Science.gov

Sample records for irradiation razuprochnenie metallov

  1. [Food irradiation].

    PubMed

    Migdał, W

    1995-01-01

    A worldwide standard on food irradiation was adopted in 1983 by Codex Alimentarius Commission of the Joint Food Standard Programme of the Food and Agriculture Organization (FAO) of the United Nations and the World Health Organization (WHO). As a result, 41 countries have approved the use of irradiation for treating one or more food items and the number is increasing. Generally, irradiation is used to: food loses, food spoilage, disinfestation, safety and hygiene. The number of countries which use irradiation for processing food for commercial purposes has been increasing steadily from 19 in 1987 to 33 today. In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in Institute of Nuclear Chemistry and Technology. The plant is equipped with a small research accelerator Pilot (19MeV, 1 kW) and an industrial unit Elektronika (10MeV, 10 kW). On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permission for irradiation for: spices, garlic, onions, mushrooms, potatoes, dry mushrooms and vegetables. PMID:8619113

  2. Tissue irradiator

    DOEpatents

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-12-16

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in- vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood- carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170.

  3. Irradiation subassembly

    DOEpatents

    Seim, O.S.; Filewicz, E.C.; Hutter, E.

    1973-10-23

    An irradiation subassembly for use in a nuclear reactor is described which includes a bundle of slender elongated irradiation -capsules or fuel elements enclosed by a coolant tube and having yieldable retaining liner between the irradiation capsules and the coolant tube. For a hexagonal bundle surrounded by a hexagonal tube the yieldable retaining liner may consist either of six segments corresponding to the six sides of the tube or three angular segments each corresponding in two adjacent sides of the tube. The sides of adjacent segments abut and are so cut that metal-tometal contact is retained when the volume enclosed by the retaining liner is varied and Springs are provided for urging the segments toward the center of the tube to hold the capsules in a closely packed configuration. (Official Gazette)

  4. Irradiance gradients

    SciTech Connect

    Ward, G.J. Ecole Polytechnique Federale, Lausanne ); Heckbert, P.S. . School of Computer Science Technische Hogeschool Delft . Dept. of Technical Mathematics and Informatics)

    1992-04-01

    A new method for improving the accuracy of a diffuse interreflection calculation is introduced in a ray tracing context. The information from a hemispherical sampling of the luminous environment is interpreted in a new way to predict the change in irradiance as a function of position and surface orientation. The additional computation involved is modest and the benefit is substantial. An improved interpolation of irradiance resulting from the gradient calculation produces smoother, more accurate renderings. This result is achieved through better utilization of ray samples rather than additional samples or alternate sampling strategies. Thus, the technique is applicable to a variety of global illumination algorithms that use hemicubes or Monte Carlo sampling techniques.

  5. Irradiated foods

    MedlinePlus

    ... it reduces the risk of food poisoning . Food irradiation is used in many countries. It was first approved in the U.S. to prevent sprouts on white potatoes, and to control insects on wheat and in certain spices and seasonings.

  6. Use of Irradiated Foods

    NASA Technical Reports Server (NTRS)

    Brynjolfsson, A.

    1985-01-01

    The safety of irradiated foods is reviewed. Guidelines and regulations for processing irradiated foods are considered. The radiolytic products formed in food when it is irradiated and its wholesomeness is discussed. It is concluded that food irradiation processing is not a panacea for all problems in food processing but when properly used will serve the space station well.

  7. Detection of irradiated liquor

    NASA Astrophysics Data System (ADS)

    Shengchu, Qi; Jilan, Wu; Rongyao, Yuan

    D-2,3-butanediol is formed by irradiation processes in irradiated liquors. This radiolytic product is not formed in unirradiated liquors and its presence can therefore be used to identify whether a liquor has been irradiated or not. The relation meso/dl≈1 for 2,3-butanediol and the amount present in irradiated liquors may therefore be used as an indication of the dose used in the irradiation.

  8. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  9. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  10. Irradiation-Induced Nanostructures

    SciTech Connect

    Birtcher, R.C.; Ewing, R.C.; Matzke, Hj.; Meldrum, A.; Newcomer, P.P.; Wang, L.M.; Wang, S.X.; Weber, W.J.

    1999-08-09

    This paper summarizes the results of the studies of the irradiation-induced formation of nanostructures, where the injected interstitials from the source of irradiation are not major components of the nanophase. This phenomena has been observed by in situ transmission electron microscopy (TEM) in a number of intermetallic compounds and ceramics during high-energy electron or ion irradiations when the ions completely penetrate through the specimen. Beginning with single crystals, electron or ion irradiation in a certain temperature range may result in nanostructures composed of amorphous domains and nanocrystals with either the original composition and crystal structure or new nanophases formed by decomposition of the target material. The phenomenon has also been observed in natural materials which have suffered irradiation from the decay of constituent radioactive elements and in nuclear reactor fuels which have been irradiated by fission neutrons and other fission products. The mechanisms involved in the process of this nanophase formation are discussed in terms of the evolution of displacement cascades, radiation-induced defect accumulation, radiation-induced segregation and phase decomposition, as well as the competition between irradiation-induced amorphization and recrystallization.

  11. Alaskan Commodities Irradiation Project

    SciTech Connect

    Zarling, J.P.; Swanson, R.B.; Logan, R.R.; Das, D.K.; Lewis, C.E.; Workman, W.G.; Tumeo, M.A.; Hok, C.I.; Birklid, C.A.; Bennett, F.L.

    1988-12-01

    The ninety-ninth US Congress commissioned a six-state food irradiation research and development program to evaluate the commercial potential of this technology. Hawaii, Washington, Iowa, Oklahoma and Florida as well as Alaska have participated in the national program; various food products including fishery products, red meats, tropical and citrus fruits and vegetables have been studied. The purpose of the Alaskan study was to review and evaluate those factors related to the technical and economic feasibility of an irradiator in Alaska. This options analysis study will serve as a basis for determining the state's further involvement in the development of food irradiation technology. 40 refs., 50 figs., 53 tabs.

  12. The Total Irradiance Monitors

    NASA Astrophysics Data System (ADS)

    Kopp, Greg

    2015-08-01

    The first Total Irradiance Monitor (TIM) launched on NASA’s Solar Radiation and Climate Experiment in 2003 and quickly proved to be the most accurate and stable instrument on orbit for measuring the total solar irradiance (TSI). The TIM’s design improvements over the older classical radiometers helped its selection on many subsequent missions, including NASA’s Glory, NOAA’s TSI Calibration Transfer Experiment, and the series of NASA’s Total and Spectral Solar Irradiance Sensor instruments currently underway. I will summarize the status of and differences between each of the TIMs currently on-orbit or in production.

  13. Test reactor irradiation coordination

    SciTech Connect

    Heartherly, D.W.; Siman Tov, I.I.; Sparks, D.W.

