases in Fv/ Fm of cells within four algal size classes suggested that all taxa displayed a photosynthetic response to iron enrichment. Other physiological proxies of algal iron stress (such as flavodoxin levels in diatoms) exhibited different temporal trends to iron-enrichment than Fv/ Fm during the time-course of SOIREE. The relationship between Fv/ Fm, algal growth rate and such proxies in Southern Ocean waters is discussed.

  4. Does thiosemicarbazide lead nitrate crystal exist?

    NASA Astrophysics Data System (ADS)

    Fernandes, Royle; Srinivasan, Bikshandarkoil R.

    2016-06-01

    The authors of a recent paper (Optik 125 (2014) 2022-2025) claim to have grown a so called thiosemicarbazide lead nitrate (TSLN) crystal by the slow evaporation method. In this comment we prove that TSLN is actually thiosemicarbazide.

  5. Qualitative Determination of Nitrate with Triphenylbenzylphosphonium Chloride.

    ERIC Educational Resources Information Center

    Berry, Donna A.; Cole, Jerry J.

    1984-01-01

    Discusses two procedures for the identification of nitrate, the standard test ("Brown Ring" test) and a new procedure using triphenylbenzylphosphonium chloride (TPBPC). Effectiveness of both procedures is compared, with the TPBPC test proving to be more sensitive and accurate. (JM)

  6. FeCycle: Attempting an iron biogeochemical budget from a mesoscale SF6 tracer experiment in unperturbed low iron waters

    NASA Astrophysics Data System (ADS)

    Boyd, P. W.; Law, C. S.; Hutchins, D. A.; Abraham, E. R.; Croot, P. L.; Ellwood, M.; Frew, R. D.; Hadfield, M.; Hall, J.; Handy, S.; Hare, C.; Higgins, J.; Hill, P.; Hunter, K. A.; Leblanc, K.; Maldonado, M. T.; McKay, R. M.; Mioni, C.; Oliver, M.; Pickmere, S.; Pinkerton, M.; Safi, K.; Sander, S.; Sanudo-Wilhelmy, S. A.; Smith, M.; Strzepek, R.; Tovar-Sanchez, A.; Wilhelm, S. W.

    2005-12-01

    An improved knowledge of iron biogeochemistry is needed to better understand key controls on the functioning of high-nitrate low-chlorophyll (HNLC) oceanic regions. Iron budgets for HNLC waters have been constructed using data from disparate sources ranging from laboratory algal cultures to ocean physics. In summer 2003 we conducted FeCycle, a 10-day mesoscale tracer release in HNLC waters SE of New Zealand, and measured concurrently all sources (with the exception of aerosol deposition) to, sinks of iron from, and rates of iron recycling within, the surface mixed layer. A pelagic iron budget (timescale of days) indicated that oceanic supply terms (lateral advection and vertical diffusion) were relatively small compared to the main sink (downward particulate export). Remote sensing and terrestrial monitoring reveal 13 dust or wildfire events in Australia, prior to and during FeCycle, one of which may have deposited iron at the study location. However, iron deposition rates cannot be derived from such observations, illustrating the difficulties in closing iron budgets without quantification of episodic atmospheric supply. Despite the threefold uncertainties reported for rates of aerosol deposition (Duce et al., 1991), published atmospheric iron supply for the New Zealand region is ˜50-fold (i.e., 7- to 150-fold) greater than the oceanic iron supply measured in our budget, and thus was comparable (i.e., a third to threefold) to our estimates of downward export of particulate iron. During FeCycle, the fluxes due to short term (hours) biological iron uptake and regeneration were indicative of rapid recycling and were tenfold greater than for new iron (i.e. estimated atmospheric and measured oceanic supply), giving an "fe" ratio (uptake of new iron/uptake of new + regenerated iron) of 0.17 (i.e., a range of 0.06 to 0.51 due to uncertainties on aerosol iron supply), and an "Fe" ratio (biogenic Fe export/uptake of new + regenerated iron) of 0.09 (i.e., 0.03 to 0.24).

  7. Modeling iron limitation of primary production in the coastal Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Fiechter, Jerome; Moore, Andrew M.; Edwards, Christopher A.; Bruland, Kenneth W.; Di Lorenzo, Emanuele; Lewis, Craig V. W.; Powell, Thomas M.; Curchitser, Enrique N.; Hedstrom, Kate

    2009-12-01

    A lower trophic level NPZD ecosystem model with explicit iron limitation on nutrient uptake is coupled to a three-dimensional coastal ocean circulation model to investigate the regional ecosystem dynamics of the northwestern coastal Gulf of Alaska (CGOA). Iron limitation is included in the NPZD model by adding governing equations for two micro-nutrient compartments: dissolved iron and phytoplankton-associated iron. The model has separate budgets for nitrate (the limiting macro-nutrient in the standard NPZD model) and for iron, with iron limitation on nitrate uptake being imposed as a function of the local phytoplankton realized Fe:C ratio. While the ecosystem model represents a simple approximation of the complex lower trophic level ecosystem of the northwestern CGOA, simulated chlorophyll concentrations reproduce the main characteristics of the spring bloom, high shelf primary production, and "high-nutrient, low-chlorophyll" (HNLC) environment offshore. Over the 1998-2004 period, model-data correlations based on spatially averaged, monthly mean chlorophyll concentrations are on average 0.7, with values as high as 0.9 and as low as 0.5 for individual years. The model also provides insight on the importance of micro- and macro-nutrient limitation on the shelf and offshore, with the shelfbreak region acting as a transition zone where both nitrate and iron availability significantly impact phytoplankton growth. Overall, the relative simplicity of the ecosystem model provides a useful platform to perform long-term simulations to investigate the seasonal and interannual CGOA ecosystem variability, as well as to conduct sensitivity studies to evaluate the robustness of simulated fields to ecosystem model parameterization and forcing. The ability of the model to differentiate between nitrate-limited, and iron-limited growth conditions, and to identify their spatial and temporal occurrences, is also a first step towards understanding the role of environmental gradients in

  8. Visible-light-driven photocatalytic water oxidation catalysed by iron-based metal-organic frameworks.

    PubMed

    Horiuchi, Yu; Toyao, Takashi; Miyahara, Kenta; Zakary, Lionet; Van, Dang Do; Kamata, Yusuke; Kim, Tae-Ho; Lee, Soo Wohn; Matsuoka, Masaya

    2016-04-14

    An iron-based metal-organic framework, MIL-101(Fe), promotes photocatalytic water oxidation to produce oxygen from aqueous silver nitrate solution under visible-light irradiation. The finely dispersed iron-oxo clusters embedded as nodes of the porous framework would contribute importantly to the efficient promotion of the reaction as compared to bulk hematite (α-Fe2O3). PMID:26996996

  9. The UK Nitrate Time Bomb (Invited)

    NASA Astrophysics Data System (ADS)

    Ward, R.; Wang, L.; Stuart, M.; Bloomfield, J.; Gooddy, D.; Lewis, M.; McKenzie, A.

    2013-12-01

    The developed world has benefitted enormously from the intensification of agriculture and the increased availability and use of synthetic fertilizers during the last century. However there has also been unintended adverse impact on the natural environment (water and ecosystems) with nitrate the most significant cause of water pollution and ecosystem damage . Many countries have introduced controls on nitrate, e.g. the European Union's Water Framework and Nitrate Directives, but despite this are continuing to see a serious decline in water quality. The purpose of our research is to investigate and quantify the importance of the unsaturated (vadose) zone pathway and groundwater in contributing to the decline. Understanding nutrient behaviour in the sub-surface environment and, in particular, the time lag between action and improvement is critical to effective management and remediation of nutrient pollution. A readily-transferable process-based model has been used to predict temporal loading of nitrate at the water table across the UK. A time-varying nitrate input function has been developed based on nitrate usage since 1925. Depth to the water table has been calculated from groundwater levels based on regional-scale observations in-filled by interpolated river base levels and vertical unsaturated zone velocities estimated from hydrogeological properties and mapping. The model has been validated using the results of more than 300 unsaturated zone nitrate profiles. Results show that for about 60% of the Chalk - the principal aquifer in the UK - peak nitrate input has yet to reach the water table and concentrations will continue to rise over the next 60 years. The implications are hugely significant especially where environmental objectives must be achieved in much shorter timescales. Current environmental and regulatory management strategies rarely take lag times into account and as a result will be poorly informed, leading to inappropriate controls and conflicts

  10. Microbial uranium immobilization independent of nitrate reduction.

    PubMed

    Madden, Andrew S; Smith, April C; Balkwill, David L; Fagan, Lisa A; Phelps, Tommy J

    2007-09-01

    At many uranium processing and handling facilities, including sites in the US Department of Energy (DOE) complex, high levels of nitrate are present as co-contamination with uranium in groundwater. The daunting prospect of complete nitrate removal prior to the reduction of uranium provides a strong incentive to explore bioremediation strategies that allow for uranium bioreduction and stabilization in the presence of nitrate. Typical in situ strategies involving the stimulation of metal-reducing bacteria are hindered by low-pH environments and require that the persistent nitrate must first and continuously be removed or transformed prior to uranium being a preferred electron acceptor. This work investigated the possibility of stimulating nitrate-indifferent, pH-tolerant microorganisms to achieve bioreduction of U(VI) despite nitrate persistence. Enrichments from U-contaminated sediments demonstrated nearly complete reduction of uranium with very little loss of nitrate from pH 5.7-6.2 using methanol or glycerol as a carbon source. Bacterial 16S rRNA genes were amplified from uranium-reducing enrichments (pH 5.7-6.2) and sequenced. Phylogenetic analyses classified the clone sequences into four distinct clusters. Data from sequencing and terminal-restriction fragment length polymorphism (T-RFLP) profiles indicated that the majority of the microorganisms stimulated by these enrichment conditions consisted of low G+C Gram-positive bacteria most closely related to Clostridium and Clostridium-like organisms. This research demonstrates that the stimulation of a natural microbial community to immobilize U through bioreduction is possible without the removal of nitrate. PMID:17686028

  11. Synthesis of a new energetic nitrate ester

    SciTech Connect

    Chavez, David E

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  12. Nitrate distribution in Mojave Desert soils

    SciTech Connect

    Hunter, R.B.; Romney, E.M.; Wallace, A.

    1982-07-01

    Extensive sampling shows high variability in nitrate concentration within profiles of Mojave Desert soils. This high variability greatly complicates studies of desert soil N and its ecological role. Patterns in nitrate distribution suggest effects of litter decomposition under shrubs, surface leaching in bare areas, and plant uptake in the root zone. Two mechanisms proposed to explain high concentrations found at seemingly random depths are concentration at drying fronts and distribution along water potential gradients.

  13. Preformed Nitrate in the Glacial North Atlantic

    NASA Astrophysics Data System (ADS)

    Homola, K.; Spivack, A. J.; D'Hondt, S.; Estes, E. R.; Insua, T. L.; McKinley, C. C.; Murray, R. W.; Pockalny, R. A.; Robinson, R. S.; Sauvage, J.

    2015-12-01

    Atmospheric CO2 abundances are highly correlated with global temperature variations over the past 800,000 years. Consequently, understanding the feedbacks between climate and CO2 is important for predictions of future climate. Leading hypotheses to explain this feedback invoke changes in ocean biology, circulation, chemistry, and/or gas exchange rates to trap CO2 in the deep ocean, thereby reducing the greenhouse effect of CO2 in the atmosphere. To test these hypotheses, we use sediment pore water profiles of dissolved nitrate and oxygen to reconstruct paleo-preformed nitrate concentrations at two deep-water sites in the western North Atlantic (23°N 57°W, 5557 m water depth; 30°N 58°W, 5367 m water depth). Preformed nitrate increases down-core to 22.7 μM (25.6 m core depth) at the northern site, and to 28.5 μM (27.8 m core depth) at the southern site. The large preformed nitrate gradient between these sites reveals a paleo-boundary between a southern water source high in preformed nitrate and a northern water source with lower concentrations, similar to today's ocean. However, the boundary between these water masses occurs north of where their modern counterparts meet, indicating that Antarctic Bottom Water (AABW) extended farther north during the Last Glacial Maximum (LGM). In addition, the southern source had a higher preformed nitrate concentration than today's AABW (25 μM), contradicting hypotheses that nutrient utilization was more efficient in the Southern Ocean deep-water formation regions during the LGM. Comparison to our previous Pacific data reveals that the average preformed nitrate concentration of the deep ocean was slightly higher during the LGM than today. This result implies that the CO2-climate feedback was not principally due to more efficient nitrate utilization.

  14. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise.

    PubMed

    Flueck, Joelle Leonie; Bogdanova, Anna; Mettler, Samuel; Perret, Claudio

    2016-04-01

    Dietary nitrate has been reported to lower oxygen consumption in moderate- and severe-intensity exercise. To date, it is unproven that sodium nitrate (NaNO3(-); NIT) and nitrate-rich beetroot juice (BR) have the same effects on oxygen consumption, blood pressure, and plasma nitrate and nitrite concentrations or not. The aim of this study was to compare the effects of different dosages of NIT and BR on oxygen consumption in male athletes. Twelve healthy, well-trained men (median [minimum; maximum]; peak oxygen consumption: 59.4 mL·min(-1)·kg(-1) [40.5; 67.0]) performed 7 trials on different days, ingesting different nitrate dosages and placebo (PLC). Dosages were 3, 6, and 12 mmol nitrate as concentrated BR or NIT dissolved in plain water. Plasma nitrate and nitrite concentrations were measured before, 3 h after ingestion, and postexercise. Participants cycled for 5 min at moderate intensity and further 8 min at severe intensity. End-exercise oxygen consumption at moderate intensity was not significantly different between the 7 trials (p = 0.08). At severe-intensity exercise, end-exercise oxygen consumption was ~4% lower in the 6-mmol BR trial compared with the 6-mmol NIT (p = 0.003) trial as well as compared with PLC (p = 0.010). Plasma nitrite and nitrate concentrations were significantly increased after the ingestion of BR and NIT with the highest concentrations in the 12-mmol trials. Plasma nitrite concentration between NIT and BR did not significantly differ in the 6-mmol (p = 0.27) and in the 12-mmol (p = 0.75) trials. In conclusion, BR might reduce oxygen consumption to a greater extent compared with NIT. PMID:26988767

  15. Laboratory Evaluation of Sulfur Modified Iron for Use as a Filter Material to Treat Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2009-12-01

    Where subsurface drainage practices are employed, fertilizer nutrients and pesticides applied on farm fields and municipal locations are commonly intercepted by the buried drainage pipes and then discharged into local streams and lakes, oftentimes producing adverse environmental impacts on these surface water bodies. On-site water filter treatment systems can be employed to prevent the release of agricultural nutrients/pesticides into adjacent waterways. Sulfur modified iron is a relatively unknown industrial product that may have promise for use as a filter material to remove contaminants from subsurface drainage waters. Sulfur modified iron (SMI) is a high surface area iron powder (zero valent iron) that has been altered via chemical reaction with pure sulfur to produce a sulfur/iron surface coating on the iron particles. A laboratory investigation was conducted with contaminant removal batch tests, saturated falling-head hydraulic conductivity tests, and saturated solute transport column experiments to evaluate the feasibility for using SMI to treat subsurface drainage waters. Contaminant removal batch tests showed that three SMI samples were much more effective removing nitrate (> 94% nitrate removed) than three zero valent iron samples (< 10% nitrate removed). Batch test results additionally showed that SMI removed greater that 94% of dissolved phosphate, but was not particularly effective removing the pesticide, atrazine (< 37% atrazine removed). Hydraulic conductivity tests indicated that all three SMI samples that were evaluated had sufficient hydraulic conductivity, much greater than the 1 x 10-3 cm/s standard used for stormwater sand filters. The saturated solute transport tests confirmed that SMI can be effective removing nitrate and phosphate from drainage waters. Analysis of column effluent also showed that the large majority of nitrate removed by SMI was converted to ammonium. Consequently, these laboratory findings support the use of SMI in

  16. Nitrate inhibition of legume nodule growth and activity. II. Short term studies with high nitrate supply

    SciTech Connect

    Streeter, J.G.

    1985-02-01

    Soybean plants (Glycine max (L.) Merr) were grown in sand culture with 2 millimolar nitrate for 37 days and then supplied with 15 millimolar nitrate for 7 days. Control plants received 2 millimolar nitrate and 13 millimolar chloride and, after the 7-day treatment period, all plants were supplied with nil nitrate. The temporary treatment with high nitrate inhibited nitrogenase (acetylene reduction) activity by 80% whether or not Rhizobium japonicum bacteroids had nitrate reductase (NR) activity. The pattern of nitrite accumulation in nodules formed by NR/sup +/ rhizobia was inversely related to the decrease and recovery of nitrogenase activity. However, nitrite concentration in nodules formed by NR/sup -/ rhizobia appeared to be too low to explain the inhibition of nitrogenase. Nodules on plants treated with 15 millimolar nitrate contained higher concentrations of amino N and, especially, ureide N than control nodules and, after withdrawal of nitrate, reduced N content of treated and control nodules returned to similar levels. The accumulation of N/sub 2/ fixation products in nodules in response to high nitrate treatment was observed with three R. japonicum strains, two NR/sup +/ and one NR/sup -/.

  17. Differential inhibition of Arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration

    PubMed Central

    Holzmeister, Christian; Gaupels, Frank; Geerlof, Arie; Sarioglu, Hakan; Sattler, Michael; Durner, Jörg; Lindermayr, Christian

    2015-01-01

    Despite the importance of superoxide dismutases (SODs) in the plant antioxidant defence system little is known about their regulation by post-translational modifications. Here, we investigated the in vitro effects of nitric oxide derivatives on the seven SOD isoforms of Arabidopsis thaliana. S-nitrosoglutathione, which causes S-nitrosylation of cysteine residues, did not influence SOD activities. By contrast, peroxynitrite inhibited the mitochondrial manganese SOD1 (MSD1), peroxisomal copper/zinc SOD3 (CSD3), and chloroplastic iron SOD3 (FSD3), but no other SODs. MSD1 was inhibited by up to 90% but CSD3 and FSD3 only by a maximum of 30%. Down-regulation of these SOD isoforms correlated with tyrosine (Tyr) nitration and both could be prevented by the peroxynitrite scavenger urate. Site-directed mutagenesis revealed that—amongst the 10 Tyr residues present in MSD1—Tyr63 was the main target responsible for nitration and inactivation of the enzyme. Tyr63 is located nearby the active centre at a distance of only 5.26 Å indicating that nitration could affect accessibility of the substrate binding pocket. The corresponding Tyr34 of human manganese SOD is also nitrated, suggesting that this might be an evolutionarily conserved mechanism for regulation of manganese SODs. PMID:25428993

  18. Study of Nitrate Stress in Desulfovibrio vulgaris Hildenborough Using iTRAQ Proteomics

    SciTech Connect

    Redding, A.M.; Mukhopadhyay, A.; Joyner, D.; Hazen, T.C.; Keasling, J.D.

    2006-10-12

    The response of Desulfovibrio vulgaris Hildenborough (DvH),a sulphate-reducing bacterium, to nitrate stress was examined usingquantitative proteomic analysis. DvH was stressed with 105 m M sodiumnitrate(NaNO3), a level that caused a 50 percent inhibition in growth.The protein profile of stressed cells was compared with that of cellsgrown in the absence of nitrate using the iTRAQ peptide labellingstrategy and tandem liquid chromatography separation coupled with massspectrometry (quadrupoletime-of-flight) detection. A total of 737 uniqueproteins were identified by two or more peptides, representing 22 percentof the total DvH proteome and spanning every functional category. Theresults indicate that this was a mild stress, as proteins involved incentral metabolism and the sulphate reduction pathway were unperturbed.Proteins involved in the nitrate reduction pathway increased. Increasesseen in transport systems for proline, glycine^ betaineandglutamateindicate that the NaNO3 exposure led to both salt stress and nitratestress.Up-regulation observed in oxidative stress response proteins (Rbr,RbO, etc.) and a large number of ABC transport systems as well as in iron^ sulphur -cluster-containing proteins, however, appear to be specific tonitrate exposure. Finally, a number of hypothetical proteins were amongthe most significant changers, indicating that there may be unknownmechanisms initiated upon nitrate stress in DvH.

  19. Groundwater nitrate pollution in intensively farmed regions

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-12-01

    Intensified agricultural practices that have developed during the past century have helped improve food security for many people but have also added to nitrate pollution in water supply. Balancing the water needs for agriculture with the need for clean groundwater for drinking requires understanding factors such as the routes by which nitrate enters the water supply and how long nitrate remains in the water. The Thames River catchment provides a good study example because the water quality in the river, which supplies drinking water to millions of people, has been monitored for the past 140 years, and the region has undergone significant agricultural development over the past century. Howden et al. studied nitrate transport from agricultural land to water in the Thames basin using a simple model that considers an estimate of the amount of nitrate that could leach the groundwater based on land use practices along with an algorithm that determines the route nitrate would take to reach surface water or groundwater from agricultural areas.

  20. Characterization of Atmospheric Organic Nitrates in Particles

    NASA Astrophysics Data System (ADS)

    Bruns, E. A.; Alexander, M. L.; Perraud, V.; Yu, Y.; Ezell, M.; Johnson, S. N.; Zellenyuk, A.; Imre, D.; Finlayson-Pitts, B. J.

    2008-12-01

    Aerosols in the atmosphere significantly affect climate, human health and visibility. Knowledge of aerosol composition is necessary to understand and then predict the specific impacts of aerosols in the atmosphere. It is known that organic nitrates are present in particles, but there is limited knowledge of the individual compounds and quantity. This is in part due to the lack of a wide variety of proven analytical techniques for particulate organic nitrates. In this study, several known organic nitrates, as well as those present in complex mixtures formed from oxidation of "Ñ-pinene, were studied using a variety of techniques. These include Fourier Transform infrared spectroscopy (FTIR) of samples collected by impaction on ZnSe discs. Samples were also collected on quartz fiber filters and the extracts analyzed by electrospray mass spectrometry (ESI- MS), atmospheric pressure chemical ionization mass spectrometry (APCI-MS), HPLC-UV, LC-MS and GC-MS. In addition, real-time analysis was provided by SPLAT-II and aerosol mass spectrometry (AMS). FTIR analysis of particles collected on ZnSe discs provides information on the ratio of organic nitrate to total organic content, while the analysis of filter extracts allows identification of specific organic nitrates. These are compared to the particle mass spectrometry data and the implications for detecting and measuring particulate organic nitrate in air is discussed.

  1. Suppression of erythropoiesis by dietary nitrate.

    PubMed

    Ashmore, Tom; Fernandez, Bernadette O; Evans, Colin E; Huang, Yun; Branco-Price, Cristina; Griffin, Julian L; Johnson, Randall S; Feelisch, Martin; Murray, Andrew J

    2015-03-01

    In mammals, hypoxia-triggered erythropoietin release increases red blood cell mass to meet tissue oxygen demands. Using male Wistar rats, we unmask a previously unrecognized regulatory pathway of erythropoiesis involving suppressor control by the NO metabolite and ubiquitous dietary component nitrate. We find that circulating hemoglobin levels are modulated by nitrate at concentrations achievable by dietary intervention under normoxic and hypoxic conditions; a moderate dose of nitrate administered via the drinking water (7 mg NaNO3/kg body weight/d) lowered hemoglobin concentration and hematocrit after 6 d compared with nonsupplemented/NaCl-supplemented controls. The underlying mechanism is suppression of hepatic erythropoietin expression associated with the downregulation of tissue hypoxia markers, suggesting increased pO2. At higher nitrate doses, however, a partial reversal of this effect occurred; this was accompanied by increased renal erythropoietin expression and stabilization of hypoxia-inducible factors, likely brought about by the relative anemia. Thus, hepatic and renal hypoxia-sensing pathways act in concert to modulate hemoglobin in response to nitrate, converging at an optimal minimal hemoglobin concentration appropriate to the environmental/physiologic situation. Suppression of hepatic erythropoietin expression by nitrate may thus act to decrease blood viscosity while matching oxygen supply to demand, whereas renal oxygen sensing could act as a brake, averting a potentially detrimental fall in hematocrit. PMID:25422368

  2. Protein tyrosine nitration in the cell cycle

    SciTech Connect

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-09-23

    Highlights: {yields} Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. {yields} Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. {yields} Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  3. Process for decomposing nitrates in aqueous solution

    DOEpatents

    Haas, Paul A.

    1980-01-01

    This invention is a process for decomposing ammonium nitrate and/or selected metal nitrates in an aqueous solution at an elevated temperature and pressure. Where the compound to be decomposed is a metal nitrate (e.g., a nuclear-fuel metal nitrate), a hydroxylated organic reducing agent therefor is provided in the solution. In accordance with the invention, an effective proportion of both nitromethane and nitric acid is incorporated in the solution to accelerate decomposition of the ammonium nitrate and/or selected metal nitrate. As a result, decomposition can be effected at significantly lower temperatures and pressures, permitting the use of system components composed of off-the-shelf materials, such as stainless steel, rather than more costly materials of construction. Preferably, the process is conducted on a continuous basis. Fluid can be automatically vented from the reaction zone as required to maintain the operating temperature at a moderate value--e.g., at a value in the range of from about 130.degree.-200.degree. C.

  4. Iron and Diabetes Risk

    PubMed Central

    Simcox, Judith A.; McClain, Donald A.

