Science.gov

Sample records for iron oxide labeling

  1. Rapid Spectrophotometric Technique for Quantifying Iron in Cells Labeled with Superparamagnetic Iron Oxide Nanoparticles: Potential Translation to the Clinic

    PubMed Central

    Dadashzadeh, Esmaeel R.; Hobson, Matthew; Bryant, L. Henry; Dean, Dana D.; Frank, Joseph A.

    2012-01-01

    Labeling cells with superparamagnetic iron oxide (SPIO) nanoparticles provides the ability to track cells by Magnetic Resonance Imaging. Quantifying intracellular iron concentration in SPIO labeled cells would allow for the comparison of agents and techniques used to magnetically label cells. Here we describe a rapid spectrophotometric technique (ST) to quantify iron content of SPIO labeled cells, circumventing the previous requirement of an overnight acid digestion. Following lysis with 10% SDS of magnetically labeled cells, quantification of SPIO doped or labeled cells was performed using commonly available spectrophotometric instrument(s) by comparing absorptions at 370 and 750 nm with correction for turbidity of cellular products to determine iron content of each sample. Standard curves demonstrated high linear correlation (R2 = 0.998) between absorbance spectra of iron oxide nanoparticles and concentration in known SPIO doped cells. Comparisons of the ST to ICP-MS or NMR relaxometric (R2) determinations of intracellular iron contents in SPIO containing samples resulted in significant linear correlation between the techniques (R2 vs. ST, R2>0.992, p<0.0001, ST vs. ICP-MS, R2>0.995, p<0.0001) with the limit of detection of ST for iron = 0.66μg/ml. We have developed a rapid straightforward protocol that does not require overnight acid digestion for quantifying iron oxide content in magnetically labeled cells using readily available analytic instrumentation that should greatly expedite advances in comparing SPIO agents and protocols for labeling cells. PMID:23109392

  2. New carboxysilane-coated iron oxide nanoparticles for nonspecific cell labelling.

    PubMed

    Bridot, Jean-Luc; Stanicki, Dimitri; Laurent, Sophie; Boutry, Sébastien; Gossuin, Yves; Leclère, Philippe; Lazzaroni, Roberto; Vander Elst, Luce; Muller, Robert N

    2013-01-01

    Magnetic resonance imaging (MRI) offers the possibility of tracking cells labelled with a contrast agent and evaluating the progress of cell therapies. This requires efficient cell labelling with contrast agents. A basic incubation of cells with iron oxide nanoparticles (NPs) is a common method. This study reports the synthesis at the gram scale of iron oxide nanoparticles as MRI T₂ contrast agents for cell labelling. These NPs are based on small iron oxide cores coated with a thin polysiloxane shell presenting carboxylic acid functions. The iron oxide cores produced have been characterized by transmission electron microscopy, X-ray diffraction, ζ-potential, infrared, photon correlation spectroscopy, atomic force microscopy, magnetometry and relaxometric measurements. These measurements confirmed the expected surface modification by carboxysilane. Carboxylic groups created electrostatic repulsion between NPs when they are deprotonated. Therefore, highly concentrated aqueous solutions of carboxysilane coated iron oxide NPs can be obtained, up to 70% (w/w). These NPs could be used for cell labelling owing to their aggregation and re-dispersion properties. NPs precipitated in Dulbecco's modified Eagle medium induced a rapid association with 3 T6 fibroblast cells and could easily be re-dispersed in phosphate buffer saline solution to obtain properly labelled cells. PMID:24375902

  3. Uptake and clearance analysis of Technetium99m labelled iron oxide nanoparticles in a rabbit brain.

    PubMed

    Nadeem, Muhammad; Ahmad, Munir; Saeed, M A; Shaari, Amiruddin; Riaz, Saira; Naseem, Shahzad; Rashid, Khalid

    2015-06-01

    Nanoparticles as solid colloidal particles are extensively studied and used as anticancer drug delivery agents because of their physical properties. This current research aims to prepare water base suspension of uncoated iron oxide nanoparticles and their biodistribution study to different organs, especially the brain, by using a single photon emission computed tomography gamma camera. The water-based suspension of iron oxide nanoparticles was synthesised by a reformed version of the co-precipitation method and labelled with Tc99m for intravenous injection. The nanoparticles were injected without surface modification. X-ray diffraction (XRD), energy dispersive spectrometry (EDS) and transmission electron microscope (TEM) techniques were used for characterisation. Peaks of XRD and EDS indicate that the particles are magnetite and exist in aqueous suspension. The average diameter of iron oxide nanoparticles without any surface coating determined by TEM is 10 nm. These particles are capable of evading the reticuloendothelial system and can cross the blood-brain barrier in the rabbit. The labelling efficiency of iron oxide nanoparticles labelled with Tc99m is 85%, which is good for the biodistribution study. The sufficient amount of iron oxide nanoparticles concentration in the brain as compared with the surrounding soft tissues and their long blood retention time indicates that the water-based suspension of iron oxide nanoparticles may be an option for drug delivery into the brain. PMID:26023157

  4. Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles.

    PubMed

    Tefft, Brandon J; Uthamaraj, Susheil; Harburn, J Jonathan; Klabusay, Martin; Dragomir-Daescu, Dan; Sandhu, Gurpreet S

    2015-01-01

    Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields. The synthesis process involves creating magnetite (Fe3O4) nanoparticles followed by high-speed emulsification to form a poly(lactic-co-glycolic acid) (PLGA) coating. The PLGA-magnetite SPIONs are approximately 120 nm in diameter including the approximately 10 nm diameter magnetite core. When placed in culture medium, SPIONs are naturally endocytosed by cells and stored as small clusters within cytoplasmic endosomes. These particles impart sufficient magnetic mass to the cells to allow for targeting within magnetic fields. Numerous cell sorting and targeting applications are enabled by rendering various cell types responsive to magnetic fields. SPIONs have a variety of other biomedical applications as well including use as a medical imaging contrast agent, targeted drug or gene delivery, diagnostic assays, and generation of local hyperthermia for tumor therapy or tissue soldering. PMID:26554870

  5. D-mannose-modified iron oxide nanoparticles for stem cell labeling.

    PubMed

    Horak, Daniel; Babic, Michal; Jendelová, Pavla; Herynek, Vít; Trchová, Miroslava; Pientka, Zbynek; Pollert, Emil; Hájek, Milan; Syková, Eva

    2007-01-01

    New surface-modified iron oxide nanoparticles were developed by precipitation of Fe(II) and Fe(III) salts with ammonium hydroxide according to two methods. In the first method, precipitation was done in the presence of D-mannose solution (in situ coating); the second method involved oxidation of precipitated magnetite with sodium hypochlorite followed by addition of D-mannose solution (postsynthesis coating). Selected nanoparticles were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), elemental analysis, dynamic light scattering, infrared (IR), X-ray powder analysis, and ultrasonic spectrometry. While the first preparation method produced very fine nanoparticles ca. 2 nm in diameter, the second one yielded ca. 6 nm particles. Addition of D-mannose after synthesis did not affect the iron oxide particle size. UV-vis spectroscopy suggested that D-mannose suppresses the nonspecific sorption of serum proteins from DMEM culture medium on magnetic nanoparticles. Rat bone marrow stromal cells (rMSCs) were labeled with uncoated and d-mannose-modified iron oxide nanoparticles and with Endorem (Guerbet, France; control). Optical and transmission electron microscopy confirmed the presence of D-mannose-modified iron oxide nanoparticles inside the cells. D-mannose-modified nanoparticles crossed the cell membranes and were internalized well by the cells. Relaxivity measurements of labeled cells in gelatin revealed very high relaxivities only for postsynthesis D-mannose-coated iron oxide nanoparticles. PMID:17370996

  6. Self-Assembled Superparamagnetic Iron Oxide Nanoclusters for Universal Cell Labeling and MRI

    NASA Astrophysics Data System (ADS)

    Chen, Shuzhen; Zhang, Jun; Jiang, Shengwei; Lin, Gan; Luo, Bing; Yao, Huan; Lin, Yuchun; He, Chengyong; Liu, Gang; Lin, Zhongning

    2016-05-01

    Superparamagnetic iron oxide (SPIO) nanoparticles have been widely used in a variety of biomedical applications, especially as contrast agents for magnetic resonance imaging (MRI) and cell labeling. In this study, SPIO nanoparticles were stabilized with amphiphilic low molecular weight polyethylenimine (PEI) in an aqueous phase to form monodispersed nanocomposites with a controlled clustering structure. The iron-based nanoclusters with a size of 115.3 ± 40.23 nm showed excellent performance on cellular uptake and cell labeling in different types of cells, moreover, which could be tracked by MRI with high sensitivity. The SPIO nanoclusters presented negligible cytotoxicity in various types of cells as detected using MTS, LDH, and flow cytometry assays. Significantly, we found that ferritin protein played an essential role in protecting stress from SPIO nanoclusters. Taken together, the self-assembly of SPIO nanoclusters with good magnetic properties provides a safe and efficient method for universal cell labeling with noninvasive MRI monitoring capability.

  7. Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles.

    PubMed

    Beer, Ambros J; Holzapfel, Konstantin; Neudorfer, Juliana; Piontek, Guido; Settles, Marcus; Krönig, Holger; Peschel, Christian; Schlegel, Jürgen; Rummeny, Ernst J; Bernhard, Helga

    2008-06-01

    New technologies are needed to characterize the migration and survival of antigen-specific T cells in vivo. In this study, we developed a novel technique for the labeling of human cytotoxic T lymphocytes with superparamagnetic iron-oxide particles and the subsequent depiction with a conventional 1.5-T magnetic resonance scanner. Antigen-specific CD8(+) T lymphocytes were labeled with ferucarbotran by lipofection. The uptake of ferucarbotran was confirmed by immunofluorescence microscopy using a dextran-specific antibody, and the intracellular enrichment of iron was measured by atomic absorption spectrometry. The imaging of T cells was performed by magnetic resonance on day 0, 2, 7 and 14 after the labeling procedure. On day 0 and 2 post labeling, a pronounced shortening of T2*-relaxation times was observed, which diminished after 7 days and was not detectable anymore after 14 days, probably due to the retained mitotic activity of the labeled T cells. Of importance, the antigen-specific cytolytic activity of the T cells was preserved following ferucarbotran labeling. Efficient ferucarbotran labeling of functionally active T lymphocytes and their detection by magnetic resonance imaging allows the in vivo monitoring of T cells and, subsequently, will impact the further development of T cell-based therapies. PMID:18286290

  8. Labeling pluripotent stem cell-derived neural progenitors with iron oxide particles for magnetic resonance imaging.

    PubMed

    Sart, Sébastien; Bejarano, Fabian Calixto; Yan, Yuanwei; Grant, Samuel C; Li, Yan

    2015-01-01

    Due to the unlimited proliferation capacity and the unique differentiation ability of pluripotent stem cells (PSCs), including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), large numbers of PSC-derived cell products are in demand for applications in drug screening, disease modeling, and especially cell therapy. In stem cell-based therapy, tracking transplanted cells with magnetic resonance imaging (MRI) has emerged as a powerful technique to reveal cell survival and distribution. This chapter illustrated the basic steps of labeling PSC-derived neural progenitors (NPs) with micron-sized particles of iron oxide (MPIO, 0.86 μm) for MRI analysis. The protocol described PSC expansion and differentiation into NPs, and the labeling of the derived cells either after replating on adherent surface or in suspension. The labeled cells can be analyzed using in vitro MRI analysis. The methods presented here can be easily adapted for cell labeling in cell processing facilities under current Good Manufacturing Practices (cGMP). The iron oxide-labeled NPs can be used for cellular monitoring of in vitro cultures and in vivo transplantation. PMID:25304204

  9. Labeling Stem Cells with Superparamagnetic Iron Oxide Nanoparticles: Analysis of the Labeling Efficacy by Microscopy and Magnetic Resonance Imaging

    PubMed Central

    Jasmin; Torres, Ana Luiza Machado; Jelicks, Linda; de Carvalho, Antonio Carlos Campos; Spray, David C.; Mendez-Otero, Rosalia

    2013-01-01

    Stem cell therapy has emerged as a potential therapeutic option for cell death-related heart diseases. Application of non-invasive cell tracking approaches is necessary to determine tissue distribution and lifetime of stem cells following their injection and will likely provide knowledge about poorly understood stem cells mechanisms of tissue repair. Magnetic resonance imaging (MRI) is a potentially excellent tool for high-resolution visualization of the fate of cells after transplantation and for evaluation of therapeutic strategies. The application of MRI for in vivo cell tracking requires contrast agents to achieve efficient cell labeling without causing any toxic cellular effects or eliciting any other side effects. For these reasons clinically approved contrast agents (e.g., ferumoxides) and incorporation facilitators (e.g., protamine) are currently the preferred materials for cell labeling and tracking. Here we describe how to use superparamag-netic iron oxide nanoparticles to label cells and to monitor cell fate in several disease models. PMID:22791437

  10. Superparamagnetic iron oxide nanoparticles for direct labeling of stem cells and in vivo MRI tracking.

    PubMed

    Kim, Saejeong J; Lewis, Bobbi; Steiner, Mark-Steven; Bissa, Ursula V; Dose, Christian; Frank, Joseph A

    2016-01-01

    To develop effective stem cell therapies, it is important to track therapeutic cells non-invasively and monitor homing to areas of pathology. The purpose of this study was to design and evaluate the labeling efficiency of commercially available dextran-coated superparamagnetic iron oxide nanoparticles, FeraTrack Direct (FTD), in various stem and immune cells; assess the cytotoxicity and tolerability of the FTD in stem cells; and monitor stem cell homing using FTD-labeled bone-marrow-derived mesenchymal stromal cells (BMSCs) and neural stem cells (NSCs) in a tumor model by in vivo MRI. BMSCs, NSCs, hematopoietic stem cells (HSCs), T-lymphocytes, and monocytes were labeled effectively with FTD without the need for transfection agents, and Prussian blue (PB) staining and transmission electron microscopy (TEM) confirmed intracellular uptake of the agent. The viability, proliferation, and functionality of the labeled cells were minimally or not affected after labeling. When 10(6) FTD-labeled BMSCs or NSCs were injected into C6 glioma bearing nude mice, the cells homing to the tumors were detected as hypointense regions within the tumor using 3 T clinical MRI up to 10 days post injection. Histological analysis confirmed the homing of injected cells to the tumor by the presence of PB positive cells that are not macrophages. Labeling of stem cells or immune cells with FTD was non-toxic, and should facilitate the translation of this agent to clinical trials for evaluation of trafficking of cells by MRI. PMID:26234504

  11. Magnetic Resonance Imaging of Soft Tissue Infection with Iron Oxide Labeled Granulocytes in a Rat Model

    PubMed Central

    Wedekind, Dirk; Meier, Martin; Bleich, André; Glage, Silke; Hedrich, Hans-Juergen; Kutschka, Ingo; Haverich, Axel

    2012-01-01

    Object We sought to detect an acute soft tissue infection in rats by magnetic resonance imaging (MRI) using granulocytes, previously labeled with superparamagnetic particles of iron oxide (SPIO). Materials and Methods Parasternal infection was induced by subcutaneous inoculation of Staphylococcus aureus suspension in rats. Granulocytes isolated from isogenic donor rats were labeled with SPIO. Infected rats were imaged by MRI before, 6 and 12 hours after intravenous injection of SPIO-labeled or unlabeled granulocytes. MR findings were correlated with histological analysis by Prussian blue staining and with re-isolated SPIO-labeled granulocytes from the infectious area by magnetic cell separation. Results Susceptibility effects were present in infected sites on post-contrast T2*-weighted MR images in all animals of the experimental group. Regions of decreased signal intensity (SI) in MRI were detected at 6 hours after granulocyte administration and were more pronounced at 12 hours. SPIO-labeled granulocytes were identified by Prussian blue staining in the infected tissue and could be successfully re-isolated from the infected area by magnetic cell separation. Conclusion The application of SPIO-labeled granulocytes in MRI offers new perspectives in diagnostic specificity and sensitifity to detect early infectious processes. PMID:23236524

  12. Compatibility of Superparamagnetic Iron Oxide Nanoparticle Labeling for 1H MRI Cell Tracking with 31P MRS for Bioenergetic Measurements

    PubMed Central

    Zhang, Zhuoli; Hancock, Brynne; Leen, Stephanie; Ramaswamy, Sharan; Sollott, Steven J.; Boheler, Kenneth R.; Juhaszova, Magdalena; Lakatta, Edward G.; Spencer, Richard G.; Fishbein, Kenneth W.

    2011-01-01

    Labeling of cells with superparamagnetic iron oxide nanoparticles permits cell tracking by 1H MRI while 31P MRS allows non-invasive evaluation of cellular bioenergetics. We evaluated the compatibility of these two techniques by obtaining 31P NMR spectra of iron-labeled and unlabeled immobilized C2C12 myoblast cells in vitro. Broadened but usable 31P spectra were obtained, and peak area ratios of resonances corresponding to intracellular metabolites showed no significant differences between labeled and unlabeled cell populations. We conclude that 31P NMR spectra can be obtained from cells labeled with sufficient iron to permit visualization by 1H imaging protocols and that these spectra have sufficient quality to be used in assessing metabolic status. This result introduces the possibility of using localized 31P MRS to evaluate the viability of iron-labeled therapeutic cells as well as surrounding host tissue in vivo. PMID:20853523

  13. In vivo monitoring of rat macrophages labeled with poly(l-lysine)-iron oxide nanoparticles.

    PubMed

    Babič, Michal; Schmiedtová, Martina; Poledne, Rudolf; Herynek, Vít; Horák, Daniel

    2015-08-01

    Coprecipitation of FeCl2 and FeCl3 with aqueous ammonia was used to prepare iron oxide nanoparticles dispersible in aqueous medium. Oxidation of the particles with sodium hypochlorite then yielded maghemite (γ-Fe2 O3 ) nanoparticles which were coated with two types of coating -d-mannose or poly(l-lysine) (PLL) as confirmed by FTIR analysis. The particles were <10 nm according to transmission electron microscopy. Their hydrodynamic particle size was ∼180 nm (by dynamic light scattering). The d-mannose-, PLL-coated, and neat γ-Fe2 O3 particles as well as commercial Resovist® were used to label rat macrophages. The viability and contrast properties of labeled macrophages were compared. PLL-coated γ-Fe2 O3 nanoparticles were found optimal. The labeled macrophages were injected to rats monitored in vivo by magnetic resonance imaging up to 48 h. Transport of macrophages labeled with PLL-γ-Fe2 O3 nanoparticles in rats was confirmed. Tracking of macrophages using the developed particles can be used for monitoring of inflammations and cell migration in cell therapy. PMID:25283523

  14. Functional investigations on embryonic stem cells labeled with clinically translatable iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Wang, Liqin; Cao, Jianbo; Huang, Yue; Lin, Yu; Wu, Xiaoyun; Wang, Zhiyong; Zhang, Fan; Xu, Xiuqin; Liu, Gang

    2014-07-01

    Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capacity of embryonic stem cells (ESCs) remains unclear. In this study, we wrapped SPIO nanoparticles with stearic acid grafted PEI600, termed as Stearic-LWPEI-SPIO, to generate efficient and non-toxic ESC labeling tools. Our results showed that efficient labeling of ESCs at an optimized low dosage of Stearic-LWPEI-SPIO nanoparticles did not alter the differentiation and self-renewal properties of ESCs. The localization of the transplanted ESCs observed by MRI correlated well with histological studies. These findings demonstrate that Stearic-LWPEI-SPIO nanoparticles have potential to be clinically translatable MRI probes and may enable non-invasive in vivo tracking of ESCs in experimental and clinical settings during cell-based therapies.Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capacity of embryonic stem cells (ESCs) remains unclear. In this study, we wrapped SPIO nanoparticles with stearic acid grafted PEI600, termed as Stearic-LWPEI-SPIO, to generate efficient and non-toxic ESC labeling tools. Our results showed that efficient labeling of ESCs at an optimized low dosage of Stearic-LWPEI-SPIO nanoparticles did not alter the differentiation and self-renewal properties of ESCs. The localization of the transplanted ESCs observed by MRI

  15. Self-Assembled Superparamagnetic Iron Oxide Nanoclusters for Universal Cell Labeling and MRI.

    PubMed

    Chen, Shuzhen; Zhang, Jun; Jiang, Shengwei; Lin, Gan; Luo, Bing; Yao, Huan; Lin, Yuchun; He, Chengyong; Liu, Gang; Lin, Zhongning

    2016-12-01

    Superparamagnetic iron oxide (SPIO) nanoparticles have been widely used in a variety of biomedical applications, especially as contrast agents for magnetic resonance imaging (MRI) and cell labeling. In this study, SPIO nanoparticles were stabilized with amphiphilic low molecular weight polyethylenimine (PEI) in an aqueous phase to form monodispersed nanocomposites with a controlled clustering structure. The iron-based nanoclusters with a size of 115.3 ± 40.23 nm showed excellent performance on cellular uptake and cell labeling in different types of cells, moreover, which could be tracked by MRI with high sensitivity. The SPIO nanoclusters presented negligible cytotoxicity in various types of cells as detected using MTS, LDH, and flow cytometry assays. Significantly, we found that ferritin protein played an essential role in protecting stress from SPIO nanoclusters. Taken together, the self-assembly of SPIO nanoclusters with good magnetic properties provides a safe and efficient method for universal cell labeling with noninvasive MRI monitoring capability. PMID:27216601

  16. Labeling of stem cells with monocrystalline iron oxide for tracking and localization by magnetic resonance imaging

    PubMed Central

    Calzi, Sergio Li; Kent, David L.; Chang, Kyung-Hee; Padgett, Kyle R.; Afzal, Aqeela; Chandra, Saurav B.; Caballero, Sergio; English, Denis; Garlington, Wendy; Hiscott, Paul S.; Sheridan, Carl M.; Grant, Maria B.; Forder, John R.

    2013-01-01

    Precise localization of exogenously delivered stem cells is critical to our understanding of their reparative response. Our current inability to determine the exact location of small numbers of cells may hinder optimal development of these cells for clinical use. We describe a method using magnetic resonance imaging to track and localize small numbers of stem cells following transplantation. Endothelial progenitor cells (EPC) were labeled with monocrystalline iron oxide nanoparticles (MIONs) which neither adversely altered their viability nor their ability to migrate in vitro and allowed successful detection of limited numbers of these cells in muscle. MION-labeled stem cells were also injected into the vitreous cavity of mice undergoing the model of choroidal neovascularization, laser rupture of Bruch’s membrane. Migration of the MION-labeled cells from the injection site towards the laser burns was visualized by MRI. In conclusion, MION labeling of EPC provides a non-invasive means to define the location of small numbers of these cells. Localization of these cells following injection is critical to their optimization for therapy. PMID:19345699

  17. Labeling of stem cells with monocrystalline iron oxide for tracking and localization by magnetic resonance imaging.

    PubMed

    Li Calzi, Sergio; Kent, David L; Chang, Kyung-Hee; Padgett, Kyle R; Afzal, Aqeela; Chandra, Saurav B; Caballero, Sergio; English, Denis; Garlington, Wendy; Hiscott, Paul S; Sheridan, Carl M; Grant, Maria B; Forder, John R

    2009-06-01

    Precise localization of exogenously delivered stem cells is critical to our understanding of their reparative response. Our current inability to determine the exact location of small numbers of cells may hinder optimal development of these cells for clinical use. We describe a method using magnetic resonance imaging to track and localize small numbers of stem cells following transplantation. Endothelial progenitor cells (EPC) were labeled with monocrystalline iron oxide nanoparticles (MIONs) which neither adversely altered their viability nor their ability to migrate in vitro and allowed successful detection of limited numbers of these cells in muscle. MION-labeled stem cells were also injected into the vitreous cavity of mice undergoing the model of choroidal neovascularization, laser rupture of Bruch's membrane. Migration of the MION-labeled cells from the injection site towards the laser burns was visualized by MRI. In conclusion, MION labeling of EPC provides a non-invasive means to define the location of small numbers of these cells. Localization of these cells following injection is critical to their optimization for therapy. PMID:19345699

  18. Magnetic separation of encapsulated islet cells labeled with superparamagnetic iron oxide nano particles.

    PubMed

    Mettler, Esther; Trenkler, Anja; Feilen, Peter J; Wiegand, Frederik; Fottner, Christian; Ehrhart, Friederike; Zimmermann, Heiko; Hwang, Yong Hwa; Lee, Dong Yun; Fischer, Stefan; Schreiber, Laura M; Weber, Matthias M

    2013-01-01

    Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran-coated SPION, siloxane-coated SPION, and heparin-coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 μg Fe/ml dextran-coated SPIONs experienced a 69.9% reduction in graft volume, with a 33.2% loss of islet-containing capsules. Islets labeled with 100 μg Fe/ml heparin-coated SPIONs showed a 46.4% reduction in graft volume, with a 4.5% loss of capsules containing islets. No purification could be achieved using siloxane-coated SPIONs due to its toxicity to the primary islets. SPION labeling of islets is useful for transplant purification during islet separation as well as in vivo imaging after transplantation. Furthermore, purification of encapsulated islets can also reduce the volume of the encapsulated islets without impairing their function by removing empty capsules. PMID:23789985

  19. The labeling of stem cells by superparamagnetic iron oxide nanoparticles modified with PEG/PVP or PEG/PEI.

    PubMed

    Yang, Gao; Ma, Weiqiong; Zhang, Baolin; Xie, Qi

    2016-05-01

    Poly(ethylene glycol) (PEG) and poly(vinyl pyrrolidone) (PVP) co-modified superparamagnetic iron oxide nanoparticles (SPIONs) (PEG/PVP-SPIONs), and PEG and poly(ethylene imine) (PEI) co-modified SPIONs (PEG/PEI-SPIONs) synthesized by thermal decomposition have been used as magnetic resonance imaging (MRI) contrast agents to label adipose-derived stem cells (ADSCs). Efficient cell labeling was achieved after incubation with PEG/PVP-SPIONs and PEG/PEI-SPIONs for 12h, and the MRI of labeled cells was evaluated. The cell viability tests showed the low cytotoxicity of PEG/PVP-SPIONs and PEG/PEI-SPIONs. The cellular iron content incubated with PEG/PVP-SPIONs at a concentration of 25 μg/ml was 6.96 pg/cell, the cellular iron contents incubated with PEG/PEI-SPIONs at concentrations of 12 and 25 μg/ml were 20.16, 35.4 pg/cell, respectively. The SPIONs were located predominantly in the intracellular vesicles. The cellular iron oxide uptake was significantly high after incubation with PEG/PEI-SPIONs as compared with the commercial iron oxide agents (Feridex, Feridex@PLL, Resovist and Resovist@PLL) reported. This work demonstrates that PEG/PEI-SPIONs are the competent agents for the labeling of ADSCs. PMID:26952437

  20. Superparamagnetic iron oxide is suitable to label tendon stem cells and track them in vivo with MR imaging

    PubMed Central

    Yang, Yunfa; Zhang, Jianying; Qian, Yongxian; Dong, Shiwu; Huang, He; Boada, Fernando E; Fu, Freddie H.; Wang, James H-C.

    2013-01-01

    Tendon stem cells (TSCs) may be used to effectively repair or regenerate injured tendons. However, the fates of TSCs once implanted in vivo remain unclear. This study was aimed to determine the feasibility of labeling TSCs with super-paramagnetic iron oxide (SPIO) nano-particles to track TSCs in vivo using MRI. Rabbit TSCs were labeled by incubation with 50 μg/ml SPIO. Labeling efficiency, cell viability, and proliferation were then measured, and the stemness of TSCs was tested by quantitative real time RT-PCR (qRT-PCR) and immunocytochemistry. We found that the labeling efficiency of TSCs reached as high as 98%, and that labeling at 50 μg/ml SPIO concentrations did not alter cell viability and cell proliferation compared to non-labeled control cells. Moreover, the expression levels of stem cell markers (Nucleostemin, Nanog, and Oct-4) did not change in SPIO-labeled TSCs compared to non-labeled cells. Both labeled and non-labeled cells also exhibited similar differentiation potential. Finally, labeled TSCs could be detected by MRI both in vitro and in vivo. Taken together, the findings of this study show that labeling TSCs with SPIO particles is a feasible approach to track TSCs in vivo by MRI, which offers a noninvasive method to monitor repair of injured tendons. PMID:23549900

  1. Magnetic resonance imaging of ultrasmall superparamagnetic iron oxide-labeled exosomes from stem cells: a new method to obtain labeled exosomes

    PubMed Central

    Busato, Alice; Bonafede, Roberta; Bontempi, Pietro; Scambi, Ilaria; Schiaffino, Lorenzo; Benati, Donatella; Malatesta, Manuela; Sbarbati, Andrea; Marzola, Pasquina; Mariotti, Raffaella

    2016-01-01

    Purpose Recent findings indicate that the beneficial effects of adipose stem cells (ASCs), reported in several neurodegenerative experimental models, could be due to their paracrine activity mediated by the release of exosomes. The aim of this study was the development and validation of an innovative exosome-labeling protocol that allows to visualize them with magnetic resonance imaging (MRI). Materials and methods At first, ASCs were labeled using ultrasmall superparamagnetic iron oxide nanoparticles (USPIO, 4–6 nm), and optimal parameters to label ASCs in terms of cell viability, labeling efficiency, iron content, and magnetic resonance (MR) image contrast were investigated. Exosomes were then isolated from labeled ASCs using a standard isolation protocol. The efficiency of exosome labeling was assessed by acquiring MR images in vitro and in vivo as well as by determining their iron content. Transmission electron microscopy images and histological analysis were performed to validate the results obtained. Results By using optimized experimental parameters for ASC labeling (200 µg Fe/mL of USPIO and 72 hours of incubation), it was possible to label 100% of the cells, while their viability remained comparable to unlabeled cells; the detection limit of MR images was of 102 and 2.5×103 ASCs in vitro and in vivo, respectively. Exosomes isolated from previously labeled ASCs retain nanoparticles, as demonstrated by transmission electron microscopy images. The detection limit by MRI was 3 µg and 5 µg of exosomes in vitro and in vivo, respectively. Conclusion We report a new approach for labeling of exosomes by USPIO that allows detection by MRI while preserving their morphology and physiological characteristics. PMID:27330291

  2. Effect of HSA coated iron oxide labeling on human umbilical cord derived mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Sanganeria, Purva; Chandra, Sudeshna; Bahadur, Dhirendra; Khanna, Aparna

    2015-03-01

    Human umbilical cord derived mesenchymal stem cells (hUC-MSCs) are known for self-renewal and differentiation into cells of various lineages like bone, cartilage and fat. They have been used in biomedical applications to treat degenerative disorders. However, to exploit the therapeutic potential of stem cells, there is a requirement of sensitive non-invasive imaging techniques which will offer the ability to track transplanted cells, bio-distribution, proliferation and differentiation. In this study, we have analyzed the efficacy of human serum albumin coated iron oxide nanoparticles (HSA-IONPs) on the differentiation of hUC-MSCs. The colloidal stability of the HSA-IONPs was tested over a long period of time (≥20 months) and the optimized concentration of HSA-IONPs for labeling the stem cells was 60 μg ml-1. Detailed in vitro assays have been performed to ascertain the effect of the nanoparticles (NPs) on stem cells. Lactate dehydrogenase (LDH) assay showed minimum release of LDH depicting the least disruptions in cellular membrane. At the same time, mitochondrial impairment of the cells was also not observed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry analysis revealed lesser generation of reactive oxygen species in HSA-IONPs labeled hUC-MSCs in comparison to bare and commercial IONPs. Transmission electron microscopy showed endocytic engulfment of the NPs by the hUC-MSCs. During the process, the gross morphologies of the actin cytoskeleton were found to be intact as shown by immunofluorescence microscopy. Also, the engulfment of the HSA-IONPs did not show any detrimental effect on the differentiation potential of the stem cells into adipocytes, osteocytes and chondrocytes, thereby confirming that the inherent properties of stem cells were maintained.

