Science.gov

Sample records for iron transport systems

  1. Mammalian iron transport.

    PubMed

    Anderson, Gregory Jon; Vulpe, Christopher D

    2009-10-01

    Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma. PMID:19484405

  2. The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity.

    PubMed Central

    Jordan, I; Kaplan, J

    1994-01-01

    Mammalian cells accumulate iron from ferric citrate or ferric nitrilotriacetate through the activity of a transferrin-independent iron transport system [Sturrock, Alexander, Lamb, Craven and Kaplan (1990) J. Biol. Chem. 265, 3139-3145]. The uptake system might recognize and transport ferric-anion complexes, or cells may reduce ferric iron at the surface and then transport ferrous iron. To distinguish between these possibilities we exposed cells to either [59Fe]ferric citrate or ferric [14C]citrate and determined whether accumulation of iron was accompanied by the obligatory accumulation of citrate. In HeLa cells and human skin fibroblasts the rate of accumulation of iron was three to five times greater than that of citrate. Incubation of fibroblasts with ferric citrate or ferric ammonium citrate resulted in an enhanced accumulation of iron and citrate; the molar ratio of accumulation approaching unity. A similar rate of citrate accumulation, however, was observed when ferric citrate-incubated cells were exposed to [14C]citrate alone. Further studies demonstrated the independence of iron and citrate accumulation: addition of unlabelled citrate to cells decreased the uptake of labelled citrate without affecting the accumulation of 59Fe; iron uptake was decreased by the addition of ferrous chelators whereas the uptake of citrate was unaffected; reduction of ferric iron by ascorbate increased the uptake of iron but had no effect on the uptake of citrate. When HeLa cells were depleted of calcium, iron uptake decreased, but there was little effect on citrate uptake. These results indicate that transport of iron does not require the obligatory transport of citrate and vice versa. The mammalian transferrin-independent iron transport system appears functionally similar to iron transport systems in both the bacterial and plant kingdoms which require the activities of both a surface reductase and a ferrous metal transporter. PMID:7945215

  3. Chemical Interference with Iron Transport Systems to Suppress Bacterial Growth of Streptococcus pneumoniae

    PubMed Central

    Zhang, Liang; Li, Nan; Han, Junlong; Zhang, Jing; Sun, Xuesong; He, Qing-Yu

    2014-01-01

    Iron is an essential nutrient for the growth of most bacteria. To obtain iron, bacteria have developed specific iron-transport systems located on the membrane surface to uptake iron and iron complexes such as ferrichrome. Interference with the iron-acquisition systems should be therefore an efficient strategy to suppress bacterial growth and infection. Based on the chemical similarity of iron and ruthenium, we used a Ru(II) complex R-825 to compete with ferrichrome for the ferrichrome-transport pathway in Streptococcus pneumoniae. R-825 inhibited the bacterial growth of S. pneumoniae and stimulated the expression of PiuA, the iron-binding protein in the ferrichrome-uptake system on the cell surface. R-825 treatment decreased the cellular content of iron, accompanying with the increase of Ru(II) level in the bacterium. When the piuA gene (SPD_0915) was deleted in the bacterium, the mutant strain became resistant to R-825 treatment, with decreased content of Ru(II). Addition of ferrichrome can rescue the bacterial growth that was suppressed by R-825. Fluorescence spectral quenching showed that R-825 can bind with PiuA in a similar pattern to the ferrichrome-PiuA interaction in vitro. These observations demonstrated that Ru(II) complex R-825 can compete with ferrichrome for the ferrichrome-transport system to enter S. pneumoniae, reduce the cellular iron supply, and thus suppress the bacterial growth. This finding suggests a novel antimicrobial approach by interfering with iron-uptake pathways, which is different from the mechanisms used by current antibiotics. PMID:25170896

  4. Cellular iron transport.

    PubMed

    Garrick, Michael D; Garrick, Laura M

    2009-05-01

    Iron has a split personality as an essential nutrient that also has the potential to generate reactive oxygen species. We discuss how different cell types within specific tissues manage this schizophrenia. The emphasis in enterocytes is on regulating the body's supply of iron by regulating transport into the blood stream. In developing red blood cells, adaptations in transport manage the body's highest flux of iron. Hepatocytes buffer the body's stock of iron. Macrophage recycle the iron from effete red cells among other iron management tasks. Pneumocytes provide a barrier to prevent illicit entry that, when at risk of breaching, leads to a need to handle the dangers in a fashion essentially shared with macrophage. We also discuss or introduce cell types including renal cells, neurons, other brain cells, and more where our ignorance, currently still vast, needs to be removed by future research. PMID:19344751

  5. Comparative Genomics of Iron-Transporting Systems in Bacillus cereus Strains and Impact of Iron Sources on Growth and Biofilm Formation

    PubMed Central

    Hayrapetyan, Hasmik; Siezen, Roland; Abee, Tjakko; Nierop Groot, Masja

    2016-01-01

    Iron is an important element for bacterial viability, however it is not readily available in most environments. We studied the ability of 20 undomesticated food isolates of Bacillus cereus and two reference strains for capacity to use different (complex) iron sources for growth and biofilm formation. Studies were performed in media containing the iron scavenger 2,2-Bipyridine. Transcriptome analysis using B. cereus ATCC 10987 indeed showed upregulation of predicted iron transporters in the presence of 2,2-Bipyridine, confirming that iron was depleted upon its addition. Next, the impact of iron sources on growth performance of the 22 strains was assessed and correlations between growth stimulation and presence of putative iron transporter systems in the genome sequences were analyzed. All 22 strains effectively used Fe citrate and FeCl3 for growth, and possessed genes for biosynthesis of the siderophore bacillibactin, whereas seven strains lacked genes for synthesis of petrobactin. Hemoglobin could be used by all strains with the exception of one strain that lacked functional petrobactin and IlsA systems. Hemin could be used by the majority of the tested strains (19 of 22). Notably, transferrin, ferritin, and lactoferrin were not commonly used by B. cereus for growth, as these iron sources could be used by 6, 3, and 2 strains, respectively. Furthermore, biofilm formation was found to be affected by the type of iron source used, including stimulation of biofilms at liquid-air interphase (FeCl3 and Fe citrate) and formation of submerged type biofilms (hemin and lactoferrin). Our results show strain variability in the genome-encoded repertoire of iron-transporting systems and differences in efficacy to use complex iron sources for growth and biofilm formation. These features may affect B. cereus survival and persistence in specific niches. PMID:27375568

  6. Iron transport and signaling in plants.

    PubMed

    Curie, Catherine; Briat, Jean-François

    2003-01-01

    Cellular and whole organism iron homeostasis must be balanced to supply enough iron for metabolism and to avoid excessive, toxic levels. To perform iron uptake from the environment, iron distribution to various organs and tissues, and iron intracellular compartmentalization, various membranes must be crossed by this metal. The uptake and transport of iron under physiological conditions require particular processes such as chelation or reduction because ferric iron has a very low solubility. The molecular actors involved in iron acquisition from the soil have recently been characterized. A few candidates belonging to various gene families are hypothesized to play major roles in iron distribution throughout the plant. All these transport activities are tightly regulated at transcriptional and posttranslational levels, according to the iron status of the plant. These coordinated regulations result from an integration of local and long-distance transduction pathways. PMID:14509968

  7. OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron is essential for both plant growth and human health and nutrition. Cadmium, on the other hand, is a non-essential and highly toxic element that competes with iron for uptake and partitioning in plant tissues, posing a threat to crop productivity and human health. Knowledge of signaling mechanis...

  8. Coordination Chemistry of Microbial Iron Transport.

    PubMed

    Raymond, Kenneth N; Allred, Benjamin E; Sia, Allyson K

    2015-09-15

    with the characterization of what are now called siderocalins. Initially found as a protein of the human innate immune system, these proteins bind both ferric and apo-siderophores to inactivate the siderophore transport system and hence deny iron to an invading pathogenic microbe. Siderocalins also can play a role in iron transport of the host, particularly in the early stages of fetal development. Finally, it is speculated that the molecular targets of siderocalins in different species differ based on the siderophore structures of the most important bacterial pathogens of those species. PMID:26332443

  9. Coordination Chemistry of Microbial Iron Transport

    PubMed Central

    2016-01-01

    has emerged with the characterization of what are now called siderocalins. Initially found as a protein of the human innate immune system, these proteins bind both ferric and apo-siderophores to inactivate the siderophore transport system and hence deny iron to an invading pathogenic microbe. Siderocalins also can play a role in iron transport of the host, particularly in the early stages of fetal development. Finally, it is speculated that the molecular targets of siderocalins in different species differ based on the siderophore structures of the most important bacterial pathogens of those species. PMID:26332443

  10. Iron uptake and transport across physiological barriers.

    PubMed

    Duck, Kari A; Connor, James R

    2016-08-01

    Iron is an essential element for human development. It is a major requirement for cellular processes such as oxygen transport, energy metabolism, neurotransmitter synthesis, and myelin synthesis. Despite its crucial role in these processes, iron in the ferric form can also produce toxic reactive oxygen species. The duality of iron's function highlights the importance of maintaining a strict balance of iron levels in the body. As a result, organisms have developed elegant mechanisms of iron uptake, transport, and storage. This review will focus on the mechanisms that have evolved at physiological barriers, such as the intestine, the placenta, and the blood-brain barrier (BBB), where iron must be transported. Much has been written about the processes for iron transport across the intestine and the placenta, but less is known about iron transport mechanisms at the BBB. In this review, we compare the established pathways at the intestine and the placenta as well as describe what is currently known about iron transport at the BBB and how brain iron uptake correlates with processes at these other physiological barriers. PMID:27457588

  11. The placenta: the forgotten essential organ of iron transport.

    PubMed

    Cao, Chang; Fleming, Mark D

    2016-07-01

    Optimal iron nutrition in utero is essential for development of the fetus and helps establish birth iron stores adequate to sustain growth in early infancy. In species with hemochorial placentas, such as humans and rodents, iron in the maternal circulation is transferred to the fetus by directly contacting placental syncytiotrophoblasts. Early kinetic studies provided valuable data on the initial uptake of maternal transferrin, an iron-binding protein, by the placenta. However, the remaining steps of iron trafficking across syncytiotrophoblasts and through the fetal endothelium into the fetal blood remain poorly characterized. Over the last 20 years, identification of transmembrane iron transporters and the iron regulatory hormone hepcidin has greatly expanded the knowledge of cellular iron transport and its regulation by systemic iron status. In addition, emerging human and animal data demonstrating comprised fetal iron stores in severe maternal iron deficiency challenge the classic dogma of exclusive fetal control over the transfer process and indicate that maternal and local signals may play a role in regulating this process. This review compiles current data on the kinetic, molecular, and regulatory aspects of placental iron transport and considers new questions and knowledge gaps raised by these advances. PMID:27261274

  12. Ferrous iron transport in Streptococcus mutans

    SciTech Connect

    Evans, S.L.; Arcenaeux, J.E.L.; Byers, B.R.; Martin, M.E.; Aranha, H.

    1986-12-01

    Radioiron uptake from /sup 59/FeCl/sub 3/ by Streptococcus mutans OMZ176 was increased by anaerobiosis, sodium ascorbate, and phenazine methosulfate (PMS), although there was a 10-min lag before PMS stimulation was evident. The reductant ascorbate may have provided ferrous iron. The PMS was reduced by the cells, and the reduced PMS then may have generated ferrous iron for transport; reduced PMS also may have depleted dissolved oxygen. It was concluded that S. mutans transports only ferrous iron, utilizing reductants furnished by glucose metabolism to reduce iron prior to its uptake.

  13. Iron transport in Mycobacterium smegmatis: uptake of iron from ferric citrate

    SciTech Connect

    Messenger, A.J.M.; Ratledge, C.

    1982-01-01

    In mycobacterial growth medium 40 to 400 ..mu..M citrate was required to solubilize 2 ..mu..M /sup 55/Fe. This solubilized /sup 55/Fe was taken up into both iron-deficient and iron-sufficient washed cell suspensions of Mycobacterium smegmatis and Mycobacterium bovis BCG. Although the /sup 55/Fe was taken up into the cell, the citrate was not. The uptake system with M. smegmatis was not inhibited by electron transport inhibitors, uncouplers of oxidative phosphorylation, or thiol reagents and was saturable with iron at approximately 35 ..mu..M. The system was independent of the iron transport systems already known to exist in M. smegmatis: i.e., the two exochelin routes of assimilation as well as the mycobactin-salicylate system. It was not induced by the presence of 400 ..mu..M citrate in the growth medium, nor did the presence of citrate in the medium affect the production of either exochelin or mycobactin.

  14. An ABC Transporter System of Yersinia pestis Allows Utilization of Chelated Iron by Escherichia coli SAB11

    PubMed Central

    Bearden, Scott W.; Staggs, Teanna M.; Perry, Robert D.

    1998-01-01

    The acquisition of iron is an essential component in the pathogenesis of Yersinia pestis, the agent of bubonic and pneumonic plague. A cosmid library derived from the genomic DNA of Y. pestis KIM6+ was used for transduction of an Escherichia coli mutant (SAB11) defective in the biosynthesis of the siderophore enterobactin. Recombinant plasmids which had a common 13-kb BamHI fragment were isolated from SAB11 transductants in which growth but not enterobactin synthesis was restored on media containing the iron chelator EDDA [ethylenediamine-di(o-hydroxyphenyl acetic acid)]. Subcloning and transposon mutagenesis revealed a 5.6-kb region, designated yfe, essential for SAB11 growth stimulation. In vitro transcription-translation analysis identified polypeptides of 18, 29.5, 32, and 33 kDa encoded by the yfe locus. Sequence analysis shows this locus to be comprised of five genes in two separate operons which have potential Fur-binding sequences in both promoters. A putative polycistronic operon, yfeABCD, is Fur regulated and responds to iron and manganese. A functional Fur protein is required for the observed manganese repression of this operon. This operon encodes polypeptides which have strong similarity to the ATP-binding cassette (ABC) family of transporters and include a periplasmic binding protein (YfeA), an ATP-binding protein (YfeB), and two integral membrane proteins (YfeC and -D), which likely function in the acquisition of inorganic iron and possibly other ions. The ∼21-kDa protein encoded by the separately transcribed yfeE gene may be located in the cell envelope, since a yfeE::TnphoA fusion is PhoA+. Mutations in this gene abrogate growth of SAB11 on iron-chelated media. PMID:9495751

  15. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport.

    PubMed Central

    Curie, C; Alonso, J M; Le Jean, M; Ecker, J R; Briat, J F

    2000-01-01

    Nramp genes code for a widely distributed class of proteins involved in a variety of processes, ranging from the control of susceptibility to bacterial infection in mammalian cells and taste behaviour in Drosophila to manganese uptake in yeast. Some of the NRAMP proteins in mammals and in yeast are capable of transporting metal ions, including iron. In plants, iron transport was shown to require a reduction/Fe(II) transport system. In Arabidopsis thaliana this process involves the IRT1 and Fro2 genes. Here we report the sequence of five NRAMP proteins from A. thaliana. Sequence comparison suggests that there are two classes of NRAMP proteins in plants: A. thaliana (At) NRAMP1 and Oriza sativa (Os) NRAMP1 and 3 (two rice isologues) represent one class, and AtNRAMP2-5 and OsNRAMP2 the other. AtNramp1 and OsNramp1 are able to complement the fet3fet4 yeast mutant defective both in low- and high-affinity iron transports, whereas AtNramp2 and OsNramp2 fail to do so. In addition, AtNramp1 transcript, but not AtNramp2 transcript, accumulates in response to iron deficiency in roots but not in leaves. Finally, overexpression of AtNramp1 in transgenic A. thaliana plants leads to an increase in plant resistance to toxic iron concentration. Taken together, these results demonstrate that AtNramp1 participates in the control of iron homoeostasis in plants. PMID:10769179

  16. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport.

    PubMed

    Curie, C; Alonso, J M; Le Jean, M; Ecker, J R; Briat, J F

    2000-05-01

    Nramp genes code for a widely distributed class of proteins involved in a variety of processes, ranging from the control of susceptibility to bacterial infection in mammalian cells and taste behaviour in Drosophila to manganese uptake in yeast. Some of the NRAMP proteins in mammals and in yeast are capable of transporting metal ions, including iron. In plants, iron transport was shown to require a reduction/Fe(II) transport system. In Arabidopsis thaliana this process involves the IRT1 and Fro2 genes. Here we report the sequence of five NRAMP proteins from A. thaliana. Sequence comparison suggests that there are two classes of NRAMP proteins in plants: A. thaliana (At) NRAMP1 and Oriza sativa (Os) NRAMP1 and 3 (two rice isologues) represent one class, and AtNRAMP2-5 and OsNRAMP2 the other. AtNramp1 and OsNramp1 are able to complement the fet3fet4 yeast mutant defective both in low- and high-affinity iron transports, whereas AtNramp2 and OsNramp2 fail to do so. In addition, AtNramp1 transcript, but not AtNramp2 transcript, accumulates in response to iron deficiency in roots but not in leaves. Finally, overexpression of AtNramp1 in transgenic A. thaliana plants leads to an increase in plant resistance to toxic iron concentration. Taken together, these results demonstrate that AtNramp1 participates in the control of iron homoeostasis in plants. PMID:10769179

  17. The liver: conductor of systemic iron balance

    PubMed Central

    Meynard, Delphine; Babitt, Jodie L.

    2014-01-01

    Iron is a micronutrient essential for almost all organisms: bacteria, plants, and animals. It is a metal that exists in multiple redox states, including the divalent ferrous (Fe2+) and the trivalent ferric (Fe3+) species. The multiple oxidation states of iron make it excellent for electron transfer, allowing iron to be selected during evolution as a cofactor for many proteins involved in central cellular processes including oxygen transport, mitochondrial respiration, and DNA synthesis. However, the redox cycling of ferrous and ferric iron in the presence of H2O2, which is physiologically present in the cells, also leads to the production of free radicals (Fenton reaction) that can attack and damage lipids, proteins, DNA, and other cellular components. To meet the physiological needs of the body, but to prevent cellular damage by iron, the amount of iron in the body must be tightly regulated. Here we review how the liver is the central conductor of systemic iron balance and show that this central role is related to the secretion of a peptide hormone hepcidin by hepatocytes. We then review how the liver receives and integrates the many signals that report the body’s iron needs to orchestrate hepcidin production and maintain systemic iron homeostasis. PMID:24200681

  18. Integrated gasification iron-air electrical system

    SciTech Connect

    Brown, J.T.

    1988-05-17

    An integrated, gasification, iron-air electrical system, capable of generating electrical energy from a carbonaceous material is described comprising: (A) a gasification means for carbonaceous materials comprising at least one gasification reactor, where a carbonaceous material is contacted and reacted with a gaseous medium containing steam and air, at a temperature and for a time effective to gasify the carbonaceous material and produce a hot gaseous reaction product comprising CO and H/sub 2/; (B) an iron-air cell containing at least one discharged iron electrode; (C) means to remove the discharged iron electrode from the cell of (B), and contact it with the gaseous reaction product produced in (A); (D) the discharged iron electrode removed from the cell of (B), containing material consisting essentially of Fe and Fe(OH)/sub 2/, which electrode is contacted with the hot gaseous reaction product produced in the gasification reactor of (A), directly, at a temperature of from about 450/sup 0/C to about 700/sup 0/C, for a time effective to convert, by reduction, discharged iron compounds consisting essentially of Fe and Fe(OH)/sub 2/ to charge iron compounds in the electrode and provide a recharged iron electrode; (E) an iron-air cell into which the recharged iron electrode provided in (D) is placed; (F) means to transport the recharged iron electrode provided in (D) to the iron-air cell of (E); and (G) electrical connection means attached to the iron-air cell of (E), providing the cell with capability of generating electrical energy.

  19. Iron-sulfur-based single molecular wires for enhancing charge transport in enzyme-based bioelectronic systems.

    PubMed

    Mahadevan, Aishwarya; Fernando, Teshan; Fernando, Sandun

    2016-04-15

    When redox enzymes are wired to electrodes outside a living cell (ex vivo), their ability to produce a sufficiently powerful electrical current diminishes significantly due to the thermodynamic and kinetic limitations associated with the wiring systems. Therefore, we are yet to harness the full potential of redox enzymes for the development of self-powering bioelectronics devices (such as sensors and fuel cells). Interestingly, nature uses iron-sulfur complexes ([Fe-S]), to circumvent these issues in vivo. Yet, we have not been able to utilize [Fe-S]-based chains ex vivo, primarily due to their instability in aqueous media. Here, a simple technique to attach iron (II) sulfide (FeS) to a gold surface in ethanol media and then complete the attachment of the enzyme in aqueous media is reported. Cyclic voltammetry and spectroscopy techniques confirmed the concatenation of FeS and glycerol-dehydrogenase/nicotinamide-adenine-dinucleotide (GlDH-NAD(+)) apoenzyme-coenzyme molecular wiring system on the base gold electrode. The resultant FeS-based enzyme electrode reached an open circuit voltage closer to its standard potential under a wide range of glycerol concentrations (0.001-1M). When probed under constant potential conditions, the FeS-based electrode was able to amplify current by over 10 fold as compared to electrodes fabricated with the conventional pyrroloquinoline quinone-based composite molecular wiring system. These improvements in current/voltage responses open up a wide range of possibilities for fabricating self-powering, bio-electronic devices. PMID:26657591

  20. mRNA regulation of cardiac iron transporters and ferritin subunits in a mouse model of iron overload.

    PubMed

    Brewer, Casey J; Wood, Ruth I; Wood, John C

    2014-12-01

    Iron cardiomyopathy is the leading cause of death in iron overload. Men have twice the mortality rate of women, though the cause is unknown. In hemojuvelin-knockout mice, a model of the disease, males load more cardiac iron than females. We postulated that sex differences in cardiac iron import cause differences in cardiac iron concentration. Reverse transcription polymerase chain reaction was used to measure mRNA of cardiac iron transporters in hemojuvelin-knockout mice. No sex differences were discovered among putative importers of nontransferrin-bound iron (L-type and T-type calcium channels, ZRT/IRT-like protein 14 zinc channels). Transferrin-bound iron transporters were also analyzed; these are controlled by the iron regulatory element/iron regulatory protein (IRE/IRP) system. There was a positive relationship between cardiac iron and ferroportin mRNA in both sexes, but it was significantly steeper in females (p < 0.05). Transferrin receptor 1 and divalent metal transporter 1 were more highly expressed in females than males (p < 0.01 and p < 0.0001, respectively), consistent with their lower cardiac iron levels, as predicted by IRE/IRP regulatory pathways. Light-chain ferritin showed a positive correlation with cardiac iron that was nearly identical in males and females (R(2) = 0.41, p < 0.01; R(2) = 0.56, p < 0.05, respectively), whereas heavy-chain ferritin was constitutively expressed in both sexes. This represents the first report of IRE/IRP regulatory pathways in the heart. Transcriptional regulation of ferroportin was suggested in both sexes, creating a potential mechanism for differential set points for iron export. Constitutive heavy-chain-ferritin expression suggests a logical limit to cardiac iron buffering capacity at levels known to produce heart failure in humans. PMID:25220979

  1. Ascorbate efflux as a new strategy for iron reduction and transport in plants.

    PubMed

    Grillet, Louis; Ouerdane, Laurent; Flis, Paulina; Hoang, Minh Thi Thanh; Isaure, Marie-Pierre; Lobinski, Ryszard; Curie, Catherine; Mari, Stéphane

    2014-01-31

    Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled (55)Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds. PMID:24347170

  2. Ascorbate Efflux as a New Strategy for Iron Reduction and Transport in Plants*

    PubMed Central

    Grillet, Louis; Ouerdane, Laurent; Flis, Paulina; Hoang, Minh Thi Thanh; Isaure, Marie-Pierre; Lobinski, Ryszard; Curie, Catherine; Mari, Stéphane

    2014-01-01

    Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled 55Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds. PMID:24347170

  3. Identification and transcriptional analysis of a Treponema pallidum operon encoding a putative ABC transport system, an iron-activated repressor protein homolog, and a glycolytic pathway enzyme homolog.

    PubMed

    Hardham, J M; Stamm, L V; Porcella, S F; Frye, J G; Barnes, N Y; Howell, J K; Mueller, S L; Radolf, J D; Weinstock, G M; Norris, S J

    1997-09-15

    We have characterized a 5.2-kilobase (kb) putative transport related operon (tro) locus of Treponema pallidum subsp. pallidum (Nichols strain) (Tp) encoding six proteins: TroA, TroB, TroC, TroD, TroR and Phosphoglycerate mutase (Pgm). Four of these gene products (TroA-TroD) are homologous to members of the ATP-Binding Cassette (ABC) superfamily of bacterial transport proteins. TroA (previously identified as Tromp1) has significant sequence similarity to a family of Gram-negative periplasmic substrate-binding proteins and to a family of streptococcal proteins that may have dual roles as substrate binding proteins and adhesins. TroB is homologous to the ATP-binding protein component, whereas TroC and TroD are related to the hydrophobic membrane protein components of ABC transport systems. TroR is similar to Gram-positive iron-activated repressor proteins (DesR, DtxR, IdeR, and SirR). The last open reading frame (ORF) of the tro operon encodes a protein that is highly homologous to the glycolytic pathway enzyme, Pgm. Primer extension results demonstrated that the tro operon is transcribed from a sigma 70-type promoter element. Northern analysis and reverse transcriptase-polymerase chain reactions provided evidence for the presence of a primary 1-kb troA transcript and a secondary, less abundant, troA-pgm transcript. The tro operon is flanked by a Holliday structure DNA helicase homolog (upstream) and two ORFs representing a purine nucleoside phosphorylase homolog and tpp15, a previously characterized gene encoding a membrane lipoprotein (downstream). The presence of a complex operon containing a putative ABC transport system and a DtxR homolog indicates a possible linkage between transport and gene regulation in Tp. PMID:9332349

  4. Effects of developmental iron deficiency and post-weaning iron repletion on the levels of iron transporter proteins in rats

    PubMed Central

    Oh, Sugyoung; Shin, Pill-kyung

    2015-01-01

    BACKGROUND/OBJECTIVES Iron deficiency in early life is associated with developmental problems, which may persist until later in life. The question of whether iron repletion after developmental iron deficiency could restore iron homeostasis is not well characterized. In the present study, we investigated the changes of iron transporters after iron depletion during the gestational-neonatal period and iron repletion during the post-weaning period. MATERIALS/METHODS Pregnant rats were provided iron-deficient (< 6 ppm Fe) or control (36 ppm Fe) diets from gestational day 2. At weaning, pups from iron-deficient dams were fed either iron-deficient (ID group) or control (IDR group) diets for 4 week. Pups from control dams were continued to be fed with the control diet throughout the study period (CON). RESULTS Compared to the CON, ID rats had significantly lower hemoglobin and hematocrits in the blood and significantly lower tissue iron in the liver and spleen. Hepatic hepcidin and BMP6 mRNA levels were also strongly down-regulated in the ID group. Developmental iron deficiency significantly increased iron transporters divalent metal transporter 1 (DMT1) and ferroportin (FPN) in the duodenum, but decreased DMT1 in the liver. Dietary iron repletion restored the levels of hemoglobin and hematocrit to a normal range, but the tissue iron levels and hepatic hepcidin mRNA levels were significantly lower than those in the CON group. Both FPN and DMT1 protein levels in the liver and in the duodenum were not different between the IDR and the CON. By contrast, DMT1 in the spleen was significantly lower in the IDR, compared to the CON. The splenic FPN was also decreased in the IDR more than in the CON, although the difference did not reach statistical significance. CONCLUSIONS Our findings demonstrate that iron transporter proteins in the duodenum, liver and spleen are differentially regulated during developmental iron deficiency. Also, post-weaning iron repletion efficiently

  5. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence

    PubMed Central

    Porcheron, Gaëlle; Garénaux, Amélie; Proulx, Julie; Sabri, Mourad; Dozois, Charles M.

    2013-01-01

    For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese, and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC) virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect. PMID:24367764

  6. Atypical iron storage in marine brown algae: a multidisciplinary study of iron transport and storage in Ectocarpus siliculosus

    PubMed Central

    Matzanke, Berthold F.; Küpper, Frithjof C.; Carrano, Carl J.

    2012-01-01

    Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood, with two basic strategies for iron uptake being distinguished: strategy I plants use a mechanism involving induction of Fe(III)-chelate reductase (ferrireductase) and Fe(II) transporter proteins, while strategy II plants utilize high-affinity, iron-specific, binding compounds called phytosiderophores. In contrast, little is known about the corresponding systems in marine, plant-like lineages, particularly those of multicellular algae (seaweeds). Herein the first study of the iron uptake and storage mechanisms in the brown alga Ectocarpus siliculosus is reported. Genomic data suggest that Ectocarpus may use a strategy I approach. Short-term radio-iron uptake studies verified that iron is taken up by Ectocarpus in a time- and concentration-dependent manner consistent with an active transport process. Upon long-term exposure to 57Fe, two metabolites have been identified using a combination of Mössbauer and X-ray absorption spectroscopies. These include an iron–sulphur cluster accounting for ~26% of the total intracellular iron pool and a second component with spectra typical of a polymeric (Fe3+O6) system with parameters similar to the amorphous phosphorus-rich mineral core of bacterial and plant ferritins. This iron metabolite accounts for ~74% of the cellular iron pool and suggests that Ectocarpus contains a non-ferritin but mineral-based iron storage pool. PMID:22945940

  7. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology.

    PubMed

    López-Millán, Ana F; Duy, Daniela; Philippar, Katrin

    2016-01-01

    Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field. PMID:27014281

  8. Quercetin inhibits intestinal iron absorption and ferroportin transporter expression in vivo and in vitro.

    PubMed

    Lesjak, Marija; Hoque, Rukshana; Balesaria, Sara; Skinner, Vernon; Debnam, Edward S; Srai, Surjit K S; Sharp, Paul A

    2014-01-01

    Balancing systemic iron levels within narrow limits is critical for maintaining human health. There are no known pathways to eliminate excess iron from the body and therefore iron homeostasis is maintained by modifying dietary absorption so that it matches daily obligatory losses. Several dietary factors can modify iron absorption. Polyphenols are plentiful in human diet and many compounds, including quercetin--the most abundant dietary polyphenol--are potent iron chelators. The aim of this study was to investigate the acute and longer-term effects of quercetin on intestinal iron metabolism. Acute exposure of rat duodenal mucosa to quercetin increased apical iron uptake but decreased subsequent basolateral iron efflux into the circulation. Quercetin binds iron between its 3-hydroxyl and 4-carbonyl groups and methylation of the 3-hydroxyl group negated both the increase in apical uptake and the inhibition of basolateral iron release, suggesting that the acute effects of quercetin on iron transport were due to iron chelation. In longer-term studies, rats were administered quercetin by a single gavage and iron transporter expression measured 18 h later. Duodenal FPN expression was decreased in quercetin-treated rats. This effect was recapitulated in Caco-2 cells exposed to quercetin for 18 h. Reporter assays in Caco-2 cells indicated that repression of FPN by quercetin was not a transcriptional event but might be mediated by miRNA interaction with the FPN 3'UTR. Our study highlights a novel mechanism for the regulation of iron bioavailability by dietary polyphenols. Potentially, diets rich in polyphenols might be beneficial for patients groups at risk of iron loading by limiting the rate of intestinal iron absorption. PMID:25058155

  9. Nonredundant Roles of Iron Acquisition Systems in Vibrio cholerae

    PubMed Central

    Peng, Eric D.; Wyckoff, Elizabeth E.; Mey, Alexandra R.; Fisher, Carolyn R.

    2015-01-01

    Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, thrives in both marine environments and the human host. To do so, it must encode the tools necessary to acquire essential nutrients, including iron, under these vastly different conditions. A number of V. cholerae iron acquisition systems have been identified; however, the precise role of each system is not fully understood. To test the roles of individual systems, we generated a series of mutants in which only one of the four systems that support iron acquisition on unsupplemented LB agar, Feo, Fbp, Vct, and Vib, remains functional. Analysis of these mutants under different growth conditions showed that these systems are not redundant. The strain carrying only the ferrous iron transporter Feo grew well at acidic, but not alkaline, pH, whereas the ferric iron transporter Fbp promoted better growth at alkaline than at acidic pH. A strain defective in all four systems (null mutant) had a severe growth defect under aerobic conditions but accumulated iron and grew as well as the wild type in the absence of oxygen, suggesting the presence of an additional, unidentified iron transporter in V. cholerae. In support of this, the null mutant was only moderately attenuated in an infant mouse model of infection. While the null mutant used heme as an iron source in vitro, we demonstrate that heme is not available to V. cholerae in the infant mouse intestine. PMID:26644383

  10. AhNRAMP1 iron transporter is involved in iron acquisition in peanut.

    PubMed

    Xiong, Hongchun; Kobayashi, Takanori; Kakei, Yusuke; Senoura, Takeshi; Nakazono, Mikio; Takahashi, Hirokazu; Nakanishi, Hiromi; Shen, Hongyun; Duan, Penggen; Guo, Xiaotong; Nishizawa, Naoko K; Zuo, Yuanmei

    2012-07-01

    Peanut/maize intercropping is a sustainable and effective agroecosystem to alleviate iron-deficiency chlorosis. Using suppression subtractive hybridization from the roots of intercropped and monocropped peanut which show different iron nutrition levels, a peanut gene, AhNRAMP1, which belongs to divalent metal transporters of the natural resistance-associated macrophage protein (NRAMP) gene family was isolated. Yeast complementation assays suggested that AhNRAMP1 encodes a functional iron transporter. Moreover, the mRNA level of AhNRAMP1 was obviously induced by iron deficiency in both roots and leaves. Transient expression, laser microdissection, and in situ hybridization analyses revealed that AhNRAMP1 was mainly localized on the plasma membrane of the epidermis of peanut roots. Induced expression of AhNRAMP1 in tobacco conferred enhanced tolerance to iron deprivation. These results suggest that the AhNRAMP1 is possibly involved in iron acquisition in peanut plants. PMID:22611231

  11. Reduction of Mn-oxides by ferrous iron in a flow system: column experiment and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Postma, D.; Appelo, C. A. J.

    2000-04-01

    The reduction of Mn-oxide by Fe2+ was studied in column experiments, using a column filled with natural Mn-oxide coated sand. Analysis of the Mn-oxide indicated the presence of both Mn(III) and Mn(IV) in the Mn-oxide. The initial exchange capacity of the column was determined by displacement of adsorbed Ca2+ with Mg2+. Subsequently a FeCl2 solution was injected into the column causing the reduction of the Mn-oxide and the precipitation of Fe(OH)3. Finally the exchange capacity of the column containing newly formed Fe(OH)3 was determined by injection of a KBr solution. During injection of the FeCl2 solution into the column, an ion distribution pattern was observed in the effluent that suggests the formation of separate reaction fronts for Mn(III)-oxide and Mn(IV)-oxide travelling at different velocities through the column. At the proximal reaction front, Fe2+ reacts with MnO2 producing Fe(OH)3, Mn2+ and H+. The protons are transported downstream and cause the disproportionation of MnOOH at a separate reaction front. Between the two Mn reaction fronts, the dissolution and precipitation of Fe(OH)3 and Al(OH)3 act as proton buffers. Reactive transport modeling, using the code PHREEQC 2.0, was done to quantify and analyze the reaction controls and the coupling between transport and chemical processes. A model containing only mineral equilibria constraints for birnessite, manganite, gibbsite, and ferrihydrite, was able to explain the overall reaction pattern with the sequential appearance of Mn2+, Al3+, Fe3+, and Fe2+ in the column outlet solution. However, the initial breakthrough of a peak of Ca2+ and the observed pH buffering indicated that exchange processes were of importance as well. The amount of potential exchangers, such as birnessite and ferrihydrite, did vary in the course of the experiment. A model containing surface complexation coupled to varying concentrations of birnessite and ferrihydrite and a constant charge exchanger in addition to mineral equilibria

  12. A Systems Biology Approach to Iron Metabolism

    PubMed Central

    Chifman, J.; Laubenbacher, R.; Torti, S.V.

    2015-01-01

    Iron is critical to the survival of almost all living organisms. However, inappropriately low or high levels of iron are detrimental and contribute to a wide range of diseases. Recent advances in the study of iron metabolism have revealed multiple intricate pathways that are essential to the maintenance of iron homeostasis. Further, iron regulation involves processes at several scales, ranging from the subcellular to the organismal. This complexity makes a systems biology approach crucial, with its enabling technology of computational models based on a mathematical description of regulatory systems. Systems biology may represent a new strategy for understanding imbalances in iron metabolism and their underlying causes. PMID:25480643

  13. Multicomponent reactive transport in an in situ zero-valent iron cell

    SciTech Connect

    Yabusaki, Steven B. ); Cantrell, Kirk J. ); Sass, Bruce; Steefel, Carl

    2000-12-01

    Data collected from a field study of in situ zero-valent iron treatment for TCE were analyzed in the context of coupled transport and reaction processes. The focus of this analysis was to understand the behavior of chemical components, including contaminants, in groundwater transported through the iron cell of a pilot-scale funnel and gate treatment system. A multicomponent reactive transport simulator was used to simultaneously model mobile and nonmobile components undergoing equilibrium and kinetic reactions including TCE degradation, parallel iron dissolution reactions, precipitation of secondary minerals, and complexation reactions. The resulting mechanistic model of coupled processes reproduced solution chemistry behavior observed in the iron cell with a minimum of calibration. These observations included the destruction of TCE and cis-1,2-DCE; increases in pH and hydrocarbons; and decreases in EH, alkalinity, dissolved O2 and CO2, and major ions (i.e., Ca, Mg, Cl, sulfate, nitrate). Mineral precipitation in the iron zone was critical to correctly predicting these behaviors. The dominant precipitation products were ferrous hydroxide, siderite, aragonite, brucite, and iron sulfide. In the first few centimeters of the reactive iron cell, these precipitation products are predicted to account for a 3% increase in mineral volume per year, which could have implications for the longevity of favorable barrier hydraulics and reactivity. The inclusion of transport was key to understanding the interplay between rates of transport and rates of reaction in the field.

  14. Ferritin polarization and iron transport across monolayer epithelial barriers in mammals

    PubMed Central

    Meyron-Holtz, Esther G.; Cohen, Lyora A.; Fahoum, Lulu; Haimovich, Yael; Lifshitz, Lena; Magid-Gold, Inbar; Stuemler, Tanja; Truman-Rosentsvit, Marianna

    2014-01-01

    Epithelial barriers are found in many tissues such as the intestine, kidney and brain where they separate the external environment from the body or a specific compartment from its periphery. Due to the tight junctions that connect epithelial barrier-cells (EBCs), the transport of compounds takes place nearly exclusively across the apical or basolateral membrane, the cell-body and the opposite membrane of the polarized EBC, and is regulated on numerous levels including barrier-specific adapted trafficking-machineries. Iron is an essential element but toxic at excess. Therefore, all iron-requiring organisms tightly regulate iron concentrations on systemic and cellular levels. In contrast to most cell types that control just their own iron homeostasis, EBCs also regulate homeostasis of the compartment they enclose or the body as a whole. Iron is transported across EBCs by specialized transporters such as the transferrin receptor and ferroportin. Recently, the iron storage protein ferritin was also attributed a role in the regulation of systemic iron homeostasis and we gathered evidence from the literature and original data that ferritin is polarized in EBC, suggesting also a role for ferritin in iron trafficking across EBCs. PMID:25202274

  15. Shigella Iron Acquisition Systems and their Regulation

    PubMed Central

    Wei, Yahan; Murphy, Erin R.

    2016-01-01

    Survival of Shigella within the host is strictly dependent on the ability of the pathogen to acquire essential nutrients, such as iron. As an innate immune defense against invading pathogens, the level of bio-available iron within the human host is maintained at exceeding low levels, by sequestration of the element within heme and other host iron-binding compounds. In response to sequestration mediated iron limitation, Shigella produce multiple iron-uptake systems that each function to facilitate the utilization of a specific host-associated source of nutrient iron. As a mechanism to balance the essential need for iron and the toxicity of the element when in excess, the production of bacterial iron acquisition systems is tightly regulated by a variety of molecular mechanisms. This review summarizes the current state of knowledge on the iron-uptake systems produced by Shigella species, their distribution within the genus, and the molecular mechanisms that regulate their production. PMID:26904516

  16. Hydrogen transport in iron and steel

    NASA Technical Reports Server (NTRS)

    Louthan, M. R., Jr.; Derrick, R. G.; Donovan, J. A.; Caskey, G. R., Jr.

    1976-01-01

    The permeabilities of protium, deuterium, and tritium in foil specimens of Marz grade iron, 4130 steel, Armco iron, HP-9-4-20, and T-1 steels were studied at hydrogen pressures between 0.02 and 0.5 MPa over the temperature range 260-700 K. The permeability was measured by a pressure-rise method, deuterium counting with a detector, and radioactivity counting. Good agreement is found between the measurement techniques used. It is shown that the permeabilities of protium, deuterium, and tritium in iron and T-1 steel at temperatures as low as 260 K are in good agreement with the equation proposed by Gonzalez (1967). However, the permeabilities of HP-9-4-20 and 4130 steel to hydrogen are typically lower than predicted. The isotope effect on hydrogen permeability of HP-9-4-20, 4130 and T-1 steels, and high-purity iron can be estimated by an inverse square root of mass correction.

  17. Thermal transport properties of grey cast irons

    SciTech Connect

    Hecht, R.L.; Dinwiddie, R.B.; Porter, W.D.; Wang, Hsin

    1996-10-01

    Thermal diffusivity and thermal conductivity of grey cast iron have been measured as a function of graphite flake morphology, chemical composition, and position in a finished brake rotor. Cast iron samples used for this investigation were cut from ``step block`` castings designed to produce iron with different graphite flake morphologies resulting from different cooling rates. Samples were also machined from prototype alloys and from production brake rotors representing a variation in foundry practice. Thermal diffusivity was measured at room and elevated temperatures via the flash technique. Heat capacity of selected samples was measured with differential scanning calorimetry, and these results were used to calculate the thermal conductivity. Microstructure of the various cast iron samples was quantified by standard metallography and image analysis, and the chemical compositions were determined by optical emission spectroscopy.

  18. Pivotal Role of Iron in the Regulation of Cyanobacterial Electron Transport.

    PubMed

    González, A; Sevilla, E; Bes, M T; Peleato, M L; Fillat, M F

    2016-01-01

    Iron-containing metalloproteins are the main cornerstones for efficient electron transport in biological systems. The abundance and diversity of iron-dependent proteins in cyanobacteria makes those organisms highly dependent of this micronutrient. To cope with iron imbalance, cyanobacteria have developed a survey of adaptation strategies that are strongly related to the regulation of photosynthesis, nitrogen metabolism and other central electron transfer pathways. Furthermore, either in its ferrous form or as a component of the haem group, iron plays a crucial role as regulatory signalling molecule that directly or indirectly modulates the composition and efficiency of cyanobacterial redox reactions. We present here the major mechanism used by cyanobacteria to couple iron homeostasis to the regulation of electron transport, making special emphasis in processes specific in those organisms. PMID:27134024

  19. Ceruloplasmin-ferroportin system of iron traffic in vertebrates

    PubMed Central

    Musci, Giovanni; Polticelli, Fabio; Bonaccorsi di Patti, Maria Carmela

    2014-01-01

    Safe trafficking of iron across the cell membrane is a delicate process that requires specific protein carriers. While many proteins involved in iron uptake by cells are known, only one cellular iron export protein has been identified in mammals: ferroportin (SLC40A1). Ceruloplasmin is a multicopper enzyme endowed with ferroxidase activity that is found as a soluble isoform in plasma or as a membrane-associated isoform in specific cell types. According to the currently accepted view, ferrous iron transported out of the cell by ferroportin would be safely oxidized by ceruloplasmin to facilitate loading on transferrin. Therefore, the ceruloplasmin-ferroportin system represents the main pathway for cellular iron egress and it is responsible for physiological regulation of cellular iron levels. The most recent findings regarding the structural and functional features of ceruloplasmin and ferroportin and their relationship will be described in this review. PMID:24921009

  20. Systemic iron overload associated with Welder's siderosis.

    PubMed

    Patel, Rajesh R; Yi, Eunhee S; Ryu, Jay H

    2009-01-01

    Welding involves exposure to fumes, gases, radiation, electricity, noise, and heat. Herein, we describe 2 welders presenting with lung infiltrates and elevated liver enzyme levels. Both of these patients had pulmonary siderosis ("welder's lung") on lung biopsy along with evidence of systemic iron overload. Evaluation for genetic hemochromatosis and other known causes of iron overload was unrevealing. Welding with chronic inhalation of iron particles maybe an under-recognized source of systemic iron overload. PMID:18941405

  1. Iron production maintenance effectiveness system

    SciTech Connect

    Augstman, J.J.

    1996-12-31

    In 1989, an internal study in the Coke and Iron Maintenance Department identified the opportunities available to increase production, by decreasing unscheduled maintenance delays from 4.6%. A five year front loaded plan was developed, and presented to the company president. The plan required an initial investment of $1.4 million and a conservative break-even point was calculated to be 2.5 years. Due to budget restraints, it would have to be self-funded, i.e., generate additional production or savings, to pay for the program. The program began in 1991 at number 2 coke plant and the blast furnaces. This paper will describe the Iron Production Maintenance Effectiveness System (ME), which began with the mechanical and pipefitting trades.

  2. Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants.

    PubMed

    Barberon, Marie; Zelazny, Enric; Robert, Stéphanie; Conéjéro, Geneviève; Curie, Cathy; Friml, Jìrí; Vert, Grégory

    2011-08-01

    Plants take up iron from the soil using the iron-regulated transporter 1 (IRT1) high-affinity iron transporter at the root surface. Sophisticated regulatory mechanisms allow plants to tightly control the levels of IRT1, ensuring optimal absorption of essential but toxic iron. Here, we demonstrate that overexpression of Arabidopsis thaliana IRT1 leads to constitutive IRT1 protein accumulation, metal overload, and oxidative stress. IRT1 is unexpectedly found in trans-Golgi network/early endosomes of root hair cells, and its levels and localization are unaffected by iron nutrition. Using pharmacological approaches, we show that IRT1 cycles to the plasma membrane to perform iron and metal uptake at the cell surface and is sent to the vacuole for proper turnover. We also prove that IRT1 is monoubiquitinated on several cytosol-exposed residues in vivo and that mutation of two putative monoubiquitination target residues in IRT1 triggers stabilization at the plasma membrane and leads to extreme lethality. Together, these data suggest a model in which monoubiquitin-dependent internalization/sorting and turnover keep the plasma membrane pool of IRT1 low to ensure proper iron uptake and to prevent metal toxicity. More generally, our work demonstrates the existence of monoubiquitin-dependent trafficking to lytic vacuoles in plants and points to proteasome-independent turnover of plasma membrane proteins. PMID:21628566

  3. Controls on radium transport by adsorption to iron minerals

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wang, T.; Kocar, B. D.

    2015-12-01

    Radium is a naturally occurring radioactive metal found in many subsurface environments. Radium isotopes are generated by uranium and thorium decay, and are particularly abundant within groundwaters where minimal porewater flux leads to accumulation. These isotopes are used as natural tracers for estimating submarine groundwater discharge (SGD) [1], allowing for large scale estimation of GW fluxes into and out of the ocean [2]. They also represent a substantial hazard in wastewater produced after hydraulic fracturing for natural gas extraction [3], resulting in a significant risk of environmental release to surface and near-surface waters, and increased cost for water treatment or disposal. Adsorption to mineral surfaces represents a dominant pathway of radium retention in subsurface environments. For SGD studies, adsorption processes impact estimates of GW fluxes, while in hydraulic fracturing, radium adsorption to aquifer solids mediates wastewater radium activities. Analysis of past sorption studies revealed large variability in partition coefficients [4], while examination of radium adsorption kinetics and surface complexation have only recently started [5]. Accordingly, we present the results of sorption and column experiments of radium with a suite of iron minerals representative of those found within deep saline and near-surface (freshwater) aquifers, and evaluate impacts of varying salinity solutions through artificial waters. Further, we explore the impacts of pyrite oxidation and ferrihydrite transformation to other iron-bearing secondary minerals on the transport and retention of radium. These results will provide critical information on the mineralogical controls on radium retention in subsurface environments, and will therefore improve predictions of radium groundwater transport in natural and contaminated systems. [1] Charette, M.A., Buesseler, K.O. & Andrews, J.E., Limnol. Oceanogr. (2001). [2] Moore, W.S., Ann. Rev. Mar. Sci. (2010). [3] Vengosh, A

  4. Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    PubMed

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to diverse

  5. A vacuolar iron-transporter homologue acts as a detoxifier in Plasmodium

    PubMed Central

    Slavic, Ksenija; Krishna, Sanjeev; Lahree, Aparajita; Bouyer, Guillaume; Hanson, Kirsten K.; Vera, Iset; Pittman, Jon K.; Staines, Henry M.; Mota, Maria M.

    2016-01-01

    Iron is an essential micronutrient but is also highly toxic. In yeast and plant cells, a key detoxifying mechanism involves iron sequestration into intracellular storage compartments, mediated by members of the vacuolar iron-transporter (VIT) family of proteins. Here we study the VIT homologue from the malaria parasites Plasmodium falciparum (PfVIT) and Plasmodium berghei (PbVIT). PfVIT-mediated iron transport in a yeast heterologous expression system is saturable (Km∼14.7 μM), and selective for Fe2+ over other divalent cations. PbVIT-deficient P. berghei lines (Pbvit−) show a reduction in parasite load in both liver and blood stages of infection in mice. Moreover, Pbvit− parasites have higher levels of labile iron in blood stages and are more sensitive to increased iron levels in liver stages, when compared with wild-type parasites. Our data are consistent with Plasmodium VITs playing a major role in iron detoxification and, thus, normal development of malaria parasites in their mammalian host. PMID:26786069

  6. A vacuolar iron-transporter homologue acts as a detoxifier in Plasmodium.

    PubMed

    Slavic, Ksenija; Krishna, Sanjeev; Lahree, Aparajita; Bouyer, Guillaume; Hanson, Kirsten K; Vera, Iset; Pittman, Jon K; Staines, Henry M; Mota, Maria M

    2016-01-01

    Iron is an essential micronutrient but is also highly toxic. In yeast and plant cells, a key detoxifying mechanism involves iron sequestration into intracellular storage compartments, mediated by members of the vacuolar iron-transporter (VIT) family of proteins. Here we study the VIT homologue from the malaria parasites Plasmodium falciparum (PfVIT) and Plasmodium berghei (PbVIT). PfVIT-mediated iron transport in a yeast heterologous expression system is saturable (Km ∼ 14.7 μM), and selective for Fe(2+) over other divalent cations. PbVIT-deficient P. berghei lines (Pbvit(-)) show a reduction in parasite load in both liver and blood stages of infection in mice. Moreover, Pbvit(-) parasites have higher levels of labile iron in blood stages and are more sensitive to increased iron levels in liver stages, when compared with wild-type parasites. Our data are consistent with Plasmodium VITs playing a major role in iron detoxification and, thus, normal development of malaria parasites in their mammalian host. PMID:26786069

  7. Phosphorus: Riverine system transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transport and transformation of phosphorus (P) in riverine systems fundamentally affects the outcome of watershed mitigation strategies aimed at curbing downstream eutrophication. Phosphorus transport and transformations in streams and rivers are mediated by physical (sediment deposition and res...

  8. Transportation System Requirements Document

    SciTech Connect

    Not Available

    1993-09-01

    This Transportation System Requirements Document (Trans-SRD) describes the functions to be performed by and the technical requirements for the Transportation System to transport spent nuclear fuel (SNF) and high-level radioactive waste (HLW) from Purchaser and Producer sites to a Civilian Radioactive Waste Management System (CRWMS) site, and between CRWMS sites. The purpose of this document is to define the system-level requirements for Transportation consistent with the CRWMS Requirement Document (CRD). These requirements include design and operations requirements to the extent they impact on the development of the physical segments of Transportation. The document also presents an overall description of Transportation, its functions, its segments, and the requirements allocated to the segments and the system-level interfaces with Transportation. The interface identification and description are published in the CRWMS Interface Specification.

  9. Relationship between gene expression of duodenal iron transporters and iron stores in hemochromatosis subjects.

    PubMed

    Nelson, James E; Mugford, Virginia R; Kilcourse, Ellen; Wang, Richard S; Kowdley, Kris V

    2010-01-01

    To test the hypothesis that differences in duodenal iron absorption may explain the variable phenotypic expression among HFE C282Y homozygotes, we have compared relative gene expression of duodenal iron transporters among C282Y homozygotes [hereditary hemochromatosis (HH)] with and without iron overload. Duodenal biopsy samples were analyzed using real-time PCR for expression of DMT1, FPN1, DCYTB, and HEPH relative to GAPDH from 23 C282Y homozygotes, including 5 "nonexpressors" (serum ferritin < upper limit of normal and absence of phenotypic features of hemochromatosis) and 18 "expressors." Four subjects of wild type for HFE mutations without iron overload or liver disease served as controls. There was a significant difference in expression of DMT1 (P = 0.03) and DMT1(IRE) (P = 0.0013) but not FPN1, DCYTB, or HEPH between groups. Expression of DMT1(IRE) was increased among HH subjects after phlebotomy compared with untreated (P = 0.006) and nonexpressor groups (P = 0.026). A positive relationship was observed among all HH subjects regardless of phenotype or treatment status between relative expression of FPN1 and DMT1 (r = 0.5854, P = 0.0021), FPN1, and DCYTB (r = 0.5554, P = 0.0040), FPN1 and HEPH (r = 0.5100, P = 0.0092), and DCYTB and HEPH (r = 0.5400, P = 0.0053). In summary, phlebotomy is associated with upregulation of DMT1(IRE) expression in HH subjects. HFE C282Y homozygotes without phenotypic expression do not have significantly decreased duodenal gene expression of iron transport genes compared with HH subjects with iron overload. There is coordinated regulation between duodenal expression of FPN1 and DMT1, FPN1 and DCYTB, and FPN1 and HEPH and also DCYTB and HEPH in HH subjects regardless of phenotype. PMID:19892936

  10. Relationship between gene expression of duodenal iron transporters and iron stores in hemochromatosis subjects

    PubMed Central

    Nelson, James E.; Mugford, Virginia R.; Kilcourse, Ellen; Wang, Richard S.

    2010-01-01

    To test the hypothesis that differences in duodenal iron absorption may explain the variable phenotypic expression among HFE C282Y homozygotes, we have compared relative gene expression of duodenal iron transporters among C282Y homozygotes [hereditary hemochromatosis (HH)] with and without iron overload. Duodenal biopsy samples were analyzed using real-time PCR for expression of DMT1, FPN1, DCYTB, and HEPH relative to GAPDH from 23 C282Y homozygotes, including 5 “nonexpressors” (serum ferritin < upper limit of normal and absence of phenotypic features of hemochromatosis) and 18 “expressors.” Four subjects of wild type for HFE mutations without iron overload or liver disease served as controls. There was a significant difference in expression of DMT1 (P = 0.03) and DMT1(IRE) (P = 0.0013) but not FPN1, DCYTB, or HEPH between groups. Expression of DMT1(IRE) was increased among HH subjects after phlebotomy compared with untreated (P = 0.006) and nonexpressor groups (P = 0.026). A positive relationship was observed among all HH subjects regardless of phenotype or treatment status between relative expression of FPN1 and DMT1 (r = 0.5854, P = 0.0021), FPN1, and DCYTB (r = 0.5554, P = 0.0040), FPN1 and HEPH (r = 0.5100, P = 0.0092), and DCYTB and HEPH (r = 0.5400, P = 0.0053). In summary, phlebotomy is associated with upregulation of DMT1(IRE) expression in HH subjects. HFE C282Y homozygotes without phenotypic expression do not have significantly decreased duodenal gene expression of iron transport genes compared with HH subjects with iron overload. There is coordinated regulation between duodenal expression of FPN1 and DMT1, FPN1 and DCYTB, and FPN1 and HEPH and also DCYTB and HEPH in HH subjects regardless of phenotype. PMID:19892936

  11. Payload transportation system study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A standard size set of shuttle payload transportation equipment was defined that will substantially reduce the cost of payload transportation and accommodate a wide range of payloads with minimum impact on payload design. The system was designed to accommodate payload shipments between the level 4 payload integration sites and the launch site during the calendar years 1979-1982. In addition to defining transportation multi-use mission support equipment (T-MMSE) the mode of travel, prime movers, and ancillary equipment required in the transportation process were also considered. Consistent with the STS goals of low cost and the use of standardized interfaces, the transportation system was designed to commercial grade standards and uses the payload flight mounting interfaces for transportation. The technical, cost, and programmatic data required to permit selection of a baseline system of MMSE for intersite movement of shuttle payloads were developed.

  12. Vacuolar-Iron-Transporter1-Like proteins mediate iron homeostasis in Arabidopsis.

    PubMed

    Gollhofer, Julia; Timofeev, Roman; Lan, Ping; Schmidt, Wolfgang; Buckhout, Thomas J

    2014-01-01

    Iron deficiency is a nutritional problem in plants and reduces crop productivity, quality and yield. With the goal of improving the iron (Fe) storage properties of plants, we have investigated the function of three Arabidopsis proteins with homology to Vacuolar Iron Transporter1 (AtVIT1). Heterologous expression of Vacuolar Iron Transporter-Like1 (AtVTL1; At1g21140), AtVTL2 (At1g76800) or AtVTL5 (At3g25190) in the yeast vacuolar Fe transport mutant, Δccc1, restored growth in the presence of 4 mM Fe. Isolated vacuoles from yeast expressing either of the VTL genes in the Δccc1 background had a three- to four-fold increase in Fe concentration compared to vacuoles isolated from the untransformed mutant. Transiently expressed GFP-tagged AtVTL1 was localized exclusively and AtVTL2 was localized primarily to the vacuolar membrane of onion epidermis cells. Seedling root growth of the Arabidopsis nramp3/nramp4 and vit1-1 mutants was decreased compared to the wild type when seedlings were grown under Fe deficiency. When expressed under the 35S promoter in the nramp3/nramp4 or vit1-1 backgrounds, AtVTL1, AtVTL2 or AtVTL5 restored root growth in both mutants. The seed Fe concentration in the nramp3/nramp4 mutant overexpressing AtVTL1, AtVTL2 or AtVTL5 was between 50 and 60% higher than in non-transformed double mutants or wild-type plants. We conclude that the VTL proteins catalyze Fe transport into vacuoles and thus contribute to the regulation of Fe homeostasis in planta. PMID:25360591

  13. The transferrin-iron import system from pathogenic Neisseria species.

    PubMed

    Noinaj, Nicholas; Buchanan, Susan K; Cornelissen, Cynthia Nau

    2012-10-01

    Two pathogenic species within the genus Neisseria cause the diseases gonorrhoea and meningitis. While vaccines are available to protect against four N. meningitidis serogroups, there is currently no commercial vaccine to protect against serogroup B or against N. gonorrhoeae. Moreover, the available vaccines have significant limitations and with antibiotic resistance becoming an alarming issue, the search for effective vaccine targets to elicit long-lasting protection against Neisseria species is becoming more urgent. One strategy for vaccine development has targeted the neisserial iron import systems. Without iron, the Neisseriae cannot survive and, therefore, these iron import systems tend to be relatively well conserved and are promising vaccine targets, having the potential to offer broad protection against both gonococcal and meningococcal infections. These efforts have been boosted by recent reports of the crystal structures of the neisserial receptor proteins TbpA and TbpB, each solved in complex with human transferrin, an iron binding protein normally responsible for delivering iron to human cells. Here, we review the recent structural reports and put them into perspective with available functional studies in order to derive the mechanism(s) for how the pathogenic Neisseriae are able to hijack human iron transport systems for their own survival and pathogenesis. PMID:22957710

  14. Iron-binding activity of FutA1 subunit of an ABC-type iron transporter in the cyanobacterium Synechocystis sp. Strain PCC 6803.

    PubMed

    Katoh, H; Hagino, N; Ogawa, T

    2001-08-01

    The futA1 (slr1295) and futA2 (slr0513) genes encode periplasmic binding proteins of an ATP-binding cassette (ABC)-type iron transporter in Synechocystis sp. PCC 6803. FutA1 was expressed in Escherichia coli as a GST-tagged recombinant protein (rFutA1). Solution containing purified rFutA1 and ferric chloride showed an absorption spectrum with a peak at 453 nm. The absorbance at this wavelength rose linearly as the amount of iron bound to rFutA1 increased to reach a plateau when the molar ratio of iron to rFutA1 became unity. The association constant of rFutA1 for iron in vitro was about 1 x 10(19). These results demonstrate that the FutA1 binds the ferric ion with high affinity. The activity of iron uptake in the Delta futA1 and Delta futA2 mutants was 37 and 84%, respectively, of that in the wild-type and the activity was less than 5% in the Delta futA1/Delta futA2 double mutant, suggesting their redundant role for binding iron. High concentrations of citrate inhibited ferric iron uptake. These results suggest that the natural iron source transported by the Fut system is not ferric citrate. PMID:11522907

  15. *Iron accumulation in bronchial epithelial cells is dependent on concurrent sodium transport

    EPA Science Inventory

    Airway epithelial cells prevent damaging effects of extracellular iron by taking up the metal and sequestering it within intracellular ferritin. Epithelial iron transport is associated with transcellular movement of other cations including changes in the expression or activity of...