    1995-10-01

    This task was established to supply and coordinate irradiation services needed by NRC contractors other than ORNL. These services include the design and assembly of irradiation capsules as well as arranging for their exposure, disassembly, and return of specimens. During this period, the final design of the facility and specimen baskets was determined through an iterative process involving the designers and thermal analysts. The resulting design should permit the irradiation of all test specimens to within 5{degrees}C of their desired temperature. Detailing of all parts is ongoing and should be completed during the next reporting period. Procurement of the facility will also be initiated during the next review period.

  14. Economics of food irradiation.

    PubMed

    Deitch, J

    1982-01-01

    This article examines the cost competitiveness of the food irradiation process. An analysis of the principal factors--the product, physical plant, irradiation source, and financing--that impact on cost is made. Equations are developed and used to calculate the size of the source for planned product throughput, efficiency factors, power requirements, and operating costs of sources, radionuclides, and accelerators. Methods of financing and capital investment are discussed. A series of tables show cost breakdowns of sources, buildings, equipment, and essential support facilities for both a cobalt-60 and a 10-MeV electron accelerator facility. Additional tables present irradiation costs as functions of a number of parameters--power input, source size, dose, and hours of annual operation. The use of the numbers in the tables are explained by examples of calculations of the irradiation costs for disinfestation of grains and radicidation of feed. PMID:6759046

  15. Food irradiation in perspective

    NASA Astrophysics Data System (ADS)

    Henon, Y. M.

    1995-02-01

    Food irradiation already has a long history of hopes and disappointments. Nowhere in the world it plays the role that it should have, including in the much needed prevention of foodborne diseases. Irradiated food sold well wherever consumers were given a chance to buy them. Differences between national regulations do not allow the international trade of irradiated foods. While in many countries food irradiation is still illegal, in most others it is regulated as a food additive and based on the knowledge of the sixties. Until 1980, wholesomeness was the big issue. Then the "prerequisite" became detection methods. Large amounts of money have been spent to design and validate tests which, in fact, aim at enforcing unjustified restrictions on the use of the process. In spite of all the difficulties, it is believed that the efforts of various UN organizations and a growing legitimate demand for food safety should in the end lead to recognition and acceptance.

  16. Irradiation of biliary carcinoma

    SciTech Connect

    Herskovic, A.; Heaston, D.; Engler, M.J.; Fishburn, R.I.; Jones, R.S.; Noell, K.T.

    1981-04-01

    External and interstitial irradiation have effected the disappearance of biliary lesions. The use of indwelling catheters in the biliary tract makes the technique more appealing. Iridium 192 implants were used.

  17. Precompaction irradiation of meteorites

    SciTech Connect

    Caffee, M.W.

    1986-01-01

    In the four meteorites studied, the nonirradiated grains show the nominal amount of spallogenic Ne and Ar expected from recent galactic cosmic ray exposure. Two conclusions follow from these observations: (1) the quality of spallogenic Ne and Ar in the irradiated grains is far more than can be explained by reasonable precompaction exposures to galactic cosmic rays. If the pre-compaction irradiation occurred in a regolith, the exposure to galactic cosmic rays would have to last several hundred m.y. for some of the grains. Similarly long ages would result if the source of the protons were solar flares with a particle flux similar to modern-day solar flares. These exposure durations are incompatible with current models for the pre-compaction irradiation of gas rich meteorites. (2) There is always a correlation between solar flare tracks and precompaction spallogenic Ne and Ar. This correlation is surprising, considering the difference in range of these two effects. Galactic cosmic rays have a range of meters whereas solar flare heavy ions have a range of less than a millimeter. This difference should largely decouple these two effects, as was shown in studies on lunar soil 60009, where both irradiated and non-irradiated grains contain large quantities of spallogenic Ne. If galactic cosmic rays are responsible for the spallogenic Ne and Ar in the irradiated grains, the authors would similarly expect the nonirradiated grains to contain large amounts of spallogenic Ne and Ar.

  18. Total lymphoid irradiation

    SciTech Connect

    Sutherland, D.E.; Ferguson, R.M.; Simmons, R.L.; Kim, T.H.; Slavin, S.; Najarian, J.S.

    1983-05-01

    Total lymphoid irradiation by itself can produce sufficient immunosuppression to prolong the survival of a variety of organ allografts in experimental animals. The degree of prolongation is dose-dependent and is limited by the toxicity that occurs with higher doses. Total lymphoid irradiation is more effective before transplantation than after, but when used after transplantation can be combined with pharmacologic immunosuppression to achieve a positive effect. In some animal models, total lymphoid irradiation induces an environment in which fully allogeneic bone marrow will engraft and induce permanent chimerism in the recipients who are then tolerant to organ allografts from the donor strain. If total lymphoid irradiation is ever to have clinical applicability on a large scale, it would seem that it would have to be under circumstances in which tolerance can be induced. However, in some animal models graft-versus-host disease occurs following bone marrow transplantation, and methods to obviate its occurrence probably will be needed if this approach is to be applied clinically. In recent years, patient and graft survival rates in renal allograft recipients treated with conventional immunosuppression have improved considerably, and thus the impetus to utilize total lymphoid irradiation for its immunosuppressive effect alone is less compelling. The future of total lymphoid irradiation probably lies in devising protocols in which maintenance immunosuppression can be eliminated, or nearly eliminated, altogether. Such protocols are effective in rodents. Whether they can be applied to clinical transplantation remains to be seen.

  19. Blood irradiation: Rationale and technique

    SciTech Connect

    Lewis, M.C. )

    1990-01-01

    Upon request by the local American Red Cross, the Savannah Regional Center for Cancer Care irradiates whole blood or blood components to prevent post-transfusion graft-versus-host reaction in patients who have severely depressed immune systems. The rationale for blood irradiation, the total absorbed dose, the type of patients who require irradiated blood, and the regulations that apply to irradiated blood are presented. A method of irradiating blood using a linear accelerator is described.

  20. FOOD IRRADIATION REACTOR

    DOEpatents

    Leyse, C.F.; Putnam, G.E.

    1961-05-01

    An irradiation apparatus is described. It comprises a pressure vessel, a neutronic reactor active portion having a substantially greater height than diameter in the pressure vessel, an annular tank surrounding and spaced from the pressure vessel containing an aqueous indium/sup 1//sup 1//sup 5/ sulfate solution of approximately 600 grams per liter concentration, means for circulating separate coolants through the active portion and the space between the annular tank and the pressure vessel, radiator means adapted to receive the materials to be irradiated, and means for flowing the indium/sup 1//sup 1//sup 5/ sulfate solution through the radiator means.

  1. Fuel or irradiation subassembly

    DOEpatents

    Seim, O.S.; Hutter, E.

    1975-12-23

    A subassembly for use in a nuclear reactor is described which incorporates a loose bundle of fuel or irradiation pins enclosed within an inner tube which in turn is enclosed within an outer coolant tube and includes a locking comb consisting of a head extending through one side of the inner sleeve and a plurality of teeth which extend through the other side of the inner sleeve while engaging annular undercut portions in the bottom portion of the fuel or irradiation pins to prevent movement of the pins.