    2013-01-01

    Iron overload is a risk factor for diabetes. The link between iron and diabetes was first recognized in pathologic conditions—hereditary hemochromatosis and thalassemia—but high levels of dietary iron also impart diabetes risk. Iron plays a direct and causal role in diabetes pathogenesis mediated both by β-cell failure and insulin resistance. Iron is also a factor in the regulation of metabolism in most tissues involved in fuel homeostasis, with the adipocyte in particular serving an iron-sensing role. The underlying molecular mechanisms mediating these effects are numerous and incompletely understood, but include oxidant stress and modulation of adipokines and intracellular signal transduction pathways. PMID:23473030

  5. Iron deficiency in Europe.

    PubMed

    Hercberg, S; Preziosi, P; Galan, P

    2001-04-01

    In Europe, iron deficiency is considered to be one of the main nutritional deficiency disorders affecting large fractions of the population, particularly such physiological groups as children, menstruating women and pregnant women. Some factors such as type of contraception in women, blood donation or minor pathological blood loss (haemorrhoids, gynaecological bleeding...) considerably increase the difficulty of covering iron needs. Moreover, women, especially adolescents consuming low-energy diets, vegetarians and vegans are at high risk of iron deficiency. Although there is no evidence that an absence of iron stores has any adverse consequences, it does indicate that iron nutrition is borderline, since any further reduction in body iron is associated with a decrease in the level of functional compounds such as haemoglobin. The prevalence of iron-deficient anaemia has slightly decreased in infants and menstruating women. Some positive factors may have contributed to reducing the prevalence of iron-deficiency anaemia in some groups of population: the use of iron-fortified formulas and iron-fortified cereals; the use of oral contraceptives and increased enrichment of iron in several countries; and the use of iron supplements during pregnancy in some European countries. It is possible to prevent and control iron deficiency by counseling individuals and families about sound iron nutrition during infancy and beyond, and about iron supplementation during pregnancy, by screening persons on the basis of their risk for iron deficiency, and by treating and following up persons with presumptive iron deficiency. This may help to reduce manifestations of iron deficiency and thus improve public health. Evidence linking iron status with risk of cardiovascular disease or cancer is unconvincing and does not justify changes in food fortification or medical practice, particularly because the benefits of assuring adequate iron intake during growth and development are well established

  6. Effect of nitrate enrichment and diatoms on the bioavailability of Fe(III) oxyhydroxide colloids in seawater.

    PubMed

    Liu, Feng-Jiao; Huang, Bang-Qin; Li, Shun-Xing; Zheng, Feng-Ying; Huang, Xu-Guang

    2016-03-01

    The photoconversion of colloidal iron oxyhydroxides was a significant source of bioavailable iron in coastal systems. Diatoms dominate phytoplankton communities in coastal and upwelling regions. Diatoms are often exposed to eutrophication. We investigated the effects of different species of diatom, cell density, illumination period, and nitrate additions on the bioavailability of Fe(III) oxy-hydroxide colloids in seawaters. With the increase of illumination period from 1 to 4 h, the ratios of concentrations of total dissolved Fe (DFe) to colloidal iron oxyhydroxides and Fe(II) to DFe increased up to 24.3% and 23.9% for seawater without coastal diatoms, 45.6% and 30.2% for Skeletonema costatum, 44.3% and 29.7% for Thalassiosira weissflogii, respectively. The photochemical activity of coastal diatoms themselves (excluding the dissolved organic matter secreted by algae) on the species transformation of iron in seawater (including the light-induced dissolution of Fe(III) oxyhydroxide colloids and the photo-reduction of Fe(III) into Fe(II)) was confirmed for the first time. There was no significant difference of the ability of S. costatum and Thalassiosira weissflogii on the photoconversion of colloidal iron oxyhydroxides. The photoproduction of dissolved Fe(II) and DFe in the seawater with or without diatoms could be depressed by the nitrate addition. PMID:26766021

  7. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress

    PubMed Central

    2015-01-01

    Abstract Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3′,-5′-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed. Antioxid. Redox Signal. 23, 899–942. PMID:26261901

  8. Historical Tracking of Nitrate in Contrasting Vineyard Using Water Isotopes and Nitrate Depth Profiles

    NASA Astrophysics Data System (ADS)

    Sprenger, M.; Erhardt, M.; Riedel, M.; Weiler, M.

    2015-12-01

    The European Water Framework Directive (EWFD) aims to achieve a good chemical status for the groundwater bodies in Europe by the year 2015. Despite the effort to reduce the nitrate pollution from agriculture within the last two decades, there are still many groundwater aquifers that exceed nitrate concentrations above the EWFD threshold of 50 mg/l. Viticulture is seen as a major contributor of nitrate leaching and sowing of a green cover was shown to have a positive effect on lowering the nitrate loads in the upper 90 cm of the soil. However, the consequences for nitrate leaching into the subsoil were not yet tested. We analyzed the nitrate concentrations and pore water stable isotope composition to a depth of 380 cm in soil profiles under an old vineyard and a young vineyard with either soil tillage or permanent green cover in between the grapevines. The pore water stable isotopes were used to calibrate a soil physical model, which was then used to infer the age of the soil water at different depths. This way, we could relate elevated nitrate concentrations below an old vineyard to tillage processes that took place during the winter two years before the sampling. We further showed that the elevated nitrate concentration in the subsoil of a young vineyard can be related to the soil tillage prior to the planting of the new vineyard. If the soil is kept bare due to tillage, a nitrate concentration of 200 kg NO3--N/ha is found in 290 to 380 cm depth 2.5 years after the installation of the vineyard. The amount of nitrate leaching is considerably reduced due to a seeded green cover between the grapevines that takes up a high share of the mobilized nitrate reducing a potential contamination of the groundwater.

  9. Catalytic effect of different forms of iron in purification of single-walled carbon nanotubes.

    PubMed

    Suzuki, Tomoko; Inoue, Sakae; Ando, Yoshinori

    2010-06-01

    In the arc plasma jet (APJ) method, a large amount of soot including single wall carbon nanotubes (SWNTs) can be produced in a short time. However, as-grown soot contains a lot of impurities, such as metallic particles used as catalyst and amorphous carbon. Hence it is necessary to purify the soot to obtain pure SWNTs. The biggest problem in purifying APJ-SWNTs is how to remove the thick amorphous carbon covering the catalyst metal particles. By refluxing APJ-SWNTs in hydrogen peroxide using iron particle as catalyst, it can be purified. The added fine particle of pure iron is found to be effective. Then, we examine whether SWNTs can be purified more effectively by adding solution containing the Fe ion instead of the iron particle. We used iron (III) nitrate nonahydrate, hydrogen peroxide decomposing agent which contains catalase and ammonium iron (II) sulfate hexahydrate. In the case of iron (III) nitrate and catalase, purification effect is not obvious. Under these conditions hydrogen peroxide was decomposed into H2O and O2, and the hydroxyl radical was not generated. On the other hand, ammonium iron (II) sulfate is effective. Because of existence of Fe2+ in solution Fenton's reaction takes place. Reaction rate is increased at high temperature. Therefore, APJ-SWNT is purified more effectively if refluxed in hydrogen peroxide using ammonium iron (II) sulfate as catalyst. PMID:20355392

  10. Iron losses in sweat

    SciTech Connect

    Brune, M.; Magnusson, B.; Persson, H.; Hallberg, L.

    1986-03-01

    The losses of iron in whole body cell-free sweat were determined in eleven healthy men. A new experimental design was used with a very careful cleaning procedure of the skin and repeated consecutive sampling periods of sweat in a sauna. The purpose was to achieve a steady state of sweat iron losses with minimal influence from iron originating from desquamated cells and iron contaminating the skin. A steady state was reached in the third sauna period (second sweat sampling period). Iron loss was directly related to the volume of sweat lost and amounted to 22.5 micrograms iron/l sweat. The findings indicate that iron is a physiological constituent of sweat and derived not only from contamination. Present results imply that variations in the amount of sweat lost will have only a marginal effect on the variation in total body iron losses.

  11. Iron Sucrose Injection

    MedlinePlus

    ... stop working). Iron sucrose injection is in a class of medications called iron replacement products. It works ... hands, feet, ankles, or lower legs; loss of consciousness; or seizures. If you experience a severe reaction, ...

  12. Serum iron test

    MedlinePlus

    ... GM. Disorders of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  13. Total iron binding capacity

    MedlinePlus

    ... GM. Disorders of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  14. Iron and Your Child

    MedlinePlus

    ... 24 months old. Serve iron-rich foods alongside foods containing vitamin C — such as tomatoes, broccoli, oranges, and strawberries — which improves the body's absorption of iron. Avoid serving coffee ...

  15. Iron supplements (image)

    MedlinePlus

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  16. Iron in diet

    MedlinePlus

    Diet - iron; Ferric acid; Ferrous acid; Ferritin ... The human body needs iron to make the oxygen-carrying proteins hemoglobin and myoglobin. Hemoglobin is found in red blood cells and myoglobin is found ...

  17. Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: a novel prospective technology for autotrophic denitrification.

    PubMed

    Zhang, Meng; Zheng, Ping; Li, Wei; Wang, Ru; Ding, Shuang; Abbas, Ghulam

    2015-03-01

    Nitrate-dependent anaerobic ferrous oxidizing (NAFO) is a valuable biological process, which utilizes ferrous iron to convert nitrate into nitrogen gas, removing nitrogen from wastewater. In this work, the performance of NAFO process was investigated as a nitrate removal technology. The results showed that NAFO system was feasible for autotrophic denitrification. The volumetric loading rate (VLR) and volumetric removal rate (VRR) under steady state were 0.159±0.01 kg-N/(m(3) d) and 0.073±0.01 kg-N/(m(3) d), respectively. In NAFO system, the effluent pH was suggested as an indicator which demonstrated a good correlation with nitrogen removal. The nitrate concentration was preferred to be less than 130 mg-N/L. Organic matters had little influence on NAFO performance. Abundant iron compounds were revealed to accumulate in NAFO sludge with peak value of 51.73% (wt), and they could be recycled for phosphorus removal, with capacity of 16.57 mg-P/g VS and removal rate of 94.77±2.97%, respectively. PMID:25576990

  18. Comparison of biotic and abiotic treatment approaches for co-mingled perchlorate, nitrate, and nitramine explosives in groundwater

    NASA Astrophysics Data System (ADS)

    Schaefer, C. E.; Fuller, M. E.; Condee, C. W.; Lowey, J. M.; Hatzinger, P. B.

    2007-01-01

    Biological and abiotic approaches for treating co-mingled perchlorate, nitrate, and nitramine explosives in groundwater were compared in microcosm and column studies. In microcosms, microscale zero-valent iron (mZVI), nanoscale zero-valent iron (nZVI), and nickel catalyzed the reduction of RDX and HMX from initial concentrations of 9 and 1 mg/L, respectively, to below detection (0.02 mg/L), within 2 h. The mZVI and nZVI also degraded nitrate (3 mg/L) to below 0.4 mg/L, but none of the metal catalysts were observed to appreciably reduce perchlorate (˜ 5 mg/L) in microcosms. Perchlorate losses were observed after approximately 2 months in columns of aquifer solids treated with mZVI, but this decline appears to be the result of biodegradation rather than abiotic reduction. An emulsified vegetable oil substrate was observed to effectively promote the biological reduction of nitrate, RDX and perchlorate in microcosms, and all four target contaminants in the flow-through columns. Nitrate and perchlorate were biodegraded most rapidly, followed by RDX and then HMX, although the rates of biological reduction for the nitramine explosives were appreciably slower than observed for mZVI or nickel. A model was developed to compare contaminant degradation mechanisms and rates between the biotic and abiotic treatments.

  19. Effect of molybdenum treatment on molybdenum concentration and nitrate reduction in maize seedlings.

    PubMed

    Kovács, Béla; Puskás-Preszner, Anita; Huzsvai, László; Lévai, László; Bódi, Éva

    2015-11-01

    Since 1940 molybdenum has been known as an essential trace element in plant nutrition and physiology. It has a central role in nitrogen metabolism, and its deficiency leads to nitrate accumulation in plants. In this study, we cultivated maize seedlings (Zea mays L. cv. Norma SC) in nutrient solution and soil (rhizoboxes) to investigate the effect of molybdenum treatment on the absorption of molybdenum, sulfur and iron. These elements have been previously shown to play important roles in nitrate reduction, because they are necessary for the function of the nitrate reductase enzyme. We also investigated the relationship between molybdenum treatments and different nitrogen forms in maize. Molybdenum treatments were 0, 0.96, 9.6 and 96 μg kg(-1) in the nutrition solution experiments, and 0, 30, 90, 270 mg kg(-1) in the rhizobox experiments. On the basis of our results, the increased Mo level produced higher plant available Mo concentration in nutrient solution and in soil, which resulted increased concentration of Mo in shoots and roots of maize seedlings. In addition it was observed that maize seedlings accumulated more molybdenum in their roots than in their shoots at all treatments. In contrast, molybdenum treatments did not affect significantly either iron or sulfur concentrations in the plant, even if these elements (Mo, S and Fe) play alike important roles in nitrogen metabolism. Furthermore, the physiological molybdenum level (1× Mo = 0.01 μM) reduced NO3-N and enhanced the NH4-N concentrations in seedlings, suggesting that nitrate reduction was more intense under a well-balanced molybdenum supply. PMID:26226599

  20. Suppression of erythropoiesis by dietary nitrate

    PubMed Central

    Ashmore, Tom; Fernandez, Bernadette O.; Evans, Colin E.; Huang, Yun; Branco-Price, Cristina; Griffin, Julian L.; Johnson, Randall S.; Feelisch, Martin; Murray, Andrew J.

    2015-01-01

    In mammals, hypoxia-triggered erythropoietin release increases red blood cell mass to meet tissue oxygen demands. Using male Wistar rats, we unmask a previously unrecognized regulatory pathway of erythropoiesis involving suppressor control by the NO metabolite and ubiquitous dietary component nitrate. We find that circulating hemoglobin levels are modulated by nitrate at concentrations achievable by dietary intervention under normoxic and hypoxic conditions; a moderate dose of nitrate administered via the drinking water (7 mg NaNO3/kg body weight/d) lowered hemoglobin concentration and hematocrit after 6 d compared with nonsupplemented/NaCl-supplemented controls. The underlying mechanism is suppression of hepatic erythropoietin expression associated with the downregulation of tissue hypoxia markers, suggesting increased pO2. At higher nitrate doses, however, a partial reversal of this effect occurred; this was accompanied by increased renal erythropoietin expression and stabilization of hypoxia-inducible factors, likely brought about by the relative anemia. Thus, hepatic and renal hypoxia-sensing pathways act in concert to modulate hemoglobin in response to nitrate, converging at an optimal minimal hemoglobin concentration appropriate to the environmental/physiologic situation. Suppression of hepatic erythropoietin expression by nitrate may thus act to decrease blood viscosity while matching oxygen supply to demand, whereas renal oxygen sensing could act as a brake, averting a potentially detrimental fall in hematocrit.—Ashmore, T., Fernandez, B. O., Evans, C. E., Huang, Y., Branco-Price, C., Griffin, J. L., Johnson, R. S., Feelisch, M., Murray, A. J. Suppression of erythropoiesis by dietary nitrate. PMID:25422368

  1. Quantification of nitrotyrosine in nitrated proteins

    PubMed Central

    Zhang, Yingyi; Pöschl, Ulrich

    2010-01-01

    For kinetic studies of protein nitration reactions, we have developed a method for the quantification of nitrotyrosine residues in protein molecules by liquid chromatography coupled to a diode array detector of ultraviolet-visible absorption. Nitrated bovine serum albumin (BSA) and nitrated ovalbumin (OVA) were synthesized and used as standards for the determination of the protein nitration degree (ND), which is defined as the average number of nitrotyrosine residues divided by the total number of tyrosine residues in a protein molecule. The obtained calibration curves of the ratio of chromatographic peak areas of absorbance at 357 and at 280 nm vs. nitration degree are nearly the same for BSA and OVA (relative deviations <5%). They are near-linear at low ND (< 0.1) and can be described by a second-order polynomial fit up to \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\hbox{ND}} = 0.5\\left( {{R^2} > 0.99} \\right) $$\\end{document}. A change of chromatographic column led to changes in absolute peak areas but not in the peak area ratios and related calibration functions, which confirms the robustness of the analytical method. First results of laboratory experiments confirm that the method is applicable for the investigation of the reaction kinetics of protein nitration. The main advantage over alternative methods is that nitration degrees can be efficiently determined without hydrolysis or digestion of the investigated protein molecules. PMID:20300739

  2. Nitration of naphthalene and remarks on the mechanism of electrophilic aromatic nitration.

    PubMed

    Olah, G A; Narang, S C; Olah, J A

    1981-06-01

    Naphthalene was nitrated with a variety of nitrating agents. Comparison of data with Perrin's electrochemical nitration [Perrin, C. L. (1977) J. Am. Chem. Soc. 99, 5516-5518] shows that nitration of naphthalene gives an alpha-nitronaphthalene to beta-nitronaphthalene ratio that varies between 9 and 29 and is thus not constant. Perrin's data, therefore, are considered to be inconclusive evidence for the proposed one-electron transfer mechanism for the nitration of naphthalene and other reactive aromatics. Moodie and Schoefield [Hoggett, J. G., Moodie, R. B., Penton, J. R. & Schoefield, K. (1971) Nitration and Aromatic Reactivity (Cambridge Univ. Press, London)], as well as Perrin, independently concluded that, in the general scheme of nitration of reactive aromatics, there is the necessity to introduce into the classical Ingold mechanism an additional step involving a distinct intermediate preceding the formation of the Wheland intermediate (sigma complexes). This view coincides with our two-step mechanistic picture [Kuhn, S. J. & Olah, G. A. (1961) J. Am. Chem. Soc. 83, 4564-4571] of the nitronium salt nitration of aromatic hydrocarbons (including benzene and toluene), in which low substrate selectivity but high positional selectivity was found, indicating the independence of substrate from positional selectivity. PMID:16593026

  3. Nitration of naphthalene and remarks on the mechanism of electrophilic aromatic nitration*

    PubMed Central

    Olah, George A.; Narang, Subhash C.; Olah, Judith A.

    1981-01-01

    Naphthalene was nitrated with a variety of nitrating agents. Comparison of data with Perrin's electrochemical nitration [Perrin, C. L. (1977) J. Am. Chem. Soc. 99, 5516-5518] shows that nitration of naphthalene gives an α-nitronaphthalene to β-nitronaphthalene ratio that varies between 9 and 29 and is thus not constant. Perrin's data, therefore, are considered to be inconclusive evidence for the proposed one-electron transfer mechanism for the nitration of naphthalene and other reactive aromatics. Moodie and Schoefield [Hoggett, J. G., Moodie, R. B., Penton, J. R. & Schoefield, K. (1971) Nitration and Aromatic Reactivity (Cambridge Univ. Press, London)], as well as Perrin, independently concluded that, in the general scheme of nitration of reactive aromatics, there is the necessity to introduce into the classical Ingold mechanism an additional step involving a distinct intermediate preceding the formation of the Wheland intermediate (σ complexes). This view coincides with our two-step mechanistic picture [Kuhn, S. J. & Olah, G. A. (1961) J. Am. Chem. Soc. 83, 4564-4571] of the nitronium salt nitration of aromatic hydrocarbons (including benzene and toluene), in which low substrate selectivity but high positional selectivity was found, indicating the independence of substrate from positional selectivity. PMID:16593026

  4. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    PubMed

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy. PMID:26134447

  5. An unexpected truth: increasing nitrate loading can decrease nitrate export from watersheds

    NASA Astrophysics Data System (ADS)

    Askarizadeh Bardsiri, A.; Grant, S. B.; Rippy, M.

    2015-12-01

    The discharge of anthropogenic nitrate (e.g., from partially treated sewage, return flows from agricultural irrigation, and runoff from animal feeding operations) to streams can negatively impact both human and ecosystem health. Managing these many point and non-point sources to achieve some specific end-point—for example, reducing the annual mass of nitrate exported from a watershed—can be a challenge, particularly in rapidly growing urban areas. Adding to this complexity is the fact that streams are not inert: they too can add or remove nitrate through assimilation (e.g., by stream-associated plants and animals) and microbially-mediated biogeochemical reactions that occur in streambed sediments (e.g., respiration, ammonification, nitrification, denitrification). By coupling a previously published correlation for in-stream processing of nitrate [Mulholland et al., Nature, 2008, 452, 202-205] with a stream network model of the Jacksons Creek watershed (Victoria, Australia) I demonstrate that managing anthropogenic sources of stream nitrate without consideration of in-stream processing can result in a number of non-intuitive "surprises"; for example, wastewater effluent discharges that increase nitrate loading but decrease in-stream nitrate concentrations can reduce the mass of nitrate exported from a watershed.

  6. Nitrate removal and denitrification affected by soil characteristics in nitrate treatment wetlands.

    PubMed

    Lin, Ying-Feng; Jing, Shuh-Ren; Lee, Der-Yuan; Chang, Yih-Feng; Shih, Kai-Chung

    2007-03-01

    Several small-scale surface flow constructed wetlands unplanted and planted (monoculture) with various macrophytes (Phragmites australis, Typha orientalis, Pennisetum purpureum, Ipomoea aquatica, and Pistia stratiotes) were established to continuously receive nitrate-contaminated groundwater. Soil characteristics and their effects on nitrate removal and soil denitrification were investigated. The results showed that planted wetland cells exhibited significantly higher (P < 0.05) nitrate removal efficiencies (70-99%) and soil denitrification rates (3.78-15.02 microg N2O-N/g dry soil/h) than an unplanted covered wetland cell (1%, 0.11 microg N2O-N/g/h). However, the unplanted uncovered wetland cell showed a nitrate removal efficiency (55%) lower than but a soil denitrification rate (9.12 microg N2O-N/g/h) comparable to the planted cells. The nitrate removal rate correlated closely and positively with the soil denitrification rate for the planted cells, indicating that soil denitrification is an important process for removing nitrate in constructed wetlands. The results of nitrogen budget revealed that around 68.9-90.7% of the overall nitrogen removal could be attributed to the total denitrification. The soil denitrification rate was found to correlate significantly (P < 0.01) with the extractable organic carbon, organic matter, and in situ-measured redox potential of wetland soil, which accordingly were concluded as suitable indicators of soil denitrification rate and nitrate removal rate in nitrate treatment wetlands. PMID:17365317

  7. COMPARATIVE KINETIC STUDIES OF NITRATE-LIMITED GROWTH AND NITRATE UPTAKE IN PHYTOPLANKTON IN CONTINUOUS CULTURE

    EPA Science Inventory

    A comparative kinetic study of nitrate-limited growth and nitrate uptake was carried out in chemostat cultures of Ankistrodesmus falcatus, Asterionella formosa, Fragilaria crotonensis. In each species growth rate (microgram) was related to total cell nitrogen or cell quota (q) by...

  8. Immobilisation of arsenic by iron(II)-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Kappler, A.; Hohmann, C.; Winkler, E.; Muehe, M.; Morin, G.

    2008-12-01

    Arsenic-contaminated groundwater is an environmental problem that affects about 1-2% of the world's population. As arsenic-contaminated water is also used for irrigating rice fields, the uptake of arsenic via rice is in some cases even higher than via drinking water. Arsenic is often of geogenic origin and in many cases bound to iron(III) minerals. Microbial iron(III) reduction leads to dissolution of Fe(III) minerals and thus the arsenic bound to these minerals is released to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II) oxidation followed by iron(III) mineral formation. Here, we present work on arsenic co-precipitation and immobilization by anaerobic and aerobic iron(II)-oxidizing bacteria. Co-precipitation batch experiments with pure cultures of nitrate-dependent, phototrophic, and microaerophilic Fe(II)-oxidizing bacteria are used to quantify the amount of arsenic that can be immobilized during microbial iron mineral precipitation. Iron and arsenic speciation and redox state are determined by X- ray diffraction and synchrotron-based X-ray absorption methods (EXAFS, XANES). Microcosm experiments are set-up either with liquid media or with rice paddy soil amended with arsenic. Rice paddy soil from arsenic contaminated rice fields in China that include a natural population of Fe(II)-oxidizing microorganisms is used as inoculum. Dissolved and solid-phase arsenic and iron are quantified, Arsenic speciation is determined and the iron minerals are identified. Additionally, Arsenic uptake into the rice plant is quantified and a gene expression pattern in rice (Oryza sativa cv Gladia) is determined by microarrays as a response to the presence of Fe(II)-oxidizing bacteria.

  9. Insight into the evolution of the iron oxidation pathways.

    PubMed

    Ilbert, Marianne; Bonnefoy, Violaine

    2013-02-01

    Iron is a ubiquitous element in the universe. Ferrous iron (Fe(II)) was abundant in the primordial ocean until the oxygenation of the Earth's atmosphere led to its widespread oxidation and precipitation. This change of iron bioavailability likely put selective pressure on the evolution of life. This element is essential to most extant life forms and is an important cofactor in many redox-active proteins involved in a number of vital pathways. In addition, iron plays a central role in many environments as an energy source for some microorganisms. This review is focused on Fe(II) oxidation. The fact that the ability to oxidize Fe(II) is widely distributed in Bacteria and Archaea and in a number of quite different biotopes suggests that the dissimilatory Fe(II) oxidation is an ancient energy metabolism. Based on what is known today about Fe(II) oxidation pathways, we propose that they arose independently more than once in evolution and evolved convergently. The iron paleochemistry, the phylogeny, the physiology of the iron oxidizers, and the nature of the cofactors of the redox proteins involved in these pathways suggest a possible scenario for the timescale in which each type of Fe(II) oxidation pathways evolved. The nitrate dependent anoxic iron oxidizers are likely the most ancient iron oxidizers. We suggest that the phototrophic anoxic iron oxidizers arose in surface waters after the Archaea/Bacteria-split but before the Great Oxidation Event. The neutrophilic oxic iron oxidizers possibly appeared in microaerobic marine environments prior to the Great Oxidation Event while the acidophilic ones emerged likely after the advent of atmospheric O(2). This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. PMID:23044392

  10. Iron aluminides and nickel aluminides as materials for chemical air separation

    DOEpatents

    Kang, D.

    1991-01-29

    The present invention is directed to a chemical air separation process using a molten salt solution of alkali metal nitrate and nitrite wherein the materials of construction of the containment for the process are chosen from intermetallic alloys of nickel and/or iron aluminide wherein the aluminum content is 28 atomic percent or greater to impart enhanced corrosion resistance.

  11. Iron aluminides and nickel aluminides as materials for chemical air separation

    DOEpatents

    Kang, Doohee

    1991-01-01

    The present invention is directed to a chemical air separation process using a molten salt solution of alkali metal nitrate and nitrite wherein the materials of construction of the containment for the process are chosen from intermetallic alloys of nickel and/or iron aluminide wherein the aluminum content is 28 atomic percent or greater to impart enhanced corrosion resistance.

  12. Microbial Reduction of Chromate in the Presence of Nitrate by Three Nitrate Respiring Organisms

    PubMed Central

    Chovanec, Peter; Sparacino-Watkins, Courtney; Zhang, Ning; Basu, Partha; Stolz, John F.

    2012-01-01

    A major challenge for the bioremediation of toxic metals is the co-occurrence of nitrate, as it can inhibit metal transformation. Geobacter metallireducens, Desulfovibrio desulfuricans, and Sulfurospirillum barnesii are three soil bacteria that can reduce chromate [Cr(VI)] and nitrate, and may be beneficial for developing bioremediation strategies. All three organisms respire through dissimilatory nitrate reduction to ammonia (DNRA), employing different nitrate reductases but similar nitrite reductase (Nrf). G. metallireducens reduces nitrate to nitrite via the membrane bound nitrate reductase (Nar), while S. barnesii and D. desulfuricans strain 27774 have slightly different forms of periplasmic nitrate reductase (Nap). We investigated the effect of DNRA growth in the presence of Cr(VI) in these three organisms and the ability of each to reduce Cr(VI) to Cr(III), and found that each organisms responded differently. Growth of G. metallireducens on nitrate was completely inhibited by Cr(VI). Cultures of D. desulfuricans on nitrate media was initially delayed (48 h) in the presence of Cr(VI), but ultimately reached comparable cell yields to the non-treated control. This prolonged lag phase accompanied the transformation of Cr(VI) to Cr(III). Viable G. metallireducens cells could reduce Cr(VI), whereas Cr(VI) reduction by D. desulfuricans during growth, was mediated by a filterable and heat stable extracellular metabolite. S. barnesii growth on nitrate was not affected by Cr(VI), and Cr(VI) was reduced to Cr(III). However, Cr(VI) reduction activity in S. barnesii, was detected in both the cell free spent medium and cells, indicating both extracellular and cell associated mechanisms. Taken together, these results have demonstrated that Cr(VI) affects DNRA in the three organisms differently, and that each have a unique mechanism for Cr(VI) reduction. PMID:23251135

  13. Vulnerability of streams to legacy nitrate sources

    USGS Publications Warehouse

    Tesoriero, Anthony J.; Duff, John H.; Saad, David A.; Spahr, Norman E.; Wolock, David M.