  16. Influence of hydrogen chemisorption kinetics on the interpretation of hydrogen transport through iron membranes

    NASA Technical Reports Server (NTRS)

    Shanabarger, M. R.; Taslami, A.; Nelson, H. G.

    1981-01-01

    The influence of a specific surface reaction on the transport of gas-phase hydrogen through iron membranes has been investigated on the basis of model calculations. The surface reaction involves an adsorbed molecular hydrogen precursor between the gas phase and the dissociated chemisorbed state. The calculations demonstrate that the surface reaction for the H2/Fe system makes significant contributions to the time delay associated with the transient hydrogen transport through iron membranes, even under conditions where the steady-state hydrogen transport is independent of the surface reaction. These contributions to the time delay are interpreted in terms of an effective diffusivity, which is a function of the pressure on the entrance side and the thickness of the membrane.

  17. Space Transportation systems overview

    NASA Technical Reports Server (NTRS)

    Lee, C. M.

    1979-01-01

    Planning for the operations phase of the Space Transportation system is reviewed. Attention is given to mission profile (typical), applications, manifesting rationale, the Operational Flight Test manifest, the operations manifest, pricing policy, and potential applications of the STS.

  18. Smart vehicular transportation systems

    SciTech Connect

    Little, C.Q.; Wilson, C.W.

    1997-05-01

    This work builds upon established Sandia intelligent systems technology to develop a unique approach for the integration of intelligent system control into the US Highway and urban transportation systems. The Sandia developed concept of the COPILOT controller integrates a human driver with computer control to increase human performance while reducing reliance on detailed driver attention. This research extends Sandia expertise in sensor based, real-time control of robotics systems to high speed transportation systems. Knowledge in the form of maps and performance characteristics of vehicles provides the automatic decision making intelligence needed to plan optimum routes, maintain safe driving speeds and distances, avoid collisions, and conserve fuel.

  19. The metal transporter ZIP13 supplies iron into the secretory pathway in Drosophila melanogaster

    PubMed Central

    Xiao, Guiran; Wan, Zhihui; Fan, Qiangwang; Tang, Xiaona; Zhou, Bing

    2014-01-01

    The intracellular iron transfer process is not well understood, and the identity of the iron transporter responsible for iron delivery to the secretory compartments remains elusive. In this study, we show Drosophila ZIP13 (Slc39a13), a presumed zinc importer, fulfills the iron effluxing role. Interfering with dZIP13 expression causes iron-rescuable iron absorption defect, simultaneous iron increase in the cytosol and decrease in the secretory compartments, failure of ferritin iron loading, and abnormal collagen secretion. dZIP13 expression in E. coli confers upon the host iron-dependent growth and iron resistance. Importantly, time-coursed transport assays using an iron isotope indicated a potent iron exporting activity of dZIP13. The identification of dZIP13 as an iron transporter suggests that the spondylocheiro dysplastic form of Ehlers–Danlos syndrome, in which hZIP13 is defective, is likely due to a failure of iron delivery to the secretory compartments. Our results also broaden our knowledge of the scope of defects from iron dyshomeostasis. DOI: http://dx.doi.org/10.7554/eLife.03191.001

  20. The role of the synergistic phosphate anion in iron transport by the periplasmic iron-binding protein from Haemophilus influenzae

    PubMed Central

    Khan, Ali G.; Shouldice, Stephen R.; Tari, Leslie W.; Schryvers, Anthony B.

    2006-01-01

    The acquisition of iron from transferrin by Gram-negative bacterial pathogens is dependent on a periplasmic ferric-ion-binding protein, FbpA. FbpA shuttles iron from the outer membrane to an inner membrane transport complex. A bound phosphate anion completes the iron co-ordination shell of FbpA and kinetic studies demonstrate that the anion plays a critical role in iron binding and release in vitro. The present study was initiated to directly address the hypothesis that the synergistic anion is required for transport of iron in intact cells. A series of site-directed mutants in the anion-binding amino acids of the Haemophilus influenzae FbpA (Gln-58, Asn-175 and Asn-193) were prepared to provide proteins defective in binding of the phosphate anion. Crystal structures of various mutants have revealed that alteration of the C-terminal domain ligands (Asn-175 or Asn-193) but not the N-terminal domain ligand (Gln-58) abrogated binding of the phosphate anion. The mutant proteins were introduced into H. influenzae to evaluate their ability to mediate iron transport. All of the single site-directed mutants (Q58L, N175L and N193L) were capable of mediating iron acquisition from transferrin and from limiting concentrations of ferric citrate. The results suggest that the transport of iron by FbpA is not dependent on binding of phosphate in the synergistic anion-binding site. PMID:17147516

  1. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis.

    PubMed

    Zhang, Ying; Zhao, Xin; Chang, Yanzhong; Zhang, Yuanyuan; Chu, Xi; Zhang, Xuan; Liu, Zhenyi; Guo, Hui; Wang, Na; Gao, Yonggang; Zhang, Jianping; Chu, Li

    2016-06-15

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n=8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined by molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. PMID:27095094

  2. Local Pathways in Coherent Electron Transport through Iron Porphyrin Complexes: A Challenge for First-Principles Transport Calculations

    SciTech Connect

    Herrmann, C.; Solomon, G.C.; Ratner, Mark A.

    2010-12-09

    We investigate the coherent electron transport properties of a selection of iron porphyrin complexes in their low-spin and high-spin states, binding the system to metallic electrodes with three different substitution patterns. We use a study of the local transmission through the complexes and their molecular orbitals to show the role of the various components of the molecular structure in mediating electron transport. While there are energies where the metal center and the axial ligands participate in transport, in the off-resonant energy range, these components simply form a scaffold, and the transport is dominated by transmission through the porphyrin macrocyle alone. This is still true when going from the low-spin to the high-spin state, except that now, an additional iron-centered MO contributes to transport in the formerly off-resonant region. It is found that while the choice of the exchange-correlation functional can strongly influence the quantitative results, our qualitative conclusions hold irrespective of the functional employed.

  3. Identification and characterization of an iron ABC transporter operon in Gluconacetobacter diazotrophicus Pal 5.

    PubMed

    Urzúa, Lucia Soto; Vázquez-Candanedo, Ada P; Sánchez-Espíndola, Adriana; Ramírez, Carlos Ávila; Baca, Beatriz E

    2013-06-01

    Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium and endophyte of sugarcane. We have cloned and sequenced the genes coding for the components of the iron ABC-type acquisition system of G. diazotrophicus. Sequence analysis revealed three ORFs, (feuA, feuB, and feuC) organized as an operon and encoding polypeptides of 346 (38 kDa), 342 (34.2 kDa), and 240 (26 kDa) amino acids, respectively. The deduced translation products of the feu operon showed similarity with a periplasmic solute-binding protein (FeuA), permease (FeuB), and ATPase (FeuC) involved in Fe transport. The role of FeuB in the survival of G. diazotrophicus under iron depletion was evaluated by comparing the ability of wild-type and FeuB-Km(R) -mutant strains in a medium without iron supplementation and in a medium containing 2, 2'-dipyridyl (DP). Growth of the mutant was affected in the medium containing DP. The operon was expressed at higher levels in cells depleted for iron than in those that contained the metal. A decrease in nitrogenase activity was observed with the FeuB-Km(R) -mutant strain that with the wild-type under iron deficiency conditions, suggesting that the Feu operon play role in Fe nutrition of G. diazotrophicus. PMID:23624722

  4. Transportation Anslysis Simulation System

    SciTech Connect

    2004-08-23

    TRANSIMS version 3.1 is an integrated set of analytical and simulation models and supporting databases. The system is designed to create a virtual metropolitan region with representation of each of the region’s individuals, their activities and the transportation infrastructure they use. TRANSIMS puts into practice a new, disaggregate approach to travel demand modeling using agent-based micro-simulation technology. TRANSIMS methodology creates a virtual metropolitan region with representation of the transportation infrastructure and the population, at the level of households and individual travelers. Trips a planned to satisfy the population’s activity pattems at the individual traveler level. TRANSIMS then simulates the movement of travelers and vehicles across the transportation network using multiple modes, including car, transit, bike and walk, on a second-by-second basis. Metropolitan planners must plan growth of their cities according to the stringent transportation system planning requirements of the Interniodal Surface Transportation Efficiency Act of 1991, the Clean Air Act Amendments of 1990 and other similar laws and regulations. These require each state and its metropotitan regions to work together to develop short and long term transportation improvement plans. The plans must (1) estimate the future transportation needs for travelers and goods movements, (2) evaluate ways to manage and reduce congestion, (3) examine the effectiveness of building new roads and transit systems, and (4) limit the environmental impact of the various strategies. The needed consistent and accurate transportation improvement plans require an analytical capability that properly accounts for travel demand, human behavior, traffic and transit operations, major investments, and environmental effects. Other existing planning tools use aggregated information and representative behavior to predict average response and average use of transportation facilities. They do not account

  5. Transportation Anslysis Simulation System

    Energy Science and Technology Software Center (ESTSC)

    2004-08-23

    TRANSIMS version 3.1 is an integrated set of analytical and simulation models and supporting databases. The system is designed to create a virtual metropolitan region with representation of each of the region’s individuals, their activities and the transportation infrastructure they use. TRANSIMS puts into practice a new, disaggregate approach to travel demand modeling using agent-based micro-simulation technology. TRANSIMS methodology creates a virtual metropolitan region with representation of the transportation infrastructure and the population, at themore » level of households and individual travelers. Trips a planned to satisfy the population’s activity pattems at the individual traveler level. TRANSIMS then simulates the movement of travelers and vehicles across the transportation network using multiple modes, including car, transit, bike and walk, on a second-by-second basis. Metropolitan planners must plan growth of their cities according to the stringent transportation system planning requirements of the Interniodal Surface Transportation Efficiency Act of 1991, the Clean Air Act Amendments of 1990 and other similar laws and regulations. These require each state and its metropotitan regions to work together to develop short and long term transportation improvement plans. The plans must (1) estimate the future transportation needs for travelers and goods movements, (2) evaluate ways to manage and reduce congestion, (3) examine the effectiveness of building new roads and transit systems, and (4) limit the environmental impact of the various strategies. The needed consistent and accurate transportation improvement plans require an analytical capability that properly accounts for travel demand, human behavior, traffic and transit operations, major investments, and environmental effects. Other existing planning tools use aggregated information and representative behavior to predict average response and average use of transportation facilities. They do not

  6. A lunar transportation system

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Due to large amounts of oxygen required for space travel, a method of mining, transporting, and storing this oxygen in space would facilitate further space exploration. The following project deals specifically with the methods for transporting liquid oxygen from the lunar surface to the Lunar Orbit (LO) space station, and then to the Lower Earth Orbit (LEO) space station. Two vehicles were designed for operation between the LEO and LO space stations. The first of these vehicles is an aerobraked design vehicle. The Aerobrake Orbital Transfer Vehicle (OTV) is capable of transporting 5000 lbm of payload to LO while returning to LEO with 60,000 lbm of liquid oxygen, and thus meet mission requirements. The second vehicle can deliver 18,000 lbm of payload to LO and is capable of bringing 60,000 lbm of liquid oxygen back to LEO. A lunar landing vehicle was also designed for operation between LO and the established moon base. The use of an electromagnetic railgun as a method for launching the lunar lander was also investigated. The feasibility of the railgun is doubtful at this time. A system of spheres was also designed for proper storing and transporting of the liquid oxygen. The system assumes a safe means for transferring the liquid oxygen from tank to tank is operational. A sophisticated life support system was developed for both the OTV and the lunar lander. This system focuses on such factors as the vehicle environment, waste management, water requirements, food requirements, and oxygen requirements.

  7. Lunar transportation system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  8. Transportation Systems Center

    SciTech Connect

    Greer, G.S.

    1992-07-01

    The Transportation Systems Center at Sandia Laboratory performs research, development, and implementation of technologies that enhance the safe movement of people, goods, and information. Our focus is on systems engineering. However, we realize that to understand the puzzle, you must also understand the pieces. This brochure describes some of the activities currently underway at the Center and presents the breadth and depth of our capabilities. Please contact the noted, individuals for more, information.

  9. Heat transport system

    DOEpatents

    Pierce, Bill L.

    1978-01-01

    A heat transport system of small size which can be operated in any orientation consists of a coolant loop containing a vaporizable liquid as working fluid and includes in series a vaporizer, a condenser and two one-way valves and a pressurizer connected to the loop between the two valves. The pressurizer may be divided into two chambers by a flexible diaphragm, an inert gas in one chamber acting as a pneumatic spring for the system.

  10. The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron.

    PubMed

    Miethke, Marcus; Monteferrante, Carmine G; Marahiel, Mohamed A; van Dijl, Jan Maarten

    2013-10-01

    Efficient uptake of iron is of critical importance for growth and viability of microbial cells. Nevertheless, several mechanisms for iron uptake are not yet clearly defined. Here we report that the widely conserved transporter EfeUOB employs an unprecedented dual-mode mechanism for acquisition of ferrous (Fe[II]) and ferric (Fe[III]) iron in the bacterium Bacillus subtilis. We show that the binding protein EfeO and the permease EfeU form a minimal complex for ferric iron uptake. The third component EfeB is a hemoprotein that oxidizes ferrous iron to ferric iron for uptake by EfeUO. Accordingly, EfeB promotes growth under microaerobic conditions where ferrous iron is more abundant. Notably, EfeB also fulfills a vital role in cell envelope stress protection by eliminating reactive oxygen species that accumulate in the presence of ferrous iron. In conclusion, the EfeUOB system contributes to the high-affinity uptake of iron that is available in two different oxidation states. PMID:23764491

  11. IRON REMOVAL PROCESSES: DESIGN OF NEW SYSTEMS

    EPA Science Inventory

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Many groundwaters that have arsenic in their source water also have iron in their water. As a result, arsenic treatment at these sites will most likely b...

  12. Competitive adsorption, displacement, and transport of organic matter on iron oxide: II. Displacement and transport

    SciTech Connect

    Gu, B; Mehlhorn, T.L.; Liang, Liyuan

    1996-08-01

    The competitive interactions between organic matter compounds and mineral surfaces are poorly understood, yet these interactions may play a significant role in the stability and co-transport of mineral colloids and/or environmental contaminants. In this study, the processes of competitive adsorption, displacement, and transport of Suwannee River natural organic matter (SR-NOM) are investigated with several model organic compounds in packed beds of iron oxide-coated quartz columns. Results demonstrated that strongly-binding organic compounds are competitively adsorbed and displace those weakly-bound organic compounds along the flow path. Among the four organic compounds studied, polyacrylic acid (PAA) appeared to be the most competitive, whereas SR-NOM was more competitive than phthalic and salicylic acids. A diffuse adsorption and sharp desorption front (giving an appearance of irreversible adsorption) of the SR-NOM breakthrough curves are explained as being a result of the competitive time-dependent adsorption and displacement processes between different organic components within the SR-NOM. The stability and transport of iron oxide colloids varied as one organic component competitively displaces another. Relatively large quantities of iron oxide colloids are transported when the more strongly-binding PAA competitively displaces the weakly-binding SR-NOM or when SR-NOM competitively displaces phthalic and salicylic acids. Results of this study suggest that the chemical composition and hence the functional behavior of NOM (e.g., in stabilizing mineral colloids and in complexing contaminants) can change along its flow path as a result of the dynamic competitive interactions between heterogeneous NOM subcomponents. Further studies are needed to better define and quantify these NOM components as well as their roles in contaminant partitioning and transport. 37 refs., 10 figs.

  13. Expression of peanut Iron Regulated Transporter 1 in tobacco and rice plants confers improved iron nutrition.

    PubMed

    Xiong, Hongchun; Guo, Xiaotong; Kobayashi, Takanori; Kakei, Yusuke; Nakanishi, Hiromi; Nozoye, Tomoko; Zhang, Lixia; Shen, Hongyun; Qiu, Wei; Nishizawa, Naoko K; Zuo, Yuanmei

    2014-07-01

    Iron (Fe) limitation is a widespread agricultural problem in calcareous soils and severely limits crop production. Iron Regulated Transporter 1 (IRT1) is a key component for Fe uptake from the soil in dicot plants. In this study, the peanut (Arachis hypogaea L.) AhIRT1 was introduced into tobacco and rice plants using an Fe-deficiency-inducible artificial promoter. Induced expression of AhIRT1 in tobacco plants resulted in accumulation of Fe in young leaves under Fe deficient conditions. Even under Fe-excess conditions, the Fe concentration was also markedly enhanced, suggesting that the Fe status did not affect the uptake and translocation of Fe by AhIRT1 in the transgenic plants. Most importantly, the transgenic tobacco plants showed improved tolerance to Fe limitation in culture in two types of calcareous soils. Additionally, the induced expression of AhIRT1 in rice plants also resulted in high tolerance to low Fe availability in calcareous soils. PMID:24727792

  14. Identification and Characterization of Cronobacter Iron Acquisition Systems

    PubMed Central

    Grim, C. J.; Kothary, M. H.; Gopinath, G.; Jarvis, K. G.; Beaubrun, J. Jean-Gilles; McClelland, M.; Tall, B. D.

    2012-01-01

    Cronobacter spp. are emerging pathogens that cause severe infantile meningitis, septicemia, or necrotizing enterocolitis. Contaminated powdered infant formula has been implicated as the source of Cronobacter spp. in most cases, but questions still remain regarding the natural habitat and virulence potential for each strain. The iron acquisition systems in 231 Cronobacter strains isolated from different sources were identified and characterized. All Cronobacter spp. have both the Feo and Efe systems for acquisition of ferrous iron, and all plasmid-harboring strains (98%) have the aerobactin-like siderophore, cronobactin, for transport of ferric iron. All Cronobacter spp. have the genes encoding an enterobactin-like siderophore, although it was not functional under the conditions tested. Furthermore, all Cronobacter spp. have genes encoding five receptors for heterologous siderophores. A ferric dicitrate transport system (fec system) is encoded specifically by a subset of Cronobacter sakazakii and C. malonaticus strains, of which a high percentage were isolated from clinical samples. Phylogenetic analysis confirmed that the fec system is most closely related to orthologous genes present in human-pathogenic bacterial strains. Moreover, all strains of C. dublinensis and C. muytjensii encode two receptors, FcuA and Fct, for heterologous siderophores produced by plant pathogens. Identification of putative Fur boxes and expression of the genes under iron-depleted conditions revealed which genes and operons are components of the Fur regulon. Taken together, these results support the proposition that C. sakazakii and C. malonaticus may be more associated with the human host and C. dublinensis and C. muytjensii with plants. PMID:22706064

  15. Identification and characterization of Cronobacter iron acquisition systems.

    PubMed

    Grim, C J; Kothary, M H; Gopinath, G; Jarvis, K G; Beaubrun, J Jean-Gilles; McClelland, M; Tall, B D; Franco, A A

    2012-09-01

    Cronobacter spp. are emerging pathogens that cause severe infantile meningitis, septicemia, or necrotizing enterocolitis. Contaminated powdered infant formula has been implicated as the source of Cronobacter spp. in most cases, but questions still remain regarding the natural habitat and virulence potential for each strain. The iron acquisition systems in 231 Cronobacter strains isolated from different sources were identified and characterized. All Cronobacter spp. have both the Feo and Efe systems for acquisition of ferrous iron, and all plasmid-harboring strains (98%) have the aerobactin-like siderophore, cronobactin, for transport of ferric iron. All Cronobacter spp. have the genes encoding an enterobactin-like siderophore, although it was not functional under the conditions tested. Furthermore, all Cronobacter spp. have genes encoding five receptors for heterologous siderophores. A ferric dicitrate transport system (fec system) is encoded specifically by a subset of Cronobacter sakazakii and C. malonaticus strains, of which a high percentage were isolated from clinical samples. Phylogenetic analysis confirmed that the fec system is most closely related to orthologous genes present in human-pathogenic bacterial strains. Moreover, all strains of C. dublinensis and C. muytjensii encode two receptors, FcuA and Fct, for heterologous siderophores produced by plant pathogens. Identification of putative Fur boxes and expression of the genes under iron-depleted conditions revealed which genes and operons are components of the Fur regulon. Taken together, these results support the proposition that C. sakazakii and C. malonaticus may be more associated with the human host and C. dublinensis and C. muytjensii with plants. PMID:22706064

  16. Characterization of a Dipartite Iron Uptake System from Uropathogenic Escherichia coli Strain F11*

    PubMed Central

    Koch, Doreen; Chan, Anson C. K.; Murphy, Michael E. P.; Lilie, Hauke; Grass, Gregor; Nies, Dietrich H.

    2011-01-01

    In the uropathogenic Escherichia coli strain F11, in silico genome analysis revealed the dicistronic iron uptake operon fetMP, which is under iron-regulated control mediated by the Fur regulator. The expression of fetMP in a mutant strain lacking known iron uptake systems improved growth under iron depletion and increased cellular iron accumulation. FetM is a member of the iron/lead transporter superfamily and is essential for iron uptake by the Fet system. FetP is a periplasmic protein that enhanced iron uptake by FetM. Recombinant FetP bound Cu(II) and the iron analog Mn(II) at distinct sites. The crystal structure of the FetP dimer reveals a copper site in each FetP subunit that adopts two conformations: CuA with a tetrahedral geometry composed of His44, Met90, His97, and His127, and CuB, a second degenerate octahedral geometry with the addition of Glu46. The copper ions of each site occupy distinct positions and are separated by ∼1.3 Å. Nearby, a putative additional Cu(I) binding site is proposed as an electron source that may function with CuA/CuB displacement to reduce Fe(III) for transport by FetM. Together, these data indicate that FetMP is an additional iron uptake system composed of a putative iron permease and an iron-scavenging and potentially iron-reducing periplasmic protein. PMID:21596746

  17. The Arabidopsis YELLOW STRIPE LIKE4 and 6 transporters control iron release from the chloroplast.

    PubMed

    Divol, Fanchon; Couch, Daniel; Conéjéro, Geneviève; Roschzttardtz, Hannetz; Mari, Stéphane; Curie, Catherine

    2013-03-01

    In most plant cell types, the chloroplast represents the largest sink for iron, which is both essential for chloroplast metabolism and prone to cause oxidative damage. Here, we show that to buffer the potentially harmful effects of iron, besides ferritins for storage, the chloroplast is equipped with specific iron transporters that respond to iron toxicity by removing iron from the chloroplast. We describe two transporters of the YELLOW STRIPE1-LIKE family from Arabidopsis thaliana, YSL4 and YSL6, which are likely to fulfill this function. Knocking out both YSL4 and YSL6 greatly reduces the plant's ability to cope with excess iron. Biochemical and immunolocalization analyses showed that YSL6 resides in the chloroplast envelope. Elemental analysis and histochemical staining indicate that iron is trapped in the chloroplasts of the ysl4 ysl6 double mutants, which also accumulate ferritins. Also, vacuolar iron remobilization and NRAMP3/4 expression are inhibited. Furthermore, ubiquitous expression of YSL4 or YSL6 dramatically reduces plant tolerance to iron deficiency and decreases chloroplastic iron content. These data demonstrate a fundamental role for YSL4 and YSL6 in managing chloroplastic iron. YSL4 and YSL6 expression patterns support their physiological role in detoxifying iron during plastid dedifferentiation occurring in embryogenesis and senescence. PMID:23512854

  18. Chloroplast Iron Transport Proteins – Function and Impact on Plant Physiology

    PubMed Central

    López-Millán, Ana F.; Duy, Daniela; Philippar, Katrin

    2016-01-01

    Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today’s cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field. PMID:27014281

  19. Mars Equipment Transport System

    NASA Astrophysics Data System (ADS)

    Sorrells, Cindy; Geiger, Michelle; Ohanlon, Sean; Pieloch, Stuart; Brogan, Nick

    1993-12-01

    Mechanical Engineering Senior Design Project 1 (ME4182) is a part of the NASA/University Advanced Design Program. Under this program, NASA allocates money and resources to students to be used in design work for a specified topic. The current topic is the exploration and colonization of Mars. The specific area in which we are to work is the transportation of the modules in which astronauts will live while on Mars. NASA is concerned about the weight of the module transferring system, as the shipping cost to Mars is quite expensive. NASA has specified that the weight of the system is to be minimized in order to reduce the shipping costs.

  20. Mars Equipment Transport System

    NASA Technical Reports Server (NTRS)

    Sorrells, Cindy; Geiger, Michelle; Ohanlon, Sean; Pieloch, Stuart; Brogan, Nick

    1993-01-01

    Mechanical Engineering Senior Design Project 1 (ME4182) is a part of the NASA/University Advanced Design Program. Under this program, NASA allocates money and resources to students to be used in design work for a specified topic. The current topic is the exploration and colonization of Mars. The specific area in which we are to work is the transportation of the modules in which astronauts will live while on Mars. NASA is concerned about the weight of the module transferring system, as the shipping cost to Mars is quite expensive. NASA has specified that the weight of the system is to be minimized in order to reduce the shipping costs.

  1. Physiology of iron transport and the hemochromatosis gene.

    PubMed

    Pietrangelo, Antonello

    2002-03-01

    Iron is essential for fundamental cell functions but is also a catalyst for chemical reactions involving free radical formation, potentially leading to oxidative stress and cell damage. Cellular iron levels are therefore carefully regulated to maintain an adequate substrate while also minimizing the pool of potentially toxic "free iron." The main control of body iron homeostasis in higher organisms is placed in the duodenum, where dietary iron is absorbed, whereas no controlled means of eliminating unwanted iron have evolved in mammals. Hereditary hemochromatosis, the prototype of deregulated iron homeostasis in humans, is due to inappropriately increased iron absorption and is commonly associated to a mutated HFE gene. The HFE protein is homologous to major histocompatibility complex class I proteins but is not an iron carrier, whereas biochemical and cell biological studies have shown that the transferrin receptor, the main protein devoted to cellular uptake of transferrin iron, interacts with HFE. This review focuses on recent advances in iron research and presents a model of HFE function in iron metabolism. PMID:11841990

  2. Space Transportation Systems Technologies

    NASA Technical Reports Server (NTRS)

    Laue, Jay H.

    2001-01-01

    This document is the final report by the Science Applications International Corporation (SAIC) on contracted support provided to the National Aeronautics and Space Administration (NASA) under Contract NAS8-99060, 'Space Transportation Systems Technologies'. This contract, initiated by NASA's Marshall Space Flight Center (MSFC) on February 8, 1999, was focused on space systems technologies that directly support NASA's space flight goals. It was awarded as a Cost-Plus-Incentive-Fee (CPIF) contract to SAIC, following a competitive procurement via NASA Research Announcement, NRA 8-21. This NRA was specifically focused on tasks related to Reusable Launch Vehicles (RLVs). Through Task Area 3 (TA-3), "Other Related Technology" of this NRA contract, SAIC extensively supported the Space Transportation Directorate of MSFC in effectively directing, integrating, and setting its mission, operations, and safety priorities for future RLV-focused space flight. Following an initially contracted Base Year (February 8, 1999 through September 30, 1999), two option years were added to the contract. These were Option Year 1 (October 1, 1999 through September 30, 2000) and Option Year 2 (October 1, 2000 through September 30, 2001). This report overviews SAIC's accomplishments for the Base Year, Option Year 1, and Option Year 2, and summarizes the support provided by SAIC to the Space Transportation Directorate, NASA/MSFC.

  3. Magnetically Coupled Transport System

    SciTech Connect

    Breshears, S.A.

    1999-01-26

    Throughout the DOE complex, materials are routinely transported within glovebox processing lines. Cylindrical product cans, crucibles, sample containers, tools, and waste products are all examples of items that are moved between equipment stations during glovebox operations. Traditional transport methods have included manual handling using tongs, chain and belt conveyors, carts with pull wires, and overhead hoists on monorails. These methods rely on hands-on operations and/or utilize high maintenance equipment located inside the gloveboxes, which can lead to high radiation exposure to personnel and can generate large amounts of radioactive waste. One innovative approach incorporates linear induction motors (LIMs) so that high maintenance items are located outside the gloveboxes, but LIMs produce heat, do not move smoothly over a wide range of velocities, and are not locked in position at zero velocity. Savannah River Technology Center (SRTC) engineers have developed and demonstrated a concept for a magnetically coupled transport system to transfer material within process lines and from line to line. This automated system significantly reduces hands-on operations. Linear actuators and lead screws provide smooth horizontal and vertical movement. Rare earth magnetic coupling technology allows the majority of the equipment to be located outside the glovebox, simplifying maintenance and minimizing radioactive waste.

  4. Mars transportation system

    NASA Technical Reports Server (NTRS)

    Garrard, William; Vano, Andrew; Rutherford, Dave

    1992-01-01

    The University of Minnesota Advanced Space Design Program has developed a sample Mars exploration scenario. The purpose of the design project is to enhance NASA and university interaction, to provide fresh ideas to NASA, and to provide real world design problems to engineering students. The Mars Transportation System in this paper is designed to transport a crew of six astronauts to the Martian surface and return them to Low Earth Orbit (LEO) starting in the year 2016. The proposed vehicle features such advanced technologies as nuclear propulsion, nuclear power generation, and aerobraking. Three missions are planned. Orbital trajectories are of the conjunction class with an inbound Venus swingby providing a 60-day surface stay at Mars and an average total trip time of 520 days.

  5. SURFACE COMPLEXATION OF ACTINIDES WITH IRON OXIDES: IMPLICATIONS FOR RADIONUCLIDE TRANSPORT IN NEAR-SURFACE AQUIFERS

    SciTech Connect

    J.L. Jerden Jr.; A.J. Kropf; Y. Tsai

    2005-08-25

    The surface complexation of actinides with iron oxides plays a key role in actinide transport and retardation in geosphere-biosphere systems. The development of accurate actinide transport models therefore requires a mechanistic understanding of surface complexation reactions (i.e. knowledge of chemical speciation at mineral/fluid interfaces). Iron oxides are particularly important actinide sorbents due to their pH dependent surface charges, relatively high surface areas and ubiquity in oxic and suboxic near-surface systems. In this paper we present results from field and laboratory investigations that elucidate the mechanisms involved in binding uranium and neptunium to iron oxide mineral substrates in near neutral groundwaters. The field study involved sampling and characterizing uranium-bearing groundwaters and solids from a saprolite aquifer overlying an unmined uranium deposit in the Virginia Piedmont. The groundwaters were analyzed by inductively coupled mass spectrometry and ion chromatography and the aquifer solids were analyzed by electron microprobe. The laboratory study involved a series of batch sorption tests in which U(VI) and Np(V) were reacted with goethite, hematite and magnetite in simulated groundwaters. The pH, ionic strength, aging time, and sorbent/sorbate ratios were varied in these experiments. The oxidation state and coordination environment of neptunium in solutions and sorbents from the batch tests were characterized by X-ray absorption spectroscopy (XAS) at the Advanced Photon Source, Argonne National Laboratory. Results from this work indicate that, in oxidizing near-surface aquifers, the dissolved concentration of uranium may be limited to less than 30 parts per billion due to uptake by iron oxide mineral coatings and the precipitation of sparingly soluble U(VI) phosphate minerals. Results from the batch adsorption tests showed that, in near neutral groundwaters, a significant fraction of the uranium and neptunium adsorbed as strongly

  6. New Iron Acquisition System in Bacteroidetes

    PubMed Central

    Manfredi, Pablo; Lauber, Frédéric; Renzi, Francesco; Hack, Katrin; Hess, Estelle

    2014-01-01

    Capnocytophaga canimorsus, a dog mouth commensal and a member of the Bacteroidetes phylum, causes rare but often fatal septicemia in humans that have been in contact with a dog. Here, we show that C. canimorsus strains isolated from human infections grow readily in heat-inactivated human serum and that this property depends on a typical polysaccharide utilization locus (PUL), namely, PUL3 in strain Cc5. PUL are a hallmark of Bacteroidetes, and they encode various products, including surface protein complexes that capture and process polysaccharides or glycoproteins. The archetype system is the Bacteroides thetaiotaomicron Sus system, devoted to starch utilization. Unexpectedly, PUL3 conferred the capacity to acquire iron from serotransferrin (STF), and this capacity required each of the seven encoded proteins, indicating that a whole Sus-like machinery is acting as an iron capture system (ICS), a new and unexpected function for Sus-like machinery. No siderophore could be detected in the culture supernatant of C. canimorsus, suggesting that the Sus-like machinery captures iron directly from transferrin, but this could not be formally demonstrated. The seven genes of the ICS were found in the genomes of several opportunistic pathogens from the Capnocytophaga and Prevotella genera, in different isolates of the severe poultry pathogen Riemerella anatipestifer, and in strains of Bacteroides fragilis and Odoribacter splanchnicus isolated from human infections. Thus, this study describes a new type of ICS that evolved in Bacteroidetes from a polysaccharide utilization system and most likely represents an important virulence factor in this group. PMID:25368114

  7. New iron acquisition system in Bacteroidetes.

    PubMed

    Manfredi, Pablo; Lauber, Frédéric; Renzi, Francesco; Hack, Katrin; Hess, Estelle; Cornelis, Guy R

    2015-01-01

    Capnocytophaga canimorsus, a dog mouth commensal and a member of the Bacteroidetes phylum, causes rare but often fatal septicemia in humans that have been in contact with a dog. Here, we show that C. canimorsus strains isolated from human infections grow readily in heat-inactivated human serum and that this property depends on a typical polysaccharide utilization locus (PUL), namely, PUL3 in strain Cc5. PUL are a hallmark of Bacteroidetes, and they encode various products, including surface protein complexes that capture and process polysaccharides or glycoproteins. The archetype system is the Bacteroides thetaiotaomicron Sus system, devoted to starch utilization. Unexpectedly, PUL3 conferred the capacity to acquire iron from serotransferrin (STF), and this capacity required each of the seven encoded proteins, indicating that a whole Sus-like machinery is acting as an iron capture system (ICS), a new and unexpected function for Sus-like machinery. No siderophore could be detected in the culture supernatant of C. canimorsus, suggesting that the Sus-like machinery captures iron directly from transferrin, but this could not be formally demonstrated. The seven genes of the ICS were found in the genomes of several opportunistic pathogens from the Capnocytophaga and Prevotella genera, in different isolates of the severe poultry pathogen Riemerella anatipestifer, and in strains of Bacteroides fragilis and Odoribacter splanchnicus isolated from human infections. Thus, this study describes a new type of ICS that evolved in Bacteroidetes from a polysaccharide utilization system and most likely represents an important virulence factor in this group. PMID:25368114

  8. Effects of electron correlations on transport properties of iron at Earth's core conditions.

    PubMed

    Zhang, Peng; Cohen, R E; Haule, K

    2015-01-29

    Earth's magnetic field has been thought to arise from thermal convection of molten iron alloy in the outer core, but recent density functional theory calculations have suggested that the conductivity of iron is too high to support thermal convection, resulting in the investigation of chemically driven convection. These calculations for resistivity were based on electron-phonon scattering. Here we apply self-consistent density functional theory plus dynamical mean-field theory (DFT + DMFT) to iron and find that at high temperatures electron-electron scattering is comparable to the electron-phonon scattering, bringing theory into agreement with experiments and solving the transport problem in Earth's core. The conventional thermal dynamo picture is safe. We find that electron-electron scattering of d electrons is important at high temperatures in transition metals, in contrast to textbook analyses since Mott, and that 4s electron contributions to transport are negligible, in contrast to numerous models used for over fifty years. The DFT+DMFT method should be applicable to other high-temperature systems where electron correlations are important. PMID:25631449

  9. Ferric Uptake Regulator Fur Control of Putative Iron Acquisition Systems in Clostridium difficile

    PubMed Central

    Ellermeier, Craig D.

    2015-01-01

    ABSTRACT Clostridium difficile is an anaerobic, Gram-positive, spore-forming opportunistic pathogen and is the most common cause of hospital-acquired infectious diarrhea. Although iron acquisition in the host is a key to survival of bacterial pathogens, high levels of intracellular iron can increase oxidative damage. Therefore, expression of iron acquisition mechanisms is tightly controlled by transcriptional regulators. We identified a C. difficile homologue of the master bacterial iron regulator Fur. Using targetron mutagenesis, we generated a fur insertion mutant of C. difficile. To identify the genes regulated by Fur in C. difficile, we used microarray analysis to compare transcriptional differences between the fur mutant and the wild type when grown in high-iron medium. The fur mutant had increased expression of greater than 70 transcriptional units. Using quantitative reverse transcriptase PCR (qRT-PCR), we analyzed several of the Fur-regulated genes identified by the microarray and verified that they are both iron and Fur regulated in C. difficile. Among those Fur- and iron-repressed genes were C. difficile genes encoding 7 putative cation transport systems of different classes. We found that Fur was able to bind the DNA upstream of three Fur-repressed genes in electrophoretic mobility shift assays. We also demonstrate that expression of Fur-regulated putative iron acquisition systems was increased during C. difficile infection using the hamster model. Our data suggest that C. difficile expresses multiple iron transport mechanisms in response iron depletion in vitro and in vivo. IMPORTANCE Clostridium difficile is the most common cause of hospital-acquired infectious diarrhea and has been recently classified as an “urgent” antibiotic resistance threat by the CDC. To survive and cause disease, most bacterial pathogens must acquire the essential enzymatic cofactor iron. While import of adequate iron is essential for most bacterial growth, excess

  10. Ferroportin-mediated iron transport: expression and regulation

    PubMed Central

    Ward, Diane; Kaplan, Jerry

    2013-01-01

    The distinguishing feature between iron homeostasis in single versus multicellular organisms is the need for multicellular organisms to transfer iron from sites of absorption to sites of utilization and storage. Ferroportin is the only known iron exporter and ferroportin plays an essential role in the export of iron from cells to blood. Ferroportin can be regulated at many different levels including transcriptionally, post-transcriptionally, through mRNA stability and post-translationally, through protein turnover. Additionally, ferroportin may be regulated in both cell-dependent and cell-autonomous fashions. Regulation of ferroportin is critical for iron homeostasis as alterations in ferroportin may result in either iron deficiency or iron overload. PMID:22440327

  11. Systemic and tumor level iron regulation in men with colorectal cancer: a case control study

    PubMed Central

    2014-01-01

    Background Increased cellular iron exposure is associated with colorectal cancer (CRC) risk. Hepcidin, a liver peptide hormone, acts as the primary regulator of systemic iron status by blocking iron release from enterocytes into plasma. Concentrations are decreased during low iron status and increased during inflammation. The role of hepcidin and the factors influencing its regulation in CRC remains largely unknown. This study explored systemic and tumor level iron regulation in men with CRC. Methods The participants were 20 CRC cases and 20 healthy control subjects. Colonic tissue (adenocarcinoma [cases] healthy mucosa [controls]) was subjected to quantitative PCR (hepcidin, iron transporters and IL-6) and Perls’ iron staining. Serum was analyzed using ELISA for hepcidin, iron status (sTfR) and inflammatory markers (CRP, IL-6, TNF-α). Anthropometrics, dietary iron intake and medical history were obtained. Results Cases and controls were similar in demographics, medication use and dietary iron intake. Systemically, cases compared to controls had lower iron status (sTfR: 21.6 vs 11.8 nmol/L, p < 0.05) and higher marker of inflammation (CRP: 8.3 vs 3.4 μg/mL, p < 0.05). Serum hepcidin was mildly decreased in cases compared to controls; however, it was within the normal range for both groups. Within colonic tissue, 30% of cases (6/20) presented iron accumulation compared to 5% of controls (1/20) (χ2 = 5.0; p < 0.05) and higher marker of inflammation (IL-6: 9.4-fold higher compared to controls, p < 0.05). Presence of adenocarcinoma iron accumulation was associated with higher serum hepcidin (iron accumulation group 80.8 vs iron absence group 22.0 ng/mL, p < 0.05). Conclusions While CRC subjects had serum hepcidin concentrations in the normal range, it was higher given their degree of iron restriction. Inappropriately elevated serum hepcidin may reduce duodenal iron absorption and further increase colonic adenocarcinoma iron exposure

  12. Mars transportation system synthesis

    NASA Astrophysics Data System (ADS)

    Young, Archie C.; Mulqueen, John A.; Emrich, William J.

    Performance and requirements synthesized to support the manned Mars mission of the Space Exploration Initiative (SEI) are presented. Emphasis is placed on the Mars transportation system (MTS), which uses nuclear thermal rocket (NTR) propulsion technology associated with accomplishing the manned Mars mission. Data are also presented for a propulsion system options comparison of chemical/aerobrake and nuclear electric propulsion systems. Vehicle- and weight-scaling are used to determine the MTS mass, size, and performance range required for different Mars mission durations. The split sprint, opposition, and conjunction class mission modes are employed to determine the MTS requirements envelope. MTS sensitivity to Mars surface payload, crew size, Mars orbit payload, NTR engine thrust level, engine specific impulse, and NTR engine thrust-to-weight ratio are synthesized. A suggested NTR technology level to accomplish both cargo and piloted Mars missions is discussed.

  13. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism

    NASA Technical Reports Server (NTRS)

    Attieh, Z. K.; Mukhopadhyay, C. K.; Seshadri, V.; Tripoulas, N. A.; Fox, P. L.

    1999-01-01

    The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of "aceruloplasminemic" patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2-3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.

  14. Alternate transportation system

    NASA Technical Reports Server (NTRS)

    Zertuche, Tony; Mckinnie, James

    1988-01-01

    Three missions have been identified by NASA for a Space Shuttle-supplementing Alternate Transportation System (ATS) encompassing combinations of booster vehicles, crew modules, and service modules: (1) to achieve manned access to orbit for Space Station crew rotation every 90 days, (2) the lofting of a logistics module resupplying the Space Station every 180 days, and (3) the simultaneous launch of both crews and logistics to the Space Station. A reentry glider is considered, in conjunction with the Space Shuttle's unmanned cargo version and the Apollo manned capsule, as an important ATS element. The Titan IV/NUS is used as a booster.

  15. Pneumatic Pellet-Transporting System

    NASA Technical Reports Server (NTRS)

    Wood, George; Pugsley, Robert A.

    1992-01-01

    Pneumatic system transports food pellets to confined animals. Flow of air into venturi assembly entrains round pellets, drawing them from reservoir into venturi for transport by airflow. Pneumatic pellet-transporting system includes venturi assembly, which creates flow of air that draws pellets into system.

  16. Arabidopsis IRT2 gene encodes a root-periphery iron transporter.

    PubMed

    Vert, G; Briat, J F; Curie, C

    2001-04-01

    Iron uptake from the soil is a tightly controlled process in plant roots, involving specialized transporters. One such transporter, IRT1, was identified in Arabidopsis thaliana and shown to function as a broad-range metal ion transporter in yeast. Here we report the cloning and characterization of the IRT2 cDNA, a member of the ZIP family of metal transporters, highly similar to IRT1 at the amino-acid level. IRT2 expression in yeast suppresses the growth defect of iron and zinc transport yeast mutants and enhances iron uptake and accumulation. However, unlike IRT1, IRT2 does not transport manganese or cadmium in yeast. IRT2 expression is detected only in roots of A. thaliana plants, and is upregulated by iron deficiency. By fusing the IRT2 promoter to the uidA reporter gene, we show that the IRT2 promoter is mainly active in the external cell layers of the root subapical zone, and therefore provide the first tissue localization of a plant metal transporter. Altogether, these data support a role for the IRT2 transporter in iron and zinc uptake from the soil in response to iron-limited conditions. PMID:11389759

  17. Iron transport in Mycobacterium smegmatis: occurrence of iron-regulated envelope proteins as potential receptors for iron uptake.

    PubMed

    Hall, R M; Sritharan, M; Messenger, A J; Ratledge, C

    1987-08-01

    Cell-envelope fractions were isolated from the rapidly growing saprophyte Mycobacterium smegmatis following growth in glycerol/asparagine medium under both iron-limited (0.02 microgram Fe ml-1) and iron-sufficient (2.0 to 4.0 micrograms Fe ml-1) conditions. Examination of these preparations by SDS-PAGE demonstrated the production of at least four additional proteins when iron was limiting. These iron-regulated envelope proteins (IREPs) were ascribed apparent molecular masses of 180 kDa (protein I), 84 kDa (protein II), 29 kDa (protein III) and 25 kDa (protein IV). All four proteins were present in both cell-wall and membrane preparations but spheroplast preparations were devoid of the 29 kDa protein. Attempts at labelling the proteins with 55FeCl3 or 55Fe-exochelin, the siderophore for iron uptake, were unsuccessful, though this was attributed to the denatured state of the proteins following electrophoresis. Antibodies were raised to each of the four proteins: the one raised to protein III inhibited exochelin-mediated iron uptake into iron-deficiently grown cells by 70% but was ineffective against iron uptake into iron-sufficiently grown cells. As exochelin is taken up into both types of cells by a similar process, protein III may not be a simple receptor for iron uptake though the results imply some function connected with this process. The role of the other IREPs is less certain. PMID:3127539

  18. Functional characterization of LIT1, the Leishmania amazonensis ferrous iron transporter

    PubMed Central

    Jacques, Ismaele; Andrews, Norma W.; Huynh, Chau

    2010-01-01

    Leishmania amazonensis LIT1 was identified based on homology with IRT1, a ferrous iron transporter from Arabidopsis thaliana. Δlit1 Leishmania amazonensis are defective in intracellular replication and lesion formation in vivo, a virulence phenotype attributed to defective intracellular iron acquisition. Here we functionally characterize LIT1, directly demonstrating that it functions as a ferrous iron membrane transporter from the ZIP family. Conserved residues in the predicted transmembrane domains II, IV, V and VII of LIT1 are essential for iron transport in yeast, including histidines that were proposed to function as metal ligands in ZIP transporters. LIT1 also contains two regions within the predicted intracellular loop that are not found in Arabidopsis IRT1. Deletion of region I inhibited LIT1 expression on the surface of Leishmania promastigotes. Deletion of region II did not interfere with LIT1 trafficking to the surface, but abolished its iron transport capacity when expressed in yeast. Mutagenesis revealed two motifs within region II, HGHQH and TPPRDM, that are independently required for iron transport by LIT1. D263 was identified as a key residue required for iron transport within the TPPRDM motif, while P260 and P261 were dispensable. Deletion of proline-rich regions within region I and between regions I and II did not affect iron transport in yeast, but in Leishmania amazonensis were not able to rescue the intracellular growth of Δlit1 parasites, or their ability to form lesions in mice. These results are consistent with a potential role of the unique intracellular loop of LIT1 in intracellular regulation by Leishmania-specific factors. PMID:20025906

  19. Transportation System Concept of Operations

    SciTech Connect

    N. Slater-Thompson

    2006-08-16

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower level

  20. The Siderocalin/Enterobactin Interaction: A Link between Mammalian Immunity and Bacterial Iron Transport

    SciTech Connect

    Meux, Susan C.

    2008-05-12

    The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [Fe{sup III}(Ent)]{sup 3-}. This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an anti-bacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidic endosomes and [Fe{sup III}(Ent)]{sup 3-} is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[Fe{sup III}(Ent)]{sup 3-} and Scn-Y106F:[Fe{sup III}(Ent)]{sup 3-} complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [Fe{sup III}(Ent)]{sup 3-}. Fluorescence, UV-Vis and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogs of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.

  1. Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection.

    PubMed

    Minandri, Fabrizia; Imperi, Francesco; Frangipani, Emanuela; Bonchi, Carlo; Visaggio, Daniela; Facchini, Marcella; Pasquali, Paolo; Bragonzi, Alessandra; Visca, Paolo

    2016-08-01

    Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and chronic lung infections in cystic fibrosis patients. Iron is essential for bacterial growth, and P. aeruginosa expresses multiple iron uptake systems, whose role in lung infection deserves further investigation. P. aeruginosa Fe(3+) uptake systems include the pyoverdine and pyochelin siderophores and two systems for heme uptake, all of which are dependent on the TonB energy transducer. P. aeruginosa also has the FeoB transporter for Fe(2+) acquisition. To assess the roles of individual iron uptake systems in P. aeruginosa lung infection, single and double deletion mutants were generated in P. aeruginosa PAO1 and characterized in vitro, using iron-poor media and human serum, and in vivo, using a mouse model of lung infection. The iron uptake-null mutant (tonB1 feoB) and the Fe(3+) transport mutant (tonB1) did not grow aerobically under low-iron conditions and were avirulent in the mouse model. Conversely, the wild type and the feoB, hasR phuR (heme uptake), and pchD (pyochelin) mutants grew in vitro and caused 60 to 90% mortality in mice. The pyoverdine mutant (pvdA) and the siderophore-null mutant (pvdA pchD) grew aerobically in iron-poor media but not in human serum, and they caused low mortality in mice (10 to 20%). To differentiate the roles of pyoverdine in iron uptake and virulence regulation, a pvdA fpvR double mutant defective in pyoverdine production but expressing wild-type levels of pyoverdine-regulated virulence factors was generated. Deletion of fpvR in the pvdA background partially restored the lethal phenotype, indicating that pyoverdine contributes to the pathogenesis of P. aeruginosa lung infection by combining iron transport and virulence-inducing capabilities. PMID:27271740

  2. Reactive transport modeling at uranium in situ recovery sites: uncertainties in uranium sorption on iron hydroxides

    USGS Publications Warehouse

    Johnson, Raymond H.; Tutu, Hlanganani

    2013-01-01

    Geochemical changes that can occur down gradient from uranium in situ recovery (ISR) sites are important for various stakeholders to understand when evaluating potential effects on surrounding groundwater quality. If down gradient solid-phase material consists of sandstone with iron hydroxide coatings (no pyrite or organic carbon), sorption of uranium on iron hydroxides can control uranium mobility. Using one-dimensional reactive transport models with PHREEQC, two different geochemical databases, and various geochemical parameters, the uncertainties in uranium sorption on iron hydroxides are evaluated, because these oxidized zones create a greater risk for future uranium transport than fully reduced zones where uranium generally precipitates.

  3. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth.

    PubMed

    Vert, Grégory; Grotz, Natasha; Dédaldéchamp, Fabienne; Gaymard, Frédéric; Guerinot, Mary Lou; Briat, Jean-François; Curie, Catherine

    2002-06-01

    Plants are the principal source of iron in most diets, yet iron availability often limits plant growth. In response to iron deficiency, Arabidopsis roots induce the expression of the divalent cation transporter IRT1. Here, we present genetic evidence that IRT1 is essential for the uptake of iron from the soil. An Arabidopsis knockout mutant in IRT1 is chlorotic and has a severe growth defect in soil, leading to death. This defect is rescued by the exogenous application of iron. The mutant plants do not take up iron and fail to accumulate other divalent cations in low-iron conditions. IRT1-green fluorescent protein fusion, transiently expressed in culture cells, localized to the plasma membrane. We also show, through promoter::beta-glucuronidase analysis and in situ hybridization, that IRT1 is expressed in the external cell layers of the root, specifically in response to iron starvation. These results clearly demonstrate that IRT1 is the major transporter responsible for high-affinity metal uptake under iron deficiency. PMID:12084823

  4. IRT1, an Arabidopsis Transporter Essential for Iron Uptake from the Soil and for Plant Growth

    PubMed Central

    Vert, Grégory; Grotz, Natasha; Dédaldéchamp, Fabienne; Gaymard, Frédéric; Guerinot, Mary Lou; Briat, Jean-François; Curie, Catherine

    2002-01-01

    Plants are the principal source of iron in most diets, yet iron availability often limits plant growth. In response to iron deficiency, Arabidopsis roots induce the expression of the divalent cation transporter IRT1. Here, we present genetic evidence that IRT1 is essential for the uptake of iron from the soil. An Arabidopsis knockout mutant in IRT1 is chlorotic and has a severe growth defect in soil, leading to death. This defect is rescued by the exogenous application of iron. The mutant plants do not take up iron and fail to accumulate other divalent cations in low-iron conditions. IRT1–green fluorescent protein fusion, transiently expressed in culture cells, localized to the plasma membrane. We also show, through promoter::β-glucuronidase analysis and in situ hybridization, that IRT1 is expressed in the external cell layers of the root, specifically in response to iron starvation. These results clearly demonstrate that IRT1 is the major transporter responsible for high-affinity metal uptake under iron deficiency. PMID:12084823

  5. Nickel-iron battery system safety

    NASA Astrophysics Data System (ADS)

    Saltat, R. C.

    1984-06-01

    The generated flow rates of gaseous hydrogen and gaseous oxygen from an electrical vehicle nickel-iron battery system were determined and used to evaluate the flame quenching capabilities of several candidate devices to prevent flame propagation within batteries having central watering/venting systems. The battery generated hydrogen and oxygen gases were measured for a complete charge and discharge cycle. The data correlates well with accepted theory during strong overcharge conditions indicating that the measurements are valid for other portions of the cycle. Tests confirm that the gas mixture in the cells is always flammable regardless of the battery status. The literature indicated that a conventional flame arrestor would not be effective over the broad spectrum of gassing conditions presented by a nickel-iron battery. Four different types of protective devices were evaluated. A foam-metal arrestor design was successful in quenching gaseous hydrogen and gaseous oxygen flames, however; the application of this flame arrestor to individual cell or module protection in a battery is problematic. A possible rearrangement of the watering/venting system to accept the partial protection of simple one-way valves is presented which, in combination with the successful foam-metal arrestor as main vent protection, could result in a significant improvement in battery protection.

  6. Nickel-iron battery system safety

    NASA Technical Reports Server (NTRS)

    Saltat, R. C.

    1984-01-01

    The generated flow rates of gaseous hydrogen and gaseous oxygen from an electrical vehicle nickel-iron battery system were determined and used to evaluate the flame quenching capabilities of several candidate devices to prevent flame propagation within batteries having central watering/venting systems. The battery generated hydrogen and oxygen gases were measured for a complete charge and discharge cycle. The data correlates well with accepted theory during strong overcharge conditions indicating that the measurements are valid for other portions of the cycle. Tests confirm that the gas mixture in the cells is always flammable regardless of the battery status. The literature indicated that a conventional flame arrestor would not be effective over the broad spectrum of gassing conditions presented by a nickel-iron battery. Four different types of protective devices were evaluated. A foam-metal arrestor design was successful in quenching gaseous hydrogen and gaseous oxygen flames, however; the application of this flame arrestor to individual cell or module protection in a battery is problematic. A possible rearrangement of the watering/venting system to accept the partial protection of simple one-way valves is presented which, in combination with the successful foam-metal arrestor as main vent protection, could result in a significant improvement in battery protection.

  7. Role of clay minerals in the transportation of iron

    USGS Publications Warehouse

    Carroll, D.

    1958-01-01

    The clay minerals have iron associated with them in several ways: 1. (1) as an essential constituent 2. (2) as a minor constituent within the crystal lattice where it is in isomorphous substitution and 3. (3) as iron oxide on the surface of the mineral platelets. Nontronite, "hydromica," some chlorites, vermiculite, glauconite and chamosite contain iron as an essential constituent. Kaolinite and halloysite have no site within the lattice for iron, but in certain environments iron oxide (goethite or hematite) is intimately associated as a coating on the micelles. Analyses of clay minerals show that the content of Fe2O3 varies: 29 per cent (nontronite), 7??3 per cent (griffithite), 4.5 per cent ("hydromica"), 5.5 per cent (chlorite), 4 per cent (vermiculite) and 18 per cent (glauconite). The FeO content is: 40 per cent (chamosite), 7.8 per cent (griffithite), 1-2 per cent ("hydromica"), 3 per cent (glauconite) and 2 per cent (chlorite). The iron associated with the clay minerals remains stable in the environment in which the minerals occur, but if either pH or Eh or both are changed the iron may be affected. Change of environment will cause: 1. (1) removal of iron by reduction of Fe3+ to Fe2+; 2. (2) ion-exchange reactions; 3. (3) instability of the crystal lattice. Experiments using bacterial activity to produce reducing conditions with kaolinite and halloysite coated with iron oxides and with nontronite in which ferric iron is in the octahedral position within the lattice showed that ferric oxide is removed at Eh +0??215 in fresh water and at Eh +0.098 in sea water. Hematite, goethite, and indefinite iron oxides were removed at different rates. Red ferric oxides were changed to black indefinite noncrystalline ferrous sulphide at Eh -0.020 but reverted to ferric oxide under oxidizing conditions. Nontronite turned bright green under reducing conditions and some of the ferrous iron remained within the lattice on a return to oxidizing conditions. Bacterial activity

  8. Iron transport in the kidney: implications for physiology and cadmium nephrotoxicity.

    PubMed

    Thévenod, Frank; Wolff, Natascha A

    2016-01-01

    The kidney has recently emerged as an organ with a significant role in systemic iron (Fe) homeostasis. Substantial amounts of Fe are filtered by the kidney, which have to be reabsorbed to prevent Fe deficiency. Accordingly Fe transporters and receptors for protein-bound Fe are expressed in the nephron that may also function as entry pathways for toxic metals, such as cadmium (Cd), by way of "ionic and molecular mimicry". Similarities, but also differences in handling of Cd by these transport routes offer rationales for the propensity of the kidney to develop Cd toxicity. This critical review provides a comprehensive update on Fe transport by the kidney and its relevance for physiology and Cd nephrotoxicity. Based on quantitative considerations, we have also estimated the in vivo relevance of the described transport pathways for physiology and toxicology. Under physiological conditions all segments of the kidney tubules are likely to utilize Fe for cellular Fe requiring processes for metabolic purposes and also to contribute to reabsorption of free and bound forms of Fe into the circulation. But Cd entering tubule cells disrupts metabolic pathways and is unable to exit. Furthermore, our quantitative analyses contest established models linking chronic Cd nephrotoxicity to proximal tubular uptake of metallothionein-bound Cd. Hence, Fe transport by the kidney may be beneficial by preventing losses from the body. But increased uptake of Fe or Cd that cannot exit tubule cells may lead to kidney injury, and Fe deficiency may facilitate renal Cd uptake. PMID:26485516

  9. Enzymatic Hydrolysis of Trilactone Siderophores: Where Chiral Recognition Occurs in Enterobactin and Bacillibactin Iron Transport1

    PubMed Central

    Abergel, Rebecca J.; Zawadzka, Anna M.; Hoette, Trisha M.; Raymond, Kenneth N.

    2009-01-01

    Bacillibactin and enterobactin are hexadentate catecholate siderophores produced by bacteria upon iron limitation to scavenge ferric ion and seem to be the ultimate siderophores of their two respective domains: Gram-positive and Gram-negative. Iron acquisition mediated by these trilactone-based ligands necessitates enzymatic hydrolysis of the scaffold for successful intracellular iron delivery. The esterases BesA and Fes hydrolyze bacillibactin and enterobactin, respectively, as well as the corresponding iron complexes. Bacillibactin binds iron through three 2,3-catecholamide moieties linked to a tri-threonine scaffold via glycine spacers, whereas in enterobactin the iron-binding moieties are directly attached to a tri-l-serine backbone; although apparently minor, these structural differences result in markedly different iron coordination properties and iron transport behavior. Comparison of the solution thermodynamic and circular dichroism properties of bacillibactin, enterobactin and the synthetic analogs d-enterobactin, SERGlyCAM and d-SERGlyCAM has determined the role of each different feature in the siderophores' molecular structures in ferric complex stability and metal chirality. While opposite metal chiralities in the different complexes did not affect transport and incorporation in Bacillus subtilis, ferric complexes formed with the various siderophores did not systematically promote growth of the bacteria. The bacillibactin esterase BesA is less specific than the enterobactin esterase Fes; BesA can hydrolyze the trilactones of both siderophores, while only the tri-l-serine trilactone is a substrate of Fes. Both enzymes are stereospecific and cannot cleave tri-d-serine lactones. These data provide a complete picture of the microbial iron transport mediated by these two siderophores, from initial recognition and transport to intracellular iron release. PMID:19673474

  10. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    DOE R&D Accomplishments Database

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  11. Helium, iron and electron particle transport and energy transport studies on the TFTR tokamak

    SciTech Connect

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Grek, B.; Hill, K.W.; Hulse, R.A.; Johnson, D.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Redi, M.H.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.; Kissick, M.W.

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  12. Iron transport across the blood-brain barrier; Development, neurovascular regulation and cerebral amyloid angiopathy

    PubMed Central

    McCarthy, Ryan C; Kosman, Daniel J

    2014-01-01

    There are two barriers for iron entry into the brain: 1) the brain-cerebrospinal fluid (CSF) barrier and 2) the blood-brain barrier (BBB). Here, we review the literature on developmental iron accumulation by the brain, focusing on the transport of iron through the brain microvascular endothelial cells (BMVEC) of the BBB. We review the iron trafficking proteins which may be involved in the iron flux across BMVEC and discuss the plausible mechanisms of BMVEC iron uptake and efflux. We suggest a model for how BMVEC iron uptake and efflux are regulated and a mechanism by which the majority of iron is trafficked across the developing BBB under the direct guidance of neighboring astrocytes. Thus, we place brain iron uptake in the context of the neurovascular unit of the adult brain. Last, we propose that BMVEC iron is involved in the aggregation of amyloid-β peptides leading to the progression of cerebral amyloid angiopathy which often occurs prior to dementia and the onset of Alzheimer's disease. PMID:25355056

  13. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  14. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    SciTech Connect

    Kayaaltı, Zeliha Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-02-15

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  15. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media

    NASA Astrophysics Data System (ADS)

    Busch, Jan; Meißner, Tobias; Potthoff, Annegret; Oswald, Sascha E.