  2. Irradiating insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a non-technical article focusing on phytosanitary uses of irradiation. In a series of interview questions, I present information on the scope of the invasive species problem and the contribution of international trade in agricultural products to the movement of invasive insects. This is foll...

  3. Update on meat irradiation

    SciTech Connect

    Olson, D.G.

    1997-12-01

    The irradiation of meat and poultry in the United States is intended to eliminate pathogenic bacteria from raw product, preferably after packaging to prevent recontamination. Irradiation will also increase the shelf life of raw meat and poultry products approximately two to three times the normal shelf life. Current clearances in the United States are for poultry (fresh or frozen) at doses from 1.5 to 3.0 kGy and for fresh pork at doses from 0.3 to 1.0 kGy. A petition for the clearance of all red meat was submitted to the Food and Drug Administration (FDA) in July 1994. The petition is for clearances of fresh meat at doses from 1.5 to 4.5 kGy and for frozen meat at {approximately}2.5 to 7.5 kGy. Clearance for red meat is expected before the end of 1997. There are 28 countries that have food irradiation clearances, of which 18 countries have clearances for meat or poultry. However, there are no uniform categories or approved doses for meat and poultry among the countries that could hamper international trade of irradiated meat and poultry.

  4. NSUF Irradiated Materials Library

    SciTech Connect

    Cole, James Irvin

    2015-09-01

    The Nuclear Science User Facilities has been in the process of establishing an innovative Irradiated Materials Library concept for maximizing the value of previous and on-going materials and nuclear fuels irradiation test campaigns, including utilization of real-world components retrieved from current and decommissioned reactors. When the ATR national scientific user facility was established in 2007 one of the goals of the program was to establish a library of irradiated samples for users to access and conduct research through competitively reviewed proposal process. As part of the initial effort, staff at the user facility identified legacy materials from previous programs that are still being stored in laboratories and hot-cell facilities at the INL. In addition other materials of interest were identified that are being stored outside the INL that the current owners have volunteered to enter into the library. Finally, over the course of the last several years, the ATR NSUF has irradiated more than 3500 specimens as part of NSUF competitively awarded research projects. The Logistics of managing this large inventory of highly radioactive poses unique challenges. This document will describe materials in the library, outline the policy for accessing these materials and put forth a strategy for making new additions to the library as well as establishing guidelines for minimum pedigree needed to be included in the library to limit the amount of material stored indefinitely without identified value.

  5. Phytosanitary applications of irradiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytosanitary treatments are used to disinfest agricultural commodities of quarantine pests so the commodities can be shipped across quarantine barriers to trade. Ionizing irradiation is a promising treatment that is increasing in use. Almost 19,000 tons of sweet potatoes and several fruits, plus ...

  6. Generic phytosanitary irradiation treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The history of the development of generic phytosanitary irradiation (PI) treatments is discussed beginning with its initial proposal in 1986. Generic PI treatments in use today are 150 Gy for all hosts of Tephritidae, 250 Gy for all arthropods on mango and papaya shipped from Australia to New Zeala...

  7. ELECTRON IRRADIATION OF SOLIDS

    DOEpatents

    Damask, A.C.

    1959-11-01

    A method is presented for altering physical properties of certain solids, such as enhancing the usefulness of solids, in which atomic interchange occurs through a vacancy mechanism, electron irradiation, and temperature control. In a centain class of metals, alloys, and semiconductors, diffusion or displacement of atoms occurs through a vacancy mechanism, i.e., an atom can only move when there exists a vacant atomic or lattice site in an adjacent position. In the process of the invention highenergy electron irradiation produces additional vacancies in a solid over those normally occurring at a given temperature and allows diffusion of the component atoms of the solid to proceed at temperatures at which it would not occur under thermal means alone in any reasonable length of time. The invention offers a precise way to increase the number of vacancies and thereby, to a controlled degree, change the physical properties of some materials, such as resistivity or hardness.

  8. Irradiation direction from texture

    NASA Astrophysics Data System (ADS)

    Koenderink, Jan J.; Pont, Sylvia C.

    2003-10-01

    We present a theory of image texture resulting from the shading of corrugated (three-dimensional textured) surfaces, Lambertian on the micro scale, in the domain of geometrical optics. The derivation applies to isotropic Gaussian random surfaces, under collimated illumination, in normal view. The theory predicts the structure tensors from either the gradient or the Hessian of the image intensity and allows inferences of the direction of irradiation of the surface. Although the assumptions appear prima facie rather restrictive, even for surfaces that are not at all Gaussian, with the bidirectional reflectance distribution function far from Lambertian and vignetting and multiple scattering present, we empirically recover the direction of irradiation with an accuracy of a few degrees.

  9. BIOLOGICAL IRRADIATION FACILITY

    DOEpatents

    McCorkle, W.H.; Cern, H.S.

    1962-04-24

    A facility for irradiating biological specimens with neutrons is described. It includes a reactor wherein the core is off center in a reflector. A high-exposure room is located outside the reactor on the side nearest the core while a low-exposure room is located on the opposite side. Means for converting thermal neutrons to fast neutrons are movably disposed between the reactor core and the high and low-exposure rooms. (AEC)

  10. Post-irradiation effects in polyethylenes irradiated under various atmospheres

    NASA Astrophysics Data System (ADS)

    Suljovrujic, E.

    2013-08-01

    If a large amount of polymer free radicals remain trapped after irradiation of polymers, the post-irradiation effects may result in a significant alteration of physical properties during long-term shelf storage and use. In the case of polyethylenes (PEs) some failures are attributed to the post-irradiation oxidative degradation initiated by the reaction of residual free radicals (mainly trapped in crystal phase) with oxygen. Oxidation products such as carbonyl groups act as deep traps and introduce changes in carrier mobility and significant deterioration in the PEs electrical insulating properties. The post-irradiation behaviour of three different PEs, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) was studied; previously, the post-irradiation behaviour of the PEs was investigated after the irradiation in air (Suljovrujic, 2010). In this paper, in order to investigate the influence of different irradiation media on the post-irradiation behaviour, the samples were irradiated in air and nitrogen gas, to an absorbed dose of 300 kGy. The annealing treatment of irradiated PEs, which can substantially reduce the concentration of free radicals, is used in this study, too. Dielectric relaxation behaviour is related to the difference in the initial structure of PEs (such as branching, crystallinity etc.), to the changes induced by irradiation in different media and to the post-irradiation changes induced by storage of the samples in air. Electron spin resonance (ESR), differential scanning calorimetry (DSC), infra-red (IR) spectroscopy and gel measurements were used to determine the changes in the free radical concentration, crystal fraction, oxidation and degree of network formation, respectively.

  11. Craniospinal irradiation techniques

    NASA Astrophysics Data System (ADS)

    Scarlatescu, Ioana; Virag, Vasile; Avram, Calin N.

