These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Iron oxyhydroxide mineralization on microbial extracellular polysaccharides  

E-print Network

Iron oxyhydroxide mineralization on microbial extracellular polysaccharides Clara S. Chan a Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from

2

Iron oxyhydroxide mineralization on microbial extracellular polysaccharides  

SciTech Connect

Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.

Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.; Emerson, David; Banfield, Jillian F.

2010-06-22

3

Iron oxyhydroxide mineralization on microbial extracellular polysaccharides  

Microsoft Academic Search

Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence (?XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We

Clara S. Chan; Sirine C. Fakra; David C. Edwards; David Emerson; Jillian F. Banfield

2009-01-01

4

The mechanism of cadmium surface complexation on iron oxyhydroxide minerals  

NASA Astrophysics Data System (ADS)

Many sediment and soil systems have become significantly contaminated with cadmium, and earth scientists are now required to make increasingly accurate predictions of the risks that this contamination poses. This necessitates an improved understanding of the processes that control the mobility and bioavailability of cadmium in the environment. With this in mind, we have studied the composition and structure of aqueous cadmium sorption complexes on the iron oxyhydroxide minerals goethite (?-FeOOH), lepidocrocite (?-FeOOH), akaganeite (?-FeOOH), and schwertmannite (Fe8O8(OH)6SO4) using extended X-ray adsorption fine structure spectroscopy. The results show that adsorption to all of the studied minerals occurs via inner sphere adsorption over a wide range of pH and cadmium concentrations. The bonding mechanism varies between minerals and appears to be governed by the availability of different types of adsorption site at the mineral surface. The geometry and relative stability of cadmium adsorption complexes on the goethite surface was predicted with ab initio quantum mechanical modelling. The modelling results, used in combination with the extended X-ray adsorption fine structure data, allow an unambiguous determination of the mechanism by which cadmium bonds to goethite. Cadmium adsorbs to goethite by the formation of bidentate surface complexes at corner sharing sites on the predominant (110) crystallographic surface. There is no evidence for significant cadmium adsorption to goethite at the supposedly more reactive edge sharing sites. This is probably because the edge sharing sites are only available on the (021) crystallographic surface, which comprises just ?2% of the total mineral surface area. Conversely, cadmium adsorption on lepidocrocite occurs predominately by the formation of surface complexes at bi- and/or tridentate edge sharing sites. We explain the difference in extended X-ray adsorption fine structure results for cadmium adsorption on goethite and lepidocrocite by the greater availability of reactive edge sharing sites on lepidocrocite than on goethite. The structures of cadmium adsorption complexes on goethite and lepidocrocite appear to be unaffected by changes in pH and surface loading. There is no support for cadmium sorption to any of the studied minerals via the formation of an ordered precipitate, even at high pH and high cadmium concentration. Cadmium adsorption on akaganeite and schwertmannite also occurs via inner sphere bonding, but the mechanism(s) by which this occurs remains ambiguous.

Randall, S. R.; Sherman, D. M.; Ragnarsdottir, K. V.; Collins, Clare R.

1999-10-01

5

The role of iron oxyhydroxides in phosphorus chemistry of some East Texas forest soils  

E-print Network

THE ROLE OF IRON OXYHYDROXIDES IN PHOSPHORUS CHEMISTRY OF SOME EAST TEXAS FOREST SOILS A Dissertation by AMIR HASS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of DOCTOR OF PHILOSOPHY August 2005 Major Subject: Forestry THE ROLE OF IRON OXYHYDROXIDES IN PHOSPHORUS CHEMISTRY OF SOME EAST TEXAS FOREST SOILS A Dissertation by AMIR HASS Submitted to the Office...

Hass, Amir

2006-10-30

6

Changes in the content and composition of pedogenic iron oxyhydroxides in a chronosequence of soils in southern California  

NASA Astrophysics Data System (ADS)

Studies of the pedogenic iron oxyhydroxides in suites of latest Holocene to middle Pleistocene soils formed on fluvial deposits of the transverse ranges, southern California, indicate that the content and composition of iron oxyhydroxide change in a systematic manner. Analysis of total secondary free iron oxides (dithionite extractable, Fe 2O 3d) and ferrihydrite (oxalate extractable, Fe 2O 3o) shows that (1) a single-logarithmic model ( Y = a + b log X) or double logarithmic model (log Y = a + b log X), where Y is the total mass of pedogenic Fe oxides (g/cm 2-soil column) and X is soil age, describes the rate of increase in Fe 2O 3d with time; (2) the Fe 2O 3d content correlates linearly with soil reddening and clay content; (3) the {Fe2O 3o }/{Fe2O 3d} ratio, which indicates the degree of Fe oxide crystallinity, is moderately high to very high (0.22-0.58) in middle Holocene to latest Pleistocene soils and progressively decreases to less than 0.10 in older soils; (4) the value of the {Fe2O 3o }/{Fe2O 3d} ratio also appears to be infuenced by climate; and (5) temporal changes in Fe oxide content and mineralogy are accompanied by related, systematic changes in clay mineralogy and organic matter content. These relationships are attributed to a soil environment that must initially favor ferrihydrite precipitation and/or organic matter-Fe complexation. Subsequent transformation to hematite causes increasingly intense reddening and a concomitant decrease in the {Fe2O 3o }/{Fe2O 3d} ratio. The results demonstrate that iron oxide analysis is useful for numerical age studies of noncalcic soils and shows potential as an indicator of paleoclimates.

McFadden, Leslie D.; Hendricks, David M.

1985-03-01

7

Magnetic Properties of Antiferromagnetic Iron Oxyhydroxides  

NASA Astrophysics Data System (ADS)

Weakly magnetic iron oxyhydroxides such as ferrihydrite, lepidocrocite or goethite are commonly found in diverse geological and environmental setting, including ground waters and streams, sediments, soils, or acid mine drainage. These minerals take part in multiple biological and abiological processes, and can evolve to more magnetic phases such as hematite, maghemite, or magnetite. Therefore, they represent key minerals with regard to paleoclimate, paleoenvironmental, and paleomagnetic studies. At this meeting, we will present low temperature magnetic properties acquired on fully characterized synthetic samples. The complex nature of the magnetism of these minerals is revealed by comparing magnetic data with other types of characterizations such as high-resolution transmission electron microscopy or synchrotron X-ray magnetic circular dichroism (XMCD), or by studying the early-stages of solid-state alteration (under oxidizing or reducing atmosphere). In particular, we will present recent results about the presence of ferri-magnetic nano-clusters in lepidocrocite, and about uncompensated magnetic moments in goethite nanoparticles.

Guyodo, Y. J.; Till, J. L.; Lagroix, F.; Bonville, P.; Penn, R. L.; Sainctavit, P.; Carvallo, C.; ona-Nguema, G.; Morin, G.

2013-12-01

8

Modified composites based on mesostructured iron oxyhydroxide and synthetic minerals: a potential material for the treatment of various toxic heavy metals and its toxicity.  

PubMed

The composites of mesostructured iron oxyhydroxide and/or commercial synthetic zeolite were investigated for use in the removal of toxic heavy metals, such as cadmium, copper, lead and arsenic, from aqueous solution. Four types of adsorbents, dried alginate beads (DABs), synthetic-zeolite impregnated beads (SZIBs), meso-iron-oxyhydroxide impregnated beads (MIOIBs) and synthetic-zeolite/meso-iron-oxyhydroxide composite beads (SZMIOIBs), were prepared for heavy metal adsorption tests. Laboratory experiments were conducted to investigate the removal efficiencies of cations and anions of heavy metals and the possibility of regenerating the adsorbents. Among these adsorbents, the MIOIBs can simultaneously remove cations and anions of heavy metals; they have high adsorption capacities for lead (60.1mgg(-1)) and arsenic (71.9mgg(-1)) compared with other adsorbents, such as DABs (158.1 and 0.0mgg(-1)), SZIB (42.9 and 0.0mgg(-1)) and SZMIOIB (54.0 and 5.9mgg(-1)) for lead and arsenic, respectively. Additionally, the removal efficiency was consistent at approximately 90%, notwithstanding repetitive regeneration. The characteristics of meso-iron-oxyhydroxide powder were confirmed by X-ray diffraction, Brunauer-Emmett-Teller and transmission electron microscopy. We also performed a comparative toxicity study that indicated that much lower concentrations of the powdered form of mesostructured iron oxyhydroxide had stronger cytotoxicity than the granular form. These results suggest that the granular form of meso iron oxyhydroxide is a more useful and safer adsorbent for heavy metal treatment than the powdered form. This research provides promising results for the application of MIOIBs as an adsorbent for various heavy metals from wastewater and sewage. PMID:24444456

Chung, Seung-Gun; Ryu, Jae-Chun; Song, Mi-Kyung; An, Byungryul; Kim, Song-Bae; Lee, Sang-Hyup; Choi, Jae-Woo

2014-02-28

9

Assessing the utility of trace and rare earth elements as biosignatures in microbial iron oxyhydroxides  

NASA Astrophysics Data System (ADS)

Microbial iron oxyhydroxides are common deposits in natural waters, recent sediments and mine drainage systems and often contain significant accumulations of trace and rare earth elements (TREE). TREE patterns are widely used to characterize minerals and rocks, and to elucidate their evolution and origin. Whether and which characteristic TREE signatures distinguish between a biological and an abiological origin of iron minerals is still not well understood. Long-term flow reactor studies were performed in the Äspö Hard Rock Laboratory to investigate the development of microbial mats dominated by iron-oxidizing bacteria, namely Mariprofundus sp. and Gallionella sp. The experiments investigated the accumulation and fractionation of TREE under controlled conditions and enabled us to assess potential biosignatures evolving within the microbial iron oxyhydroxides. Concentrations of Be, Y, Zn, Zr, Hf, W, Th, Pb, and U in the microbial mats were 1e3- to 1e5-fold higher than in the feeder fluids whereas the rare earth elements and Y (REE+Y) contents were 1e4 and 1e6 fold enriched. Except for a hydrothermally induced Eu anomaly, the normalized REE+Y patterns of the microbial iron oxyhydroxides were very similar to published REE+Y distributions of Archaean Banded Iron Formations. The microbial iron oxyhydroxides from the flow reactors were compared to iron oxyhydroxides that were artificially precipitated from the same feeder fluid. These abiotic and inorganic iron oxyhydroxides show the same REE+Y distribution patterns. Our results indicate that the REE+Y mirror quite exactly the water chemistry, but they do not allow to distinguish microbially mediated from inorganic iron precipitates. All TREE studied showed an overall similar fractionation behavior in biogenic, abiotic and inorganic iron oxyhydroxides. Exceptions are Ni and Tl, which were only accumulated in the microbial iron oxyhydroxides and may point to a potential usage of these elements as microbial biosignatures.

Heim, Christine; Simon, Klaus; Ionescu, Danny; Reimer, Andreas; De Beer, Dirk; Quéric, Nadia-Valérie; Reitner, Joachim; Thiel, Volker

2015-02-01

10

Low-Temperature Magnetic Properties of Environmentally Relevant Iron Oxyhydroxides and Their Alteration Products  

NASA Astrophysics Data System (ADS)

Iron oxyhydroxides such as ferrihydrite or lepidocrocite are weakly magnetic mineral that are thought to be, in some environments, precursors of more magnetic phases such as magnetite or maghemite. Deciphering the alteration pathways of these minerals, and others, should allow quantified interpretations of sediment magnetic properties in terms of climate and environmental change in various natural settings. At this meeting, we will present recent low temperature magnetic properties acquired on synthetic iron oxyhydroxides. Comparison of these low-temperature data with other characterizations (e.g., HR-TEM, Mossbauer, XMCD) point to the complex nature of the magnetism of these minerals, which can no longer be considered as simple antiferromagnets. Results from alteration experiments using these minerals as starting material will also be presented. Several experimental approaches have been used for these alterations, including bio-reduction using Shewanella putrefaciens and solid-state reduction (or oxidation) by slow heating in CO/CO2 (or in air). The low-temperature magnetic properties of the resulting materials actually help in building conceptual structural/compositional models explaining the unusual low-temperature magnetic behavior of the initial iron oxyhydroxides.

Guyodo, Y. J.; Lagroix, F.; Ona-Nguema, G.; Bonville, P.

2011-12-01

11

Biomimetic lithography and deposition kinetics of iron oxyhydroxide thin films  

SciTech Connect

Heterogeneous nucleation and crystal growth on functionalized organic substrates is a critical step in biological hard tissue formation. Self assembled monolayers can be derivatized with various organic functional groups to mimic the ``nucleation proteins`` for induction of mineral growth. Studies of nucleation and growth on SAMs can provide a better understanding of biomineralization and can also form the basis of a superior thin film deposition process. We demonstrate that micron-scale, electron and ion beam, lithographic techniques can be used to pattern SAMs with functional organic groups that either inhibit or promote mineral deposition. Patterned films of iron oxyhydroxide were deposited on the areas patterned with nucleation sites. Studies of the deposition kinetic of these films show that indeed the surface induces heterogeneous nucleation and that film formation does not occur via absorption of polymers or colloidal material formed homogeneously in solution. The nucleus interfacial free energy was calculated to be 24 mJ/m2 on a SAM surface composed entirely of sulfonate groups.

Rieke, P.C.; Wood, L.L.; Marsh, B.M.; Fryxell, G.E.; Engelhard, M.H.; Baer, D.R. [Pacific Northwest Lab., Richland, WA (United States); Tarasevich, B.J. [Pacific Northwest Lab., Richland, WA (United States)]|[Pennsylvania State Univ., University Park, PA (United States). Dept. of Chemistry; John, C.M. [Shaman Pharmaceuticals, San Francisco, CA (United States)

1993-12-01

12

Spectroscopic Evidence for Ni(Ii) Surface Speciation at the Iron Oxyhydroxides-Water Interface  

SciTech Connect

Understanding in situ metal surface speciation on mineral surfaces is critical to predicting the natural attenuation of metals in the subsurface environment. In this study, we have demonstrated the novel Ni K-edge X-ray absorption spectroscopy (XAS) measurements needed to understand Ni(II) surface speciation in three synthetic iron oxyhydroxides (ferrihydrite, goethite, and hematite). The adsorption of Ni gradually increases with increasing pH from 5 to 8, and the adsorption edge appears at near the point of zero salt effect (PZSE) of the solids. The results of XAS analysis indicate four different Ni inner-sphere surface species are present. While total Ni surface species in hematite at pH 6.85 surfaces consist of {approx}63% face-sharing (interatomic distance of Ni-Fe (R{sub Ni-Fe}) {approx}2.9 {angstrom}) and {approx}37% corner-sharing (R{sub Ni-Fe} 4.0 {angstrom}) surface species on iron octahedra, a combination of two different edge-sharing (between NiO{sub 6} and FeO{sub 6} octahedra, in chains or in rows) and corner-sharing surface species are observed in goethite and ferrihydrite at pH 5.09-6.89. In ferrihydrite, approximately 70% of surface species are edge-sharing surface species (in chains) (R{sub Ni-Fe} 3.0 {angstrom}), followed by {approx}30% of edge-sharing species (in rows) (R{sub Ni-Fe} {approx}3.2 {angstrom}) and {approx}3-5% of corner-sharing surface species (R{sub Ni-Fe} 4.0{angstrom}). Goethite contains {approx}54% edge-sharing (R{sub Ni-Fe} 3.0 {angstrom}), {approx}26% edge-sharing (R{sub Ni-Fe} {approx}3.2 {angstrom}), and 20% corner-sharing surface species. These findings indicate that the reactivity and surface speciation of Ni are sensitive to the crystallinity of iron oxyhydroxides. The spectroscopic evidence for multi-Ni surface speciation should be factored into predictions of the transport of Ni in soil-water environments.

Arai, Y.

2009-05-11

13

Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide  

USGS Publications Warehouse

This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites is reflected in decreasing equilibrium constants for selenite with increasing adsorption density and both experimental observations and modeling results suggest that manganese dioxide has fewer sites of higher energy for selenite adsorption than amorphous iron oxyhydroxide. Modeling and interpreting the adsorption of phosphate, molybdate, and silicate on the oxides are made difficult by the lack of constraint in choosing surface species and the fact that equally good fits can be obtained with different surface species. Finally, predictions of anion competition using the model results from single adsorbate systems are not very successful because the model does not account for surface site heterogeneity. Selenite adsorption data from a multi-adsorbate system could be fit if the equilibrium constant for selenite is decreased with increasing anion adsorption density. ?? 1990.

Balistrieri, L.S.; Chao, T.T.

1990-01-01

14

Sequestration of non-pure carbon dioxide streams in iron oxyhydroxide-containing saline repositories  

USGS Publications Warehouse

Iron oxyhydroxide, goethite (?-FeOOH), was evaluated as a potential formation mineral reactant for trapping CO2 in a mineral phase such as siderite (FeCO3), when a mixture of CO2-SO 2 flue gas is injected into a saline aquifer. Two thermodynamic simulations were conducted, equilibrating a CO2-SO2 fluid mixture with a NaCl-brine and Fe-rich rocks at 150 °C and 300 bar. The modeling studies evaluated mineral and fluid composition at equilibrium and the influence of pH buffering in the system. Results show siderite precipitates both in the buffered and unbuffered system; however, the presence of an alkaline pH buffer enhances the stability of the carbonate. Based on the model, an experiment was designed to compare with thermodynamic predictions. A CO2-SO2 gas mixture was reacted in 150 ml of NaCl-NaOH brine containing 10 g of goethite at 150 °C and 300 bar for 24 days. Mineralogical and brine chemistry confirmed siderite as the predominant reaction product in the system. Seventy-six mg of CO2 are sequestered in siderite per 10 g of goethite.

Garcia, S.; Rosenbauer, Robert J.; Palandri, James L.; Maroto-Valer, M. M.

2012-01-01

15

Effect of Transport and Aging Processes on Metal Speciation in Iron Oxyhydroxide Aggregates, Tar Creek Superfund Site, Oklahoma  

NASA Astrophysics Data System (ADS)

Following the cessation of mining activity in the late 20th century, Tar Creek Superfund Site was left highly contaminated by Pb, Zn, and Cd. Tar Creek, which flows through the site and into the Neosho River, has been studied extensively because of its potential to transport metals from the mining site to downstream communities. Previous research identified aggregated iron oxyhydroxide material, which forms when mine seepage mixes with Tar Creek surface water, as a major transport vector of metals. Frequent flooding in Tar Creek deposits aggregates on downstream floodplains, where wetting and drying processes alter the speciation of iron and other metals. This study seeks to better quantify those changes and to determine how transport and aging affects the human and ecological health risk. Sequential extractions of aggregate samples collected from the creek demonstrate that Fe is present in both amorphous (10-35% of Fe extracted) and more crystalline (8-23% of Fe extracted) phases. Substantial portions of heavy metals sorb to amorphous iron oxyhydroxide phases (accounting for 10-30% of Pb and Zn extracted) but are not associated with more crystalline iron oxide phases (representing only 1% or less of the Pb and Zn extracted). Samples have a high organic matter content (18-25% mass loss on ignition), but only Fe was significantly extracted by the oxidizing step targeting organic matter (1-2% of Pb and Zn extracted, but 10-26% of Fe extracted). The majority of metals were extracted by the soluble or residual steps. If metals and organic matter inhibit transformation of amorphous iron oxyhydroxide material to nano and crystalline iron oxides, then a steady-state volume of amorphous iron oxyhydroxide material with a high total sorption capacity may exist within Tar Creek, enhancing the metal flux accommodated by this transport mechanism. Once transported downstream and deposited on floodplains, however, it is hypothesized that repeated changes in soil matrix composition and thermodynamic conditions could facilitate a transformation to more crystalline iron phases and increase metal bioavailability. While preliminary data from in-creek aggregates show no clear trend in mineralogical composition with downstream transport, only the furthest downstream samples have 2-line ferrihydrite in amounts detectable by XRD.

Estes, E. R.; Schaider, L. A.; Shine, J. P.; Brabander, D. J.

2010-12-01

16

Associations between iron oxyhydroxide nanoparticle growth and metal adsorption/structural incorporation  

SciTech Connect

The interaction of metal ions and oxyanions with nanoscale mineral phases has not yet been extensively studied despite the increased recognition of their prevalence in natural systems as a significant component of geomedia. A combination of macroscopic uptake studies to investigate the adsorption behavior of As(V), Cu(II), Hg(II), and Zn(II) onto nanoparticulate goethite ({alpha}-FeOOH) as a function of aging time at elevated temperature (75 C) and synchrotron-based X-ray studies to track changes in both the sorption mode and the rate of nanoparticle growth reveal the effects that uptake has on particle growth. Metal(loid) species which sorb quickly to the iron oxyhydroxide particles (As(V), Cu(II)) appear to passivate the particle surface, impeding the growth of the nanoparticles with progressive aging; in contrast, species that sorb more slowly (Hg(II), Zn(II)) have considerably less impact on particle growth. Progressive changes in the speciation of these particular metals with time suggest shifts in the mode of metal uptake with time, possibly indicating structural incorporation of the metal(loid) into the nanoparticle; this is supported by the continued increase in uptake concomitant with particle growth, implying that metal species may transform from surface-sorbed species to more structurally incorporated forms. This type of incorporation would have implications for the long-term fate and mobility of metals in contaminated regions, and affect the strategy for potential remediation/modeling efforts.

Kim, C.S.; Lentini, C.J.; Waychunas, G.A.

2008-09-15

17

Structure of carbohydrate-bound polynuclear iron oxyhydroxide nanoparticles in parenteral formulations.  

PubMed

Intravenous iron therapy is used to treat anemia associated with chronic kidney disease. The chemical structures of parenteral iron agents have not been characterized in detail, and correlations between structure, efficiency of iron delivery, and toxicity via catalysis of oxygen-derived free radical creation remain to be established. In this study, two formulations of parenteral iron have been characterized by absorption spectroscopy, X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), and elemental analysis. The samples studied were Venofer (Iron Sucrose Injection, USP) and Ferrlecit (Sodium Ferric Gluconate in Sucrose Injection). The 250-800-nm absorption spectra and the XRD patterns showed that both formulations contain a mineral core composed of iron oxyhydroxide in the beta-FeOOH mineral polymorph known as akaganeite. This was further confirmed for each formulation by imaging using TEM and AFM. The average core size for the nanoparticles, after dialysis to remove unbound or loosely bound carbohydrate, was approximately 3+/-2 nm for the iron-sucrose, and approximately 2+/-1 nm for the iron-gluconate. Each of the nanoparticles consists of a mineral core, surrounded by a layer of bound carbohydrate. The overall diameter of the average bead in the dialyzed preparations was approximately 7+/-4 nm for the iron-sucrose, and 3+/-1 nm for the iron-gluconate. Undialyzed preparations have particles with larger average sizes, depending on the extent of dilution of unbound and loosely bound carbohydrate. At a dilution corresponding to a final Fe concentration of 5 mg/mL, the average particle diameter in the iron-sucrose formulation was approximately 22+/-9 nm, whereas that of the iron-gluconate formulation was approximately 12+/-5 nm. PMID:15522403

Kudasheva, Dina S; Lai, Jriuan; Ulman, Abraham; Cowman, Mary K

2004-11-01

18

Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge  

SciTech Connect

Here we examine Fe speciation within Fe-encrusted biofilms formed during 2-month seafloor incubations of sulfide mineral assemblages at the Main Endeavor Segment of the Juan de Fuca Ridge. The biofilms were distributed heterogeneously across the surface of the incubated sulfide and composed primarily of particles with a twisted stalk morphology resembling those produced by some aerobic Fe-oxidizing microorganisms. Our objectives were to determine the form of biofilm-associated Fe, and identify the sulfide minerals associated with microbial growth. We used micro-focused synchrotron-radiation X-ray fluorescence mapping (mu XRF), X-ray absorption spectroscopy (mu EXAFS), and X-ray diffraction (mu XRD) in conjunction with focused ion beam (FIB) sectioning, and highresolution transmission electron microscopy (HRTEM). The chemical and mineralogical composition of an Fe-encrusted biofilm was queried at different spatial scales, and the spatial relationship between primary sulfide and secondary oxyhydroxide minerals was resolved. The Fe-encrusted biofilms formed preferentially at pyrrhotite-rich (Fe1-xS, 0<_ x<_ 0.2) regions of the incubated chimney sulfide. At the nanometer spatial scale, particles within the biofilm exhibiting lattice fringing and diffraction patterns consistent with 2-line ferrihydrite were identified infrequently. At the micron spatial scale, Fe mu EXAFS spectroscopy and mu XRD measurements indicate that the dominant form of biofilm Fe is a short-range ordered Fe oxyhydroxide characterized by pervasive edge-sharing Fe-O6 octahedral linkages. Double corner-sharing Fe-O6 linkages, which are common to Fe oxyhydroxide mineral structures of 2-line ferrihydrite, 6-line ferrihydrite, and goethite, were not detected in the biogenic iron oxyhydroxide (BIO). The suspended development of the BIO mineral structure is consistent with Fe(III) hydrolysis and polymerization in the presence of high concentrations of Fe-complexing ligands. We hypothesize that microbiologically produced Fe-complexing ligands may play critical roles in both the delivery of Fe(II) to oxidases, and the limited Fe(III) oxyhydroxide crystallinity observed within the biofilm. Our research provides insight into the structure and formation of naturally occurring, microbiologically produced Fe oxyhydroxide minerals in the deep-sea. We describe the initiation of microbial seafloor weathering, and the morphological and mineralogical signals that result from that process. Our observations provide a starting point from which progressively older and more extensively weathered seafloor sulfide minerals may be examined, with the ultimate goal of improved interpretation of ancient microbial processes and associated biological signatures.

Toner, Brandy M.; Santelli, Cara M.; Marcus, Matthew A.; Wirth, Richard; Chan, Clara S.; McCollom, Thomas; Bach, Wolfgang; Edwards, Katrina J.

2008-05-22

19

Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge  

E-print Network

Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge kgĂ?1 (German and von Damm, 2004). As vented hydrothermal fluids mix with cold, oxygenated deep in mid-ocean ridge (MOR) hydrothermal end-member fluids at concentrations ranging from 0.007 to 25 mmol

20

To improve the performance of sediment microbial fuel cell through amending colloidal iron oxyhydroxide into freshwater sediments.  

PubMed

Effects of iron oxide amendment into freshwater sediments on performance of sediment microbial fuel cell (SMFC) were investigated. It was found that amending amorphous bulk ferric oxyhydroxide, and crystalline goethite and magnetite did not affect SMFC operation. However, amendment of the mixed solution including soluble ferric citrate and colloidal iron oxyhydroxide, stably improved SMFC performance with voltage outputs up to threefolds higher than those without amendment. The enhanced voltage production corresponded to lower anode potential, but was not related to organic matter removal in sediments. Further experiments demonstrated that colloidal iron oxyhydroxide instead of soluble ferric iron played an important role in voltage production through maintaining high-concentration ferrous iron in pore water of sediments as electron shuttle and for chemical oxidation on the anode. Thus, colloidal iron oxyhydroxide amendment was a promising strategy to improve power production from SMFC employed in sediments especially with low content of organic matters. PMID:24657753

Zhou, Yan-Li; Yang, Ying; Chen, Mo; Zhao, Zhi-Wei; Jiang, He-Long

2014-05-01

21

Electron transport in pure and substituted iron oxyhydroxides by small-polaron migration  

SciTech Connect

Iron oxyhydroxides (FeOOH) are common crystalline forms of iron that play a critical role in technology and the natural environment via a variety of important reduction-oxidation reactions, including electrical semiconduction as an aspect. However, a basic understanding of the electron transport properties of these systems is still lacking. We examine the electron mobility in goethite (?-FeOOH), akaganéite (?-FeOOH), and lepidocrocite (? -FeOOH) polymorphs by means of density functional theory based (DFT+U) calculations.We show that room temperature charge transport should be dominated by the small-polaron hopping type, and that the attendant mobility should be highest for pure goethite and akaganéite. Hopping pathways through the various lattices are discussed in terms of individual electron exchange steps and rates for each. Given the usual occurrence of compositional impurities in natural iron oxyhydroxides, we also investigate the effect of common stoichiometric defects on the electron hopping activation energies such as Al and Cr substitutional cations in goethite, and Cl anions in the channels of akaganéite.

Alexandrov, Vitali Y.; Rosso, Kevin M.

2014-08-12

22

Electron transport in pure and substituted iron oxyhydroxides by small-polaron migration  

NASA Astrophysics Data System (ADS)

Iron oxyhydroxides (FeOOH) are common crystalline forms of iron that play a critical role in technology and the natural environment via a variety of important reduction-oxidation reactions, including electrical semiconduction as an aspect. However, a basic understanding of the electron transport properties of these systems is still lacking. We examine the electron mobility in goethite (?-FeOOH), akaganéite (?-FeOOH), and lepidocrocite (?-FeOOH) polymorphs by means of density functional theory based (DFT+U) calculations. We show that room temperature charge transport should be dominated by the small-polaron hopping type, and that the attendant mobility should be highest for pure goethite and akaganéite. Hopping pathways through the various lattices are discussed in terms of individual electron exchange steps and rates for each. Given the usual occurrence of compositional impurities in natural iron oxyhydroxides, we also investigate the effect of common stoichiometric defects on the electron hopping activation energies such as Al and Cr substitutional cations in goethite, and Cl anions in the channels of akaganéite.

Alexandrov, Vitaly; Rosso, Kevin M.

2014-06-01

23

Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors.  

PubMed

A simple one-step electroplating route is proposed for the synthesis of novel iron oxyhydroxide lepidocrocite (?-FeOOH) nanosheet anodes with distinct layered channels, and the microstructural influence on the pseudocapacitive performance of the obtained ?-FeOOH nanosheets is investigated via in situ X-ray absorption spectroscopy (XAS) and electrochemical measurement. The in situ XAS results regarding charge storage mechanisms of electrodeposited ?-FeOOH nanosheets show that a Li(+) can reversibly insert/desert into/from the 2D channels between the [FeO6 ] octahedral subunits depending on the applied potential. This process charge compensates the Fe(2+) /Fe(3+) redox transition upon charging-discharging and thus contributes to an ideal pseudocapacitive behavior of the ?-FeOOH electrode. Electrochemical results indicate that the ?-FeOOH nanosheet shows the outstanding pseudocapacitive performance, which achieves the extraordinary power density of 9000 W kg(-1) with good rate performance. Most importantly, the asymmetric supercapacitors with excellent electrochemical performance are further realized by using 2D MnO2 and ?-FeOOH nanosheets as cathode and anode materials, respectively. The obtained device can be cycled reversibly at a maximum cell voltage of 1.85 V in a mild aqueous electrolyte, further delivering a maximum power density of 16 000 W kg(-1) at an energy density of 37.4 Wh kg(-1). PMID:24850774

Chen, Ying-Chu; Lin, Yan-Gu; Hsu, Yu-Kuei; Yen, Shi-Chern; Chen, Kuei-Hsien; Chen, Li-Chyong

2014-09-24

24

The Formation and Aggregation of Iron Oxyhydroxide Nanoparticles in the Aqueous Environment  

NASA Astrophysics Data System (ADS)

This dissertation consists of four studies, which seek explain how iron oxyhydroxide nanoparticles nucleate and develop new structures via aggregation, within the aqueous environment. The aim of the first study is to determine the structure of ferrihydrite nanoparticle aggregates in aqua. This is achieved using complimentary cryo-TEM and SAXS methodologies. Ferrihydrite nanoparticles are known to form complex aggregate structures. Interpretation of SAXS data is difficult due to suspension polydispersity. Cryo-ET is used to obtain three-dimensional images of the nanoparticle suspensions. A variety of aggregate structures are observed, with branched networks of linear chains of particles being prevalent in most suspensions. The tomographic structural models are processed to determine aggregate fractal dimensions, using an autocorrelation function based approach. These results are combined with SAXS data to obtain a more comprehensive understanding of the suspension complexity. The networks of linear chains are shown to possess low fractal dimensions, between 1.0 and 1.4; significantly lower than would be expected from traditional models for aggregation. This has important consequences for the aggregate's physical behavior, and allows very large aggregates to exist in stable colloidal suspension without flocculation. The second study addresses how the ferrihydrite aggregate structure responds to changes in the ionic strength of the suspension, and how low-dimensional aggregate structures may influence nanoparticle transport through subsurface environments. Introducing ferrihydrite particle aggregates into solutions of 2 mM to 50 mM NaNO3 is shown to induce aggregate collapse, with more salt leading to the formation of denser aggregate structures and eventual flocculation. Complementary experiments show that millimolar quantities of NaNO3 induce a fundamental change in nanoparticle transport through a saturated quartz sand column. In deionized water, where low fractal dimension aggregates are stable, nanoparticles deposit evenly throughout the column, which soon saturates with particles so that subsequent injections are transported freely. When conditions favor aggregate collapse, dense localized accumulations occur and more nanoparticles can be deposited within the column. These deposits may be mechanically unstable, leading to irregular transport behavior. In the third study, the relationship between aggregation and iron oxyhydroxide phase transformations is explored. Previous researchers have found that akaganeite (beta-FeOOH) nanoparticles transform to create hematite (?-Fe2 O3) nano-spindles in response to hydrothermal aging, but the mechanism of transformation is unknown. Some researchers have proposed a process based on the aggregation of hematite precursors, while others advocated for dissolution and re-precipitation mechanisms. In this study, the kinetics of the phase transformation from akaganeite to hematite is studied, and cryo-TEM is used to characterize the aggregate structures in the transforming suspension. The hematite spindles are shown to be nanoporous, while akaganeite nanoparticles display a tendency for oriented aggregation. Hematite spindles are frequently found in intimate contact with akaganeite nanoparticle aggregates during the process of phase transformation, suggesting a model for phase transformation in which the dehydration of akaganeite to form hematite is enhanced by aggregation. In the final study, the nucleation and growth of akaganeite nanoparticles from acidic (pH 1.5-3) FeCl3 solutions is tracked with in situ small angle x-ray scattering (SAXS). The hydrothermal precipitation process studied can generate highly monodisperse particles, whose size, shape, and nucleation rate can be tuned by varying solution saturation and temperature. Classical nucleation modeling is applied to determine new values for the interfacial energy of ferric oxyhydroxide clusters. The interfacial energy (interfacial tension) of the nucleus is shown to be pH dependent and ranges from 0.06 to 0.12 J/m2 within the

Legg, Benjamin Adam

25

Zn(II) and Cu(II) adsorption and retention onto iron oxyhydroxide nanoparticles: effects of particle aggregation and salinity  

PubMed Central

Background Iron oxyhydroxides are commonly found in natural aqueous systems as nanoscale particles, where they can act as effective sorbents for dissolved metals due to their natural surface reactivity, small size and high surface area. These properties make nanoscale iron oxyhydroxides a relevant option for the remediation of water supplies contaminated with dissolved metals. However, natural geochemical processes, such as changes in ionic strength, pH, and temperature, can cause these particles to aggregate, thus affecting their sorption capabilities and remediation potential. Other environmental parameters such as increasing salinity may also impact metal retention, e.g. when particles are transported from freshwater to seawater. Results After using synthetic iron oxyhydroxide nanoparticles and nanoparticle aggregates in batch Zn(II) adsorption experiments, the addition of increasing concentrations of chloride (from 0.1 M to 0.6 M) appears to initially reduce Zn(II) retention, likely due to the desorption of outer-sphere zinc surface complexes and subsequent formation of aqueous Zn-Cl complexes, before then promoting Zn(II) retention, possibly through the formation of ternary surface complexes (supported by EXAFS spectroscopy) which stabilize zinc on the surface of the nanoparticles/aggregates. In batch Cu(II) adsorption experiments, Cu(II) retention reaches a maximum at 0.4 M chloride. Copper-chloride surface complexes are not indicated by EXAFS spectroscopy, but there is an increase in the formation of stable aqueous copper-chloride complexes as chloride concentration rises (with CuCl+ becoming dominant in solution at ~0.5 M chloride) that would potentially inhibit further sorption or encourage desorption. Instead, the presence of bidentate edge-sharing and monodentate corner-sharing complexes is supported by EXAFS spectroscopy. Increasing chloride concentration has more of an impact on zinc retention than the mechanism of nanoparticle aggregation, whereas aggregation condition is a stronger determinant of copper retention. Conclusions Based on these model uptake/retention studies, iron oxyhydroxide nanoparticles show potential as a strategy to remediate zinc-contaminated waters that migrate towards the ocean. Copper retention, in contrast, appears to be optimized at an intermediate salinity consistent with brackish water, and therefore may release considerable fractions of retained copper at higher (e.g. seawater) salinity levels. PMID:24843322

2014-01-01

26

Rapid sedimentation of iron oxyhydroxides in an active hydrothermal shallow semi-enclosed bay at Satsuma Iwo-Jima Island, Kagoshima, Japan  

NASA Astrophysics Data System (ADS)

Hydrothermal activity is common in the fishing port of Nagahama Bay, a small semi-enclosed bay located on the southwest coast of Satsuma Iwo-Jima Island (38 km south of Kyushu Island, Japan). The bay contains red-brown iron oxyhydroxides and thick deposits of sediment. In this work, the high concentration and sedimentation rates of oxyhydroxide in this bay were studied and the sedimentary history was reconstructed. Since dredging work in 1998, a thickness of ~ 1.0-1.5 m of iron oxyhydroxide-rich sediments has accumulated on the floor of the bay. To estimate the volume of iron oxyhydroxide sediments and the amount discharged from hydrothermal vents, sediment traps were operated for several years and 13 sedimentary core samples were collected to reconstruct the 10-year sedimentary history of Nagahama Bay. To confirm the timing of sedimentary events, the core data were compared with meteorological records obtained on the island, and the ages of characteristic key beds were thus identified. The sedimentation rate of iron oxyhydroxide mud was calculated, after correcting for sediment input from other sources. The sediments in the 13 cores from Nagahama Bay consist mainly of iron oxyhydroxide mud, three thick tephra beds, and a topmost thick sandy mud bed. Heavy rainfall events in 2000, 2001, 2002, and 2004-2005 coincide with tephra beds, which were reworked from Iwo-Dake ash deposits to form tephra-rich sediment. Strong typhoon events with gigantic waves transported outer-ocean-floor sediments and supplied quartz, cristobalite, tridymite, and albite sands to Nagahama Bay. These materials were redeposited together with bay sediments as the sandy mud bed. Based on the results from the sediment traps and cores, it is estimated that the iron oxyhydroxide mud accumulated in the bay at the relatively rapid rate of 33.3 cm/year (from traps) and 2.8-4.9 cm/year (from cores). The pore water contents within the sediment trap and core sediments are 73%-82% and 47%-67%, respectively. The estimated production of iron oxyhydroxide for the whole fishing port from trap cores is 142.7-253.3 t/year/5000 m2. From sediment cores, however, the accumulation of iron oxyhydroxide sediments on the sea floor is 39-95 t/year/5000 m2. This finding indicates that the remaining 63%-73% of iron was transported out to sea from Nagahama Bay. Even with a high rate of iron oxyhydroxide production, the sedimentation rate of iron oxyhydroxides in the bay is considerably higher than that observed in modern deep-ocean sediments. This example of rapid and abundant oxyhydroxide sedimentation might provide a modern analog for the formation of iron deposits in the geological record, such as ironstones and banded iron formations.

Kiyokawa, Shoichi; Ueshiba, Takuya

2015-04-01

27

The soils of Mars  

NASA Technical Reports Server (NTRS)

A mineralogical model for the Mars fine soil that includes as major components smectite clays absorbed and coated with amorphous iron oxyhydroxides and perhaps mixed with small amounts of better-crystalized iron oxides as separate phases is proposed. Also present as accessory minerals are sulfate minerals such as kieserite (MgSO4.H2O) and/or anhydrite (CaSO4), rutile (TiO2), and maghemite (Fe2O3) or magnetite (Fe3O4), the last two as magnetic components. Carbonates may be present at low concentrations only (less than 1 to 2 pct). However, a prime question to be addressed by a Mars Sample Return Mission shall be related to the mineralogical composition of the soil, and its spatial variability.

Banin, A.

1988-01-01

28

Remote Sensing of Soils, Minerals, and Geomorphology  

E-print Network

Remote Sensing of Soils, Minerals, and Geomorphology Remote Sensing of Soils,Remote Sensing of Soils, Minerals, and GeomorphologyMinerals, and Geomorphology · 26% of the Earth's surface is exposed, drainage patterns, and geomorphology (landforms). ·· 26% of the Earth's surface is exposed land26

29

Aggregation of nanoscale iron oxyhydroxides and corresponding effects on metal uptake, retention, and speciation: II. Temperature and time  

NASA Astrophysics Data System (ADS)

The aggregation and growth of nanosized particles can greatly impact their capacity to sorb and retain dissolved metals, thus affecting metal fate and transport in contaminated systems. Aqueous suspensions of synthesized nanoscale iron oxyhydroxides were exposed to dissolved Zn(II) or Cu(II) and aged at room temperature (?20 °C), 50 °C, and 75 °C for timeframes ranging from 0 to 96 h before sorbed metal ions were desorbed by lowering the suspension pH. Atomic absorption spectroscopic analysis of supernatants both before and after the desorption step determined how temperature and time affect macroscopic metal uptake and retention capacities. Extended X-ray absorption fine structure (EXAFS) spectroscopy analysis described the local binding environment of the sorbed/retained metals on the solid phase. With increasing aging temperature and time, the initial ?5-nm oblong nanoparticles formed dense aggregates, lost reactive surface area, and retained progressively larger fractions of the initially-introduced Zn(II) and Cu(II) following the desorption step, with the copper species inhibiting the oriented aggregation of the nanoparticles into nanorods. Based on EXAFS analysis, the speciation of the sorbed metal species evolves with increasing time and temperature from surface-sorbed metal ions, which readily desorb and return to solution, to more strongly-bound, structurally-incorporated metal ions. These retained metals appear to associate intimately with the nanoparticle aggregates by substituting for iron in the nanoparticle lattice or by binding within nanoparticle aggregate pore spaces.

Stegemeier, J. P.; Reinsch, B. C.; Lentini, C. J.; Dale, J. G.; Kim, C. S.

2015-01-01

30

Nitrogen mineralization in a tussock tundra soil  

SciTech Connect

The effects of substrate quality, temperature, and moisture on nitrogen mineralization from a tussock tundra soil were examined with laboratory soil incubations utilizing both air-dried samples and field-moist intact cores. The potentially mineralizable nitrogen (PMN) was highly correlated to both total soil nitrogen (positively) and the carbon/nitrogen ratio (negatively). All soil horizons exhibited a net nitrogen mineralization even at a high carbon/nitrogen ratio of 92. It was concluded that field-moist intact soil cores provide a more reliable estimate than the air-dried samples of both PMN and the mineralization rate under standard laboratory conditions. There was no significant effect of moisture tension (0.0 to 0.4 bars) on net nitrogen mineralization. The average Q/sub 10/ (temperature effect) for net nitrogen mineralization was 2.5. Based on this study and others, it was concluded that temperature through its effect on nitrogen mineralization plays an important role in controlling plant productivity in these naturally nitrogen-deficient tundra ecosystems.

Marion, G.M.; Miller, P.C.

1982-01-01

31

Soil pore structure and substrate C mineralization  

NASA Astrophysics Data System (ADS)

Our aim was to investigate the complex interactions between soil pore structure, soil biota and decomposition of added OM substrates. We report on a lab incubation experiment in which CO2 respiration from soil cores was monitored (headspace GC analysis) and an X-ray CT approach yielded soil pore size distributions. Such combined use of X-ray CT with soil incubation studies was obstructed, until now, by many practical constraints such as CT-volume quality, limited resolution, scanning time and complex soil pore network quantification, which have largely been overcome in this study. We incubated a sandy loam soil (with application of ground grass or sawdust) in 18 small aluminium rings (Ř 1 cm, h 1 cm). Bulk density was adjusted to 1.1 or 1.3 Mg m-3 (compaction) and 6 rings were filled at a coarser Coarse Sand:Fine Sand:Silt+Clay ratio. While compaction induced a strong reduction in the cumulative C mineralization for both grass and sawdust substrates, artificial change to a coarser soil texture only reduced net C mineralization from the added sawdust. There thus appears to be a strong interaction effect between soil pore structure and substrate type on substrate decomposition. Correlation coefficients between the C mineralization rates and volumes of 7 pore size classes (from the X-ray CT data) also showed an increasing positive correlation with increasing pore size. Since any particulate organic matter initially present in the soil was removed prior to the experiment (sieving, ashing the >53µm fraction and recombining with the <53µm fraction), the added OM can be localized by means of X-ray CT. Through on-going image analysis the surrounding porosity of the added grass or sawdust particles is being quantified to further study the interaction between the soil pore structure and substrate decomposition.

Sleutel, Steven; Maenhout, Peter; Vanhoorebeke, Luc; Cnudde, Veerle; De Neve, Stefaan

2014-05-01

32

Mineralization of metsulfuron-methyl in Chinese paddy soils  

Technology Transfer Automated Retrieval System (TEKTRAN)

A laboratory study was conducted to investigate the mineralization of metsulfuron-methyl (MSM) in paddy soils in response to soil moisture, temperature and soil properties. The results indicated that MSM mineralization was relatively limited in the paddy soils when soil temperature was low. Only 2.2...

33

Recycling Ni from Contaminated and Mineralized Soils.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rare plant species accumulate potentially valuable concentrations of some metals. Alyssum murale readily accumulates over 2% Ni in aboveground dry matter when grown on Ni-mineralized serpentine soils in Oregon, allowing production of “hay” biomass with at least 400 kg Ni ha-1 with low levels of fer...

34

Aggregation of nanoscale iron oxyhydroxides and corresponding effects on metal uptake, retention, and speciation: I. Ionic-strength and pH  

NASA Astrophysics Data System (ADS)

The capacity of nanosized particles to adsorb and sequester dissolved metals can be significantly impacted by the mechanism and extent of aggregation the particles have undergone, which in turn can affect the long-term fate and transport of potentially toxic metals in natural aqueous systems. Suspensions of monodisperse nanoscale iron oxyhydroxides were synthesized and subjected to increased pH (pH 8.0, 10.0) or ionic strength (0.1, 1.0 M NaNO3) conditions to induce various states of aggregation prior to conducting macroscopic adsorption/desorption experiments with dissolved Cu(II) or Zn(II). The metal adsorption and retention capacities of the nanoparticle aggregates were compared to one another and to non-aggregated control nanoparticles, while the mode(s) of metal sorption to the nanoparticle surfaces were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy analysis. With increasing aggregation by both pH and ionic strength, the proportion of introduced zinc adsorbed to the iron oxyhydroxide nanoparticles progressively decreased from 45% on the monodispersed control particles to as low as 16% on the aggregates, while the proportion of introduced zinc retained upon desorption (obtained by lowering the suspension pH) increased from 7% on the control particles to as much as 17% on the aggregated particles. Copper exhibited a subtler trend of only slightly declining uptake (from 43% to 36%) and retention (from 35% to 30%) with increasing aggregation state. EXAFS analysis was consistent with the macroscopic results, showing relatively little change in Cu speciation between samples analyzed before and after the desorption step but significant increases in Zn-Fe interatomic distances and coordination numbers after desorption. This suggests the presence of both strongly- and weakly-bound zinc ions; the latter are likely affiliated with less stable, more distorted surface sorption sites and are thus more readily desorbed, resulting in the retention of zinc that is bound to more stable, less-distorted sorption sites. For both metals, inner-sphere bidentate sorption appears to dominate the sorption process to the nanoparticle aggregates, with potential structural incorporation into the aggregates themselves.

Dale, J. G.; Stegemeier, J. P.; Kim, C. S.

2015-01-01

35

Ectomycorrhizal fungi in mineral soil * AND N. ROSENSTOCK  

E-print Network

Ectomycorrhizal fungi in mineral soil A. ROSLING 1, * AND N. ROSENSTOCK 2 1 Department of Forest unknown. We study ectomycorrhzal fungi in mineral soil to determine how abiotic preferences influence of ectomycorrhizal fungi on roots focus on the organic and upper mineral soil, where root density is high

Bruns, Tom

36

Electrokinetic properties of soil minerals and soils modified with polyelectrolytes  

NASA Astrophysics Data System (ADS)

The formation features of nanoadsorption polyelectrolyte (PE) layers with the formation of a mineral-organic matrix on the surface of clay minerals and soils (kaolinite, montmorillonite, quartz sand, gray forest soil, and chernozemic soil) have been elucidated by direct adsorption measurements. It has been found that the experimental values for the limit adsorption of polyacrylamide (PAM) and polyacrylic acid (PAA) on all the minerals are significantly higher than the calculated values for the formation of a monolayer. This indicates adsorption on the surface of not only separate macromolecules but also secondary PE structures as packets or fibrils determining the cluster-matrix structure of the modified surface. The study of the electro-surface properties (electrophoretic mobility, electrokinetic potential, pH, and electroconductivity) of mineral and soil particles adsorption-modified with PEs has confirmed the differences in the adsorption mechanisms (from physical sorption to chemisorption) with the formation of surface compounds depending on the different polar groups of PEs and the mineral type.

Kurochkina, G. N.; Pinskii, D. L.; Haynos, M.; Sokolowska, Z.; Tsesla, I.

2014-07-01

37

Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand  

Technology Transfer Automated Retrieval System (TEKTRAN)

Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The tr...

38

Effect of mild drying on the mineralization of soil nitrogen  

Microsoft Academic Search

Summary Drying soil to ?100 kPa increased the subsequent mineralization of nitrogen under optimal moisture conditions. The effect was greater when the soils were dried to ?1500 Pa. Mineralization was greater after four cycles of wetting and drying than after one. Depending on the drying conditions, the amount of nitrogen mineralized after drying to ?1500 Pa was between 6.8 and

R. Seneviratne; A. Wild

1985-01-01

39

The nanophase iron mineral(s) in Mars soil  

NASA Technical Reports Server (NTRS)

A series of surface-modified clays containing nanophase (np) iron oxide/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these "Mars-soil analogs" were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging, specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The clay acted as an effective matrix, both chemically and sterically, preventing the major part of the synthesized iron oxides from ripening, i.e., growing and developing larger crystals. The precipitated iron oxides appear as isodiametric or slightly elongated particles in the size range 1-10 nm, having large specific surface area. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxy mineral such as "green rust," or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable maghemite (gamma-Fe2O3) by mild heat treatment and then to nanophase hematite (alpha-Fe2O3) by extensive heat treatment. After mild heating, the iron-enriched clay became slightly magnetic, to the extent that it adheres to a hand-held magnet, as was observed with Mars soil. The chemical reactivity of the iron-enriched clays strongly resembles, and offers a plausible mechanism for, the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxides and silicate phase surfaces. The reflectance spectrum of the clay-iron preparations in the visible range is generally similar to the reflectance curves of bright regions on Mars. This strengthens the evidence for the predominance of nanophase iron oxides/oxyhydroxides in Mars soil. The mode of formation of these nanophase iron oxides on Mars is still unknown. It is puzzling that despite the long period of time since aqueous weathering took place on Mars, they have not developed from their transitory stage to well-crystallized end-members. The possibility is suggested that these phases represent a continuously on-going, extremely slow weathering process.

Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

1993-01-01

40

Eucalyptus obliqua seedling growth in organic vs. mineral soil horizons.  

PubMed

Eucalyptus obliqua, the most widespread timber tree in Tasmania, is a pioneer after fire which can eliminate the organic layer of forest soil, exposing the underlying mineral soil. We compared seedling growth, mycorrhiza formation, and mineral nutrient limitation in organic layer vs. mineral soil. We grew E. obliqua seedlings separately in pots of organic layer and mineral soil in a glasshouse. Additional treatments of organic soil only, involved fully crossed methyl-bromide fumigation and fertilization. Fertilization comprised chelated iron for 121 days after transplant (DAT) followed by soluble phosphorus. At 357 DAT, whole plant dry weight was three times greater in ambient organic than in mineral soil. In organic soil, fumigation halved ectomycorrhiza abundance and reduced seedling growth at 149 DAT, but by 357 DAT when negative effects of fumigation on seedling growth had disappeared, neither fumigation nor fertilization affected mycorrhiza abundance. Iron fertilization diminished seedling growth, but subsequent phosphorus fertilization improved it. E. obliqua seedlings grow much better in organic layer soil than in mineral soil, although phosphorus remains limiting. The prevalent forestry practice of burning to mineral soil after timber harvest exposes a poor growth medium likely only partially compensated by fire-induced mineral soil alterations. PMID:25750650

Barry, Karen M; Janos, David P; Nichols, Scott; Bowman, David M J S

2015-01-01

41

Eucalyptus obliqua seedling growth in organic vs. mineral soil horizons  

PubMed Central

Eucalyptus obliqua, the most widespread timber tree in Tasmania, is a pioneer after fire which can eliminate the organic layer of forest soil, exposing the underlying mineral soil. We compared seedling growth, mycorrhiza formation, and mineral nutrient limitation in organic layer vs. mineral soil. We grew E. obliqua seedlings separately in pots of organic layer and mineral soil in a glasshouse. Additional treatments of organic soil only, involved fully crossed methyl-bromide fumigation and fertilization. Fertilization comprised chelated iron for 121 days after transplant (DAT) followed by soluble phosphorus. At 357 DAT, whole plant dry weight was three times greater in ambient organic than in mineral soil. In organic soil, fumigation halved ectomycorrhiza abundance and reduced seedling growth at 149 DAT, but by 357 DAT when negative effects of fumigation on seedling growth had disappeared, neither fumigation nor fertilization affected mycorrhiza abundance. Iron fertilization diminished seedling growth, but subsequent phosphorus fertilization improved it. E. obliqua seedlings grow much better in organic layer soil than in mineral soil, although phosphorus remains limiting. The prevalent forestry practice of burning to mineral soil after timber harvest exposes a poor growth medium likely only partially compensated by fire-induced mineral soil alterations. PMID:25750650

Barry, Karen M.; Janos, David P.; Nichols, Scott; Bowman, David M. J. S.

2015-01-01

42

Nitrogen mineralization rates in saline vs. salt-amended soils  

Microsoft Academic Search

Studies were conducted to compare N mineralization rates in salt-amended nonsaline soils to naturally-occurring saline soils.\\u000a NaCl, CaCl2, and Na2SO4 were added to nonsaline soils at rates that produced electrical conductivities of the saturation extracts (ECe) of 5, 10, 15, and 20 dS m?1. Saline soils with similar properties were leached to the same ECc levels. N mineralization in the

G. McClung; W. T. Frankenberger

1987-01-01

43

Relationship between carbon and nitrogen mineralization in a subtropical soil  

NASA Astrophysics Data System (ADS)

In most soils, more than 90% nitrogen is bonded with carbon in organic forms. This indicates that carbon mineralization should be closely coupled with nitrogen mineralization, showing a positive correlation between carbon and nitrogen mineralization. To test this hypothesis above, we conducted an incubation using a subtropical soil for 10 days at 15 °C and 25 °C. 13C-labeled glucose and 15N-labeled ammonium or nitrate was used to separate CO2 and mineral N released from mineralization of soil organic matter and added glucose or inorganic nitrogen. Phospholipid fatty acid (PLFA) and four exoenzymes (i.e. ?-1,4- Glucosaminidase, chitinase, acid phosphatase, ?-1,4-N- acetyl glucosamine glycosidase) were also analyzed to detect change in microbial activities during the incubation. Our results showed that CO2 release decreased with increasing nitrogen mineralization rates. Temperature did not change this relationship between carbon and nitrogen mineralization. Although some changes in PLFA and the four exoenzymes were observed, these changes did not contribute to changes in carbon and nitrogen mineralization. These findings indicates that carbon and nitrogen mineralization in soil are more complicated than as previously expected. Future investigation should focus on why carbon and nitrogen mineralization are coupled in a negative correlation not in a positive correlation in many soils for a better understanding of carbon and nitrogen transformation during their mineralization.