  3. DNA-length-dependent quenching of fluorescently labeled iron oxide nanoparticles with gold, graphene oxide and MoS2 nanostructures.

    PubMed

    Balcioglu, Mustafa; Rana, Muhit; Robertson, Neil; Yigit, Mehmet V

    2014-08-13

    We controlled the fluorescence emission of a fluorescently labeled iron oxide nanoparticle using three different nanomaterials with ultraefficient quenching capabilities. The control over the fluorescence emission was investigated via spacing introduced by the surface-functionalized single-stranded DNA molecules. DNA molecules were conjugated on different templates, either on the surface of the fluorescently labeled iron oxide nanoparticles or gold and nanographene oxide. The efficiency of the quenching was determined and compared with various fluorescently labeled iron oxide nanoparticle and nanoquencher combinations using DNA molecules with three different lengths. We have found that the template for DNA conjugation plays significant role on quenching the fluorescence emission of the fluorescently labeled iron oxide nanoparticles. We have observed that the size of the DNA controls the quenching efficiency when conjugated only on the fluorescently labeled iron oxide nanoparticles by setting a spacer between the surfaces and resulting change in the hydrodynamic size. The quenching efficiency with 12mer, 23mer and 36mer oligonucleotides decreased to 56%, 54% and 53% with gold nanoparticles, 58%, 38% and 32% with nanographene oxide, 46%, 38% and 35% with MoS2, respectively. On the other hand, the presence, not the size, of the DNA molecules on the other surfaces quenched the fluorescence significantly with different degrees. To understand the effect of the mobility of the DNA molecules on the nanoparticle surface, DNA molecules were attached to the surface with two different approaches. Covalently immobilized oligonucleotides decreased the quenching efficiency of nanographene oxide and gold nanoparticles to ∼22% and ∼21%, respectively, whereas noncovalently adsorbed oligonucleotides decreased it to ∼25% and ∼55%, respectively. As a result, we have found that each nanoquencher has a powerful quenching capability against a fluorescent nanoparticle, which can be

  4. Potential stem cell labeling ability of poly-L-lysine complexed to ultrasmall iron oxide contrast agent: An optimization and relaxometry study.

    PubMed

    Mishra, Sushanta Kumar; Khushu, Subash; Gangenahalli, Gurudutta

    2015-12-10

    For non-invasive stem cells tracking through MRI, it is important to understand the efficiency of in vitro labeling of stem cells with iron oxide with regard to its relaxation behavior. In this study, we have carried out a pilot study of labeling mice mesenchymal stem cells (mMSCs) with ultrasmall superparamagnetic iron oxide (USPIO) entrapped with poly-L-lysine (PLL) in different ratios and incubated with different times. Our results demonstrated that 50:1.5 µg/ml of iron oxide and PLL at an incubation time of 6h with 10% serum concentration are sufficient enough for effective labeling. Optimized labeling showed that >98% of viability and <3% toxicity were observed at a total iron content of 11.8 pg/cell. In vitro relaxometry study showed that almost a 6.6 fold reduction in transverse relaxation time (T2) was observed after labeling as compared to unlabeled. IO-PLL complex was more effective than iron oxide alone in labeling and a detectable lower limit found to be hundred with optimized concentration. Significant increase in Oct-4 expression on day-3 after labeling was observed, whereas CD146 expression remains unchanged in real time RT-PCR. This optimized labeling method of MSCs may be very useful for cellular MRI and stem cells tracking studies. PMID:26589263

  5. Labeling of islet cells with iron oxide nanoparticles through DNA hybridization for highly sensitive detection by MRI.

    PubMed

    Kitamura, Narufumi; Nakai, Ryusuke; Kohda, Haruyasu; Furuta-Okamoto, Keiko; Iwata, Hiroo

    2013-11-15

    A labeling method for islet cells with superparamagnetic iron oxide nanoparticles (SPIOs) based on DNA hybridization is proposed for monitoring of transplanted islets by magnetic resonance imaging (MRI). The surfaces of SPIOs were modified by via Michael reaction by reacting oligo-(deoxyadenylic acid)-bearing a terminal thiol group at the 5'-end ((dA)20-SH) with maleic acid functional groups on the SPIOs. The SPIOs were immobilized on islet cells which had been pretreated with oligo-(thymidylic acid)-poly(ethylene glycol)-phospholipid conjugates ((dT)20-PEG-DPPE) through DNA hybridization. Transmission electron microscopy observations revealed that SPIOs were initially anchored on the islet cell surfaces and subsequently transferred to endosomes or exfoliated with time. The SPIO-labeled islet cells could be clearly detected as dark spots by T2(*)-weighted MR image, whereas non-labeled islet cells could not be detected. PMID:24084295

  6. Combining Perfluorocarbon and Superparamagnetic Iron-oxide Cell Labeling for Improved and Expanded Applications of Cellular MRI

    PubMed Central

    Hitchens, T. Kevin; Liu, Li; Foley, Lesley M.; Simplaceanu, Virgil; Ahrens, Eric T.; Ho, Chien

    2014-01-01

    Purpose The ability to detect the migration of cells in living organisms is fundamental in understanding biological processes and important for the development of novel cell-based therapies to treat disease. MRI can be used to detect the migration of cells labeled with superparamagnetic iron-oxide (SPIO) or perfluorocarbon (PFC) agents. In this study, we explored combining these two cell-labeling approaches to overcome current limitations and enable new applications for cellular MRI. Methods We characterized 19F-NMR relaxation properties of PFC-labeled cells in the presence of SPIO and imaged cells both ex vivo and in vivo in a rodent inflammation model to demonstrate selective visualization of cell populations. Results We show that with UTE3D, RARE and FLASH 19F images one can uniquely identify PFC-labeled cells, co-localized PFC- and SPIO-labeled cells, and PFC/SPIO co-labeled cells. Conclusion This new methodology has the ability to improve and expand applications of MRI cell tracking. Combining PFC and SPIO strategies can potentially provide a method to quench PFC signal transferred from dead cells to macrophages, thereby eliminating false positives. In addition, combining these techniques could also be used to track two cell types simultaneously and probe cell-cell proximity in vivo with MRI. PMID:24478194

  7. In vivo MRI tracking of iron oxide nanoparticle-labeled human mesenchymal stem cells in limb ischemia

    PubMed Central

    Li, Xiang-Xiang; Li, Kang-An; Qin, Jin-Bao; Ye, Kai-Chuang; Yang, Xin-Rui; Li, Wei-Min; Xie, Qing-Song; Jiang, Mi-Er; Zhang, Gui-Xiang; Lu, Xin-Wu

    2013-01-01

    Background Stem cell transplantation has been investigated for repairing damaged tissues in various injury models. Monitoring the safety and fate of transplanted cells using noninvasive methods is important to advance this technique into clinical applications. Methods In this study, lower-limb ischemia models were generated in nude mice by femoral artery ligation. As negative-contrast agents, positively charged magnetic iron oxide nanoparticles (aminopropyltriethoxysilane-coated Fe2O3) were investigated in terms of in vitro labeling efficiency, effects on human mesenchymal stromal cell (hMSC) proliferation, and in vivo magnetic resonance imaging (MRI) visualization. Ultimately, the mice were sacrificed for histological analysis three weeks after transplantation. Results With efficient labeling, aminopropyltriethoxysilane-modified magnetic iron oxide nanoparticles (APTS-MNPs) did not significantly affect hMSC proliferation. In vivo, APTS-MNP-labeled hMSCs could be monitored by clinical 3 Tesla MRI for at least three weeks. Histological examination detected numerous migrated Prussian blue-positive cells, which was consistent with the magnetic resonance images. Some migrated Prussian blue-positive cells were positive for mature endothelial cell markers of von Willebrand factor and anti-human proliferating cell nuclear antigen. In the test groups, Prussian blue-positive nanoparticles, which could not be found in other organs, were detected in the spleen. Conclusion APTS-MNPs could efficiently label hMSCs, and clinical 3 Tesla MRI could monitor the labeled stem cells in vivo, which may provide a new approach for the in vivo monitoring of implanted cells. PMID:23515426

  8. Effect of Labeling with Iron Oxide Particles or Nanodiamonds on the Functionality of Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Blaber, Sinead P.; Hill, Cameron J.; Webster, Rebecca A.; Say, Jana M.; Brown, Louise J.; Wang, Shih-Chang; Vesey, Graham; Herbert, Benjamin Ross

    2013-01-01

    Stem cells are increasingly the focus of translational research as well as having emerging roles in human cellular therapy. To support these uses there is a need for improved methods for in vivo cell localization and tracking. In this study, we examined the effects of cell labeling on the in vitro functionality of human adipose-derived mesenchymal stem cells. Our results provide a basis for future in vivo studies investigating implanted cell fate and longevity. In particular, we investigated the effects of two different particles: micron-sized (∼0.9 µm) fluorescently labeled (Dragon Green) superparamagnetic iron oxide particles (M-SPIO particles); and, carboxylated nanodiamonds of ∼0.25 µm in size. The effects of labeling on the functionality of adipose-derived MSCs were assessed by in vitro morphology, osteogenic and adipogenic differentiation potential, CD marker expression, cytokine secretion profiling and quantitative proteomics of the intra-cellular proteome. The differentiation and CD marker assays for stem-like functionality were not altered upon label incorporation and no secreted or intra-cellular protein changes indicative of stress or toxicity were detected. These in vitro results indicate that the M-SPIO particles and nanodiamonds investigated in this study are biocompatible with MSCs and therefore would be suitable labels for cell localization and tracking in vivo. PMID:23301012

  9. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hai; Xie, Qiuping; Kang, Muxing; Zhang, Bo; Zhang, Hui; Chen, Jin; Zhai, Chuanxin; Yang, Deren; Jiang, Biao; Wu, Yulian

    2009-09-01

    Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a novel probe for noninvasive cell tracking with magnetic resonance imaging (MRI) and have potential wide usage in medical research. In this study, we have developed a method using high-temperature hydrolysis of chelate metal alkoxide complexes to synthesize polyvinylpyrrolidone coated iron oxide nanoparticles (PVP-SPIO), as a biocompatible magnetic agent that can efficiently label mice islet β-cells. The size, crystal structure and magnetic properties of the as-synthesized nanoparticles have been characterized. The newly synthesized PVP-SPIO with high stability, crystallinity and saturation magnetization can be efficiently internalized into β-cells, without affecting viability and function. The imaging of 100 PVP-SPIO-labeled mice islets in the syngeneic renal subcapsular model of transplantation under a clinical 3.0 T MR imager showed high spatial resolution in vivo. These results indicated the great potential application of the PVP-SPIO as an MRI contrast agent for monitoring transplanted islet grafts in the clinical management of diabetes in the near future.

  10. Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging

    PubMed Central

    2011-01-01

    Background Stem cell therapy has emerged as a promising addition to traditional treatments for a number of diseases. However, harnessing the therapeutic potential of stem cells requires an understanding of their fate in vivo. Non-invasive cell tracking can provide knowledge about mechanisms responsible for functional improvement of host tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used to label and visualize various cell types with magnetic resonance imaging (MRI). In this study we performed experiments designed to investigate the biological properties, including proliferation, viability and differentiation capacity of mesenchymal cells (MSCs) labeled with clinically approved SPIONs. Results Rat and mouse MSCs were isolated, cultured, and incubated with dextran-covered SPIONs (ferumoxide) alone or with poly-L-lysine (PLL) or protamine chlorhydrate for 4 or 24 hrs. Labeling efficiency was evaluated by dextran immunocytochemistry and MRI. Cell proliferation and viability were evaluated in vitro with Ki67 immunocytochemistry and live/dead assays. Ferumoxide-labeled MSCs could be induced to differentiate to adipocytes, osteocytes and chondrocytes. We analyzed ferumoxide retention in MSCs with or without mitomycin C pretreatment. Approximately 95% MSCs were labeled when incubated with ferumoxide for 4 or 24 hrs in the presence of PLL or protamine, whereas labeling of MSCs incubated with ferumoxide alone was poor. Proliferative capacity was maintained in MSCs incubated with ferumoxide and PLL for 4 hrs, however, after 24 hrs it was reduced. MSCs incubated with ferumoxide and protamine were efficiently visualized by MRI; they maintained proliferation and viability for up to 7 days and remained competent to differentiate. After 21 days MSCs pretreated with mitomycin C still showed a large number of ferumoxide-labeled cells. Conclusions The efficient and long lasting uptake and retention of SPIONs by MSCs using a protocol employing ferumoxide and

  11. In vivo Tracking of Mesenchymal Stem Cells Labeled with a Novel Chitosan-coated Superparamagnetic Iron Oxide Nanoparticles using 3.0T MRI

    PubMed Central

    Reddy, Alavala Matta; Shim, Hyung Jin; Ahn, Chiyoung; Lee, Hyo Sook; Suh, Yong Jae; Park, Eon Sub

    2010-01-01

    This study aimed to characterize and MRI track the mesenchymal stem cells labeled with chitosan-coated superparamagnetic iron oxide (Chitosan-SPIO). Chitosan-SPIO was synthesized from a mixture of FeCl2 and FeCl3. The human bone marrow derived mesenchymal stem cells (hBM-MSC) were labeled with 50 µg Fe/mL chitosan-SPIO and Resovist. The labeling efficiency was assessed by iron content, Prussian blue staining, electron microscopy and in vitro MR imaging. The labeled cells were also analyzed for cytotoxicity, phenotype and differentiation potential. Electron microscopic observations and Prussian blue staining revealed 100% of cells were labeled with iron particles. MR imaging was able to detect the labeled MSC successfully. Chitosan-SPIO did not show any cytotoxicity up to 200 µg Fe/mL concentration. The labeled stem cells did not exhibit any significant alterations in the surface markers expression or adipo/osteo/chondrogenic differentiation potential when compared to unlabeled control cells. After contralateral injection into rabbit ischemic brain, the iron labeled stem cells were tracked by periodical in vivo MR images. The migration of cells was also confirmed by histological studies. The novel chitosan-SPIO enables to label and track MSC for in vivo MRI without cellular alteration. PMID:20119572

  12. Superparamagnetic Iron Oxide Nanoparticles as MRI contrast agents for Non-invasive Stem Cell Labeling and Tracking

    PubMed Central

    Li, Li; Jiang, Wen; Luo, Kui; Song, Hongmei; Lan, Fang; Wu, Yao; Gu, Zhongwei

    2013-01-01

    Stem cells hold great promise for the treatment of multiple human diseases and disorders. Tracking and monitoring of stem cells in vivo after transplantation can supply important information for determining the efficacy of stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be the most effective and safest non-invasive technique for stem cell tracking in living bodies. Commercial superparamagnetic iron oxide nanoparticles (SPIONs) in the aid of transfection agents (TAs) have been applied to labeling stem cells. However, owing to the potential toxicity of TAs, more attentions have been paid to develop novel SPIONs with specific surface coating or functional moieties which facilitate effective cell internalization in the absence of TAs. This review aims to summarize the recent progress in the design and preparation of SPIONs as cellular MRI probes, to discuss their applications and current problems facing in stem cell labeling and tracking, and to offer perspectives and solutions for the future development of SPIONs in this field. PMID:23946825

  13. Dose Dependent Side Effect of Superparamagnetic Iron Oxide Nanoparticle Labeling on Cell Motility in Two Fetal Stem Cell Populations

    PubMed Central

    Diana, Valentina; Bossolasco, Patrizia; Moscatelli, Davide; Silani, Vincenzo; Cova, Lidia

    2013-01-01

    Multipotent stem cells (SCs) could substitute damaged cells and also rescue degeneration through the secretion of trophic factors able to activate the endogenous SC compartment. Therefore, fetal SCs, characterized by high proliferation rate and devoid of ethical concern, appear promising candidate, particularly for the treatment of neurodegenerative diseases. Super Paramagnetic Iron Oxide nanoparticles (SPIOn), routinely used for pre-clinical cell imaging and already approved for clinical practice, allow tracking of transplanted SCs and characterization of their fate within the host tissue, when combined with Magnetic Resonance Imaging (MRI). In this work we investigated how SPIOn could influence cell migration after internalization in two fetal SC populations: human amniotic fluid and chorial villi SCs were labeled with SPIOn and their motility was evaluated. We found that SPIOn loading significantly reduced SC movements without increasing production of Reactive Oxygen Species (ROS). Moreover, motility impairment was directly proportional to the amount of loaded SPIOn while a chemoattractant-induced recovery was obtained by increasing serum levels. Interestingly, the migration rate of SPIOn labeled cells was also significantly influenced by a degenerative surrounding. In conclusion, this work highlights how SPIOn labeling affects SC motility in vitro in a dose-dependent manner, shedding the light on an important parameter for the creation of clinical protocols. Establishment of an optimal SPIOn dose that enables both a good visualization of grafted cells by MRI and the physiological migration rate is a main step in order to maximize the effects of SC therapy in both animal models of neurodegeneration and clinical studies. PMID:24244310

  14. Monitoring the effects of dexamethasone treatment by MRI using in vivo iron oxide nanoparticle-labeled macrophages

    PubMed Central

    2014-01-01

    Introduction Rheumatoid arthritis (RA) is a chronic disease causing recurring inflammatory joint attacks. These attacks are characterized by macrophage infiltration contributing to joint destruction. Studies have shown that RA treatment efficacy is correlated to synovial macrophage number. The aim of this study was to experimentally validate the use of in vivo superparamagnetic iron oxide nanoparticle (SPION) labeled macrophages to evaluate RA treatment by MRI. Methods The evolution of macrophages was monitored with and without dexamethasone (Dexa) treatment in rats. Two doses of 3 and 1 mg/kg Dexa were administered two and five days following induction of antigen induced arthritis. SPIONs (7 mg Fe/rat) were injected intravenously and the knees were imaged in vivo on days 6, 10 and 13. The MR images were scored for three parameters: SPION signal intensity, SPION distribution pattern and synovial oedema. Using 3D semi-automated software, the MR SPION signal was quantified. The efficacy of SPIONs and gadolinium chelate (Gd), an MR contrast agent, in illustrating treatment effects were compared. Those results were confirmed through histological measurements of number and area of macrophages and nanoparticle clusters using CD68 immunostaining and Prussian blue staining respectively. Results Results show that the pattern and the intensity of SPION-labeled macrophages on MRI were altered by Dexa treatment. While the Dexa group had a uniform elliptical line surrounding an oedema pocket, the untreated group showed a diffused SPION distribution on day 6 post-induction. Dexa reduced the intensity of SPION signal 50-60% on days 10 and 13 compared to controls (P = 0.00008 and 0.002 respectively). Similar results were found when the signal was measured by the 3D tool. On day 13, the persisting low grade arthritis progression could not be demonstrated by Gd. Analysis of knee samples by Prussian blue and CD68 immunostaining confirmed in vivo SPION uptake by macrophages

  15. [Effects of superparamagnetic iron-oxide particles-labeling on the multi-diffentiation of rabbit marrow mesenchymal stem cell in vitro].

    PubMed

    Jin, Xuhong; Yang, Liu; Zhang, Shou; Dun, Xiaojun; Wang, Fuyou; Tan, Hongbo

    2012-02-01

    The aim of this study was to label rabbit bone derived mesenchymal stem cells (BMSCs) with superparamagnetic iron oxide particles (SPIO) and to study the effects of magnetic labeling on the multi-differentiation of BMSCs. Rabbit BMSCs were isolated, purified, expanded, then coincubated with SPIO(25 microg/ml) complexed to protamine sulfate (Pro) transfection agents overnight. Prussian blue staining and transmission electron microscopy were performed to show intracellular iron. Cell differentiation was evaluated. Both labeled and unlabeled BMSCs were subjected to osteogenic, adipogenic and chondrogenic differentiation to assess their differentiation capacity for 21 d. Osteogenic cells were stained with alizarin red to reveal calcium deposition, adipogenic cells were stained with oil redO' respectively. Chondrogenic cells stained with Safranin-O, glycosamino glycans, and type II collagen production was assessed by standard immunohistochemistry. Cell with immunohistochemistry staining were detected by polarized light microscopy and analysed by Image-Pro Plus software. The results showed that intracytoplasmic nanoparticles were stained with Prussian blue and observed by transmission electron microscopy clearly except the unlabeled control. As compared with the nonlabeled cells, it showed no statistically significant difference on the differentiation of the labeled BMSCs. And the differentiation of the labeled cells were unaffected by the endosomal incorporation of SPIO. In summary, BMSCs can be labeled with SPIO without significant change in cell multi-differentiation capacity. PMID:22404022

  16. Bcl-2-functionalized ultrasmall superparamagnetic iron oxide nanoparticles coated with amphiphilic polymer enhance the labeling efficiency of islets for detection by magnetic resonance imaging

    PubMed Central

    Yang, Bin; Cai, Haolei; Qin, Wenjie; Zhang, Bo; Zhai, Chuanxin; Jiang, Biao; Wu, Yulian

    2013-01-01

    Based on their versatile, biocompatible properties, superparamagnetic iron oxide (SPIO) or ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are utilized for detecting and tracing cells or tumors in vivo. Here, we developed an innoxious and concise synthesis approach for a novel B-cell lymphoma (Bcl)-2 monoclonal antibody-functionalized USPIO nanoparticle coated with an amphiphilic polymer (carboxylated polyethylene glycol monooleyl ether [OE-PEG-COOH]). These nanoparticles can be effectively internalized by beta cells and label primary islet cells, at relatively low iron concentration. The biocompatibility and cytotoxicity of these products were investigated by comparison with the commercial USPIO product, FeraSpin™ S. We also assessed the safe dosage range of the product. Although some cases showed a hypointensity change at the site of transplant, a strong magnetic resonance imaging (MRI) was detectable by a clinical MRI scanner, at field strength of 3.0 Tesla, in vivo, and the iron deposition/attached in islets was confirmed by Prussian blue and immunohistochemistry staining. It is noteworthy that based on our synthesis approach, in future, we could exchange the Bcl-2 with other probes that would be more specific for the targeted cells and that would have better labeling specificity in vivo. The combined results point to the promising potential of the novel Bcl-2-functionalized PEG-USPIO as a molecular imaging agent for in vivo monitoring of islet cells or other cells. PMID:24204136

  17. Human neural progenitor cells retain viability, phenotype, proliferation, and lineage differentiation when labeled with a novel iron oxide nanoparticle, Molday ION Rhodamine B.

    PubMed

    Shen, Wei-Bin; Plachez, Celine; Chan, Amanda; Yarnell, Deborah; Puche, Adam C; Fishman, Paul S; Yarowsky, Paul

    2013-01-01

    Ultrasmall superparamagnetic iron-oxide particles (USPIOs) loaded into stem cells have been suggested as a way to track stem cell transplantation with magnetic resonance imaging, but the labeling, and post-labeling proliferation, viability, differentiation, and retention of USPIOs within the stem cells have yet to be determined for each type of stem cell and for each type of USPIO. Molday ION Rhodamine B™ (BioPAL, Worcester, MA, USA) (MIRB) has been shown to be a USPIO labeling agent for mesenchymal stem cells, glial progenitor cells, and stem cell lines. In this study, we have evaluated MIRB labeling in human neuroprogenitor cells and found that human neuroprogenitor cells are effectively labeled with MIRB without use of transfection reagents. Viability, proliferation, and differentiation properties are unchanged between MIRB-labeled neuroprogenitors cells and unlabeled cells. Moreover, MIRB-labeled human neuroprogenitor cells can be frozen, thawed, and replated without loss of MIRB or even without loss of their intrinsic biology. Overall, those results show that MIRB has advantageous properties that can be used for cell-based therapy. PMID:24348036

  18. Superparamagnetic iron oxide labeling limits the efficacy of rabbit immature dendritic cell vaccination by decreasing their antigen uptake ability in a lysosome-dependent manner.

    PubMed

    Zhang, Min; Zhou, Jing; Wang, Jingchun; Zhou, Quan; Fang, Jin; Zhou, Chengqian; Chen, WenLi

    2015-02-01

    Immature dendritic cells (iDCs) are for cell transplantation; however, no method has yet been developed for in vivo monitoring the transplanted iDCs. We have explored the feasibility of using superparamagnetic iron oxide (SPIO) labeling and magnetic resonance imaging for in vivo tracking of transplanted iDCs and determined the effects of SPIO labeling on iDC vaccination. With up to 50 μg Fe/ml, SPIO effectively labeled the iDCs without affecting their growth. At or above 100 μg Fe/ml, SPIO caused considerable damage to iDCs. SPIO labeling resulted in autophagosome formation and decreased the uptake of oxidized low density lipoprotein (ox-LDL), an exogenous antigen, by iDCs. SPIO and ox-LDL both localized to the lysosomes, and this competition for lysosomes could be partially responsible for the decreased ox-LDL phagocytic capacity of iDCs due to SPIO labeling. PMID:25257596

  19. Magnetic Particle Spectroscopy Reveals Dynamic Changes in the Magnetic Behavior of Very Small Superparamagnetic Iron Oxide Nanoparticles During Cellular Uptake and Enables Determination of Cell-Labeling Efficacy.

    PubMed

    Poller, Wolfram C; Löwa, Norbert; Wiekhorst, Frank; Taupitz, Matthias; Wagner, Susanne; Möller, Konstantin; Baumann, Gert; Stangl, Verena; Trahms, Lutz; Ludwig, Antje

    2016-02-01

    In vivo tracking of nanoparticle-labeled cells by magnetic resonance imaging (MRI) crucially depends on accurate determination of cell-labeling efficacy prior to transplantation. Here, we analyzed the feasibility and accuracy of magnetic particle spectroscopy (MPS) for estimation of cell-labeling efficacy in living THP-1 cells incubated with very small superparamagnetic iron oxide nanoparticles (VSOP). Cell viability and proliferation capacity were not affected by the MPS measurement procedure. In VSOP samples without cell contact, MPS enabled highly accurate quantification. In contrast, MPS constantly overestimated the amount of cell associated and internalized VSOP. Analyses of the MPS spectrum shape expressed as harmonic ratio A₅/A₃ revealed distinct changes in the magnetic behavior of VSOP in response to cellular uptake. These changes were proportional to the deviation between MPS and actual iron amount, therefore allowing for adjusted iron quantification. Transmission electron microscopy provided visual evidence that changes in the magnetic properties correlated with cell surface interaction of VSOP as well as with alterations of particle structure and arrangement during the phagocytic process. Altogether, A₅/A₃-adjusted MPS enables highly accurate, cell-preserving VSOP quantification and furthermore provides information on the magnetic characteristics of internalized VSOP. PMID:27305767

  20. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells

    NASA Astrophysics Data System (ADS)

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  1. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells

    PubMed Central

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo. PMID:26728448

  2. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells.

    PubMed

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo. PMID:26728448

  3. Impacts of fluorescent superparamagnetic iron oxide (SPIO)-labeled materials on biological characteristics and osteogenesis of bone marrow mesenchymal stem cells (BMSCs)

    PubMed Central

    Zhang, Guangping; Na, Zhenwen; Ren, Bin; Zhao, Xin; Liu, Weixian

    2015-01-01

    The aim of this study was to investigate the impacts of fluorescent superparamagnetic iron oxide particles (Molday ION Rhodamine B, MIRB) on bioactivities and osteogenetic differentiation of rat bone marrow mesenchymal stem cells (BMSCs). The Cell Counting Kit-8 (CCK-8) method was used to detect the proliferation of superparamagnetic iron oxide (SPIO)-labeled BMSCs and observed the distribution of MIRB in cells; real time -polymerase chain reaction (RT-PCR) method was used to analyze the expressions of such osteogenesis-related genes as bone sialoprotein, alkaline phosphatase (ALP), RUNX2, bonemorphogeneticprotein-2 (BMP-2), type 1 collagen (COL-1) and type 3 collagen (COL-3); ALP-Alizarin red staining and poly-biochemical analyzer were used to qualitatively and quantitatively analyze the osteogenetic metabolites. The labeled MIRB particles distributed in the cytoplasm of BMSCs, the diameter of larger particles could be up to several hundred nanometers, and concentrated around the nuclei, the particles far away from the nuclei were smaller, but the labeled-cells’ skeletons and adherent morphology did not change significantly; under the concentration of 25 μg Fe/mL of, MIRB did not affect cellular viabilities of BMSCs, but the gene expressions of bone sialoprotein, ALP, RUNX2 and BMP-2 were decreased, and the secretion amount of ALP and osteocalcin were also declined. MIRB would not affect the proliferation and cell structures of BMSCs, but the SPIO particles aggregated and formed larger granules around the nuclei, which might affect the osteogenesis of BMSCs. PMID:26550127

  4. Impacts of fluorescent superparamagnetic iron oxide (SPIO)-labeled materials on biological characteristics and osteogenesis of bone marrow mesenchymal stem cells (BMSCs).