    2014-08-01

    Injection of nanoscale zero-valent iron (nZVI) has recently gained great interest as emerging technology for in-situ remediation of chlorinated organic compounds from groundwater systems. Zero-valent iron (ZVI) is able to reduce organic compounds and to render it to less harmful substances. The use of nanoscale particles instead of granular or microscale particles can increase dechlorination rates by orders of magnitude due to its high surface area. However, classical nZVI appears to be hampered in its environmental application by its limited mobility. One approach is colloid supported transport of nZVI, where the nZVI gets transported by a mobile colloid. In this study transport properties of activated carbon colloid supported nZVI (c-nZVI; d50 = 2.4 μm) are investigated in column tests using columns of 40 cm length, which were filled with porous media. A suspension was pumped through the column under different physicochemical conditions (addition of a polyanionic stabilizer and changes in pH and ionic strength). Highest observed breakthrough was 62% of the injected concentration in glass beads with addition of stabilizer. Addition of mono- and bivalent salt, e.g. more than 0.5 mM/L CaCl2, can decrease mobility and changes in pH to values below six can inhibit mobility at all. Measurements of colloid sizes and zeta potentials show changes in the mean particle size by a factor of ten and an increase of zeta potential from - 62 mV to - 80 mV during the transport experiment. However, results suggest potential applicability of c-nZVI under field conditions.

  16. Use of Electrophoresis for Transporting Nano-Iron in Porous Media

    EPA Science Inventory

    Research was conducted to evaluate if electrophoresis could transport surface stabilized nanoscale zero-valent iron (nZVI) through fine grained sand with the intent of remediating a contaminant in situ. The experimental procedure involved determining the transport rates of poly...

  17. MASS TRANSPORT EFFECTS ON THE KINETICS OF NITROBENZENE REDUCTION BY IRON METAL. (R827117)

    EPA Science Inventory

    To evaluate the importance of external mass transport on the overall rates of
    contaminant reduction by iron metal (Fe0), we have compared measured
    rates of surface reaction for nitrobenzene (ArNO2) to estimated rates
    of external mass transport...

  18. Getting to the root of plant iron uptake and cell-cell transport: Polarity matters!

    PubMed Central

    Dubeaux, Guillaume; Zelazny, Enric; Vert, Grégory

    2015-01-01

    Plasma membrane proteins play pivotal roles in mediating responses to endogenous and environmental cues. Regulation of membrane protein levels and establishment of polarity are fundamental for many cellular processes. In plants, IRON-REGULATED TRANSPORTER 1 (IRT1) is the major root iron transporter but is also responsible for the absorption of other divalent metals such as manganese, zinc and cobalt. We recently uncovered that IRT1 is polarly localized to the outer plasma membrane domain of plant root epidermal cells upon depletion of its secondary metal substrates. The endosome-recruited FYVE1 protein interacts with IRT1 in the endocytic pathway and plays a crucial role in the establishment of IRT1 polarity, likely through its recycling to the cell surface. Our work sheds light on the mechanisms of radial transport of nutrients across the different cell types of plant roots toward the vascular tissues and raises interesting parallel with iron transport in mammals. PMID:26479146

  19. Genetic and Functional Analyses of the Actinobacillus actinomycetemcomitans AfeABCD Siderophore-Independent Iron Acquisition System

    PubMed Central

    Rhodes, Eric R.; Tomaras, Andrew P.; McGillivary, Glen; Connerly, Pamela L.; Actis, Luis A.

    2005-01-01

    The Actinobacillus actinomycetemcomitans afeABCD iron transport system, the expression of which is controlled by iron and Fur, was identified in three different isolates. The protein products of this locus are related to bacterial ABC transporters involved in metal transport. Transformation of the Escherichia coli 1017 iron acquisition mutant with a plasmid harboring afeABCD promoted cell growth under iron-chelated conditions. However, insertion disruption of each of the afeABCD coding regions abolished this growth-relieving effect. The replacement of the parental afeA allele with the derivative afeA::EZ::TN drastically reduced the ability of A. actinomycetemcomitans cells to grow under iron-chelated conditions. PMID:15908408

  20. Sources, transport and deposition of iron in the global atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, R.; Balkanski, Y.; Boucher, O.; Bopp, L.; Chappell, A.; Ciais, P.; Hauglustaine, D.; Peñuelas, J.; Tao, S.

    2015-06-01

    Atmospheric deposition of iron (Fe) plays an important role in controlling oceanic primary productivity. However, the sources of Fe in the atmosphere are not well understood. In particular, the combustion sources of Fe and the subsequent deposition to the oceans have been accounted for in only few ocean biogeochemical models of the carbon cycle. Here we used a mass-balance method to estimate the emissions of Fe from the combustion of fossil fuels and biomass by accounting for the Fe contents in fuel and the partitioning of Fe during combustion. The emissions of Fe attached to aerosols from combustion sources were estimated by particle size, and their uncertainties were quantified by a Monte Carlo simulation. The emissions of Fe from mineral sources were estimated using the latest soil mineralogical database to date. As a result, the total Fe emissions from combustion averaged for 1960-2007 were estimated to be 5.3 Tg yr-1 (90% confidence of 2.3 to 12.1). Of these emissions, 1, 27 and 72% were emitted in particles < 1 μm (PM1), 1-10 μm (PM1-10), and > 10 μm (PM> 10), respectively, compared to a total Fe emission from mineral dust of 41.0 Tg yr-1 in a log-normal distribution with a mass median diameter of 2.5 μm and a geometric standard deviation of 2. For combustion sources, different temporal trends were found in fine and medium-to-coarse particles, with a notable increase in Fe emissions in PM1 since 2000 due to an increase in Fe emission from motor vehicles (from 0.008 to 0.0103 Tg yr-1 in 2000 and 2007, respectively). These emissions have been introduced in a global 3-D transport model run at a spatial resolution of 0.94° latitude by 1.28° longitude to evaluate our estimation of Fe emissions. The modelled Fe concentrations as monthly means were compared with the monthly (57 sites) or daily (768 sites) measured concentrations at a total of 825 sampling stations. The deviation between modelled and observed Fe concentrations attached to aerosols at the

  1. Sources, transport and deposition of iron in the global atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, R.; Balkanski, Y.; Boucher, O.; Bopp, L.; Chappell, A.; Ciais, P.; Hauglustaine, D.; Peñuelas, J.; Tao, S.

    2015-03-01

    Atmospheric deposition of iron (Fe) plays an important role in controlling oceanic primary productivity. However, the sources of Fe in the atmosphere are not well understood. In particular, the combustion sources of Fe and their deposition over oceans are not accounted for in current biogeochemical models of the carbon cycle. Here we used a mass-balance method to estimate the emissions of Fe from the combustion of fossil fuels and biomass by accounting for the Fe contents in fuel and the partitioning of Fe during combustion. The emissions of Fe attached to aerosols from combustion sources were estimated by particle size, and their uncertainties were quantified by a Monte Carlo simulation. The emissions of Fe from mineral sources were estimated using the latest soil mineralogical database to date. As a result, the total Fe emissions from combustion averaged for 1960-2007 were estimated to be 5.1 Tg yr-1 (90% confidence of 2.2 to 11.5). Of these emissions, 2, 33 and 65% were emitted in particles <1 μm (PM1), 1-10 μm (PM1-10), and >10 μm (PM>10), respectively, compared to total Fe emissions from mineral sources of 41.0 Tg yr-1. For combustion sources, different temporal trends were found in fine and medium-to-coarse particles, with a notable increase in Fe emissions in PM1 and PM1-10 since 2000 due to a rapid increase from motor vehicles. These emissions have been introduced in a global 3-D transport model run at a spatial resolution of of 0.94° latitude by 1.28° longitude to evaluate our estimation of Fe emissions. The modelled Fe concentrations were compared to measurements at 825 sampling stations. The deviation between modelled and observed Fe concentrations attached to aerosols at the surface was within a factor of two at most sampling stations, and the deviation was within a factor of 1.5 at sampling stations dominated by combustion sources. We analyzed the relative contribution of combustion sources to total Fe concentrations over different regions of the

  2. Ndfip2 is a potential regulator of the iron transporter DMT1 in the liver

    PubMed Central

    Foot, Natalie J.; Gembus, Kelly M.; Mackenzie, Kimberly; Kumar, Sharad

    2016-01-01

    The regulation of divalent metal ion transporter DMT1, the primary non-heme iron importer in mammals, is critical for maintaining iron homeostasis. Previously we identified ubiquitin-dependent regulation of DMT1 involving the Nedd4 family of ubiquitin ligases and the Ndfip1 and Ndfip2 adaptors. We also established the in vivo function of Ndfip1 in the regulation of DMT1 in the duodenum of mice. Here we have studied the function of Ndfip2 using Ndfip2-deficient mice. The DMT1 protein levels in the duodenum were comparable in wild type and Ndfip2−/− mice, as was the transport activity of isolated enterocytes. A complete blood examination showed no significant differences between wild type and Ndfip2−/− mice in any of the hematological parameters measured. However, when fed a low iron diet, female Ndfip2−/− mice showed a decrease in liver iron content, although they maintained normal serum iron levels and transferrin saturation, compared to wild type female mice that showed a reduction in serum iron and transferrin saturation. Ndfip2−/− female mice also showed an increase in DMT1 expression in the liver, with no change in male mice. We suggest that Ndfip2 controls DMT1 in the liver with female mice showing a greater response to altered dietary iron than the male mice. PMID:27048792

  3. 21 CFR 862.1415 - Iron-binding capacity test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Iron-binding capacity test system. 862.1415... Systems § 862.1415 Iron-binding capacity test system. (a) Identification. An iron-binding capacity test system is a device intended to measure iron-binding capacity in serum. Iron-binding capacity...

  4. 21 CFR 862.1415 - Iron-binding capacity test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Iron-binding capacity test system. 862.1415... Systems § 862.1415 Iron-binding capacity test system. (a) Identification. An iron-binding capacity test system is a device intended to measure iron-binding capacity in serum. Iron-binding capacity...

  5. 21 CFR 862.1415 - Iron-binding capacity test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Iron-binding capacity test system. 862.1415... Systems § 862.1415 Iron-binding capacity test system. (a) Identification. An iron-binding capacity test system is a device intended to measure iron-binding capacity in serum. Iron-binding capacity...

  6. 21 CFR 862.1415 - Iron-binding capacity test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Iron-binding capacity test system. 862.1415... Systems § 862.1415 Iron-binding capacity test system. (a) Identification. An iron-binding capacity test system is a device intended to measure iron-binding capacity in serum. Iron-binding capacity...

  7. 21 CFR 862.1415 - Iron-binding capacity test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Iron-binding capacity test system. 862.1415... Systems § 862.1415 Iron-binding capacity test system. (a) Identification. An iron-binding capacity test system is a device intended to measure iron-binding capacity in serum. Iron-binding capacity...

  8. Effects of electron transport inhibitors and uncouplers on the oxidation of ferrous iron and compounds interacting with ferric iron in Acidithiobacillus ferrooxidans.

    PubMed

    Chen, Yongqiang; Suzuki, Isamu

    2005-08-01

    Oxidation of Fe2+, ascorbic acid, propyl gallate, tiron, L-cysteine, and glutathione by Acidithiobacillus ferrooxidans was studied with respect to the effect of electron transport inhibitors and uncouplers on the rate of oxidation. All the oxidations were sensitive to inhibitors of cytochrome c oxidase, KCN, and NaN3. They were also partially inhibited by inhibitors of complex I and complex III of the electron transport system. Uncouplers at low concentrations stimulated the oxidation and inhibited it at higher concentrations. The oxidation rates of Fe2+ and L-cysteine inhibited by complex I and complex III inhibitors (amytal, rotenone, antimycin A, myxothiazol, and HQNO) were stimulated more extensively by uncouplers than the control rates. Atabrine, a flavin antagonist, was an exception, and atabrine-inhibited oxidation activities of all these compounds were further inhibited by uncouplers. A model for the electron transport pathways of A. ferrooxidans is proposed to account for these results. In the model these organic substrates reduce ferric iron on the surface of cells to ferrous iron, which is oxidized back to ferric iron through the Fe2+ oxidation pathway, leading to cytochrome oxidase to O2. Some of electrons enter the uphill (energy-requiring) electron transport pathway to reduce NAD+. Uncouplers at low concentrations stimulate Fe2+ oxidation by stimulating cytochrome oxidase by uncoupling. Higher concentrations lower deltap to the level insufficient to overcome the potentially uphill reaction at rusticyanin-cytochrome c4. Inhibition of uphill reactions at complex I and complex III leads to deltap accumulation and inhibition of cytochrome oxidase. Uncouplers remove the inhibition of deltap and stimulate the oxidation. Atabrine inhibition is not released by uncouplers, which implies a possibility of atabrine inhibition at a site other than complex I, but a site somehow involved in the Fe2+ oxidation pathway. PMID:16234867

  9. Iron stress restricts photosynthetic intersystem electron transport in Synechococcus sp. PCC 7942.

    PubMed

    Ivanov, A G; Park, Y I; Miskiewicz, E; Raven, J A; Huner, N P; Oquist, G

    2000-11-24

    Although exposure of Synechococcus sp. PCC 7942 to iron stress induced the accumulation of the isiA gene product (CP43') compared with non-stressed controls, immunodetection of the N-terminus of cytochrome (Cyt) f indicated that iron stress not only reduced the content of the 40 kDa, heme-binding, Cyt f polypeptide by 32% but it also specifically induced the accumulation of a new, 23 kDa, non-heme-binding, putative Cyt f polypeptide. Concomitantly, iron stress restricted intersystem electron transport based on the in vivo reduction of P700(+), monitored as delta A(820)/A(820) in the presence and absence of electron transport inhibitors, as well as the inhibition of the Emerson enhancement effect on O(2) evolution. However, iron stress appeared to be associated with enhanced rates of PS I cyclic electron transport, low rates of PS I-driven photoreduction of NADP(+) but comparable rates for PS II+PS I photoreduction of NADP(+) relative to controls. We hypothesize that Synechococcus sp. PCC 7942 exhibits a dynamic capacity to uncouple PS II and PS I electron transport, which may allow for the higher than expected growth rates observed during iron stress. PMID:11094162

  10. Droplet transport system and methods

    NASA Technical Reports Server (NTRS)

    Neitzel, G. Paul (Inventor)

    2010-01-01

    Embodiments of droplet transport systems and methods are disclosed for levitating and transporting single or encapsulated droplets using thermocapillary convection. One method embodiment, among others comprises providing a droplet of a first liquid; and applying thermocapillary convection to the droplet to levitate and move the droplet.

  11. Effects of iron overload on the immune system.

    PubMed

    Walker, E M; Walker, S M

    2000-10-01

    Iron and its binding proteins have immunoregulatory properties, and shifting of immunoregulatory balances by iron excess or deficiency may produce severe, deleterious physiological effects. Effects of iron overload include decreased antibody-mediated and mitogen-stimulated phagocytosis by monocytes and macrophages, alterations in T-lymphocyte subsets, and modification of lymphocyte distribution in different compartments of the immune system. The importance of iron in regulating the expression of T-lymphocyte cell surface markers, influencing the expansion of different T-cell subsets, and affecting immune cell functions can be demonstrated in vitro and in vivo. The poor ability of lymphocytes to sequester excess iron in ferritin may help to explain the immune system abnormalities in iron-overloaded patients. Iron overload as seen in hereditary hemochromatosis patients enhances suppressor T-cell (CD8) numbers and activity, decreases the proliferative capacity, numbers, and activity of helper T cells (CD4) with increases in CD8/CD4 ratios, impairs the generation of cytotoxic T cells, and alters immunoglobulin secretion when compared to treated hereditary hemochromatosis patients or controls. A correlation has recently been found between low CD8+ lymphocyte numbers, liver damage associated with HCV positivity, and severity of iron overload in beta-thalassemia major patients. Iron overload, with its associated increases of serum iron levels and transferrin saturation, may cause a poor response to interferon therapy. Iron overload with hyperferremia is associated with suppressed functions of the complement system (classic or alternative types). High plasma ferritin content in patients with chronic, diffuse diseases of the liver (cirrhosis, chronic hepatitis), beta-thalassemia major, dyserythropoiesis, and hereditary hemochromatosis may induce the development of anti-ferritin antibodies with the production of circulating immune complexes. Increased body stores of iron in

  12. 21 CFR 862.1410 - Iron (non-heme) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Iron (non-heme) test system. 862.1410 Section 862....1410 Iron (non-heme) test system. (a) Identification. An iron (non-heme) test system is a device intended to measure iron (non-heme) in serum and plasma. Iron (non-heme) measurements are used in...

  13. 21 CFR 862.1410 - Iron (non-heme) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Iron (non-heme) test system. 862.1410 Section 862....1410 Iron (non-heme) test system. (a) Identification. An iron (non-heme) test system is a device intended to measure iron (non-heme) in serum and plasma. Iron (non-heme) measurements are used in...

  14. 21 CFR 862.1410 - Iron (non-heme) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Iron (non-heme) test system. 862.1410 Section 862....1410 Iron (non-heme) test system. (a) Identification. An iron (non-heme) test system is a device intended to measure iron (non-heme) in serum and plasma. Iron (non-heme) measurements are used in...

  15. 21 CFR 862.1410 - Iron (non-heme) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Iron (non-heme) test system. 862.1410 Section 862....1410 Iron (non-heme) test system. (a) Identification. An iron (non-heme) test system is a device intended to measure iron (non-heme) in serum and plasma. Iron (non-heme) measurements are used in...

  16. 21 CFR 862.1410 - Iron (non-heme) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Iron (non-heme) test system. 862.1410 Section 862....1410 Iron (non-heme) test system. (a) Identification. An iron (non-heme) test system is a device intended to measure iron (non-heme) in serum and plasma. Iron (non-heme) measurements are used in...

  17. A Trypanosomatid Iron Transporter that Regulates Mitochondrial Function Is Required for Leishmania amazonensis Virulence.

    PubMed

    Mittra, Bidyottam; Laranjeira-Silva, Maria Fernanda; Perrone Bezerra de Menezes, Juliana; Jensen, Jennifer; Michailowsky, Vladimir; Andrews, Norma W

    2016-01-01

    Iron, an essential co-factor of respiratory chain proteins, is critical for mitochondrial function and maintenance of its redox balance. We previously reported a role for iron uptake in differentiation of Leishmania amazonensis into virulent amastigotes, by a mechanism that involves reactive oxygen species (ROS) production and is independent of the classical pH and temperature cues. Iron import into mitochondria was proposed to be essential for this process, but evidence supporting this hypothesis was lacking because the Leishmania mitochondrial iron transporter was unknown. Here we describe MIT1, a homolog of the mitochondrial iron importer genes mrs3 (yeast) and mitoferrin-1 (human) that is highly conserved among trypanosomatids. MIT1 expression was essential for the survival of Trypanosoma brucei procyclic but not bloodstream forms, which lack functional respiratory complexes. L. amazonensis LMIT1 null mutants could not be generated, suggesting that this mitochondrial iron importer is essential for promastigote viability. Promastigotes lacking one LMIT1 allele (LMIT1/Δlmit1) showed growth defects and were more susceptible to ROS toxicity, consistent with the role of iron as the essential co-factor of trypanosomatid mitochondrial superoxide dismutases. LMIT1/Δlmit1 metacyclic promastigotes were unable to replicate as intracellular amastigotes after infecting macrophages or cause cutaneous lesions in mice. When induced to differentiate axenically into amastigotes, LMIT1/Δlmit1 showed strong defects in iron content and function of mitochondria, were unable to upregulate the ROS-regulatory enzyme FeSOD, and showed mitochondrial changes suggestive of redox imbalance. Our results demonstrate the importance of mitochondrial iron uptake in trypanosomatid parasites, and highlight the role of LMIT1 in the iron-regulated process that orchestrates differentiation of L. amazonensis into infective amastigotes. PMID:26741360

  18. A Trypanosomatid Iron Transporter that Regulates Mitochondrial Function Is Required for Leishmania amazonensis Virulence

    PubMed Central

    Mittra, Bidyottam; Laranjeira-Silva, Maria Fernanda; Perrone Bezerra de Menezes, Juliana; Jensen, Jennifer; Michailowsky, Vladimir; Andrews, Norma W.

    2016-01-01

    Iron, an essential co-factor of respiratory chain proteins, is critical for mitochondrial function and maintenance of its redox balance. We previously reported a role for iron uptake in differentiation of Leishmania amazonensis into virulent amastigotes, by a mechanism that involves reactive oxygen species (ROS) production and is independent of the classical pH and temperature cues. Iron import into mitochondria was proposed to be essential for this process, but evidence supporting this hypothesis was lacking because the Leishmania mitochondrial iron transporter was unknown. Here we describe MIT1, a homolog of the mitochondrial iron importer genes mrs3 (yeast) and mitoferrin-1 (human) that is highly conserved among trypanosomatids. MIT1 expression was essential for the survival of Trypanosoma brucei procyclic but not bloodstream forms, which lack functional respiratory complexes. L. amazonensis LMIT1 null mutants could not be generated, suggesting that this mitochondrial iron importer is essential for promastigote viability. Promastigotes lacking one LMIT1 allele (LMIT1/Δlmit1) showed growth defects and were more susceptible to ROS toxicity, consistent with the role of iron as the essential co-factor of trypanosomatid mitochondrial superoxide dismutases. LMIT1/Δlmit1 metacyclic promastigotes were unable to replicate as intracellular amastigotes after infecting macrophages or cause cutaneous lesions in mice. When induced to differentiate axenically into amastigotes, LMIT1/Δlmit1 showed strong defects in iron content and function of mitochondria, were unable to upregulate the ROS-regulatory enzyme FeSOD, and showed mitochondrial changes suggestive of redox imbalance. Our results demonstrate the importance of mitochondrial iron uptake in trypanosomatid parasites, and highlight the role of LMIT1 in the iron-regulated process that orchestrates differentiation of L. amazonensis into infective amastigotes. PMID:26741360

  19. IRON

    EPA Science Inventory

    The document surveys the effects of organic and inorganic iron that are relevant to humans and their environment. The biology and chemistry of iron are complex and only partially understood. Iron participates in oxidation reduction processes that not only affect its geochemical m...

  20. Regulation of iron transport related genes by boron in the marine bacterium Marinobacter algicola DG893.

    PubMed

    Romano, Ariel; Trimble, Lyndsay; Hobusch, Ashtian R; Schroeder, Kristine J; Amin, Shady A; Hartnett, Andrej D; Barker, Ryan A; Crumbliss, Alvin L; Carrano, Carl J

    2013-08-01

    While there has been extensive interest in the use of boron isotope ratios as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the high (0.4 mM) concentration and the depth-independent (conservative or non-nutrient-like) concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the modern ocean. Here we report that boron affects the expression of a number of protein and genes in the "algal-associated" Gram-negative marine bacterium Marinobacter algicola DG893. Most intriguingly, a number of these proteins and genes are related to iron uptake. In a recent separate publication we have shown that boron regulates one such iron transport related protein, i.e. the periplasmic iron binding protein FbpA via a direct interaction of the metalloid with this protein. Here we show that a number of other iron uptake related genes are also affected by boron but in the opposite way i.e. they are up-regulated. We propose that the differential effect of boron on FbpA expression relative to other iron transport related genes is a result of an interaction between boron and the global iron regulatory protein Fur. PMID:23775459

  1. 49 CFR 230.91 - Chafing irons.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Chafing irons. 230.91 Section 230.91 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.91 Chafing irons. Chafing irons that permit proper curving...

  2. 49 CFR 230.91 - Chafing irons.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Chafing irons. 230.91 Section 230.91 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.91 Chafing irons. Chafing irons that permit proper curving...

  3. 49 CFR 230.91 - Chafing irons.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Chafing irons. 230.91 Section 230.91 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.91 Chafing irons. Chafing irons that permit proper curving...

  4. 49 CFR 230.91 - Chafing irons.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Chafing irons. 230.91 Section 230.91 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.91 Chafing irons. Chafing irons that permit proper curving...

  5. 49 CFR 230.91 - Chafing irons.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Chafing irons. 230.91 Section 230.91 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.91 Chafing irons. Chafing irons that permit proper curving...

  6. Heat transport system

    DOEpatents

    Harkness, Samuel D.

    1982-01-01

    A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.

  7. Heat transport system

    DOEpatents

    Harkness, S.D.

    A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.

  8. Changes of ferrous iron and its transporters after intracerebral hemorrhage in rats

    PubMed Central

    Wang, Gaiqing; Shao, Anwen; Hu, Weimin; Xue, Fang; Zhao, Hongping; Jin, Xiaojie; Li, Guanglai; Sun, Zhitang; Wang, Li

    2015-01-01

    Objective: Ferrous iron is a major source inducing oxidative stress after intracerebral hemorrhage (ICH). Divalent metal transporter1 (DMT1) is the important and well-known plasma membrane transport protein which was proved to be involved in the transport of free ferrous iron in mammals. Ferroportin 1 (FPN1) is the unique exporter of ferrous iron from mammalian cells. The role of DMT1 and FPN1 in brain after ICH is still not elucidated. Therefore, we measure the expression of DMT1 and FPN1, to explore the correlations between ferrous iron and its specific transporters after ICH. Methods: Ninety-six Sprague-Dawley rats received intra-striatal infusions of 0.5 U type IV collagenase to establish ICH model. Ferrous iron content in brain was determined using Turnbull’s method. DMT1 and FPN1 expression were examined by immunohistochemical staining and Real-Time quantitative polymerase chain reaction (RT-PCR). With the use of confocal laser microscopy, we determined the colocalization of DMT1 and FPN1 at 1, 3, 7 and 14 days after ICH. Results: Ferrous iron deposition was shown in the perihematomal zone as early as 1 day after ICH; it reached a peak after 7 days and was not elevated within 14 days following ICH. The expression of the DMT1 upregulated and reached to peak at day 7 after ICH. FPN1 reached a plateau at 3 days post-ICH. Expression levels of DMT1 and FPN1 were in parallel with ferrous iron deposition. There was a positive correlation between FPN1 and DMT1. DMT1 mainly localized in the cytoplasm of glias and neurons. FPN1 were mostly distributed on the membrane of endothelial cells and glias. Confocal microscope showed that DMT1 colocalized with FPN1. Conclusions: DMT1 and FPN1 are positively influenced by ferrous iron status in brain after ICH. DMT1 and FPN1 attenuate iron overload after ICH via increasing transmembrane iron export. PMID:26617777

  9. Iron-titanium oxyhydroxides which transport water into the deep upper mantle and mantle transition zone

    NASA Astrophysics Data System (ADS)

    Matsukage, K. N.; Nishihara, Y.

    2015-12-01

    We experimentally discovered a new hydrous phase in the system FeOOH-TiO2 at pressures of 10-16 GPa and temperatures of 1000-1600°C which corresponds to conditions of the deep upper mantle and the Earth's mantle transition zone. Seven different compositions in the FeOOH-TiO2 system having molar ratios of x = Ti/(Fe + Ti) = 0, 0.125, 0.25, 0.375, 0.5, 0.75 that were prepared by mixing reagent grade a-FeOOH (goethite) and TiO2 (anatase) powders were used as starting materials. High-pressure and high-temperature experiments were carried out using Kawai-type multi-anvil apparatus (Orange-1000 at Ehime University and SPI-1000 at Tokyo Institute of Technology). In this system, we identified two stable iron-titanium oxyhydroxide phases whose estimated composition is expressed by (FeH)1 - xTixO2 . One is the Fe-rich solid solution (x < 0.23) with e-FeOOH type crystal structure (e-phase, orthorhombic, P21nm) that was described by the previous studies (e.g., Suzuki 2010), and the other is the more Ti-rich solid solution (x > 0.35) with a-PbO2 type structure (a-phase, orthorhombic, Pbcn). The a-phase is stable up to 1500ºC for a composition of x = 0.5 and at least to 1600ºC for x = 0.75. Our result means that this phase is stable at average mantle temperature in the Earth's mantle transition zone. The Iron-titanium-rich hydrous phases was possible to stable in basalt + H2O system (e.g., Hashimoto and Matsukage 2013). Therefore our findings suggest that water transport in the Earth's deep interior is probably much more efficient than had been previously thought.

  10. System and method for producing metallic iron

    SciTech Connect

    Englund, David J.; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

    2014-07-29

    A method of production of metallic iron nodules comprises assembling a hearth furnace having a moveable hearth comprising refractory material and having a conversion zone and a fusion zone, providing a hearth material layer comprising carbonaceous material on the refractory material, providing a layer of reducible material comprising and iron bearing material arranged in discrete portions over at least a portion of the hearth material layer, delivering oxygen gas into the hearth furnace to a ratio of at least 0.8:1 ponds of oxygen to pounds of iron in the reducible material to heat the conversion zone to a temperature sufficient to at least partially reduce the reducible material and to heat the fusion zone to a temperature sufficient to at least partially reduce the reducible material, and heating the reducible material to form one or more metallic iron nodules and slag.

  11. Effects of aspirin on expression of iron transport and storage proteins in BV-2 microglial cells.

    PubMed

    Xu, Yan Xin; Du, Fang; Jiang, Li Rong; Gong, Jing; Zhou, Yu-Fu; Luo, Qian Qian; Qian, Zhong Ming; Ke, Ya

    2015-12-01

    In the light of recent studies, we hypothesized that aspirin might have the functions to regulate the expression of iron transport proteins and then affect cellular iron levels. To test this hypothesis, we investigated the effects of aspirin on expression of iron uptake protein transferrin receptor 1 (TfR1), iron release protein ferroportin 1 (Fpn1) and iron storage protein ferritin using Western blot analysis and on tumor necrosis factor (TNF)-αlpha, interleukin (IL)-6, interleukin (IL)-10 and hepcidin using quantitative real-time PCR in BV-2 microglial cells treated with lipopolysaccharides (LPS). We found that aspirin significantly down-regulated TfR1, while also up-regulated Fpn1 and ferritin expressions in BV-2 microglial cells in vitro. We also showed that TfR1 and Fpn1 expressions were significantly higher, while ferritin contents, IL-6, TNF-alpha and hepcidin mRNA levels were lower in cells treated with aspirin plus LPS than those in cells treated with LPS only. We concluded that aspirin has a negative effect on cell iron contents under 'normal' conditions and could partly reverse LPS-induced-disruption in cell iron balance under in vitro inflammatory conditions. Our findings also suggested that hepcidin might play a dominant role in the control of TfR1 expression by aspirin in the cells treated with LPS. PMID:26522688

  12. Fur-Regulated Iron Uptake System of Edwardsiella ictaluri and Its Influence on Pathogenesis and Immunogenicity in the Catfish Host

    PubMed Central

    Golden, Greg; Wanda, Soo-Young; Curtiss, Roy

    2012-01-01

    The ability of bacterial pathogens to take up iron from the host during infection is necessary for their multiplication within the host. However, host high-affinity iron binding proteins limit levels of free iron in fluids and tissues. To overcome this deficiency of iron during infection, bacterial pathogens have developed iron uptake systems that are upregulated in the absence of iron, typically tightly controlled by the ferric uptake regulator (Fur) protein. The iron uptake system of Edwardsiella ictaluri, a host-restricted pathogen of channel catfish (Ictalurus punctatus) and the main pathogen of this fish in aquaculture, is unknown. Here we describe the E. ictaluri Fur protein, the iron uptake machinery controlled by Fur, and the effects of fur gene deletion on virulence and immunogenicity in the fish host. Analysis of the E. ictaluri Fur protein shows that it lacks the N-terminal region found in the majority of pathogen-encoded Fur proteins. However, it is fully functional in regulated genes encoding iron uptake proteins. E. ictaluri grown under iron-limited conditions upregulates an outer membrane protein (HemR) that shows heme-hemoglobin transport activity and is tightly regulated by Fur. In vivo studies showed that an E. ictaluri Δfur mutant is attenuated and immune protective in zebrafish (Danio rerio) and catfish (Ictalurus punctatus), triggering systemic immunity. We conclude that an E. ictaluri Δfur mutant could be an effective component of an immersion-oral vaccine for the catfish industry. PMID:22615248

  13. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  14. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation.

    PubMed

    Wang, Jie; Fang, Zhanqiang; Cheng, Wen; Yan, Xiaomin; Tsang, Pokeung Eric; Zhao, Dongye

    2016-03-01

    In this study, the effects of concentrations 0, 100, 250, 500, 750 and 1000 mg kg(-1) of nanoscale zero-valent iron (nZVI) on germination, seedlings growth, physiology and toxicity mechanisms were investigated. The results showed that nZVI had no effect on germination, but inhibited the rice seedlings growth in higher concentrations (>500 mg kg(-1) nZVI). The highest suppression rate of the length of roots and shoots reached 46.9% and 57.5%, respectively. The 1000mg kg(-1) nZVI caused the highest suppression rates for chlorophyll and carotenoids, at 91.6% and 85.2%, respectively. In addition, the activity of antioxidant enzymes was altered by the translocation of nanoparticles and changes in active iron content. Visible symptoms of iron deficiency were observed at higher concentrations, at which the active iron content decreased 61.02% in the shoots, but the active iron content not decreased in roots. Interestingly, the total and available amounts of iron in the soil were not less than those in the control. Therefore, the plants iron deficiency was not caused by (i) deficiency of available iron in the soil and (ii) restraint of the absorption that plant takes in the available iron, while induced by (ⅲ) the transport of active iron from the root to the shoot was blocked. The cortex tissues were seriously damaged by nZVI which was transported from soil to the root, these were proved by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). This current study shows that the mechanism of iron deficiency in rice seedling was due to transport of active iron from the root to the shoot blocked, which was caused by the uptake of nZVI. PMID:26803790

  15. System and method for producing metallic iron nodules

    DOEpatents

    Bleifuss, Rodney L.; Englund, David J.; Iwasaki, Iwao; Lindgren, Andrew J.; Kiesel, Richard F.

    2011-09-20

    A method for producing metallic iron nodules by assembling a shielding entry system to introduce coarse carbonaceous material greater than 6 mesh in to the furnace atmosphere at location(s) where the temperature of the furnace atmosphere adjacent at least partially reduced reducible iron bearing material is between about 2200 and 2650.degree. F. (1200 and 1450.degree. C.), the shielding entry system adapted to inhibit emission of infrared radiation from the furnace atmosphere and seal the furnace atmosphere from exterior atmosphere while introducing coarse carbonaceous material greater than 6 mesh into the furnace to be distributed over the at least partially reduced reducible iron bearing material, and heating the covered at least partially reduced reducible iron bearing material in a fusion atmosphere to assist in fusion and inhibit reoxidation of the reduced material during fusion to assist in fusion and inhibit reoxidation of the reduced material in forming metallic iron nodules.

  16. The Bradyrhizobium japonicum Ferrous Iron Transporter FeoAB Is Required for Ferric Iron Utilization in Free Living Aerobic Cells and for Symbiosis.

    PubMed

    Sankari, Siva; O'Brian, Mark R

    2016-07-22

    The bacterium Bradyrhizobium japonicum USDA110 does not synthesize siderophores for iron utilization in aerobic environments, and the mechanism of iron uptake within symbiotic soybean root nodules is unknown. An mbfA bfr double mutant defective in iron export and storage activities cannot grow aerobically in very high iron medium. Here, we found that this phenotype was suppressed by loss of function mutations in the feoAB operon encoding ferrous (Fe(2+)) iron uptake proteins. Expression of the feoAB operon genes was elevated under iron limitation, but mutants defective in either gene were unable to grow aerobically over a wide external ferric (Fe(3+)) iron (FeCl3) concentration range. Thus, FeoAB accommodates iron acquisition under iron limited and iron replete conditions. Incorporation of radiolabel from either (55)Fe(2+) or (59)Fe(3+) into cells was severely defective in the feoA and feoB strains, suggesting Fe(3+) reduction to Fe(2+) prior to traversal across the cytoplasmic membrane by FeoAB. The feoA or feoB deletion strains elicited small, ineffective nodules on soybean roots, containing few bacteria and lacking nitrogen fixation activity. A feoA(E40K) mutant contained partial iron uptake activity in culture that supported normal growth and established an effective symbiosis. The feoA(E40K) strain had partial iron uptake activity in situ within nodules and in isolated cells, indicating that FeoAB is the iron transporter in symbiosis. We conclude that FeoAB supports iron acquisition under limited conditions of soil and in the iron-rich environment of a symbiotic nodule. PMID:27288412

  17. Tether Transportation System Study

    NASA Technical Reports Server (NTRS)

    Bangham, M. E.; Lorenzini, E.; Vestal, L.

    1998-01-01

    The projected traffic to geostationary earth orbit (GEO) is expected to increase over the next few decades. At the same time, the cost of delivering payloads from the Earth's surface to low earth orbit (LEO) is projected to decrease, thanks in part to the Reusable Launch Vehicle (RLV). A comparable reduction in the cost of delivering payloads from LEO to GEO is sought. The use of in-space tethers, eliminating the requirement for traditional chemical upper stages and thereby reducing the launch mass, has been identified as such an alternative. Spinning tethers are excellent kinetic energy storage devices for providing the large delta vee's required for LEO to GEO transfer. A single-stage system for transferring payloads from LEO to GEO was proposed some years ago. The study results presented here contain the first detailed analyses of this proposal, its extension to a two-stage system, and the likely implementation of the operational system.

  18. Dissolved iron anomaly in the deep tropical-subtropical Pacific: Evidence for long-range transport of hydrothermal iron

    NASA Astrophysics Data System (ADS)

    Wu, Jingfeng; Wells, Mark L.; Rember, Robert

    2011-01-01

    Dissolved iron profiles along a north-south transect along 158°W in the tropical Pacific show evidence of two deepwater anomalies. The first extends from Station ALOHA (22.78°N) to the equator at ˜1000-1500 m and lies below the maximum apparent oxygen utilization and nutrient (N, P) concentrations. The feature is not supported by vertical export processes, but instead corresponds with the lateral dilution field of δ 3He derived from the Loihi seamount, Hawaii, though a sediment source associated with the Hawaiian Island Chain cannot be entirely ruled out. The second, deeper (2000-3000 m) anomaly occurs in tropical South Pacific waters (7°S) and also does not correlate with the depths of maximum nutrient concentrations or apparent oxygen utilization, but it does coincide closely with δ 3He emanating from the East Pacific Rise, more than 5000 km to the east. We hypothesize that these anomalies represent the long-range (>2000 km) transport of hydrothermal iron residuals, stabilized against scavenging by complexation with excess organic ligands in the plume source regions. Such trace leakage of hydrothermal iron to distal plume regions would have been difficult to identify in most hydrothermal vent mapping studies because low analytical detection limits were not needed for the proximal plume regions. These findings suggest that hydrothermal activity may represent a major source of dissolved iron throughout the South Pacific deep basin today, as well as other regions having high mid-ocean spreading rates in the geologic past. In particular, we hypothesize that high spreading rates along the South Atlantic and Southern Ocean mid-oceanic ridges, combined with the upwelling ventilation of these distal hydrothermal plumes, may have increased ocean productivity and carbon export in the Southern Ocean. Assessing the magnitude and persistence of dissolved hydrothermal iron in basin scale deep waters will be important for understanding the marine biogeochemistry of iron

  19. Uptake and Transport of Superparamagnetic Iron Oxide Nanoparticles through Human Brain Capillary Endothelial Cells

    PubMed Central

    2013-01-01

    The blood–brain barrier (BBB) formed by brain capillary endothelial cells (BCECs) constitutes a firm physical, chemical, and immunological barrier, making the brain accessible to only a few percent of potential drugs intended for treatment inside the central nervous system. With the purpose of overcoming the restraints of the BBB by allowing the transport of drugs, siRNA, or DNA into the brain, a novel approach is to use superparamagnetic iron oxide nanoparticles (SPIONs) as drug carriers. The aim of this study was to investigate the ability of fluorescent SPIONs to pass through human brain microvascular endothelial cells facilitated by an external magnet. The ability of SPIONs to penetrate the barrier was shown to be significantly stronger in the presence of an external magnetic force in an in vitro BBB model. Hence, particles added to the luminal side of the in vitro BBB model were found in astrocytes cocultured at a remote distance on the abluminal side, indicating that particles were transported through the barrier and taken up by astrocytes. Addition of the SPIONs to the culture medium did not negatively affect the viability of the endothelial cells. The magnetic force-mediated dragging of SPIONs through BCECs may denote a novel mechanism for the delivery of drugs to the brain. PMID:23919894

  20. Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells.

    PubMed

    Vert, Grégory; Barberon, Marie; Zelazny, Enric; Séguéla, Mathilde; Briat, Jean-François; Curie, Catherine

    2009-05-01

    Iron is an essential nutrient for all organisms but toxic when present in excess. Consequently, plants carefully regulate their iron uptake, dependent on the FRO2 ferric reductase and the IRT1 transporter, to control its homeostasis. Arabidopsis IRT2 gene, whose expression is induced in root epidermis upon iron deprivation, was shown to encode a functional iron/zinc transporter in yeast, and proposed to function in iron acquisition from the soil. In this study, we demonstrate that, unlike its close homolog IRT1, IRT2 is not involved in iron absorption from the soil since overexpression of IRT2 does not rescue the iron uptake defect of irt1-1 mutant and since a null irt2 mutant shows no chlorosis in low iron. Consistently, an IRT2-green fluorescent fusion protein, transiently expressed in culture cells, localizes to intracellular vesicles. However, IRT2 appears strictly co-regulated with FRO2 and IRT1, supporting the view that IRT2 is an integral component of the root response to iron deficiency in root epidermal cells. We propose a model where IRT2 likely prevents toxicity from IRT1-dependent iron fluxes in epidermal cells, through compartmentalization. PMID:19252923

  1. Diagnosis of energy transport in iron buried layer targets using an extreme ultraviolet laser

    SciTech Connect

    Shahzad, M.; Culfa, O.; Rossall, A. K.; Tallents, G. J.; Wilson, L. A.; Guilbaud, O.; Kazamias, S.; Delmas, O.; Demailly, J.; Maitrallain, A.; Pittman, M.; Baynard, E.; Farjardo, M.

    2015-02-15

    We demonstrate the use of extreme ultra-violet (EUV) laboratory lasers in probing energy transport in laser irradiated solid targets. EUV transmission through targets containing a thin layer of iron (50 nm) encased in plastic (CH) after irradiation by a short pulse (35 fs) laser focussed to irradiances 3 × 10{sup 16} Wcm{sup −2} is measured. Heating of the iron layer gives rise to a rapid decrease in EUV opacity and an increase in the transmission of the 13.9 nm laser radiation as the iron ionizes to Fe{sup 5+} and above where the ion ionisation energy is greater than the EUV probe photon energy (89 eV). A one dimensional hydrodynamic fluid code HYADES has been used to simulate the temporal variation in EUV transmission (wavelength 13.9 nm) using IMP opacity values for the iron layer and the simulated transmissions are compared to measured transmission values. When a deliberate pre-pulse is used to preform an expanding plastic plasma, it is found that radiation is important in the heating of the iron layer while for pre-pulse free irradiation, radiation transport is not significant.

  2. Transport Systems in Halophilic Fungi.

    PubMed

    Plemenitaš, Ana; Konte, Tilen; Gostinčar, Cene; Cimerman, Nina Gunde

    2016-01-01

    Fungi that tolerate very high environmental NaCl concentrations are good model systems to study mechanisms that enable them to endure osmotic and salinity stress. The whole genome sequences of six such fungal species have been analysed: Hortaea werneckii, Wallemia ichthyophaga and four Aureobasidium spp.: A. pullulans, A. subglaciale, A. melanogenum and A. namibiae. These fungi show different levels of halotolerance, with the presence of numerous membrane transport systems uncovered here that are believed to maintain physiological intracellular concentrations of alkali metal cations. Despite some differences, the intracellular cation contents of H. werneckii, A. pullulans and W. ichthyophaga remain low even under extreme extracellular salinities, which suggests that these species have efficient cation transport systems. We speculate that cation transporters prevent intracellular accumulation of Na(+), and thus avoid the toxic effects that such Na(+) accumulation would have, while also maintaining the high K(+)/Na(+) ratio that is required for the full functioning of the cell - another crucial task in high-Na(+) environments. This chapter primarily summarises the cation transport systems of these selected fungi, and it also describes other membrane transporters that might be involved in their mechanisms of halotolerance. PMID:26721280

  3. The Arabidopsis YELLOW STRIPE LIKE4 and 6 Transporters Control Iron Release from the Chloroplast[C][W

    PubMed Central

    Divol, Fanchon; Couch, Daniel; Conéjéro, Geneviève; Roschzttardtz, Hannetz; Mari, Stéphane; Curie, Catherine

    2013-01-01

    In most plant cell types, the chloroplast represents the largest sink for iron, which is both essential for chloroplast metabolism and prone to cause oxidative damage. Here, we show that to buffer the potentially harmful effects of iron, besides ferritins for storage, the chloroplast is equipped with specific iron transporters that respond to iron toxicity by removing iron from the chloroplast. We describe two transporters of the YELLOW STRIPE1-LIKE family from Arabidopsis thaliana, YSL4 and YSL6, which are likely to fulfill this function. Knocking out both YSL4 and YSL6 greatly reduces the plant’s ability to cope with excess iron. Biochemical and immunolocalization analyses showed that YSL6 resides in the chloroplast envelope. Elemental analysis and histochemical staining indicate that iron is trapped in the chloroplasts of the ysl4 ysl6 double mutants, which also accumulate ferritins. Also, vacuolar iron remobilization and NRAMP3/4 expression are inhibited. Furthermore, ubiquitous expression of YSL4 or YSL6 dramatically reduces plant tolerance to iron deficiency and decreases chloroplastic iron content. These data demonstrate a fundamental role for YSL4 and YSL6 in managing chloroplastic iron. YSL4 and YSL6 expression patterns support their physiological role in detoxifying iron during plastid dedifferentiation occurring in embryogenesis and senescence. PMID:23512854

  4. Earthquake damage to transportation systems

    USGS Publications Warehouse

    McCullough, Heather

    1994-01-01

    Earthquakes represent one of the most destructive natural hazards known to man. A large magnitude earthquake near a populated area can affect residents over thousands of square kilometers and cause billions of dollars in property damage. Such an event can kill or injure thousands of residents and disrupt the socioeconomic environment for months, sometimes years. A serious result of a large-magnitude earthquake is the disruption of transportation systems, which limits post-disaster emergency response. Movement of emergency vehicles, such as police cars, fire trucks and ambulances, is often severely restricted. Damage to transportation systems is categorized below by cause including: ground failure, faulting, vibration damage, and tsunamis.

  5. Electron transport in the dissimilatory iron reducer, GS-15

    USGS Publications Warehouse

    Gorby, Y.A.; Lovley, D.R.

    1991-01-01

    Mechanisms for electron transport to Fe(III) were investigated in GS-15, anovel anaerobic microorganism which can obtain energy for growth hy coupling the complete oxidation of organic acids or aromatic compounds to the reduction of Fe(III) to Fe(II). The results indicate that Fe(III) reduction proceeds through a type b cytochrome and a membrane-bound Fe(III) reductase which is distinct from the nitrate reductase.

  6. Preliminary Hazards Assessment: Iron disulfide purification system

    SciTech Connect

    1991-07-30

    A process for the purification (washing) of iron disulfide (FeS{sub 2}) powder is conducted in the Northeast corner (Area 353) of the main plant building (Building 100). This location is about 130 feet from the fenced boundary of the Partnership School/Child Development Center. In the first steps of the process, raw iron disulfide powder is ground and separated by particle size. The ground and sized powder is then purified in a three-step acid washing process using both hydrochloric acid (HCI) and hydrofluoric (HF) acid. The iron disulfide process is an intermittent batch process conducted four to eight times a year. This study is a Preliminary Hazards Assessment (PHA) to assess the hazards associated with the iron disulfide process. This is a preliminary study and will be used to determine if additional safety analysis is necessary. The scope of the PHA includes assessment of the process steps of grinding, size classification, and purification. The purpose is to identify major hazards and determine if the current and newly added safeguards are adequate for operation. The PHA also lists recommendations for additional safety features that should be added to reduce the risks of operation.

  7. Surveillance systems for intermodal transportation

    NASA Astrophysics Data System (ADS)

    Jakovlev, Sergej; Voznak, Miroslav; Andziulis, Arunas

    2015-05-01

    Intermodal container monitoring is considered a major security issue in many major logistic companies and countries worldwide. Current representation of the problem, we face today, originated in 2002, right after the 9/11 attacks. Then, a new worldwide Container Security Initiative (CSI, 2002) was considered that shaped the perception of the transportation operations. Now more than 80 larger ports all over the world contribute to its further development and integration into everyday transportation operations and improve the regulations for the developing regions. Although, these new improvements allow us to feel safer and secure, constant management of transportation operations has become a very difficult problem for conventional data analysis methods and information systems. The paper deals with a proposal of a whole new concept for the improvement of the Containers Security Initiative (CSI) by virtually connecting safety, security processes and systems. A conceptual middleware approach with deployable intelligent agent modules is proposed to be used with possible scenarios and a testbed is used to test the solution. Middleware examples are visually programmed using National Instruments LabView software packages and Wireless sensor network hardware modules. An experimental software is used to evaluate he solution. This research is a contribution to the intermodal transportation and is intended to be used as a means or the development of intelligent transport systems.

  8. Determination of thermooptical and transport parameters of ε iron(III) oxide-based nanocomposites by beam deflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Korte, Dorota; Carraro, Giorgio; Maccato, Chiara; Franko, Mladen

    2015-04-01

    In this work, photothermal beam deflection (PBD) experiments have been used to characterize the thermooptical and transport properties of ε-Fe2O3-based nanocomposites. In particular, iron(III) nanostructures have been functionalized with Au, Ag and Cu nanoparticles, tailoring both their nano-organization and their chemical state. In order to elucidate the correlation between the thermooptical and transport parameters, the structural, compositional and morphological properties of Fe2O3-based systems were studied by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). It was observed that the optothermal and transport parameters were influenced by the nature and oxidation state of the nanoparticles, which can serve as a key tool to master the material properties for their application in light-assisted processes.

  9. Dual Regulation of the Arabidopsis High-Affinity Root Iron Uptake System by Local and Long-Distance Signals1

    PubMed Central

    Vert, Grégory A.; Briat, Jean-François; Curie, Catherine

    2003-01-01

    Regulation of the root high-affinity iron uptake system by whole-plant signals was investigated at the molecular level in Arabidopsis, through monitoring FRO2 and IRT1 gene expression. These two genes encode the root ferric-chelate reductase and the high-affinity iron transporter, respectively, involved in the iron deficiency-induced uptake system. Recovery from iron-deficient conditions and modulation of apoplastic iron pools indicate that iron itself plays a major role in the regulation of root iron deficiency responses at the mRNA and protein levels. Split-root experiments show that the expression of IRT1 and FRO2 is controlled both by a local induction from the root iron pool and through a systemic pathway involving a shoot-borne signal, both signals being integrated to tightly control production of the root iron uptake proteins. We also show that IRT1 and FRO2 are expressed during the day and down-regulated at night and that this additional control is overruled by iron starvation, indicating that the nutritional status prevails on the diurnal regulation. Our work suggests, for the first time to our knowledge, that like in grasses, the root iron acquisition in strategy I plants may also be under diurnal regulation. On the basis of the new molecular insights provided in this study and given the strict coregulation of IRT1 and FRO2 observed, we present a model of local and long-distance regulation of the root iron uptake system in Arabidopsis. PMID:12805609

  10. Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals.

    PubMed

    Vert, Grégory A; Briat, Jean-François; Curie, Catherine

    2003-06-01

    Regulation of the root high-affinity iron uptake system by whole-plant signals was investigated at the molecular level in Arabidopsis, through monitoring FRO2 and IRT1 gene expression. These two genes encode the root ferric-chelate reductase and the high-affinity iron transporter, respectively, involved in the iron deficiency-induced uptake system. Recovery from iron-deficient conditions and modulation of apoplastic iron pools indicate that iron itself plays a major role in the regulation of root iron deficiency responses at the mRNA and protein levels. Split-root experiments show that the expression of IRT1 and FRO2 is controlled both by a local induction from the root iron pool and through a systemic pathway involving a shoot-borne signal, both signals being integrated to tightly control production of the root iron uptake proteins. We also show that IRT1 and FRO2 are expressed during the day and down-regulated at night and that this additional control is overruled by iron starvation, indicating that the nutritional status prevails on the diurnal regulation. Our work suggests, for the first time to our knowledge, that like in grasses, the root iron acquisition in strategy I plants may also be under diurnal regulation. On the basis of the new molecular insights provided in this study and given the strict coregulation of IRT1 and FRO2 observed, we present a model of local and long-distance regulation of the root iron uptake system in Arabidopsis. PMID:12805609

  11. Novel two-component transmembrane transcription control: regulation of iron dicitrate transport in Escherichia coli K-12.

    PubMed Central

    Van Hove, B; Staudenmaier, H; Braun, V

    1990-01-01

    Citrate and iron have to enter only the periplasmic space in order to induce the citrate-dependent iron(III) transport system of Escherichia coli. The five transport genes fecABCDE form an operon and are transcribed from fecA to fecE. Two genes, termed fecI and fecR, that mediate induction by iron(III) dicitrate have been identified upstream of fecA. The fecI gene encodes a protein of 173 amino acids (molecular weight, 19,478); the fecR gene encodes a protein of 317 amino acids (molecular weight, 35,529). Chromosomal fecI::Mu d1 mutants were unable to grow with iron(III) dicitrate as the sole iron source and synthesized no FecA outer membrane receptor protein. Growth was restored by transformation with plasmids encoding fecI or fecI and fecR. FecA and beta-galactosidase syntheses under transcription control of the fecB gene (fecB::Mu d1) were constitutive in fecI transformants and were regulated by iron(III) dicitrate in fecI fecR transformants. The amino acid sequence of the FecI protein contains a region close to the carboxy-terminal end for which a helix-turn-helix motif is predicted, which is typical for DNA-binding regulatory proteins. The FecI protein was found in the membrane, and the FecR protein was found in the periplasmic fraction. It is proposed that the FecR protein is the sensor that recognizes iron(III) dicitrate in the periplasm. The FecI protein activates fec gene expression by binding to the fec operator region. In the absence of citrate, FecR inactivates FecI. The lack of sequence homologies to other transmembrane signaling proteins and the location of the two proteins suggest a new type of transmembrane control mechanism. Images PMID:2254251

  12. Novel two-component transmembrane transcription control: regulation of iron dicitrate transport in Escherichia coli K-12.

    PubMed

    Van Hove, B; Staudenmaier, H; Braun, V

    1990-12-01

    Citrate and iron have to enter only the periplasmic space in order to induce the citrate-dependent iron(III) transport system of Escherichia coli. The five transport genes fecABCDE form an operon and are transcribed from fecA to fecE. Two genes, termed fecI and fecR, that mediate induction by iron(III) dicitrate have been identified upstream of fecA. The fecI gene encodes a protein of 173 amino acids (molecular weight, 19,478); the fecR gene encodes a protein of 317 amino acids (molecular weight, 35,529). Chromosomal fecI::Mu d1 mutants were unable to grow with iron(III) dicitrate as the sole iron source and synthesized no FecA outer membrane receptor protein. Growth was restored by transformation with plasmids encoding fecI or fecI and fecR. FecA and beta-galactosidase syntheses under transcription control of the fecB gene (fecB::Mu d1) were constitutive in fecI transformants and were regulated by iron(III) dicitrate in fecI fecR transformants. The amino acid sequence of the FecI protein contains a region close to the carboxy-terminal end for which a helix-turn-helix motif is predicted, which is typical for DNA-binding regulatory proteins. The FecI protein was found in the membrane, and the FecR protein was found in the periplasmic fraction. It is proposed that the FecR protein is the sensor that recognizes iron(III) dicitrate in the periplasm. The FecI protein activates fec gene expression by binding to the fec operator region. In the absence of citrate, FecR inactivates FecI. The lack of sequence homologies to other transmembrane signaling proteins and the location of the two proteins suggest a new type of transmembrane control mechanism. PMID:2254251

  13. Effect of dietary iron deficiency and overload on the expression of ZIP metal-ion transporters in rat liver

    PubMed Central

    Nam, Hyeyoung; Knutson, Mitchell D.

    2015-01-01

    The mammalian ZIP (Zrt-, Irt-like Protein) family of transmembrane transport proteins consists of 14 members that share considerable homology. ZIP proteins have been shown to mediate the cellular uptake of the essential trace elements zinc, iron, and manganese. The aim of the present study was to determine the effect of dietary iron deficiency and overload on the expression of all 14 ZIP transporters in the liver, the main site of iron storage. Weanling male rats (n=6/group) were fed iron-deficient (FeD), iron-adequate (FeA), or iron-overloaded (FeO) diets in two independent feeding studies. In study 1, diets were based on the TestDiet 5755 formulation and contained iron at 9 ppm (FeD), 215 ppm (FeA), and 27,974 ppm (3% FeO). In study 2, diets were based on the AIN-93G formulation and contained iron at 9 ppm Fe (FeD), 50 ppm Fe (FeA), or 18916 ppm (2% FeO). After 3 weeks, the FeD diets depleted liver non-heme iron stores and induced anemia, whereas FeO diets resulted in hepatic iron overload. Quantitative RT-PCR revealed that ZIP5 mRNA levels were 3- and 8-fold higher in 2% FeO and 3% FeO livers, respectively, compared with FeA controls. In both studies, a consistent downregulation of ZIP6, ZIP7, and ZIP10 was also observed in FeO liver relative to FeA controls. Studies in H4IIE hepatoma cells further documented that iron loading affects the expression of these ZIP transporters. Overall, our data suggest that ZIP5, ZIP6, ZIP7, and ZIP10 are regulated by iron, indicating that they may play a role in hepatic iron/metal homeostasis during iron deficiency and overload. PMID:21826460

  14. Optimal concentrations in transport systems

    PubMed Central

    Jensen, Kaare H.; Kim, Wonjung; Holbrook, N. Michele; Bush, John W. M.

    2013-01-01

    Many biological and man-made systems rely on transport systems for the distribution of material, for example matter and energy. Material transfer in these systems is determined by the flow rate and the concentration of material. While the most concentrated solutions offer the greatest potential in terms of material transfer, impedance typically increases with concentration, thus making them the most difficult to transport. We develop a general framework for describing systems for which impedance increases with concentration, and consider material flow in four different natural systems: blood flow in vertebrates, sugar transport in vascular plants and two modes of nectar drinking in birds and insects. The model provides a simple method for determining the optimum concentration copt in these systems. The model further suggests that the impedance at the optimum concentration μopt may be expressed in terms of the impedance of the pure (c = 0) carrier medium μ0 as μopt∼2αμ0, where the power α is prescribed by the specific flow constraints, for example constant pressure for blood flow (α = 1) or constant work rate for certain nectar-drinking insects (α = 6). Comparing the model predictions with experimental data from more than 100 animal and plant species, we find that the simple model rationalizes the observed concentrations and impedances. The model provides a universal framework for studying flows impeded by concentration, and yields insight into optimization in engineered systems, such as traffic flow. PMID:23594815

  15. Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers

    NASA Astrophysics Data System (ADS)

    Wood, Deborah; Crocket, Kirsty; Brand, Tim; Stutter, Marc; Wilson, Clare; Schröder, Christian

    2016-04-01

    Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers Wood, D.A¹, Crocket, K², Brand, T², Stutter, M³, Wilson, C¹ & Schröder, C¹ ¹Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA ²Scottish Association for Marine Science, University of the Highlands and Islands, Dunbeg, Oban, PA37 1QA ³James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH The biogeochemical iron cycle exerts significant control on the carbon cycle¹. Iron is a limiting nutrient in large areas of the world's oceans and its bioavailability controls CO2 uptake by marine photosynthesizing microorganisms. While atmospheric iron inputs to the open ocean have been extensively measured, global river inputs have likely been underestimated because most major world rivers exhibit extensive iron removal by flocculation and sedimentation during seawater mixing. Iron minerals and organic matter mutually stabilise each other², which results in a 'rusty carbon sink' in sediments³ on the one hand but may also enhance transport beyond the salinity gradient on the other. Humic-rich, high latitude rivers have a higher iron-carrying capacity⁴‑⁶ but are underrepresented in iron flux calculations. The West Coast sea lochs in Scotland are fed by predominantly peatland drainage catchments, and the rivers entering the sea lochs carry a high load of organic matter. The short distance between many of these catchments and the coastal ocean facilitates source-to-sea research investigating transport, fate and mineralogy of iron-bearing colloids providing a good analogue for similar high latitude fjordic systems. We use SeaFAST+ICP-MS and Mössbauer spectroscopy to survey trace metal concentrations, with emphasis on iron concentrations, speciation and mineralogy, across salinity gradients. In combination with ultra-filtration techniques, this allows

  16. Transportation Cluster Volume 7 [Transportation Systems].

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Justice, Harrisburg. Bureau of Correction.