Li, Qianru; Sun, Yue; Zhang, Xinyu; Xu, Xingliang; Kuzyakov, Yakov

2014-05-01

44

Sorption of copper, zinc and lead on soil mineral phases.  

PubMed

Soil mineral phases play a significant role in controlling heavy metal mobility in soils. The effective study of their relation needs the integrated use of several analytical methods. In this study, analytical electron microscopy analyses were combined with sequential chemical extractions on soils spiked with Cu, Zn and Pb. Our aims were to study the metal sorption capacity of soil mineral phases and the effect of presence of iron oxide and carbonate on this property of soil minerals. Copper and Pb were found to be characterized by higher and stronger sorption on the studied samples than Zn. Only the former two metals showed significant differences in their immobilized metal amounts on the studied samples and soil mineral particles. Highest metal amounts were sorbed on the swelling clay mineral particles (smectites and vermiculites), but iron-oxide phases may also have similar lead sorption capacity. Alkaline conditions due to the carbonate content of soils resulted both in increased sorption on the mineral particles for Cu and in enhanced role of precipitation for all the studied metals. On the other hand, the intimate association of phyllosilicates and iron resulted in significant increase in metal sorption capacity of the given particle. The results of sequential extractions could be successfully completed by the analytical electron microscopy analyses for studying the sorption capacity of discrete mineral particles. Their integrated use helps us in better understanding the heavy metal-mineral interactions in soils. PMID:18674797

Sipos, Péter; Németh, Tibor; Kis, Viktória Kovács; Mohai, Ilona

2008-09-01

45

Fractionation of Fe isotopes by soil microbes and organic acids  

USGS Publications Warehouse

Small natural variations in Fe isotopes have been attributed to biological cycling. However, without understanding the mechanism of fractionation, it is impossible to interpret such variations. Here we show that the ?56Fe of Fe dissolved from a silicate soil mineral by siderophore-producing bacteria is as much as 0.8% lighter than bulk Fe in the mineral. A smaller isotopic shift is observed for Fe released abiotically by two chelates, and the magnitude of the shift increases with affinity of the ligand for Fe, consistent with a kinetic isotope effect during hydrolysis of Fe at the mineral surface. Fe dissolved abiotically without chelates shows no isotopic shift. The ?56Fe of the exchange fraction on soil grains is also lighter by ~0.6%-1% than Fe from both hornblende and iron oxyhydroxides. The kinetic isotope effect is therefore preserved in open systems such as soils. when recorded in the rock record, Fe isotopic fractionation could document Fe transport by organic molecules or by microbes where such entities were present in the geologic past.

Brantley, Susan L.; Liermann, Laura; Bullen, Thomas D.

2001-01-01

46

Effect of soil metal contamination on glyphosate mineralization: role of zinc in the mineralization rates of two copper-spiked mineral soils.  

PubMed

A systematic investigation into lowered degradation rates of glyphosate in metal-contaminated soils was performed by measuring mineralization of [(14)C]glyphosate to (14)CO(2) in two mineral soils that had been spiked with Cu and/or Zn at various loadings. Cumulative (14)CO(2) release was estimated to be approximately 6% or less of the amount of [(14)C]glyphosate originally added in both soils over an 80-d incubation. For all but the highest Cu treatments (400 mg kg(-1)) in the coarse-textured Arkport soil, mineralization began without a lag phase and declined over time. No inhibition of mineralization was observed for Zn up to 400 mg kg(-1) in either soil, suggesting differential sensitivity of glyphosate mineralization to the types of metal and soil. Interestingly, Zn appeared to alleviate high-Cu inhibition of mineralization in the Arkport soil. The protective role of Zn against Cu toxicity was also observed in the pure culture study with Pseudomonas aeruginosa, suggesting that increased mineralization rates in high Cu soil with Zn additions might have been due to alleviation of cellular toxicity by Zn rather than a mineralization specific mechanism. Extensive use of glyphosate combined with its reduced degradation in Cu-contaminated, coarse-textured soils may increase glyphosate persistence in soil and consequently facilitate Cu and glyphosate mobilization in the soil environment. PMID:21298705

Kim, Bojeong; Kim, Young Sik; Kim, Bo Min; Hay, Anthony G; McBride, Murray B

2011-03-01

47

Radon sources emanation in granitic soil and saprolite  

SciTech Connect

Petrological and geochemical examinations of soil, saprolite, and quartz diorite protolith have been made at the Small Structures field site, Ben Lomond Mountain, California. Variations in Ra in soil and saprolite are mainly controlled by heterogeneities inherited from the parent quartz diorite. Fission-track radiography shows that U is concentrated in the primary accessory minerals, zircon and sphene. However, most importantly for Rn emanation, U is also concentrated in secondary sites: weathered sphene, biotite and plagioclase, grain coatings, and Fe-rich fracture linings which also contain a rare-earth phosphate mineral. This occurrence of U along permeable fracture zones suggests that soil-gas Rn from depth (> 2 m) is a significant contributor to Rn availability near the surface. Zones highest in emanation occur where fine pedogenic phases: gibbsite, amorphous silica, and iron oxyhydroxide are most abundant. Mass balance analyses of this soil-saprolite profile are in progress and preliminary indicate that a high-emanation zone corresponds to the upper portion of a zone of accumulation of U and Ba.

Wollenberg, H.; Flexser, S. [Lawrence Berkeley Lab., CA (United States); Brimhall, G.; Lewis, C. [California Univ., Berkeley, CA (United States). Dept. of Geology and Geophysics

1993-08-01

48

Fungal PAH-metabolites resist mineralization by soil microorganisms.  

PubMed

This study investigated the mineralization of water-soluble polycyclic aromatic hydrocarbon (PAH) metabolites produced by the soil fungus Cunninghamella elegans. Eleven soil fungi were screened for their ability to metabolize (14)C-phenanthrene, (14)C-fluoranthene, and (14)C-pyrene into water-soluble compounds. Eight fungi produced water-soluble metabolites from all or some of the PAHs. The composition of the water-soluble PAH-metabolites from the most effective solubilizer C. elegans was analyzed by an ultraperformance liquid chromatograph interfaced to a quadrupole time-of-flight mass spectrometer. Thirty-eight metabolites were detected. All of 34 identified metabolites were sulfate-conjugated. The mineralization of (14)C-metabolites, produced by C. elegans, was compared to mineralization of the parent (14)C-PAHs in soil slurries. It was hypothesized that the increased bioavailability and metabolic activation of the metabolites would increase mineralization in soil slurries compared to mineralization of the parent PAHs. Unexpectedly, the mineralization of the (14)C-metabolites was in all cases extremely slow compared to the mineralization of the parent (14)C-PAHs. Slow (14)C-metabolite mineralization was not caused by metabolite toxicity, neither was cometabolic mineralization of (14)C-metabolites stimulated by the presence of active PAH-degraders. High water solubility, low lipophilicity, and extremely slow mineralization of the metabolites indicate a potential problem of leaching of fungal PAH-metabolites to the groundwater. PMID:20136075

Schmidt, Stine N; Christensen, Jan H; Johnsen, Anders R

2010-03-01

49

nt adsorptionby soil minerals,in Elenletils in Soil-Plant -Aninal  

E-print Network

-matterreactions involving [. Giordano, and W. L. Lindsay Soil ScienceSociety of America t of Fertilizers, Commonweahh0cesse.s nt adsorptionby soil minerals,in Elenletils in Soil-Plant - Aninal rrk. USA. .. ( l96l). Molybdenumreactions ium and titanium, Soil Sci. Soc. i on the exhaustion of sewage e chemistry of lead in soil: solid

Short, Daniel

50

Important Factors Affecting Biosolid Nitrogen Mineralization in Soils  

Microsoft Academic Search

Biosolid nitrogen (N) ammonification, followed by nitrification in soil, produces nitrate (), which is not only a plant nutrient, but also a contaminant for ground water. Determining the most relevant factors influencing mineralization will help to manage N in biosolid-treated soils. Biosolid application rate, biosolid carbon (C):N ratio, biosolid organic N content, biosolid type, soil organic N content, soil pH,

F. Er; M. Ogut; F. D. Mikayilov; A. R. Mermut

2005-01-01

51

Effect of Mineral and Organic Soil Constituents on Microbial Mineralization of Organic Compounds in a Natural Soil  

PubMed Central

This research addressed the effect of mineral and organic soil constituents on the fate of organic compounds in soils. Specifically, it sought to determine how the associations between organic chemicals and different soil constituents affect their subsequent biodegradation in soil. Four 14C-labeled surfactants were aseptically adsorbed to montmorillonite, kaolinite, illite, sand, and humic acids. These complexes were mixed with a woodlot soil, and 14CO2 production was measured over time. The mineralization data were fitted to various production models by nonlinear regression, and a mixed (3/2)-order model was found to most accurately describe the mineralization patterns. Different mineralization patterns were observed as a function of the chemical and soil constituents. Surfactants that had been preadsorbed to sand or kaolinite usually showed similar mineralization kinetics to the control treatments, in which the surfactants were added to the soil as an aqueous solution. Surfactants that had been bound to illite or montmorillonite were typically degraded to lesser extents than the other forms, while surfactant-humic acid complexes were degraded more slowly than the other forms. The desorption coefficients (Kd) of the soil constituent-bound surfactants were negatively correlated with the initial rates of degradation (k1) and estimates of 14CO2 yield (Po) as well as actual total yields of 14CO2. However, there was no relationship between Kd and second-stage zero-order rates of mineralization (ko). Microbial community characteristics (biomass and activity) were not correlated with any of the mineralization kinetic parameters. Overall, this study showed that environmental form had a profound effect on the ultimate fate of biodegradable chemicals in soil. This form is defined by the physicochemical characteristics of the chemical, the composition and mineralogy of the soil, and the mode of entry of the chemical into the soil environment. PMID:16349465

Knaebel, David B.; Federle, Thomas W.; McAvoy, Drew C.; Vestal, J. Robie

1994-01-01

52

Review of XRD-based quantitative analyses of clay minerals in soils: the suitability of mineral intensity factors  

Microsoft Academic Search

The determination of the types and relative amounts of the minerals present in soil forms an essential component of most soil characterization efforts. This paper reviews protocols for XRD-based quantitative clay mineral analysis in soils, with emphasis on methods using mineral intensity factors in combination with the so-called 100% approach. We summarize methodological differences and characteristic features and give information

Maren Kahle; Markus Kleber; Reinhold Jahn

2002-01-01

53

Incubation experiments on nitrogen mineralization in loess and sandy soils  

Microsoft Academic Search

Summary In aerobic incubation experiments, nitrogen mineralization was investigated in agricultural loess and sandy soils. Fresh, fieldmoist samples were used for incubation. Using an optimization procedure the N-mineralization was split into two nitrogen fractions: A resistant, slowly decomposable organic N-fraction (index rpm) and a fast decomposable N-fraction (index dpm).

H. Nordmeyer; J. Richter

1985-01-01

54

Relevance of mineral-organic associations in cryoturbated permafrost soils  

NASA Astrophysics Data System (ADS)

Enhanced microbial decomposition of deep buried organic matter (OM) increase the release of CO2and CH4from high latitude ecosystems, thus being an uncertain but potentially crucial positive feedback to global warming. The role of soil minerals as stabilization agents of OM against microbial attack gain in importance as soon abiotic soil conditions will change in permafrost soils. We investigated changes in storage and turnover of soil organic carbon (OC) and total nitrogen (TN) associated with minerals in 27 cryoturbated permafrost soils from the west to the east Siberian Arctic. Furthermore, we studied the mineral composition and the potential of OM to interact with soil minerals via different binding mechanisms. Mineral-associated organic matter (MOM) was separated from particulate plant debris by density fractionation in sodium polytungstate (density cut-off 1.6 g cm-3). Their apparent 14C ages were determined by accelerator mass spectrometry and potential mineralization rates were analyzed in a 180 days incubation experiments at 5 and 15° C. The mineral composition was analyzed by X-ray diffraction and selective extractions. Desorption experiments (stepwise extraction with KCl and NaH2PO4) using the permafrost soils as well as reference soils from temperate regions (three Stagnolsols from Germany) were performed to study OM sorbed to mineral surfaces or complexed with polyvalent metal ions. The proportion of OC associated with minerals (MOC) ranged from 5.1 to 14.9 kg m-2 (average: 11.0 kg m-2), corresponding to ~55% from the total soil OC storage (average: 20.2 ± 8.0 kg m-2) in the first meter of the Cryosols. In contrast to temperate soils, where maximum MOC concentrations are present in topsoils, cambic, or spodic horizons, cryoturbation in permafrost soils leads to high MOC concentrations within the whole solum. Cryoturbated OM-rich pockets in the subsoil store 18% (2.0 ± 1.3 kg m-2) of the MOC while another 34% (3.8 ± 3.5 kg m-2) was located in the uppermost permafrost. In topsoil horizons, mineralization rates showed a similar pattern for MOM and the bulk soil controls. In contrast, even higher MOM respiration rates then the bulk control were found in the cryoturbated OM-rich pockets and permafrost horizons. These findings deviate from temperate soil environments where MOM is considered to contribute to a 'stabilized pool' with mean residence times from hundreds to thousands of years. Statistical analysis indicated that mineral-organic interactions primarily occurred with poorly crystalline Fe and Al phases and Fe/Al-OM complexes. However, the minor desorption of organic polyelectrolytes by NaH2PO4 in permafrost soils indicated that significantly lower amounts of OC were bound by ligand exchange to Fe and Al minerals or the edges of clay minerals in permafrost soils compared to the temperate reference soils. Therefore, stabilization of OM by mineral surfaces or polyvalent metal ions appears to be of minor relevance in arctic environments compared to temperate soils.

Gentsch, Norman; Mikutta, Robert; Bárta, Ji?í; ?apek, Petr; Gittel, Antje; Richter, Andreas; Šantr??ková, Hanna; Schnecker, Jörg; Shibistova, Olga; Urich, Tim; Wild, Birgit; Guggenberger, Georg

2014-05-01

55

Uranium Sequestration by Aluminum Phosphate Minerals in Unsaturated Soils  

SciTech Connect

A mineralogical and geochemical study of soils developed from the unmined Coles Hill uranium deposit (Virginia) was undertaken to determine how phosphorous influences the speciation of uranium in an oxidizing soil/saprolite system typical of the eastern United States. This paper presents mineralogical and geochemical results that identify and quantify the processes by which uranium has been sequestered in these soils. It was found that uranium is not leached from the saturated soil zone (saprolites) overlying the deposit due to the formation of a sparingly soluble uranyl phosphate mineral of the meta-autunite group. The concentration of uranium in the saprolites is approximately 1000 mg uranium per kg of saprolite. It was also found that a significant amount of uranium was retained in the unsaturated soil zone overlying uranium-rich saprolites. The uranium concentration in the unsaturated soils is approximately 200 mg uranium per kg of soil (20 times higher than uranium concentrations in similar soils adjacent to the deposit). Mineralogical evidence indicates that uranium in this zone is sequestered by a barium-strontium-calcium aluminum phosphate mineral of the crandallite group (gorceixite). This mineral is intimately inter-grown with iron and manganese oxides that also contain uranium. The amount of uranium associated with both the aluminum phosphates (as much as 1.4 weight percent) has been measured by electron microprobe micro-analyses and the geochemical conditions under which these minerals formed has been studied using thermodynamic reaction path modeling. The geochemical data and modeling results suggest the meta-autunite group minerals present in the saprolites overlying the deposit are unstable in the unsaturated zone soils overlying the deposit due to a decrease in soil pH (down to a pH of 4.5) at depths less than 5 meters below the surface. Mineralogical observations suggest that, once exposed to the unsaturated environment, the meta-autunite group minerals react to form U(VI)- bearing aluminum phosphates. (author)

Jerden, James L. Jr. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439 (United States)

2007-07-01

56

Soil mineral surfaces of paddy soils are accessible for organic carbon accumulation after decalcification  

NASA Astrophysics Data System (ADS)

We studied organic carbon (OC) accumulation due to organo-mineral associations during soil development on calcareous parent material. Two chronosequences in Zhejiang Province, PR China, were investigated; one under paddy cultivation with a maximum soil age of 2000 years, and the other under upland crops where the oldest soil was 700 years old. Bulk soils and soil fractions of the uppermost A horizons were analyzed for OC concentrations and radio carbon contents. Total pedogenic iron (Fed) concentration was determined by dithionite extraction and the proportion of oxalate extractable iron (Feox) was extracted by using the method of Schwertmann (1964). The specific surface area (SSA) of soil minerals was measured by the BET-N2 method (Brunauer et al., 1938) under four conditions: untreated, after organic matter removal, after iron removal and after removal of both. Within 700/2000 years of pedogenesis, we observed no change in clay mineral composition and no additional formation of the SSA of soil minerals. But the soils differed in the degree of decalcification, OC accumulation and in the formation of iron. Paddy soil management led to an enhanced decalcification and larger OC accumulation. Management-induced redox cycles caused larger proportions of Feox in paddy soils. Their large SSA, added to the surface area of clay minerals, provided additional options for OC covering. Unexpectedly, there was no evidence of formation of secondary minerals during soil development, which could provide new surfaces for OC accumulation. However, the study revealed higher OC coverings of mineral surfaces after decalcification in paddy soils. As carbonate and Ca2+ ions seemed to interconnect clay minerals, making their surface accessible to OC, the faster dissolution of carbonate and leaching of Ca2+ ions in paddy soils made additional clay mineral surfaces available to OC. In contrast, the surface area of minerals in non-paddy soils, in which decalcification was much lower, seemed to be partly inaccessible for OC covering due to strong microaggregation by cementation with carbonate and Ca2+-bridging. The smaller accumulation of mineral-associated SOM in non-paddy soils was additionally confirmed by the retarded replacement of the inherited carbon. The accelerated decalcification of paddy soils led to enhanced accessibility of mineral surfaces for OC covering, which intensified OC accumulation from the early stages of soil formation onward. References Brunauer, S., Emmett, P.H., Teller, E., (1938). Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60 (2), 309-319. Schwertmann, U., 1964. Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 105 (3), 194-202.

Wissing, Livia

2013-04-01

57

[Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region].  

PubMed

Typical paddy and upland soils were collected from a hilly subtropical red-soil region. 14C-labeled dissolved organic carbon (14C-DOC) was extracted from the paddy and upland soils incorporated with 14C-labeled straw after a 30-day (d) incubation period under simulated field conditions. A 100-d incubation experiment (25 degrees C) with the addition of 14C-DOC to paddy and upland soils was conducted to monitor the dynamics of 14C-DOC mineralization under different soil moisture conditions [45%, 60%, 75%, 90%, and 105% of the field water holding capacity (WHC)]. The results showed that after 100 days, 28.7%-61.4% of the labeled DOC in the two types of soils was mineralized to CO2. The mineralization rates of DOC in the paddy soils were significantly higher than in the upland soils under all soil moisture conditions, owing to the less complex composition of DOC in the paddy soils. The aerobic condition was beneficial for DOC mineralization in both soils, and the anaerobic condition was beneficial for DOC accumulation. The biodegradability and the proportion of the labile fraction of the added DOC increased with the increase of soil moisture (45% -90% WHC). Within 100 days, the labile DOC fraction accounted for 80.5%-91.1% (paddy soil) and 66.3%-72.4% (upland soil) of the cumulative mineralization of DOC, implying that the biodegradation rate of DOC was controlled by the percentage of labile DOC fraction. PMID:24984493

Chen, Xiang-Bi; Wang, Ai-Hua; Hu, Le-Ning; Huang, Yuan; Li, Yang; He, Xun-Yang; Su, Yi-Rong

2014-03-01

58

Adsorption coefficients for TNT on soil and clay minerals  

NASA Astrophysics Data System (ADS)

To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.

Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muńoz, Miguel A.; Mina, Nairmen

2007-04-01

59

Soil texture and nitrogen mineralization potential across a riparian toposequence in a semi-arid savanna  

Microsoft Academic Search

Soil texture is an important influence on nutrient cycling in upland soils, with documented relationships between mineral particle size distribution and organic matter retention, nitrogen (N) mineralization, microbial biomass and other soil properties. However, little is known of the role of mineral particle size in riparian soils, where fluvial sorting creates strong spatial contrasts in the size distribution of sediments

J. Scott Bechtold; Robert J. Naiman

2006-01-01

60

Investigation of ice nucleation properties of mineral and soil particles  

NASA Astrophysics Data System (ADS)

Number fractions of different types of submicron mineral (kaolinite) and soil (China loess soils and agricultural soils from different crops) particles capable of nucleating ice under mixed-phase cloud conditions were investigated using a continuous flow diffusion ice chamber (CFDC). We found that both China loess and agricultural soil particles are better ice nucleators than kaolinite particles particularly at warmer temperatures. We also found that although the ice nucleation properties of untreated China loess and agricultural soil particles are relatively similar to each other, agricultural soil particles lose their ice nucleating ability after heat treatment at 300°C. Our results suggest that agricultural soils contain rich organic matter, which can play a key role in enhancing their ice nucleating ability.

Tobo, Yutaka; DeMott, Paul J.; Prenni, Anthony J.; Hill, Thomas C.; Franc, Gary D.; Kreidenweis, Sonia M.

2013-05-01

61

Surface interactions of black carbon and soil minerals  

NASA Astrophysics Data System (ADS)

An important mechanism for stabilization of organic matter in soils is its interaction with mineral surfaces. Studies that investigate the nature and strength of such interactions have focused on non-pyrogenic materials, and examination of interactions between minerals and black carbon are scarce. In a chronosequence of black carbon ages, we can show that aluminum and silicon rapidly accumulates on black carbon surfaces after deposition to soil and reaches equilibrium after about 20 years in an Oxisol in Western Kenya. In an attempt to investigate the nature of the interaction between black carbon and mineral surfaces, we utilized near-edge x-ray fine structure (NEXAFS) spectroscopy of black carbon particles in soil aggregates and artificial mixtures of minerals and black carbon. Cluster analyses of the stack images using scanning transmission x-ray microscopy (STXM) revealed greater amounts of carboxyl contents, but also accumulation of aliphatic compounds. The latter may not stem from oxidized surfaces of black carbon particles themselves but adsorbed non-black carbon material. Mixing black carbon and minerals clearly showed changes in peak intensities of the C(1s) NEXAFS spectra indicating a chemical interaction between black carbon and mineral surfaces.

Lehmann, J.; Heymann, K.; Nguyen, B.

2009-04-01

62

Characterizing regional soil mineral composition using spectroscopyand geostatistics  

USGS Publications Warehouse

This work aims at improving the mapping of major mineral variability at regional scale using scale-dependent spatial variability observed in remote sensing data. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and statistical methods were combined with laboratory-based mineral characterization of field samples to create maps of the distributions of clay, mica and carbonate minerals and their abundances. The Material Identification and Characterization Algorithm (MICA) was used to identify the spectrally-dominant minerals in field samples; these results were combined with ASTER data using multinomial logistic regression to map mineral distributions. X-ray diffraction (XRD)was used to quantify mineral composition in field samples. XRD results were combined with ASTER data using multiple linear regression to map mineral abundances. We testedwhether smoothing of the ASTER data to match the scale of variability of the target sample would improve model correlations. Smoothing was donewith Fixed Rank Kriging (FRK) to represent the mediumand long-range spatial variability in the ASTER data. Stronger correlations resulted using the smoothed data compared to results obtained with the original data. Highest model accuracies came from using both medium and long-range scaled ASTER data as input to the statistical models. High correlation coefficients were obtained for the abundances of calcite and mica (R2 = 0.71 and 0.70, respectively). Moderately-high correlation coefficients were found for smectite and kaolinite (R2 = 0.57 and 0.45, respectively). Maps of mineral distributions, obtained by relating ASTER data to MICA analysis of field samples, were found to characterize major soil mineral variability (overall accuracies for mica, smectite and kaolinite were 76%, 89% and 86% respectively). The results of this study suggest that the distributions of minerals and their abundances derived using FRK-smoothed ASTER data more closely match the spatial variability of soil and environmental properties at regional scale.

Mulder, V.L.; de Bruin, S.; Weyermann, J.; Kokaly, Raymond F.; Schaepman, M.E.

2013-01-01

63

A disconnect between O horizon and mineral soil carbon - Implications for soil C sequestration  

SciTech Connect

Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO{sub 2} concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.

Garten Jr, Charles T [ORNL

2009-01-01

64

Spectroscopy and reactivity of mineral analogs of the Martian soil  

NASA Technical Reports Server (NTRS)

To answer the question of why life occurred on Earth but not on Mars requires a study of the geochemical and physical aspects of the Martian soil. Some of the best Mars analog mineral models of the soil have been prepared and justified according to known constraints of chemical composition, reflectance spectroscopy, and chemical reactivity. Detailed laboratory reflectance spectra in the ultraviolet, visible, and near infrared (.30 to 2.5 microns) and the infrared (2.5 to 25 microns) regions have been obtained for the pure candidate minerals and some analog mixtures and compared to Mars reflectance spectra. Modeling of the reflectance spectra from optical constraints determined for the analog minerals has begun and will be interpreted in terms of the effects of particle size variation, component mixing, and soil packing upon remotely sensed reflectance spectra. This has implications not only for Mars, but for other planets and planetoids. The ratio of Fe(II)/Fe(III) in the Martian soil analog materials on spectral reflectance in the visible range has begun, and the results will be evaluated according to conformity with the visible Mars reflectance spectrum. Some initial LR and GEX data have been collected for the mineral samples and their mixtures, which can be compared with the Viking data and interpreted in terms of the redox (Fe(II)/Fe(III) environment.

Banin, A.; Orenberg, J.; Roush, T.

1991-01-01

65

Nitrogen Mineralization of Cover Crop Residues in Calcareous Gravelly Soil  

Microsoft Academic Search

Tropical legumes like sunn hemp (Crotolaria juncea L.) and aeschynomene (Aeschynomene evenia L.) have potential as alternative cover crops in tropical regions. The objective of this study was to evaluate the N mineralization rates of three cover crops [aeschynomene (AE), sorghum sudangrass (Sorghum sudanense L.), and sunn hemp (SH)] residues used to amend a calcareous gravelly soil in order to

R. B. Rao; Y. C. Li

2003-01-01

66

Mineral Control of Soil Carbon Dynamics in Forest Soils: A Lithosequence Under Ponderosa Pine  

NASA Astrophysics Data System (ADS)

The role of soil organic carbon in regulating atmospheric CO2 concentration has spurred interest in both quantifying existing soil C stocks and modeling the behavior of soil C under climate change scenarios. Soil parent material exerts direct control over soil organic carbon content through its influence on soil pH and mineral composition. Soil acidity and mineral composition also influence soil microbial community composition and activity, thereby controlling soil respiration rates and microbial biomass size. We sampled a lithosequence of four parent materials (rhyolite, granite, basalt, limestone) under Pinus ponderosa to examine the effects of soil mineralogy and acidity on soil organic carbon content and soil microbial community. Three soil profiles were examined on each parent material and analyzed by X-ray diffraction, pH, selective dissolution, C and N content, and 13C signature. Soils from each of the four parent materials were incubated for 40 days, and microbial communities were compared on the basis of community composition (as determined through T-RFLP analysis), specific metabolic activity, biomass, ?13C of respired CO2, and cumulative amount of C mineralized over the course of the incubation. Soil C content varied significantly among soils of different parent material, and was strongly and positively associated with the abundance of Al-humus complexes r2 = 0.71; P < 0.0001, Fe-humus complexes r2 = 0.74; P = 0.0003, and crystalline Fe-oxide content r2 = 0.63; P = 0.0023. Microbial community composition varied significantly among soils and showed strong associations with soil pH 1:1 in KCl; r2 = 0.87; P < 0.0001, concentration of exchangeable Al r2 = 0.81; P < 0.0001, amorphous Fe oxide content r2 = 0.59; P < 0.004, and Al-humus content r2 = 0.35; P < 0.04. Mineralization rates, biomass and ?13C of respired CO2 differed among parent materials, and also varied with incubation time as substrate quality and N availability changed. The results demonstrate that within a specific ecosystem type, soil parent material exerts significant control over the lability and bioavailability of soil C and soil microbial community composition. We suggest that soil parent material and mineralogy are critical parameters for predicting soil C dynamics and recalcitrance of soil C stocks.

Heckman, K. A.; Welty-Bernard, A.; Rasmussen, C.; Schwartz, E.; Chorover, J.

2008-12-01

67

Soil type influences crop mineral composition in Malawi.  

PubMed

Food supply and composition data can be combined to estimate micronutrient intakes and deficiency risks among populations. These estimates can be improved by using local crop composition data that can capture environmental influences including soil type. This study aimed to provide spatially resolved crop composition data for Malawi, where information is currently limited. Six hundred and fifty-two plant samples, representing 97 edible food items, were sampled from >150 sites in Malawi between 2011 and 2013. Samples were analysed by ICP-MS for up to 58 elements, including the essential minerals calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), selenium (Se) and zinc (Zn). Maize grain Ca, Cu, Fe, Mg, Se and Zn concentrations were greater from plants grown on calcareous soils than those from the more widespread low-pH soils. Leafy vegetables from calcareous soils had elevated leaf Ca, Cu, Fe and Se concentrations, but lower Zn concentrations. Several foods were found to accumulate high levels of Se, including the leaves of Moringa, a crop not previously been reported in East African food composition data sets. New estimates of national dietary mineral supplies were obtained for non-calcareous and calcareous soils. High risks of Ca (100%), Se (100%) and Zn (57%) dietary deficiencies are likely on non-calcareous soils. Deficiency risks on calcareous soils are high for Ca (97%), but lower for Se (34%) and Zn (31%). Risks of Cu, Fe and Mg deficiencies appear to be low on the basis of dietary supply levels. PMID:25461061

Joy, Edward J M; Broadley, Martin R; Young, Scott D; Black, Colin R; Chilimba, Allan D C; Ander, E Louise; Barlow, Thomas S; Watts, Michael J

2015-02-01

68

NATURAL ATTENUATION OF COPPER IN SOILS AND SOIL MINERALS - II  

EPA Science Inventory

The bioabailability and toxicity of Cu in soils is controlled by a number of soil properties and processes. Some of these such as pH, adsorption/desorption and competition with beneficial cations have been extensively studied. However, the effects of natural attenuation (or aging...

69

NATURAL ATTENUATION OF COPPER IN SOILS AND SOIL MINERALS - I  

EPA Science Inventory

The bioavailability and toxicity of Cu in soils is controlled by a number of soil properties and processes. Some of these such as pH, adsorption/desorption and competition with beneficial cations have been extensively studied. However, the effects of natural attenuation (or aging...

70

Dielectric Constant Measurements on Lunar Soils and Terrestrial Minerals  

NASA Technical Reports Server (NTRS)

The return to the Moon has ignited the need to characterize the lunar regolith using in situ methods. An examination of the lunar regolith samples collected by the Apollo astronauts indicates that only a few minerals (silicates and oxides) need be considered for in situ resource utilization (ISRU). This simplifies the measurement requirements and allows a detailed analysis using simple methods. Characterizing the physical properties of the rocks and soils is difficult because of many complex parameters such as soil temperature, mineral type, grain size, porosity, and soil conductivity. In this presentation, we will show that the dielectric constant measurement can provide simple detection for oxides such as TiO2, FeO, and water. Their presence is manifest by an unusually large imaginary permittivity.

Anderson, R. C.; Buehler, M. G.; Seshardri, S.; Schaap, M. G.

2004-01-01

71

Activities of N-Mineralization Enzymes Associated With Soil Aggregate Size Fractions of Three Tillage Systems  

Technology Transfer Automated Retrieval System (TEKTRAN)

Nitrogen mineralization occurring near the soil surface of agro-ecosystems determines the quantity of plant available N, and soil enzymes produced by microorganisms play significant roles in the N mineralization process. Tillage systems may influence soil microbial communities and N mineralization e...

72

Allophane compared with other sorbent minerals for the removal of fluoride from water with particular focus on a mineable Ecuadorian allophane  

Microsoft Academic Search

Worldwide F? contaminated groundwaters pose a serious health problem. For purification of these waters different adsorber materials are used such as activated aluminium oxide, iron oxyhydroxide (e.g. GEH®), or synthetic OH-Apatite (e.g. Fluorolith®). In some regions, however, inexpensive solutions are required motivating scientists to study the F? sorption of natural materials such as clays. The clay mineral allophane possesses a

S. Kaufhold; R. Dohrmann; Z. Abidin; T. Henmi; N. Matsue; L. Eichinger; A. Kaufhold; R. Jahn

2010-01-01

73

Anaerobic N mineralization in paddy soils in relation to inundation management, physicochemical soil fractions, mineralogy and soil properties  

NASA Astrophysics Data System (ADS)

Anaerobic N mineralization measured from (saturated) repacked soil cores from 25 paddy fields in Bangladesh and was previously found to negatively related to soil N content on a relative basis. This suggests that other factors like soil organic matter (SOM) quality or abiotic factors instead control the anaerobic N mineralization process. We therefore assessed different physical and chemical fractions of SOM, management factors and various soil properties as predictors for the net anaerobic N mineralization. 1° First, we assessed routinely analyzed soil parameters (soil N and soil organic carbon, texture, pH, oxalate- and pyrophosphate-extractable Fe, Al, and Mn, fixed-NH4 content). We found no significant influences of neither soil mineralogy nor the annual length of inundation on soil N mineralization. The anaerobic N mineralization correlated positively with Na-pyrophosphate-extractable Fe and negatively with pH (both at P<0.01). At this stage it is, however, not known if these relations between net evolution of NH4 and pH and Fe content are causal or indirect. 2° Second, the 25 samples collected from farmers' fields were physically fractionated into particulate OM and silt and clay associated OM. The silt and clay sized OM was further chemically fractionated by oxidation with 6%NaOCl to isolate an oxidation-resistant OM fraction, followed by extraction of mineral bound OM with 10%HF thereby isolating the HF-resistant OM. None of the physicochemical SOM fractions were found useful predictors anaerobic N mineralization. The linkage between these chemical soil N fractions and N supplying processes actually occurring in the soil thus appears to be weak. Regardless, we hypothesize that variation in strength of N-mineral and N-OM linkages is likely to explain variation in bio-availability of organic N and proneness to mineralization. Yet, in order to separate kinetically different soil N fractions we then postulated that an alternative approach would be required, which instead isolates soil N fractions on the basis of bonding strength. In this respect bonding strength should be seen as opposite of proneness to dissolution of released N into water, the habitat of soil microorganisms mediating soil N mineralization. We hypothesize that soil N extracted by water at increasing temperatures would reflect such N fractions with increasing bonding strength, in turn equivalent to decreasing bio-availability. Although water has frequently been used to extract labile SOM, its use has mostly been limited to 100°C. 3° Third we developed sub critical water extraction (SCWE) at 100°C, 150°C and 200°C to isolate SOM fractions from the set of 25 paddy soil samples. In all cases, SCWE organic carbon (SCWE-OC) and N (SCWE-N) increased exponentially with the increase of temperature. SCWE preferentially extracted N over OC with increasing temperature. The efficiency of SCWE and the selectivity towards N were both lower in soils with increasingly reactive clay mineralogy. No correlations were found between the SCWE fractions and anaerobic N mineralization rate. In conclusion, SOM quantity and SOM quality, here represented by C and N distribution over physicochemical fractions, don't seem to dominantly determine anaerobic N mineralization in primarily young floodplain paddy soils. Other factors with exceeding control (pH and pyrophosphate extractable Fe) appear to exist. Possibly, the specific young genesis stage of most of the soils included (termed 'floodplain' soils) results in a limited availability of readily reducible Fe. Being an important alternative electron acceptor under submerged conditions, the availability of Fe, which is also controlled by pH, may be a bottleneck in the anaerobic N mineralization process. This needs to be further investigated by controlled incubation experiments with detailed follow-up of pH, redox potential, Fe in solution and mineral N.

Sleutel, Steven; Kader, Mohammed Abdul; Ara Begum, Shamim; De Neve, Stefaan

2013-04-01

74

Interactions between Carbon and Nitrogen Mineralization and Soil Organic Matter Chemistry in Arctic Tundra Soils  

Microsoft Academic Search

We used long-term laboratory incubations and chemical fractionation to characterize the mineralization dynamics of organic\\u000a soils from tussock, shrub, and wet meadow tundra communities, to determine the relationship between soil organic matter (SOM)\\u000a decomposition and chemistry, and to quantify the relative proportions of carbon (C) and nitrogen (N) in tundra SOM that are\\u000a biologically available for decomposition. In all soils

Michael N. Weintraub; Joshua P. Schimel

2003-01-01

75

Mineralization of N in Soils Amended with Dairy Manure as Affected by Wetting/Drying Cycles  

Technology Transfer Automated Retrieval System (TEKTRAN)

Interest in manure management and its effects on nitrogen (N) mineralization has increased in recent years. The focus of this research was to investigate the N mineralization rates of different soil types in Coastal Plain soils and compare them to a soil from Illinois. Soils with and without dairy ...

76

Elemental composition of biomineralized amorphous mineral granules isolated from ants: correlation with ingested mineral particles from the soil.  

PubMed

Amorphous mineral granules are formed by concentric mineral layers containing polyphosphate, pyrophosphate and/or orthophosphate and several metallic cations such as Mg(2+), Ca(2+), K(+), Mn(2+), Fe(3+), Cu(2+), and Zn(2+). In this work, we analyzed amorphous mineral granules isolated from the ant species Camponotus abdominalis, Camponotus sp., Acromyrmex subterraneus and Pachycondyla marginata by energy-dispersive X-ray analysis. The elemental composition of the granules was compared to that of mineral particles, probably soil particles, to access the influence of the environment and of specific characteristics of each ant species in the elemental composition of the amorphous mineral granules. Both the granules and mineral particles presented Mg, Ca, Fe, and Zn in the four species. Additionally, Al tended to be present in both (or none) of the two types of material in a given ant species, suggesting that the aluminum found in the amorphous mineral granules could be derived from ingested soil particles. On the other hand, Sr was found in the amorphous mineral granules of some of the studied ant species, but not in the mineral particles. The fact that 3/4 of the elements found in the granules were found also in the mineral particles suggests that the mineral composition of the soil plays a fundamental role in the accumulation of some elements in the amorphous mineral granules of ants. These results suggest a major role of soil particles as a source of micronutrients for the four ant species. PMID:22750041

Carneiro, Fabricia G; Keim, Carolina N; Acosta-Avalos, Daniel; Farina, Marcos

2013-01-01

77

Activities of N-mineralization enzymes associated with soil aggregates in three different tillage systems  

Technology Transfer Automated Retrieval System (TEKTRAN)

Soil enzymes released by microorganisms play a significant role in N mineralization process that determines N availability for plant growth. Soil aggregates of different sizes provide diverse microhabitats for microorganisms and therefore influence soil enzyme activities. We hypothesize that enzyme ...

78

Stability of Soil Carbon Fractions - Aggregation Versus Mineral Association  

NASA Astrophysics Data System (ADS)

Models that seek to describe the dynamics of soil organic C typically distinguish between two or more C fractions according to differences of biochemical and microbial degradation. The rates are a consequence of recalcitrance, accessibility and interactions. Soil aggregation is an important mechanism controlling the accessibility of substrates by microbes and enzymes and thus the dynamics of minerals bound C are interacting with soil aggregate dynamics. In this study we focused on C fractions isolated by particle size fractionation. The main objective of our study was to differentiate between C stabilization of soil fractions due to accessibility/aggregation or to association with minerals. For a detailed understanding of these processes and the sources of respired soil CO2 we combined the measurement of heterotrophic respiration, CO2-13C analyses and radiocarbon dating of the respired CO2 in a long-term laboratory mineralization experiment. For the experiment we took soil material from the A horizon of an Albic Luvisol under Norway spruce forest (Picea abies) in southern Germany. The air dried bulk soil (< 2000 µm) was subjected to ultrasonication (1st step 60 J ml-1; 2nd step 440 J ml-1) and separated according to particle size in three fractions: > 63 µm to 2000 µm - sand, > 6.3 µm to 63 µm - silt and silt/clay fraction < 6.3 µm - clay. Solid-state 13C-CPMAS NMR spectroscopy was used to analyze the composition of bulk soil and fractions. The incubation of the three fractions and the bulk soil was done for 250 days in triplicate at 20 degree Celsius and 70% of maximal water holding capacity. A relative enrichment of alkyl C and an increase of the alkyl / O/N-alkyl C ratios in the order of sand < silt < clay were observed by 13C-NMR. On a long term the sand fraction and the bulk soil showed a sustained C bioavailability. For the silt and clay fraction similar respiration rates and a low C bioavailability were detected. The recombined fractions (by calculation) showed 35% higher amounts of respired CO2-C than the bulk soil. This difference accounts for the absence of restricted accessibility due to soil aggregation. Because of the high amounts of mineral bound C the main source of CO2-C (70%) in the recombined fraction is the clay fraction. Nevertheless the recalcitrance of mineral bound C is restricting the positive effects of aggregate disruption on the C turnover. The small fast decomposing C pool of the sand fraction is of minor importance to the total soil respiration balance. CO2-13C signatures showed higher values of the silt and clay fractions in contrast to the sand fraction, indicating a lower bioavailability of 13C-depleted carbon sources in the small fractions. The analyses of CO2-14C showed a shift to the utilization of older C sources with time.

Mueller, C. W.; Koegel-Knabner, I.

2007-12-01

79

Mineralization of organic matter and the carbon sequestration capacity of zonal soils  

Microsoft Academic Search

The susceptibility of soil organic matter (SOM) to mineralization decreases in the following sequence of zonal soils: tundra\\u000a soil > soddy-podzolic soil > gray forest soil > chestnut soil > dark chestnut soil > chernozem. The content of potentially\\u000a mineralizable organic matter in the plowed soils is 1.9–3.9 times lower than that in their virgin analogues. The highest soil\\u000a carbon

V. M. Semenov; L. A. Ivannikova; T. V. Kuznetsova; N. A. Semenova; A. S. Tulina

2008-01-01

80

Microprobe analyses of glasses and minerals from Luna-16 soil  

NASA Technical Reports Server (NTRS)

Electron microprobe analyses are presented for nine elements in 250 glasses and 434 pyroxenes, eight elements in 113 olivines, and six elements in 354 feldspars, 35 spinels, and 159 ilmenites. All grains are from the 125-425 micron fraction of horizon A and horizon D soil from the Luna 16 sample. A norm is presented for each glass analysis and the structural formula is calculated for each mineral analysis.

Brown, R. W.; Harmon, R. S.; Jakes, P.; Reid, A. M.; Ridley, W. I.; Warner, J. L.

1971-01-01

81

Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions: The Significance of Accessory Minerals in Carbonate Reservoirs (Invited)  

NASA Astrophysics Data System (ADS)

Accessory minerals in carbonate reservoirs, and in the caprocks that seal these reservoirs, can provide insight into multiphase fluid (CO2 + H2O)-rock interactions and the behavior of CO2 that resides in these water-rock systems. Our program integrates field data, hydrothermal experiments, and geochemical modeling to evaluate CO2-water-rock reactions and processes in a variety of carbonate reservoirs in the Rocky Mountain region of the US. These studies provide insights into a wide range of geologic environments, including natural CO2 reservoirs, geologic carbon sequestration, engineered geothermal systems, enhanced oil and gas recovery, and unconventional hydrocarbon resources. One suite of experiments evaluates the Madison Limestone on the Moxa Arch, Southwest Wyoming, a sulfur-rich natural CO2 reservoir. Mineral textures and geochemical features developed in the experiments suggest that carbonate minerals which constitute the natural reservoir will initially dissolve in response to emplacement of CO2. Euhedral, bladed anhydrite concomitantly precipitates in response to injected CO2. Analogous anhydrite is observed in drill core, suggesting that secondary anhydrite in the natural reservoir may be related to emplacement of CO2 into the Madison Limestone. Carbonate minerals ultimately re-precipitate, and anhydrite dissolves, as the rock buffers the acidity and reasserts geochemical control. Another suite of experiments emulates injection of CO2 for enhanced oil recovery in the Desert Creek Limestone (Paradox Formation), Paradox Basin, Southeast Utah. Euhedral iron oxyhydroxides (hematite) precipitate at pH 4.5 to 5 and low Eh (approximately -0.1 V) as a consequence of water-rock reaction. Injection of CO2 decreases pH to approximately 3.5 and increases Eh by approximately 0.1 V, yielding secondary mineralization of euhedral pyrite instead of iron oxyhydroxides. Carbonate minerals also dissolve and ultimately re-precipitate, as determined by experiments in the Madison Limestone, but pyrite will persist and iron oxyhydroxides will not recrystallize.

Kaszuba, J. P.; Marcon, V.; Chopping, C.

2013-12-01

82

Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils  

NASA Astrophysics Data System (ADS)

Investigations focusing on the temperature sensitivity of microbial activity and nutrient turnover in soils improve our understanding of potential effects of global warming. This study investigates the temperature sensitivity of C mineralization, N mineralization, and potential enzyme activities involved in the C and N cycle (tyrosine amino-peptidase, leucine amino-peptidase, ß-glucosidase, ß-xylosidase, N-acetyl-ß-glucosaminidase). Four different study sites in the Austrian alpine zone were selected, and soils were sampled in three seasons (summer, autumn, and winter). A simple first-order exponential equation was used to calculate constant Q10 values for the C and N mineralization over the investigated temperature range (0-30°C). The Q10 values of the C mineralization (average 2.0) for all study sites were significantly higher than for the N mineralization (average 1.7). The Q10 values of both activities were significantly negatively related to a soil organic matter quality index calculated by the ratios of respiration to the organic soil carbon and mineralized N to the total soil nitrogen. The chemical soil properties or microbial biomass did not affect the Q10 values of C and N mineralization. Moreover, the Q10 values showed no distinct pattern according to sampling date, indicating that the substrate quality and other factors are more important. Using a flexible model function, the analysis of relative temperature sensitivity (RTS) showed that the temperature sensitivity of activities increased with decreasing temperature. The C and N mineralization and potential amino-peptidase activities (tyrosine and leucine) showed an almost constant temperature dependence over 0-30°C. In contrast, ß-glucosidase, ß-xylosidase, and N-acetyl-ß-glucosaminidase showed a distinctive increase in temperature sensitivity with decreasing temperature. Low temperature at the winter sampling date caused a greater increase in the RTS of all microbial activities than for the autumn and summer sampling dates. Our results indicate (1) a disproportion of the RTS for potential enzyme activities of the C and N cycle and (2) a disproportion of the RTS for easily degradable C compounds (ß-glucose, ß-xylose) compared with the C mineralization of soil organic matter. Thus temperature may play an important role in regulating the decay of different soil organic matter fractions due to differences in the relative temperature sensitivities of enzyme activities.

Koch, Oliver; Tscherko, Dagmar; Kandeler, Ellen

2007-12-01

83

Effects of aluminosilicate minerals in clay soil fractions on pore water hydroxide ion concentrations in soil/cement matrices  

E-print Network

between clay minerals and calcium hydroxide. Pozzolanic reactions between aluminosilicate minerals in soils and portiandite or calcium silicate hydrate, generated by cement hydration, may significantly reduce the hydroxide ion concentration in soi...

Cook, Evan Russell

1998-01-01

84

Distinct temperature sensitivity of soil carbon decomposition in forest organic layer and mineral soil  

NASA Astrophysics Data System (ADS)

The roles of substrate availability and quality in determining temperature sensitivity (Q10) of soil carbon (C) decomposition are still unclear, which limits our ability to predict how soil C storage and cycling would respond to climate change. Here we determined Q10 in surface organic layer and subsurface mineral soil along an elevation gradient in a temperate forest ecosystem. Q10 was calculated by comparing the times required to respire a given amount of soil C at 15 and 25°C in a 350-day incubation. Results indicated that Q10 of the organic layer was 0.22-0.71 (absolute difference) higher than Q10 of the mineral soil. Q10 in both the organic layer (2.5-3.4) and the mineral soil (2.1-2.8) increased with decreasing substrate quality during the incubation. This enhancement of Q10 over incubation time in both layers suggested that Q10 of more labile C was lower than that of more recalcitrant C, consistent with the Arrhenius kinetics. No clear trend of Q10 was found along the elevation gradient. Because the soil organic C pool of the organic layer in temperate forests is large, its higher temperature sensitivity highlights its importance in C cycling under global warming.

Xu, Wenhua; Li, Wei; Jiang, Ping; Wang, Hui; Bai, Edith

2014-10-01

85

Fibrous-clay mineral formation and soil evolution in Aridisols of northeastern Patagonia, Argentina  

E-print Network

Fibrous-clay mineral formation and soil evolution in Aridisols of northeastern Patagonia, Argentina Patagonia identified fibrous-clay minerals in calcic and petrocalcic horizons developed on old fluvio the occurrence of fibrous-clay minerals in the arid soil environment, and ii) to establish the relationship

Ahmad, Sajjad

86

Characterization of Humic Acid Fractions Improves Estimates of Nitrogen Mineralization Kinetics for Lowland Rice Soils  

Microsoft Academic Search

Boone, 1994). Despite these efforts, no single fraction- ation method has been shown to cleanly distinguish Nitrogen mineralization in irrigated lowland rice (Oryza sativa L.) SOM fractions based on their contributions to soil N soils is poorly predicted by total soil C and N. To improve its predic- tion, two humic acid fractions were extracted with NaOH from lowland mineralization

Nguyen Bao Ve; D. C. Olk; K. G. Cassman

2004-01-01

87

Winter cover cropping influence on nitrogen mineralization, presidedress soil nitrate test, and corn yields  

Microsoft Academic Search

The mineralization and availability of cover crop N to the succeeding crop are critical components in the management of soil N to reduce N leaching. The effects of several leguminous and non-leguminous cover crops on soil N availability, N mineralization potential, and corn (Zea mays L.) yield were examined. The cover crops had variable effects on soil N availability and

S. Kuo; U. M. Sainju; E. Jellum

1996-01-01

88

Effects of mineral and biofertilizers on barley growth on compacted soil  

Microsoft Academic Search

Biofertilizers are an alternative to mineral fertilizers for increasing soil productivity and plant growth in sustainable agriculture. The objective of this study was to evaluate possible effects of three mineral fertilizers and four plant growth promoting rhizobacteria (PGPR) strains as biofertilizer on soil properties and seedling growth of barley (Hordeum vulgare) at three different soil bulk densities, and in three

Mustafa Y. Canbolat; Kenan Barik; Ramazan Çakmakçi; Fikrettin ?ahin

2006-01-01

89

Global distribution of minerals in arid soils as lower boundary condition in dust models  

Microsoft Academic Search

Mineral dust eroded from arid soils affects the radiation budget of the Earth system, modifies ocean bioproductivity and influences human health. Dust aerosol is a complex mixture of minerals. Dust mineral composition has several potentially important impacts to environment and society. Iron and phosphorus embedded in mineral aerosol are essential for the primary marine productivity when dust deposits over the

Slobodan Nickovic

2010-01-01

90

Vertical profile measurements of soil air suggest immobilization of gaseous elemental mercury in mineral soil.  

PubMed

Evasion of gaseous elemental Hg (Hg(0)g) from soil surfaces is an important source of atmospheric Hg, but the volatility and solid-gas phase partitioning of Hg(0) within soils is poorly understood. We developed a novel system to continuously measure Hg(0)g concentrations in soil pores at multiple depths and locations, and present a total of 297 days of measurements spanning 14 months in two forests in the Sierra Nevada mountains, California, U.S. Temporal patterns showed consistent pore Hg(0)g concentrations below levels measured in the atmosphere (termed Hg(0)g immobilization), ranging from 66 to 94% below atmospheric concentrations throughout multiple seasons. The lowest pore Hg(0)g concentrations were observed in the deepest soil layers (40 cm), but significant immobilization was already present in the top 7 cm. In the absence of sinks or sources, pore Hg(0)g levels would be in equilibrium with atmospheric concentrations due to the porous nature of the soil matrix and gas diffusion. Therefore, we explain decreases in pore Hg(0)g in mineral soils below atmospheric concentrations--or below levels found in upper soils as observed in previous studies--with the presence of an Hg(0)g sink in mineral soils possibly related to Hg(0)g oxidation or other processes such as sorption or dissolution in soil water. Surface chamber measurements showing daytime Hg(0)g emissions and nighttime Hg(0)g deposition indicate that near-surface layers likely dominate net atmospheric Hg(0)g exchange resulting in typical diurnal cycles due to photochemcial reduction at the surface and possibly Hg(0)g evasion from litter layers. In contrast, mineral soils seem to be decoupled from this surface exchange, showing consistent Hg(0)g uptake and downward redistribution--although our calculations indicate these fluxes to be minor compared to other mass fluxes. A major implication is that once Hg is incorporated into mineral soils, it may be unlikely subjected to renewed Hg(0)g re-emission from undisturbed, background soils emphasizing the important role of soils in sequestering past and current Hg pollution loads. PMID:24428735

Obrist, Daniel; Pokharel, Ashok K; Moore, Christopher

2014-02-18

91

Mineral exploration and soil analysis using in situ neutron activation  

USGS Publications Warehouse

A feasibility study has been made to operate by remote control an unshielded portable positive-ion accelerator type neutron source to induce activities in the ground or rock by "in situ" neutron irradiation. Selective activation techniques make it possible to detect some thirty or more elements by irradiating the ground for periods of a few minutes with either 3-MeV or 14-MeV neutrons. The depth of penetration of neutrons, the effect of water content of the soil on neutron moderation, gamma ray attenuation in the soil and other problems are considered. The analysis shows that, when exploring for most elements of economic interest, the reaction 2H(d,n)3He yielding ??? 3-MeV neutrons is most practical to produce a relatively uniform flux of neutrons of less than 1 keV to a depth of 19???-20???. Irradiation with high energy neutrons (??? 14 MeV) can also be used and may be better suited for certain problems. However, due to higher background and lower sensitivity for the heavy minerals, it is not a recommended neutron source for general exploration use. Preliminary experiments have been made which indicate that neutron activation in situ is feasible for a mineral exploration or qualititative soil analysis. ?? 1976.

Senftle, F.E.; Hoyte, A.F.

1966-01-01

92

Effects of glyphosate on soil microbial communities and its mineralization in a Mississippi soil.  