    2013-01-01

    The influence of hydrogeologic setting on the susceptibility of streams to legacy nitrate was examined at seven study sites having a wide range of base flow index (BFI) values. BFI is the ratio of base flow to total streamflow volume. The portion of annual stream nitrate loads from base flow was strongly correlated with BFI. Furthermore, dissolved oxygen concentrations in streambed pore water were significantly higher in high BFI watersheds than in low BFI watersheds suggesting that geochemical conditions favor nitrate transport through the bed when BFI is high. Results from a groundwater-surface water interaction study at a high BFI watershed indicate that decades old nitrate-laden water is discharging to this stream. These findings indicate that high nitrate levels in this stream may be sustained for decades to come regardless of current practices. It is hypothesized that a first approximation of stream vulnerability to legacy nutrients may be made by geospatial analysis of watersheds with high nitrogen inputs and a strong connection to groundwater (e.g., high BFI).

  14. Measurement of Isoprene Nitrates by GCMS

    NASA Astrophysics Data System (ADS)

    Mills, Graham; Hiatt-Gipson, Glyn; Bew, Sean; Reeves, Claire

    2016-04-01

    We have, for the first time, synthesised and identified the majority of the primary isoprene nitrates (INs), formed by reaction of isoprene with the hydroxyl radical (OH) and nitrate radical (NO3) as described in the Master Chemical Mechanism (MCM). An instrument based on gas chromatography/mass spectrometry (GCMS) and the associated calibration methods is described for the speciated measurements of individual isoprene nitrate isomers. Seven of the primary isoprene nitrates formed by reaction of the OH with isoprene in the MCM and three primary isoprene nitrates from the reaction of the NO3 and isoprene are identified, including six newly synthesised INs. Simple photochemistry bag experiments were performed to demonstrate the capability to measure speciated INs in complex mixtures. Interestingly, the results showed isomeric distributions of INs that were quite different to those predicted by model calculations in earlier studies. In addition, we observed INs that we would expect from NO3 addition to isoprene despite the bag experiments being carried out in daylight conditions when we would expect OH to be the only isoprene oxidant.

  15. Structural and mechanistic insights on nitrate reductases.

    PubMed

    Coelho, Catarina; Romão, Maria João

    2015-12-01

    Nitrate reductases (NR) belong to the DMSO reductase family of Mo-containing enzymes and perform key roles in the metabolism of the nitrogen cycle, reducing nitrate to nitrite. Due to variable cell location, structure and function, they have been divided into periplasmic (Nap), cytoplasmic, and membrane-bound (Nar) nitrate reductases. The first crystal structure obtained for a NR was that of the monomeric NapA from Desulfovibrio desulfuricans in 1999. Since then several new crystal structures were solved providing novel insights that led to the revision of the commonly accepted reaction mechanism for periplasmic nitrate reductases. The two crystal structures available for the NarGHI protein are from the same organism (Escherichia coli) and the combination with electrochemical and spectroscopic studies also lead to the proposal of a reaction mechanism for this group of enzymes. Here we present an overview on the current advances in structural and functional aspects of bacterial nitrate reductases, focusing on the mechanistic implications drawn from the crystallographic data. PMID:26362109

  16. Proteomic Approaches to Analyze Protein Tyrosine Nitration

    PubMed Central

    Feeney, Maria B.

    2013-01-01

    Abstract Significance: The conversion of protein-bound Tyr residues to 3-nitrotyrosine (3NY) can occur during nitrative stress and has been correlated to aging and many disease states. Proteomic analysis of this post-translational modification, using mass spectrometry-based techniques, is crucial for understanding its potential role in pathological and physiological processes. Recent Advances: To overcome some of the disadvantages inherent to well-established nitroproteomic methods using anti-3NY antibodies and gel-based separations, methods involving multidimensional chromatography, precursor ion scanning, and/or chemical derivatization have emerged for both identification and quantitation of protein nitration sites. A few of these methods have successfully detected endogenous 3NY modifications from biological samples. Critical Issues: While model systems often show promising results, identification of endogenous 3NY modifications remains largely elusive. The frequently low abundance of nitrated proteins in vivo, even under inflammatory conditions, is especially challenging, and sample loss due to derivatization and cleaning may become significant. Future Directions: Continued efforts to avoid interference from non-nitrated peptides without sacrificing recovery of nitrated peptides are needed. Quantitative methods are emerging and are crucial for identifying endogenous modifications that may have significant biological impacts. Antioxid. Redox Signal. 19, 1247–1256. PMID:23157221

  17. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities. PMID:26901167

  18. Structure and Function of Metal- and Nitrate-reducing Microbial Communities in the FRC Subsurface

    SciTech Connect

    Akob, Denise M.; Mills, Heath J.; Kerkhof, Lee; Gihring, Thomas M.; Kostk, Joel E.

    2006-04-05

    The overall goal of this study is to evaluate structure-function relationships of sedimentary microbial communities likely to regulate U(VI) reduction and immobilization in the subsurface of Area 2 at the Field Research Center (FRC), Oak Ridge, TN. Microcosm experiments were conducted under near in situ conditions with FRC subsurface materials cocontaminated with high levels of U(VI) and nitrate. The activity, abundance, and community composition of microorganisms was determined in microcosm samples, stimulated with ethanol or glucose, and compared to those from sediment cores and unamended controls. Activity was assessed by monitoring terminal electron accepting processes (TEAPs; nitrate, sulfate, uranium, and iron reduction) as well as electron donor utilization. Microbial functional groups, nitrate- and iron(III)-reducing bacteria, were enumerated during the nitrate- and metal-reduction phases of the incubation and in sediment core samples using a most probable number (MPN) serial dilution assay. U(VI) and Fe(III) were reduced concurrently in the glucose but not the ethanol treatments. In ethanol-amended microcosms, U(VI) was reduced during a 4-day lag phase between nitrate- and Fe(III)-reduction phases. Biostimulation resulted in 3 to 5 orders of magnitude higher counts of Fe(III)-reducing bacteria, whereas populations of nitrate-reducers were enhanced by 1 to 3 orders of magnitude. One to 2 orders of magnitude more Fe(III)-reducers were observed in ethanol- as compared to glucose-amended treatments in parallel with enhanced U(VI) removal in ethanol treatments. Cultivatable Fe(III)-reducing bacteria in the ethanol treatments were dominated by Geobacter sp. while those cultured on glucose were dominated by fermentative organisms, i.e., Tolumonas sp. Currently, carbon substrate utilization is being examined through HPLC analysis of microcosm porewaters. In addition, changes in the overall microbial community composition are being assessed using cultivation

  19. Effect of promoter and noble metals and suspension pH on catalytic nitrate reduction by bimetallic nanoscale Fe(0) catalysts.

    PubMed

    Bae, Sungjun; Hamid, Shanawar; Jung, Junyoung; Sihn, Youngho; Lee, Woojin

    2016-05-01

    Experiments were conducted to investigate the effect of experimental factors (types of promotor and noble metals, H2 injection, and suspension pH) on catalytic nitrate reduction by bimetallic catalysts supported by nanoscale zero-valent iron (NZVI). NZVI without H2 injection showed 71% of nitrate reduction in 1 h. Cu/NZVI showed the almost complete nitrate reduction (96%) in 1 h, while 67% of nitrate was reduced by Ni/NZVI. The presence of noble metals (Pd and Pt) on Cu/NZVI without H2 injection resulted in the decrease of removal efficiency to 89% and 84%, respectively, due probably to the electron loss of NZVI for formation of metallic Pd and Pt. H2 injection into Cu-Pd/NZVI suspension significantly improved both catalytic nitrate reduction (>97% in 30 min) and N2 selectivity (18%), indicating that adsorbed H on active Pd sites played an important role for the enhanced nitrate reduction and N2 selectivity. The rapid passivation of NZVI surface resulted in a dramatic decrease in nitrate reduction (79-28%) with an increase in N2 selectivity (8-66%) as the suspension pH increased from 8 to 10. PMID:26512419

  20. Molecular Components of Nitrate and Nitrite Efflux in Yeast

    PubMed Central

    Cabrera, Elisa; González-Montelongo, Rafaela; Giraldez, Teresa; de la Rosa, Diego Alvarez

    2014-01-01

    Some eukaryotes, such as plant and fungi, are capable of utilizing nitrate as the sole nitrogen source. Once transported into the cell, nitrate is reduced to ammonium by the consecutive action of nitrate and nitrite reductase. How nitrate assimilation is balanced with nitrate and nitrite efflux is unknown, as are the proteins involved. The nitrate assimilatory yeast Hansenula polymorpha was used as a model to dissect these efflux systems. We identified the sulfite transporters Ssu1 and Ssu2 as effective nitrate exporters, Ssu2 being quantitatively more important, and we characterize the Nar1 protein as a nitrate/nitrite exporter. The use of strains lacking either SSU2 or NAR1 along with the nitrate reductase gene YNR1 showed that nitrate reductase activity is not required for net nitrate uptake. Growth test experiments indicated that Ssu2 and Nar1 exporters allow yeast to cope with nitrite toxicity. We also have shown that the well-known Saccharomyces cerevisiae sulfite efflux permease Ssu1 is also able to excrete nitrite and nitrate. These results characterize for the first time essential components of the nitrate/nitrite efflux system and their impact on net nitrate uptake and its regulation. PMID:24363367

  1. Iron, radiation, and cancer.

    PubMed Central

    Stevens, R G; Kalkwarf, D R

    1990-01-01

    Increased iron content of cells and tissue may increase the risk of cancer. In particular, high available iron status may increase the risk of a radiation-induced cancer. There are two possible mechanisms for this effect: iron can catalyze the production of oxygen radicals, and it may be a limiting nutrient to the growth and development of a transformed cell in vivo. Given the high available iron content of the western diet and the fact that the world is changing to the western model, it is important to determine if high iron increases the risk of cancer. PMID:2269234

  2. Iron deficiency anemia

    PubMed Central

    Naigamwalla, Dinaz Z.; Webb, Jinelle A.; Giger, Urs

    2012-01-01

    Iron is essential to virtually all living organisms and is integral to multiple metabolic functions. The most important function is oxygen transport in hemoglobin. Iron deficiency anemia in dogs and cats is usually caused by chronic blood loss and can be discovered incidentally as animals may have adapted to the anemia. Severe iron deficiency is characterized by a microcytic, hypochromic, potentially severe anemia with a variable regenerative response. Iron metabolism and homeostasis will be reviewed, followed by a discussion of diagnostic testing and therapeutic recommendations for dogs and cats with iron deficiency anemia. PMID:22942439

  3. Cardioprotective effects of glyceryl trinitrate: beyond vascular nitrate tolerance.

    PubMed

    Csont, Tamás; Ferdinandy, Péter

    2005-01-01

    Organic nitrates have been used for the treatment of ischemic heart diseases for more than 100 years and these drugs are still amongst the most frequently prescribed and applied drugs worldwide. Development of tolerance against the hemodynamic effects of nitrates during sustained therapy, however, limits their clinical application. Moreover, recent clinical studies have suggested that long-term nitrate treatment does not improve or may even worsen cardiovascular mortality, possibly due to the development of vascular nitrate tolerance. In agreement with these clinical findings, nitrate tolerance has been shown to increase superoxide and peroxynitrite production leading to vascular dysfunction. Nevertheless, nitrates exert a direct myocardial anti-ischemic effect that is independent from their vascular actions. The direct myocardial effect of glyceryl trinitrate (GTN) has been shown to be preserved even in the state of vascular nitrate tolerance. Moreover, no oxidative stress was observed in hearts isolated from rats with vascular nitrate tolerance, while increased systemic peroxynitrite formation was detected in the plasma in the same animals. The different effects of nitrates on the heart and vasculature are not well characterized; however, tissue specific differences in the metabolism and cellular signaling of nitrates might be a plausible explanation. These data suggest that sustained nitrate treatment increases oxidative stress in the extracardiac vasculature, thereby promoting the development of vascular nitrate tolerance. However, the direct myocardial anti-ischemic effect of nitrates seems to be preserved beyond the development of vascular nitrate tolerance. These new findings may open new perspectives in the clinical use of organic nitrates and suggest that the development of either cardioselective nitrates or nitrate-antioxidant hybrid drugs may replace classical nitrates in the therapy of ischemic heart disease. PMID:15626455

  4. Iron toxicity in yeast.

    PubMed

    Wiśnicka, R; Krzepiłko, A; Wawryn, J; Biliński, T

    1997-01-01

    It has been found that yeast cells are sensitive to iron overload only when grown on glucose as a carbon source. Effective concentration of ferrous iron is much higher than that found in natural environments. Effects of ferrous iron are strictly oxygen dependent, what suggest that the formation of hydroxyl radicals in the Fenton reaction is a cause of the toxicity. Respiratory deficiency and pretreatment of cells with antimycin A prevent toxic effects in the late exponential phase of growth, whereas uncouplers and 2mM magnesium salts completely protect even the most vulnerable exponential cells. Generally, toxic effects correlate with the ability of cells to take up this metal. The results presented suggest that during ferrous iron overload iron is transported through the unspecific divalent cation uptake system which is known in fungi. The data suggest that recently described high and low affinity systems of iron uptake in yeast are the only source of iron in natural environments. PMID:9516981

  5. [Iron function and carcinogenesis].

    PubMed

    Akatsuka, Shinya; Toyokuni, Shinya

    2016-07-01

    Though iron is an essential micronutrient for humans, the excess state is acknowledged to be associated with oncogenesis. For example, iron overload in the liver of the patients with hereditary hemocromatosis highly increases the risk of hepatocellular carcinoma. Also, as to asbestos-related mesothelioma, such kinds of asbestos with a higher iron content are considered to be more carcinogenic. Iron is a useful element, which enables fundamental functions for life such as oxygen carrying and electron transport. However, in the situation where organisms are unable to have good control of it, iron turns into a dangerous element which catalyzes generation of reactive oxygen. In this review, I first outline the relationships between iron and cancer in general, then give an explanation about iron-related animal carcinogenesis models. PMID:27455808

  6. Plasma nitrate and nitrite are increased by a high-nitrate supplement but not by high-nitrate foods in older adults.

    PubMed

    Miller, Gary D; Marsh, Anthony P; Dove, Robin W; Beavers, Daniel; Presley, Tennille; Helms, Christine; Bechtold, Erika; King, S Bruce; Kim-Shapiro, Daniel

    2012-03-01

    Little is known about the effect of dietary nitrate on the nitrate/nitrite/nitric oxide cycle in older adults. We examined the effect of a 3-day control diet vs high-nitrate diet, with and without a high-nitrate supplement (beetroot juice), on plasma nitrate and nitrite kinetics and blood pressure using a randomized 4-period crossover controlled design. We hypothesized that the high-nitrate diet would show higher levels of plasma nitrate/nitrite and lower blood pressure compared with the control diet, which would be potentiated by the supplement. Participants were 8 normotensive older men and women (5 female, 3 male, 72.5 ± 4.7 years old) with no overt disease or medications that affect nitric oxide metabolism. Plasma nitrate and nitrite levels and blood pressure were measured before and hourly for 3 hours after each meal. The mean daily changes in plasma nitrate and nitrite were significantly different from baseline for both control diet + supplement (P < .001 and P = .017 for nitrate and nitrite, respectively) and high-nitrate diet + supplement (P = .001 and P = .002), but not for control diet (P = .713 and P = .741) or high-nitrate diet (P = .852 and P = .500). Blood pressure decreased from the morning baseline measure to the three 2-hour postmeal follow-up time points for all treatments, but there was no main effect for treatment. In healthy older adults, a high-nitrate supplement consumed at breakfast elevated plasma nitrate and nitrite levels throughout the day. This observation may have practical utility for the timing of intake of a nitrate supplement with physical activity for older adults with vascular dysfunction. PMID:22464802

  7. Nitrate postdeposition processes in Svalbard surface snow

    NASA Astrophysics Data System (ADS)

    Björkman, Mats P.; Vega, Carmen P.; Kühnel, Rafael; Spataro, Francesca; Ianniello, Antonietta; Esposito, Giulio; Kaiser, Jan; Marca, Alina; Hodson, Andy; Isaksson, Elisabeth; Roberts, Tjarda J.

    2014-11-01

    The snowpack acts as a sink for atmospheric reactive nitrogen, but several postdeposition pathways have been reported to alter the concentration and isotopic composition of snow nitrate with implications for atmospheric boundary layer chemistry, ice core records, and terrestrial ecology following snow melt. Careful daily sampling of surface snow during winter (11-15 February 2010) and springtime (9 April to 5 May 2010) near Ny-Ålesund, Svalbard reveals a complex pattern of processes within the snowpack. Dry deposition was found to dominate over postdeposition losses, with a net nitrate deposition rate of (0.6 ± 0.2) µmol m-2 d-1 to homogeneous surface snow. At Ny-Ålesund, such surface dry deposition can either solely result from long-range atmospheric transport of oxidized nitrogen or include the redeposition of photolytic/bacterial emission originating from deeper snow layers. Our data further confirm that polar basin air masses bring 15N-depleted nitrate to Svalbard, while high nitrate δ(18O) values only occur in connection with ozone-depleted air, and show that these signatures are reflected in the deposited nitrate. Such ozone-depleted air is attributed to active halogen chemistry in the air masses advected to the site. However, here the Ny-Ålesund surface snow was shown to have an active role in the halogen dynamics for this region, as indicated by declining bromide concentrations and increasing nitrate δ(18O), during high BrO (low-ozone) events. The data also indicate that the snowpack BrO-NOx cycling continued in postevent periods, when ambient ozone and BrO levels recovered.

  8. Techniques for Measurement of Nitrate Movement in Soils

    NASA Technical Reports Server (NTRS)

    Broadbent, F. E.

    1971-01-01

    Contamination of surface and ground waters with nitrate usually involves leaching through soil of nitrate produced by mineralization of soil organic matter, decomposition of animal wastes or plant residues, or derived from fertilizers. Nitrate concentrations in the soil solution may be measured by several chemical procedures or by the nitrate electrode. since nitrate is produced throughout the soil mass it is difficult to identify a source of nitrate contamination by conventional means. This problem can be solved by use of N-15-enriched or N-15-depleted materials as tracers. The latter is particularly attractive because of the negligible possibility of the tracer hazardous to health.

  9. Nitrate isotope fractionations during biological nitrate reduction: Insights from first principles theoretical modeling

    NASA Astrophysics Data System (ADS)

    Guo, W.; Granger, J.; Sigman, D. M.

    2010-12-01

    Coupled fractionations of N and O isotopes during biological nitrate reduction provide important constraints on the marine nitrogen cycle at present and in the geologic past. Recent laboratory experiments with mono-cultures of nitrate-assimilative algae and plankton, and denitrifying bacteria demonstrate that N and O isotopic compositions of the residual nitrate co-vary linearly with a constant ratio (i.e., Δδ18O: Δδ15N) of ~1 or ~0.6 [1]. These systematic variations have been inferred to derive from the kinetic isotope fractionations associated with nitrate reductases. The isotope fractionation mechanisms at the enzymatic level, however, remain elusive. Here we present models of isotope fractionations accompanying the nitrate reduction (NO3-→NO2-) by three functional types of nitrate reductases, using techniques from ab initio, transition state and statistical thermodynamic theory. We consider three types of nitrate reductases: eukNR (eukaryotic assimilatory nitrate reductase), NAR (prokaryotic respiratory nitrate reductase) and Nap (prokaryotic periplasmic nitrate reductase). All are penta- or hexa-coordinated molybdo-enzymes, but bear considerable differences in protein geometry among functional types. Our models, based on the simplified structures of their active sites, predict N and O isotope effects (15ɛ and 18ɛ) ranging from 32.7 to 36.6‰ and from 33.5 to 34.8‰, respectively, at 300K with 18ɛ:15ɛ ratios of 0.9-1.1. The predicted amplitudes of N and O isotope fractionations are in the range measured for eukNR in vitro (~27‰, Karsh et al. in prep), and also correspond to the upper amplitudes observed for denitrifiers in vivo (~25‰, [1]). Moreover, the computed 18ɛ:15ɛ ratios corroborate the consistent relationships of ~1 observed experimentally for eukNR and the respiratory NAR. These findings indicate the enzymatic reduction is likely the rate-limiting step in most biological nitrate reductions. In addition, the predicted similarity of 18

  10. A Reservoir of Nitrate Beneath Desert Soils

    USGS Publications Warehouse

    Walvoord, M.A.; Phillips, F.M.; Stonestrom, D.A.; Evans, R.D.; Hartsough, P.C.; Newman, B.D.; Striegl, R.G.

    2003-01-01

    A large reservoir of bioavailable nitrogen (upto ???104 kilograms of nitrogen per hectare, as nitrate) has been previously overlooked in studies of global nitrogen distribution. The reservoir has been accumulating in subsoil zones of and regions throughout the Holocene. Consideration of the subsoil reservoir raises estimates of vadose-zone nitrogen inventories by 14 to 71% for warm deserts and arid shrublands worldwide and by 3 to 16% globally. Subsoil nitrate accumulation indicates long-term leaching from desert soils, impelling further evaluation of nutrient dynamics in xeric ecosystems. Evidence that subsoil accumulations are readily mobilized raises concern about groundwater contamination after land-use or climate change.

  11. Biodegradation of Glycidol and Glycidyl Nitrate

    PubMed Central

    Kaplan, David L.; Cornell, John H.; Kaplan, Arthur M.

    1982-01-01

    When calcium hydroxide is used to desensitize glycerol trinitrate (nitroglycerine)-containing waste streams, the epoxides glycidol and glycidyl nitrate are formed. The epoxide rings of both compounds are unstable to heat in aqueous solutions, and they open to form glycerol 1-mononitrate and presumably glycerol. These transformations were accelerated by microbial activity. Glycerol 1-mononitrate was slowly denitrated to form glycerol. Glycidol and glycidyl nitrate caused base-pair substitutions in the Ames test for mutagenicity, whereas glycerol 1-mononitrate tests were negative. PMID:16345917

  12. SEPARATION OF URANYL NITRATE BY EXTRACTION

    DOEpatents

    Stoughton, R.W.; Steahly, F.L.

    1958-08-26

    A process is presented for obtaining U/sup 233/ from solutions containing Pa/sup 233/. A carrier precipitate, such as MnO/sub 2/, is formed in such solutions and carries with it the Pa/sup 233/ present. This precipitate is then dissolved in nitric acid and the solution is aged to allow decay of the Pa/ sup 233/ into U/sup 233/. After a sufficient length of time the U/sup 233/ bearing solution is made 2.5 to 4.5 Molar in manganese nitrate by addition thereof, and the solution is then treated with ether to obtain uranyl nitrate by solvent extraction techniques.

  13. Methylhydrazinium nitrate. [rocket plume deposit chemistry

    NASA Technical Reports Server (NTRS)

    Lawton, E. A.; Moran, C. M.

    1983-01-01

    Methylhydrazinium nitrate was synthesized by the reaction of dilute nitric acid with methylhydrazine in water and in methanol. The white needles formed are extremely hygroscopic and melt at 37.5-40.5 C. The IR spectrum differs from that reported elsewhere. The mass spectrum exhibited no parent peak at 109 m/z, and thermogravimetric analysis indicated that the compound decomposed slowly at 63-103 C to give ammonium and methylammonium nitrate. The density is near 1.55 g/cu cm.

  14. Efficient syntheses of climate relevant isoprene nitrates and (1R,5S)-(−)-myrtenol nitrate

    PubMed Central

    Hiatt-Gipson, Glyn D; Mills, Graham P; Reeves, Claire E

    2016-01-01

    Summary Here we report the chemoselective synthesis of several important, climate relevant isoprene nitrates using silver nitrate to mediate a ’halide for nitrate’ substitution. Employing readily available starting materials, reagents and Horner–Wadsworth–Emmons chemistry the synthesis of easily separable, synthetically versatile ‘key building blocks’ (E)- and (Z)-3-methyl-4-chlorobut-2-en-1-ol as well as (E)- and (Z)-1-((2-methyl-4-bromobut-2-enyloxy)methyl)-4-methoxybenzene has been achieved using cheap, ’off the shelf’ materials. Exploiting their reactivity we have studied their ability to undergo an ‘allylic halide for allylic nitrate’ substitution reaction which we demonstrate generates (E)- and (Z)-3-methyl-4-hydroxybut-2-enyl nitrate, and (E)- and (Z)-2-methyl-4-hydroxybut-2-enyl nitrates (‘isoprene nitrates’) in 66–80% overall yields. Using NOESY experiments the elucidation of the carbon–carbon double bond configuration within the purified isoprene nitrates has been established. Further exemplifying our ‘halide for nitrate’ substitution chemistry we outline the straightforward transformation of (1R,2S)-(−)-myrtenol bromide into the previously unknown monoterpene nitrate (1R,2S)-(−)-myrtenol nitrate. PMID:27340495

  15. The Acid Catalyzed Nitration of Methanol: Formation of Methyl Nitrate via Aerosol Chemistry

    NASA Technical Reports Server (NTRS)

    Riffel, Brent G.; Michelsen, Rebecca R.; Iraci, Laura T.

    2004-01-01

    The liquid phase acid catalyzed reaction of methanol with nitric acid to yield methyl nitrate under atmospheric conditions has been investigated using gas phase infrared spectroscopy. This nitration reaction is expected to occur in acidic aerosol particles found in the upper troposphere/lower stratosphere as highly soluble methanol and nitric acid diffuse into these aerosols. Gaseous methyl nitrate is released upon formation, suggesting that some fraction of NO(x) may he liberated from nitric acid (methyl nitrate is later photolyzed to NO(x)) before it is removed from the atmosphere by wet deposition. Thus, this reaction may have important implications for the NO(x) budget. Reactions have been initiated in 45-62 wt% H2SO4 solutions at 10.0 C. Methyl nitrate production rates increased exponentially with acidity within the acidity regime studied. Preliminary calculations suggest that the nitronium ion (NO2(+) is the active nitrating agent under these conditions. The reaction order in methanol appears to depend on the water/methanol ratio and varies from first to zeroth order under conditions investigated. The nitration is first order in nitronium at all acidities investigated. A second order rate constant, kappa(sub 2), has been calculated to be 1 x 10(exp 8)/ M s when the reaction is first order in methanol. Calculations suggest the nitration is first order in methanol under tropospheric conditions. The infinitesimal percentage of nitric acid in the nitronium ion form in this acidity regime probably makes this reaction insignificant for the upper troposphere; however, this nitration may become significant in the mid stratosphere where colder temperatures increase nitric acid solubility and higher sulfuric acid content shifts nitric acid speciation toward the nitronium ion.