    The document is one of seven volumes of instructional materials developed around a cluster of Transportation Industries. Primarily technical in focus, they are designed to be used in a cluster-concept program and to integrate with a regular General Education Development (G.E.D.) program so that students may attain an employable skill level and a…

  17. Influence of cytokines on Dmt1 iron transporter and ferritin expression in insulin-secreting cells.

    PubMed

    Lortz, S; Schröter, S; Stückemann, V; Mehmeti, I; Lenzen, S

    2014-06-01

    Free intracellular ferrous iron (Fe(2+)) is essential for the generation of the extremely toxic hydroxyl radicals, which contribute to β-cell destruction by cytokines. Therefore the expression of the different divalent metal transporter 1 (Dmt1) isoforms and ferritin (Ft) subunits, responsible for iron import and chelation, was analyzed under pro-inflammatory conditions (IL1β alone or together with TNFα+IFNγ). The Dmt1 isoforms (1A/1B and +IRE/-IRE) and the total Dmt1 expression in insulin-producing cells (RINm5F and INS-1E), in primary rat islets and, for comparison, in the neuroendocrine PC12 cell line were quantified by qRT-PCR. In addition, the expression of the light (L-Ft) and heavy Ft (H-Ft) subunits and the mitochondrial Ft isoform (Mtft) in insulin-producing cells under control conditions and after cytokine treatment was estimated. The 1B isoform was the predominant Dmt1 mRNA in all insulin-producing cells, accounting for almost 100% of the 1A/1B isoform expression. For the IRE variants, +IRE expression was higher than -IRE expression. Pro-inflammatory cytokines accelerated the expression of Dmt1 isoforms significantly with an overall 2.5- to 3-fold increase in the total Dmt1 expression. In contrast, the expression of the iron-buffering ferritin subunits L- and H-Ft was unaffected by IL1β and only slightly induced by the cytokine mixture. Mtft expression was also not increased. Dmt1 expression was significantly elevated through pro-inflammatory cytokines, whereas Ft expression was marginally increased. This imbalance between the increased iron transport capacity and the almost unaffected iron storage capacity can foster cytokine-mediated formation of hydroxyl radicals and thus pro-inflammatory cytokine toxicity through elevated free iron concentrations. PMID:24850829

  18. Lunar articulated remote transportation system

    NASA Technical Reports Server (NTRS)

    Beech, Geoffrey; Conley, Gerald; Diaz, Claudine; Dimella, Timothy; Dodson, Pete; Hykin, Jeff; Richards, Byron; Richardson, Kroy; Shetzer, Christie; Vandyke, Melissa

    1990-01-01

    A first generation lunar transportation vehicle was designed for use on the surface of the Moon between the years 2010 and 2020. Attention is focussed on specific design details on all components of the Lunar Articulated Remote Transportation System (Lunar ARTS). The Lunar ARTS will be a three cart, six-wheeled articulated vehicle. It's purpose will be for the transportation of astronauts and/or materials for excavation purposes at a short distance from the base (37.5 kilometers). The power system includes fuel cells for both the primary system and the back-up system. The vehicle has the option of being operated in a manned or unmanned mode. The unmanned mode includes stereo imaging with signal processing for navigation. For manned missions the display console is a digital readout displayed on the inside of the asronaut's helmet. A microprocessor is also on board the vehicle. Other components of the vehicle include: a double wishbone/flexible hemispherical wheel suspension; chassis; a steering system; motors; seat restraints, heat rejection systems; solar flare protection; dust protection; and meteoroid protection. A one-quarter scale dynamic model was built to study the dynamic behavior of the vehicle. The dynamic model closely captures the mechanical and electrical details of the total design.

  19. Lunar articulated remote transportation system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The students of the Florida A&M/Florida State University College of Engineering continued their design from 1988 to 1989 on a first generation lunar transportation vehicle for use on the surface of the Moon between the years 2010 and 2020. Attention is focused on specific design details on all components of the Lunar Articulated Remote Transportation System (Lunar ARTS). The Lunar ARTS will be a three-cart, six-wheeled articulated vehicle. Its purpose will be the transportation of astronauts and/or materials for excavation purposes at a short distance from the base (37.5 km). The power system includes fuel cells for both the primary system and the back-up system. The vehicle has the option of being operated in a manned or unmanned mode. The unmanned mode includes stereo imaging with signal processing for navigation. For manned missions the display console is a digital readout displayed on the inside of the astronaut's helmet. A microprocessor is also on board the vehicle. Other components of the vehicle include a double wishbone/flexible hemispherical wheel suspension; chassis; a steering system; motors; seat retraints; heat rejection systems; solar flare protection; dust protection; and meteoroid protection. A one-quarter scale dynamic model has been built to study the dynamic behavior of the vehicle. The dynamic model closely captures the mechanical and electrical details of the total design.

  20. Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by Staphyloferrin A, Staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence.

    PubMed

    Beasley, Federico C; Marolda, Cristina L; Cheung, Johnson; Buac, Suzana; Heinrichs, David E

    2011-06-01

    Staphylococcus aureus is a frequent cause of bloodstream, respiratory tract, and skin and soft tissue infections. In the bloodstream, the iron-binding glycoprotein transferrin circulates to provide iron to cells throughout the body, but its iron-binding properties make it an important component of innate immunity. It is well established that siderophores, with their high affinity for iron, in many instances can remove iron from transferrin as a means to promote proliferation of bacterial pathogens. It is also established that catecholamine hormones can interfere with the iron-binding properties of transferrin, thus allowing infectious bacteria access to this iron pool. The present study demonstrates that S. aureus can use either of two carboxylate-type siderophores, staphyloferrin A and staphyloferrin B, via the transporters Hts and Sir, respectively, to access the transferrin iron pool. Growth of staphyloferrin-producing S. aureus in serum or in the presence of holotransferrin was not enhanced in the presence of catecholamines. However, catecholamines significantly enhanced the growth of staphyloferrin-deficient S. aureus in human serum or in the presence of human holotransferrin. It was further demonstrated that the Sst transporter was essential for this activity as well as for the utilization of bacterial catechol siderophores. The substrate binding protein SstD was shown to interact with ferrated catecholamines and catechol siderophores, with low to submicromolar affinities. Experiments involving mice challenged intravenously with wild-type S. aureus and isogenic mutants demonstrated that the combination of Hts, Sir, and Sst transport systems was required for full virulence of S. aureus. PMID:21402762

  1. Integrated Intermodal Passenger Transportation System

    NASA Technical Reports Server (NTRS)

    Klock, Ryan; Owens, David; Schwartz, Henry; Plencner, Robert

    2012-01-01

    Modern transportation consists of many unique modes of travel. Each of these modes and their respective industries has evolved independently over time, forming a largely incoherent and inefficient overall transportation system. Travelers today are forced to spend unnecessary time and efforts planning a trip through varying modes of travel each with their own scheduling, pricing, and services; causing many travelers to simply rely on their relatively inefficient and expensive personal automobile. This paper presents a demonstration program system to not only collect and format many different sources of trip planning information, but also combine these independent modes of travel in order to form optimal routes and itineraries of travel. The results of this system show a mean decrease in inter-city travel time of 10 percent and a 25 percent reduction in carbon dioxide emissions over personal automobiles. Additionally, a 55 percent reduction in carbon dioxide emissions is observed for intra-city travel. A conclusion is that current resources are available, if somewhat hidden, to drastically improve point to point transportation in terms of time spent traveling, the cost of travel, and the ecological impact of a trip. Finally, future concepts are considered which could dramatically improve the interoperability and efficiency of the transportation infrastructure.

  2. Docosahexaenoic acid enhances iron uptake by modulating iron transporters and accelerates apoptotic death in PC12 cells.

    PubMed

    Schonfeld, Eldi; Yasharel, Ilanit; Yavin, Ephraim; Brand, Annette

    2007-10-01

    The effect of docosahexaenoic acid (DHA; 22:6 n-3) on Fe(2+)-mediated and/or H(2)O(2)-mediated oxidative stress (OS) was investigated in a PC12 pheochromocytoma cell line in the presence or absence of 50 ng/ml nerve growth factor (NGF). DHA-supplemented cells showed enhanced Fe(2+)-induced cell damage as evident by increased lipid peroxides formation (10-fold) and reduced neutral red (NR) dye uptake in a NGF-independent fashion. DHA caused a nearly 10-fold increase in free iron uptake in NGF-treated cells and doubled iron uptake in nondifferentiated cells. DHA-enrichment induced an elevation in the transferrin receptor protein in the nondifferentiated cells whereas NGF-treatment led to a substantial increase in the ubiquitous divalent metal ion transporter 1 (DMT-1) as detected by mRNA levels using qRT-PCR. The mechanism of action of DHA to accelerate cell death may be associated with the externalization of amino-phosphoglycerides (PG) species of which, increased ethanolamine plasmalogen levels, may be essential for cell rescue as noted in NGF-treated PC12 cells. PMID:17551831

  3. THE EFFECT OF WATER CHEMISTRY ON THE PROPERTIES OF IRON PARTICLES AND IRON SUSPENSIONS

    EPA Science Inventory

    The structure and properties of iron colloids in aquatic systems is important in understanding their behavior in environmental and engineering systems. For example the adsorption of contaminants onto iron colloids and subsequent transport through ground water aquifers and surface...

  4. ELS1, a novel MATE transporter related to leaf senescence and iron homeostasis in Arabidopsis thaliana.

    PubMed

    Wang, Zhenyu; Qian, Chongzhen; Guo, Xiaochun; Liu, Erlong; Mao, Kaili; Mu, Changjun; Chen, Ni; Zhang, Wei; Liu, Heng

    2016-08-01

    The multidrug and toxic compound extrusion (MATE) transporters mediate the coupled exchange of organic substrates and monovalent cations have been recently implicated in various plant biological activities. In this work, we isolated a dominant mutant from an Arabidopsis activation-tagging mutant pool. This mutant exhibits pleiotropic phenotype including early flowering, dwarf and bushy architecture, minified lateral organs and early leaf senescence, and is therefore designated early leaf senescence 1-Dominaint (els1-D). Genotyping assays showed that els1-D is a gain-of-function mutant of a novel MATE transporter gene, ELS1, which encodes a close homolog of the previously reported ADP1, BCD1 and DTX50. Further investigations revealed that the overexpression of ELS1 reduces iron content in els1-D, and the accelerated senescence of the detached els1-D leaves can be recovered by exogenous iron supply. In addition, we also found that ELS1 is an iron responsive gene. Based on these findings, we proposed that ELS1 is related to leaf senescence and iron homeostasis in Arabidopsis. PMID:27233612

  5. Iron

    MedlinePlus

    ... organ failure, coma, convulsions, and death. Child-proof packaging and warning labels on iron supplements have greatly ... levodopa that the body absorbs, making it less effective. Levodopa, found in Sinemet® and Stalevo®, is used ...

  6. Method and system for producing metallic iron nuggets

    DOEpatents

    Iwasaki, Iwao; Kiesel, Richard F.; Englund, David J; Hendrickson, Dave

    2012-12-18

    A method and system for producing metallic iron nuggets may include providing multiple layers of agglomerates, such as briquettes, balls and extrusions, of a reducible mixture of reducing material (such as carbonaceous material) and of a reducible iron bearing material (such as iron oxide) on a hearth material layer (such as carbonaceous material) and providing a coarse overlayer of carbonaceous material over at least some of the agglomerates. Heating the agglomerates of reducible mixture to 1425.degree. C. or 1400.degree. C. or 1375.degree. C. results in formation of an intermediate product of one or more metallic iron nuggets, which may have a sulfur content of less than 0.03%, and slag, which may have less than 5% mass MgO, which may have a ratio of percent by weight sulfur in the slag over percent by weight sulfur in the metallic nuggets of at least about 12 or at least about 15.

  7. System and method for making metallic iron with reduced CO.sub.2 emissions

    DOEpatents

    Kiesel, Richard F; Englund, David J; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

    2014-10-14

    A method and system for making metallic iron nodules with reduced CO.sub.2 emissions is disclosed. The method includes: assembling a linear hearth furnace having entry and exit portions, at least a conversion zone and a fusion zone, and a moving hearth adapted to move reducible iron bearing material through the furnace on contiguous hearth sections; assembling a shrouded return substantially free of air ingress extending adjacent at least the conversion and fusion zones of the furnace through which hearth sections can move from adjacent the exit portion to adjacent the entry portion of the furnace; transferring the hearth sections from the furnace to the shrouded return adjacent the exit portion; reducing reducible material in the linear hearth furnace to metallic iron nodules; and transporting gases from at least the fusion zone to the shrouded return to heat the hearth sections while in the shrouded return.

  8. DIVALENT METAL TRANSPORTER-1 REGULATION BY IRON AND VANADIUM MODULATES HYDROGEN PEROXIDE-INDUCED DNA DAMAGE IN LUNG CELLS

    EPA Science Inventory

    The divalent metal transporter-1 (DMT1) participates in the detoxification of metals that can damage lung epithelium. Elevated iron levels increase the expression of DMT1 in bronchial epithelial cells stimulating its uptake and storage in ferritin, thus making iron unavailable t...

  9. Quantitative analysis of dietary iron utilization for erythropoiesis in response to body iron status.

    PubMed

    Matsuo-Tezuka, Yukari; Noguchi-Sasaki, Mariko; Kurasawa, Mitsue; Yorozu, Keigo; Shimonaka, Yasushi

    2016-06-01

    Erythropoiesis requires large amounts of iron for hemoglobin synthesis. There are two sources of iron for erythropoiesis, dietary and stored iron; however, their relative contributions to erythropoiesis remain unknown. In this study, we used the stable iron isotope (57)Fe to quantify synthesis of hemoglobin derived from dietary iron. Using this method, we investigated the activities of dietary iron absorption and the utilization of dietary iron for erythropoiesis in responses to stimulated erythropoiesis and to interventions to alter body iron status. Under iron-loaded conditions, the activity of dietary iron absorption was clearly lowered in response to up-regulation of hepcidin, although the estimated activity of iron release from stored iron was not compared with that under control conditions. This result was supported by the observation that two duodenal iron transporters, divalent metal transporter 1 (DMT1) and ferroportin, were downregulated by iron loading, although the levels of expression of ferroportin in iron storage tissues were not changed by iron loading under erythropoietic stimulation by epoetin-β pegol (C.E.R.A., a long-acting erythropoiesis-stimulating agent). These results indicate that the dietary iron absorption system is more sensitive to body iron status than are reticuloendothelial iron- release mechanisms. Our data indicated that there could be a regulatory mechanism favoring use of stored iron over dietary iron under iron-loaded conditions. PMID:26911670

  10. Thermoelectric Transport Properties of Gold-Iron at Millikelvin Temperatures.

    NASA Astrophysics Data System (ADS)

    Chesire, Daniel Patrick

    Measurements of the electrical resistivity, and both static and isoelectric thermopower have been made on a fine Au wire containing 1 ppm Fe over a range of temperatures between 7 K and 24 mK. A shallow minimum at higher temperatures and unitary limit in the resistivity data characteristic of the Kondo effect were observed in the lower temperature ranges. The minimum coincides with that observed by other workers. Both the resistivity and the two thermopowers were measured with a Superconducting Quantum Interference Detector (SQUID) which has extremely high sensitivity and a very good signal-to-noise ratio. The static and isoelectric thermopowers were measured under two different boundary conditions. The static thermopower was measured by keeping the electric current through the sample equal to zero by using a compensating current source. The isoelectric thermopower was measured under the condition that the electric field across the sample was kept equal to zero by using a superconducting short. The static and isoelectric thermopowers both exhibited a broad minimum attributed to the interaction of a dilute concentration of Fe impurities with the Au conduction electrons. The data have been analyzed in terms of linear transport theory, using the Mueller-Hartmann expression for the Kondo contribution. Since the measurements were made at low temperatures, the diffusion and phonon drag thermopowers were small enough that the major contribution to the measured thermopower was from the Kondo effect. The theory was shown to fit the data well down to 0.2 K. Below this temperature, the theoretical expression for the thermopower did not agree well with the measurements in this work. The static thermopower, S, was found to be related to the isoelectric thermopower, (SIGMA)(,E=0), and the resistivity, (rho), by the simple relation S = (rho)(SIGMA)(,E=0). The isoelectric data was found to have a better signal-to-noise ratio than the static thermopower and a large enough signal at

  11. 9. GENERAL VIEW OF THE CAST IRON TRUSS SYSTEM IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. GENERAL VIEW OF THE CAST IRON TRUSS SYSTEM IN THE ATTIC OF UNIT 2, SHOWING THE JUNCTION OF THE TRUSSES ABOVE THE MAIN ENTRY GABLE WITH THE TYPICAL TRUSS SYSTEM FOR THE WING; LOOKING SSW. (Ryan and Ceronie) - Watervliet Arsenal, Building No. 40, Broadway between Dalliba & Watervliet Avenues, Watervliet, Albany County, NY

  12. SORTING NEXIN1 is required for modulating the trafficking and stability of the Arabidopsis IRON-REGULATED TRANSPORTER1.

    PubMed

    Ivanov, Rumen; Brumbarova, Tzvetina; Blum, Ailisa; Jantke, Anna-Maria; Fink-Straube, Claudia; Bauer, Petra

    2014-03-01

    Dicotyledonous plants growing under limited iron availability initiate a response resulting in the solubilization, reduction, and uptake of soil iron. The protein factors responsible for these steps are transmembrane proteins, suggesting that the intracellular trafficking machinery may be involved in iron acquisition. In search for components involved in the regulation of Arabidopsis thaliana iron deficiency responses, we identified the members of the SORTING NEXIN (SNX) protein family. SNX loss-of-function plants display enhanced susceptibility to iron deficiency in comparison to the wild type. The absence of SNX led to reduced iron import efficiency into the root. SNX1 showed partial colocalization with the principal root iron importer IRON-REGULATED TRANSPORTER1 (IRT1). In SNX loss-of-function plants, IRT1 protein levels were decreased compared with the wild type due to enhanced IRT1 degradation. This resulted in diminished amounts of the IRT1 protein at the plasma membrane. snx mutants exhibited enhanced iron deficiency responses compared with the wild type, presumably due to the lower iron uptake through IRT1. Our results reveal a role of SNX1 for the correct trafficking of IRT1 and, thus, for modulating the activity of the iron uptake machinery. PMID:24596241

  13. Transportable Collective Protection System (TCPS)

    SciTech Connect

    Tekesky, R.

    1990-08-15

    Human System Division (HSD/YAGD), Wright-Patterson AFB OH 45433-6503 requested assistance from the Air Force Packaging Evaluation Activity (AFPEA) to conduct vibration, shock and environmental testing on three Rowley containers with contents. The contents consist of a Transportable Collective Protective System (TCPS). The TCPS, manufactured by IIC/Dover Inc., is a chemical warfare tent. Personnel can enter the tent, remove protective clothing and perform duties in an uncontaminated environment. The purpose of this project was to determine if the Rowley containers would be able to contain and protect the TCPS during world-wide shipment, storage, and handling.

  14. System and method for producing metallic iron

    SciTech Connect

    Bleifuss, Rodney L.; Englund, David J.; Iwasaki, Iwao; Fosnacht, Donald R.; Brandon, Mark M.; True, Bradford G.

    2012-01-17

    A hearth furnace 10 for producing metallic iron material has a furnace housing 11 having a drying/preheat zone 12, a conversion zone 13, a fusion zone 14, and optionally a cooling zone 15, the conversion zone 13 is between the drying/preheat zone 12 and the fusion zone 14. A moving hearth 20 is positioned within the furnace housing 11. A hood or separation barrier 30 within at least a portion of the conversion zone 13, fusion zone 14 or both separates the fusion zone 14 into an upper region and a lower region with the lower region adjacent the hearth 20 and the upper region adjacent the lower region and spaced from the hearth 20. An injector introduces a gaseous reductant into the lower region adjacent the hearth 20. A combustion region may be formed above the hood or separation barrier.

  15. System and method for producing metallic iron

    DOEpatents

    Bleifuss, Rodney L; Englund, David J; Iwasaki, Iwao; Fosnacht, Donald R; Brandon, Mark M; True, Bradford G

    2013-09-17

    A hearth furnace for producing metallic iron material has a furnace housing having a drying/preheat zone, a conversion zone, a fusion zone, and optionally a cooling zone, the conversion zone is between the drying/preheat zone and the fusion zone. A moving hearth is positioned within the furnace housing. A hood or separation barrier within at least a portion of the conversion zone, fusion zone or both separates the fusion zone into an upper region and a lower region with the lower region adjacent the hearth and the upper region adjacent the lower region and spaced from the hearth. An injector introduces a gaseous reductant into the lower region adjacent the hearth. A combustion region may be formed above the hood or separation barrier.

  16. Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron.

    PubMed

    Johnson, Richard L; Nurmi, James T; O'Brien Johnson, Graham S; Fan, Dimin; O'Brien Johnson, Reid L; Shi, Zhenqing; Salter-Blanc, Alexandra J; Tratnyek, Paul G; Lowry, Gregory V

    2013-02-01

    The fate of nano zerovalent iron (nZVI) during subsurface injection was examined using carboxymethylcellulose (CMC) stabilized nZVI in a very large three-dimensional physical model aquifer with detailed monitoring using multiple, complementary detection methods. A fluorescein tracer test in the aquifer plus laboratory column data suggested that the very-aggressive flow conditions necessary to achieve 2.5 m of nZVI transport could be obtained using a hydraulically constrained flow path between injection and extraction wells. However, total unoxidized nZVI was transported only about 1 m and <2% of the injected nZVI concentration reached that distance. The experimental data also indicated that groundwater flow changed during injection, likely due to hydrogen bubble formation, which diverted the nZVI away from the targeted flow path. The leading edge of the iron plume became fully oxidized during transport. However, within the plume, oxidation of nZVI decreased in a fashion consistent with progressive depletion of aquifer "reductant demand". To directly quantify the extent of nZVI transport, a spectrophotometric method was developed, and the results indicated that deployment of unoxidized nZVI for groundwater remediation will likely be difficult. PMID:23311327

  17. A field investigation of arsenic transport by colloidal iron oxides in the hyporheic zone

    NASA Astrophysics Data System (ADS)

    O'Carroll, D. M.; Hartland, A.; Larsen, J.; Andersen, M. S.

    2012-12-01

    Conceptual models concerning the fate of arsenic, and many other heavy metals, in aqueous environments including groundwater do not traditionally include colloids as potential facilitators of transport. However, there is significant evidence that heavy metals and oxyanions, including arsenic, preferentially partition into oxide phases. Iron oxides are commonly present as colloids (e.g. Ferrihydrite) and have the potential to mobilise and transport arsenic further than typically assumed. Interactions between Fe-oxides and natural organic matter (NOM) may be particularly significant in hyporheic sediments, given the comparatively high concentrations of dissolved organic carbon present and the presence of pronounced and dynamic redox fronts. Colloidal Fe-oxide stability may be enhanced by NOM surface coatings, potentially limiting colloid sedimentation and making encapsulated colloids more mobile. Furthermore, NOM is a significant agent driving As release, through the consumption of dissolved oxygen by microorganisms (leading to reductive dissolution of Fe-oxides in sediments. In this study the size-distribution and speciation of colloidal phases were studied beneath an ephemeral stream. We determined the proportions of Fe and As in colloidal fractions and determined the proportions held in complexes with NOM. Redox conditions went from aerobic, immediately beneath the stream, to anoxic and finally aerobic away from the stream and into the aquifer. This presentation will discuss dominant arsenic transport pathways including the possible importance of iron and natural organic colloids on arsenic transport.

  18. Influence of the electronic structure on the transport properties of some iron pnictides

    NASA Astrophysics Data System (ADS)

    Rullier-Albenque, Florence

    2016-01-01

    An important feature of the iron-based pnictides is their multi-band electronic structure with both electron and hole bands at the Fermi level. The size of these pockets can be changed by different types of substitution, resulting in a variety of original magnetic and electronic properties. The contributions of both types of carriers will thus have important consequences on the evolution of the transport properties versus temperature and doping. It has been pointed out that Hund's rule interaction plays a prominent role in the physics of these compounds by allowing a strong orbital differentiation between the 3d Fe orbitals. As a result, a description in terms of more or less correlated electrons was proposed and may have important consequences on the scattering lifetimes of the different carriers. Finally, the presence of very flat bands at the Fermi level may induce a semiconductor-like behavior, with a change in carrier concentration with temperature. In this paper, we will review the evolution of transport properties with chemical doping/substitution in iron pnictides. We will more particularly focus on the 122 family (Ba(Sr,Ca)Fe2As2) and the 111 LiFeAs compound for which sizeable single crystals required for transport measurements are available. The combined resistivity, Hall effect and magnetoresistance data will be analyzed in association with electronic structure calculations, angle-resolved photoemission measurements and quantum oscillations. In spite of the strong interplay between antiferromagnetism and superconductivity in most part of their phase diagram, direct signatures of spin fluctuations are difficult to identify in the transport properties of iron pnictides. We will show that measurements of the longitudinal magnetoresistance provide a powerful tool for studying the coupling between the charge carriers and the spin degrees of freedom.

  19. Use of electrophoresis for transporting nano-iron in porous media.

    PubMed

    Jones, Edward H; Reynolds, David A; Wood, A Lynn; Thomas, David G

    2011-01-01

    Research has been conducted to evaluate if electrophoresis could transport surface stabilized nanoscale zero-valent iron (nZVI) through fine grained sand with the intent of remediating a contaminant in situ. The experimental procedure involved determining the transport rates of polymer modified nZVI and hematite in fine grained sands under an applied electrical gradient under different physical and chemical conditions. Results indicated transport of polymer modified nZVI and hematite can be accomplished by electrophoresis, with rates found to be much higher than diffusion alone and comparable to those predicted by electrokinetic theory. This study indicates there is potential for this method to deliver polymer modified nZVI into contaminated zones within fine grained sands for the purpose of remediation. PMID:21449091

  20. 20. SIMILAR TO THE SYSTEM INSTALLED IN THE GREY IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. SIMILAR TO THE SYSTEM INSTALLED IN THE GREY IRON FOUNDRY, MALLEABLE WORKERS FILLED MOLDS TRAVELING ON A CONVEYOR FROM LADLES ATTACHED TO OVERHEAD RAILS WHILE THEY STOOD ON A PLATFORM MOVING AT THE SAME SPEED AS THE CONVEYOR, CA. 1950 - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  1. Deficiency of a alpha-1-antitrypsin influences systemic iron homeostasis

    EPA Science Inventory

    Abstract Background: There is evidence that proteases and anti-proteases participate in the iron homeostasis of cells and living systems. We tested the postulate that alpha-1 antitrypsin (A1AT) polymorphism and the consequent deficiency of this anti-protease in humans are asso...

  2. Iron toxicity in yeast.

    PubMed

    Wiśnicka, R; Krzepiłko, A; Wawryn, J; Biliński, T

    1997-01-01

    It has been found that yeast cells are sensitive to iron overload only when grown on glucose as a carbon source. Effective concentration of ferrous iron is much higher than that found in natural environments. Effects of ferrous iron are strictly oxygen dependent, what suggest that the formation of hydroxyl radicals in the Fenton reaction is a cause of the toxicity. Respiratory deficiency and pretreatment of cells with antimycin A prevent toxic effects in the late exponential phase of growth, whereas uncouplers and 2mM magnesium salts completely protect even the most vulnerable exponential cells. Generally, toxic effects correlate with the ability of cells to take up this metal. The results presented suggest that during ferrous iron overload iron is transported through the unspecific divalent cation uptake system which is known in fungi. The data suggest that recently described high and low affinity systems of iron uptake in yeast are the only source of iron in natural environments. PMID:9516981

  3. Method and system for producing metallic iron nuggets

    DOEpatents

    Iwasaki, Iwao; Lindgren, Andrew J.; Kiesel, Richard F.

    2013-06-25

    Method and system for producing metallic nuggets includes providing reducible mixture of reducing material (such as carbonaceous material) and reducible iron bearing material (such as iron oxide) that may be arranged in discrete portions, such as mounds or briquettes, on at least a portion of a hearth material layer (such as carbonaceous material). A coarse overlayer of carbonaceous material may be provided over at least some of the discrete portions. Heating the reducible mixture to 1425.degree. C. or 1400.degree. C. or 1375.degree. C. results in formation of an intermediate product of one or more metallic iron nuggets, which may have a sulfur content of less than 0.03%, and slag, which may have less than 5% mass MgO, which may have a ratio of percent by weight sulfur in the slag over percent by weight sulfur in the metallic nuggets of at least about 12 or at least about 15.

  4. Research on advanced transportation systems

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka

    1992-08-01

    An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.

  5. F-box and leucine-rich repeat protein 5 (FBXL5) is required for maintenance of cellular and systemic iron homeostasis.

    PubMed

    Ruiz, Julio C; Walker, Scott D; Anderson, Sheila A; Eisenstein, Richard S; Bruick, Richard K

    2013-01-01

    Maintenance of cellular iron homeostasis requires post-transcriptional regulation of iron metabolism genes by iron regulatory protein 2 (IRP2). The hemerythrin-like domain of F-box and leucine-rich repeat protein 5 (FBXL5), an E3 ubiquitin ligase subunit, senses iron and oxygen availability and facilitates IRP2 degradation in iron replete cells. Disruption of the ubiquitously expressed murine Fbxl5 gene results in a failure to sense increased cellular iron availability, accompanied by constitutive IRP2 accumulation and misexpression of IRP2 target genes. FBXL5-null mice die during embryogenesis, although viability is restored by simultaneous deletion of the IRP2, but not IRP1, gene. Mice containing a single functional Fbxl5 allele behave like their wild type littermates when fed an iron-sufficient diet. However, unlike wild type mice that manifest decreased hematocrit and hemoglobin levels when fed a low-iron diet, Fbxl5 heterozygotes maintain normal hematologic values due to increased iron absorption. The responsiveness of IRP2 to low iron is specifically enhanced in the duodena of the heterozygotes and is accompanied by increased expression of the divalent metal transporter-1. These results confirm the role of FBXL5 in the in vivo maintenance of cellular and systemic iron homeostasis and reveal a privileged role for the intestine in their regulation by virtue of its unique FBXL5 iron sensitivity. PMID:23135277

  6. F-box and Leucine-rich Repeat Protein 5 (FBXL5) Is Required for Maintenance of Cellular and Systemic Iron Homeostasis*

    PubMed Central

    Ruiz, Julio C.; Walker, Scott D.; Anderson, Sheila A.; Eisenstein, Richard S.; Bruick, Richard K.

    2013-01-01

    Maintenance of cellular iron homeostasis requires post-transcriptional regulation of iron metabolism genes by iron regulatory protein 2 (IRP2). The hemerythrin-like domain of F-box and leucine-rich repeat protein 5 (FBXL5), an E3 ubiquitin ligase subunit, senses iron and oxygen availability and facilitates IRP2 degradation in iron replete cells. Disruption of the ubiquitously expressed murine Fbxl5 gene results in a failure to sense increased cellular iron availability, accompanied by constitutive IRP2 accumulation and misexpression of IRP2 target genes. FBXL5-null mice die during embryogenesis, although viability is restored by simultaneous deletion of the IRP2, but not IRP1, gene. Mice containing a single functional Fbxl5 allele behave like their wild type littermates when fed an iron-sufficient diet. However, unlike wild type mice that manifest decreased hematocrit and hemoglobin levels when fed a low-iron diet, Fbxl5 heterozygotes maintain normal hematologic values due to increased iron absorption. The responsiveness of IRP2 to low iron is specifically enhanced in the duodena of the heterozygotes and is accompanied by increased expression of the divalent metal transporter-1. These results confirm the role of FBXL5 in the in vivo maintenance of cellular and systemic iron homeostasis and reveal a privileged role for the intestine in their regulation by virtue of its unique FBXL5 iron sensitivity. PMID:23135277

  7. Influence of electrolyte and voltage on the direct current enhanced transport of iron nanoparticles in clay.

    PubMed

    Gomes, Helena I; Dias-Ferreira, Celia; Ribeiro, Alexandra B; Pamukcu, Sibel

    2014-03-01

    Zero valent iron nanoparticles (nZVI) transport for soil and groundwater remediation is slowed down or halted by aggregation or fast depletion in the soil pores. Direct electric current can enhance the transport of nZVI in low permeability soils. However operational factors, including pH, oxidation-reduction potential (ORP), voltage and ionic strength of the electrolyte can play an important role in the treatment effectiveness. Experiments were conducted to enhance polymer coated nZVI mobility in a model low permeability soil medium (kaolin clay) using low direct current. Different electrolytes of varying ionic strengths and initial pH and high nZVI concentrations were applied. Results showed that the nZVI transport is enhanced by direct current, even considering concentrations typical of field application that favor nanoparticle aggregation. However, the factors considered (pH, ORP, voltage and electrolyte) failed to explain the iron concentration variation. The electrolyte and its ionic strength proved to be significant for pH and ORP measured during the experiments, and therefore will affect aggregation and fast oxidation of the particles. PMID:24252496

  8. Use of a Molecular Decoy to Segregate Transport from Antigenicity in the FrpB Iron Transporter from Neisseria meningitidis

    PubMed Central

    Saleem, Muhammad; Prince, Stephen M.; Rigby, Stephen E. J.; Imran, Muhammad; Patel, Hema; Chan, Hannah; Sanders, Holly; Maiden, Martin C. J.; Feavers, Ian M.; Derrick, Jeremy P.

    2013-01-01

    FrpB is an outer membrane transporter from Neisseria meningitidis, the causative agent of meningococcal meningitis. It is a member of the TonB-dependent transporter (TBDT) family and is responsible for iron uptake into the periplasm. FrpB is subject to a high degree of antigenic variation, principally through a region of hypervariable sequence exposed at the cell surface. From the crystal structures of two FrpB antigenic variants, we identify a bound ferric ion within the structure which induces structural changes on binding which are consistent with it being the transported substrate. Binding experiments, followed by elemental analysis, verified that FrpB binds Fe3+ with high affinity. EPR spectra of the bound Fe3+ ion confirmed that its chemical environment was consistent with that observed in the crystal structure. Fe3+ binding was reduced or abolished on mutation of the Fe3+-chelating residues. FrpB orthologs were identified in other Gram-negative bacteria which showed absolute conservation of the coordinating residues, suggesting the existence of a specific TBDT sub-family dedicated to the transport of Fe3+. The region of antigenic hypervariability lies in a separate, external sub-domain, whose structure is conserved in both the F3-3 and F5-1 variants, despite their sequence divergence. We conclude that the antigenic sub-domain has arisen separately as a result of immune selection pressure to distract the immune response from the primary transport function. This would enable FrpB to function as a transporter independently of antibody binding, by using the antigenic sub-domain as a ‘molecular decoy’ to distract immune surveillance. PMID:23457610

  9. Use of a molecular decoy to segregate transport from antigenicity in the FrpB iron transporter from Neisseria meningitidis.

    PubMed

    Saleem, Muhammad; Prince, Stephen M; Rigby, Stephen E J; Imran, Muhammad; Patel, Hema; Chan, Hannah; Sanders, Holly; Maiden, Martin C J; Feavers, Ian M; Derrick, Jeremy P

    2013-01-01

    FrpB is an outer membrane transporter from Neisseria meningitidis, the causative agent of meningococcal meningitis. It is a member of the TonB-dependent transporter (TBDT) family and is responsible for iron uptake into the periplasm. FrpB is subject to a high degree of antigenic variation, principally through a region of hypervariable sequence exposed at the cell surface. From the crystal structures of two FrpB antigenic variants, we identify a bound ferric ion within the structure which induces structural changes on binding which are consistent with it being the transported substrate. Binding experiments, followed by elemental analysis, verified that FrpB binds Fe(3+) with high affinity. EPR spectra of the bound Fe(3+) ion confirmed that its chemical environment was consistent with that observed in the crystal structure. Fe(3+) binding was reduced or abolished on mutation of the Fe(3+)-chelating residues. FrpB orthologs were identified in other Gram-negative bacteria which showed absolute conservation of the coordinating residues, suggesting the existence of a specific TBDT sub-family dedicated to the transport of Fe(3+). The region of antigenic hypervariability lies in a separate, external sub-domain, whose structure is conserved in both the F3-3 and F5-1 variants, despite their sequence divergence. We conclude that the antigenic sub-domain has arisen separately as a result of immune selection pressure to distract the immune response from the primary transport function. This would enable FrpB to function as a transporter independently of antibody binding, by using the antigenic sub-domain as a 'molecular decoy' to distract immune surveillance. PMID:23457610

  10. Brain iron homeostasis.

    PubMed

    Moos, Torben

    2002-11-01

    transferrin were, however, restricted to areas situated in close proximity to the ventricular and pial surfaces. In particular, transferrin injected into the ventricles was never observed in regions distant from the CSF. It was concluded that choroid plexus-derived transferrin is not likely to play a significant role for binding and transporting iron in the brain interstitium. Transferrin secretion from oligodendrocytes probably plays the key role in this process. In the third part of the thesis, the uptake of iron by neurons devoid of projections beyond the blood-brain barrier and glia is addressed. Given the fact that the demonstration of plasma proteins in brain sections can be hampered by several methodological factors, a mapping of the cellular distribution of transferrin in the brain was performed employing extensive use of tissue-processing and staining protocols. In order to aid in the understanding of cellular iron uptake in the intact brain, attempts were made to identify iron, transferrin, and transferrin receptors at the light microscopic level. Consistent with the widespread distribution of transferrin receptors in neurons, the ligand transferrin was also found in neurons throughout the CNS. When examined at high resolution, transferrin was found to be distributed to the cytoplasm of neurons, exhibiting a dotted appearance, which is probably consistent with a distribution in the endosomallysosomal system. In contrast to the consistent presence of transferrin receptors on neurons, it was not possible to detect transferrin receptors on glial cells. Related to these observations, the presence of non-transferrin-bound iron in the brain suggests that glial cells may take it up by a mechanism that does not involve the transferrin receptor. The widespread distribution of ferritin in glial cells clearly indicates that the glial cells acquire iron. Dietary iron-overload did not change the distribution of transferrin receptors or ferritin in the brain. By contrast, iron

  11. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM A DRINKING WATER DISTRIBUTION SYSTEM CAST IRON PIPE

    EPA Science Inventory

    Colored water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to red depending on water chemistry and particle properties. The release of iron from distribution system materials such as...

  12. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM A DRINKING WATER DISTRIBUTION SYSTEM CAST IRON PIPE

    EPA Science Inventory

    "Colored water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to red depending on water chemistry and particle properties. The release of iron from distribution system materials such a...

  13. GEOCHEMISTRY OF SULFUR IN IRON CORROSION SCALES FOUND IN DRINKING WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Iron-sulfur geochemistry is important in many natural and engineered environments, including drinking water systems. In the anaerobic environment beneath scales of corroding iron drinking water distribution system pipes, sulfate reducing bacteria (SRB) produce sulfide from natu...

  14. The Yersiniabactin Transport System Is Critical for the Pathogenesis of Bubonic and Pneumonic Plague▿

    PubMed Central

    Fetherston, Jacqueline D.; Kirillina, Olga; Bobrov, Alexander G.; Paulley, James T.; Perry, Robert D.

    2010-01-01

    Iron acquisition from the host is an important step in the pathogenic process. While Yersinia pestis has multiple iron transporters, the yersiniabactin (Ybt) siderophore-dependent system plays a major role in iron acquisition in vitro and in vivo. In this study, we determined that the Ybt system is required for the use of iron bound by transferrin and lactoferrin and examined the importance of the Ybt system for virulence in mouse models of bubonic and pneumonic plague. Y. pestis mutants unable to either transport Ybt or synthesize the siderophore were both essentially avirulent via subcutaneous injection (bubonic plague model). Surprisingly, via intranasal instillation (pneumonic plague model), we saw a difference in the virulence of Ybt biosynthetic and transport mutants. Ybt biosynthetic mutants displayed an ∼24-fold-higher 50% lethal dose (LD50) than transport mutants. In contrast, under iron-restricted conditions in vitro, a Ybt transport mutant had a more severe growth defect than the Ybt biosynthetic mutant. Finally, a Δpgm mutant had a greater loss of virulence than the Ybt biosynthetic mutant, indicating that the 102-kb pgm locus encodes a virulence factor, in addition to Ybt, that plays a role in the pathogenesis of pneumonic plague. PMID:20160020

  15. Urban Transportation Planning Short Course: Evaluation of Alternative Transportation Systems.

    ERIC Educational Resources Information Center

    Federal Highway Administration (DOT), Washington, DC.

    This urban transportation pamphlet delves into the roles of policy groups and technical staffs in evaluating alternative transportation plans, evaluation criteria, systems to evaluate, and evaluation procedures. The introduction admits the importance of subjective, but informed, judgment as an effective tool in weighing alternative transportation…

  16. Radioisotope thermoelectric generator transport trailer system

    NASA Astrophysics Data System (ADS)

    Ard, Kevin E.; King, David A.; Leigh, Harley; Satoh, Juli A.

    1995-01-01

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware.

  17. Radioisotope thermoelectric generator transport trailer system

    SciTech Connect

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A.

    1995-01-20

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  18. Transport of carboxymethyl cellulose stabilized nanoscale zerovalent iron in porous media, an experimental and modeling study

    NASA Astrophysics Data System (ADS)

    Sleep, Brent; Mondal, Pulin; Furbacher, Paul; Cui, Ziteng; Krol, Magdalena

    2015-04-01

    Nano-scale zero valent iron (nZVI) is capable of reacting with a wide variety of groundwater contaminants. Therefore, during the last decade nZVI has received significant attention for application in subsurface remediation, particularly for sites contaminated with chlorinated compounds and heavy metals. However, due to agglomeration of the nZVI, delivery into the contaminated subsurface zones is challenging. Polymer stabilization of nZVI can enhance the mobility of the iron particles in the subsurface. In this study, a set of laboratory-scale transport experiments and numerical simulations were performed to evaluate carboxymethyl cellulose (CMC) polymer stabilized nZVI transport in porous media. Experiments were conducted in a two-dimensional water-saturated lab-scale glass-walled sandbox, uniformly packed with silica sand, to identify the effects of water specific discharge and CMC concentration on nZVI transport. Experiments were also performed using Lissamine Green B (LGB) dye as a non-reactive tracer to characterize the sand media. The CMC stabilized nZVI was synthesized freshly at a concentration of 1000 mg/L before each transport experiment. The synthesized CMC-nZVI mixture was characterized using transmission electron microscopy, dynamic light scattering, and UV-visual spectrophotometry. The movement of the LGB dye and nZVI in the sandbox during the experiments was monitored using time-lapsed images captured using a light source and a dark box. The transport of LGB, CMC, and CMC-nZVI was evaluated through analysis of the breakthrough curves at the outlet and the retained nZVI in the sandbox. The LGB, CMC, and nZVI transport was also modeled using a multiphase flow and transport model considering LGB and CMC as solutes, and nZVI as a colloid. Analysis of the breakthrough data showed that the mass recovery of LGB and CMC was greater than 95 % indicating conservative transport in silica sand. However, the mean residence time of CMC was significantly higher than

  19. Modeling Polymer Stabilized Nano-scale Zero Valent Iron Transport Experiments in Porous Media to Understand the Transport Behavior

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Krol, M.; Sleep, B. E.

    2015-12-01

    A wide variety of groundwater contaminants can be treated with nano-scale zero valent iron (nZVI). However, delivery of nZVI in the subsurface to the treatment zones is challenging as the bare nZVI particles have a higher tendency to agglomerate. The subsurface mobility of nZVI can be enhanced by stabilizing nZVI with polymer, such as carboxymethyl cellulose (CMC). In this study, numerical simulations were conducted to evaluate CMC stabilized nZVI transport behavior in porous media. The numerical simulations were based on a set of laboratory-scale transport experiments that were conducted in a two-dimensional water-saturated glass-walled sandbox (length - 55 cm; height - 45 cm; width - 1.4 cm), uniformly packed with silica sand. In the transport experiments: CMC stabilized nZVI and a non-reactive dye tracer Lissamine Green B (LGB) were used; water specific discharge and CMC concentration were varied; movements of LGB, and CMC-nZVI in the sandbox were tracked using a camera, a light source and a dark box. The concentrations of LGB, CMC, and CMC-nZVI at the sandbox outlet were analyzed. A 2D multiphase flow and transport model was applied to simulate experimental results. The images from LGB dye transport experiments were used to determine the pore water velocities and media permeabilities in various layers in the sand box. These permeability values were used in the subsequent simulations of CMC-nZVI transport. The 2D compositional simulator, modified to include colloid filtration theory (CFT), treated CMC as a solute and nZVI as a colloid. The simulator included composition dependent viscosity to account for CMC injection and mixing, and attachment efficiency as a fitting parameter for nZVI transport modeling. In the experiments, LGB and CMC recoveries were greater than 95%; however, CMC residence time was significantly higher than the LGB residence time and the higher CMC concentration caused higher pressure drops in the sandbox. The nZVI recovery was lower than 40

  20. Phase stable RF transport system

    DOEpatents

    Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.

    1992-01-01

    An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.

  1. Classical transport in disordered systems

    NASA Astrophysics Data System (ADS)

    Papaioannou, Antonios

    This thesis reports on the manifestation of structural disorder on molecular transport and it consists of two parts. Part I discusses the relations between classical transport and the underlying structural complexity of the system. Both types of molecular diffusion, namely Gaussian and non- Gaussian are presented and the relevant time regimes are discussed. In addition the concept of structural universality is introduced and connected with the diffusion metrics. One of the most robust techniques for measuring molecular mean square displacements is magnetic resonance. This method requires encoding and subsequently reading out after an experimentally controlled time, a phase φ to the spins using magnetic field gradients. The main limitation for probing short diffusion lengths L(t) ˜ 1micro m with magnetic resonance is the requirement to encode and decode the phase φ in very short time intervals. Therefore, to probe such displacements a special probe was developed equipped with a gradient coil capable of delivering magnetic field gradients of approximately 90 G/cmA . The design of the probe is reported. Part I also includes a discussion of experiments of transport in two qualitatively different disordered phantoms and reports on a direct observation of universality in one-dimension. The results reveal the universal power law scaling of the diffusion coefficient at the long-time regime and illustrate the essence of structural universality by experimentally determining the structure correlation function of the phantoms. In addition, the scaling of the diffusive permeability of the phantoms with respect to the pore size is investigated. Additional work presented includes a detailed study of adsorption of methane gas in Vycor disordered glass. The techniques described in Part I of this thesis are widely used for measuring structural parameters of porous media, such as the surface-to-volume ratio or diffusive permeability. Part II of this thesis discusses the

  2. Manned transportation system study - Evaluation of candidate transportation architectures

    NASA Technical Reports Server (NTRS)

    Lance, Nicholas; Klemer, R.; Sooter, C.

    1992-01-01

    The overall evaluation process, the tool developed to perform the evaluation, and the evaluation results in determining the right approach to meet the nation's mannned transportation needs are presented. To address the various considerations, architecture sets consisting of the candidate transportation systems are constructed. As this methodology results in multiple architectures to examine, an architecture evaluation tool was developed to facilitate the evaluation of the architecture attribute values from the system values of the attributes.

  3. Integration of Genome-Scale Metabolic Nodels of Iron-Reducing Bacteria With Subsurface Flow and Geochemical Reactive Transport Models

    NASA Astrophysics Data System (ADS)

    Scheibe, T. D.; Mahadevan, R.; Fang, Y.; Garg, S.; Long, P. E.; Lovley, D. M.

    2008-12-01

    Several field and laboratory experiments have demonstrated that the growth and activity of iron-reducing bacteria can be stimulated in many subsurface environments by amendment of groundwater with a soluble electron donor. Under strong iron-reducing conditions, these organisms mediate reactions that can impact a wide range of subsurface contaminants including chlorinated hydrocarbons, metals, and radionuclides. Therefore there is strong interest in in-situ bioremediation as a potential technology for cleanup of contaminated aquifers. To evaluate and design bioremediation systems, as well as to evaluate the viability of monitored natural attenuation as an alternative, quantitative models of biogeochemically reactive transport are needed. To date, most such models represent microbial activity in terms of kinetic rate (e.g., Monod- type) formulations. Such models do not account for fundamental changes in microbial functionality (such as utilization of alternative respiratory pathways) that occur as the result of spatial and temporal variations in the geochemical environment experienced by microorganisms. Constraint-based genome-scale in silico models of microbial metabolism present an alternative to simplified rate formulations that provide flexibility to account for changes in microbial function in response to local geochemical conditions. We have developed and applied a methodology for coupling a constraint-based in silico model of Geobacter sulfurreducens with a conventional model of groundwater flow, transport, and geochemical reaction. Two uses of the in silico model are tested: 1) incorporation of modified microbial growth yield coefficients based on the in silico model, and 2) variation of reaction rates in a reactive transport model based on in silico modeling of a range of local geochemical conditions. Preliminary results from this integrated model will be presented.

  4. Transport of nano zero-valent iron supported by mesoporous silica microspheres in porous media.

    PubMed

    Yang, Zhangmei; Qiu, Xinhong; Fang, Zhanqiang; Pokeung, Tsang

    2015-01-01

    Effective in situ remediation of groundwater requires the successful delivery of reactive iron particles through sand. However, the agglomeration of nano zero-valent iron (NZVI) particles limits the migration distance, which inhibits their usefulness. In the study described herein, NZVI supported by mesoporous silica microspheres covered with FeOOH (SiO2@FeOOH@Fe) was synthesized, and its mobility was demonstrated on the basis of transport in porous media. Degradation of decabromodiphenyl ether (BDE209) was more efficient by SiO2@FeOOH@Fe than by 'bare' NZVI. Breakthrough curves and mass recovery showed the mobility of SiO2@FeOOH@Fe in granular media was better than that of bare NZVI. It increased greatly in the presence of natural organic matter (NOM) and decreased when high Ca2+ and Mg2+ concentrations were encountered. Analysis of the transport data on the basis of filtration theory showed diffusion to be the main mechanism for particle removal in silicon sand. Increasing the NOM may decrease agglomeration of the grains of sand, which has a positive effect on the mobility of SiO2@FeOOH@Fe. Presumably, increasing the concentrations of Ca2+ and Mg2+ compresses the diffuse double layer of SiO2@FeOOH@Fe, resulting in a reduction of mobility. PMID:26067499

  5. TonB Energy Transduction Systems of Riemerella anatipestifer Are Required for Iron and Hemin Utilization

    PubMed Central

    Liao, HeBin; Cheng, XingJun; Zhu, DeKang; Wang, MingShu; Jia, RenYong; Chen, Shun; Chen, XiaoYue; Biville, Francis; Liu, MaFeng; Cheng, AnChun

    2015-01-01

    Riemerella anatipestifer (R. anatipestifer) is one of the most important pathogens in ducks. The bacteria causes acute or chronic septicemia characterized by fibrinous pericarditis and meningitis. The R. anatipestifer genome encodes multiple iron/hemin-uptake systems that facilitate adaptation to iron-limited host environments. These systems include several TonB-dependent transporters and three TonB proteins responsible for energy transduction. These three tonB genes are present in all the R. anatipestifer genomes sequenced so far. Two of these genes are contained within the exbB-exbD-tonB1 and exbB-exbD-exbD-tonB2 operons. The third, tonB3, forms a monocistronic transcription unit. The inability to recover derivatives deleted for this gene suggests its product is essential for R. anatipestifer growth. Here, we show that deletion of tonB1 had no effect on hemin uptake of R. anatipestifer, though disruption of tonB2 strongly decreases hemin uptake, and disruption of both tonB1 and tonB2 abolishes the transport of exogenously added hemin. The ability of R. anatipestifer to grow on iron-depleted medium is decreased by tonB2 but not tonB1 disruption. When expressed in an E. coli model strain, the TonB1 complex, TonB2 complex, and TonB3 protein from R. anatipestifer cannot energize heterologous hemin transporters. Further, only the TonB1 complex can energize a R. anatipestifer hemin transporter when co-expressed in an E. coli model strain. PMID:26017672

  6. A new analytical approach to understanding nanoscale lead-iron interactions in drinking water distribution systems.

    PubMed

    Trueman, Benjamin F; Gagnon, Graham A

    2016-07-01

    High levels of iron in distributed drinking water often accompany elevated lead release from lead service lines and other plumbing. Lead-iron interactions in drinking water distribution systems are hypothesized to be the result of adsorption and transport of lead by iron oxide particles. This mechanism was explored using point-of-use drinking water samples characterized by size exclusion chromatography with UV and multi-element (ICP-MS) detection. In separations on two different stationary phases, high apparent molecular weight (>669 kDa) elution profiles for (56)Fe and (208)Pb were strongly correlated (average R(2)=0.96, N=73 samples representing 23 single-unit residences). Moreover, (56)Fe and (208)Pb peak areas exhibited an apparent linear dependence (R(2)=0.82), consistent with mobilization of lead via adsorption to colloidal particles rich in iron. A UV254 absorbance peak, coincident with high molecular weight (56)Fe and (208)Pb, implied that natural organic matter was interacting with the hypothesized colloidal species. High molecular weight UV254 peak areas were correlated with both (56)Fe and (208)Pb peak areas (R(2)=0.87 and 0.58, respectively). On average, 45% (std. dev. 10%) of total lead occurred in the size range 0.05-0.45 μm. PMID:26971028

  7. Transport of iron oxide nanoparticles in saturated porous media: a large-scale 3D study

    NASA Astrophysics Data System (ADS)

    Velimirovic, Milica; Schmid, Doris; Micić, Vesna; Miyajima, Kumiko; Klaas, Norbert; Braun, Jürgen; Bosch, Julian; Meckenstock, Rainer; von der Kammer, Frank; Hofmann, Thilo

    2016-04-01

    Iron oxide nanoparticles (FeOxNp) have a high potential as electron acceptor for in situ microbial oxidation of a wide range of recalcitrant groundwater contaminants (Bosch et al., 2010). Tosco et al. (2012) reported on high colloidal stability of FeOxNp dispersed in water, their low deposition behavior, and consequently improved transport in column experiments compared to extensively studied zerovalent iron nanoparticles. However, determination of FeOxNp transport behavior at the field-relevant conditions has not been done before. The present work is aimed to evaluate different complementary methods for detection, quantification and transport characterization of FeOxNp in a large-scale three-dimensional (3D) model aquifer. Prior to that, batch-scale experiments were performed in order to elucidate the potential of the selected methods for direct and indirect characterization and detection of FeOxNp. Direct methods included measurements of particle size distribution, particle concentration, Fetot content and turbidity of the FeOxNp suspension. Indirect methods included measurements of particle zeta potential, as well as TOC content and pH of the FeOxNp suspension. The results of the batch experiments indicated that the most suitable approach for detecting and quantifying FeOxNp was measuring Fetot content and suspension turbidity, as well as particle size determined using dynamic light scattering principle. These complementary methods were further applied in a large-scale 3D study containing medium and coarse sand in order to 1) assess the transport of FeOxNp in saturated porous medium during injection (VFeOx = 6 m3, cparticle = 20 g/L, Qinj = 0.7 m3/h), and 2) illustrate their spatial distribution after injection. The outcomes of the large-scale 3D study confirmed that FeOxNp transport can be successfully investigated applying complementary methods. Monitoring data including Fetot content, turbidity and particle size showed the transport of particles towards the

  8. Overlap of copper and iron uptake systems in mitochondria in Saccharomyces cerevisiae

    PubMed Central

    Wang, Jing; Gammon, Micah G.; Maynard, Margaret K.; White, Olivia L.; Cobine, Jai A.; Mahone, Wilkerson K.

    2016-01-01

    In Saccharomyces cerevisiae, the mitochondrial carrier family protein Pic2 imports copper into the matrix. Deletion of PIC2 causes defects in mitochondrial copper uptake and copper-dependent growth phenotypes owing to decreased cytochrome c oxidase activity. However, copper import is not completely eliminated in this mutant, so alternative transport systems must exist. Deletion of MRS3, a component of the iron import machinery, also causes a copper-dependent growth defect on non-fermentable carbon. Deletion of both PIC2 and MRS3 led to a more severe respiratory growth defect than either individual mutant. In addition, MRS3 expressed from a high copy number vector was able to suppress the oxygen consumption and copper uptake defects of a strain lacking PIC2. When expressed in Lactococcus lactis, Mrs3 mediated copper and iron import. Finally, a PIC2 and MRS3 double mutant prevented the copper-dependent activation of a heterologously expressed copper sensor in the mitochondrial intermembrane space. Taken together, these data support a role for the iron transporter Mrs3 in copper import into the mitochondrial matrix. PMID:26763345

  9. Enhanced transport of Si-coated nanoscale zero-valent iron particles in porous media.

    PubMed

    HonetschlÄgerová, Lenka; Janouškovcová, Petra; Kubal, Martin

    2016-01-01

    Laboratory column experiments were conducted to evaluate the effect of previously described silica coating method on the transport of nanoscale zero-valent iron (nZVI) in porous media. The silica coating method showed the potential to prevent the agglomeration of nZVI. Transport experiments were conducted using laboratory-scale sand-packed columns at conditions that were very similar of natural groundwater. Transport properties of non-coated and silica-coated nZVI are investigated in columns of 40 cm length, which were filled with porous media. A suspension was injected in three different Fe particle concentrations (100, 500, and 1000 mg/L) at flow 5  mL/min. Experimental results were compared using nanoparticle attachment efficiency and travel distances which were calculated by classical particle filtration theory. It was found that non-coated particles were essentially immobile in porous media. In contrast, silica-coated particles showed significant transport distances at the tested conditions. Results of this study suggest that silica can increase nZVI mobility in the subsurface. PMID:26582314

  10. Transport and viability of Escherichia coli cells in clean and iron oxide coated sand following coating with silver nanoparticles.

    PubMed

    Ngwenya, Bryne T; Curry, Philip; Kapetas, Leon

    2015-08-01

    A mechanistic understanding of processes controlling the transport and viability of bacteria in porous media is critical for designing in situ bioremediation and microbiological water decontamination programs. We investigated the combined influence of coating sand with iron oxide and silver nanoparticles on the transport and viability of Escherichia coli cells under saturated conditions. Results showed that iron oxide coatings increase cell deposition which was generally reversed by silver nanoparticle coatings in the early stages of injection. These observations are consistent with short-term, particle surface charge controls on bacteria transport, where a negatively charged surface induced by silver nanoparticles reverses the positive charge due to iron oxide coatings, but columns eventually recovered irreversible cell deposition. Silver nanoparticle coatings significantly increased cell inactivation during transit through the columns. However, when viability data is normalised to volume throughput, only a small improvement in cell inactivation is observed for silver nanoparticle coated sands relative to iron oxide coating alone. This counterintuitive result underscores the importance of net surface charge in controlling cell transport and inactivation and implies that the extra cost for implementing silver nanoparticle coatings on porous beds coated with iron oxides may not be justified in designing point of use water filters in low income countries. PMID:26042624

  11. Extracting archaeal populations from iron oxidizing systems

    NASA Astrophysics Data System (ADS)

    Whitmore, L. M.; Hutchison, J.; Chrisler, W.; Jay, Z.; Moran, J.; Inskeep, W.; Kreuzer, H.

    2013-12-01

    Unique environments in Yellowstone National Park offer exceptional conditions for studying microorganisms in extreme and constrained systems. However, samples from some extreme systems often contain inorganic components that pose complications during microbial and molecular analysis. Several archaeal species are found in acidic, geothermal ferric-oxyhydroxide mats; these species have been shown to adhere to mineral surfaces in flocculated colonies. For optimal microbial analysis, (microscopy, flow cytometry, genomic extractions, proteomic analysis, stable isotope analysis, and others), improved techniques are needed to better facilitate cell detachment and separation from mineral surfaces. As a requirement, these techniques must preserve cell structure while simultaneously minimizing organic carryover to downstream analysis. Several methods have been developed for removing sediments from mixed prokaryotic populations, including ultra-centrifugation, nycodenz gradient, sucrose cushions, and cell straining. In this study we conduct a comparative analysis of mechanisms used to detach archaeal cell populations from the mineral interface. Specifically, we evaluated mechanical and chemical approaches for cell separation and homogenization. Methods were compared using confocal microscopy, flow cytometry analyses, and real-time PCR detection. The methodology and approaches identified will be used to optimize biomass collection from environmental specimens or isolates grown with solid phases.

  12. The barium iron ruthenium oxide system

    NASA Technical Reports Server (NTRS)

    Kemmler-Sack, S.; Ehmann, A.

    1986-01-01

    In the system BaFe(1-x)Ru(x)O(3-y), three phases, separated by immiscibility gaps, are present: an Fe-rich phase (x = 0 to 0.75) with hexagonal BaTiO3 structure (6H; sequence (hcc)2), a Ru-rich phase (x = 0.9) of hexagonal 4H-type (sequence (hc)2), and the pure Ru compounds BaRuO3 with rhombohedral 9R structure (sequence (hhc)3). By vibrational spectroscopic investigations in the 6H phase a transition from n-type semiconduction (Fe-rich compounds with complete O lattice) can be detected. The 4H and 9R stacking polytypes are good, metal-like conductors. The lattice parameters are given.