PubMed

Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.) Merr.] has enabled highly effective and economical weed control. The concomitant increased application of glyphosate could lead to shifts in the soil microbial community. The objective of these experiments was to evaluate the effects of glyphosate on soil microbial community structure, function and activity. Field assessments on soil microbial communities were conducted on a silt loam soil near Stoneville, MS, USA. Surface soil was collected at time of planting, before initial glyphosate application and 14 days after two post-emergence glyphosate applications. Microbial community fatty acid methyl esters (FAMEs) were analyzed from these soil samples and soybean rhizospheres. Principal component analysis of the total FAME profile revealed no differentiation between field treatments, although the relative abundance of several individual fatty acids differed significantly. There was no significant herbicide effect in bulk soil or rhizosphere soils. Collectively, these findings indicate that glyphosate caused no meaningful whole microbial community shifts in this time period, even when applied at greater than label rates. Laboratory experiments, including up to threefold label rates of glyphosate, resulted in up to a 19% reduction in soil hydrolytic activity and small, brief (<7 days) changes in the soil microbial community. After incubation for 42 days, 32-37% of the applied glyphosate was mineralized when applied at threefold field rates, with about 9% forming bound residues. These results indicate that glyphosate has only small and transient effects on the soil microbial community, even when applied at greater than field rates. PMID:17348071

Weaver, Mark A; Krutz, L Jason; Zablotowicz, Robert M; Reddy, Krishna N

2007-04-01

93

Interaction of root exudates with the mineral soil constituents and their effect on mineral weathering  

NASA Astrophysics Data System (ADS)

Plants release significant amounts of high and low molecular weight organic compounds into the rhizosphere. Among these exudates organic acids (e.g. citric acid, malic acid, oxalic acid), phenolic compounds (e.g. flavonoids), amino acids and siderophores of microbial and/or plant origin strongly influence and modify the biogeochemical cycles of several elements, thus causing changes in their availability for plant nutrition. One class of these elements is composed by the trace elements; some of them are essential for plants even if in small concentrations and are considered micronutrients, such as Fe, Zn, Mn. Their solubility and bioavailability can be influenced, among other factors, by the presence in soil solution of low molecular weight root exudates acting as organic complexing agents that can contribute to the mineral weathering and therefore, to their mobilization in the soil solution. The mobilized elements, in function of the element and of its concentration, can be either important nutrients or toxic elements for plants. The objective of this study was to assess the influence of several root exudates (citric acid, malic acid, oxalic acid, genistein, quercetin and siderophores) on the mineralogy of two different soils (an agricultural calcareous soil and an acidic polluted soil) and to evaluate possible synergic or competitive behaviors. X-ray diffraction (XRD) coupled with Electron Probe Micro Analysis (EPMA) was used to identify the crystalline and amorphous phases which were subjected to mineral alteration when exposed to the action of root exudates. Solubilization of trace metals such as Cu, Zn, Ni, Cr, Pb, Cd as well as of major elements such as Si, Al, Fe and Mn was assessed by means of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Soil microorganisms have proven to decrease mineral weathering by reducing the concentration of active root exudates in solution. Results obtained are an important cornerstone to better understand the biogeochemical processes acting in the rhizosphere which can play an important role in the availability of trace elements (either nutrient or toxic) for plant uptake. Research is supported by MIUR - FIRB "Futuro in ricerca", internal grant of Unibz (TN5031 & TN5046) and the Autonomous Province of Bolzano (Rhizotyr TN5218).

Mimmo, T.; Terzano, R.; Medici, L.; Lettino, A.; Fiore, S.; Tomasi, N.; Pinton, R.; Cesco, S.

2012-04-01

94

Soil Nitrogen Mineralization Potential for Improved Fertilizer Recommendations and Decreased Nitrate Contamination of Groundwater  

E-print Network

In order to prevent overfertilization, which could lead to groundwater contamination, rapid and accurate soil testing procedures are needed to evaluate agricultural surface soils for their potential to mineralize C and N. Our objectives were...

Franzluebbers, Alan; Haney, Richard; Hons, Frank

95

The origin of lead in the organic horizon of tundra soils: atmospheric deposition, plant translocation from the mineral soil or soil mineral mixing?  

PubMed

Knowledge of the anthropogenic contribution to lead (Pb) concentrations in surface soils in high latitude ecosystems is central to our understanding of the extent of atmospheric Pb contamination. In this study, we reconstructed fallout of Pb at a remote sub-arctic region by using two ombrotrophic peat cores and assessed the extent to which this airborne Pb is able to explain the isotopic composition ((206)Pb/(207)Pb ratio) in the O-horizon of tundra soils. In the peat cores, long-range atmospheric fallout appeared to be the main source of Pb as indicated by temporal trends that followed the known European pollution history, i.e. accelerated fallout at the onset of industrialization and peak fallout around the 1960s-70s. The Pb isotopic composition of the O-horizon of podzolic tundra soil ((206)Pb/(207)Pb=1.170 ± 0.002; mean ± SD) overlapped with that of the peat ((206)Pb/(207)Pb=1.16 ± 0.01) representing a proxy for atmospheric aerosols, but was clearly different from that of the parent soil material ((206)Pb/(207)Pb=1.22-1.30). This finding indicated that long-range fallout of atmospheric Pb is the main driver of Pb accumulation in podzolic tundra soil. In O-horizons of tundra soil weakly affected by cryoturbation (cryosols) however, the input of Pb from the underlying mineral soil increased as indicated by (206)Pb/(207)Pb ratios of up to 1.20, a value closer to that of local soil minerals. Nevertheless, atmospheric Pb appeared to be the dominant source in this soil compartment. We conclude that Pb concentrations in the O-horizon of studied tundra soils - despite being much lower than in boreal soils and representative for one of the least exposed sites to atmospheric Pb contaminants in Europe - are mainly controlled by atmospheric inputs from distant anthropogenic sources. PMID:21820157

Klaminder, Jonatan; Farmer, John G; MacKenzie, Angus B

2011-09-15

96

Does plant uptake or low soil mineral-N production limit mineral-N losses to surface waters and groundwater from soils under grass in summer?  

PubMed

Summer minima and autumn/winter maxima in nitrate concentrations in rivers are reputedly due to high plant uptake of nitrate from soils in summer. A novel alternative hypothesis is tested here for soils under grass. By summer, residual readily mineralizable plant litter from the previous autumn/winter is negligible and fresh litter input low. Consequently little mineral-N is produced in the soil. Water-soluble and KCl-extractable mineral N in fresh soils and soils incubated outdoors for 7 days have been monitored over 12 months for soil transects at two permanent grassland sites near York, UK, using 6 replicates throughout. Vegetation-free soil is shown to produce very limited mineral-N in summer, despite the warm, moist conditions. Litter accumulates in autumn/winter and initially its high C:N ratio favours N accumulation in the soil. It is also shown that mineral-N generated monthly in situ in soil substantially exceeds the monthly mineral-N inputs via wet deposition at the sites. PMID:23562960

Bhatti, Ambreen; McClean, Colin J; Cresser, Malcolm S

2013-07-01

97

Nitrogen mineralization potentials of shrub-steppe soils with different disturbance histories  

Microsoft Academic Search

Disturbance of shrub-steppe soils and changes in the dominant plant cover may alter soil N-cycling processes. The mineralization of organic N to plant-available forms is an important component of the N cycle in shrub-steppe soils. Therefore, the soil N-mineralization potential (N{sub o}) was determined for two arid ecosystems, an undisturbed perennial shrub-steppe and an annual grassland, which was initially shrub-steppe

H. Jr. Bolton; R. E. Wildung; J. L. Smith

2009-01-01

98

COMPARISON OF NUTRIENT SOURCES OF MINERAL SOIL NUTRITION IN FLORIDA SUGARCANE  

Technology Transfer Automated Retrieval System (TEKTRAN)

Improving soil organic matter and soil fertility are important factors in the sustainability of sugarcane production on mineral soils. A trial was established in 2004 on a sandy Spodosol in Florida to compare the effect of organic and inorganic nutrient sources on soil fertility and sugarcane produ...

99

Carbon mineralization and microbial biomass in soil aggregates from two tillage systems  

Technology Transfer Automated Retrieval System (TEKTRAN)

Soil quality is a concept of many interrelated factors that perform in concert to improve soil productivity. Few of the factors for soil quality are microbial biomass, soil aggregate fractions, and carbon mineralization in different aggregate fractions that are influenced by the agricultural practic...

100

Mineralization-immobilization of soil organic S and oxidation of elemental S in subtropical soils under flooded and nonflooded conditions  

Microsoft Academic Search

Information on the influence of soil moisture on elemental sulphur (S0) oxidation and transformation into organic S in semi-arid subtropical soils is scarce. We studied the impact of three moisture regimes on the mineralization of soil organic S, and the oxidation and immobilization of S0 in acidic (pH 4.9), neutral (pH 7.1) and alkaline (pH 10.2) subtropical soils. Repacked soil

Milkha S. Aulakh; Ramesh C. Jaggi; R. Sharma

2002-01-01

101

Kinetics of di-(2-ethylhexyl)phthalate mineralization in sludge-amended soil  

SciTech Connect

Sewage sludge is frequently used as a soil fertilizer although it may contain elevated concentrations of priority pollutants including di-(2-ethylhexyl)phthalate (DEHP). In the present study, the kinetics of microbial [[sup 14]C]DEHP mineralization was studied in laboratory microcosms with sewage sludge and agricultural soil. A biphasic model with two independent kinetic expressions was used to fit the mineralization data. The initial mineralization activity was described well by first-order kinetics, whereas mineralization in long-term incubations was described better by fractional power kinetics. The mineralization activity was much lower in the late phase presumably due to a decline in the bioavailability of DEHP caused by diffusion-limited desorption. The initial DEHP mineralization rate in sludge-amended soil varied between 3.7 and 20.3 ng of DEHP (g dw)[sup [minus]1]d[sup [minus]1] depending on incubation conditions. Aerobic DEHP mineralization was 4--5 times faster than anaerobic mineralization, DEHP mineralization in sludge-amended soil was much more temperature sensitive than was DEHP mineralization in soil without sludge. Indigenous microorganisms in the sewage sludge appeared to dominate DEHP degradation in sludge-amended soil. It was estimated that > 41% of the DEHP in sludge-amended soil will have escaped mineralization after 1 year. In the absence of oxygen, > 68% of the DEHP will not be mineralized within 1 year. Collectively, the data suggest that a significant fraction of the DEHP in sludge-amended soils may escape mineralization under in situ conditions.

Madsen, P.L.; Thyme, J.B.; Henriksen, K.; Moeldrup, P.; Roslev, P. (Aalborg Univ. (Denmark). Environmental Engineering Lab.)

1999-08-01

102

Nitrate Mobility in Unsaturated Soil Affected by the Presence of Different Clay Mineral Types  

Microsoft Academic Search

Transient unsaturated soil column experiments were conducted to assess the magnitude of the anion adsorption\\/exclusion effects on nitrate mobility due to the type of clay mineral present. In all tests, a manufactured soil was employed that was comprised of 90 percent by weight medium sand and 10 percent by weight clay mineral (kaolin, illite, or montmorillonite). Prior to initiating an

B. J. Allred

2005-01-01

103

Heavy metal adsorption by different minerals: application to the remediation of polluted soils  

Microsoft Academic Search

We studied the heavy-metal adsorption capacity of various minerals in order to evaluate their potential for the reduction of metal mobility and bioavailability and their possible application for the remediation of polluted soils in the Guadiamar valley. The study (batch tests) of zinc adsorption capacity of clays (sepiolites, palygorskites, and bentonite from different mineral deposits) and a soil unaffected by

A. Garc??a-Sánchez; A. Alastuey; X. Querol

1999-01-01

104

LONG-TERM URANIUM MIGRATION IN AGRICULTURAL FIELD SOILS FOLLOWING MINERAL P FERTILIZATION  

Technology Transfer Automated Retrieval System (TEKTRAN)

To preserve soil fertility, organic and mineral fertilizers are often applied to agricultural fields. Mineral fertilizers such as phosphates and super phosphates contain a certain amount of long-lived alpha activity due to 238-U, 230-Th, amongst others. The fate of U in soil systems is quite complex...

105

Vertical ionic migration: mechanisms, soil anomalies, and sampling depth for mineral exploration  

Microsoft Academic Search

Field studies, in particular mobile metal ion analysis of soil samples taken over mineralization, suggest that subtle geochemical anomalies exist above mineral deposits which are demonstrably covered by allochthonous material such as glacial till. Empirical observations suggest that the anomalies are preferentially located 10 to 25 cm below the soil interface, comprise elements contained in ore, and are located directly

A. W. Mann; R. D. Birrell; M. A. F. Fedikow; H. A. F. de Souza

2005-01-01

106

Soil and plant minerals associated with rice straighthead disorder induced by arsenic  

Technology Transfer Automated Retrieval System (TEKTRAN)

Application of arsenic (As) as monosodium methanearsonate (MSMA) to soil has become the common practice for evaluation of rice straighthead, a physiological disorder. So far, no study has reported on soil mineral availability and plant mineral uptake as affected by the MSMA straighthead evaluation. ...

107

SIMULTANEOUS INHIBITION OF CARBON AND NITROGEN MINERALIZATION IN A FOREST SOIL BY SIMULATED ACID PRECIPITATION  

EPA Science Inventory

Acid Precipitation may alter the rates of microbial processes in soil that are important for forest productivity. Acidification of soil can result in a depression of carbon mineralization. The present study was designed to determine whether the inhibition of carbon mineralization...

108

Spectroscopic Interpretation of PAH-Spectra in Minerals and Its Possible Application to Soil Monitoring  

PubMed Central

In order to properly assess the feasibility of using Laser-Induced Fluorescence (LIF) spectroscopy for soil monitoring, the variation of fluorescence intensity due to the heterogeneity and complexity of soil media was investigated. Different soil minerals showed fluorescence spectral structures distinguishable from the contaminants, implying dissimilar interactions or the binding of contaminants on mineral surfaces. More interestingly, solvent and water addition showed different responses in the fluorescence spectral structure showing their effect on the interactions between contaminants and minerals. These results support the claim that the spectral structure contains information on contaminant-mineral interactions; therefore contaminants can be used as a fluorescence probe for these interactions. PMID:22319331

Ko, Eun-Joung; Kim, Kyoung-Woong; Park, Kihong; Kim, Ju-Yong; Kim, Jiwon; Hamm, Se-Yeong; Lee, Jung-Hwan; Wachsmuth, Uwe

2010-01-01

109

Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions  

E-print Network

Phosphate-induced lead immobilization from different lead minerals in soils under varying pH at pH ÂĽ 7, it was PbSO4-soil > PbO-soil > PbCO3-soil. Phosphate decreased Pb dissolution time from >180. Keywords: Immobilization; Lead minerals; Contaminated soil; Phosphate; pH 1. Introduction Both laboratory

Ma, Lena

110

Statistical analysis of mineral soils in the Odra valley  

NASA Astrophysics Data System (ADS)

The aim of this article is to present the results of statistical analyses of laboratory experiment results obtained from an ITB ZW-K2 apparatus, Kamie?ski tubes and grain-size distribution curves. Beside basic statistical parameters (mean, sum, minimum and maximum), correlation analysis and multivariate analysis of variance at significance levels ? < 0.01 and ? < 0.05 were taken into account, as well as calculations of LSD confidence half-intervals. The research material was collected from the valley of the Odra river near the town of S?ubice in Lubuskie province. The research involved mineral, non-rock fine-grained, non-cohesive soils lying at the depth of 0.3-1.5 m.

Hudak, Magda; Rojna, Arkadiusz

2012-10-01

111

High gradient magnetic separation of iron oxide minerals from soil clays  

E-print Network

HIGH GRADIENT MAGNETIC SEPARATION OF IRON OXIDE MINERALS FROM SOIL CLAYS A Thesis by DARRELL GENE SCHULZE Submitted to the Graduate College of Texas AIM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1977 Major Subject: Soil Science HIGH GRADIENT MAGNETIC SEPARATION OF IRON OXIDE MINERALS FROM SOIL CLAYS A Thesis DARRELL GENE SCHULZE Approved as to style and content by: (Chairman of C ittee) epartm t) j (Member) (Membe December 1977...

Schulze, Darrell Gene

1977-01-01

112

Effects of filter type and extraction efficiency on nitrogen mineralization measurements using the aerobic leaching soil incubation method  

Microsoft Academic Search

Aerobic incubation of soils with sequential leachings to extract mineralized N is often used to determine N mineralization potential and N availability in the laboratory. This study used tropical forest soils with differing mineralogy and texture to address: (1) the effects of filter type and equilibration time on soil moisture and N mineralization and (2) the N extraction efficiency of

Peter P. Motavalli; Serita D. Frey; Neal A. Scott

1995-01-01

113

Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions  

USGS Publications Warehouse

Mechanistic roles of soil humus and soil minerals and their contributions to soil sorption of nonionic organic compounds from aqueous and organic solutions are illustrated. Parathion and lindane are used as model solutes on two soils that differ greatly in their humic and mineral contents. In aqueous systems, observed sorptive characteristics suggest that solute partitioning into the soil-humic phase is the primary mechanism of soil uptake. By contrast, data obtained from organic solutions on dehydrated soil partitioning into humic phase and adsorption by soil minerals is influenced by the soil-moisture content and by the solvent medium from which the solute is sorbed. ?? 1985.

Chiou, C.T.; Shoup, T.D.; Porter, P.E.

1985-01-01

114

Bioinduced weathering in Swedish boreal forest soil investigated by mineral amendment  

NASA Astrophysics Data System (ADS)

The purpose of this study was to investigate how soil mineral amendment affects microbial composition and how different mineral composition and varied depth influence these changes. Apatite, biotite and oligoclase were placed at soil horizon interfaces in a podzole in Bispgĺrden, central Sweden (63°07'N, 16°70'E), between the summer of 2009 and 2011. Continuous measurement of soil chemistry; pH, dissolved organic carbon (DOC) and low molecular mass organic acids (LMMOAs) was performed for the surrounding soil during the frost free months of the two-year incubation period. Mineral sample surfaces were investigated using scanning electron microscopy (SEM) pre and post soil incubation to give a visual verification of weathering effects. Evaluating soil chemistry data and data received at the end of the incubation period, results show that the highest concentration of LMMOAs is found in the E horizon and that it corresponds with the highest total fungal activity in the bulk soil. Total microbial activity was found to be highest in the O horizon. Measurements on the soil of the mineral surfaces show that in all cases, apatite stimulates the microbial activity the most, followed by biotite and last oligoclase. Comparing the soil horizons, effects on total microbial activity are the highest in the E horizon, but when looking at total fungal activity the biggest changes are found in O and B horizon indicating that bacterial and fungal activities are affected differently by mineral amendment. Using ANOVA followed by pair wise comparisons according to Tukey, significant differences were found in microbial activity between the soil horizons and also between most of the different minerals, compared with the bulk soil. Looking at the SEM images taken before and after weathering, minerals placed in the O and E horizon are clearly the most affected, and the magnitude of weathering between the different minerals corresponds to the microbial activity found.

Olofsson, Madelen; Ahmed, Engy; Bylund, Dan; Holmström, Sara

2013-04-01

115

Global distribution of minerals in arid soils as lower boundary condition in dust models  

NASA Astrophysics Data System (ADS)

Mineral dust eroded from arid soils affects the radiation budget of the Earth system, modifies ocean bioproductivity and influences human health. Dust aerosol is a complex mixture of minerals. Dust mineral composition has several potentially important impacts to environment and society. Iron and phosphorus embedded in mineral aerosol are essential for the primary marine productivity when dust deposits over the open ocean. Dust also acts as efficient agent for heterogeneous ice nucleation and this process is dependent on mineralogical structure of dust. Recent findings in medical geology indicate possible role of minerals to human health. In this study, a new 1-km global database was developed for several minerals (Illite, Kaolinite, Smectite, Calcite, Quartz, Feldspar, Hematite and Gypsum) embedded in clay and silt populations of arid soils. For the database generation, high-resolution data sets on soil textures, soil types and land cover was used. Tin addition to the selected minerals, phosphorus was also added whose geographical distribution was specified from compiled literature and data on soil types. The developed global database was used to specify sources of mineral fractions in the DREAM dust model and to simulate atmospheric paths of minerals and their potential impacts on marine biochemistry and tropospheric ice nucleation.

Nickovic, Slobodan

2010-05-01

116

Contemporary carbon stocks of mineral forest soils in the Swiss Alps  

Microsoft Academic Search

Soil organic carbon (SOC) has been identified as the main globalterrestrial carbon reservoir, but considerable uncertainty remains as toregional SOC variability and the distribution of C between vegetationand soil. We used gridded forest soil data (8–km × 8–km)representative of Swiss forests in terms of climate and forest typedistribution to analyse spatial patterns of mineral SOC stocks alonggradients in the European

Daniel Perruchoud; Lorenz Walthert; Stefan Zimmermann; Peter Lüscher

2000-01-01

117

Exploitation of potassium by various crop species from primary minerals in soils rich in micas  

Microsoft Academic Search

We investigated the question of whether exchangeable K+ is a reliable factor for K+ availability to plants on representative arable soils (Aridisols) rich in K+-bearing minerals. Five soils with different textures were collected from different locations in Pakistan and used for pot experiments. The soils were separated into sand, silt, and clay fractions and quartz sand was added to each

K. Mengel; Rahmatullah

1994-01-01

118

Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies  

E-print Network

Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa- zosphere soils of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in the Ae horizon of a Luvisol. Can. J'ectomycorhi- zosphčre sous sapin subalpin (Abies lasiocarpa (Hook.) Nutt.) dans l'horizon Ae d'un luvisol. Can. J. Soil

Massicotte, Hugues

119

Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra  

NASA Astrophysics Data System (ADS)

Clay minerals are the most reactive inorganic components of soils. They help to determine soil properties and largely govern their behaviors and functions. Clay minerals also play important roles in biogeochemical cycling and interact with the environment to affect geomorphic processes such as weathering, erosion and deposition. This paper provides new spatially explicit clay mineralogy information for Australia that will help to improve our understanding of soils and their role in the functioning of landscapes and ecosystems. I measured the abundances of kaolinite, illite and smectite in Australian soils using near infrared (NIR) spectroscopy. Using a model-tree algorithm, I built rule-based models for each mineral at two depths (0-20 cm, 60-80 cm) as a function of predictors that represent the soil-forming factors (climate, parent material, relief, vegetation and time), their processes and the scales at which they vary. The results show that climate, parent material and soil type exert the largest influence on the abundance and spatial distribution of the clay minerals; relief and vegetation have more local effects. I digitally mapped each mineral on a 3 arc-second grid. The maps show the relative abundances and distributions of kaolinite, illite and smectite in Australian soils. Kaolinite occurs in a range of climates but dominates in deeply weathered soils, in soils of higher landscapes and in regions with more rain. Illite is present in varied landscapes and may be representative of colder, more arid climates, but may also be present in warmer and wetter soil environments. Smectite is often an authigenic mineral, formed from the weathering of basalt, but it also occurs on sediments and calcareous substrates. It occurs predominantly in drier climates and in landscapes with low relief. These new clay mineral maps fill a significant gap in the availability of soil mineralogical information. They provide data to for example, assist with research into soil fertility and food production, carbon sequestration, land degradation, dust and climate modeling and paleoclimatic change.

Viscarra Rossel, R. A.

2011-12-01

120

MINERALAVATER INTERFACE USING MOLECULAR SCALE TECHNIQUES An understanding of the kinetics and mechanisms of metal sorption on soil minerals and soils is  

E-print Network

and mechanisms of metal sorption on soil minerals and soils is fundamental in assessing the speciation, mobility be understood if accurate predictions are to be made about metal fate/mobility and soil remediation. With some metals (e.g., Co, Ni, Zn) residence time affects the rate of metal release from soil minerals while

Sparks, Donald L.

121

X-ray digital imaging petrography of lunar mare soils: modal analyses of minerals and glasses.  

PubMed

It is essential that accurate modal (i.e., volume) percentages of the various mineral and glass phases in lunar soils be used for addressing and resolving the effects of space weathering upon reflectance spectra, as well as for their calibration such data are also required for evaluating the resource potential of lunar minerals for use at a lunar base. However, these data are largely lacking. Particle-counting information for lunar soils, originally obtained to study formational processes, does not provide these necessary data, including the percentages of minerals locked in multi-phase lithic fragments and fused-soil particles, such as agglutinates. We have developed a technique for modal analyses, sensu stricto, of lunar soils, using digital imaging of X-ray maps obtained with an energy-dispersive spectrometer mounted on an electron microprobe. A suite of nine soils (90 to 150 micrometers size fraction) from the Apollo 11, 12, 15, and 17 mare sites was used for this study. This is the first collection of such modal data on soils from all Apollo mare sites. The abundances of free-mineral fragments in the mare soils are greater for immature and submature soils than for mature soils, largely because of the formation of agglutinitic glass as maturity progresses. In considerations of resource utilization at a lunar base, the best lunar soils to use for mineral beneficiation (i.e., most free-mineral fragments) have maturities near the immature/submature boundary (Is/FeO approximately or = 30), not the mature soils with their complications due to extensive agglutination. The particle data obtained from the nine mare soils confirm the generalizations for lunar soils predicted by L.A. Taylor and D.S. McKay (1992, Lunar Planet Sci. Conf. 23rd, pp. 1411-1412 [Abstract]). PMID:11539387

Taylor, L A; Patchen, A; Taylor, D H; Chambers, J G; McKay, D S

1996-12-01

122

Changes in mineral soil biogeochemical cycling and environmental conditions following tree harvest in the Northeast  

NASA Astrophysics Data System (ADS)

In the northeastern United States, reductions in carbon dioxide emissions have been attempted by using local wood as a renewable alternative to oil. Although woody biomass products are readily available, recent findings suggest that forest disturbance may cause release of carbon from the deeper mineral soil. Worldwide, deep soils sequester more than half of soil carbon, making it critical in the global carbon cycle; however, most studies on the effect of harvesting have focused on the organic soil horizon. Our research aimed to uncover changes in biogeochemistry and environmental conditions in deeper, mineral soil after clear cutting forests. We quantified post-harvest mineral soil carbon pools through a regional study. We utilized stands of different ages to measure the recovery of soil carbon over time since harvest. Stands included in this study were cut approximately 5, 12, 25, 50, or 120 ybp, in order to identify changes in soil carbon over time since harvest. We sampled harvested stands in six research or protected forests across New York, New Hampshire, Massachusetts, and Vermont. Soil samples were collected to a depth of 60 cm below the surface of the mineral soil using a gas-powered augur and 9.5 cm diameter drill bit. Soil samples were analyzed at Dartmouth College. In order to understand specific changes in mineral soil carbon dynamics following harvest, measurements of carbon fluxes, such as soil respiration and DOC transport were conducted at five different-aged stands at Bartlett Experimental Forest, NH. While parameters that may influence carbon storage—such as pH, clay content, tree cover and elevation— did not vary across the different-aged stands in each forest, carbon pools did vary over time. We found changes in carbon pools in at least three experimental forests across the northeast. At Bartlett Experimental Forest, we found a gradual decline in mineral soil carbon storage from between 85-87 Mg ha-1 in 120 year old and primary forest stands to a minimum of 53 Mg ha-1 in the 75 year old stand. In our carbon flux measurements, we observed higher DOC concentrations in lysimeter samples collected at 30 cm at 12 years after harvest. We have also documented consistently higher soil temperatures across summer months at 50 cm below the mineral soil in the recently clear-cut site at Bartlett Experimental Forest. These changes in biogeochemical and environmental conditions suggest that forest clearing does affect mineral soil, and our findings may help identify a mechanism to explain the observed carbon loss from soils in clear-cut forests.

Vario, C.; Friedland, A.

2012-12-01

123

Minerals  

MedlinePLUS

Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including building bones, making ... regulating your heartbeat. There are two kinds of minerals: macrominerals and trace minerals. Macrominerals are minerals your ...

124

MECHANISTIC ROLES OF SOIL HUMUS AND MINERALS IN THE SORPTION OF NONIONIC ORGANIC COMPOUNDS FROM AQUEOUS AND ORGANIC SOLUTIONS  

EPA Science Inventory

Mechanistic roles of soil humus and soil minerals and their contributions to soil sorption of nonionic organic compounds from aqueous and organic solutions are illustrated. Parathion and lindane are used as model solutes on two soils that differ greatly in their humic and mineral...

125

[Characteristics of soil organic carbon mineralization at different temperatures in paddy soils under long-term fertilization].  

PubMed

Dynamics of soil organic carbon mineralization affected by long-term fertilizations and temperature in relation to different soil carbon fractions were investigated in paddy soils. Soil samples were collected from the plough layer of 3 long-term national experimental sites in Xinhua, Ningxiang and Taojiang counties of Hunan Province. Mineralization of soil organic C was estimated by 33-day aerobic incubation at different temperatures of 10, 20 and 30 degrees C. The results showed that the rates of CO2 production were higher during the earlier phase (0-13 d) in all treatments, and then decreased according to a logarithm function. Higher incubation temperature strengthened C mineralization in the different treatments. The quantities of cumulative CO2 production in NPK with manure or straw treatments were greater than in inorganic fertilizers treatments. The Q10 values in the different soil treatments ranged from 1.01-1.53. There were significantly positive correlations between the Q10 values and soil total organic carbon (TOC), easy oxidation organic carbon (EOOC), humic acid carbon (C(HA)), fulvic acid carbon (CFA). The cumulative amount of mineralized C was significantly positively correlated with microbial biomass carbon (MBC) at 10 and 20 degrees C, but not significantly at 30 degrees C. Significant correlations were found between the cumulative amount of mineralized C and different soil carbon fractions and C(HA)/C(FA). The correlations of differ- ent soil carbon fractions with the ratio of cumulative mineralized C to TOC were negatively correlated at 10 degrees C, but not significantly at 20 and 30 degrees C. These results suggested that the application of NPK with manure or straw would be helpful to increase the sequestration of C in paddy soils and reduce its contribution of CO2 release in the atmosphere. PMID:25129934

Lin, Shan; Chen, Tao; Zhao, Jin-Song; Xiang, Rong-Biao; Hu, Rong-Gui; Zhang, Shui-Qing; Wang, Mi-Lan; Lu, Zhao-Qi

2014-05-01

126

Mineralization of polycyclic and n-heterocyclic aromatic compounds in hydrocarbon-contaminated soils  

SciTech Connect

The comparative mineralization of eight polycyclic aromatic compounds in five soils collected from an abandoned coal tar refinery in eastern Ohio was determined. The soils showed differences only in total extractable hydrocarbon content of the soil chemical characteristics measured. The compounds studied included five polycyclic aromatic hydrocarbons (phenanthrene, anthracene, pyrene, and carcinogenic benz[a]anthracene and benzo[a]pyrene) and three N-heterocyclic aromatics (9H-carbazole, and carcinogenic 7H-dibenzo[c,g]carbazole and dibenz[a,j]acridine). Mineralization was measured by serum bottle radiorespirometry. Only phenanthrene, anthracene, pyrene, benz[a]anthracene, and carbazole were mineralized in the soils after 64 d. Two of the soils with eight to 15 times the hexane -extractable hydrocarbon content consistently showed more rapid initial rates and higher overall extents of mineralization compared to the other three soils. Overall extents of mineralization ranged from 38 to 55% for phenanthrene, 10 to 60% for anthracene, 25 to 70% for pyrene, background to 40% for benz[a]anthracene, and 25 to 50% for carbazole after 64 d. Extents of mineralization by indigenous soil microbiota appear to be more dependent on the chemical characteristics of the soil and not soil total biomass and activity. Cultures capable of degrading phenanthrene, anthracene, and pyrene were obtained following enrichment techniques. A Mycobacterium sp. capable of degrading these three compounds was isolated and reintroduced into two of the soils, resulting in mineralization enhanced above that of the indigenous soil microbial population. These data indicate that the future success of bioremediation methods relies on the characterization of environmental parameters affecting microbial degradation as well as the isolation of microbial populations that can reduce toxicity in the environment.

Grosser, R.J.; Warshawsky, D.; Vestal, J.R. [Univ. of Cincinnati, OH (United States)

1995-03-01

127

Temperature Sensitivity of Soil Organic Carbon Mineralization along an Elevation Gradient in the Wuyi Mountains, China  

PubMed Central

Soil organic carbon (SOC) actively participates in the global carbon (C) cycle. Despite much research, however, our understanding of the temperature sensitivity of soil organic carbon (SOC) mineralization is still very limited. To investigate the responses of SOC mineralization to temperature, we sampled surface soils (0–10 cm) from evergreen broad-leaf forest (EBF), coniferous forest (CF), sub-alpine dwarf forest (SDF), and alpine meadow (AM) along an elevational gradient in the Wuyi Mountains, China. The soil samples were incubated at 5, 15, 25, and 35°C with constant soil moisture for 360 days. The temperature sensitivity of SOC mineralization (Q10) was calculated by comparing the time needed to mineralize the same amount of C at any two adjacent incubation temperatures. Results showed that the rates of SOC mineralization and the cumulative SOC mineralized during the entire incubation significantly increased with increasing incubation temperatures across the four sites. With the increasing extent of SOC being mineralized (increasing incubation time), the Q10 values increased. Moreover, we found that both the elevational gradient and incubation temperature intervals significantly impacted Q10 values. Q10 values of the labile and recalcitrant organic C linearly increased with elevation. For the 5–15, 15–25, and 25–35°C intervals, surprisingly, the overall Q10 values for the labile C did not decrease as the recalcitrant C did. Generally, our results suggest that subtropical forest soils may release more carbon than expected in a warmer climate. PMID:23342038

Xu, Xia; Ruan, Honghua; Wang, Jiashe

2013-01-01

128

[Effects of Phyllostachys edulis expansion on soil nitrogen mineralization and its availability in evergreen broadleaf forest].  

PubMed

By the methods of space-time substitution and PVC tube closed-top in situ incubation, this paper studied the soil mineralized-N content, N mineralization rate, and N uptake rate in Phyllostachys edulis-broadleaf mixed forest (PBMF) formed by P. edulis expansion and its adjacent evergreen broadleaf forest (EBF) in Dagangshan Mountain of Jiangxi Province, China. There existed the same spatiotemporal variation trend of soil total mineralized-N (TMN) content between the two forests. The annual average N mineralization rate was slightly lower in PBMF than in EBF. In PBMF, soil N mineralization was dominated by ammonification; while in EBF, soil ammonification and nitrification were well-matched in rate, and soil nitrification was dominated in growth season (from April to October). The N uptake by the plants in PBMF and EBF in a year was mainly in the form of NH4+-N, but that in EBF in growth season was mainly in the form of NO3- -N. These findings indicated that the expansion of P. edulis into EBF could promote the ammonification of soil N, weakened soil nitrification and total N mineralization, and also, increased the NH4+-N uptake but decreased the NO3- -N and TMN uptake by the plants. PMID:23705376

Song, Qing-Ni; Yang, Qing-Pei; Liu, Jun; Yu, Ding-Kun; Fang, Kai; Xu, Pei; He, Yu-juan

2013-02-01

129

[Effects of variable temperature on organic carbon mineralization in typical limestone soils].  

PubMed

Soil sampling in the field and incubation experiment in the laboratory were conducted to investigate the responses of soil organic carbon (SOC) mineralization to variable temperature regimes in the topsoil of limestone soils from forest land and dry land. Two incubated limestone soils were sampled from the 0-10 cm layers of typical forest land and dry land respectively, which were distributed in Tianlong Mountain area of Puding county, Guizhou province. The soils were incubated for 56 d under two different temperature regimes including variable temperature (range: 15-25 degrees C, interval: 12 h) and constant temperature (20 degrees C), and the cumulative temperature was the same in the two temperature treatments. In the entire incubation period (56 d), the SOC cumulative mineralization (63.32 mg x kg(-1)) in the limestone soil from dry land (SH) under the variable temperature was lower than that (63.96 mg x kg(-1)) at constant 20 degrees C, and there was no significant difference in the SOC cumulative mineralization between the variable and constant temperature treatments (P < 0.05). While the cumulative mineralization (169.46 mg x kg(-1)) of organic carbon in the limestone soil from forest land (SL) under the variable temperature was significantly lower than that (209.52 mg x kg(-1)) at constant 20 degrees C. The results indicated that the responses of SOC mineralization to the variable temperature were obviously different between SL and SH soils. The SOC content and composition were significantly different between SL and SH soils affected by vegetation and land use type, which suggested that SOC content and composition were important factors causing the different responses of SOC mineralization to variable temperature between SL and SH soils. In addition, the dissolved organic carbon (DOC) content of two limestone soils were highly (P < 0.01) positively correlated with daily mineralization of soil organic carbon in both temperature treatments, which implied that controlling DOC production was an important way for the temperature influence of SOC mineralization. During the incubation period, SOC mineralization was independent of microbial biomass carbon (MBC) content in both temperature treatments. Combined with mineralization kinetic data, the results showed that, compared to constant temperature 20 degrees C, variable temperature mainly influenced SOC mineralization by changing microbial community activity rather than by changing microbial quantity. PMID:25639108

Wang, Lian-Ge; Gao, Yan-Hong; Ding, Chang-Huan; Ci, En; Xie, De-Ti

2014-11-01

130

Effects of electrolytes, soil and soil minerals on CH4 recovery from gas hydrates with CO2  

NASA Astrophysics Data System (ADS)

Large amount of natural gas hydrates, which are known as future energy source, are stored in permafrost regions and under subsea sediments. One of innovative CH4 recovery mechanism from clathrate hydrates is swapping CH4 molecules by CO2 in cage structure. It can provide not only a promising solution for scarcity of energy, also a carbon reduction method for global warming. Previous studies on swapping have been conducted majorly with pure gas hydrates and a little consideration of geochemical factors recently begins. For future application in real environment of CH4 and CO2 replacement process, thorough investigation on the effect of electrolytes, soil and soil minerals, which are coexisted with gas hydrates under deep-sea sediment, is required. In this study, for understanding the impact of changes of surrounding matters, recovery ratio of CH4 during swapping process is measured as time passed with electrolytes (NaCl, MgCl2, CaCl2, KCl), soil (soil, marine sediment) and soil minerals (montmorillonite, kaolinite, nontronite, pyrite) by gas chromatography (GC). Replacement rates between CH4 and CO2 of samples reach the maximum replacement rate which can occur with pure hydrates sample in the last, however the required time is varied according to samples. There is the tendency that takes more time with soil and soil minerals than others due to the hydrates which are placed in the structure of soil and soil minerals. The experimental results imply that electrolytes, soil and soil minerals have significant effects on CH4 recovery by CO2 in gas hydrates. It could be applicable to excavate CH4 from hydrate deposits and also store the CO2 in existed hydrates structures in the future.

Lee, N.; Lee, W.

2012-12-01

131

Paenibacillus ferrarius sp. nov., isolated from iron mineral soil.  

PubMed

A Gram-reaction-positive, endospore-forming, aerobic bacterium, designated strain CY1(T), was isolated from iron mineral soil of Hunan Province, China. The isolate was rod-shaped and motile by means of peritrichous flagella. The major cellular fatty acids were anteiso-C15:0 and iso-C16:0 and the major quinone was menaquinone 7. The major polar lipids were phosphatidylglycerol and diphosphatidylglycerol phosphatidylethanolamine. The genomic DNA G+C content was 50.5 mol% and the major diagnostic diamino acid in cell-wall peptidoglycan was meso-diaminopimelic acid. Phylogenetic analyses based on the 16S rRNA gene sequence indicated that strain CY1(T) is most closely related to Paenibacillus chondroitinus DSM 5051(T) (97.7% 16S rRNA gene sequence similarity), Paenibacillus pocheonensis Gsoil 1138(T) (97.4%) and Paenibacillus frigoriresistens YIM 016(T) (97.0%). DNA-DNA hybridization dissociation values were lower than 49% with the most closely related species. On the basis of phenotypic, chemotaxonomic and phylogenetic evidence, strain CY1(T) is affiliated to the genus Paenibacillus, but could be distinguished from the species of this genus. A novel species with the name Paenibacillus ferrarius sp. nov. is proposed. The type strain is CY1(T) (?=KCTC 33419(T)?=CCTCC AB 2013369(T)). PMID:25313091

Cao, Yajing; Chen, Fang; Li, Yanzhi; Wei, Sha; Wang, Gejiao

2015-01-01

132

Factors affecting microbial 2,4,6-trinitrotoluene mineralization in contaminated soil  

USGS Publications Warehouse

The influence of selected environmental factors on microbial TNT mineralization in soils collected from a TNT-contaminated site at Weldon Spring, MO, was examined using uniformly ring-labeled [14C]TNT. Microbial TNT mineralization was significantly inhibited by the addition of cellobiose and syringate. This response suggests that the indigenous microorganisms are capable of metabolizing TNT but preferentially utilize less recalcitrant substrates when available. The observed inhibition of TNT mineralization by TNT concentrations higher than 100 ??mol/kg of soil and by dry soil conditions suggests that toxic inhibition of microbial activity at high TNT concentrations and the periodic drying of these soils have contributed to the long-term persistence of TNT at Weldon Spring. In comparison to aerobic microcosms, mineralization was inhibited in anaerobic microcosms and in microcosms with a headspace of air amended with oxygen, suggesting that a mosaic of aerobic and anaerobic conditions may optimize TNT degradation at this site.

Bradley, P.M.; Chapelle, F.H.

1995-01-01

133

THE INFLUENCE OF MINERAL REACTIONS ON THE ENVIRONMENTAL FATE OF METALS IN SOILS AND SEDIMENTS  

EPA Science Inventory

Significant progress has been made in elucidating sorption reactions that control the partitioning of metals from solution to mineral surfaces in contaminated soil/sediment systems. Surface complexation models have been developed to quantify the forward reaction, however, these ...

134

DYNAMICS OF MINERAL STRUCTURES AND THE FATE OF METALS IN SOILS AND SEDIMENTS  

EPA Science Inventory

Significant progress has been made in elucidating sorption reactions that control the partitioning of metals from solution to mineral surfaces in contaminated soil/sediment systems. Surface complexation models have been developed to quantify the forward reaction with reasonable ...

135

Formation of carbon dioxide hydrate in soil and soil mineral suspensions with electrolytes.  

PubMed

We have identified the effects of solid surface (soil, bentonite, kaolinite, nontronite, and pyrite) and electrolyte (NaCl, KCl, CaCl2, and MgCl2) types on the formation and dissociation of CO2 hydrate in this study. The hydrate formation experiments were conducted by injecting CO2 gas into the soil suspensions with and without electrolytes in a 50 mL pressurized vessel. The formation of CO2 hydrate in deionized water was faster than that in aqueous electrolyte solutions. The addition of soil suspensions accelerated the formation of CO2 hydrate in the electrolyte solutions. The hydrate formation times in the solid suspensions without electrolytes were very similar to that in the deionized water. We did not observe any significant differences between the hydrate dissociation in the solid suspension and that in the deionized water. The pHs of clay mineral suspensions decreased significantly after CO2 hydrate formation and dissociation experiments, while the pH of the soil suspension slightly decreased by less than pH 1 and that of pyrite slightly increased due to the dissolution of CO2 forming carbonic acid. The results obtained from this research could be indirectly applied to the fate of CO2 sequestered into geological formations as well as its storage as a form of CO2 hydrate. PMID:18497119

Lamorena, Rheo B; Lee, Woojin

2008-04-15

136

Impact of lime and mineral fertilizers on mechanical strength for various soil pHs  

Microsoft Academic Search

Application of lime and fertilizers might impact soil properties by affecting their physico-chemical parameters. The focus of the Versailles 42-plots experiment that was started in 1929 has always been to determine in fallow conditions the impact of mineral fertilization over time on the physico-chemical properties of a loamy soil. This paper's aim is to assess the impact of long-term mineral

Véronique Chaplain; Pauline Défossez; Ghislaine Delarue; Jean Roger-Estrade; Anthony R. Dexter; Guy Richard; Daniel Tessier

137

Kinetics and mechanism of mineral dissolution in a soil at pH values below 4  

Microsoft Academic Search

Kinetics of H+ consumption by mineral dissolution in a surface soil and a subsoil of an acid woodland soil were studied by means of batch type experiments and stationary pH titrations. Mineral dissolution in the subsoil could effectively be described by congruent dissolution of illite (K0.6Mg0.25A12.3S13010(OH)2) followed by an incongruent dissolution stage. In the incongruent stage the concentration of Al

J. J. M. van Grinsven; G. D. R. Kloeg; W. H. van Riemsdijk

1986-01-01

138

Nutrient Mineralization from Deoiled Neem Seed in a Savanna Soil from Nigeria  

Microsoft Academic Search

The mineralization of nutrients from deoiled neem seed (neem seed cake), the residue left after oil extraction, was examined in a typical savanna soil with a view to determining its potential for fertility improvement. The neem seed cake (NSC) application rates were 0, 2.5, and 5.0 g kg soil (0, 5, and 10 tons ha). The concentrations of ammonium?nitrogen (NH4?N) and nitrate (NO3)?N mineralized

John O. Agbenin; Stephen O. Ibitoye; Abel S. Agbaji

2008-01-01

139

Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass.  

PubMed

We have applied bioluminescent ATP detection methods to microbial enumeration in Antarctic Dry Valley mineral soils, and validated our ATP data by two independent methods. We have demonstrated that ATP measurement is a valid means of determining microbial biomass in such sites, and that the desiccated surface mineral soils of the Antarctic Dry Valleys contain cell numbers over four orders of magnitude higher than previously suggested. PMID:12382121

Cowan, Don A; Russell, Nick J; Mamais, Adam; Sheppard, Devon M

2002-10-01

140

Number, Mass and Volume Distributions of Mineral Aerosol and Soils of the Sahara  

Microsoft Academic Search

A direct method will be described to determine the complete mineral size distribution in aerosol (xylene-insoluble component) and soils (water-insoluble component) covering a size range from 0.01 up to 100 m and 1000 m radius, respectively, by using a combination of a scanning electron microscope, optical microscope and sieving. Aerosol and soil samples from the Sahara have been investigated.All mineral

Guillaume A. D'Almeida; Lothar Schütz

1983-01-01

141

Clay mineralogy of weathering rinds and possible implications concerning the sources of clay minerals in soils.  

USGS Publications Warehouse

Weathering rinds on volcanic clasts in Quaternary deposits in the western US contain only very fine-grained and poorly crystalline clay minerals. Rinds were sampled from soils containing well-developed argillic B horizons in deposits approx 105 yr old or more. The clay-size fraction of the rinds is dominated by allophane and iron hydroxy-oxides, whereas the B horizons contain abundant well-crystallized clay minerals. The contrast between the clay mineralogy of the weathering rinds, in which weathering is isolated from other soil processes, and that of the associated soil matrices suggests a need to reassess assumptions concerning the rates at which clay minerals form and the sources of clay minerals in argillic B horizons. It seems that crystalline clay minerals form more slowly in weathering rinds than is generally assumed for soil environments and that the weathering of primary minerals may not be the dominant source of crystalline clay minerals in Middle to Late Pleistocene soil.-A.P.

Colman, Steven M.

1982-01-01

142

Microclimatic controls of nitrogen mineralization and nitrification in shortgrass steppe soils  

Microsoft Academic Search

Summary  The depth distributions of rates of net nitrogen mineralization and nitrification were measured in a series of field and laboratory\\u000a incubations. Field studies suggested that the highest rates of mineralization and nitrification occurred in the surface 2.5\\u000a cm such that forty to sixty percent of the N mineralization in 20-cm soil column occurred in the surface 2.5cm. Some upward\\u000a nitrate

D. S. Schimel; W. J. Parton

1986-01-01

143

Relationships between mineral surfaces and organic carbon concentrations in soils and sediments  

Microsoft Academic Search

Relationships between mineral specific surface area and organic carbon (OC) concentration are examined for sediments and soil A-horizons from throughout the world. I found (published elsewhere) that continental shelf sediments from many different regions exhibit downcore loss of OC to a refractory background level which shows a consistent relationship with mineral surface area (slope = 0.8 6 mg m- 20C

Lawrence M. Mayer

1994-01-01

144

Characteristics of nitrogen mineralization rates and controlling factors in forest soils in Japanese archipelago  

NASA Astrophysics Data System (ADS)

1. Introduction The nitrogen (N) dynamics in forest soils in the Japanese archipelago varies widely because it extends for 3000 km and the climatic zone ranges from cool-temperate to subtropical region. Therefore, it is necessary to understand the soil N transformation characteristics and its controlling factors across a wide area because the changes in N dynamics due to the climate change are expected to differ from region to region. In this study, we selected more than 30 sites from across the Japanese archipelago and measured net rates of soil N mineralization and nitrification. Also, we measured the physical, chemical and biological properties of soil to clarify the controlling factors. 2. Materials and methods We established an experimental plot (20 * 20 m) at each site, and at each plot, five soil sampling locations were established. At each sampling location, mineral soil samples were collected from 0-10, 10-30, 30-50 cm in depth. Net and gross N mineralization and nitrification rate, soil pH(H2O), water soluble cation (Ca2+, Mg2+, K+, Na+, NH4+, Al3+), anion (Cl-, NO3-, SO42-), and organic carbon (WSOC) were measured. From the net N mineralization and nitrification rate measured by laboratory incubation at three different temperatures (15, 20, 25 °C), Q10min, Q10nit (Q10 of N mineralization and nitrification) and average net rate at 20 °C (N20min and N20nit) were calculated. 3. Results and discussion In most of the sites, net N mineralization and nitrification rates were higher in the shallower soil layers. N20min and N20nit ranged 0.01-3.23 and 0.00-3.00 mgN/kg/d, respectively and Q10min and Q10nit ranged 1.09-24.16 and 1.38-20.10 respectively. There was a pattern that low rates soil (N20 < 0.5 mgN/kg/d) had high Q10 values. Soils which had high N mineralization rates had also high nitrification rates. Soils with high N mineralization and nitrification rate were mostly located in the northern region (Hokkaido Island and Tohoku region) in Japan. This suggests that soil type distribution in the archipelago and soil CN contents are related to the N mineralization and nitrification rates.

Urakawa, R.; Ohte, N.; Shibata, H.; Isobe, K.; Oda, T.; Watanabe, T.; Fukuzawa, K.; Ugawa, S.; Hishi, T.; Enoki, T.; Tateno, R.; Fukushima, K.; Nakanishi, A.; Saigusa, N.; Yamao, Y.; Oyanagi, N.; Hattori, D.; Nakata, M.; Kenta, T.; Toda, H.; Inagaki, Y.; Hirai, K.

2013-12-01

145

Ofloxacin sorption in soils after long-term tillage: the contribution of organic and mineral compositions.  

PubMed

Intensive human activities in agricultural areas resulted in significant alteration of soil properties, which consequently change their interactions with various contaminants. This process needs to be incorporated in contaminant behavior prediction and their risk assessment. However, the relevant study is missing. This work was designed to examine the change of soil properties and ofloxacin (OFL) sorption after tillage. Soil samples were collected in Yuanyang, Mengzi, and Dianchi areas with different agricultural activities. Although the mineral compositions of soils from Yuanyang and Dianchi differed greatly, these compositions are similar after tillage, especially for paddy soils. Soil pH decreased generally after OFL sorption, suggesting that ion exchange of OFL with protons in soil organic matter (SOM) was important for OFL sorption. However, a positive relationship between SOM and OFL sorption was not observed. On the contrary, increased SOM decreased OFL sorption when soils from the same geological location were compared. Generally speaking, tillage activities or dense vegetations greatly decreased OFL sorption. The higher OFL sorption in B horizon than A horizon suggested limited leaching of OFL through soil columns. The summed sorption calculated based on the sorption of individual soil components and their percentages in soils was higher than the intact soil. This phenomenon may be understood from the interactions between soil components, such as the coating of SOM on mineral particles. This study emphasizes that soil should be treat as a dynamic environmental matrix when assessing antibiotic behaviors and risks, especially in the area with intense human activities. PMID:25173763

Zhou, Dandan; Chen, Bingfa; Wu, Min; Liang, Ni; Zhang, Di; Li, Hao; Pan, Bo

2014-11-01

146

A simple method to determine mineralization of (14) C-labeled compounds in soil.  

PubMed

Degradation of organic compounds in soil is often determined by measuring the decrease of the parent compound and analyzing the occurrence of its metabolites. However, determining carbon species as end products of parent compound dissipation requires using labeled materials that allow more accurate determination of the environmental fate of the compound of interest. The current conventional closed system widely used to monitor degradation of (14) C-labeled compounds in soil is complex and expensive and requires a specialized apparatus and facility. In the present study, the authors describe a simple system that facilitates measurement of mineralization of (14) C-labeled compounds applied to soil samples. In the system, soda lime pellets to trap mineralized (14) C-carbon species, including carbon dioxide, were placed in a cup, which was then inserted above the treated soil sample in a tube. Mineralization of [(14) C]2,4-D applied to soil samples in the simple system was compared with that in the conventional system. The simple system provided an equivalent detection of (14) C-carbon species mineralized from the parent compound. The results demonstrate that this cost- and space-effective simple system is suitable for examining degradation and mineralization of (14) C-labeled compounds in soil and could potentially be used to investigate their mineralization in other biological matrices. PMID:24677225

Myung, Kyung; Madary, Michael W; Satchivi, Norbert M

2014-06-01

147

Effects of redox conditions on the adsorption of dissolved organic matter to soil minerals and differently aged paddy soils  

NASA Astrophysics Data System (ADS)

Effects of redox conditions on the adsorption of dissolved organic matter to soil minerals and differently aged paddy soils Meike Sauerwein1, Alexander Hanke2, Klaus Kaiser3, Karsten Kalbitz2 1) Dept. of Soil Ecology, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany, meike.sauerwein@gmail.com 2) Institute of ecosystem dynamics and biodiversity, University of Amsterdam, 1018 WV, Netherlands, a.hanke@uva.nl, k.kalbitz@uva.nl 3) Soil Sciences, Martin Luther University Halle, 06099 Halle, Germany, klaus.kaiser@landw.uni-halle.de Current knowledge on dissolved organic matter (DOM) in soils is based mainly on observations and experiments in aerobic environments. Adsorption to soil minerals is an important mechanism of DOM retention and stabilization against microbial decay under oxic conditions. Under anoxic conditions where hydrous iron oxides, the potential main adsorbents of DOM, possibly dissolve, the importance of adsorption seems questionable. Therefore, we studied the adsorption of DOM to selected soil minerals and to mineral soils under oxic and anoxic conditions. In detail, we tested the following hypotheses: 1. Minerals and soils adsorb less DOM under anoxic conditions than under oxic ones. 2. The reduced adsorption under anoxic conditions is result of the smaller adsorption to hydrous Fe oxides whereas adsorption to clay minerals and Al hydroxides is not sensitive to changes in redox conditions 3. DOM adsorption will increase with the number of redox cycles, thus time of soil formation, due to increasing contents of poorly crystalline Fe oxides. This will, however, cause a stronger sensitivity to redox changes as poor crystalline Fe oxides are more reactive. 4. Aromatic compounds, being preferentially adsorbed under oxic conditions, will be less strongly adsorbed under anoxic conditions. We chose paddy soils as models because their periodically and regular exposure to changing redox cycles, with anoxic conditions during the rice growing period and oxic conditions during harvest and growth of other crops. Soils of a unique chronosequence of paddy soils (50, 300, 700 and 2000 years) in China were studied in direct comparison to non-paddy soils of the same age. In additions, selected soil minerals (goethite, ferrihydrite, amorphous Al hydroxide, hydrobiotite, nontronite and ripodolite), differing in their response to changes in redox conditions, were studied in order to indentify those mineral constituents responsible for redox-induced changes in DOM adsorption to the test soils. The DOM for the adsorption was extracted from composted rice straw as a surrogate for DOM percolating in paddy soils. Batch adsorption experiments were carried out with DOM pre-incubated to give oxic and anoxic conditions and maintaining these redox conditions during the whole procedure. The redox potential resulting from anoxic pre-incubation was about 100 mV, thus in the range of Fe reduction. Besides of dissolved organic carbon (DOC), we determined changes in the composition of DOM by the specific UV absorbance. We also analyzed main cations, anions and redox-sensitive elements to give a comprehensive picture of the effects of changing redox conditions on the dynamics of organic C, N, P, S, Fe and Al. First results indicated indeed less adsorption of DOM to Fe oxides under anoxic than under oxic conditions, with a more pronounced effect for ferrihydrite than for goethite. Maximum adsorption of DOM was more than 50% larger under oxic than under anoxic conditions. The effect was less pronounced but still detectable for clay minerals such as hydrobiotite, nontronite, and ripodolite. The specific UV absorbance of DOM contact with minerals was 20-50% stronger under anoxic than under oxic conditions. These changes in DOM composition indicated that preferential adsorption of aromatic compounds might be limited to aerated soils. We conclude that adsorption, although less strong than under oxic conditions, is an important mechanism of DOM retention also under anoxic conditions. Decreasi

Sauerwein, Meike; Hanke, Alexander; Kaiser, Klaus; Kalbitz, Karsten

2010-05-01

148

Effect of soil-plant-animal mineral interactions in the genesis of puerperal haemoglobinuria in dairy animals  

E-print Network

Effect of soil-plant-animal mineral interactions in the genesis of puerperal haemoglobinuria. The present study was conducted to monitor the mineral alterations in plasma vis-a-vis their relationship with mineral status of soils and plants in disease prone areas of the Punjab State. Blood samples from clinical

Paris-Sud XI, Université de

149

Is the geological concept of clay minerals appropriate for soil science? A literature-based and philosophical analysis  

NASA Astrophysics Data System (ADS)

Data in the literature for soils that are dominated by each of the main types of clay minerals were examined and compared with those for reference clay minerals of the same types to determine the extent to which the nature and properties of clay-size minerals in soils could be explained by those of clay minerals with the same name from non-soil, ‘geological’ environments. Published information on soils from Australia, New Zealand and Iran was sourced for this study. The clay fractions of each of the soils are dominated by either one of the common phyllosilicates: kaolinite, halloysite, illite/mica, vermiculite, smectite, and palygorskite, or by the nanocrystalline mineral, allophane. Data for samples of kaolinite that had been extracted from soils from several countries (Australia, Thailand, Indonesia and Brazil) and purified before characterization have also been examined. In soils, each dominant clay mineral is generally associated with other materials, including iron oxides, other phyllosilicates and/or nanocrystalline minerals and organic matter. As the most studied example of an extracted phyllosilicate, kaolinite shows a wide range of properties in different soils, but a narrower range of properties within a particular locality. However, almost all of the soil kaolinites studied have larger specific surface areas and higher cation exchange capacities than reference kaolinites. The literature also reveals that, among phyllosilicates in soils, illites have a wide range of potassium contents, expandable minerals (vermiculites and smectites) may be interlayered by hydroxy-Al species particularly, and smectitic layers often occur interstratified with other layers, including those of illite, kaolinite and halloysite. The variability of soil phyllosilicates and their common association with other, often poorly crystallized but highly reactive minerals and compounds can be explained by their formation in the highly heterogeneous and dynamic soil environment. Phyllosilicates from non-soil or geological sources are poor models for the representation of secondary clay-size minerals in soils. In philosophical terms, the reduction of soil mineralogy to mineralogy as it is practiced within geology is misleading because of the differences between the minerals formed in soil and geological environments. In other words, clay minerals as they are defined as mineralogical entities for geology are of a different ‘kind’ to clay minerals in soils and cannot serve as ‘types’ or ‘stereotypes’ to enable explanation of the contribution of secondary clay-size minerals to soil properties or behavior. It is more useful to view clay minerals in soils as secondary inorganic compounds of clay-size than to follow their definition for non-soil purposes as plastic phyllosilicate minerals.