  16. Evaluation of Nitrate Sources and Nitrate Management Strategies in California Suburban Growth Areas

    NASA Astrophysics Data System (ADS)

    Singleton, M. J.; Moran, J. E.; Esser, B. K.; Leif, R. N.; McNab, W. W.; Carle, S. F.; Moore, K. B.

    2005-12-01

    Population growth in California has pushed the boundaries of suburban communities into formerly agricultural areas. As a result there is considerable uncertainty as to whether nitrate contamination in groundwater wells results from current sources or is a legacy of agriculture. Fertilizer application for historical agriculture is frequently assumed to be a major source, but septic system leachate, other animal waste, and residential fertilizer application may also contribute. Potential remediation strategies may include improved fertilizer management and/or conversion from septic tanks to sewer systems, but the sources of nitrate and pathways to groundwater must first be identified in order to develop a plan of action. We combine the detection of trace organic compounds that are specific to domestic waste with isotopic compositions of nitrogen and oxygen in nitrate in order to determine nitrate sources. Under anaerobic conditions and in the presence of an electron donor such as organic carbon, microbially mediated denitrification may transform nitrate to harmless nitrogen gas, and fractionate the isotopologues of any residual nitrate. The occurrence of saturated zone denitrification is detected by measuring excess dissolved nitrogen gas with a field-portable membrane inlet mass spectrometer system. Groundwater age dating using the 3H/3He method provides a means of tracking the history of nitrate inputs to groundwater, including changes in nitrate flux after implementation of a remediation program. Groundwater that pre-dates agricultural or suburban activity is used to define natural background levels of nitrate. Study areas in California include Chico, Livermore, and Gilroy. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  17. Uranium reduction and resistance to reoxidation under iron-reducing and sulfate-reducing conditions.

    PubMed

    Boonchayaanant, Benjaporn; Nayak, Dipti; Du, Xin; Criddle, Craig S

    2009-10-01

    Oxidation and mobilization of microbially-generated U(IV) is of great concern for in situ uranium bioremediation. This study investigated the reoxidation of uranium by oxygen and nitrate in a sulfate-reducing enrichment and an iron-reducing enrichment derived from sediment and groundwater from the Field Research Center in Oak Ridge, Tennessee. Both enrichments were capable of reducing U(VI) rapidly. 16S rRNA gene clone libraries of the two enrichments revealed that Desulfovibrio spp. are dominant in the sulfate-reducing enrichment, and Clostridium spp. are dominant in the iron-reducing enrichment. In both the sulfate-reducing enrichment and the iron-reducing enrichment, oxygen reoxidized the previously reduced uranium but to a lesser extent in the iron-reducing enrichment. Moreover, in the iron-reducing enrichment, the reoxidized U(VI) was eventually re-reduced to its previous level. In both, the sulfate-reducing enrichment and the iron-reducing enrichment, uranium reoxidation did not occur in the presence of nitrate. The results indicate that the Clostridium-dominated iron-reducing communities created conditions that were more favorable for uranium stability with respect to reoxidation despite the fact that fewer electron equivalents were added to these systems. The likely reason is that more of the added electrons are present in a form that can reduce oxygen to water and U(VI) back to U(IV). PMID:19651424

  18. Aggregate-Scale Variation in Iron Biogeochemistry Controls Element Cycling from Nitrogen to Uranium

    NASA Astrophysics Data System (ADS)

    Fendorf, S. E.; Ying, S.; Jones, L. C.; Jones, M. E.

    2014-12-01

    Iron exerts a major control on element cycling in soils by serving as a prominent sorbent (principally when present as an oxide phase) and as an electron acceptor (in the ferric-form) or donor (ferrous-form) in both chemical and microbially-mediated reactions. Within the aggregated structure of soils, steep chemical gradients arise from the supply of oxygen and nutrients along macropores that are rapidly consumed (relative to supply) within the micropore domains of aggregate interiors. As a consequence, iron undergoes a dynamic biogeochemical cycle whereby ferric (hydr)oxides form within aggregate exteriors while ferrous-iron generation dominates within interior regions. Further, inter-aggregate cycling of iron can transpire through the supply of electron donors and acceptors, linked with diffusive controlled response to gradients. Coupling to iron transformation are the varying retention of adsorptives such as lead and phosphorus and the redox alterations of elements from nitrogen to uranium. Nitrate, for example, diffusing into aggregate interiors encounters ferrous-iron fronts where the ensuring oxidation of Fe(II)-coupled to nitrate reduction transpires. The outcome of aggregate-scale iron transformations, described within this presentation, is fundamental controls on the cycling of redox active elements from nutrients such as carbon and nitrogen to contaminants such arsenic and uranium.

  19. Towards a Mechanistic Understanding of Anaerobic Iron Oxidation: Balancing Electron Uptake and Detoxification

    NASA Astrophysics Data System (ADS)

    Coates, J. D.; Carlson, H. K.; Clark, I.; Melnyk, R. A.

    2011-12-01

    In recent years, significant progress has been made towards understanding the biochemical mechanisms used by bacteria for the anaerobic oxidation of Fe(II) in the environment. Most work to elucidate microbial anaerobic iron oxidation mechanisms has focused on photosynthetic iron oxidizers. However, a wide range of bacteria can couple iron oxidation to nitrate respiration in the absence of sunlight and oxygen. The growth benefit from anaerobic iron oxidation varies widely. In both photosynthetic and nitrate reducing bacteria, oxidation of Fe(II) likely represents an important detoxification strategy, and, in some cases, may have also evolved into a metabolic strategy. The extent to which electron donation from Fe(II) can be controlled and toxic reactions prevented or managed is central to the success of an iron oxidizing microorganism. We suggest that iron oxidizing microorganisms likely exist along a continuum including: 1) bacteria which inadvertantly oxidize Fe(II) by abiotic or biotic reactions with enzymes or chemical intermediates in their metabolic pathways (e.g. denitrification) and suffer from toxicity or energetic penalty, 2) Fe(II) tolerant bacteria that gain little or no growth benefit from iron oxidation but can manage the toxic reactions, and 3) bacteria which can efficiently accept electrons from Fe(II) to gain a growth advantage while preventing or mitigating the toxic reactions. Evidence from physiological, proteomic and biochemical experiments is used to place various bacterial species in each of these three classes.

  20. COGEMA Experience in Uranous Nitrate Preparation

    SciTech Connect

    Tison, E.; Bretault, Ph.

    2006-07-01

    Separation and purification of plutonium by PUREX process is based on a sequence of extraction and back extraction which requires reducing plutonium Pu IV (extractable form) into Pu III (inextractable form) Different reducers can be used to reduce Pu IV into Pu III. Early plants such as that for Magnox fuel at Sellafield used ferrous sulfamate while UP 1 at Marcoule used uranous sulfamate. These reducers are efficient and easy to prepare but generates ferric and/or sulphate ions and so complicates management of the wastes from the plutonium purification cycle. Recent plants such as UP3 and UP2 800 at La Hague, THORP at Sellafield, and RRP at Rokkasho Mura (currently under tests) use uranous nitrate (U IV) stabilized by hydrazinium nitrate (N{sub 2}H{sub 5}NO{sub 3}) and hydroxyl ammonium nitrate (HAN). In the French plants, uranous nitrate is used in U-Pu separation and alpha barrier and HAN is used in Pu purification. Compared to sulfamate, U IV does not generate extraneous chemical species and uranyl nitrate (U VI) generated by reducing Pu IV follows the main uranium stream. More over uranous nitrate is prepared from reprocessed purified uranyl nitrate taken at the outlet of the reprocessing plant. Hydrazine and HAN offer the advantage to be salt-free reagents. Uranous nitrate can be generated either by electrolysis or by catalytic hydrogenation process. Electrolytic process has been implemented in early plant UP 1 at Marcoule (when changing reducer from uranous sulfamate to uranous nitrate) and was used again in UP2 plant at La Hague. However, the electrolytic process presented several disadvantages such as a low conversion rate and problems associated with the use of mercury. Electrolysis cells with no mercury were developed for the Eurochemic plant in Belgium and then implemented in the first Japanese reprocessing plant in Tokai-Mura. But finally, in 1975, the electrolytic process was abandoned in favor of the catalytic hydrogenation process developed at La

  1. Homogeneous Iron Phosphate Nanoparticles by Combustion of Sprays

    PubMed Central

    Rudin, Thomas; Pratsinis, Sotiris E.

    2013-01-01

    Low-cost synthesis of iron phosphate nanostructured particles is attractive for large scale fortification of basic foods (rice, bread, etc.) as well as for Li-battery materials. This is achieved here by flame-assisted and flame spray pyrolysis (FASP and FSP) of inexpensive precursors (iron nitrate, phosphate), solvents (ethanol), and support gases (acetylene and methane). The iron phosphate powders produced here were mostly amorphous and exhibited excellent solubility in dilute acid, an indicator of relative iron bioavailability. The amorphous and crystalline fractions of such powders were determined by X-ray diffraction (XRD) and their cumulative size distribution by X-ray disk centrifuge. Fine and coarse size fractions were obtained also by sedimentation and characterized by microscopy and XRD. The coarse size fraction contained maghemite Fe2O3 while the fine was amorphous iron phosphate. Furthermore, the effect of increased production rate (up to 11 g/h) on product morphology and solubility was explored. Using increased methane flow rates through the ignition/pilot flame of the FSP-burner and inexpensive powder precursors resulted in also homogeneous iron phosphate nanoparticles essentially converting the FSP to a FASP process. The powders produced by FSP at increased methane flow had excellent solubility in dilute acid as well. Such use of methane or even natural gas might be economically attractive for large scale flame-synthesis of nanoparticles. PMID:23407874

  2. Modeling the long-term fate of agricultural nitrate in groundwater in the San Joaquin Valley, California

    USGS Publications Warehouse

    Chapelle, Francis H.; Campbell, Bruce G.; Widdowson, Mark A.; Landon, Mathew K.

    2013-01-01

    (POC) are the primary electron donors driving active denitrification in groundwater. The purpose of this chapter is to use a numerical mass balance modeling approach to quantitatively compare sources of electron donors (DOC, POC) and electron acceptors (dissolved oxygen, nitrate, and ferric iron) in order to assess the potential for denitrification to attenuate nitrate migration in the Central Valley aquifer.

  3. The ubiquity of iron.

    PubMed

    Frey, Perry A; Reed, George H

    2012-09-21

    The importance of iron in living systems can be traced to the many complexes within which it is found, to its chemical mobility in undergoing oxidation-reduction reactions, and to the abundance of iron in Earth's crust. Iron is the most abundant element, by mass, in the Earth, constituting about 80% of the inner and outer cores of Earth. The molten outer core is about 8000 km in diameter, and the solid inner core is about 2400 km in diameter. Iron is the fourth most abundant element in Earth's crust. It is the chemically functional component of mononuclear iron complexes, dinuclear iron complexes, [2Fe-2S] and [4Fe-4S] clusters, [Fe-Ni-S] clusters, iron protophorphyrin IX, and many other complexes in protein biochemistry. Metals such as nickel, cobalt, copper, and manganese are present in the crust and could in principle function chemically in place of iron, but they are scarce in Earth's crust. Iron is plentiful because of its nuclear stability in stellar nuclear fusion reactions. It seems likely that other solid planets, formed by the same processes as Earth, would also foster the evolution of life and that iron would be similarly important to life on those planets as it is on Earth. PMID:22845493

  4. Iron deficiency anaemia.

    PubMed

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment. PMID:26314490

  5. Assimilatory Nitrate Reduction in Hansenula polymorpha

    NASA Astrophysics Data System (ADS)

    Rossi, Beatrice; Berardi, Enrico

    In the last decade, the yeast Hansenula polymorpha (syn.: Pichia angusta) has become an excellent experimental model for genetic and molecular investigations of nitrate assimilation, a subject traditionally investigated in plants, filamentous fungi and bacteria. Among other advantages, H. polymorpha offers classical and molecular genetic tools, as well as the availability of genomic sequence data.

  6. Denitration of High Nitrate Salts Using Reductants

    SciTech Connect

    HD Smith; EO Jones; AJ Schmidt; AH Zacher; MD Brown; MR Elmore; SR Gano

    1999-05-03

    This report describes work conducted by Pacific Northwest National Laboratory (PNNL), in conjunction with Idaho National Engineering and Environmental Laboratory (INEEL), to remove nitrates in simulated low-activity waste (LAW). The major objective of this work was to provide data for identifying and demonstrating a technically viable and cost-effective approach to condition LAW for immobilization (grout).

  7. Potentiating potassium nitrate's desensitization with dimethyl isosorbide.

    PubMed

    Hodosh, M

    2001-01-01

    Desensitization of hypersensitive teeth by the combination of dimethyl isosorbide (DMI) and potassium nitrate (KNO3) is more effective than when KNO3 is used alone. KNO3/DMI work together to desensitize hypersensitive teeth at a higher, quicker, and more profound and lasting level. PMID:12017799

  8. 76 FR 70366 - Ammonium Nitrate Security Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Department previously announced a series of public meetings on the same topic on October 2, 2011 (see 76 FR... public comment on August 3, 2011. See 73 FR 64280 (advance notice of proposed rulemaking); 76 FR 46908... the Department's Ammonium Nitrate Security Program Web site, at...

  9. 76 FR 47238 - Ammonium Nitrate From Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ...)). Background The Commission instituted this review on March 1, 2011 (76 FR 11273) and determined on June 6, 2011 that it would conduct an expedited review (76 FR 34749, June 14, 2011). The Commission transmitted... COMMISSION Ammonium Nitrate From Russia Determination On the basis of the record \\1\\ developed in the...

  10. 76 FR 11273 - Ammonium Nitrate From Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... nitrate from Russia (71 FR 17080). The Commission is now conducting a second review to determine whether... recently amended at 74 FR 2847 (January 16, 2009). \\1\\ No response to this request for information is... (65 FR 37759, June 16, 2000). Following five-year reviews by Commerce and the Commission,...

  11. A toxicological study of gadolinium nitrate

    SciTech Connect

    London, J.E.

    1988-05-01

    The sensitization study in the guinea pig did not show gadolinium nitrate to have potential sensitizing properties. Skin application studies in the rabbit demonstrated that it was cutaneously a severe irritant. This material was considered an irritant in the rabbit eye application studies. 3 refs., 1 tab.

  12. Nitrate Salt Surrogate Blending Scoping Test Plan

    SciTech Connect

    Anast, Kurt Roy

    2015-11-13

    Test blending equipment identified in the “Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing”. Determine if the equipment will provide adequate mixing of zeolite and surrogate salt/Swheat stream; optimize equipment type and operational sequencing; impact of baffles and inserts on mixing performance; and means of validating mixing performance

  13. Negative ion spectrometry for detecting nitrated explosives

    NASA Technical Reports Server (NTRS)

    Boettger, H. G.; Yinon, J.

    1975-01-01

    Ionization procedure is modified to produce mainly negative ions by electron capture. Peaks of negative ions are monitored conventionally. Nitrated organic materials could be identified directly from sample sniff inlet stream by suitably modified mass spectrometer because of unique electronegativity which nitro group imparts to organic material.

  14. Nitrates, Nitrites, and Health. Bulletin 750.

    ERIC Educational Resources Information Center

    Deeb, Barbara S.; Sloan, Kenneth W.

    This review is intended to assess available literature in order to define the range of nitrate/nitrite effects on animals. Though the literature deals primarily with livestock and experimental animals, much of the contemporary research is concerned with human nitrite intoxication. Thus, the effects on man are discussed where appropriate. Some of…

  15. Reduction of Nitrite and Nitrate to Ammonium on Pyrite

    NASA Astrophysics Data System (ADS)

    Singireddy, Soujanya; Gordon, Alexander D.; Smirnov, Alexander; Vance, Michael A.; Schoonen, Martin A. A.; Szilagyi, Robert K.; Strongin, Daniel R.

    2012-08-01

    An important constraint on the formation of the building blocks of life in the Hadean is the availability of small, activated compounds such as ammonia (NH3) relative to its inert dinitrogen source. Iron-sulfur particles and/or mineral surfaces have been implicated to provide the catalytic active sites for the reduction of dinitrogen. Here we provide a combined kinetic, spectroscopic, and computational modeling study for an alternative source of ammonia from water soluble nitrogen oxide ions. The adsorption of aqueous nitrite (NO{2/-}) and nitrate (NO{3/-}) on pyrite (FeS2) and subsequent reduction chemistry to ammonia was investigated at 22°C, 70°C, and 120°C. Batch geochemical and in situ Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) spectroscopy experiments were used to determine the reduction kinetics to NH3 and to elucidate the identity of the surface complexes, respectively, during the reaction chemistry of NO{2/-} and NO{3/-}. Density functional theory (DFT) calculations aided the interpretation of the vibrational data for a representative set of surface species. Under the experimental conditions used in this study, we detected the adsorption of nitric oxide (NO) intermediate on the pyrite surface. NH3 production from NO{2/-} occurred at 70 and 120°C and from NO{3/-} occurred only at 120°C.

  16. Perchlorate and nitrate in situ bioremediation of ground water

    SciTech Connect

    Strietelmeier, E. A.; Nuttall, H. Eric; Hatzinger, Paul; Goltz, Mark

    2002-01-01

    Nitrate and perchlorate are growing worldwide problems as mobile anionic groundwater contaminants. Biological rduction of nitrate and perchlorate in groundwater is under development as a technology to address these problems.

  17. The Arabidopsis NRG2 Protein Mediates Nitrate Signaling and Interacts with and Regulates Key Nitrate Regulators[OPEN

    PubMed Central

    Zhao, Lufei; Zhang, Chengfei; Li, Zehui; Lei, Zhao; Liu, Fei; Guan, Peizhu; Crawford, Nigel M.

    2016-01-01

    We show that NITRATE REGULATORY GENE2 (NRG2), which we identified using forward genetics, mediates nitrate signaling in Arabidopsis thaliana. A mutation in NRG2 disrupted the induction of nitrate-responsive genes after nitrate treatment by an ammonium-independent mechanism. The nitrate content in roots was lower in the mutants than in the wild type, which may have resulted from reduced expression of NRT1.1 (also called NPF6.3, encoding a nitrate transporter/receptor) and upregulation of NRT1.8 (also called NPF7.2, encoding a xylem nitrate transporter). Genetic and molecular data suggest that NRG2 functions upstream of NRT1.1 in nitrate signaling. Furthermore, NRG2 directly interacts with the nitrate regulator NLP7 in the nucleus, but nuclear retention of NLP7 in response to nitrate is not dependent on NRG2. Transcriptomic analysis revealed that genes involved in four nitrogen-related clusters including nitrate transport and response to nitrate were differentially expressed in the nrg2 mutants. A nitrogen compound transport cluster containing some members of the NRT/PTR family was regulated by both NRG2 and NRT1.1, while no nitrogen-related clusters showed regulation by both NRG2 and NLP7. Thus, NRG2 plays a key role in nitrate regulation in part through modulating NRT1.1 expression and may function with NLP7 via their physical interaction. PMID:26744214

  18. Brain iron homeostasis.

    PubMed

    Moos, Torben

    2002-11-01

    Iron is essential for virtually all types of cells and organisms. The significance of the iron for brain function is reflected by the presence of receptors for transferrin on brain capillary endothelial cells. The transport of iron into the brain from the circulation is regulated so that the extraction of iron by brain capillary endothelial cells is low in iron-replete conditions and the reverse when the iron need of the brain is high as in conditions with iron deficiency and during development of the brain. Whereas there is good agreement that iron is taken up by means of receptor-mediated uptake of iron-transferrin at the brain barriers, there are contradictory views on how iron is transported further on from the brain barriers and into the brain extracellular space. The prevailing hypothesis for transport of iron across the BBB suggests a mechanism that involves detachment of iron from transferrin within barrier cells followed by recycling of apo-transferrin to blood plasma and release of iron as non-transferrin-bound iron into the brain interstitium from where the iron is taken up by neurons and glial cells. Another hypothesis claims that iron-transferrin is transported into the brain by means of transcytosis through the BBB. This thesis deals with the topic "brain iron homeostasis" defined as the attempts to maintain constant concentrations of iron in the brain internal environment via regulation of iron transport through brain barriers, cellular iron uptake by neurons and glia, and export of iron from brain to blood. The first part deals with transport of iron-transferrin complexes from blood to brain either by transport across the brain barriers or by uptake and retrograde axonal transport in motor neurons projecting beyond the blood-brain barrier. The transport of iron and transport into the brain was examined using radiolabeled iron-transferrin. Intravenous injection of [59Fe-125]transferrin led to an almost two-fold higher accumulation of 59Fe than of

  19. Nitrated phenols in the atmosphere: a review

    NASA Astrophysics Data System (ADS)

    Harrison, Mark A. J.; Barra, Silvia; Borghesi, Daniele; Vione, Davide; Arsene, Cecilia; Iulian Olariu, Romeo

    2005-01-01

    This paper reviews the data concerning the atmospheric occurrence of nitrophenols, both in the gas and in the condensed phase (rainwater, cloud, fog and snow). Data obtained from field campaigns are reported, together with a description of the analytical techniques employed for the identification and quantification of nitrophenols. Analysis is usually performed using techniques such as High Performance Liquid Chromatography (HPLC) or Gas Chromatography-Mass Spectrometry (GC-MS), with the sampling method largely determined according to the matrix under investigation. The sources of atmospheric nitrophenols include direct emissions resulting from combustion processes, hydrolysis of pesticides (e.g. parathion) and the secondary formation of nitrophenols in the atmosphere. Atmospheric nitration of phenol can take place both in the gas and liquid phases, but the relative importance of these processes is still under discussion. The gas-phase nitration involves reaction between phenol and radOH+radNO2 during the day or radNO3+radNO2 during the night. Gas-phase nitration during the day yields only 2-nitrophenol (2-NP); while during the night it is thought that both 2-NP and 4-nitrophenol (4-NP) may be formed. Because of many gaps in the experimental evidence it is apparent that more research is required to indicate whether the 4-NP present in the environment can be accounted for by this nighttime process. Nitration in the condensed phase can be initiated by electrophilic nitration agents such as N2O5 and ClNO2. Other liquid-phase processes can also take place, in the presence of radNO3, nitrate and nitrite, in the dark and under irradiation. Condensed-phase processes have been shown to yield 2- and 4-NP in similar amounts. It is also important to consider the atmospheric sinks of nitrophenols. The rate constant for the reaction between 2-NP and radOH in the gas phase is rather low (9.0×10-13 cm3 molecule-1 s-1), while incomplete data are available for the reaction with

  20. Fe(II) Oxidation Is an Innate Capability of Nitrate-Reducing Bacteria That Involves Abiotic and Biotic Reactions

    PubMed Central

    Carlson, Hans K.; Clark, Iain C.; Blazewicz, Steven J.; Iavarone, Anthony T.

    2013-01-01

    Phylogenetically diverse species of bacteria can catalyze the oxidation of ferrous iron [Fe(II)] coupled to nitrate (NO3−) reduction, often referred to as nitrate-dependent iron oxidation (NDFO). Very little is known about the biochemistry of NDFO, and though growth benefits have been observed, mineral encrustations and nitrite accumulation likely limit growth. Acidovorax ebreus, like other species in the Acidovorax genus, is proficient at catalyzing NDFO. Our results suggest that the induction of specific Fe(II) oxidoreductase proteins is not required for NDFO. No upregulated periplasmic or outer membrane redox-active proteins, like those involved in Fe(II) oxidation by acidophilic iron oxidizers or anaerobic photoferrotrophs, were observed in proteomic experiments. We demonstrate that while “abiotic” extracellular reactions between Fe(II) and biogenic NO2−/NO can be involved in NDFO, intracellular reactions between Fe(II) and periplasmic components are essential to initiate extensive NDFO. We present evidence that an organic cosubstrate inhibits NDFO, likely by keeping periplasmic enzymes in their reduced state, stimulating metal efflux pumping, or both, and that growth during NDFO relies on the capacity of a nitrate-reducing bacterium to overcome the toxicity of Fe(II) and reactive nitrogen species. On the basis of our data and evidence in the literature, we postulate that all respiratory nitrate-reducing bacteria are innately capable of catalyzing NDFO. Our findings have implications for a mechanistic understanding of NDFO, the biogeochemical controls on anaerobic Fe(II) oxidation, and the production of NO2−, NO, and N2O in the environment. PMID:23687275

  1. Relationship between nitrate reductase and nitrate uptake in phytoplankton in the Peru upwelling region

    SciTech Connect

    Blasco, D.; MacIsaac, J.J.; Packard, T.T.; Dugdale, R.C.

    1984-03-01

    Nitrate reductase (NR) activity and /sup 15/NO/sub 3//sup -/ uptake in phytoplankton were compared under different environmental conditions on two cruises in the upwelling region off Peru. The NR activity and NO/sub 3//sup -/ uptake rates responded differently to light and nutrients and the differences led to variations in the uptake: reductase ratio. Analysis of these variations suggests that the re-equilibration time of the two processes in response to environmental perturbation is an important source of variability. The nitrate uptake system responds faster than the nitrate reductase system. Considering these differences in response time the basic differences in the two processes, and the differences in their measurement, the authors conclude that the Nr activity measures the current nitrate-reducing potential, which reflects NO/sub 3//sup -/ assimilation before the sampling time, while /sup 15/NO/sub 3//sup -/ uptake measures NO/sub 3//sup -/ assimilation in the 6-h period following sampling.

  2. Evidence for a plasma-membrane-bound nitrate reductase involved in nitrate uptake of Chlorella sorokiniana

    NASA Technical Reports Server (NTRS)

    Tischner, R.; Ward, M. R.; Huffaker, R. C.