  13. The Newcastle geothermal system, Iron County, Utah

    SciTech Connect

    Blackett, R.E.; Shubat, M.A.; Bishop, C.E. ); Chapman, D.S.; Forster, C.B.; Schlinger, C.M. . Dept. of Geology and Geophysics)

    1990-03-01

    Geological, geophysical and geochemical studies contributed to conceptual hydrologic model of the blind'' (no surface expression), moderate-temperature (greater than 130{degree}C) Newcastle geothermal system, located in the Basin and Range-Colorado Plateau transition zone of southwestern Utah. Temperature gradient measurements define a thermal anomaly centered near the surface trace of the range-bounding Antelope Range fault with and elongate dissipative plume extending north into the adjacent Escalante Valley. Spontaneous potential and resistivity surveys sharply define the geometry of the dominant upflow zone (not yet explored), indicating that most of the thermal fluid issues form a short segment along the Antelope Range fault and discharges into a gently-dipping aquifer. Production wells show that this aquifer lies at a depth between 85 and 95 meter. Electrical surveys also show that some leakage of thermal fluid occurs over a 1.5 km (minimum) interval along the trace of the Antelope Range fault. Major element, oxygen and hydrogen isotopic analyses of water samples indicate that the thermal fluid is a mixture of meteoric water derived from recharge areas in the Pine Valley Mountains and cold, shallow groundwater. A northwest-southeast trending system of faults, encompassing a zone of increased fracture permeability, collects meteoric water from the recharge area, allows circulation to a depth of 3 to 5 kilometers, and intersects the northeast-striking Antelope Range fault. We postulate that mineral precipitates form a seal along the Antelope Range fault, preventing the discharge of thermal fluids into basin-fill sediments at depth, and allowing heated fluid to approach the surface. Eventually, continued mineral deposition could result in the development of hot springs at the ground surface.

  14. Expression of the two mRNA isoforms of the iron transporter Nramp2/DMTI in mice and function of the iron responsive element.

    PubMed Central

    Tchernitchko, Dimitri; Bourgeois, Monique; Martin, Marie-Elise; Beaumont, Carole

    2002-01-01

    Nramp2/DMT1 is a transmembrane proton-coupled Fe(2+) transporter. Two different mRNAs are generated by alternative splicing; isoform I contains an iron responsive element (IRE), whereas isoform II does not. They encode two proteins differing at their C-terminal end and by their subcellular localization. IRE-mediated stabilization of isoform I mRNA is thought to stimulate DMT1 expression in response to iron deficiency. We have measured the two mRNAs by real-time quantitative PCR in several mouse tissues, in normal conditions or following injection of phenylhydrazine, a potent haemolytic agent. Isoform I mRNA is expressed in the duodenum and is induced by stimulation of erythropoiesis, whereas the non-IRE isoform is mostly induced in erythropoietic spleen. Surprisingly, both isoforms are highly expressed in the kidney and are not regulated by erythropoiesis. To evaluate the role of the IRE in regulating isoform I mRNA stability, in response to variations in cell iron status, several constructs were made in pCDNA3 with either a normal or a mutated IRE placed at the 3' end of a stable mRNA. These constructs were transfected into HT29 cells and mRNAs were analysed after growing cells in the presence or absence of exogenous iron. There was no difference in the level of expression of the different messages, suggesting that the IRE does not regulate stability of isoform I mRNA. The half-life of the endogenous IRE-mRNA was also measured following actinomycin D addition in iron- or desferrioxamine-treated cells. Decay of the mRNA was very similar in both conditions. These results suggest that additional transcriptional regulations at the promoter level, or iron-dependent regulation of alternative splicing are likely to participate in the induction of isoform I mRNA by iron deficiency. PMID:11964145

  15. A National MagLev Transportation System

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.

    2003-01-01

    The case for a national high-speed magnetic-levitation (MagLev) transportation system is presented. Focus is on current issues facing the country, such as national security, the economy, transportation, technology, and the environment. NASA s research into MagLev technology for launch assist is also highlighted. Further, current socio-cultural norms regarding motor-vehicle-based transportation systems are questioned in light of the problems currently facing the U.S. The multidisciplinary benefits of a long-distance MagLev system support the idea that such a system would be an important element of a truly multimodal U.S. transportation infrastructure.

  16. Levonorgestrel-releasing intrauterine system and iron overload syndrome.

    PubMed

    Vieira da Motta, Marcia; Vieira da Motta, Eduardo

    2013-01-01

    Severe fatigue is a common complaint among patients. This report presents a clinical case of a woman complaining of fatigue associated with diarrhea and myalgia that were first attributed to emotional stress and depression. Initially, the patient was diagnosed with chronic fatigue and irritable bowel syndrome. The patient followed nutritional and physical exercise programs without any improvement. Other clinical conditions, such as nutritional deficiencies, endocrine dysfunctions, autoimmune diseases and neoplasias, were then assessed. During clinical investigation, serum ferritin and iron levels were abnormally elevated despite normal hemoglobin levels, which pointed to an iron overload syndrome later diagnosed as hemochromatosis. It is possible that the symptoms were triggered by the amenorrhea caused by the levonorgestrel-releasing intrauterine system used for contraception. PMID:23843714

  17. Dictyostelium Nramp1, which is structurally and functionally similar to mammalian DMT1 transporter, mediates phagosomal iron efflux.

    PubMed

    Buracco, Simona; Peracino, Barbara; Cinquetti, Raffaella; Signoretto, Elena; Vollero, Alessandra; Imperiali, Francesca; Castagna, Michela; Bossi, Elena; Bozzaro, Salvatore

    2015-09-01

    The Nramp (Slc11) protein family is widespread in bacteria and eukaryotes, and mediates transport of divalent metals across cellular membranes. The social amoeba Dictyostelium discoideum has two Nramp proteins. Nramp1, like its mammalian ortholog (SLC11A1), is recruited to phagosomal and macropinosomal membranes, and confers resistance to pathogenic bacteria. Nramp2 is located exclusively in the contractile vacuole membrane and controls, synergistically with Nramp1, iron homeostasis. It has long been debated whether mammalian Nramp1 mediates iron import or export from phagosomes. By selectively loading the iron-chelating fluorochrome calcein in macropinosomes, we show that Dictyostelium Nramp1 mediates iron efflux from macropinosomes in vivo. To gain insight in ion selectivity and the transport mechanism, the proteins were expressed in Xenopus oocytes. Using a novel assay with calcein, and electrophysiological and radiochemical assays, we show that Nramp1, similar to rat DMT1 (also known as SLC11A2), transports Fe(2+) and manganese, not Fe(3+) or copper. Metal ion transport is electrogenic and proton dependent. By contrast, Nramp2 transports only Fe(2+) in a non-electrogenic and proton-independent way. These differences reflect evolutionary divergence of the prototypical Nramp2 protein sequence compared to the archetypical Nramp1 and DMT1 proteins. PMID:26208637

  18. Dictyostelium Nramp1, which is structurally and functionally similar to mammalian DMT1 transporter, mediates phagosomal iron efflux

    PubMed Central

    Buracco, Simona; Peracino, Barbara; Cinquetti, Raffaella; Signoretto, Elena; Vollero, Alessandra; Imperiali, Francesca; Castagna, Michela; Bossi, Elena; Bozzaro, Salvatore

    2015-01-01

    ABSTRACT The Nramp (Slc11) protein family is widespread in bacteria and eukaryotes, and mediates transport of divalent metals across cellular membranes. The social amoeba Dictyostelium discoideum has two Nramp proteins. Nramp1, like its mammalian ortholog (SLC11A1), is recruited to phagosomal and macropinosomal membranes, and confers resistance to pathogenic bacteria. Nramp2 is located exclusively in the contractile vacuole membrane and controls, synergistically with Nramp1, iron homeostasis. It has long been debated whether mammalian Nramp1 mediates iron import or export from phagosomes. By selectively loading the iron-chelating fluorochrome calcein in macropinosomes, we show that Dictyostelium Nramp1 mediates iron efflux from macropinosomes in vivo. To gain insight in ion selectivity and the transport mechanism, the proteins were expressed in Xenopus oocytes. Using a novel assay with calcein, and electrophysiological and radiochemical assays, we show that Nramp1, similar to rat DMT1 (also known as SLC11A2), transports Fe2+ and manganese, not Fe3+ or copper. Metal ion transport is electrogenic and proton dependent. By contrast, Nramp2 transports only Fe2+ in a non-electrogenic and proton-independent way. These differences reflect evolutionary divergence of the prototypical Nramp2 protein sequence compared to the archetypical Nramp1 and DMT1 proteins. PMID:26208637

  19. Regulation of Brain Iron and Copper Homeostasis by Brain Barrier Systems: Implication in Neurodegenerative Diseases

    PubMed Central

    Zheng, Wei; Monnot, Andrew D.

    2011-01-01

    Iron (Fe) and copper (Cu) are essential to neuronal function; excess or deficiency of either is known to underlie the pathoetiology of several commonly known neurodegenerative disorders. This delicate balance of Fe and Cu in the central milieu is maintained by the brain barrier systems, i.e., the blood-brain barrier (BBB) between the blood and brain interstitial fluid and the blood- cerebrospinal fluid barrier (BCB) between the blood and cerebrospinal fluid (CSF). This review provides a concise description on the structural and functional characteristics of the brain barrier systems. Current understanding of Fe and Cu transport across the brain barriers is thoroughly examined, with major focuses on whether the BBB and BCB coordinate the direction of Fe and Cu fluxes between the blood and brain/CSF. In particular, the mechanism by which pertinent metal transporters in the barriers, such as the transferrin receptor (TfR), divalent metal transporter (DMT1), copper transporter (CTR1), ATP7A/B, and ferroportin (FPN), regulate metal movement across the barriers is explored. Finally, the detrimental consequences of dysfunctional metal transport by brain barriers, as a result of endogenous disorders or exogenous insults, are discussed. Understanding the regulation of Fe and Cu homeostasis in the central nervous system aids in the design of new drugs targeted on the regulatory proteins at the brain barriers for the treatment of metal’s deficiency or overload-related neurological diseases. PMID:22115751

  20. Moffett Field Funnel and Gate TCE Treatment System: Interpretation of Field Performance using Reactive Transport Modeling

    SciTech Connect

    Yabusaki, Steven B.; Cantrell, Kirk J.; Sass, B. M.

    2001-06-30

    A multicomponent reactive transport simulator was used to understand the behavior of chemical components, including TCE and cis-1,2-DCE, in groundwater transported through the pilot-scale funnel and gate chemical treatment system at Moffett Field, California. Field observations indicated that zero-valent iron emplaced in the gate to effect the destruction of chlorinated hydrocarbons also resulted in increases in pH and hydrocarbons, as well as decreases in EH, alkalinity, dissolved O2 and CO2, and major ions (i.e., Ca, Mg, Cl, sulfate, nitrate). Of concern are chemical transformations that may reduce the effectiveness or longevity of the iron cell and/or create secondary contaminants. A coupled model of transport and reaction processes was developed to account for mobile and immobile components undergoing equilibrium and kinetic reactions including TCE degradation, parallel iron dissolution reactions, precipitation of secondary minerals, and complexation reactions. The model reproduced solution chemistry observed in the iron cell using reaction parameters from the literature and laboratory studies. Mineral precipitation in the iron zone, which is critical to correctly predicting the aqueous concentrations, was predicted to account for up to 3 percent additional mineral volume annually. Interplay between rates of transport and rates of reaction in the field was key to understanding system behavior.

  1. Molecular and Evolutionary Analysis of NEAr-Iron Transporter (NEAT) Domains

    PubMed Central

    Honsa, Erin S.; Maresso, Anthony W.; Highlander, Sarah K.

    2014-01-01

    Iron is essential for bacterial survival, being required for numerous biological processes. NEAr-iron Transporter (NEAT) domains have been studied in pathogenic Gram-positive bacteria to understand how their proteins obtain heme as an iron source during infection. While a 2002 study initially discovered and annotated the NEAT domain encoded by the genomes of several Gram-positive bacteria, there remains a scarcity of information regarding the conservation and distribution of NEAT domains throughout the bacterial kingdom, and whether these domains are restricted to pathogenic bacteria. This study aims to expand upon initial bioinformatics analysis of predicted NEAT domains, by exploring their evolution and conserved function. This information was used to identify new candidate domains in both pathogenic and nonpathogenic organisms. We also searched metagenomic datasets, specifically sequence from the Human Microbiome Project. Here, we report a comprehensive phylogenetic analysis of 343 NEAT domains, encoded by Gram-positive bacteria, mostly within the phylum Firmicutes, with the exception of Eggerthella sp. (Actinobacteria) and an unclassified Mollicutes bacterium (Tenericutes). No new NEAT sequences were identified in the HMP dataset. We detected specific groups of NEAT domains based on phylogeny of protein sequences, including a cluster of novel clostridial NEAT domains. We also identified environmental and soil organisms that encode putative NEAT proteins. Biochemical analysis of heme binding by a NEAT domain from a protein encoded by the soil-dwelling organism Paenibacillus polymyxa demonstrated that the domain is homologous in function to NEAT domains encoded by pathogenic bacteria. Together, this study provides the first global bioinformatics analysis and phylogenetic evidence that NEAT domains have a strong conservation of function, despite group-specific differences at the amino acid level. These findings will provide information useful for future projects

  2. High P-T diffusive transport properties of liquid iron alloys and peridotite melt

    NASA Astrophysics Data System (ADS)

    Posner, E. S.; Rubie, D. C.; Frost, D. J.; Vlček, V.; Steinle-Neumann, G.

    2015-12-01

    Diffusive transport properties of peridotite melt and molten iron alloys at high pressures and temperatures are important for understanding large-scale geodynamic processes and thermochemical evolution of planetary interiors, such as the time and length scales of metal-silicate equilibration during core formation and chemical exchange across core-mantle boundaries during cooling. In order to determine the pressure and temperature dependence of diffusion in these geologically relevant liquids, we have conducted experiments of Si, O, and Cr diffusion in liquid iron over the P-T range of 1.5—18 GPa and 1850—2450 K, and Si, O, Mg, Ca tracer and Ni, Co chemical diffusion in peridotite liquids over the P-T range of 4—24 GPa and 2248—2623 K in a multi-anvil apparatus. Our results show a very small pressure dependence (< 1 cm3/mol) of alloying element diffusion (Si, O, Cr) in liquid iron over the P-T range of the study and remarkably good consistency with first principles calculations (Pozzo et al. 2013. Phys. Rev. B 87, 014110; Ichikawa and Tsuchiya. 2015. Phys. Earth Planet. Inter., in press) when extrapolated to outer core conditions. Diffusion rates of Si, O, Ca, Mg, Ni, Co in silicate melt decrease with increasing pressure to a minimum at approximately 10 GPa. An anomalous pressure effect is observed above ~10 GPa such that diffusivities rapidly increase with increasing pressure for all elements to a maximum at ~12 GPa, consistent with previous work on peridotite viscosity to 13 GPa (Liebske et al. 2005. Earth Planet. Sci. Lett. 240, 589). Above ~12 GPa, diffusivities decrease with increasing pressure to 24 GPa. Peridotite melt viscosities calculated using the Eyring relation, oxygen self-diffusion rates, and average jump distance (λ) of 5.4 nm yield ~0.01 Pa s at 24 GPa and 2423 - 2623 K.

  3. Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic β cell fate in response to cytokines.

    PubMed

    Hansen, Jakob Bondo; Tonnesen, Morten Fog; Madsen, Andreas Nygaard; Hagedorn, Peter H; Friberg, Josefine; Grunnet, Lars Groth; Heller, R Scott; Nielsen, Anja Østergren; Størling, Joachim; Baeyens, Luc; Anker-Kitai, Leeat; Qvortrup, Klaus; Bouwens, Luc; Efrat, Shimon; Aalund, Mogens; Andrews, Nancy C; Billestrup, Nils; Karlsen, Allan E; Holst, Birgitte; Pociot, Flemming; Mandrup-Poulsen, Thomas

    2012-10-01

    Reactive oxygen species (ROS) contribute to target-cell damage in inflammatory and iron-overload diseases. Little is known about iron transport regulation during inflammatory attack. Through a combination of in vitro and in vivo studies, we show that the proinflammatory cytokine IL-1β induces divalent metal transporter 1 (DMT1) expression correlating with increased β cell iron content and ROS production. Iron chelation and siRNA and genetic knockdown of DMT1 expression reduce cytokine-induced ROS formation and cell death. Glucose-stimulated insulin secretion in the absence of cytokines in Dmt1 knockout islets is defective, highlighting a physiological role of iron and ROS in the regulation of insulin secretion. Dmt1 knockout mice are protected against multiple low-dose streptozotocin and high-fat diet-induced glucose intolerance, models of type 1 and type 2 diabetes, respectively. Thus, β cells become prone to ROS-mediated inflammatory damage via aberrant cellular iron metabolism, a finding with potential general cellular implications. PMID:23000401

  4. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency.

    PubMed

    Thomine, Sébastien; Lelièvre, Françoise; Debarbieux, Elise; Schroeder, Julian I; Barbier-Brygoo, Hélène

    2003-06-01

    Metal homeostasis is critical for the survival of living organisms, and metal transporters play central roles in maintaining metal homeostasis in the living cells. We have investigated the function of a metal transporter of the NRAMP family, AtNRAMP3, in Arabidopsis thaliana. A previous study showed that AtNRAMP3 expression is upregulated by iron (Fe) starvation and that AtNRAMP3 protein can transport Fe. In the present study, we used AtNRAMP3 promoter beta-glucoronidase (GUS) fusions to show that AtNRAMP3 is expressed in the vascular bundles of roots, stems, and leaves under Fe-sufficient conditions. This suggests a function in long-distance metal transport within the plant. Under Fe-starvation conditions, the GUS activity driven by the AtNRAMP3 promoter is upregulated without any change in the expression pattern. We analyze the impact of AtNRAMP3 disruption and overexpression on metal accumulation in plants. Under Fe-sufficient conditions, AtNRAMP3 overexpression or disruption does not lead to any change in the plant metal content. Upon Fe starvation, AtNRAMP3 disruption leads to increased accumulation of manganese (Mn) and zinc (Zn) in the roots, whereas AtNRAMP3 overexpression downregulates Mn accumulation. In addition, overexpression of AtNRAMP3 downregulates the expression of the primary Fe uptake transporter IRT1 and of the root ferric chelate reductase FRO2. Expression of AtNRAMP3::GFP fusion protein in onion cells or Arabidopsis protoplasts shows that AtNRAMP3 protein localizes to the vacuolar membrane. To account for the results presented, we propose that AtNRAMP3 influences metal accumulation and IRT1 and FRO2 gene expression by mobilizing vacuolar metal pools to the cytosol. PMID:12787249

  5. Transportation Planning with Immune System Derived Approach

    NASA Astrophysics Data System (ADS)

    Sugiyama, Kenji; Yaji, Yasuhito; Ootsuki, John Takuya; Fujimoto, Yasutaka; Sekiguchi, Takashi

    This paper presents an immune system derived approach for planning transportation of materials between manufacturing processes in the factory. Transportation operations are modeled by Petri Net, and divided into submodels. Transportation orders are derived from the firing sequences of those submodels through convergence calculation by the immune system derived excitation and suppression operations. Basic evaluation of this approach is conducted by simulation-based investigation.

  6. Low temperature charge transport and microwave absorption of carbon coated iron nanoparticles–polymer composite films

    SciTech Connect

    Prasad, V.

    2012-06-15

    Highlights: ► Carbon coated Fe nanoparticle–PVC composite films were prepared by solution casting method. ► A low electrical percolation threshold of 2.2 was achieved. ► The low temperature electrical conductivity follows variable range hopping type conduction. ► An EMI shielding of 18 dB was achieved in 200 micron thick film. -- Abstract: In this paper, the low temperature electrical conductivity and microwave absorption properties of carbon coated iron nanoparticles–polyvinyl chloride composite films are investigated for different filler fractions. The filler particles are prepared by the pyrolysis of ferrocene at 980 °C and embedded in polyvinyl chloride matrix. The high resolution transmission electron micrographs of the filler material have shown a 5 nm thin layer graphitic carbon covering over iron particles. The room temperature electrical conductivity of the composite film changes by 10 orders of magnitude with the increase of filler concentration. A percolation threshold of 2.2 and an electromagnetic interference shielding efficiency (EMI SE) of ∼18.6 dB in 26.5–40 GHz range are observed for 50 wt% loading. The charge transport follows three dimensional variable range hopping conduction.

  7. System for recycling char in iron oxide reducing kilns

    SciTech Connect

    Baker, A.C.; Keran, V.P.

    1983-03-08

    A method and means for improving the efficiency of the process for directly reducing ore containing iron oxide in a rotary kiln using a solid carbonaceous reducing agent, such as coal, introduced from the ore feed and discharge ends of the kiln, as both fuel and reductant, is disclosed wherein the charred coal or char found in the discharge product is recycled into the process at the discharge end of the kiln rather than the feed end as in the prior art. In particular, the recovered char, both coarse and finer particles, are transported to a recycle bin from which they are returned at a preselected rate to the kiln process by being injected along with the coal blown into the discharge end of the kiln. Alternatively, the recycle char alone may be fed without any coal at the discharge end of the kiln.

  8. Reduction of vinyl chloride in metallic iron-water systems

    SciTech Connect

    Deng, B. . Dept. of Mineral and Environmental Engineering); Burris, D.R. ); Campbell, T.J. )

    1999-08-01

    Batch experiments examining the kinetics and mechanism of vinyl chloride (VC) reduction by metallic iron in aqueous systems were performed. The effects of various iron loadings, VC concentrations, pH conditions, temperatures, and Fe(II)/Fe(III) chelating agents (1,10-phenanthroline, 2,2[prime]-dipyridyl, and nitrilotriacetic acid) on reduction kinetics were examined. Ethylene was the major carbon-containing product of VC reduction under all conditions examined, indicating hydrogenolysis. The reaction was pseudo-first-order with respect to aqueous VC concentration. The amount of VC adsorption on iron surfaces was estimated from the rapid initial loss of VC from solution, and the resultant sorption isotherm was linear over the concentration range examined. The first-order kinetics and the linear sorption for VC suggest that the portion of VC sorption to surface reactive sites relative to nonreactive sorption sites is constant, unlike the behavior observed for the higher chlorinated ethenes. The activation energy of the reaction was measured to be 41.6 [+-] 2.0 kJ/mol, sufficiently large to indicate that the chemical reaction at the surface, rather than aqueous phase diffusion to the surface, controls the overall rate of the reaction. Experiments with the chelating agents suggest that the effect of available Fe(II) on VC reduction is not significant.

  9. STARS: The Space Transportation Architecture Risk System

    NASA Technical Reports Server (NTRS)

    Greenberg, Joel S.

    1997-01-01

    Because of the need to perform comparisons between transportation systems that are likely to have significantly different levels of risk, both because of differing degrees of freedom in achieving desired performance levels and their different states of development and utilization, an approach has been developed for performing early comparisons of transportation architectures explicitly taking into account quantitative measures of uncertainty and resulting risk. The approach considers the uncertainty associated with the achievement of technology goals, the effect that the achieved level of technology will have on transportation system performance and the relationship between transportation system performance/capability and the ability to accommodate variations in payload mass. The consequences of system performance are developed in terms of expected values and associated standard deviations of nonrecurring, recurring and the present value of transportation system life cycle cost. Typical results are presented to illustrate the application of the methodology.

  10. Effect of Transport and Aging Processes on Metal Speciation in Iron Oxyhydroxide Aggregates, Tar Creek Superfund Site, Oklahoma

    NASA Astrophysics Data System (ADS)

    Estes, E. R.; Schaider, L. A.; Shine, J. P.; Brabander, D. J.

    2010-12-01

    Following the cessation of mining activity in the late 20th century, Tar Creek Superfund Site was left highly contaminated by Pb, Zn, and Cd. Tar Creek, which flows through the site and into the Neosho River, has been studied extensively because of its potential to transport metals from the mining site to downstream communities. Previous research identified aggregated iron oxyhydroxide material, which forms when mine seepage mixes with Tar Creek surface water, as a major transport vector of metals. Frequent flooding in Tar Creek deposits aggregates on downstream floodplains, where wetting and drying processes alter the speciation of iron and other metals. This study seeks to better quantify those changes and to determine how transport and aging affects the human and ecological health risk. Sequential extractions of aggregate samples collected from the creek demonstrate that Fe is present in both amorphous (10-35% of Fe extracted) and more crystalline (8-23% of Fe extracted) phases. Substantial portions of heavy metals sorb to amorphous iron oxyhydroxide phases (accounting for 10-30% of Pb and Zn extracted) but are not associated with more crystalline iron oxide phases (representing only 1% or less of the Pb and Zn extracted). Samples have a high organic matter content (18-25% mass loss on ignition), but only Fe was significantly extracted by the oxidizing step targeting organic matter (1-2% of Pb and Zn extracted, but 10-26% of Fe extracted). The majority of metals were extracted by the soluble or residual steps. If metals and organic matter inhibit transformation of amorphous iron oxyhydroxide material to nano and crystalline iron oxides, then a steady-state volume of amorphous iron oxyhydroxide material with a high total sorption capacity may exist within Tar Creek, enhancing the metal flux accommodated by this transport mechanism. Once transported downstream and deposited on floodplains, however, it is hypothesized that repeated changes in soil matrix

  11. BACTERIOPHAGE PRD1 AND SILICA COLLOID TRANSPORT AND RECOVERY IN AN IRON OXIDE-COATED SAND AQUIFER. (R826179)

    EPA Science Inventory

    Bacteriophage PRD1 and silica colloids were co-injected into
    sewage-contaminated and uncontaminated zones of an iron oxide-coated sand
    aquifer on Cape Cod, MA, and their transport was monitored over distances up to
    6 m in three arrays. After deposition, the attache...

  12. Iron Absorption in Drosophila melanogaster

    PubMed Central

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-01-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  13. Iron absorption in Drosophila melanogaster.

    PubMed

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-05-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  14. The transportation operations system: A description

    SciTech Connect

    Best, R.E.; Danese, F.L.; Dixon, L.D.; Peterson, R.W. ); Pope, R.B. )

    1990-01-01

    This paper presents a description of the system for transporting radioactive waste that may be deployed to accomplish the assigned system mission, which includes accepting spent nuclear fuel (SNF) and high-level radioactive waste (HLW) from waste generator sites and transporting them to the FWMS destination facilities. The system description presented here contains, in part, irradiated fuel and waste casks, ancillary equipments, truck, rail, and barge transporters, cask and vehicle traffic management organizations, maintenance facilities, and other operations elements. The description is for a fully implemented system, which is not expected to be achieved, however, until several years after initial operations. 6 figs.

  15. Carboxymethyl Cellulose Stabilized Nano-scale Zero Valent Iron Transport in Porous Media: An Experimental and Modeling Study

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Rrokaj, E.; Sleep, B. E.

    2013-12-01

    An experimental and modeling study is being conducted to evaluate carboxymethyl cellulose (CMC) stabilized nano-scale zero valent iron (nZVI) transport in porous media. A two-dimensional water-saturated glass-walled sandbox (55 cm x 45 cm x 1.3 cm in size) is being used for the study. The sandbox was packed uniformly with silica sand (600 μm to 425 μm grain diameter) under water-saturated conditions. From a series of hydraulic tests permeability of the system was calculated to be 1.0 x 10-12 m2. The transport tests are being conducted at pore-water velocities of 3, 5, and 10 m.d-1 to identify any shear-thinning effects associated with the CMC (MW = 90,000) solution, and effects of velocity on nZVI attachment to the porous media. A set of transport tests is being carried out using LissamineTM Green B (LGB) dye and CMC mixtures to characterize the CMC transport without nZVI. The transport tests are being conducted at various CMC concentrations ranging from 0.2% to 0.8% (w/v) to determine the effect of CMC concentration on nZVI transport under flowing conditions. For the CMC stabilized nZVI transport tests, nZVI is synthesized freshly in CMC solution before each experiment using sodium borohydride and ferrous sulfate. The synthesized nZVI concentrations range from 0.1 to 2.5 g.L-1. While higher nZVI concentration is desired for higher contaminant degradation, the higher nZVI concentration may cause greater aggregation and attachment to the porous media limiting the delivery distance for nZVI. In each transport experiment, the LGB-CMC solution or nZVI-CMC solution is injected into the sandbox as a pulse of 0.25 pore volume (PV). For LGB, the mass recovery was calculated to be ~ 96.5% indicating non-reactive transport in silica sand. The preliminary results also show that increased concentration of CMC (from 0.2% to 0.4 %) causes higher pressure drop across the sandbox, indicating that use of high CMC concentrations will limit injection rates with a corresponding

  16. Systems Studies of DDT Transport

    ERIC Educational Resources Information Center

    Harrison, H. L.; And Others

    1970-01-01

    Major consequences of present and additional environmental quantities of DDT pesticide are predictable by mathematical models of transport, accumulation and concentration mechanisms in the Wisconsin regional ecosystem. High solubility and stability produce increased DDT concentrations at high organism trophic levels within world biosphere…

  17. Geomicrobiological Regeneration of Iron Sulfides in Engineered barrier Systems

    NASA Astrophysics Data System (ADS)

    Vannela, R.; Adriaens, P.; Hayes, K. F.

    2005-12-01

    The reactive capacity of iron sulfide-based permeable reactive barriers (PRB) to complex and co-precipitate heavy metal ions from groundwater will depend on the potential for regeneration of reactive FeS during the expected lifetime of the PRB. FeS reactivity may decrease in a PRB in time as the result of the following processes: (i) oxidation of FeS and the formation of ferric iron (Fe(III)) oxide solids in the presence of oxygenated groundwater at the entrance of the PRB, (ii) oxidation of FeS in the presence of redox active metals like As(V) with the formation of ferric solids, (iii) co-precipitation of heavy metals within the PRB with the reactive FeS leading to the formation of insoluble metal sulfides co-precipitates with the concomitant release of ferrous iron and formation of ferrous (Fe(II) oxide, hydroxide, or carbonate solids, (iv) clogging of the PRB structure due to formation of precipitate products from processes (i) - (iii).. We have demonstrated the formation of triolite in the presence of an oxidized form of hydrous ferric oxide (HFO), various sulfate concentrations, and biomass densities for the sulfate reducing bacterium (SRB) Desulfovibrio vulgaris. This result has allowed us to demonstrate the feasibility of regeneration of FeS from the ferric oxide and hydroxide solids that may be produced under scenarios (i) and (ii) above as well as to establish the electron donor and acceptor requirements for this SRB. Using Desulfobacterium autotrophicum, both HFO and soluble complexed forms of ferric iron gave rise to the formation of mackinawite. The latter have been shown to react with As (V) and Cd (II) to form ferric solids. Both organisms will be used to generate FeS solids in the presence of crystalline forms of ferric solids expected to form from scenarios (i) and (ii) (e.g., goethite and the mixed Fe(II)/(Fe(III) magnetite, and green rusts) and ferrous iron solids from scenarios (iii) and (iv) (Fe(II) oxides and siderite). Similar to the study

  18. Systemic virulence of Erwinia chrysanthemi 3937 requires a functional iron assimilation system.

    PubMed

    Enard, C; Diolez, A; Expert, D

    1988-06-01

    In Erwinia chrysanthemi, conditions of iron starvation initiate production of a catechol-type siderophore and enhance production of three outer membrane polypeptides. Twenty-two mutants affected in the different stages of this iron assimilation system were isolated by mini-Mu insertion mutagenesis. All of them failed to induce systemic soft rot on axenically grown Saintpaulia plants. From the siderophore auxotrophs and the iron uptake mutants, clones having recovered the missing function(s) were isolated by using the in vivo cloning vector pULB113 (RP4::mini-Mu). An R-prime plasmid containing a ca. 35.5-kilobase-pair DNA insert was identified. Restoration of the iron functions restored partially, if not completely, the virulence of the parental strain. PMID:3372473

  19. Transportation Systems. Curriculum Guide for Technology Education.

    ERIC Educational Resources Information Center

    Chastain, Gary K.

    This curriculum guide for a 1-semester or 1-year course in transportation provides activities that show and explain many of the occupations, devices, and systems that are related to transportation on land, water, air, and space. The guide contains competencies (task lists), student competency records, and management sheets. Management sheets,…

  20. Structural interaction with transportation and handling systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Problems involved in the handling and transportation of finished space vehicles from the factory to the launch site are presented, in addition to recommendations for properly accounting for in space vehicle structural design, adverse interactions during transportation. Emphasis is given to the protection of vehicle structures against those environments and loads encountered during transportation (including temporary storage) which would exceed the levels that the vehicle can safely withstand. Current practices for verifying vehicle safety are appraised, and some of the capabilities and limitations of transportation and handling systems are summarized.

  1. Gallium and its competing roles with iron in biological systems.

    PubMed

    Chitambar, Christopher R

    2016-08-01

    Gallium, a group IIIa metal, shares chemical properties with iron. Studies have shown that gallium-based compounds have potential therapeutic activity against certain cancers and infectious microorganisms. By functioning as an iron mimetic, gallium perturbs iron-dependent proliferation processes in tumor cells. Gallium's action on iron homeostasis leads to disruption of ribonucleotide reductase, mitochondrial function, and the regulation of transferrin receptor and ferritin. In addition, gallium nitrate stimulates an increase in mitochondrial reactive oxygen species in cells which triggers downstream upregulation of metallothionein and hemoxygenase-1. Gallium's anti-infective activity against bacteria and fungi results from disruption of microbial iron utilization through mechanisms which include gallium binding to siderophores and downregulation of bacterial iron uptake. Gallium compounds lack cross-resistance to conventional chemotherapeutic drugs and antibiotics thus making them attractive agents for drug development. This review will focus on the mechanisms of action of gallium with emphasis on its interaction with iron and iron proteins. PMID:27150508

  2. Derepression of the Azotobacter vinelandii siderophore system, using iron-containing minerals to limit iron repletion.

    PubMed Central

    Page, W J; Huyer, M

    1984-01-01

    Azotobacter vinelandii solubilized iron from certain minerals using only dihydroxybenzoic acid, which appeared to be produced constitutively. Solubilization of iron from other minerals required dihydroxybenzoic acid and the siderophore N,N'-bis-(2,3- dihydroxybenzoyl )-L-lysine ( azotochelin ) or these chelators plus the yellow-green fluorescent siderophore azotobactin . In addition to this sequential production of siderophores, cells also demonstrated partial to hyperproduction relative to the iron-limited control. The iron sources which caused partial derepression of the siderophores caused derepression of all the high-molecular-weight iron-repressible outer membrane proteins except a 77,000-molecular-weight protein, which appeared to be coordinated with azotobactin production. Increased siderophore production correlated with increased production of outer membrane proteins with molecular weights of 93,000, 85,000, and 77,000, but an 81,000-molecular-weight iron-repressible protein appeared at a constant level despite the degree of derepression. When iron was readily available, it appeared to complex with a 60,000-molecular-weight protein believed to form a surface layer on the A. vinelandii cell. Images PMID:6233258

  3. Propulsion system for research VTOL transports

    NASA Technical Reports Server (NTRS)

    Gertsma, L. W.; Zigan, S.

    1973-01-01

    In anticipation of an eventual VTOL requirement for civil aviation, NASA has been conducting studies directed toward determining and developing the technology required for a commercial VTOL transport. In this paper, the commercial transport configurations are briefly reviewed; the propulsion system specifications and components developed by the engine study contractor are presented and described; and methods for using the lift-propulsion system for aircraft attitude control are discussed.

  4. Ascorbic Acid Offsets the Inhibitory Effect of Bioactive Dietary Polyphenolic Compounds on Transepithelial Iron Transport in Caco-2 Intestinal Cells12

    PubMed Central

    Kim, Eun-Young; Ham, Soo-Kyung; Bradke, Daniel; Ma, Qianyi; Han, Okhee

    2011-01-01

    We previously reported that (-)-epigallocatechin-3-gallate (EGCG) and grape seed extract (GSE) at high concentration nearly blocked intestinal iron transport across the enterocyte. In this study, we aimed to determine whether small amounts of EGCG, GSE, and green tea extract (GT) are capable of inhibiting iron absorption, to examine if ascorbic acid counteracts the inhibitory action of polyphenols on iron absorption, and to explore the mechanisms of polyphenol-mediated apical iron uptake and basolateral iron release. An55Fe absorption study was conducted by adding various concentrations of EGCG, GSE, and GT using Caco-2 intestinal cells. Polyphenols were found to inhibit the transepithelial 55Fe transport in a dose-dependent manner. The addition of ascorbic acid offset the inhibitory effects of polyphenols on iron transport. Ascorbic acid modulated the transepithelial iron transport without changing the apical iron uptake and the expression of ferroportin-1 protein in the presence of EGCG. The polyphenol-mediated apical iron uptake was inhibited by membrane impermeable Fe2+ chelators (P < 0.001), but at a low temperature (4°C), the apical iron uptake was still higher than the control values at 37°C (P < 0.001). These results suggest that polyphenols enhance the apical iron uptake partially by reducing the conversion of ferric to ferrous ions and possibly by increasing the uptake of polyphenol-iron complexes via the energy-independent pathway. The present results indicate that the inhibitory effects of dietary polyphenols on iron absorption can be offset by ascorbic acid. Further studies are needed to confirm the current findings in vivo. PMID:21430251

  5. Electromagnetic effects on transportation systems

    SciTech Connect

    Morris, M.E.; Dinallo, M.A.

    1996-05-01

    Electronic and electrical system protection design can be used to eliminate deleterious effects from lightning, electromagnetic interference, and electrostatic discharges. Evaluation of conventional lightning protection systems using advanced computational modeling in conjunction with rocket-triggered lightning tests suggests that currently used lightning protection system design rules are inadequate and that significant improvements in best practices used for electronic and electrical system protection designs are possible. A case study of lightning induced upset and failure of a railway signal and control system is sketched.

  6. Systemic Analysis Approaches for Air Transportation

    NASA Technical Reports Server (NTRS)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  7. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand.

    PubMed

    Wang, Dengjun; Zhang, Wei; Zhou, Dongmei

    2013-05-21

    Biochar land application may result in multiple agronomic and environmental benefits (e.g., carbon sequestration, improving soil quality, and immobilizing environmental contaminants). However, our understanding of biochar particle transport is largely unknown in natural environments with significant heterogeneity in solid (e.g., patches of iron oxyhydroxide coating) and solution chemistry (e.g., the presence of natural organic matter), which represents a critical knowledge gap in assessing the environmental impact of biochar land application. Transport and retention kinetics of nanoparticles (NPs) from wheat straw biochars produced at two pyrolysis temperatures (i.e., 350 and 550 °C) were investigated in water-saturated sand columns at environmentally relevant concentrations of dissolved humic acid (HA, 0, 1, 5, and 10 mg L(-1)) and fractional surface coverage of iron oxyhydroxide coatings on sand grains (ω, 0.16, 0.28, and 0.40). Transport of biochar NPs increased with increasing HA concentration, largely because of enhanced repulsive interaction energy between biochar NPs and sand grains. Conversely, transport of biochar NPs decreased significantly with increasing ω due to enhanced electrostatic attraction between negatively charged biochar NPs and positively charged iron oxyhydroxides. At a given ω of 0.28, biochar NPs were less retained with increasing HA concentration due to increased electrosteric repulsion between biochar NPs and sand grains. Experimental breakthrough curves and retention profiles were well described using a two-site kinetic retention model that accounted for Langmuirian blocking or random sequential adsorption at one site. Consistent with the blocking effect, the often observed flat retention profiles stemmed from decreased retention rate and/or maximum retention capacity at a higher HA concentration or smaller ω. The antagonistic effects of HA and iron oxyhydroxide grain-coating imparted on the mobility of biochar NPs suggest that

  8. The WIPP transportation system: Dedicated to safety

    SciTech Connect

    Ward, T.; McFadden, M.

    1993-12-01

    When developing a transportation system to transport transuranic (TRU) waste from ten widely-dispersed generator sites, the Department of Energy (DOE) recognized and addressed many challenges. Shipments of waste to the Waste Isolation Pilot Plant (WIPP) were to cover a twenty-five year period and utilize routes covering over twelve thousand miles in twenty-three states. Enhancing public safety by maximizing the payload, thus reducing the number of shipments, was the primary objective. To preclude the requirement for overweight permits, the DOE started with a total shipment weight limit of 80,000 pounds and developed an integrated transportation system consisting of a Type ``B`` package to transport the material, a lightweight tractor and trailer, stringent driver requirements, and a shipment tracking system referred to as ``TRANSCOM``.

  9. Column studies on transport of deicing additive benzotriazole in a sandy aquifer and a zerovalent iron barrier.

    PubMed

    Jia, Yu; Breedveld, Gijs D; Aagaard, Per

    2007-11-01

    Benzotriazole (BTA), a chemical with wide industrial applications, is a typical additive in deicer/anti-icer used at airport. To achieve a better understanding of the transport behaviour and environmental fate of BTA, laboratory column studies have been performed on subsoil samples from Oslo Airport, Gardermoen. To explore possibilities for aquifer remediation, BTA behaviour was also studied in a column of granular zerovalent iron (Fe(0)). The subsoil column study demonstrates a very limited retardation of BTA. Consecutive loadings of BTA of the subsoil column showed no change of the break-through curve (BTC) and complete desorption was observed. The sorption behaviour of BTA to metallic iron (Fe(0)) was rather complex. Considerable retardation was observed in the Fe(0) column and repeated BTA loading resulted in an earlier break-through. Between 20% and 50% of the input concentration was retained permanently in the iron (Fe(0)) column. The BTA sorption to metallic iron was found to be enhanced by chloride which lowered the break-through concentration (i.e the C/C(0) plateau). The fraction of BTA remaining in the iron column was found to vary with the flow rate, indicating a time dependant multilayer sorption mechanism. The steady increase in the amount of adsorbed BTA to the iron column during loading corresponds to a rather strong bonding of 4-15 BTA layers to the iron surface. A very slow desorption of BTA was observed; even after flushing with 753 pore volumes of BTA free water, 7.5% of the BTA remained in the column. A geochemical model was developed based on PHREEQC-2 to simulate the sorption and transport of BTA in the tested materials. The BTA sorption was modelled with Freundlich sorption isotherms, as earlier determined in batch experiments. A slight adjustment of the Freundlich parameters was required to fit the observed column break-through. However, our model was not able to simulate the long-term retainment of BTA in the granular iron columns. The

  10. Superparamagnetic Iron Oxide Nanoparticle-Based Delivery Systems for Biotherapeutics

    PubMed Central

    Mok, Hyejung; Zhang, Miqin

    2014-01-01

    Introduction Superparamagnetic iron oxide nanoparticle (SPION)-based carrier systems have many advantages over other nanoparticle-based systems. They are biocompatible, biodegradable, facilely tunable, and superparamagnetic and thus controllable by an external magnetic field. These attributes enable their broad biomedical applications. In particular, magnetically-driven carriers are drawing considerable interest as an emerging therapeutic delivery system because of their superior delivery efficiency. Area covered This article reviews the recent advances in use of SPION-based carrier systems to improve the delivery efficiency and target specificity of biotherapeutics. We examine various formulations of SPION-based delivery systems, including SPION micelles, clusters, hydrogels, liposomes, and micro/nanospheres, as well as their specific applications in delivery of biotherapeutics. Expert opinion Recently, biotherapeutics including therapeutic cells, proteins and genes have been studied as alternative treatments to various diseases. Despite the advantages of high target specificity and low adverse effects, clinical translation of biotherapeutics has been hindered by the poor stability and low delivery efficiency compared to chemical drugs. Accordingly, biotherapeutic delivery systems that can overcome these limitations are actively pursued. SPION-based materials can be ideal candidates for developing such delivery systems because of their excellent biocompatibility and superparamagnetism that enables long-term accumulation/retention at target sites by utilization of a suitable magnet. In addition, synthesis technologies for production of finely-tuned, homogeneous SPIONs have been well developed, which may promise their rapid clinical translation. PMID:23199200

  11. Comparison of the transport of the aggregates of nanoscale zerovalent iron under vertical and horizontal flow.

    PubMed

    Li, Jing; Ghoshal, Subhasis

    2016-02-01

    Direct injection of nanoscale zerovalent iron (NZVI) particles is being considered for remediation of contaminated sites. However, the transport characteristics of NZVI under horizontal flow conditions are not fully understood. In this study, NZVI particles were stabilized with carboxymethyl cellulose (CMC) and injected in vertical and horizontal columns to compare the effects of the flow direction on the transport. Columns were packed with sand of mean grain diameters of 180, 340 or 1140 µm (referred to as fine, intermediate and coarse sand, respectively), and were injected with CMC-NZVI suspensions of 0.3, 1 or 3 g Fe L(-1). Experimental breakthrough curves showed that with the coarse and intermediate sands, the steady-state effluent concentration in the horizontal column were up to 84% lower than those in the vertical column regardless of the initial NZVI concentration. However, in the fine sand the differences were insignificant, except at the highest NZVI particle concentration. Additionally, in the horizontally-oriented columns containing the coarse or intermediated sand, NZVI aggregates particles were non-uniformly distributed in the cross-section of the columns and there higher deposition in the bottom-half of the cross-section due to gravity effects. These deposition patterns can be accounted for, in part, by the gravitational settling of the large aggregates of NZVI, especially at high NZVI concentrations. A particle trajectory analysis in three dimensions demonstrated that under horizontal flow, gravity forces resulted in lower deposition of NZVI on the bottom-half of a single collector, as particles approaching the bottom-half of the collector were deflected by gravity to collectors below. PMID:26498094

  12. TRANSIMS: Transportation analysis and simulation system

    SciTech Connect

    Smith, L.; Beckman, R.; Baggerly, K.

    1995-07-01

    This document summarizes the TRansportation ANalysis and SIMulation System (TRANSIMS) Project, the system`s major modules, and the project`s near-term plans. TRANSIMS will employ advanced computational and analytical techniques to create an integrated regional transportation systems analysis environment. The simulation environment will include a regional population of individual travelers and freight loads with travel activities and plans, whose individual interactions will be simulated on the transportation system, and whose environmental impact will be determined. We will develop an interim operational capability (IOC) for each major TRANSIMS module during the five-year program. When the IOC is ready, we will complete a specific case study to confirm the IOC features, applicability, and readiness.

  13. TRANSIMS: TRansportation ANalysis and SIMulation System

    SciTech Connect

    Smith, L.; Beckman, R.; Anson, D.; Nagel, K.; Williams, M.

    1995-08-01

    This paper summarizes the TRansportation ANalysis and SIMulation System (TRANSIMS) Project, the system`s major modules, and the project`s near-term plans. TRANSIMS will employ advanced computational and analytical techniques to create an integrated regional transportation systems analysis environment. The simulation environment will include a regional population of individual travelers and freight loads with travel activities and plans, whose individual interactions will be simulated on the transportation system, and whose environmental impact will be determined. We will develop an interim operational capability (IOC) for each major TRANSIMS module during the five-year program. When the IOC is ready, we will complete a specific case study to confirm the IOC features, applicability, and readiness.

  14. Fire and materials modeling for transportation systems

    SciTech Connect

    Skocypec, R.D.; Gritzo, L.A.; Moya, J.L.; Nicolette, V.F.; Tieszen, S.R.; Thomas, R.

    1994-10-01

    Fire is an important threat to the safety of transportation systems. Therefore, understanding the effects of fire (and its interaction with materials) on transportation systems is crucial to quantifying and mitigating the impact of fire on the safety of those systems. Research and development directed toward improving the fire safety of transportation systems must address a broad range of phenomena and technologies, including: crash dynamics, fuel dispersion, fire environment characterization, material characterization, and system/cargo thermal response modeling. In addition, if the goal of the work is an assessment and/or reduction of risk due to fires, probabilistic risk assessment technology is also required. The research currently underway at Sandia National Laboratories in each of these areas is summarized in this paper.

  15. Influence of welding fume on systemic iron status.

    PubMed

    Casjens, Swaantje; Henry, Jana; Rihs, Hans-Peter; Lehnert, Martin; Raulf-Heimsoth, Monika; Welge, Peter; Lotz, Anne; Gelder, Rainer Van; Hahn, Jens-Uwe; Stiegler, Hugo; Eisele, Lewin; Weiss, Tobias; Hartwig, Andrea; Brüning, Thomas; Pesch, Beate

    2014-11-01

    Iron is the major metal found in welding fumes, and although it is an essential trace element, its overload causes toxicity due to Fenton reactions. To avoid oxidative damage, excess iron is bound to ferritin, and as a result, serum ferritin (SF) is a recognized biomarker for iron stores, with high concentrations linked to inflammation and potentially also cancer. However, little is known about iron overload in welders. Within this study, we assessed the iron status and quantitative associations between airborne iron, body iron stores, and iron homeostasis in 192 welders not wearing dust masks. Welders were equipped with personal samplers in order to determine the levels of respirable iron in the breathing zone during a working shift. SF, prohepcidin and other markers of iron status were determined in blood samples collected after shift. The impact of iron exposure and other factors on SF and prohepcidin were estimated using multiple regression models. Our results indicate that respirable iron is a significant predictor of SF and prohepcidin. Concentrations of SF varied according to the welding technique and respiratory protection used, with a median of 103 μg l(-1) in tungsten inert gas welders, 125 μg l(-1) in those wearing air-purifying respirators, and 161 μg l(-1) in other welders. Compared to welders with low iron stores (SF < 25 μg l(-1)), those with excess body iron (SF ≥ 400 μg l(-1)) worked under a higher median concentration of airborne iron (60 μg m(-3) versus 148 μg m(-3)). Even though air concentrations of respirable iron and manganese were highly correlated, and low iron stores have been reported to increase manganese uptake in the gastrointestinal tract, no correlation was seen between SF and manganese in blood. In conclusion, monitoring SF may be a reasonable method for health surveillance of welders. Respiratory protection with air-purifying respirators can decrease iron exposure and avoid chronically higher SF in welders working with

  16. Blood withdrawal affects iron store dynamics in primates with consequences on monoaminergic system function.

    PubMed

    Hyacinthe, C; De Deurwaerdere, P; Thiollier, T; Li, Q; Bezard, E; Ghorayeb, I

    2015-04-01

    Iron homeostasis is essential for the integrity of brain monoaminergic functions and its deregulation might be involved in neurological movement disorders such as the restless legs syndrome (RLS). Although iron metabolism breakdown concomitantly appears with monoaminergic system dysfunction in iron-deficient rodents and in RLS patients, the direct consequences of peripheral iron deficiency in the central nervous system (CNS) of non-human primates have received little attention. Here, we evaluated the peripheral iron-depletion impact on brain monoamine levels in macaque monkeys. After documenting circadian variations of iron and iron-related proteins (hemoglobin, ferritin and transferrin) in both serum and cerebrospinal fluid (CSF) of normal macaques, repeated blood withdrawals (RBW) were used to reduce peripheral iron-related parameter levels. Decreased serum iron levels were paradoxically associated with increased CSF iron concentrations. Despite limited consequences on tissue monoamine contents (dopamine - DA, 3, 4-dihydroxyphenylacetic acid - DOPAC, homovanillic acid, L-3, 4-dihydroxyphenylalanine - L-DOPA, 5-8 hydroxytryptamine - 5-HT, 5-hydroxyindoleacetic acid - 5-HIAA and noradrenaline) measured with post-mortem chromatography, we found distinct and region-dependent relationships of these tissue concentrations with CSF iron and/or serum iron and/or blood hemoglobin. Additionally, striatal extracellular DA, DOPAC and 5-HIAA levels evaluated by in vivo microdialysis showed a substantial increase, suggesting an overall increase in both DA and 5-HT tones. Finally, a trending increase in general locomotor activity, measured by actimetry, was observed in the most serum iron-depleted macaques. Taken together, our data are compatible with an increase in nigrostriatal DAergic function in the event of iron deficiency and point to a specific alteration of the 5-HT/DA interaction in the CNS that is possibly involved in the etiology of RLS. PMID:25662508

  17. 49 CFR 37.33 - Airport transportation systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Airport transportation systems. 37.33 Section 37.33 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.33 Airport transportation systems. (a)...

  18. 49 CFR 37.25 - University transportation systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false University transportation systems. 37.25 Section 37.25 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.25 University transportation systems....

  19. 49 CFR 37.33 - Airport transportation systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Airport transportation systems. 37.33 Section 37.33 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.33 Airport transportation systems. (a)...

  20. 49 CFR 37.33 - Airport transportation systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Airport transportation systems. 37.33 Section 37.33 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.33 Airport transportation systems. (a)...

  1. 49 CFR 37.33 - Airport transportation systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Airport transportation systems. 37.33 Section 37.33 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.33 Airport transportation systems. (a)...

  2. 49 CFR 37.25 - University transportation systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false University transportation systems. 37.25 Section 37.25 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.25 University transportation systems....

  3. 49 CFR 37.25 - University transportation systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false University transportation systems. 37.25 Section 37.25 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.25 University transportation systems....

  4. 49 CFR 37.25 - University transportation systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false University transportation systems. 37.25 Section 37.25 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Applicability § 37.25 University transportation systems....

  5. Design of a lunar transportation system

    NASA Technical Reports Server (NTRS)

    Sankaravelu, A.; Goddard, H.; Gold, R.; Greenwell, S.; Lander, J.; Nordell, B.; Stepp, K.; Styer, M.

    1989-01-01

    The development of a good transportation infrastructure is a major requirement for the establishment of a permanent lunar base. Transportation is characterized by the technology available in a specific time frame and the need to transport personnel and cargo between Earth and Moon, and between lunar bases. In our study, attention was first focused on developing a transportation system for the first generation lunar base. As a first step, a tracked-type multipurpose lunar transportation vehicle was considered as a possible mode of transportation and a detailed study was conducted on the various aspects of the vehicle. Since the vehicle is composed of many moving parts, exposing it to the environment of the Moon, where fine dust particles are prevalent, can cause problems associated with lubrication and friction. The vehicle also posed problems concerning weight and power. Hence, several modifications were made to the above design ideas conceptually, and a Lunar Articulated Remote Transportation System (Lunar ARTS) is proposed as a more effective alternative with the following objectives: (1) minimizing the transportation of construction material and fuel from Earth or maximizing the use of the lunar material; (2) use of novel materials and light-weight structures; (3) use of new manufacturing methods and technology such as magnetic levitation using superconducting materials; and (4) innovative concepts of effectively utilizing the exotic lunar conditions, i.e., high thermal gradients, lack of atmosphere, lower gravity, etc. To achieve the above objectives of designing transportation systems from concept to operation, the project was planned in three phases: (1) conceptual design; (2) detailed analysis and synthesis; and (3) construction, testing, evaluation, and operation. In this project, both phases 1 and 2 have been carried out and work on phase 3 is in progress. In this paper, the details of the Lunar ARTS are discussed and the future work on the vehicle are

  6. Long-distance transport of particulate iron from the Amur River to the western subarctic Pacific reinforced by the combination of Fe and Nd isotopes

    NASA Astrophysics Data System (ADS)

    Yasuda, T.; Asahara, Y.; Ichikawa, R.; Nakatsuka, T.; Nishioka, J.; Minami, H.; Nagao, S.; Tanimizu, M.; Shin, K.; Kono, M.

    2013-12-01

    Iron is an essential nutrient and limits primary productivity in High Nutrient Low Chlorophyll (HNLC) regions. The western subarctic Pacific (WSP) is one of HNLC regions, and the most important source of iron in the WSP has been thought to be the dust from East Asia such as Gobi dessert. In recent years, however, some studies suggest that the northwestern continental shelf region of the Sea of Okhotsk (OS) where the Amur River discharges large amounts of dissolved iron is one of the most important source area of iron in the WSP (e.g. Nishioka et al., 2007). The Amur has high concentration of dissolved iron, and more than 90% of the dissolved iron precipitates in the estuary mixing zone by coagulation. In the Amur estuary on the northwestern continental shelf of the OS, the strong tidal mixing causes the iron precipitates to be resuspended. The suspended particulate matter (SPM) is carried out to the Okhotsk Sea Intermediate Water (OSIW) by the Dense Shelf Water (DSW) (Nakatsuka et al., 2004). The OSIW flows out to the WSP through the Bussol strait, and adds to the North Pacific Intermediate Water (NPIW). The SPM is possibly transported to the WSP in the above processes, and re-dissolved iron from the SPM (Sugie et al., 2013) contributes to the biological productivity in the WSP. In this study, we analyzed stable isotopes of iron (Fe) and radiogenic isotopes of neodymium (Nd) in particulate iron chemically extracted from the continental shelf sediments and SPM of the OS and those in dissolved Fe and Nd of the Amur River water in order to clarify the transport process of the particulate iron from the Amur River in the OS. Iron isotopes have been recently applied to trace origin of marine iron because δ56Fe value varies depending on source, such as river, eolian dust and hydrothermal input. In addition, we used neodymium isotopes to draw information where the particulate iron in the OSIW precipitates because the particulate iron takes up large amounts of REEs from

  7. Hyperspectral imaging utility for transportation systems

    NASA Astrophysics Data System (ADS)

    Bridgelall, Raj; Rafert, J. Bruce; Tolliver, Denver

    2015-03-01

    The global transportation system is massive, open, and dynamic. Existing performance and condition assessments of the complex interacting networks of roadways, bridges, railroads, pipelines, waterways, airways, and intermodal ports are expensive. Hyperspectral imaging is an emerging remote sensing technique for the non-destructive evaluation of multimodal transportation infrastructure. Unlike panchromatic, color, and infrared imaging, each layer of a hyperspectral image pixel records reflectance intensity from one of dozens or hundreds of relatively narrow wavelength bands that span a broad range of the electromagnetic spectrum. Hence, every pixel of a hyperspectral scene provides a unique spectral signature that offers new opportunities for informed decision-making in transportation systems development, operations, and maintenance. Spaceborne systems capture images of vast areas in a short period but provide lower spatial resolution than airborne systems. Practitioners use manned aircraft to achieve higher spatial and spectral resolution, but at the price of custom missions and narrow focus. The rapid size and cost reduction of unmanned aircraft systems promise a third alternative that offers hybrid benefits at affordable prices by conducting multiple parallel missions. This research formulates a theoretical framework for a pushbroom type of hyperspectral imaging system on each type of data acquisition platform. The study then applies the framework to assess the relative potential utility of hyperspectral imaging for previously proposed remote sensing applications in transportation. The authors also introduce and suggest new potential applications of hyperspectral imaging in transportation asset management, network performance evaluation, and risk assessments to enable effective and objective decision- and policy-making.

  8. Aquifer Thermal Energy Storage as an ecosystem service for Brussels, Belgium: investigating iron (hydr)oxide precipitation with reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Anibas, Christian; Possemiers, Mathias; Huysmans, Marijke

    2016-04-01

    In an evolving energy system it is important that urbanized areas contribute to their own energy demands. To reduce greenhouse gas emissions sustainable energy systems with a high efficiency are required, e.g. using urban aquifers as an ecosystem service. Here the potential of seasonal aquifer thermal energy storage and recovery (ATES) for the Brussels-Capital Region, Belgium is investigated. An important shallow geologic formation in the Brussels Capital Region is the Brussels Sand formation, a 20-60 m thick phreatic aquifer. The Brussels Sand Formation is known for its potential for ATES systems, but also for its varying redox and hydraulic conditions. Important limiting factors for ATES systems in the Brussels Sand Formation therefore are the hydraulic conductivity and the geochemical composition of the groundwater. Near the redox boundary iron hydroxide precipitation can negatively influence ATES well performance due to clogging. The interactions between physical processes (e.g. particle transport and clogging in the wider proximity of the ATES well) and chemical processes (e.g. influence of the operation temperatures on precipitation processes) during ATES operation are complex but not well understood. Therefore we constructed numerical groundwater flow models in MODFLOW to estimate maximum pumping and injection rates of different hydraulic conditions and competing water uses in the Brussels Sand Formation. In further steps the thermal potential for ATES was quantified using MT3DMS and the reactive transport model PHT3D was applied to assess the effects of operating ATES systems near the redox boundary. Results show that initial mixing plays an important role in the development of iron(hydr)oxide precipitation around the ATES wells, with the highest concentrations around the cold wells. This behavior is enhanced by the temperature effect; temperature differences of ΔT≈10°C already influence the iron (hydr)oxide concentration. The initial injection into the

  9. Magnetic resonance imaging reveals detailed spatial and temporal distribution of iron-based nanoparticles transported through water-saturated porous media.