    2015-12-01

    In this paper we present one treatment plan for irradiation cases which involve a complex technique with multiple beams, using the 3D conformational technique. As the main purpose of radiotherapy is to administrate a precise dose into the tumor volume and protect as much as possible all the healthy tissues around it, for a case diagnosed with a primitive neuro ectoderm tumor, we have developed a new treatment plan, by controlling one of the two adjacent fields used at spinal field, in a way that avoids the fields superposition. Therefore, the risk of overdose is reduced by eliminating the field divergence.

  12. Craniospinal irradiation techniques

    SciTech Connect

    Scarlatescu, Ioana Avram, Calin N.; Virag, Vasile

    2015-12-07

    In this paper we present one treatment plan for irradiation cases which involve a complex technique with multiple beams, using the 3D conformational technique. As the main purpose of radiotherapy is to administrate a precise dose into the tumor volume and protect as much as possible all the healthy tissues around it, for a case diagnosed with a primitive neuro ectoderm tumor, we have developed a new treatment plan, by controlling one of the two adjacent fields used at spinal field, in a way that avoids the fields superposition. Therefore, the risk of overdose is reduced by eliminating the field divergence.

  13. Irradiation of northwest agricultural products

    NASA Astrophysics Data System (ADS)

    Eakin, D. E.; Tingey, G. I.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect ocntrol procedures are developed and followed. Due to the recognized potential benefits of irradiation, this program was conducted to evaluate the benefits of using irradiation on Northwest agricultural products. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  14. Food irradiation and sterilization

    NASA Astrophysics Data System (ADS)

    Josephson, Edward S.

    Radiation sterilization of food (radappertization) requires exposing food in sealed containers to ionizing radiation at absorbed doses high enough (25-70 kGy) to kill all organisms of food spoilage and public health significance. Radappertization is analogous to thermal canning is achieving shelf stability (long term storage without refrigeration). Except for dry products in which autolysis is negligible, the radappertization process also requires that the food be heated to an internal temperature of 70-80°C (bacon to 53°C) to inactivate autolytic enzymes which catalyze spoilage during storage without refrigeration. To minimize the occurence of irradiation induced off-flavors and odors, undesirable color changes, and textural and nutritional losses from exposure to the high doses required for radappertization, the foods are vacuum sealed and irradiated frozen (-40°C to -20°C). Radappertozed foods have the characteristic of fresh foods prepared for eating. Radappertization can substitute in whole or in part for some chemical food additives such as ethylene oxide and nitrites which are either toxic, carcinogenic, mutagenic, or teratogenic. After 27 years of testing for "wholesomeness" (safety for consumption) of radappertized foods, no confirmed evidence has been obtained of any adverse effecys of radappertization on the "wholesomeness" characteristics of these foods.

  15. Consumer acceptance of irradiated poultry.

    PubMed

    Hashim, I B; Resurreccion, A V; McWatters, K H

    1995-08-01

    A simulated supermarket setting (SSS) test was conducted to determine whether consumers (n = 126) would purchase irradiated poultry products, and the effects of marketing strategies on consumer purchase of irradiated poultry products. Consumer preference for irradiated poultry was likewise determined using a home-use test. A slide program was the most effective educational strategy in changing consumers' purchase behavior. The number of participants who purchased irradiated boneless, skinless breasts and irradiated thighs after the educational program increased significantly from 59.5 and 61.9% to 83.3 and 85.7% for the breasts and thighs, respectively. Using a label or poster did not increase the number of participants who bought irradiated poultry products. About 84% of the participants consider it either "somewhat necessary" or "very necessary" to irradiate raw chicken and would like all chicken that was served in restaurants or fast food places to be irradiated. Fifty-eight percent of the participants would always buy irradiated chicken if available, and an additional 27% would buy it sometimes. About 44% of the participants were willing to pay the same price for irradiated chicken as for nonirradiated. About 42% of participants were willing to pay 5% or more than what they were currently paying for nonirradiated chicken. Seventy-three percent or more of consumers who participated in the home-use test (n = 74) gave the color, appearance, and aroma of the raw poultry products a minimum rating of 7 (= like moderately). After consumers participated in a home-use test, 84 and 88% selected irradiated thighs and breasts, respectively, over nonirradiated in a second SSS test. PMID:7479506

  16. Food Irradiation for Produce Safety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A research priority for the produce industry is the development of an effective, safe and commercially applicable kill step. Irradiation is a nonthermal process that has been shown to inactivate human pathogens from fruits and vegetables. Irradiation treatment at 1.0 kGy can reduce the surface popul...

  17. Phytosanitary irradiation in south Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irradiation has the potential to solve phytosanitary problems related to trade in south Asia. In general, it is the phytosanitary treatment most tolerated by fresh agricultural commodities. Irradiation technology is available in some countries of the region but is only used for phytosanitary purpos...

  18. Commercial implementation of food irradiation

    NASA Astrophysics Data System (ADS)

    Welt, M. A.

    In July 1981, the first specifically designed multi-purpose irradiation facility for food irradiation was put into service by the Radiation Technology, Inc. subsidiary Process Technology, Inc. in West Memphis, Arkansas. The operational experience gained, resulted in an enhanced design which was put into commercial service in Haw River, North Carolina, by another subsidiary, Process Technology (N.C.), Inc. in October 1983. These facilities have enabled the food industry to assess the commercial viability of food irradiation. Further impetus towards commercialization of food irradiation was gained in March 1981 with the filing in the Federal Register, by the FDA, of an Advanced Proposed Notice of Rulemaking for Food Irradiation. Two years later in July 1983, the FDA approved the first food additive regulation involving food irradiation in nineteen years, when they approved the Radiation Technology, Inc. petition calling for the sanitization of spices, onion powder and garlic powder at a maximum dosage of 10 kGy. Since obtaining the spice irradiation approval, the FDA has accepted four additional petitions for filing in the Federal Register. One of the petitions which extended spice irradiation to include insect disinfestation has issued into a regulation while the remaining petitions covering the sanitization of herbs, spice blends, vegetable seasonings and dry powdery enzymes as well as the petition to irradiate hog carcasses and pork products for trichinae control at 1 kGy, are expected to issue either before the end of 1984 or early in 1985. More recently, food irradiation advocates in the United States received another vote of confidence by the announcement that a joint venture food irradiation facility to be constructed in Hawaii by Radiation Technology, is backed by a contractual committment for the processing of 40 million pounds of produce per year. Another step was taken when the Port of Salem, New Jersey announced that the Radiation Technology Model RT-4104

  19. Pallet irradiators for food processing

    NASA Astrophysics Data System (ADS)

    McKinnon, R. G.; Chu, R. D. H.