    PubMed

    Zhang, Guangping; Na, Zhenwen; Ren, Bin; Zhao, Xin; Liu, Weixian

    2015-01-01

    The aim of this study was to investigate the impacts of fluorescent superparamagnetic iron oxide particles (Molday ION Rhodamine B, MIRB) on bioactivities and osteogenetic differentiation of rat bone marrow mesenchymal stem cells (BMSCs). The Cell Counting Kit-8 (CCK-8) method was used to detect the proliferation of superparamagnetic iron oxide (SPIO)-labeled BMSCs and observed the distribution of MIRB in cells; real time -polymerase chain reaction (RT-PCR) method was used to analyze the expressions of such osteogenesis-related genes as bone sialoprotein, alkaline phosphatase (ALP), RUNX2, bonemorphogeneticprotein-2 (BMP-2), type 1 collagen (COL-1) and type 3 collagen (COL-3); ALP-Alizarin red staining and poly-biochemical analyzer were used to qualitatively and quantitatively analyze the osteogenetic metabolites. The labeled MIRB particles distributed in the cytoplasm of BMSCs, the diameter of larger particles could be up to several hundred nanometers, and concentrated around the nuclei, the particles far away from the nuclei were smaller, but the labeled-cells' skeletons and adherent morphology did not change significantly; under the concentration of 25 μg Fe/mL of, MIRB did not affect cellular viabilities of BMSCs, but the gene expressions of bone sialoprotein, ALP, RUNX2 and BMP-2 were decreased, and the secretion amount of ALP and osteocalcin were also declined. MIRB would not affect the proliferation and cell structures of BMSCs, but the SPIO particles aggregated and formed larger granules around the nuclei, which might affect the osteogenesis of BMSCs. PMID:26550127

  5. Viability, Differentiation Capacity, and Detectability of Super-Paramagnetic Iron Oxide-Labeled Muscle Precursor Cells for Magnetic-Resonance Imaging

    PubMed Central

    Azzabi, Fahd; Rottmar, Markus; Jovaisaite, Virginija; Rudin, Markus; Sulser, Tullio; Boss, Andreas

    2015-01-01

    Cell therapies are a promising approach for the treatment of a variety of human conditions including stress urinary incontinence, but their success greatly depends on the biodistribution, migration, survival, and differentiation of the transplanted cells. Noninvasive in vivo cell tracking therefore presents an important aspect for translation of such a procedure into the clinics. Upon labeling with superparamagnetic iron oxide (SPIO) nanoparticles, cells can be tracked by magnetic resonance imaging (MRI), but possible adverse effect of the labeling have to be considered when labeling stem cells with SPIOs. In this study, human muscle precursor cells (hMPC) were labeled with increasing concentrations of SPIO nanoparticles (100–1600 μg/mL) and cell viability and differentiation capacity upon labeling was assessed in vitro. While a linear dependence between cell viability and nanoparticle concentration could be observed, differentiation capacity was not affected by the presence of SPIOs. Using a nude mouse model, a concentration (400 μg/mL) could be defined that allows reliable detection of hMPCs by MRI but does not influence myogenic in vivo differentiation to mature and functional muscle tissue. This suggests that such an approach can be safely used in a clinical setting to track muscle regeneration in patients undergoing cell therapy without negative effects on the functionality of the bioengineered muscle. PMID:24988198

  6. Umbilical cord mesenchymal stem cells labeled with multimodal iron oxide nanoparticles with fluorescent and magnetic properties: application for in vivo cell tracking

    PubMed Central

    Sibov, Tatiana T; Pavon, Lorena F; Miyaki, Liza A; Mamani, Javier B; Nucci, Leopoldo P; Alvarim, Larissa T; Silveira, Paulo H; Marti, Luciana C; Gamarra, LF

    2014-01-01

    Here we describe multimodal iron oxide nanoparticles conjugated to Rhodamine-B (MION-Rh), their stability in culture medium, and subsequent validation of an in vitro protocol to label mesenchymal stem cells from umbilical cord blood (UC-MSC) with MION-Rh. These cells showed robust labeling in vitro without impairment of their functional properties, the viability of which were evaluated by proliferation kinetic and ultrastructural analyzes. Thus, labeled cells were infused into striatum of adult male rats of animal model that mimic late onset of Parkinson’s disease and, after 15 days, it was observed that cells migrated along the medial forebrain bundle to the substantia nigra as hypointense spots in T2 magnetic resonance imaging. These data were supported by short-term magnetic resonance imaging. Studies were performed in vivo, which showed that about 5 × 105 cells could be efficiently detected in the short term following infusion. Our results indicate that these labeled cells can be efficiently tracked in a neurodegenerative disease model. PMID:24531365

  7. Targeted transplantation of iron oxide-labeled, adipose-derived mesenchymal stem cells in promoting meniscus regeneration following a rabbit massive meniscal defect

    PubMed Central

    QI, YIYING; YANG, ZHIGAO; DING, QIANHAI; ZHAO, TENGFEI; HUANG, ZHONGMING; FENG, GANG

    2016-01-01

    Repair of a massive meniscal defect remains a challenge in the clinic. However, targeted magnetic cell delivery, an emerging technique, may be useful in its treatment. The present study aimed to determine the effect of targeted intra-articular injection of superparamagnetic iron oxide (SPIO)-labeled adipose-derived mesenchymal stem cells (ASCs) in a rabbit model of a massive meniscal defect. ASCs may be directly labeled and almost 100% of the ASCs were labeled with SPIO after 24 h; these SPIO-labeled ASCs may be orientated by magnet. The centrifuged SPIO-labeled ASCs precipitations may be detected by magnetic resonance imaging (MRI). The anterior half of the medial meniscus of 18 New Zealand Rabbits was excised. After 7 days, the rabbits were randomized to injections of 2×106 SPIO-labeled ASCs, 2×106 unlabeled ASCs or saline. Permanent magnets were fixed to the outside of the operated joints for one day, and after 6 and 12 weeks, the knee joints were examined using MRI, gross and histological observation, and Prussian blue staining. Marked hypointense artifacts caused by SPIO-positive cells in the meniscus were detected using MRI. Histological observation revealed that the anterior portion of the meniscus was similar to the native tissue, demonstrating typical fibrochondrocytes surrounded by richer extracellular matrix in the SPIO-ASCs group. Collagen-rich matrix bridging the interface and the neo-meniscus integrated well with its host meniscus. Furthermore, degenerative changes occurred in all groups, but intra-articular injection of SPIO-ASCs or ASCs alleviated these degenerative changes. Prussian blue staining indicated that the implanted ASCs were directly associated with the regenerated tissue. Overall, targeted intra-articular delivery of SPIO-ASCs promoted meniscal regeneration whilst providing protective effects from osteoarthritic damage. PMID:26893631

  8. In Vivo Molecular MRI Imaging of Prostate Cancer by Targeting PSMA with Polypeptide-Labeled Superparamagnetic Iron Oxide Nanoparticles

    PubMed Central

    Zhu, Yunkai; Sun, Ying; Chen, Yaqing; Liu, Weiyong; Jiang, Jun; Guan, Wenbin; Zhang, Zhongyang; Duan, Yourong

    2015-01-01

    The prostate specific membrane antigen (PSMA) is broadly overexpressed on prostate cancer (PCa) cell surfaces. In this study, we report the synthesis, characterization, in vitro binding assay, and in vivo magnetic resonance imaging (MRI) evaluation of PSMA targeting superparamagnetic iron oxide nanoparticles (SPIONs). PSMA-targeting polypeptide CQKHHNYLC was conjugated to SPIONs to form PSMA-targeting molecular MRI contrast agents. In vitro studies demonstrated specific uptake of polypeptide-SPIONs by PSMA expressing cells. In vivo MRI studies found that MRI signals in PSMA-expressing tumors could be specifically enhanced with polypeptide-SPION, and further Prussian blue staining showed heterogeneous deposition of SPIONs in the tumor tissues. Taken altogether, we have developed PSMA-targeting polypeptide-SPIONs that could specifically enhance MRI signal in tumor-bearing mice, which might provide a new strategy for the molecular imaging of PCa. PMID:25927579

  9. In Vivo Molecular MRI Imaging of Prostate Cancer by Targeting PSMA with Polypeptide-Labeled Superparamagnetic Iron Oxide Nanoparticles.

    PubMed

    Zhu, Yunkai; Sun, Ying; Chen, Yaqing; Liu, Weiyong; Jiang, Jun; Guan, Wenbin; Zhang, Zhongyang; Duan, Yourong

    2015-01-01

    The prostate specific membrane antigen (PSMA) is broadly overexpressed on prostate cancer (PCa) cell surfaces. In this study, we report the synthesis, characterization, in vitro binding assay, and in vivo magnetic resonance imaging (MRI) evaluation of PSMA targeting superparamagnetic iron oxide nanoparticles (SPIONs). PSMA-targeting polypeptide CQKHHNYLC was conjugated to SPIONs to form PSMA-targeting molecular MRI contrast agents. In vitro studies demonstrated specific uptake of polypeptide-SPIONs by PSMA expressing cells. In vivo MRI studies found that MRI signals in PSMA-expressing tumors could be specifically enhanced with polypeptide-SPION, and further Prussian blue staining showed heterogeneous deposition of SPIONs in the tumor tissues. Taken altogether, we have developed PSMA-targeting polypeptide-SPIONs that could specifically enhance MRI signal in tumor-bearing mice, which might provide a new strategy for the molecular imaging of PCa. PMID:25927579

  10. Dose-Response of Superparamagnetic Iron Oxide Labeling on Mesenchymal Stem Cells Chondrogenic Differentiation: A Multi-Scale In Vitro Study

    PubMed Central

    Goebel, Jean Christophe; Gambier, Nicolas; Beuf, Olivier; Grenier, Denis; Chen, Bailiang; Vuissoz, Pierre-André; Gillet, Pierre; Pinzano, Astrid

    2014-01-01

    Aim The aim of this work was the development of successful cell therapy techniques for cartilage engineering. This will depend on the ability to monitor non-invasively transplanted cells, especially mesenchymal stem cells (MSCs) that are promising candidates to regenerate damaged tissues. Methods MSCs were labeled with superparamagnetic iron oxide particles (SPIO). We examined the effects of long-term labeling, possible toxicological consequences and the possible influence of progressive concentrations of SPIO on chondrogenic differentiation capacity. Results No influence of various SPIO concentrations was noted on human bone marow MSC viability or proliferation. We demonstrated long-term (4 weeks) in vitro retention of SPIO by human bone marrow MSCs seeded in collagenic sponges under TGF-β1 chondrogenic conditions, detectable by Magnetic Resonance Imaging (MRI) and histology. Chondrogenic differentiation was demonstrated by molecular and histological analysis of labeled and unlabeled cells. Chondrogenic gene expression (COL2A2, ACAN, SOX9, COL10, COMP) was significantly altered in a dose-dependent manner in labeled cells, as were GAG and type II collagen staining. As expected, SPIO induced a dramatic decrease of MRI T2 values of sponges at 7T and 3T, even at low concentrations. Conclusions This study clearly demonstrates (1) long-term in vitro MSC traceability using SPIO and MRI and (2) a deleterious dose-dependence of SPIO on TGF-β1 driven chondrogenesis in collagen sponges. Low concentrations (12.5–25 µg Fe/mL) seem the best compromise to optimize both chondrogenesis and MRI labeling. PMID:24878844

  11. Effect of external magnetic field on IV 99mTc-labeled aminosilane-coated iron oxide nanoparticles: demonstration in a rat model: special report.

    PubMed

    Liberatore, Mauro; Barteri, Mario; Megna, Valentina; D'Elia, Piera; Rebonato, Stefania; Latini, Augusto; De Angelis, Francesca; Scaramuzzo, Francesca Anna; De Stefano, Maria Egle; Guadagno, Noemi Antonella; Chondrogiannis, Sotirios; Maffione, Anna Margherita; Rubello, Domenico; Pala, Alessandro; Colletti, Patrick M

    2015-02-01

    Among the most interesting applications of ferromagnetic nanoparticles (NPs) in medicine is the potential for localizing pharmacologically or radioactively tagged agents directly to selected tissues selected by an adjustable external magnetic field. This concept is demonstrated by the application external magnetic field on IV Tc-labeled aminosilane-coated iron oxide NPs in a rat model. In a model comparing a rat with a 0.3-T magnet over a hind paw versus a rat without a magnet, a static acquisition at 45 minutes showed that 27% of the administered radioactivity was in the area subtended by the magnet, whereas the liver displays a percentage of binding of 14% in the presence of the magnet and of 16% in the absence of an external magnetic field. These preliminary results suggest that the application of an external magnetic field may be a viable route for the development of methods for the confinement of magnetic NPs labeled with radioactive isotopes targeted for predetermined sites of the body. PMID:25551623

  12. Longitudinal Tracking of Human Fetal Cells Labeled with Super Paramagnetic Iron Oxide Nanoparticles in the Brain of Mice with Motor Neuron Disease

    PubMed Central

    Bigini, Paolo; Diana, Valentina; Barbera, Sara; Fumagalli, Elena; Micotti, Edoardo; Sitia, Leopoldo; Paladini, Alessandra; Bisighini, Cinzia; De Grada, Laura; Coloca, Laura; Colombo, Laura; Manca, Pina; Bossolasco, Patrizia; Malvestiti, Francesca; Fiordaliso, Fabio; Forloni, Gianluigi; Morbidelli, Massimo; Salmona, Mario; Giardino, Daniela; Mennini, Tiziana; Moscatelli, Davide; Silani, Vincenzo; Cova, Lidia

    2012-01-01

    Stem Cell (SC) therapy is one of the most promising approaches for the treatment of Amyotrophic Lateral Sclerosis (ALS). Here we employed Super Paramagnetic Iron Oxide nanoparticles (SPIOn) and Hoechst 33258 to track human Amniotic Fluid Cells (hAFCs) after transplantation in the lateral ventricles of wobbler (a murine model of ALS) and healthy mice. By in vitro, in vivo and ex vivo approaches we found that: 1) the main physical parameters of SPIOn were maintained over time; 2) hAFCs efficiently internalized SPIOn into the cytoplasm while Hoechst 33258 labeled nuclei; 3) SPIOn internalization did not alter survival, cell cycle, proliferation, metabolism and phenotype of hAFCs; 4) after transplantation hAFCs rapidly spread to the whole ventricular system, but did not migrate into the brain parenchyma; 5) hAFCs survived for a long time in the ventricles of both wobbler and healthy mice; 6) the transplantation of double-labeled hAFCs did not influence mice survival. PMID:22384217

  13. HO-1 gene overexpression enhances the beneficial effects of superparamagnetic iron oxide labeled bone marrow stromal cells transplantation in swine hearts underwent ischemia/reperfusion: an MRI study.

    PubMed

    Jiang, Yibo; Chen, Lijuan; Tang, Yaoliang; Ma, Genshan; Shen, Chengxing; Qi, Chunmei; Zhu, Qi; Yao, Yuyu; Liu, Naifeng

    2010-05-01

    To determine the effect of intracoronary transfer of superparamagnetic iron oxide (SPIO) labeled heme oxygenase-1 (HO-1) overexpressed bone marrow stromal cells (BMSCs) in a porcine myocardial ischemia/reperfusion model. Cell apoptosis was assayed and supernatant cytokine concentrations were measured in BMSCs that underwent hypoxia/reoxygen in vitro. Female mini-swines that underwent 1 h LAD occlusion followed by 1 h reperfusion were randomly allocated to receive intracoronary saline (control), 1 x 10(7) SPIO-labeled BMSCs transfected with pcDNA3.1-Lacz plasmid (Lacz-BMSCs), pcDNA3.1-human HO-1 (HO-1-BMSCs), pcDNA3.1-hHO-1 pretreated with a HO inhibitor, tin protoporphyrin (SnPP, n = 10 each). MRI and postmortem histological analysis were made at 1 week or 3 months thereafter. Post hypoxia/reoxygen in vitro, apoptosis was significantly reduced, supernatant VEGF significantly increased while TNF-alpha and IL-6 significantly reduced in HO-1-BMSCs group compared with Lacz-BMSCs group (all p < 0.05). Myocardial expression of VEGF was significantly higher in HO-1-BMSCs than in Lacz-BMSCs group at 1 week post transplantation (all p < 0.05). Signal voids induced by the SPIO were detected in the peri-infarction region in all BMSC groups at 1 week but not at 3 months post transplantation and the extent of the hypointense signal was the highest in HO-1-BMSCs group, and histological analysis showed that signal voids represented cardiac macrophages that engulfed the SPIO-labeled BMSCs. Pretreatment with SnPP significantly attenuated the beneficial effects of HO-1-BMSCs. Transplantation of HO-1-overexpressed BMSCs significantly enhanced the beneficial effects of BMSCs on improving cardiac function in this model. PMID:20033189

  14. Enzymes of respiratory iron oxidation

    SciTech Connect

    Blake, R. II.

    1991-01-01

    This report focuses on the progress made in three areas of research concerned with enzymes involved in respiratory iron oxidation. The three areas are as follows: development of an improved procedure for the routine large scale culture of iron oxidizing chemolithotrophs based on the in-situ electrolysis of the soluble iron in the growth medium; to perform iron oxidation kinetic studies on whole cells using the oxygen electrode; and to identify, separate, purify, and characterize the individual cellular components.

  15. 99mTc-Labeled Iron Oxide Nanoparticles for Dual-Contrast (T1/T2) Magnetic Resonance and Dual-Modality Imaging of Tumor Angiogenesis.

    PubMed

    Xue, Sihan; Zhang, Chunfu; Yang, Yi; Zhang, Lu; Cheng, Dengfeng; Zhang, Jianping; Shi, Hongcheng; Zhang, Yingjian

    2015-06-01

    Multi functional probes possessing magnetic resonance imaging and single-photon emission computed tomography properties are favorable for the molecular imaging of cancers. In this study, ultra small super paramagnetic iron oxide nanoparticles, about 3.5 nm in size, were synthesized by the polyol method. The particles were functionalized using c(RGDyC) peptides and labeled with 99mTc to prepare molecular imaging probes for detecting tumor angiogenesis. The probes demonstrated good T1 (r1 = 8.2 s(-1) mM(-1)) and reasonable T2 contrast effects (r2 = 20.1 s(-1) mM(-1)) and could specifically target avβ3-positive cells, inducing more cell ingestion, unlike that in case of the control probes [functionalized with scrambled c(RADyC) peptides]. After the probes were injected into the mice bearing H1299 lung tumors, T1/T2-weighted magnetic resonance imaging and single-photon emission computed tomography revealed that they addressed tumor angiogenic vessels, which were distributed mainly in the peripheral region of tumors. Biodistribution studies indicated that tumor accumulation of the probes was significant [13.8 ± 9.6%ID/g (p < 0.01), which is more than that of the control probes, 4.5 ± 1.9%ID/g], and could be inhibited by free RGD peptides (6.0 ± 2.8%ID/g, p < 0.01). Our study demonstrated that the dual-contrast (T1/T2) magnetic resonance and dual-modal imaging probe based on ultra small superparamagnetic iron oxide nanoparticles is very promising for the molecular imaging of tumor angiogenesis. PMID:26353592

  16. Iron oxide surfaces

    NASA Astrophysics Data System (ADS)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  17. Iron oxide surfaces

    NASA Astrophysics Data System (ADS)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  18. Enzymes of respiratory iron oxidation

    SciTech Connect

    Blake, R. II.

    1992-01-01

    This report describes experimental progress in characterizing and identifying redox proteins in a number of iron-oxidizing bacteria. Sections of the paper are entitled (1) In Situ electrolysis was explored to achieve enhanced yields of iron-oxidizing bacteria, (2)Structure/function studies were performed on redox-active biomolecules from Thiobacillus ferrooxidans, (3) Novel redox-active biomolecules were demonstrated in other iron autotrophs, and (4) New probes of metalloprotein electron-transfer reactions were synthesized and characterized.

  19. 21 CFR 186.1374 - Iron oxides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Iron oxides. 186.1374 Section 186.1374 Food and....1374 Iron oxides. (a) Iron oxides (oxides of iron, CAS Reg. No. 1332-37-2) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron (III) oxide (CAS Reg. No....

  20. 49 CFR 172.426 - OXIDIZER label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SECURITY PLANS Labeling § 172.426 OXIDIZER label. (a) Except for size and color, the OXIDIZER label must be as follows: EC02MR91.027 (b) In addition to complying with § 172.407, the background color on the OXIDIZER label must be yellow....

  1. 49 CFR 172.426 - OXIDIZER label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SECURITY PLANS Labeling § 172.426 OXIDIZER label. (a) Except for size and color, the OXIDIZER label must be as follows: EC02MR91.027 (b) In addition to complying with § 172.407, the background color on the OXIDIZER label must be yellow....

  2. 49 CFR 172.426 - OXIDIZER label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SECURITY PLANS Labeling § 172.426 OXIDIZER label. (a) Except for size and color, the OXIDIZER label must be as follows: EC02MR91.027 (b) In addition to complying with § 172.407, the background color on the OXIDIZER label must be yellow....

  3. 49 CFR 172.426 - OXIDIZER label.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SECURITY PLANS Labeling § 172.426 OXIDIZER label. (a) Except for size and color, the OXIDIZER label must be as follows: EC02MR91.027 (b) In addition to complying with § 172.407, the background color on the OXIDIZER label must be yellow....

  4. 21 CFR 186.1374 - Iron oxides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Iron oxides. 186.1374 Section 186.1374 Food and... Substances Affirmed as GRAS § 186.1374 Iron oxides. (a) Iron oxides (oxides of iron, CAS Reg. No. 1332-37-2) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron...

  5. 21 CFR 186.1374 - Iron oxides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Iron oxides. 186.1374 Section 186.1374 Food and... Substances Affirmed as GRAS § 186.1374 Iron oxides. (a) Iron oxides (oxides of iron, CAS Reg. No. 1332-37-2) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron...

  6. 21 CFR 186.1374 - Iron oxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Iron oxides. 186.1374 Section 186.1374 Food and... Substances Affirmed as GRAS § 186.1374 Iron oxides. (a) Iron oxides (oxides of iron, CAS Reg. No. 1332-37-2) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron...

  7. 21 CFR 186.1374 - Iron oxides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Iron oxides. 186.1374 Section 186.1374 Food and... Substances Affirmed as GRAS § 186.1374 Iron oxides. (a) Iron oxides (oxides of iron, CAS Reg. No. 1332-37-2) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron...

  8. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Iron oxides. 73.2250 Section 73.2250 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron oxides consist of any one or any combination of synthetically prepared iron oxides, including...

  9. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Iron oxides. 73.2250 Section 73.2250 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron oxides consist of any one or any combination of synthetically prepared iron oxides, including...

  10. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Iron oxides. 73.2250 Section 73.2250 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron oxides consist of any one or any combination of synthetically prepared iron oxides, including...

  11. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Iron oxides. 73.2250 Section 73.2250 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron oxides consist of any one or any combination of synthetically prepared iron oxides, including...

  12. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Iron oxides. 73.2250 Section 73.2250 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron oxides consist of any one or any combination of synthetically prepared iron oxides, including...

  13. Water oxidation: High five iron

    NASA Astrophysics Data System (ADS)

    Lloret-Fillol, Julio; Costas, Miquel

    2016-03-01

    The oxidation of water is essential to the sustainable production of fuels using sunlight or electricity, but designing active, stable and earth-abundant catalysts for the reaction is challenging. Now, a complex containing five iron atoms is shown to efficiently oxidize water by mimicking key features of the oxygen-evolving complex in green plants.

  14. Iron Oxide as an MRI Contrast Agent for Cell Tracking

    PubMed Central

    Korchinski, Daniel J.; Taha, May; Yang, Runze; Nathoo, Nabeela; Dunn, Jeff F.

    2015-01-01

    Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation. PMID:26483609

  15. Development and Characterization of an Antibody-Labeled Super-Paramagnetic Iron Oxide Contrast Agent Targeting Prostate Cancer Cells for Magnetic Resonance Imaging

    PubMed Central

    Bates, David; Abraham, Suraj; Campbell, Michael; Zehbe, Ingeborg; Curiel, Laura

    2014-01-01

    In this study we developed, characterized and validated in vitro a functional superparagmagnetic iron-oxide based magnetic resonance contrast agent by conjugating a commercially available iron oxide nanoparticle, Molday ION Rhodamine-B Carboxyl (MIRB), with a deimmunized mouse monoclonal antibody (muJ591) targeting prostate-specific membrane antigen (PSMA). This functional contrast agent is intended for the specific and non-invasive detection of prostate cancer cells that are PSMA positive, a marker implicated in prostate tumor progression and metastasis. The two-step carbodiimide reaction used to conjugate the antibody to the nanoparticle was efficient and we obtained an elemental iron content of 1958±611 per antibody. Immunofluorescence microscopy and flow cytometry showed that the conjugated muJ591:MIRB complex specifically binds to PSMA-positive (LNCaP) cells. The muJ591:MIRB complex reduced cell adhesion and cell proliferation on LNCaP cells and caused apoptosis as tested by Annexin V assay, suggesting anti-tumorigenic characteristics. Measurements of the T2 relaxation time of the muJ591:MIRB complex using a 400 MHz Innova NMR and a multi-echo spin-echo sequence on a 3T MRI (Achieva, Philips) showed a significant T2 relaxation time reduction for the muJ591:MIRB complex, with a reduced T2 relaxation time as a function of the iron concentration. PSMA-positive cells treated with muJ591:MIRB showed a significantly shorter T2 relaxation time as obtained using a 3T MRI scanner. The reduction in T2 relaxation time for muJ591:MIRB, combined with its specificity against PSMA+LNCaP cells, suggest its potential as a biologically-specific MR contrast agent. PMID:24819929

  16. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  17. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  18. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  19. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  20. Vacancy coalescence during oxidation of iron nanoparticles

    SciTech Connect

    Cabot, Andreu; Puntes, Victor F.; Shevchenko, Elena; Yin, Yadong; Balcells, Lluis; Markus, Matthew A.; Hughes, Steven M.; Alivisatos, A. Paul

    2007-06-14

    In the present work, we analyze the geometry and composition of the nanostructures obtained from the oxidation of iron nanoparticles. The initial oxidation of iron takes place by outward diffusion of cations through the growing oxide shell. This net material flow is balanced by an opposite flow of vacancies, which coalesce at the metal/oxide interface. Thus, the partial oxidation of colloidal iron nanoparticles leads to the formation of core-void-shell nanostructures. Furthermore, the complete oxidation of iron nanoparticles in the 3-8 nm size range leads to the formation of hollow iron oxide nanoparticles. We analyze the size and temperature range in which vacancy coalescence during oxidation of amine-stabilized iron nanoparticles takes place. Maghemite is the crystallographic structure obtained from the complete oxidation of iron nanoparticles under our synthetic conditions.

  1. 21 CFR 73.3125 - Iron oxides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3125 Iron oxides. (a) Identity and specifications. The color additive iron oxides (CAS Reg. No. 1332-37-2), Color Index No. 77491, shall conform...

  2. 21 CFR 73.3125 - Iron oxides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3125 Iron oxides. (a) Identity and specifications. The color additive iron oxides (CAS Reg. No. 1332-37-2), Color Index No. 77491, shall conform...

  3. 21 CFR 73.3125 - Iron oxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3125 Iron oxides. (a) Identity and specifications. The color additive iron oxides (CAS Reg. No. 1332-37-2), Color Index No. 77491, shall conform...

  4. 21 CFR 73.3125 - Iron oxides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3125 Iron oxides. (a) Identity and specifications. The color additive iron oxides (CAS Reg. No. 1332-37-2), Color Index No. 77491, shall conform...

  5. 21 CFR 73.3125 - Iron oxides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3125 Iron oxides. (a) Identity and specifications. The color additive iron oxides (CAS Reg. No. 1332-37-2), Color Index No. 77491, shall conform...

  6. Carcinogenesis studies with iron oxides.

    PubMed

    Steinhoff, D; Mohr, U; Hahnemann, S

    1991-01-01

    Seven different types of iron oxide were examined for carcinogenic properties in intratracheal instillation and intraperitoneal injection tests on rats, which represent particularly sensitive methods for local carcinogenic effects. The total doses lay in the range of maximum tolerance (390/1,530 mg/kg i.t. or 600 mg/kg i.p.). With one exception, at least 50 male and 50 female Sprague-Dawley rats were used per test group, control group and route of administration. Two iron oxides were additionally instilled intratracheally in combination with benzo[a]pyrene. No carcinogenic effect could be demonstrated for the test iron oxides RBW 07105/SV2 (fibrous, magnetic, surface doped with 1.85% cobalt), development product Bayferrox AC 5100 M (fibrous, magnetic, bulk doped with 2.1% cobalt), Bayferrox 1352 (fibrous alpha-Fe2O3), Bayferrox 920 (fibrous alpha-FeOOH), Bayferrox 130 (cubic alpha-Fe2O3), Bayferrox 306 (cubic Fe3O4), or Brazilian iron ore AC 5031 N (alpha-Fe2O3). PMID:1797572

  7. Accidental Childhood Iron Poisoning: A Problem of Marketing and Labeling.

    ERIC Educational Resources Information Center

    Krenzelok, Edward P.; Hoff, Julie V.

    1979-01-01

    The article indicates that accidental iron poisoning represents a significant hazard in children less than five years of age. Attractiveness of dosage, high availability, and ambiguity in product labeling contribute to the problem. Journal availability: see EC 114 125. (CL)

  8. High temperature oxidation of iron-iron oxide core-shell nanowires composed of iron nanoparticles.

    PubMed

    Krajewski, M; Brzozka, K; Lin, W S; Lin, H M; Tokarczyk, M; Borysiuk, J; Kowalski, G; Wasik, D

    2016-02-01

    This work describes an oxidation process of iron-iron oxide core-shell nanowires at temperatures between 100 °C and 800 °C. The studied nanomaterial was synthesized through a simple chemical reduction of iron trichloride in an external magnetic field under a constant flow of argon. The electron microscopy investigations allowed determining that the as-prepared nanowires were composed of self-assembled iron nanoparticles which were covered by a 3 nm thick oxide shell and separated from each other by a thin interface layer. Both these layers exhibited an amorphous or highly-disordered character which was traced by means of transmission electron microscopy and Mössbauer spectroscopy. The thermal oxidation was carried out under a constant flow of argon which contained the traces of oxygen. The first stage of process was related to slow transformations of amorphous Fe and amorphous iron oxides into crystalline phases and disappearance of interfaces between iron nanoparticles forming the studied nanomaterial (range: 25-300 °C). After that, the crystalline iron core and iron oxide shell became oxidized and signals for different compositions of iron oxide sheath were observed (range: 300-800 °C) using X-ray diffraction, Raman spectroscopy and Mössbauer spectroscopy. According to the thermal gravimetric analysis, the nanowires heated up to 800 °C under argon atmosphere gained 37% of mass with respect to their initial weight. The structure of the studied nanomaterial oxidized at 800 °C was mainly composed of α-Fe2O3 (∼ 93%). Moreover, iron nanowires treated above 600 °C lost their wire-like shape due to their shrinkage and collapse caused by the void coalescence. PMID:26766540

  9. Inhibition of collagen deposit in obstructed rat bladder outlet by transplantation of superparamagnetic iron oxide-labeled human mesenchymal stem cells as monitored by molecular magnetic resonance imaging (MRI).