    PubMed

    Cuny, Laure; Herrling, Maria Pia; Guthausen, Gisela; Horn, Harald; Delay, Markus

    2015-11-01

    The application of engineered nanoparticles (ENP) such as iron-based ENP in environmental systems or in the human body inevitably raises the question of their mobility. This also includes aspects of product optimization and assessment of their environmental fate. Therefore, the key aim was to investigate the mobility of iron-based ENP in water-saturated porous media. Laboratory-scale transport experiments were conducted using columns packed with quartz sand as model solid phase. Different superparamagnetic iron oxide nanoparticles (SPION) were selected to study the influence of primary particle size (d(P)=20 nm and 80 nm) and surface functionalization (plain, -COOH and -NH2 groups) on particle mobility. In particular, the influence of natural organic matter (NOM) on the transport and retention behaviour of SPION was investigated. In our approach, a combination of conventional breakthrough curve (BTC) analysis and magnetic resonance imaging (MRI) to non-invasively and non-destructively visualize the SPION inside the column was applied. Particle surface properties (surface functionalization and resulting zeta potential) had a major influence while their primary particle size turned out to be less relevant. In particular, the mobility of SPION was significantly increased in the presence of NOM due to the sorption of NOM onto the particle surface resulting in a more negative zeta potential. MRI provided detailed spatially resolved information complementary to the quantitative BTC results. The approach can be transferred to other porous systems and contributes to a better understanding of particle transport in environmental porous media and porous media in technical applications. PMID:26335945

  10. Magnetic resonance imaging reveals detailed spatial and temporal distribution of iron-based nanoparticles transported through water-saturated porous media

    NASA Astrophysics Data System (ADS)

    Cuny, Laure; Herrling, Maria Pia; Guthausen, Gisela; Horn, Harald; Delay, Markus

    2015-11-01

    The application of engineered nanoparticles (ENP) such as iron-based ENP in environmental systems or in the human body inevitably raises the question of their mobility. This also includes aspects of product optimization and assessment of their environmental fate. Therefore, the key aim was to investigate the mobility of iron-based ENP in water-saturated porous media. Laboratory-scale transport experiments were conducted using columns packed with quartz sand as model solid phase. Different superparamagnetic iron oxide nanoparticles (SPION) were selected to study the influence of primary particle size (dP = 20 nm and 80 nm) and surface functionalization (plain, -COOH and -NH2 groups) on particle mobility. In particular, the influence of natural organic matter (NOM) on the transport and retention behaviour of SPION was investigated. In our approach, a combination of conventional breakthrough curve (BTC) analysis and magnetic resonance imaging (MRI) to non-invasively and non-destructively visualize the SPION inside the column was applied. Particle surface properties (surface functionalization and resulting zeta potential) had a major influence while their primary particle size turned out to be less relevant. In particular, the mobility of SPION was significantly increased in the presence of NOM due to the sorption of NOM onto the particle surface resulting in a more negative zeta potential. MRI provided detailed spatially resolved information complementary to the quantitative BTC results. The approach can be transferred to other porous systems and contributes to a better understanding of particle transport in environmental porous media and porous media in technical applications.

  11. Mechanistic and regulatory aspects of intestinal iron absorption

    PubMed Central

    Gulec, Sukru; Anderson, Gregory J.

    2014-01-01

    Iron is an essential trace mineral that plays a number of important physiological roles in humans, including oxygen transport, energy metabolism, and neurotransmitter synthesis. Iron absorption by the proximal small bowel is a critical checkpoint in the maintenance of whole-body iron levels since, unlike most other essential nutrients, no regulated excretory systems exist for iron in humans. Maintaining proper iron levels is critical to avoid the adverse physiological consequences of either low or high tissue iron concentrations, as commonly occurs in iron-deficiency anemia and hereditary hemochromatosis, respectively. Exquisite regulatory mechanisms have thus evolved to modulate how much iron is acquired from the diet. Systemic sensing of iron levels is accomplished by a network of molecules that regulate transcription of the HAMP gene in hepatocytes, thus modulating levels of the serum-borne, iron-regulatory hormone hepcidin. Hepcidin decreases intestinal iron absorption by binding to the iron exporter ferroportin 1 on the basolateral surface of duodenal enterocytes, causing its internalization and degradation. Mucosal regulation of iron transport also occurs during low-iron states, via transcriptional (by hypoxia-inducible factor 2α) and posttranscriptional (by the iron-sensing iron-regulatory protein/iron-responsive element system) mechanisms. Recent studies demonstrated that these regulatory loops function in tandem to control expression or activity of key modulators of iron homeostasis. In health, body iron levels are maintained at appropriate levels; however, in several inherited disorders and in other pathophysiological states, iron sensing is perturbed and intestinal iron absorption is dysregulated. The iron-related phenotypes of these diseases exemplify the necessity of precisely regulating iron absorption to meet body demands. PMID:24994858

  12. Structural model of FeoB, the iron transporter from Pseudomonas aeruginosa, predicts a cysteine lined, GTP-gated pore

    PubMed Central

    Seyedmohammad, Saeed; Fuentealba, Natalia Alveal; Marriott, Robert A.J.; Goetze, Tom A.; Edwardson, J. Michael; Barrera, Nelson P.; Venter, Henrietta

    2016-01-01

    Iron is essential for the survival and virulence of pathogenic bacteria. The FeoB transporter allows the bacterial cell to acquire ferrous iron from its environment, making it an excellent drug target in intractable pathogens. The protein consists of an N-terminal GTP-binding domain and a C-terminal membrane domain. Despite the availability of X-ray crystal structures of the N-terminal domain, many aspects of the structure and function of FeoB remain unclear, such as the structure of the membrane domain, the oligomeric state of the protein, the molecular mechanism of iron transport, and how this is coupled to GTP hydrolysis at the N-terminal domain. In the present study, we describe the first homology model of FeoB. Due to the lack of sequence homology between FeoB and other transporters, the structures of four different proteins were used as templates to generate the homology model of full-length FeoB, which predicts a trimeric structure. We confirmed this trimeric structure by both blue-native-PAGE (BN-PAGE) and AFM. According to our model, the membrane domain of the trimeric protein forms a central pore lined by highly conserved cysteine residues. This pore aligns with a central pore in the N-terminal GTPase domain (G-domain) lined by aspartate residues. Biochemical analysis of FeoB from Pseudomonas aeruginosa further reveals a putative iron sensor domain that could connect GTP binding/hydrolysis to the opening of the pore. These results indicate that FeoB might not act as a transporter, but rather as a GTP-gated channel. PMID:26934982

  13. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand.

    PubMed

    Wang, Dengjun; Bradford, Scott A; Harvey, Ronald W; Gao, Bin; Cang, Long; Zhou, Dongmei

    2012-03-01

    Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The transport and retention kinetics of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated packed columns that encompassed a range of humic acid concentrations (HA, 0-10 mg L(-1)), fractional surface coverage of iron oxyhydroxide coatings on sand grains (λ, 0-0.75), and pH (6.0-10.5). HA was found to have a marked effect on the electrokinetic properties of ARS-nHAP, and on the transport and retention of ARS-nHAP in granular media. The transport of ARS-nHAP was found to increase with increasing HA concentration because of enhanced colloidal stability and the reduced aggregate size. When HA = 10 mg L(-1), greater ARS-nHAP attachment occurred with increasing λ because of increased electrostatic attraction between negatively charged nanoparticles and positively charged iron oxyhydroxides, although alkaline conditions (pH 8.0 and 10.5) reversed the surface charge of the iron oxyhydroxides and therefore decreased deposition. The retention profiles of ARS-nHAP exhibited a hyperexponential shape for all test conditions, suggesting some unfavorable attachment conditions. Retarded breakthrough curves occurred in sands with iron oxyhydroxide coatings because of time-dependent occupation of favorable deposition sites. Consideration of the above effects is necessary to improve remediation efficiency of nHAP for metals and actinides in soils and subsurface environments. PMID:22316080

  14. Structural model of FeoB, the iron transporter from Pseudomonas aeruginosa, predicts a cysteine lined, GTP-gated pore.

    PubMed

    Seyedmohammad, Saeed; Fuentealba, Natalia Alveal; Marriott, Robert A J; Goetze, Tom A; Edwardson, J Michael; Barrera, Nelson P; Venter, Henrietta

    2016-04-01

    Iron is essential for the survival and virulence of pathogenic bacteria. The FeoB transporter allows the bacterial cell to acquire ferrous iron from its environment, making it an excellent drug target in intractable pathogens. The protein consists of an N-terminal GTP-binding domain and a C-terminal membrane domain. Despite the availability of X-ray crystal structures of the N-terminal domain, many aspects of the structure and function of FeoB remain unclear, such as the structure of the membrane domain, the oligomeric state of the protein, the molecular mechanism of iron transport, and how this is coupled to GTP hydrolysis at the N-terminal domain. In the present study, we describe the first homology model of FeoB. Due to the lack of sequence homology between FeoB and other transporters, the structures of four different proteins were used as templates to generate the homology model of full-length FeoB, which predicts a trimeric structure. We confirmed this trimeric structure by both blue-native-PAGE (BN-PAGE) and AFM. According to our model, the membrane domain of the trimeric protein forms a central pore lined by highly conserved cysteine residues. This pore aligns with a central pore in the N-terminal GTPase domain (G-domain) lined by aspartate residues. Biochemical analysis of FeoB from Pseudomonas aeruginosa further reveals a putative iron sensor domain that could connect GTP binding/hydrolysis to the opening of the pore. These results indicate that FeoB might not act as a transporter, but rather as a GTP-gated channel. PMID:26934982

  15. Not planning a sustainable transport system

    SciTech Connect

    Finnveden, Göran Åkerman, Jonas

    2014-04-01

    The overall objective of the Swedish transport policy is to ensure the economically efficient and sustainable provision of transport services for people and business throughout the country. More specifically, the transport sector shall, among other things, contribute to the achievement of environmental quality objectives in which the development of the transport system plays an important role in the achievement of the objectives. The aim of this study is to analyse if current transport planning supports this policy. This is done by analysing two recent cases: the National Infrastructure Plan 2010–2021, and the planning of Bypass Stockholm, a major road investment. Our results show that the plans are in conflict with several of the environmental quality objectives. Another interesting aspect of the planning processes is that the long-term climate goals are not included in the planning processes, neither as a clear goal nor as factor that will influence future transport systems. In this way, the long-term sustainability aspects are not present in the planning. We conclude that the two cases do not contribute to a sustainable transport system. Thus, several changes must be made in the processes, including putting up clear targets for emissions. Also, the methodology for the environmental assessments needs to be further developed and discussed. - Highlights: • Two cases are studied to analyse if current planning supports a sustainable transport system. • Results show that the plans are in conflict with several of the environmental quality objectives. • Long-term climate goals are not included in the planning processes. • Current practices do not contribute to a sustainable planning processes. • Methodology and process for environmental assessments must be further developed and discussed.

  16. Human Transportation System (HTS) study, volume 1

    NASA Technical Reports Server (NTRS)

    Lance, N.; Geyer, M. S.; Gaunce, M. T.

    1993-01-01

    Work completed under the Human Transportation System Study is summarized. This study was conducted by the New Initiatives Office at JSC with the technical support of Boeing, General Dynamics, Lockheed, McDonnell-Douglas, Martin Marietta, and Rockwell. The study was designed to generate information on determining the appropriate path to follow for new system development to meet the Nation's space transportation needs. The study evaluates 18 transportation architecture options using a parametric set of mission requirements. These options include use of current systems as well as proposed systems to assess the impact of various considerations, such as the cost of alternate access, or the benefit of separating people and cargo. The architecture options are compared to each other with six measurable evaluation criteria or attributes. They are the following: funding profile, human safety, probability of mission success, architecture cost risk, launch schedule confidence, and environmental impact. Values for these attributes are presented for the architecture options, with pertinent conclusions and recommendations.

  17. Human Transportation System (HTS) study, volume 1

    NASA Astrophysics Data System (ADS)

    Lance, N.; Geyer, M. S.; Gaunce, M. T.

    1993-10-01

    Work completed under the Human Transportation System Study is summarized. This study was conducted by the New Initiatives Office at JSC with the technical support of Boeing, General Dynamics, Lockheed, McDonnell-Douglas, Martin Marietta, and Rockwell. The study was designed to generate information on determining the appropriate path to follow for new system development to meet the Nation's space transportation needs. The study evaluates 18 transportation architecture options using a parametric set of mission requirements. These options include use of current systems as well as proposed systems to assess the impact of various considerations, such as the cost of alternate access, or the benefit of separating people and cargo. The architecture options are compared to each other with six measurable evaluation criteria or attributes. They are the following: funding profile, human safety, probability of mission success, architecture cost risk, launch schedule confidence, and environmental impact. Values for these attributes are presented for the architecture options, with pertinent conclusions and recommendations.

  18. Human Transportation System (HTS) study: Executive summary

    NASA Astrophysics Data System (ADS)

    Lance, N.; Geyer, M. S.; Gaunce, M. T.

    1993-10-01

    Work completed under the Human Transportation System Study is summarized. This study was conducted by the New Initiatives Office at JSC with the technical support of Boeing, General Dynamics, Lockheed, McDonnell-Douglas, Martin Marietta, and Rockwell. The study was designed to generate information on determining the appropriate path to follow for new system development to meet the Nation's space transportation needs. The study evaluates 18 transportation architecture options using a parametric set of mission requirements. These options include use of current systems as well as proposed systems to assess the impact of various considerations, such as the cost of alternate access, or the benefit of separating people and cargo. The architecture options are compared to each other with six measurable evaluation criteria or attributes. They are the following: funding profile, human safety, probability of mission success, architecture cost risk, launch schedule confidence, and environmental impact. Values for these attributes are presented for the architecture options, with pertinent conclusions and recommendations.

  19. Human Transportation System (HTS) study: Executive summary

    NASA Technical Reports Server (NTRS)

    Lance, N.; Geyer, M. S.; Gaunce, M. T.

    1993-01-01

    Work completed under the Human Transportation System Study is summarized. This study was conducted by the New Initiatives Office at JSC with the technical support of Boeing, General Dynamics, Lockheed, McDonnell-Douglas, Martin Marietta, and Rockwell. The study was designed to generate information on determining the appropriate path to follow for new system development to meet the Nation's space transportation needs. The study evaluates 18 transportation architecture options using a parametric set of mission requirements. These options include use of current systems as well as proposed systems to assess the impact of various considerations, such as the cost of alternate access, or the benefit of separating people and cargo. The architecture options are compared to each other with six measurable evaluation criteria or attributes. They are the following: funding profile, human safety, probability of mission success, architecture cost risk, launch schedule confidence, and environmental impact. Values for these attributes are presented for the architecture options, with pertinent conclusions and recommendations.

  20. NASA's Advanced Space Transportation System launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1990-01-01

    An account is given of NASA's Advanced Space Transportation System plans, with a view to the support systems that must be evolved in order to implement such long-term mission requirements; these encompass space-based infrastructure for orbital transfer operations between LEO and GEO, and for operations from LEO to lunar orbit and to Mars. These mission requirements are addressed by the NASA Civil Needs Data Base in order to promote multiple applications. The requisite near-term lift capacity to LEO could be achieved through the development of the Shuttle-derived, unmanned Shuttle-C cargo launch system. Longer-term transportation studies are concerned with the Next Manned Transportation System and Space Transfer Vehicles.

  1. Transportable Vitrification System Demonstration on Mixed Waste

    SciTech Connect

    Zamecnik, J.R.; Whitehouse, J.C.; Wilson, C.N.; Van Ryn, F.R.

    1998-01-01

    This paper describes preliminary results from the first demonstration of the Transportable Vitrification System (TVS) on actual mixed waste. The TVS is a fully integrated, transportable system for the treatment of mixed and low-level radioactive wastes. The demonstration was conducted at Oak Ridge`s East Tennessee Technology Park (ETTP), formerly known as the K-25 site. The purpose of the demonstration was to show that mixed wastes could be vitrified safely on a `field` scale using joule-heated melter technology and obtain information on system performance, waste form durability, air emissions, and costs.

  2. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  3. Monte Carlo Nucleon Meson Transport Code System.

    Energy Science and Technology Software Center (ESTSC)

    2000-11-17

    Version 00 NMTC/JAERI97 is an upgraded version of the code system NMTC/JAERI, which was developed in 1982 at JAERI and is based on the CCC-161/NMTC code system. NMTC/JAERI97 simulates high energy nuclear reactions and nucleon-meson transport processes.

  4. Alternative battery systems for transportation uses

    ScienceCinema

    Michael Thackeray

    2013-06-05

    Argonne Distinguished Fellow Michael Thackeray highlights the need for alternative battery systems for transportation uses. Such systems will not only need to be smaller, lighter and more energy dense, but also able to make electric vehicles more competitive with internal combustion engine vehicles.

  5. Alternative battery systems for transportation uses

    SciTech Connect

    Michael Thackeray

    2012-07-25

    Argonne Distinguished Fellow Michael Thackeray highlights the need for alternative battery systems for transportation uses. Such systems will not only need to be smaller, lighter and more energy dense, but also able to make electric vehicles more competitive with internal combustion engine vehicles.

  6. Elevated systemic hepcidin and iron depletion in obese pre-menopausal females.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hepcidin, the body’s main regulator of systemic iron homeostasis, is unregulated in response to inflammation, and is thought to play a role in the manifestation of iron deficiency (ID) observed in obese populations. We determined systemic hepcidin levels and its association with body mass, inflammat...

  7. IRON TUBERCULATION: PHYSIO-CHEMICAL CHARACTERIZATION OF A SINGLE PIPE FROM A DRINKING WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    The nature of iron tubercles inside unlined iron pipes of drinking water distribution systems are influenced by water quality and therefore susceptible to changes in water chemistry. The underlying assumption is that tubercles in a system have similar physio-chemical properties. ...

  8. Carbon supported Nano-Iron for environmental remediation: Transport observations using column tests, magnet resonance imaging and synchrotron tomography.

    NASA Astrophysics Data System (ADS)

    Busch, J.; Oswald, S. E.; Mackenzie, K.

    2012-04-01

    The use of nano-zerovalent iron (nZVI) for environmental remediation is a promising new technique for in situ remediation of contaminated groundwater. Due to its high surface area and high reactivity, nZVI is able to dechlorinate organic contaminants and render them harmless. Limited mobility, however, due to fast aggregation and sedimentation of nZVI, restricts the practical applicability for source and plume remediation. Carbo-Iron is a newly developed composite material consisting of activated carbon particles (d50 about 500 nm) that act as carrier for nZVI particles. Together with a polyanionic stabilizer (CMC) Carbo-Iron is able to form a stable injectable suspension. These particles are designed to combine the mobility of activated carbon and the reactivity of nZVI. Various methods were used to observe and describe transport properties, with a focus on column tests and tomographic methods: Column tests were performed in chromatography columns of 40 and 60 cm length, filled with sand grains or glass beads. Results indicate high mobility and breakthrough after addition of CMC, but changing transport properties at different pH and ionic strength. Magnet Resonance Imaging (MRI) and Synchrotron Imaging are technologies of growing interest in observing flow and transport in porous media. Even though both methods are based on different physical principles, both are sensible to iron loads in colloids and allow two- and three-dimensional reconstruction and visualization. Therefore both methods may principally be suitable for observing Carbo-Iron in porous media and might give information complementary to other experimental investigations. A suitable MRI method was developed using a medical MRI. The method based on T1 weighted measurement with short repetition time (TR = 7.0 ms) and echo time (TE = 2.95 ms) can detect different particle concentrations in a porous medium. The synchrotron tomography method used an energy rich (13 keV) parallel X-ray beam to collect

  9. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification

    PubMed Central

    Yoneyama, Tadakatsu; Ishikawa, Satoru; Fujimaki, Shu

    2015-01-01

    Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2′-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation. PMID:26287170

  10. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification.

    PubMed

    Yoneyama, Tadakatsu; Ishikawa, Satoru; Fujimaki, Shu

    2015-01-01

    Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2'-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation. PMID:26287170

  11. Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer

    USGS Publications Warehouse

    Ryan, J.N.; Elimelech, M.; Ard, R.A.; Harvey, R.W.; Johnson, P.R.

    1999-01-01

    Bacteriophage PRD1 and silica colloids were co-injected into sewage- contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.Bacteriophage PRD1 and silica colloids were co-injected into sewage-contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by

  12. The Integrated Air Transportation System Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  13. A Robust Scalable Transportation System Concept

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew; DeLaurentis, Daniel

    2006-01-01

    This report documents the 2005 Revolutionary System Concept for Aeronautics (RSCA) study entitled "A Robust, Scalable Transportation System Concept". The objective of the study was to generate, at a high-level of abstraction, characteristics of a new concept for the National Airspace System, or the new NAS, under which transportation goals such as increased throughput, delay reduction, and improved robustness could be realized. Since such an objective can be overwhelmingly complex if pursued at the lowest levels of detail, instead a System-of-Systems (SoS) approach was adopted to model alternative air transportation architectures at a high level. The SoS approach allows the consideration of not only the technical aspects of the NAS", but also incorporates policy, socio-economic, and alternative transportation system considerations into one architecture. While the representations of the individual systems are basic, the higher level approach allows for ways to optimize the SoS at the network level, determining the best topology (i.e. configuration of nodes and links). The final product (concept) is a set of rules of behavior and network structure that not only satisfies national transportation goals, but represents the high impact rules that accomplish those goals by getting the agents to "do the right thing" naturally. The novel combination of Agent Based Modeling and Network Theory provides the core analysis methodology in the System-of-Systems approach. Our method of approach is non-deterministic which means, fundamentally, it asks and answers different questions than deterministic models. The nondeterministic method is necessary primarily due to our marriage of human systems with technological ones in a partially unknown set of future worlds. Our goal is to understand and simulate how the SoS, human and technological components combined, evolve.

  14. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    SciTech Connect

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting

    2014-12-12

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.

  15. Performance of Nonmigratory Iron Chelating Active Packaging Materials in Viscous Model Food Systems.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-09-01

    Many packaged food products undergo quality deterioration due to iron promoted oxidative reactions. Recently, we have developed a nonmigratory iron chelating active packaging material that represents a novel approach to inhibit oxidation of foods while addressing consumer demands for "cleanˮ labels. A challenge to the field of nonmigratory active packaging is ensuring that surface-immobilized active agents retain activity in a true food system despite diffusional limitations. Yet, the relationship between food viscosity and nonmigratory active packaging activity retention has never been characterized. The objective of this study was to investigate the influence of food viscosity on iron chelation by a nonmigratory iron chelating active packaging material. Methyl cellulose was added to aqueous buffered iron solutions to yield model systems with viscosities ranging from ∼1 to ∼10(5)  mPa·s, representing viscosities ranging from beverage to mayonnaise. Iron chelation was quantified by material-bound iron content using colorimetry and inductively coupled plasma-optical emission spectrometry (ICP-OES).  Maximum iron chelation was reached in solutions up to viscosity ∼10(2)  mPa·s. In more viscous solutions (up to ∼10(4)  mPa·s), there was a significant decrease in iron chelating capacity (P < 0.05). However, materials still retained at least 76% iron chelating capacity. Additionally, the influence of different food hydrocolloids on the performance of nonmigratory iron chelating active packaging was characterized. Methyl cellulose and carrageenan did not compete with the material for specific iron chelation (P > 0.05). Materials retained 32% to 45% chelating capacity when in contact with competitively chelating hydrocolloids guar gum, locust bean gum, and xanthan gum. This work demonstrates the potential application of nonmigratory iron chelating active packaging in liquid and semi-liquid foods to allow for the removal of synthetic chelators, while

  16. Phase relations in iron-rich systems and implications for the earth's core

    NASA Technical Reports Server (NTRS)

    Anderson, William W.; Svendsen, Bob; Ahrens, Thomas J.

    1987-01-01

    Recent experimental data concerning the properties of iron, iron sulfide, and iron oxide at high pressures are combined with theoretical arguments to constrain the probable behavior of the Fe-rich portions of the Fe-O and Fe-S phase diagrams. Phase diagrams are constructed for the Fe-S-O system at core pressures and temperatures. These properties are used to evaluate the current temperature distribution and composition of the core.

  17. Nucleotide sequences of the fecBCDE genes and locations of the proteins suggest a periplasmic-binding-protein-dependent transport mechanism for iron(III) dicitrate in Escherichia coli.

    PubMed Central

    Staudenmaier, H; Van Hove, B; Yaraghi, Z; Braun, V

    1989-01-01

    The fec region of the Escherichia coli chromosome determines a citrate-dependent iron(III) transport system. The nucleotide sequence of fec revealed five genes, fecABCDE, which are transcribed from fecA to fecE. The fecA gene encodes a previously described outer membrane receptor protein. The fecB gene product is formed as a precursor protein with a signal peptide of 21 amino acids; the mature form, with a molecular weight of 30,815, was previously found in the periplasm. The fecB genes of E. coli B and E. coli K-12 differed in 3 nucleotides, of which 2 gave rise to conservative amino acid exchanges. The fecC and fecD genes were found to encode very hydrophobic polypeptides with molecular weights of 35,367 and 34,148, respectively, both of which are localized in the cytoplasmic membrane. The fecE product was a rather hydrophilic but cytoplasmic membrane-bound protein of Mr 28,189 and contained regions of extensive homology to ATP-binding proteins. The number, structural characteristics, and locations of the FecBCDE proteins were typical for a periplasmic-binding-protein-dependent transport system. It is proposed that after FecA- and TonB-dependent transport of iron(III) dicitrate across the outer membrane, uptake through the cytoplasmic membrane follows the binding-protein-dependent transport mechanism. FecC and FecD exhibited homologies to each other, to the N- and C-terminal halves of FhuB of the iron(III) hydroxamate transport system, and to BtuC of the vitamin B12 transport system. FecB showed some homology to FhuD, suggesting that the latter may function in the same manner as a binding protein in iron(III) hydroxamate transport. The close homology between the proteins of the two iron transport systems and of the vitamin B12 transport system indicates a common evolution for all three systems. Images PMID:2651410

  18. A Putative Mitochondrial Iron Transporter MrsA in Aspergillus fumigatus Plays Important Roles in Azole-, Oxidative Stress Responses and Virulence

    PubMed Central

    Long, Nanbiao; Xu, Xiaoling; Qian, Hui; Zhang, Shizhu; Lu, Ling

    2016-01-01

    Iron is an essential nutrient and enzyme co-factor required for a wide range of cellular processes, especially for the function of mitochondria. For the opportunistic fungal pathogen Aspergillus fumigatus, the ability to obtain iron is required for growth and virulence during the infection process. However, knowledge of how mitochondria are involved in iron regulation is still limited. Here, we show that a mitochondrial iron transporter, MrsA, a homolog of yeast Mrs4p, is critical for adaptation to iron-limited or iron-excess conditions in A. fumigatus. Deletion of mrsA leads to disruption of iron homeostasis with a decreased sreA expression, resulted in activated reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA). Furthermore, deletion of mrsA induces hypersusceptibility to azole and oxidative stresses. An assay for cellular ROS content in ΔmrsA combined with rescue from the mrsA-defective phenotype by the antioxidant reagent L-ascorbic acid indicates that the increased sensitivity of ΔmrsA to the azole itraconazole and to oxidative stress is mainly the result of abnormal ROS accumulation. Moreover, site-directed mutation experiments verified that three conserved histidine residues related to iron transport in MrsA are required for responses to oxidative and azole stresses. Importantly, ΔmrsA causes significant attenuation of virulence in an immunocompromised murine model of aspergillosis. Collectively, our results show that the putative mitochondrial iron transporter MrsA plays important roles in azole- and oxidative-stress responses and virulence by regulating the balance of cellular iron in A. fumigatus. PMID:27433157

  19. A Putative Mitochondrial Iron Transporter MrsA in Aspergillus fumigatus Plays Important Roles in Azole-, Oxidative Stress Responses and Virulence.

    PubMed

    Long, Nanbiao; Xu, Xiaoling; Qian, Hui; Zhang, Shizhu; Lu, Ling

    2016-01-01

    Iron is an essential nutrient and enzyme co-factor required for a wide range of cellular processes, especially for the function of mitochondria. For the opportunistic fungal pathogen Aspergillus fumigatus, the ability to obtain iron is required for growth and virulence during the infection process. However, knowledge of how mitochondria are involved in iron regulation is still limited. Here, we show that a mitochondrial iron transporter, MrsA, a homolog of yeast Mrs4p, is critical for adaptation to iron-limited or iron-excess conditions in A. fumigatus. Deletion of mrsA leads to disruption of iron homeostasis with a decreased sreA expression, resulted in activated reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA). Furthermore, deletion of mrsA induces hypersusceptibility to azole and oxidative stresses. An assay for cellular ROS content in ΔmrsA combined with rescue from the mrsA-defective phenotype by the antioxidant reagent L-ascorbic acid indicates that the increased sensitivity of ΔmrsA to the azole itraconazole and to oxidative stress is mainly the result of abnormal ROS accumulation. Moreover, site-directed mutation experiments verified that three conserved histidine residues related to iron transport in MrsA are required for responses to oxidative and azole stresses. Importantly, ΔmrsA causes significant attenuation of virulence in an immunocompromised murine model of aspergillosis. Collectively, our results show that the putative mitochondrial iron transporter MrsA plays important roles in azole- and oxidative-stress responses and virulence by regulating the balance of cellular iron in A. fumigatus. PMID:27433157

  20. Analysis of the high-affinity iron uptake system at the Chlamydomonas reinhardtii plasma membrane.

    PubMed

    Terzulli, Alaina; Kosman, Daniel J

    2010-05-01

    Multicopper ferroxidases play a vital role in iron metabolism in bacteria, fungi, algae, and mammals. Saccharomyces cerevisiae utilizes a channeling mechanism to couple the ferroxidase activity of Fet3p to Fe(3+) transport into the cell by Ftr1p. In contrast, the mechanisms by which mammals couple the ferroxidase reaction to iron trafficking is unclear. The human ferroxidases ceruloplasmin and hephaestin are twice the size of Fet3p and interact with proteins that are not expressed in fungi. Chlamydomonas FOX1 is a homolog of the human ferroxidases but likely supports iron uptake in a manner similar to that of yeast, since Chlamydomonas reinhardtii expresses a ferric iron permease homolog, FTR1. The results presented support this hypothesis. We show that FOX1 is trafficked to the plasma membrane and is oriented with its multicopper oxidase/ferroxidase domain in the exocytoplasmic space. Our analysis of FTR1 indicates its topology is similar to that of S. cerevisiae Ftr1p, with a potential exocytoplasmic iron channeling motif and two potential iron permeation motifs in membrane-spanning regions. We demonstrate that high-affinity iron uptake is dependent on FOX1 and the copper status of the cell. Kinetic inhibition of high-affinity iron uptake by a ferric iron chelator does not reflect the strength of the chelator, supporting a ferric iron channeling mechanism for high-affinity iron uptake in Chlamydomonas. Last, recombinant FOX1 (rFOX1) has been isolated in a partially holo form that exhibits the UV-visible absorbance spectrum of a multicopper oxidase and the catalytic activity of a ferroxidase. PMID:20348389

  1. Mars transportation system - Architecture trade study

    NASA Astrophysics Data System (ADS)

    Walton, Lewis A.; Malloy, John D.

    1992-07-01

    An advanced Mars base resupply transportation system utilizing nuclear thermal rockets, a split/sprint architecture, and conjunction class trajectories for the manned flight segments was studied to determine the impact of engine characteristics other than specific impulse. High engine thrust-to-weight ratios were found to offer significant performance improvements and engine clustering and shielding strategies were found to interrelate to the engine thrust-to-weight ratio in a complex manner. Performance tradeoffs of alternate abort mode and engine disposal strategies were assessed. The significant benefits of the use of indigenous Martian materials to support the transportation system were quantified.

  2. Acoustic system for material transport

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Trinh, E. H.; Wang, T. G.; Elleman, D. D.; Jacobi, N. (Inventor)

    1983-01-01

    An object within a chamber is acoustically moved by applying wavelengths of different modes to the chamber to move the object between pressure wells formed by the modes. In one system, the object is placed in one end of the chamber while a resonant mode, applied along the length of the chamber, produces a pressure well at the location. The frequency is then switched to a second mode that produces a pressure well at the center of the chamber, to draw the object. When the object reaches the second pressure well and is still traveling towards the second end of the chamber, the acoustic frequency is again shifted to a third mode (which may equal the first model) that has a pressure well in the second end portion of the chamber, to draw the object. A heat source may be located near the second end of the chamber to heat the sample, and after the sample is heated it can be cooled by moving it in a corresponding manner back to the first end of the chamber. The transducers for levitating and moving the object may be all located at the cool first end of the chamber.

  3. The Secure, Transportable, Autonomous Reactor System

    SciTech Connect

    Brown, N.W.; Hassberger, J.A.; Smith, C.; Carelli, M.; Greenspan, E.; Peddicord, K.L.; Stroh, K.; Wade, D.C.; Hill, R.N.

    1999-05-27

    The Secure, Transportable, Autonomous Reactor (STAR) system is a development architecture for implementing a small nuclear power system, specifically aimed at meeting the growing energy needs of much of the developing world. It simultaneously provides very high standards for safety, proliferation resistance, ease and economy of installation, operation, and ultimate disposition. The STAR system accomplishes these objectives through a combination of modular design, factory manufacture, long lifetime without refueling, autonomous control, and high reliability.

  4. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants

    PubMed Central

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K.

    2016-01-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. PMID:26685186

  5. The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron Deficiency-Induced Chlorosis in Arabidopsis.

    PubMed

    Eroglu, Seckin; Meier, Bastian; von Wirén, Nicolaus; Peiter, Edgar

    2016-02-01

    Iron (Fe) deficiency is a widespread nutritional disorder on calcareous soils. To identify genes involved in the Fe deficiency response, Arabidopsis (Arabidopsis thaliana) transfer DNA insertion lines were screened on a high-pH medium with low Fe availability. This approach identified METAL TOLERANCE PROTEIN8 (MTP8), a member of the Cation Diffusion Facilitator family, as a critical determinant for the tolerance to Fe deficiency-induced chlorosis, also on soil substrate. Subcellular localization to the tonoplast, complementation of a manganese (Mn)-sensitive Saccharomyces cerevisiae yeast strain, and Mn sensitivity of mtp8 knockout mutants characterized the protein as a vacuolar Mn transporter suitable to prevent plant cells from Mn toxicity. MTP8 expression was strongly induced on low-Fe as well as high-Mn medium, which were both strictly dependent on the transcription factor FIT, indicating that high-Mn stress induces Fe deficiency. mtp8 mutants were only hypersensitive to Fe deficiency when Mn was present in the medium, which further suggested an Mn-specific role of MTP8 during Fe limitation. Under those conditions, mtp8 mutants not only translocated more Mn to the shoot than did wild-type plants but suffered in particular from critically low Fe concentrations and, hence, Fe chlorosis, although the transcriptional Fe deficiency response was up-regulated more strongly in mtp8. The diminished uptake of Fe from Mn-containing low-Fe medium by mtp8 mutants was caused by an impaired ability to boost the ferric chelate reductase activity, which is an essential process in Fe acquisition. These findings provide a mechanistic explanation for the long-known interference of Mn in Fe nutrition and define the molecular processes by which plants alleviate this antagonism. PMID:26668333

  6. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    USGS Publications Warehouse

    Scott, D.T.; Runkel, R.L.; McKnight, Diane M.; Voelker, B.M.; Kimball, B.A.; Carraway, E.R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  7. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants.

    PubMed

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K

    2016-03-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. PMID:26685186

  8. Systems and Trans-System Level Analysis Identifies Conserved Iron Deficiency Responses in the Plant Lineage[W][OA

    PubMed Central

    Urzica, Eugen I.; Casero, David; Yamasaki, Hiroaki; Hsieh, Scott I.; Adler, Lital N.; Karpowicz, Steven J.; Blaby-Haas, Crysten E.; Clarke, Steven G.; Loo, Joseph A.; Pellegrini, Matteo; Merchant, Sabeeha S.

    2012-01-01

    We surveyed the iron nutrition-responsive transcriptome of Chlamydomonas reinhardtii using RNA-Seq methodology. Presumed primary targets were identified in comparisons between visually asymptomatic iron-deficient versus iron-replete cells. This includes the known components of high-affinity iron uptake as well as candidates for distributive iron transport in C. reinhardtii. Comparison of growth-inhibited iron-limited versus iron-replete cells revealed changes in the expression of genes in chloroplastic oxidative stress response pathways, among hundreds of other genes. The output from the transcriptome was validated at multiple levels: by quantitative RT-PCR for assessing the data analysis pipeline, by quantitative proteomics for assessing the impact of changes in RNA abundance on the proteome, and by cross-species comparison for identifying conserved or universal response pathways. In addition, we assessed the functional importance of three target genes, VITAMIN C 2 (VTC2), MONODEHYDROASCORBATE REDUCTASE 1 (MDAR1), and CONSERVED IN THE GREEN LINEAGE AND DIATOMS 27 (CGLD27), by biochemistry or reverse genetics. VTC2 and MDAR1, which are key enzymes in de novo ascorbate synthesis and ascorbate recycling, respectively, are likely responsible for the 10-fold increase in ascorbate content of iron-limited cells. CGLD27/At5g67370 is a highly conserved, presumed chloroplast-localized pioneer protein and is important for growth of Arabidopsis thaliana in low iron. PMID:23043051

  9. A Mars/phobos Transportation System

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A transportation system will be necessary to support construction and operation of bases on Phobos and Mars beginning in the year 2020 or later. An approach to defining a network of vehicles and the types of vehicles which may be used in the system are presented. The network will provide a convenient, integrated means for transporting robotically constructed bases to Phobos and Mars. All the technology needed for the current plan is expected to be available for use at the projected date of cargo departure from the Earth system. The modular design of the transportation system provides easily implemented contingency plans, so that difficulties with any one vehicle will have a minimal effect on the progress of the total mission. The transportation network proposed consists of orbital vehicles and atmospheric entry vehicles. Initially, only orbital vehicles will participate in the robotic construction phase of the Phobos base. The Interplanetary Transfer Vehicle (ITV) will carry the base and construction equipment to Phobos where the Orbital Maneuvering Vehicles (OMV's) will participate in the initial construction of the base. When the Mars base is ready to be sent, one or more ITV's will be used to transport the atmospheric entry vehicles from Earth. These atmospheric vehicles are the One Way Landers (OWL's) and the Ascent/Descent Vehicles (ADV's). They will be used to carry the base components and/or construction equipment. The OMV's and the Orbital Transfer Vehicles (OTV's) will assist in carrying the atmospheric entry vehicles to low Martian orbit where the OWL's or ADV's will descent to the planet surface. The ADV's were proposed to accommodate expansion of the system. Additionally, a smaller version of the ADV class is capable of transporting personnel between Mars and Phobos.

  10. Transportation systems analyses. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1992-11-01

    The principal objective is to accomplish a systems engineering assessment of the nation's space transportation infrastructure. This analysis addresses the necessary elements to perform crew delivery and return, cargo transfer, cargo delivery and return, payload servicing, and the exploration of the Moon and Mars. Specific elements analyzed, but not limited to, include: the Space Exploration Initiative (SEI), the National Launch System (NLS), the current expendable launch vehicle (ELV) fleet, ground facilities, the Space Station Freedom (SSF), and other civil, military and commercial payloads. The performance of this study entails maintaining a broad perspective on the large number of transportation elements that could potentially comprise the U.S. space infrastructure over the next several decades. To perform this systems evaluation, top-level trade studies are conducted to enhance our understanding of the relationship between elements of the infrastructure. This broad 'infrastructure-level perspective' permits the identification of preferred infrastructures. Sensitivity analyses are performed to assure the credibility and usefulness of study results. Conceptual studies of transportation elements contribute to the systems approach by identifying elements (such as ETO node and transfer/excursion vehicles) needed in current and planned transportation systems. These studies are also a mechanism to integrate the results of relevant parallel studies.

  11. Transport characteristics of nanoscale zero-valent iron carried by three different "vehicles" in porous media.

    PubMed

    Su, Yan; Zhao, Yong S; Li, Lu L; Qin, Chuan Y; Wu, Fan; Geng, Nan N; Lei, Jian S

    2014-01-01

    This study investigated the transport properties of nanoscale zero-valent iron (Fe(0)) (nZVI) carried by three vehicles: water, sodium dodecyl sulfate (SDS) solution, and SDS foam. Batch experiments were conducted to assess the sedimentation capability of nZVI particles in these three vehicles. Column experiments were conducted to investigate the transport properties of nZVI in porous media formed with different sizes of sand (0.25 mm to 0.5 mm, 0.5 mm to 0.9 mm, and 0.9 mm to 1.4 mm). Three main results were obtained. First, the batch experiments revealed that the stabilities of nZVI particles in SDS solution and SDS foam were improved, compared with that of nZVI particles in water. Moreover, the sedimentation of nZVI in foam was closely associated with the foam drainage volume. The nZVI content in foam was similar to that in the original foaming suspension, and the nZVI particle distribution in foam became significantly more uniform at a stirring speed of 3000 r/min. Second, the transport of nZVI was enhanced by foam compared with water and SDS solution for 0.25 mm to 0.5 mm diameter sand. For sand with diameters of 0.5 mm to 0.9 mm and 0.9 mm to 1.4 mm, the mobility of nZVI carried by SDS solution was optimal, followed by that of nZVI carried by foam and water. Thus, the mobility of nZVI in finer sand was significantly enhanced by foam, compared with that in coarse sand. In contrast, compared with the bare nZVI suspension and nZVI-laden foam, the spatial distribution of nZVI particles carried by SDS solution was significantly uniform along the column length. Third, the SDS concentration significantly influenced the migration of nZVI in porous media. The enhancement in the migration of nZVI carried by SDS solution was greater at an SDS dose of 0.25% compared with that at the other three doses (0.2%, 0.5%, and 1%) for sand with a 0.25 mm to 0.5 mm diameter. Increased SDS concentrations positively affected the transport of nZVI by foam for sand with a

  12. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  13. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  14. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  15. Crew Transportation System Design Reference Missions

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  16. Iron deficiency.

    PubMed

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world. PMID:1745900

  17. Low energy beam transport system developments

    NASA Astrophysics Data System (ADS)

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-01

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H- beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H- beams, but such gas densities cause unacceptably high H- beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H- beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  18. Aqueous Iron-Sulfide Clusters in Variably Saturated Soil Systems: Implications for Iron Cycling and Fluid Flow

    NASA Astrophysics Data System (ADS)

    McGuire, J. T.; Hansen, D. J.; Mohanty, B. P.

    2008-12-01

    Iron and sulfur cycling is an important control on contaminant fate and transport, the availability of micronutrients and the physics of water flow. This study explores the effects of soil structure (i.e. layers, lenses, macropores, or fractures) on linked biogeochemical and hydrological processes involving Fe and S cycling in the vadose zone using packed soil columns. Three laboratory soil columns were constructed: a homogenized medium-grained sand, homogenized organic-rich loam, and a sand-over-loam layered column. Both upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. Water samples extracted by lysimeter were analyzed for reduced species (including total sulfide, Fe(II), and FeSaq) voltammetrically using a mercury drop electrode. In addition to other reduced species, aqueous FeS clusters (FeSaq) were observed in two of the columns, with the greatest concentrations of FeSaq occurring in close proximity to the soil interface in the layered column. To our knowledge, this is the first documentation of aqueous FeS clusters in partially saturated sediments. The aqueous nature of FeSaq allows it to be transported instead of precipitating and suggests that current conceptual models of iron-sulfur cycling may need to be adapted to account for an aqueous phase. The presence of iron-rich soil aggregates near the soil interface may indicate that FeS clusters played a critical role in the formation of soil aggregates that subsequently caused up to an order of magnitude decrease in hydraulic conductivity.

  19. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton

    PubMed Central

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T.; Tortell, Philippe D.

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETRRCII, mol e- mol RCII-1 s-1) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal – oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETRRCII: CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements. PMID:26171963

  20. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton.

    PubMed

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T; Tortell, Philippe D

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETR(RCII), mol e- mol RCII(-1) s(-1)) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal--oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETR(RCII): CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements. PMID:26171963

  1. A method of examining iron oxides speciation and transport to steam generators during nuclear power reactor startups

    NASA Astrophysics Data System (ADS)

    Sawicki, Jerzy A.; Sawicka, Barbara D.; Price, James E.

    2010-12-01

    Secondary side corrosion products (sludge) collected during one of CANDU1 reactor startups from wet layup have been examined by X-ray fluorescence and Mössbauer spectroscopy. The transport and chemical form of iron oxides and oxyhydroxides were determined in condensate, feedwater and preheater outlet as a function of temperature and time. The sludge burst and oxidation states of iron oxides were correlated with the rise of reactor power and corresponding changes in temperature, condensate vacuum and water flow rate. In particular, a sharp γ-FeOOH to Fe 3O 4 switch was observed that coincided in time with the onset of condensate vacuum. Also, it was found that the startup after wet layup is characterized by only brief and fairly small sludge burst at about 30% reactor power and which contributes only a small amount of undesirable α-Fe 2O 3 to total iron transport to steam generator. Thus, sludge burden to steam generators can be minimized with proper layup and startup practices. ™ Trademark of Atomic Energy of Canada Limited.

  2. Heat transport system, method and material

    DOEpatents

    Musinski, Donald L.

    1987-01-01

    A heat transport system, method and composite material in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure.

  3. PARTS: (Plasma Accelerated Reusable Transport System)

    NASA Astrophysics Data System (ADS)

    Aherne, Michael; Davis, Phil; England, Matt; Gustavsson, Jake; Pankow, Steve; Sampaio, Chere; Savella, Phil

    2002-01-01

    The Plasma Accelerated Reusable Transport System (PARTS) is an unmanned cargo shuttle intended to ferry large payloads to and from Martian orbit using a highly efficient VAriable Specific Impulse Magnetoplasma Rocket (VASIMR). The design of PARTS focuses on balancing cost and minimizing transit time for a chosen payload consisting of vehicles, satellites, and other components provided by interested parties.

  4. Tomorrows' Air Transportation System Breakout Series Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The purpose of this presentation is to discuss tomorrow's air transportation system. Section of this presentation includes: chair comments; other general comments; surface congestion alleviation; runway productivity; enhanced arrival/departure tools; integrated airspace decision support tools; national traffic flow management, runway independent operations; ATM TFM weather; and terminal weather.

  5. Transportation systems analyses: Volume 1: Executive Summary

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The principal objective of this study is to accomplish a systems engineering assessment of the nation's space transportation infrastructure. This analysis addresses the necessary elements to perform man delivery and return, cargo transfer, cargo delivery, payload servicing, and the exploration of the Moon and Mars. Specific elements analyzed, but not limited to, include the Space Exploration Initiative (SEI), the National Launch System (NLS), the current expendable launch vehicle (ELV) fleet, ground facilities, the Space Station Freedom (SSF), and other civil, military and commercial payloads. The performance of this study entails maintaining a broad perspective on the large number of transportation elements that could potentially comprise the U.S. space infrastructure over the next several decades. To perform this systems evaluation, top-level trade studies are conducted to enhance our understanding of the relationships between elements of the infrastructure. This broad 'infrastructure-level perspective' permits the identification of preferred infrastructures. Sensitivity analyses are performed to assure the credibility and usefulness of study results. This executive summary of the transportation systems analyses (TSM) semi-annual report addresses the SSF logistics resupply. Our analysis parallels the ongoing NASA SSF redesign effort. Therefore, there could be no SSF design to drive our logistics analysis. Consequently, the analysis attempted to bound the reasonable SSF design possibilities (and the subsequent transportation implications). No other strategy really exists until after a final decision is rendered on the SSF configuration.

  6. Stages of vermicular cast iron properties modeling in the intelligent design system

    NASA Astrophysics Data System (ADS)

    Klochkova, K. V.; Petrovich, S. V.; Simonova, L. A.; Yusupov, L. R.

    2015-06-01

    This article presents the structure of intelligent system of the cast iron with vermicular graphite iron (CGI) design under the conditions of current production, the technique of the optimal process TP parameters of the production of CGI parts in the preparatory phase of production based on mental models is designed.

  7. Placental Expression of the Heme Transporter, Feline Leukemia Virus Subgroup C Receptor, Is related to Maternal Iron Status in Pregnant Adolescents123

    PubMed Central

    Jaacks, Lindsay M.; Young, Melissa F.; Essley, Bridget V.; McNanley, Thomas J.; Cooper, Elizabeth M.; Pressman, Eva K.; McIntyre, Allison W.; Orlando, Mark S.; Abkowitz, Janis L.; Guillet, Ronnie; O'Brien, Kimberly O.

    2011-01-01

    Little is known about the expression of heme transporters in human placenta and possible associations between these transporters and maternal or neonatal iron status. To address this area of research, relative protein expression of 2 heme transporters, Feline Leukemia Virus, Subgroup C, Receptor 1 (FLVCR1) and Breast Cancer Resistance Protein (BCRP), was assessed using Western-blot analysis in human placental tissue in relation to maternal/neonatal iron status and placental iron concentration. Placental FLVCR1 (n = 71) and BCRP (n = 83) expression were assessed at term (36.6–41.7 wk gestation) in a cohort of pregnant adolescents (13–18 y of age) at high-risk of iron deficiency. Both FLVCR1 and BCRP were detected in all placental samples assayed. Placental FLVCR1 expression was positively related to placental BCRP expression (n = 69; R2 = 0.104; P < 0.05). Adolescents that were anemic at delivery had lower placental FLVCR1 expression (n = 49; P < 0.05). Placental FLVCR1 expression was positively associated with placental iron concentration at delivery (n = 61; R2 = 0.064; P < 0.05). In contrast, placental BCRP expression was not significantly associated with maternal iron status or placental iron content. Both FLVCR1 and BCRP are highly expressed in human placental tissue, but only FLVCR1 was significantly inversely associated with maternal iron status and placental iron concentration. Further analysis is needed to explore potential functional roles of FLVCR1 in human placental iron transport. PMID:21593354

  8. Future space transportation systems analysis study. Phase 1 extension: Transportation systems reference data, volume 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Transportation mass requirements are developed for various mission and transportation modes based on vehicle systems sized to fit the exact needs of each mission. The parametric data used to derive the mass requirements for each mission and transportation mode are presented to enable accommodation of possible changes in mode options or payload definitions. The vehicle sizing and functional requirements used to derive the parametric data are described.

  9. DTS: the NOAO Data Transport System

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Michael J.

    2010-07-01

    The Data Transport System (DTS) provides automated, reliable, high-throughput data transfer between the telescopes, archives and pipeline processing systems used by the NOAO centers in the Northern and Southern hemispheres. DTS is implemented using an XML-RPC1 architecture to eliminate the need for persistent network connections between the sites, allowing each site to provide or consume services within the network only as needed. This architecture also permits remote control and monitoring of each site, and for language-independent client applications (e.g. a web interface to display transfer status or a compiled task to queue data for transport which is more tightly coupled with the acquisition system being used). The resulting system is a highly multi-threaded distributed application able to span a wide range of network environments and operational uses.

  10. 49 CFR 236.532 - Strap iron inductor; use restricted.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Strap iron inductor; use restricted. 236.532... Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Roadway § 236.532 Strap iron inductor; use restricted. No railroad shall use strap iron inductor or other roadway element...

  11. 49 CFR 236.532 - Strap iron inductor; use restricted.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Strap iron inductor; use restricted. 236.532... Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Roadway § 236.532 Strap iron inductor; use restricted. No railroad shall use strap iron inductor or other roadway element...

  12. 49 CFR 236.532 - Strap iron inductor; use restricted.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Strap iron inductor; use restricted. 236.532... Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Roadway § 236.532 Strap iron inductor; use restricted. No railroad shall use strap iron inductor or other roadway element...

  13. 49 CFR 236.532 - Strap iron inductor; use restricted.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Strap iron inductor; use restricted. 236.532... Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Roadway § 236.532 Strap iron inductor; use restricted. No railroad shall use strap iron inductor or other roadway element...

  14. 49 CFR 236.532 - Strap iron inductor; use restricted.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Strap iron inductor; use restricted. 236.532... Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Roadway § 236.532 Strap iron inductor; use restricted. No railroad shall use strap iron inductor or other roadway element...

  15. Fireworthiness of transport aircraft interior systems

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.

    1982-01-01

    The fire worthiness of air transport interiors was evaluated. The effect of interior systems on the survival of passengers and crew in an uncontrolled transport aircraft fire is addressed. Modification of aircraft interior subsystem components which provide improvements in aircraft fire safety are examined. Three specific subsystem components, interior panels, seats and windows, offer the most immediate and highest payoff by modifying interior materials of existing aircrafts. It is shown that the new materials modifications reduce the fire hazards because of significant reduction in their characteristic flame spread, heat release, and smoke and toxic gas emissions.

  16. Space transportation systems for the future

    NASA Technical Reports Server (NTRS)

    Lee, T. J.

    1988-01-01

    A summary of the potential requirements, proposed configurations, inherent development problems, and technologies to be considered for future space transportation systems is presented. Such systems will include the improved Space Shuttle, new and derivative cargo launch vehicles, new propulsion systems, orbital transfer and maneuvering vehicles, and a second-generation Space Shuttle. It is concluded that more efficient and capable systems can be developed by placing strong emphasis on high reliability, safety, and improved ground and flight operations. These improvements can result from the introduction of advanced technologies and vehicles designed for operations and maintainability with the flexibility to adapt to mission needs.

  17. Role of the twin-arginine translocase (tat) system in iron uptake in Listeria monocytogenes.

    PubMed

    Tiwari, Kiran B; Birlingmair, Jacob; Wilkinson, Brian J; Jayaswal, Radheshyam K

    2015-02-01

    The twin-arginine translocase (Tat) complex is a unique system that translocates folded proteins across the cytoplasmic membrane. In this study, the Tat transporter system in Listeria monocytogenes was characterized to determine the role of Tat in the iron uptake pathway. A putative tatAC operon, containing conserved Fur-binding sequences in the promoter region, has been predicted to encode Tat-translocase components. Another operon, fepCAB, with a putative Fur-binding sequence in the promoter, close to TatAC, was identified in the complementary strands of L. monocytogenes. Electrophoretic mobility shift assay showed that the listerial Fur-repressor binds to the promoter of the tatAC operon, suggesting that tat is under Fur regulation. Using a heterologous system in a reporter assay, FepB was translocated across the membrane. Mutations in tatC and fepB were constructed to determine the roles of Tat and FepB, respectively. In a whole-cell ferric reductase assay, the fepB and tatC mutants were found to have reduced levels of ferric reductase activities compared with those of the isogenic parent strain. Although ferric reductase activity has been demonstrated in Listeria, a conventional ferric reductase encoding sequence does not appear to be present in its genome. Hence, we propose that fepB encodes a ferric reductase enzyme, which is translocated by the Tat-translocase system onto the bacterial cell surface, and plays an important role in the reductive iron uptake process in L. monocytogenes. PMID:25416690

  18. The Palm Desert Renewable Hydrogen Transportation System

    SciTech Connect

    Lehman, P.

    1996-10-01

    The present paper describes, for purposes of the Department of Energy (DoE) Hydrogen Program Review, Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period January through June 1996. This period represents the first six months of the three year project. The estimated cost over three years is $3.9M, $1.859M of which is funded by the DoE ($600 k for fiscal year 1996). The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project will demonstrate the practical utility of hydrogen as a transportation fuel and proton exchange membrane (PEM) fuel cells as vehicle power plants. This transportation system will be developed in the City of Palm Desert in southern California and will include a fleet of 8 fuel cell powered vehicles, solar and wind powered hydrogen generating facilities, a consumer-ready refueling station, and a service infrastructure. The system holds the promise of a clean environment and an energy supply that is predictable, domestic, safe, and abundant. During, the first part of 1996 SERC has nearly completed building a fuel cell powered personal utility vehicle, which features an upgraded safety and computer system; they have designed and built a test bench that is able to mimic golf cart loads and test fuel cell system auxiliary components; they have begun the design of the solar hydrogen generating station; they have worked with Sandia National Laboratory on an advanced metal hydride storage system; they have increased the power density of the SERC fuel cell by as much as 50%; and they have reached out to the rest of the world with a new fact sheet, world wide web pages, a press release, video footage for a television program. and instruction within the community.

  19. Evolutionary analysis of iron (Fe) acquisition system in Marchantia polymorpha.

    PubMed

    Lo, Jing-Chi; Tsednee, Munkhtsetseg; Lo, Ying-Chu; Yang, Shun-Chung; Hu, Jer-Ming; Ishizaki, Kimitsune; Kohchi, Takayuki; Lee, Der-Chuen; Yeh, Kuo-Chen

    2016-07-01

    To acquire appropriate iron (Fe), vascular plants have developed two unique strategies, the reduction-based strategy I of nongraminaceous plants for Fe(2+) and the chelation-based strategy II of graminaceous plants for Fe(3+) . However, the mechanism of Fe uptake in bryophytes, the earliest diverging branch of land plants and dominant in gametophyte generation is less clear. Fe isotope fractionation analysis demonstrated that the liverwort Marchantia polymorpha uses reduction-based Fe acquisition. Enhanced activities of ferric chelate reductase and proton ATPase were detected under Fe-deficient conditions. However, M. polymorpha did not show mugineic acid family phytosiderophores, the key components of strategy II, or the precursor nicotianamine. Five ZIP (ZRT/IRT-like protein) homologs were identified and speculated to be involved in Fe uptake in M. polymorpha. MpZIP3 knockdown conferred reduced growth under Fe-deficient conditions, and MpZIP3 overexpression increased Fe content under excess Fe. Thus, a nonvascular liverwort, M. polymorpha, uses strategy I for Fe acquisition. This system may have been acquired in the common ancestor of land plants and coopted from the gametophyte to sporophyte generation in the evolution of land plants. PMID:26948158

  20. Metallographic characterization of hypoeutectic martensitic white cast irons: Fe-C-Cr system

    SciTech Connect

    Pero-Sanz, J.A.; Plaza, D.; Verdeja, J.I.; Asensio, J.

    1999-07-01

    High wear resistance and low cost are among the most appreciated properties for the non-alloyed white cast irons. Their toughness levels, however, are poor. An attempt to optimize the compromise between abrasive wear resistance and impact toughness could be reached through the use of low-alloy Ni-Hard cast irons satisfying the majority of mining applications in mineral crushing, classification, and transportation. The present work, based on microstructural considerations, points out some of the limitations in the use of Ni-Hard martensitic cast irons, in contrast to the advantages brought about by the use of white cast irons of non-ledeburitic matrix with high chromium content with respect to the wear resistance and toughness level.

  1. Liners for ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  2. Isolation and Characterization of FecA- and FeoB-Mediated Iron Acquisition Systems of the Spirochete Leptospira biflexa by Random Insertional Mutagenesis

    PubMed Central

    Louvel, Hélène; Saint Girons, Isabelle; Picardeau, Mathieu

    2005-01-01

    The specific mechanisms by which Leptospira spp. acquire iron from their ecological niches are unknown. A major factor contributing to our ignorance of spirochetal biology is the lack of methods for genetic analysis of these organisms. In this study, we have developed a system for random transposon mutagenesis of Leptospira biflexa using a mariner transposon, Himar1. To demonstrate the validity of Himar1 in vivo transposon mutagenesis in L. biflexa, a screen of mutants for clones impaired in amino acid biosynthesis was first performed, enabling the identification of tryptophan and glutamate auxotrophs. To investigate iron transporters, 2,000 L. biflexa transposon mutants were screened onto media with and without hemin, thus allowing the identification of five hemin-requiring mutants, and the putative genes responsible for this phenotype were identified. Three mutants had distinct insertions in a gene encoding a protein which shares homology with the TonB-dependent receptor FecA, involved in ferric citrate transport. We also identified two mutants with a Himar1 insertion into a feoB-like gene, the product of which is required for ferrous iron uptake in many bacterial organisms. Interestingly, the growth inhibition exhibited by the fecA and feoB mutants was relieved by deferoxamine, suggesting the presence of a ferric hydroxamate transporter. These results confirm the importance of iron for the growth of Leptospira and its ability to use multiple iron sources. PMID:15838052

  3. A circulation mud system used in long-distance ore pipeline transportation

    NASA Astrophysics Data System (ADS)

    Li, Youling; Wang, Hua

    2011-10-01

    The long-distance ore pipeline transportation is a new and high-tech industry, which is non-polluting, zero emissions, and in line with the strategy needs of national low-carbon economy and energy demand reduction. The long-distance ore transport needs multi-station pumping station transportation, however, the low concentration slurry that does not match the technological requirements, such as slurry head and so on. This paper designs a circulation mud system used in long-distance pipeline transportation, which solves the following issues: (1) the technical pool can't storage water during the period of cleaning mine, so can't meet the needs of non-suspension production; (2) slurry spot cool dry easy to bring serious environmental pollution; (3) the refined iron dug out from the process pool need transport to iron and steel industry, trucking transportation needs a huge costs. Experience has shown that the system effectively improve the production efficiency and propagate.

  4. Thermal protection systems for hypersonic transport vehicles

    NASA Astrophysics Data System (ADS)

    Reich, G.; Hinger, J.; Huchler, M.

    1990-07-01

    Thermal protection systems (TPS) for hypersonic transport vehicles are described and evaluated. During the flight through the atmosphere moderate to high aerodynamic heating rates with corresponding high surface temperatures are generated. Therefore, a reliable light-weight but effective TPS is required, that limits the heat transfer into the central fuselage with the liquid hydrogen tank and that prevents the penetration of the temperature peak during stage separation to the load carrying structure. The heat transfer modes in the insulation are solid conduction, gas convection and radiation. Thermal protection systems based on different phenomena to reduce the heat transfer, like vacuum shingles, inert gas filled shingles, microporous insulations and multiwall structures, are described. It is demonstrated that microporous and multiwall insulations are efficient, light weight and reliable TPSs for future hypersonic transportation systems.

  5. DTS: The NOAO Data Transport System

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, M.; Semple, T.