    This paper looks at the various design concepts for the irradiation processing of food products, with particular emphasis on handling the products on pallets. Pallets appear to offer the most attractive method for handling foods from many considerations. Products are transported on pallets. Warehouse space is commonly designed for pallet storage and, if products are already palletized before and after irradiation, then labour could be saved by irradiating on pallets. This is also an advantage for equipment operation since a larger carrier volume means lower operation speeds. Different pallet irradiator design concepts are examined and their suitability for several applications are discussed. For example, low product holdup for fast turn around will be a consideration for those operating an irradiation "service" business; others may require a very large source where efficiency is the primary requirement and this will not be consistent with low holdup. The radiation performance characteristics and processing costs of these machines are discussed.

  20. Nanoindentation on ion irradiated steels

    NASA Astrophysics Data System (ADS)

    Hosemann, P.; Vieh, C.; Greco, R. R.; Kabra, S.; Valdez, J. A.; Cappiello, M. J.; Maloy, S. A.

    2009-06-01

    Radiation induced mechanical property changes can cause major difficulties in designing systems operating in a radiation environment. Investigating these mechanical property changes in an irradiation environment is a costly and time consuming activity. Ion beam accelerator experiments have the advantage of allowing relatively fast and inexpensive materials irradiations without activating the sample but do in general not allow large beam penetration depth into the sample. In this study, the ferritic/martensitic steel HT-9 was processed and heat treated to produce one specimen with a large grained ferritic microstructure and further heat treated to form a second specimen with a fine tempered martensitic lath structure and exposed to an ion beam and tested after irradiation using nanoindentation to investigate the irradiation induced changes in mechanical properties. It is shown that the HT-9 in the ferritic heat treatment is more susceptible to irradiation hardening than HT-9 after the tempered martensitic heat treatment. Also at an irradiation temperature above 550 °C no detectable hardness increase due to irradiation was detected. The results are also compared to data from the literature gained from the fast flux test facility.

  1. New facility for post irradiation examination of neutron irradiated beryllium

    SciTech Connect

    Ishitsuka, Etsuo; Kawamura, Hiroshi

    1995-09-01

    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800{degrees}C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and {sup 60}Co;7.4 MBq/day.

  2. AFIP-4 Irradiation Summary Report

    SciTech Connect

    Danielle M Perez; Misti A Lillo; Gray S. Chang; Glenn A Roth; Nicolas Woolstenhulme; Daniel M Wachs

    2012-01-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-4 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a scale prototypic of research reactor fuel plates. The AFIP-4 test further examine the fuel/clad interface and its behavior under extreme conditions. After irradiation, fission gas retention measurements will be performed during post irradiation (PIE)1,2. The following report summarizes the life of the AFIP-4 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  3. AFIP-4 Irradiation Summary Report

    SciTech Connect

    Danielle M Perez; Misti A Lillo; Gray S. Chang; Glenn A Roth; Nicolas Woolstenhulme; Daniel M Wachs

    2011-09-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-4 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a scale prototypic of research reactor fuel plates. The AFIP-4 test further examine the fuel/clad interface and its behavior under extreme conditions. After irradiation, fission gas retention measurements will be performed during post irradiation (PIE). The following report summarizes the life of the AFIP-4 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  4. Therapeutic postprostatectomy irradiation.

    PubMed

    Youssef, Emad; Forman, Jeffrey D; Tekyi-Mensah, Samuel; Bolton, Susan; Hart, Kim

    2002-06-01

    The purpose of this study was to determine the outcome of patients receiving external beam radiation for an elevated postprostatectomy prostate-specific antigen (PSA) level. Between December 1991 and September 1998, 108 patients received definitive radiation therapy for elevated postprostatectomy PSA levels. The median dose of irradiation was 68 Gy (range, 48-74 Gy). During treatment, the PSA levels were checked an average of 5 times (range, 3-7 times). Prostate-specific antigen values were judged to decline or increase during treatment if they changed by more than 0.2 ng/mL. After treatment, biochemical failure was defined as a measurable or rising PSA > 0.2 ng/mL. Median follow-up was 51 months (range, 3-112 months). Fifty-eight patients (54%) had evidence of biochemical failure. The 3- and 5-year actuarial biochemical relapse-free (bNED) survivals for all patients were 55% and 39%, respectively. Upon univariate analysis, intratreatment PSA and preradiation PSA were significant predictors of bNED survival. Patients with a PSA level that decreased during treatment had a 5-year bNED survival of 43% compared to 10% in patients with an increasing PSA level (P = 0.0002). Using the preradiation therapy PSA value as a continuous variable, higher preradiation therapy PSA levels were associated with an increased risk of failure (P = 0.004). Cut points of pretreatment PSA were derived at 0.9 ng/mL and 4.2 ng/mL using the Michael Leblanc recursive partitioning algorithm. The 5-year bNED rate for patients with a preradiation therapy PSA < 0.9 ng/mL was 45% versus 42% for patients with preradiation therapy PSA between 0.9 and 4.2 ng/mL and 21% for patients > or = 4.2 ng/mL (P = 0.0003). Patients with a Gleason score of < or = 7 had a 5-year bNED rate of 38% compared to 37% for patients with a Gleason score > 7 (P = 0.27). Other factors examined individually that did not reach statistical significance included time from surgery to radiation therapy, race, seminal vesicle

  5. (Irradiation creep of graphite)

    SciTech Connect

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  6. Generic phytosanitary irradiation treatments

    NASA Astrophysics Data System (ADS)

    Hallman, Guy J.

    2012-07-01

    The history of the development of generic phytosanitary irradiation (PI) treatments is discussed beginning with its initial proposal in 1986. Generic PI treatments in use today are 150 Gy for all hosts of Tephritidae, 250 Gy for all arthropods on mango and papaya shipped from Australia to New Zealand, 300 Gy for all arthropods on mango shipped from Australia to Malaysia, 350 Gy for all arthropods on lychee shipped from Australia to New Zealand and 400 Gy for all hosts of insects other than pupae and adult Lepidoptera shipped to the United States. Efforts to develop additional generic PI treatments and reduce the dose for the 400 Gy treatment are ongoing with a broad based 5-year, 12-nation cooperative research project coordinated by the joint Food and Agricultural Organization/International Atomic Energy Agency Program on Nuclear Techniques in Food and Agriculture. Key groups identified for further development of generic PI treatments are Lepidoptera (eggs and larvae), mealybugs and scale insects. A dose of 250 Gy may suffice for these three groups plus others, such as thrips, weevils and whiteflies.

  7. Irradiation pretreatment for coal desulfurization

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1979-01-01

    Process using highly-penetrating nuclear radiation (Beta and Gamma radiation) from nuclear power plant radioactive waste to irradiate coal prior to conventional desulfurization procedures increases total extraction of sulfur.

  8. Irradiation of Northwest agricultural products

    SciTech Connect

    Eakin, D.E.; Tingey, G.L.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect control procedures are developed and followed. Due to the recognized potential benefits of irradiation, Pacific Northwest Laboratory (PNL) is conducting this program to evaluate the benefits of using irradiation on Northwest agricultural products under the US Department of Energy (DOE) Defense Byproducts Production and Utilization Program. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  9. Consumer attitudes toward irradiated food

    SciTech Connect

    Conley, S.