    PubMed

    Lee, Hong Jun; Won, Jong Ho; Doo, Seung Hwan; Kim, Jung Hoon; Song, Ki Young; Lee, Sun Ju; Lim, Inja; Chang, Kyu-Tae; Song, Yun Seob; Kim, Seung U

    2012-01-01

    Bladder outlet obstruction (BOO) caused by collagen deposit is one of the most common problems in elderly males. The present study is to investigate if human mesenchymal stem cells (MSCs) are capable of inhibiting collagen deposition and improve cystometric parameters in bladder outlet obstruction in rats. Human MSCs were labeled with nanoparticles containing superparamagnetic iron oxide (SPION), and transplanted in rat BOO lesion site. Forty 6-week-old female Sprague-Dawley rats were divided into four groups (group 1: control, group 2: sham operation, group 3: BOO, and group 4: BOO rats receiving SPION-hMSCs). Two weeks after the onset of BOO, 1 × 10(6) SPION-hMSCs were injected into the bladder wall. Serial T2-weighted MR images were taken immediately after transplantation of SPION-labeled human MSCs and at 4 weeks posttransplantation. T2-weighted MR images showed a clear hypointense signal induced by the SPION-labeled MSCs. While the expression of collagen and TGF-β protein increased after BOO, the expression of both returned to the original levels after MSC transplantation. Expression of HGF and c-met protein also increased in the group with MSC transplantation. Maximal voiding pressure and residual urine volume increased after BOO but they recovered after MSC transplantation. Human MSCs transplanted in rat BOO models inhibited the bladder fibrosis and mediated recovery of bladder dysfunction. Transplantation of MSC-based cell therapy could be a novel therapeutic strategy against bladder fibrosis in patients with bladder outlet obstruction. PMID:22449414

  10. Failure to label baboon milk intrinsically with iron

    SciTech Connect

    Figueroa-Colon, R.; Elwell, J.H.; Jackson, E.; Osborne, J.W.; Fomon, S.J. )

    1989-11-01

    The widely held belief that 50% of the iron in human milk is absorbed is based on studies that have used an extrinsic radioactive iron tag. To determine the validity of an extrinsic tag, it is necessary to label the milk intrinsically with one isotope and to compare absorption of this isotope with absorption of another isotope added as the extrinsic tag. We chose the baboon as a model and infused 59Fe intravenously. In each of three attempts we failed to label the milk intrinsically.

  11. Iron-59 absorption from soy hulls: intrinsic vs extrinsic labeling

    SciTech Connect

    Lykken, G.I.; Mahalko, J.R.; Nielsen, E.J.; Dintzis, F.R.

    1986-03-05

    As part of an evaluation of the validity of the extrinsic labeling technique for measuring iron absorption, absorption from soy hulls extrinsically labeled (/sup 59/Fe added to bread dough) was compared with that from soy hulls intrinsically labeled (/sup 59/Fe incorporated into the soy plant during growth). Century soybeans were grown in a greenhouse. After pods had formed and were filling, each plant was stem injected twice, at 3 day intervals, with 22 ..mu..Ci /sup 59/Fe as FeCl/sub 2/ in 25 ..mu..l of 0.5 M HCl solution. After the plants had senesced, the soybeans were harvested, dried, shelled and the hulls removed. Standard meals containing 3.5 mg Fe/meal and up to 0.06 ..mu..Ci /sup 59/Fe in a soy hull bun were fed on 2 consecutive days to free-living volunteers in a crossover design. Absorption of /sup 59/Fe was greater from intrinsically labeled soy hulls than from extrinsically labeled soy hulls, 20 +/- 20% vs 15 +/- 11% (n=14, p > 0.05 by paired t-test). Apparent absorption ranged from 1.3% to 77% from intrinsically labeled soy hulls and .5% to 29% from extrinsically labeled soy hulls with the highest absorption occurring in persons with low serum ferritin (S.F. < 8 ng/ml). These findings provide additional evidence that the extrinsic labeling method is a valid measure of iron bioavailability to humans.

  12. Ferric iron reduction by sulfur- and iron-oxidizing bacteria.

    PubMed Central

    Brock, T D; Gustafson, J

    1976-01-01

    Acidophilic bacteria of the genera Thiobacillus and Sulfolobus are able to reduce ferric iron when growing on elemental sulfur as an energy source. It has been previously thought that ferric iron serves as a nonbiological oxidant in the formation of acid mine drainage and in the leaching of ores, but these results suggest that bacterial catalysis may play a significant role in the reactivity of ferric iron. PMID:825043

  13. Iron absorption from intrinsically-labeled lentils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low iron (Fe) absorption from important staple foods may contribute to Fe deficiency in developing countries. To date, there are few studies examining the Fe bioavailability of pulse crops as commonly prepared and consumed by humans. The objectives of this study were to characterize the Fe absorpt...

  14. Indium Sorption to Iron Oxides

    NASA Astrophysics Data System (ADS)

    White, S. J.; Sacco, S. A.; Hemond, H.; Hussain, F. A.; Runkel, R. L.; Walton-Day, K. E.; Kimball, B. A.; Shine, J. P.

    2014-12-01

    Indium is an increasingly important metal in semiconductors and electronics, and its use is growing rapidly as a semiconductive coating (as indium tin oxide) for liquid crystal displays (LCDs) and flat panel displays. It also has uses in important energy technologies such as light emitting diodes (LEDs) and photovoltaic cells. Despite its rapid increase in use, very little is known about the environmental behavior of indium, and concerns are being raised over the potential health effects of this emerging metal contaminant. One source of indium to the environment is acid mine drainage from the mining of lead, zinc, and copper sulfides. In our previous studies of a stream in Colorado influenced by acid mine drainage from lead and zinc mining activities, indium concentrations were found to be 10,000 times those found in uncontaminated rivers. However, the speciation and mobility of indium could not be reliably modeled because sorption constants to environmental sorbents have not been determined. In this study, we generate sorption constants for indium to ferrihydrite in the laboratory over a range of pHs, sorbent to sorbate ratios, and ionic strengths. Ferrihydrite is one of the most important sorbents in natural systems, and sorption to amorphous iron oxides such as ferrihydrite is thought to be one of the main removal mechanisms of metals from the dissolved phase in aqueous environments. Because of its relatively low solubility, we also find that indium hydroxide precipitation can dominate indium's partitioning at micromolar concentrations of indium. This precipitation may be important in describing indium's behavior in our study stream in Colorado, where modeling sorption to iron-oxides does not explain the complete removal of indium from the dissolved phase when the pH of the system is artificially raised to above 8. This study contributes much-needed data about indium's aqueous behavior, in order to better understand its fate, transport, and impacts in the

  15. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume; Kappler, Andreas; Bernard, Sylvain; Obst, Martin; Férard, Céline; Skouri-Panet, Fériel; Guigner, Jean-Michel; Posth, Nicole; Galvez, Matthieu; Brown, Gordon E., Jr.; Guyot, François

    2009-02-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types of precipitates could be discriminated: (1) mineralized filaments at distance from the cells, (2) globules of 100 ± 25 nm in diameter, at the cell surface and (3) a 40-nm thick mineralized layer within the periplasm. All of those phases were shown to be intimately associated with organic molecules. Periplasmic encrustation was accompanied by an accumulation of protein moieties. In the same way, exopolysaccharides were associated with the extracellular mineralized filaments. The evolution of cell encrustation was followed by TEM over the time course of a culture: cell encrustation proceeded progressively, with rapid precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All these findings provide new information to further the understanding of molecular processes involved in iron biomineralization by anaerobic iron-oxidizing bacteria and

  16. Tannin biosynthesis of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Herrera-Becerra, R.; Rius, J. L.; Zorrilla, C.

    2010-08-01

    In this work, iron oxide nanoparticles synthesized with gallic acid and tannic acid are characterized using High-Resolution Transmission Electron Microscopy (HRTEM). Its size, form, and structure are compared with nanoparticles obtained previously using alfalfa biomass in order to find a simpler, consistent, and environmentally friendly method in the production of iron oxide nanoparticles.

  17. Enzymatic iron oxidation by Leptothrix discophora: identification of an iron-oxidizing protein.

    PubMed Central

    Corstjens, P L; de Vrind, J P; Westbroek, P; de Vrind-de Jong, E W

    1992-01-01

    An iron-oxidizing factor was identified in the spent culture medium of the iron- and manganese-oxidizing bacterial strain Leptothrix discophora SS-1. It appeared to be a protein, with an apparent molecular weight of approximately 150,000. Its activity could be demonstrated after fractionation of the spent medium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A spontaneous mutant of L. discophora SS-1 was isolated which excreted neither manganese- nor iron-oxidizing activity, whereas excretion of other proteins seemed to be unaffected. Although the excretion of both metal-oxidizing factors was probably linked, the difference in other properties suggests that manganese and iron oxidation represent two different pathways. With a dot-blot assay, it was established that different bacterial species have different metal-oxidizing capacities. Whereas L. discophora oxidized both iron and manganese, Sphaerotilus natans oxidized only iron and two Pseudomonas spp. oxidized only manganese. Images PMID:1610168

  18. Enzymatic iron oxidation by Leptothrix discophora: identification of an iron-oxidizing protein.

    PubMed

    Corstjens, P L; de Vrind, J P; Westbroek, P; de Vrind-de Jong, E W

    1992-02-01

    An iron-oxidizing factor was identified in the spent culture medium of the iron- and manganese-oxidizing bacterial strain Leptothrix discophora SS-1. It appeared to be a protein, with an apparent molecular weight of approximately 150,000. Its activity could be demonstrated after fractionation of the spent medium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A spontaneous mutant of L. discophora SS-1 was isolated which excreted neither manganese- nor iron-oxidizing activity, whereas excretion of other proteins seemed to be unaffected. Although the excretion of both metal-oxidizing factors was probably linked, the difference in other properties suggests that manganese and iron oxidation represent two different pathways. With a dot-blot assay, it was established that different bacterial species have different metal-oxidizing capacities. Whereas L. discophora oxidized both iron and manganese, Sphaerotilus natans oxidized only iron and two Pseudomonas spp. oxidized only manganese. PMID:1610168

  19. Facile and Sustainable Synthesis of Shaped Iron Oxide Nanoparticles: Effect of Iron Precursor Salts on the Shapes of Iron Oxides

    PubMed Central

    Sayed, Farheen N.; Polshettiwar, Vivek

    2015-01-01

    A facile and sustainable protocol for synthesis of six different shaped iron oxides is developed. Notably, all the six shapes of iron oxides can be synthesised using exactly same synthetic protocol, by simply changing the precursor iron salts. Several of the synthesised shapes are not reported before. This novel protocol is relatively easy to implement and could contribute to overcome the challenge of obtaining various shaped iron oxides in economical and sustainable manner. PMID:25939969

  20. Platinum Attachments on Iron Oxide Nanoparticle Surfaces

    SciTech Connect

    Palchoudhury, Soubantika; Xu, Yaolin; An, Wei; Turner, C. H.; Bao, Yuping

    2010-04-30

    Platinum nanoparticles supported on metal oxide surfaces have shown great potential as heterogeneous catalysts to accelerate electrochemical processes, such as the oxygen reduction reaction in fuel cells. Recently, the use of magnetic supports has become a promising research topic for easy separation and recovery of catalysts using magnets, such as Pt nanoparticles supported on iron oxide nanoparticles. The attachment of Pt on iron oxide nanoparticles is limited by the wetting ability of the Pt (metal) on ceramic surfaces. A study of Pt nanoparticle attachment on iron oxide nanoparticle surfaces in an organic solvent is reported, which addresses the factors that promote or inhibit such attachment. It was discovered that the Pt attachment strongly depends on the capping molecules of the iron oxide seeds and the reaction temperature. For example, the attachment of Pt nanoparticles on oleic acid coated iron oxide nanoparticles was very challenging, because of the strong binding between the carboxylic groups and iron oxide surfaces. In contrast, when nanoparticles are coated with oleic acid/tri-n-octylphosphine oxide or oleic acid/oleylamine, a significant increase in Pt attachment was observed. Electronic structure calculations were then applied to estimate the binding energies between the capping molecules and iron ions, and the modeling results strongly support the experimental observations.

  1. Arsenic Adsorption Onto Iron Oxides Minerals

    NASA Astrophysics Data System (ADS)

    Aredes, S.; Klein, B.; Pawlik, M.

    2004-12-01

    The predominant form of arsenic in water is as an inorganic ion. Under different redox conditions arsenic in water is stable in the +5 and +3 oxidation states. Arsenic oxidation state governs its toxicity, chemical form and solubility in natural and disturbed environments. As (III) is found in anoxic environments such as ground water , it is toxic and the common species is the neutral form, H3AsO3. As (V) is found in aerobic conditions such as surface water, it is less toxic and the common species in water are: H2AsO4 - and HAsO4 {- 2}. The water pH determines the predominant arsenate or arsenite species, however, both forms of arsenic can be detected in natural water systems. Iron oxides minerals often form in natural waters and sediments at oxic-anoxic boundaries. Over time they undergo transformation to crystalline forms, such as goethite or hematite. Both As(V) and As(III) sorbs strongly to iron oxides, however the sorption behavior of arsenic is dependent on its oxidation state and the mineralogy of the iron oxides. Competition between arsenic and others ions, such fluoride, sulphate and phosphate also play a role. On the other hand, calcium may increase arsenic adsorption onto iron oxides. Electrokinetic studies and adsorption experiments were carried out in order to determine which conditions favour arsenic adsorption. Hematite, goethite and magnetite as iron based sorbents were used. Test were also conducted with a laterite soil rich in iron minerals. The focus of this study is to evaluate physical and chemical conditions which favour arsenic adsorption onto iron oxides minerals, the results contribute to an understanding of arsenic behaviour in natural and disturbed environments. Furthermore, results could contribute in developing an appropriate remediation technology for arsenic removal in water using iron oxides minerals.

  2. Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content

    PubMed Central

    Wabler, Michele; Zhu, Wenlian; Hedayati, Mohammad; Attaluri, Anilchandra; Zhou, Haoming; Mihalic, Jana; Geyh, Alison; DeWeese, Theodore L.; Ivkov, Robert; Artemov, Dmitri

    2015-01-01

    Purpose Magnetic iron oxide nanoparticles (MNPs) are used as contrast agents for magnetic resonance imaging (MRI) and hyperthermia for cancer treatment. The relationship between MRI signal intensity and cellular iron concentration for many new formulations, particularly MNPs having magnetic properties designed for heating in hyperthermia, is lacking. In this study, we examine the correlation between MRI T2 relaxation time and iron content in cancer cells loaded with various MNP formulations. Materials and methods Human prostate carcinoma DU-145 cells were loaded with starch-coated bionised nanoferrite (BNF), iron oxide (Nanomag® D-SPIO), Feridex™, and dextran-coated Johns Hopkins University (JHU) particles at a target concentration of 50 pg Fe/cell using poly-D-lysine transfection reagent. T2-weighted MRI of serial dilutions of these labelled cells was performed at 9.4 T and iron content quantification was performed using inductively coupled plasma mass spectrometry (ICP-MS). Clonogenic assay was used to characterise cytotoxicity. Results No cytotoxicity was observed at twice the target intracellular iron concentration (~100 pg Fe/cell). ICP-MS revealed highest iron uptake efficiency with BNF and JHU particles, followed by Feridex and Nanomag-D-SPIO, respectively. Imaging data showed a linear correlation between increased intracellular iron concentration and decreased T2 times, with no apparent correlation among MNP magnetic properties. Conclusions This study demonstrates that for the range of nanoparticle concentrations internalised by cancer cells the signal intensity of T2-weighted MRI correlates closely with absolute iron concentration associated with the cells. This correlation may benefit applications for cell-based cancer imaging and therapy including nanoparticle-mediated drug delivery and hyperthermia. PMID:24773041

  3. Bioavailability of iron to rats from processed soybean fractions determined by intrinsic and extrinsic labeling techniques

    SciTech Connect

    Weaver, C.M.; Nelson, N.; Elliott, J.G.

    1984-06-01

    Intrinsic and extrinsic labeling techniques were used to measure iron bioavailability from soybean fractions (isolated soy protein, defatted flour, soy hulls, insoluble material and whey) by iron-depleted and non-iron-depleted rats. As expected, absorption of iron was higher in the iron-depleted than in the non-iron-depleted rats. In the iron-depleted group, significantly more iron was absorbed from soy whey than from other fractions. No other significant difference in iron absorption associated with iron source was observed. The higher absorption rate of iron from whey by the iron-depleted rats probably was related to a lower quantity of food consumed during the test meal by this group. Intrinsic and extrinsic labeling techniques produced similar assessments of bioavailability of iron.

  4. The Irony of Iron - Biogenic Iron Oxides as an Iron Source to the Ocean.

    PubMed

    Emerson, David

    2015-01-01

    Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe) to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB) that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity. PMID:26779157

  5. The Irony of Iron – Biogenic Iron Oxides as an Iron Source to the Ocean

    PubMed Central

    Emerson, David

    2016-01-01

    Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe) to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB) that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity. PMID:26779157

  6. Removal of Metallic Iron on Oxide Slags

    NASA Astrophysics Data System (ADS)

    Shannon, George N.; Fruehan, R. J.; Sridhar, Seetharaman

    2009-10-01

    It is possible, in some cases, for ground coal particles to react with gasifier gas during combustion, allowing the ash material in the coal to form phases besides the expected slag phase. One of these phases is metallic iron, because some gasifiers are designed to operate under a reducing atmosphere ({p_{O2}} of approximately 10-4 atm). Metallic iron can become entrained in the gas stream and deposit on, and foul, downstream equipment. To improve the understanding of the reaction between different metallic iron particles and gas, which eventually oxidizes them, and the slag that the resulting oxide dissolves in, the kinetics of iron reaction on slag were predicted using gas-phase mass-transfer limitations for the reaction and were compared with diffusion in the slag; the reaction itself was observed under confocal scanning laser microscopy. The expected rates for iron droplet removal are provided based on the size and effective partial pressure of oxygen, and it is found that decarburization occurs before iron reaction, leading to an extra 30- to 100-second delay for carbon-saturated particles vs pure iron particles. A pure metallic iron particle of 0.5 mg should be removed in about 220 seconds at 1400 °C and in 160 seconds at 1600 °C.

  7. Removal of metallic iron on oxide slags

    SciTech Connect

    Shannon, G.N.; Fruehan, R.J.; Sridhar, S.

    2009-10-15

    It is possible, in some cases, for ground coal particles to react with gasifier gas during combustion, allowing the ash material in the coal to form phases besides the expected slag phase. One of these phases is metallic iron, because some gasifiers are designed to operate under a reducing atmosphere (pO{sub 2}) of approximately 10{sup -4} atm). Metallic iron can become entrained in the gas stream and deposit on, and foul, downstream equipment. To improve the understanding of the reaction between different metallic iron particles and gas, which eventually oxidizes them, and the slag that the resulting oxide dissolves in, the kinetics of iron reaction on slag were predicted using gas-phase mass-transfer limitations for the reaction and were compared with diffusion in the slag; the reaction itself was observed under confocal scanning laser microscopy. The expected rates for iron droplet removal are provided based on the size and effective partial pressure of oxygen, and it is found that decarburization occurs before iron reaction, leading to an extra 30- to 100-second delay for carbon-saturated particles vs pure iron particles. A pure metallic iron particle of 0.5 mg should be removed in about 220 seconds at 1400{sup o}C and in 160 seconds at 1600{sup o}C.

  8. Exploring Microbial Iron Oxidation in Wetland Soils

    NASA Astrophysics Data System (ADS)

    Wang, J.; Muyzer, G.; Bodelier, P. L. E.; den Oudsten, F.; Laanbroek, H. J.

    2009-04-01

    Iron is one of the most abundant elements on earth and is essential for life. Because of its importance, iron cycling and its interaction with other chemical and microbial processes has been the focus of many studies. Iron-oxidizing bacteria (FeOB) have been detected in a wide variety of environments. Among those is the rhizosphere of wetland plants roots which release oxygen into the soil creating suboxic conditions required by these organisms. It has been reported that in these rhizosphere microbial iron oxidation proceeds up to four orders of magnitude faster than strictly abiotic oxidation. On the roots of these wetland plants iron plaques are formed by microbial iron oxidation which are involved in the sequestering of heavy metals as well organic pollutants, which of great environmental significance.Despite their important role being catalysts of iron-cycling in wetland environments, little is known about the diversity and distribution of iron-oxidizing bacteria in various environments. This study aimed at developing a PCR-DGGE assay enabling the detection of iron oxidizers in wetland habitats. Gradient tubes were used to enrich iron-oxidizing bacteria. From these enrichments, a clone library was established based on the almost complete 16s rRNA gene using the universal bacterial primers 27f and 1492r. This clone library consisted of mainly α- and β-Proteobacteria, among which two major clusters were closely related to Gallionella spp. Specific probes and primers were developed on the basis of this 16S rRNA gene clone library. The newly designed Gallionella-specific 16S rRNA gene primer set 122f/998r was applied to community DNA obtained from three contrasting wetland environments, and the PCR products were used in denaturing gradient gel electrophoresis (DGGE) analysis. A second 16S rRNA gene clone library was constructed using the PCR products from one of our sampling sites amplified with the newly developed primer set 122f/998r. The cloned 16S rRNA gene

  9. Dendronized iron oxide colloids for imaging the sentinel lymph node

    NASA Astrophysics Data System (ADS)

    Jouhannaud, J.; Garofalo, A.; Felder-Flesch, D.; Pourroy, G.

    2015-03-01

    Various methods have been used in medicine for more than one century to explore the lymphatic system. Radioactive colloids (RuS labelled with 99mTc) or/and Vital Blue dye are injected around the primary tumour and detected by means of nuclear probe or visual colour inspection respectively. The simultaneous clinical use of both markers (dye and radionuclide) improves the sensitivity of detection close to 100%. Superparamagnetic iron oxides (SPIOs) are currently receiving much attention as strong T2 weighted magnetic resonance imaging contrast agents that can be potentially used for preoperative localization of sentinel nodes, but also for peroperative detection of sentinel node using hand-held probes. In that context, we present the elaboration of dendronized iron oxide nanoparticles elaborated at the Institute of Physics and Chemistry of Materials of Strasbourg.

  10. Metal ion binding to iron oxides

    NASA Astrophysics Data System (ADS)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  11. Iron oxides in human spleen.

    PubMed

    Kopáni, Martin; Miglierini, Marcel; Lančok, Adriana; Dekan, Július; Čaplovicová, Mária; Jakubovský, Ján; Boča, Roman; Mrazova, Hedviga

    2015-10-01

    Iron is an essential element for fundamental cell functions and a catalyst for chemical reactions. Three samples extracted from the human spleen were investigated by scanning (SEM) and transmission electron microscopy (TEM), Mössbauer spectrometry (MS), and SQUID magnetometry. The sample with diagnosis of hemosiderosis (H) differs from that referring to hereditary spherocytosis and the reference sample. SEM reveals iron-rich micrometer-sized aggregate of various structures-tiny fibrils in hereditary spherocytosis sample and no fibrils in hemochromatosis. Hematite and magnetite particles from 2 to 6 μm in TEM with diffraction in all samples were shown. The SQUID magnetometry shows different amount of diamagnetic, paramagnetic and ferrimagnetic structures in the tissues. The MS results indicate contribution of ferromagnetically split sextets for all investigated samples. Their occurrence indicates that at least part of the sample is magnetically ordered below the critical temperature. The iron accumulation process is different in hereditary spherocytosis and hemosiderosis. This fact may be the reason of different iron crystallization. PMID:26292972

  12. Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI

    PubMed Central

    Lodhia, J; Mandarano, G; Ferris, NJ; Eu, P; Cowell, SF

    2010-01-01

    Contrast agents, such as iron oxide, enhance MR images by altering the relaxation times of tissues in which the agent is present. They can also be used to label targeted molecular imaging probes. Unfortunately, no molecular imaging probe is currently available on the clinical MRI market. A promising platform for MRI contrast agent development is nanotechnology, where superparamagnetic iron oxide nanoparticles (SPIONS) are tailored for MR contrast enhancement, and/or for molecular imaging. SPIONs can be produced using a range of methods and the choice of method will be influenced by the characteristics most important for a particular application. In addition, the ability to attach molecular markers to SPIONS heralds their application in molecular imaging. There are many reviews on SPION synthesis for MRI; however, these tend to be targeted to a chemistry audience. The development of MRI contrast agents attracts experienced researchers from many fields including some researchers with little knowledge of medical imaging or MRI. This situation presents medical radiation practitioners with opportunities for involvement, collaboration or leadership in research depending on their level of commitment and their ability to learn. Medical radiation practitioners already possess a large portion of the understanding, knowledge and skills necessary for involvement in MRI development and molecular imaging. Their expertise in imaging technology, patient care and radiation safety provides them with skills that are directly applicable to research on the development and application of SPIONs and MRI. In this paper we argue that MRI SPIONs, currently limited to major research centres, will have widespread clinical use in the future. We believe that knowledge about this growing area of research provides an opportunity for medical radiation practitioners to enhance their specialised expertise to ensure best practice in a truly multi-disciplinary environment. This review outlines how and

  13. Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI.

    PubMed

    Lodhia, J; Mandarano, G; Ferris, Nj; Eu, P; Cowell, Sf

    2010-01-01

    Contrast agents, such as iron oxide, enhance MR images by altering the relaxation times of tissues in which the agent is present. They can also be used to label targeted molecular imaging probes. Unfortunately, no molecular imaging probe is currently available on the clinical MRI market. A promising platform for MRI contrast agent development is nanotechnology, where superparamagnetic iron oxide nanoparticles (SPIONS) are tailored for MR contrast enhancement, and/or for molecular imaging. SPIONs can be produced using a range of methods and the choice of method will be influenced by the characteristics most important for a particular application. In addition, the ability to attach molecular markers to SPIONS heralds their application in molecular imaging.There are many reviews on SPION synthesis for MRI; however, these tend to be targeted to a chemistry audience. The development of MRI contrast agents attracts experienced researchers from many fields including some researchers with little knowledge of medical imaging or MRI. This situation presents medical radiation practitioners with opportunities for involvement, collaboration or leadership in research depending on their level of commitment and their ability to learn. Medical radiation practitioners already possess a large portion of the understanding, knowledge and skills necessary for involvement in MRI development and molecular imaging. Their expertise in imaging technology, patient care and radiation safety provides them with skills that are directly applicable to research on the development and application of SPIONs and MRI.In this paper we argue that MRI SPIONs, currently limited to major research centres, will have widespread clinical use in the future. We believe that knowledge about this growing area of research provides an opportunity for medical radiation practitioners to enhance their specialised expertise to ensure best practice in a truly multi-disciplinary environment. This review outlines how and

  14. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    DOEpatents

    Shen, Ming-Shing; Yang, Ralph T.

    1980-01-01

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  15. Defluoridation by Bacteriogenic Iron Oxides: Sorption Studies

    NASA Astrophysics Data System (ADS)

    Evans, K.; Ferris, F.

    2009-05-01

    At concentrations above 1 mg/L, fluoride in drinking water can lead to dental and skeletal fluorosis, a disease that causes mottling of the teeth, calcification of ligaments, crippling bone deformities and many other physiological disorders that can, ultimately, lead to death. Conservative estimates are that fluorosis afflicts tens of millions of people worldwide. As there is no treatment for fluorosis, prevention is the only means of controlling the disease. While numerous defluoridation techniques have been explored, no single method has been found to be both effective and inexpensive enough to implement widely. Our research began in India, with a large-scale geochemical study of the groundwater in a fluoride-contaminated region of Orissa. Having developed a better understanding of the geochemical relationships that exist between fluoride and other parameters present in an affected area, as well as the complex relationships that arise among those parameters that can impact the presence of fluoride, we began investigating certain remediation scenarios involving iron oxides. A common approach to remediation involves the partitioning of fluoride from groundwater by sorption onto a variety of materials, one of the most effective of which is iron oxide whose surface area acts as a scavenger for fluoride. In the presence of iron oxidizing bacteria, the oxidation rate of iron has been shown to be ˜6 times greater than in their absence; fluoride should, therefore, be removed from an aqueous environment by bacteriogenic iron oxides (BIOS) much more quickly than by abiotic iron oxides. Most recently, sorption studies have been conducted using both BIOS and synthetic hydrous ferric oxides in order to compare the behavior between biotic and abiotic sorbents. These studies have provided sorption isotherms that allow comparison of fluoride removed by sorption to BIOS versus synthetic iron oxides. Sorption affinity constants have also been determined, which allow for the

  16. The Iron-Catalyzed Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-17

    To assess the importance of iron to hydrazine stability, the study of hydrazine oxidation by nitric acid has been extended to investigate the iron-catalyzed oxidation. This report describes those results.

  17. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  18. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  19. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  20. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  1. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  2. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  3. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  4. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  5. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  6. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  7. Acid monolayer functionalized iron oxide nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  8. Iron oxide from a seasonally anoxic lake

    NASA Astrophysics Data System (ADS)

    Tipping, E.; Woof, C.; Cooke, D.

    1981-09-01

    The ferric oxide formed by oxidation of Fe(II) in Esthwaite Water, U.K., during the lake's seasonal thermal stratification and deep-water anoxia consists of amorphous particles which are approximately spherical or ellipsoidal, with diameters in the range 0.05-0.5 μm. Concentrations in the lake are 1011-1012 particles per litre, corresponding to 3 mg l-1 Fe. Unlike iron oxides of similar chemical composition formed by oxidative mechanisms in soil-borne waters, the particles do not appear to be composed of small primary particles. This is possibly because in the lake they form slowly, at low supersaturation. The particles contain 30-40% by weight Fe. The carbon content is uncertain because of contamination but is in the range 4-18%. Humic carbon contributes at least 4-7% of the total weight. Other major elements present are P, N, Mn, Si, S. Ca and Mg, comprising between them up to 8% of the total weight. The particles are negatively charged probably because of adsorbed humic substances, and also phosphate and silicate. Their electrophoretic mobility-pH dependence is similar to those of synthetic iron oxides added to samples of surface Esthwaite Water. The calculated zeta potential is - 27 mV, which is sufficiently high to make flocculation slow under lake conditions. The low flocculation rate partially accounts for the formation of a well-defined peak of particulate iron in the water column of the lake.

  9. Formulations for iron oxides dissolution

    DOEpatents

    Horwitz, Earl P.; Chiarizia, Renato

    1992-01-01

    A mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  10. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps

    PubMed Central

    Sivan, Orit; Antler, Gilad; Turchyn, Alexandra V.; Marlow, Jeffrey J.; Orphan, Victoria J.

    2014-01-01

    Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with 13C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organic carbon oxidation or in diffusive sedimentary sulfate–methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. These results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling. PMID:25246590

  11. IRON OXIDE NANOPARTICLE-INDUCED OXIDATIVE STRESS AND INFLAMMATION

    EPA Science Inventory

    1. Nanoparticle Physicochemical Characterizations
    2. We first focused on creating NP systems that could be used to test our hypotheses and assessing their stability in aqueous media. The iron oxide NP systems were not stable in cell culture medium o...

    3. Method for preparing hydrous iron oxide gels and spherules

      DOEpatents

      Collins, Jack L.; Lauf, Robert J.; Anderson, Kimberly K.

      2003-07-29

      The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or strontium ferrite embedded with oxides of Mg, Zn, Pb, Ce and mixtures thereof. These variations of hydrous iron oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters, dielectrics, and ceramics.