    2014-05-01

    The NOAO Data Transport System (DTS) provides high-throughput, reliable, data transfer between telescopes, pipelines and archive centers located in the Northern and Southern hemispheres. It is a distributed application using XML-RPC for command and control, and either parallel-TCP or UDT protocols for bulk data transport. The system is data-agnostic, allowing arbitrary files or directories to be moved using the same infrastructure. Data paths are configurable in the system by connecting nodes as the source or destination of data in a queue. Each leg of a data path may be configured independently based on the network environment between the sites. A queueing model is currently implemented to manage the automatic movement of data, a streaming model is planned to support arbitrarily large transfers (e.g. as in a disk recovery scenario) or to provide a 'pass-thru' interface to minize overheads. A web-based monitor allows anyone to get a graphical overview of the DTS system as it runs, operators will be able to control individual nodes in the system. Through careful tuning of the network paths DTS is able to achieve in excess of 80-percent of the nominal wire speed using only commodity networks, making it ideal for long-haul transport of large volumes of data.

  6. 360 degree vision system: opportunities in transportation

    NASA Astrophysics Data System (ADS)

    Thibault, Simon

    2007-09-01

    Panoramic technologies are experiencing new and exciting opportunities in the transportation industries. The advantages of panoramic imagers are numerous: increased areas coverage with fewer cameras, imaging of multiple target simultaneously, instantaneous full horizon detection, easier integration of various applications on the same imager and others. This paper reports our work on panomorph optics and potential usage in transportation applications. The novel panomorph lens is a new type of high resolution panoramic imager perfectly suitable for the transportation industries. The panomorph lens uses optimization techniques to improve the performance of a customized optical system for specific applications. By adding a custom angle to pixel relation at the optical design stage, the optical system provides an ideal image coverage which is designed to reduce and optimize the processing. The optics can be customized for the visible, near infra-red (NIR) or infra-red (IR) wavebands. The panomorph lens is designed to optimize the cost per pixel which is particularly important in the IR. We discuss the use of the 360 vision system which can enhance on board collision avoidance systems, intelligent cruise controls and parking assistance. 360 panoramic vision systems might enable safer highways and significant reduction in casualties.

  7. Haemolysis and Perturbations in the Systemic Iron Metabolism of Suckling, Copper-Deficient Mosaic Mutant Mice – An Animal Model of Menkes Disease

    PubMed Central

    Lenartowicz, Małgorzata; Starzyński, Rafał R.; Krzeptowski, Wojciech; Grzmil, Paweł; Bednarz, Aleksandra; Ogórek, Mateusz; Pierzchała, Olga; Staroń, Robert; Gajowiak, Anna; Lipiński, Paweł

    2014-01-01

    The biological interaction between copper and iron is best exemplified by the decreased activity of multicopper ferroxidases under conditions of copper deficiency that limits the availability of iron for erythropoiesis. However, little is known about how copper deficiency affects iron homeostasis through alteration of the activity of other copper-containing proteins, not directly connected with iron metabolism, such as superoxide dismutase 1 (SOD1). This antioxidant enzyme scavenges the superoxide anion, a reactive oxygen species contributing to the toxicity of iron via the Fenton reaction. Here, we analyzed changes in the systemic iron metabolism using an animal model of Menkes disease: copper-deficient mosaic mutant mice with dysfunction of the ATP7A copper transporter. We found that the erythrocytes of these mutants are copper-deficient, display decreased SOD1 activity/expression and have cell membrane abnormalities. In consequence, the mosaic mice show evidence of haemolysis accompanied by haptoglobin-dependent elimination of haemoglobin (Hb) from the circulation, as well as the induction of haem oxygenase 1 (HO1) in the liver and kidney. Moreover, the hepcidin-ferroportin regulatory axis is strongly affected in mosaic mice. These findings indicate that haemolysis is an additional pathogenic factor in a mouse model of Menkes diseases and provides evidence of a new indirect connection between copper deficiency and iron metabolism. PMID:25247420

  8. Transport and reaction of iron and iron stable isotopes in glacial meltwaters on Svalbard near Kongsfjorden: From rivers to estuary to ocean

    NASA Astrophysics Data System (ADS)

    Zhang, Ruifeng; John, Seth G.; Zhang, Jing; Ren, Jingling; Wu, Ying; Zhu, Zhuoyi; Liu, Sumei; Zhu, Xunchi; Marsay, Chris M.; Wenger, Fred

    2015-08-01

    Glacial meltwater has been suggested as a significant source of potentially bioavailable iron to the oceans. However, the supply of dissolved iron (dFe) in glacial meltwaters is poorly constrained as few sites have been studied, and because the chemical processing of Fe during transport from glaciers to the adjacent coastal ocean is not well understood. In order to better constrain glacial fluxes of dFe to the ocean, iron concentrations, iron stable isotopes (δ56Fe), and other supporting chemical and physical measurements were made along a ∼4 km long glacial meltwater river on Svalbard and in estuarine waters that it flows into. Dissolved iron concentrations in the Bayelva River decreased from a maximum of 734 nM near the glacier to an average value of 116 nM near the mouth of the river. Measurements in the Kongsfjorden estuary suggest that 3 to 10 nM of dFe from the Bayelva River is stabilized in glacial waters by the time it mixes into the ocean. Incubation of Bayelva River waters over two weeks in both the light and dark show similar results, with the majority of dFe being quickly precipitated and 4 to 7 nM Fe stabilized in the dissolved phase. Evidence suggests that Fe is most likely lost from the dissolved phase by aggregation and adsorption of nanoparticulate and colloidal Fe to particles. Dissolved δ56Fe was between - 0.11 ‰ and + 0.09 ‰ for all river samples and did not vary systematically with dFe concentrations. We infer that the Fe is lost from the dissolved phase by a process that fractionates Fe isotopes by less than 0.05‰, indicating that the Fe bonding environment does not change during precipitation. This is consistent with DOC loss that is much faster than predicted photo-oxidation rates, suggesting that DOC is also lost through adsorption and precipitation. Dissolved Fe concentrations in the Bayelva River (15-734 nM), and Fe concentrations which are stabilized in the dissolved phase (4-7 nM) are much lower than some previous estimates of

  9. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    NASA Technical Reports Server (NTRS)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  10. Development of a novel antimicrobial screening system targeting the pyoverdine-mediated iron acquisition system and xenobiotic efflux pumps.

    PubMed

    Sato, Kazuki; Ushioda, Kenichi; Akiba, Keiji; Matsumoto, Yoshimi; Maseda, Hideaki; Ando, Tasuke; Isogai, Emiko; Nakae, Taiji; Yoneyama, Hiroshi

    2015-01-01

    The iron acquisition systems in Pseudomonas aeruginosa are inducible in response to low-iron conditions and important for growth of this organism under iron limitation. OprM is the essential outer membrane subunit of the MexAB-OprM xenobiotic efflux pump. We designed and constructed a new model antimicrobial screening system targeting both the iron-uptake system and xenobiotic efflux pumps. The oprM gene was placed immediately downstream of the ferri-pyoverdine receptor gene, fpvA, in the host lacking chromosomal oprM and the expression of oprM was monitored by an antibiotic susceptibility test under iron depleted and replete conditions. The recombinant cells showed wild-type susceptibility to pump substrate antibiotics, e.g., aztreonam, under iron limitation and became supersusceptible to them under iron repletion, suggesting that expression of oprM is under control of the iron acquisition system. Upon screening of a chemical library comprising 2952 compounds using this strain, a compound-ethyl 2-(1-acetylpiperidine-4-carboxamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate-was found to enhance the efficacy of aztreonam under iron limitation, suggesting that the compound inhibits either the iron acquisition system or the MexAB-OprM efflux pump. This compound was subsequently found to inhibit the growth of wild-type cells in the presence of sublethal amounts of aztreonam, regardless of the presence or absence of dipyridyl, an iron-chelator. The compound was eventually identified to block the function of the MexAB-OprM efflux pump, showing the validity of this new method. PMID:25939068

  11. Effect of PVC and iron materials on Mn(II) deposition in drinking water distribution systems.

    PubMed

    Cerrato, José M; Reyes, Lourdes P; Alvarado, Carmen N; Dietrich, Andrea M

    2006-08-01

    Polyvinyl chloride (PVC) and iron pipe materials differentially impacted manganese deposition within a drinking water distribution system that experiences black water problems because it receives soluble manganese from a surface water reservoir that undergoes biogeochemical cycling of manganese. The water quality study was conducted in a section of the distribution system of Tegucigalpa, Honduras and evaluated the influence of iron and PVC pipe materials on the concentrations of soluble and particulate iron and manganese, and determined the composition of scales formed on PVC and iron pipes. As expected, total Fe concentrations were highest in water from iron pipes. Water samples obtained from PVC pipes showed higher total Mn concentrations and more black color than that obtained from iron pipes. Scanning electron microscopy demonstrated that manganese was incorporated into the iron tubercles and thus not readily dislodged from the pipes by water flow. The PVC pipes contained a thin surface scale consisting of white and brown layers of different chemical composition; the brown layer was in contact with the water and contained 6% manganese by weight. Mn composed a greater percentage by weight of the PVC scale than the iron pipe scale; the PVC scale was easily dislodged by flowing water. This research demonstrates that interactions between water and the infrastructure used for its supply affect the quality of the final drinking water. PMID:16765409

  12. Small Aircraft Transportation System Concept and Technologies

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Durham, Michael H.; Tarry, Scott E.

    2005-01-01

    This paper summarizes both the vision and the early public-private collaborative research for the Small Aircraft Transportation System (SATS). The paper outlines an operational definition of SATS, describes how SATS conceptually differs from current air transportation capabilities, introduces four SATS operating capabilities, and explains the relation between the SATS operating capabilities and the potential for expanded air mobility. The SATS technology roadmap encompasses on-demand, widely distributed, point-to-point air mobility, through hired-pilot modes in the nearer-term, and through self-operated user modes in the farther-term. The nearer-term concept is based on aircraft and airspace technologies being developed to make the use of smaller, more widely distributed community reliever and general aviation airports and their runways more useful in more weather conditions, in commercial hired-pilot service modes. The farther-term vision is based on technical concepts that could be developed to simplify or automate many of the operational functions in the aircraft and the airspace for meeting future public transportation needs, in personally operated modes. NASA technology strategies form a roadmap between the nearer-term concept and the farther-term vision. This paper outlines a roadmap for scalable, on-demand, distributed air mobility technologies for vehicle and airspace systems. The audiences for the paper include General Aviation manufacturers, small aircraft transportation service providers, the flight training industry, airport and transportation authorities at the Federal, state and local levels, and organizations involved in planning for future National Airspace System advancements.

  13. Road Transportable Analytical Laboratory (RTAL) system

    SciTech Connect

    Finger, S.M.

    1995-10-01

    The goal of the Road Transportable Analytical Laboratory (RTAL) Project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system has been designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganic compounds. The laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific needs.

  14. Human Transportation System (HTS) study, volume 2

    NASA Technical Reports Server (NTRS)

    Lance, N.; Geyer, M. S.; Gaunce, M. T.

    1993-01-01

    This report summarizes work completed under the Human Transportation System Study. This study was conducted by the New Initiatives Office at JSC with the technical support of Boeing, General Dynamics, Lockheed, McDonnell-Douglas, Martin Marietta, and Rockwell. The study was designed to generate information on determining the appropriate path to follow for new system development to meet the Nation's space transportation needs. The study evaluates 18 transportation architecture options using a parametric set of mission requirements. These options include use of current systems (e.g., Shuttle, Titan, etc. ) as well as proposed systems (e.g., PLS, Single-Stage-to-Orbit, etc.) to assess the impact of various considerations, such as the cost of alternate access, or the benefit of separating people and cargo. The architecture options are compared to each other with six measurable evaluation criteria or attributes. They are: funding profile, human safety, probability of mission success, architecture cost risk, launch schedule confidence, and environmental impact. Values for these attributes are presented for the architecture options, with pertinent conclusions and recommendations.

  15. 77 FR 24559 - Marine Transportation System National Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... System National Advisory Council (MTSNAC) will hold a meeting to discuss recommendations to the Secretary on the integration of marine highways into the national transportation system and the development of... Maritime Administration Marine Transportation System National Advisory Council ACTION: National...

  16. Responsiveness of Trichomonas vaginalis to iron concentrations: evidence for a post-transcriptional iron regulation by an IRE/IRP-like system.

    PubMed

    Torres-Romero, J C; Arroyo, R

    2009-12-01

    Trichomonas vaginalis has high iron-dependency, favoring its growth and multiplication in culture. Iron also regulates some of the trichomonal virulence properties by yet unknown mechanisms. Iron is an essential but potentially toxic metal for the majority of organisms. Thus, its concentration must be tightly regulated within the cell. In mammals, the iron homeostasis is mainly regulated at the post-transcriptional level by a well known mechanism mediated by the binding of iron regulatory proteins (IRP1 and IRP2) to hairpin-loop structures, dubbed iron-responsive elements (IREs), localized in the untranslated regions (UTRs) of target mRNAs. The knowledge of iron regulation in T. vaginalis is still very limited. An iron-responsive promoter and other regulatory elements in the 5'-UTR of the ap65-1 gene were identified as a mechanism for the positive transcriptional regulation of trichomonad genes by iron. Recently, two IRE-like hairpin-loop structures in mRNAs of differentially iron-regulated TVCP4 and TVCP12 cysteine proteinases, as well as IRP-like trichomonad proteins were identified in T. vaginalis, suggesting the existence in this protozoan of a post-transcriptional iron regulatory mechanism by an IRE/IRP-like system. The responsiveness of T. vaginalis to distinct iron concentrations was examined here. Also, the comparison of the atypical IRE-like sequences of T. vaginalis with the consensus IRE and other putative IRE sequences present in parasite and bacteria mRNAs suggest that these trichomonad IRE-like sequences might be the ancestral forms of the RNA stem-loop structures of the IRE/IRP system. PMID:19539055

  17. Low energy beam transport system developments

    SciTech Connect

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  18. Structures of the multicomponent Rieske non-heme iron toluene 2, 3-dioxygenase enzyme system

    SciTech Connect

    Friemann, Rosmarie; Lee, Kyoung; Brown, Eric N.; Gibson, David T.; Eklund, Hans; Ramaswamy, S.

    2009-01-01

    The crystal structures of the three-component toluene 2, 3-dioxygenase system provide a model for electron transfer among bacterial Rieske non-heme iron dioxygenases. Bacterial Rieske non-heme iron oxygenases catalyze the initial hydroxylation of aromatic hydrocarbon substrates. The structures of all three components of one such system, the toluene 2, 3-dioxygenase system, have now been determined. This system consists of a reductase, a ferredoxin and a terminal dioxygenase. The dioxygenase, which was cocrystallized with toluene, is a heterohexamer containing a catalytic and a structural subunit. The catalytic subunit contains a Rieske [2Fe–2S] cluster and mononuclear iron at the active site. This iron is not strongly bound and is easily removed during enzyme purification. The structures of the enzyme with and without mononuclear iron demonstrate that part of the structure is flexible in the absence of iron. The orientation of the toluene substrate in the active site is consistent with the regiospecificity of oxygen incorporation seen in the product formed. The ferredoxin is Rieske type and contains a [2Fe–2S] cluster close to the protein surface. The reductase belongs to the glutathione reductase family of flavoenzymes and consists of three domains: an FAD-binding domain, an NADH-binding domain and a C-terminal domain. A model for electron transfer from NADH via FAD in the reductase and the ferredoxin to the terminal active-site mononuclear iron of the dioxygenase is proposed.

  19. Controlled ecological life support system: Transportation analysis

    NASA Technical Reports Server (NTRS)

    Gustan, E.; Vinopal, T.

    1982-01-01

    This report discusses a study utilizing a systems analysis approach to determine which NASA missions would benefit from controlled ecological life support system (CELSS) technology. The study focuses on manned missions selected from NASA planning forecasts covering the next half century. Comparison of various life support scenarios for the selected missions and characteristics of projected transportation systems provided data for cost evaluations. This approach identified missions that derived benefits from a CELSS, showed the magnitude of the potential cost savings, and indicated which system or combination of systems would apply. This report outlines the analytical approach used in the evaluation, describes the missions and systems considered, and sets forth the benefits derived from CELSS when applicable.

  20. Heat transport system, method and material

    DOEpatents

    Musinski, D.L.

    1987-04-28

    A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.

  1. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize

    PubMed Central

    2013-01-01

    Background Zinc (Zn) and iron (Fe) are essential micronutrients for plant growth and development, their deficiency or excess severely impaired physiological and biochemical reactions of plants. Therefore, a tightly controlled zinc and iron uptake and homeostasis network has been evolved in plants. The Zinc-regulated transporters, Iron-regulated transporter-like Proteins (ZIP) are capable of uptaking and transporting divalent metal ion and are suggested to play critical roles in balancing metal uptake and homeostasis, though a detailed analysis of ZIP gene family in maize is still lacking. Results Nine ZIP-coding genes were identified in maize genome. It was revealed that the ZmZIP proteins share a conserved transmembrane domain and a variable region between TM-3 and TM-4. Transiently expression in onion epidermal cells revealed that all ZmZIP proteins were localized to the endoplasmic reticulum and plasma membrane. The yeast complementation analysis was performed to test the Zn or Fe transporter activity of ZmZIP proteins. Expression analysis showed that the ZmIRT1 transcripts were dramatically induced in response to Zn- and Fe-deficiency, though the expression profiles of other ZmZIP changed variously. The expression patterns of ZmZIP genes were observed in different stages of embryo and endosperm development. The accumulations of ZmIRT1 and ZmZIP6 were increased in the late developmental stages of embryo, while ZmZIP4 was up-regulated during the early development of embryo. In addition, the expression of ZmZIP5 was dramatically induced associated with middle stage development of embryo and endosperm. Conclusions These results suggest that ZmZIP genes encode functional Zn or Fe transporters that may be responsible for the uptake, translocation, detoxification and storage of divalent metal ion in plant cells. The various expression patterns of ZmZIP genes in embryo and endosperm indicates that they may be essential for ion translocation and storage during

  2. Terrestrial Iron Hot Springs as Analogs for Ancient Martian Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Parenteau, M. N.; Farmer, J. D.; Jahnke, L. L.; Cady, S. L.

    2010-04-01

    We have been studying a subaerial terrestrial iron hot spring as an potential analog for hydrothermal systems on Mars. In this multidisciplinary study, we have characterized the aqueous geochemistry, mineralogy, and microbial biosignatures at Chocolate Pots hot springs.

  3. Cargo transportation by airships: A systems study

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Dalton, C.

    1976-01-01

    A systems engineering study of a lighter than air airship transportation system was conducted. The feasibility of the use of airships in hauling cargo was demonstrated. Social, legal, environmental and political factors were considered as well as the technical factors necessary to design an effective airship transportation system. In order to accomplish an effective airship transportation program two phases of implementation were recommended. Phase I would involve a fleet of rigid airships of 3.5 million cubic feet displacement capable of carrying 25 tons of cargo internal to the helium-filled gas bag. The Phase I fleet would demonstrate the economic and technical feasibility of modern-day airships while providing a training capability for the construction and operation of larger airships. The Phase II portion would be a fleet of rigid airships of 12 million cubic feet displacement capable of carrying a cargo of 100 tons a distance of 2,000 miles at a cruising speed of 60 mph. An economic analysis is given for a variety of missions for both Phase I and Phase II airships.

  4. The Palm Desert renewable [hydrogen] transportation system

    SciTech Connect

    Chamberlin, C.E.; Lehman, P.

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  5. Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis

    PubMed Central

    Chen, Wen-Jen; Kuo, Tzu-Yen; Hsieh, Feng-Chia; Chen, Pi-Yu; Wang, Chang-Sheng; Shih, Yu-Ling; Lai, Ying-Mi; Liu, Je-Ruei; Yang, Yu-Liang; Shih, Ming-Che

    2016-01-01

    Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most destructive rice diseases worldwide. Therefore, in addition to breeding disease-resistant rice cultivars, it is desirable to develop effective biocontrol agents against Xoo. Here, we report that a soil bacterium Pseudomonas taiwanensis displayed strong antagonistic activity against Xoo. Using matrix-assisted laser desorption/ionization imaging mass spectrometry, we identified an iron chelator, pyoverdine, secreted by P. taiwanensis that could inhibit the growth of Xoo. Through Tn5 mutagenesis of P. taiwanensis, we showed that mutations in genes that encode components of the type VI secretion system (T6SS) as well as biosynthesis and maturation of pyoverdine resulted in reduced toxicity against Xoo. Our results indicated that T6SS is involved in the secretion of endogenous pyoverdine. Mutations in T6SS component genes affected the secretion of mature pyoverdine from the periplasmic space into the extracellular medium after pyoverdine precursor is transferred to the periplasm by the inner membrane transporter PvdE. In addition, we also showed that other export systems, i.e., the PvdRT-OpmQ and MexAB-OprM efflux systems (for which there have been previous suggestions of involvement) and the type II secretion system (T2SS), are not involved in pyoverdine secretion. PMID:27605490

  6. Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis.

    PubMed

    Chen, Wen-Jen; Kuo, Tzu-Yen; Hsieh, Feng-Chia; Chen, Pi-Yu; Wang, Chang-Sheng; Shih, Yu-Ling; Lai, Ying-Mi; Liu, Je-Ruei; Yang, Yu-Liang; Shih, Ming-Che

    2016-01-01

    Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most destructive rice diseases worldwide. Therefore, in addition to breeding disease-resistant rice cultivars, it is desirable to develop effective biocontrol agents against Xoo. Here, we report that a soil bacterium Pseudomonas taiwanensis displayed strong antagonistic activity against Xoo. Using matrix-assisted laser desorption/ionization imaging mass spectrometry, we identified an iron chelator, pyoverdine, secreted by P. taiwanensis that could inhibit the growth of Xoo. Through Tn5 mutagenesis of P. taiwanensis, we showed that mutations in genes that encode components of the type VI secretion system (T6SS) as well as biosynthesis and maturation of pyoverdine resulted in reduced toxicity against Xoo. Our results indicated that T6SS is involved in the secretion of endogenous pyoverdine. Mutations in T6SS component genes affected the secretion of mature pyoverdine from the periplasmic space into the extracellular medium after pyoverdine precursor is transferred to the periplasm by the inner membrane transporter PvdE. In addition, we also showed that other export systems, i.e., the PvdRT-OpmQ and MexAB-OprM efflux systems (for which there have been previous suggestions of involvement) and the type II secretion system (T2SS), are not involved in pyoverdine secretion. PMID:27605490

  7. Next generation: In-space transportation system(s)

    NASA Technical Reports Server (NTRS)

    Huffaker, Fredrick; Redus, Jerry; Kelley, David L.

    1991-01-01

    The development of the next generation In-Space Transportation System presents a unique challenge to the design of a propulsion system for the Space Exploration Initiative (SEI). Never before have the requirements for long-life, multiple mission use, space basing, high reliability, man-rating, and minimum maintenance come together with performance in one system that must protect the lives of space travelers, support the mission logistics needs, and do so at an acceptable cost. The challenge that is presented is to quantify the bounds of these requirements. The issue is one of degree. The length of acceptable life in space, the time it takes for reuse to pay off, and the degree to which space basing is practical (full, partial, or expended) are the issues that determine the reusable bounds of a design and include dependability, contingency capabilities, resilency, and minimum dependence on a maintenance node in preparation for and during a mission. Missions to planet earth, other non-NASA missions, and planetary missions will provide important but less demanding requirements for the transportation systems of the future. The mission proposed for the SEI require a family of transportation vehicles to meet the requirements for establishing a permanent human presence on the Moon and eventually on Mars. Specialized vehicles are needed to accomplish the different phases of each mission. These large scale missions require assembly in space and will provide the greatest usage of the planned integrated transportation system. The current approach to defining the In-Space Transportation System for the SEI Moon missions with later Mars mission applications is presented. Several system development options, propulsion concepts, current/proposed activities are reviewed, and key propulsion design criteria, issues, and technology challenges for the next generation In-Space Transportation System(s) are outlined.

  8. Factors Influencing the Diversity of Iron Uptake Systems in Aquatic Microorganisms

    PubMed Central

    Desai, Dhwani K.; Desai, Falguni D.; LaRoche, Julie

    2012-01-01

    Iron (Fe) is an essential micronutrient for many processes in all living cells. Dissolved Fe (dFe) concentrations in the ocean are of the order of a few nM, and Fe is often a factor limiting primary production. Bioavailability of Fe in aquatic environments is believed to be primarily controlled through chelation by Fe-binding ligands. Marine microbes have evolved different mechanisms to cope with the scarcity of bioavailable dFe. Gradients in dFe concentrations and diversity of the Fe-ligand pool from coastal to open ocean waters have presumably imposed selection pressures that should be reflected in the genomes of microbial communities inhabiting the pelagic realm. We applied a hidden Markov model (HMM)-based search for proteins related to cellular iron metabolism, and in particular those involved in Fe uptake mechanisms in 164 microbial genomes belonging to diverse taxa and occupying different aquatic niches. A multivariate statistical approach demonstrated that in phototrophic organisms, there is a clear influence of the ecological niche on the diversity of Fe uptake systems. Extending the analyses to the metagenome database from the Global Ocean Sampling expedition, we demonstrated that the Fe uptake and homeostasis mechanisms differed significantly across marine niches defined by temperatures and dFe concentrations, and that this difference was linked to the distribution of microbial taxa in these niches. Using the dN/dS ratios (which signify the rate of non-synonymous mutations) of the nucleotide sequences, we identified that genes encoding for TonB, Ferritin, Ferric reductase, IdiA, ZupT, and Fe2+ transport proteins FeoA and FeoB were evolving at a faster rate (positive selection pressure) while genes encoding ferrisiderophore, heme and Vitamin B12 uptake systems, siderophore biosynthesis, and IsiA and IsiB were under purifying selection pressure (evolving slowly). PMID:23087680

  9. Kinetic modeling of pH-dependent antimony (V) sorption and transport in iron oxide-coated sand.

    PubMed

    Cai, Yongbing; Li, Lulu; Zhang, Hua

    2015-11-01

    Understanding the mechanisms and kinetics controlling the retention and transport of antimony (Sb) is prerequisite for evaluating the risk of groundwater contamination by the toxic element. In this study, kinetic batch and saturated miscible displacement experiments were performed to investigate effects of protonation-deprotonation reactions on sorption-desorption and transport of Sb(V) in iron oxide-coated sand (IOCS). Results clearly demonstrated that Sb(V) sorption was highly nonlinear and time dependent, where both sorption capacity and kinetic rates decreased with increasing solution pH. Breakthrough curves (BTCs) obtained at different solution pH exhibited that mobility of Sb(V) were higher under neutral to alkaline condition than under acidic condition. Because of the nonlinear and non-equilibrium nature of Sb(V) retention and transport, multi-reaction models (MRM) with equilibrium and kinetic sorption expressions were utilized successfully to simulate the experiment data. Equilibrium distribution coefficient (Ke) and reversible kinetic retention parameters (k1 and k2) of both kinetic sorption and transport experiment showed marked decrease as pH increased from 4.0 to 7.5. Surface complexation is suggested as the dominant mechanism for the observed pH-dependent phenomena, which need to be incorporated into the kinetic models to accurately simulate the reactive transport of Sb(V) in vadose zone and aquifers. PMID:26291756

  10. High Energy Particle Transport Code System.

    Energy Science and Technology Software Center (ESTSC)

    2003-12-17

    Version 00 NMTC/JAM is an upgraded version of the code CCC-694/NMTC-JAERI97, which was developed in 1982 at JAERI and is based on the CCC-161/NMTC code system. NMTC/JAM simulates high energy nuclear reactions and nuclear meson transport processes. The applicable energy range of NMTC/JAM was extended in principle up to 200 GeV for nucleons and mesons by introducing the high energy nuclear reaction code Jet-Aa Microscopic (JAM) for the intra-nuclear cascade part. For the evaporation andmore » fission process, a new model, GEM, can be used to describe the light nucleus production from the excited residual nucleus. According to the extension of the applicable energy, the nucleon-nucleus non-elastic, elastic and differential elastic cross section data were upgraded. In addition, the particle transport in a magnetic field was implemented for beam transport calculations. Some new tally functions were added, and the format of input and output of data is more user friendly. These new calculation functions and utilities provide a tool to carry out reliable neutronics study of a large scale target system with complex geometry more accurately and easily than with the previous model. It implements an intranuclear cascade model taking account of the in-medium nuclear effects and the preequilibrium calculation model based on the exciton one. For treating the nucleon transport process, the nucleon-nucleus cross sections are revised to those derived by the systematics of Pearlstein. Moreover, the level density parameter derived by Ignatyuk is included as a new option for particle evaporation calculation. A geometry package based on the Combinatorial Geometry with multi-array system and the importance sampling technique is implemented in the code. Tally function is also employed for obtaining such physical quantities as neutron energy spectra, heat deposition and nuclide yield without editing a history file. The code can simulate both the primary spallation reaction and the

  11. Miniature Heat Transport System for Nanosatellite Technology

    NASA Technical Reports Server (NTRS)

    Douglas, Donya M,

    1999-01-01

    The scientific understanding of key physical processes between the Sun and the Earth require simultaneous measurements from many vantage points in space. Nano-satellite technologies will enable a class of constellation missions for the NASA Space Science Sun-Earth Connections. This recent emphasis on the implementation of smaller satellites leads to a requirement for development of smaller subsystems in several areas. Key technologies under development include: advanced miniaturized chemical propulsion; miniaturized sensors; highly integrated, compact electronics; autonomous onboard and ground operations; miniatures low power tracking techniques for orbit determination; onboard RF communications capable of transmitting data to the ground from far distances; lightweight efficient solar array panels; lightweight, high output battery cells; lightweight yet strong composite materials for the nano-spacecraft and deployer-ship structures. These newer smaller systems may have higher power densities and higher thermal transport requirements than seen on previous small satellites. Furthermore, the small satellites may also have a requirement to maintain thermal control through extended earth shadows, possibly up to 8 hours long. Older thermal control technology, such as heaters, thermostats, and heat pipes, may not be sufficient to meet the requirements of these new systems. Conversely, a miniature two-phase heat transport system (Mini-HTS) such as a Capillary Pumped Loop (CPL) or Loop Heat Pipe (LBP) is a viable alternative. A Mini-HTS can provide fine temperature control, thermal diode action, and a highly efficient means of heat transfer. The Mini-HTS would have power capabilities in the range of tens of watts or less and provide thermal control over typical spacecraft ranges. The Mini-HTS would allow the internal portion of the spacecraft to be thermally isolated from the external radiator, thus protecting the internal components from extreme cold temperatures during an

  12. Reactive solute transport in an acidic stream: Experimental pH increase and simulation of controls on pH, aluminum, and iron

    USGS Publications Warehouse

    Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.

    1996-01-01

    Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions were controlled only by equilibrium chemistry. Temporal variation in relative rates of photoreduction and oxidation influenced iron behavior. Kinetic limitations on ferrous iron oxidation and hydrous oxide precipitation and the effects of these limitations on field filtration were evident. Kinetic restraints also characterized interaction between the water column and the stream bed, including sorption and desorption of protons from iron oxides at the sediment-water interface and post-injection dissolution of the precipitated aluminum solid phase.

  13. Guar gum solutions for improved delivery of iron particles in porous media (part 2): iron transport tests and modeling in radial geometry.

    PubMed

    Tosco, Tiziana; Gastone, Francesca; Sethi, Rajandrea

    2014-10-01

    In the present work column transport tests were performed in order to study the mobility of guar-gum suspensions of microscale zero-valent iron particles (MZVI) in porous media. The results were analyzed with the purpose of implementing a radial model for the design of full scale interventions. The transport tests were performed using several concentrations of shear thinning guar gum solutions as stabilizer (1.5, 3 and 4g/l) and applying different flow rates (Darcy velocity in the range 1·10(-4) to 2·10(-3)m/s), representative of different distances from the injection point in the radial domain. Empirical relationships, expressing the dependence of the deposition and release parameters on the flow velocity, were derived by inverse fitting of the column transport tests using a modified version of E-MNM1D (Tosco and Sethi, 2010) and the user interface MNMs (www.polito.it/groundwater/software). They were used to develop a comprehensive transport model of MZVI suspensions in radial coordinates, called E-MNM1R, which takes into account the non Newtonian (shear thinning) rheological properties of the dispersant fluid and the porous medium clogging associated with filtration and sedimentation in the porous medium of both MZVI and guar gum residual undissolved particles. The radial model was run in forward mode to simulate the injection of MZVI dispersed in guar gum in conditions similar to those applied in the column transport tests. In a second stage, we demonstrated how the model can be used as a valid tool for the design and the optimization of a full scale intervention. The simulation results indicated that several concurrent aspects are to be taken into account for the design of a successful delivery of MZVI/guar gum slurries via permeation injection, and a compromise is necessary between maximizing the radius of influence of the injection and minimizing the injection pressure, to guarantee a sufficiently homogeneous distribution of the particles around the

  14. Guar gum solutions for improved delivery of iron particles in porous media (Part 2): Iron transport tests and modeling in radial geometry

    NASA Astrophysics Data System (ADS)

    Tosco, Tiziana; Gastone, Francesca; Sethi, Rajandrea

    2014-10-01

    In the present work column transport tests were performed in order to study the mobility of guar-gum suspensions of microscale zero-valent iron particles (MZVI) in porous media. The results were analyzed with the purpose of implementing a radial model for the design of full scale interventions. The transport tests were performed using several concentrations of shear thinning guar gum solutions as stabilizer (1.5, 3 and 4 g/l) and applying different flow rates (Darcy velocity in the range 1 · 10- 4 to 2 · 10- 3 m/s), representative of different distances from the injection point in the radial domain. Empirical relationships, expressing the dependence of the deposition and release parameters on the flow velocity, were derived by inverse fitting of the column transport tests using a modified version of E-MNM1D (Tosco and Sethi, 2010) and the user interface MNMs (www.polito.it/groundwater/software). They were used to develop a comprehensive transport model of MZVI suspensions in radial coordinates, called E-MNM1R, which takes into account the non Newtonian (shear thinning) rheological properties of the dispersant fluid and the porous medium clogging associated with filtration and sedimentation in the porous medium of both MZVI and guar gum residual undissolved particles. The radial model was run in forward mode to simulate the injection of MZVI dispersed in guar gum in conditions similar to those applied in the column transport tests. In a second stage, we demonstrated how the model can be used as a valid tool for the design and the optimization of a full scale intervention. The simulation results indicated that several concurrent aspects are to be taken into account for the design of a successful delivery of MZVI/guar gum slurries via permeation injection, and a compromise is necessary between maximizing the radius of influence of the injection and minimizing the injection pressure, to guarantee a sufficiently homogeneous distribution of the particles around the

  15. Heavy particle transport in sputtering systems

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan

    2015-09-01

    This contribution aims to discuss the theoretical background of heavy particle transport in plasma sputtering systems such as direct current magnetron sputtering (dcMS), high power impulse magnetron sputtering (HiPIMS), or multi frequency capacitively coupled plasmas (MFCCP). Due to inherently low process pressures below one Pa only kinetic simulation models are suitable. In this work a model appropriate for the description of the transport of film forming particles sputtered of a target material has been devised within the frame of the OpenFOAM software (specifically dsmcFoam). The three dimensional model comprises of ejection of sputtered particles into the reactor chamber, their collisional transport through the volume, as well as deposition of the latter onto the surrounding surfaces (i.e. substrates, walls). An angular dependent Thompson energy distribution fitted to results from Monte-Carlo simulations is assumed initially. Binary collisions are treated via the M1 collision model, a modified variable hard sphere (VHS) model. The dynamics of sputtered and background gas species can be resolved self-consistently following the direct simulation Monte-Carlo (DSMC) approach or, whenever possible, simplified based on the test particle method (TPM) with the assumption of a constant, non-stationary background at a given temperature. At the example of an MFCCP research reactor the transport of sputtered aluminum is specifically discussed. For the peculiar configuration and under typical process conditions with argon as process gas the transport of aluminum sputtered of a circular target is shown to be governed by a one dimensional interaction of the imposed and backscattered particle fluxes. The results are analyzed and discussed on the basis of the obtained velocity distribution functions (VDF). This work is supported by the German Research Foundation (DFG) in the frame of the Collaborative Research Centre TRR 87.

  16. Corridor guided transport system utilizing permanent magnet levitation

    SciTech Connect

    Geraghty, J.J.; Poland, A.P.; Lombardi, J.A.

    1995-07-01

    The invention relates to a corridor guided transport system including a guided goods conveyance container utilizing permanent magnet levitation. The transport system of the invention eliminates the need for the wheel and track arrangement presently required by known and utilized conventional train systems and also required by some conventional magnetic levitation transport systems and, as a result, is safer to operate and maintain than either of these known transportation systems.

  17. Hyperspectral range imaging for transportation systems evaluation

    NASA Astrophysics Data System (ADS)

    Bridgelall, Raj; Rafert, J. B.; Atwood, Don; Tolliver, Denver D.

    2016-04-01

    Transportation agencies expend significant resources to inspect critical infrastructure such as roadways, railways, and pipelines. Regular inspections identify important defects and generate data to forecast maintenance needs. However, cost and practical limitations prevent the scaling of current inspection methods beyond relatively small portions of the network. Consequently, existing approaches fail to discover many high-risk defect formations. Remote sensing techniques offer the potential for more rapid and extensive non-destructive evaluations of the multimodal transportation infrastructure. However, optical occlusions and limitations in the spatial resolution of typical airborne and space-borne platforms limit their applicability. This research proposes hyperspectral image classification to isolate transportation infrastructure targets for high-resolution photogrammetric analysis. A plenoptic swarm of unmanned aircraft systems will capture images with centimeter-scale spatial resolution, large swaths, and polarization diversity. The light field solution will incorporate structure-from-motion techniques to reconstruct three-dimensional details of the isolated targets from sequences of two-dimensional images. A comparative analysis of existing low-power wireless communications standards suggests an application dependent tradeoff in selecting the best-suited link to coordinate swarming operations. This study further produced a taxonomy of specific roadway and railway defects, distress symptoms, and other anomalies that the proposed plenoptic swarm sensing system would identify and characterize to estimate risk levels.

  18. An overview of European space transportation systems

    NASA Technical Reports Server (NTRS)

    Lo, R. E.

    1985-01-01

    With the completion of the launch rocket series Ariane 1 to 4, Europe will have reached the same capacity to transport commercial payloads as the USA has with the Space Shuttle and the kick stages which are presently operative. The near term development of these capacities would require Europe to develop a larger launch rocket, Araine 5. Further motivations for this rocket are access to manned spaceflight, the development of an European space station, and the demand for shuttle technology. Shuttle technology is the subject of research being done in France on the winged re-entry vehicle Hermes. Operation of the European space station Columbus will require development of an interorbital transport system to facilitate traffic between the various segments of the space station. All European space transportation systems will have to match their quality to that of the other countries involve in space flight. All areas of development are marked not only by possible cooperation but also by increased competition because of increasing commercialization of space flight.

  19. National Space Transportation System (NSTS) technology needs

    NASA Technical Reports Server (NTRS)

    Winterhalter, David L.; Ulrich, Kimberly K.

    1990-01-01

    The National Space Transportation System (NSTS) is one of the Nation's most valuable resources, providing manned transportation to and from space in support of payloads and scientific research. The NSTS program is currently faced with the problem of hardware obsolescence, which could result in unacceptable schedule and cost impacts to the flight program. Obsolescence problems occur because certain components are no longer being manufactured or repair turnaround time is excessive. In order to achieve a long-term, reliable transportation system that can support manned access to space through 2010 and beyond, NASA must develop a strategic plan for a phased implementation of enhancements which will satisfy this long-term goal. The NSTS program has initiated the Assured Shuttle Availability (ASA) project with the following objectives: eliminate hardware obsolescence in critical areas, increase reliability and safety of the vehicle, decrease operational costs and turnaround time, and improve operational capability. The strategy for ASA will be to first meet the mandatory needs - keep the Shuttle flying. Non-mandatory changes that will improve operational capability and enhance performance will then be considered if funding is adequate. Upgrade packages should be developed to install within designated inspection periods, grouped in a systematic approach to reduce cost and schedule impacts, and allow the capability to provide a Block 2 Shuttle (Phase 3).

  20. [A flavinogenic mutant of the yeast Pichia guilliermondii with impaired iron transport].

    PubMed

    Shavlovskiĭ, G M; Fedorovich, D V; Zviagil'skais, R A

    1976-01-01

    A mutant of the yeast Pichia guilliermondii was produced by means of UV; the mutant was capable of riboflavin overproduction in the presence of high concentrations of iron in the medium. The content of total and non-hemin iron and cytochrome c, and the activity of catalase, were lower in the cells of the mutant than in the parent cells, while the activity of riboflavin synthetase was higher. The content of iron in the cells increased when the mutant was cultivated on media with citric acid, siderochromes of Klebsiella aerogenes, Neurospora crassa, Rhodotorula glutinis, cultural broth of Pichia ohmeri, and autolysate of brewer's yeast, whereas the flavinogenous activity of the cells decreased. Rotenone inhibited respiration of the intact cells of the mutant producing elevated amounts of riboflavin; therefore, flavinogenesis was not regulated by non-hemin iron on the first segment of the respiratory chain. Overproduction of riboflavin in the mutant of Pichia guilliermondii was proved to be a recessive property. PMID:933879

  1. Bacterial iron transport: coordination properties of azotobactin, the highly fluorescent siderophore of Azotobacter vinelandii.

    PubMed

    Palanché, Tania; Blanc, Sylvie; Hennard, Christophe; Abdallah, Mohamed A; Albrecht-Gary, Anne-Marie

    2004-02-01

    Azotobacter vinelandii, a nitrogen-fixing soil bacterium, secretes in iron deficiency azotobactin delta, a highly fluorescent pyoverdin-like chromopeptidic hexadentate siderophore. The chromophore, derived from 2,3-diamino-6,7 dihydroxyquinoline, is bound to a peptide chain of 10 amino acids: (L)-Asp-(D)-Ser-(L)-Hse-Gly-(D)-beta-threo-HOAsp-(L)-Ser-(D)-Cit-(L)-Hse-(L)-Hse lactone-(D)-N(delta)-Acetyl, N(delta)-HOOrn. Azotobactin delta has three different iron(III) binding sites which are one hydroxamate group at the C-terminal end of the peptidic chain (N(delta)-Acetyl, N(delta)-HOOrn), one alpha-hydroxycarboxylic function in the middle of the chain (beta-threo-hydroxyaspartic acid), and one catechol group on the chromophore. The coordination properties of its iron(III) and iron(II) complexes were measured by spectrophotometry, potentiometry, and voltammetry after the determination of the acid-base functions of the uncomplexed free siderophore. Strongly negatively charged ferric species were observed at neutral p[H]'s corresponding to a predominant absolute configuration Lambda of the ferric complex in solution as deduced from CD measurements. The presence of an alpha-hydroxycarboxylic chelating group does not decrease the stability of the iron(III) complex when compared to the main trishydroxamate siderophores or to pyoverdins. The value of the redox potential of ferric azotobactin is highly consistent with a reductive step by physiological reductants for the iron release. Formation and dissociation kinetics of the azotobactin delta ferric complex point out that both ends of this long siderophore chain get coordinated to Fe(III) before the middle. The most striking result provided by fluorescence measurements is the lasting quenching of the fluorophore in the course of the protonation of the ferric azotobactin delta complex. Despite the release of the hydroxyacid and of the catechol, the fluorescence remains indeed quenched, when iron(III) is bound only to the

  2. Technological Support for Logistics Transportation Systems

    NASA Astrophysics Data System (ADS)

    Bujak, Andrzej; Śliwa, Zdzisław; Gębczyńska, Alicja

    The modern world is changing introducing robots, remotely controlled vehicles and other crewless means of transportation to reduce people's mistakes, as the main cause of incidents and crashes during traffic. New technologies are supporting operators and drivers, and according to some studies they can even replace them. Such programs as: AHS, UAH, IVBSS or MTVR are under development to improve traffic flow and its safety, to reduce traffic hazards and crashes. It is necessary to analyze such concepts and implement them boldly, including Polish logistics' companies, new programs, highways' system etc., as they will be applied in the future, so it is necessary to prepare logistics infrastructure ahead of time in order to capitalize on these improvements. The problem is quite urgent as transportation in the country must not be outdated to meet clients' expectations and to keep pace with competing foreign companies.

  3. Design of Large Momentum Acceptance Transport Systems

    SciTech Connect

    D.R. Douglas

    2005-05-01

    The use of energy recovery to enable high power linac operation often gives rise to an attendant challenge--the transport of high power beams subtending large phase space volumes. In particular applications--such as FEL driver accelerators--this manifests itself as a requirement for beam transport systems with large momentum acceptance. We will discuss the design, implementation, and operation of such systems. Though at times counterintuitive in behavior (perturbative descriptions may, for example, be misleading), large acceptance systems have been successfully utilized for generations as spectrometers and accelerator recirculators [1]. Such systems are in fact often readily designed using appropriate geometric descriptions of beam behavior; insight provided using such a perspective may in addition reveal inherent symmetries that simplify construction and improve operability. Our discussion will focus on two examples: the Bates-clone recirculator used in the Jefferson Lab 10 kW IR U pgrade FEL (which has an observed acceptance of 10% or more) and a compaction-managed mirror-bend achromat concept with an acceptance ranging from 50 to 150 MeV.

  4. Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems.

    PubMed

    Scott, Jarrod J; Breier, John A; Luther, George W; Emerson, David

    2015-01-01

    Chemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit) using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II) concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests that this organism

  5. Microbial Iron Mats at the Mid-Atlantic Ridge and Evidence that Zetaproteobacteria May Be Restricted to Iron-Oxidizing Marine Systems

    PubMed Central

    Scott, Jarrod J.; Breier, John A.; Luther, George W.; Emerson, David

    2015-01-01

    Chemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit) using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II) concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests that this organism

  6. Formation and Release Behavior of Iron Corrosion Products under the Influence of Bacterial Communities in a Simulated Water Distribution System

    EPA Science Inventory

    Understanding the effects of biofilm on the iron corrosion, iron release and associated corrosion by-products is critical for maintaining the water quality and the integrity of drinking water distribution system (DWDS). In this work, iron corrosion experiments under sterilized a...

  7. Transportable vitrification system demonstration on mixed waste. Revision 1

    SciTech Connect

    Zamecnik, J.R.; Whitehouse, J.C.; Wilson, C.N.; Van Ryn, F.R.

    1998-04-22

    The Transportable Vitrification System (TVS) is a large scale, fully integrated, vitrification system for the treatment of low-level and mixed wastes in the form of sludges, soils, incinerator ash, and many other waste streams. It was demonstrated on surrogate waste at Clemson University and at the Oak Ridge Reservation (ORR) prior to treating actual mixed waste. Treatment of a combination of dried B and C Pond sludge and CNF sludge was successfully demonstrated at ORR in 1997. The demonstration produced 7,616 kg of glass from 7,328 kg of mixed wastes with a 60% reduction in volume. Glass formulations for the wastes treated were developed using a combination of laboratory crucible studies with the actual wastes and small melter studies at Clemson with both surrogate and actual wastes. Initial characterization of the B and C Pond sludge had not shown the presence of carbon or fluoride, which required a modified glass formulation be developed to maintain proper glass redox and viscosity. The CNF sludge challenges the glass formulations due to high levels of phosphate and iron. The demonstration was delayed several times by permitting problems, a glass leak, and electrical problems. The demonstration showed that the two wastes could be successfully vitrified, although the design glass production rate was not achieved. The glass produced met the Universal Treatment Standards and the emissions from the TVS were well within the allowable permit limits.

  8. Intracellular localization and subsequent redistribution of metal transporters in a rat choroid plexus model following exposure to manganese or iron

    SciTech Connect

    Wang Xueqian; Miller, David S.

    2008-07-15

    Confocal microscopy was used to investigate the effects of manganese (Mn) and iron (Fe) exposure on the subcellular distribution of metal transporting proteins, i.e., divalent metal transporter 1 (DMT1), metal transporter protein 1 (MTP1), and transferrin receptor (TfR), in the rat intact choroid plexus which comprises the blood-cerebrospinal fluid barrier. In control tissue, DMT1 was concentrated below the apical epithelial membrane, MTP1 was diffuse within the cytosol, and TfR was distributed in vesicles around nuclei. Following Mn or Fe treatment (1 and 10 {mu}M), the distribution of DMT1 was not affected. However, MTP1 and TfR moved markedly toward the apical pole of the cells. These shifts were abolished when microtubules were disrupted. Quantitative RT-PCR and Western blot analyses revealed a significant increase in mRNA and protein levels of TfR but not DMT1 and MTP1 after Mn exposure. These results suggest that early events in the tissue response to Mn or Fe exposure involve microtubule-dependent, intracellular trafficking of MTP1 and TfR. The intracellular trafficking of metal transporters in the choroid plexus following Mn exposure may partially contribute to Mn-induced disruption in Fe homeostasis in the cerebrospinal fluid (CSF) following Mn exposure.

  9. Intracellular Localization and Subsequent Redistribution of Metal Transporters in a Rat Choroid Plexus Model Following Exposure to Manganese or Iron

    PubMed Central

    Wang, Xueqian; Miller, David S.; Zheng, Wei

    2008-01-01

    Confocal microscopy was used to investigate the effects of manganese (Mn) and iron (Fe) exposure on the subcellular distribution of metal transporting proteins, i.e., divalent metal transporter 1 (DMT1), metal transporter protein 1 (MTP1), and transferrin receptor (TfR), in the rat intact choroid plexus which comprises the blood-cerebrospinal fluid barrier. In control tissue, DMT1 was concentrated below the apical epithelial membrane, MTP1 was diffuse within the cytosol, and TfR was distributed in vesicles around nuclei. Following Mn or Fe treatment (1 and 10 µM), the distribution of DMT1 was not affected. However, MTP1 and TfR moved markedly toward the apical pole of the cells. These shifts were abolished when microtubules were disrupted. Quantitative RT-PCR and Western blot analyses revealed a significant increase in mRNA and protein levels of TfR but not DMT1 and MTP1 after Mn exposure. These results suggest that early events in the tissue response to Mn or Fe exposure involve microtubule-dependent, intracellular trafficking of MTP1 and TfR. The intracellular trafficking of metal transporters in the choroid plexus following Mn exposure may partially contribute to Mn-induced disruption in Fe homeostasis in the cerebrospinal fluid (CSF) following Mn exposure. PMID:18420243

  10. Chemically generated convective transport in microfluidic system

    NASA Astrophysics Data System (ADS)

    Shklyaev, Oleg; Das, Sambeeta; Altemose, Alicia; Shum, Henry; Balazs, Anna; Sen, Ayusman

    High precision manipulation of small volumes of fluid, containing suspended micron sized objects like cells, viruses, and large molecules, is one of the main goals in designing modern lab-on-a-chip devices which can find a variety of chemical and biological applications. To transport the cargo toward sensing elements, typical microfluidic devices often use pressure driven flows. Here, we propose to use enzymatic chemical reactions which decompose reagent into less dense products and generate flows that can transport particles. Density variations that lead to flow in the assigned direction are created between the place where reagent is fed into the solution and the location where it is decomposed by enzymes attached to the surface of the microchannel. When the reagent is depleted, the fluid motion stops and particles sediment to the bottom. We demonstrate how the choice of chemicals, leading to specific reaction rates, can affect the transport properties. In particular, we show that the intensity of the fluid flow, the final location of cargo, and the time for cargo delivery are controlled by the amount and type of reagent in the system.

  11. Anomalous transport in ergodic lattice systems

    NASA Astrophysics Data System (ADS)

    Bar Lev, Yevgeny; Reichman, David R.

    Many-body localization transition is a peculiar dynamical transition between ergodic and non-ergodic phases, which may occur at any temperature and in any dimension. For temperatures below the transition the system is nonergodic and localized, such that conductivity strictly vanishes at the thermodynamic limit, while for temperatures above the transition the system is thermal and conductive. In this talk I will present a comprehensive study of the dynamical properties of the ergodic phase in one and two dimensional generic disordered and interacting systems, conducted using a combination of nonequilibrium diagrammatic techniques and numerically exact methods. I will show that the ergodic phase, which was expected to be diffusive, exhibits anomalous transport regime for nontrivial times and explain how our findings settle with phenomenological theoretical models. NSF-CHE-1644802.

  12. Saenger space transportation system - Progress report

    NASA Astrophysics Data System (ADS)

    Koelle, Dietrich E.; Kuczera, Heribert

    1992-10-01

    The first part of the Saenger System Definition Study within the German National Hypersonics Technology Program (1988 to 1992) was completed by mid-1990. This paper summarizes the progress made and the status of the project as of that milestone which was formally completed by the System Study Presentation in July 1990. For the second phase of the study (mid-1990 to end 1992) the original philosophy of different upper stages for manned space operations and for unmanned cargo/payloads transportation is being maintained, however, a winged unmanned Horus-C version has been found to be a better solution than the originally conceived expendable ballistic stage Cargus. The advantage of this twin-Horus Concept is the greater commonality of both upper stages as well as the new return capability of payloads up to 7 Mg. The maximum payload capability of the expendable stage was of course higher, but it is assumed that for larger payloads a complementary launch vehicle (i.e. Ariane 5) will be further available. The paper also presents new data about the Horus return flight trajectories as well as on the aerothermodynamic studies and experimental work. Finally, aspects of mission operations and economics are discussed which are of special importance for such an advanced reusable space transportation system.

  13. Space transportation system biomedical operations support study

    NASA Technical Reports Server (NTRS)

    White, S. C.

    1983-01-01

    The shift of the Space Transportation System (STS) flight tests of the orbiter vehicle to the preparation and flight of the payloads is discussed. Part of this change is the transition of the medical and life sciences aspects of the STS flight operations to reflect the new state. The medical operations, the life sciences flight experiments support requirements and the intramural research program expected to be at KSC during the operational flight period of the STS and a future space station are analyzed. The adequacy of available facilities, plans, and resources against these future needs are compared; revisions and/or alternatives where appropriate are proposed.

  14. National Space Transportation Systems Program mission report

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

    1984-01-01

    The STS 41-C National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the eleventh Shuttle flight and fifth flight of the OV-099 vehicle, Challenger. Also summarized are the significant problems that occurred during STS 41-C, and a problem tracking list that is a complete list of all problems that occurred during the flight. The major objectives of flight STS 41-C were to successfully deploy the LDEF (long duration exposure facility) and retrieve, repair and redeploy the SMM (Solar Maximum Mission) spacecraft, and perform functions of IMAX and Cinema 360 cameras.

  15. Operating systems in the air transportation environment.

    NASA Technical Reports Server (NTRS)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  16. Conceptual design of a Mars transportation system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.

  17. Future Intelligent Transportation Systems and Sensors

    NASA Astrophysics Data System (ADS)

    Hosaka, Akio

    A road vehicle traffic contributes to the social improvement greatly, but it has big problems such as safety, congestion, environment, energy, elder people driving and adaptation to information society. ITS (Intelligent Transportation Systems) is expected as a direction solving these. The intellectual function about a road vehicle traffic depended on most of human beings. ITS helps intellectual functions such as information sensing, situation recognition, judgment, planning and operation. A sensor detecting information is an important key in ITS. I describe expectation to a sensor in ITS.

  18. Progress toward an integrated advanced transportation system

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1989-01-01

    Long term mission and payload mass requirements have been inventoried in NASA's Civil Needs Data Base, thereby establishing a framework for the analysis of launch vehicle requirements as well as time-frame requirements for the availability of specific launch vehicle and orbit-transfer vehicle capabilities. The Next Manned Transportation System studies conducted within this framework focus on the definition of options for manned flight operations beyond current Space Shuttle capabilities. Also under way are Assured Crew Return Capability studies for the Space Station Freedom, and Space Transfer Vehicle studies for a space-based aerobraking spacecraft.

  19. Mars integrated transportation system multistage Mars mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In accordance with the objective of the Mars Integrated Transport System (MITS) program, the Multistage Mars Mission (MSMM) design team developed a profile for a manned mission to Mars. The purpose of the multistage mission is to send a crew of five astronauts to the martian surface by the year 2019. The mission continues man's eternal quest for exploration of new frontiers. This mission has a scheduled duration of 426 days that includes experimentation en route as well as surface exploration and experimentation. The MSMM is also designed as a foundation for a continuing program leading to the colonization of the planet Mars.

  20. A space transportation system operations model

    NASA Technical Reports Server (NTRS)

    Morris, W. Douglas; White, Nancy H.

    1987-01-01

    Presented is a description of a computer program which permits assessment of the operational support requirements of space transportation systems functioning in both a ground- and space-based environment. The scenario depicted provides for the delivery of payloads from Earth to a space station and beyond using upper stages based at the station. Model results are scenario dependent and rely on the input definitions of delivery requirements, task times, and available resources. Output is in terms of flight rate capabilities, resource requirements, and facility utilization. A general program description, program listing, input requirements, and sample output are included.

  1. Effect of ultrasound on the state of iron-59 in a seawater-phytoplankton system

    SciTech Connect

    Lobanov, A.A.; Anikiev, V.V.; Didenko, Y.T.; Il'ichev, V.I.

    1986-03-01

    The authors explain how the presence of a Dunaliella specium algae monoculture in a seawater-iron-59 system decreased the total suspended iron therein but the fraction of suspended coarse particles increased. Mechanical rupture of the cell membranes stopped biotic activity at a rate governed by a first-order kinetic equation. The rate at which ultrasound breaks down cells and their suspensions to smaller sizes was independent of the latter's concentration.

  2. 49 CFR 37.33 - Airport transportation systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... systems operated by public airport operators, which provide designated public transportation and connect.... Public airports which operate fixed route transportation systems are subject to the requirements of this... part. (b) Fixed-route transportation systems operated by public airport operators between the...

  3. Iron transport across the skin and gut epithelia of Pacific hagfish: Kinetic characterisation and effect of hypoxia.

    PubMed

    Glover, Chris N; Niyogi, Som; Blewett, Tamzin A; Wood, Chris M

    2016-09-01

    In most animals, the acquisition of the essential trace metal iron (Fe) is achieved by the gut, but in hagfishes, the skin is a nutrient absorbing epithelium, and thus may also play a role in Fe uptake. In the current study, the absorption of Fe, as Fe(II), across the intestinal and cutaneous epithelia of Pacific hagfish (Eptatretus cirrhatus) was investigated. Both epithelia absorbed Fe, with saturation at lower tested concentrations, superseded by a diffusive component at higher Fe exposure concentrations. Affinity constants (Km) of 9.4 and 137μM, and maximal Fe transport rates (Jmax) of 0.81 and 0.57nmolcm(-2)h(-1) were determined for the skin and the gut, respectively. This characterises the skin as a relatively high-affinity Fe transport epithelium. The majority of the absorbed Fe in the skin remained in the tissue, whereas in the gut, most absorbed Fe was found in the serosal fluid, suggesting distinct mechanisms of Fe handling between the two epithelia. To determine if reduced dissolved oxygen altered Fe transport, hagfish were subjected to hypoxia for 24h, before Fe transport was again assessed. Hypoxia had no effect on Fe transport across gut or skin, likely owing to the relative lack of change in haematological variables, and thus an unaltered Fe demand under such conditions. These data are the first to kinetically characterise the absorption of a nutritive trace metal across the epithelia of hagfish and add to the growing understanding of the role of the skin in nutritive transport in this group. PMID:27112517

  4. A Mossbauer investigation of iron-rich terrestrial hydrothermal vent systems: lessons for Mars exploration

    NASA Technical Reports Server (NTRS)

    Wade, M. L.; Agresti, D. G.; Wdowiak, T. J.; Armendarez, L. P.; Farmer, J. D.