    1989-01-01

    Anti-nitrate-reductase (NR) immunoglobulin-G (IgG) fragments inhibited nitrate uptake into Chlorella cells but had no affect on nitrate uptake. Intact anti-NR serum and preimmune IgG fragments had no affect on nitrate uptake. Membrane-associated NR was detected in plasma-membrane (PM) fractions isolated by aqueous two-phase partitioning. The PM-associated NR was not removed by sonicating PM vesicles in 500 mM NaCl and 1 mM ethylenediaminetetraacetic acid and represented up to 0.8% of the total Chlorella NR activity. The PM NR was solubilized by Triton X-100 and inactivated by Chlorella NR antiserum. Plasma-membrane NR was present in ammonium-grown Chlorella cells that completely lacked soluble NR activity. The subunit sizes of the PM and soluble NRs were 60 and 95 kDa, respectively, as determined by sodium-dodecyl-sulfate electrophoresis and western blotting.

  3. Mechanisms of mammalian iron homeostasis

    PubMed Central

    Pantopoulos, Kostas; Porwal, Suheel Kumar; Tartakoff, Alan; Devireddy, L.

    2012-01-01

    Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in acquisition or distribution of the metal causes anemia; whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways, as well as in mechanisms underlying intracellular iron trafficking, an important but less-studied area of mammalian iron homeostasis. PMID:22703180

  4. Iron and transfusion medicine.

    PubMed

    Waldvogel-Abramovski, Sophie; Waeber, Gérard; Gassner, Christoph; Buser, Andreas; Frey, Beat M; Favrat, Bernard; Tissot, Jean-Daniel

    2013-11-01

    Blood bankers have focused their energy to secure blood transfusion, and only recently have studies been published on the effect of blood donation on iron metabolism. In many facilities, hemoglobin measurement is only performed just before or even during blood donation, but the determination of iron stores is largely ignored. The 2013 paradox of transfusion medicine is due to the fact that blood donation may be harmful and leads to iron deficiency with or without anemia, but for other individuals, it may be a healthy measure preventing type 2 diabetes. The purpose of this review is to discuss iron metabolism in the perspective of blood donation, notably regarding their possible genetic profiles that eventually will discriminate "good" iron absorbers from "bad" iron responders. PMID:24148756

  5. IRON IN MULTIPLE MYELOMA

    PubMed Central

    VanderWall, Kristina; Daniels-Wells, Tracy R; Penichet, Manuel; Lichtenstein, Alan

    2013-01-01

    Multiple myeloma is a non-curable B cell malignancy in which iron metabolism plays an important role. Patients with this disorder almost universally suffer from a clinically significant anemia, which is often symptomatic, and which is due to impaired iron utilization. Recent studies indicate that the proximal cause of dysregulated iron metabolism and anemia in these patients is cytokine-induced upregulation of hepcidin expression. Malignant myeloma cells are dependent on an increased influx of iron and therapeutic efforts are being made to target this requirement. The studies detailing the characteristics and biochemical abnormalities in iron metabolism causing anemia and the initial attempts to target iron therapeutically are described in this review. PMID:23879589

  6. Cellular iron transport.

    PubMed

    Garrick, Michael D; Garrick, Laura M

    2009-05-01

    Iron has a split personality as an essential nutrient that also has the potential to generate reactive oxygen species. We discuss how different cell types within specific tissues manage this schizophrenia. The emphasis in enterocytes is on regulating the body's supply of iron by regulating transport into the blood stream. In developing red blood cells, adaptations in transport manage the body's highest flux of iron. Hepatocytes buffer the body's stock of iron. Macrophage recycle the iron from effete red cells among other iron management tasks. Pneumocytes provide a barrier to prevent illicit entry that, when at risk of breaching, leads to a need to handle the dangers in a fashion essentially shared with macrophage. We also discuss or introduce cell types including renal cells, neurons, other brain cells, and more where our ignorance, currently still vast, needs to be removed by future research. PMID:19344751

  7. Molten nitrate salt technology development status report

    SciTech Connect

    Carling, R.W.; Kramer, C.M.; Bradshaw, R.W.; Nissen, D.A.; Goods, S.H.; Mar, R.W.; Munford, J.W.; Karnowsky, M.M.; Biefeld, R.N.; Norem, N.J.

    1981-03-01

    Recognizing thermal energy storage as potentially critical to the successful commercialization of solar thermal power systems, the Department of Energy (DOE) has established a comprehensive and aggressive thermal energy storage technology development program. Of the fluids proposed for heat transfer and energy storage molten nitrate salts offer significant economic advantages. The nitrate salt of most interest is a binary mixture of NaNO/sub 3/ and KNO/sub 3/. Although nitrate/nitrite mixtures have been used for decades as heat transfer and heat treatment fluids the use has been at temperatures of about 450/sup 0/C and lower. In solar thermal power systems the salts will experience a temperature range of 350 to 600/sup 0/C. Because central receiver applications place more rigorous demands and higher temperatures on nitrate salts a comprehensive experimental program has been developed to examine what effects, if any, the new demands and temperatures have on the salts. The experiments include corrosion testing, environmental cracking of containment materials, and determinations of physical properties and decomposition mechanisms. This report details the work done at Sandia National Laboratories in each area listed. In addition, summaries of the experimental programs at Oak Ridge National Laboratory, the University of New York, EIC Laboratories, Inc., and the Norwegian Institute of Technology on molten nitrate salts are given. Also discussed is how the experimental programs will influence the near-term central receiver programs such as utility repowering/industrial retrofit and cogeneration. The report is designed to provide easy access to the latest information and data on molten NaNO/sub 3//KNO/sub 3/ for the designers and engineers of future central receiver projects.

  8. Effect of Nitrate on Biogenic Sulfide Production

    PubMed Central

    Jenneman, Gary E.; McInerney, M. J.; Knapp, Roy M.

    1986-01-01

    The addition of 59 mM nitrate inhibited biogenic sulfide production in dilute sewage sludge (10% [vol/vol]) amended with 20 mM sulfate and either acetate, glucose, or hydrogen as electron donors. Similar results were found when pond sediment or oil field brines served as the inoculum. Sulfide production was inhibited for periods of at least 6 months and was accompanied by the oxidation of resazurin from its colorless reduced state to its pink oxidized state. Lower amounts of nitrate (6 or 20 mM) and increased amounts of sewage sludge resulted in only transient inhibition of sulfide production. The addition of 156 mM sulfate to bottles with 59 mM nitrate and 10% (vol/vol) sewage sludge or pond sediment resulted in sulfide production. Nitrate, nitrite, and nitrous oxide were detected during periods where sulfide production was inhibited, whereas nitrate, nitrite, and nitrous oxide were below detectable levels at the time sulfide production began. The oxidation of resazurin was attributed to an increase in nitrous oxide which persisted in concentration of about 1.0 mM for up to 5 months. The numbers of sulfate-reducing organisms decreased from 106 CFU ml−1 sludge to less than detectable levels after prolonged incubation of oxidized bottles. The addition of 10 mM glucose to oxidized bottles after 14.5 weeks of incubation resulted in rereduction of the resazurin and subsequent sulfide production. The prolonged inhibition of sulfide production was attributed to an increase in oxidation-reduction potential due to biogenic production of nitrous oxide, which appeared to have a cytotoxic effect on sulfate-reducing populations. PMID:16347078

  9. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide.

    PubMed Central

    Stuehr, D J; Marletta, M A

    1985-01-01

    Escherichia coli lipopolysaccharide (LPS)-induced nitrate biosynthesis was studied in LPS-sensitive C3H/He and LPS-resistant C3H/HeJ mice. Intraperitoneal injection of 15 micrograms of LPS led to a temporary 5- to 6-fold increase in blood nitrate concentration in the C3H/He strain. Levels of nitrate excreted in the urine were also increased. In contrast, no increase was observed in the C3H/HeJ strain with LPS injections up to 175 micrograms. Furthermore, thioglycolate-elicited peritoneal macrophages from C3H/He, but not from C3H/HeJ mice, produced nitrite (60%) and nitrate (40%) when cultured with LPS (10 micrograms/ml). T-lymphocyte addition/depletion experiments showed the presence of T cells enhanced this response. However, LPS did not cause nitrite or nitrate production in cultures of spleen lymphocytes from either strain. LPS-induced nitrate synthesis was also observed with nude mice and CBA/N mice, indicating that neither functional T lymphocytes nor LPS-responsive B lymphocytes were required for the response in vivo. This was consistent with the in vitro results showing macrophages alone were competent. Mycobacterium bovis infection of C3H/He and C3H/HeJ mice resulted in a large increase in nitrate production over the course of the infection for both strains, suggesting T-lymphocyte-mediated activation of macrophages as a potent stimulus for nitrate biosynthesis. The synthesis of nitrite is significant in that it can directly participate in the endogenous formation of nitrosamines and may also be involved in some aspect of the chemistry of cytotoxicity. PMID:3906650

  10. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide

    SciTech Connect

    Stuehr, D.J.; Marletta, M.A.

    1985-11-01

    Escherichia coli lipopolysaccharide (LPS)-induced nitrate biosynthesis was studied in LPS-sensitive C3H/He and LPS-resistant C3H/HeJ mice. Intraperitoneal injection of 15 ..mu..g of LPS led to a temporary 5- to 6-fold increase in blood nitrate concentration in the C3H/He strain. Levels of nitrate excreted in the urine were also increased. In contrast, no increase was observed in the C3H/HeJ strain with LPS injections up to 175 ..mu..g. Furthermore, thioglycolate-elicited peritoneal macrophages from C3H/He, but not from C3H/HeJ mice, produced nitrite (60%) and nitrate (40%) when cultured with LPS (10 ..mu..g/ml). T-lymphocyte addition/depletion experiments showed the presence of T cells enhanced this response. However, LPS did not cause nitrite or nitrate production in cultures of spleen lymphocytes from either strain. LPS-induced nitrate synthesis was also observed with nude mice and CBA/N mice, indicating that neither functional T lymphocytes nor LPS-responsive B lymphocytes were required for the response in vivo. This was consistent with the in vitro results showing macrophages alone were competent. Mycobacterium bovis infection of C3H/He and C3H/HeJ mice resulted in a large increase in nitrate production over the course of the infection for both strains, suggesting T-lymphocyte-mediated activation of macrophages as a potent stimulus for nitrate biosynthesis. The synthesis of nitrite is significant in that it can directly participate in the endogenous formation of nitrosamines and may also be involved in some aspect of the chemistry of cytotoxicity.

  11. Austempered Ductile Iron Machining

    NASA Astrophysics Data System (ADS)

    Pilc, Jozef; Šajgalík, Michal; Holubják, Jozef; Piešová, Marianna; Zaušková, Lucia; Babík, Ondrej; Kuždák, Viktor; Rákoci, Jozef

    2015-12-01

    This article deals with the machining of cast iron. In industrial practice, Austempered Ductile Iron began to be used relatively recently. ADI is ductile iron that has gone through austempering to get improved properties, among which we can include strength, wear resistance or noise damping. This specific material is defined also by other properties, such as high elasticity, ductility and endurance against tenigue, which are the properties, that considerably make the tooling characteristic worse.

  12. Low nitrogen iron-containing Fischer-Tropsch catalyst for conversion of synthesis gas and process for preparing the catalyst

    SciTech Connect

    Bell, W.K.; Haag, W.O.; Kirker, G.W.; Klocke, D.J.

    1986-10-14

    A process is described for preparing an iron-containing Fischer-Tropsch catalyst by continuously precipitating an aqueous solution containing iron nitrate with aqueous ammonia, to form a precipitate-containing product which is thereafter dried. In the improvement described here a catalyst containing less than 500 ppm nitrogen is produced which comprises maintaining a pH of about 6.5 to 6.9 and a temperature of about 70/sup 0/ to 100/sup 0/ C. during precipitation.

  13. Reaction mechanism for the highly efficient catalytic decomposition of peroxynitrite by the amphipolar iron(III) corrole 1-Fe.

    PubMed

    Avidan-Shlomovich, Shlomit; Gross, Zeev

    2015-07-21

    The amphipolar iron(III) corrole 1-Fe is one of the most efficient catalysts for the decomposition of peroxynitrite, the toxin involved in numerous diseases. This research focused on the mechanism of that reaction at physiological pH, where peroxynitrite is in equilibrium with its much more reactive conjugated acid, by focusing on the elementary steps involved in the catalytic cycle. Kinetic investigations uncovered the formation of a reaction intermediate in a process that is complete within a few milliseconds (k1 ∼ 3 × 10(7) M(-1) s(-1) at 5 °C, about 7 orders of magnitude larger than the first order rate constant for the non-catalyzed process). Multiple evidence points towards iron-catalyzed homolytic O-O bond cleavage to form nitrogen dioxide and hydroxo- or oxo-iron(iv) corrole. The iron(iv) intermediate was found to decay via multiple pathways that proceed at similar rates (k2 about 10(6) M(-1) s(-1)): reaction with nitrogen dioxide to form nitrate, nitration of the corrole macrocyclic, and dimerization to binuclear iron(iv) corrole. Catalysis in the presence of substrates affects the decay of the iron intermediate by either oxidative nitration (phenolic substrates) or reduction (ascorbate). A large enough excess of ascorbate accelerates the catalytic decomposition of PN by 1-Fe by orders of magnitude, prevents other decay routes of the iron intermediate, and eliminates nitration products as well. This suggests that the beneficial effect of the iron corrole under the reducing conditions present in most biological media might be even larger than in the purely chemical system. The acquired mechanistic insight is of prime importance for the design of optimally acting catalysts for the fast and safe decomposition of reactive oxygen and nitrogen species. PMID:25747957

  14. Nitrate to ammonia ceramic (NAC) bench scale stabilization study

    SciTech Connect

    Caime, W.J.; Hoeffner, S.L.

    1995-10-01

    Department of Energy (DOE) sites such as the Hanford site, Idaho National Engineering Laboratory (INEL), Savannah River site, Oak Ridge National Laboratory (ORNL) have large quantities of sodium-nitrate based liquid wastes. A process to reduce the nitrates to ammonia has been developed at ORNL. This technology creates a sludge lower in nitrates. This report describes stabilization possibilities of the sludge.

  15. THE CONTROL OF NITRATE AS A WATER POLLUTANT

    EPA Science Inventory

    This study was based on the premise that the most logical approach to reducing nitrate leaching in soils was to limit the amount of nitrate in the soil solution at any one time. Methods of limiting the concentration of nitrate in the soil solution while maintaining an adequate su...

  16. 9 CFR 319.2 - Products and nitrates and nitrites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Products and nitrates and nitrites... and nitrates and nitrites. Any product, such as frankfurters and corned beef, for which there is a standard in this part and to which nitrate or nitrite is permitted or required to be added, may be...

  17. Disposable nitrate-selective optical sensor based on fluorescent dye

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple, disposable thin-film optical nitrate sensor was developed. The sensor was fabricated by applying a nitrate-selective polymer membrane on the surface of a thin polyester film. The membrane was composed of polyvinylchloride (PVC), plasticizer, fluorescent dye, and nitrate-selective ionophore...

  18. 40 CFR 721.7500 - Nitrate polyether polyol (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nitrate polyether polyol (generic name... Substances § 721.7500 Nitrate polyether polyol (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nitrate polyether polyol (PMN P88-2540)...

  19. 9 CFR 319.2 - Products and nitrates and nitrites.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Products and nitrates and nitrites... and nitrates and nitrites. Any product, such as frankfurters and corned beef, for which there is a standard in this part and to which nitrate or nitrite is permitted or required to be added, may be...

  20. 40 CFR 721.7500 - Nitrate polyether polyol (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nitrate polyether polyol (generic name... Substances § 721.7500 Nitrate polyether polyol (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nitrate polyether polyol (PMN P88-2540)...

  1. 40 CFR 721.7500 - Nitrate polyether polyol (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nitrate polyether polyol (generic name... Substances § 721.7500 Nitrate polyether polyol (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nitrate polyether polyol (PMN P88-2540)...

  2. 40 CFR 721.7500 - Nitrate polyether polyol (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nitrate polyether polyol (generic name... Substances § 721.7500 Nitrate polyether polyol (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nitrate polyether polyol (PMN P88-2540)...

  3. FLAME DENITRATION AND REDUCTION OF URANIUM NITRATE TO URANIUM DIOXIDE

    DOEpatents

    Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.

    1962-06-26

    A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)

  4. 9 CFR 319.2 - Products and nitrates and nitrites.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Products and nitrates and nitrites... and nitrates and nitrites. Any product, such as frankfurters and corned beef, for which there is a standard in this part and to which nitrate or nitrite is permitted or required to be added, may be...

  5. 9 CFR 319.2 - Products and nitrates and nitrites.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Products and nitrates and nitrites... and nitrates and nitrites. Any product, such as frankfurters and corned beef, for which there is a standard in this part and to which nitrate or nitrite is permitted or required to be added, may be...

  6. 9 CFR 319.2 - Products and nitrates and nitrites.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Products and nitrates and nitrites... and nitrates and nitrites. Any product, such as frankfurters and corned beef, for which there is a standard in this part and to which nitrate or nitrite is permitted or required to be added, may be...

  7. 40 CFR 721.7500 - Nitrate polyether polyol (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Nitrate polyether polyol (generic name... Substances § 721.7500 Nitrate polyether polyol (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nitrate polyether polyol (PMN P88-2540)...

  8. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate-urea complex. 176.320 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.320 Sodium nitrate-urea complex. Sodium nitrate-urea complex may be safely used as a component of articles intended for use in...

  9. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate-urea complex. 176.320 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.320 Sodium nitrate-urea complex. Sodium nitrate-urea complex may be safely used as a component of articles intended for use in...

  10. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate-urea complex. 176.320 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.320 Sodium nitrate-urea complex. Sodium nitrate-urea complex may be safely used as a component of articles intended for use in...

  11. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate-urea complex. 176.320 Section 176... Paperboard § 176.320 Sodium nitrate-urea complex. Sodium nitrate-urea complex may be safely used as a..., packaging, transporting, or holding food, subject to the provisions of this section. (a) Sodium...

  12. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate-urea complex. 176.320 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.320 Sodium nitrate-urea complex. Sodium... the provisions of this section. (a) Sodium nitrate-urea complex is a clathrate of approximately...

  13. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  14. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  15. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  16. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  17. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  18. Denitrification and Nitrate-Dependent Fe(II) Oxidation in Various Pseudogulbenkiania Strains

    PubMed Central

    Ishii, Satoshi; Joikai, Kazuki; Otsuka, Shigeto; Senoo, Keishi; Okabe, Satoshi

    2016-01-01

    Pseudogulbenkiania is a relatively recently characterized genus within the order Neisseriales, class Betaproteobacteria. This genus contains several strains that are capable of anaerobic, nitrate-dependent Fe(II) oxidation (NDFO), a geochemically important reaction for nitrogen and iron cycles. In the present study, we examined denitrification functional gene diversities within this genus, and clarified whether other Pseudogulbenkiania sp. strains perform denitrification and NDFO. Seventy strains were analyzed, including two type strains, a well-characterized NDFO strain, and 67 denitrifying strains isolated from various rice paddy fields and rice-soybean rotation fields in Japan. We also attempted to identify the genes responsible for NDFO by mutagenesis. Our comprehensive analysis showed that all Pseudogulbenkiania strains tested performed denitrification and NDFO; however, we were unable to obtain NDFO-deficient denitrifying mutants in our mutagenesis experiment. This result suggests that Fe(II) oxidation in these strains is not enzymatic, but is caused by reactive N-species that are formed during nitrate reduction. Based on the results of the comparative genome analysis among Pseudogulbenkiania sp. strains, we identified low sequence similarity within the nos gene as well as different gene arrangements within the nos gene cluster, suggesting that nos genes were horizontally transferred. Since Pseudogulbenkiania sp. strains have been isolated from various locations around the world, their denitrification and NDFO abilities may contribute significantly to nitrogen and iron biogeochemical cycles. PMID:27431373

  19. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    SciTech Connect

    Spencer, B.B.

    1995-08-01

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660{plus_minus}0.092 at 25 C, and extraction enthalpy is -5. 46{plus_minus}0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 {times} 10{sup 6}{plus_minus}3.56 {times} 10{sup 4} at 25 C; reaction enthalpy was -9.610{plus_minus}0.594 kcal/mol. Nitration complexation constant is 8.412{plus_minus}0.579, with an enthalpy of -10.72{plus_minus}1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured.

  20. Effects of nitrate input from a water reclamation facility on the Occoquan Reservoir water quality.

    PubMed

    Cubas, Francisco J; Novak, John T; Godrej, Adil N; Grizzard, Thomas J

    2014-02-01

    To manage water quality in the Occoquan Reservoir, Virginia, a water reclamation facility discharges nitrified product water that reduces the release of undesirable substances (e.g., phosphorus, iron, and ammonia) from sediments during periods of hypolimnetic anoxia. Results showed that when the oxidized nitrogen (OxN) concentration input to the reservoir was lower than 5 mg N/L during periods of anoxia following thermal stratification, nitrate was depleted in the upper reaches of the reservoir resulting in the release of ammonia and orthophosphate from the sediments downstream. When the OxN input to the reservoir was operationally increased to a concentration greater than 10 mg-N/L, orthophosphate release was suppressed. Introducing OxN to the system decreased sediment ammonia release but did not eliminate it. By discharging reclaimed water that contained nitrate levels greater than 10 mg N/L, reservoir water quality was protected and the discharged nitrate was converted to nitrogen gas as it moved downstream. PMID:24645542

  1. Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification.

    PubMed

    Xing, Wei; Li, Desheng; Li, Jinlong; Hu, Qianyi; Deng, Shihai

    2016-07-01

    A process combining micro-electrolysis and autotrophic denitrification (CEAD) with iron-carbon micro-electrolysis carriers was developed for nitrate removal. The process was performed using organic-free influent with a NO3(-)-N concentration of 40.0±3.0mg/L and provided an average nitrate removal efficiency of 95% in stable stages. The total nitrogen removal efficiency reached 75%, with 21% of NO3(-)-N converted into NH4(+)-N. The corresponding hydraulic retention time was 8-10h, and the optimal pH ranged from 8.5 to 9.5. Microbial analysis with high-throughput sequencing revealed that dominant microorganisms in the reactor belonged to the classes of β-, γ-, and α-Proteobacteria. The abundance of the genera Thermomonas significantly increased during the operation, comprising 21.4% and 24.1% in sludge attached to the carriers in the middle and at the bottom of the reactor, respectively. The developed CEAD achieved efficient nitrate removal from water without organics, which is suitable for practical application. PMID:27019127

  2. Anisole Nitration During Gamma-Irradiation of Aqueous Nitrite and Nitrate Solutions: Free Radical Versus Ionic Mechanisms

    SciTech Connect

    Gracy Elias; Bruce J. Mincher; Leigh R. Martin; Stephen P. Mezyk; Thomas D. Cullen

    2010-04-01

    The nitration of aromatic compounds in the condensed phase is of interest to nuclear waste treatment applications. This chapter discusses our investigation of radiolytic aromatic nitration mechanisms in the condensed phase toward understanding the nitration products created during nuclear fuel reprocessing. The nitration reactions of anisole, a model aromatic compound, were studied in ?-irradiated acidic nitrate, neutral nitrate, and neutral nitrite solutions. The nitrated anisole product distributions were the same with and without radiation in acidic solution, although more products were formed with radiation. In the irradiated acidic condensed phase, radiation-enhanced nitrous acid-catalyzed nitrosonium ion electrophilic aromatic substitution followed by oxidation reactions dominated over radical addition reactions. Neutral nitrate anisole solutions were dominated by mixed nitrosonium/nitronium ion electrophilic aromatic substitution reactions, but with lower product yields. Irradiation of neutral nitrite anisole solution resulted in a statistical substitution pattern for nitroanisole products, suggesting non-electrophilic free radical reactions involving the •NO2 radical.

  3. Physics of iron

    SciTech Connect

    Anderson, O.

    1993-10-01

    This volume comprises papers presented at the AIRAPT Conference, June 28 to July 1993. The iron sessions at the meeting were identified as the Second Ironworkers Convention. The renewal of interest stems from advances in technologies in both diamond-anvil cell (DAC) and shock wave studies as well as from controversies arising from a lack of consensus among both experimentalists and theoreticians. These advances have produced new data on iron in the pressure-temperature regime of interest for phase diagrams and for temperatures of the core/mantle and inner-core/outer-core boundaries. Particularly interesting is the iron phase diagram inferred from DAC studies. A new phase, {beta}, with a {gamma}-{beta}-{epsilon} triple point at about 30 GPa and 1190 K, and possible sixth phase, {omega}, with an {epsilon}-{Theta}-melt triple point at about 190 GPa and 4000 K are deemed possible. The importance of the equation of state of iron in consideration of Earth`s heat budget and the origin of its magnetic field invoke the interest of theoreticians who argue on the basis of molecular dynamics and other first principles methods. While the major thrust of both meetings was on the physics of pure iron, there was notable contributions on iron alloys. Hydrogen-iron alloys, iron-sulfur liquids, and the comparability to rhenium in phase diagram studies are discussed. The knowledge of the physical properties of iron were increased by several contributions.

  4. Physiology of Iron Metabolism

    PubMed Central

    Waldvogel-Abramowski, Sophie; Waeber, Gérard; Gassner, Christoph; Buser, Andreas; Frey, Beat M.; Favrat, Bernard; Tissot, Jean-Daniel

    2014-01-01

    Summary A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. ‘Ironomics’ certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism. PMID:25053935

  5. 35. GREY IRON TUMBLERS, IN THE GREY IRON FOUNDRY ROTATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. GREY IRON TUMBLERS, IN THE GREY IRON FOUNDRY ROTATE CASTINGS WITH SHOT TO REMOVE AND SURFACE OXIDES AND REMAINING EXCESS METALS. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  6. Tracing Nitrate Deposition Using Δ 17O

    NASA Astrophysics Data System (ADS)

    Michalski, G m; Hernandez, L.; Meixner, T.; Fenn, M.; Thiemens, M.

    2001-12-01

    Assessing the impact of atmospheric deposition of fixed nitrogen on local, regional, and global biogeochemical cycles has received much attention in recent years. Local and regional ecosystems can suffer from eutrophication and shrinking biodiversity from the increased nitrogen flux, in addition to degradation associated with acid rain ( an increasing proportion of which is as HNO3 ). On a global scale, the effect of nitrogen fertilization on CO2 uptake rates is one of the biggest unknowns in global warming research. This renewed interest has led to new attempts to utilize current, and in the development of new, analytical techniques in order to better understand the source, sink and transport mechanisms of atmospheric nitrogen deposition. Its role as the primary sink of the NOx cycle makes atmospheric nitrate (as particulate nitrate or nitric acid ) the primary source of nitrogen deposition. Stable isotopes of nitrogen and oxygen have been used by several researchers to trace atmospheric nitrate through the biogeochemical system. 15N ratios have been problematic due to the lack of large fractionations and an overlap of 15N ratios between sources. Initial studies of 18O ratios showed promise due to the large enrichment (60 ‰ ) in atmospheric nitrate. However, subsequent studies showed an δ 18O spread of 25 - 80 ‰ and have made quantitative analysis of mixing reservoirs difficult. No studies of δ 17O nitrates have been published. For δ 17O, thermodynamic, kinetic, and equilibrium isotope effects dictate that δ 17O = .52 x δ 18O . Certain photochemical processes violate this rule due to quantum effects and are quantified by Δ 17O = δ 17O -.52 x δ 18O which are called mass independent fractionations (MIF). Atmospheric nitrates have now been measured and have been found to have a large MIF; Δ 17O ~ 25 ‰ and a small range +/- 4‰ . The large variations in δ 18O of atmospheric nitrate are due to mass dependent fractions from transport and source ratios

  7. Genetic basis for nitrate resistance in Desulfovibrio strains

    PubMed Central

    Korte, Hannah L.; Fels, Samuel R.; Christensen, Geoff A.; Price, Morgan N.; Kuehl, Jennifer V.; Zane, Grant M.; Deutschbauer, Adam M.; Arkin, Adam P.; Wall, Judy D.