    1994-12-31

    Throughout history, new methods of food preservation have been met with skepticism and fear. Such processes as pasteurization and canning were denounced as being dangerous, detrimental to nutrients, or an excuse for dirty products. Now comes irradiation, and activists argue against this new process for the same reasons. Publicly, the perception is that consumers, distrustful of nuclear power, will never buy or accept irradiated food.

  10. Slag recycling of irradiated vanadium

    SciTech Connect

    Gorman, P.K.

    1995-04-05

    An experimental inductoslag apparatus to recycle irradiated vanadium was fabricated and tested. An experimental electroslag apparatus was also used to test possible slags. The testing was carried out with slag materials that were fabricated along with impurity bearing vanadium samples. Results obtained include computer simulated thermochemical calculations and experimentally determined removal efficiencies of the transmutation impurities. Analyses of the samples before and after testing were carried out to determine if the slag did indeed remove the transmutation impurities from the irradiated vanadium.

  11. Irradiation Induced Creep of Graphite

    SciTech Connect

    Burchell, Timothy D; Murty, Prof K.L.; Eapen, Dr. Jacob

    2010-01-01

    The current status of graphite irradiation induced creep strain prediction is reviewed and the major creep models are described. The ability of the models to quantitatively predict the irradiation induced creep strain of graphite is reported. Potential mechanisms of in-crystal creep are reviewed as are mechanisms of pore generation under stress. The case for further experimental work is made and the need for improved creep models across multi-scales is highlighted.

  12. Calculating Irradiance For Photosynthesis In The Ocean

    NASA Technical Reports Server (NTRS)

    Collins, Donald J.; Davis, Curtiss O.; Booth, C. Rockwell; Kiefer, Dale A.; Stallings, Casson

    1990-01-01

    Mathematical model predicts available and usable irradiances. Yields estimates of irradiance available for photosynthesis (Epar) and irradiance usable for photosynthesis (Epur) as functions of depth in ocean. Describes Epur and Epar in terms of spectral parameters measured remotely (from satellites or airplanes). These irradiances useful in studies of photosynthetic productivity of phytoplankton in euphotic layer.

  13. Cancer following medical irradiation.

    PubMed

    Boice, J D

    1981-03-01

    Several generalizations about radiation carcinogenesis can be made: 1) a single exposure is sufficient to elevate cancer incidence many years later: 2) radiation-induced cancer cannot be distinguished from naturally occurring cancer, i.e., there is not unique radiogenic cancer; 3) all cancers appear to be increased after irradiation with the exception of chronic lymphocytic leukemia, and possibly Hodgkin's disease, cervical cancer, and a few others; 4) the breast, thyroid, and bone marrow appear especially radiosensitive; 5) leukemia is the most prominent radiogenic tumor and shows a wave-like pattern of excess incidence over time, and the excess begins within two to four years, peaks about six to eight years, and decreases to normal levels about 25 years later; 6) solid tumors have a minimum latent period of about ten years, and for several cancers, the temporal pattern of incidence appears to follow the natural incidence, i.e., the cancers do not occur before the ages normally associated with increased incidence, implying that age-dependent factors influence the expression of disease; 7) age at exposure is perhaps the most important host factor influencing subsequent cancer risk; 8) the percentage increase in cancer incidence per rad is not the same for all cancers, i.e., some cancer of high natural incidence, e.g., colon, have low "relative risks" and some cancers of low natural incidence, e.g., thyroid, have high "relative risks;" 9) dose-effect curves are often linear, but curvilinearity is also observed and is possibly associated with the need for "two ionizing events" for transformation to occur at low doses, the influence of cell sterilization at moderate doses, the likelihood of "wasted" dose at high doses, and/or the influence of factors that effect the expression of disease. PMID:7237365

  14. Cancer following medical irradiation

    SciTech Connect

    Boice, J.D.

    1981-03-01

    Several generalizations about radiation carcinogenesis can be made: 1) a single exposure is sufficient to elevate cancer incidence many years later: 2) radiation-induced cancer cannot be distinguished from naturally occurring cancer, i.e., there is not unique radiogenic cancer; 3) all cancers appear to be increased after irradiation with the exception of chronic lymphocytic leukemia, and possibly Hodgkin's disease, cervical cancer, and a few others; 4) the breast, thyroid, and bone marrow appear especially radiosensitive; 5) leukemia is the most prominent radiogenic tumor and shows a wave-like pattern of excess incidence over time, and the excess begins within two to four years, peaks about six to eight years, and decreases to normal levels about 25 years later; 6) solid tumors have a minimum latent period of about ten years, and for several cancers, the temporal pattern of incidence appears to follow the natural incidence, i.e., the cancers do not occur before the ages normally associated with increased incidence, implying that age-dependent factors influence the expression of disease; 7) age at exposure is perhaps the most important host factor influencing subsequent cancer risk; 8) the percentage increase in cancer incidence per rad is not the same for all cancers, i.e., some cancer of high natural incidence, e.g., colon, have low ''relative risks'' and some cancers of low natural incidence, e.g., thyroid, have high ''relative risks;'' 9) dose-effect curves are often linear, but curvilinearity is also observed and is possibly associated with the need for ''two ionizing events'' for transformation to occur at low doses, the influence of cell sterilization at moderate doses, the likelihood of ''wasted'' dose at high doses, and/or the influence of factors that effect the expression of disease.

  15. Cancer following medical irradiation

    SciTech Connect

    Boice, J.D.

    1981-03-01

    Several generalizations about radiation carcinogenesis can be made: (1) a single exposure is sufficient to elevate cancer incidence many years later; (2) radiation-induced cancer cannot be distinguished from naturally occurring cancer, i.e., there is no unique radiogenic cancer; (3) all cancers appear to be increased after irradiation with the exception of chronic lymphocytic leukemia, and possibly Hodgkin's disease, cervical cancer, and a few others; (4) the breast, thyroid, and bone marrow appear especially radiosensitive; (5) leukemia is the most prominent radiogenic tumor and shows a wave-like pattern of excess incidence over time, and the excess begins within two to four years, peaks about six to eight years, and decreases to normal levels about 25 years later; (6) solid tumors have a minimum latent period of about ten years, and for several cancers, the temporal pattern of incidence appears to follow the natural incidence, i.e., the cancers do not occur before the ages normally associated with increased incidence, implying that age-dependent factors influence the expression of disease; (7) age at exposure is perhaps the most important host factor influencing subsequent cancer risk; (8) the percentage increase in cancer incidence per rad is not the same for all cancers, i.e., some cancers of high natural incidence, e.g., colon, have low relative risks and some cancers of low natural incidence, e.g., thyroid, have high relative risks; (9) dose-effect curves are often linear, but curvilinearity is also observed and is possibly associated with the need for two ionizing events for transformation to occur at low doses, the influence of cell sterilization at moderate doses, the likelihood of wasted dose at high doses, and/or the influence of factors that effect the expression of disease.