    1999-01-01

    Hydrothermal spring systems may well have been present on early Mars and could have served as a habitat for primitive life. The integrated instrument suite of the Athena Rover has, as a component on the robotic arm, a Mossbauer spectrometer. In the context of future Mars exploration we present results of Mossbauer analysis of a suite of samples from an iron-rich thermal spring in the Chocolate Pots area of Yellowstone National Park (YNP) and from Obsidian Pool (YNP) and Manitou Springs, Colorado. We have found that Mossbauer spectroscopy can discriminate among the iron-bearing minerals in our samples. Those near the vent and on the surface are identified as ferrihydrite, an amorphous ferric mineraloid. Subsurface samples, collected from cores, which are likely to have undergone inorganic and/or biologically mediated alteration (diagenesis), exhibit spectral signatures that include nontronite (a smectite clay), hematite (alpha-Fe2O3), small-particle/nanophase goethite (alpha-FeOOH), and siderite (FeCO3). We find for iron minerals that Mossbauer spectroscopy is at least as efficient in identification as X-ray diffraction. This observation is important from an exploration standpoint. As a planetary surface instrument, Mossbauer spectroscopy can yield high-quality spectral data without sample preparation (backscatter mode). We have also used field emission scanning electron microscopy (FESEM), in conjunction with energy-dispersive X ray (EDX) fluorescence spectroscopy, to characterize the microbiological component of surface sinters and the relation between the microbiological and the mineralogical framework. Evidence is presented that the minerals found in these deposits can have multi-billion-year residence times and thus may have survived their possible production in a putative early Martian hot spring up to the present day. Examples include the nanophase property and the Mossbauer signature for siderite, which has been identified in a 2.09-billion-year old hematite

  5. A Mossbauer investigation of iron-rich terrestrial hydrothermal vent systems: lessons for Mars exploration.

    PubMed

    Wade, M L; Agresti, D G; Wdowiak, T J; Armendarez, L P; Farmer, J D

    1999-04-25

    Hydrothermal spring systems may well have been present on early Mars and could have served as a habitat for primitive life. The integrated instrument suite of the Athena Rover has, as a component on the robotic arm, a Mossbauer spectrometer. In the context of future Mars exploration we present results of Mossbauer analysis of a suite of samples from an iron-rich thermal spring in the Chocolate Pots area of Yellowstone National Park (YNP) and from Obsidian Pool (YNP) and Manitou Springs, Colorado. We have found that Mossbauer spectroscopy can discriminate among the iron-bearing minerals in our samples. Those near the vent and on the surface are identified as ferrihydrite, an amorphous ferric mineraloid. Subsurface samples, collected from cores, which are likely to have undergone inorganic and/or biologically mediated alteration (diagenesis), exhibit spectral signatures that include nontronite (a smectite clay), hematite (alpha-Fe2O3), small-particle/nanophase goethite (alpha-FeOOH), and siderite (FeCO3). We find for iron minerals that Mossbauer spectroscopy is at least as efficient in identification as X-ray diffraction. This observation is important from an exploration standpoint. As a planetary surface instrument, Mossbauer spectroscopy can yield high-quality spectral data without sample preparation (backscatter mode). We have also used field emission scanning electron microscopy (FESEM), in conjunction with energy-dispersive X ray (EDX) fluorescence spectroscopy, to characterize the microbiological component of surface sinters and the relation between the microbiological and the mineralogical framework. Evidence is presented that the minerals found in these deposits can have multi-billion-year residence times and thus may have survived their possible production in a putative early Martian hot spring up to the present day. Examples include the nanophase property and the Mossbauer signature for siderite, which has been identified in a 2.09-billion-year old hematite

  6. Structures of the Multicomponent Rieske Non-Heme Iron Toluene 2,3-Dioxygenase Enzyme System

    SciTech Connect

    Friemann, R.; Lee, K; Brown, E; Gibson, D; Eklund, H; Ramaswamy, S

    2009-01-01

    Bacterial Rieske non-heme iron oxygenases catalyze the initial hydroxylation of aromatic hydrocarbon substrates. The structures of all three components of one such system, the toluene 2,3-dioxygenase system, have now been determined. This system consists of a reductase, a ferredoxin and a terminal dioxygenase. The dioxygenase, which was cocrystallized with toluene, is a heterohexamer containing a catalytic and a structural subunit. The catalytic subunit contains a Rieske [2Fe-2S] cluster and mononuclear iron at the active site. This iron is not strongly bound and is easily removed during enzyme purification. The structures of the enzyme with and without mononuclear iron demonstrate that part of the structure is flexible in the absence of iron. The orientation of the toluene substrate in the active site is consistent with the regiospecificity of oxygen incorporation seen in the product formed. The ferredoxin is Rieske type and contains a [2Fe-2S] cluster close to the protein surface. The reductase belongs to the glutathione reductase family of flavoenzymes and consists of three domains: an FAD-binding domain, an NADH-binding domain and a C-terminal domain. A model for electron transfer from NADH via FAD in the reductase and the ferredoxin to the terminal active-site mononuclear iron of the dioxygenase is proposed.

  7. Benchmark test of neutron transport calculations: indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing.

    PubMed

    Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. PMID:8083048

  8. Benchmark test of neutron transport calculations: Indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing

    SciTech Connect

    Iwatani, Kazuo; Shizuma, Kiyoshi; Hasai, Hiromi; Hoshi, Masaharu; Hiraoka, Masayuki; Hayakawa, Norihiko; Oka, Takamitsu

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated {sup 252}Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate {sup 152}Eu and {sup 60}Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated {sup 252}Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. 18 refs., 10 figs., 4 tabs.

  9. Borate as a synergistic anion for Marinobacter algicola ferric binding protein, FbpA: a role for boron in iron transport in marine life.

    PubMed

    Weerasinghe, Aruna J; Amin, Shady A; Barker, Ryan A; Othman, Thaer; Romano, Ariel N; Parker Siburt, Claire J; Tisnado, Jerrell; Lambert, Lisa A; Huxford, Tom; Carrano, Carl J; Crumbliss, Alvin L

    2013-10-01

    Boron in the ocean is generally considered a nonbiological element due to its relatively high concentration (0.4 mM) and depth independent concentration profile. Here we report an unexpected role for boron in the iron transport system of the marine bacterium Marinobacter algicola. Proteome analysis under varying boron concentrations revealed that the periplasmic ferric binding protein (Mb-FbpA) was among the proteins whose expression was most affected, strongly implicating the involvement of boron in iron utilization. Here we show that boron facilitates Fe(3+) sequestration by Mb-FbpA at pH 8 (oceanic pH) by acting as a synergistic anion (B(OH)4(1-)). Fe(3+) sequestration does not occur at pH 6.5 where boric acid (B(OH)3; pK(a) = 8.55) is the predominant species. Borate anion is also shown to bind to apo-Mb-FbpA with mM affinity at pH 8, consistent with the biological relevance implied from boron's oceanic concentration (0.4 mM). Borate is among those synergistic anions tested which support the strongest Fe(3+) binding to Mb-FbpA, where the range of anion dependent affinity constants is log K'(eff) = 21-22. Since the pKa of boric acid (8.55) lies near the pH of ocean water, changes in oceanic pH, as a consequence of fluctuations in atmospheric CO2, may perturb iron uptake in many marine heterotrophic bacteria due to a decrease in oceanic borate anion concentration. PMID:24028339

  10. Third-order TRANSPORT: A computer program for designing charged particle beam transport systems

    SciTech Connect

    Carey, D.C.; Brown, K.L.; Rothacker, F.

    1995-05-01

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command.

  11. Iron Deficiency Induces a Partial Inhibition of the Photosynthetic Electron Transport and a High Sensitivity to Light in the Diatom Phaeodactylum tricornutum.

    PubMed

    Roncel, Mercedes; González-Rodríguez, Antonio A; Naranjo, Belén; Bernal-Bayard, Pilar; Lindahl, Anna M; Hervás, Manuel; Navarro, José A; Ortega, José M

    2016-01-01

    Iron limitation is the major factor controlling phytoplankton growth in vast regions of the contemporary oceans. In this study, a combination of thermoluminescence (TL), chlorophyll fluorescence, and P700 absorbance measurements have been used to elucidate the effects of iron deficiency in the photosynthetic electron transport of the marine diatom P. tricornutum. TL was used to determine the effects of iron deficiency on photosystem II (PSII) activity. Excitation of iron-replete P. tricornutum cells with single turn-over flashes induced the appearance of TL glow curves with two components with different peaks of temperature and contributions to the total signal intensity: the B band (23°C, 63%), and the AG band (40°C, 37%). Iron limitation did not significantly alter these bands, but induced a decrease of the total TL signal. Far red excitation did not increase the amount of the AG band in iron-limited cells, as observed for iron-replete cells. The effect of iron deficiency on the photosystem I (PSI) activity was also examined by measuring the changes in P700 redox state during illumination. The electron donation to PSI was substantially reduced in iron-deficient cells. This could be related with the important decline on cytochrome c 6 content observed in these cells. Iron deficiency also induced a marked increase in light sensitivity in P. tricornutum cells. A drastic increase in the level of peroxidation of chloroplast lipids was detected in iron-deficient cells even when grown under standard conditions at low light intensity. Illumination with a light intensity of 300 μE m(-2) s(-1) during different time periods caused a dramatic disappearance in TL signal in cells grown under low iron concentration, this treatment not affecting to the signal in iron-replete cells. The results of this work suggest that iron deficiency induces partial blocking of the electron transfer between PSII and PSI, due to a lower concentration of the electron donor cytochrome c 6. This

  12. Iron Deficiency Induces a Partial Inhibition of the Photosynthetic Electron Transport and a High Sensitivity to Light in the Diatom Phaeodactylum tricornutum

    PubMed Central

    Roncel, Mercedes; González-Rodríguez, Antonio A.; Naranjo, Belén; Bernal-Bayard, Pilar; Lindahl, Anna M.; Hervás, Manuel; Navarro, José A.; Ortega, José M.

    2016-01-01

    Iron limitation is the major factor controlling phytoplankton growth in vast regions of the contemporary oceans. In this study, a combination of thermoluminescence (TL), chlorophyll fluorescence, and P700 absorbance measurements have been used to elucidate the effects of iron deficiency in the photosynthetic electron transport of the marine diatom P. tricornutum. TL was used to determine the effects of iron deficiency on photosystem II (PSII) activity. Excitation of iron-replete P. tricornutum cells with single turn-over flashes induced the appearance of TL glow curves with two components with different peaks of temperature and contributions to the total signal intensity: the B band (23°C, 63%), and the AG band (40°C, 37%). Iron limitation did not significantly alter these bands, but induced a decrease of the total TL signal. Far red excitation did not increase the amount of the AG band in iron-limited cells, as observed for iron-replete cells. The effect of iron deficiency on the photosystem I (PSI) activity was also examined by measuring the changes in P700 redox state during illumination. The electron donation to PSI was substantially reduced in iron-deficient cells. This could be related with the important decline on cytochrome c6 content observed in these cells. Iron deficiency also induced a marked increase in light sensitivity in P. tricornutum cells. A drastic increase in the level of peroxidation of chloroplast lipids was detected in iron-deficient cells even when grown under standard conditions at low light intensity. Illumination with a light intensity of 300 μE m-2 s-1 during different time periods caused a dramatic disappearance in TL signal in cells grown under low iron concentration, this treatment not affecting to the signal in iron-replete cells. The results of this work suggest that iron deficiency induces partial blocking of the electron transfer between PSII and PSI, due to a lower concentration of the electron donor cytochrome c6. This

  13. Road Transportable Analytical Laboratory (RTAL) system

    SciTech Connect

    Finger, S.M.

    1995-12-01

    U.S. Department of Energy (DOE) facilities around the country have, over the years, become contaminated with radionuclides and a range of organic and inorganic wastes. Many of the DOE sites encompass large land areas and were originally sited in relatively unpopulated regions of the country to minimize risk to surrounding populations. In addition, wastes were sometimes stored underground at the sites in 55-gallon drums, wood boxes or other containers until final disposal methods could be determined. Over the years, these containers have deteriorated, releasing contaminants into the surrounding environment. This contamination has spread, in some cases polluting extensive areas. Remediation of these sites requires extensive sampling to determine the extent of the contamination, to monitor clean-up and remediation progress, and for post-closure monitoring of facilities. The DOE would benefit greatly if it had reliable, road transportable, fully independent laboratory systems that could perform on-site the full range of analyses required. Such systems would accelerate and thereby reduce the cost of clean-up and remediation efforts by (1) providing critical analytical data more rapidly, and (2) eliminating the handling, shipping and manpower associated with sample shipments. The goal of the Road Transportable Analytical Laboratory (RTAL) Project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system has been designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganic compounds. The laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific needs.

  14. Melting behavior of the iron-sulfur system and chemical convection in iron-rich planetary cores

    SciTech Connect

    Li, J.; Chen, B.

    2009-03-26

    We present experimental data on the high-pressure melting behavior of the Fe-S system from a synchrotron x-ray radiography study using the large volume press, with implications for the role of chemical convection in sulfur-bearing planetary cores. At present, Earth, Mercury and Ganymede are the only three solid bodies in the Solar System that possess intrinsic global magnetic fields. Dynamo simulation reveal that chemical buoyancy force associated with the formation of a solid inner core is critical for sustaining the Earth's magnetic field. Fluid motions in Mercury and Ganymede may be partially driven by chemical buoyancy force as well. The style of chemical convection and its influence on the thermal and chemical state and evolution of iron-rich cores are determined in part by the melting behavior of potential core-forming materials. Sulfur is widely accepted as a candidate light element in iron-rich planetary cores. In order to understand the role of chemical convection in sulfur-bearing cores, we studied the high-pressure melting behavior of Fe-S mixtures containing 9 wt% sulfur using the synchrotron x-ray radiographic method in a large volume press.

  15. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation.

    PubMed

    Mendoza-Cózatl, David G; Butko, Emerald; Springer, Franziska; Torpey, Justin W; Komives, Elizabeth A; Kehr, Julia; Schroeder, Julian I

    2008-04-01

    Phytochelatins (PCs) are glutathione-derived peptides that function in heavy metal detoxification in plants and certain fungi. Recent research in Arabidopsis has shown that PCs undergo long-distance transport between roots and shoots. However, it remains unknown which tissues or vascular systems, xylem or phloem, mediate PC translocation and whether PC transport contributes to physiologically relevant long-distance transport of cadmium (Cd) between shoots and roots. To address these questions, xylem and phloem sap were obtained from Brassica napus to quantitatively analyze which thiol species are present in response to Cd exposure. High levels of PCs were identified in the phloem sap within 24 h of Cd exposure using combined mass spectrometry and fluorescence HPLC analyses. Unexpectedly, the concentration of Cd was more than four-fold higher in phloem sap compared to xylem sap. Cadmium exposure dramatically decreased iron levels in xylem and phloem sap whereas other essential heavy metals such as zinc and manganese remained unchanged. Data suggest that Cd inhibits vascular loading of iron but not nicotianamine. The high ratios [PCs]/[Cd] and [glutathione]/[Cd] in the phloem sap suggest that PCs and glutathione (GSH) can function as long-distance carriers of Cd. In contrast, only traces of PCs were detected in xylem sap. Our results suggest that, in addition to directional xylem Cd transport, the phloem is a major vascular system for long-distance source to sink transport of Cd as PC-Cd and glutathione-Cd complexes. PMID:18208526

  16. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation

    PubMed Central

    Mendoza-Cózatl, David G.; Butko, Emerald; Springer, Franziska; Torpey, Justin W.; Komives, Elizabeth A.; Kehr, Julia; Schroeder, Julian I.

    2010-01-01

    Summary Phytochelatins (PCs) are glutathione-derived peptides that function in heavy metal detoxification in plants and certain fungi. Recent research in Arabidopsis has shown that PCs undergo long-distance transport between roots and shoots. However, it remains unknown which tissues or vascular systems, xylem or phloem, mediate PC translocation and whether PC transport contributes to physiologically relevant long-distance transport of cadmium (Cd) between shoots and roots. To address these questions, xylem and phloem sap were obtained from Brassica napus to quantitatively analyze which thiol species are present in response to Cd exposure. High levels of PCs were identified in the phloem sap within 24 h of Cd exposure using combined mass spectrometry and fluorescence HPLC analyses. Unexpectedly, the concentration of Cd was more than four-fold higher in phloem sap compared to xylem sap. Cadmium exposure dramatically decreased iron levels in xylem and phloem sap whereas other essential heavy metals such as zinc and manganese remained unchanged. Data suggest that Cd inhibits vascular loading of iron but not nicotianamine. The high ratios [PCs]/[Cd] and [glutathione]/[Cd] in the phloem sap suggest that PCs and glutathione (GSH) can function as long-distance carriers of Cd. In contrast, only traces of PCs were detected in xylem sap. Our results suggest that, in addition to directional xylem Cd transport, the phloem is a major vascular system for long-distance source to sink transport of Cd as PC–Cd and glutathione–Cd complexes. PMID:18208526

  17. Innovative technology summary report: Transportable vitrification system

    SciTech Connect

    1998-09-01

    At the end of the cold war, many of the Department of Energy`s (DOE`s) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned.

  18. Road Transportable Analytical Laboratory (RTAL) system

    SciTech Connect

    Finger, S.M.

    1995-04-01

    U.S. Department of Energy (DOE) facilities around the country have, over the years, become contaminated with radionuclides and a range of organic and inorganic wastes. Many of the DOE sites encompass large land areas and were originally sited in relatively unpopulated regions of the country to minimize risk to surrounding populations. In addition, wastes were sometimes stored underground at the sites in 55-gallon drums, wood boxes or other containers until final disposal methods could be determined. Over the years, these containers have deteriorated, releasing contaminants into the surrounding environment. This contamination has spread, in some cases polluting extensive areas. The DOE would benefit greatly if it had reliable, road transportable, fully independent laboratory systems that could perform on-site the full range of analyses required. The goal of the Road Transportable Analytical Laboratory (RTAL) project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soils, ground water and surface waters. This document describes the requirements for such a laboratory.

  19. Transport systems research vehicle color display system operations manual

    NASA Technical Reports Server (NTRS)

    Easley, Wesley C.; Johnson, Larry E.

    1989-01-01

    A recent upgrade of the Transport Systems Research Vehicle operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center has resulted in an all-glass panel in the research flight deck. Eight ARINC-D size CRT color displays make up the panel. A major goal of the display upgrade effort was ease of operation and maintenance of the hardware while maintaining versatility needed for flight research. Software is the key to this required versatility and will be the area demanding the most detailed technical design expertise. This document is is intended to serve as a single source of quick reference information needed for routine operation and system level maintenance. Detailed maintenance and modification of the display system will require specific design documentation and must be accomplished by individuals with specialized knowledge and experience.

  20. ZERO VALENT IRON AND PYRITE SYSTEM USED TO DE-CHLORINATE TOXAPHENE-CONTAMINATED SOILS

    EPA Science Inventory

    The project consisted of a preliminary laboratory study; an outdoor bench scale study and an in situ field Pilot Study to which the zero valent iron and pyrite system (ZVI system) was applied. Several beakers were filled with contaminated soil, the ZVI system and a solvent then...

  1. Sensor system for fuel transport vehicle

    DOEpatents

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  2. A study of characteristics of intercity transportation systems. Phase 1: Definition of transportation comparison methodology

    NASA Technical Reports Server (NTRS)

    English, J. M.; Smith, J. L.; Lifson, M. W.

    1978-01-01

    The objectives of this study are: (1) to determine a unified methodological framework for the comparison of intercity passenger and freight transportation systems; (2) to review the attributes of existing and future transportation systems for the purpose of establishing measures of comparison. These objectives were made more specific to include: (1) development of a methodology for comparing long term transportation trends arising from implementation of various R&D programs; (2) definition of value functions and attribute weightings needed for further transportation goals.

  3. Importance of Boreal Rivers in Providing Iron to Marine Waters

    PubMed Central

    Kritzberg, Emma S.; Bedmar Villanueva, Ana; Jung, Marco; Reader, Heather E.

    2014-01-01

    This study reports increasing iron concentrations in rivers draining into the Baltic Sea. Given the decisive role of iron to the structure and biogeochemical function of aquatic ecosystems, this trend is likely one with far reaching consequences to the receiving system. What those consequences may be depends on the fate of the iron in estuarine mixing. We here assess the stability of riverine iron by mixing water from seven boreal rivers with artificial sea salts. The results show a gradual loss of iron from suspension with increasing salinity. However, the capacity of the different river waters to maintain iron in suspension varied greatly, i.e. between 1 and 54% of iron was in suspension at a salinity of 30. The variability was best explained by iron:organic carbon ratios in the riverine waters – the lower the ratio the more iron remained in suspension. Water with an initially low iron:organic carbon ratio could keep even higher than ambient concentrations of Fe in suspension across the salinity gradient, as shown in experiments with iron amendments. Moreover, there was a positive relationship between the molecular size of the riverine organic matter and the amount of iron in suspension. In all, the results point towards a remarkably high transport capacity of iron from boreal rivers, suggesting that increasing concentrations of iron in river mouths may result in higher concentrations of potentially bioavailable iron in the marine system. PMID:25233197

  4. Air support facilities. [interface between air and surface transportation systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airports are discussed in terms of the interface between the ground and air for transportation systems. The classification systems, design, facilities, administration, and operations of airports are described.

  5. Transport and retention of xanthan gum-stabilized microscale zero-valent iron particles in saturated porous media.

    PubMed

    Xin, Jia; Tang, Fenglin; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf

    2016-01-01

    Microscale zero valent iron (mZVI) is a promising material for in-situ contaminated groundwater remediation. However, its usefulness has been usually inhibited by mZVI particles' low mobility in saturated porous media for sedimentation and deposition. In our study, laboratory experiments, including sedimentation studies, rheological measurements and transport tests, were conducted to investigate the feasibility of xanthan gum (XG) being used as a coating agent for mZVI particle stabilization. In addition, the effects of XG concentration, flow rate, grain diameter and water chemistry on XG-coated mZVI (XG-mZVI) particle mobility were explored by analyzing its breakthrough curves and retention profiles. It was demonstrated that XG worked efficiently to enhance the suspension stability and mobility of mZVI particles through the porous media as a shear thinning fluid, especially at a higher concentration level (3 g/L). The results of the column study showed that the mobility of XG-mZVI particles increased with an increasing flow rate and larger grain diameter. At the highest flow rate (2.30 × 10(-3) m/s) within the coarsest porous media (0.8-1.2 mm), 86.52% of the XG-mZVI flowed through the column. At the lowest flow rate (0.97 × 10(-4) m/s) within the finest porous media (0.3-0.6 mm), the retention was dramatically strengthened, with only 48.22% of the particles flowing through the column. The XG-mZVI particles appeared to be easily trapped at the beginning of the column especially at a low flow rate. In terms of two representative water chemistry parameters (ion strength and pH value), no significant influence on XG-mZVI particle mobility was observed. The experimental results suggested that straining was the primary mechanism of XG-mZVI retention under saturated condition. Given the above results, the specific site-related conditions should be taken into consideration for the design of a successful delivery system to achieve a compromise between

  6. Dry sliding wear system response of ferritic and tempered martensitic ductile iron

    NASA Astrophysics Data System (ADS)

    Jha, V. K.; Mozumder, Y. H.; Shama, S.; Behera, R. K.; Pattaniak, A.; P, Sindhoora L.; Mishra, S. C.; Sen, S.

    2015-02-01

    Spheroidal graphite cast iron (SG iron) is the most preferable member of cast iron family due to its strength and toughness along with good tribological properties. SG iron specimens with annealed and martensitic matrix were subjected to dry sliding wear condition and the system response was correlated to matrix microstructure. Respective microstructure was obtained by annealing and quench and tempering heat treatment process for an austenitizing temperature of 1000°C. Specimens were subjected to Ball on plate wear tester under 40N, 50N, 60N load for a sliding distance of 7.54m. Except for quench and tempered specimen at 50N, weight loss was observed in every condition. The wear surface under optical microscope reveals adhesive mechanism for as-cast and annealed specimen whereas delaminated wear track feature was observed for quench and tempered specimen.

  7. An alternating current superconductor susceptometric system to evaluate liver iron overload

    NASA Astrophysics Data System (ADS)

    Carneiro, A. A. O.; Fernandes, J. P.; Zago, M. A.; Covas, D. T.; Ángulo, I. L.; Baffa, O.

    2003-06-01

    An ac susceptometric system to quantify liver iron overload composed of a second order axial gradiometer coil coupled to a rf superconducting quantum interference device detector and a large field coil array is presented. A homogeneous ac magnetizing field with low frequency (7.7 Hz) and low intensity (114 μT) is used. Preliminary measurements over a group of 34 normal individuals and 20 patients with iron overload show the ability of the instrument to perform the measurement and to distinguish normal and pathological individuals. The diamagnetic signature of the surrounding tissues is minimized using a special water bag on the torso. In summary it was shown that with a relatively simple instrumentation it was possible to build a superconducting susceptometer dedicated to quantify in vivo iron concentrations, which is clinically important information in the assessment and management of patients with liver iron overload, mainly those who regularly receive blood transfusion.

  8. Convective heat transport in geothermal systems

    SciTech Connect

    Lippmann, M.J.; Bodvarsson, G.S.

    1986-08-01

    Most geothermal systems under exploitation for direct use or electrical power production are of the hydrothermal type, where heat is transferred essentially by convection in the reservoir, conduction being secondary. In geothermal systems, buoyancy effects are generally important, but often the fluid and heat flow patterns are largely controlled by geologic features (e.g., faults, fractures, continuity of layers) and location of recharge and discharge zones. During exploitation, these flow patterns can drastically change in response to pressure and temperature declines, and changes in recharge/discharge patterns. Convective circulation models of several geothermal systems, before and after start of fluid production, are described, with emphasis on different characteristics of the systems and the effects of exploitation on their evolution. Convective heat transport in geothermal fields is discussed, taking into consideration (1) major geologic features; (2) temperature-dependent rock and fluid properties; (3) fracture- versus porous-medium characteristics; (4) single- versus two-phase reservoir systems; and (5) the presence of noncondensible gases.

  9. Road Transportable Analytical Laboratory system. Phase 1

    SciTech Connect

    Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O`Donnell, M.; Vann, R.L.

    1993-09-01

    This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE`s internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex.

  10. A study of characteristics of intercity transportation systems. Phase 1: Definition of transportation comparison methodology

    NASA Technical Reports Server (NTRS)

    English, J. M.; Smith, J. L.; Lifson, M. W.

    1978-01-01

    Decision making in early transportation planning must be responsive to complex value systems representing various policies and objectives. The assessment of alternative transportation concepts during the early initial phases of the system life cycle, when supportive research and technology development activities are defined, requires estimates of transportation, environmental, and socio-economic impacts throughout the system life cycle, which is a period of some 40 or 50 years. A unified methodological framework for comparing intercity passenger and freight transportation systems is described and is extended to include the comparison of long term transportation trends arising from implementation of the various R & D programs. The attributes of existing and future transportation systems are reviewed in order to establish measures for comparison, define value functions, and attribute weightings needed for comparing alternative policy actions for furthering transportation goals. Comparison criteria definitions and an illustrative example are included.

  11. The commercialization of the FENIX iron control system for purifying copper electrowinning electrolytes

    NASA Astrophysics Data System (ADS)

    Shaw, D. R.; Dreisinger, D. B.; Lancaster, T.; Richmond, G. D.; Tomlinson, M.

    2004-07-01

    The FENIX Hydromet Iron Control System was installed at Western Metals Copper Ltd.’s Mt. Gordon Operations in Queensland, Australia. The system uses a novel and patented ion-exchange resin to selectively remove iron from copper electrolyte at the solvent extraction/electrowinning plant. At Mt. Gordon, the system delivered significant savings in reagent consumption (acid and cobalt sulfate for electrowinning and lime for neutralization of the raffinate bleed) and has the potential to deliver higher current efficiencies in copper electrowinning, leading to increased copper production.

  12. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases

    PubMed Central

    Kweon, Ohgew; Kim, Seong-Jae; Baek, Songjoon; Chae, Jong-Chan; Adjei, Michael D; Baek, Dong-Heon; Kim, Young-Chang; Cerniglia, Carl E

    2008-01-01

    Background Rieske non-heme iron aromatic ring-hydroxylating oxygenases (RHOs) are multi-component enzyme systems that are remarkably diverse in bacteria isolated from diverse habitats. Since the first classification in 1990, there has been a need to devise a new classification scheme for these enzymes because many RHOs have been discovered, which do not belong to any group in the previous classification. Here, we present a scheme for classification of RHOs reflecting new sequence information and interactions between RHO enzyme components. Result We have analyzed a total of 130 RHO enzymes in which 25 well-characterized RHO enzymes were used as standards to test our hypothesis for the proposed classification system. From the sequence analysis of electron transport chain (ETC) components of the standard RHOs, we extracted classification keys that reflect not only the phylogenetic affiliation within each component but also relationship among components. Oxygenase components of standard RHOs were phylogenetically classified into 10 groups with the classification keys derived from ETC components. This phylogenetic classification scheme was converted to a new systematic classification consisting of 5 distinct types. The new classification system was statistically examined to justify its stability. Type I represents two-component RHO systems that consist of an oxygenase and an FNRC-type reductase. Type II contains other two-component RHO systems that consist of an oxygenase and an FNRN-type reductase. Type III represents a group of three-component RHO systems that consist of an oxygenase, a [2Fe-2S]-type ferredoxin and an FNRN-type reductase. Type IV represents another three-component systems that consist of oxygenase, [2Fe-2S]-type ferredoxin and GR-type reductase. Type V represents another different three-component systems that consist of an oxygenase, a [3Fe-4S]-type ferredoxin and a GR-type reductase. Conclusion The new classification system provides the following

  13. Simulation framework for intelligent transportation systems

    SciTech Connect

    Ewing, T.; Doss, E.; Hanebutte, U.; Tentner, A.

    1996-10-01

    A simulation framework has been developed for a large-scale, comprehensive, scaleable simulation of an Intelligent Transportation System (ITS). The simulator is designed for running on parallel computers and distributed (networked) computer systems, but can run on standalone workstations for smaller simulations. The simulator currently models instrumented smart vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide two-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. Realistic modeling of variations of the posted driving speed are based on human factors studies that take into consideration weather, road conditions, driver personality and behavior, and vehicle type. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on parallel computers, such as ANL`s IBM SP-2, for large-scale problems. A novel feature of the approach is that vehicles are represented by autonomous computer processes which exchange messages with other processes. The vehicles have a behavior model which governs route selection and driving behavior, and can react to external traffic events much like real vehicles. With this approach, the simulation is scaleable to take advantage of emerging massively parallel processor (MPP) systems.

  14. NASA's advanced space transportation system launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1991-01-01

    Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.

  15. Code System To Analyze Radiological Impact From Radwaste Transportation.

    Energy Science and Technology Software Center (ESTSC)

    1988-05-01

    Version 00 RADSHIP-2 is a computer code system used to analyze the environmental impact of radwaste transportation in Taiwan. The specific transport scheme including the land transport by truck and sea transport by ship or barge were considered in the analysis for normal transport and transport accident conditions. The code combines meteorological, population, health physics, transportation, packaging and material factors and has the capability to obtain the results of the expected annual population radiation exposure,more » the expected number of annual latent cancer fatalities and the annual probability of a given number of early fatalities.« less

  16. Space transportation system solid rocket booster thrust vector control system

    NASA Technical Reports Server (NTRS)

    Verble, A. J., Jr.; Mccool, A. A.; Potter, J. H.

    1979-01-01

    The Solid Rocket Booster, Thrust Vector Control (TVC) system was designed in accordance with the following requirements: self-contained power supply, fail-safe operation, 20 flight uses after exposure to seawater landings, optimized cost, and component interchangeability. Trade studies were performed which led to the selection of a recirculating hydraulic system powered by Auxiliary Power Units (APU) which drive the hydraulic actuators and gimbal the solid rocket motor nozzle. Other approaches for the system design were studied in arriving at the recirculating hydraulic system powered by an APU. These systems must withstand the imposed environment and be usable for a minimum of 20 Space Transportation System flights with a minimum of refurbishment. The TVC system has completed the major portion of qualification and verification tests and is prepared to be cleared for the first Shuttle flight (STS-1). Substantiation data will include analytical and test data.

  17. Space Transportation System solid rocket booster thrust vector control system

    NASA Technical Reports Server (NTRS)

    Verble, A. J., Jr.; Mccool, A. A.; Potter, J. H.

    1980-01-01

    The Solid Rocket Booster, Thrust Vector Control (TVC) system was designed in accordance with the following requirements: self-contained power supply, failsafe operation, 20 flight uses after exposure to seawater landings, optimized cost, and component interchangeability. Trade studies were performed which led to the selection of a recirculating hydraulic system powered by Auxiliary Power Units (APU) which drive the hydraulic actuators and gimbal the solid rocket motor nozzle. Other approaches for the system design were studied in arriving at the recirculating hydraulic system powered by an APU. These systems must withstand the imposed environment and be usable for a minimum of 20 Space Transportation System flights with a minimum of refurbishment. The TVC system completed the required qualification and verification tests and is certified for the intended application. Substantiation data include analytical and test data.

  18. Iron Uptake and Transport in Plants: The Good, the Bad, and the Ionome

    SciTech Connect

    Morrissey, J.; Guerinot, M

    2009-01-01

    Fe is essential for plant growth. At the same time, Fe is highly reactive and toxic via the Fenton reaction. Consequently, plants tightly control Fe homeostasis and react to Fe deficiency as well as Fe overload. The ability of plants to respond to Fe availability ultimately affects human nutrition, both in terms of crop yield and the Fe concentration of edible tissues. Thus, elucidating the mechanisms of Fe uptake and transport is essential for the breeding of crops that are more nutrient rich and more tolerant of Fe-limited soils.This review covers Fe transport and homeostasis in plants, focusing on the research published in the past five years. Because Fe transporters often have a broad range of substrates, we also examine the relationship between Fe and the toxic metals that often accompany Fe uptake, namely Cd, Co, and Ni. We begin by discussing Fe uptake into the root, then long-distance transport to the shoot, and finally, the loading of Fe into seeds. And, as Fe is essential to the metabolism of the mitochondria and chloroplast, we also look at the recent discoveries in Fe transport and homeostasis at the intracellular level. We do not cover the regulation of these transporters as this topic has been recently reviewed.

  19. AhDMT1, a Fe(2+) transporter, is involved in improving iron nutrition and N2 fixation in nodules of peanut intercropped with maize in calcareous soils.

    PubMed

    Shen, Hongyun; Xiong, Hongchun; Guo, Xiaotong; Wang, Pengfei; Duan, Penggen; Zhang, Lixia; Zhang, Fusuo; Zuo, Yuanmei

    2014-05-01

    Peanut (Arachis hypogaea L.) is an important legume providing edible proteins and N2 fixation. However, iron deficiency severely reduces peanut growth in calcareous soils. The maize/peanut intercropping effectively improves iron nutrition and N2 fixation of peanut under pot and field conditions on calcareous soils. However, little was known of how intercropping regulates iron transporters in peanut. We identified AhDMT1 as a Fe(2+) transporter which was highly expressed in mature nodules with stronger N2 fixation capacity. Promoter expression analysis indicated that AhDMT1 was localized in the vascular tissues of both roots and nodules in peanut. Short-term Fe-deficiency temporarily induced an AhDmt1 expression in mature nodules in contrast to roots. However, analysis of the correlation between the complex regulation pattern of AhDmt1 expression and iron nutrition status indicated that sufficient iron supply for long term was a prerequisite for keeping AhDmt1 at a high expression level in both, peanut roots and mature nodules. The AhDmt1 expression in peanut intercropped with maize under 3 years greenhouse experiments was similar to that of peanut supplied with sufficient iron in laboratory experiments. Thus, the positive interspecific effect of intercropping may supply sufficient iron to enhance the expression of AhDmt1 in peanut roots and mature nodules to improve the iron nutrition and N2 fixation in nodules. This study may also serve as a paradigm in which functionally important genes and their ecological significance in intercropping were characterized using a candidate gene approach. PMID:24519544

  20. Safety awareness continuity in transportation and space systems

    NASA Astrophysics Data System (ADS)

    Macidull, John C.

    The paper discusses safety awareness in transportation and space systems, the roles of definitions, statistics and accident investigation in relation to transportation safety using examples of naval and commercial aircraft historical data, and the Space Shuttle Challenger investigation.

  1. Fireworthiness of transport aircraft interior systems

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.

    1981-01-01

    The key materials question is addressed concerning the effect of interior systems on the survival of passengers and crew in the case of an uncontrolled transport aircraft fire. Technical opportunities are examined which are available through the modification of aircraft interior subsystem components, modifications that may reasonably be expected to provide improvements in aircraft fire safety. Subsystem components discussed are interior panels, seats, and windows. By virtue of their role in real fire situations and as indicated by the results of large scale simulation tests, these components appear to offer the most immediate and highest payoff possible by modifying interior materials of existing aircraft. These modifications have the potential of reducing the rate of fire growth, with a consequent reduction of heat, toxic gas, and smoke emission throughout the habitable interior of an aircraft, whatever the initial source of the fire.

  2. Fuel cell system for transportation applications

    DOEpatents

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1993-09-28

    A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

  3. Fuel cell system for transportation applications

    DOEpatents

    Kumar, Romesh; Ahmed, Shabbir; Krumpelt, Michael; Myles, Kevin M.

    1993-01-01

    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  4. Influence of microRNA on the Maintenance of Human Iron Metabolism

    PubMed Central

    Davis, McKale; Clarke, Stephen

    2013-01-01

    Iron is an essential nutrient critical for many cellular functions including DNA synthesis, ATP generation, and cellular proliferation. Though essential, excessive iron may contribute to the generation of free radicals capable of damaging cellular lipids, proteins, and nucleic acids. As such, the maintenance and control of cellular iron homeostasis is critical to prevent either iron deficiency or iron toxicity conditions. The maintenance of cellular iron homeostasis is largely coordinated by a family of cytosolic RNA binding proteins known as Iron Regulatory Proteins (IRP) that function to post-transcriptionally control the translation and/or stability of mRNA encoding proteins required for iron uptake, storage, transport, and utilization. More recently, a class of small non-coding RNA known as microRNA (miRNA) has also been implicated in the control of iron metabolism. To date, miRNA have been demonstrated to post-transcriptionally regulate the expression of genes associated with iron acquisition (transferrin receptor and divalent metal transporter), iron export (ferroportin), iron storage (ferritin), iron utilization (ISCU), and coordination of systemic iron homeostasis (HFE and hemojevelin). Given the diversity of miRNA and number of potential mRNA targets, characterizing factors that contribute to alterations in miRNA expression, biogenesis, and processing will enhance our understanding of mechanisms by which cells respond to changes in iron demand and/or iron availability to control cellular iron homeostasis. PMID:23846788

  5. The air transportation/energy system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The changing pattern of transportation is discussed, and the energy intensiveness of various modes of transportation is also analyzed. Sociopsychological data affecting why people travel by air are presented, along with governmental regulation and air transportation economics. The aviation user tax structure is shown in tabular form.

  6. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    PubMed

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. PMID:25150521

  7. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media.

    PubMed

    Strutz, Tessa J; Hornbruch, Götz; Dahmke, Andreas; Köber, Ralf

    2016-08-01

    Successful groundwater remediation by injecting nanoscale zero-valent iron (NZVI) particles requires efficient particle transportation and distribution in the subsurface. This study focused on the influence of injection velocity and particle concentration on the spatial NZVI particle distribution, the deposition processes and on quantifying the induced decrease in hydraulic conductivity (K) as a result of particle retention by lab tests and numerical simulations. Horizontal column tests of 2m length were performed with initial Darcy injection velocities (q0) of 0.5, 1.5, and 4.1m/h and elemental iron input concentrations (Fe(0)in) of 0.6, 10, and 17g/L. Concentrations of Fe(0) in the sand were determined by magnetic susceptibility scans, which provide detailed Fe(0) distribution profiles along the column. NZVI particles were transported farther at higher injection velocity and higher input concentrations. K decreased by one order of magnitude during injection in all experiments, with a stronger decrease after reaching Fe(0) concentrations of about 14-18g/kg(sand). To simulate the observed nanoparticle transport behavior the existing finite-element code OGS has been successfully extended and parameterized for the investigated experiments using blocking, ripening, and straining as governing deposition processes. Considering parameter relationships deduced from single simulations for each experiment (e.g. deposition rate constants as a function of flow velocity) one mean parameter set has been generated reproducing the observations in an adequate way for most cases of the investigated realistic injection conditions. An assessment of the deposition processes related to clogging effects showed that the percentage of retention due to straining and ripening increased during experimental run time resulting in an ongoing reduction of K. Clogging is mainly evoked by straining which dominates particle deposition at higher flow velocities, while blocking and ripening play a

  8. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media

    NASA Astrophysics Data System (ADS)

    Strutz, Tessa J.; Hornbruch, Götz; Dahmke, Andreas; Köber, Ralf

    2016-08-01

    Successful groundwater remediation by injecting nanoscale zero-valent iron (NZVI) particles requires efficient particle transportation and distribution in the subsurface. This study focused on the influence of injection velocity and particle concentration on the spatial NZVI particle distribution, the deposition processes and on quantifying the induced decrease in hydraulic conductivity (K) as a result of particle retention by lab tests and numerical simulations. Horizontal column tests of 2 m length were performed with initial Darcy injection velocities (q0) of 0.5, 1.5, and 4.1 m/h and elemental iron input concentrations (Fe0in) of 0.6, 10, and 17 g/L. Concentrations of Fe0 in the sand were determined by magnetic susceptibility scans, which provide detailed Fe0 distribution profiles along the column. NZVI particles were transported farther at higher injection velocity and higher input concentrations. K decreased by one order of magnitude during injection in all experiments, with a stronger decrease after reaching Fe0 concentrations of about 14-18 g/kg(sand). To simulate the observed nanoparticle transport behavior the existing finite-element code OGS has been successfully extended and parameterized for the investigated experiments using blocking, ripening, and straining as governing deposition processes. Considering parameter relationships deduced from single simulations for each experiment (e.g. deposition rate constants as a function of flow velocity) one mean parameter set has been generated reproducing the observations in an adequate way for most cases of the investigated realistic injection conditions. An assessment of the deposition processes related to clogging effects showed that the percentage of retention due to straining and ripening increased during experimental run time resulting in an ongoing reduction of K. Clogging is mainly evoked by straining which dominates particle deposition at higher flow velocities, while blocking and ripening play a

  9. Closed system Fischer-Tropsch synthesis over meteoritic iron, iron ore and nickel-iron alloy. [deuterium-carbon monoxide reaction catalysis

    NASA Technical Reports Server (NTRS)

    Nooner, D. W.; Gibert, J. M.; Gelpi, E.; Oro, J.

    1976-01-01

    Experiments were performed in which meteoritic iron, iron ore and nickel-iron alloy were used to catalyze (in Fischer-Tropsch synthesis) the reaction of deuterium and carbon monoxide in a closed vessel. Normal alkanes and alkenes and their monomethyl substituted isomers and aromatic hydrocarbons were synthesized. Iron oxide and oxidized-reduced Canyon Diablo used as Fischer-Tropsch catalysts were found to produce aromatic hydrocarbons in distributions having many of the features of those observed in carbonaceous chondrites, but only at temperatures and reaction times well above 300 C and 6-8 h.

  10. PHYSIO-CHEMICAL CHARACTERIZATION OF IRON TUBERCULATION FROM A SINGLE DRINKING WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    Corrosion of iron pipes in Drinking Water Distribution Systems (DWDS) contributes to the formation of tubercles whose physio-chemical properties are influenced by the composition of the waters in the distribution system. Thus the objective of this study was to assess the extent o...

  11. Iron and manganese speciation and cycling in glacially influenced high-latitude fjord sediments (West Spitsbergen, Svalbard): Evidence for a benthic recycling-transport mechanism

    NASA Astrophysics Data System (ADS)

    Wehrmann, Laura M.; Formolo, Michael J.; Owens, Jeremy D.; Raiswell, Robert; Ferdelman, Timothy G.; Riedinger, Natascha; Lyons, Timothy W.

    2014-09-01

    Glacial environments may provide an important but poorly constrained source of potentially bioavailable iron and manganese phases to the coastal ocean in high-latitude regions. Little is known about the fate and biogeochemical cycling of glacially derived iron and manganese in the coastal marine realm. Sediment and porewater samples were collected along transects from the fjord mouths to the tidewater glaciers at the fjord heads in Smeerenburgfjorden, Kongsfjorden, and Van Keulenfjorden along Western Svalbard. Solid-phase iron and manganese speciation, determined by sequential chemical extraction, could be linked to the compositions of the local bedrock and hydrological/weathering conditions below the local glaciers. The concentration and sulfur isotope composition of chromium reducible sulfur (CRS) in Kongs- and Van Keulenfjorden sediments largely reflect the delivery rate and isotope composition of detrital pyrite originating from adjacent glaciers. The varying input of reducible iron and manganese oxide phases and the input of organic matter of varying reactivity control the pathways of organic carbon mineralization in the sediments of the three fjords. High reducible iron and manganese oxide concentrations and elevated metal accumulation rates coupled to low input of “fresh” organic matter lead to a strong expression of dissimilatory metal oxide reduction evidenced in very high porewater iron (up to 800 μM) and manganese (up to 210 μM) concentrations in Kongsfjorden and Van Keulenfjorden. Sediment reworking by the benthic macrofauna and physical sediment resuspension via iceberg calving may be additional factors that promote extensive benthic iron and manganese cycling in these fjords. On-going benthic recycling of glacially derived dissolved iron into overlying seawater, where partial re-oxidation and deposition occurs, facilitates the transport of iron across the fjords and potentially into adjacent continental shelf waters. Such iron-dominated fjord

  12. Iron content of ferritin modulates its uptake by intestinal epithelium: implications for co-transport of prions.

    PubMed

    Bhupanapadu Sunkesula, Solomon Raju; Luo, Xiu; Das, Dola; Singh, Ajay; Singh, Neena

    2010-01-01

    The spread of Chronic Wasting Disease (CWD) in the deer and elk population has caused serious public health concerns due to its potential to infect farm animals and humans. Like other prion disorders such a sporadic Creutzfeldt-Jakob-disease of humans and Mad Cow Disease of cattle, CWD is caused by PrP-scrapie (PrPSc), a beta-sheet rich isoform of a normal cell surface glycoprotein, the prion protein (PrPC). Since PrPSc is sufficient to cause infection and neurotoxicity if ingested by a susceptible host, it is important to understand the mechanism by which it crosses the stringent epithelial cell barrier of the small intestine. Possible mechanisms include co-transport with ferritin in ingested food and uptake by dendritic cells. Since ferritin is ubiquitously expressed and shares considerable homology among species, co-transport of PrPSc with ferritin can result in cross-species spread with deleterious consequences. We have used a combination of in vitro and in vivo models of intestinal epithelial cell barrier to understand the role of ferritin in mediating PrPSc uptake and transport. In this report, we demonstrate that PrPSc and ferritin from CWD affected deer and elk brains and scrapie from sheep resist degradation by digestive enzymes, and are transcytosed across a tight monolayer of human epithelial cells with significant efficiency. Likewise, ferritin from hamster brains is taken up by mouse intestinal epithelial cells in vivo, indicating that uptake of ferritin is not limited by species differences as described for prions. More importantly, the iron content of ferritin determines its efficiency of uptake and transport by Caco-2 cells and mouse models, providing insight into the mechanism(s) of ferritin and PrPSc uptake by intestinal epithelial cells. PMID:20429907

  13. Nano-scale zero valent iron transport in a variable aperture dolomite fracture and a glass fracture

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Sleep, B. E.; Cui, Z.; Zhou, Z.

    2014-12-01

    Experiments and numerical simulations are being performed to understand the transport behavior of carboxymethyl cellulose polymer stabilized nano-scale zero valent iron (nZVI) in a variable aperture dolomite rock fracture and a variable aperture glass replica of a fractured slate. The rock fracture was prepared by artificially inducing a fracture in a dolomite block along a stylolite, and the glass fracture was prepared by creating molds with melted glass on two opposing sides of a fractured slate rock block. Both of the fractures were 0.28 m in length and 0.21 m in width. Equivalent hydraulic apertures are about 110 microns for the rock fracture and 250 microns for the glass replica fracture. Sodium bromide and lissamine green B (LGB) serve as conservative tracers in the rock fracture and glass replica fracture, respectively. A dark box set-up with a light source and digital camera is being used to visualize the LGB and CMC-nZVI movement in the glass fracture. Experiments are being performed to determine the effects of water specific discharge and CMC concentration on nZVI transport in the fractures. Transmission electron microscopy, dynamic light scattering, and UV-visual spectrophotometry were performed to determine the stability and characteristics of the CMC-nZVI mixture. The transport of bromide, LGB, CMC, and CMC-nZVI in both fractures is being evaluated through analysis of the effluent concentrations. Time-lapse images are also being captured for the glass fracture. Bromide, LGB, and CMC recoveries have exceeded 95% in both fractures. Significant channeling has been observed in the fractures for CMC transport due to viscous effects.

  14. Argonne simulation framework for intelligent transportation systems

    SciTech Connect

    Ewing, T.; Doss, E.; Hanebutte, U.; Canfield, T.; Brown-VanHoozer, A.; Tentner, A.

    1996-04-01

    A simulation framework has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS). The simulator is designed to run on parallel computers and distributed (networked) computer systems; however, a version for a stand alone workstation is also available. The ITS simulator includes an Expert Driver Model (EDM) of instrumented ``smart`` vehicles with in-vehicle navigation units. The EDM is capable of performing optimal route planning and communicating with Traffic Management Centers (TMC). A dynamic road map data base is sued for optimum route planning, where the data is updated periodically to reflect any changes in road or weather conditions. The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces that includes human-factors studies to support safety and operational research. Realistic modeling of variations of the posted driving speed are based on human factor studies that take into consideration weather, road conditions, driver`s personality and behavior and vehicle type. The simulator has been developed on a distributed system of networked UNIX computers, but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of the developed simulator is that vehicles will be represented by autonomous computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. Vehicle processes interact with each other and with ITS components by exchanging messages. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  15. Platinum/yttrium iron garnet inverted structures for spin current transport

    NASA Astrophysics Data System (ADS)

    Aldosary, Mohammed; Li, Junxue; Tang, Chi; Xu, Yadong; Zheng, Jian-Guo; Bozhilov, Krassimir N.; Shi, Jing

    2016-06-01

    30-80 nm thick yttrium iron garnet (YIG) films are grown by pulsed laser deposition on a 5 nm thick sputtered Pt atop gadolinium gallium garnet substrate (GGG) (110). Upon post-growth rapid thermal annealing, single crystal YIG(110) emerges as if it were epitaxially grown on GGG(110) despite the presence of the intermediate Pt film. The YIG surface shows atomic steps with the root-mean-square roughness of 0.12 nm on flat terraces. Both Pt/YIG and GGG/Pt interfaces are atomically sharp. The resulting YIG(110) films show clear in-plane uniaxial magnetic anisotropy with a well-defined easy axis along <001> and a peak-to-peak ferromagnetic resonance linewidth of 7.5 Oe at 9.32 GHz, similar to YIG epitaxially grown on GGG. Both spin Hall magnetoresistance and longitudinal spin Seebeck effects in the inverted bilayers indicate excellent Pt/YIG interface quality.

  16. The Role of Transition Metal Transporters for Iron, Zinc, Manganese, and Copper in the Pathogenesis of Yersinia pestis

    PubMed Central

    Perry, Robert D.; Bobrov, Alexander G.; Fetherston, Jacqueline D.

    2015-01-01

    Yersinia pestis, the causative agent of bubonic, septicemic and pneumonic plague, encodes a multitude of Fe transport systems. Some of these are defective due to frameshift or IS element insertions, while others are functional in vitro but have no established role in causing infections. Indeed only 3 Fe transporters (Ybt, Yfe and Feo) have been shown to be important in at least one form of plague. The yersiniabactin (Ybt) system is essential in the early dermal/lymphatic stages of bubonic plague, irrelevant in the septicemic stage, and critical in pneumonic plague. Two Mn transporters have been characterized (Yfe and MntH). These two systems play a role in bubonic plague but the double yfe mntH mutant is fully virulent in a mouse model of pneumonic plague. The same in vivo phenotype occurs with a mutant lacking two (Yfe and Feo) of four ferrous transporters. A role for the Ybt siderophore in Zn acquisition has been revealed. Ybt-dependent Zn acquisition uses a transport system completely independent of the Fe-Ybt uptake system. Together Ybt components and ZnuABC play a critical role in Zn acquisition in vivo. Single mutants in either system retain high virulence in a mouse model of septicemic plague while the double mutant is completely avirulent. PMID:25891079

  17. Melting Behavior and Chemical Properties of the Iron-Carbon System

    NASA Astrophysics Data System (ADS)

    Prakapenka, V.; Kantor, I.; Kubo, A.; Kuznetsov, A.; Dera, P.; Rivers, M.; Sutton, S.

    2008-12-01

    One of the most challenging experiments related to the laser heating technique in the diamond anvil cell (DAC) is an unambiguous x-ray based detection of melting by recording high quality diffuse x-ray scattering from molten materials at high pressure. Employing a newly developed, advanced, flat top laser heating system at GSECARS, we were able to perform on-line melting experiments at pressures up to 60 GPa. The capability to maintain the molten sample in the DAC for a relatively long time (at least 60 s) allowed us to collect high quality x-ray scattering data suitable for structure analysis even from low-Z molten materials, such as Si, Ge, Fe, Fe3C, Fe7C3 etc. In this work, we focused on the melting behavior and chemical properties of the iron-carbon system at pressures up to ~170 GPa studied with on-line micro x-ray diffraction in a double sided laser heated DAC at GSECARS (Sector 13, APS). Iron carbides (Fe3C, Fe7C3) were synthesized in- situ in the DAC from various mixtures of Fe and C powders with different atomic ratios. We have found that the chemical reaction between iron and carbon takes place independent of the structure of starting phases of iron (fcc or hcp) and carbon (graphite or diamond). The reaction temperature increased gradually from ~1000 K to ~1700 K as pressure increased from 6 GPa to 155 GPa. The melting temperature of iron carbide was found to be systematically lower than for iron by ~300-400 degrees in the pressure range 20-60 GPa. The experimentally measured structure factor and related pair distribution function of iron carbide melt were analyzed and compared with pure iron data at related pressures. High- pressure, high-temperature stability of iron carbide phases at the relevant Earth's mantle-core conditions and physical/chemical properties of iron-carbon melts provide important constraints on models of the formation of D" layer and interactions at the core mantle boundary. Implications of these results for the composition and

  18. Restoration of growth by manganese in a mutant strain of Escherichia coli lacking most known iron and manganese uptake systems.

    PubMed

    Taudte, Nadine; German, Nadezhda; Zhu, Yong-Guan; Grass, Gregor; Rensing, Christopher

    2016-06-01

    The interplay of manganese and iron homeostasis and oxidative stress in Escherichia coli can give important insights into survival of bacteria in the phagosome and under differing iron or manganese bioavailabilities. Here, we characterized a mutant strain devoid of all know iron/manganese-uptake systems relevant for growth in defined medium. Based on these results an exit strategy enabling the cell to cope with iron depletion and use of manganese as an alternative for iron could be shown. Such a strategy would also explain why E. coli harbors some iron- or manganese-dependent iso-enzymes such as superoxide dismutases or ribonucleotide reductases. The benefits for gaining a means for survival would be bought with the cost of less efficient metabolism as indicated in our experiments by lower cell densities with manganese than with iron. In addition, this strain was extremely sensitive to the metalloid gallium but this gallium toxicity can be alleviated by low concentrations of manganese. PMID:27003826

  19. Systematic Development of Intelligent Systems for Public Road Transport

    PubMed Central

    García, Carmelo R.; Quesada-Arencibia, Alexis; Cristóbal, Teresa; Padrón, Gabino; Alayón, Francisco

    2016-01-01

    This paper presents an architecture model for the development of intelligent systems for public passenger transport by road. The main objective of our proposal is to provide a framework for the systematic development and deployment of telematics systems to improve various aspects of this type of transport, such as efficiency, accessibility and safety. The architecture model presented herein is based on international standards on intelligent transport system architectures, ubiquitous computing and service-oriented architecture for distributed systems. To illustrate the utility of the model, we also present a use case of a monitoring system for stops on a public passenger road transport network. PMID:27438836

  20. Systematic Development of Intelligent Systems for Public Road Transport.

    PubMed

    García, Carmelo R; Quesada-Arencibia, Alexis; Cristóbal, Teresa; Padrón, Gabino; Alayón, Francisco

    2016-01-01

    This paper presents an architecture model for the development of intelligent systems for public passenger transport by road. The main objective of our proposal is to provide a framework for the systematic development and deployment of telematics systems to improve various aspects of this type of transport, such as efficiency, accessibility and safety. The architecture model presented herein is based on international standards on intelligent transport system architectures, ubiquitous computing and service-oriented architecture for distributed systems. To illustrate the utility of the model, we also present a use case of a monitoring system for stops on a public passenger road transport network. PMID:27438836

  1. National Space Transportation Systems Program mission report

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

    1984-01-01

    The 515-41B National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the sixth operational Shuttle flight and fourth flight of the OV-099 vehicle, Challenger. Since this flight was the first to land at Kennedy Space Center, the vehicle was towed directly to the OPF (Orbiter Processing Facility) where preparations for flight STS-41C, scheduled for early April 1984, began immediately. The significant problems that occurred during STS-41B are summarized and a problem tracking list that is a complete list of all problems that occurred during the flight is given. None of the problems will affect the STS 41C flight. The major objectives of flight STS-41B were to successfully deploy the Westar satellite and the Indonesian Communications Satellite-B2 (PALAPA-B2); to evaluate the MMU (Manned Maneuvering Unit) support for EVA (Extravehicular Activities); to exercise the MFR (Manipulator Foot Restraint); to demonstrate a closed loop rendezvous; and to operate the M.R (Monodisperse Latex Reactor), the ACES (Acoustic Containerless Experiment System) and the IEF (Isoelectric Focusing) in cabin experiments; and to obtain photographs with the Cinema 360 Cameras.

  2. Advanced space transportation systems, BARGOUZIN booster

    NASA Astrophysics Data System (ADS)

    Prampolini, Marco; Louaas, Eric; Prel, Yves; Kostromin, Sergey; Panichkin, Nickolay; Sumin, Yuriy; Osin, Mikhail; Iranzo-Greus, David; Rigault, Michel; Beaurain, André; Couteau, Jean-Noël

    2008-07-01

    In the framework of Advanced Space Transportation Systems Studies sponsored by CNES in 2006, a study called "BARGOUZIN" was performed by a joint team led by ASTRIUM ST and TSNIIMASH. Beyond these leaders, the team comprised MOLNIYA, DASSAULT AVIATION and SNECMA as subcontractors. The "BARGOUZIN" concept is a liquid fuelled fly-back booster (LFBB), mounted on the ARIANE 5 central core stage in place of the current solid rocket booster. The main originality of the concept lies in the fact that the "BARGOUZIN" features a cluster of VULCAIN II engines, similar to the one mounted on the central core stage of ARIANE 5. An astute permutation strategy, between the booster engines and central core engine is expected to lead to significant cost reductions. The following aspects were addressed during the preliminary system study: engine number per booster trade-off/abort scenario analysis, aerodynamic consolidation, engine reliability, ascent controllability, ground interfaces separation sequence analysis, programmatics. These topics will be briefly presented and synthesized in this paper, giving an overview of the credibility of the concept.

  3. NANONIS TRAMEA - A Quantum Transport Measurement System

    NASA Astrophysics Data System (ADS)

    Kampen, Thorsten; Thissen, Andreas; Schaff, Oliver; Pioda, Alessandro

    Nanonis Tramea is a quantum leap with respect to increased speed for transport measurements taking research onto a new level. Measurements which took several hours in the past can now be done in minutes without compromising signal quality. Tramea uses its fast, high-resolution, high-precision and ultra-low-noise outputs and inputs to generate and acquire up to 20000 data points per second on 24 channels in parallel. This is not only up to 1000 x faster than typical measurement systems but it is also time deterministic with highest precision. Here, the time separation between points is constant so that artefacts caused by unequal point spacings in non-deterministic measurement systems are avoided. The emphasis here is the real-time relation. Tramea comes with a built-in interface which allows for control of the instruments' basic functions from any programming environment. For users requiring more functionality and higher speeds a full-featured LabVIEW-based programming interface or scripting module are available as add-on modules. Due to the modularity and flexibility of the hardware and software architecture of Tramea upgrades with standardized add-on modules are possible. Non-standard requests can still be handled by the various programming options.

  4. Cohesive Relations for Surface Atoms in the Iron-Technetium Binary System

    DOE PAGESBeta

    Taylor, Christopher D.

    2011-01-01

    Iron-technetium alloys are of relevance to the development of waste forms for disposition of radioactive technetium-99 obtained from spent nuclear fuel. Corrosion of candidate waste forms is a function of the local cohesive energy () of surface atoms. A theoretical model for calculating is developed. Density functional theory was used to construct a modified embedded atom (MEAM) potential for iron-technetium. Materials properties determined for the iron-technetium system were in good agreement with the literature. To explore the relationship between local structure and corrosion, MEAM simulations were performed on representative iron-technetium alloys and intermetallics. Technetium-rich phases have lower , suggesting thatmore » these phases will be more noble than iron-rich ones. Quantitative estimates of based on numbers of nearest neighbors alone can lead to errors up to 0.5 eV. Consequently, atomistic corrosion simulations for alloy systems should utilize physics-based models that consider not only neighbor counts, but also local compositions and atomic arrangements.« less

  5. Cellular responses induced in vitro by iron (Fe) in a central nervous system cell line (U343MGa).

    PubMed

    Alcântara, D D F A; Ribeiro, H F; Matos, L A; Sousa, J M C; Burbano, R R; Bahia, M O

    2013-01-01

    Iron is the most important metallic chemical element on Earth. Poisoning caused by excessive iron in humans has been associated with pulmonary diseases including neoplasms caused by inhalation of iron oxides. The involvement of iron in neurodegenerative processes has already been described. DNA alterations are induced by iron and other chemical compounds containing this metal; however, the data are controversial and the mechanism by which iron induces mutagenesis remains unknown. This study assessed in vitro iron-induced cytotoxic and genotoxic responses in an astrocytic cell line. Short- and long-term cytotoxicity and genotoxicity were evaluated with the Cell Proliferation Kit II and micronucleus test, respectively. Results indicated that the highest concentration of iron sulfate tested was cytotoxic in long-term cytotoxic assays and increased micronucleus frequency in comparison to controls. The significant cytotoxicity observed here might be due to the intrinsic ability of iron to induce apoptosis and possible changes in cell cycle kinetics; the genotoxic effects are probably due to the oxidant properties of iron itself. This was the first study to investigate the induction of micronuclei by iron in central nervous system cells. PMID:23765962

  6. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the...

  7. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49