    2014-01-01

    Nitrate is an inhibitor of sulfate-reducing bacteria (SRB). In petroleum production sites, amendments of nitrate and nitrite are used to prevent SRB production of sulfide that causes souring of oil wells. A better understanding of nitrate stress responses in the model SRB, Desulfovibrio vulgaris Hildenborough and Desulfovibrio alaskensis G20, will strengthen predictions of environmental outcomes of nitrate application. Nitrate inhibition of SRB has historically been considered to result from the generation of small amounts of nitrite, to which SRB are quite sensitive. Here we explored the possibility that nitrate might inhibit SRB by a mechanism other than through nitrite inhibition. We found that nitrate-stressed D. vulgaris cultures grown in lactate-sulfate conditions eventually grew in the presence of high concentrations of nitrate, and their resistance continued through several subcultures. Nitrate consumption was not detected over the course of the experiment, suggesting adaptation to nitrate. With high-throughput genetic approaches employing TnLE-seq for D. vulgaris and a pooled mutant library of D. alaskensis, we determined the fitness of many transposon mutants of both organisms in nitrate stress conditions. We found that several mutants, including homologs present in both strains, had a greatly increased ability to grow in the presence of nitrate but not nitrite. The mutated genes conferring nitrate resistance included the gene encoding the putative Rex transcriptional regulator (DVU0916/Dde_2702), as well as a cluster of genes (DVU0251-DVU0245/Dde_0597-Dde_0605) that is poorly annotated. Follow-up studies with individual D. vulgaris transposon and deletion mutants confirmed high-throughput results. We conclude that, in D. vulgaris and D. alaskensis, nitrate resistance in wild-type cultures is likely conferred by spontaneous mutations. Furthermore, the mechanisms that confer nitrate resistance may be different from those that confer nitrite resistance

  8. Iron porphyrin polymer films: Materials for the modification of electrode surfaces and the detection of nitric oxide

    SciTech Connect

    McGuire, M.; Drew, S.M.

    1996-10-01

    We are currently investigating a new method for the detection and quantification of nitric oxide (NO) based on a carbon electrode chemically modified with an iron porphyrin polymer film. Commercially available vinyl-substituted iron porphyrin monomers can be polymerized directly onto electrode surfaces through a published electrochemical polymerization process. We are also developing a synthesis for a new vinyl-substituted monomer, iron 5,10,15-triphenyl-20-vinyl porphyrin chloride, in hopes of improving polymer film stability. The electrochemistry of NO is also being investigated at electrodes chemically modified with an iron porphyrin polymer film. We are studying the catalytic oxidation of iron porphyrin bound NO to nitrate by molecular oxygen. The reaction with molecular oxygen is preceded by a one electron reduction of the iron porphyrin-NO complex. If currents proportional to nitric oxide concentration can be measured, a new NO electrochemical sensor will be designed.

  9. Neurodegeneration with Brain Iron Accumulation

    MedlinePlus

    ... Diversity Find People About NINDS NINDS Neurodegeneration with Brain Iron Accumulation Information Page Synonym(s): Hallervorden-Spatz Disease, ... done? Clinical Trials Organizations What is Neurodegeneration with Brain Iron Accumulation? Neurodegeneration with brain iron accumulation (NBIA) ...

  10. Perspectives on nutritional iron deficiency.

    PubMed

    Hallberg, L

    2001-01-01

    Nutritional iron deficiency (ID) is caused by an intake of dietary iron insufficient to cover physiological iron requirements. Studies on iron absorption from whole diets have examined relationships between dietary iron bioavailability/absorption, iron losses, and amounts of stored iron. New insights have been obtained into regulation of iron absorption and expected rates of changes of iron stores or hemoglobin iron deficits when bioavailability or iron content of the diet has been modified and when losses of iron occur. Negative effects of ID are probably related to age, up to about 20 years, explaining some of earlier controversies. Difficulties in establishing the prevalence of mild ID are outlined. The degree of underestimation of the prevalence of mild ID when using multiple diagnostic criteria is discussed. It is suggested that current low-energy lifestyles are a common denominator for the current high prevalence not only of ID but also of obesity, diabetes, and osteoporosis. PMID:11375427

  11. Does iron inhibit cryptoendolithic microbial communities?

    NASA Technical Reports Server (NTRS)

    Johnston, C. G.; Vestal, J. R.; Friedmann, E. I. (Principal Investigator)

    1988-01-01

    Photosynthetic activity of three cryptoendolithic microbial communities was studied under controlled conditions in the laboratory. In two of these communities, the dominant organisms were lichens, collected from Linnaeus Terrace and from Battleship Promontory. The third community, dominated by cyanobacteria, was collected from Battleship Promontory. Both sites are in the ice-free valleys of southern Victoria Land. Previous efforts have shown how physical conditions can influence metabolic activity in endolithic communities (Kappen and Friedmann 1983; Kappen, Friedmann, and Garty 1981; Vestal, Federle, and Friedmann 1984). Biological activity can also be strongly influenced by the chemical environment. Inorganic nutrients such as nitrate, ammonia, and phosphate are often limiting factors, so their effects on photosynthetic carbon-14 bicarbonate incorporation were investigated. Iron and manganese are two metals present in Linnaeus Terrace and Battleship Promontory sandstones, and their effects on photosynthesis were also studied. The results may add to our understanding of biogeochemical interactions within this unique microbial community.

  12. Does iron inhibit cryptoendolithic microbial communities?

    PubMed

    Johnston, C G; Vestal, J R

    1988-01-01

    Photosynthetic activity of three cryptoendolithic microbial communities was studied under controlled conditions in the laboratory. In two of these communities, the dominant organisms were lichens, collected from Linnaeus Terrace and from Battleship Promontory. The third community, dominated by cyanobacteria, was collected from Battleship Promontory. Both sites are in the ice-free valleys of southern Victoria Land. Previous efforts have shown how physical conditions can influence metabolic activity in endolithic communities (Kappen and Friedmann 1983; Kappen, Friedmann, and Garty 1981; Vestal, Federle, and Friedmann 1984). Biological activity can also be strongly influenced by the chemical environment. Inorganic nutrients such as nitrate, ammonia, and phosphate are often limiting factors, so their effects on photosynthetic carbon-14 bicarbonate incorporation were investigated. Iron and manganese are two metals present in Linnaeus Terrace and Battleship Promontory sandstones, and their effects on photosynthesis were also studied. The results may add to our understanding of biogeochemical interactions within this unique microbial community. PMID:11538332

  13. Catalytic reduction of nitrate in secondary effluent of wastewater treatment plants by Fe(0) and Pd-Cu/γ-Al2O3.

    PubMed

    Yun, Yupan; Li, Zifu; Chen, Yi-Hung; Saino, Mayiani; Cheng, Shikun; Zheng, Lei

    2016-01-01

    Total nitrogen, in which NO3(-) is dominant in the effluent of most wastewater treatment plants, cannot meet the requirements of the Chinese wastewater discharge standard (<15 mg/L), making nitrate (NO3(-)) elimination attract considerable attention. In this study, reductant iron (Fe(0)) and γ-Al2O3 supported palladium-copper bimetallic catalysts (Pd-Cu/γ-Al2O3) were innovatively used for the chemical catalytic reduction of nitrate in wastewater. A series of specific operational conditions (such as mass ratio of Pd:Cu, catalyst amounts, reaction time and pH of solution) were optimized for nitrate reduction in the artificial solution, and then the selected optimal conditions were further applied for investigating the nitrate elimination of secondary effluent of a wastewater treatment plant in Beijing, China. Results indicated that a better catalytic performance (74% of nitrate removal and 62% of N2 selectivity) could be obtained under the optimal condition: 5 g/L Fe(0), 3:1 mass ratio (Pd:Cu), 4 g/L catalyst, 2 h reaction time and pH 5.1. It is noteworthy to point out that nitrogen gas (N2) predominated in the byproducts without another system to treat ammonium and nitrite. Therefore, the chemical catalytic reduction combining Fe(0) with Pd-Cu/γ-Al2O3 could be regarded as a better alternative for nitrate removal in wastewater treatment. PMID:27232406

  14. Iron-based dehydrogenation catalysts supported on zirconia. I. Preparation and characterization

    SciTech Connect

    Boot, L.A.; Dillen, A.J. van; Geus, J.W.

    1996-09-15

    Zirconia-supported iron oxide catalysts were prepared by incipient wetness impregnation, followed by drying and calcination in air. Characterization of the catalysts were performed with electron microscopy combined with element analysis (HR-TEM/EDAX), X-ray diffraction (XRD), temperature-programmed reduction (TPR), and thermomagnetic analysis. A homogeneous distribution of the iron containing phase can be obtained by using the metal complexes ammonium iron (III) citrate or ammonium (III) iron EDTA. A simple salt, such as iron nitrate, proved to be less suitable for this purpose. By HR-TEM/EDAX, it was shown that coverage of the zirconia support had been accomplished. XRL showed that crystalline Fe{sub 2}O{sub 3} particles were formed at loadings {ge} 3 wt% Fe. TPR studies point to a bi-modal particle size distribution for the catalysts with 3 wt% Fe. Above this loading (>3 wt%) bulk properties prevail in TPR, whereas at lower loadings (<3 wt%) no distinct iron oxide species could be indicated. Magnetization measurements confirmed the results obtained by TPR. Catalysts prepared by coimpregnation of iron and potassium were also studied. TEM and XRD results show that a well-dispersed phase is obtained, but from XRD only potassium carbonate and no iron oxide or ferrite is evident. It was also found that the presence of potassium increases the onset of reduction of the iron phase by about 100{degrees}C. 25 refs., 11 figs., 2 tabs.

  15. Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data.

    PubMed

    Durairaj, Poornima; Sarangi, Ranjit Kumar; Ramalingam, Shanthi; Thirunavukarassu, Thangaradjou; Chauhan, Prakash

    2015-04-01

    In situ datasets of nitrate, sea surface temperature (SST), and chlorophyll a (chl a) collected during the monthly coastal samplings and organized cruises along the Tamilnadu and Andhra Pradesh coast between 2009 and 2013 were used to develop seasonal nitrate algorithms. The nitrate algorithms have been built up based on the three-dimensional regressions between SST, chl a, and nitrate in situ data using linear, Gaussian, Lorentzian, and paraboloid function fittings. Among these four functions, paraboloid was found to be better with the highest co-efficient of determination (postmonsoon: R2=0.711, n=357; summer: R2=0.635, n=302; premonsoon: R2=0.829, n=249; and monsoon: R2=0.692, n=272) for all seasons. Based on these fittings, seasonal nitrate images were generated using the concurrent satellite data of SST from Moderate Resolution Imaging Spectroradiometer (MODIS) and chlorophyll (chl) from Ocean Color Monitor (OCM-2) and MODIS. The best retrieval of modeled nitrate (R2=0.527, root mean square error (RMSE)=3.72, and mean normalized bias (MNB)=0.821) was observed for the postmonsoon season due to the better retrieval of both SST MODIS (28 February 2012, R2=0.651, RMSE=2.037, and MNB=0.068) and chl OCM-2 (R2=0.534, RMSE=0.317, and MNB=0.27). Present results confirm that the chl OCM-2 and SST MODIS retrieve nitrate well than the MODIS-derived chl and SST largely due to the better retrieval of chl by OCM-2 than MODIS. PMID:25762424

  16. Soil Iron Content as a Predictor of Carbon and Nutrient Mobilization in Rewetted Fens

    PubMed Central

    Emsens, Willem-Jan; Aggenbach, Camiel J. S.; Schoutens, Ken; Smolders, Alfons J. P.; Zak, Dominik; van Diggelen, Rudy

    2016-01-01

    Rewetted, previously drained fens often remain sources rather than sinks for carbon and nutrients. To date, it is poorly understood which soil characteristics stimulate carbon and nutrient mobilization upon rewetting. Here, we assess the hypothesis that a large pool of iron in the soil negatively affects fen restoration success, as flooding-induced iron reduction (Fe3+ to Fe2+) causes a disproportionate breakdown of organic matter that is coupled with a release of inorganic compounds. We collected intact soil cores in two iron-poor and two iron-rich drained fens, half of which were subjected to a rewetting treatment while the other half was kept drained. Prolonged drainage led to the mobilization of nitrate (NO3-, > 1 mmol L-1) in all cores, regardless of soil iron content. In the rewetted iron-rich cores, a sharp increase in pore water iron (Fe) concentrations correlated with concentrations of inorganic carbon (TIC, > 13 mmol L-1) and dissolved organic carbon (DOC, > 16 mmol L-1). Additionally, ammonium (NH4+) accumulated up to phytotoxic concentrations of 1 mmol L-1 in the pore water of the rewetted iron-rich cores. Disproportionate mobilization of Fe, TIC, DOC and NH4+ was absent in the rewetted iron-poor cores, indicating a strong interaction between waterlogging and iron-mediated breakdown of organic matter. Concentrations of dissolved phosphorus (P) rose slightly in all cores upon rewetting, but remained low throughout the experiment. Our results suggest that large pools of iron in the top soil of drained fens can hamper the restoration of the fen’s sink-service for ammonium and carbon upon rewetting. We argue that negative effects of iron should be most apparent in fens with fluctuating water levels, as temporary oxygenation allows frequent regeneration of Fe3+. We conclude that rewetting of iron-poor fens may be more feasible for restoration. PMID:27050837

  17. Soil Iron Content as a Predictor of Carbon and Nutrient Mobilization in Rewetted Fens.

    PubMed

    Emsens, Willem-Jan; Aggenbach, Camiel J S; Schoutens, Ken; Smolders, Alfons J P; Zak, Dominik; van Diggelen, Rudy

    2016-01-01

    Rewetted, previously drained fens often remain sources rather than sinks for carbon and nutrients. To date, it is poorly understood which soil characteristics stimulate carbon and nutrient mobilization upon rewetting. Here, we assess the hypothesis that a large pool of iron in the soil negatively affects fen restoration success, as flooding-induced iron reduction (Fe3+ to Fe2+) causes a disproportionate breakdown of organic matter that is coupled with a release of inorganic compounds. We collected intact soil cores in two iron-poor and two iron-rich drained fens, half of which were subjected to a rewetting treatment while the other half was kept drained. Prolonged drainage led to the mobilization of nitrate (NO3-, > 1 mmol L-1) in all cores, regardless of soil iron content. In the rewetted iron-rich cores, a sharp increase in pore water iron (Fe) concentrations correlated with concentrations of inorganic carbon (TIC, > 13 mmol L-1) and dissolved organic carbon (DOC, > 16 mmol L-1). Additionally, ammonium (NH4+) accumulated up to phytotoxic concentrations of 1 mmol L-1 in the pore water of the rewetted iron-rich cores. Disproportionate mobilization of Fe, TIC, DOC and NH4+ was absent in the rewetted iron-poor cores, indicating a strong interaction between waterlogging and iron-mediated breakdown of organic matter. Concentrations of dissolved phosphorus (P) rose slightly in all cores upon rewetting, but remained low throughout the experiment. Our results suggest that large pools of iron in the top soil of drained fens can hamper the restoration of the fen's sink-service for ammonium and carbon upon rewetting. We argue that negative effects of iron should be most apparent in fens with fluctuating water levels, as temporary oxygenation allows frequent regeneration of Fe3+. We conclude that rewetting of iron-poor fens may be more feasible for restoration. PMID:27050837

  18. Taking iron supplements

    MedlinePlus

    ... The stools are tarry-looking as well as black If they have red streaks Cramps, sharp pains, or soreness in the stomach occur Liquid forms of iron may stain your teeth. Try mixing the iron with water or other liquids (such as fruit juice or ...

  19. Thin Wall Iron Castings

    SciTech Connect

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  20. Low CO2 Prevents Nitrate Reduction in Leaves 1

    PubMed Central

    Kaiser, Werner M.; Förster, Jutta

    1989-01-01

    The correlation between CO2 assimilation and nitrate reduction in detached spinach (Spinacia oleracea L.) leaves was examined by measuring light-dependent changes in leaf nitrate levels in response to mild water stress and to artificially imposed CO2 deficiency. The level of extractable nitrate reductase (NR) activity was also measured. The results are: (a) In the light, detached turgid spinach leaves reduced nitrate stored in the vacuoles of mesophyll cells at rates between 3 and 10 micromoles per milligram of chlorophyll per hour. Nitrate fed through the petiole was reduced at similar rates as storage nitrate. Nitrate reduction was accompanied by malate accumulation. (b) Under mild water stress which caused stomatal closure, nitrate reduction was prevented. The inhibition of nitrate reduction observed in water stressed leaves was reversed by external CO2 concentrations (10-15%) high enough to overcome stomatal resistance. (c) Nitrate reduction was also inhibited when turgid leaves were kept in CO2-free air or at the CO2-compensation point or in nitrogen. (d) When leaves were illuminated in CO2-free air, activity of NR decreased rapidly. It increased again, when CO2 was added back to the system. The half-time for a 50% change in activity was about 30 min. It thus appears that there is a rapid inactivation/activation mechanism of NR in leaves which couples nitrate reductase to net photosynthesis. PMID:16667163

  1. Open-Source Photometric System for Enzymatic Nitrate Quantification.

    PubMed

    Wittbrodt, B T; Squires, D A; Walbeck, J; Campbell, E; Campbell, W H; Pearce, J M

    2015-01-01

    Nitrate, the most oxidized form of nitrogen, is regulated to protect people and animals from harmful levels as there is a large over abundance due to anthropogenic factors. Widespread field testing for nitrate could begin to address the nitrate pollution problem, however, the Cadmium Reduction Method, the leading certified method to detect and quantify nitrate, demands the use of a toxic heavy metal. An alternative, the recently proposed Environmental Protection Agency Nitrate Reductase Nitrate-Nitrogen Analysis Method, eliminates this problem but requires an expensive proprietary spectrophotometer. The development of an inexpensive portable, handheld photometer will greatly expedite field nitrate analysis to combat pollution. To accomplish this goal, a methodology for the design, development, and technical validation of an improved open-source water testing platform capable of performing Nitrate Reductase Nitrate-Nitrogen Analysis Method. This approach is evaluated for its potential to i) eliminate the need for toxic chemicals in water testing for nitrate and nitrite, ii) reduce the cost of equipment to perform this method for measurement for water quality, and iii) make the method easier to carryout in the field. The device is able to perform as well as commercial proprietary systems for less than 15% of the cost for materials. This allows for greater access to the technology and the new, safer nitrate testing technique. PMID:26244342

  2. Open-Source Photometric System for Enzymatic Nitrate Quantification

    PubMed Central

    Wittbrodt, B. T.; Squires, D. A.; Walbeck, J.; Campbell, E.; Campbell, W. H.; Pearce, J. M.

    2015-01-01

    Nitrate, the most oxidized form of nitrogen, is regulated to protect people and animals from harmful levels as there is a large over abundance due to anthropogenic factors. Widespread field testing for nitrate could begin to address the nitrate pollution problem, however, the Cadmium Reduction Method, the leading certified method to detect and quantify nitrate, demands the use of a toxic heavy metal. An alternative, the recently proposed Environmental Protection Agency Nitrate Reductase Nitrate-Nitrogen Analysis Method, eliminates this problem but requires an expensive proprietary spectrophotometer. The development of an inexpensive portable, handheld photometer will greatly expedite field nitrate analysis to combat pollution. To accomplish this goal, a methodology for the design, development, and technical validation of an improved open-source water testing platform capable of performing Nitrate Reductase Nitrate-Nitrogen Analysis Method. This approach is evaluated for its potential to i) eliminate the need for toxic chemicals in water testing for nitrate and nitrite, ii) reduce the cost of equipment to perform this method for measurement for water quality, and iii) make the method easier to carryout in the field. The device is able to perform as well as commercial proprietary systems for less than 15% of the cost for materials. This allows for greater access to the technology and the new, safer nitrate testing technique. PMID:26244342

  3. Thermal decomposition hazard evaluation of hydroxylamine nitrate.

    PubMed

    Wei, Chunyang; Rogers, William J; Mannan, M Sam

    2006-03-17

    Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine family and it is a liquid propellant when combined with alkylammonium nitrate fuel in an aqueous solution. Low concentrations of HAN are used primarily in the nuclear industry as a reductant in nuclear material processing and for decontamination of equipment. Also, HAN has been involved in several incidents because of its instability and autocatalytic decomposition behavior. This paper presents calorimetric measurement for the thermal decomposition of 24 mass% HAN/water. Gas phase enthalpy of formation of HAN is calculated using both semi-empirical methods with MOPAC and high-level quantum chemical methods of Gaussian 03. CHETAH is used to estimate the energy release potential of HAN. A Reactive System Screening Tool (RSST) and an Automatic Pressure Tracking Adiabatic Calorimeter (APTAC) are used to characterize thermal decomposition of HAN and to provide guidance about safe conditions for handling and storing of HAN. PMID:16154263

  4. Photolysis of alkaline-earth nitrates

    NASA Astrophysics Data System (ADS)

    Kriger, L. D.; Miklin, M. B.; Dyagileva, E. P.; Anan'ev, V. A.

    2013-02-01

    Peroxynitrite and nitrite ions are the diamagnetic products of photolysis (with light at a wavelength of 253.7 nm) of alkaline-earth nitrates; the paramagnetic products and hydrogen peroxide were not found. The structural water in alkaline-earth nitrate crystals did not affect the qualitative composition of the photodecomposition products. The quantum yield of nitrite ions was 0.0012, 0.0038, 0.0078, and 0.0091 quanta-1 and that of peroxynitrite ions was 0.0070, 0.0107, 0.0286, and 0.0407 quanta-1 for Sr(NO3)2, Ba(NO3)2, Ca(NO3)2 · 4H2O, and Mg(NO3)2 · 6H2O, respectively.

  5. Groundwater pollution by nitrates from livestock wastes.

    PubMed Central

    Goldberg, V M

    1989-01-01

    Utilization of wastes from livestock complexes for irrigation involves the danger of groundwater pollution by nitrates. In order to prevent and minimize pollution, it is necessary to apply geological-hydrogeological evidence and concepts to the situation of wastewater irrigation for the purposes of studying natural groundwater protectiveness and predicting changes in groundwater quality as a result of infiltrating wastes. The procedure of protectiveness evaluation and quality prediction is described. With groundwater pollution by nitrate nitrogen, the concentration of ammonium nitrogen noticeably increases. One of the reasons for this change is the process of denitrification due to changes in the hydrogeochemical conditions in a layer. At representative field sites, it is necessary to collect systematic stationary observations of the concentrations of nitrogenous compounds in groundwater and changes in redox conditions and temperature. PMID:2620669

  6. Gas phase chemistry of chlorine nitrate

    SciTech Connect

    Okumura, M.; Moore, T.A.; Crellin, K.C.

    1995-12-31

    Chlorine nitrate (ClONO{sub 2}) is a reservoir of both ClO{sub x} and NO{sub x} radicals in Earth`s stratosphere, and its decomposition is important in determining the abundance of stratospheric ozone. We present experimental and theoretical studies that explore the mechanisms and dynamics of processes leading to ClONO{sub 2} destruction in the stratosphere. Molecular beam photodissociation experiments have been performed to determine the decomposition pathways of ClONO{sub 2} upon excitation at 308 nm and to explore the possibility of a long-lived excited state. We have also investigated the reaction of chlorine nitrate with chloride ions Cl{sup -} in the gas phase. The gas phase ionic reaction may elucidate ionic mechanisms of heterogeneous reactions occurring on the surfaces of Polar Stratospheric Cloud particles and also raise doubts about proposed schemes to mitigate ozone depletion by electrifying the stratosphere.

  7. Understanding nitrate assimilation and its regulation in microalgae

    PubMed Central

    Sanz-Luque, Emanuel; Chamizo-Ampudia, Alejandro; Llamas, Angel; Galvan, Aurora; Fernandez, Emilio

    2015-01-01

    Nitrate assimilation is a key process for nitrogen (N) acquisition in green microalgae. Among Chlorophyte algae, Chlamydomonas reinhardtii has resulted to be a good model system to unravel important facts of this process, and has provided important insights for agriculturally relevant plants. In this work, the recent findings on nitrate transport, nitrate reduction and the regulation of nitrate assimilation are presented in this and several other algae. Latest data have shown nitric oxide (NO) as an important signal molecule in the transcriptional and posttranslational regulation of nitrate reductase and inorganic N transport. Participation of regulatory genes and proteins in positive and negative signaling of the pathway and the mechanisms involved in the regulation of nitrate assimilation, as well as those involved in Molybdenum cofactor synthesis required to nitrate assimilation, are critically reviewed. PMID:26579149

  8. Effect of changing the nanoscale environment on activity and stability of nitrate reductase.

    PubMed

    Sachdeva, Veena; Hooda, Vinita

    2016-07-01

    Nitrate reductase (NR) is employed for fabrication of nitrate sensing devices in which the enzyme in immobilized form is used to catalyze the conversion of nitrate to nitrite in the presence of a suitable cofactor. So far, instability of immobilized NR due to the use of inappropriate immobilization matrices has limited the practical applications of these devices. Present study is an attempt to improve the kinetic properties and stability of NR using nanoscale iron oxide (nFe3O4) and zinc oxide (nZnO) particles. The desired nanoparticles were synthesized, surface functionalized, characterized and affixed onto the epoxy resin to yield two nanocomposite supports (epoxy/nFe3O4 and epoxy/nZnO) for immobilizing NR. Epoxy/nFe3O4 and epoxy/nZnO support could load as much as 35.8±0.01 and 33.20±0.01μg/cm(2) of NR with retention of about 93.72±0.50 and 84.81±0.80% of its initial activity respectively. Changes in surface morphology and chemical bonding structure of both the nanocomposite supports after addition of NR were confirmed by scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR). Optimum working conditions of pH, temperature and substrate concentration were ascertained for free as well as immobilized NR preparations. Further, storage stability at 4°C and thermal stability between 25-50°C were determined for all the NR preparations. Analytical applications of immobilized NR for determination of soil and water nitrates along with reusability data has been included to make sure the usefulness of the procedure. PMID:27233127

  9. Hypersensitivity from intravenous iron products.

    PubMed

    Bircher, Andreas J; Auerbach, Michael

    2014-08-01

    In the last several years, intravenous therapy with iron products has been more widely used. Although it has been a standard procedure in dialysis-associated anemia since the early 1990s, its use is expanding to a host of conditions associated with iron deficiency, especially young women with heavy uterine bleeding and pregnancy. Free iron is associated with unacceptable high toxicity inducing severe, hemodynamically significant symptoms. Subsequently, formulations that contain the iron as an iron carbohydrate nanoparticle have been designed. With newer formulations, including low-molecular-weight iron dextran, iron sucrose, ferric gluconate, ferumoxytol, iron isomaltoside, and ferric carboxymaltose, serious adverse events are rare. PMID:25017687

  10. Microbes: mini iron factories.

    PubMed

    Joshi, Kumar Batuk

    2014-12-01

    Microbes have flourished in extreme habitats since beginning of the Earth and have played an important role in geological processes like weathering, mineralization, diagenesis, mineral formation and destruction. Biotic mineralization is one of the most fascinating examples of how microbes have been influencing geological processes. Iron oxidizing and reducing bacteria are capable of precipitating wide varieties of iron oxides (magnetite), carbonates (siderite) and sulphides (greigite) via controlled or induced mineralization processes. Microbes have also been considered to play an important role in the history of evolution of sedimentary rocks on Earth from the formation of banded iron formations during the Archean to modern biotic bog iron and ochre deposits. Here, we discuss the role that microbes have been playing in precipitation of iron and the role and importance of interdisciplinary studies in the field of geology and biology in solving some of the major geological mysteries. PMID:25320452

  11. Iron studies in hemophilia

    SciTech Connect

    Lottenberg, R.; Kitchens, C.S.; Roessler, G.S.; Noyes, W.D.