Churchman, G. Jock

150

INFLUENCE OF CRY1AC TOXIN ON MINERALIZATION AND BIOAVAILABILITY OF GLYPHOSATE IN SOIL  

Technology Transfer Automated Retrieval System (TEKTRAN)

The impact of transgenic plants containing Bacillus thuringiensis (Bt) toxin on soil processes has received recent attention. In these studies we examined the influence of the lepidopterean Bt Cry1Ac toxin on mineralization and bioavailability of the herbicide glyphosate in two different soils. The ...

151

SULFUR DYNAMICS IN MINERAL HORIZONS OF TWO NORTHERN HARDWOOD SOILS A COLUMN STUDY WITH 35S  

EPA Science Inventory

Sulfur dynamics of two Spodosols were ascertained using soil columns constructed from homogenized mineral soil from northern hardwood ecosystems at the Huntington Forest (HF) in the Adirondack Mountains of New York and Bear Brook Watershed in Maine (BBWM). olumns were leached for...

152

CARBON AND NITROGEN MINERALIZATION OF NON-COMPOSTED AND COMPOSTED MUNICIPAL SOLID WASTE IN SANDY SOILS  

Technology Transfer Automated Retrieval System (TEKTRAN)

A sterilized, but undecomposed, organic byproduct of municipal waste processing was incubated in sandy soils to compare C and N mineralization with mature municipal waste compost. Waste products were added to two soils at rates of 17.9, 35.8, 71.6, and 143 Mg/ha dry weight and incubated at 25°C for ...

153

MINERALIZATION OF NITROGEN FROM BROILER LITTER AS AFFECTED BY SOIL TEXTURE IN THE SOUTHEASTERN COASTAL PLAIN  

Technology Transfer Automated Retrieval System (TEKTRAN)

A field study was conducted during 2004-2005 to determine nitrogen (N) mineralization of broiler litter (BL) in two Coastal Plain soils of differing texture, sandy or clayey. The soils were a Tifton loamy sand (fine-loamy, siliceous, thermic, Plinthic Kandiudults) and a Greenville sandy clay loam (...

154

Sulfur forms in organic substrates affecting S mineralization in soil Susana Churka Blum a,  

E-print Network

Sulfur forms in organic substrates affecting S mineralization in soil Susana Churka Blum a, ,1 Biochar XANES The effects of sulfur (S) forms beyond total S contents for S release from litter to soil mays L. and corn stalk biochar ap- plied on an equivalent sulfur basis) with greatly varying S contents

Lehmann, Johannes

155

Mineral ion composition of halophytes and associated soils in Western Canada  

Microsoft Academic Search

The mineral ion contents of seven halophytic species in the family Chenopodiaceae, and associated soils were examined. Each species was found growing in soils with wide ranges of salinity, sodicity and salt ion composition. Absolute concentrations of Na, Ca, Mg, K, Cl and SO4 in shoot tissue differed significantly among species. Species were classified into two groups: (1) chloride halophytes,

R. E. Redmann; P. Fedec

1987-01-01

156

A rapid and cost effective method for soil carbon mineralization under static incubations  

Technology Transfer Automated Retrieval System (TEKTRAN)

Soil incubations with subsequent determination of carbon dioxide (CO2) are common soil assays used to estimate C mineralization rates and active organic C pools. Two common methods used to detect CO2 in laboratory incubations are gas chromatography (GC) and alkali absorption followed by titration (...

157

A rapid and cost effective method for soil carbon mineralization under static incubations  

Technology Transfer Automated Retrieval System (TEKTRAN)

Soil incubations with subsequent measurement of carbon dioxide (CO2) evolved are common soil assays to estimate C mineralization rates and active organic C. Two common methods used to detect CO2 in laboratory incubations are gas chromatography (GC) and alkali absorption followed by titration (NaOH)...

158

Soil mineral genesis and distribution in a saline lake landscape of the Pantanal Wetland, Brazil  

E-print Network

Soil mineral genesis and distribution in a saline lake landscape of the Pantanal Wetland, Brazil S Geografia, Universidade de Săo Paulo, Săo Paulo, Brazil b Soil & Water Sciences Program, Department Săo Paulo, Piracicaba, Brazil a b s t r a c ta r t i c l e i n f o Article history: Received 20 August

Ahmad, Sajjad

159

Soil attributes, soybean mineral nutrition and yield in diverse crop rotations under no-till conditions  

Technology Transfer Automated Retrieval System (TEKTRAN)

Development of sustainable agricultural systems depends on understanding complex relationships between soil attributes, crop rotations, and crop yield. Objectives were to measure how soil chemical and physical attributes as well as soybean (Glycine max Merr.) stover dry weight and mineral concentra...

160

Influence of organic and mineral fertilisers on soil biological and physical properties  

Microsoft Academic Search

The aim of this research was to study in a field experiment the influence of different fertiliser applications on soil biological and physical properties. Vermicompost (VC) from biological sludge, stabilised dairy manure or mineral nitrogen fertiliser (NH4NO3) were applied to a corn crop (Zea mays L.) at 200 kg N ha?1. Soil enzyme activity (acid phosphatase, dehydrogenase and protease BAA)

S Marinari; G Masciandaro; B Ceccanti; S Grego

2000-01-01

161

Soil carbon and nitrogen mineralization kinetics in organic and conventional three-year cropping systems  

Microsoft Academic Search

The scientific literature regarding the use of C and N mineralization kinetics as a tool to highlight the effects of different cropping systems on soil C and N release is scarce. In this study we aimed to assess the effectiveness of these parameters in evaluating soil C and N potential release in organic (ORG) and conventional (CONV) three-year cropping systems.

S. Marinari; A. Lagomarsino; M. C. Moscatelli; A. Di Tizio; E. Campiglia

2010-01-01

162

DIVISION S-10--WETLAND SOILS Carbon Accumulation and Storage in Mineral Subsoil beneath Peat  

E-print Network

DIVISION S-10--WETLAND SOILS Carbon Accumulation and Storage in Mineral Subsoil beneath Peat Tim R subsoil (Turunen and Moore, 2003). TheyWe showed that sandy subsoils beneath peat near Ramsey Lake conditions beneath the peat. soils beneath the forest, those beneath the peat contained similar In this paper

Moore, Tim

163

A Simulation of the Interaction of Acid Rain with Soil Minerals  

ERIC Educational Resources Information Center

The atmospheric issue of acid rains is subjected to a five-part laboratory experiment by concentrating on the chemistry of the infiltration process of acid rainwater through soils. This procedure of quantitative scrutiny helps students realize the efficacy of soil minerals in the consumption of surplus acidity in rainwater.

Schilling, Amber L.; Hess, Kenneth R.; Leber, Phyllis A.; Yoder, Claude H.

2004-01-01

164

A Seasonal Nitrogen Mineralization Study as Influenced by Soil Properties and Landscape Position  

Technology Transfer Automated Retrieval System (TEKTRAN)

An in situ study was conducted to evaluate N mineralization patterns using three different soil types located in close proximity of each other during the summer and winter months. Three Coastal Plain soils investigated were Bama (Ultisol), Lynchburg (Ultisol) and Goldsboro (Ultisol). Dairy composted...

165

Effect of basic slag addition on soil properties, growth and leaf mineral composition of beans in a Cu-contaminated soil  

E-print Network

and coal fly ash such as beringite can successfully immobilise Zn in soil (Mench et al., 2000; Bolan et al.,1 Effect of basic slag addition on soil properties, growth and leaf mineral composition of beans in contaminated soils. The BS effects on soil pH, soil conductivity, growth and chemical composition of beans were

Paris-Sud XI, Université de

166

Mercury contamination in agricultural soils from abandoned metal mines classified by geology and mineralization.  

PubMed

This survey aimed to compare mercury concentrations in soils related to geology and mineralization types of mines. A total of 16,386 surface soils (0~15 cm in depth) were taken from agricultural lands near 343 abandoned mines (within 2 km from each mine) and analyzed for Hg by AAS with a hydride-generation device. To meaningfully compare mercury levels in soils with geology and mineralization types, three subclassification criteria were adapted: (1) five mineralization types, (2) four valuable ore mineral types, and (3) four parent rock types. The average concentration of Hg in all soils was 0.204 mg kg(-1) with a range of 0.002-24.07 mg kg(-1). Based on the mineralization types, average Hg concentrations (mg kg(-1)) in the soils decreased in the order of pegmatite (0.250) > hydrothermal vein (0.208) > hydrothermal replacement (0.166) > skarn (0.121) > sedimentary deposits (0.045). In terms of the valuable ore mineral types, the concentrations decreased in the order of Au-Ag-base metal mines ? base metal mines > Au-Ag mines > Sn-W-Mo-Fe-Mn mines. For parent rock types, similar concentrations were found in the soils derived from sedimentary rocks and metamorphic rocks followed by heterogeneous rocks with igneous and metamorphic processes. Furthermore, farmland soils contained relatively higher Hg levels than paddy soils. Therefore, it can be concluded that soils in Au, Ag, and base metal mines derived from a hydrothermal vein type of metamorphic rocks and pegmatite deposits contained relatively higher concentrations of mercury in the surface environment. PMID:21814815

Kim, Han Sik; Jung, Myung Chae

2012-01-01

167

Cometabolic mineralization of benzo[a]pyrene caused by hydrocarbon additions to soil  

SciTech Connect

The mineralization of [7-{sup 14}C]benzo[a]pyrene (BaP) in soil was investigated in response to additions of individual hydrocarbons, defined hydrocarbon mixtures, crude oil, and crude oil fractions. Neither substantial BaP mineralization nor enrichment of BaP degraders occurred in BaP-spiked soil in the absence of a suitable hydrocarbon supplement. Crude oil, the saturated and aromatic class components of crude oil, the distillates heating oil, jet fuel, and diesel fuel supported up to 60% mineralization of 80 {micro}g [7-{sup 14}C]BaP per gram of soil in 40 d. Neither single hydrocarbons nor defined hydrocarbon mixtures containing normal and branched alkanes, alicyclics, and aromatics supported comparable BaP mineralization. Evolution of {sup 14}CO{sub 2} occurred after lag periods characteristic to specific petroleum products and their concentrations. Time required for microbial proliferation, hydrocarbon toxicity, and competitive inhibition might have contributed to these lag periods, but the complete inhibition of BaP mineralization by diesel-fuel vapors pointed to a dominant role of competitive inhibition. A lack of radiocarbon incorporation into soil biomass from [7-{sup 14}C]BaP indicated that at least the initial steps of BaP biodegradation in soil were cometabolic in nature. Suitable hydrocarbon mixtures not only supported BaP mineralization by serving as primary substrates, but also enhanced BaP bioavailability by dissolving this hydrophobic solid.

Kanaly, R.A.; Bartha, R.

1999-10-01

168

Shedding light on carbon-mineral complexation in the soil environment: impacts on C sequestration and cycling  

E-print Network

42 Shedding light on carbon-mineral complexation in the soil environment: impacts on C sequestration and cycling Sparks, D.L. & C. Chen Department of Plant and Soil Sciences and Delaware@udel.edu) Abstract Organic matter (OM)-mineral complexation plays a critical role in soil carbon (C) stabilization

Sparks, Donald L.

169

Factors for Microbial Carbon Sources in Organic and Mineral Soils from Eastern United States Deciduous Forests  

NASA Astrophysics Data System (ADS)

Forest soils represent a large portion of global terrestrial carbon; however, which soil carbon sources are used by soil microbes and respired as carbon dioxide (CO2) is not well known. This study will focus on characterizing microbial carbon sources from organic and mineral soils from four eastern United States deciduous forests using the unique radiocarbon tracer, 14C. Results from the dark incubation of the organic and mineral soils are heavily influenced by site characteristics when incubated at microbial optimal activity temperature. The sites with the most similarities are statically the same (p> 0.10). The sites with considerable differences in temperature, texture, and location are statically different concluding that site characteristics play a role in soil respiration.

Stitt, C.; McFarlane, K. J.

2013-12-01

170

Screening rhizosphere soil samples for the ability to mineralize elevated concentrations of atrazine and metolachlor  

Microsoft Academic Search

Rhizosphere soils from several plant species were tested for their ability to mineralize atrazine (2?chloro?4?ethylamino?6?isopropylamino?s?triazine) or metolachlor (2?chloro?N?(2?ethyl?6?methylphenyl)?N?(2?methoxy?1?methylethyl)acetamide) at concentrations typical of point?source contamination (50 ?g\\/g). Rhizosphere soils were collected from the root zone of plants in areas with previous herbicide exposure. Several rhizosphere soils tested positive for C?atrazine mineralization (? 8.5%) including kochia (Kochia scoparia), lambsquarters (Chenopodium berlandieri), foxtail

T. A. Anderson; J. R. Coats

1995-01-01

171

Mineral Contamination from Cemetery Soils: Case Study of Zandfontein Cemetery, South Africa  

PubMed Central

The burial of coffins may pose an environmental and health hazard since the metals that are used in coffin-making may corrode or degrade into harmful toxins. These may leach into the surrounding soils and groundwater. Very little research has been conducted world-wide on the mineral contamination potential of cemeteries, and virtually none in South Africa. The aim of the study is to determine whether burial practices affect the mineral content of soils in cemeteries. This was done by comparing the mineral concentrations of soils within the Zandfontein Cemetery in Tshwane (Gauteng, South Africa) to those off-site as well as those in zones with high burial loads with those zones with fewer burials. Twenty three soil samples were collected from various sites on- and off-site and analyzed for 31 minerals using ICP-AES. It was found that mineral concentrations of soils within the Zandfontein Cemetery were considerably higher than those off-site. Soil samples in multiple burials blocks also have elevated metal concentrations. These excess metals are probably of anthropogenic origin associated with burial practices and could pose an environmental and human health hazard. Strict monitoring of water quality in boreholes in the vicinity of the cemetery is recommended. PMID:22470306

Jonker, Cornelia; Olivier, Jana

2012-01-01

172

Effect of pH on nitrogen mineralization in crop-residue-treated soils  

Microsoft Academic Search

This study compares N mineralization in soils treated with crop residues [corn (Zea mays L.), soybean (Glycine max (L.) Merr.), sorghum (Sorghum vulgare Pers.)] or alfalfa (Medicago sativa L.) at three adjusted soil pH values (4, 6, and 8); pH was adjusted with dilute H2SO4 or KOH. A sample of soil (20 g) was treated with 0.448 g plant material

M. H. Fu; X. C. Xu; M. A. Tabatabai

1987-01-01

173

Lunar mineral feedstocks from rocks and soils: X-ray digital imaging in resource evaluation  

NASA Technical Reports Server (NTRS)

The rocks and soils of the Moon provide raw materials essential to the successful establishment of a lunar base. Efficient exploitation of these resources requires accurate characterization of mineral abundances, sizes/shapes, and association of 'ore' and 'gangue' phases, as well as the technology to generate high-yield/high-grade feedstocks. Only recently have x-ray mapping and digital imaging techniques been applied to lunar resource evaluation. The topics covered include inherent differences between lunar basalts and soils and quantitative comparison of rock-derived and soil-derived ilmenite concentrates. It is concluded that x-ray digital-imaging characterization of lunar raw materials provides a quantitative comparison that is unattainable by traditional petrographic techniques. These data are necessary for accurately determining mineral distributions of soil and crushed rock material. Application of these techniques will provide an important link to choosing the best raw material for mineral beneficiation.

Chambers, John G.; Patchen, Allan; Taylor, Lawrence A.; Higgins, Stefan J.; Mckay, David S.

1994-01-01

174

Food Safety Issues: Mineral fertilizers and soil amendments  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fertilizers and other soil amendments are required to maintain soil fertility, but some may be naturally rich in trace elements, or contaminated. Thus, as part of the overall consideration of using fertilizers and soil amendments, one should consider the levels of trace elements present in relation...

175

Comparison of soil CO2 emission in poorly and well-drained mineral soil at a small agricultural hillside scale  

NASA Astrophysics Data System (ADS)

The increase of greenhouse gases (GHG) in the atmosphere and the climate change which results from it, will have major effects in the 21th century. In agricultural landscapes and others ecosystems, soil CO2 emissions are controlled by thermal and hydrological regimes, but their relative importance seems to be dependant of soil drainage conditions. The purpose of this study was to measure and model soil CO2 emissions at the scale of a hillslope presenting a gradient of soil drainage conditions. The studied hillslope is located in the Kervidy-Naizin headwater catchment (Brittany, France, 48°00'N 2°50W) and corresponds to an agricultural field cropped in a maize / winter wheat rotation. Soil CO2 emissions were measured once per week from February 2013 to March 2014, in two locations contrasting by soil drainage condition: (1) well-drained mineral (WDM) soil classified as Cambisol in upslope position, (2) poorly-drained mineral (PDM) soil classified as Haplic Albeluvisol and which undergoes continuous or periodic saturation and reduction conditions in downslope position. The measurement sites of 9m2 were equipped for continuous measurement of soil water content (TDR probes) and soil temperature. Soil CO2 emissions were measured with the infrared gas analyzer (IRGA) Li-8100A (Li-Cor, Lincoln, USA) until now. Results showed that PDM soils were waterlogged in winter and autumn inducing a low CO2 emission (average of 1.1±0.2µmol.m-2.s-1) which was two times lower than CO2 emissions in WDM soil. A shift of soil moisture to field capacity leading to an availability of oxygen in soil in the spring and summer induced an increase of soil CO2 emissions in PDM soil with a maximum of 5.03±0.5µmol.m-2.s-1 at the end of July. In WDM soil, CO2 emissions were high at the end of spring (average of 7µmol.m-2.s-1) and decreased of 65% at the end of summer because of the drought conditions. The modeling of temporal variability of soil CO2 emission by temperature and moisture empirical functions showed that the combined effect of soil temperature and soil moisture explained 77% (61% by T° and 39% by SWC) of soil CO2 emission variability in PDM soil, against 63% (53% by T° and 47% by SWC) in WDM soil. Others factors such as C input, and oxygen availability due to soil management may also controlled soil CO2 emission and mostly in WDM soil. The integration of these factors in model could help to well understand the difference in soil CO2 emission in Poorly-drained mineral soil compared with well-drained soil at agricultural hillside scale.

TETE, Emmanuel; Viaud, Valerie; Flechard, Chris; Walter, Christian

2014-05-01

176

Correlation of the abundance of betaproteobacteria on mineral surfaces with mineral weathering in forest soils.  

PubMed

Pyrosequencing-based analysis of 16S rRNA gene sequences revealed a significant correlation between apatite dissolution and the abundance of betaproteobacteria on apatite surfaces, suggesting a role for the bacteria belonging to this phylum in mineral weathering. Notably, the cultivation-dependent approach demonstrated that the most efficient mineral-weathering bacteria belonged to the betaproteobacterial genus Burhkolderia. PMID:22798365

Lepleux, C; Turpault, M P; Oger, P; Frey-Klett, P; Uroz, S

2012-10-01

177

Correlation of the Abundance of Betaproteobacteria on Mineral Surfaces with Mineral Weathering in Forest Soils  

PubMed Central

Pyrosequencing-based analysis of 16S rRNA gene sequences revealed a significant correlation between apatite dissolution and the abundance of betaproteobacteria on apatite surfaces, suggesting a role for the bacteria belonging to this phylum in mineral weathering. Notably, the cultivation-dependent approach demonstrated that the most efficient mineral-weathering bacteria belonged to the betaproteobacterial genus Burhkolderia. PMID:22798365

Lepleux, C.; Turpault, M. P.; Oger, P.; Frey-Klett, P.

2012-01-01

178

Soil moisture influenced the interannual variation in temperature sensitivity of soil organic carbon mineralization in the Loess Plateau  

NASA Astrophysics Data System (ADS)

Temperature sensitivity of SOC mineralization (Q10) determines how strong the feedback from global warming may be on the atmospheric CO2 concentration, thus understanding the factors influencing the interannual variation in Q10 is important to accurately estimate the local soil carbon cycle. In situ SOC mineralization was measured using an automated CO2 flux system (Li-8100) in long-term bare fallow soil in the Loess Plateau (35° 12' N, 107° 40' E) in Changwu, Shaanxi, China form 2008 to 2013. The results showed that the annual cumulative SOC mineralization ranged from 226 to 298 g C m-2 y-1 (mean =253 g C m-2 y-1; CV =13%), annual Q10 ranged from 1.48 to 1.94 (mean =1.70; CV =10%), and annual soil moisture content ranged from 38.6 to 50.7% WFPS (mean =43.8% WFPS; CV =11%), which were mainly affected by the frequency and distribution of precipitation. Annual Q10 showed a negative quadratic correlation with soil moisture. In conclusion, understanding of the relationships between interannual variation in Q10 of SOC mineralization, soil moisture and precipitation is important to accurately estimate the local carbon cycle, especially under the changing climate.

Zhang, Y.; Guo, S.; Zhao, M.; Du, L.; Li, R.; Jiang, J.; Wang, R.; Li, N.

2015-01-01

179

Effects of flooding and warming on soil organic matter mineralization in Avicennia germinans mangrove forests and Juncus roemerianus salt marshes  

NASA Astrophysics Data System (ADS)

Under a changing climate, coastal wetlands experience sea level rise, warming, and vegetation change, all of which may influence organic matter mineralization. In coastal wetlands of subtropical west-central Florida (USA), we investigated how soil carbon (C) and nitrogen (N) mineralization respond to soil water, temperature, and ecosystem type (Avicennia germinans mangrove forest vs. Juncus roemerianus salt marsh). We evaluated how soil respiration and mineral N concentration varied along a soil moisture gradient, and whether these relationships differed between ecosystem types. Then, we manipulated soils in a 28-d laboratory incubation to evaluate how potentially mineralizable C and N respond to temperature (23 vs. 27 °C), soil hydroperiod (inundated 4 vs. 20 h/d), and soil source. Soil saturation and inundation suppressed short-term (minutes to weeks) C mineralization from near-surface soils. Soil CO2 efflux declined by 65% as soil moisture increased from 75% to 85%, and potentially mineralizable C was 18% lower with a 20-h hydroperiod than with a 4-h hydroperiod. Organic C quality appears to be greater in A. germinans than in J. roemerianus soils, as A. germinans soils had higher field CO2 efflux rates and greater mineralizable C:N (despite lower total C:N). Increasing incubation temperature from 23 to 27 °C elevated potentially mineralizable C by 40%, indicating that two symptoms of climate change (increased inundation from sea level rise, and warming) may have opposing effects on soil C mineralization. Temperature sensitivity of C mineralization was high for long-hydroperiod soils, however, suggesting that protection of soil organic matter (SOM) due to prolonged inundation will be undermined by warming. Potentially mineralizable N was greater in J. roemerianus soils, although in situ mineral N was not different between ecosystems, instead correlating positively with SOM. These results indicate that models forecasting soil elevation responses to climate change might include inundation effects on mineralization rates.

Lewis, David Bruce; Brown, Jewel A.; Jimenez, Kristine L.

2014-02-01

180

Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon.  

PubMed

Soil organic carbon (SOC) is a critical and active pool in the global C cycle, and the addition of pyrogenic organic matter (PyOM) has been shown to change SOC cycling, increasing or decreasing mineralization rates (often referred to as priming). We adjusted the amount of easily mineralizable C in the soil, through 1-day and 6-month preincubations, and in PyOM made from maple wood at 350 °C, through extraction. We investigated the impact of these adjustments on C mineralization interactions, excluding pH and nutrient effects and minimizing physical effects. We found short-term increases (+20-30%) in SOC mineralization with PyOM additions in the soil preincubated for 6 months. Over the longer term, both the 6-month and 1-day preincubated soils experienced net ?10% decreases in SOC mineralization with PyOM additions. Additionally, the duration of preincubation affected interactions, indicating that there may be no optimal preincubation time for SOC mineralization studies. We show conclusively that mineralizability of SOC in relation to PyOM-C is an important determinant of the effect of PyOM additions on SOC mineralization. PMID:25361379

Whitman, Thea; Zhu, Zihua; Lehmann, Johannes

2014-12-01

181

High Temperature and Salinity Enhance Soil Nitrogen Mineralization in a Tidal Freshwater Marsh  

PubMed Central

Soil nitrogen (N) mineralization in wetlands is sensitive to various environmental factors. To compare the effects of salinity and temperature on N mineralization, wetland soils from a tidal freshwater marsh locating in the Yellow River Delta was incubated over a 48-d anaerobic incubation period under four salinity concentrations (0, 10, 20 and 35‰) and four temperature levels (10, 20, 30 and 40°C). The results suggested that accumulated ammonium nitrogen (NH4+-N) increased with increasing incubation time under all salinity concentrations. Higher temperatures and salinities significantly enhanced soil N mineralization except for a short-term (?10 days) inhibiting effect found under 35‰ salinity. The incubation time, temperature, salinity and their interactions exhibited significant effects on N mineralization (P<0.001) except the interactive effect of salinity and temperature (P>0.05), while temperature exhibited the greatest effect (P<0.001). Meanwhile, N mineralization processes were simulated using both an effective accumulated temperature model and a one-pool model. Both models fit well with the simulation of soil N mineralization process in the coastal freshwater wetlands under a range of 30 to 40°C (R2?=?0.88–0.99, P<0.01). Our results indicated that an enhanced NH4+-N release with increasing temperature and salinity deriving from the projected global warming could have profound effects on nutrient cycling in coastal wetland ecosystems. PMID:24733366

Gao, Haifeng; Bai, Junhong; He, Xinhua; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing

2014-01-01

182

Minerals  

MedlinePLUS

... Aren't minerals something you find in the earth, like iron and quartz? Well, yes, but small ... how much of these minerals you need each day. Trace minerals includes iron, manganese, copper, iodine, zinc, ...

183

Microbes residing in young organic rich Alaskan soils contain older carbon than those residing in old mineral high Arctic soils  

NASA Astrophysics Data System (ADS)

Arctic soils range from very organic rich to low carbon and mineral-dominated soils. At present, we do not yet fully understand if all carbon in the Arctic is equally vulnerable to mineralization in a warmer climate. Many studies have demonstrated that ancient carbon is respired when permafrost has thawed, yet our understanding of the active layer and permafrost carbon dynamics is still emerging. In an effort to remedy this disconnect between our knowledge of surface fluxes and below ground processes, we used radiocarbon to examine the microbial carbon dynamics in soil cores from organic rich soils near Barrow, Alaska and mineral soils from the Canadian high Arctic. Specifically, we compared the microbial community using lipid biomarkers, the inputs of carbon using n-alkanes and measured the 14C of both the bulk organic carbon and of the microbial lipids. In theory, the microbial lipids (phospholipid fatty acids, PLFA) represent the viable microbial community, as these lipids are hydrolyzed quickly after cell death. Variations in the PLFA distributions suggested that different microbial communities inhabit organic rich Alaskan soils and those of the Canadian high Arctic. When the PLFA concentrations were converted to cellular concentration, they were within the same order of magnitude (1 to 5 x 108 cells/g dry soil) with slightly higher cell concentrations in the organic rich Alaskan soils. When these cellular concentrations were normalized to the organic carbon content, the Canadian high Arctic soils contained a greater proportion of microbes. Although bulk organic carbon 14C of Alaskan soils indicated more recent carbon inputs into the soil than the Canadian high Arctic soils, the 14C of the PLFA revealed the opposite. For corresponding depth horizons, microbes in Alaskan soils were consuming carbon 1000 to 1500 years older than those in the Canadian high Arctic. Differences between the 14C content of bulk organic carbon and the microbial lipids were much smaller in Alaskan soil than that of the Canadian high Arctic soil, indicating that Alaskan microbes were interacting with the bulk organic carbon pool and Canadian high Arctic soil microbes were disconnected from the bulk organic carbon pool. Additionally, dissimilarities in the n-alkane distributions suggest vastly different carbon sources to these different soils. Collectively, these results suggest that (a) these Arctic soils contain a comparable abundance of microbes, (b) the organic carbon being accumulated in the Alaskan soil is likely from recent biomass, (c) mineral soil accumulation in the Canadian high Arctic is likely due to erosional inputs of ancient carbon and (d) the carbon stocks in Alaskan soils are more bioavailable to the microbes than those in mineral soils of the Canadian high Arctic. Incubation studies that incorporate gas fluxes and proteomics may tease apart if the observed differences in bioavailability are a function of temperature, substrate availability or some other variable.

Ziolkowski, L. A.; Slater, G. F.; Onstott, T. C.; Whyte, L.; Townsend-Small, A.

2013-12-01

184

Proton binding onto soil by nonelectrostatic models: isolation and identification of mineral contributions.  

PubMed

In this paper a methodological approach is proposed to validate mechanistic modeling for proton binding onto active sites of mineral and soil samples by reducing the uncertainty and arbitrariness of model schematization. This approach is based on the quantitative formulation (X-ray calibration method) of a simulating mineral mixture (SMM) accounting for the main mineral phases in the soil (quartz, goethite, hematite, muscovite, clinochlore). Mineral and organic contributions were separated by comparing titration curves of river sediment and SMM. Specific mineral contributions to the acid properties of SMM were separated by comparing titration models of SMM and single minerals. Different nonelectrostatic models were used for titrations of SMM and single minerals: two-site/three-KH models (one amphoteric plus one monoprotic site) for clay minerals and SMM; one-site/two-KH models (one amphoteric site) for goethite and hematite; and a one-site/one-KH model (one monoprotic site) for quartz. Crossed-comparisons of titration models allow for identifying and quantifying the specific contributions of the distinct edge hydroxyl groups of iron oxides, clay minerals, and quartz in the different pH ranges. In particularthe amphoteric sites of aluminosilicates mainly contribute in the acid-neutral pH range, the amphoteric sites of iron oxides take part in the neutral-basic range, and finally the monoprotic edge hydroxyl groups of quartz react in the upper basic region of pH. The good simulation of the acid-base properties of SMM (according to single mineral titration models and quantitative composition by X-ray) confirms both model schematization and SMM formulation. Speciation diagrams of the active sites of the different mineral components (aluminosilicates, iron oxides, and quartz) were obtained by implementing the database of a dedicated software with the apparent equilibrium constants regressed by titration modeling of single minerals. PMID:15543749

Pagnanelli, Francesca; Bornoroni, Lorena; Toro, Luigi

2004-10-15

185

Thermal properties of peat, marshy and mineral soils in relation to soil moisture status in Polesie and Biebrza wetlands  

NASA Astrophysics Data System (ADS)

Knowledge of thermal properties of soil helps in estimating heat fluxes as an important component of the heat balance. The research was conducted to evaluate spatial distribution of the soil thermal properties (thermal conductivity, heat capacity and thermal diffusivity) in relation to soil wetness and bulk density in wetland soils of Polesie and Biebrza regions (Poland). Soil moisture content and bulk density together with soil temperature and texture data, were used for determination of thermal properties. The thermal conductivity was measured, by KD2 Pro Decagon, and calculated by the physical-statistical model of Usowicz, and the heat capacity - was calculated with empirical formulae, and the thermal diffusivity was determined by the ratio of thermal conductivity to the heat capacity. The thermal conductivity of wetland and marsh soils increases with increasing moisture content and density of the soil to higher extent in soils richer in minerals - mostly quartz. Maximum thermal conductivity of the wetland soils at different density did not exceed the value of the thermal conductivity of water. However, for mineral soil at the natural density (1.31 Mg m-3) and with the quartz content of 96%, the thermal conductivity is about four times greater than the thermal conductivity of water. This is due to that the thermal conductivity of quartz is sixteen times greater than that of water. Dependence of the soil thermal conductivity on moisture content is non-linear and the shape of the non-linearity largely depends on the density of the soil. Particular components of soil bring their contribution to the conductivity respectively to their fractions and compounds being dominant in the ground contribute mostly to the effective slope of the thermal conductivity versus the water content at a given soil density. The heat capacity of the soil substrate is linearly dependent on the water content. Soils containing more organic matter within low specific densities, usually are characterized by less or minimal available heat capacity values in dry conditions, while they can also be characterized by highest or maximal heat capacity values, in highly wet conditions approaching the saturation with water. The increase in soil density caused a parallel shift of the characteristics of the heat capacity in the direction of higher values. This was associated with an increase in solids content per unit volume of the substrate and the reduction of the water content and the specific heat capacity of the individual components of the soil. Thermal diffusivity of soils exhibits characteristic extremes. In organic soils characteristic minimal or maximal extremes may occur, while mineral soils achieve only maximal diffusivity values on regular basis. Extremes of the thermal diffusivity are mainly due to the changes in the intensity of the thermal conductivity of the substrate due to change in soil moisture content and density. The heat capacity of the soil increases with increasing moisture content at the constant rate. The value of soil thermal diffusivity depends highly on quartz content. Thermal diffusivity of the soil with the same moisture content was greater for the higher densities, and minimum or maximum thermal diffusivity tends to move toward the lower moisture content for higher densities. The observed extremes are so distinctive that they determine the value of soil moisture and density, at which the temperature wave travels the slowest and the fastest in the soil. The question of determining and sensing the water capacity is also affected by the texture and porosity. Simple volumetric measures of porosity are used, but with distinguishing the volume of pores filled by air and other part filled with water. Practically, porosity is treated simply and is included to assessments by effects on the thermal properties. We prove that thermal properties are very good variables for a sensitive indicator of the water content, and accounting the impact from porosity. Thermal properties gather effects from the texture and porosity cumulatively. Therefo

Usowicz, Boguslaw; ?ukowski, Mateusz; Marczewski, Wojciech; Usowicz, Jerzy B.; Lipiec, Jerzy; Stankiewicz, Krystyna

2013-04-01

186

Minerals  

NSDL National Science Digital Library

This site provides an in-depth look at mineral properties and identification. An alphabetical listing of common minerals allows the user to see a picture and view physical properties of the particular mineral. Properties of minerals are explained, including cleavage, hardness, crystal form, and luster. There are also downloadable labs for crystal models and mineral data sheets. Dichotomous and hardness keys are given for easier mineral identification.

2007-12-12

187

Forest type affects the coupled relationships of soil C and N mineralization in the temperate forests of northern China  

NASA Astrophysics Data System (ADS)

Decomposition of soil organic matter (SOM) is sensitive to vegetation and climate change. Here, we investigated the influence of changes in forest types on the mineralization of soil carbon (C) and nitrogen (N), and their temperature sensitivity (Q10) and coupling relationships by using a laboratory soil incubation experiments. We sampled soils from four forest types, namely, a primary Quercus liaotungensis forest (QL), Larix principis-rupprechtii plantation (LP), Pinus tabulaeformis plantation (PT), and secondary shrub forest (SS) in temperate northern China. The results showed that soil C and N mineralization differed significantly among forest types. Soil C and N mineralization were closely coupled in all plots, and C:N ratios of mineralized SOM ranged from 2.54 to 4.12. Forest type significantly influenced the Q10 values of soil C and N mineralization. The activation energy (Ea) of soil C and N mineralization was negatively related to the SOM quality index in all forest types. The reverse relationships suggested that the carbon quality-temperature (CQT) hypothesis was simultaneously applicable to soil C and N mineralization. Our findings show that the coupled relationships of soil C and N mineralization can be affected by vegetation change.

Quan, Quan; Wang, Changhui; He, Nianpeng; Zhang, Zhen; Wen, Xuefa; Su, Hongxin; Wang, Qing; Xue, Jingyue

2014-10-01

188

Organic matter protection as affected by the mineral soil matrix: allophanic vs. non-allophanic volcanic ash soils  

NASA Astrophysics Data System (ADS)

Volcanic ash soils (Andosols) contain the largest amounts of organic carbon of all mineral soil types. Chemical (complexes of organic matter with allophane, Al/Fe) and physical (aggregation) mechanisms are protecting the carbon from decomposition. While allophanic Andosols are dominated by short range order minerals such as allophane, imogolite and ferrihydrite, organic matter-Al/Fe complexes dominate non-allophanic Andosols. Consequently, chemical interactions between the mineral soil matrix and organic matter differ between these two soil types. This difference could potentially lead to different organic matter compositions. In this study, the organic matter of Ah horizons of an allophanic Andosol with a non-allophanic Andosol from Madeira Island is compared using analytical pyrolysis. Both volcanic soil types showed a relative decrease of lignin-derived pyrolysis products with depth, but this decrease was more pronounced in the allophanic Andosol. Polysaccharides were more abundant in the allophanic Ah horizon, particularly at lower depth, and this was also the case for the non-plant-derived N-containing polysaccharide chitin. Most likely, these biopolymers are adsorbed onto short range order minerals such as allophane and therefore were better protected in the allophanic Andosol. In addition, the higher chitin contents combined with the more pronounced lignin degradation suggests a higher fungal activity. Aliphatic pyrolysis products (n-alkenes/n-alkanes, fatty acids) were relatively more enriched in the non-allophanic Andosol. Lower microbial activity caused by the more acidic pH and higher levels of (toxic) aluminium are the most plausible reasons for the accumulation of these compounds in the non-allophanic Andosol. Although the allophanic and non-allophanic Andosol resembled each other in containing biopolymer groups of the same orders of magnitudes, in particular the contents of chitin and aliphatic compounds were distinctly affected by the differences in organic matter stabilizing properties and capacity of the mineral soil matrices.

Nierop, K. G. J.; Kaal, J.; Jansen, B.; Naafs, D. F. W.

2009-04-01

189

Soil sorption and leaching of active ingredients of Lumax® under mineral or organic fertilization.  

PubMed

The study describes the soil sorption of the herbicide Lumax®, composed of S-metolachlor (MTC), terbuthylazine (TBZ), and mesotrione (MST), as influenced by mineral and organic fertilizers. The investigation was performed on a sandy soil of an agricultural area designated as a Nitrate Vulnerable Zone, where mineral and organic fertilizers were applied for many years. Two organic fertilizers, cattle manure and slurry, respectively, and a mineral fertilizer with a nitrification inhibitor, Entec®, were compared. According to the experiments, performed with a batch method, the sorption conformed to Freundlich model. The extent of sorption of Lumax® ingredients was closely related to their octanol-water partition coefficient Kow. The respective desorption was hysteretic. Leaching trials were carried out by using water or solutions of DOM or Entec® as the eluants. Only the elution with the mineral fertilizer promoted the leaching of Lumax® active ingredients. PMID:24997942

Pinna, Maria Vittoria; Roggero, Pier Paolo; Seddaiu, Giovanna; Pusino, Alba

2014-09-01

190

Effects of amendment of different biochars on soil physical and biological properties related to carbon mineralization  

NASA Astrophysics Data System (ADS)

Biochar addition to soils potentially affects various soil properties, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates.

Zhang, Renduo; Zhu, Shuzhi; Ouyang, Lei

2014-05-01

191

Soil Genesis and Development, Lesson 1 - Rocks and Minerals  

Technology Transfer Automated Retrieval System (TEKTRAN)

All soil ultimately forms from rocks or their weathering products. Geologists classify rocks according to their origins. General rock types can weather to give soils with distinctive properties. The objectives of this lesson are: 1. To be able to classify rocks based on visual characteristics accord...

192

ASSESSING CHANGES IN SOIL MICROBIAL COMMUNITIES AND CARBON MINERALIZATION IN BT AND NON-BT CORN RESIDUE-AMENDED SOILS  

Technology Transfer Automated Retrieval System (TEKTRAN)

The effects of Bt corn (Zea mays L.) residue on soil microbial communities and rates of C mineralization were investigated. The Bt corn residue had a higher lignin content (12%) and lignin/N (9.9) ratio compared with its non-Bt near-isoline (10% lignin; lignin/N = 8.6). We examined the relationships...

193

Nitrogen Transformations in Fallen Tree Boles and Mineral Soil of an Old-Growth Forest  

Microsoft Academic Search

I measured net N transformation rates of well-decayed boles and adjacent mineral soil under field conditions in an old-growth Douglas-fir\\/western hemlock\\/western red cedar stand in the central Oregon Cascades. Additionally, laboratory assays and in- cubations were used to elucidate the controls on net N transformations in these materials. Net N mineralization under field conditions was similar for well-decayed boles and

Stephen C. Hart

1999-01-01

194

In situ observations of soil minerals and organic matter in the early phases of prescribed fires  

NASA Astrophysics Data System (ADS)

We examined the chemical composition of aerosol samples collected during a prescribed fire at a Great Basin Desert site in the context of samples collected from controlled combustion of vegetation clippings from the same site and resuspension of soil samples obtained prior to and after the burn event. We observed a distinct difference in the composition of organic carbon resuspended soil dust after the burn, reflecting changes caused by the heating of the soil. The relative abundances of minerals and organic carbon fractions in aerosols collected during the first period of the burn were identical to those measured in soil dust. For aerosol samples collected for the remaining two periods of the burn event, the profiles of both minerals and organic carbon matched quite well those observed for vegetation combustion. Reconstruction of aerosol samples collected during the burn event showed that vegetation combustion dominated emissions but mineral soil dust may account for about 10% of PM10emissions (reconstructed) during the early stages of the fire. A large fraction of emissions during the first two hours was also unaccounted mainly because of the insufficient conversion of organic carbon to organic mass. The abundance of heavier non-volatile organics in soil dust suggested the presence of humic/fulvic acids that exhibit higher OM-to-OC ratios and thus, account for a proportion of the unaccounted emissions. These findings indicated that soil dust may be released into the air during a fire event, probably due to the enhanced turbulent mixing near the burn front.

Kavouras, Ilias G.; Nikolich, George; Etyemezian, Vic; Dubois, David W.; King, James; Shafer, David

2012-06-01

195

Microbial Composition in Decomposing Pine Litter Shifts in Response to Common Soil Secondary Minerals  

NASA Astrophysics Data System (ADS)

A range of environmental and biotic factors have been identified that drive microbial community structure in soils - carbon substrates, redox conditions, mineral nutrients, salinity, pH, and species interactions. However, soil mineralogy has been largely ignored as a candidate in spite of recent studies that indicate that minerals have a substantial impact on soil organic matter stores and subsequent fluxes from soils. Given that secondary minerals and organic colloids govern a soil's biogeochemical activity due to surface area and electromagnetic charge, we propose that secondary minerals are a strong determinant of the communities that are responsible for process rates. To test this, we created three microcosms to study communities during decomposition using pine forest litter mixed with two common secondary minerals in soils (goethite and gibbsite) and with quartz as a control. Changes in bacterial and fungal communities were tracked over the 154-day incubation by pyrosequencing fragments of the bacterial 16S and fungal 18S rRNA genes. Ordination using nonmetric multidimensional scaling showed that bacterial communities separated on the basis of minerals. Overall, a single generalist - identified as an Acidobacteriaceae isolate - dominated all treatments over the course of the experiment, representing roughly 25% of all communities. Fungal communities discriminated between the quartz control alone and mineral treatments as a whole. Again, several generalists dominated the community. Coniochaeta ligniaria dominated communities with abundances ranging from 29 to 40%. The general stability of generalist populations may explain the similarities between treatment respiration rates. Variation between molecular fingerprints, then, were largely a function of unique minor members with abundances ranging from 0.01 to 8%. Carbon availability did not surface as a possible mechanism responsible for shifts in fingerprints due to the relatively large mass of needles in the incubation. Other possible mechanisms include the presence of soluble Fe as an alternative energy source in the goethite treatment, the presence of toxic soluble Al in the gibbsite treatment, the loss of available phosphorus in the secondary mineral treatments due to sorption by secondary mineral surfaces, and variations in mineral surfaces as microhabitats. These findings suggest that Al and Fe oxides, such as goethite or gibbsite, are a factor in determining microbial community structure.

Welty-Bernard, A. T.; Heckman, K.; Vazquez, A.; Rasmussen, C.; Chorover, J.; Schwartz, E.

2011-12-01

196

Importance of soil and vineyard management in the determination of grapevine mineral composition.  

PubMed

The spatial variability of the mineral composition of grapevines in production vineyards along the east Adriatic coast was determined and compared between conventional and sustainable vineyard management. Cluster analysis shows a high level of spatial variability even within the individual locations. Factor analysis reveals three factors with strong loading for the macronutrients K and P and the micronutrient Mn, which explain 67% of the total variance in the mineral composition. Here, 26% to 34% of the variance of these three elements can be explained by abiotic and biotic soil parameters, with soil concentrations of K, Fe and Cu, organic matter content, and vesicular colonisation showing the strongest effects on the mineral composition of the grapevines. In addition, analysis of the mineral composition data shows significant differences between differently managed vineyards, with increased bioaccumulation of P and K in sustainable vineyards, while Zn bioaccumulation was increased in conventional vineyards. Our data confirm the importance of soil and vineyard management in the concept of terroir, and demonstrate the effects of sustainable management practices on the mineral nutrition of grapevines that result from modified nutrient availability related to changes in the abiotic and biotic characteristics of the soil. PMID:25461075

Likar, M; Vogel-Mikuš, K; Potisek, M; Han?evi?, K; Radi?, T; Ne?emer, M; Regvar, M

2015-02-01

197

Association of Growth Substrates and Bacterial Genera with Benzo[a]pyrene Mineralization in Contaminated Soil.  

PubMed

Benzo[a]pyrene (BaP) is a carcinogenic polycyclic aromatic hydrocarbon (PAH) that is not known to be a bacterial growth substrate. Organisms capable of cometabolizing BaP in complex field-contaminated systems have not previously been identified. We evaluated BaP mineralization by a bacterial community from a bioreactor treating PAH-contaminated soil during coincubation with or after pre-enrichment on various PAHs as growth substrates. Pyrosequence libraries of 16S rRNA genes were used to identify bacteria that were enriched on the added growth substrate as a means of associating specific organisms with BaP mineralization. Coincubating the bioreactor-treated soil with naphthalene, phenanthrene, or pyrene inhibited BaP mineralization, whereas pre-enriching the soil on the same three PAHs enhanced BaP mineralization. Combined, these results suggest that bacteria in the bioreactor community that are capable of growing on naphthalene, phenanthrene, and/or pyrene can metabolize BaP, with coincubation competitively inhibiting BaP metabolism. Anthracene, fluoranthene, and benz[a]anthracene had little effect on BaP mineralization compared to incubations without an added growth substrate under either coincubation or pre-enrichment conditions. Substantial increases in relative abundance after pre-enrichment with phenanthrene, naphthalene, or pyrene, but not the other PAHs, suggest that members of the genera Cupriavidus and Luteimonas may have been associated with BaP mineralization. PMID:25469077

Jones, Maiysha D; Rodgers-Vieira, Elyse A; Hu, Jing; Aitken, Michael D

2014-12-01

198

Mineral weathering in ectomycorrhizosphere of subalpine fir ( Abies lasiocarpa (Hook.) Nutt.) as revealed by soil solution composition  

Microsoft Academic Search

The soil solution is considered an important index of nutrient availability, because it mimics the field conditions when plant roots obtained their nutrition, and reflects the weatherability of a particular soil mineral. The composition of soil solution is sensitive to physical, biological and chemical changes to soil systems, including the presence of fungal hyphae and rhizomorphs from ectomycorrhizal colonization. The

J. M Arocena; K. R Glowa

2000-01-01

199

Minerals  

NSDL National Science Digital Library

This interactive lesson on minerals starts with a definition of minerals and compares crystalline and amorphous minerals. The composition is discussed and a chart shows the relative amounts of elements in minerals. Next, there is a discussion of the characteristics by which minerals are identified including luster, color, streak, hardness, and cleavage and fracture along with special properties such as magnetism. The characteristics of calcite, talc, hematite, magnetite, and galena are then observed.

200

Limitations to carbon mineralization in litter and mineral soil of young and old ponderosa pine forests  

Microsoft Academic Search

Summer drought is a feature of the semi-arid region of central Oregon, USA, where vegetation naturally develops into ponderosa pine (Pinus ponderosa var. Laws) forest. Forest management consists of clearcut harvest and natural regeneration. Soil microbial activity is interconnected with forest processes because substrate quality and availability can be important driving variables. Stand development influences the soil water regime, and

F. m. Kelliher; D. j. Ross; B. e. Law; D. d. Baldocchi; N. j. Rodda

2004-01-01

201

Impact of clay mineral on air oxidation of PAH-contaminated soils.  

PubMed

This work investigated the impact of a clay mineral (bentonite) on the air oxidation of the solvent extractable organic matters (EOMs) and the PAHs from contaminated soils. EOMs were isolated from two coking plant soils and mixed with silica sand or bentonite. These samples, as well as raw soils and bentonite/soil mixtures, were oxidized in air at 60 and 100 °C for 160 days. Mineralization was followed by measuring the CO2 produced over the experiments. EOM, polycyclic aromatic compound (PAC), including PAH, contents were also determined. Oxidation led to a decrease in EOM contents and PAH concentrations, these diminutions were enhanced by the presence of bentonite. Transfer of carbon from EOM to insoluble organic matter pointed out a condensation phenomenon leading to a stabilization of the contamination. Higher mineralization rates, observed during the oxidation of the soil/bentonite mixtures, seem to indicate that this clay mineral had a positive influence on the transformation of PAC into CO2. PMID:24816462

Biache, Coralie; Kouadio, Olivier; Lorgeoux, Catherine; Faure, Pierre

2014-09-01

202

Sorption and mineral-promoted transformation of synthetic hormone growth promoters in soil systems.  

PubMed

This work examines the fate of synthetic growth promoters (trenbolone acetate, melengestrol acetate, and zeranol) in sterilized soil systems, focusing on their sorption to organic matter and propensity for mineral-promoted reactions. In organic-rich soil matrices (e.g., Pahokee Peat), the extent and reversibility of sorption did not generally correlate with compound hydrophobicity (e.g., K(ow) values), suggesting that specific binding interactions (e.g., potentially hydrogen bonding through C17 hydroxyl groups for the trenbolone and melengestrol families) can also contribute to uptake. In soils with lower organic carbon contents (1-5.9% OC), evidence supports sorption occurring in parallel with surface reaction on inorganic mineral phases. Subsequent experiments with pure mineral phases representative of those naturally abundant in soil (e.g., iron, silica, and manganese oxides) suggest that growth promoters are prone to mineral-promoted oxidation, hydrolysis, and/or nucleophilic (e.g., H2O or OH(-)) addition reactions. Although reaction products remain unidentified, this study shows that synthetic growth promoters can undergo abiotic transformation in soil systems, a previously unidentified fate pathway with implications for their persistence and ecosystem effects in the subsurface. PMID:25426694

Qu, Shen; Kolodziej, Edward P; Cwiertny, David M

2014-12-24

203

Sorption equilibria of vapor-phase organic pollutants on unsaturated soils and soil minerals. Final report, Mar 85-Mar 89  

SciTech Connect

Most groundwater pollutants are volatile organic compounds; however, there is relatively little understanding of the sorption reactions that control the transport and fate of organic vapors in the vadose zone. This investigation identified the physical/chemical properties of the soil matrix and organic vapors which control vapor-solid phase distribution. The dominant property which regulates vapor sorption in the unsaturated zone is the moisture content of the soil. Under very dry conditions, soil mineral/vapor interactions are regulated by specific surface area, indicating the dominance of a relatively non-specific physical adsorption process. However, at moisture contents exceeding an average surface coverage of four to eight layers of water, vapor uptake is controlled by partitioning reactions into soil moisture and soil organic matter.

Lion, L.W.; Ong, S.K.; Linder, S.R.; Swager, J.L.; Schwager, S.J.

1990-04-01

204

Study of the acid-base properties of mineral soil horizons using pK spectroscopy  

NASA Astrophysics Data System (ADS)

The presence of groups 4 and 5 participating in acid-base equilibria was revealed in samples from mineral horizons of the gley-podzolic soil of the Komi Republic using pK spectroscopy (the mathematical processing of potentiometric titration curves for plotting the distribution of acid groups according to their pK values). The specific quantity of acid-base sites in soil samples was calculated. The contribution of organic and mineral soil components to the groups of acid-base sites was estimated. The pK values of groups determining the potential, exchangeable, and unexchangeable acidities were found. The heterogeneity of acid components determining different types of soil acidity was revealed.

Shamrikova, E. V.; Vanchikova, E. V.; Ryazanov, M. A.