  16. Food irradiation: Public opinion surveys

    SciTech Connect

    Kerr, S.D.

    1987-01-01

    The Canadian government are discussing the legislation, regulations and practical protocol necessary for the commercialization of food irradiation. Food industry marketing, public relations and media expertise will be needed to successfully introduce this new processing choice to retailers and consumers. Consumer research to date including consumer opinion studies and market trials conducted in the Netherlands, United States, South Africa and Canada will be explored for signposts to successful approaches to the introduction of irradiated foods to retailers and consumers. Research has indicated that the terms used to describe irradiation and information designed to reduce consumer fears will be important marketing tools. Marketers will be challenged to promote old foods, which look the same to consumers, in a new light. Simple like or dislike or intention to buy surveys will not be effective tools. Consumer fears must be identified and effectively handled to support a receptive climate for irradiated food products. A cooperative government, industry, health professional, consumer association and retailer effort will be necessary for the successful introduction of irradiated foods into the marketplace. Grocery Products Manufacturers of Canada is a national trade association of more than 150 major companies engaged in the manufacture of food, non-alcoholic beverages and array of other national-brand consumer items sold through retail outlets.

  17. Elective ilioingunial lymph node irradiation

    SciTech Connect

    Henderson, R.H.; Parsons, J.T.; Morgan, L.; Million, R.R.

    1984-06-01

    Most radiologists accept that modest doses of irradiation (4500-5000 rad/4 1/2-5 weeks) can control subclinical regional lymph node metastases from squamous cell carcinomas of the head and neck and adenocarcinomas of the breast. There have been few reports concerning elective irradiation of the ilioinguinal region. Between October 1964 and March 1980, 91 patients whose primary cancers placed the ilioinguinal lymph nodes at risk received elective irradiation at the University of Florida. Included are patients with cancers of the vulva, penis, urethra, anus and lower anal canal, and cervix or vaginal cancers that involved the distal one-third of the vagina. In 81 patients, both inguinal areas were clinically negative; in 10 patients, one inguinal area was positive and the other negative by clinical examination. The single significant complication was a bilateral femoral neck fracture. The inguinal areas of four patients developed mild to moderate fibrosis. One patient with moderate fibrosis had bilateral mild leg edema that was questionably related to irradiation. Complications were dose-related. The advantages and dis-advantages of elective ilioinguinal node irradiation versus elective inguinal lymph node dissection or no elective treatment are discussed.

  18. Plasmodium falciparum: attenuation by irradiation

    SciTech Connect

    Waki, S.; Yonome, I.; Suzuki, M.

    1983-12-01

    The effect of irradiation on the in vitro growth of Plasmodium falciparum was investigated. The cultured malarial parasites at selected stages of development were exposed to gamma rays and the sensitivity of each stage was determined. The stages most sensitive to irradiation were the ring forms and the early trophozoites; late trophozoites were relatively insensitive. The greatest resistance was shown when parasites were irradiated at a time of transition from the late trophozoite and schizont stages to young ring forms. The characteristics of radiosensitive variation in the parasite cycle resembled that of mammalian cells. Growth curves of parasites exposed to doses of irradiation upto 150 gray had the same slope as nonirradiated controls but parasites which were exposed to 200 gray exhibited a growth curve which was less steep than that for parasites in other groups. Less than 10 organisms survived from the 10(6) parasites exposed to this high dose of irradiation; the possibility exists of obtaining radiation-attenuated P. falciparum.

  19. Prospects of international trade in irradiated foods

    NASA Astrophysics Data System (ADS)

    Loaharanu, P.

    Irradiation is gaining recognition as a physical process for reducing food losses, enhancing hygienic quality of food and facilitating food trade. At present, 36 countries have approved the use of irradiation for processing collectively over 40 food items either on an unconditional or restricted basis. Commercial use of irradiated foods and food ingredients is being carried out in 22 countries. Technology transfer on food irradiation is being intensified to local industry in different regions. worldwide, a total of 40 commercial/demonstration irradiators available for treating foods have been or are being constructed. Acceptance and control of international trade in irradiated foods were discussed at the International Conference on the Acceptance, Control of and Trade in Irradiated Food, jointly convened by FAO, IAEA, WHO and ITC-UNCTAD/GATT in Geneva, Switzerland, 12-16 December 1988. An "International Document on Food Irradiation" was adopted by consensus at this Conference which will facilitate wider acceptance and control of international trade in irradiated foods.

  20. Investigation of irradiated soil byproducts.

    PubMed

    Brey, R R; Rodriguez, R; Harmon, J F; Winston, P

    2001-01-01

    The high dose irradiation of windblown soil deposited onto the surface of spent nuclear fuel is of concern to long-term fuel storage stability. Such soils could be exposed to radiation fields as great as 1.08 x 10(-3) C/kg-s (15,000 R/hr) during the 40-year anticipated period of interim dry storage prior to placement at the proposed national repository. The total absorbed dose in these cases could be as high as 5 x 10(7) Gy (5 x 10(9) rads). This investigation evaluated the potential generation of explosive or combustible irradiation byproducts during this irradiation. It focuses on the production of radiolytic byproducts generated within the pore water of surrogate clays that are consistent with those found on the Idaho National Engineering and Environmental Laboratory. Synthesized surrogates of localized soils containing combinations of clay, water, and aluminum samples, enclosed within a stainless steel vessel were irradiated and the quantities of the byproducts generated measured. Two types of clays, varying primarily in the presence of iron oxide, were investigated. Two treatment levels of irradiation and a control were investigated. An 18-Mev linear accelerator was used to irradiate samples. The first irradiation level provided an absorbed dose of 3.9 x 10(5)+/-1.4 x 10(5)Gy (3.9 x 10(7)+/-1.4 x 10(7) rads) in a 3-h period. At the second irradiation level, 4.8 x 10(5)+/-2.0 x 10(5)Gy (4.8 x 10(7)+/-2.0 x 10(7) rads) were delivered in a 6-h period. When averaged over all treatment parameters, irradiated clay samples with and without iron (III) oxide (moisture content = 40%) had a production rate of hydrogen gas that was a strong function of radiation-dose. A g-value of 5.61 x 10(-9)+/-1.56 x 10(-9) mol/J (0.054+/-0.015 molecules/100-eV) per mass of pore water was observed in the clay samples without iron (III) oxide for hydrogen gas production. A g-value of 1.07 x 10(-8)+/-2.91 x 10(-9) mol/J (0.103+0.028 molecules/100-eV) per mass of pore water was observed

  1. Neutron irradiation of beryllium pebbles

    SciTech Connect

    Gelles, D.S.; Ermi, R.M.; Tsai, H.