    1981-12-01

    Although iron deficiency is not recognized as a usual complication of hemophilia, we questioned whether intermittent occult loss of blood in urine or stool might predispose hemophiliacs to chronic iron deficiency. Seven men with factor VII and one with factor IX deficiency were studied. Blood studied, bone marrow aspirates, urine and stool samples, and ferrokinetics with total-body counting up to five months were examined. These data showed no excessive loss of blood during the study period; however, marrow iron stores were decidedly decreased, being absent in four subjects. We suggest that in some hemophiliacs, iron deposits in tissues such as synovial membranes may form a high proportion of the body's total iron stores.

  12. GRAPHITE PRODUCTION UTILIZING URANYL NITRATE HEXAHYDRATE CATALYST

    DOEpatents

    Sheinberg, H.; Armstrong, J.R.; Schell, D.H.

    1964-03-10

    ABS>The graphitizing of a mixture composed of furfuryl alcohol binder and uranyl nitrate hexahydrate hardener and the subsequent curing, baking, and graphitizing with pressure being initially applied prior to curing are described. The pressure step may be carried out by extrusion, methyl cellulose being added to the mixture before the completion of extrusion. Uranium oxide may be added to the graphitizable mixture prior to the heating and pressure steps. The graphitizable mixture may consist of discrete layers of different compositions. (AEC)

  13. Supplemental Cooling for Nitrate Salt Waste

    SciTech Connect

    Goldberg, Mitchell S.

    2015-08-19

    In July 2015, Los Alamos National Laboratory completed installation of a supplemental cooling system in the structure where remediated nitrate salt waste drums are stored. Although the waste currently is in a safe configuration and is monitored daily,controlling the temperature inside the structure adds another layer of protection for workers, the public,and the environment.This effort is among several layers of precautions designed to secure the waste.

  14. Potential of dietary nitrate in angiogenesis

    PubMed Central

    Rammos, Christos; Luedike, Peter; Hendgen-Cotta, Ulrike; Rassaf, Tienush

    2015-01-01

    Endothelial dysfunction with impaired bioavailability of nitric oxide (NO) is the hallmark in the development of cardiovascular disease. Endothelial dysfunction leads to atherosclerosis, characterized by chronic inflammation of the arterial wall and stepwise narrowing of the vessel lumen. Atherosclerosis causes deprivation of adequate tissue blood flow with compromised oxygen supply. To overcome this undersupply, remodeling of the vascular network is necessary to reconstitute and sustain tissue viability. This physiological response is often not sufficient and therapeutic angiogenesis remains an unmet medical need in critical limb ischemia or coronary artery disease. Feasible approaches to promote blood vessel formation are sparse. Administration of pro-angiogenic factors, gene therapy, or targeting of microRNAs has not yet entered the daily practice. Nitric oxide is an important mediator of angiogenesis that becomes limited under ischemic conditions and the maintenance of NO availability might constitute an attractive therapeutic target. Until recently it was unknown how the organism provides NO under ischemia. In recent years it could be demonstrated that NO can be formed independently of its enzymatic synthesis in the endothelium by reduction of inorganic nitrite under hypoxic conditions. Circulating nitrite derives from oxidation of NO or reduction of inorganic nitrate by commensal bacteria in the oral cavity. Intriguingly, nitrate is a common constituent of our everyday diet and particularly high concentrations are found in leafy green vegetables such as spinach, lettuce, or beetroot. Evidence suggests that dietary nitrate supplementation increases the regenerative capacity of ischemic tissue and that this effect may offer an attractive nutrition-based strategy to improve ischemia-induced revascularization. We here summarize and discuss the regenerative capacity of dietary nitrate on the vascular system. PMID:26516419

  15. Potential of dietary nitrate in angiogenesis.

    PubMed

    Rammos, Christos; Luedike, Peter; Hendgen-Cotta, Ulrike; Rassaf, Tienush

    2015-10-26

    Endothelial dysfunction with impaired bioavailability of nitric oxide (NO) is the hallmark in the development of cardiovascular disease. Endothelial dysfunction leads to atherosclerosis, characterized by chronic inflammation of the arterial wall and stepwise narrowing of the vessel lumen. Atherosclerosis causes deprivation of adequate tissue blood flow with compromised oxygen supply. To overcome this undersupply, remodeling of the vascular network is necessary to reconstitute and sustain tissue viability. This physiological response is often not sufficient and therapeutic angiogenesis remains an unmet medical need in critical limb ischemia or coronary artery disease. Feasible approaches to promote blood vessel formation are sparse. Administration of pro-angiogenic factors, gene therapy, or targeting of microRNAs has not yet entered the daily practice. Nitric oxide is an important mediator of angiogenesis that becomes limited under ischemic conditions and the maintenance of NO availability might constitute an attractive therapeutic target. Until recently it was unknown how the organism provides NO under ischemia. In recent years it could be demonstrated that NO can be formed independently of its enzymatic synthesis in the endothelium by reduction of inorganic nitrite under hypoxic conditions. Circulating nitrite derives from oxidation of NO or reduction of inorganic nitrate by commensal bacteria in the oral cavity. Intriguingly, nitrate is a common constituent of our everyday diet and particularly high concentrations are found in leafy green vegetables such as spinach, lettuce, or beetroot. Evidence suggests that dietary nitrate supplementation increases the regenerative capacity of ischemic tissue and that this effect may offer an attractive nutrition-based strategy to improve ischemia-induced revascularization. We here summarize and discuss the regenerative capacity of dietary nitrate on the vascular system. PMID:26516419

  16. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina.

    PubMed

    Simpson, Philippa J L; Codd, Rachel

    2011-11-01

    The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo-MGD) cofactor and one [4Fe-4S] iron-sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap(Sgel)) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap(Sput)) was examined at varied temperature. Irreversible deactivation of Nap(Sgel) and Nap(Sput) occurred at 54.5 and 65°C, respectively. When Nap(Sgel) was preincubated at 21-70°C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54°C, which suggested that Nap(Sgel) was poised for optimal catalysis at modest temperatures and, unlike Nap(Sput), did not benefit from thermally-induced refolding. At 20°C, Nap(Sgel) reduced selenate at 16% of the rate of nitrate reduction. Nap(Sput) did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap(Sgel) that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap(Sgel) cold-adapted phenotype. Protein homology modeling of Nap(Sgel) using a mesophilic template with 66% amino acid identity showed the majority of substitutions occurred at the protein surface distal to the Mo-MGD cofactor. Two mesophilic↔psychrophilic substitutions (Asn↔His, Val↔Trp) occurred in a region close to the surface of the NapA substrate funnel resulting in potential interdomain π-π and/or cation-π interactions. Three mesophilic↔psychrophilic substitutions occurred within 4.5Å of the Mo-MGD cofactor (Phe↔Met, Ala↔Ser, Ser↔Thr) resulting in local regions that varied in hydrophobicity and hydrogen bonding

  17. Equation of State of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Robbins, David L.; Sheffield, Stephen A.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Stahl, David B.

    2009-12-01

    Ammonium nitrate (AN) is a widely used fertilizer and mining explosive. AN is commonly used in ammonium nitrate-fuel oil (ANFO), which is a mixture of explosive-grade AN prills and fuel oil in a 94:6 ratio by weight. ANFO is a non-ideal explosive with measured detonation velocities around 4 km/s. The equation of state properties and known initiation behavior of neat AN are limited. We present the results of a series of gas gun-driven plate impact experiments on pressed neat ammonium nitrate at 1.72 g/cm3. No evidence of initiation was observed under shock loading to 22 GPa. High pressure x-ray diffraction experiments in diamond anvil cells provided insight into the high pressure phase behavior over the same pressure range (to 25 GPa), as well as a static isotherm at ambient temperature. From the isotherm and thermodynamic properties at ambient conditions, a preliminary unreacted equation of state (EOS) has been developed based on the Murnaghan isotherm and Helmholtz formalism [1], which compares favorably with the available experimental Hugoniot data on several densities of AN.

  18. Organic Nitrates: A Complex Family of Atmospheric Trace Constituents

    NASA Astrophysics Data System (ADS)

    Ballschmiter, K.; Fischer, R. G.; Grünert, A.; Kastler, J.; Schneider, M.; Woidich, S.

    2003-04-01

    Biogenic and geogenic hydrocarbons are the precursors of organic nitrates that are formed as tropospheric photo-oxidation products in the presence of NOx. Air chemistry leads to a very complex pattern of nitric acid esters: alkyl nitrates, aryl-alkyl nitrates, and bifunctional nitrates like alkyl dinitrates, hydroxy alkyl nitrates and carbonyl alkyl nitrates. We have analyzed the pattern of organic nitrates in air samples after adsorption/thermal desorption (low volume sampling-LVS) or adsorption/solvent desorption (high volume sampling-HVS) by capillary gas chromatography with electron capture (ECD) and mass spectrometric detection (MSD) using air aliquotes of 100 up to 3000 liters on column. The complexity of the organic nitrates found in air requires a group pre-separation by normal phase liquid chromatography. A detection limit per compound of 0.005 ppt(v) is achieved by our approach. We have synthesized a broad spectrum of organic nitrates as reference compounds. Air samples were taken from central Europe, the US West (Utah, Nevada, California), and the North- and South Atlantic including Antarctica. Levels and patterns of the regional and global occurrence of the various groups of C1-C12 organic nitrates including dinitrates and hydroxy nitrates and nitrates of isoprene (2-methylbutadiene) are presented. Werner G., J. Kastler, R. Looser, K. Ballschmiter: "Organic nitrates of isoprene as atmospheric trace compounds" Angewandte Chemie - International Edition (1999) 38: 1634-1637. Woidich S., O. Froescheis, O. Luxenhofer, K. Ballschmiter: "EI- and NCI-mass spectrometry of arylalkyl nitrates and their occurrence in urban air" Fresenius J. Anal. Chem. (1999) 364 : 91-99. Kastler, J; Jarman, W; Ballschmiter, K.: "Multifunctional organic nitrates as constituents in European and US urban photo-smog" Fresenius J. Anal. Chem. (2000) 368:244-249. Schneider M., K. Ballschmiter: "C3-C14 alkyl nitrates in remote South Atlantic air" Chemosphere (1999) 38: 233-244. Fischer

  19. Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode.

    PubMed

    Can, Faruk; Korkut Ozoner, Seyda; Ergenekon, Pinar; Erhan, Elif

    2012-01-01

    This study describes the construction and characterization of an amperometric nitrate biosensor based on the Polypyrrole (PPy)/Carbon nanotubes (CNTs) film. Nitrate reductase (NR) was both entrapped into the growing PPy film and chemically immobilized via the carboxyl groups of CNTs to the CNT/PPy film electrode. The optimum amperometric response for nitrate was obtained in 0.1 M phosphate buffer solution (PBS), pH 7.5 including 0.1 M lithium chloride and 7 mM potassium ferricyanide with an applied potential of 0.13 V (vs. Ag/AgCl, 3 M NaCl). Sensitivity was found to be 300 nA/mM in a linear range of 0.44-1.45 mM with a regression coefficient of 0.97. The biosensor response showed a higher linear range in comparison to standard nitrate analysis methods which were tested in this study and NADH based nitrate biosensors. A minimum detectable concentration of 0.17 mM (S/N=3) with a relative standard deviation (RSD) of 5.4% (n=7) was obtained for the biosensor. Phenol and glucose inhibit the electrochemical reaction strictly at a concentration of 1 μg/L and 20 mg/L, respectively. The biosensor response retained 70% of its initial response over 10 day usage period when used everyday. PMID:23177766

  20. Degradation of bromothymol blue by 'greener' nano-scale zero-valent iron synthesized using tea polyphenols

    EPA Science Inventory

    A green single-step synthesis of iron nanoparticles using tea (Camellia sinensis) polyphenols is described that uses no added surfactants/polymers as a capping or reducing agents. The expeditious reaction between polyphenols and ferric nitrate occurs within few minutes at room te...

  1. Iron economy in Chlamydomonas reinhardtii

    PubMed Central

    Glaesener, Anne G.; Merchant, Sabeeha S.; Blaby-Haas, Crysten E.

    2013-01-01

    While research on iron nutrition in plants has largely focused on iron-uptake pathways, photosynthetic microbes such as the unicellular green alga Chlamydomonas reinhardtii provide excellent experimental systems for understanding iron metabolism at the subcellular level. Several paradigms in iron homeostasis have been established in this alga, including photosystem remodeling in the chloroplast and preferential retention of some pathways and key iron-dependent proteins in response to suboptimal iron supply. This review presents our current understanding of iron homeostasis in Chlamydomonas, with specific attention on characterized responses to changes in iron supply, like iron-deficiency. An overview of frequently used methods for the investigation of iron-responsive gene expression, physiology and metabolism is also provided, including preparation of media, the effect of cell size, cell density and strain choice on quantitative measurements and methods for the determination of metal content and assessing the effect of iron supply on photosynthetic performance. PMID:24032036

  2. Transcriptomic analysis of Staphylococcus xylosus in the presence of nitrate and nitrite in meat reveals its response to nitrosative stress

    PubMed Central

    Vermassen, Aurore; de la Foye, Anne; Loux, Valentin; Talon, Régine; Leroy, Sabine

    2014-01-01

    Staphylococcus xylosus is one of the major starter cultures used for meat fermentation because of its crucial role in the reduction of nitrate to nitrite which contributes to color and flavor development. Despite longstanding use of these additives, their impact on the physiology of S. xylosus has not yet been explored. We present the first in situ global gene expression profile of S. xylosus in meat supplemented with nitrate and nitrite at the levels used in the meat industry. More than 600 genes of S. xylosus were differentially expressed at 24 or 72 h of incubation. They represent more than 20% of the total genes and let us to suppose that addition of nitrate and nitrite to meat leads to a global change in gene expression. This profile revealed that S. xylosus is subject to nitrosative stress caused by reactive nitrogen species (RNS) generated from nitrate and nitrite. To overcome this stress, S. xylosus has developed several oxidative stress resistance mechanisms, such as modulation of the expression of several genes involved in iron homeostasis and in antioxidant defense. Most of which belong to the Fur and PerR regulons, respectively. S. xylosus has also counteracted this stress by developing DNA and protein repair. Furthermore, it has adapted its metabolic response—carbon and nitrogen metabolism, energy production and cell wall biogenesis—to the alterations produced by nitrosative stress. PMID:25566208

  3. [Neutrophilic lithotrophic iron-oxidizing prokaryotes and their role in the biogeochemical processes of the iron cycle].

    PubMed

    Dubinina, G A; Sorokina, A Iu

    2014-01-01

    Biology of lithotrophic neutrophilic iron-oxidizing prokaryotes and their role in the processes of the biogeochemical cycle of iron are discussed. This group of microorganisms is phylogenetically, taxonomically, and physiologically heterogeneous, comprising three metabolically different groups: aerobes, nitrate-dependent anaerobes, and phototrophs; the latter two groups have been revealed relatively recently. Their taxonomy and metabolism are described. Materials on the structure and functioning of the electron transport chain in the course of Fe(II) oxidation by members of various physiological groups are discussed. Occurrence of iron oxidizers in freshwater and marine ecosystems, thermal springs, areas of hydrothermal activity, and underwater volcanic areas are considered. Molecular genetic techniques were used to determine the structure of iron-oxidizing microbial communities in various natural ecosystems. Analysis of stable isotope fractioning of 56/54Fe in pure cultures and model experiments revealed predominance of biological oxidation over abiotic ones in shallow aquatic habitats and mineral springs, which was especially pronounced under microaerobic conditions at the redox zone boundary. Discovery of anaerobic bacterial Fe(II) oxidation resulted in development of new hypotheses concerning the possible role of microorganisms and the mechanisms of formation of the major iron ore deposits in Precambrian and early Proterozoic epoch. Paleobiological data are presented on the microfossils and specific biomarkers retrieved from ancient ore samples and confirming involvement of anaerobic biogenic processes in their formation. PMID:25423717

  4. [Neutrophilic lithotrophic iron-oxidizing prokaryotes and their role in the biogeochemical processes of the iron cycle].

    PubMed

    2014-01-01

    Biology of lithotrophic neutrophilic iron-oxidizing prokaryotes and their role in the processes of the biogeochemical cycle of iron are discussed. This group of microorganisms is phylogenetically, taxonomically, and physiologically heterogeneous, comprising three metabolically different groups: aerobes, nitrate-dependent anaerobes, and phototrophs; the latter two groups have been revealed relatively recently. Their taxonomy and metabolism are described. Materials on the structure and functioning of the electron transport chain in the course of Fe(II) oxidation by members of various physiological groups are discussed. Occurrence of iron oxidizers in freshwater and marine ecosystems, thermal springs, areas of hydrothermal activity, and underwater volcanic areas are considered. Molecular genetic techniques were used to determine the structure of iron-oxidizing microbial communities in various natural ecosystems. Analysis of stable isotope fractioning of 56/54Fe in pure cultures and model experiments revealed predominance of biological oxidation over abiotic ones in shallow aquatic habitats and mineral springs, which was especially pronounced under microaerobic conditions at the redox zone boundary. Discovery of anaerobic bacterial Fe(II) oxidation resulted in development of new hypotheses concerning the possible role of microorganisms and the mechanisms of formation of the major iron ore deposits in Precambrian and early Proterozoic epoch. Paleobiological data are presented on the microfossils and specific biomarkers retrieved from ancient ore samples and confirming involvement of anaerobic biogenic processes in their formation. PMID:25507440

  5. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  6. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  7. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  8. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  9. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  10. Spectroscopic Characterization and Reactivity of Triplet and Quintet Iron(IV) Oxo Complexes in the Gas Phase

    PubMed Central

    Andris, Erik; Jašík, Juraj; Gómez, Laura

    2016-01-01

    Abstract Closely structurally related triplet and quintet iron(IV) oxo complexes with a tetradentate aminopyridine ligand were generated in the gas phase, spectroscopically characterized, and their reactivities in hydrogen‐transfer and oxygen‐transfer reactions were compared. The spin states were unambiguously assigned based on helium tagging infrared photodissociation (IRPD) spectra of the mass‐selected iron complexes. It is shown that the stretching vibrations of the nitrate counterion can be used as a spectral marker of the central iron spin state. PMID:26878833

  11. Nitrate Concentration near the Surface of Frozen Aqueous Solutions.

    PubMed

    Marrocco, Harley A; Michelsen, Rebecca R H

    2014-12-26

    Photolysis of nitrate plays an important role in the emission of nitrogen oxides from snow and ice, which affects the composition of the overlying atmosphere. In order to quantify these reactions, it is necessary to know how much nitrate is available for photolysis near the surfaces of snow and ice. The concentration of nitrate excluded from frozen solutions of nitric acid, sodium nitrate, and magnesium nitrate was measured with attenuated total reflection infrared spectroscopy. Liquid water and nitrate were observed at and near the bottom surface of frozen aqueous solutions during annealing from -18 to -2 °C. At -2 °C, the nitrate concentration was determined to be ∼1.0 mol/L for frozen NaNO(3) and Mg(NO(3))(2) solutions and ∼0.8 mol/L for frozen HNO(3) solutions. At lower temperatures, nitrate concentration ranged from 1.6 to 3.7 mol/L. Ideal thermodynamics overestimates nitrate concentration at colder temperatures where the brine is highly concentrated for all solutions. The nitrate concentration at ice surfaces is well described by bulk freezing point depression data close to the melting point of ice and for nitric acid at colder temperatures. Effects of temperature and counterions and implications for modeling snow chemistry are discussed. PMID:25495473

  12. Soil and sediment bacteria capable of aerobic nitrate respiration.

    PubMed Central

    Carter, J P; Hsaio, Y H; Spiro, S; Richardson, D J

    1995-01-01

    Several laboratory strains of gram-negative bacteria are known to be able to respire nitrate in the presence of oxygen, although the physiological advantage gained from this process is not entirely clear. The contribution that aerobic nitrate respiration makes to the environmental nitrogen cycle has not been studied. As a first step in addressing this question, a strategy which allows for the isolation of organisms capable of reducing nitrate to nitrite following aerobic growth has been developed. Twenty-nine such strains have been isolated from three soils and a freshwater sediment and shown to comprise members of three genera (Pseudomonas, Aeromonas, and Moraxella). All of these strains expressed a nitrate reductase with an active site located in the periplasmic compartment. Twenty-two of the strains showed significant rates of nitrate respiration in the presence of oxygen when assayed with physiological electron donors. Also isolated was one member of the gram-positive genus Arthrobacter, which was likewise able to respire nitrate in the presence of oxygen but appeared to express a different type of nitrate reductase. In the four environments studied, culturable bacteria capable of aerobic nitrate respiration were isolated in significant numbers (10(4) to 10(7) per g of soil or sediment) and in three cases were as abundant as, or more abundant than, culturable bacteria capable of denitrification. Thus, it seems likely that the corespiration of nitrate and oxygen may indeed make a significant contribution to the flux of nitrate to nitrite in the environment. PMID:7487017

  13. Nitrate removal using Brevundimonas diminuta MTCC 8486 from ground water.

    PubMed

    Kavitha, S; Selvakumar, R; Sathishkumar, M; Swaminathan, K; Lakshmanaperumalsamy, P; Singh, A; Jain, S K

    2009-01-01

    Brevundimonas diminuta MTCC 8486, isolated from marine soil of coastal area of Trivandrum, Kerala, was used for biological removal of nitrate from ground water collected from Kar village of Pali district, Rajasthan. The organism was found to be resistance for nitrate up to 10,000 mg L(-1). The optimum growth conditions for biological removal of nitrate were established in batch culture. The effect of carbon sources on nitrate removal was investigated using mineral salt medium (MSM) containing 500 mg L(-1) of nitrate to select the most effective carbon source. Among glucose and starch as carbon source, glucose at 1% concentration increased the growth (182+/-8.24 x 10(4) CFU mL(-1)) and induced maximum nitrate reduction (86.4%) at 72 h. The ground water collected from Kar village, Pali district of Rajasthan containing 460+/-5.92 mg L(-1) of nitrate was subjected to three different treatment processes in pilot scale (T1 to T3). Higher removal of nitrate was observed in T2 process (88%) supplemented with 1% glucose. The system was scaled up to 10 L pilot scale treatment plant. At 72 h the nitrate removal was observed to be 95% in pilot scale plant. The residual nitrate level (23+/-0.41 mg L(-1)) in pilot scale treatment process was found to be below the permissible limit of WHO. PMID:19633395

  14. Growing patterns to produce 'nitrate-free' lettuce (Lactuca sativa).

    PubMed

    Croitoru, Mircea Dumitru; Muntean, Daniela-Lucia; Fülöp, Ibolya; Modroiu, Adriana

    2015-01-01

    Vegetables can contain significant amounts of nitrate and, therefore, may pose health hazards to consumers by exceeding the accepted daily intake for nitrate. Different hydroponic growing patterns were examined in this work in order to obtain 'nitrate-free lettuces'. Growing lettuces on low nitrate content nutrient solution resulted in a significant decrease in lettuces' nitrate concentrations (1741 versus 39 mg kg(-1)), however the beneficial effect was cancelled out by an increase in the ambient temperature. Nitrate replacement with ammonium was associated with an important decrease of the lettuces' nitrate concentration (from 1896 to 14 mg kg(-1)) and survival rate. An economically feasible method to reduce nitrate concentrations was the removal of all inorganic nitrogen from the nutrient solution before the exponential growth phase. This method led to lettuces almost devoid of nitrate (10 mg kg(-1)). The dried mass and calcinated mass of lettuces, used as markers of lettuces' quality, were not influenced by this treatment, but a small reduction (18%, p < 0.05) in the fresh mass was recorded. The concentrations of nitrite in the lettuces and their modifications are also discussed in the paper. It is possible to obtain 'nitrate-free' lettuces in an economically feasible way. PMID:25345876

  15. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    PubMed

    Balk, Melike; Laverman, Anniet M; Keuskamp, Joost A; Laanbroek, Hendrikus J

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils. PMID:25784903

  16. The Fate of Nitrate in Intertidal Permeable Sediments

    PubMed Central

    Marchant, Hannah K.; Lavik, Gaute; Holtappels, Moritz; Kuypers, Marcel M. M.