2007-11-01

205

Organic matter mineralization in frozen boreal soils-environmental constraints on catabolic and anabolic microbial activity  

NASA Astrophysics Data System (ADS)

Heterotrophic microbial mineralization of soil organic matter (SOM) and associated production and emission of atmospheric trace gases proceed during the winter months in the frozen soils of high latitude ecosystems. However, in what ways this microbial activity is constrained by the environmental conditions prevailing in a frozen soil matrix is uncertain. This presentation will address how temperature, water availability and substrate availability combine to regulate rates of microbial activity at below freezing temperatures and the implications of this activity for SOM mineralization in the surface layers of boreal forest soils experiencing seasonal freezing. We show that the amount and availability of liquid water is an integral factor regulating rates of microbial activity in the frozen soil matrix and can also explain frequently observed deviations in the temperature responses of biogenic CO2 production in frozen soils, as compared to unfrozen soils. Using stable isotope labeling (13C) we also show that the partitioning of substrate carbon, in the form of monomeric sugar (glucose), for catabolic and anabolic metabolism remain constant in the temperature range of -4C to 9C. This confirms that microbial growth may proceed even when soils are frozen. In addition we present corresponding data for organisms metabolizing polymeric substrates (cellulose) requiring exoenzymatic activity prior to substrate uptake. We conclude that the metabolic response of soil microorganism to controlling factors may change substantially across the freezing point of soil water, and also the patterns of interaction among controlling factors are affected. Thus, it is evident that metabolic response functions derived from investigations of unfrozen soils cannot be superimposed on frozen soils. Nonetheless, the soil microbial population appear very adapted to seasonal freezing with respect to their metabolic performance.

Oquist, Mats G.; Sparrman, Tobias; Schleucher, Jürgen; Nilsson, Mats B.

2014-05-01

206

Organic Matter Development and Turnover depending on Mineral Composition in an Artificial Soil Incubation Experiment  

NASA Astrophysics Data System (ADS)

Recent research indicates that minerals play an important role in the formation and stabilization of soil organic matter (SOM). However, it is difficult to determine the effect of mineral composition on SOM development in natural soils where mineral composition is usually not well defined and initial conditions are generally unknown. Therefore, we performed an incubation experiment with so-called "artificial soils" composed of mixtures of clean and well-defined model materials where the development of organic matter could be followed from known initial conditions. The artificial soils were composed of 8 different mixtures of quartz, illite, montmorillonite, ferrihydrite, boehmite and charcoal, manure as carbon substrate and a microbial inoculum extracted from a natural arable soil. These mixtures were incubated in the dark and sampled 4 times over a total incubation time of 18 months. The organic matter (OM) turnover during incubation was followed by measuring CO2 respiration and C and N contents and distribution over particle size fractions with time. Solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and acid hydrolysis were used to determine the development of OM composition. The artificial soil mixtures developed quickly into complex, aggregated, soil-like materials. CO2 respiration was the same for all artificial soil compositions, indicating that microbial degradation was probably limited by nutrient or substrate availability. With increasing incubation time, nitrogen-rich, proteinaceous material, became enriched in the smallest particle size fraction, indicating the accumulation of microbial debris. There was some difference in the distribution of hydrolysable and non-hydrolysable N and organic carbon after 3 months of incubation depending on the type of clay mineral and charcoal presence. However, the artificial soils developed towards more similar systems with increasing incubation time. The artificial soil incubation experiment provided a useful system where the decay and turnover of the original manure substrate under the influence of microbial degradation could be studied. Because of the well-defined composition of the artificial soils this experiment gives us new insight into the dynamics of interactions between specific minerals, OM and charcoal during the decay and turnover of organic matter in a soil-like system.

Pronk, G. J.; Heister, K.; Kogel-Knabner, I.

2012-12-01

207

Origin and Reactivity of the Martian Soil: A 2003 Micromission  

NASA Technical Reports Server (NTRS)

The role of water in the development of the martian surface remains a fundamental scientific question. Did Mars have one or more "warm and wet" climatic episodes where liquid water was stable at the surface? If so, the mineral phases present in the soils should be consistent with a history of aqueous weathering. More generally, the formation of hydrated mineral phases on Mars is a strong indicator of past habitable surface environments. The primary purpose of this investigation is to help resolve the question of whether such aqueous indicators are present on Mars by probing the upper meter for diagnostic mineral species. According to Burns [1993], the formation of the ferric oxides responsible for the visible color of Mars are the result of dissolution of Fe (+2) phases from basalts followed by aqueous oxidation and precipitation of Fe" mineral assemblages. These precipitates likely included iron oxyhydroxides such as goethite (a-FeOOH) and lepidocrocite (g-FeOOH), but convincing evidence for these phases at the surface is still absent. The stability of these minerals is enhanced beneath the surface, and thus we propose a subsurface search for hydroxylated iron species as a test for a large-scale chemical weathering process based on interactions with liquid water. It is also possible that the ferric minerals on Mars are not aqueous alteration products of the rocks. A chemical study of the Pathfinder landing site concluded that the soils are not directly derived from the surrounding rocks and are enhanced in Mg and Fe. The additional source of these elements might be from other regions of Mars and transported by winds, or alternatively, from exogenic sources. Gibson [1970] proposed that the spectral reflectivity of Mars is consistent with oxidized meteoritic material. Yen and Murray [1998] further extend Gibson's idea and show, in the laboratory, that metallic iron can be readily oxidized to maghemite and hematite under present-day martian surface conditions (in the absence of liquid water). A test for a meteoritic component of the soil can be conducted, as described below, by searching for the presence of Ni at the martian surface. The average abundance of nickel in an Fe-Ni meteorite is about 7% and, if present at measurable levels in the soil, would be indicative of an exogenic contribution. In addition, it may be possible to directly search for mineral phases common in meteorites. An understanding of the formation and evolution of the martian soil would not be complete without addressing the unusual reactivity discovered by the Viking Landers The presence of an inorganic oxidant, possibly one produced as a results of photochemical processes, is the most widely accepted explanation of the Viking results. Are these chemical species simply adsorbed on soil grains, or have they reacted with the metal oxide substrates and altered the mineral structures? Could a completely different (non-photochemical) process be responsible for the soil reactivity? The various ideas for the nature of this putative oxidant could be constrained by a measurement of the change in reactivity with depth. Different compositions will have different lifetimes and mobilities and thus will have different vertical profiles. Because the oxidizing compounds are believed to actively destroy organic molecules, determination of the reactivity gradient also has significant implications for the search for life on Mars. A DS2-based microprobe system can be instrumented for a 2003 micromission to investigate the origin and reactivity of the martian soil. These measurements would provide invaluable information regarding the climate history and exobiological potential of the planet. The NMR, X ray and chemiresistor measurement approach described embodies a highly synergistic and general set of soil interrogation methods for elements, compounds, and crystal structures and can also be applied to other geologic questions of interest. For example, if the capability for precise targeting of the probes is available, then in-situ investigations of suspec

Yen, Albert S.; Kim, S. Sam; Marshall, John; Murray, Bruce C.

1999-01-01

208

Origin and Reactivity of the Martian Soil: A 2003 Micromission  

NASA Astrophysics Data System (ADS)

The role of water in the development of the martian surface remains a fundamental scientific question. Did Mars have one or more "warm and wet" climatic episodes where liquid water was stable at the surface? If so, the mineral phases present in the soils should be consistent with a history of aqueous weathering. More generally, the formation of hydrated mineral phases on Mars is a strong indicator of past habitable surface environments. The primary purpose of this investigation is to help resolve the question of whether such aqueous indicators are present on Mars by probing the upper meter for diagnostic mineral species. According to Burns [1993], the formation of the ferric oxides responsible for the visible color of Mars are the result of dissolution of Fe (+2) phases from basalts followed by aqueous oxidation and precipitation of Fe" mineral assemblages. These precipitates likely included iron oxyhydroxides such as goethite (a-FeOOH) and lepidocrocite (g-FeOOH), but convincing evidence for these phases at the surface is still absent. The stability of these minerals is enhanced beneath the surface, and thus we propose a subsurface search for hydroxylated iron species as a test for a large-scale chemical weathering process based on interactions with liquid water. It is also possible that the ferric minerals on Mars are not aqueous alteration products of the rocks. A chemical study of the Pathfinder landing site concluded that the soils are not directly derived from the surrounding rocks and are enhanced in Mg and Fe. The additional source of these elements might be from other regions of Mars and transported by winds, or alternatively, from exogenic sources. Gibson [1970] proposed that the spectral reflectivity of Mars is consistent with oxidized meteoritic material. Yen and Murray [1998] further extend Gibson's idea and show, in the laboratory, that metallic iron can be readily oxidized to maghemite and hematite under present-day martian surface conditions (in the absence of liquid water). A test for a meteoritic component of the soil can be conducted, as described below, by searching for the presence of Ni at the martian surface. The average abundance of nickel in an Fe-Ni meteorite is about 7% and, if present at measurable levels in the soil, would be indicative of an exogenic contribution. In addition, it may be possible to directly search for mineral phases common in meteorites. An understanding of the formation and evolution of the martian soil would not be complete without addressing the unusual reactivity discovered by the Viking Landers The presence of an inorganic oxidant, possibly one produced as a results of photochemical processes, is the most widely accepted explanation of the Viking results. Are these chemical species simply adsorbed on soil grains, or have they reacted with the metal oxide substrates and altered the mineral structures? Could a completely different (non-photochemical) process be responsible for the soil reactivity? The various ideas for the nature of this putative oxidant could be constrained by a measurement of the change in reactivity with depth. Different compositions will have different lifetimes and mobilities and thus will have different vertical profiles. Because the oxidizing compounds are believed to actively destroy organic molecules, determination of the reactivity gradient also has significant implications for the search for life on Mars. A DS2-based microprobe system can be instrumented for a 2003 micromission to investigate the origin and reactivity of the martian soil. These measurements would provide invaluable information regarding the climate history and exobiological potential of the planet. The NMR, X ray and chemiresistor measurement approach described embodies a highly synergistic and general set of soil interrogation methods for elements, compounds, and crystal structures and can also be applied to other geologic questions of interest. For example, if the capability for precise targeting of the probes is available, then in-situ investigations of suspec

Yen, Albert S.; Kim, S. Sam; Marshall, John; Murray, Bruce C.

1999-09-01

209

Mineral Transformations in Permafrost-Affected Soils, North Kolyma Lowland, Russia  

Microsoft Academic Search

in composition and properties. At the interface between frozen and thawed soil, an increase in chemical poten- Soils in permafrost sediments were studied on the Kolyma Low- tials (i.e., possibility of elements to take part in chemical land, North-East Siberia. Mineral transformations were studied by comparing samples from different geochemical positions relative to reactions) of the pore-solution components is observed.

A. Alekseev; T. Alekseeva; V. Ostroumov; C. Siegert; B. Gradusov

2003-01-01

210

Effects of acidification and liming on carbon and nitrogen mineralization and soil organisms in mor humus  

Microsoft Academic Search

The aim was to determine if changes in C and N mineralization after acidification and liming could be explained by changes in the soil organism biomass. Intact soil cores from F\\/H layers in a Norway spruce (C:N=31) and a Scots pine (C:N=44) stand in central Sweden were treated in the laboratory for 55 days with deionized water (control), weak H2SO4

Tryggve Persson; Helens Lundkvist; Anders Wirén; Riitta Hyvönen; Bengt Wessén

1989-01-01

211

Microbial carbon mineralization in tropical lowland and montane forest soils of Peru  

PubMed Central

Climate change is affecting the amount and complexity of plant inputs to tropical forest soils. This is likely to influence the carbon (C) balance of these ecosystems by altering decomposition processes e.g., “positive priming effects” that accelerate soil organic matter mineralization. However, the mechanisms determining the magnitude of priming effects are poorly understood. We investigated potential mechanisms by adding 13C labeled substrates, as surrogates of plant inputs, to soils from an elevation gradient of tropical lowland and montane forests. We hypothesized that priming effects would increase with elevation due to increasing microbial nitrogen limitation, and that microbial community composition would strongly influence the magnitude of priming effects. Quantifying the sources of respired C (substrate or soil organic matter) in response to substrate addition revealed no consistent patterns in priming effects with elevation. Instead we found that substrate quality (complexity and nitrogen content) was the dominant factor controlling priming effects. For example a nitrogenous substrate induced a large increase in soil organic matter mineralization whilst a complex C substrate caused negligible change. Differences in the functional capacity of specific microbial groups, rather than microbial community composition per se, were responsible for these substrate-driven differences in priming effects. Our findings suggest that the microbial pathways by which plant inputs and soil organic matter are mineralized are determined primarily by the quality of plant inputs and the functional capacity of microbial taxa, rather than the abiotic properties of the soil. Changes in the complexity and stoichiometry of plant inputs to soil in response to climate change may therefore be important in regulating soil C dynamics in tropical forest soils. PMID:25566230

Whitaker, Jeanette; Ostle, Nicholas; McNamara, Niall P.; Nottingham, Andrew T.; Stott, Andrew W.; Bardgett, Richard D.; Salinas, Norma; Ccahuana, Adan J. Q.; Meir, Patrick

2014-01-01

212

The use of micro-FTIR to characterize soil minerals and Boron adsorption S. Pittiglio and H.E. Doner  

E-print Network

The use of micro-FTIR to characterize soil minerals and Boron adsorption S. Pittiglio and H (m-FTIR) is an appropriate method for identifying clay minerals in soil matrices. 2) Determine which (ATR-FTIR) to examine the coordination of boron adsorption on magnesium hydroxide (Mg(OH)2). B has been

213

Stable isotope geochemistry of sulfur bearing minerals and clay mineralogy of some soils and sediments in Loot Desert, central Iran  

E-print Network

Stable isotope geochemistry of sulfur bearing minerals and clay mineralogy of some soils Keywords: Sulfur geochemistry Gypsum crystallization water Clay mineralogy Palygorskite Iranian soils Loot and sediments. In the present research, sources of gypsum and other sulfur bearing minerals using stable isotope

Ahmad, Sajjad

214

A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces  

Microsoft Academic Search

In this paper, we propose a structure for organo-mineral associations in soils based on recent insights concerning the molecular\\u000a structure of soil organic matter (SOM), and on extensive published evidence from empirical studies of organo-mineral interfaces.\\u000a Our conceptual model assumes that SOM consists of a heterogeneous mixture of compounds that display a range of amphiphilic\\u000a or surfactant-like properties, and are

M. Kleber; P. Sollins; R. Sutton

2007-01-01

215

The role of organic matter in controlling aluminum solubility in acidic mineral soil horizons  

NASA Astrophysics Data System (ADS)

Despite the ecological importance of potentially phytotoxic Al, its solubility control in acidic mineral soils remains unresolved. We examined the solubility of Al in mineral horizons of two acidic forest soils (Inceptisol and Spodosol) in southern Sweden using a series of batch experiments. Dissolution of Al was found to consist of a rapid solubilization of reactive solid phase Al, which quickly reached an equilibrium state, superimposed on a slow dissolution of less reactive Al-containing phases (e.g., primary Al-silicates). Titration experiments in the pH range 3.2-4.7 using an equilibration time of 5 days showed that at pH < 4.1, all suspensions were undersaturated with respect to gibbsite (Al(OH) 3; log ?K SO = 8.85 at 8° C) . Under such conditions, the Al solubility could be explained qualitatively by equilibrium complexation reactions with soil organic matter. Quantitatively, our results could be reproduced reasonably well using the mechanistic model WHAM, which describes the binding of Al by humic substances in organic soils. This suggests that the pool of organically bound soil Al controls the Al solubility in suspensions of strongly acidic soils. Due to the kinetically constrained release of Al from primary and secondary minerals, the amount of organically bound Al, and therefore the Al solubility in the suspensions, gradually increases with time. Consequently, a quantitative evaluation of Al solubility data from long-term batch experiments should consider both equilibrium and kinetic processes.

Berggren, Dan; Mulder, Jan

1995-10-01

216

Canadian Field Soils I. Mineral Composition by XRD/XRF Measurements  

NASA Astrophysics Data System (ADS)

Forty Canadian soils were laboratory tested for the presence of quartz and other minerals using X-ray diffraction/X-ray fluorescence techniques. On average, the highest quartz content was observed in soil samples from sites in Nova Scotia followed by Prince Edward Island sites, whereas soil sample from British Columbia sites had the lowest quartz content. The second most abundant mineral was albite that mainly occurred in soil samples from Ontario and Quebec sites. Illite was the third most abundant and prevailed in soils mainly from British Columbia and New Brunswick sites. Soil samples from British Columbia sites had the highest combined clay and silt content and were composed of illite, albite, kaolinite, and chlorite. The lowest clay content was found in the samples from the Quebec sites. The highest microcline (a potassium feldspar) content was observed in Quebec, Ontario, and Prince Edward Island sites. In contrast to other provinces, samples from Quebec and Ontario sites also included amphibole. Soil samples from Saskatchewan and Manitoba sites also comprised carbonates, i.e., calcite and dolomite. Iron oxides (e.g., goethite) were present in all soils, except the Quebec sites, but their occurrence was rather insignificant.

Schönenberger, J.; Momose, T.; Wagner, B.; Leong, W. H.; Tarnawski, V. R.

2012-02-01

217

The influence of biological soil crusts on mineral uptake by associated vascular plants  

USGS Publications Warehouse

Soil surfaces dominated by cyanobacteria and cyanolichens (such as Collema sp.) are widespread in deserts of the world. The influence of these biological soil crusts on the uptake of bioessential elements is reported for the first time for six seed plants of the deserts of Utah. This sample almost doubles the number of species for which the influence of biological soil crusts on mineral uptake of associated vascular plants is known. These new case studies, and others previously published, demonstrate that cyanobacterial or cyanobacteria- Collema crusts significantly alter uptake by plants of many bioessential elements. In studies now available, these crusts always increase the N content of associated seed plants. Uptake of Cu, K, Mg, and Zn is usually (>70% of reported cases) increased in the presence of the biological soil crusts. Soil crusts are generally negatively associated with Fe and P levels in associated seed plant tissue, while plant tissue levels of Ca, Mn, and Na are positively as often as negatively associated with the presence of soil crusts. Increases in bioessential elements in vascular plant tissue from biologically-crusted areas are greatest for short-lived herbs that are rooted primarily within the surface soil, the horizon most influenced by crustal organisms. The mineral content of a deeply rooted shrub (Coleogyne ramosissima) was less influenced by co-occurrence of biological soil crusts.

Harper, K.T.; Belnap, Jayne

2001-01-01

218

Adsorption of Trametes versicolor laccase to soil iron and aluminum minerals: enzyme activity, kinetics and stability studies.  

PubMed

Laccases play an important role in the degradation of soil phenol or phenol-like substance and can be potentially used in soil remediation through immobilization. Iron and aluminum minerals can adsorb extracellular enzymes in soil environment. In the present study, we investigated the adsorptive interaction of laccase, from the white-rot fungus Trametes versicolor, with soil iron and aluminum minerals and characterized the properties of the enzyme after adsorption to minerals. Results showed that both soil iron and aluminum minerals adsorbed great amount of laccase, independent of the mineral specific surface areas. Adsorbed laccases retained 26-64% of the activity of the free enzyme. Compared to the free laccase, all adsorbed laccases showed higher Km values and lower Vmax values, indicating a reduced enzyme-substrate affinity and a lower rate of substrate conversion in reactions catalyzed by the adsorbed laccase. Adsorbed laccases exhibited increased catalytic activities compared to the free laccase at low pH, implying the suitable application of iron and aluminum mineral-adsorbed T. versicolor laccase in soil bioremediation, especially in acid soils. In terms of the thermal profiles, adsorbed laccases showed decreased thermal stability and higher temperature sensitivity relative to the free laccase. Moreover, adsorption improved the resistance of laccase to proteolysis and extended the lifespan of laccase. Our results implied that adsorbed T. versicolor laccase on soil iron and aluminum minerals had promising potential in soil remediation. PMID:24225344

Wu, Yue; Jiang, Ying; Jiao, Jiaguo; Liu, Manqiang; Hu, Feng; Griffiths, Bryan S; Li, Huixin

2014-02-01

219

Reactive Clay Minerals in a land use sequence of disturbed soils of the Belgian Loam Belt  

NASA Astrophysics Data System (ADS)

Clay minerals play a key role in soil biogeochemistry. They can stabilize organic matter, improve water storage, increase cation exchange capacity of the soil (CEC) and lower nutrient leaching. Phytoliths - the biogenic silica bodies (BSi) deposited in cell walls of plants - are important Si pools in soil horizons due to their higher solubility compared to minerals. They provide the source of Si for plant uptake in short time scales, as litter dissolves within soils. In a recent study, we analyzed the BSi pool differences across a set of different land uses (forests, pastures, croplands) in 6 long-term disturbed (multiple centuries) soil sites in the Belgium Loam Belt. Results from a simultaneous chemical extraction in 0.5M NaOH of Si and Al, showed that soils were depleted in the BSi pool while showing high levels of reactive secondary clay minerals, mainly in the deeper horizons and especially in the forests and the croplands. During the extraction, clays were similar in reactivity to the biogenic pool of phytoliths. In order to study the kinetics in a more natural environment, batch dissolution experiments were conducted. Samples from different soil depths for each land use site (0.5 g) were mixed with 0.5 L of demineralised water modified to pH 4, 7 and 10. Subsamples of 2 ml were taken during 3 months. In the end of the period, results for pH 7 showed that in the pastures, where reactive clays were almost absent, the ratio Si/RSi (defined as the Si concentration in the end of the batch experiment divided by the reactive silica extracted from the soil with the alkaline extraction) was lower than 0.005%. The same ratio was higher in the mineral horizons of forests (Si/RSi>0.01%) and croplands (0.005% < Si/RSi <0.01%) where clay minerals were the dominant fraction. These preliminary results highlight the clay minerals' strong potential for Si mobilization. More attention should be paid to this important fraction as it can contribute strongly to Si availability, in close competition with phytoliths and other soluble amorphous Si forms, strongly interfering with frequently applied methods to quantify biogenic Si in soils.

Barao, Lucia; Vandevenne, Floor; Ronchi, Benedicta; Meire, Patrick; Govers, Gerard; Struyf, Eric

2014-05-01

220

Clay mineral formation and transformation in rocks and soils  

USGS Publications Warehouse

Three mechanisms for clay mineral formation (inheritance, neoformation, and transformation) operating in three geological environments (weathering, sedimentary, and diagenetic-hydrothermal) yield nine possibilities for the origin of clay minerals in nature. Several of these possibilities are discussed in terms of the rock cycle. The mineralogy of clays neoformed in the weathering environment is a function of solution chemistry, with the most dilute solutions favoring formation of the least soluble clays. After erosion and transportation, these clays may be deposited on the ocean floor in a lateral sequence that depends on floccule size. Clays undergo little reaction in the ocean, except for ion exchange and the neoformation of smectite; therefore, most clays found on the ocean floor are inherited from adjacent continents. Upon burial and heating, however, dioctahedral smectite reacts in the diagenetic environment to yield mixed-layer illite-smectite, and finally illite. With uplift and weathering, the cycle begins again. Refs.

Eberl, D.D.

1983-01-01

221

Si isotopes record cyclical dissolution and re-precipitation of pedogenic clay minerals in a podzolic soil chronosequence  

NASA Astrophysics Data System (ADS)

Soils are a major resource on the planet, acting as a key component for ecosystem function. The secondary minerals in the clay fraction are important players in soil biogeochemical processes as they provide a large reactive surface area. However, the origin and evolution of secondary minerals in soils are not yet fully understood. We determined the Si isotope compositions in the clay fraction of a podzolic soil chronosequence and document light 28Si enrichment during pedogenesis that increases with soil age. Relative to the original 'unweathered' clay-size minerals in deepsoil (?30Si = -0.52±0.16 permil), the clay fraction of the topsoil eluvial horizon show less negative ?30Si values (?30Sifrom -0.33 to -0.10 permil), while the clay fraction of the subsoil illuvial horizons is isotopically lighter (?30Si from -0.60 to -0.84 permil). Geochemical and X-ray diffraction analyses show that the on-going enrichment in light 28Si in pedogenic minerals of illuvial subsoil horizons can only be related to the dissolution in the topsoil horizon of clay minerals previously enriched in 28Si. The 28Si enrichment in the clay fraction with pedogenesis and soil age provides consistent evidence for the cyclical dissolution and re-precipitation of pedogenic minerals. Our study shows that the successive generations of clay minerals occur over very short time scales (ca. 300 years). This is instrumental in the evolution of the clay mineral genesis in soils. This soil-forming process has implications for the modeling of soil evolution. Given the importance of clay minerals in the chemical cycles of elements, deciphering the origin of pedogenic Si in clay mineral genesis is central to a better understanding of soil development and associated terrestrial biogeochemical processes.

Cornelis, Jean-Thomas; Weis, Dominique; Lavkulich, Les; Vermeire, Marie-Liesse; Delvaux, Bruno; Barling*, Jane

2014-05-01

222

Bioremediation of experimental petroleum spills on mineral soils in the Vestfold Hills, Antarctica  

Microsoft Academic Search

The effect of nutrient and water enhancement on the biodegradation of petroleum was tested in Antarctic mineral soils. Nitrogen, phosphorus and potassium were applied in solution, with or without gum xanthan or plastic covers, to sites artificially contaminated with distillate. The effectiveness of these procedures was assessed by measuring changes in total petroleum hydrocarbons; heptadecane\\/pristane and octadecane\\/phytane ratios; in concentrations

Elizabeth Kerry

1993-01-01

223

R E V I E W Mineral soil carbon fluxes in forests and implications for  

E-print Network

and mitigate climate change. Large amounts of carbon (C) are stored in deep mineral forest soils, but are often is central to under- standing and mitigating climate change (IPCC, 2007). Globally, forests store stable. We explore C fluxes associated with forest management practices by examining existing data

Vermont, University of

224

Nitrogen Mineralization from Humic Acid Fractions in Rice Soils Depends on Degree of Humification  

Microsoft Academic Search

such effects, especially for chemically extracted SOM fractions. In this study, we explore the relationship be- Although the chemical nature of soil organic matter (SOM) is tween the chemical nature of extracted HA fractions thought to affect the mineralization rate of N bound in SOM, little direct evidence exists for such effects. To test the hypothesis that the and their

Nguyen Bao Ve; D. C. Olk; K. G. Cassman

2004-01-01

225

Long-Term Tillage and Poultry Litter Impacts Soil Carbon and Nitrogen Mineralization and Fertility  

Technology Transfer Automated Retrieval System (TEKTRAN)

Long-term tillage and manure application are thought to alter the ability of the soil to sequester plant nutrients and mineralize carbon and nitrogen. Thus, a laboratory incubation study was conducted under aerobic conditions to evaluate the residual effect of long-term poultry litter (litter) appli...

226

Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil  

Microsoft Academic Search

Incubation experiments with soil were made to study C and N mineralization in a sewage sludge–cotton waste mixture at different stages of the composting process performed by the Rutgers static pile system. Three composting samples were selected: initial mixture (I); the end of the active phase (E); and the mature compost (M). The CO2-C evolved (as % of added C)

M. P. Bernal; A. F. Navarro; M. A. Sánchez-Monedero; A. Roig; J. Cegarra

1998-01-01

227

Nanoparticulate Iron Oxide Minerals in Soils and Sediments: Unique Properties and Contaminant Scavenging Mechanisms  

Microsoft Academic Search

Nanoparticulate goethite, akaganeite, hematite, ferrihydrite and schwertmannite are important constituents of soils, sediments and mine drainage outflows. These minerals have high sorption capacities for metal and anionic contaminants such as arsenic, chromium, lead, mercury and selenium. Contaminant sequestration is accomplished mainly by surface complexation, but aggregation of particles may encapsulate sorbed surface species into the multigrain interior interfaces, with significant

Glenn A. Waychunas; Christopher S. Kim; Jillian F. Banfield

2005-01-01

228

Soil Property and Landscape Position Effects on Seasonal Nitrogen Mineralization of Composted Dairy Manure  

Technology Transfer Automated Retrieval System (TEKTRAN)

To develop better management practices that optimize the amount of N derived from manure, more information is needed regarding the mineralization and dynamics of N under normal field conditions. Thus, an in situ field study, using three different soil types located in close proximity, was conducted ...

229

Minerals  

NSDL National Science Digital Library

This slide show provides students with basic information on mineralogy. It explains how the term "mineral" is defined, the properties that are used to identify minerals, their importance in daily life, and some general facts. For each identifying property, an example mineral and photograph are provided. Addresses to websites with additional information are also included.

Michael Passow

230

Toxicity of lead to soil respiration: mediation by clay minerals, humic acids, and compost  

SciTech Connect

Since Pb has no known biological function, elevated levels of Pb in soils and in other natural environments may adversely affect the indigenous biota, including the microbiota. Elevated levels of Pb in soil may also adversely affect microbemediated ecologic processes. There is, however, relatively little information on the mediating influence of the physicochemical factors of the recipient environment on the toxicity of Pb to microbe-mediated ecologic processes. This present study evaluated the influence of the clay minerals, kaolinite and montmorillonite, particulate humic acids, and compost on the degradation of glucose in soil.

Debosz, K.; Babich, H.; Stotzky, G.

1985-10-01

231

The Accumulation of Organic Carbon in Mineral Soils by Afforestation of Abandoned Farmland  

PubMed Central

The afforestation of abandoned farmland significantly influences soil organic carbon (OC). However, the dynamics between OC inputs after afforestation and the original OC are not well understood. To learn more about soil OC dynamics after afforestation of farmland, we measured the soil OC content in paired forest and farmland plots in Shaanxi Province, China. The forest plots had been established on farmland 18, 24, 48, 100, and 200 yr previously. The natural 13C abundance of soil organic matter was also analyzed to distinguish between crop- and forest-derived C in the afforested soils. We observed a nonlinear accumulation of total OC in the 0–80 cm depth of the mineral soil across time. Total soil OC accumulated more rapidly under forest stands aged 18 to 48 yr than under forest stands aged 100 or 200 yrs. The rate of OC accumulation was also greater in the 0–10 cm depth than in the 10–80 cm depth. Forest-derived OC in afforested soils also accumulated nonlinearly across time, with the greatest increase in the 0–20 cm depth. Forest-derived OC in afforest soils accounted for 52–86% of the total OC in the 0–10 cm depth, 36–61% of the total OC in the 10–20 cm depth, and 11–50% of the total OC in the 20–80 cm depth. Crop-derived OC concentrations in the 0–20 cm depth decreased slightly after afforestation, but there was no change in crop-derived OC concentrations in the 20–80 cm depth. The results of our study support the claim that afforestation of farmland can sequester atmospheric CO2 by increasing soil OC stocks. Changes in the OC stocks of mineral soils after afforestation appear to be influenced mainly by the input of forest-derived C rather than by the loss of original OC. PMID:22412854

Wei, Xiaorong; Qiu, Liping; Shao, Mingan; Zhang, Xingchang; Gale, William J.

2012-01-01

232

PYROGENIC CARBON-CLAY MINERAL ASSOCIATIONS IN SOIL SMECTITES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Bioorganic carbon is “sequestered” in soil as humic substances (HS). HS is believed to form strong complexes with clays by a number of bonding mechanisms, including ligand exchange, cation-bridging with metals, and H-bonding to siloxane sheets. However, the recent discovery of pyrogenic or black ca...

233

Ethylene Dibromide Mineralization in Soils under Aerobic Conditions  

PubMed Central

1,2-Dibromoethane (EDB), which is a groundwater contaminant in areas where it was once used as a soil fumigant, was shown to be degraded aerobically by microorganisms in two types of surface soils from an EDB-contaminated groundwater discharge area. At initial concentrations of 6 to 8 ?g/liter, EDB was degraded in a few days to near or below the detection limit of 0.02 ?g/liter. At 15 to 18 mg/liter, degradation was slower. Bromide ion release at the higher concentrations was 1.4 ± 0.3 and 2.1 ± 0.2 molar equivalents for the two soils. Experiments with [14C]EDB showed that EDB was converted to approximately equal amounts of CO2 and apparent cellular carbon; only small amounts of added 14C were not attributable to these products or unreacted EDB. These results are encouraging, because they indicate that groundwater bacteria may hasten the removal of EDB from contaminated aerobic groundwater supplies. This report also provides evidence for soil-mediated chemical transformations of EDB. PMID:16347020

Pignatello, Joseph J.

1986-01-01

234

Mineral content in the soil and tree foliage.  

PubMed

Seedlings of fir (Abies alba Mill.) and spruce (Picea abies L. Karst.) were fumigated with SO(2), O(3) and SO(2) + O(3) in open-top chambers (OTCs) for almost 5 vegetation periods. As background stress, simulated rain of pH 4.0 was applied. Nutrient content of soil, soil solutions, and trees was investigated and balanced. In the upper partition of the soil high concentrations of exchangeable Ca(2+) were found in all chambers. The SO(2) and SO(2) + O(3) treatments led to increased Ca(2+), Mg(2+) and Mn(2+) concentrations in soil solution and the pool of exchangeable protons increased. This response was most evident in the SO(2) and SO(2) + O(3) chambers and less clear in the filtered pH 5.0 control chamber. In the SO(2) treatment increased Mn and S levels were found in the needles. Ca content in the needles showed a decreasing trend. O(3) alone had no consistent effect on needle nutrient content. PMID:15092176

Schätzle, H; Seufert, G; Bender, J; Grobeta, G; Arndt, U; Jäger, H J

1990-01-01

235

ROLE OF SOIL ORGANIC ACIDS IN MINERAL WEATHERING PROCESSES  

EPA Science Inventory

The soluble organic acids in soils consist largely of complex mixtures of polymeric compounds referred to collectively as fluvic and humic acids. These compounds are relatively refactory, and are broken down only slowly by bacteria. ow-molecular-mass acids (e.g., acetic, oxalic, ...

236

Impact of soils minerals and properties with application of MSMA  

Technology Transfer Automated Retrieval System (TEKTRAN)

Straighthead is a physiological disorder of rice and threatens rice production in southern states. It is know that arsenic (As) is closely associated with occurrence of straighthead, so soil application of MSMA (monosodium methanearsonate) is commonly used to study this disease. Analysis was conduct...

237

Sorption of a nonionic surfactant Tween 80 by minerals and soils.  

PubMed

Batch experiments were conducted to evaluate Tween 80 sorption by oxides, aluminosilicates, and soils. For oxides, the sorption by silica and alumina follow linear isotherms, and that by hematite follows a Langmuir isotherm. Considering isotherm type and surface coverage, Tween 80 may partition into the silica/alumina-water interface, whereas it may bind to hematite surface sites. Among aluminosilicates, montmorillonite shows the greatest sorption due to the absorption of Tween 80 into interlayers. For other aluminosilicates, it sorbs to surfaces, with the sorption increasing as plagioclasesoils reveal that fine-grained clay minerals, difficult to separate by dry-sieving, contribute significantly to Tween 80 sorption. The greater sorption by untreated soils than H2O2-treated soils indicates that soil organic matter is a vital sorbent. The sorption hysteresis, contributed to by clay minerals and soil organic matter, is characterized by the greater sorption during the desorption than the sorption stages. This suggests the potential difficulty in removing surfactants from soils. Also, sorption of surfactants can adversely affect surfactant-enhanced remediation by decreasing the aquifer permeability and the availability of surfactants for micellar solubilization. PMID:25463228

Kang, Soyoung; Jeong, Hoon Young

2015-03-01

238

A general evaluation of the frequency distribution of clay and associated minerals in the alluvial soils of ceylon  

USGS Publications Warehouse

Clay mineral analyses were made of several alluvial clay materials from Ceylon. These studies show that the soil materials can be divided into 3 clay mineral provinces on the basis of the frequency distribution of clay and associated minerals. The provinces closely follow the climatic divisions. The characteristic feature of this classification is the progressive development of gibbsite from Dry to Wet Zone areas. Gibbsite has been used as a reliable indicator mineral. ?? 1971.

Herath, J.W.; Grimshaw, R.W.

1971-01-01

239

Calculating carbon mass balance from unsaturated soil columns treated with CaSO??minerals: test of soil carbon sequestration.  

PubMed

Renewed interest in managing C balance in soils is motivated by increasing atmospheric concentrations of CO2 and consequent climate change. Here, experiments were conducted in soil columns to determine C mass balances with and without addition of CaSO4-minerals (anhydrite and gypsum), which were hypothesized to promote soil organic carbon (SOC) retention and soil inorganic carbon (SIC) precipitation as calcite under slightly alkaline conditions. Changes in C contents in three phases (gas, liquid and solid) were measured in unsaturated soil columns tested for one year and comprehensive C mass balances were determined. The tested soil columns had no C inputs, and only C utilization by microbial activity and C transformations were assumed in the C chemistry. The measurements showed that changes in C inventories occurred through two processes, SOC loss and SIC gain. However, the measured SOC losses in the treated columns were lower than their corresponding control columns, indicating that the amendments promoted SOC retention. The SOC losses resulted mostly from microbial respiration and loss of CO2 to the atmosphere rather than from chemical leaching. Microbial oxidation of SOC appears to have been suppressed by increased Ca(2+) and SO4(2)(-) from dissolution of CaSO4 minerals. For the conditions tested, SIC accumulation per m(2) soil area under CaSO4-treatment ranged from 130 to 260 g C m(-1) infiltrated water (20-120 g C m(-1) infiltrated water as net C benefit). These results demonstrate the potential for increasing C sequestration in slightly alkaline soils via CaSO4-treatment. PMID:24974014

Han, Young-Soo; Tokunaga, Tetsu K

2014-12-01

240

The biological factors influence on the conversion of mineral components of Extremely Arid Desert Soils (Kazakhstan)  

NASA Astrophysics Data System (ADS)

Extremely arid soils of stony deserts (hamadas) along the southern periphery of the Ili Depression are considered to be analogous to extremely arid soils of Mongolia, also named as "ultra-arid primitive gray-brown soils." In general, the morphology of extremely arid soils of hamadas in the Ili Depression is similar to that of the soils of stony deserts in other parts of the world, including the Gobi, Atacama, and Tarim deserts. The diagnostics of the active communities of microorganisms were performed according to the method of Rybalkina-Kononenko. The exact identification of the living forms of microorganisms to the species level is not always possible with the use of this method. However, it allows us to study the physiological role of the microorganisms and their ecological functions, including the relationships with the soil matrix and other organisms. In particular, it is possible to estimate the contribution of the microorganisms to the transformation of mineral soil components. The obtained materials allow us to conclude that the extremely arid desert soils are characterized by the very high biological activity during short periods of the increased soil moistening after rare and strong rains. The diversity of living forms is very considerable; both prokaryotes (cyanobacteria, actinomycetes, and iron bacteria) and protists (green algae, diatoms, and dinoflagellates) are developed in the soil. Thus, during a short period after the rains, these microorganisms pass from the stage of anabiosis to the stage of active growth and reproduction. Then, upon drying of the soil, the biotic activity of the soil slows down and, finally, terminates. The organisms remain in the state of anabiosis until the next rain. During the period of active growth, the microorganisms compose a specific consortium of different species and exert a profound impact on the soil properties. They participate in the transformation of the soil minerals with the formation of amorphous substances that are clearly seen in biofilms on the surface of gravels of the desert pavement and on the walls of vesicular pores in the crust and subcrust (AKL) horizons of the soil. The organomineral compounds are accumulated in the vesicular pores due to the synthesis and mineralization of the microbial biomass. This is a specific feature of the humus-accumulative process in the extremely arid desert soils. The biogenic transformation of iron-containing minerals, the mobility of iron, and its accumulation in films and coagulated microforms is largely due to the living activity of iron bacteria. These iron pedofeatures are specific of the extremely arid desert soils. We suppose that some part of vesicular pores in the AKL horizon has a microbiological origin, because separate bacterial cells may form intracellular gas vacuoles and extracellular gas bulbs, as well as membrane sacs and cell dilatations that can shape the vesicular pores. In general, our data indicate that soils, including extremely arid desert soils, serve as reservoirs of the microbial diversity and ensure the development and preservation of diverse microorganisms with specific mechanisms of adaptation to the sharp changes in the environmental conditions. This biota-protecting role of soils is particularly well pronounced during the climatic pessimum. This study was supported by the Russian Foundation for Basic Research, project no. 12-04-00990a.

Kutovaya, Olga; Vasilenko, Elena; Lebedeva, Marina; Tkhakakhova, Azida

2013-04-01

241

Start | View At a Glance | Author Index 151-2 Soil Organic Matter-Mineral Interactions Along Hillslope Transects: Importance of  

E-print Network

oxides. This investigation will enhance our understanding of OM stabilization mechanisms on soil mineralShare | Start | View At a Glance | Author Index 151-2 Soil Organic Matter-Mineral Interactions Soil Mineralogy See more from this Session: Symposium--Mineral-Organic Interactions Across Time

Sparks, Donald L.

242

Low dissolved organic carbon input from fresh litter to deep mineral soils  

SciTech Connect

Dissolved organic carbon (DOC) leached from recent litter in the forest floor has been suggested to be an important source of C to the mineral soil of forest ecosystems. In order to determine the rate at which this flux of C occurs we have taken advantage of a local release of 14C at Oak Ridge National Laboratory Reservation, USA (latitude N 35 58'; longitude W 84 16'). Eight replicate 7x7 m plots were estab lished at four field sites on the reservation in an upland oak forest setting. Half of the plots were provided with 14C-enriched litter (?14C ?1000 ), and the other half with near-background litter (?14C ?220 ) over multiple years. Differences in the labeled leaf litter were used to quantify the movement of litter derived DOC through the soil profile. Soil solutions were collected over several years with tension lysimeters at 15 and 70 cm depth and measured for DOC concentration and 14C abundance. The net amount of DOC retained between 15 and 70 cm was 1.5-6 g m-2 y-1. There were significant effects of the litter additions on the 14C abundance in the DOC, but the net transport of 14C from the added litter was small. The difference in ?14C between the treatments with enriched and near-background litter was only about 130 at both depths, which is small compared with the difference in ?14C in the added litter. The primary source of DOC within the mineral soil must therefore have been either the Oe/Oa horizon or the organic matter in the mineral soil. Over a 2-year time frame, leaching of DOC from recent litter did not have a major impact on the C stock in the mineral soil below 15 cm in this ecosystem.

Froeberg, Mats J [ORNL; Jardine, Philip M [ORNL; Hanson, Paul J [ORNL; Swanston, Christopher [ORNL; Todd Jr, Donald E [ORNL; Phillips, Jana Randolph [ORNL; Garten Jr, Charles T [ORNL

2007-01-01

243

Effect of long-term application of biosolids on biological soil quality: C mineralization, and particulate and non-particulate soil organic C  

Technology Transfer Automated Retrieval System (TEKTRAN)

Assessment of C mineralization and fractions in biosolids-amended soil can increase our knowledge on the impact of biosolids application on soil nutrient availability and C sequestration. Soil samples were collected in 2006 from 20 strip-mined fields at Fulton County, Illinois, which received biosol...

244

Mineralization of 13C glucose in three fine textured soils from the western boreal forest  

NASA Astrophysics Data System (ADS)

Microbial composition is known, on similar soil types, to vary based on differing organic matter inputs, or stand composition. Dominating western upland boreal forests are fine textured soils with a canopy cover of aspen (Populus tremuloides Michx.), white spruce (Picea glauca (Moench) Voss or a mixture of the two. These soils then reflect different belowground biogeochemical processing of organic matter. Anthropogenic soils, formed from a combination of peat litter and fine textured mineral soil, are now also a part of the landscape in the western boreal. This study set out to determine if a simple labelled compound (13C glucose) was processed differently between soils from the two dominant stand types (aspen and spruce) and a soil from an anthropogenic (constructed) site. Results indicate that while all three soils rapidly incorporated, and respired, the labelled carbon each maintained a distinct microbial community structure (as evidenced by phospholipid fatty acid analysis) throughout the 300 hour experiment. Therefore soils with different microbial communities from varied organic matter inputs decompose organic carbon by different processes, even in the case of simple labile compounds.

Norris, C. E.; Quideau, S. A.; Macey, D. E.

2012-04-01

245

Factors driving carbon mineralization priming effect in a soil amended with different types of biochar  

NASA Astrophysics Data System (ADS)

The effect of biochar on soil carbon mineralization priming effect depends on the characteristics of the raw materials, production method and pyrolysis conditions. The goal of the present study is to evaluate the impact of three different types of biochar on soil CO2 emissions and in different physicochemical properties. For this purpose, a sandy-loam soil was amended with the three biochars (BI, BII and BIII) at a rate of 8 wt % and soil CO2 emissions were measured for 45 days. BI is produced from a mixed wood sieving's from wood chip production, BII from a mixture of paper sludge and wheat husks and BIII from sewage sludge. Cumulative CO2 emissions of biochars, soil and amended soil were well fit to a simple first-order kinetic model with correlation coefficients (r2) greater than 0.97. Results shown a negative priming effect in the soil after addition of BI and a positive priming effect in the case of soil amended with BII and BIII. These results can be related with different biochar properties such as ash content, volatile matter, fixed carbon, organic carbon oxidised with dichromate, soluble carbon and metal and phenolic substances content in addition to surface biochar properties. Three biochars increased the values of soil field capacity and wilting point, while effects over pH and cation exchange capacity were not observed.

Cely, P.; Tarquis, A. M.; Paz-Ferreiro, J.; Méndez, A.; Gascó, G.

2014-03-01

246

Kinetics and mechanisms of metal sorption at the soil mineral/water interface: The continuum from adsorption to  

E-print Network

GEOC 36 Kinetics and mechanisms of metal sorption at the soil mineral/water interface: The continuum from adsorption to precipitation Donald L. Sparks, Plant and Soil Sciences Department, Plant and Soil Sciences Department, University of Delaware, 531 S. College Avenue, Townsend Hall, Room 153

Sparks, Donald L.

247

WEATHERING OF IRONBEARING MINERALS IN SOILS AND SAPROLITE ON THE NORTH CAROLINA BLUE RIDGE FRONT: II. CLAY MINERALOGY  

Microsoft Academic Search

The mineralogy of the clay fraction was studied for soils and saprolite on two Blue Ridge Front mountain slopes. The clay fraction contained the weathering products of primary minerals in the mica gneiss and schist parent rocks. Gibbsite is most abundant in the saprolite and residual soil horizons, where only chemical weathering has been operable. In colluvial soil horizons, where

D. D. AMARASIRIWARDENA; S. W. BUOL

248

Cadmium, copper, lead, and zinc in secondary sulfate minerals in soils of mined areas in Southeast Spain  

Microsoft Academic Search

Soils in mined areas in southeastern Spain are commonly characterized by extreme acidity, high salinity, and metals. These present challenges to establish vegetation as a management option for these environmentally-problematic landscapes. We collected salt efflorescence and the corresponding soil materials to better understand the geochemical cycling of Cd, Cu, Pb, and Zn in soils of mined areas. Mineral composition was

D. M. Carmona; Á. Faz Cano; J. M. Arocena

2009-01-01

249

Ectomycorrhizal Influence on Particle Size, Surface Structure, Mineral Crystallinity, Functional Groups, and Elemental Composition of Soil Colloids from Different Soil Origins  

PubMed Central

Limited data are available on the ectomycorrhizae-induced changes in surface structure and composition of soil colloids, the most active portion in soil matrix, although such data may benefit the understanding of mycorrhizal-aided soil improvements. By using ectomycorrhizae (Gomphidius viscidus) and soil colloids from dark brown forest soil (a good loam) and saline-alkali soil (heavily degraded soil), we tried to approach the changes here. For the good loam either from the surface or deep soils, the fungus treatment induced physical absorption of covering materials on colloid surface with nonsignificant increases in soil particle size (P > 0.05). These increased the amount of variable functional groups (O–H stretching and bending, C–H stretching, C=O stretching, etc.) by 3–26% and the crystallinity of variable soil minerals (kaolinite, hydromica, and quartz) by 40–300%. However, the fungus treatment of saline-alkali soil obviously differed from the dark brown forest soil. There were 12–35% decreases in most functional groups, 15–55% decreases in crystallinity of most soil minerals but general increases in their grain size, and significant increases in soil particle size (P < 0.05). These different responses sharply decreased element ratios (C?:?O, C?:?N, and C?:?Si) in soil colloids from saline-alkali soil, moving them close to those of the good loam of dark brown forest soil. PMID:23766704

Li, Yanhong; Wang, Huimei; Wang, Wenjie; Yang, Lei; Zu, Yuangang

2013-01-01

250

From bulk soil to intracrystalline investigation of plant-mineral interaction  

NASA Astrophysics Data System (ADS)

Understanding the controls and feedbacks regulating the flux of matter between bio-geochemical reservoirs in forest ecosystems receives a fast growing interest for the last decades. A complex question is to understand how minerals and vegetation interact in soils to sustain life and, to a broader scope, how forest ecosystems may respond to human activity (acid rain, harvesting,...) and climate perturbations (temperature, precipitation,...). Many mineralogical and biogeochemical approaches have longtime been developed, and occasionally coupled, in order to investigate the mechanisms by which chemical elements either are exchanged between soil particles and solutions, or are transferred to plants or to deeper soil layers and finally leave the system. But the characterization of particular processes like the contribution of minor reactive minerals to plant nutrition and global fluxes or the mechanisms by which biology can modify reaction rates and balance the bioavailability of nutrients in response to environmental perturbation sometimes fails because of the lack of suitable tracers. Recent analytical and conceptual advances have opened new perspectives for the use of light "non traditional" stable isotopes. Showing a wild range of concentrations and isotopic compositions between biogeochemical reservoirs in forest ecosystem, boron has physico-chemical properties particularly relevant to the investigation of water/rock interactions even when evolving biologically-mediated reactions. In this study, we focused on the distribution of boron isotopes from intracrystalline to bulk soil scales. An overview of the boron distribution and annual fluxes in the soil-plant system clearly indicates that the vegetation cycling largely controls the mobility of boron. We also observe that the mineral and biological B pools have drastically different isotopic signature that makes the transfer of B between them very easy to follow. In particular, the podzol soil we analyzed shows a clear contribution of vegetation-recycled B to neoformed mineral phases, whereas B in minerals from the brown acidic soil rather indicates predominant mineral dissolution with little or even no B supply from the soil solution. If B isotopes thus proved their sensitivity to the soil forming conditions, a simple isotopic budget also demonstrates that the isotopic signature shown by the vegetation cannot result from fractionation during boron absorption. Analyses of B isotopes within intracrystalline phyllosilicate minerals further identify the interfoliar layers as the major source of B during plant nutrition. Additionally, weathering experiments placing phyllosilicates in contact with various alteration agents (protons, organic acid or siderophore) point to the role of the latters as likely responsible for the boron liberation from the phyllosilicate interfoliar layers. This scenario gives the phyllosilicate interfoliar layers a central function in the plant nutrition in context studied here of soils developed on granitic bedrocks. It also implies a very dynamic system in which plants and minerals can exchange matter over very short periods of time.

Lemarchand, D.; Voinot, A.; Chabaux, F.; Turpault, M.

2011-12-01

251

Sorption and Transport of Pharmaceutical chemicals in Organic- and Mineral-rich Soils  

NASA Astrophysics Data System (ADS)

Pharmaceutical, active ingredients in personal care products (PhACs), and their derivative compounds are increasingly ubiquitous in surface waters across the world. Sorption and transport of four relatively common PhACs (naproxen, ibuprofen, cetirizine, and triclosan) in different natural soils was measured. All of these compounds are relatively hydrophobic (log KOW>2) and have acid/base functional groups, including one compound that is zwitterionic (cetirizine.) The main goal of this study was to correlate organic matter (OM) and clay content in natural soils and sediment with sorption and degradation of PhACs and ultimately their potential for transport within the subsurface environment. A- and B-horizon soils were collected from four sub-regions within a pristine managed forested watershed near Charleston, SC, with no apparent sources of anthropogenic contamination. These four soil series had varying OM content (fOC) between 0.4-9%, clay mineral content between 6-20%, and soil pH between 4.5-6. The A-horizon soils had higher fOC and lower clay content than the B-horizon soils. Sorption isotherms measured from batch sorption experimental data indicated a non-linear sorption relationship in all A- and B-horizon soils - stronger sorption was observed at lower PhAC concentrations and lower sorption at higher concentrations. Three PhACs (naproxen, ibuprofen, and triclosan) sorbed more strongly with higher fOC A-horizon soils compared with the B-horizon soils. These results show that soil OM had a significant role in strongly binding these three PhACs, which had the highest KOW values. In contrast, cetirizine, which is predominantly positively charged at pH below 8, strongly sorbed to soils with higher clay mineral content and least strongly to higher fOC soils. All sorption isotherms fitted well to the Freundlich model. For naproxen, ibuprofen, and triclosan, there was a strong and positive linear correlation between the Freundlich adsorption constant, Kf, and fOC, again indicating that these PhACs preferentially partition into the soil OM. Such a correlation was absent for cetirizine. Breakthrough curves of PhACs measured in homogeneous packed soil columns indicated that PhAC transport was affected by chemical nonequilibrium processes depending on the soil and PhAC chemistry. The shape of the breakthrough curves indicated that there were two distinct sorption sites - OM and clay minerals - which influence nonequilibrium transport of these compounds. The retardation factor estimated using the distribution coefficient, Kd, measured from the sorption experiments was very similar to the measured value. While the sorption and transport data do not provide mechanistic information regarding the nature of PhAC interaction with chemical reactive components within geological materials, they do provide important information regarding potential fate of such compounds in the environment. The results also show the role that soil OM and mineral surfaces play in sequestering or transporting these chemicals. These insights have implications to the quality of the water resources in our communities.

Vulava, V. M.; Schwindaman, J.; Murphey, V.; Kuzma, S.; Cory, W.

2011-12-01

252

Influence of soil properties on the toxicity of TiO? nanoparticles on carbon mineralization and bacterial abundance.  