    4. Methyltrimethoxysilane (MTMS)-based silica-iron oxide superhydrophobic nanocomposites.

      PubMed

      Nadargi, Digambar; Gurav, Jyoti; Marioni, Miguel A; Romer, Sara; Matam, Santhosh; Koebel, Matthias M

      2015-12-01

      We report a facile synthesis of superhydrophobic silica-iron oxide nanocomposites via a co-precursor sol-gel process. The choice of the silica precursor (Methyltrimethoxysilane, MTMS) in combination with iron nitrate altered the pore structure dramatically. The influence of iron oxide doping on the structural properties of pristine MTMS aerogel is discussed. PMID:26277744

    5. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

      NASA Technical Reports Server (NTRS)

      Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

      1993-01-01

      An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

    6. Planktonic marine iron oxidizers drive iron mineralization under low-oxygen conditions.

      PubMed

      Field, E K; Kato, S; Findlay, A J; MacDonald, D J; Chiu, B K; Luther, G W; Chan, C S

      2016-09-01

      Observations of modern microbes have led to several hypotheses on how microbes precipitated the extensive iron formations in the geologic record, but we have yet to resolve the exact microbial contributions. An initial hypothesis was that cyanobacteria produced oxygen which oxidized iron abiotically; however, in modern environments such as microbial mats, where Fe(II) and O2 coexist, we commonly find microaerophilic chemolithotrophic iron-oxidizing bacteria producing Fe(III) oxyhydroxides. This suggests that such iron oxidizers could have inhabited niches in ancient coastal oceans where Fe(II) and O2 coexisted, and therefore contributed to banded iron formations (BIFs) and other ferruginous deposits. However, there is currently little evidence for planktonic marine iron oxidizers in modern analogs. Here, we demonstrate successful cultivation of planktonic microaerophilic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay during seasonal stratification. Iron oxidizers were associated with low oxygen concentrations and active iron redox cycling in the oxic-anoxic transition zone (<3 μm O2 , <0.2 μm H2 S). While cyanobacteria were also detected in this transition zone, oxygen concentrations were too low to support significant rates of abiotic iron oxidation. Cyanobacteria may be providing oxygen for microaerophilic iron oxidation through a symbiotic relationship; at high Fe(II) levels, cyanobacteria would gain protection against Fe(II) toxicity. A Zetaproteobacteria isolate from this site oxidized iron at rates sufficient to account for deposition of geologic iron formations. In sum, our results suggest that once oxygenic photosynthesis evolved, microaerophilic chemolithotrophic iron oxidizers were likely important drivers of iron mineralization in ancient oceans. PMID:27384464

    7. Nitric oxide and plant iron homeostasis.

      PubMed

      Buet, Agustina; Simontacchi, Marcela

      2015-03-01

      Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes. PMID:25612116

    8. Phase Formation Behavior in Ultrathin Iron Oxide.

      PubMed

      Jõgi, Indrek; Jacobsson, T Jesper; Fondell, Mattis; Wätjen, Timo; Carlsson, Jan-Otto; Boman, Mats; Edvinsson, Tomas

      2015-11-17

      Nanostructured iron oxides, and especially hematite, are interesting for a wide range of applications ranging from gas sensors to renewable solar hydrogen production. A promising method for deposition of low-dimensional films is atomic layer deposition (ALD). Although a potent technique, ALD of ultrathin films is critically sensitive to the substrate and temperature conditions where initial formation of islands and crystallites influences the properties of the films. In this work, deposition at the border of the ALD window forming a hybrid ALD/pulsed CVD (pCVD) deposition is utilized to obtain a deposition less sensitive to the substrate. A thorough analysis of iron oxide phases formation on two different substrates, Si(100) and SiO2, was performed. Films between 3 and 50 nm were deposited and analyzed with diffraction techniques, high-resolution Raman spectroscopy, and optical spectroscopy. Below 10 nm nominal film thickness, island formation and phase dependent particle crystallization impose constraints for deposition of phase pure iron oxides on non-lattice-matching substrates. Films between 10 and 20 nm thickness on SiO2 could effectively be recrystallized into hematite whereas for the corresponding films on Si(100), no recrystallization occurred. For films thicker than 20 nm, phase pure hematite can be formed directly with ALD/pCVD with very low influence of the substrate on either Si or SiO2. For more lattice matched substrates such as SnO2:F, Raman spectroscopy indicated formation of the hematite phase already for films with 3 nm nominal thickness and clearly for 6 nm films. Analysis of the optical properties corroborated the analysis and showed a quantum confined blue-shift of the absorption edge for the thinnest films. PMID:26506091

    9. Reduction of Soluble Iron and Reductive Dissolution of Ferric Iron-Containing Minerals by Moderately Thermophilic Iron-Oxidizing Bacteria

      PubMed Central

      Bridge, Toni A. M.; Johnson, D. Barrie

      1998-01-01

      Five moderately thermophilic iron-oxidizing bacteria, including representative strains of the three classified species (Sulfobacillus thermosulfidooxidans, Sulfobacillus acidophilus, and Acidimicrobium ferrooxidans), were shown to be capable of reducing ferric iron to ferrous iron when they were grown under oxygen limitation conditions. Iron reduction was most readily observed when the isolates were grown as mixotrophs or heterotrophs with glycerol as an electron donor; in addition, some strains were able to couple the oxidation of tetrathionate to the reduction of ferric iron. Cycling of iron between the ferrous and ferric states was observed during batch culture growth in unshaken flasks incubated under aerobic conditions, although the patterns of oxidoreduction of iron varied in different species of iron-oxidizing moderate thermophiles and in strains of a single species (S. acidophilus). All three bacterial species were able to grow anaerobically with ferric iron as a sole electron acceptor; the growth yields correlated with the amount of ferric iron reduced when the isolates were grown in the absence of oxygen. One of the moderate thermophiles (identified as a strain of S. acidophilus) was able to bring about the reductive dissolution of three ferric iron-containing minerals (ferric hydroxide, jarosite, and goethite) when it was grown under restricted aeration conditions with glycerol as a carbon and energy source. The significance of iron reduction by moderately thermophilic iron oxidizers in both environmental and applied contexts is discussed. PMID:9603832

    10. Magnetic iron oxide nanoparticles for biomedical applications.

      PubMed

      Laurent, Sophie; Bridot, Jean-Luc; Elst, Luce Vander; Muller, Robert N

      2010-03-01

      Due to their high magnetization, superparamagnetic iron oxide nanoparticles induce an important decrease in the transverse relaxation of water protons and are, therefore, very efficient negative MRI contrast agents. The knowledge and control of the chemical and physical characteristics of nanoparticles are of great importance. The choice of the synthesis method (microemulsions, sol-gel synthesis, laser pyrolysis, sonochemical synthesis or coprecipitation) determines the magnetic nanoparticle's size and shape, as well as its size distribution and surface chemistry. Nanoparticles can be used for numerous in vivo applications, such as MRI contrast enhancement and hyperthermia drug delivery. New developments focus on targeting through molecular imaging and cell tracking. PMID:21426176

    11. Suspension Hydrogen Reduction of Iron Oxide Concentrates

      SciTech Connect

      H.Y. Sohn

      2008-03-31

      The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  1. Cardioprotective activity of iron oxide nanoparticles

    PubMed Central

    Xiong, Fei; Wang, Hao; Feng, Yidong; Li, Yunman; Hua, Xiaoqing; Pang, Xingyun; Zhang, Song; Song, Lina; Zhang, Yu; Gu, Ning

    2015-01-01

    Iron oxide nanoparticles (IONPs) are chemically inert materials and have been mainly used for imaging applications and drug deliveries. However, the possibility whether they can be used as therapeutic drugs themselves has not yet been explored. We reported here that Fe2O3 nanoparticles (NPs) can protect hearts from ischemic damage at the animal, tissue and cell level. The cardioprotective activity of Fe2O3 NPs requires the integrity of nanoparticles and is not dependent upon their surface charges and molecules that were integrated into nanoparticles. Also, Fe2O3 NPs showed no significant toxicity towards normal cardiomyocytes, indicative of their potential to treat cardiovascular diseases. PMID:25716309

  2. Mineral resource of the month: iron oxide pigments

    USGS Publications Warehouse

    U.S. Geological Survey

    2008-01-01

    The article discusses iron oxide pigments, which have been used as colorants since human began painting as they resist color change due to sunlight exposure, have good chemical resistance and are stable under normal ambient conditions. Cyprus, Italy and Spain are among the countries that are known for the production of iron oxide pigments. Granular forms of iron oxides and nano-sized materials are cited as developments in the synthetic iron oxide pigment industry which are being used in computer disk drives and nuclear magnetic resonance imaging.

  3. A Diatom Ferritin Optimized for Iron Oxidation but Not Iron Storage.

    PubMed

    Pfaffen, Stephanie; Bradley, Justin M; Abdulqadir, Raz; Firme, Marlo R; Moore, Geoffrey R; Le Brun, Nick E; Murphy, Michael E P

    2015-11-20

    Ferritin from the marine pennate diatom Pseudo-nitzschia multiseries (PmFTN) plays a key role in sustaining growth in iron-limited ocean environments. The di-iron catalytic ferroxidase center of PmFTN (sites A and B) has a nearby third iron site (site C) in an arrangement typically observed in prokaryotic ferritins. Here we demonstrate that Glu-44, a site C ligand, and Glu-130, a residue that bridges iron bound at sites B and C, limit the rate of post-oxidation reorganization of iron coordination and the rate at which Fe(3+) exits the ferroxidase center for storage within the mineral core. The latter, in particular, severely limits the overall rate of iron mineralization. Thus, the diatom ferritin is optimized for initial Fe(2+) oxidation but not for mineralization, pointing to a role for this protein in buffering iron availability and facilitating iron-sparing rather than only long-term iron storage. PMID:26396187

  4. A Diatom Ferritin Optimized for Iron Oxidation but Not Iron Storage*

    PubMed Central

    Pfaffen, Stephanie; Bradley, Justin M.; Abdulqadir, Raz; Firme, Marlo R.; Moore, Geoffrey R.; Le Brun, Nick E.; Murphy, Michael E. P.

    2015-01-01

    Ferritin from the marine pennate diatom Pseudo-nitzschia multiseries (PmFTN) plays a key role in sustaining growth in iron-limited ocean environments. The di-iron catalytic ferroxidase center of PmFTN (sites A and B) has a nearby third iron site (site C) in an arrangement typically observed in prokaryotic ferritins. Here we demonstrate that Glu-44, a site C ligand, and Glu-130, a residue that bridges iron bound at sites B and C, limit the rate of post-oxidation reorganization of iron coordination and the rate at which Fe3+ exits the ferroxidase center for storage within the mineral core. The latter, in particular, severely limits the overall rate of iron mineralization. Thus, the diatom ferritin is optimized for initial Fe2+ oxidation but not for mineralization, pointing to a role for this protein in buffering iron availability and facilitating iron-sparing rather than only long-term iron storage. PMID:26396187

  5. Ferrous iron sorption by hydrous metal oxides.

    PubMed

    Nano, Genevieve Villaseñor; Strathmann, Timothy J

    2006-05-15

    Ferrous iron is critical to a number of biogeochemical processes that occur in heterogeneous aquatic environments, including the abiotic reductive transformation of subsurface contaminants. The sorption of Fe(II) to ubiquitous soil minerals, particularly iron-free mineral phases, is not well understood. Colloidal TiO2, gamma-AlOOH, and gamma-Al2O2 were used as model hydrous oxides to investigate Fe(II) sorption to iron-free mineral surfaces. Rapid Fe(II) sorption during the first few hours is followed by a much slower uptake process that continues for extended periods (at least 30 days). For equivalent solution conditions, the extent of Fe(II) sorption decreases in the order TiO2 >gamma-Al2O3 >gamma-AlOOH. Short-term equilibrium sorption data measured over a wide range of conditions (pH, ionic strength, Fe(II)-to-sorbent ratio) are well described by the diffuse double layer model. Fe(II) sorption to TiO2 is best described by a single-site model that considers formation of two surface complexes, SOFe+ and SOFeOH0. For gamma-AlOOH and gamma-Al2O3, sorption data are best described by a two-site model that considers formation of SOFe+ complexes at weak- and strong-binding surface sites. Accurate description of sorption data for higher Fe(II) concentrations at alkaline pH conditions requires the inclusion of a Fe(II) surface precipitation reaction in the model formulation. The presence of common groundwater constituents (calcium, sulfate, bicarbonate, or fulvic acid) had no significant effect on Fe(II) sorption. These results demonstrate that iron-free soil minerals can exert a significant influence on Fe(II) sorption and speciation in heterogeneous aquatic systems. PMID:16337955

  6. Insight into the evolution of the iron oxidation pathways.

    PubMed

    Ilbert, Marianne; Bonnefoy, Violaine

    2013-02-01

    Iron is a ubiquitous element in the universe. Ferrous iron (Fe(II)) was abundant in the primordial ocean until the oxygenation of the Earth's atmosphere led to its widespread oxidation and precipitation. This change of iron bioavailability likely put selective pressure on the evolution of life. This element is essential to most extant life forms and is an important cofactor in many redox-active proteins involved in a number of vital pathways. In addition, iron plays a central role in many environments as an energy source for some microorganisms. This review is focused on Fe(II) oxidation. The fact that the ability to oxidize Fe(II) is widely distributed in Bacteria and Archaea and in a number of quite different biotopes suggests that the dissimilatory Fe(II) oxidation is an ancient energy metabolism. Based on what is known today about Fe(II) oxidation pathways, we propose that they arose independently more than once in evolution and evolved convergently. The iron paleochemistry, the phylogeny, the physiology of the iron oxidizers, and the nature of the cofactors of the redox proteins involved in these pathways suggest a possible scenario for the timescale in which each type of Fe(II) oxidation pathways evolved. The nitrate dependent anoxic iron oxidizers are likely the most ancient iron oxidizers. We suggest that the phototrophic anoxic iron oxidizers arose in surface waters after the Archaea/Bacteria-split but before the Great Oxidation Event. The neutrophilic oxic iron oxidizers possibly appeared in microaerobic marine environments prior to the Great Oxidation Event while the acidophilic ones emerged likely after the advent of atmospheric O(2). This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. PMID:23044392

  7. Thermochemistry of iron manganese oxide spinels

    SciTech Connect

    Guillemet-Fritsch, Sophie; Navrotsky, Alexandra . E-mail: anavrotsky@ucdavis.edu; Tailhades, Philippe; Coradin, Herve; Wang Miaojun

    2005-01-15

    Oxide melt solution calorimetry has been performed on iron manganese oxide spinels prepared at high temperature. The enthalpy of formation of (Mn{sub x}Fe{sub 1-x}){sub 3}O{sub 4} at 298K from the oxides, tetragonal Mn{sub 3}O{sub 4} (hausmannite) and cubic Fe{sub 3}O{sub 4} (magnetite), is negative from x=0 to x=0.67 and becomes slightly positive for 0.670.6) spinels of intermediate compositions. The enthalpies of formation are discussed in terms of three factors: oxidation-reduction relative to the end-members, cation distribution, and tetragonality. A combination of measured enthalpies and Gibbs free energies of formation in the literature provides entropies of mixing. {delta}S{sub mix}, consistent with a cation distribution in which all trivalent manganese is octahedral and all other ions are randomly distributed for x>0.5, but the entropy of mixing appears to be smaller than these predicted values for x<0.4.

  8. TRACE ELEMENT BINDING DURING STRUCTURAL TRANSFORMATION IN IRON OXIDES

    EPA Science Inventory

    Iron (hydr)oxides often control the mobility of inorganic contaminants in soils and sediments. A poorly ordered form of ferrihydrite is commonly produced during rapid oxidation of ferrous iron at sharp redox fronts encountered during discharge of anoxic/suboxic waters into terre...

  9. Ecological succession among iron-oxidizing bacteria

    PubMed Central

    Fleming, Emily J; Cetinić, Ivona; Chan, Clara S; Whitney King, D; Emerson, David

    2014-01-01

    Despite over 125 years of study, the factors that dictate species dominance in neutrophilic iron-oxidizing bacterial (FeOB) communities remain unknown. In a freshwater wetland, we documented a clear ecological succession coupled with niche separation between the helical stalk-forming Gallionellales (for example, Gallionella ferruginea) and tubular sheath-forming Leptothrix ochracea. Changes in the iron-seep community were documented using microscopy and cultivation-independent methods. Quantification of Fe-oxyhydroxide morphotypes by light microscopy was coupled with species-specific fluorescent in situ hybridization (FISH) probes using a protocol that minimized background fluorescence caused by the Fe-oxyhydroxides. Together with scanning electron microscopy, these techniques all indicated that Gallionellales dominated during early spring, with L. ochracea becoming more abundant for the remainder of the year. Analysis of tagged pyrosequencing reads of the small subunit ribosomal RNA gene (SSU rRNA) collected during seasonal progression supported a clear Gallionellales to L. ochracea transition, and community structure grouped according to observed dominant FeOB forms. Axis of redundancy analysis of physicochemical parameters collected from iron mats during the season, plotted with FeOB abundance, corroborated several field and microscopy-based observations and uncovered several unanticipated relationships. On the basis of these relationships, we conclude that the ecological niche of the stalk-forming Gallionellales is in waters with low organic carbon and steep redoxclines, and the sheath-forming L. ochracea is abundant in waters that contain high concentrations of complex organic carbon, high Fe and Mn content and gentle redoxclines. Finally, these findings identify a largely unexplored relationship between FeOB and organic carbon. PMID:24225888

  10. Iron bioavailability studies as assessed by intrinsic and extrinsic labeling techniques

    SciTech Connect

    Johnson, C.D.

    1985-01-01

    Although soybeans are a rich source of iron and incorporation of soy protein into diets is increasing, the presence of phytate or fiber endogenous to the seeds may inhibit total iron absorption from diets including soy protein. Four studies on iron bioavailability as assessed by intrinsic and extrinsic labeling techniques in rats were completed. The effect of previous dietary protein on the absorption of intrinsically /sup 59/Fe labeled defatted soy flour was determined in rats. The results indicated that the type of dietary protein (animal vs. plant) in pre-test diets would have little influence on iron absorption from a single soy protein test meal. Therefore, adaptation of soy protein does not improve bioavailability of iron. Soybean hulls were investigated as a source of iron fortification in bread. The results indicated that retention of /sup 59/Fe from white bread baked with soy hulls did not differ from white bread fortified with bakery grade ferrous sulfate. The effect of endogenous soybean phytate on iron absorption in rats was measured using seeds of varying phytate content and intrinsically labeled with /sup 59/Fe. Increasing concentration of phytate in whole soybean flour had no significant effect on iron absorption.

  11. Oxidation inhibits iron-induced blood coagulation.

    PubMed

    Pretorius, Etheresia; Bester, Janette; Vermeulen, Natasha; Lipinski, Boguslaw

    2013-01-01

    Blood coagulation under physiological conditions is activated by thrombin, which converts soluble plasma fibrinogen (FBG) into an insoluble clot. The structure of the enzymatically-generated clot is very characteristic being composed of thick fibrin fibers susceptible to the fibrinolytic degradation. However, in chronic degenerative diseases, such as atherosclerosis, diabetes mellitus, cancer, and neurological disorders, fibrin clots are very different forming dense matted deposits (DMD) that are not effectively removed and thus create a condition known as thrombosis. We have recently shown that trivalent iron (ferric ions) generates hydroxyl radicals, which subsequently convert FBG into abnormal fibrin clots in the form of DMDs. A characteristic feature of DMDs is their remarkable and permanent resistance to the enzymatic degradation. Therefore, in order to prevent thrombotic incidences in the degenerative diseases it is essential to inhibit the iron-induced generation of hydroxyl radicals. This can be achieved by the pretreatment with a direct free radical scavenger (e.g. salicylate), and as shown in this paper by the treatment with oxidizing agents such as hydrogen peroxide, methylene blue, and sodium selenite. Although the actual mechanism of this phenomenon is not yet known, it is possible that hydroxyl radicals are neutralized by their conversion to the molecular oxygen and water, thus inhibiting the formation of dense matted fibrin deposits in human blood. PMID:23170793

  12. Microbially Induced Iron Oxidation: What, Where, How

    SciTech Connect

    SCHIERMEYER,ELISA M.; PROVENCIO,PAULA P.; NORTHUP,DIANA E.

    2000-08-15

    From the results of the different bacterial cells seen, it is fairly certain that Gallionella is present because of the bean-shaped cells and twisted stalks found with the TEM. The authors cannot confirm, though, what other iron-oxidizing genera exist in the tubes, since the media was only preferential and not one that isolated a specific genus of bacteria. Based on the environment in which they live and the source of the water, they believe their cultures contain Gallionella, Leptothrix, and possibly Crenothrix and Sphaerotilus. They believe the genus Leptothrix rather than Sphaerotilus exist in the tubes because the water source was fresh, unlike the polluted water in which Sphaerotilus are usually found. The TEM preparations worked well. The cryogenic method rapidly froze the cells in place and allowed them to view their morphology. The FAA method, as stated previously, was the best of the three methods because it gave the best contrast. The gluteraldehyde samples did not come out as well. It is possible that the gluteraldehyde the authors prepared was still too concentrated and did not mix well. Although these bacteria were collected from springs and then cultured in an environment containing a presumably pure iron-bearing metal, it seems the tube already containing Manganese Gradient Medium could be used with a piece of metal containing these bacteria. A small piece of corroding metal could then be inserted into the test tube and cultured to study the bacteria.

  13. Iron oxide nanoparticle enhancement of radiation cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mazur, Courtney M.; Tate, Jennifer A.; Strawbridge, Rendall R.; Gladstone, David J.; Hoopes, P. Jack

    2013-02-01

    Iron oxide nanoparticles (IONPs) have been investigated as a promising means for inducing tumor cell-specific hyperthermia. Although the ability to generate and use nanoparticles that are biocompatible, tumor specific, and have the ability to produce adequate cytotoxic heat is very promising, significant preclinical and clinical development will be required for clinical efficacy. At this time it appears using IONP-induced hyperthermia as an adjunct to conventional cancer therapeutics, rather than as an independent treatment, will provide the initial IONP clinical treatment. Due to their high-Z characteristics, another option is to use intracellular IONPs to enhance radiation therapy without excitation with AMF (production of heat). To test this concept IONPs were added to cell culture media at a concentration of 0.2 mg Fe/mL and incubated with murine breast adenocarcinoma (MTG-B) cells for either 48 or 72 hours. Extracellular iron was then removed and all cells were irradiated at 4 Gy. Although samples incubated with IONPs for 48 hrs did not demonstrate enhanced post-irradiation cytotoxicity as compared to the non-IONP-containing cells, cells incubated with IONPs for 72 hours, which contained 40% more Fe than 48 hr incubated cells, showed a 25% decrease in clonogenic survival compared to their non-IONP-containing counterparts. These results suggest that a critical concentration of intracellular IONPs is necessary for enhancing radiation cytotoxicity.

  14. Iron oxidation and its impact on MR behavior

    NASA Astrophysics Data System (ADS)

    Sunkara, S. R.; Root, T. W.; Ulicny, J. C.; Klingenberg, D. J.

    2009-02-01

    The oxidation of particles in MR fluids and its impact on rheology are investigated. The oxidation of iron spheres in an aliphatic oil follows a linear growth law, suggesting that the oxide forms a nonadherent layer. The magnetic field-induced yield stress decreases with increasing extent of oxidation. The rheological behavior is consistent with that predicted using a core-shell model.

  15. Washing effect on superparamagnetic iron oxide nanoparticles.

    PubMed

    Mireles, Laura-Karina; Sacher, Edward; Yahia, L'Hocine; Laurent, Sophie; Stanicki, Dimitri

    2016-06-01

    Much recent research on nanoparticles has occurred in the biomedical area, particularly in the area of superparamagnetic iron oxide nanoparticles (SPIONs); one such area of research is in their use as magnetically directed prodrugs. It has been reported that nanoscale materials exhibit properties different from those of materials in bulk or on a macro scale [1]. Further, an understanding of the batch-to-batch reproducibility and uniformity of the SPION surface is essential to ensure safe biological applications, as noted in the accompanying article [2], because the surface is the first layer that affects the biological response of the human body. Here, we consider a comparison of the surface chemistries of a batch of SPIONs, before and after the supposedly gentle process of dialysis in water. PMID:27141527

  16. Washing effect on superparamagnetic iron oxide nanoparticles

    PubMed Central

    Mireles, Laura-Karina; Sacher, Edward; Yahia, L’Hocine; Laurent, Sophie; Stanicki, Dimitri

    2016-01-01

    Much recent research on nanoparticles has occurred in the biomedical area, particularly in the area of superparamagnetic iron oxide nanoparticles (SPIONs); one such area of research is in their use as magnetically directed prodrugs. It has been reported that nanoscale materials exhibit properties different from those of materials in bulk or on a macro scale [1]. Further, an understanding of the batch-to-batch reproducibility and uniformity of the SPION surface is essential to ensure safe biological applications, as noted in the accompanying article [2], because the surface is the first layer that affects the biological response of the human body. Here, we consider a comparison of the surface chemistries of a batch of SPIONs, before and after the supposedly gentle process of dialysis in water. PMID:27141527

  17. Rheological Properties of Iron Oxide Based Ferrofluids

    NASA Astrophysics Data System (ADS)

    Devi, M.; Mohanta, D.

    2009-06-01

    In the present work, we report synthesis and magneto-viscous properties of cationic and anionic surfactant coated, iron oxide nanoparticles based ferrofluids. Structural and morphological aspects are revealed by x-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. We compare the rheological/magneto-viscous properties of different ferrofluids for various shear rates (2-450 sec-1) and applied magnetic fields (0-100 gauss). In the absence of a magnetic field, and under no shear case, the ferrofluid prepared with TMAH coated particle is found to be 12% more viscous compared to its counterpart. The rheological properties are governed by non-Newtonian features, and for a definite shear rate, viscosity of a given ferrofluid is found to be strongly dependent on the applied magnetic field as well as nature of the surfactant.

  18. Multiple hearth furnace for reducing iron oxide

    DOEpatents

    Brandon, Mark M.; True, Bradford G.

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  19. Multifunctional iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bloemen, M.; Denis, C.; Van Stappen, T.; De Meester, L.; Geukens, N.; Gils, A.; Verbiest, T.

    2015-03-01

    Multifunctional nanoparticles have attracted a lot of attention since they can combine interesting properties like magnetism, fluorescence or plasmonic effects. As a core material, iron oxide nanoparticles have been the subject of intensive research. These cost-effective and non-toxic particles are used nowadays in many applications. We developed a heterobifunctional PEG ligand that can be used to introduce functional groups (carboxylic acids) onto the surface of the NP. Via click chemistry, a siloxane functionality was added to this ligand, for a subsequent covalent ligand exchange reaction. The functionalized nanoparticles have an excellent colloidal stability in complex environments like buffers and serum or plasma. Antibodies were coupled to the introduced carboxylic acids and these NP-antibody bioconjugates were brought into contact with Legionella bacteria for magnetic separation experiments.

  20. Biocompatible multishell architecture for iron oxide nanoparticles.

    PubMed

    Wotschadlo, Jana; Liebert, Tim; Clement, Joachim H; Anspach, Nils; Höppener, Stephanie; Rudolph, Tobias; Müller, Robert; Schacher, Felix H; Schubert, Ulrich S; Heinze, Thomas

    2013-01-01

    The coating of super-paramagnetic iron oxide nanoparticles (SPIONs) with multiple shells is demonstrated by building a layer assembled from carboxymethyldextran and poly(diallydimethylammonium chloride). Three shells are produced stepwise around aggregates of SPIONs by the formation of a polyelectrolyte complex. A growing particle size from 96 to 327 nm and a zeta potential in the range of +39 to -51 mV are measured. Microscopic techniques such as TEM, SEM, and AFM exemplify the core-shell structures. Magnetic force microscopy and vibrating sample magnetometer measurements confirm the architecture of the multishell particles. Cell culture experiments show that even nanoparticles with three shells are still taken up by cells. PMID:23161745

  1. Surface Engineering of Core/Shell Iron/Iron Oxide Nanoparticles from Microemulsions for Hyperthermia

    PubMed Central

    Zhang, Guandong; Liao, Yifeng; Baker, Ian

    2011-01-01

    This paper describes the synthesis and surface engineering of core/shell-type iron/iron oxide nanoparticles for magnetic hyperthermia cancer therapy. Iron/iron oxide nanoparticles were synthesized from microemulsions of NaBH4 and FeCl3, followed by surface modification in which a thin hydrophobic hexamethyldisilazane layer - used to protect the iron core - replaced the CTAB coating on the particles. Phosphatidylcholine was then assembled on the nanoparticle surface. The resulting nanocomposite particles have a biocompatible surface and show good stability in both air and aqueous solution. Compared to iron oxide nanoparticles, the nanocomposites show much better heating in an alternating magnetic field. They are good candidates for both hyperthermia and magnetic resonance imaging applications. PMID:21833157

  2. Studies of the kinetics and mechanisms of perfluoroether reactions on iron and oxidized iron surfaces

    NASA Technical Reports Server (NTRS)

    Napier, Mary E.; Stair, Peter C.

    1992-01-01

    Polymeric perfluoroalkylethers are being considered for use as lubricants in high temperature applications, but have been observed to catalytically decompose in the presence of metals. X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD) were used to explore the decomposition of three model fluorinated ethers on clean polycrystalline iron surfaces and iron surfaces chemically modified with oxygen. Low temperature adsorption of the model fluorinated ethers on the clean, oxygen modified and oxidized iron surfaces was molecular. Thermally activated defluorination of the three model compounds was observed on the clean iron surface at remarkably low temperatures, 155 K and below, with formation of iron fluoride. Preferential C-F bond scission occurred at the terminal fluoromethoxy, CF3O, of perfluoro-1-methoxy-2-ethoxy ethane and perfluoro-1-methoxy-2-ethoxy propane and at CF3/CF2O of perfluoro-1,3-diethoxy propane. The reactivity of the clean iron toward perfluoroalkylether decomposition when compared to other metals is due to the strength of the iron fluoride bond and the strong electron donating ability of the metallic iron. Chemisorption of an oxygen overlayer lowered the reactivity of the iron surface to the adsorption and decomposition of the three model fluorinated ethers by blocking active sites on the metal surface. Incomplete coverage of the iron surface with chemisorbed oxygen results in a reaction which resembles the defluorination reaction observed on the clean iron surface. Perfluoro-1-methoxy-2-ethoxy ethane reacts on the oxidized iron surface at 138 K, through a Lewis acid assisted cleavage of the carbon oxygen bond, with preferential attack at the terminal fluoromethoxy, CF3O. The oxidized iron surface did not passivate, but became more reactive with time. Perfluoro-1-methoxy-2-ethoxy propane and perfluoro-1,3-diethoxy propane desorbed prior to the observation of decomposition on the oxidized iron surface.