    2014-01-01

    Coastal zones act as a sink for riverine and atmospheric nitrogen inputs and thereby buffer the open ocean from the effects of anthropogenic activity. Recently, microbial activity in sandy permeable sediments has been identified as a dominant source of N-loss in coastal zones, namely through denitrification. Some of the highest coastal denitrification rates measured so far occur within the intertidal permeable sediments of the eutrophied Wadden Sea. Still, denitrification alone can often account for only half of the substantial nitrate (NO3−) consumption. Therefore, to investigate alternative NO3− sinks such as dissimilatory nitrate reduction to ammonium (DNRA), intracellular nitrate storage by eukaryotes and isotope equilibration effects we carried out 15NO3− amendment experiments. By considering all of these sinks in combination, we could quantify the fate of the 15NO3− added to the sediment. Denitrification was the dominant nitrate sink (50–75%), while DNRA, which recycles N to the environment accounted for 10–20% of NO3− consumption. Intriguingly, we also observed that between 20 and 40% of 15NO3− added to the incubations entered an intracellular pool of NO3− and was subsequently respired when nitrate became limiting. Eukaryotes were responsible for a large proportion of intracellular nitrate storage, and it could be shown through inhibition experiments that at least a third of the stored nitrate was subsequently also respired by eukaryotes. The environmental significance of the intracellular nitrate pool was confirmed by in situ measurements which revealed that intracellular storage can accumulate nitrate at concentrations six fold higher than the surrounding porewater. This intracellular pool is so far not considered when modeling N-loss from intertidal permeable sediments; however it can act as a reservoir for nitrate during low tide. Consequently, nitrate respiration supported by intracellular nitrate storage can add an additional 20% to

  17. Study of different methods for enhancing the nitrate removal efficiency of a zero-valent metal process.

    PubMed

    Cheng, S F; Huang, C Y; Liu, J Y

    2006-01-01

    This study explores the effect of several enhancing methods, namely acid wash pretreatment, ultrasound treatment and addition of nickel catalyst on the nitrate removal efficiency of three zero-valent metals--iron, aluminium and zinc. It is hoped that by learning about the major reaction pathways of nitrate removal with zero-valent metals and the main factors influencing the reactivity of those zero-valent metals, optimum process conditions may be identified. The study results show that direct transfer of electrons is the major reaction pathway. Thus increasing a clean, fresh metal surface and decreasing the thickness of the diffusion layer to accelerate mass transfer are the main determinants of reaction rate. In the absence of a clean, fresh metal surface, the catalytic reaction of nickel becomes the primary removal pathway. PMID:16862777

  18. NITRATE DESTRUCTION LITERATURE SURVEY AND EVALUATION CRITERIA

    SciTech Connect

    Steimke, J.

    2011-02-01

    This report satisfies the initial phase of Task WP-2.3.4 Alternative Sodium Recovery Technology, Subtask 1; Develop Near-Tank Nitrate/Nitrite Destruction Technology. Some of the more common anions in carbon steel waste tanks at SRS and Hanford Site are nitrate which is corrosive, and nitrite and hydroxide which are corrosion inhibitors. At present it is necessary to periodically add large quantities of 50 wt% caustic to waste tanks. There are three primary reasons for this addition. First, when the contents of salt tanks are dissolved, sodium hydroxide preferentially dissolves and is removed. During the dissolution process the concentration of free hydroxide in the tank liquid can decrease from 9 M to less than 0.2 M. As a result, roughly half way through the dissolution process large quantities of sodium hydroxide must be added to the tank to comply with requirements for corrosion control. Second, hydroxide is continuously consumed by reaction with carbon dioxide which occurs naturally in purge air used to prevent buildup of hydrogen gas inside the tanks. The hydrogen is generated by radiolysis of water. Third, increasing the concentration of hydroxide increases solubility of some aluminum compounds, which is desirable in processing waste. A process that converts nitrate and nitrite to hydroxide would reduce certain costs. (1) Less caustic would be purchased. (2) Some of the aluminum solid compounds in the waste tanks would become more soluble so less mass of solids would be sent to High Level Vitrification and therefore it would be not be necessary to make as much expensive high level vitrified product. (3) Less mass of sodium would be fed to Saltstone at SRS or Low Level Vitrification at Hanford Site so it would not be necessary to make as much low level product. (4) At SRS less nitrite and nitrate would be sent to Defense Waste Processing Facility (DWPF) so less formic acid would be consumed there and less hydrogen gas would be generated. This task involves

  19. Coal desulfurization. [using iron pentacarbonyl

    NASA Technical Reports Server (NTRS)

    Hsu, G. C. (Inventor)

    1979-01-01

    Organic sulfur is removed from coal by treatment with an organic solution of iron pentacarbonyl. Organic sulfur compounds can be removed by reaction of the iron pentacarbonyl with coal to generate CO and COS off-gases. The CO gas separated from COS can be passed over hot iron fillings to generate iron pentacarbonyl.

  20. Persistence of iron limitation in the western subarctic Pacific SEEDS II mesoscale fertilization experiment

    NASA Astrophysics Data System (ADS)

    Wells, Mark L.; Trick, Charles G.; Cochlan, William P.; Beall, Ben

    2009-12-01

    The cumulative evidence from more than a dozen mesoscale iron-enrichment studies in high nitrate low chlorophyll (HNLC) waters demonstrates that iron limitation is widespread and very likely affects atmospheric carbon dioxide and thus global climate. However, the responses of microphytoplankton (>20 μm), predominantly diatoms, vary greatly among these mesoscale experiments even though similar amounts of iron were added, making it difficult to quantitatively incorporate iron effects into global climate models. Nowhere is this difference more dramatic than between the massive bloom observed during Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS) I and the order of magnitude smaller ecosystem response in SEEDS II; two mesocale experiments performed in the same HNLC region of the western subarctic Pacific in different years. Deckboard incubation experiments initiated during the early, middle, and late stages of the 32-day SEEDS II experiment show that while the two iron infusions increased phytoplankton growth, diatoms remained significantly limited by iron availability, despite total dissolved Fe concentrations in the patch being well above the diffusion-limited threshold for rapid diatom growth. This iron limitation was apparent <6 days after the initial iron infusion and was not alleviated by the second, smaller iron infusion. In contrast, smaller phytoplankton (<20 μm) showed a more restricted response to further iron amendments, indicating that their iron nutrition was near optimal. Iron complexed to desferrioximine B, a commonly available siderophore produced by at least one marine bacterium, was poorly available to diatoms throughout the patch evolution, indicating that these diatoms lacked the ability to induce high-affinity iron uptake systems. These results suggest that the strong organic complexation of Fe(III) observed in the SEEDS II-fertilized patch was not compatible with rapid diatom growth. In contrast, iron associated with

  1. Phytosiderophores revisited: 2′-deoxymugineic acid-mediated iron uptake triggers nitrogen assimilation in rice (Oryza sativa L.) seedlings

    PubMed Central

    Araki, Ryoichi; Namba, Kosuke; Murata, Yoshiko; Murata, Jun

    2015-01-01

    Poaceae plants release phytosiderophores into the rhizosphere in order to chelate iron (Fe), which often exists in insoluble forms especially under high pH conditions. The impact of phytosiderophore treatment at the physiological and molecular levels in vivo remains largely elusive, although the biosynthesis of phytosiderophores and the transport of phytosiderophore-metal complexes have been well studied. We recently showed that the application of 30 μM of the chemically synthesized phytosiderophore 2′-deoxymugineic acid (DMA) was sufficient for apparent full recovery of otherwise considerably reduced growth of hydroponic rice seedlings at high pH. Moreover, unexpected induction of high-affinity nitrate transporter gene expression as well as nitrate reductase activity indicates that the nitrate response is linked to Fe homeostasis. These data shed light on the biological relevance of DMA not simply as a Fe chelator, but also as a trigger that promotes plant growth by reinforcing nitrate assimilation. PMID:26023724

  2. Evaluating Ecosystem Services for Reducing Groundwater Nitrate Contamination: Nitrate Attenuation in the Unsaturated and Saturated Zones

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2013-12-01

    Nitrates are the most common type of groundwater contamination in agricultural regions. Environmental policies targeting nitrates have focused on input control (e.g., restricted fertilizer application), intermediate loads control (e.g., reduce nitrate leached from crop fields), and final loads control (e.g., reduce catchment nitrate loads). Nitrate loads can be affected by hydrological processes in both unsaturated and saturated zones. Although many of these processes have been extensively investigated in literature, they are commonly modeled as exogenous to farm management. A couple of recent studies by scientists from the Lawrence Livermore National Laboratory show that in some situations nitrate attenuation processes in the unsaturated/saturated zone, particularly denitrification, can be intensified by certain management practices to mitigate nitrate loads. Therefore, these nitrate attenuation processes can be regarded as a set of ecosystem services that farmers can take advantage of to reduce their cost of complying with environmental policies. In this paper, a representative California dairy farm is used as a case study to show how such ecosystem attenuation services can be framed within the farm owner's decision-making framework as an option for reducing groundwater nitrate contamination. I develop an integrated dynamic model, where the farmer maximizes discounted net farm profit over multiple periods subject to environmental regulations. The model consists of three submodels: animal-waste-crop, hydrologic, and economic model. In addition to common choice variables such as irrigation, fertilization, and waste disposal options, the farmer can also endogenously choose from three water sources: surface water, deep groundwater (old groundwater in the deep aquifer that is not affected by farm effluent in the short term), and shallow groundwater (drainage water that can be recycled via capture wells at the downstream end of the farm). The capture wells not only

  3. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

  4. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-01-18

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.

  5. Nitrate sources and sinks in Elkhorn Slough, California: Results from long-term continuous in situ nitrate analyzers

    USGS Publications Warehouse

    Chapin, T.P.; Caffrey, J.M.; Jannasch, H.W.; Coletti, L.J.; Haskins, J.C.; Johnson, K.S.

    2004-01-01

    Nitrate and water quality parameters (temperature, salinity, dissolved oxygen, turbidity, and depth) were measured continuously with in situ NO 3 analyzers and water quality sondes at two sites in Elkhorn Slough in Central California. The Main Channel site near the mouth of Elkhorn Slough was sampled from February to September 2001. Azevedo Pond, a shallow tidal pond bordering agricultural fields further inland, was sampled from December 1999 to July 2001. Nitrate concentrations were recorded hourly while salinity, temperature, depth, oxygen, and turbidity were recorded every 30 min. Nitrate concentrations at the Main Channel site ranged from 5 to 65 ??M. The propagation of an internal wave carrying water from ???100 m depth up the Monterey Submarine Canyon and into the lower section of Elkhorn Slough on every rising tide was a major source of nitrate, accounting for 80-90% of the nitrogen load during the dry summer period. Nitrate concentrations in Azevedo Pond ranged from 0-20 ??M during the dry summer months. Nitrate in Azevedo Pond increased to over 450 ??M during a heavy winter precipitation event, and interannual variability driven by differences in precipitation was observed. At both sites, tidal cycling was the dominant forcing, often changing nitrate concentrations by 5-fold or more within a few hours. Water volume flux estimates were combined with observed nitrate concentrations to obtain nitrate fluxes. Nitrate flux calculations indicated a loss of 4 mmol NO3 m -2 d-1 for the entire Elkhorn Slough and 1 mmol NO 3 m-2 d-1 at Azevedo Pond. These results suggested that the waters of Elkhorn Slough were not a major source of nitrate to Monterey Bay but actually a nitrate sink during the dry season. The limited winter data at the Main Channel site suggest that nitrate was exported from Elkhorn Slough during the wet season. Export of ammonium or dissolved organic nitrogen, which we did not monitor, may balance some or all of the NO 3 flux.

  6. Zero Valent Iron: Impact of Anions Present during Synthesis on Subsequent Nanoparticle Reactivity

    SciTech Connect

    Moore, Kirsten; Forsberg, Brady; Baer, Donald R.; Arnold, William A.; Penn, R. Lee

    2011-10-01

    Zero-valent iron particles are an effective remediation technology for groundwater contaminated with halogenated organic compounds. In particular, nano-scale zero-valent iron is a promising material for remediation due to its high specific surface area, which results in faster rate constants and more effective use of the iron. An aspect of iron nanoparticle reactivity that has not been explored is the impact of anions present during iron metal nanoparticle synthesis. Solutions containing chloride, phosphate, sulfate, and nitrate anions and ferric ions were used to generate iron oxide nanoparticles. The resulting materials were dialyzed to remove dissolved byproducts and then dried and reduced by hydrogen gas at high temperature. The reactivity of the resulting zero valent iron nanoparticles was quantified by monitoring the kinetics as well as products of carbon tetrachloride reduction, and significant differences in reactivity and chloroform yield were observed. The reactivity of nanoparticles prepared in the presence of sulfate and phosphate demonstrated the highest reactivity and chloroform yield. Furthermore, substantial variations in the solid-state products of oxidation (magnetite, iron sulfide, and goethite, among others) were also observed.

  7. Interrelated influence of iron, light and cell size on marine phytoplankton growth

    NASA Astrophysics Data System (ADS)

    Sunda, William G.; Huntsman, Susan A.

    1997-11-01

    The sub-optimal growth of phytoplankton and the resulting persistence of unutilized plant nutrients (nitrate and phosphate) in the surface waters of certain ocean regions has been a long-standing puzzle,. Of these regions, the Southern Ocean seems to play the greatest role in the global carbon cycle,, but controversy exists as to the dominant controls on net algal production. Limitation by iron deficiency,, light availability,, and grazing by zooplankton have been proposed. Here we present the results from culture experiments showing that the amount of cellular iron needed to support growth is higher under lower light intensities, owing to a greater requirement for photosynthetic iron-based redox proteins by low-light acclimatized algae. Moreover, algal iron uptake varies with cell surface area, such that the growth of small cells is favoured under iron limitation, as predicted theoretically. Phytoplankton growth can therefore be simultaneously limited by the availability of both iron and light. Such a co-limitation may be experienced by phytoplankton in iron-poor regions in which the surface mixed layer extends below the euphotic zone-as often occurs in the Southern Ocean,-or near the bottom of the euphotic zone in more stratified waters. By favouring the growth of smaller cells, iron/light co-limitation should increase grazing by microzooplankton, and thus minimize the loss of fixed carbon and nitrogen from surface waters in settling particles,.

  8. Iron in diet

    MedlinePlus

    ... Some foods reduce iron absorption. For example, commercial black or pekoe teas contain substances that bind to ... nih.gov/pubmed/19297463 . Mason JB. Vitamins, trace minerals, and other micronutrients. In: Goldman L, Schafer AI, ...

  9. Sustainability of natural attenuation of nitrate in agricultural aquifers

    USGS Publications Warehouse

    Green, Christopher T.; Bekins, Barbara A.

    2010-01-01

    Increased concentrations of nitrate in groundwater in agricultural areas, coinciding with increased use of chemical and organic fertilizers, have raised concern because of risks to environmental and human health. At some sites, these problems are mitigated by natural attenuation of nitrate as a result of microbially mediated reactions. Results from U.S. Geological Survey (USGS) research under the National Water-Quality Assessment (NAWQA) program show that reactions of dissolved nitrate with solid aquifer minerals and organic carbon help lower nitrate concentrations in groundwater beneath agricultural fields. However, increased fluxes of nitrate cause ongoing depletion of the finite pool of solid reactants. Consumption of the solid reactants diminishes the capacity of the aquifer to remove nitrate, calling into question the long-term sustainability of these natural attenuation processes.

  10. Sulfate and nitrate collected by filter sampling near the tropopause

    NASA Technical Reports Server (NTRS)

    Humenik, F. M.; Lezberg, E. A.; Otterson, D. A.

    1980-01-01

    Filter samples collected near the tropopause with an F-106 aircraft and two Boeing 747 aircraft were analyzed for sulfate and nitrate ion content. Within the range of routine commercial flight altitudes (at or below 12.5 km), stratospheric mass mixing ratios for the winter-spring group averaged 0.26 ppbm for sulfate and 0.35 ppbm for nitrate. For the summer-fall group, stratosphere mixing ratios averaged 0.13 ppbm and 0.25 ppbm for sulfate and nitrate, respectively. Winter-spring group tropospheric mass mixing ratios averaged 0.08 ppbm for sulfate and 0.10 ppbm for nitrate, while summer-fall group tropospheric mixing ratios averaged 0.05 ppbm for sulfate and 0.08 ppbm for nitrate. Correlations of the filter data with available ozone data suggest that the sulfate and nitrate are transported from the stratosphere to the troposphere.

  11. Efficacy of different forms of nitrates in angina pectoris.

    PubMed

    Luomanmäki, K

    1985-01-01

    Nitroglycerin has maintained its position in the treatment of angina pectoris for more than a century. Efficacy of oral nitrates has been established and compares well with that of other anti-anginal drugs. New delivery systems are being developed for sustained systemic nitrate action. Beneficial action of nitrates in congestive heart failure and their crucial role in unstable angina and acute myocardial infarction has further widened their therapeutic use. A plausible hypothesis of the mechanism of nitrate-induced vasodilation has been presented, involving production of nitrosothiols and activation of guanylate cyclase in the vascular smooth muscle. Recent developments suggest that the rate degradation of nitrates and formation of nitrosothiols in the vascular smooth muscle are linked, offering an explanation to the relatively rapidly developing, but partial vascular tolerance during high-dose nitrate therapy. PMID:3923783

  12. Distribution of nitrate in ground water, Redlands, California

    USGS Publications Warehouse

    Eccles, Lawrence A.; Bradford, Wesley L.

    1977-01-01

    Wells producing water with nitrate as nitrogen concentrations in excess of 10 milligrams per liter are common throughout the Redlands, Calif., area. Nitrite as nitrogen concentrations in water from the saturated part of the aquifer ranged from much greater than 20 milligrams per liter at the water table to less than 5 milligrams per liter at depths of 300 feet below the water table. This depth dependence suggests that the major source of nitrate is a generalized area-wide infiltration of high-nitrate water downward from the surface through the unsaturated zone. The nitrate concentration in water from individual wells is dependent primarily upon depth and well construction--particularly aquifer seal and aquifer penetration--and secondarily upon well location. Nitrate concentrations of water in wells are increased by heavy pumping which causes high-nitrate water near the water table to be pulled deeper. (Woodard-USGS)

  13. Continuous flow analysis of iron in zinc electrowinning electrolyte using an iron chalcogenide glass ion-selective electrode Part I. Synthetic media.

    PubMed

    De Marco, Roland; Pejcic, Bobby; Loan, Mitch; Wilcox, Matthew

    2002-04-22

    It is shown that the iron(III) chalcogenide glass membrane ion-selective electrode (ISE) can be calibrated in continuous flow analysis (CFA) using acidified iron(III) nitrate standards, yielding a 60+/-3 mV per decade change in activity of Fe(3+) response in the range 10(-7)-10(-2) M total iron(III). Extended ageing of the iron(III) ISE in 2 M zinc(II) sulphate did not alter the potentiometric response characteristics of the electrode. Furthermore, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy in the presence and absence of zinc(II) sulphate failed to detect a zinc(II) interference on the iron(III) ISE. CFA/ISE determined activities of Fe(3+) in synthetic zinc electrolyte containing 2x10(-3)-2x10(-1) M total iron(III) yielded results falling within +/-0.2logaFe(3+) unit of the corresponding iron speciation data calculated using the minteqa2 program. PMID:18968611

  14. Impact of weather variability on nitrate leaching

    NASA Astrophysics Data System (ADS)

    Richards, Karl; Premrov, Alina; Hackett, Richard; Coxon, Catherine

    2016-04-01

    The loss of nitrate (NO3 - N) to water via leaching and overland flow contributes to eutrophication of freshwaters, transitional and near coastal waters with agriculture contributing significantly to nitrogen (N) loading to these water. Environmental regulations, such as the Nitrates and Water Framework Directives, have increased constraints on farmers to improve N management in regions at risk of NO3--N loss to water. In addition, farmers also have to manage their systems within a changing climate as the imapcts of climate change begin to impact resulting in more frequent extreme events such as floods and droughts. The objective of this study was to investigate the link between weather volatility and the concentration of leached NO3--N spring barley. Leaching was quantified under spring barley grown on a well-drained, gravelly sandy soil using ceramic cup samplers over 6 drainage years under the same farming practices and treatments. Soil solution NO3--N concentrations under spring barley grown by conventional inversion ploughing and reduced tillage were compared to weather parameters over the period. Weather was recorded at a national Met Eireann weather station on site. Soil solution NO3--N varied significantly between years. Within individual years NO3--N concentrations varied over the drainage season, with peak concentrations generally observed in the autumn time, decreasing thereafter. Under both treatments there was a three-fold difference in mean annual soil solution NO3--N concentration over the 6 years with no change in the agronomic practices (crop type, tillage type and fertiliser input). Soil solution nitrate concentrations were significantly influenced by weather parameters such as rainfall, effective drainage and soil moisture deficit. The impact of climate change in Ireland could lead to increased NO3--N loss to water further exacerbating eutrophication of sensitive estuaries. The increased impact on eutrophication of waters, related to climatic

  15. Sulfur-Modified Zero-Valent Iron for Remediation Applications at DOE Sites - 13600

    SciTech Connect

    Fogwell, Thomas W.; Santina, Pete

    2013-07-01

    Many DOE remediation sites have chemicals of concern that are compounds in higher oxidation states, which make them both more mobile and more toxic. The chemical reduction of these compounds both prevents the migration of these chemicals and in some cases reduces the toxicity. It has also been shown that zero-valent iron is a very effective substance to use in reducing oxygenated compounds in various treatment processes. These have included the treatment of halogenated hydrocarbons in the form volatile organic compounds used as solvents and pesticides. Zero-valent iron has also been used to reduce various oxidized metals such as chromium, arsenic, and mercury in order to immobilize them, decrease their toxicity, and prevent further transport. In addition, it has been used to immobilize or break down other non-metallic species such as selenium compounds and nitrates. Of particular interest at several DOE remediation sites is the fact that zero-valent iron is very effective in immobilizing several radioactive metals which are mobile in their oxidized states. These include both technetium and uranium. The main difficulty in using zero-valent iron has been its tendency to become inactive after relatively short periods of time. While it is advantageous to have the zero-valent iron particles as porous as possible in order to provide maximum surface area for reactions to take place, these pores can become clogged when the iron is oxidized. This is due to the fact that ferric oxide has a greater volume for a given mass than metallic iron. When the surfaces of the iron particles oxidize to ferric oxide, the pores become narrower and will eventually shut. In order to minimize the degradation of the chemical activity of the iron due to this process, a modification of zero-valent iron has been developed which prevents or slows this process, which decreases its effectiveness. It is called sulfur-modified iron, and it has been produced in high purity for applications in

  16. Iron-Air Rechargeable Battery

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  17. Sphaerotilus natans encrusted with nanoball-shaped Fe(III) oxide minerals formed by nitrate-reducing mixotrophic Fe(II) oxidation.

    PubMed

    Park, Sunhwa; Kim, Dong-Hun; Lee, Ji-Hoon; Hur, Hor-Gil

    2014-10-01

    Ferrous iron has been known to function as an electron source for iron-oxidizing microorganisms in both anoxic and oxic environments. A diversity of bacteria has been known to oxidize both soluble and solid-phase Fe(II) forms coupled to the reduction of nitrate. Here, we show for the first time Fe(II) oxidation by Sphaerotilus natans strain DSM 6575(T) under mixotrophic condition. Sphaerotilus natans has been known to form a sheath structure enclosing long chains of rod-shaped cells, resulting in a thick biofilm formation under oxic conditions. Here, we also demonstrate that strain DSM 6575(T) grows mixotrophically with pyruvate, Fe(II) as electron donors and nitrate as an electron acceptor and single cells of strain DSM 6575(T) are dominant under anoxic conditions. Furthermore, strain DSM 6575(T) forms nanoball-shaped amorphous Fe(III) oxide minerals encrusting on the cell surfaces through the mixotrophic iron oxidation reaction under anoxic conditions. We propose that cell encrustation results from the indirect Fe(II) oxidation by biogenic nitrite during nitrate reduction and that causes the bacterial morphological change to individual rod-shaped single cells from filamentous sheath structures. This study extends the group of existing microorganisms capable of mixotrophic Fe(II) oxidation by a new strain, S. natans strain DSM 6575(T) , and could contribute to biogeochemical cycles of Fe and N in the environment. PMID:24965827

  18. Sphaerotilus natans encrusted with nanoball-shaped Fe(III) oxide minerals formed by nitrate-reducing mixotrophic Fe(II) oxidation

    PubMed Central

    Park, Sunhwa; Kim, Dong-Hun; Lee, Ji-Hoon; Hur, Hor-Gil

    2014-01-01

    Ferrous iron has been known to function as an electron source for iron-oxidizing microorganisms in both anoxic and oxic environments. A diversity of bacteria has been known to oxidize both soluble and solid-phase Fe(II) forms coupled to the reduction of nitrate. Here, we show for the first time Fe(II) oxidation by Sphaerotilus natans strain DSM 6575T under mixotrophic condition. Sphaerotilus natans has been known to form a sheath structure enclosing long chains of rod-shaped cells, resulting in a thick biofilm formation under oxic conditions. Here, we also demonstrate that strain DSM 6575T grows mixotrophically with pyruvate, Fe(II) as electron donors and nitrate as an electron acceptor and single cells of strain DSM 6575T are dominant under anoxic conditions. Furthermore, strain DSM 6575T forms nanoball-shaped amorphous Fe(III) oxide minerals encrusting on the cell surfaces through the mixotrophic iron oxidation reaction under anoxic conditions. We propose that cell encrustation results from the indirect Fe(II) oxidation by biogenic nitrite during nitrate reduction and that causes the bacterial morphological change to individual rod-shaped single cells from filamentous sheath structures. This study extends the group of existing microorganisms capable of mixotrophic Fe(II) oxidation by a new strain, S. natans strain DSM 6575T, and could contribute to biogeochemical cycles of Fe and N in the environment. PMID:24965827

  19. Hypersensitive dentinal pain attenuation with potassium nitrate.

    PubMed

    Touyz, L Z; Stern, J

    1999-01-01

    Dentinal hypersensitivity occurs when gingival recession exposes dentin at the cervical margins of teeth. Twenty-four periodontal patients, with postoperative hypersensitive dentin were treated by burnishing saturated potassium nitrate (KNO3) to relieve pain. Using a visual analogue scale with participants acting as their own control, a subjective assessment of pain was measured and compared before and after KNO3 application. Thirty-six regions involving 98 teeth were assessed. A significant reduction of sensitivity and pain was achieved by using a saturated KNO3 solution (p < .0001 Student-t). PMID:10321150

  20. Electrospun cellulose nitrate and polycaprolactone blended nanofibers

    NASA Astrophysics Data System (ADS)

    Nartker, Steven; Hassan, Mohamed; Stogsdill, Michael

    2015-03-01

    Pure cellulose nitrate (CN) and blends of CN and polycaprolactone were electrospun to form nonwoven mats. Polymers were dissolved in a mixed solvent system of tetrahydrofuran and N,N-dimethylformamide. The concentrations were varied to obtain sub-micron and nanoscale fiber mats. Fiber mats were analyzed using scanning electron microscopy, contact angle analysis, Fourier transform infrared spectroscopy and thermal gravimetric analysis. The fiber morphology, surface chemistry and contact angle data show that these electrospun materials are suitable for applications including biosensing, biomedical and tissue engineering.