PubMed

Information regarding the impact of low concentration of engineered nanoparticles on soil microbial communities is currently limited and the importance of soil characteristics is often neglected in ecological risk assessment. To evaluate the impact of TiO2 nanoparticles (NPs) on soil microbial communities (measured on bacterial abundance and carbon mineralization activity), 6 agricultural soils exhibiting contrasted textures and organic matter contents were exposed for 90 days to a low environmentally relevant concentration or to an accidental spiking of TiO2-NPs (1 and 500mgkg(-1) dry soil, respectively) in microcosms. In most soils, TiO2-NPs did not impact the activity and abundance of microbial communities, except in the silty-clay soil (high OM) where C-mineralization was significantly lowered, even with the low NPs concentration. Our results suggest that TiO2-NPs toxicity does not depend on soil texture but likely on pH and OM content. We characterized TiO2-NPs aggregation and zeta potential in soil solutions, in order to explain the difference of TiO2-NPs effects on soil C-mineralization. Zeta potential and aggregation of TiO2-NPs in the silty-clay (high OM) soil solution lead to a lower stability of TiO2-NP-aggregates than in the other soils. Further experiments would be necessary to evaluate the relationship between TiO2-NPs stability and toxicity in the soil. PMID:25464292

Simonin, Marie; Guyonnet, Julien P; Martins, Jean M F; Ginot, Morgane; Richaume, Agnčs

2015-02-11

253

Linking Annual N2O Emission in Organic Soils to Mineral Nitrogen Input as Estimated by Heterotrophic Respiration and Soil C/N Ratio  

PubMed Central

Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted. PMID:24798347

Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

2014-01-01

254

Amino acid and N mineralization dynamics in heathland soil after long-term warming and repetitive drought  

NASA Astrophysics Data System (ADS)

Monomeric organic nitrogen (N) such as free amino acids (fAA) is an important resource for both plants and soil microorganisms and is, furthermore, a source of ammonium (NH4+) via microbial fAA mineralization. We compared gross fAA dynamics with gross N mineralization in a Dutch heathland soil using 15N labelling. A special focus was made on the effects of climate change factors warming and drought, followed by rewetting. Our aims were to: (1) compare fAA mineralization (NH4+ production from fAAs) with gross N mineralization, (2) assess gross fAA production rate (depolymerization) and turnover time relative to gross N mineralization rate, and (3) assess the effects of warming and drought on these rates. The turnover of fAA in the soil was ca. 3 h, which is almost two orders of magnitude faster than that of NH4+ (i.e. ca. 4 days). This suggests that fAAs is an extensively used resource by soil microorganisms. In control soil (i.e. no climatic treatment), the gross N mineralization rate (10 ± 2.9 ?g N g-1 day-1) was eight-times smaller than the summed gross fAA production rate of five AAs (alanine, valine, leucine, isoleucine, proline: 127.4 to 25.0 ?g N g-1 day-1). Gross fAA mineralization (3.4 ± 0.2 ?g N g-1 day-1) contributed by 34% to the gross N mineralization rate and is, thus, an important component of N mineralization. In the drought treatment, gross fAA production was reduced by 65% and gross fAA mineralization by 41%, compared to control. On the other hand, gross N mineralization was unaffected by drought, indicating an increased mineralization of other soil organic nitrogen (SON) components. Warming did not significantly affect N transformations, even though that gross fAA production was more than halved. Overall our results suggest that heathland soil exposed to droughts has a shift in the composition of the SON being mineralized. Furthermore, compared to agricultural soils, fAA mineralization was relatively less important in the investigated heathland. This indicates a more complex mineralization dynamics in semi-natural ecosystems.

Andresen, L. C.; Bode, S.; Tietema, A.; Boeckx, P.; Rütting, T.

2014-11-01

255

A new generator for mineral dust aerosol production from soil samples in the laboratory: GAMEL  

NASA Astrophysics Data System (ADS)

A generator has been developed for producing mineral dust from small samples of desert soils. The objective is to perform a thorough characterization of this new tool and show that it is adapted to the future laboratory studies of the relationship between aerosols and their parent soils. This work describes the principles and operating protocol of the so-called GAMEL generator. A first series of detailed measurements was performed with a Niger soil. During these tests the aerosol size-distribution was monitored in real time with an optical counter and the particles collected on filters submitted to XRF analysis. This allowed characterizing the emission in terms of time evolution of the aerosol production, repeatability of the experiment, and assessing the influence of such generation parameters as the mass of soil and the frequency and duration of the shaking. For this sandy Niger soil, the optimal generation parameters were found to be 1 g of soil agitated 9 min at the frequency of 500 cycles/min, but the effect of modifications of these recommended values have also been quantified. In terms of size-distribution as well as of elemental composition, the generated aerosol is found to compare well to the one collected in natural conditions during local events. For testing the capability of the GAMEL to produce aerosols from different soils, tests were also performed with 3 other soils from arid and semi-arid areas. Results showed that the GAMEL is able to produce aerosols whose characteristics encompass the regional variability of naturally produced mineral aerosols.

Lafon, Sandra; Alfaro, Stéphane C.; Chevaillier, Servanne; Rajot, Jean Louis

2014-12-01

256

Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types.  

PubMed

In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient-impoverished soils, which are particularly low in phosphorus (P). Despite recognition of the campos rupestres as a global biodiversity hotspot, little is known about the diversity of P-acquisition strategies and other aspects of plant mineral nutrition in this region. To explore nutrient-acquisition strategies and assess aspects of plant P nutrition, we measured leaf P and nitrogen (N) concentrations, characterized root morphology and determined the percentage arbuscular mycorrhizal (AM) colonization of 50 dominant species in six communities, representing a gradient of soil P availability. Leaf manganese (Mn) concentration was measured as a proxy for carboxylate-releasing strategies. Communities on the most P-impoverished soils had the highest proportion of nonmycorrhizal (NM) species, the lowest percentage of mycorrhizal colonization, and the greatest diversity of root specializations. The large spectrum of leaf P concentration and variation in root morphologies show high functional diversity for nutritional strategies. Higher leaf Mn concentrations were observed in NM compared with AM species, indicating that carboxylate-releasing P-mobilizing strategies are likely to be present in NM species. The soils of the campos rupestres are similar to the most P-impoverished soils in the world. The prevalence of NM strategies indicates a strong global functional convergence in plant mineral nutrition strategies among severely P-impoverished ecosystems. PMID:25425486

Oliveira, Rafael S; Galvăo, Hugo C; de Campos, Mariana C R; Eller, Cleiton B; Pearse, Stuart J; Lambers, Hans

2015-02-01

257

Pathogenic prion protein is degraded by a manganese oxide mineral found in soils  

USGS Publications Warehouse

Prions, the aetiological agents of transmissible spongiform encephalopathies, exhibit extreme resistance to degradation. Soil can retain prion infectivity in the environment for years. Reactive soil components may, however, contribute to the inactivation of prions in soil. Members of the birnessite family of manganese oxides (MnO2) rank among the strongest natural oxidants in soils. Here, we report the abiotic degradation of pathogenic prion protein (PrPTSE) by a synthetic analogue of naturally occurring birnessite minerals. Aqueous MnO2 suspensions degraded the PrPTSE as evidenced by decreased immunoreactivity and diminished ability to seed protein misfolding cyclic amplification reactions. Birnessite-mediated PrPTSE degradation increased as a solution's pH decreased, consistent with the pH-dependence of the redox potential of MnO2. Exposure to 5.6 mg MnO2 ml-1 (PrPTSE:MnO2=1 : 110) decreased PrPTSE levels by ???4 orders of magnitude. Manganese oxides may contribute to prion degradation in soil environments rich in these minerals. ?? 2009 SGM.

Russo, F.; Johnson, C.J.; McKenzie, D.; Aiken, J.M.; Pedersen, J.A.

2009-01-01

258

Screening of white-rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil  

Microsoft Academic Search

Soil samples from an agricultural field contaminated with 10 ppm14C-benz(a)anthracene in glass tubes were brought into contact with cultures of wood-rotting fungi, precultivated on wheat straw substrate.\\u000a Forty-five strains of white-rot fungi and four brown-rot fungi were tested for their ability to colonize the soil and to mineralize14C-benz(a)anthracene to14CO2 within a 20-week incubation time. Twenty-two white-rot fungi and all brown-rot

R. Martens; F. Zadrazil

1998-01-01

259

Geochemical soil sampling for deeply-buried mineralized breccia pipes, northwestern Arizona  

USGS Publications Warehouse

Thousands of solution-collapse breccia pipes crop out in the canyons and on the plateaus of northwestern Arizona; some host high-grade uranium deposits. The mineralized pipes are enriched in Ag, As, Ba, Co, Cu, Mo, Ni, Pb, Sb, Se, V and Zn. These breccia pipes formed as sedimentary strata collapsed into solution caverns within the underlying Mississippian Redwall Limestone. A typical pipe is approximately 100 m (300 ft) in diameter and extends upward from the Redwall Limestone as much as 1000 m (3000 ft). Unmineralized gypsum and limestone collapses rooted in the Lower Permian Kaibab Limestone or Toroweap Formation also occur throughout this area. Hence, development of geochemical tools that can distinguish these unmineralized collapse structures, as well as unmineralized breccia pipes, from mineralized breccia pipes could significantly reduce drilling costs for these orebodies commonly buried 300-360 m (1000-1200 ft) below the plateau surface. Design and interpretation of soil sampling surveys over breccia pipes are plagued with several complications. (1) The plateau-capping Kaibab Limestone and Moenkopi Formation are made up of diverse lithologies. Thus, because different breccia pipes are capped by different lithologies, each pipe needs to be treated as a separate geochemical survey with its own background samples. (2) Ascertaining true background is difficult because of uncertainties in locations of poorly-exposed collapse cones and ring fracture zones that surround the pipes. Soil geochemical surveys were completed on 50 collapse structures, three of which are known mineralized breccia pipes. Each collapse structure was treated as an independent geochemical survey. Geochemical data from each collapse feature were plotted on single-element geochemical maps and processed by multivariate factor analysis. To contrast the results between geochemical surveys (collapse structures), a means of quantifying the anomalousness of elements at each site was developed. This degree of anomalousness, named the "correlation value", was used to rank collapse features by their potential to overlie a deeply-buried mineralized breccia pipe. Soil geochemical results from the three mineralized breccia pipes (the only three of the 50 that had previously been drilled) show that: (1) Soils above the SBF pipe contain significant enrichment of Ag, Al, As, Ba, Ga, K, La, Mo, Nd, Ni, Pb, Sc, Th, U and Zn, and depletion in Ca, Mg and Sr, in contrast to soils outside the topographic and structural rim; (2) Soils over the inner treeless zone of the Canyon pipe show Mo and Pb enrichment anf As and Ga depletion, in contrast to soils from the surrounding forest; and (3) The soil survey of the Mohawk Canyon pipe was a failure because of the rocky terrane and lack of a B soil horizon, or because the pipe plunges. At least 11 of the 47 other collapse structures studied contain anomalous soil enrichments similar to the SBF uranium ore-bearing pipe, and thus have good potential as exploration targets for uranium. One of these 11, #1102, does contain surface mineralized rock. These surveys suggest that soil geochemical sampling is a useful tool for the recognition of many collapse structures with underlying ore-bearing breccia pipes. ?? 1994.

Wenrich, K.J.; Aumente-Modreski, R. M.

1994-01-01

260

Rebuilding Peatlands on Mineral Soils Utilizing Lessons Learned from Past Peatland Initiation  

NASA Astrophysics Data System (ADS)

Recent surveys of peatland initiation during the past 10,000 years in northeastern Alberta have revealed that nearly all peatlands, regardless of whether they are currently bogs and fens, were initiated by paludification, or swamping of upland soils. Terrestrialization (or infilling of water bodies) rarely if ever was involved in the initiation of peatlands across the mid boreal of Canada. Although the importance of paludification as a significant natural process in the initiation of peatland ecosystems has long been known by peatland ecologists, this knowledge has not been transferred to peatland and wetland restoration methodologies. We initiated this study to determine if wetland structure and function could be re-established on mineral gas/oil pads that were originally placed on organic soils. We have attempted to emulate the paludification process by removing mineral material to near the surrounding peatland natural water level and introducing a suite of wetland plants to the rewetted mineral soils. The experimental design comprised two well sites at the Shell Carmon Creek in situ plant near Peace River, Alberta. We placed 292 2 x 2 m plots over a series of fertilizer, water level, cultivation, and amendment treatments. In this presentation, we address four questions: 1) Will locally available peatland vascular plant species establish on these wet, compacted, mineral soils? If so; 2) Are species responses affected by water level, amendment, cultivation, and fertilization treatments, 3) Are invasive weeds a concern in these re-establishment trials, and 4) Will the surrounding bog water chemistry have an effect on water in contact with the mineral soils? Results after three growing season are: 1) All three species originally planted (a sedge, a willow, and tamarack) have successfully established at both well sites; 2) Carex aquatilis has performed well and responses to differing water levels and cultivation are not significant; 3) The plant responses to amendments are, in general, not different from the control plots; 4) The abundance of weeds is significantly different among some of the amendment types; and 5) Water chemistry (pH and electrical conductivity) of the ditches is affected by the surrounding bog waters. In addition, a fifth question was asked: Can Carex aquatilis establish by seed and if so, do C. aquatilis seeds require a peat amendment? In May 2009, three blank 4 m2 plots were selected on each of the experimental well site reclamations. Half of each plot was covered with approximately 4 cm of peat and the other half remained a mineral soil substrate. Each plot half was divided into 2 halves (1 m2); one that had approximately 600 Carex aquatilis seeds scattered across it and one that had no seeds added. Results from reassessment in July 2010 showed that subplots with added seeds had more seedlings than the subplots without added seeds. There was no difference between the number of seedlings between the peat and mineral soil subplots on either site, but on one of the sites, the subplots with peat had much higher percent cover of weeds than the mineral soil subplots.

Vitt, D. H.; Koropchak, S. C.; Xu, B.; Bloise, R.; Wieder, R.; Mowbray, S.

2010-12-01

261

The extent of carbon mineralization in boreal soils controls compositional changes  

NASA Astrophysics Data System (ADS)

Almost twenty percent of global carbon stocks in vegetation and soil are found in boreal soils, making them the largest terrestrial carbon storehouse in the world. Yet, despite their importance in the global carbon budget, very little is known about the exact nature and decomposition pathways of organic matter in these soils. The overall objective of this study was to examine the effects of vegetation and disturbance (fire and harvest) on: 1) soil organic matter composition, and 2) decomposition-induced changes in composition from a range of representative boreal forest and peatland ecosystems. Forest floor and peat samples (0-10 cm) were obtained from 17 sites along an east-west transect from New Brunswick to British Columbia, Canada. Carbon mineralization rates were measured during a 1-year laboratory incubation at 10 °C. Carbon chemistry in pre- and post-incubation samples was characterized by solid-state ramped-cross-polarization (RAMP-CP) 13C nuclear magnetic resonance (NMR). The percentage of carbon mineralized during incubation ranged from 1 to 24%, and corresponded to significant increases in aromatic, phenolic, and carbonyl carbons. As expected, significant differences in carbon composition pre-incubation were found among vegetation types regardless of disturbance and sampling location. May be more interestingly, comparable differences among samples persisted post-incubation. In addition, decomposition-induced changes in carbon chemistry significantly differed among vegetation types. Samples from Jack pine and Douglas fir stands, which experienced the highest carbon mineralization, also showed the greatest increase in aromatic, phenolic, and carbonyl carbons. Overall, changes in carbon chemistry were significantly correlated to the percentage of carbon mineralized; i.e., the extent of decomposition that the samples underwent.

Mercier Quideau, S.; Oh, S.; Paré, D.

2013-12-01

262

Frontiers in metal sorption\\/precipitation mechanisms on soil mineral surfaces  

Microsoft Academic Search

Spectroscopic studies provide evidence that inorganic contaminants may be incorporated into precipitates at the surface of soil and sediment minerals.Surface precipitates may form via several mechanisms that are dependent on the unique characteristics of the interfacial region between solid and solution.In general, surface complexation models (SCMs)capture most of the salient features of the interfacial region.However,current SCMs fail to capture the

Robert G. Ford; andreas C. Scheinost; Donald L. Sparks

2001-01-01

263

CONCENTRACIÓN E INTERRELACIÓN MINERAL EN SUELO, FORRAJE Y SUERO DE OVINOS DURANTE DOS ÉPOCAS EN EL VALLE DE TOLUCA, MÉXICO MINERAL CONCENTRATION AND INTERRELATIONSHIP IN SOIL, FORAGE AND BLOOD SERUM OF SHEEP DURING TWO SEASONS IN THE TOLUCA VALLEY, MÉXICO  

Microsoft Academic Search

To identify mineral imbalances and their interrelationships, a sampling was made of soil, forage, water and blood of lambs and ewes, in June and October 1991, in six sheep production units (PU) of the valley of Toluca, México. The mineral content in the soil and forage was affected (p?0.05) by the PU, time period and their interaction. The soils were

Ignacio A. Domínguez-Var; Maximino Huerta-Bravo; Esta Toluca

264

Effect of potassium salts and distillery effluent on carbon mineralization in soil.  

PubMed

Distillery effluent, a rich source of potassium, is used for irrigation at many places in the world. A laboratory experiment was conducted to study the influence of potassium salts present in post-methanation distillery effluent (PME) along with two other salts, KCl and K2SO4, on mineralization of carbon in soil. PME oxidized with H2O2, raw PME, KCl and K2SO4 solutions containing K equivalent to 10%, 20%, 40% and 100% of K present in PME were added to the soil separately, maintaining four replications for each treatment and control. Addition of salts up to a certain concentration stimulated C mineralization but a decline was noticed at higher concentrations. All the levels of salts caused higher CO2 evolution than the control suggesting that the presence of K salts enhanced the microbial activity resulting in increased CO2 evolution. The influence of K2SO4 was significantly higher than KCl in stimulating C mineralization in soil. Oxidized effluent had a higher stimulating effect than inorganic salts, showing the influence of other salts accompanying K in the PME. Raw PME, which contained excess organic C, increased CO2 evolution even at the highest salt level (100% PME) signifying the effect of added C on alleviating the salt stress on microbial activity. PMID:12094803

Chandra, Suresh; Joshi, H C; Pathak, H; Jain, M C; Kalra, N

2002-07-01

265

Kinetic study for copper adsorption onto soil minerals in the absence and presence of humic acid.  

PubMed

Equilibrium and kinetics of Cu(2+) adsorption onto soil minerals (kaolinite and hematite) in the absence and presence of humic acid have been investigated under various conditions. The influences of ionic strength, pH and solution cations on the rate of the adsorption have been studied. The rate and the amount of adsorbed Cu(2+) onto soil minerals in the absence or the presence of humic acid increased with decreasing ionic strength, increasing pH and in the presence of the background electrolyte K(+) rather than Ca(2+). Humic acid enhanced the rate and the amount of adsorbed Cu(2+) onto soil minerals. The adsorption equilibrium data showed that adsorption behavior of Cu(2+) could be described more reasonably by Langmiur adsorption isotherm than Freundlich isotherm in the absence or presence of humic acid. Pseudo first and pseudo second order models were used to evaluate the kinetic data and the rate constants. The results indicated that the adsorption of Cu(2+) onto hematite and kaolinite in the absence and presence of humic acid is more conforming to pseudo second order kinetics. PMID:24268171

Komy, Zanaty R; Shaker, Ali M; Heggy, Said E M; El-Sayed, Mohamed E A

2014-03-01

266

Formation of nitrous oxide (N2O) hydrate in soil mineral suspensions with electrolytes  

NASA Astrophysics Data System (ADS)

We have identified the effects of solid surface (illite, nontronite, sphalerite, kaolinite) and electrolyte (NaCl, KCl, CaCl2, MgCl2) types on the formation of N2O hydrate in this study. The hydrate formation experiments were conducted at hydrate forming condition (273.3K and 30 bar) by injecting N2O gas into the soil mineral suspensions with and without electrolytes in a 50mL pressurized vessel. The formation of N2O hydrate in aqueous electrolyte solutions was slower than that in deionized water. Ion charge and size were significant factors affecting N2O hydrate formation kinetic in electrolytes solutions. The addition of soil mineral suspensions accelerated the formation of N2O hydrate in the electrolyte solutions. Surface area and ionic strength of soil minerals highly influenced on formation kinetic of N2O hydrate. The hydrate formation times in the solid suspensions without electrolytes were very similar to that in the deionized water. The results obtained from this research could be indirectly applied to the fate of N2O sequestered into geological formations as well as its storage as a form of N2O hydrate.

Kyung, D.; Enkh-Amgalan, T.; Lee, W.

2013-05-01

267

Measurement of Microbially Induced Transformation of Magnetic Iron Minerals in Soils Allows Localization of Hydrocarbon Contamination  

NASA Astrophysics Data System (ADS)

Soil contamination by crude oil and other hydrocarbons represents a severe environmental problem, but often the location and extent of contamination is not known. Hydrocarbons, or their degradation products, can stimulate iron-metabolizing microorganisms, leading to the formation or dissolution of (magnetic) iron minerals and an associated change of soil magnetic properties. Therefore, the screening of soil magnetic properties has the potential to serve as an efficient and inexpensive tool to localize such contaminations. In order to identify the influence of different biogeochemical factors on the microbially influenced changes of magnetic iron minerals after hydrocarbon contamination, oil spills were simulated in laboratory batch experiments. The parameters tested in these experiments included soils with different bedrocks, type and amount of added hydrocarbon, and microbiological parameters (sterile and autochthonous microorganisms). In order to follow the changes of the soil magnetic properties, the magnetic susceptibility of the samples was measured weekly. First results show that changes in the magnetic mineralogy are caused by microbial activity, as sterile samples showed no changes. In the microbially active set-ups, the magnetic susceptibility increased or decreased up to 10% in comparison to the initial magnetic susceptibility within a few weeks. In one iron-rich soil even a decrease of the magnetic susceptibility of ~40% was observed. Although the amount and type of hydrocarbons did not effect the changes in magnetic susceptibility, DGGE fingerprints revealed that they influenced microbial communities. These results show that the magnetic susceptibility changes in the presence of hydrocarbons and that this change is microbially induced. This suggests that the screening of soil magnetic properties can be applied to localize and assess hydrocarbon contamination. In order to understand the biogeochemical processes better, the change of the iron mineralogy will be followed by Moessbauer spectroscopy in future batch experiments. Furthermore, iron-metabolizing microorganisms are currently isolated and identified.

Kappler, A.; Porsch, K.; Rijal, M.; Appel, E.

2007-12-01

268

Pristine soils mineralize 3-chlorobenzoate and 2,4-dichlorophenoxyacetate via different microbial populations.  

PubMed Central

Biodegradation of two chlorinated aromatic compounds was found to be a common capability of the microorganisms found in the soils of undisturbed, pristine ecosystems. We used 2,4-dichlorophenoxyacetate (2,4-D) and 3-chlorobenzoate (3CBA) as enrichment substrates to compare populations of degrading bacteria from six different regions making up two ecosystems. We collected soil samples from four Mediterranean (California, central Chile, the Cape region of South Africa, and southwestern Australia) and two boreal (northern Saskatchewan and northwestern Russia) ecosystems that had no direct exposure to pesticides or to human disturbance. Between 96 and 120 samples from each of the six regions were incubated with 50 ppm of [U-14C]2,4-D or [U-14C]3CBA. Soils from all regions samples mineralized both 2,4-D and 3CBA, but 3CBA was mineralized without a lag period, while 2,4-D was generally not mineralized until the second week. 3CBA degradative capabilities were more evenly distributed spatially than those for 2,4-D. The degradative capabilities of the soils were readily transferred to fresh liquid medium. 3CBA degraders were easily isolated from most soils. We recovered 610 strains that could release carbon dioxide from ring-labeled 3CBA. Of these, 144 strains released chloride and degraded over 80% of 1 mM 3CBA in 3 weeks or less. In contrast, only five 2,4-D degraders could be isolated, although a variety of methods were used in an attempt to culture the degraders. The differences in the distribution and culturability of the bacteria responsible for 3CBA and 2,4-D degradation in these ecosystems suggest that the two substrates are degraded by different populations. We also describe a 14C-based microtiter plate method that allows efficient screening of a large number of samples for biodegradation activity. PMID:8919776

Fulthorpe, R R; Rhodes, A N; Tiedje, J M

1996-01-01

269

Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils  

Microsoft Academic Search

Many natural and agricultural ecosystems are characterized by sub-optimal availability of mineral nutrients and ion toxicities. Mineral stresses are likely to have important, complex, and poorly understood interactions with global climate change variables. For example, most terrestrial vegetation is supported by weathered soils with some combination of low P, low Ca, Al toxicity, and Mn toxicity. Each of these stresses

Jonathan P. Lynch; Samuel B. St. Clair

2004-01-01

270

Use of principal component analysis to assess factors controlling net N mineralization in deciduous and coniferous forest soils  

Microsoft Academic Search

Net N mineralization was studied in three different forest sites (Belgium): a mixed deciduous forest with oak (Quercus robur L. and Quercus rubra L.) and birch (Betula pendula Roth) as dominant species, a deciduous stand of silver birch (Betula pendula) and a coniferous stand of Corsican pine (Pinus nigra ssp. Laricio). The organic (F + H) layer and mineral soil

Hilde Vervaet; Bernard Massart; Pascal Boeckx; Oswald Van Cleemput; Georges Hofman

2002-01-01

271

The Role of Elevated PCO2 on Selenate and Selenite Sorption to and Desorption from Calcareous Soils and Carbonate Minerals  

NASA Astrophysics Data System (ADS)

Selenium is a minor component of highly weatherable rock formations in the Uintah Basin Utah from which soils are formed. Activities such as soil/gas extraction and irrigated agriculture may be accelerating the mobilization of Se in the soils, which eventually reach the Pariette Wetlands. Since the wetlands are a stopping point for migratory water fowl, the elevated levels of Se detected in the sediments and waters are of concern. Understanding soil mechanisms related to selenium transport through soils is critical to managing the contamination. In microbially active agricultural soils concentrations of CO2 in the soil air may be 10 to 100 times higher than at the soil surface. CO2 dissolved in the soil solution forms numerous carbonate species that may enhance or compete with selenate and selenite sorption/desorption from soil. Thus we investigated the partitioning of Se between the immobile solid phase and mobile solution phase in six calcareous soils and three carbonate minerals by the batch sorption method at ambient and elevated PCO2. We hypothesized that in these highly buffered soils competition from carbonate species would result in decreased Se sorption. Results indicate that at elevated PCO2 selenate and selenite sorption increased in all soils and minerals tested relative to sorption at ambient levels. Minimal desorption occurred with a dilute electrolyte solution, but could be induced in the presence of phosphate. This finding suggests that actively respiring soils mitigate Se transport to ground or surface waters.

Jacobson, A. R.; Wen, L.

2013-12-01

272

Soil Fauna Alter the Effects of Litter Composition on Nitrogen Cycling in a Mineral Soil  

EPA Science Inventory

Plant chemical composition and the soil community are known to influence litter and soil organic matter decomposition. Although these two factors are likely to interact, their mechanisms and outcomes of interaction are not well understood. Studies of their interactive effects are...

273

Effects of belowground litter addition, increased precipitation and clipping on soil carbon and nitrogen mineralization in a temperate steppe  

NASA Astrophysics Data System (ADS)

Soil carbon (C) and nitrogen (N) cycling are sensitive to changes in environmental factors and play critical roles in the responses of terrestrial ecosystems to natural and anthropogenic perturbations. This study was conducted to quantify the effects of belowground particulate litter (BPL) addition, increased precipitation and their interactions on soil C and N mineralization in two adjacent sites where belowground photosynthate allocation was manipulated through vegetation clipping in a temperate steppe of northeastern China from 2010 to 2011. The results show that BPL addition significantly increase soil C mineralization rate (CMR) and net N mineralization rate (NMR). Although increased precipitation-induced enhancement of soil CMR essentially ceased after the first year, stimulation of soil NMR and net nitrification rate continued into the second year. Clipping only marginally decreased soil CMR and NMR during the two years. There were significant synergistic interactions between BPL addition (and increased precipitation) and clipping on soil CMR and NMR, likely to reflect shifts in soil microbial community structure and a decrease in arbuscular mycorrhizal fungi biomass due to the reduction of belowground photosynthate allocation. These results highlight the importance of plants in mediating the responses of soil C and N mineralization to potentially increased BPL and precipitation by controlling belowground photosynthate allocation in the temperate steppe.

Ma, L.; Guo, C.; Xin, X.; Yuan, S.; Wang, R.

2013-11-01

274

Immediate effects of prescribed burning on mineral soil nitrogen in ponderosa pine of New Mexico  

SciTech Connect

Three 0.1-ha ponderosa pine (Pinus ponderosa Dougl. ex Laws) sites were burned in the fall of 1981. The burn was mainly a ground fire. Burn intensity was 980, 1760, and 2280 kJ s/sup -1/ m/sup -1/ on sites 1, 2, and 3, respectively. We analyzed the mineral soils on each of these sites for total N, NO/sub 2//sup -/ + NO/sub 3//sup -/-N and NH/sub 4//sup +/-N prior to prescribed burning, 1 d postburn, and 30 d postburn. On the most intense burn, NH/sub 4//sup +/-N levels increased threefold from preburn (10 ppm) to 1 d postburn (32 ppm), but declined somewhat 30 d following the burn (24 ppm). Concentrations of NO/sub 2//sup -/ + NO/sub 3//sup -/-N on site 3 rose from 1 ppm preburn and 1 d postburn to 5 ppm 30 d postburn. There were no significant differences in soil total N after burning. Immediate postburn inorganic N values for ponderosa pine mineral soils have not been previously reported in the literature. It is important to investigate burned soils immediately after burning to better understand sequential processes involved in postfire inorganic N dynamics.

Kovacic, D.A.; Swift, D.M.; Ellis, J.E.; Hakonson, T.E.

1986-01-01

275

Dynamic Response of Forest Litter and Mineral Soil to Pulsed Water Additions  

NASA Astrophysics Data System (ADS)

Quantifying microbial responses to drought and moisture pulses are essential to understanding terrestrial C cycling in a changing climate. Using laboratory incubations we sought to determine if water added in multiple consecutive pulses to pine forest litter and mineral soil resulted in different C dynamics than water added in a single event. Soils were collected from two sites on Santa Cruz Island located in Channel Islands National Park 40 km southwest of Santa Barbara, CA. Both sites are dominated by Bishop pine (Pinus muricata) mixed with chaparral shrubs, with a ~3-10 cm thick litter layer. The sites differ, however, in the frequency and amount of precipitation received. Following water additions as either one or three pulses (equal total volume) we measured respiration, dissolved organic carbon (DOC) and microbial biomass carbon (MBC) over twenty-two days after the first water addition. Three days after the initial water addition in the litter samples the DOC and MBC for both treatments were not different; however, the temporal dynamics varied by site with the high precipitation site responding more quickly and with a higher magnitude than the low precipitation site. In both the litter and mineral soil respiration rate correlated with soil moisture (r2=0.91 and 0.84 respectively). Our results suggest that the water history and other site-specific characteristics were more important in the response to pulsed water additions than how the water was introduced to the system.

Boot, C. M.; Schaeffer, S. M.; Carbone, M. S.; Still, C. J.; Schimel, J.

2010-12-01

276

Maxwell-Wagner relaxation in common minerals and a desert soil at low water contents  

NASA Astrophysics Data System (ADS)

Penetration of 100- to 1000-MHz ground-penetrating radar (GPR) signals is virtually non-existent in arid and desert soils despite their low water content and moderate conductivity, the latter of which cannot explain the loss. Under the hypothesis that strong dielectric relaxation supplements DC conductivity to cause high intrinsic attenuation rates, we compared the complex permittivity of a desert soil sample with that of controlled samples of quartz, feldspars, calcite, coarse and crystallite gypsum, kaolinite and montmorillonite. The soil had 80% quartz, 10% feldspars and 10% gypsum by weight, with the latter composed of crystallites and crustations. All samples had 4-7% volumetric water content. We measured permittivity most accurately from 1.6 MHz to 4 GHz with Fourier Transform time domain reflectometry, and used grain sizes less than 53 ?m. All samples show low-frequency dispersion with the soil, gypsum crystallites and montmorillonite having the strongest below 100 MHz, the highest attenuation rates, and conductivity values unable to account for these rates. The soil rate exceeded 100 dB m- 1 by 1 GHz. Through modeling we find that a broadened relaxation centered from 2 to 16 MHz sufficiently supplements losses caused by conductivity and free water relaxation to account for loss rates in all our samples, and accounts for low-frequency dispersion below 1 GHz. We interpret the relaxation to be of the Maxwell-Wagner (MW) type because of the 2- to 16-MHz values, relaxation broadening, the lack of salt, clay and magnetic minerals, and insufficient surface area to support adsorbed water. The likely MW dipolar soil inclusions within the predominantly quartz matrix were gypsum particles coated with water containing ions dissolved from the gypsum, and the conducting water layers themselves. The inclusions for the monomineralic soils were likely ionized partially or completely water-filled interstices, and partially filled galleries for the montmorillonite. The low water content may be necessary to help isolate these inclusions. For our common, low conductivity minerals, the MW contributions to attenuation rates are significant above 10 MHz, whereas they are significant above about 100 MHz for the more conductive minerals and soil.

Arcone, Steven A.; Boitnott, Ginger E.

2012-06-01

277

Iron isotope fractionation in oxic soils by mineral weathering and podzolization  

NASA Astrophysics Data System (ADS)

Stable iron isotope ratios in three soils (two Podzols and one Cambisol) were measured by MC-ICPMS to investigate iron isotope fractionation during pedogenic iron transformation and translocation processes under oxic conditions. Podzolization is a soil forming process in which iron oxides are dissolved and iron is translocated and enriched in the subsoil under the influence of organic ligands. The Cambisol was studied for comparison, representing a soil formed by chemical weathering without significant translocation of iron. A three-step sequential extraction procedure was used to separate operationally-defined iron mineral pools (i.e., poorly-crystalline iron oxides, crystalline iron oxides, silicate-bound iron) from the soil samples. Iron isotope ratios of total soil digests were compared with those of the separated iron mineral pools. Mass balance calculations demonstrated excellent agreement between results of sequential extractions and total soil digestions. Systematic variations in the iron isotope signature were found in the Podzol profiles. An enrichment of light iron isotopes of about 0.6‰ in ? 57Fe was found in total soil digests of the illuvial Bh horizons which can be explained by preferential translocation of light iron isotopes. The separated iron mineral pools revealed a wide range of ? 57Fe values spanning more than 3‰ in the Podzol profiles. Strong enrichments of heavy iron isotopes in silicate-bound iron constituting the residue of weathering processes, indicated the preferential transformation of light iron isotopes during weathering. Iron isotope fractionation during podzolization is probably linked to the ligand-controlled iron translocation processes. Comparison of iron isotope data from eluvial and illuvial horizons of the Podzol profiles revealed that some iron must have been leached out of the profile. However, uncertainties in the initial iron content and iron isotopic composition of the parent materials prevented thorough mass balance calculations of iron fluxes within the profiles. In contrast to the Podzol profiles, the Cambisol profile displayed uniform ? 57Fe values across soil depth and showed only a small enrichment of light iron isotopes of about 0.4‰ in the poorly-crystalline iron oxide pool extracted by 0.5 M HCl. This work demonstrates that significant iron isotope fractionations can occur during pedogenesis in oxic environments under the influence of organic ligands. Our findings provide new insights into fractionation mechanisms of iron isotopes and will help in the development of stable iron isotopes as tracers for biogeochemical iron cycling in nature.

Wiederhold, Jan G.; Teutsch, Nadya; Kraemer, Stephan M.; Halliday, Alex N.; Kretzschmar, Ruben

2007-12-01

278

Bioremediation of experimental petroleum spills on mineral soils in the Vestfold Hills, Antarctica  

SciTech Connect

The effect of nutrient and water enhancement on the biodegradation of petroleum was tested in Antarctic mineral soils. Nitrogen, phosphorus and potassium were applied in solution, with or without gum xanthan or plastic covers, to sites artificially contaminated with distillate. The effectiveness of these procedures was assessed by measuring changes in total petroleum hydrocarbons; heptadecane/pristane and octadecane/phytane ratios; in concentrations of major hydrocarbon components and in microbial numbers and activity. Significantly lower hydrocarbon concentration were recorded after one year in soils treated with fertilizer solutions, but only in the surface 3 cm. These soils also showed lowered heptadecane/pristane and octadecane/phytane ratios and had the highest levels of microbial activity relative to other plots. Soils treated with gum xanthan or covered with plastic had the highest residual hydrocarbon levels. Both treatments inhibited evaporative loss of hydrocarbon, and there were indications that gum xanthan was utilized by the microbiota as an alternative carbon source to distillate. Higher temperatures were recorded under the plastic but no stimulation of biodegradation was detected. Estimated numbers of metabolically active bacteria were in the range 10[sup 7] to 10[sup 8] g[sup [minus]1] dry weight of soil, with an estimated biomass of 0.03 to 0.26 mg g[sup [minus]1] soil. Estimated numbers of amoebae were in the range 10[sup 6] 10[sup 7] g[sup [minus]1] soil (biomass of 2 to 4 mg g[sup [minus]1]). The highest populations were recorded in fertilized, contaminated soils, the only soils where petroleum degradation was demonstrated. 23 refs., 1 fig., 4 tabs.

Kerry, E. (Univ. of Tasmania (Australia))

1993-01-01

279

Response of maize yield, nitrate leaching, and soil nitrogen to pig slurry combined with mineral nitrogen.  

PubMed

The application of pig (Sus scrofa) slurry (PS) is a common fertilization practice that may affect nitrate concentrations and loads in drainage and receiving water bodies. To protect water resources, many agricultural areas are being designated as vulnerable to nitrate contamination, and there is a need for scientific data aiming at reducing nitrate exports from these vulnerable zones by optimizing N fertilization strategies. The objective of this work, conducted in drainage lysimeters in a 4-yr monoculture maize (Zea mays L.) crop, is to assess the effects of four fertilization strategies combining PS (30, 60, 90, and 120 t ha(-1)) and mineral N on yield, changes in soil mineral N, and concentration and mass of nitrate in drainage waters. Grain yield was not affected by treatments in the four experimental years, nor was the soil mineral N at the end of the experiment. Effects of fertilization strategies on nitrate concentration and mass in drainage waters were detected only after 3 yr of repeated PS applications. The mass of nitrate leached over the 4 yr was positively related to the total amount of N applied, either organic or mineral. In year 2003, precipitation in spring reduced N availability for the crop in treatments with rates > or = 60 t PS ha(-1). The N-budget revealed that the transport pathways for 25% of N inputs to the system are unknown. The presowing application of pig slurry at 30 t ha(-1) complemented with mineral N at side-dressing, was the most efficient from an environmental standpoint (4-yr average of 145 kg grain yield kg(-1) N leached). PMID:20176841

Yagüe, María R; Quílez, Dolores

2010-01-01

280

Beryllium geochemistry in soils: Evaluation of 10Be/9Be ratios in authigenic minerals as a basis for age models  

USGS Publications Warehouse

Soils contain a diverse and complex set of chemicals and minerals. Being an 'open system', both in the chemical and nuclear sense, soils have defied quantitative nuclear dating. However, based on the published studies of the cosmogenic atmospheric 10Be in soils, its relatively long half-life (1.5 Ma), and the fact that 10Be gets quickly incorporated in most soil minerals, this radionuclide appears to be potentially the most useful for soil dating. We therefore studied the natural variations in the specific activities of 10Be with respect to the isotope 9Be in mineral phases in eight profiles of diverse soils from temperate to tropical climatic regimes and evaluated the implications of the data for determining the time of formation of soil minerals, following an earlier suggestion [Lal et al., 1991. Development of cosmogenic nuclear methods for the study of soil erosion and formation rates. Current Sci. 61, 636-639.]. We find that the 10Be/9Be ratios in both bulk soils and in the authigenic mineral phases are confined within a narrower range than in 10Be concentrations. Also, the highest 10Be/9Be ratios in authigenic minerals are observed at the soil-rock interface as predicted by the model. We present model 10Be/9Be ages of the B-horizon and the corresponding soil formation rates for several soil profiles. The present study demonstrates that the 10Be/9Be ratios in the authigenic phases, e.g. clay and Fe-hydroxides, can indeed be used for obtaining useful model ages for soils younger than 10-15 Ma. However, the present work has to be pushed considerably further, to take into account more realistic age models in which, for instance, downward transport of 10Be and clays, and in-situ dissolution of clay minerals at depths, altering the 10Be/9Be ratios of the acidic solutions, are included. We show that in the case of younger soils (< 1 Ma) studied here, their 10Be inventories and 10Be/9Be ratios have been significantly disturbed possibly by mixing with transported soils. ?? 1997 Elsevier Science B.V.

Barg, E.; Lal, D.; Pavich, M.J.; Caffee, M.W.; Southon, J.R.

1997-01-01

281

Biochar and manure effects on net nitrogen mineralization and greenhouse gas emissions from calcareous soil under corn  

Technology Transfer Automated Retrieval System (TEKTRAN)

Few multiyear field studies have examined the impacts of a one-time biochar application on net N mineralization and greenhouse gas emissions in an irrigated, calcareous soil; yet such applications are hypothesized as a means of sequestering atmospheric CO2 and improving soil quality. We fall-applie...

282

SOIL NITROGEN MINERALIZATION AND MICROBIAL BIOMASS IN FORAGE PRODUCTION SYSTEMS: INFLUENCES OF NITROGEN FERTILIZATION RATES AND TYPES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Our objective was to determine the effects of swine lagoon effluent (SLE)and ammonium nitrate (AN) on soil N supplying capacity and microbial functional groups of N mineralizers and nitrifiers in a forage production system. We collected soils at 0 – 7.5 cm depth in 2004 from field plots planted with...

283

Amino acid, peptide and protein mineralization dynamics in a taiga forest soil David L. Jones a,*, Knut Kielland b  

E-print Network

Amino acid, peptide and protein mineralization dynamics in a taiga forest soil David L. Jones a was of high MW of which >75% remained unidentified. Free amino acids constituted less than 5% of the total DON the concentration of free amino acids. Incubations of low MW DON with soil indicated a rapid processing of amino

Wagner, Diane

284

Zinc Fertilization Plus Liming to Reduce Cadmium Uptake by Romaine Lettuce on Cd-Mineralized Lockwood Soil  

Technology Transfer Automated Retrieval System (TEKTRAN)

Lockwood shaly loam (Pachic Argixerolls) and similar Cd mineralized soils derived from marine shale in California contain higher Cd levels and higher Cd:Zn ratios than uncontaminated US soils, and produce leafy vegetables with considerably higher Cd than is normal for US lettuce. Previous work by B...

285

Carbon mineralization in the soils under different cover crops and residue management in an intensive protected vegetable cultivation  

Microsoft Academic Search

Continuous cropping under plastic greenhouses, a common practice in intensive Chinese vegetable production systems, has led to the decline of soil productivity and crop yields. A 4-year greenhouse experiment on cucumber double-cropping systems was conducted in Changping country, Beijing, China, to investigate the effects of summer cover crops and residue management on soil microbial biomass carbon (MBC), C mineralization and

Yongqiang Tian; Juan Liu; Xuhui Wang; Lihong Gao

2011-01-01

286

Andic soils : mineralogical effect onto organic matter dynamics, organic matter effect onto mineral dynamics, or both?  

NASA Astrophysics Data System (ADS)

From a strictly mineralogical point of view, weathering of volcanic glass produces secondary phases that are short range ordered alumino-silicates (SRO-AlSi). These are imogolite tubes (2 to 3 nm of diameter) and allophane supposedly spheres (3.5 to 5 nm). Their local structure is composed of a curved gibbsite Al layer and Si tetrahedra in the vacancies (Q0). Proto-imogolites have the same local structure but are roof-shape nanoparticles likely representing the precursors of imogolite and allophanes (Levard et al. 2010). These structures and sizes give to the SRO-AlSi large specific surfaces and high reactivities. In some natural sites, imogolites and allophanes are formed in large quantities. Aging of these phases may lead to the formation of more stable minerals (halloysite, kaolinite and gibbsite) (Torn et al 1997). In natural environments, when the weathering of volcanic glass is associated with the establishment of vegetation, the soils formed are generally andosols. These soils are particularly rich in organic matter (OM), which is explained by the high ability of SRO-AlSi mineral phases to form bonds with organic compounds. In a first order "bulk" approach, it is considered that these bonds strongly stabilize the organic compounds as their mean age can reach more than 10 kyrs in some studied sites (Basile-Doelsch et al. 2005; Torn et al. 1997). However, the structure of the mineral phases present in andosols deserves more attention. Traditionally, the presence in the SRO-AlSi andosols was shown by selective dissolution approaches by oxalate and pyrophosphate. Using spectroscopic methods, mineralogical analysis of SRO-AlSi in andosols samples showed that these mineral phases were neither imogolites nor allophanes as originally supposed, but only less organized structures remained in a state of proto-imogolites (Basile-Doelsch al. 2005 ; Levard et al., 2012). The presence of OM would have an inhibitory effect on the formation of secondary mineral phases, by blocking the crystal growth of SRO-AlSi. Conversely, the effect of minerals on the dynamics of organic compounds also deserves to be studied in greater detail. If the "bulk" approaches showed that proto-imogolites involve long-term stabilized OM, other approaches such as densimetric fractionation and C3/C4 chronosequences (Basile-Doelsch et al. 2007; De Junet et al. 2013) led us to consider a new model involving two types of organo-mineral interactions: (1) OM stabilized by strong bonds to proto-imogolite, leading to a slow OM turnover and (2) OM retained within the porosity of the 3D structure formed by the proto-imogolite (similar to a gel structure), leading to a faster OM turnover. Understanding the mechanisms of organo-mineral interactions in andosols will open new research directions for understanding the mechanisms of stabilization of OM in any type of soil (Bonnard et al. 2012). Basile-Doelsch et al., Geoderma, 137, 477-489, 2007. Basile-Doelsch et al., European Journal of Soil Science, 56, 689-703, 2005. Bonnard et al., European Journal of Soil Science, 63, 5, 625-636, 2012. de Junet, et al., Journal of Analytical and Applied Pyrolysis, 99, 92-10, 2013, Levard et al, Geoderma, 183-184, 100-108, 2012. Levard et al. Chemistry Of Materials, 22, 2466-2473, 2010 Torn et al. Nature, London, 389, 170-173, 1997.

Basile-Doelsch, Isabelle; Amundson, Ronald; Balesdent, Jérome; Borschneck, Daniel; Bottero, Jean-Yves; Colin, Fabrice; de Junet, Alexis; Doelsch, Emmanuel; Legros, Samuel; Levard, Clément; Masion, Armand; Meunier, Jean-Dominique; Rose, Jérôme

2014-05-01

287

Microbial biomass, and C and N mineralization, in litter and mineral soil of adjacent montane ecosystems in a southern beech ( Nothofagus) forest and a tussock grassland  

Microsoft Academic Search

Comparisons were made of total and microbial C and N pools and C and N metabolism in litter and mineral soil of a mountain beech (Nothofagus solandri var. cliffortioides) forest, ca. 100 m below timberline, and an adjacent tussock grassland (dominated by Chionochloa pallens), ca. 100 m above timberline, in Canterbury, New Zealand. Mean annual precipitation at the sites is

D. J. Ross; K. R. Tate; C. W. Feltham

1996-01-01

288

Mineral cycling in soil and litter arthropod food chains. Progress report, November 1, 1979-October 31, 1980  

SciTech Connect

Recent progress and current status are reported for research concerned with mineral element dynamics in soil arthropod food chains. Research is performed within the larger context of terrestrial decomposition systems, in which soil arthropods may act as regulators of nutrient dynamics during decomposition. Research is measuring rates of nutrient accumulation and excretion by using radioactive tracer techniques with radioactive analogs of nutrients. Experimental measurement of radioactive tracer excretion and nutrient element pools are reported for soil microarthropods, using new methods of counting and microprobe elemental analysis. Research on arthropod-fungal relations is utilizing high-efficiency extraction followed by dissection of 13 x 13 cm soil blocks. A two-component excretion model is reported for Cobalt-60 in earthworms (Eisenia foetida), demonstrating that no assimilation of cobalt occurs from the mineral soil fraction but is entirely from organic matter. Collection of data sets on soil arthropod communities and abundances is completed.

Crossley, Jr, D A

1980-08-01

289

Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area  

USGS Publications Warehouse

Rates of input, accumulation, and turnover of C differ markedly within soil profiles and in soils with different drainage in the BOREAS northern study area. Soil C storage increases from ???3 kg C m-2 in well-drained, sandy soils to greater than 100 kg C m-2 in wetlands. Two modes of C accumulation were observed in upland soil profiles. Large annual C inputs (0.06-0.1 kg C m-2 yr-1) and slow decomposition (turnover times of 6-250 years) lead to rapid C accumulation in regrowing surface moss and detrital layers following fire. Deep organic layers that have accumulated over the millennia since the initiation of soil development, and are located below the most recent charred horizon, show slower rates of input (0.015-0.03 kg C m-2 yr-1) and turnover (100-1600 years) and accumulate C about 10 times slower than surface detrital layers. Rates of C input to soils derived from C and 14C data were in accord with net primary production estimates, with highest rates of input (0.14-0.6 kg C m-2 yr-1) in wetlands. Turnover times for C in surface detrital layers were 6-15 years for well-drained sand soils that showed highest soil temperatures in summer, 30-40 years for wetlands, and 36-250 years for uplands with thick moss cover and black spruce trees. Long (>100 years) turnover times in upland black spruce/clay soils most likely reflect the influence of woody debris incorporated into detrital layers. Turnover times for deep organic and mineral layer C were controlled by drainage, with fastest turnover (80-130 years) in well-drained sand soils and slowest turnover (>3000 years) in wetlands. Total C accumulation rates, which account for C losses from both deep organic and surface detrital layers, are close to zero for sand/jack pine soils, 0.003-0.01 kg C m-2 yr-1 for moderately to poorly drained sites in mature forest stands, and 0.03 kg C m-2 yr-1 for a productive fen. Decomposition of organic matter more than several decades old accounts for 9-22% of total heterotrophic respiration at these sites. The rates of C accumulation derived here are decadal averages for specific stands and will vary as stands age or undergo disturbance. Extrapolation to larger regions and longer timescales, where burning offsets C gains in moss layers, will yield smaller rates of C storage.

Trumbore, S.E.; Harden, J.W.

1997-01-01

290

Stimulating effect of earthworm excreta on the mineralization of nitrogen compounds in soil  

NASA Astrophysics Data System (ADS)

The effect of excreta of earthworm species Aporrectodea caliginosa and Eisenia fetida on the mineralization of nitrogen compounds in soils has been studied. A single application of excreta obtained from three earthworms in one day increased the formation of nitrate nitrogen compounds in the soil by 10 50%. The application of ammonium nitrogen (in the form of NH4Cl) in amounts equivalent to the ammonium nitrogen content in the daily excreta of three earthworms had the same effect on the mineralization of nitrogen compounds. The effect of earthworm excreta, as well as the effect of ammonium nitrogen, on the nitrification process was an order of magnitude higher than their contribution to the formation of nitrates due to the oxidation of the introduced ammonium. Hence, ammonium—an important component of the earthworm excreta—can exert a stimulating effect on nitrification processes in the soil and produce long-term cumulative effects that are much more significant than the direct effect of this nitrogen compound.

Bityutskii, N. P.; Solov'eva, A. N.; Lukina, E. I.; Oleinik, A. S.; Zavgorodnyaya, Yu. A.; Demin, V. V.; Byzov, B. A.

2007-04-01

291

In-field variation in 2,4-D mineralization in relation to sorption and soil microbial communities.  

PubMed

This study was undertaken to assess 2,4-D mineralization in an undulating cultivated field, along a sloping transect (458 m to 442 m above sea level), as a function of soil type, soil microbial communities and the sorption of 2,4-D to soil. The 2,4-D soil sorption coefficient (Kd) ranged from 1.81 to 4.28 L kg(-1), the 2,4-D first-order mineralization rate constant (k) ranged from 0.04 to 0.13 day(-1) and the total amount of 2,4-D mineralized at 130 days (M(130)) ranged from 24 to 39%. Both k and M(130) were significantly negatively associated (or correlated) with soil organic carbon content (SOC) and Kd. Both k and M(130) were significantly associated with two fatty-acid methyl esters (FAME), i17:1 and a18, but not with twenty-two other individual FAME. Imperfectly drained soils (Gleyed Dark Grey Chernozems) in lower-slopes showed significantly lesser 2,4-D mineralization relative to well-drained soils (Orthic Dark Grey Chernozems) in mid- and upper-slopes. Well-drained soils had a greater potential for 2,4-D mineralization because of greater abundance and diversity of the microbial community in these soils. However, the reduced 2,4-D mineralization in imperfectly drained soils was predominantly because of their greater SOC and increased 2,4-D sorption, limiting the bioavailability of 2,4-D for degradation. The wide range of 2,4-D sorption and mineralization in this undulating cultivated field is comparable in magnitude and extent to the variability of 2,4-D sorption and mineralization observed at a regional scale in Manitoba. As such, in-field variations in SOC and the abundance and diversity of microbial communities are determining factors that require greater attention in assessing the risk of movement of 2,4-D by runoff, eroded soil and leaching. PMID:18246502

Farenhorst, A; Londry, K L; Nahar, N; Gaultier, J

2008-02-01

292

Arsenate adsorption structures on aluminum oxide and phyllosilicate mineral surfaces in smelter-impacted soils.  

PubMed

A clearer understanding of arsenic (As) retention and transport in forest soils impacted by copper smelter emissions may reduce risks to human health and provide insight into As behavior in the vadose zone. On Vashon-Maury Island in Puget Sound, As is predominantly associated with the fine (< 63 microm) fraction of surficial soils. X-ray diffraction of oriented samples from the < 2 microm size fraction indicate that clinochlore isthe dominant phyllosilicate. X-ray absorption spectroscopy (XAS) was employed to examine As oxidation state and local coordination environment in impacted soil samples. Arsenic is present as As(V) in tetrahedral coordination with oxygen, associated with aluminum (Al) octahedra in bidentate binuclear (bridging) structures with As-Al distances of 3.15 - 3.16 angstroms. Including multiple scattering (MS) paths derived from the arsenate tetrahedron in esperanzaite significantly improved the match between XAS fine structure (EXAFS) data and models generated from theoretical phase and amplitude functions. The data are interpreted to indicate arsenate adsorption onto poorly crystalline aluminum oxyhydroxides and/or the edges of clinochlore interlayer hydroxyl sheets with constrained geometries causing MS to be important This implies that As initially released from the smelter as particulate As(III) and As(V) oxides was oxidized, dissolved, and adsorbed onto soil minerals and colloids; no evidence for relic arsenic oxide was observed. Physical transport of arsenic oxide particles and As adsorbed on soil colloids may account for limited downward migration of As within the soil column. The oxidizing and mildly acidic pH conditions in the upper vadose zone promote stable sorption complexes; barring substantial changes in soil chemistry, As is not expected to experience significant mobilization. PMID:15952360

Beaulieu, Brett T; Savage, Kaye S

2005-05-15

293

Effect of electrolytes and soil mineral surfaces on N2O hydrate formation kinetics  

NASA Astrophysics Data System (ADS)

Nitrous oxide (N2O) is one of the main greenhouse gases (GHGs) defined by IPCC (Intergovernmental Panel on Climate Change) and its global warming potential (GWP) is 310 times higher than that of carbon dioxide (CO2). Gas hydrates are unique crystalline compounds that trap suitable guest gas molecules (size between 0.35 and 0.9 nm) stably inside the hydrogen-bonded water cages via van der Waals interaction under high pressure and low temperature conditions. N2O has similar properties (e.g. van der Waals diameter, molar mass, density, etc.) with CO2 except for polarity and it was revealed that both N2O and CO2 can be formed as hydrate s-I in natural environment. In this study, we have identified the effect of electrolytes (NaCl, KCl, CaCl2, MgCl2) and solid surfaces (illite, nontronite, sphalerite, kaolinite, montmorillonite) on the N2O hydrate formation kinetics. The hydrate formation experiments were conducted by injecting N2O gas into the soil mineral suspensions with and without electrolytes in a 50mL pressurized vessel. The formation of N2O hydrate in aqueous electrolyte solutions was slower than that in deionized water. Ion charge and size were significant factors affecting N2O hydrate formation kinetic in electrolytes solutions. The addition of soil mineral suspensions accelerated the formation of N2O hydrate in the electrolyte solutions. Surface area and ionic strength of soil minerals highly influenced on formation kinetic of N2O hydrate. The hydrate formation times in the solid suspensions without electrolytes were very similar to that in the deionized water. The results obtained from this research could be indirectly applied to the fate of N2O sequestered into geological formations as well as its storage as a form of N2O hydrate.

Kyung, D.; Ha, S.; Lee, W.