  3. A New Nano-sized Iron Oxide Particle with High Sensitivity for Cellular Magnetic Resonance Imaging

    PubMed Central

    Chen, Chih-Lung; Zhang, Haosen; Ye, Qing; Hsieh, Wen-Yuan; Hitchens, T. Kevin; Shen, Hsin-Hsin; Liu, Li; Wu, Yi-Jen; Foley, Lesley M.; Wang, Shian-Jy; Ho, Chien

    2011-01-01

    Purpose In this study, we investigated the labeling efficiency and magnetic resonance imaging (MRI) signal sensitivity of a newly synthesized, nano-sized iron oxide particle (IOP) coated with polyethylene glycol (PEG), designed by Industrial Technology Research Institute (ITRI). Procedures Macrophages, bone-marrow-derived dendritic cells, and mesenchymal stem cells (MSCs) were isolated from rats and labeled by incubating with ITRI-IOP, along with three other iron oxide particles in different sizes and coatings as reference. These labeled cells were characterized with transmission electron microscopy (TEM), light and fluorescence microscopy, phantom MRI, and finally in vivo MRI and ex vivo magnetic resonance microscopy (MRM) of transplanted hearts in rats infused with labeled macrophages. Results The longitudinal (r1) and transverse (r2) relaxivities of ITRI-IOP are 22.71 and 319.2 s−1 mM−1, respectively. TEM and microscopic images indicate the uptake of multiple ITRI-IOP particles per cell for all cell types. ITRI-IOP provides sensitivity comparable or higher than the other three particles shown in phantom MRI. In vivo MRI and ex vivo MRM detect punctate spots of hypointensity in rejecting hearts, most likely caused by the accumulation of macrophages labeled by ITRI-IOP. Conclusion ITRI-IOP, the nano-sized iron oxide particle, shows high efficiency in cell labeling, including both phagocytic and non-phagocytic cells. Furthermore, it provides excellent sensitivity in T2*-weighted MRI, and thus can serve as a promising contrast agent for in vivo cellular MRI. PMID:20862612

  4. Iron Photoreduction and Oxidation in an Acidic Mountain Stream

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Kimball, B. A.; Bencala, K. E.

    1988-04-01

    In a small mountain stream in Colorado that receives acidic mine drainage, photoreduction of ferric iron results in a well-defined increase in dissolved ferrous iron during the day. To quantify this process, an instream injection of a conservative tracer was used to measure discharge at the time that each sample was collected. Daytime production of ferrous iron by photoreduction was almost four times as great as nighttime oxidation of ferrous iron. The photoreduction process probably involves dissolved or colloidal ferric iron species and limited interaction with organic species because concentrations of organic carbon are low in this stream.

  5. Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials

    SciTech Connect

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Pearce, Carolyn; McCloy, John S.

    2014-12-02

    Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite, so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.

  6. Iron

    MedlinePlus

    ... organ failure, coma, convulsions, and death. Child-proof packaging and warning labels on iron supplements have greatly ... levodopa that the body absorbs, making it less effective. Levodopa, found in Sinemet® and Stalevo®, is used ...

  7. Nitric Oxide Improves Internal Iron Availability in Plants1

    PubMed Central

    Graziano, Magdalena; Beligni, María Verónica; Lamattina, Lorenzo

    2002-01-01

    Iron deficiency impairs chlorophyll biosynthesis and chloroplast development. In leaves, most of the iron must cross several biological membranes to reach the chloroplast. The components involved in the complex internal iron transport are largely unknown. Nitric oxide (NO), a bioactive free radical, can react with transition metals to form metal-nitrosyl complexes. Sodium nitroprusside, an NO donor, completely prevented leaf interveinal chlorosis in maize (Zea mays) plants growing with an iron concentration as low as 10 μm Fe-EDTA in the nutrient solution. S-Nitroso-N-acetylpenicillamine, another NO donor, as well as gaseous NO supply in a translucent chamber were also able to revert the iron deficiency symptoms. A specific NO scavenger, 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, blocked the effect of the NO donors. The effect of NO treatment on the photosynthetic apparatus of iron-deficient plants was also studied. Electron micrographs of mesophyll cells from iron-deficient maize plants revealed plastids with few photosynthetic lamellae and rudimentary grana. In contrast, in NO-treated maize plants, mesophyll chloroplast appeared completely developed. NO treatment did not increase iron content in plant organs, when expressed in a fresh matter basis, suggesting that root iron uptake was not enhanced. NO scavengers 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and methylene blue promoted interveinal chlorosis in iron-replete maize plants (growing in 250 μm Fe-EDTA). Even though results support a role for endogenous NO in iron nutrition, experiments did not establish an essential role. NO was also able to revert the chlorotic phenotype of the iron-inefficient maize mutants yellow stripe1 and yellow stripe3, both impaired in the iron uptake mechanisms. All together, these results support a biological action of NO on the availability and/or delivery of metabolically active iron within the plant. PMID:12481068

  8. Application of novel iron core/iron oxide shell nanoparticles to sentinel lymph node identification

    NASA Astrophysics Data System (ADS)

    Cousins, Aidan; Howard, Douglas; Henning, Anna M.; Nelson, Melanie R. M.; Tilley, Richard D.; Thierry, Benjamin

    2015-12-01

    Current `gold standard' staging of breast cancer and melanoma relies on accurate in vivo identification of the sentinel lymph node. By replacing conventional tracers (dyes and radiocolloids) with magnetic nanoparticles and using a handheld magnetometer probe for in vivo identification, it is believed the accuracy of sentinel node identification in nonsuperficial cancers can be improved due to increased spatial resolution of magnetometer probes and additional anatomical information afforded by MRI road-mapping. By using novel iron core/iron oxide shell nanoparticles, the sensitivity of sentinel node mapping via MRI can be increased due to an increased magnetic saturation compared to traditional iron oxide nanoparticles. A series of in vitro magnetic phantoms (iron core vs. iron oxide nanoparticles) were prepared to simulate magnetic particle accumulation in the sentinel lymph node. A novel handheld magnetometer probe was used to measure the relative signals of each phantom, and determine if clinical application of iron core particles can improve in vivo detection of the sentinel node compared to traditional iron oxide nanoparticles. The findings indicate that novel iron core nanoparticles above a certain size possess high magnetic saturation, but can also be produced with low coercivity and high susceptibility. While some modification to the design of handheld magnetometer probes may be required for particles with large coercivity, use of iron core particles could improve MRI and magnetometer probe detection sensitivity by up to 330 %.

  9. Bioavailability to rats of iron in six varieties of wheat grain intrinsically labeled with radioiron

    SciTech Connect

    House, W.A.; Welch, R.M.

    1987-03-01

    Bioavailability to anemic rats of iron in six varieties of wheat grain was assessed by a whole-body radioassay procedure. Intrinsically labeled kernels were harvested from plants grown in /sup 59/Fe-labeled nutrient solutions. The varieties used were selected from 18 varieties of field-grown wheat grain that were analyzed for iron, protein and phytate content. Concentrations of iron, phytate and protein in grain of field-grown varieties ranged from 34 to 55 ppm, 0.7 to 1.2% dry wt and 11.3 to 15.4% dry wt, respectively. In grain from varieties grown in nutrient solutions, iron, phytate and protein concentrations ranged from 35 to 50 ppm, 1 to 1.2% dry wt, and 13.8 to 16.8% dry wt, respectively. Depending on the variety of intrinsically labeled grain fed in test meals to anemic rats (hemoglobin averaged 5.8 g/dL), absorption of /sup 59/Fe ranged from about 62 to 74% of the dose; differences among varieties were not significant (P greater than 0.05). Rats fed /sup 59/Fe-labeled FeCl/sub 3/ absorbed about 71% of the dose, which was similar to the average amount (69% of dose) absorbed by rats fed wheat. We concluded that selection of wheat varieties for increased yield or protein content has not adversely affected the bioavailability of iron in the grain.

  10. Oxidative Stress and the Homeodynamics of Iron Metabolism

    PubMed Central

    Bresgen, Nikolaus; Eckl, Peter M.

    2015-01-01

    Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress. PMID:25970586

  11. Iron-Deficiency Anemia Enhances Red Blood Cell Oxidative Stress

    PubMed Central

    Nagababu, Enika; Gulyani, Seema; Earley, Christopher J.; Cutler, Roy G.; Mattson, Mark P.; Rifkind, Joseph M.

    2009-01-01

    Oxidative stress associated with iron deficiency anemia in a murine model was studied feeding an iron deficient diet. Anemia was monitored by a decrease in hematocrit and hemoglobin. For the 9 week study an increase in total iron binding capacity was also demonstrated. Anemia resulted in an increase in red blood cells (RBC) oxidative stress as indicated by increased levels of fluorescent heme degradation products (1.24 fold after 5 weeks; 2.1 fold after 9 weeks). The increase in oxidative stress was further confirmed by elevated levels of methemoglobin for mice fed an iron deficient diet. Increased hemoglobin autoxidation and subsequent generation of ROS can account for the shorter RBC lifespan and other pathological changes associated with iron deficiency anemia. PMID:19051108

  12. Microgel iron oxide nanoparticles for tracking human fetal mesenchymal stem cells through magnetic resonance imaging.

    PubMed

    Lee, Eddy S M; Chan, Jerry; Shuter, Borys; Tan, Lay Geok; Chong, Mark S K; Ramachandra, Durrgah L; Dawe, Gavin S; Ding, Jun; Teoh, Swee Hin; Beuf, Olivier; Briguet, Andre; Tam, Kam Chiu; Choolani, Mahesh; Wang, Shih-Chang

    2009-08-01

    Stem cell transplantation for regenerative medicine has made significant progress in various injury models, with the development of modalities to track stem cell fate and migration post-transplantation being currently pursued rigorously. Magnetic resonance imaging (MRI) allows serial high-resolution in vivo detection of transplanted stem cells labeled with iron oxide particles, but has been hampered by low labeling efficiencies. Here, we describe the use of microgel iron oxide (MGIO) particles of diameters spanning 100-750 nm for labeling human fetal mesenchymal stem cells (hfMSCs) for MRI tracking. We found that MGIO particle uptake by hfMSCs was size dependent, with 600-nm MGIO (M600) particles demonstrating three- to sixfold higher iron loading than the clinical particle ferucarbotran (33-263 versus 9.6-42.0 pg iron/hfMSC; p < .001). Cell labeling with either M600 particles or ferucarbotran did not affect either cellular proliferation or tri-lineage differentiation into osteoblasts, adipocytes, and chondrocytes, despite differences in gene expression on a genome-wide microarray analysis. Cell tracking in a rat photothrombotic stroke model using a clinical 1.5-T MRI scanner demonstrated the migration of labeled hfMSCs from the contralateral cortex to the stroke injury, with M600 particles achieving a five- to sevenfold higher sensitivity for MRI detection than ferucarbotran (p < .05). However, model-related cellular necrosis and acute inflammation limited the survival of hfMSCs beyond 5-12 days. The use of M600 particles allowed high detection sensitivity with low cellular toxicity to be achieved through a simple incubation protocol, and may thus be useful for cellular tracking using standard clinical MRI scanners. PMID:19544438

  13. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications.

    PubMed

    Ling, Daishun; Lee, Nohyun; Hyeon, Taeghwan

    2015-05-19

    Magnetic iron oxide nanoparticles have been extensively investigated for their various biomedical applications including diagnostic imaging, biological sensing, drug, cell, and gene delivery, and cell tracking. Recent advances in the designed synthesis and assembly of uniformly sized iron oxide nanoparticles have brought innovation in the field of nanomedicine. This Account provides a review on the recent progresses in the controlled synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. In particular, it focuses on three topics: stringent control of particle size during synthesis via the "heat-up" process, surface modification for the high stability and biocompatibility of the nanoparticles for diagnostic purposes, and assembly of the nanoparticles within polymers or mesoporous silica matrices for theranostic applications. Using extremely small 3 nm sized iron oxide nanoparticles (ESION), a new nontoxic T1 MRI contrast agent was realized for high-resolution MRI of blood vessels down to 0.2 mm. Ferrimagnetic iron oxide nanoparticles (FION) that are larger than 20 nm exhibit extremely large magnetization and coercivity values. The cells labeled with FIONs showed very high T2 contrast effect so that even a single cell can be readily imaged. Designed assembly of iron oxide nanoparticles with mesoporous silica and polymers was conducted to fabricate multifunctional nanoparticles for theranostic applications. Mesoporous silica nanoparticles are excellent scaffolds for iron oxide nanoparticles, providing magnetic resonance and fluorescence imaging modalities as well as the functionality of the drug delivery vehicle. Polymeric ligands could be designed to respond to various biological stimuli such as pH, temperature, and enzymatic activity. For example, we fabricated tumor pH-sensitive magnetic nanogrenades (termed PMNs) composed of self-assembled iron oxide nanoparticles and pH-responsive ligands. They were utilized to visualize

  14. Immobilisation of arsenic by iron(II)-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Kappler, A.; Hohmann, C.; Winkler, E.; Muehe, M.; Morin, G.

    2008-12-01

    Arsenic-contaminated groundwater is an environmental problem that affects about 1-2% of the world's population. As arsenic-contaminated water is also used for irrigating rice fields, the uptake of arsenic via rice is in some cases even higher than via drinking water. Arsenic is often of geogenic origin and in many cases bound to iron(III) minerals. Microbial iron(III) reduction leads to dissolution of Fe(III) minerals and thus the arsenic bound to these minerals is released to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II) oxidation followed by iron(III) mineral formation. Here, we present work on arsenic co-precipitation and immobilization by anaerobic and aerobic iron(II)-oxidizing bacteria. Co-precipitation batch experiments with pure cultures of nitrate-dependent, phototrophic, and microaerophilic Fe(II)-oxidizing bacteria are used to quantify the amount of arsenic that can be immobilized during microbial iron mineral precipitation. Iron and arsenic speciation and redox state are determined by X- ray diffraction and synchrotron-based X-ray absorption methods (EXAFS, XANES). Microcosm experiments are set-up either with liquid media or with rice paddy soil amended with arsenic. Rice paddy soil from arsenic contaminated rice fields in China that include a natural population of Fe(II)-oxidizing microorganisms is used as inoculum. Dissolved and solid-phase arsenic and iron are quantified, Arsenic speciation is determined and the iron minerals are identified. Additionally, Arsenic uptake into the rice plant is quantified and a gene expression pattern in rice (Oryza sativa cv Gladia) is determined by microarrays as a response to the presence of Fe(II)-oxidizing bacteria.

  15. Combined in situ zymography, immunofluorescence, and staining of iron oxide particles in paraffin-embedded, zinc-fixed tissue sections.

    PubMed

    Haeckel, Akvile; Schoenzart, Lena; Appler, Franziska; Schnorr, Joerg; Taupitz, Matthias; Hamm, Bernd; Schellenberger, Eyk

    2012-01-01

    Superparamagnetic iron oxide particles are used as potent contrast agents in magnetic resonance imaging. In histology, these particles are frequently visualized by Prussian blue iron staining of aldehyde-fixed, paraffin-embedded tissues. Recently, zinc salt-based fixative was shown to preserve enzyme activity in paraffin-embedded tissues. In this study, we demonstrate that zinc fixation allows combining in situ zymography with fluorescence immunohistochemistry (IHC) and iron staining for advanced biologic investigation of iron oxide particle accumulation. Very small iron oxide particles, developed for magnetic resonance angiography, were applied intravenously to BALB/c nude mice. After 3 hours, spleens were explanted and subjected to zinc fixation and paraffin embedding. Cut tissue sections were further processed to in situ zymography, IHC, and Prussian blue staining procedures. The combination of in situ zymography as well as IHC with subsequent Prussian blue iron staining on zinc-fixed paraffin-embedded tissues resulted in excellent histologic images of enzyme activity, protease distribution, and iron oxide particle accumulation. The combination of all three stains on a single section allowed direct comparison with only moderate degradation of fluorescein isothiocyanate-labeled substrate. This protocol is useful for investigating the biologic environment of accumulating iron oxide particles, with excellent preservation of morphology. PMID:22954182

  16. IRON

    EPA Science Inventory

    The document surveys the effects of organic and inorganic iron that are relevant to humans and their environment. The biology and chemistry of iron are complex and only partially understood. Iron participates in oxidation reduction processes that not only affect its geochemical m...

  17. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    NASA Astrophysics Data System (ADS)

    Wu, Wei; He, Quanguo; Jiang, Changzhong

    2008-10-01

    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed.

  18. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    PubMed Central

    2008-01-01

    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed. PMID:21749733

  19. Synthesis and heating effect of iron/iron oxide composite and iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeng, Q.; Baker, I.; Loudis, J. A.; Liao, Y. F.; Hoopes, P. J.

    2007-02-01

    Fe/Fe oxide nanoparticles, in which the core consists of metallic Fe and the shell is composed of Fe oxides, were obtained by reduction of an aqueous solution of FeCl 3 within a NaBH 4 solution, or, using a water-in-oil micro-emulsion with CTAB as the surfactant. The reduction was performed either in an inert atmosphere or in air, and passivation with air was performed to produce the Fe/Fe 3O 4 core/shell composite. Phase identification and particle size were determined by X-ray diffraction and TEM. Thermal analysis was performed using a differential scanning calorimeter. The quasistatic magnetic properties were measured using a VSM, and the specific absorption rates (SARs) of both Fe oxide and Fe/Fe 3O 4 composite nanoparticles either dispersed in methanol or in an epoxy resin were measured by Luxtron fiber temperature sensors in an alternating magnetic field of 150 Oe at 250 kHz. It was found that the preparation conditions, including the concentrations of solutions, the mixing procedure and the heat treatment, influence the particle size, the crystal structure and consequently the magnetic properties of the particles. Compared with Fe oxides, the saturation magnetization (MS) of Fe/Fe 3O 4 particles (100-190 emu/g) can be twice as high, and the coercivity (H C) can be tunable from several Oe to several hundred Oe. Hence, the SAR of Fe/Fe 3O 4 composite nanoparticles can be much higher than that of Fe oxides, with a maximum SAR of 345 W/g. The heating behavior is related to the magnetic behavior of the nanoparticles.

  20. Synthesis and heating effect of iron/iron oxide composite and iron oxide nanoparticles

    PubMed Central

    Zeng, Q.; Baker, I.; Loudis, J. A.; Liao, Y.F.; Hoopes, P.J.

    2014-01-01

    Fe/Fe oxide nanoparticles, in which the core consists of metallic Fe and the shell is composed of Fe oxides, were obtained by reduction of an aqueous solution of FeCl3 within a NaBH4 solution, or, using a water-in-oil micro-emulsion with CTAB as the surfactant. The reduction was performed either in an inert atmosphere or in air, and passivation with air was performed to produce the Fe/Fe3O4 core/shell composite. Phase identification and particle size were determined by X-ray diffraction and TEM. Thermal analysis was performed using a differential scanning calorimeter. The quasistatic magnetic properties were measured using a VSM, and the specific absorption rates (SARs) of both Fe oxide and Fe/Fe3O4 composite nanoparticles either dispersed in methanol or in an epoxy resin were measured by Luxtron fiber temperature sensors in an alternating magnetic field of 150 Oe at 250 kHz. It was found that the preparation conditions, including the concentrations of solutions, the mixing procedure and the heat treatment, influence the particle size, the crystal structure and consequently the magnetic properties of the particles. Compared with Fe oxides, the saturation magnetization (MS) of Fe/Fe3O4 particles (100–190 emu/g) can be twice as high, and the coercivity (HC) can be tunable from several Oe to several hundred Oe. Hence, the SAR of Fe/Fe3O4 composite nanoparticles can be much higher than that of Fe oxides, with a maximum SAR of 345 W/g. The heating behavior is related to the magnetic behavior of the nanoparticles. PMID:25301983

  1. Magnetic Labelling of Mesenchymal Stem Cells with Iron-Doped Hydroxyapatite Nanoparticles as Tool for Cell Therapy.

    PubMed

    Panseri, Silvia; Montesi, Monica; Iafisco, Michele; Adamiano, Alessio; Ghetti, Martina; Cenacchi, Giovanna; Tampieri, Anna

    2016-05-01

    Superparamagnetic nanoparticles offer several opportunities in nanomedicine and magnetic cell targeting. They are considered to be an extremely promising approach for the translation of cell-based therapies from the laboratory to clinical studies. In fact, after injection, the magnetic labeled cells could be driven by a static magnetic field and localized to the target site where they can perform their specific role. In this study, innovative iron-doped hydroxyapatite nanoparticles (FeHA NPs) were tested with mesenchymal stem cells (MSCs) as tools for cell therapy. Results showed that FeHA NPs could represent higher cell viability in'respect to commercial superparamagnetic iron oxide nanoparticles (SPION) at four different concentrations ranging from 10 μg/ml up to 200 μg/ml and would also upregulate an early marker involved in commitment and differentiation of MSCs. Moreover, FeHA NPs were uptaken without negatively affecting the cell behavior and their ultrastructure. Thus obtained magnetic cells were easily guided by application of a static magnetic field. This work demonstrates the promising opportunities of FeHA NPs in MSCs labeling due to the unique features of fast degradation and very low iron content of FeHA NPs compared to SPIONs. Likewise, due to the intrinsic properties of FeHA NPs, this approach could be simply transferred to different cell types as an effective magnetic carrier of drugs, growth factors, miRNA, etc., offering favorable prospects in nanomedicine. PMID:27305814

  2. Pharmacokinetics study of Zr-89-labeled melanin nanoparticle in iron-overload mice.

    PubMed

    Zhang, Pengjun; Yue, Yuanyuan; Pan, Donghui; Yang, Runlin; Xu, Yuping; Wang, Lizhen; Yan, Junjie; Li, Xiaotian; Yang, Min

    2016-09-01

    Melanin, a natural biological pigment present in many organisms, has been found to exhibit multiple functions. An important property of melanin is its ability to chelate metal ions strongly, which might be developed as an iron chelator for iron overload therapy. Herein, we prepared the ultrasmall water-soluble melanin nanoparticle (MP) and firstly evaluate the pharmacokinetics of MP in iron-overload mice to provide scientific basis for treating iron-overload. To study the circulation time and biodistribution, MP was labeled with (89)Zr, a long half-life (78.4h) positron-emitting metal which is suited for the labeling of nanoparticles and large bioactive molecule. MP was chelated with (89)Zr directly at pH5, resulting in non-decay-corrected yield of 89.6% and a radiochemical purity of more than 98%. The specific activity was at least190 MBq/μmol. The (89)Zr-MP was stable in human plasma and PBS for at least 48h. The half-life of (89)Zr-MP was about 15.70±1.74h in iron-overload mice. Biodistribution studies and MicroPET imaging showed that (89)Zr-MP mainly accumulated in liver and spleen, which are the target organ of iron-overload. The results indicate that the melanin nanoparticle is promising for further iron overload therapy. PMID:27359110

  3. Iron oxide-based nanomagnets in nanomedicine: fabrication and applications

    PubMed Central

    Meng Lin, Meng; Kim, Hyung-Hwan; Kim, Hyuck; Muhammed, Mamoun; Kyung Kim, Do

    2010-01-01

    Iron oxide-based nanomagnets have attracted a great deal of attention in nanomedicine over the past decade. Down to the nanoscale, superparamagnetic iron oxide nanoparticles can only be magnetized in the presence of an external magnetic field, which makes them capable of forming stable colloids in a physio-biological medium. Their superparamagnetic property, together with other intrinsic properties, such as low cytotoxicity, colloidal stability, and bioactive molecule conjugation capability, makes such nanomagnets ideal in both in-vitro and in-vivo biomedical applications. In this review, a chemical, physical, and biological synthetic approach to prepare iron oxide-based nanomagnets with different physicochemical properties was illustrated and compared. The growing interest in iron oxide-based nanomagnets with multifunctionalities was explored in cancer diagnostics and treatment, focusing on their combined roles in a magnetic resonance contrast agent, hyperthermia, and magnetic force assisted drug delivery. Iron oxides as magnetic carriers in gene therapy were reviewed with a focus on the sophisticated design and construction of magnetic vectors. Finally, the iron oxide-based nanomagnet also represents a very promising tool in particle/cell interfacing in controlling cellular functionalities, such as adhesion, proliferation, differentiation, and cell patterning, in stem cell therapy and tissue engineering applications. PMID:22110854

  4. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation.

    PubMed

    Braunschweig, Juliane; Bosch, Julian; Meckenstock, Rainer U

    2013-09-25

    Iron oxides are important constituents of soils and sediments and microbial iron reduction is considered to be a significant anaerobic respiration process in the subsurface, however low microbial reduction rates of macroparticulate Fe oxides in laboratory studies led to an underestimation of the role of Fe oxides in the global Fe redox cycle. Recent studies show the high potential of nano-sized Fe oxides in the environment as, for example, electron acceptor for microbial respiration, electron shuttle between different microorganisms, and scavenger for heavy metals. Biotic and abiotic reactivity of iron macroparticles differ significantly from nano-sized Fe oxides, which are usually much more reactive. Factors such as particle size, solubility, ferrous iron, crystal structure, and organic molecules were identified to influence the reactivity. This review discusses factors influencing the microbial reactivity of Fe oxides. It highlights the differences between natural and synthetic Fe oxides especially regarding the presence of organic molecules such as humic acids and natural organic matter. Attention is given to the transport behavior of Fe oxides in laboratory systems and in the environment, because of the high affinity of different contaminants to Fe oxide surfaces and associated co-transport of pollutants. The high reactivity of Fe oxides and their potential as adsorbents for different pollutants are discussed with respect to application and development of remediation technologies. PMID:23557995

  5. Oxalic acid capped iron oxide nanorods as a sensing platform.

    PubMed

    Sharma, Anshu; Baral, Dinesh; Bohidar, H B; Solanki, Pratima R

    2015-08-01

    A label free impedimetric immunosensor has been fabricated using protein bovine serum albumin (BSA) and monoclonal antibodies against Vibrio cholerae (Ab) functionalized oxalic acid (OA) capped iron oxide (Fe3O4) nanorods for V. cholerae detection. The structural and morphological studies of Fe3O4 and OA-Fe3O4, were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and dynamic light scattering (DLS) techniques. The average crystalline size of Fe3O4, OA-Fe3O4 nanorods were obtained as about 29±1 and 39±1nm, respectively. The hydrodynamic radius of nanorods is found as 116nm (OA-Fe3O4) and 77nm (Fe3O4) by DLS measurement. Cytotoxicity of Fe3O4 and OA-Fe3O4 nanorods has been investigated in the presence of human epithelial kidney (HEK) cell line 293 using MTT assay. The cell viability and proliferation studies reveal that the OA-Fe3O4 nanorods facilitate cell growth. The results of electrochemical response studies of the fabricated BSA/Ab/OA-Fe2O3/ITO immunosensor exhibits good linearity in the range of 12.5-500ng mL(-1) with low detection limit of 0.5ng mL(-1), sensitivity 0.1Ωng(-1)ml(-1)cm(-2) and reproducibility more than 11 times. PMID:26048074

  6. Inflammatory imaging with ultrasmall superparamagnetic iron oxide.

    PubMed

    Matsushita, Taro; Kusakabe, Yoshinori; Fujii, Hitomi; Murase, Katsutoshi; Yamazaki, Youichi; Murase, Kenya

    2011-02-01

    The purpose of this study was to investigate the usefulness and feasibility of magnetic resonance imaging (MRI) with ultrasmall superparamagnetic iron oxide (USPIO) (USPIO-enhanced MRI) for imaging inflammatory tissues. First, we investigated the relationship between the apparent transverse relaxation rate (R2*) and the concentration of USPIO by phantom studies and measured the apparent transverse relaxivity (r2*) of USPIO. Second, we performed animal experiments using a total of 30 mice. The mice were divided into five groups [A (n=6), B (n=6), C (n=6), sham control (n=6), and control (n=6)]. The mice in Groups A, B, C and control were subcutaneously injected with 0.1 ml of turpentine oil on Day 0, while those in the sham control group were subcutaneously injected with 0.1 ml of saline. The mice in Groups A, B, C and sham control were intraperitoneally injected with 200 μmol Fe per kilogram body weight of USPIO (28 nm in diameter) immediately after the first MRI study on Days 3, 5, 7 and 7, respectively, and those in the control group were not injected with USPIO. The second and third MRI studies were performed at 24 and 48 h after USPIO administration, respectively. The maps of R2* were generated from the apparent transverse relaxation time (T2*)-weighted images with six different echo times. The phantom studies showed that there was a linear relationship between R2* and the concentration of USPIO (r=0.99) and the r2* value of USPIO was 105.7 mM(-1) s(-1). There was a significant increase of R2* in inflammatory tissues in Group C at 24 h after USPIO administration compared with the precontrast R2* value. Our results suggest that USPIO-enhanced MRI combined with R2* measurement is useful for detecting inflammatory tissues. PMID:20850245

  7. Functional investigations on human mesenchymal stem cells exposed to magnetic fields and labeled with clinically approved iron nanoparticles

    PubMed Central

    2010-01-01

    Background For clinical applications of mesenchymal stem cells (MSCs), labeling and tracking is crucial to evaluate cell distribution and homing. Magnetic resonance imaging (MRI) has been successfully established detecting MSCs labeled with superparamagnetic particles of iron oxide (SPIO). Despite initial reports that labeling of MSCs with SPIO is safe without affecting the MSC's biology, recent studies report on influences of SPIO-labeling on metabolism and function of MSCs. Exposition of cells and tissues to high magnetic fields is the functional principle of MRI. In this study we established innovative labeling protocols for human MSCs using clinically established SPIO in combination with magnetic fields and investigated on functional effects (migration assays, quantification of colony forming units, analyses of gene and protein expression and analyses on the proliferation capacity, the viability and the differentiation potential) of magnetic fields on unlabeled and labeled human MSCs. To evaluate the imaging properties, quantification of the total iron load per cell (TIL), electron microscopy, and MRI at 3.0 T were performed. Results Human MSCs labeled with SPIO permanently exposed to magnetic fields arranged and grew according to the magnetic flux lines. Exposure of MSCs to magnetic fields after labeling with SPIO significantly enhanced the TIL compared to SPIO labeled MSCs without exposure to magnetic fields resulting in optimized imaging properties (detection limit: 1,000 MSCs). Concerning the TIL and the imaging properties, immediate exposition to magnetic fields after labeling was superior to exposition after 24 h. On functional level, exposition to magnetic fields inhibited the ability of colony formation of labeled MSCs and led to an enhanced expression of lipoprotein lipase and peroxisome proliferator-activated receptor-γ in labeled MSCs under adipogenic differentiation, and to a reduced expression of alkaline phosphatase in unlabeled MSCs under

  8. Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles

    SciTech Connect

    Bystrzejewski, M.

    2011-06-15

    The encapsulation of iron nanoparticles in protective carbon cages leads to unique hybrid core-shell nanomaterials. Recent literature reports suggest that such nanocomposites can be obtained in a relatively simple process involving the solid state carbothermal reduction of iron oxide nanoparticles. This approach is very attractive because it does not require advanced equipment and consumes less energy in comparison to widely used plasma methods. The presented more-in-depth study shows that the carbothermal approach is sensitive to temperature and the process yield strongly depends on the morphology and crystallinity of the carbon material used as a reductant. - Graphical abstract: Reduction of iron oxide nanoparticles by carbon black at 1200 deg. C yields well crystallized carbon-encapsulated iron nanoparticles. Highlights: > Carbon-encapsulated iron nanoparticles were synthesized by carbothermal reduction of iron oxide nanoparticles. > The process has the highest selectivity at 1200 C. > Lower temperatures result in iron oxide nanoparticles wrapped in carbon matrix. > The encapsulation rate of Fe at 1200 deg. C was found to be 15%.

  9. Oxidation-Induced Degradable Nanogels for Iron Chelation

    PubMed Central

    Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.