2013-12-01

294

A mineral support and biotic catalyst are essential in the formation of highly polymeric soil humic substances  

NASA Astrophysics Data System (ADS)

The hypothesis was proposed that highly polymeric humic substances in the mineral horizons of soils in a temperate humid climate originate from polymerization of water-soluble structural precursors directly on mineral surfaces under the catalytic effect of immobilized phenoloxidases (heterophasic biocatalysis). This hypothesis was confirmed by a laboratory experiment using a mixture of monomeric phenols and nitrogenous compounds as structural precursors, fungal laccase as a biotic catalyst, and a hydroxyaluminum-kaolinite complex as a mineral support. Enzymic oxidation of phenolic precursors on the mineral surface was substantially more rapid than abiotic oxidation and led to synthesis of a highly polymeric fraction with a molecular weight over 75 kDa. These products were not produced on the mineral with an absence of laccase (abiotic catalysis) or in solution without the mineral matrix (homogeneous catalysis).

Zavarzina, A. G.

2006-12-01

295

Measurement of net nitrogen and phosphorus mineralization in wetland soils using a modification of the resin-core technique  

USGS Publications Warehouse

A modification of the resin-core method was developed and tested for measuring in situ soil N and P net mineralization rates in wetland soils where temporal variation in bidirectional vertical water movement and saturation can complicate measurement. The modified design includes three mixed-bed ion-exchange resin bags located above and three resin bags located below soil incubating inside a core tube. The two inner resin bags adjacent to the soil capture NH4+, NO3-, and soluble reactive phosphorus (SRP) transported out of the soil during incubation; the two outer resin bags remove inorganic nutrients transported into the modified resin core; and the two middle resin bags serve as quality-control checks on the function of the inner and outer resin bags. Modified resin cores were incubated monthly for a year along the hydrogeomorphic gradient through a floodplain wetland. Only small amounts of NH4+, NO3-, and SRP were found in the two middle resin bags, indicating that the modified resin-core design was effective. Soil moisture and pH inside the modified resin cores typically tracked changes in the surrounding soil abiotic environment. In contrast, use of the closed polyethylene bag method provided substantially different net P and N mineralization rates than modified resin cores and did not track changes in soil moisture or pH. Net ammonification, nitrifi cation, N mineralization, and P mineralization rates measured using modified resin cores varied through space and time associated with hydrologic, geomorphic, and climatic gradients in the floodplain wetland. The modified resin-core technique successfully characterized spatiotemporal variation of net mineralization fluxes in situ and is a viable technique for assessing soil nutrient availability and developing ecosystem budgets.

Noe, Gregory B.

2011-01-01

296

Effects of temperature on microbial C metabolism in peat and mineral soil  

NASA Astrophysics Data System (ADS)

Microbial metabolism, the main mechanism responsible for soil CO2 emissions, plays an important role in the global C cycle. Increased temperature generally stimulates decomposition and respiration, indicative of increased microbial C metabolism and possibly greater energy demand by microbes for growth and maintenance. Changes in microbial metabolism with temperature may manifest differently in microbial communities from soils with different C availability because it is generally expected that when more organic C is present, carbon use efficiency (CUE) will be lower and more CO2 will be released per unit C assimilated by microbes than when less C substrate is available. In this study we examined the effect of temperature on C processing in peat and mineral soil from the Marcel Experimental Forest in Minnesota. Samples were incubated for 7 days at 5, 10, 15, and 20°C. We used position-specific 13C-labeled tracers to model C flux through the central C metabolic network (i.e. glycolysis, pentose phosphate pathway, and the citric acid cycle) and to asses the CUE of microbial communities. We also measured total CO2 production and microbial biomass, and we calculated the metabolic quotient (qCO2), which is the rate of CO2, respired per unit of microbial biomass. We found that temperature and soil type did not affect CUE and patterns of C flow through the central C metabolic network. Increased temperature stimulated respiration and decreased qCO2 in peat more than the mineral soil. These results suggest temperature affects rate of C cycling, but does not alter the relative demand for energy production and biosynthesis per unit substrate-C. This implies, in contrast to expectations that at higher temperatures more substrate will be used to offset greater demand for maintenance energy, warmer temperatures will not alter the balance of growth and maintenance energy by soil microbes. Moreover, substrate availability did not result in ';wasteful' C use, but increased C cycling rates. These findings may simplify the modeling of soil respiration with climatic warming.

Hagerty, S.; Dijkstra, P.; Miller, E.; Schwartz, E.; KOCH, G. W.; Hungate, B. A.

2013-12-01

297

Temporal dynamics of available and microbial phosphorus and organic phosphorus mineralization in a grassland soil  

NASA Astrophysics Data System (ADS)

Turnover of phosphorus (P) through the microbial biomass and P mineralization have been reported as two main biological factors controlling P availability in soils. This is particularly true for grassland soils where organic matter is accumulated in the topsoil and microbial activity is high. The amounts of plant available inorganic P and microbial P can fluctuate over the season, but their interaction and responses to changes in environmental conditions, fertilization and cutting are not yet well understood. Also, gross P mineralization has not yet been measured in grassland soils. We studied P mineralization and immobilization in a species rich grassland managed at low intensity (with three harvests per season) under different P inputs. The trial was established in 1992 in Watt (Switzerland). Three different P input treatments were selected: no P (NK), mineral P (NPK) and organic P (NPKorg) fertilization, with 17 kg P ha-1yr-1 applied as superphosphate and slurry, respectively (rates according to Swiss fertilizer recommendations). We used two different approaches. Firstly, available (anion exchange resin extractable) and microbial P (hexanol labile P) were measured in fresh samples periodically taken throughout the vegetation period. Secondly, an isotopic dilution technique was applied on composite topsoil samples (0-5 cm) to determine rates of basal P mineralization and microbial immobilization of P in an incubation experiment. During the season available P ranged from 0.9-3.5, 5.3-11.2 and 1.9-6.7 mg kg-1 soil-1 and microbial P from 20-44, 43-59 and 61-93 mg kg-1 soil-1 in NK, NPK and NPKorg, respectively. Thus, microbial P was highest in NPKorg whereas available P was highest in NPK. Both P pools were lowest in NK. Average annual yield was lowest in NK (4.5 t ha-1), NPKorg (6.5 kg ha-1) and highest in NPK (7.5 t ha-1). However, no consistent relationship between changes in microbial and available P and plant productivity was found. Changes in weather conditions were reflected by changes in available and microbial P measured in the field. Phosphorus flushes were observed after dry periods (microbial P reduced and available P increased). Whereas fluctuations show microbial P release and P immobilization, an expected counteraction of microbial and available P could not be fully confirmed. In the incubation experiment microbial and available P were similar to average values in the field. A higher respiration rate measured in NPKorg indicated a higher microbial activity than in the other two treatments. Despite the differences in microbial P and respiration, the 33P recovery in the microbial biomass between 3 and 30 days of incubation was about 30% in all treatments. In conclusion we found complex interactions of available and microbial P with climate, fertilization, sward cutting and plant growth. An increased immobilization of P indicated by higher microbial P in the organic fertilized treatment was not confirmed in the isotope study. Gross and net mineralization data are still under analysis and will be presented at the conference.

Liebisch, Frank; Keller, Fabrizio; Frossard, Emmanuel; Huguenin-Elie, Olivier; Oberson, Astrid; Bünemann, Else

2010-05-01

298

Sol-Gel Precursors for Ceramics from Minerals Simulating Soils from the Moon and Mars  

NASA Technical Reports Server (NTRS)

Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report some preliminary results on the production of sol-gel precursors for ceramic products using mineral resources available in Martian or Lunar soil. The presence of SiO2, TiO2, and A12O3 in both Martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and Lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from Lunar and Martian simulant soils. Clear sol-gel precursors have been obtained by dissolution of silica from Lunar simulant soil in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy were used to characterize the elemental composition and structure of the precursor molecules. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors. In the second set of experiments, we used the same starting materials to synthesize silicate esters in acidified alcohol mixtures. Preliminary results indicate the presence of silicon alkoxides in the product of distillation.

Sibille, Laurent; Gavira-Gallardo, Jose-Antonio; Hourlier-Bahloul, Djamila

2003-01-01

299

Development of bulk density, total C distribution and OC saturation in fine mineral fractions during paddy soil evolution  

NASA Astrophysics Data System (ADS)

Paddy soils are described as important accumulator for OM (Zhang and He, 2004). In southeast China, paddy soils have the second highest OM stocks (Zhao et al, 1997) and thus a large proportion of the terrestrial carbon is conserved in wetland rice soils. The paddy soil management is believed to be favorable for accumulation of organic matter, as its content in paddy soils is statistically higher than that of non-paddy soils (Cai, 1996). However, the mechanism of OM storage and the development of OM distribution during paddy soil evolution is largely unknown. The aim of the project is to identify the role of organo-mineral complexes for the stabilization of organic carbon during management-induced paddy soil formation in a chronosequence ranging from 50 to 2000 years of paddy soil use. The soil samples were analysed for bulk density, total organic carbon (TOC) and total inorganic carbon (TIC) concentrations of bulk soils and the concentration of organic carbon as well as the organic carbon stocks of physical soil fractions. First results indicate distinctly different depth distributions between paddy and non-paddy (control) sites. The paddy soils are characterized by relatively low bulk densities in the puddled layer (between 0.9 and 1.3 g cm-3) and high values in the plough pan (1.4 to 1.6 g cm-3) and the non-paddy soils by relatively homogeneous values throughout the profiles (1.3 to 1.4 g cm-3). In contrast to the carbonate-rich non-paddy sites, we found a significant loss of carbonates during paddy soil formation, resulting in decalcification of the upper 20 cm after 100 yr of paddy soil use, and decalcification of the total soil profile in 700, 1000 and 2000 yr old paddy soils. The calculation of the organic carbon stocks of each horizon indicate that paddy sites always have higher values in topsoils compared to non-paddy sites, and show increasing values with increasing soil age. The capacity of fine mineral fractions to preserve OC was calculated according to Hassink (1997). The potential capacity of paddy soil fraction to preserve OC is independently from soil age between 30 and 35.4 g OC (kg soil)-1. However, the calculated saturation level increases from 11.7 to 19.9 g OC (kg soil)-1 from 50 to 2000 y old paddy sites respectively. With increasing duration of paddy soil use, the fine fractions indicate an increasing saturation level from 33.1% to 56.2% of the potential capacity to preserve OC. This underlines the importance of fine fractions for increasing OC storage during paddy soil evolution. Conclusively, paddy soil management leads to an accelerated soil development compared to non-irrigated cropland sites. In addition, increasing OC stocks, especially in the fine mineral associated OM fractions underline the relevance of paddy soil management for OC sequestration. References Cai Z. (1996). Effect of land use on organic carbon storage in soils in eastern China. Water Air Soil Pollut 91, 383-393. Hassink J. (1997). The capacity of soil to preserve organic C and N by their association with clay and silt particles. Plant and Soil 191, 77-87. Zhang M., He Z. (2004). Long-term changes in organic carbon and nutrients of an Ultisol under rice cropping in southeast China. Geoderma 118, 167-179. Zhao C. (1996). Effect of land use on organic carbon storage in soils in eastern China. Water Air Soil Pollut 91, 383-393.

Wissing, Livia; Kölbl, Angelika; Cao, Zhi-Hong; Kögel-Knabner, Ingrid

2010-05-01

300

Characterization of lead on mineral surfaces in soils contaminated by mining and smelting  

NASA Astrophysics Data System (ADS)

Mine tailings and soils impacted by mining, milling and smelting of Cu-Pb-Zn-Ag-Au ores in a small mining town in central Colorado were analyzed by X-ray photoelectron spectroscopy (XPS), and surface analysis by laser ionization (SALI) utilizing stimulated desorption (pulsed Ar +) coupled with nonresonant photoionization (using 266 nm light) and time-of-flight mass spectrometry. These surface-sensitive techniques revealed that Pb is present on mineral grain surfaces in some soild and mine tailings. The presence of surface-bound Pb correlates with soil pH; carbonate-sulfide tailing with pH?7 have Pb-bearing iron hydroxide (and to a lesser extent iron sulfate) coatings that are several ?m thick, whereas sulfide tailings with pH?2 have little or no detectable surface-bound Pb. Grains from residential soils (pH?7) have thin (a few nm thick) Pb-bearing surface layers. Soils impacted by smelter aerosols and fly ash (pH = 4.5) also have thin (a few nm thick) Pb-bearing surfaces layers. Measured Pb4f 7/2 binding energies (corrected for charge shifting by referencing the Si2s peak to 153.0 eV) ranged from 137.4 to 138.2 eV and suggest that the surface-bound Pb is present as Pb-O or Pb-OH species.

Tingle, Tracy N.; Borch, Robert S.; Hochella, Michael F.; Becker, Christopher H.; Walker, William J.

1993-12-01

301

Impact of Surface Roughness and Soil Texture on Mineral Dust Emission Fluxes Modeling  

NASA Technical Reports Server (NTRS)

Dust production models (DPM) used to estimate vertical fluxes of mineral dust aerosols over arid regions need accurate data on soil and surface properties. The Laboratoire Inter-Universitaire des Systemes Atmospheriques (LISA) data set was developed for Northern Africa, the Middle East, and East Asia. This regional data set was built through dedicated field campaigns and include, among others, the aerodynamic roughness length, the smooth roughness length of the erodible fraction of the surface, and the dry (undisturbed) soil size distribution. Recently, satellite-derived roughness length and high-resolution soil texture data sets at the global scale have emerged and provide the opportunity for the use of advanced schemes in global models. This paper analyzes the behavior of the ERS satellite-derived global roughness length and the State Soil Geographic data base-Food and Agriculture Organization of the United Nations (STATSGO-FAO) soil texture data set (based on wet techniques) using an advanced DPM in comparison to the LISA data set over Northern Africa and the Middle East. We explore the sensitivity of the drag partition scheme (a critical component of the DPM) and of the dust vertical fluxes (intensity and spatial patterns) to the roughness length and soil texture data sets. We also compare the use of the drag partition scheme to a widely used preferential source approach in global models. Idealized experiments with prescribed wind speeds show that the ERS and STATSGO-FAO data sets provide realistic spatial patterns of dust emission and friction velocity thresholds in the region. Finally, we evaluate a dust transport model for the period of March to July 2011 with observed aerosol optical depths from Aerosol Robotic Network sites. Results show that ERS and STATSGO-FAO provide realistic simulations in the region.

Menut, Laurent; Perez, Carlos; Haustein, Karsten; Bessagnet, Bertrand; Prigent, Catherine; Alfaro, Stephane

2013-01-01

302

Long-term fertilization of a boreal Norway spruce forest increases the temperature sensitivity of soil organic carbon mineralization  

PubMed Central

Boreal ecosystems store one-third of global soil organic carbon (SOC) and are particularly sensitive to climate warming and higher nutrient inputs. Thus, a better description of how forest managements such as nutrient fertilization impact soil carbon (C) and its temperature sensitivity is needed to better predict feedbacks between C cycling and climate. The temperature sensitivity of in situ soil C respiration was investigated in a boreal forest, which has received long-term nutrient fertilization (22 years), and compared with the temperature sensitivity of C mineralization measured in the laboratory. We found that the fertilization treatment increased both the response of soil in situ CO2 effluxes to a warming treatment and the temperature sensitivity of C mineralization measured in the laboratory (Q10). These results suggested that soil C may be more sensitive to an increase in temperature in long-term fertilized in comparison with nutrient poor boreal ecosystems. Furthermore, the fertilization treatment modified the SOC content and the microbial community composition, but we found no direct relationship between either SOC or microbial changes and the temperature sensitivity of C mineralization. However, the relation between the soil C:N ratio and the fungal/bacterial ratio was changed in the combined warmed and fertilized treatment compared with the other treatments, which suggest that strong interaction mechanisms may occur between nutrient input and warming in boreal soils. Further research is needed to unravel into more details in how far soil organic matter and microbial community composition changes are responsible for the change in the temperature sensitivity of soil C under increasing mineral N inputs. Such research would help to take into account the effect of fertilization managements on soil C storage in C cycling numerical models. PMID:24455147

Coucheney, Elsa; Strömgren, Monika; Lerch, Thomas Z; Herrmann, Anke M

2013-01-01

303

A kinetic approach to evaluate salinity effects on carbon mineralization in a plant residue-amended soil*  

PubMed Central

The interaction of salinity stress and plant residue quality on C mineralization kinetics in soil is not well understood. A laboratory experiment was conducted to study the effects of salinity stress on C mineralization kinetics in a soil amended with alfalfa, wheat and corn residues. A factorial combination of two salinity levels (0.97 and 18.2 dS/m) and four levels of plant residues (control, alfalfa, wheat and corn) with three replications was performed. A first order kinetic model was used to describe the C mineralization and to calculate the potentially mineralizable C. The CO2-C evolved under non-saline condition, ranged from 814.6 to 4842.4 mg CO2-C/kg in control and alfalfa residue-amended soils, respectively. Salinization reduced the rates of CO2 evolution by 18.7%, 6.2% and 5.2% in alfalfa, wheat and corn residue-amended soils, respectively. Potentially mineralizable C (C 0) was reduced significantly in salinized alfalfa residue-treated soils whereas, no significant difference was observed for control treatments as well as wheat and corn residue-treated soils. We concluded that the response pattern of C mineralization to salinity stress depended on the plant residue quality and duration of incubation. PMID:16972320

Nourbakhsh, Farshid; Sheikh-Hosseini, Ahmad R.

2006-01-01

304

Influence of soil minerals on chromium(VI) reduction by sulfide under anoxic conditions  

PubMed Central

The effects of soil minerals on chromate (CrVIO42-, noted as Cr(VI)) reduction by sulfide were investigated in the pH range of 7.67 to 9.07 under the anoxic condition. The examined minerals included montmorillonite (Swy-2), illite (IMt-2), kaolinite (KGa-2), aluminum oxide (?-Al2O3), titanium oxide (TiO2, P-25, primarily anatase), and silica (SiO2). Based on their effects on Cr(VI) reduction, these minerals were categorized into three groups: (i) minerals catalyzing Cr(VI) reduction – illite; (ii) minerals with no effect – Al2O3; and (iii) minerals inhibiting Cr(VI) reduction- kaolinite, montmorillonite, SiO2 and TiO2 . The catalysis of illite was attributed primarily to the low concentration of iron solubilized from the mineral, which could accelerate Cr(VI) reduction by shuttling electrons from sulfide to Cr(VI). Additionally, elemental sulfur produced as the primary product of sulfide oxidation could further catalyze Cr(VI) reduction in the heterogeneous system. Previous studies have shown that adsorption of sulfide onto elemental sulfur nanoparticles could greatly increase sulfide reactivity towards Cr(VI) reduction. Consequently, the observed rate constant, kobs, increased with increasing amounts of both iron solubilized from illite and elemental sulfur produced during the reaction. The catalysis of iron, however, was found to be blocked by phenanthroline, a strong complexing agent for ferrous iron. In this case, the overall reaction rate at the initial stage of reaction was pseudo first order with respect to Cr(VI), i.e., the reaction kinetics was similar to that in the homogeneous system, because elemental sulfur exerted no effect at the initial stage prior to accumulation of elemental sulfur nanoparticles. In the suspension of kaolinite, which belonged to group (iii), an inhibitive effect to Cr(VI) reduction was observed and subsequently examined in more details. The inhibition was due to the sorption of elemental sulfur onto kaolinite, which reduced or completely eliminated the catalytic effect of elemental sulfur, depending on kaolinite concentration. This was consistent with the observation that the catalysis of externally added elemental sulfur (50 ?M) on Cr(VI) reduction would disappear with a kaolinite concentration of more than 5.0 g/L. In kaolinite suspension, the overall reaction rate law was: -d[Cr(VI)]/dt = kobs[H+]2[Cr(VI)][HS-]0.70 PMID:17430591

Lan, Yeqing; Deng, Baolin; Kim, Chulsung; Thornton, Edward C

2007-01-01

305

minerals  

NASA Astrophysics Data System (ADS)

Polarized electronic absorption spectra of colourless chalcocyanite, CuSO4, have been measured using microscope-spectrometric techniques. The spectra are characterized by a structured and clearly polarized band system in the near-infrared spectral range with components centred at 11,720, 10,545, 9,100, and 7,320 cm-1, which have been assigned to crystal field d- d transitions of Cu2+ cations in pseudo-tetragonally elongated CuO6 polyhedra with point symmetry C i (). The polarization behaviour is interpreted based on a D 2( C 2?) pseudo-symmetry. Crystal field calculations were performed for the actual triclinic point symmetry by applying the Superposition Model of crystal fields, as well as in terms of a `classic' pseudo-tetragonal crystal field approach yielding the parameters Dq (eq) = 910, Dt = 395, and Ds = 1,336 cm-1, corresponding to a cubically averaged Dq cub = 679 cm-1. A comparative survey on crystal fields in Cu2+ minerals shows that the low overall crystal field strength in chalcocyanite, combined with a comparatively weak pseudo-tetragonal splitting of energy levels, is responsible for its unique colourless appearance among oxygen-based Cu2+ minerals. The weak crystal field in CuSO4 can be related to the lower position of the SO4 2- anion compared to, e.g. the H2O molecule in the spectrochemical series of ligands.

Wildner, Manfred; Giester, Gerald; Kersten, Monika; Langer, Klaus

2014-10-01

306

Patterns of spatial distribution of mineral components of the complex of gray forest soils Vladimir opolye  

NASA Astrophysics Data System (ADS)

The aim of the work is the analysis of spatial distribution of soil fundamental characteristics - fine fractions content (less than 1, 1-5, 5-10 and more than 10 mkm) and their mineralogical composition. The experiments were carried out on the experimental field in Suzdal region in a trench (22 m length and 2 m depth) laid in upland, well-drained conditions. Soil samples from 5 different soil profiles were collected. Fractions were obtained by Gorbunov method. Mineralogical analysis were carried out by universal X-ray diffractometer (Carl Zeiss Jena, Germany). The dominant fraction is a coarse silt fraction, the sand fraction content is negligible. The soil is characterized by medium-textured loam composition from the above and a sandy loam composition in the bottom. Textural differentiation occured due to the distribution of clay fraction. The content of this fraction in plough horizons varies depending on addition of part of other horizons during plowing. The plogh-layer of the residual-carbonate agrogrey soil is characterized by higher (20-23 %) amount of fraction less than 1 mkm, in comparison with plough horizon above the second humus horizon (SHH ), where the amount of silt is 15-16 %. The main components of the fraction derived from the rock are complex mixed- lattice formations dominated by mica - smectite with a high proportion of smectite packages, mica - smectites with low content of smectite packages were in subordinate quantity. The next component is hydromica - a mixture of dioctahedral and trioctahedral varieties. Smectite phase and hydromica add up to 85-90 % of the silt component. The amount of kaolinite and chlorite usually range in 7-13 %. Kaolinite is generally imperfect, chlorite is magnesia-ferric. The presence of fine quartz and feldspars (less amount) is revealed. During the soil formation the redistribution of the above minerals whose behavior is caused by the type of soil is occurring. Agrogrey heavy-textured soils are characterized by textural differentiation of the profile. The main carrier of this differentiation is the silt fraction, mainly its component - the swelling phase. Smectite phase dominates in silt fraction and it is eluvially distributed within the soil profile. Silty fraction of loess loam contains 72 % of the smectite phase. Behavior of minerals constituting the sum of kaolinite and chlorite content indicates its relatively uniform distribution. A slight increase in their content is noted in the eluvial part of the profile, mainly due to increasing in the proportion of kaolinite. The amount of hydromica reduces down the profile from 44.2 % to 19.8% in loess loam (soil-forming rock). The ratio of dioctahedral structures of hydromica to trioctahedral changes within the soil profile: trioctahedral varieties are more abundant in the upper part of the profile.

Karpova, Dina; Chizhikova, Natalya; Starokozhko, Natalya; Hadyushina, Viktorya; Korotaeva, Valentina

2014-05-01

307

Maxwell Wagner Relaxation in Common Minerals and a Desert Soil at Low Water Contents  

NASA Astrophysics Data System (ADS)

Maxwell-Wagner type dielectric permittivity relaxation in soils is caused by macro-dipolar inclusions, usually of grain size dimensions, and generally within a more dielectric matrix. We discuss laboratory measurements of the complex permittivity of quartz, feldspars, calcite, two forms of gypsum and a simple desert soil at 4-7 percent volumetric water content, and in which we interpret Maxwell-Wagner processes to have dominated. We used Fourier Transform time domain reflectometry, measured from 1 MHz to 6 GHz, and used small samples with grain sizes less than 53 microns. Using XRD and SEM, we found the soil contained quartz, gypsum and feldspars at 80, 10 and 10 percent by weight, respectively, with the gypsum appearing as crystallites and crustations on the quartz particles. All samples show low conductivity, and low-frequency dispersion. The montmorillonite, gypsum crystallites, and desert soil exhibit unusually strong and broad low-frequency dispersion, and strong attenuation rates above 100 MHz. The one-way attenuation rates of the soil exceed those of its constituents, are similar to that of montmorillonite, and exceed 100 dB/m by 1 GHz. Through modeling using the CRIM approach, we attribute all permittivity behavior to a combination of Maxwell-Wagner and free water relaxations, with the former dominant and able to contribute significantly to attenuation rates into the GHz range because of Cole-Cole broadened relaxation frequencies centered from 1-20 MHz, while the latter is centered at 20 GHz. The lack of sufficient surface area to support adsorbed water relaxation, the lack of salts, clay and magnetic minerals, and the inadequacy of measured conductivity values to explain the high loss further justify our Maxwell-Wagner interpretation. The polarized inclusions within the soil are likely to have been conductive wet gypsum particles, whereby films of water that coated the particles polarized. The source of the charge was likely to have been ions dissolved from the gypsum into the free water because the water we added was distilled. The macro-dipoles for the simple minerals may have been sparse, water-filled interstices, and partially filled galleries for the montmorillonite.

Arcone, S. A.

2010-12-01

308

Mineralization of Soil Organic Matter in Two Elevated CO2 by Warming Experiments in Grassland  

NASA Astrophysics Data System (ADS)

Experimentally elevated atmospheric CO2 has enhanced carbon (C) allocation belowground, while ecosystem warming has led to losses of soil C due to enhanced mineralization of soil organic matter (SOM). Few investigations of possible interactions between elevated CO2 and temperature have been reported, but the potential for C cycling effects not to be simply additive is high. We have taken advantage of two multi-factor global change experiments being conducted in mixed C3/C4 grasslands to evaluate similarities and differences in responses of SOM mineralization rates. The TasFACE experiment in Tasmania, Australia, has been running for over 5 years, while the Prairie Heating and CO2 Enrichment (PHACE) experiment in Wyoming, USA, has been running for less than 2 years. Both experiments employ mini-FACE systems (enriched plots targeted at 550 at TasFACE and 600 ppm at PHACE) and overhead ceramic infrared emitters (heated plots targeted at +2 degrees C at TasFACE and +1.5/+3 degrees day/night at PHACE). Soil samples collected after 5 years at TasFACE and at the beginning of the second year at PHACE were incubated for three weeks to evaluate changes in labile SOM pool sizes and turnover rates. We hypothesized that elevated CO2 would enhance labile SOM pool size and that warming would reduce it, and that warming would stimulate decomposition rate. Preliminary results suggested that five years of warming enhanced decomposition rate in the TasFACE soils, but only under the C4 grass species, whereas the first two months of warming had no effects on decomposition rate at PHACE. Elevated CO2 increased mineralizable C pool sizes by 10 to 30 percent, depending on depth, in the TasFACE soils, but did not significantly alter C cycling in the PHACE soils. Short experimental duration likely explained the lack of treatment effects seen at PHACE. We plan to continue conducting parallel experiments to track temporal changes in C cycling with the expectation that interactive effects of elevated CO2 and warming may appear over the long term.

Pendall, E.; Hovenden, M.; Williams, A.; Dijkstra, F. A.; Morgan, J. A.

2007-12-01

309

Extraction Pattern of Arsenic Species with Mineral Composition in Contaminated Soils in Korea  

NASA Astrophysics Data System (ADS)

Specific determination of various arsenic species is gaining increasing attention because the toxicity of arsenic differs with chemical forms such as organic (MMA, DMA) or inorganic (arsenite, arsenate). Knowledge of extraction method for arsenic speciation in contaminated soils then notified and tested by many researchers. However, the analytical technique for separation of different arsenic species has been always challenging in different environmental samples. A achieving correct analytical results and resolving the lowest detection limit is also desirable. Extraction method for arsenic speciation have been studied by many researchers with the use of a variety of extractants such as H3PO4, HCl, Na2CO3, EDTA 'in soils and sediments including plenty of clay. We, in this study, reported a benign extraction method and presented the pattern of arsenic in contaminated soils of different mineral compositions. Soil samples were collected from tailings of 2 places (Kyungbuk, Jeonnam); both were from abandoned metal mines in Korea. Samples were air dried at room temperature and separated by mechanical sieving to three fractions (2mm_200 ?m, 200_64?m, <64?m). Prepared samples were examined for total arsenic analysis used by KBSI method and modified Garcia-Manyes method for arsenic speciation. We extracted arsenic species from the soils by using a mixture of 1M phosphoric acid and 0.1% ascorbic acid. 0.2g of sample was placed in microwave digestion vessels along with 10ml extraction solution and treated for 15min at 60w microwave power. After the microwave stage, the contents were transferred to 30ml sample bottles and diluted to 16ml with deionized water, then centrifuged for 15min at 2500rpm. Total arsenic concentration of sample was analyzed by using ICP-AES (ICP-OES, Ultima2C, Jobin Yvon) and the arsenic species were analyzed by hyphenated system, SPE-HG-ICP-AES. To identify the mineral phases in bulk soil samples, we used XRD (Phillips X'Pert MPD) under 40kV/30mA condition. XRD data was collected between 5 and 70° 2theta values using CuK? target.

Park, M.; Shin, M.; Yoon, H.; Kim, Y.; Kim, K.; Ko, I.

2006-12-01

310

Soil Mineral Composition Matters: Response of Microbial Communities to Phenanthrene and Plant Litter Addition in Long-Term Matured Artificial Soils  

PubMed Central

The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of complex interactions in soils for bioremediation applications. PMID:25222697

Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

2014-01-01

311

Application of calcium carbonate slows down organic amendments mineralization in reclaimed soils  

NASA Astrophysics Data System (ADS)

A field experiment was set up in Cartagena-La Unión Mining District, SE Spain, aimed at evaluating the short-term effects of pig slurry (PS) amendment alone and together with marble waste (MW) on organic matter mineralization, microbial activity and stabilization of heavy metals in two tailing ponds. These structures pose environmental risk owing to high metals contents, low organic matter and nutrients, and null vegetation. Carbon mineralization, exchangeable metals and microbiological properties were monitored during 67 days. The application of amendments led to a rapid decrease of exchangeable metals concentrations, except for Cu, with decreases up to 98%, 75% and 97% for Cd, Pb and Zn, respectively. The combined addition of MW+PS was the treatment with greater reduction in metals concentrations. The addition of PS caused a significant increase in respiration rates, although in MW+PS plots respiration was lower than in PS plots. The mineralised C from the pig slurry was low, approximately 25-30% and 4-12% for PS and MW+PS treatments, respectively. Soluble carbon (Csol), microbial biomass carbon (MBC) and ?-galactosidase and ?-glucosidase activities increased after the application of the organic amendment. However, after 3 days these parameters started a decreasing trend reaching similar values than control from approximately day 25 for Csol and MBC. The PS treatment promoted highest values in enzyme activities, which remained high upon time. Arylesterase activity increased in the MW+PS treatment. Thus, the remediation techniques used improved soil microbiological status and reduced metal availability. The combined application of PS+MW reduced the degradability of the organic compounds. Keywords: organic wastes, mine soils stabilization, carbon mineralization, microbial activity.

Zornoza, Raúl; Faz, Ángel; Acosta, José A.; Martínez-Martínez, Silvia; Ángeles Muńoz, M.

2014-05-01

312

Modeling of phenoxy acid herbicide mineralization and growth of microbial degraders in 15 soils monitored by quantitative real-time PCR of the functional tfdA gene.  

PubMed

Mineralization potentials, rates, and kinetics of the three phenoxy acid (PA) herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), and 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP), were investigated and compared in 15 soils collected from five continents. The mineralization patterns were fitted by zero/linear or exponential growth forms of the three-half-order models and by logarithmic (log), first-order, or zero-order kinetic models. Prior and subsequent to the mineralization event, tfdA genes were quantified using real-time PCR to estimate the genetic potential for degrading PA in the soils. In 25 of the 45 mineralization scenarios, ?60% mineralization was observed within 118 days. Elevated concentrations of tfdA in the range 1 × 10(5) to 5 × 10(7) gene copies g(-1) of soil were observed in soils where mineralization could be described by using growth-linked kinetic models. A clear trend was observed that the mineralization rates of the three PAs occurred in the order 2,4-D > MCPA > MCPP, and a correlation was observed between rapid mineralization and soils exposed to PA previously. Finally, for 2,4-D mineralization, all seven mineralization patterns which were best fitted by the exponential model yielded a higher tfdA gene potential after mineralization had occurred than the three mineralization patterns best fitted by the Lin model. PMID:22635998

Bćlum, Jacob; Prestat, Emmanuel; David, Maude M; Strobel, Bjarne W; Jacobsen, Carsten S

2012-08-01

313

Modeling of Phenoxy Acid Herbicide Mineralization and Growth of Microbial Degraders in 15 Soils Monitored by Quantitative Real-Time PCR of the Functional tfdA Gene  

PubMed Central

Mineralization potentials, rates, and kinetics of the three phenoxy acid (PA) herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), and 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP), were investigated and compared in 15 soils collected from five continents. The mineralization patterns were fitted by zero/linear or exponential growth forms of the three-half-order models and by logarithmic (log), first-order, or zero-order kinetic models. Prior and subsequent to the mineralization event, tfdA genes were quantified using real-time PCR to estimate the genetic potential for degrading PA in the soils. In 25 of the 45 mineralization scenarios, ?60% mineralization was observed within 118 days. Elevated concentrations of tfdA in the range 1 × 105 to 5 × 107 gene copies g?1 of soil were observed in soils where mineralization could be described by using growth-linked kinetic models. A clear trend was observed that the mineralization rates of the three PAs occurred in the order 2,4-D > MCPA > MCPP, and a correlation was observed between rapid mineralization and soils exposed to PA previously. Finally, for 2,4-D mineralization, all seven mineralization patterns which were best fitted by the exponential model yielded a higher tfdA gene potential after mineralization had occurred than the three mineralization patterns best fitted by the Lin model. PMID:22635998

Bćlum, Jacob; Prestat, Emmanuel; David, Maude M.; Strobel, Bjarne W.

2012-01-01

314

Applications of PIXE to mineral characterization  

NASA Astrophysics Data System (ADS)

This article illustrates the application of the proton-induced X-ray emission (PIXE) technique to detailed documentation of mineral assemblages, with emphasis on base-metal ores. Some of the investigations aided by the PIXE laboratory at Guelph since 1993 include determinations of the distribution of minor and trace elements in magmatic Ni-Cu ores, volcanogenic massive sulphide Cu-Pb-Zn-(Ag-Au) ores and lode Au-(Ag) deposits. Minor elements of importance include possible by-products or co-products of metal refining, as well as deleterious impurities in mill-feed, e.g. Cd, In, Sn, As, Se, Te, Tl and Hg. Weathering products of primary sulphide mineralization, including tropical laterites and other oxidized assemblages, have been analysed successfully and can contain a wide range of minor elements which reflect the bedrock style of mineralization. The iron oxyhydroxide goethite, ?-FeO(OH), contains trace levels of many elements, and in some cases 1 wt.% or more of base metals and arsenic, elements which are invisible in reflected-light microscopy. Other metals such as Ag are of sporadic occurrence in oxidized ores: they may be found as discrete mineral species, not incorporated into the dominant oxyhydroxides. A summary of findings from three base-metal deposits in Canada, the Philippines and Portugal serves to illustrate the manner in which PIXE data benefit our knowledge of metal distributions in metallic ores. PIXE can contribute to several facets of mineral-deposit research, such as: (1) the development of ore textures, and specifically the distribution of elements within zoned crystals, or between multiple generations of a particular mineral; (2) the location of precious metals, Ag being in general the simplest case; and (3) pinpointing elements that may have implications for ore genesis, environmental quality or metal refining, such as Cr, As and Se.

Wilson, Graham C.; Rucklidge, John C.; Campbell, John L.; Nejedly, Zdenek; Teesdale, William J.

2002-04-01

315

Accelerated Mineralization of Pentachlorophenol in Soil upon Inoculation with Mycobacterium chlorophenolicum PCP1 and Sphingomonas chlorophenolica RA2  

PubMed Central

Mineralization of pentachlorophenol (PCP) was studied in nonsterile soil from a PCP-contaminated site upon inoculation with two PCP-degrading bacterial strains. At spiked [(sup14)C]PCP concentrations of 30 and 100 mg/kg, the effects of organism type, different inoculation techniques, including structural amendment with sawdust and cell attachment to polyurethane (PU), as well as the effect of different inoculum sizes of 10(sup4) to 10(sup8) cells per g (dry weight) of soil were compared with PCP mineralization by indigenous bacteria. Gas chromatographic analysis was used to monitor PCP disappearance and to check mass balances. The survival and activity of the released bacteria were examined by immunofluorescence microscopy and respiking experiments. Noninoculated soil completely mineralized 30 mg of PCP per kg within 7 months but showed no or only low degradation activity at 100 mg/kg in the same period. Structural amendment with PU or sawdust initiated slow mineralization after half a year. Soil inoculation with Sphingomonas chlorophenolica RA2 shortened the mineralization time drastically to 1 month at 30 mg of PCP per kg using 10(sup8) cells per g, with approximately 80% of the added radioactivity being converted to CO(inf2). The inoculated cells disappeared rapidly, with a count of 2 x 10(sup6) cells per g after 2.3 months and nondetectability after 7 months. At 100 mg/kg, mineralization was slower because of PCP toxicity but approached completion within 7.5 months. The inhibition could be overcome by addition of sawdust (1 g/kg of soil), resulting in a mineralization rate of 3 to 4 mg/kg(middot)d. PU had the opposite effect. Lower inoculum densities resulted in prolonged lag phases and lower rates, although mineralization was still enhanced over the background level. At 30 mg of PCP per kg, inoculation with Mycobacterium chlorophenolicum PCP1 increased mineralization slightly over the indigenous bacterial activity, regardless of inoculum size, but only when the organisms were attached to PU. At 100 mg of PCP per kg, only 27% were mineralized within 7.5 months. After 7 months, the original strain PCP1 inoculum of 10(sup8) cells per g was recovered at 5 x 10(sup6) to 3 x 10(sup7) cells per g, depending on the PCP concentration, but independent of PU amendment. Amendment with sawdust had no effect on the performance of this organism. Possible reasons for the poor performance of this strain include its sensitivity to PCP and its preference for slightly acidic soil conditions. PMID:16535458

Miethling, R.; Karlson, U.

1996-01-01

316

Role of soil drying in nitrogen mineralization and microbial community function in semi-arid grasslands of north-west Australia  

Microsoft Academic Search

We examined effects of wetting and then progressive drying on nitrogen (N) mineralization rates and microbial community composition, biomass and activity of soils from spinifex (Triodia R. Br.) grasslands of the semi-arid Pilbara region of northern Australia. We compared soils under and between spinifex hummocks and also examined impacts of fire history on soils over a 28d laboratory incubation. Soil

D. J. Ford; W. R. Cookson; M. A. Adams; P. F. Grierson

2007-01-01

317

Does temperature of charcoal creation affect subsequent mineralization of soil carbon and nitrogen?  

NASA Astrophysics Data System (ADS)

Forest fire is the most common form of natural disturbance of boreal forest ecosystems and has primordial influence on successional processes. This may be due in part to the pre-disturbance vegetation development stage and species composition, but these successional pathways could also vary with differences in fire behavior and consequently in fire intensity, defined as the energy released during various phases of a fire. Fire intensity may also affect soil C and N cycling by affecting the quality of the charcoal that is produced. For example, the porosity of coal tends to increase with increasing temperature at which it is produced Higher porosity would logically increase the surface area to which dissolved soil molecules, such as tannins and other phenolics, may be adsorbed. We report on a microcosm study in which mineral and organic soils were jointly incubated for eight weeks with a full factorial array of treatments that included the addition of Kalmia tannins, protein, and wood charcoal produced at five different temperatures. A fourth experimental factor comprised the physical arrangement of the material (stratified vs. mixed), designed to simulate the effect of soil scarification after fire and salvage harvest. We examined the effects of these treatments on soil C and N mineralisation and soil microbial biomass. The furnace temperature at which the charcoal was produced had a significant effect on its physico-chemical properties; increasing furnace temperatures corresponded to a significant increase in % C (P<0.001), and a significant decrease in %O (P<0.001) and %H (P<0.001). Temperature also had significant impacts on microporosity (surface area and volume). Temperature of production had no effect (P=0.1355) on soil microbial biomass. We observed a linear decreasing trend (P<0.001) in qCO2 with increasing temperature of production, which was mainly reflected in a decline in basal respiration. Finally, we found a significant interaction (P=0.010) between temperature of charcoal production x soil mixing in controlling post incubation NH4+ concentrations. We discuss the results in relation to potential implications for changing fire regime and C and N cycles.

Pelletier-Bergeron, S.; Bradley, R.; Munson, A. D.

2012-04-01

318

Stable isotopes of carbon dioxide in soil gas over massive sulfide mineralization at Crandon, Wisconsin  

USGS Publications Warehouse

Stable isotope ratios of oxygen and carbon were determined for CO2 in soil gas in the vicinity of the massive sulfide deposit at Crandon, Wisconsin with the objective of determining the source of anomalously high CO2 concentrations detected previously by McCarthy et al. (1986). Values of ??13C in soil gas CO2 from depths between 0.5 and 1.0 m were found to range from -12.68??? to -20.03??? (PDB). Organic carbon from the uppermost meter of soil has ??13C between -24.1 and -25.8??? (PDB), indicating derivation from plant species with the C3 (Calvin) type of photosynthetic pathway. Microbial decomposition of the organic carbon and root respiration from C3 and C4 (Hatch-Slack) plants, together with atmospheric CO2 are the likely sources of carbon in soil gas CO2. Values of ??18O in soil-gas CO2 range from 32 to 38??? (SMOW). These ??18O values are intermediate between that calculated for CO2 gas in isotopic equilibrium with local groundwaters and that for atmospheric CO2. The ??18O data indicate that atmospheric CO2 has been incorporated by mixing or diffusion. Any CO2 generated by microbial oxidation of organic matter has equilibrated its oxygen isotopes with the local groundwaters. The isotopic composition of soil-gas CO2 taken from directly above the massive sulfide deposit was not distinguishable from that of background samples taken 1 to 2 km away. No enrichment of the ??13C value of soil-gas CO2 was observed, contrary to what would be expected if the anomalous CO2 were derived from the dissolution of Proterozoic marine limestone country rock or of Paleozoic limestone clasts in glacial till. Therefore, it is inferred that root respiration and decay of C3 plant material were responsible for most CO2 generation both in the vicinity of the massive sulfide and in the "background" area, on the occasion of our sampling. Interpretation of our data is complicated by the effects of rainfall, which significantly reduced the magnitude of the CO2 anomaly. Therefore, we cannot rule out the possible mechanism of carbonate dissolution driven by pyrite oxidation, as proposed by Lovell et al. (1983) and McCarthy et al. (1986). Further work is needed on seasonal and daily variations of CO2 concentrations and stable isotope ratios in various hydrogeologic and ecologic settings so that more effective sampling strategies can be developed for mineral exploration using soil gases. ?? 1990.

Alpers, C.N.; Dettman, D.L.; Lohmann, K.C.; Brabec, D.

1990-01-01

319

Vertical gradients of mineral elements in Pinus sylvestris crown in alkalised soil.  

PubMed

Alkalisation of soil has been assumed to be the principal cause of changes in vertical gradients of nutrients in Pinus sylvestris crown. The long-term influence of alkaline dust pollution (pHH2O 12.3-12.6) emitted from a cement plant on the element composition of soil and needles of Scots pine in different canopy layers was studied. In the polluted area, the pH of soils was >7, and high amounts of Ca, K and Mg were measured in the upper layers of soil (0-30 cm), while the mobility and solubility of some contaminants have decreased, nutrition processes have become complicated, and imbalance of mineral composition of trees was revealed. Reduced N and increased K, Ca and Mg concentrations in needles were observed in the heavily polluted area. Vertical gradients of elements and their ratios in canopies varied depending on the alkalisation level of soil. Needles on the upper-crown shoots had higher concentrations of N, C, Ca and Mg and lower concentrations of P and K compared to the lower layer of the crown. In the unpolluted area, higher concentrations of N, P, K and Ca were found in lower-crown needles and of C and Mg in needles at the top of the canopy. The P/N ratio below 0.125 indicated P deficiency in pines. The ratios N/Ca, N/Mg and N/K had significantly decreased, while the ratios Ca/Mg, K/Mg and K/Ca had a tendency to increase in heavily polluted sample plots. Magnitude of changes of element ratios indicates on the disbalances of availability and translocation of nutrients in the crown of trees. PMID:19015943

Mandre, Malle

2009-12-01

320

Substrate quality alters microbial mineralization of added substrate and soil organic carbon  

NASA Astrophysics Data System (ADS)

The rate and extent of decomposition of soil organic carbon (SOC) is dependent on substrate chemistry and microbial dynamics. Our objectives were to understand the influence of substrate chemistry on microbial processing of carbon (C), and to use model fitting to quantify differences in pool sizes and mineralization rates. We conducted an incubation experiment for 270 days using four uniformly-labeled 14C substrates (glucose, starch, cinnamic acid and stearic acid) on four different soils (a temperate Mollisol, a tropical Ultisol, a sub-arctic Andisol, and an arctic Gelisol). The 14C labeling enabled us to separate CO2 respired from added substrates and from native SOC. Microbial gene copy numbers were quantified at days 4, 30 and 270 using quantitative polymerase chain reaction (qPCR). Substrate C respiration was always higher for glucose than other substrates. Soils with cinnamic and stearic acid lost more native SOC than glucose- and starch-amended soils, despite an initial delay in respiration. Cinnamic and stearic acid amendments also exhibited higher fungal gene copy numbers at the end of incubation compared to unamended soils. We found that 270 days was sufficient to model decomposition of simple substrates (glucose and starch) with three pools, but was insufficient for more complex substrates (cinnamic and stearic acid) and native SOC. This study reveals that substrate quality imparts considerable control on microbial decomposition of newly added and native SOC, and demonstrates the need for multi-year incubation experiments to constrain decomposition parameters for the most recalcitrant fractions of SOC and added substrates.

Jagadamma, S.; Mayes, M. A.; Steinweg, J. M.; Schaeffer, S. M.

2014-03-01

321

Substrate quality alters the microbial mineralization of added substrate and soil organic carbon  

NASA Astrophysics Data System (ADS)

The rate and extent of decomposition of soil organic carbon (SOC) is dependent, among other factors, on substrate chemistry and microbial dynamics. Our objectives were to understand the influence of substrate chemistry on microbial decomposition of carbon (C), and to use model fitting to quantify differences in pool sizes and mineralization rates. We conducted an incubation experiment for 270 days using four uniformly labeled 14C substrates (glucose, starch, cinnamic acid and stearic acid) on four different soils (a temperate Mollisol, a tropical Ultisol, a sub-arctic Andisol, and an arctic Gelisol). The 14C labeling enabled us to separate CO2 respired from added substrates and from native SOC. Microbial gene copy numbers were quantified at days 4, 30 and 270 using quantitative polymerase chain reaction (qPCR). Substrate C respiration was always higher for glucose than other substrates. Soils with cinnamic and stearic acid lost more native SOC than glucose- and starch-amended soils. Cinnamic and stearic acid amendments also exhibited higher fungal gene copy numbers at the end of incubation compared to unamended soils. We found that 270 days were sufficient to model the decomposition of simple substrates (glucose and starch) with three pools, but were insufficient for more complex substrates (cinnamic and stearic acid) and native SOC. This study reveals that substrate quality exerts considerable control on the microbial decomposition of newly added and native SOC, and demonstrates the need for multi-year incubation experiments to constrain decomposition parameters for the most recalcitrant fractions of SOC and complex substrates.

Jagadamma, S.; Mayes, M. A.; Steinweg, J. M.; Schaeffer, S. M.

2014-09-01

322

Long Term Effect of Land Reclamation from Lake on Chemical Composition of Soil Organic Matter and Its Mineralization  

PubMed Central

Since the late 1950s, land reclamation from lakes has been a common human disturbance to ecosystems in China. It has greatly diminished the lake area, and altered natural ecological succession. However, little is known about its impact on the carbon (C) cycle. We conducted an experiment to examine the variations of chemical properties of dissolved organic matter (DOM) and C mineralization under four land uses, i.e. coniferous forest (CF), evergreen broadleaf forest (EBF), bamboo forest (BF) and cropland (CL) in a reclaimed land area from Taihu Lake. Soils and lake sediments (LS) were incubated for 360 days in the laboratory and the CO2 evolution from each soil during the incubation was fit to a double exponential model. The DOM was analyzed at the beginning and end of the incubation using UV and fluorescence spectroscopy to understand the relationships between DOM chemistry and C mineralization. The C mineralization in our study was influenced by the land use with different vegetation and management. The greatest cumulative CO2-C emission was observed in BF soil at 0–10 cm depth. The active C pool in EBF at 10–25 cm had longer (62 days) mean residence time (MRT). LS showed the highest cumulative CO2-C and shortest MRT comparing with the terrestrial soils. The carbohydrates in DOM were positively correlated with CO2-C evolution and negatively correlated to phenols in the forest soils. Cropland was consistently an outlier in relationships between DOM chemistry and CO2-evolution, highlighting the unique effects that this land use on soil C cycling, which may be attributed the tillage practices. Our results suggest that C mineralization is closely related to the chemical composition of DOM and sensitive to its variation. Conversion of an aquatic ecosystem into a terrestrial ecosystem may alter the chemical structure of DOM, and then influences soil C mineralization. PMID:24905998

He, Dongmei; Ruan, Honghua

2014-01-01

323

Enhanced Mineralization of [U-14C]2,4-Dichlorophenoxyacetic Acid in Soil from the Rhizosphere of Trifolium pratense  

PubMed Central

Enhanced biodegradation in the rhizosphere has been reported for many organic xenobiotic compounds, although the mechanisms are not fully understood. The purpose of this study was to discover whether rhizosphere-enhanced biodegradation is due to selective enrichment of degraders through growth on compounds produced by rhizodeposition. We monitored the mineralization of [U-14C]2,4-dichlorophenoxyacetic acid (2,4-D) in rhizosphere soil with no history of herbicide application collected over a period of 0 to 116 days after sowing of Lolium perenne and Trifolium pratense. The relationships between the mineralization kinetics, the number of 2,4-D degraders, and the diversity of genes encoding 2,4-D/?-ketoglutarate dioxygenase (tfdA) were investigated. The rhizosphere effect on [14C]2,4-D mineralization (50 ?g g?1) was shown to be plant species and plant age specific. In comparison with nonplanted soil, there were significant (P < 0.05) reductions in the lag phase and enhancements of the maximum mineralization rate for 25- and 60-day T. pratense soil but not for 116-day T. pratense rhizosphere soil or for L. perenne rhizosphere soil of any age. Numbers of 2,4-D degraders in planted and nonplanted soil were low (most probable number, <100 g?1) and were not related to plant species or age. Single-strand conformational polymorphism analysis showed that plant species had no impact on the diversity of ?-Proteobacteria tfdA-like genes, although an impact of 2,4-D application was recorded. Our results indicate that enhanced mineralization in T. pratense rhizosphere soil is not due to enrichment of 2,4-D-degrading microorganisms by rhizodeposits. We suggest an alternative mechanism in which one or more components of the rhizodeposits induce the 2,4-D pathway. PMID:15294813

Shaw, Liz J.; Burns, Richard G.

2004-01-01

324

Surface modified mesostructured iron oxyhydroxide: synthesis, ecotoxicity, and application.  

PubMed

Mesoporous iron oxide, particularly amine-functionalized FeO(x) and FeO(x), was investigated for the removal of toxic heavy metal anions of arsenic and chromium from an aqueous solution. As a control experiment for these toxic compounds, adsorption tests were also performed on Fe3O4 as their counterpart bulk chemical. The mesostructures were confirmed by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM). In addition, we prepared stock suspensions of meso-FeO(x), amine-functionalized meso-FeO(x) and Fe3O4 particles, and compared their acute toxicity against Daphnia magna. The 24 h-EC50 values of the amine-functionalized meso-FeO(x), meso-FeO(x) and Fe particle suspensions used in this study were 1682, 2549 and 95 mg/L, respectively. Organism toxicity caused by spills of adsorbents can be negated when the amine-functionalized meso-FeO(x), up to 1500 mg/L, is used as the adsorbent for heavy metal treatment. The adsorption of arsenic and chromium by the three adsorbents were examined, and different adsorption models were used to describe the equilibrium and kinetic data. The amine-functionalized meso-FeO(x) adsorbent was found to give the maximum adsorption capacities for arsenic and chromium (33.51 and 25.05 mg/g, respectively). This research gives promising results for the application of modified meso-FeO(x) as an adsorbent of toxic heavy metal anions from aqueous solutions. PMID:25654937

Choi, Jae-Woo; Mahendran, Basuvaraj; Chung, Seung-Gun; Kim, Song-Bae; Lee, Sang-Hyup

2014-12-01

325

Interactions between arsenic and iron oxyhydroxides in lacustrine sediments  

Microsoft Academic Search

Arsenic and iron concentrations were measured in surficial sediments and in interstitial and overlying waters at 22 littoral stations of 16 lakes. The lakes were chosen to cover values of pH between 4.0 and 8.4 and various As concentrations. Depth-distributions of dissolved As and Fe concentrations suggest a close association of both elements in a dissolution-diffusion-precipitation cycle for Fe and

N. Belzile; A. Tessier

1990-01-01

326

Characterization of mineral phosphate solubilization traits from a barley rhizosphere soil functional metagenome.  

PubMed

Mineral phosphate solubilization (MPS) microorganisms are important for their provision of orthophosphate anions for plant growth promotion activity in soil. In this study, we applied a functional metagenomic approach to identify this trait directly from the microbiome in barley rhizosphere soil that had not received P fertilizer over a 15-year period. A fosmid system was used to clone the metagenome of which 18,000 clones (~666 Mb of DNA) was screened for MPS. Functional assays and High Performance Liquid Chromatography analysis recognized gluconic acid production and MPS activity in the range 24.8-77.1 mmol/L and 27.6-38.16 ?g/mL, respectively, when screened in an Escherichia coli host (at frequency of one MPS-positive clone hit per 114 Mb DNA tested). The MPS clones (with average insert size of ~37 kb) were analysed by 454 Roche sequencing and annotated. A number of genes/operons with homology to Phosphorous (P) uptake, regulatory and solubilization mechanisms were identified, linking the MPS function to the uncultivated microbiome present in barley rhizosphere soil. PMID:23894099

Chhabra, Sagar; Brazil, Dina; Morrissey, John; Burke, James I; O'Gara, Fergal; N Dowling, David

2013-10-01

327

Characterization of mineral phosphate solubilization traits from a barley rhizosphere soil functional metagenome  

PubMed Central

Mineral phosphate solubilization (MPS) microorganisms are important for their provision of orthophosphate anions for plant growth promotion activity in soil. In this study, we applied a functional metagenomic approach to identify this trait directly from the microbiome in barley rhizosphere soil that had not received P fertilizer over a 15-year period. A fosmid system was used to clone the metagenome of which 18,000 clones (?666 Mb of DNA) was screened for MPS. Functional assays and High Performance Liquid Chromatography analysis recognized gluconic acid production and MPS activity in the range 24.8–77.1 mmol/L and 27.6–38.16 ?g/mL, respectively, when screened in an Escherichia coli host (at frequency of one MPS-positive clone hit per 114 Mb DNA tested). The MPS clones (with average insert size of ?37 kb) were analysed by 454 Roche sequencing and annotated. A number of genes/operons with homology to Phosphorous (P) uptake, regulatory and solubilization mechanisms were identified, linking the MPS function to the uncultivated microbiome present in barley rhizosphere soil. PMID:23894099

Chhabra, Sagar; Brazil, Dina; Morrissey, John; Burke, James I; O'Gara, Fergal; N Dowling, David

2013-01-01

328

Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils.  

PubMed

Despite the apparent severity of the environmental conditions in the McMurdo Dry Valleys, Eastern Antarctica, recent phylogenetic studies conducted on mineral soil samples have revealed the presence of a wide diversity of microorganisms, with actinobacteria representing one of the largest phylotypic groups. Previous metagenomic studies have shown that the majority of Antarctic actinobacterial populations are classified as 'uncultured'. In this study, we assessed the diversity of actinobacteria in Antarctic cold desert soils by complementing traditional culture-based techniques with a metagenomic study. Phylogenetic analysis of clones generated with actinobacterium- and streptomycete-specific PCR primers revealed that the majority of the phylotypes were most closely related to uncultured Pseudonocardia and Nocardioides species. Phylotypes most closely related to a number of rarer actinobacteria genera, including Geodermatophilus, Modestobacter and Sporichthya, were also identified. While complementary culture-dependent studies isolated a number of Nocardia and Pseudonocardia species, the majority of the cultured isolates (> 80%) were Streptomyces species--although phylotypes affiliated to the genus Streptomyces were detected at a low frequency in the metagenomic study. This study confirms that Antarctic Dry Valley desert soil harbours highly diverse actinobacterial communities and suggests that many of the phylotypes identified may represent novel, uncultured species. PMID:19278445

Babalola, Olubukola O; Kirby, Bronwyn M; Le Roes-Hill, Marilize; Cook, Andrew E; Cary, S Craig; Burton, Stephanie G; Cowan, Don A

2009-03-01

329

Nitrogen mineralization and transformation from composts and biosolids during field incubation in a sandy soil  

SciTech Connect

Field evaluation of nutrient release from composts is important to estimate nutrient contribution to crops, potential leaching of nutrients, and, ultimately, to determine optimum application rates, timing, and placement of composts. Field incubation and laboratory analyses were conducted to evaluate the mineralization rate and transformation of N in biosolids (BSD), yard waste (YW), and West Palm Beach co-compost (WPCC). Each of the composts or biosolids was packed into PVC columns and inserted vertically into the upper layer of an Oldsmar fine sand of raised citrus beds. The top end of the PVC column was capped to prevent excessive leaching of nutrients from the columns. The moisture equilibrium between the incubated sample and the soil in the field was attained through the bottom and four side holes of each column, which were separated from the contacting soil by 400-mesh nylon screen. A set of the incubated columns was removed at monthly intervals, and the soil underlying each column was sampled to analyze for KCl-extractable NH{sub 4}-N and NO{sub 3}-N. Total C and N of the incubated samples were determined at the end of the 1-year incubation.

He, Z.L.; Alva, A.K.; Yan, P.; Li, Y.C.; Calvert, D.V.; Stoffella, P.J.; Banks, D.J.

2000-02-01

330

Linking soil element-mass-transfer to microscale mineral weathering in the Santa Catalina Critical Zone Observatory  

NASA Astrophysics Data System (ADS)

Soil chemical denudation and mineral transformation contributes significantly to landscape evolution and to our understanding of water and carbon cycling across ecosystems. The main objective of this research was to couple the chemical composition of bulk soils to the elemental changes associated with microscale mineral transformations to better understand climatic controls on soil development in semi-arid and sub-humid environments. Soil profiles to the depth of refusal and representative parent rock samples were collected from granitic terrain across the Santa Catalina Mountain Critical Zone observatory (SCM-CZO) environmental gradient that spans desert scrub to mixed conifer forest ecosystems. Bulk elemental chemistry, including major, minor, and trace elemental constituents, was determined by x-ray fluorescence (XRF) for all samples and microscale weathering patterns were quantified using electron microprobe analyses. From these data, elemental mass-transfer percentages were calculated and normalized to the parent rock materials using Na and Zr as the mobile and immobile inputs, respectively. Chemical depletions of Na, a proxy for plagioclase feldspar weathering, was observed in both the desert scrub and mixed conifer ecosystems. Na chemical loss was most consistent with depth and across soil pedons (n = 4) in the mixed conifer system where sodium depletion averaged 46% (± 5%) relative to the parent material, providing evidence for loss of plagioclase to chemical weathering. Electron microprobe analyses of surface and subsurface soils at the mixed conifer site revealed a significant decrease in sodium weight percent from the unaltered regions of the grains (Na of ~7-8%) to fully transformed areas of the grains (Na of ~0.2-0.3%) located in joint fractures and at grain edges. In contrast, soils from the desert scrub site exhibited highly variable Na loss in the bulk soils with Na depletion ranging from 23 to 50%. Electron microprobe analyses of desert scrub soils indicated incomplete mineral transformation where sodium weight percents spanned ~7% in un-altered grain centers to ~4% in grain fractures and edges. Backscattered electron (BSE) images support these patterns where more completely transformed minerals were observed in the mixed conifer soils compared to incomplete transformations in soils at the desert scrub site. These results document an important link between bulk soil element loss and microscale weathering processes with increased chemical denudation and mineral transformation in wetter, higher elevation mixed conifer ecosystems.

Lybrand, R. A.; Rasmussen, C.

2012-12-01

331

Fate of phosphorus applied in slurry and mineral fertilizer: accumulation in soil and release into surface runoff water  

Microsoft Academic Search

Phosphorus (P) accumulation on the soil surface and its effect on the concentration of dissolved orthophosphate P (PO4-P) in surface runoff water were studied after three years of surface application of slurry and mineral fertilizer to grass ley on a sandy soil, poor in P. The total amount of P applied was 107–143 kg ha-1>, of which 72–119 kg ha-1>

E. Turtola; M. Yli-Halla

1999-01-01

332

Mobilization of Metals from Pristine Mineral Soil by Nitrifying and Sulfur-Oxidizing Bacteria – The Leaching Potential of Indigenous Culture Enrichments  

Microsoft Academic Search

Indigenous chemolithotrophic nitrifying and sulfur-oxidizing culture enrichments mobilized metals from pristine mineral soil under conditions of ammonium or thiosulfate supplementation in a laboratory experiment carried out over a period of 40 days. The average mineralogical composition of the mineral soil was quartz (62%), feldspar (20%), muscovite (6%), chlorite (2%), hornblende (2%), dolomite (4%), and calcium carbonate (4%). The leaching efficiency

Renate Sonnleitner; Bernhard Redl; Petra Merschak; Franz Schinner

2011-01-01

333

Microbial weathering of apatite and wollastonite in a forest soil: Evidence from minerals buried in a root-free zone  

NASA Astrophysics Data System (ADS)

Mineral weathering is an important process in biogeochemical cycling because it releases nutrients from less labile pools (e.g., rocks) to the food chain. A field experiment was undertaken to determine the degree to which microbes - both fungi and bacteria - are responsible for weathering of Ca-bearing minerals. The experiment was performed at the Hubbard Brook Experimental Forest (HBEF) in the northeastern USA, where acid deposition has leached plant-available calcium from soils for decades. Trees obtain soil nutrients through root uptake as well as through mycorrhizal fungi with which they are symbiotically associated. These fungi extend their hyphae from the tree roots into the soil and exude organic acids that may enhance mineral dissolution. The two most common types of symbiotic fungal-tree associations are ectomycorrhizae, which are associated with spruce (Picea), fir (Abies), and beech (Fagus); and arbuscular mycorrhizae which are commonly associated with angiosperms, such as maples (Acer). To examine the role of fungi and bacteria in weathering of Ca- and/or P-bearing minerals, mesh bags containing sand-sized grains of quartz (as a control), quartz plus 1% wollastonite (CaSiO3), or quartz plus 1% apatite (Ca5(PO4)3F) were buried ~15 cm deep in mineral soil beneath American beech, sugar maple, and mixed spruce and balsam fir stands at the HBEF. Half of the bags were constructed of 50-?m mesh to exclude roots but allow fungal hyphae and bacteria to enter the bags; the remaining bags had 1-?m mesh to exclude fungi and roots but allow bacteria to enter. The bags were retrieved ~ 1, 2 or 4 years after burial. Microbial community composition and biomass in the mesh bags and surrounding soil were characterized and quantified using phospholipid fatty acid (PLFA) analysis. Fungal biomass in the soil and control bags did not differ significantly among stand types. In contrast, the degree of fungal colonization in apatite- and wollastonite-amended bags varied significantly, suggesting that microbial response was due to tree species, type of mycorrhizal fungi, nutrient status of the soils, and mineral composition of the mesh bags. Mineral surfaces were examined using scanning electron microscopy (SEM) to investigate the degree of mineral dissolution as a function of stand type, microbial composition, and time.

Nezat, C. A.

2011-12-01

334

Genetically biodiverse potato cultivars grown on a suitable agricultural soil under compost amendment or mineral fertilization: yield, quality, genetic and epigenetic variations, soil properties.  

PubMed

The use of compost for soil amendment is a promising agricultural practice environmentally and economically viable. In the framework of a wide research project designed to evaluate the effects of soil amendment with municipal solid waste compost in comparison with traditional mineral fertilization practices, 54 different cultivars (Cvs) of potatoes were AFLP (amplified fragment length polymorphism) molecularly fingerprinted. The seven most genetically biodiverse potato Cvs were used to establish an experimental field in southern Italy. The field area was divided into two portions fertilized with compost (20 Mg ha(-1)) or with ammonium sulphate (200 kg ha(-1)). No significant differences in productivity, organoleptic characteristics and element concentrations were observed between the potato tubers obtained with both kinds of soil fertilization, while the tubers grown on compost amended soil showed, on average, higher K concentrations with respect to those grown on mineral fertilised soil. cDNA-AFLP (complementary DNA-AFLP) and MSAP (methylation sensitive amplified polymorphism) analyses were carried out on both leaves and tubers of one selected Cv to estimate if any transcriptome alterations or epigenetic modifications were induced by the two kinds of fertilization, however no variations were detected. Chemical and biological soil qualities (i.e., microbial respiration, FDA hydrolysis, alkaline and acid phosphatase) were assessed on soil samples at the start of the experiment and at the end of potato crop cycle. No significant differences in soil pH and limited ones, in the available fraction of some trace elements, were observed; while conductivity was much higher for the compost amended portion of the experimental field. Microbial respiration, FDA hydrolysis and acid phosphatase activities were significantly increased by compost amendment, in comparison with mineral fertilization. Finally, a sensory panel of potato Cvs detected no significant differences among qualitative descriptors and among potatoes coming from the two differently fertilized soils. PMID:25016108

Cicatelli, Angela; Baldantoni, Daniela; Iovieno, Paola; Carotenuto, Maurizio; Alfani, Anna; De Feis, Italia; Castiglione, Stefano

2014-09-15

335

Rare earth elements in forest-floor herbs as related to soil conditions and mineral nutrition.  

PubMed

Mixtures of rare earth elements (REEs) in fertilizers are widely used in Chinese agriculture to improve crop nutrition. REE concentrations in wild-growing plants, especially herbs, are little known. This study describes differences in the concentrations and proportions of REEs in eight forest-floor herbaceous plants and relates these differences to soil and mineral nutrient conditions. REEs studied were yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). Leaf concentrations of sum REEs differed more than one order of magnitude between species, being highest in Anemone nemorosa (10.1 nmol/g dry mass) and lowest in Convallaria majalis (0.66 nmol/g) from the same site. Leaf concentrations of all REEs correlated positively (p < 0.001), as did sum REE with calcium (Ca) and strontium (Sr) concentrations (p < 0.001). A negative relationship (r = -0.83, (p < 0.001) was measured between phosphorus (P) concentrations and sum REE concentrations in leaves. However, the proportions of the single REEs in the REE sum differed among species. In A. nemorosa, 57% of the molar REE sum was taken by Y + La, and only 21% by Ce. The other extreme was Maianthemum bifolium, with 37% La + Y and 41% Ce. These two species had 2.7-3.0% of the REE sum as heavier lanthanides, compared to 4.1-5.2% in the six other species. No clear relationship between soil properties or REE contents and leaf REE concentrations was detected. For La, however, an overrepresentation in leaves prevailed throughout all species compared to soils, whereas particularly Nd, Sm, and Tb had a lower proportion in the leaves of all species than in their soils. Possible uptake mechanisms of REEs in plants are discussed. PMID:16116249

Tyler, Germund; Olsson, Tommy

2005-08-01

336

Microbiological quality of organic vegetables produced in soil treated with different types of manure and mineral fertilizer  

Microsoft Academic Search

An attempt was made to evaluate microbiological quality of horticultural crops grown organically. Three species of vegetables were used, lettuce (Lactuva sativa), radish (Raphanus sativus) and spinach (Tetragonia expansa), grown organically, in fertile soil. Six different treatments were applied: mineral fertilizer, chicken, cow, and pig manure, chicken litter and cow manure, in association with a liquid foliar biofertilizer. These crops

Débora Cabral Machado; Carla Marques Maia; Isabel Dias Carvalho; Natan Fontoura da Silva; Maria Cláudia Dantas Porfírio Borge André; Álvaro Bisol Serafini

2006-01-01

337

Metagenomes from thawing low-soil-organic-carbon mineral cryosols and permafrost of the canadian high arctic.  

PubMed

Microbial release of greenhouse gases from thawing permafrost is a global concern. Seventy-six metagenomes were generated from low-soil-organic-carbon mineral cryosols from Axel Heiberg Island, Nunavut, Canada, during a controlled thawing experiment. Permafrost thawing resulted in an increase in anaerobic fermenters and sulfate-reducing bacteria but not methanogens. PMID:25414511

Chauhan, Archana; Layton, Alice C; Vishnivetskaya, Tatiana A; Williams, Daniel; Pfiffner, Susan M; Rekepalli, Bhanu; Stackhouse, Brandon; Lau, Maggie C Y; Phelps, Tommy J; Mykytczuk, Nadia; Ronholm, Jennifer; Whyte, Lyle; Onstott, Tullis C; Sayler, Gary S

2014-01-01

338

Metagenomes from Thawing Low-Soil-Organic-Carbon Mineral Cryosols and Permafrost of the Canadian High Arctic  

PubMed Central

Microbial release of greenhouse gases from thawing permafrost is a global concern. Seventy-six metagenomes were generated from low-soil-organic-carbon mineral cryosols from Axel Heiberg Island, Nunavut, Canada, during a controlled thawing experiment. Permafrost thawing resulted in an increase in anaerobic fermenters and sulfate-reducing bacteria but not methanogens. PMID:25414511

Chauhan, Archana; Layton, Alice C.; Vishnivetskaya, Tatiana A.; Williams, Daniel; Pfiffner, Susan M.; Rekepalli, Bhanu; Stackhouse, Brandon; Lau, Maggie C. Y.; Phelps, Tommy J.; Mykytczuk, Nadia; Ronholm, Jennifer; Whyte, Lyle; Onstott, Tullis C.

2014-01-01

339

EFFECT OF SOIL TYPE AND FERTILIZATION LEVEL ON MINERAL CONCENTRATION OF PASTURE: RELATIONSHIP TO RUMINANT PERFORMANCE AND HEALTH  

Technology Transfer Automated Retrieval System (TEKTRAN)

A study was conducted to measure the effects of varying levels of dairy slurry application on mineral content of forages from three soils types. Slurry was applied to orchardgrass (Dactylis glomerata L., cv. Pennlate) using 60 cm diameter drainage lysimeters to measure the direct impact of four lev...

340

Temperature, Water Content and Wet-Dry Cycle Effects on DOC Production and Carbon Mineralization in Agricultural Peat Soils.  

Technology Transfer Automated Retrieval System (TEKTRAN)

A series of controlled laboratory experiments were utilized to examine factors affecting dissolved organic carbon (DOC) production and C mineralization rates over a range of conditions experienced resulting from agricultural practices in peat soils from the Sacramento-San Joaquin Delta. We conclude...

341

A new correlation relating the shear strength of reconstituted soil to the proportions of clay minerals and plasticity characteristics  

Microsoft Academic Search

It has been recommended to use “fully softened shear strength” while conducting slope stability analysis of first time slides. Studies pertaining to the influence of the mineral composition of a soil mass on the residual shear strength are available in the literature. However, very limited studies are available regarding the effect of clay mineralogy on the fully softened shear strength.

Binod Tiwari; Beena Ajmera

2011-01-01

342

EFFECT OF SOIL TYPE AND FERTILIZATION LEVEL ON MINERAL CONCENTRATION OF PASTURE: RELATIONSHIP TO RUMINANT PERFORMANCE AND HEALTH  

Technology Transfer Automated Retrieval System (TEKTRAN)

A three-year study was conducted to measure the effects of varying levels of dairy slurry application on mineral concentration of forages from three soils types. Slurry was applied to orchardgrass (Dactylis glomerata L., cv. Pennlate) growing in 60 cm diameter drainage lysimeters to measure the dir...

343

Development and evaluation of a new sorption model for organic cations in soil: contributions from organic matter and clay minerals.  

PubMed

This study evaluates a newly proposed cation-exchange model that defines the sorption of organic cations to soil as a summed contribution of sorption to organic matter (OM) and sorption to phyllosilicate clay minerals. Sorption to OM is normalized to the fraction organic carbon (fOC), and sorption to clay is normalized to the estimated cation-exchange capacity attributed to clay minerals (CECCLAY). Sorption affinity is specified to a fixed medium composition, with correction factors for other electrolyte concentrations. The model applies measured sorption coefficients to one reference OM material and one clay mineral. If measured values are absent, then empirical relationships are available on the basis of molecular volume and amine type in combination with corrective increments for specific polar moieties. The model is tested using new sorption data generated at pH 6 for two Eurosoils, one enriched in clay and the other, OM, using 29 strong bases (pKa > 8). Using experimental data on reference materials for all tested compounds, model predictions for the two soils differed on average by only -0.1 ± 0.4 log units from measured sorption affinities. Within the chemical applicability domain, the model can also be applied successfully to various reported soil sorption data for organic cations. Particularly for clayish soils, the model shows that sorption of organic cations to clay minerals accounts for more than 90% of the overall affinity. PMID:24266749

Droge, Steven T J; Goss, Kai-Uwe

2013-12-17

344

Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance  

PubMed Central

Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1) quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2) determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA). Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m). Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R2<0.29). Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21st Century. PMID:23226324

Smithwick, Erica A. H.; Naithani, Kusum J.; Balser, Teri C.; Romme, William H.; Turner, Monica G.

2012-01-01

345

Post-fire spatial patterns of soil nitrogen mineralization and microbial abundance.  

PubMed

Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1) quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2) determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA). Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m). Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R˛<0.29). Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21(st) Century. PMID:23226324

Smithwick, Erica A H; Naithani, Kusum J; Balser, Teri C; Romme, William H; Turner, Monica G

2012-01-01

346

Submicron mineral structures control the stabilization of litter-derived organic matter in soils - A NanoSIMS study  

NASA Astrophysics Data System (ADS)

The sequestration of carbon and nitrogen by clay-sized particles in soils is well established. However, in the most cases, the complex structure of the organo-mineral associations remain a black box due to the common measurements of soil fractions as a whole. By combining nano-scale secondary ion mass spectrometry (NanoSIMS) with isotopic tracing it is possible to study the formation and spatial heterogeneity of organo-mineral associations. NanoSIMS enables the detection of up to seven secondary ion species (e.g. 13C-, 12N15N-, 27Al16O-, 56Fe16O-) simultaneously, to generate a submicron-scale image of the elemental and isotopic composition (e.g. 13C, 15N, Al and Fe) down to a lateral resolution of ~150 nm. Therefore this technique can be used to study organo-mineral associations at the relevant scale. The aim of our study was to follow the formation of organo-mineral associations over different time steps and the distribution of C and N by imaging the complex arrangement between soil mineral surfaces and litter-derived organic matter (OM). Parallel to the determination of the isotopic N and C composition of bulk soil and soil fractions (combined density and particle size fractionation) using isotope ratio mass spectrometry (IRMS), the spatial distribution of the OM was investigated by NanoSIMS analysis of the clay-sized fraction. In our study we show that only some of the clay-sized surfaces bind OM. Surprisingly, less than 19% of the mineral areas visible by scanning electron microscopy and NanoSIMS show an OM attachment. We demonstrate that mineral clusters with rough surfaces exhibit the preferential binding spots for OM. By combining NanoSIMS and isotopic tracing, we distinguish between new labelled and pre-existing OM and show that new OM is preferentially attached to already present organo-mineral clusters. Vogel, C., Mueller, C.W., Höschen, C., Buegger, F., Heister, K., Schulz, S., Schloter, M., Kögel-Knabner, I., 2014. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nature Communications 5. doi:10.1038/ncomms3947

Vogel, Cordula; Mueller, Carsten W.; Höschen, Carmen; Buegger, Franz; Heister, Katja; Schulz, Stefanie; Schloter, Michael; Kögel-Knabner, Ingrid

2014-05-01

347

Impact of soil primary size fractions on sorption and desorption of atrazine on organo-mineral fractions.  

PubMed

In the current study, a mechanical dispersion method was employed to separate clay (<2 ?m), silt (2-20 ?m), and sand (20-50 ?m) fraction in six bulk soils. Batch equilibrium method was used to conduct atrazine sorption and desorption experiments on soil organo-mineral fractions with bulk soils and their contrasting size fractions separately. The potential contribution of total organic carbon (TOC) for atrazine retention in different fractions was further investigated. It was found that clay fraction had the highest adsorption but the least desorption capacities for atrazine, while sand fraction had the lowest adsorption but the highest desorption capacities for atrazine. The adsorption percentage of atrazine, as compared with adsorption by the corresponding bulk soils, ranged from 53.6 to 80.5 %, 35.7 to 56.4 %, and 0.2 to 4.5 % on the clay, silt, and sand fractions, respectively. TOC was one of the key factors affecting atrazine retention in soils, with the exact contribution dependent on varying degree of coating with mineral component in different soil size fractions. The current study may be useful to predict the bioavailability of atrazine in different soil size fractions. PMID:25300187

Huang, Yufen; Liu, Zhongzhen; He, Yan; Li, Yanliang

2015-03-01

348

Alaska Geochemical Database (AGDB)-Geochemical data for rock, sediment, soil, mineral, and concentrate sample media  

USGS Publications Warehouse

The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This Microsoft Access database serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed in USGS laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects from 1962 to 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy mineral concentrate samples are included in this database. The AGDB includes historical geochemical data originally archived in the USGS Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the USGS PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all USGS geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest USGS geochemical databases, or were once excluded for programmatic reasons, are included here in the AGDB and will be added to the NGDB. The AGDB data provided here are the most accurate and complete to date, and should be useful for a wide variety of geochemical studies. The AGDB data provided in the linked database may be updated or changed periodically. The data on the DVD and in the data downloads provided with this report are current as of date of publication.

Granitto, Matthew; Bailey, Elizabeth A.; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.

2011-01-01

349

Characterization of ^{239,240}Pu Radionuclide Adsorption to Soil Particles and Mineral Dust Aerosols  

NASA Astrophysics Data System (ADS)

The release of ^{239,240}Pu into the environment by nuclear weapons testing 50 years ago initiated the cyclic mobilization of Pu-contaminated soil particles via the resuspension of dust resulting in a widespread distribution of Pu and other radionuclides. It is unclear what enables the aeolian transport of Pu in the environment; plausible hypotheses of Pu binding to dust and soil particles include Pu adsorption to iron oxides/hydroxides, organic acids, or silicate minerals such as clays. To investigate the connections between surface soils, dust and radionuclides, samples of soil and/or dust were collected from the Project Gnome Site in Eddy County, NM, the Jemez Mountains near Los Alamos, NM, and two 50-year old attics and wind-blown dust in Big Spring, TX. This study tests the hypothesis that Pu is adsorbed onto Fe oxides and hydroxides that coat dust/soil particles. The samples are generally low in organic carbon (0.2 - 4.8%, except for the unburned Los Alamos sample at 9.4%), as measured by LOI (Loss On Ignition) at 360 °C. The citrate-bicarbonate-dithionite method (CDB) of Fe oxide removal, first proposed by Mehra and Jackson in 1960, was used to selectively extract Fe oxides from the samples while leaving silicate Fe intact. Chemical digestion of each sample creates two fractions, the extracted supernatant and a solid pellet residue. If the Pu were associated with Fe oxides, then Fe and Pu should both be selectively removed from the bulk sample during the CBD process, leaving the pellet depleted in Fe and Pu and the supernatant enriched. For Fe, this was confirmed by scanning electron microscope and petrographic analyses. Preliminary radiochemical analyses of Pu activity also verify this hypothesis. Pu activity is significantly lower in pellets than bulk samples (Pu activitypellet/Pu activitybulk average = 0.07, range 0.02-0.12); Pu activity in supernatants is significantly higher than in bulk samples (Pu activitysupernatant/Pu activitybulk average = 4.45, range 2.53-6.92). The Big Springs wind-blown dust sample is an outlier; further analyses are in progress to evaluate its composition.

Tatro, D. P.; Arimoto, R.; McMillan, N. J.; Barnes, M.

2006-12-01

350

How biological crusts are stabilizing the soil surface? The devolpment of organo-mineral interactions in the initial phase  

NASA Astrophysics Data System (ADS)

First colonizers of new land surfaces are cryptogames which often form biological soil crusts (BSC) covering the first millimetre of the top soil in many ecosystems from polar to desert ecosystems. These BSC are assemblages of cyanobacteria, green algae, mosses, liverworts, fungi and/or lichens. The development of soil surface crusts plays a major role for the further vegetation pattern through changes to the physico-chemical conditions and influencing various ecosystem processes. We studied the development of BSC on quaternary substrate of an initial artificial water catchment in Lusatia, Germany. Due to lack of organic matter in the geological substrate, photoautotrophic organisms like green algae and cyanobacteria dominated the initial phases of ecosystem development and, hence, of organo-mineral ineractions. We combined SEM/EDX and FTIR microscopy to study the contact zone of extracellular polymeric substances (EPS) of green algae and cyanobacteria with quartz, spars and mica on a >40 µm scale in undisturbed biological soil crusts, which had a maximum thickness of approx. 2 mm. SEM/EDX microscopy was used to determine the spatial distribution of S, Ca, Fe, Al, Si and K in the profiles, organic compounds were identified using FTIR microscopy. Exudates of crust organisms served as cementing material between sand particles. The crust could be subdivided into two horizontal layers. The upper layer, which had a thickness of approx. 200 µm, is characterized by accumulation of Al and K, but absence of Fe in microbial derived organic matter, indicating capture of weathering products of feldspars and mica by microbial exudates. The pore space between mineral particles was entirely filled with organic matter here. The underlying layer can be characterized by empty pores and organo-mineral bridges between the sand particles. Contrarily to the upper layer of the crust, Fe, Al and Si were associated with organic matter here but K was absent. Highest similarity of the FTIR spectra of EPS was observed with carbohydrates, using cellulose, dextran and humic acid Na salt as controls. Obviously, humification does not play a key role during this initial phase of soil formation. It was hypothesized that biological soil crusts facilitate the weathering of mineral substrate by (I) circumventing loss of fine particles with erosion, (II) by chemical treatment of minerals and (III) by catching small mineral-particles by glutinous EPS on the soil surface from the surrounding area.

Fischer, T.; Veste, M.; Wiehe, W.; Lange, P.

2009-04-01

351

The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California  

SciTech Connect

In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka marine terrace chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized (White et al., 2008, GCA) and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisser and [2006] or the aluminum inhibition model proposed by Oelkers et al. [1994], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO{sub 2}(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total mass removed from the weathering profile. Our analysis suggests that secondary clay precipitation is as important as aqueous transport in governing the amount of dissolution that occurs within a profile because clay minerals exert a strong control over the reaction affinity of the dissolving primary minerals. The modeling also indicates that the weathering advance rate and the total mass of mineral dissolved is controlled by the thermodynamic saturation of the primary dissolving phases plagioclase and K-feldspar, as is evident from the difference in propagation rates of the reaction fronts for the two minerals despite their very similar kinetic rate laws.

Maher, K.; Steefel, C. I.; White, A.F.; Stonestrom, D.A.

2009-02-25

352

Distinctive sorption mechanisms of soil organic matter and mineral components as elucidated by organic vapor uptake kinetics.  

PubMed

Sorption kinetics and capacities of volatile organic compounds (VOCs) affect the remediation and fate of these pollutants in soils. The soil organic-mineral compositional heterogeneity complicates the transport and fate of VOCs in soils. The sorption kinetics of toluene vapor with two common soil components, kaolinite and humic acid, shows two distinct sorption patterns. Results with kaolinite are characteristic of surface adsorption, whereas results with humic acid are characteristic of solvation and partition effects. On soils, the kinetics of toluene vapor sorption show a two-stage sorption phenomenon. The first stage is reflective of surface adsorption (1-4 h to completion) and the second stage of much slower partitioning into soil organic matter, which was preceded by a lag phase (approximately 4 h) and took as long as 15 h for completion. The relative contributions of these two stages to soil uptake are quantifiable by two independent parameters, the soil organic fraction and the surface area. A better understanding of the effect of soil compositional heterogeneity on sorption kinetics and capacities facilitates our understanding of the prediction for the fate of organic contaminants in the environment. PMID:16398119

Shih, Yang-Hsin; Wu, Shian-Chee

2005-11-01

353

Immediate Effects of Time and Method of Alfalfa Termination on Soil Mineral Nitrogen, Moisture, Weed Control, and Seed Yield, Quality, and Nitrogen Uptake  

Microsoft Academic Search

Three field experiments were conducted on Gray Luvisol (Typic Cryoboralf) soils in northeastern Saskatchewan to compare the effects of alfalfa (Medicago sativa Leyss) stand termination with tillage and herbicides at different times on mineral nitrogen (N) (ammonium-N and nitrate-N) and moisture content of soil in spring (experiments 1 and 2), soil moisture, volunteer alfalfa and dandelion control, plant density, seed

S. S. Malhi; A. M. Johnston; H. Loeppky; C. L. Vera; H. J. Beckie; P. M. S. Bandara

2007-01-01

354

Maize Varieties Released in Different Eras Have Similar Root Length Density Distributions in the Soil, Which Are Negatively Correlated with Local Concentrations of Soil Mineral Nitrogen  

PubMed Central

Larger, and deeper, root systems of new maize varieties, compared to older varieties, are thought to have enabled improved acquisition of soil resources and, consequently, greater grain yields. To compare the spatial distributions of the root systems of new and old maize varieties and their relationships with spatial variations in soil concentrations of available nitrogen (N), phosphorus (P) and potassium (K), two years of field experiments were performed using six Chinese maize varieties released in different eras. Vertical distributions of roots, and available N, P and K in the 0–60 cm soil profile were determined in excavated soil monoliths at silking and maturity. The results demonstrated that new maize varieties had larger root dry weight, higher grain yield and greater nutrient accumulation than older varieties. All varieties had similar total root length and vertical root distribution at silking, but newer varieties maintained greater total root length and had more roots in the 30–60 cm soil layers at maturity. The spatial variation of soil mineral N (Nmin) in each soil horizon was larger than that of Olsen-P and ammonium-acetate-extractable K, and was inversely correlated with root length density (RLD), especially in the 0–20 cm soil layer. It was concluded that greater acquisition of mineral nutrients and higher yields of newer varieties were associated with greater total root length at maturity. The negative relationship between RLD and soil Nmin at harvest for all varieties suggests the importance of the spatial distribution of the root system for N uptake by maize. PMID:25799291

Ning, Peng; Li, Sa; White, Philip J.; Li, Chunjian

2015-01-01

355

Recent (<4 year old) Leaf Litter is Not a Major Source of Microbial Carbon in a Temperate Forest Mineral Soil  

SciTech Connect

Microbial communities in soil A horizons derive their carbon from several potential sources: organic carbon (C) transported down from overlying litter and organic horizons, root-derived C, or soil organic matter. We took advantage of a multi-year experiment that manipulated the {sup 14}C isotope signature of surface leaf litter inputs in a temperate forest at the Oak Ridge Reservation, Tennessee, USA, to quantify the contribution of recent leaf litter C to microbial respiration and biomarkers in the underlying mineral soil. We observed no measurable difference (< {approx}40{per_thousand} given our current analytical methods) in the radiocarbon signatures of microbial phospholipid fatty acids (PLFA) isolated from the top 10 cm of mineral soil in plots that experienced 3 years of litterfall that differed in each year by {approx}750{per_thousand} between high-{sup 14}C and low-{sup 14}C treatments. Assuming any difference in {sup 14}C between the high- and low-{sup 14}C plots would reflect C derived from these manipulated litter additions, we estimate that <6% of the microbial C after 4 years was derived from the added 1-4-year-old surface litter. Large contributions of C from litter < 1 year (or >4 years) old (which fell after (or prior to) the manipulation and therefore did not differ between plots) are not supported because the {sup 14}C signatures of the PLFA compounds (averaging 200-220{per_thousand}) is much higher that of the 2004-5 leaf litter (115{per_thousand}) or pre-2000 litter. A mesocosm experiment further demonstrated that C leached from {sup 14}C-enriched surface litter or the O horizon was not a detectable C source in underlying mineral soil microbes during the first eight months after litter addition. Instead a decline in the {sup 14}C of PLFA over the mesocosm experiment likely reflected the loss of a pre-existing substrate not associated with added leaf litter. Measured PLFA {Delta}{sup 14}C signatures were higher than those measured in bulk mineral soil organic matter in our experiments, but fell within the range of {sup 14}C values measured in mineral soil roots. Together, our experiments suggest that root-derived C is the major (>60%) source of C for microbes in these temperate deciduous forest soils.

Kramer, Christiane [University of California, Irvine; Trumbore, Susan E. [University of California, Irvine; Froberg, Mats J. [Sveriges Lantbruksuniversitet; Cisneros dozal, Luz Maria [Los Alamos National Laboratory (LANL); Zhang, Dachun [University of California, Irvine; Xu, Xiamei [University of California, Irvine; Santos, Guaciara [University of California, Irvine; Hanson, Paul J [ORNL

2010-01-01

356

Isolation from Agricultural Soil and Characterization of a Sphingomonas sp. Able To Mineralize the Phenylurea Herbicide Isoproturon  

PubMed Central

A soil bacterium (designated strain SRS2) able to metabolize the phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was isolated from a previously IPU-treated agricultural soil. Based on a partial analysis of the 16S rRNA gene and the cellular fatty acids, the strain was identified as a Sphingomonas sp. within the ?-subdivision of the proteobacteria. Strain SRS2 was able to mineralize IPU when provided as a source of carbon, nitrogen, and energy. Supplementing the medium with a mixture of amino acids considerably enhanced IPU mineralization. Mineralization of IPU was accompanied by transient accumulation of the metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, and 4-isopropyl-aniline identified by high-performance liquid chromatography analysis, thus indicating a metabolic pathway initiated by two successive N-demethylations, followed by cleavage of the urea side chain and finally by mineralization of the phenyl structure. Strain SRS2 also transformed the dimethylurea-substituted herbicides diuron and chlorotoluron, giving rise to as-yet-unidentified products. In addition, no degradation of the methoxy-methylurea-substituted herbicide linuron was observed. This report is the first characterization of a pure bacterial culture able to mineralize IPU. PMID:11722885

Sřrensen, Sebastian R.; Ronen, Zeev; Aamand, Jens

2001-01-01

357

Changes in the biological diversity and concentration of total DNA under the influence of mineral fertilizers in agrochernozemic soils  

NASA Astrophysics Data System (ADS)

Chernozems represent the most valuable soil resource for Russian agriculture. Their sustainable use in intensive farming systems with preservation of the biological diversity and biological activity of these soils is of crucial importance for the agri-environmental security of Russia. We studied the influence of different rates of mineral fertilizers on the biological activity of chernozems on experimental fields of the Dokuchaev Research Institute of Agriculture in Kamennaya Steppe (Voronezh oblast). Soil samples were taken at the end of April 2013 from the plow horizon on trials with different rates of fertilization: NPK-0, NPK-60, and NPK-120 (kg/ha); a long-term fallow plot was used as an absolute control. The biological activity was analyzed by routine inoculation methods and by the molecular biology techniques based on DNA isolation from the soil samples. Quantitative parameters of the isolated and purified DNA were determined by measuring the fluorescence of the DNA preparations with added intercalating dyes; GelDoc XR system and Image Lab and TotalLab Quant. software were used. Microbiological studies showed the high biological activity of the chernozems soil in all the trials. No significant differences were found between the trials for the microbiological processes of the carbon cycle. There was a weakly expressed tendency for an increase in the activity of actinomycetes from the soil with zero fertilization (5.11 log10CFU/g) to the soil with maximum (NPK-120) fertilization (5.69 log10CFU/g) and the fallow soil (5.73 log10CFU/g); the number of cultivated micromycetes decreased from the soil with zero fertilization (4.76 log10CFU/g) to the soil with maximum fertilization (4.14 log10CFU/g) and to the fallow soil (4.1 log10CFU/g). A less equilibrium state is typical of the microorganisms participating in the nitrogen cycle. The number of cultivated aerobic and anaerobic nitrogen-fixing bacteria somewhat increased in the fertilized trials (NPK-60, NPK-120). The most active development of denitrifiers was in the fallow soil. It is known that cultivated forms comprise only about 1 to 10% of the total number of soil microorganisms. Quantitative analysis by the methods of molecular biology makes it possible to consider the full range of microorganisms. The concentration of extracted DNA can serve as an indicator of the total "biogenity" of the soil, as we isolated the genetic material of all organisms living in the soil. The highest concentration of DNA found in the samples from the fallow soil. Much lower values were found in the soils treated with mineral fertilizers: 38.9% in trial NPK-60 and 53.3% in trials NPK-120 and NPK-0. Thus, to sustain biota in cultivated chernozems and to improve the ecological state of the fields, the rates of mineral fertilizers have to be properly controlled. Moderate rates can be recommended. Features of the soil microbiome can serve as universal and sensitive indicators of the state of the soils under different farming systems. The quantitative analysis of isolated total DNA is an efficient tool to control the ecological state of the soils, especially those involved in agriculture.

Tkhakakhova, Azida; Kutovaya, Olga; Ivanova, Ekaterina; Pavlyuchenko, Anatoly

2014-05-01

358

Soil anomalies associated with Cu-Ni mineralization in the South Kawishiwi area, northern Lake County, Minnesota  

USGS Publications Warehouse

Geochemical sampling in the contact zone between the Giants Range Granite and the Duluth Gabbro Complex along the South Kawishiwi River indicates the presence of extensive soil anomalies associated with the known Cu-Ni-Co-Ag mineralization in the basal part of the Duluth Gabbro Complex. A close spatial relationship was found between the ore bodies and associated anomalies, despite the fact that the parent material of the sampled soils was glacial overburden that mantles the area to a depth of 0-50 feet. The <74 mesh fraction of B-horizon soils was found to be an effective sample type for geochemical exploration in this area. Trace metals are believed to be held primarily by the clay-size hydrated iron oxides and manganese oxide, which are somewhat enriched in the fine fraction of the B-horizon soils.

Alminas, Henry V.

1975-01-01

359

Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2  

SciTech Connect

Elevated atmospheric [CO2] is projected to increase forest production, which could increase ecosystem carbon (C) storage. However, sustained forest production will depend on the nutrient balance of the forested ecosystem. Our aim was to examine the causes and consequences of increased fine-root production and mortality throughout the soil profile under elevated CO2 with respect to potential gross nitrogen (N) cycling rates. Our study was conducted in a CO2-enriched sweetgum (Liquidambar styraciflua L.) plantation in Oak Ridge, TN, USA. We used isotope pool dilution methodology to measure potential gross N cycling rates in laboratory incubations of soil from four depth increments to 60 cm. Our objectives were two-fold: (1) determine whether N is available for root acquisition in deeper soil, and (2) determine whether increased inputs of labile C from greater fine-root mortality at depth under elevated [CO2] had altered N cycling rates. While gross N fluxes declined with soil depth, we found that N is potentially available for roots to access, especially below 15 cm depth where microbial consumption of mineral N was reduced. Overall, up to 60% of potential gross N mineralization, and 100% of potential net N mineralization, occurred below 15-cm depth at this site. This finding was supported by in situ measurements from ion-exchange resins, where total inorganic N availability at 55 cm depth was equal to or greater than N availability at 15 cm depth. While it is likely that trees grown under elevated [CO2] are accessing a larger pool of inorganic N by mining deeper soil, we found no effect of elevated [CO2] on potential gross or net N cycling rates. Thus, increased root exploration of the soil volume under elevated [CO2] may be more important than changes in potential gross N cycling rates in sustaining forest responses to rising atmospheric CO2.

Iversen, Colleen M [ORNL; Hooker, Toby [Utah State University (USU); Classen, Aimee T [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL

2011-01-01

360

Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals  

NASA Astrophysics Data System (ADS)

In isotope-enabled hydrology, soil and vadose zone sediments have been generally considered to be isotopically inert with respect to the water they host. This is inconsistent with knowledge that clay particles possessing an electronegative surface charge and resulting cation exchange capacity (CEC) interact with a wide range of solutes which, in the absence of clays, have been shown to exhibit ?18O isotope effects that vary in relation to the ionic strength of the solutions. To investigate the isotope effects caused by high CEC clays in mineral-water systems, we created a series of monominerallic-water mixtures at gravimetric water contents ranging from 5% to 32%, consisting of pure deionized water of known isotopic composition with homoionic (Mg, Ca, Na, K) montmorillonite. Similar mixtures were also created with quartz to determine the isotope effect of non-, or very minimally-, charged mineral surfaces. The ?18O value of the water in these monominerallic soil analogs was then measured by isotope ratio mass spectrometry (IRMS) after direct headspace CO2 equilibration. Mg- and Ca-exchanged homoionic montmorillonite depleted measured ?18O values up to 1.55‰ relative to pure water at 5% water content, declining to 0.49‰ depletion at 30% water content. K-montmorillonite enriched measured ?18O values up to 0.86‰ at 5% water content, declining to 0.11‰ enrichment at 30% water. Na-montmorillonite produces no measureable isotope effect. The isotope effects observed in these experiments may be present in natural, high-clay soils and sediments. These findings have relevance to the interpretation of results of direct CO2-water equilibration approaches to the measurement of the ?18O value of soil water. The adsorbed cation isotope effect may bear consideration in studies of pedogenic carbonate, plant-soil water use and soil-atmosphere interaction. Finally, the observed isotope effects may prove useful as molecular scale probes of the nature of mineral-water interactions.

Oerter, Erik; Finstad, Kari; Schaefer, Justin; Goldsmith, Gregory R.; Dawson, Todd; Amundson, Ronald

2014-07-01

361

Influence of Environmental Factors on Antagonism of Fungi by Bacteria in Soil: Clay Minerals and pH  

PubMed Central

The soil replica plating technique was used to evaluate the influence of clay minerals and pH on antagonistic interactions between fungi and bacteria in soil. In general, the antagonistic activity of bacteria towards filamentous fungi was greater in soil than on agar. The spread of Aspergillus niger through soil was inhibited by Serratia marcescens when the organisms were inoculated into separate sites in soil, and this antagonistic effect was maintained when the soil was amended with 3, 6, 9, or 12% (vol/vol) montmorillonite, whereas the addition of kaolinite at a concentration of 3% reduced the antagonism and at 6, 9, or 12% totally eliminated it. Similar results were obtained with the inhibition of A. niger by Agrobacterium radiobacter and of Penicillium vermiculatum by either S. marcescens or Nocardia paraffinae. When A. niger and S. marcescens were inoculated into the same soil site, A. niger was inhibited in all soils, regardless of clay content, although the extent of inhibition was greater as the concentration of montmorillonite, but not of kaolinite, increased. A. niger was inhibited more when inoculated as spores than as mycelial fragments and when inoculated 96 h after S. marcescens, but a 1% glucose solution reduced the amount of inhibition when the fungus was inoculated 96 h after the bacterium. When the pH of the soil-clay mixtures was altered, the amount of antagonism usually increased as the pH increased. Antagonism appeared to be related to the cation-exchange capacity and the pH of the soil-clay mixtures. Bacillus cereus and another species of Bacillus showed no activity in soil towards A. niger under any of the environmental conditions tested, even though the Bacillus sp. significantly inhibited A. niger and seven other fungi on agar. PMID:16345477

Rosenzweig, William D.; Stotzky, G.

1979-01-01

362

Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2  

NASA Astrophysics Data System (ADS)

The sensitivity of soil organic carbon (SOC) to changing environmental conditions represents a critical uncertainty in coupled carbon cycle-climate models. Much of this uncertainty arises from our limited understanding of the extent to which root-microbe interactions induce SOC losses (through accelerated decomposition or `priming') or indirectly promote SOC gains (via `protection' through interactions with mineral particles). We developed a new SOC model to examine priming and protection responses to rising atmospheric CO2. The model captured disparate SOC responses at two temperate free-air CO2 enrichment (FACE) experiments. We show that stabilization of `new' carbon in protected SOC pools may equal or exceed microbial priming of `old' SOC in ecosystems with readily decomposable litter and high clay content (for example, Oak Ridge). In contrast, carbon losses induced through priming dominate the net SOC response in ecosystems with more resistant litters and lower clay content (for example, Duke). The SOC model was fully integrated into a global terrestrial carbon cycle model to run global simulations of elevated CO2 effects. Although protected carbon provides an important constraint on priming effects, priming nonetheless reduced SOC storage in the majority of terrestrial areas, partially counterbalancing SOC gains from enhanced ecosystem productivity.

Sulman, Benjamin N.; Phillips, Richard P.; Oishi, A. Christopher; Shevliakova, Elena; Pacala, Stephen W.

2014-12-01

363

Responses of soil microbial biomass, nematode trophic groups, N-mineralization, and litter decomposition to disturbance events in the southern Appalachians  

Microsoft Academic Search

Seasonal measurements of soil microbial biomass, nematode trophic groups, net N-mineralization, net nitrification, net ammonification, litter decomposition, and soil respiration rates were examined to assess the effects of rhododendron (Rhododendron maximum L.) removal and hurricane windthrow upon these factors. Comparisons of pre- and post-disturbance quantities of soil microbial biomass carbon ranged from 503 to 1080?g C g soil?1 and microbial

C. J Wright; D. C Coleman

2002-01-01

364

Enhanced Mineralization of [U-14C]2,4-Dichlorophenoxyacetic Acid in Soil from the Rhizosphere of Trifolium pratense  

Microsoft Academic Search

Enhanced biodegradation in the rhizosphere has been reported for many organic xenobiotic compounds, although the mechanisms are not fully understood. The purpose of this study was to discover whether rhizosphere-enhanced biodegradation is due to selective enrichment of degraders through growth on com- pounds produced by rhizodeposition. We monitored the mineralization of (U-14C)2,4-dichlorophenoxyacetic acid (2,4-D) in rhizosphere soil with no history

Liz J. Shaw; Richard G. Burns

2004-01-01

365

Surfactant-mediated extraction of iron and its spectrophotometric determination in rocks, minerals, soils, stream sediments and water samples  

Microsoft Academic Search

An extraction spectrophotometric method for iron determination in rocks, minerals, soils, stream sediments and water samples has been developed. At pH 3-4, iron (III) forms a 1:2:1 ternary complex with thiocyanate and cetyltrimethylammonium bromide (Fe\\/SCN\\/CTAB) which is extracted into ethyl acetate. The readily formed purple complex is suitable for extraction spectrophotometric determination of iron in rocks and related materials from

Pranab K. Tarafder; Raghbendra Thakur

2005-01-01

366

Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus Trametes versicolor  

Microsoft Academic Search

The fate of pentachlorophenol (PCP) in autoclaved soil supplemented with straw and inoculated with the white-rot fungus Trametes versicolor was investigated. Inoculated flasks were incubated for 0 to 42d and control flasks for 0 to 28d. Mineralization and volatilization of PCP and its transformation products were measured using 14C-labelled PCP for radiorespirometry and extraction analysis, and non-labelled PCP to monitor

Marja Tuomela; Merja Lyytikäinen; Pekka Oivanen; Annele Hatakka

1998-01-01

367

Comparison of Adsorption Isotherm Equations to Describe Boron Behavior in Soils Affected by Organic and Mineral Fertilization  

Microsoft Academic Search

The effects of different fertilization techniques—mineral [21% nitrogen (N)], organomineral (10% N), mycorrhiza inoculumns, wine-producing residues (three different formulas: distiller's residue, 2.2% N; anaerobic digestate, 2.8% N; and the same plus mycorrhizas inoculum), and compost by farm residues (2.0% N)—on adsorption of boron (B) were investigated. The soils, collected after a triennial lettuce (Lactuca sativa L. cv. ‘Bacio’) cultivation, were

Giampietro Diana; Claudio Beni; Simona Marconi

2010-01-01

368

Influence of mineral weathering reactions on the chemical composition of soil water, springs, and ground water, Catoctin Mountains, Maryland  

USGS Publications Warehouse

During 1983 and 1984, wet precipitation was primarily a solution of dilute sulphuric acid, whereas calcium and bicarbonate were the major ions in springs and ground water in two small watersheds with a deciduous forest cover in central Maryland. Dominant ions in soil water were calcium, magnesium, and sulphate. The relative importance of mineral weathering reactions on the chemical composition of these subsurface waters was compared to the contribution from wet precipitation, biological processes, and road deicing salts. -from Author

Katz, B.G.

1989-01-01

369

Vitamins and Minerals  

MedlinePLUS

... and Minerals Vitamins are organic substances (made by plants or animals), minerals are inorganic elements that come ... earth; soil and water and are absorbed by plants. Animals and humans absorb minerals from the plants ...

370

IMMOBILIZATION OF HEAVY METALS IN SOILS AND WATER BY A MANGANESE MINERAL  

EPA Science Inventory

A synthesized Mn mineral used in study on adsorption of heavy metals from water has shown a great adsorption capability for Pb, Cu, Cd, Co, Ni and Zn on this mineral over a pH range from 2 to 8. The retention of Pb on this mineral was as high as 10% of its weight. Application of ...

371

Types of Occurrence of Nontronite and Nontronite-like Minerals in Soils l  

E-print Network

weathering and, because of that, they occur in different mineral associations of primary minerals, other 2: 1 clays, kaolin, iron oxides, and bauxite. The purpose of this report is to describe the mode of the occurrence of these clays, the climatic environment, the weathering stage and mineral association

G. Donald Sherman; Haruyoshi Ikawa; Goro Uehara; Ernest Okazaki

372

Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests  

NASA Astrophysics Data System (ADS)

Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate, and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3-, and POx (representing the sum of PO43-, HPO42-, and H2PO4-)) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers, and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus, and free NH4+ at a tropical forest site (Tapajos). The overall model posterior uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results imply that the competitiveness (from most to least competitive) followed this order: (1) for NH4+, nitrifiers ~ decomposing microbes > plant roots, (2) for NO3-, denitrifiers ~ decomposing microbes > plant roots, (3) for POx, mineral surfaces > decomposing microbes ~ plant roots. Although smaller, plant relative competitiveness is of the same order of magnitude as microbes. We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among different nutrient consumers. Although we used as many observations as we could obtain, more nutrient addition experiments in tropical systems would greatly benefit model testing and calibration. In summary, the N-COM model provides an ecologically consistent representation of nutrient competition appropriate for land BGC models integrated in Earth System Models.

Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

2015-03-01

373

Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model  

NASA Astrophysics Data System (ADS)

A growing body of literature documents the pressing need to develop soil biogeochemistry models that more accurately reflect contemporary understanding of soil processes and better capture soil carbon (C) responses to environmental perturbations. Models that explicitly represent microbial activity offer inroads to improve representations of soil biogeochemical processes, but have yet to consider relationships between litter quality, functional differences in microbial physiology, and the physical protection of microbial byproducts in forming stable soil organic matter (SOM). To address these limitations, we introduce the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, and evaluate it by comparing site-level soil C projections with observations from a long-term litter decomposition study and soil warming experiment. In MIMICS, the turnover of litter and SOM pools is governed by temperature-sensitive Michaelis-Menten kinetics and the activity of two physiologically distinct microbial functional types. The production of microbial residues through microbial turnover provides inputs to SOM pools that are considered physically or chemically protected. Soil clay content determines the physical protection of SOM in different soil environments. MIMICS adequately simulates the mean rate of leaf litter decomposition observed at temperate and boreal forest sites, and captures observed effects of litter quality on decomposition rates. Moreover, MIMICS better captures the response of SOM pools to experimental warming, with rapid SOM losses but declining temperature sensitivity to long-term warming, compared with a more conventional model structure. MIMICS incorporates current microbial theory to explore the mechanisms by which litter C is converted to stable SOM, and to improve predictions of soil C responses to environmental change.

Wieder, W. R.; Grandy, A. S.; Kallenbach, C. M.; Bonan, G. B.

2014-07-01

374

Soil carbon sequestration and mineralization potential in an old-field revegetated with shrubs in semi-arid climate conditions  

NASA Astrophysics Data System (ADS)

Revegetation and afforestation of abandoned fields can modify mineralisation processes of soil organic matter and, as a consequence, the potential for C sequestration. Our work aimed to analyse these changes identifying C fractions with different degrees of physical protection and potential mineralization, in a old-field revegetated with shrubby species in a Mediterranean semi-arid area. A multi-specific plantation was made up in February 2006, by planting Juniperus phoenicea L. (JP), Pistacia lentiscus L. (PL) and Rosmarinus officinalis L. (RO). The area has a typical Mediterranean climate with an average temperature of 16.8 °C and a total annual precipitation of 643 mm. Soil cores were collected in three plots with a mixed specific composition, and in one plot used as control (grass cover). Soil cores (0 - 20 cm depth) were sampled in April 2010 at two distances (30 and 60 cm) from the centre of shrub crown cover in revegetated plots, and randomly in the control. The following variables were examined: soil aggregates (macro- > 250 µm and micro-aggregates between 53 and 250 µm), fine particulate organic matter (F-POM) and its C and N content, microbial respiration after 28 days at 24 °C, and mineralization rate of labile and stable C. In the short period, no variation in soil C accumulation induced by the plantation was detected. On the other hand, C input from the different soil covers had a distinct pattern: in revegetated plots it was mainly made up by POM, while fine roots represented the major C input in the control. Macro- and micro-aggregates distribution differed in the control and revegetated plots, allowing a higher physical protection of organic carbon in the control. Nevertheless, more recalcitrant organic matter inputs in the plantation can likely determine a more robust soil C accumulation in the long term.

de Dato, G.; Lagomarsino, A.; Abou Jaoudé, R.; De Angelis, P.

2012-04-01