    2016-01-01

    Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells. PMID:26868174

  10. Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh; Xu, Youwen; Kim, Sung Won; Schueller, Michael J.; Alexoff, David; Smith, S. David; Wang, Wei; Schlyer, David

    2013-07-01

    Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled SPIO NPs was demonstrated in an in vivo experiment.Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled

  11. Photochemical Activation of Chlorine by Iron and Iron Oxide Aerosol

    NASA Astrophysics Data System (ADS)

    Wittmer, J.; Zetzsch, C.

    2015-12-01

    The photochemical activation of chlorine by dissolved iron in sea-salt aerosol droplets and by highly dispersed Fe2O3 aerosol particles (mainly hematite, specific surface > 100 m2/g), exposed to gaseous HCl, was investigated in humidified air in a Teflon simulation chamber. Employing the radical-clock technique, we quantified the production of gaseous atomic Cl. When the artificial sea salt aerosols contained suspended Fe2O3 alone at pH 6, no significant Cl production could be observed, even if the dissolution of iron was forced by "weathering" (repeatedly freezing and thawing for five times). Adjusting the pH in the stock suspension to 2.6, 2.2, and 1.9 and equilibrating for one week resulted in a quantifiable amount of dissolved iron (0.03, 0.2, and 0.6 mmol/L, respectively) and in gaseous Cl production rates of ~1.6, 6, and 8 × 1021 atoms cm-2 h-1, respectively. Exposing the pure Fe2O3 aerosol in the absence of salt to various gaseous HCl concentrations resulted in rates ranging from 8 × 1020 Cl atoms cm-2 h-1 (at ~4 ppb HCl) to 5 × 1022 Cl atoms cm-2 h-1 (at ~350 ppb HCl) and confirmed the uptake and conversion of HCl to atomic Cl (at HCl to Cl conversion yields of 2-5 % mol/mol, depending on the relative humidity). The relevance for environmental processes in the atmosphere will be discussed.

  12. The Oxidation Of Iron In A Gel Using Consumer Chemicals

    ERIC Educational Resources Information Center

    Wright, Stephen W.; Folger, Marsha R.; Quinn, Ryan P.; Sauls, Frederick C.; Krone, Diane

    2005-01-01

    An experiment is conducted for the oxidation of iron in a gel using consumer chemicals, which is pertinent to the students' understanding of redox chemistry and of the relative oxidation potentials of various metals. The experiment can be carried out with consumer chemicals that might be purchased at a supermarket and commonly found in the home.

  13. Synthesis of phase pure praseodymium barium copper iron oxide.

    PubMed

    Konne, Joshua L; Davis, Sean A; Glatzel, Stefan; Hall, Simon R

    2013-06-18

    The control of crystallization of praseodymium barium copper iron oxide, an intermediate temperature solid oxide fuel cell cathode material, has been demonstrated for the first time using a biotemplated sol-gel synthesis technique. The results obtained showed significant improvement in purity, synthesis time, surface area and simplicity over that previously reported. PMID:23660963

  14. Potassium promotion of iron oxide dehydrogenation catalysts supported on magnesium oxide: 1. Preparation and characterization

    SciTech Connect

    Stobbe, D.E.; Buren, F.R. van ); Dillen, A.J. van; Geus, J.W. )

    1992-06-01

    Catalysts of iron oxide supported on magnesium oxide and promoted with potassium were prepared by incipient wetness impregnation of preshaped magnesium oxide support pellets with a solution of an iron complex, either ammonium iron (III) citrate or ammonium iron (III) EDTA and potassium carbonate. Iron and potassium were applied wither simultaneously or consecutively. As determined using X-ray diffraction, thermogravimetric analysis, and magnetic measurements, calcination above 923 K results in the formation of a mixed oxide of iron and potassium, viz., KFeO[sub 2]. After calcination at 973 K the average crystallite size of the KFeO[sub 2] phase is about 300 [angstrom]. The formation of KFeO[sub 2] appeared to have a strong retarding effect on the reduction of the iron oxide phase to metallic iron. It was found that the KFeO[sub 2] phase is unstable in atomspheric air due to reaction with carbon dioxide and moisture to form potassium (hydrogen) carbonate and (hydrated) iron oxide.

  15. Biogeochemistry of Iron Oxidation in a Circumneutral Freshwater Habitat

    NASA Astrophysics Data System (ADS)

    Duckworth, O.; Homstrom, S.; Pena, J.; Zacharias, E.; Sposito, G.

    2007-12-01

    Iron(II) oxidation in natural waters at circumneutral pH, often regarded as an abiotic process, may be biologically- mediated when it occurs in iron-rich redox gradients. West Berry Creek, a small circumneutral tributary flowing through a mixed coniferous forest in Big Basin State Park, California, contains localized iron (hydr)oxide precipitates at points along its course where anoxic groundwater meets oxygenated creek water. These mixing zones establish redox gradients and iron-rich microbial mats that may create microenvironments that promote active biogeochemical cycling of Fe. Water sampling revealed strong correlations between the concentrations of aqueous inorganic species, suggesting a rock-weathering source for most of these solutes. Liquid chromatography-mass spectrometry detected significant concentrations of organic exudates, including low molecular mass organic acids and siderophores, indicating active biogeochemical cycling of iron is occurring in the creek. X-ray diffraction and elemental analysis showed the iron precipitates to be amorphous minerals, such as ferrihydrite. Microbial biofilm communities are associated with the iron (hydr)oxide deposits. Clone libraries developed from 16s rDNA sequences revealed the presence of microorganisms related to the neutrophilic iron- oxidizing bacteria Gallionella and Siderooxidans; in addition, micrographs suggest the widespread presence of sheath-forming bacteria (e.g., Leptothrix). Sequences from these libraries also indicated the presence of significant populations of organisms related to bacteria in the genera Pseudomonas, Sphingomonas, and Nitrospira. These geosymbiotic systems appear to be significant not only for the biogeochemical cycling of iron in the creek, but also for the cycling of organic species, inorganic nutrients, and trace metals.

  16. Heterogeneous Fenton oxidation of ofloxacin drug by iron alginate support.

    PubMed

    Titouhi, Hana; Belgaied, Jamel-Eddine

    2016-08-01

    A new catalytic wet peroxide oxidation of ofloxacin antibiotic is presented in this work. The removal was achieved using a biodegradable sodium alginate-iron material. Several parameters were studied such as iron content, drying duration of the catalytic support, temperature, solid amount and initial drug concentration. The process showed a strong oxidative ability; at optimum conditions, a nearly complete removal of the drug (around 98%) has been reached after three h of treatment. A relatively low decrease of support activity (around 10%) has been observed after three successive oxidation runs and a low iron leaching has been detected (1.2% of the incorporated quantity). The removal of the substrate has been also examined in the absence of hydrogen peroxide in order to discriminate between the contributions of simple adsorption and oxidation processes in the drug disappearance. We also discussed the influence of the studied experimental parameters on the removal kinetic. PMID:26752017

  17. Measurements of nitric oxide on the heme iron and -93 thiol of human hemoglobin during cycles of oxygenation and deoxygenation

    NASA Astrophysics Data System (ADS)

    Xu, Xiuli; Cho, Man; Spencer, Netanya Y.; Patel, Neil; Huang, Zhi; Shields, Howard; King, S. Bruce; Gladwin, Mark T.; Hogg, Neil; Kim-Shapiro, Daniel B.

    2003-09-01

    Nitric oxide has been proposed to be transported by hemoglobin as a third respiratory gas and to elicit vasodilation by an oxygen-linked (allosteric) mechanism. For hemoglobin to transport nitric oxide bioactivity it must capture nitric oxide as iron nitrosyl hemoglobin rather than destroy it by dioxygenation. Once bound to the heme iron, nitric oxide has been reported to migrate reversibly from the heme group of hemoglobin to the -93 cysteinyl residue, in response to an oxygen saturation-dependent conformational change, to form an S-nitrosothiol. However, such a transfer requires redox chemistry with oxidation of the nitric oxide or -93 cysteinyl residue. In this article, we examine the ability of nitric oxide to undergo this intramolecular transfer by cycling human hemoglobin between oxygenated and deoxygenated states. Under various conditions, we found no evidence for intramolecular transfer of nitric oxide from either cysteine to heme or heme to cysteine. In addition, we observed that contaminating nitrite can lead to formation of iron nitrosyl hemoglobin in deoxygenated hemoglobin preparations and a radical in oxygenated hemoglobin preparations. Using 15N-labeled nitrite, we clearly demonstrate that nitrite chemistry could explain previously reported results that suggested apparent nitric oxide cycling from heme to thiol. Consistent with our results from these experiments conducted in vitro, we found no arterial/venous gradient of iron nitrosyl hemoglobin detectable by electron paramagnetic resonance spectroscopy. Our results do not support a role for allosterically controlled intramolecular transfer of nitric oxide in hemoglobin as a function of oxygen saturation.

  18. Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Aaron, Jesse S.; Oh, Junghwan; Larson, Timothy A.; Kumar, Sonia; Milner, Thomas E.; Sokolov, Konstantin V.

    2006-12-01

    We describe a new approach for optical imaging that combines the advantages of molecularly targeted plasmonic nanoparticles and magnetic actuation. This combination is achieved through hybrid nanoparticles with an iron oxide core surrounded by a gold layer. The nanoparticles are targeted in-vitro to epidermal growth factor receptor, a common cancer biomarker. The gold portion resonantly scatters visible light giving a strong optical signal and the superparamagnetic core provides a means to externally modulate the optical signal. The combination of bright plasmon resonance scattering and magnetic actuation produces a dramatic increase in contrast in optical imaging of cells labeled with hybrid gold/iron oxide nanoparticles.

  19. Targeted iron oxide nanoparticles for the enhancement of radiation therapy.

    PubMed

    Hauser, Anastasia K; Mitov, Mihail I; Daley, Emily F; McGarry, Ronald C; Anderson, Kimberly W; Hilt, J Zach

    2016-10-01

    To increase the efficacy of radiation, iron oxide nanoparticles can be utilized for their ability to produce reactive oxygen species (ROS). Radiation therapy promotes leakage of electrons from the electron transport chain and leads to an increase in mitochondrial production of the superoxide anion which is converted to hydrogen peroxide by superoxide dismutase. Iron oxide nanoparticles can then catalyze the reaction from hydrogen peroxide to the highly reactive hydroxyl radical. Therefore, the overall aim of this project was to utilize iron oxide nanoparticles conjugated to a cell penetrating peptide, TAT, to escape lysosomal encapsulation after internalization by cancer cells and catalyze hydroxyl radical formation. It was determined that TAT functionalized iron oxide nanoparticles and uncoated iron oxide nanoparticles resulted in permeabilization of the lysosomal membranes. Additionally, mitochondrial integrity was compromised when A549 cells were treated with both TAT-functionalized nanoparticles and radiation. Pre-treatment with TAT-functionalized nanoparticles also significantly increased the ROS generation associated with radiation. A long term viability study showed that TAT-functionalized nanoparticles combined with radiation resulted in a synergistic combination treatment. This is likely due to the TAT-functionalized nanoparticles sensitizing the cells to subsequent radiation therapy, because the nanoparticles alone did not result in significant toxicities. PMID:27521615

  20. Iron oxide and gold nanoparticles in cancer therapy

    NASA Astrophysics Data System (ADS)

    Gotman, Irena; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.; Gutmanas, Elazar Y.

    2016-08-01

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  1. Mechanistic elucidation of C-H oxidation by electron rich non-heme iron(IV)-oxo at room temperature.

    PubMed

    Rana, Sujoy; Dey, Aniruddha; Maiti, Debabrata

    2015-10-01

    Non-heme iron(IV)-oxo species form iron(III) intermediates during hydrogen atom abstraction (HAA) from the C-H bond. While synthesizing a room temperature stable, electron rich, non-heme iron(IV)-oxo compound, we obtained iron(III)-hydroxide, iron(III)-alkoxide and hydroxylated-substrate-bound iron(II) as the detectable intermediates. The present study revealed that a radical rebound pathway was operative for benzylic C-H oxidation of ethylbenzene and cumene. A dissociative pathway for cyclohexane oxidation was established based on UV-vis and radical trap experiments. Interestingly, experimental evidence including O-18 labeling and mechanistic study suggested an electron transfer mechanism to be operative during C-H oxidation of alcohols (e.g. benzyl alcohol and cyclobutanol). The present report, therefore, unveils non-heme iron(IV)-oxo promoted substrate-dependent C-H oxidation pathways which are of synthetic as well as biological significance. PMID:26277913

  2. Microstructural effects on the oxidation of iron aluminide

    NASA Astrophysics Data System (ADS)

    Hale, Peter M.

    This work addresses the impact of processing and microstructure on the oxide chemistry and short-term isothermal oxidation rate, over the first 24h of oxidation, for the B2 iron aluminide, Fe-40Al. Research interests in iron-aluminum alloys, used for high temperature structural applications, are primarily concerned with the improvement of high temperature oxidation performance and mechanical properties. The oxidation performance of alloys with aluminum contents below 20at% is dependent upon processing and microstructure. Before this work, it was not established if there was any impact of material processing and microstructure on the oxidation performance of the high aluminum content Fe-40Al alloy. This study utilized eight industrial processes to produce six different material conditions. Among the characteristics of the microstructures produced were grain sizes from 2 to ≥500mum, oxygen contents from 0--2.6at%, and powder particle surface area-to-volume ratios from 0--0.6 m2/cm3. For the six materials tested, short-term (24h) isothermal oxidation rates were determined at 700, 750, and 800°C. The resultant rates were then used to determine the relationship between the oxidation rate constant and temperature. The chemistry, physical characteristics, and structure of the oxides formed were then characterized. It was concluded that microstructure has a limited impact on oxidation properties: no practical impact was observed on oxidation rate; an initial transient oxide layer formed independent of microstrucure; microstructure can be used to control the formation of oxide-metal interfacial voids, formed during the oxidation process; and oxide inclusion "pegs" serve to improve oxide adhesion. Additionally it was observed that contamination from hot pressing contributed to the formation of oxide nodules during oxidation. Overall the isothermal oxidation properties during the first 24h of exposure proved to be robust over many combinations of microstructures.

  3. Evidence of cell surface iron speciation of acidophilic iron-oxidizing microorganisms in indirect bioleaching process.

    PubMed

    Nie, Zhen-yuan; Liu, Hong-chang; Xia, Jin-lan; Yang, Yi; Zhen, Xiang-jun; Zhang, Li-Juan; Qiu, Guan-zhou

    2016-02-01

    While indirect model has been widely accepted in bioleaching, but the evidence of cell surface iron speciation has not been reported. In the present work the iron speciation on the cell surfaces of four typically acidophilic iron-oxidizing microorganism (mesophilic Acidithiobacillus ferrooxidans ATCC 23270, moderately thermophilic Leptospirillum ferriphilum YSK and Sulfobacillus thermosulfidooxidans St, and extremely thermophilic Acidianus manzaensis YN25) grown on different energy substrates (chalcopyrite, pyrite, ferrous sulfate and elemental sulfur (S(0))) were studied in situ firstly by using synchrotron-based micro- X-ray fluorescence analysis and X-ray absorption near-edge structure spectroscopy. Results showed that the cells grown on iron-containing substrates had apparently higher surface iron content than the cells grown on S(0). Both ferrous iron and ferric iron were detected on the cell surface of all tested AIOMs, and the Fe(II)/Fe(III) ratios of the same microorganism were affected by different energy substrates. The iron distribution and bonding state of single cell of A. manzaensis were then studied in situ by scanning transmission soft X-ray microscopy based on dual-energy contrast analysis and stack analysis. Results showed that the iron species distributed evenly on the cell surface and bonded with amino, carboxyl and hydroxyl groups. PMID:26645388

  4. A pentanuclear iron catalyst designed for water oxidation.

    PubMed

    Okamura, Masaya; Kondo, Mio; Kuga, Reiko; Kurashige, Yuki; Yanai, Takeshi; Hayami, Shinya; Praneeth, Vijayendran K K; Yoshida, Masaki; Yoneda, Ko; Kawata, Satoshi; Masaoka, Shigeyuki

    2016-02-25

    Although the oxidation of water is efficiently catalysed by the oxygen-evolving complex in photosystem II (refs 1 and 2), it remains one of the main bottlenecks when aiming for synthetic chemical fuel production powered by sunlight or electricity. Consequently, the development of active and stable water oxidation catalysts is crucial, with heterogeneous systems considered more suitable for practical use and their homogeneous counterparts more suitable for targeted, molecular-level design guided by mechanistic understanding. Research into the mechanism of water oxidation has resulted in a range of synthetic molecular catalysts, yet there remains much interest in systems that use abundant, inexpensive and environmentally benign metals such as iron (the most abundant transition metal in the Earth's crust and found in natural and synthetic oxidation catalysts). Water oxidation catalysts based on mononuclear iron complexes have been explored, but they often deactivate rapidly and exhibit relatively low activities. Here we report a pentanuclear iron complex that efficiently and robustly catalyses water oxidation with a turnover frequency of 1,900 per second, which is about three orders of magnitude larger than that of other iron-based catalysts. Electrochemical analysis confirms the redox flexibility of the system, characterized by six different oxidation states between Fe(II)5 and Fe(III)5; the Fe(III)5 state is active for oxidizing water. Quantum chemistry calculations indicate that the presence of adjacent active sites facilitates O-O bond formation with a reaction barrier of less than ten kilocalories per mole. Although the need for a high overpotential and the inability to operate in water-rich solutions limit the practicality of the present system, our findings clearly indicate that efficient water oxidation catalysts based on iron complexes can be created by ensuring that the system has redox flexibility and contains adjacent water-activation sites. PMID:26863188

  5. A pentanuclear iron catalyst designed for water oxidation

    NASA Astrophysics Data System (ADS)

    Okamura, Masaya; Kondo, Mio; Kuga, Reiko; Kurashige, Yuki; Yanai, Takeshi; Hayami, Shinya; Praneeth, Vijayendran K. K.; Yoshida, Masaki; Yoneda, Ko; Kawata, Satoshi; Masaoka, Shigeyuki

    2016-02-01

    Although the oxidation of water is efficiently catalysed by the oxygen-evolving complex in photosystem II (refs 1 and 2), it remains one of the main bottlenecks when aiming for synthetic chemical fuel production powered by sunlight or electricity. Consequently, the development of active and stable water oxidation catalysts is crucial, with heterogeneous systems considered more suitable for practical use and their homogeneous counterparts more suitable for targeted, molecular-level design guided by mechanistic understanding. Research into the mechanism of water oxidation has resulted in a range of synthetic molecular catalysts, yet there remains much interest in systems that use abundant, inexpensive and environmentally benign metals such as iron (the most abundant transition metal in the Earth’s crust and found in natural and synthetic oxidation catalysts). Water oxidation catalysts based on mononuclear iron complexes have been explored, but they often deactivate rapidly and exhibit relatively low activities. Here we report a pentanuclear iron complex that efficiently and robustly catalyses water oxidation with a turnover frequency of 1,900 per second, which is about three orders of magnitude larger than that of other iron-based catalysts. Electrochemical analysis confirms the redox flexibility of the system, characterized by six different oxidation states between FeII5 and FeIII5; the FeIII5 state is active for oxidizing water. Quantum chemistry calculations indicate that the presence of adjacent active sites facilitates O-O bond formation with a reaction barrier of less than ten kilocalories per mole. Although the need for a high overpotential and the inability to operate in water-rich solutions limit the practicality of the present system, our findings clearly indicate that efficient water oxidation catalysts based on iron complexes can be created by ensuring that the system has redox flexibility and contains adjacent water-activation sites.

  6. Bacterial oxidation of ferrous iron at low temperatures.

    PubMed

    Kupka, Daniel; Rzhepishevska, Olena I; Dopson, Mark; Lindström, E Börje; Karnachuk, Olia V; Tuovinen, Olli H

    2007-08-15

    This study comprises the first report of ferrous iron oxidation by psychrotolerant, acidophilic iron-oxidizing bacteria capable of growing at 5 degrees C. Samples of mine drainage-impacted surface soils and sediments from the Norilsk mining region (Taimyr, Siberia) and Kristineberg (Skellefte district, Sweden) were inoculated into acidic ferrous sulfate media and incubated at 5 degrees C. Iron oxidation was preceded by an approximately 3-month lag period that was reduced in subsequent cultures. Three enrichment cultures were chosen for further work and one culture designated as isolate SS3 was purified by colony isolation from a Norilsk enrichment culture for determining the kinetics of iron oxidation. The 16S rRNA based phylogeny of SS3 and two other psychrotolerant cultures, SS5 from Norilsk and SK5 from Northern Sweden, was determined. Comparative analysis of amplified 16S rRNA gene sequences showed that the psychrotolerant cultures aligned within Acidithiobacillus ferrooxidans. The rate constant of iron oxidation by growing cultures of SS3 was in the range of 0.0162-0.0104 h(-1) depending on the initial pH. The oxidation kinetics followed an exponential pattern, consistent with a first order rate expression. Parallel iron oxidation by a mesophilic reference culture of Acidithiobacillus ferrooxidans was extremely slow and linear. Precipitates harvested from the 5 degrees C culture were identified by X-ray diffraction as mixtures of schwertmannite (ideal formula Fe(8)O(8)(OH)(6)SO(4)) and jarosite (KFe(3)(SO(4))(2)(OH)(6)). Jarosite was much more dominant in precipitates produced at 30 degrees C. PMID:17304566

  7. Purification of Lysosomes Using Supraparamagnetic Iron Oxide Nanoparticles (SPIONs).

    PubMed

    Rofe, Adam P; Pryor, Paul R

    2016-04-01

    Lysosomes can be rapidly isolated from tissue culture cells using supraparamagnetic iron oxide particles (SPIONs). In this protocol, colloidal iron dextran (FeDex) particles, a type of SPION, are taken up by cultured mouse macrophage cells via the endocytic pathway. The SPIONs accumulate in lysosomes, the end point of the endocytic pathway, permitting the lysosomes to be isolated magnetically. The purified lysosomes are suitable for in vitro fusion assays or for proteomic analysis. PMID:27037068

  8. Safety assessment of chronic oral exposure to iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chamorro, Susana; Gutiérrez, Lucía; Vaquero, María Pilar; Verdoy, Dolores; Salas, Gorka; Luengo, Yurena; Brenes, Agustín; José Teran, Francisco

    2015-05-01

    Iron oxide nanoparticles with engineered physical and biochemical properties are finding a rapidly increasing number of biomedical applications. However, a wide variety of safety concerns, especially those related to oral exposure, still need to be addressed for iron oxide nanoparticles in order to reach clinical practice. Here, we report on the effects of chronic oral exposure to low doses of γ-Fe2O3 nanoparticles in growing chickens. Animal observation, weight, and diet intake reveal no adverse signs, symptoms, or mortality. No nanoparticle accumulation was observed in liver, spleen, and duodenum, with feces as the main excretion route. Liver iron level and duodenal villi morphology reflect the bioavailability of the iron released from the partial transformation of γ-Fe2O3 nanoparticles in the acid gastric environment. Duodenal gene expression studies related to the absorption of iron from γ-Fe2O3 nanoparticles indicate the enhancement of a ferric over ferrous pathway supporting the role of mucins. Our findings reveal that oral administration of iron oxide nanoparticles is a safe route for drug delivery at low nanoparticle doses.

  9. Multimodal Iron Oxide Nanoparticles for Hybrid Biomedical Imaging

    PubMed Central

    Heidt, Timo; Nahrendorf, Matthias

    2012-01-01

    Iron oxide core nanoparticles are attractive imaging agents because their material properties allow the tuning of pharmacokinetics as well as attachment of multiple moieties to their surface. In addition to affinity ligands, these include fluorochromes and radioisotopes for detection with optical and nuclear imaging. As the iron oxide core can be detected by MRI, options for combining imaging modalities are manifold. Already, preclinical imaging strategies combine non-invasive imaging with higher resolution techniques such as intravital microscopy to gain unprecedented insight into steady state biology and disease. Going forward, hybrid iron oxide nanoparticles will likely help to merge modalities, creating a synergy that enables imaging in basic research and, potentially, also in the clinic. PMID:23065771

  10. Development of Novel Biopolymer/Synthetic-Polymer/Iron Oxide Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mena Montoya, Marleth; Carranza, Sugeheidy; Hinojosa, Moisés; González, Virgilio

    2009-03-01

    In this work we report the successful development of a family of magnetic nanocomposites based on chitosan or/and polyamide 6 matrix with dispersed iron oxide nanoparticles synthesized by chemical co-precipitation. The iron oxide contents varied from 5 up to 23 wt%, the nanocomposites were studied by FTIR, UV-vis, TGA, XRD, TEM and magnetometry. The FTIR analysis demonstrates an interaction between the amide group of the polyamide 6 and the ceramic material. In formic acid, the nanocomposites absorb in the UV-Vis range, and the magnitude of the band gap (optical), calculated using the band of higher wavelength, is between 2.16 and 2.19 eV. In nanocomposites with chitosan/polyamide 6 matrix the developed morphologies are spherulites of polyamide 6 surrounded by chitosan, with the iron oxide particles presumably in the form of ferrihidryte. The measured magnetic properties revealed a superparamagnetic character on the studied specimens.

  11. Virus-Templated Near-Amorphous Iron Oxide Nanotubes.

    PubMed

    Shah, Sachin N; Khan, Abid A; Espinosa, Ana; Garcia, Miguel A; Nuansing, Wiwat; Ungureanu, Mariana; Heddle, Jonathan G; Chuvilin, Andrey L; Wege, Christina; Bittner, Alexander M

    2016-06-14

    We present a simple synthesis of iron oxide nanotubes, grown under very mild conditions from a solution containing Fe(II) and Fe(III), on rod-shaped tobacco mosaic virus templates. Their well-defined shape and surface chemistry suggest that these robust bionanoparticles are a versatile platform for synthesis of small, thin mineral tubes, which was achieved efficiently. Various characterization tools were used to explore the iron oxide in detail: Electron microscopy (SEM, TEM), magnetometry (SQUID-VSM), diffraction (XRD, TEM-SAED), electron spectroscopies (EELS, EDX, XPS), and X-ray absorption (XANES with EXAFS analysis). They allowed determination of the structure, crystallinity, magnetic properties, and composition of the tubes. The protein surface of the viral templates was crucial to nucleate iron oxide, exhibiting analogies to biomineralization in natural compartments such as ferritin cages. PMID:27181278

  12. In vivo detection of magnetic labeled oxidized multi-walled carbon nanotubes by magnetic resonance imaging.

    PubMed

    Li, Ruibin; Wu, Ren'an; Zhao, Liang; Qin, Hongqiang; Wu, Jianlin; Zhang, Jingwen; Bao, Ruyi; Zou, Hanfa

    2014-12-12

    Functionalized carbon nanotubes (f-CNTs) have been widely used in bio-medicine as drug carriers, bio-sensors, imaging agents and tissue engineering additives, which demands better understanding of their in vivo behavior because of the increasing exposure potential to humans. However, there are limited studies to investigate the in vivo biodistribution and elimination of f-CNTs. In this study, superparamagnetic iron oxides (SPIOs) were used to label oxidized multiwalled carbon nanotubes (o-MWCNTs) for in vivo distribution study of o-MWCNTs by magnetic resonance imaging (MRI). SPIO labeled o-MWCNTs (((SPIO))o-MWCNTs) were prepared by a hydrothermal reaction process, and characterized by TEM, XRD and magnetometer. ((SPIO))o-MWCNTs exhibited superparamagnetic property, excellent biocompatibility and stability. The intravenously injected ((SPIO))o-MWCNTs were observed in liver, kidney and spleen, while the subcutaneously injected ((SPIO))o-MWCNTs could be only detected in sub mucosa. Most of the intravenously injected ((SPIO))o-MWCNTs could be eliminated from liver, spleen, kidney and sub mucosa on 4 d post injection (P.I.). However, the residual o-MWCNTs could induce 30-40% MRI signal-to-noise ratio changes in these tissues even on 30 d P.I. This in vivo biodistribution and elimination information of o-MWCNTs will greatly facilitate the application of f-CNT based nanoproducts in biomedicine. In addition, the magnetic labeling method provides an approach to investigate the in vivo biodistribution and clearance of other nanomaterials. PMID:25409786

  13. Functionalizable silica-based micron-sized iron oxide particles for cellular magnetic resonance imaging.

    PubMed

    Raschzok, Nathanael; Langer, Carolin M; Schmidt, Christian; Lerche, Karl H; Billecke, Nils; Nehls, Kerstin; Schlüter, Natalie B; Leder, Annekatrin; Rohn, Susanne; Mogl, Martina T; Lüdemann, Lutz; Stelter, Lars; Teichgräber, Ulf K; Neuhaus, Peter; Sauer, Igor M

    2013-01-01

    Cellular therapies require methods for noninvasive visualization of transplanted cells. Micron-sized iron oxide particles (MPIOs) generate a strong contrast in magnetic resonance imaging (MRI) and are therefore ideally suited as an intracellular contrast agent to image cells under clinical conditions. However, MPIOs were previously not applicable for clinical use. Here, we present the development and evaluation of silica-based micron-sized iron oxide particles (sMPIOs) with a functionalizable particle surface. Particles with magnetite content of >40% were composed using the sol-gel process. The particle surfaces were covered with COOH groups. Fluorescein, poly-L-lysine (PLL), and streptavidin (SA) were covalently attached. Monodisperse sMPIOs had an average size of 1.18 µm and an iron content of about 1.0 pg Fe/particle. Particle uptake, toxicity, and imaging studies were performed using HuH7 cells and human and rat hepatocytes. sMPIOs enabled rapid cellular labeling within 4 h of incubation; PLL-modified particles had the highest uptake. In T2*-weighted 3.0 T MRI, the detection threshold in agarose was 1,000 labeled cells, whereas in T1-weighted LAVA sequences, at least 10,000 cells were necessary to induce sufficient contrast. Labeling was stable and had no adverse effects on labeled cells. Silica is a biocompatible material that has been approved for clinical use. sMPIOs could therefore be suitable for future clinical applications in cellular MRI, especially in settings that require strong cellular contrast. Moreover, the particle surface provides the opportunity to create multifunctional particles for targeted delivery and diagnostics. PMID:23294541

  14. New Insight into the Electrochromic Properties of Iron Oxides

    NASA Astrophysics Data System (ADS)

    Garcia-Lobato, Marco A.; Martinez, Arturo I.; Zarate, Ramón A.; Castro-Roman, Manuel

    2010-11-01

    We report on the structural, optical and magnetic properties of iron oxide films that were electrochemically cycled in a LiOH aqueous solution. We found that the electrochromic phenomenon is linked to the transformation of the film morphology; it goes from round-shaped particles to platy morphology. Additionally, the following phenomena were observed: a gradual blue shift of the optical-absorption edge, an increase of the saturation magnetization and the appearance of new Raman bands. The change of these properties helped us to understand the coloration mechanism for electrochromism in iron oxides.

  15. Recovery of iron oxide from coal fly ash

    DOEpatents

    Dobbins, Michael S.; Murtha, Marlyn J.

    1983-05-31

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  16. Electrolytic photodissociation of chemical compounds by iron oxide electrodes

    DOEpatents

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1984-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  17. Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes

    DOEpatents

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1985-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  18. Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery.

    PubMed

    Yen, Swee Kuan; Padmanabhan, Parasuraman; Selvan, Subramanian Tamil

    2013-01-01

    In recent years, multifunctional nanoparticles (NPs) consisting of either metal (e.g. Au), or magnetic NP (e.g. iron oxide) with other fluorescent components such as quantum dots (QDs) or organic dyes have been emerging as versatile candidate systems for cancer diagnosis, therapy, and macromolecule delivery such as micro ribonucleic acid (microRNA). This review intends to highlight the recent advances in the synthesis and application of multifunctional NPs (mainly iron oxide) in theranostics, an area used to combine therapeutics and diagnostics. The recent applications of NPs in miRNA delivery are also reviewed. PMID:24396508

  19. Multifunctional Iron Oxide Nanoparticles for Diagnostics, Therapy and Macromolecule Delivery

    PubMed Central

    Yen, Swee Kuan; Padmanabhan, Parasuraman; Selvan, Subramanian Tamil

    2013-01-01

    In recent years, multifunctional nanoparticles (NPs) consisting of either metal (e.g. Au), or magnetic NP (e.g. iron oxide) with other fluorescent components such as quantum dots (QDs) or organic dyes have been emerging as versatile candidate systems for cancer diagnosis, therapy, and macromolecule delivery such as micro ribonucleic acid (microRNA). This review intends to highlight the recent advances in the synthesis and application of multifunctional NPs (mainly iron oxide) in theranostics, an area used to combine therapeutics and diagnostics. The recent applications of NPs in miRNA delivery are also reviewed. PMID:24396508

  20. The interplay of catechol ligands with nanoparticulate iron oxides.

    PubMed

    Yuen, Alexander K L; Hutton, Georgina A; Masters, Anthony F; Maschmeyer, Thomas

    2012-03-01

    The unique properties exhibited by nanoscale materials, coupled with the multitude of chemical surface derivatisation possibilities, enable the rational design of multifunctional nanoscopic devices. Such functional devices offer exciting new opportunities in medical research and much effort is currently invested in the area of "nanomedicine", including: multimodal imaging diagnostic tools, platforms for drug delivery and vectorisation, polyvalent, multicomponent vaccines, and composite devices for "theranostics". Here we will review the surface derivatisation of nanoparticulate oxides of iron and iron@iron-oxide core-shells. They are attractive candidates for MRI-active therapeutic platforms, being potentially less toxic than lanthanide-based materials, and amenable to functionalisation with ligands. However successful grafting of groups onto the surface of iron-based nanoparticles, thus adding functionality whilst preserving their inherent properties, is one of the most difficult challenges for creating truly useful nanodevices from them. Functionalised catechol-derived ligands have enjoyed success as agents for the masking of superparamagnetic iron-oxide particles, often so as to render them biocompatible with medium to long-term colloidal stability in the complex chemical environments of biological milieux. In this perspective, the opportunities and limitations of functionalising the surfaces of iron-oxide nanoparticles, using coatings containing a catechol-derived anchor, are analysed and discussed, including recent advances using dopamine-terminated stabilising ligands. If light-driven ligand to metal charge transfer (LMCT) processes, and pH-dependent ligand desorption, leading to nanoparticle degradation under physiologically relevant conditions can be suppressed, colloidal stability of samples can be maintained and toxicity ascribed to degradation products avoided. Modulation of the redox behaviour of iron catecholate systems through the introduction of an

  1. Size-dependent magnetic properties of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Patsula, Vitalii; Moskvin, Maksym; Dutz, Silvio; Horák, Daniel

    2016-01-01

    Uniform iron oxide nanoparticles in the size range from 10 to 24 nm and polydisperse 14 nm iron oxide particles were prepared by thermal decomposition of Fe(III) carboxylates in the presence of oleic acid and co-precipitation of Fe(II) and Fe(III) chlorides by ammonium hydroxide followed by oxidation, respectively. While the first method produced hydrophobic oleic acid coated particles, the second one formed hydrophilic, but uncoated, nanoparticles. To make the iron oxide particles water dispersible and colloidally stable, their surface was modified with poly(ethylene glycol) and sucrose, respectively. Size and size distribution of the nanoparticles was determined by transmission electron microscopy, dynamic light scattering and X-ray diffraction. Surface of the PEG-functionalized and sucrose-modified iron oxide particles was characterized by Fourier transform infrared (FT-IR) and Raman spectroscopy and thermogravimetric analysis (TGA). Magnetic properties were measured by means of vibration sample magnetometry and specific absorption rate in alternating magnetic fields was determined calorimetrically. It was found, that larger ferrimagnetic particles showed higher heating performance than smaller superparamagnetic ones. In the transition range between superparamagnetism and ferrimagnetism, samples with a broader size distribution provided higher heating power than narrow size distributed particles of comparable mean size. Here presented particles showed promising properties for a possible application in magnetic hyperthermia.

  2. Deposition rates of oxidized iron on Mars

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1993-01-01

    The reddened oxidized surface of Mars is indicative of temporal interactions between the Martian atmosphere and its surface. During the evolution of the Martian regolith, primary ferromagnesian silicate and sulfide minerals in basaltic rocks apparently have been oxidized to secondary ferric-bearing assemblages. To evaluate how and when such oxidized deposits were formed on Mars, information about the mechanisms and rates of chemical weathering of Fe(2+)-bearing minerals has been determined. In this paper, mechanisms and rates of deposition of ferric oxide phases on the Martian surface are discussed.

  3. Unprecedented Selective Oxidation of Styrene Derivatives using a Supported Iron Oxide Nanocatalyst in Aqueous Medium

    EPA Science Inventory

    Iron oxide nanoparticles supported on mesoporous silica-type materials have been successfully utilized in the aqueous selective oxidation of alkenes under mild conditions using hydrogen peroxide as a green oxidant. Catalysts could be easily recovered after completion of the reac...

  4. Magnetoacoustic imaging of magnetic iron oxide nanoparticles embedded in biological tissues with microsecond magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Hu, Gang; He, Bin

    2012-01-01

    We present an experimental study on magnetoacoustic imaging of superparamagnetic iron oxide (SPIO) nanoparticles embedded in biological tissues. In experiments, a large-current-carrying coil is used to deliver microsecond pulsed magnetic stimulation to samples. The ultrasound signals induced by magnetic forces on SPIO nanoparticles are measured by a rotating transducer. The distribution of nanoparticles is reconstructed by a back-projection imaging algorithm. The results demonstrated the feasibility to obtain cross-sectional image of magnetic nanoparticle targets with faithful dimensional and positional information, which suggests a promising tool for tomographic reconstruction of magnetic nanoparticle-labeled diseased tissues (e.g., cancerous tumor) in molecular or clinic imaging.

  5. DETERMINATION OF THE RATES AND PRODUCTS OF FERROUS IRON OXIDATION IN ARSENIC-CONTAMINATED POND WATER.

    EPA Science Inventory

    Dissolved ferrous iron and arsenic in the presence of insufficient oxygenated ground water is released into a pond. When the mixing of ferrous iron and oxygenated water within the pond occurs, the ferrous iron is oxidized and precipitated as an iron oxide. Groups of experiments...

  6. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles.

    PubMed

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; Ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  7. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles

    PubMed Central

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  8. The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria.

    PubMed

    Zhang, Zhennan; Yin, Naiyi; Du, Huili; Cai, Xiaolin; Cui, Yanshan

    2016-05-01

    Arsenic (As) is a redox-active metalloid whose toxicity and mobility in soil depend on its oxidation state. Arsenite [As(III)] can be oxidized by microbes and adsorbed by minerals in the soil. However, the combined effects of these abiotic and biotic processes are not well understood. In this study, the fate of arsenic in the presence of an isolated As(III)-oxidizing bacterium (Pseudomonas sp. HN-1, 10(9) colony-forming units (CFUs)·ml(-1)) and three iron oxides (goethite, hematite, and magnetite at 1.6 g L(-1)) was determined using batch experiments. The total As adsorption by iron oxides was lower with bacteria present and was higher with iron oxides alone. The total As adsorption decreased by 78.6%, 36.0% and 79.7% for goethite, hematite and magnetite, respectively, due to the presence of bacteria. As(III) adsorbed on iron oxides could also be oxidized by Pseudomonas sp. HN-1, but the oxidation rate (1.3 μmol h(-1)) was much slower than the rate in the aqueous phase (96.2 μmol h(-1)). Therefore, the results of other studies with minerals only might overestimate the adsorptive capacity of solids in natural systems; the presence of minerals might hinder As(III) oxidation by microbes. Under aerobic conditions, in the presence of iron oxides and As(III)-oxidizing bacteria, arsenic is adsorbed onto iron oxides within the adsorption capacity, and As(V) is the primary form in the solid and aqueous phases. PMID:26933901

  9. Iron Partitioning and Oxidation State in Earth's Lower Mantle

    NASA Astrophysics Data System (ADS)

    Piet, H.; Badro, J.; Nabiei, F.; Dennenwaldt, T.; Shim, S. H. D.; Cantoni, M.; Hébert, C.; Gillet, P.

    2015-12-01

    Valence state and concentrations of iron in lower mantle phases have strong effects on their chemical and physical properties. Experimental studies have reported stark differences in iron partitioning between bridgmanite (Brg) and ferropericlase (Fp) for San Carlos olivine [1] and pyrolite [2] systems. We recently performed experiments at lower mantle conditions for an Al-rich olivine system [3] and observed an iron enrichment of the silicate phase very similar to that in pyrolite. Mössbauer studies [4] have shown that in the presence of aluminum non negligible amounts of Fe3+ could be incorporated in bridgmanite explaining the observed iron enrichment. Non negligible amounts of Fe3+ in the lower mantle could influence transport properties of the phases [5]. The evaluation of ferrous and ferric iron concentrations in lower mantle mineral assemblages is then key to a thorough understanding of geophysical observations and associated mantle dynamics. We used electron energy loss spectroscopy technique to quantify the proportions of Fe2+ and Fe3+ iron in Brg and Fp phases previously synthesized from Al-rich olivine composition [3]. The oxidation state of iron in the lower mantle will be discussed as well as ensuing implications on transport properties for relevant lower mantle compositions. References [1] Sakai et al., 2009 [2] Prescher et al., 2014 [3] Piet et al., submitted [4] McCammon et al., 1996 [5] Xu et al., 1998

  10. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release.

    PubMed

    Tai, Lin-Ai; Tsai, Pi-Ju; Wang, Yu-Chao; Wang, Yu-Jing; Lo, Leu-Wei; Yang, Chung-Shi

    2009-04-01

    Iron oxide nanoparticles can serve as a heating source upon alternative magnetic field (AMF) exposure. Iron oxide nanoparticles can be mixed with thermosensitive nanovehicles for hyperthermia-induced drug release, yet such a design and mechanism may not be suitable for controllable drug release applications in which the tissues are susceptible to environmental temperature change such as brain tissue. In the present study, iron oxide nanoparticles were entrapped inside of thermosensitive liposomes for AMF-induced drug release while the environmental temperature was maintained at a constant level. Carboxyfluorescein was co-entrapped with the iron oxide nanoparticles in the liposomes as a model compound for monitoring drug release and environmental temperature was maintained with a water circulator jacket. These experiments have been successfully performed in solution, in phantom and in anesthetized animals. Furthermore, the thermosensitive liposomes were administered into rat forearm skeletal muscle, and the release of carboxylfluorescein triggered by the external alternative magnetic field was monitored by an implanted microdialysis perfusion probe with an on-line laser-induced fluorescence detector. In the future such a device could be applied to simultaneous magnetic resonance imaging and non-invasive drug release in temperature-sensitive applications. PMID:19420485

  11. Oxidation resistant iron and nickel alloys for high temperature use

    NASA Technical Reports Server (NTRS)

    Hill, V. L.; Misra, S. K.; Wheaton, H. L.

    1970-01-01

    Iron-base and nickel-base alloys exhibit good oxidation resistance and improved ductility with addition of small amounts of yttrium, tantalum /or hafnium/, and thorium. They can be used in applications above the operating temperatures of the superalloys, if high strength materials are not required.

  12. OXYANION SORPTION TO HIGH SURFACE AREA IRON AND ALUMINUM OXIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorption of selected oxyanions (Mo, As, and P) to high surface area iron and aluminum oxides was investigated using in situ Raman and ATR-FTIR spectroscopy, batch sorption methods, electrophoretic mobility measurements, and surface complexation modeling. In situ ATR-FTIR and Raman spectra were coup...

  13. The effects of iron oxide incorporation on the chondrogenic potential of three human cell types

    PubMed Central

    Saha, Sushmita; Yang, Xuebin B; Tanner, Steven; Curran, Stephen; Wood, David; Kirkham, Jennifer

    2013-01-01

    Non-invasive monitoring of living cells in vivo provides an important tool in the development of cell-based therapies in cartilage tissue engineering. High-resolution magnetic resonance imaging (MRI) has been used to monitor target cell populations in vivo. However, the side-effects on cell function of the labelling reagents, such as superparamagnetic iron oxide (SPIO), are still unclear. This study investigated the effect of SPIO particles on the chondrogenic differentiation of human bone marrow stromal cells (HBMSCs), neonatal and adult chondrocytes in vitro. Cells were labelled with SPIO for 24 h and chondrogenesis induced in serum-free medium including TGFβ3. For labelled/unlabelled cells, viability, morphology and proliferation were determined using CellTracker™ Green and PicoGreen dsDNA assays. The expression of SOX9, COL2A1 and ACAN was investigated using qRT–PCR after 2, 7 and 14 days. The results showed that viability was unaffected in all of the cells but cell morphology changed towards a 'stretched' phenotype following SPIO uptake. Cell proliferation was reduced only for labelled neonatal chondrocytes. SOX9 and COL2A1 expression decreased at day 2 but not at days 7 and 14 for labelled HBMSCs and adult chondrocytes; ACAN expression was unaffected. In contrast, SOX9 and COL2A1 expression were unaffected in labelled neonatal chondrocytes but a decrease in ACAN expression was seen at day 14. The results suggest that downregulation of chondrogenic genes associated with SPIO labelling is temporary and target cell-dependent. Resovist® can be used to label HBMSCs or mature chondrocytes for MR imaging of cells for cartilage tissue engineering. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22396122

  14. Iron Kinetics and Evolution of Microbial Populations in Low-pH, Ferrous Iron-Oxidizing Bioreactors.

    PubMed

    Jones, Rose M; Johnson, D Barrie

    2016-08-01

    Iron-rich, acidic wastewaters are commonplace pollutants associated with metal and coal mining. Continuous-flow bioreactors were commissioned and tested for their capacities to oxidize ferrous iron in synthetic and actual acid mine drainage waters using (initially) pure cultures of the recently described acidophilic, iron-oxidizing heterotrophic bacterium Acidithrix ferrooxidans grown in the presence of glucose and yeast extract. The bioreactors became rapidly colonized by this bacterium, which formed macroscopic streamer growths in the flowing waters. Over 97% of ferrous iron in pH 2.0-2.2 synthetic mine water was oxidized (at up to 225 mg L(-1) h(-1)) at dilution rates (D) of 0.6 h(-1). Rates of iron oxidation decreased with pH but were still significant, with influent liquors as low as pH 1.37. When fed with actual mine water, >90% of ferrous iron was oxidized at D values of 0.4 h(-1), and microbial communities within the bioreactors changed over time, with Atx. ferrooxidans becoming increasingly displaced by the autotrophic iron-oxidizing acidophiles Ferrovum myxofaciens, Acidithiobacillus ferrivorans, and Leptospirillum ferrooxidans (which were all indigenous to the mine water), although this did not have a negative impact on net ferrous-iron oxidation. The results confirmed the potential of using a heterotrophic acidophile to facilitate the rapid commissioning of iron-oxidizing bioreactors and illustrated how microbial communities within them can evolve without compromising the performances of the bioreactors. PMID:27377871

  15. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  16. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  17. Aqueous Oxidative Heck Reaction as a Protein-Labeling Strategy

    PubMed Central

    Ourailidou, Maria Eleni; van der Meer, Jan-Ytzen; Baas, Bert-Jan; Jeronimus-Stratingh, Margot; Gottumukkala, Aditya L; Poelarends, Gerrit J; Minnaard, Adriaan J; Dekker, Frank J

    2014-01-01

    An increasing number of chemical reactions are being employed for bio-orthogonal ligation of detection labels to protein-bound functional groups. Several of these strategies, however, are limited in their application to pure proteins and are ineffective in complex biological samples such as cell lysates. Here we present the palladium-catalyzed oxidative Heck reaction as a new and robust bio-orthogonal strategy for linking functionalized arylboronic acids to protein-bound alkenes in high yields and with excellent chemoselectivity even in the presence of complex protein mixtures from living cells. Advantageously, this reaction proceeds under aerobic conditions, whereas most other metal-catalyzed reactions require inert atmosphere. PMID:24376051

  18. Iron oxidation state in hydrous rhyolites

    NASA Astrophysics Data System (ADS)

    Humphreys, M.; Brooker, R.; Fraser, D.; Smith, V. C.

    2012-12-01

    Recent studies have suggested that the Earth's mantle at subduction zones is oxidized relative to that at mid-ocean ridges. One possible origin of the oxidation is thought to be hydrous fluids, which are released into the mantle from the down-going slab during subduction. However, this is controversial; other studies have concluded that there is no intrinsic difference in oxidation state. One potential problem in determining primary oxidation states is that magmas produced by partial melting of the sub-arc mantle undergo significant degassing and crystallisation near the earth's surface, which may overprint the oxidation state of the primary melt. H2O contents of melt inclusions may be affected by partial re-equilibration. The effect of H2O on Fe oxidation state is unclear, although theoretical arguments typically predict increasing Fe3+/ΣFe during shallow degassing as a result of preferential diffusion of H2 out of the melt: FeO (m) + H2O (m) = Fe2O3 (m) + H2 (g) [1] We used XANES to measure Fe3+/Fe2+ in cylinders of rhyolitic obsidian that had been hydrated in gold capsules in cold-seal apparatus. Runs were performed at 850-900 °C under H2O-saturated conditions for short run times (20-80 minutes). Surprisingly, we find a positive correlation between Fe3+/ΣFe and H2O content of the glass. This is inconsistent with the effects of reaction [1], but can be explained by considering the acid-base properties of the hydrous melt. In particular, basic behaviour of FeO but amphoteric behaviour of Fe2O3, and changes in melt basicity relating to dissolution of H2O, can explain increasing Fe3+/Fe2+ with increasing H2O. We discuss the implications of these results for using melt compositions to infer the oxidation state of the earth's mantle.

  19. Release Activation of Iron Oxide Nanoparticles (REACTION): A novel environmentally sensitive MRI paradigm

    PubMed Central

    Granot, Dorit; Shapiro, Erik M.

    2011-01-01

    Smart contrast agents for MRI-based cell tracking would enable the use of MRI methodologies to not only detect the location of cells, but also gene expression. Here we report on a new enzyme/contrast agent paradigm which involves the enzymatic degradation of the polymer coating of magnetic nanoparticles to release encapsulated magnetic cores. Cells were labeled with particles coated with a polymer which is cleavable by a specific enzyme. This coat restricts the approach of water to the particle, preventing the magnetic core from efficiently relaxing protons. The reactive enzyme was delivered to cells and changes in cellular T2 and T2* relaxation times of ~ 35% and ~ 50% were achieved in vitro. Large enhancements of dark contrast volume (240%) and CNR (48%) within the contrast regions were measured, in vivo, for cells co-labeled with enzyme and particles. These results warrant exploration of genetic avenues towards achieving RElease ACTivation of Iron Oxide Nanoparticles (REACTION). PMID:21360745

  20. Surface modified superparamagnetic iron oxide nanoparticles: as a new carrier for bio-magnetically targeted therapy.

    PubMed

    Liang, Sheng; Wang, Yongxian; Yu, Junfeng; Zhang, Chunfu; Xia, Jiaoyun; Yin, Duanzhi

    2007-12-01

    Amino-functionalized superparamagnetic iron oxide nanoparticles (SPION) were synthesized by coprecipitation method. The particles were characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron micrographs (SEM), transmission electron micrographs (TEM) and atomic force micrographs (AFM). The size of the modified particles varied in the range 10-15 nm and did not change significantly after modification. Hepama-1, an excellent humanized monoclonal antibody directed against liver cancer, was conjugated to the SPION to prepare immuno-magnetic nanoparticles (IMN). A direct labeling method was employed to radiolabel IMN with rhenium-188. The radiolabeling efficiency was about 90% with good in vitro stability. (188)Re labeled IMN could markedly kill SMMC-7721 liver cancer cells. Such SPION might be very useful for bio-magnetically targeted radiotherapy in liver cancer treatment. PMID:17562137

  1. Simultaneous reductive dissolution of iron oxide and oxidation of iodide in ice.

    NASA Astrophysics Data System (ADS)

    Kim, Kitae; Choi, Wonyong

    2015-04-01

    Iron is an important trace element controlling the metabolism and growth of all kinds of living species. Especially, the bio-availability of iron has been regarded as the limiting factor for primary productivity in HNLC (High Nutrients Low Chlorophyll) regions including Southern ocean. The dissolution of iron oxide provides enhanced the bio-availability of iron for phytoplankton growth. The halogen chemistry in polar regions is related to various important environmental processes such as Antarctic Ozone Depletion Event(ODE), mercury depletion, oxidative processes in atmosphere, and the formation of CCN (Cloud Condensation Nuclei). In this study, we investigated the reductive dissolution of iron oxide particles to produce Fe(II)aq and simultaneous oxidation of I- (iodide) to I3- (tri-iodide) in ice phase under UV irradiation or dark condition. The reductive generation of Fe(II)aq from iron oxides and oxidation of iodide to I3- were negligible in water but significantly accelerated in frozen solution both in the presence and absence of light. The enhanced reductive generation of Fe(II)aq and oxidative formation of I3- in ice were observed regardless of the various types of iron oxides [hematite (α-Fe2O3) maghemite (γ- Fe2O3), goethite (α-FeOOH), lepidocrocite (γ-FeOOH) and, magnetite (Fe3O4)]. We explained that the enhanced redox production of Fe(II)aq and I3- in ice is contributed to the freeze concentration of iodides, protons, and dissolved oxygen in the unfrozen solution. When the concentration of both iodides and protons were raised by 10-fold each, the formation of Fe(II)aq in water under UV irradiation was approached to those in ice. The outdoor experiments were carried out under ambient solar radiation in winter season of mid-latitude (Pohang, Korea: 36°N latitude) and also confirmed that the production of Fe(II)aq via reductive dissolution of iron oxide and I3- generation via I- oxidation were enhanced in frozen solution. These results suggest that iron

  2. Selective stabilization of aliphatic organic carbon by iron oxide

    PubMed Central

    Adhikari, Dinesh; Yang, Yu

    2015-01-01

    Stabilization of organic matter in soil is important for natural ecosystem to sequestrate carbon and mitigate greenhouse gas emission. It is largely unknown what factors govern the preservation of organic carbon in soil, casting shadow on predicting the response of soil to climate change. Iron oxide was suggested as an important mineral preserving soil organic carbon. However, ferric minerals are subject to reduction, potentially releasing iron and decreasing the stability of iron-bound organic carbon. Information about the stability of iron-bound organic carbon in the redox reaction is limited. Herein, we investigated the sorptive interactions of organic matter with hematite and reductive release of hematite-bound organic matter. Impacts of organic matter composition and conformation on its sorption by hematite and release during the reduction reaction were analyzed. We found that hematite-bound aliphatic carbon was more resistant to reduction release, although hematite preferred to sorb more aromatic carbon. Resistance to reductive release represents a new mechanism that aliphatic soil organic matter was stabilized by association with iron oxide. Selective stabilization of aliphatic over aromatic carbon can greatly contribute to the widely observed accumulation of aliphatic carbon in soil, which cannot be explained by sorptive interactions between minerals and organic matter. PMID:26061259

  3. Chromium Substitution Effect on the Magnetic Structure of Iron Oxides

    NASA Astrophysics Data System (ADS)

    Osman Murat, Ozkendir

    2012-05-01

    The local magnetic and electronic structures of chromium substituted iron oxide polycrystalline samples are investigated via Fe L-edge x-ray absorption near-edge structural and magnetic circular dichroism measurements. A strong dependence of atomic magnetic levels on the applied external magnetic field is observed. The magnetic behavior of Cr-doped iron oxides are determined to be dominantly governed by the d—d hybridization between Fe and Cr valence levels. In addition, the formation of CrO2 and Cr2O3 chromium oxide clusters in the sample are observed to determine the magnetic ordering, i.e. anti-ferromagnetic or ferromagnetic with the changing external magnetic fields. The results highly agree with the previous studies.

  4. Oxidation, carburization and/or sulfidation resistant iron aluminide alloy

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2003-08-19

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or Zro.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B. .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  5. The Molecular Mechanism of Iron(III) Oxide Nucleation.

    PubMed

    Scheck, Johanna; Wu, Baohu; Drechsler, Markus; Rosenberg, Rose; Van Driessche, Alexander E S; Stawski, Tomasz M; Gebauer, Denis

    2016-08-18

    A molecular understanding of the formation of solid phases from solution would be beneficial for various scientific fields. However, nucleation pathways are still not fully understood, whereby the case of iron (oxyhydr)oxides poses a prime example. We show that in the prenucleation regime, thermodynamically stable solute species up to a few nanometers in size are observed, which meet the definition of prenucleation clusters. Nucleation then is not governed by a critical size, but rather by the dynamics of the clusters that are forming at the distinct nucleation stages, based on the chemistry of the linkages within the clusters. This resolves a longstanding debate in the field of iron oxide nucleation, and the results may generally apply to oxides forming via hydrolysis and condensation. The (molecular) understanding of the chemical basis of phase separation is paramount for, e.g., tailoring size, shape and structure of novel nanocrystalline materials. PMID:27466739

  6. Fractionation of Oxygen Isotopes in Phosphate during its Interactions with Iron Oxides

    SciTech Connect

    Jaisi, Deb P; Blake, Ruth E; Kukkadapu, Ravi K

    2010-02-15

    Iron (III) oxides are ubiquitous in near-surface soils and sediments and interact strongly with dissolved phosphates via sorption, co-precipitation, mineral transformation and redox-cycling reactions. Iron oxide phases are thus, an important reservoir for dissolved phosphate, and phosphate bound to iron oxides should reflect dissolved sources as well as carry a history of the biogeochemical cycling of phosphorus (P). It has recently been demonstrated that dissolved inorganic phosphate (DIP) in rivers, lakes, estuaries and the open ocean can be used to distinguish different P sources and biological reaction pathways in the ratio of 18O/16O (δ18OP) in PO43-. Here we present results of experimental studies aimed at determining whether non-biological interactions between dissolved inorganic phosphate and solid iron-oxides involve fractionation of oxygen isotopes in PO4. Determination of such fractionations is critical to any interpretation of δ18OP values of modern (e.g. hydrothermal iron oxide deposits, marine sediments, soils, groundwater systems) to ancient and extraterrestrial samples (e.g., BIF’s, Martian soils). Batch sorption experiments were performed using varied concentrations of synthetic ferrihydrite and isotopically- labeled dissolved ortho-phosphate at temperatures ranging from 4 to 95 oC. Mineral transformations and morphological changes were determined by X-Ray, Mössbauer spectroscopy and SEM image analyses. Our results reveal that isotopic fractionation between sorbed and aqueous phosphate occurs during the early phase of sorption with isotopically light phosphate preferentially incorporated into sorbed/solid phases. This fractionation showed negligible temperature-dependence and gradually decreased as a result of O-isotopic exchange between sorbed and aqueous phase phosphate, to become insignificant at greater than ~100 hours of reaction. In high-temperature experiments, this exchange was very rapid

  7. In vivo biodistribution of iron oxide nanoparticles: an overview

    NASA Astrophysics Data System (ADS)

    Tate, Jennifer A.; Petryk, Alicia A.; Giustini, Andrew J.; Hoopes, P. Jack

    2011-03-01

    Iron oxide nanoparticles present a promising alternative to conventional energy deposition-based tissue therapies. The success of such nanoparticles as a therapeutic for diseases like cancer, however, depends heavily on the particles' ability to localize to tumor tissue as well as provide minimal toxicity to surrounding tissues and key organs such as those involved in the reticuloendothelial system (RES). We present here the results of a long term clearance study where mice injected intravenously with 2 mg Fe of 100 nm dextran-coated iron oxide nanoparticles were sacrificed at 14 and 580 days post injection. Histological analysis showed accumulation of the nanoparticles in some RES organs by the 14 day time point and clearance of the nanoparticles by the 580 day time point with no obvious toxicity to organs. An additional study reported herein employs 20 nm and 110 nm starch-coated iron oxide nanoparticles at 80 mg Fe/kg mouse in a size/biodistribution study with endpoints at 4, 24 and 72 hours. Preliminary results show nanoparticle accumulation in the liver and spleen with some elevated iron accumulation in tumoral tissues with differences between the 20 nm and the 110 nm nanoparticle depositions.

  8. Missing Iron-Oxidizing Acidophiles Highly Sensitive to Organic Compounds

    PubMed Central

    Ueoka, Nagayoshi; Kouzuma, Atsushi; Watanabe, Kazuya

    2016-01-01

    The genus Acidithiobacillus includes iron-oxidizing lithoautotrophs that thrive in acidic mine environments. Acidithiobacillus ferrooxidans is a representative species and has been extensively studied for its application to the bioleaching of precious metals. In our attempts to cultivate the type strain of A. ferrooxidans (ATCC 23270T), repeated transfers to fresh inorganic media resulted in the emergence of cultures with improved growth traits. Strains were isolated from the resultant culture by forming colonies on inorganic silica-gel plates. A representative isolate (strain NU-1) was unable to form colonies on agarose plates and was more sensitive to organics, such as glucose, than the type strain of A. ferrooxidans. Strain NU-1 exhibited superior growth traits in inorganic iron media to those of other iron-oxidizing acidithiobacilli, suggesting its potential for industrial applications. A draft genome of NU-1 uncovered unique features in catabolic enzymes, indicating that this strain is not a mutant of the A. ferrooxidans type strain. Our results indicate that the use of inorganic silica-gel plates facilitates the isolation of as-yet-unexamined iron-oxidizing acidithiobacilli from environmental samples and enrichment cultures. PMID:27356527

  9. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    SciTech Connect

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  10. USE OF OXYGEN-18 ISOTOPE LABELING FOR MEASUREMENT OF OXIDATIVE STRESS

    EPA Science Inventory

    Oxygen-18 (18-O) labeling provides a sensitive means for quantifying oxygen
    binding that occurs during in vivo oxidations. Oxidants (ozone, nitrogen
    oxides, hydrogen peroxide, etc.) are first synthesized using 18-O, then cells
    or tissues are exposed to the labeled ...