    1998-03-01

    Seven subcapsules from the FFTF/MOTA 2B irradiation experiment containing 97 or 100% dense sintered beryllium cylindrical specimens in depleted lithium have been opened and the specimens retrieved for postirradiation examination. Irradiation conditions included 370 C to 1.6 {times} 10{sup 22} n/cm{sup 2}, 425 C to 4.8 {times} 10{sup 22} n/cm{sup 2}, and 550 C to 5.0 {times} 10{sup 22} n/cm{sup 2}. TEM specimens contained in these capsules were also retrieved, but many were broken. Density measurements of the cylindrical specimens showed as much as 1.59% swelling following irradiation at 500 C in 100% dense beryllium. Beryllium at 97% density generally gave slightly lower swelling values.

  2. Modeling Solar Lyman Alpha Irradiance

    NASA Technical Reports Server (NTRS)

    Pap, J.; Hudson, H. S.; Rottman, G. J.; Willson, R. C.; Donnelly, R. F.; London, J.

    1990-01-01

    Solar Lyman alpha irradiance is estimated from various solar indices using linear regression analyses. Models developed with multiple linear regression analysis, including daily values and 81-day running means of solar indices, predict reasonably well both the short- and long-term variations observed in Lyman alpha. It is shown that the full disk equivalent width of the He line at 1083 nm offers the best proxy for Lyman alpha, and that the total irradiance corrected for sunspot effect also has a high correlation with Lyman alpha.

  3. Healing in the irradiated wound

    SciTech Connect

    Miller, S.H.; Rudolph, R. )

    1990-07-01

    Poor or nonhealing of irradiated wounds has been attributed to progressive obliterative endarteritis. Permanently damaged fibroblasts may also play an important part in poor healing. Regardless of the cause, the key to management of irradiated skin is careful attention to prevent its breakdown and conservative, but adequate, treatment when wounds are minor. When wounds become larger and are painful, complete excision of the wound or ulcer is called for and coverage should be provided by a well-vascularized nonparasitic distant flap.16 references.

  4. Irradiated icecreams for immunosuppressed patients

    NASA Astrophysics Data System (ADS)

    Adeil Pietranera, M. S.; Narvaiz, P.; Horak, C.; Kairiyama, E.

    2003-04-01

    Vanilla, raspberry, peach and milk jam icecreams were gamma irradiated with 3, 6 and 9 kGy doses in order to achieve microbial decontamination. Microbiological, sensory and some chemical analysis (acidity, peroxides, ultraviolet and visible absorption, thin-layer chromatography and sugar determination) were performed. Water-based icecreams (raspberry and peach) were more resistant to gamma radiation than cream-based ones (vanilla and milk jam). Gamma irradiation with 3 kGy reduced remarkably the microbial load of these icecreams without impairing the quality of the icecreams.

  5. Solar Irradiance: Observations, Proxies, and Models (Invited)

    NASA Astrophysics Data System (ADS)

    Lean, J.

    2013-12-01

    Solar irradiance has been measured from space for more than thirty years. Variations in total (spectrally integrated) solar irradiance associated with the Sun's 11-year activity cycle and 27-day rotation are now well characterized. But the magnitude, and even the sign, of spectral irradiance changes at near ultraviolet, visible and near infrared wavelengths, remain uncertain on time scales longer than a few months. Drifts in the calibration of the instruments that measure solar irradiance and incomplete understanding of the causes of irradiance variations preclude specification of multi-decadal solar irradiance variations with any confidence, including whether, or not, irradiance levels were lower during the 2008-2009 anomalously low solar activity minimum than in prior minima. The ultimate cause of solar irradiance variations is the Sun's changing activity, driven by a sub-surface dynamo that generates magnetic features called sunspots and faculae, which respectively deplete and enhance the net radiative output. Solar activity also alters parameters that have been measured from the ground for longer periods and with greater stability than the solar irradiance datasets. The longest and most stable such record is the Sun's irradiance at 10.7 cm in the radio spectrum, which is used frequently as a proxy indicator of solar irradiance variability. Models have been developed that relate the solar irradiance changes - both total and spectral - evident in extant databases to proxies chosen to best represent the sunspot darkening and facular brightening influences. The proxy models are then used to reconstruct solar irradiance variations at all wavelengths on multi-decadal time scales, for input to climate and atmospheric model simulations that seek to quantity the Sun's contribution to Earth's changing environment. This talk provides an overview of solar total and spectral irradiance observations and their relevant proxies, describes the formulation and construction of

  6. Statistical criteria for characterizing irradiance time series.

    SciTech Connect

    Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

    2010-10-01

    We propose and examine several statistical criteria for characterizing time series of solar irradiance. Time series of irradiance are used in analyses that seek to quantify the performance of photovoltaic (PV) power systems over time. Time series of irradiance are either measured or are simulated using models. Simulations of irradiance are often calibrated to or generated from statistics for observed irradiance and simulations are validated by comparing the simulation output to the observed irradiance. Criteria used in this comparison should derive from the context of the analyses in which the simulated irradiance is to be used. We examine three statistics that characterize time series and their use as criteria for comparing time series. We demonstrate these statistics using observed irradiance data recorded in August 2007 in Las Vegas, Nevada, and in June 2009 in Albuquerque, New Mexico.

  7. Studying Solar Irradiance Variability with Wavelet Technique

    NASA Technical Reports Server (NTRS)

    Vigouroux, Anne; Pap, Judit

    1995-01-01

    The detection of variations in solar irradiance by satellite-based experiments during the last 17 years stimulated modelling efforts to help to identify their causes and to provide estimates for irradiance data when no satellite observations exist.

  8. Feasibilty of exterior vascular laser irradiation therapy

    NASA Astrophysics Data System (ADS)

    Chen, Rong; Xie, Shusen; Li, Hui; Li, Buhong; Chen, Yanjiao; Zhang, Xiaodong; Chen, Huifang; Xia, Xiangnan; Lin, Aizhen

    1998-08-01

    In order to study the exterior vascular laser irradiation therapy for replacing the intravascular laser irradiation therapy, we measure the distribution of radiant fluence rate in exterior vascular laser irradiation in vivo and imitative intravascular laser irradiation. The result shows that the average radiant fluence rate of exterior vascular and intravascular is 1.11 and 10.81 respectively, which is ten times between them. In order to get the radiant fluence rate corresponding to the intravascular laser irradiation, we suggest that about 20 mW HeNe laser could be used in exterior vascular laser irradiation therapy, and the laser must irradiate on the vascular perpendicularly. The suitable patient with exposed vascular must be chosen, and the diameter of the irradiated vascular is about 6 mm. Our experiment result, especially the data measured in vivo, will be useful for the research of light transport in human tissue.

  9. Irradiation enhancement of biomass conversion

    NASA Astrophysics Data System (ADS)

    Smith, G. S.; Kiesling, H. E.; Galyean, M. L.; Bader, J. R.

    The vast supply of cellulosic agricultural residues and industrial by-products that is produced each year is a prospective resource of biomass suitable for conversion to useful products such as feedstock for the chemicals industry and feedstuffs for the livestock industry. Conversions of such biomass is poor at present, and utilization is inefficient, because of physio-chemical barriers to biological degradation and (or) anti-quality components such as toxicants that restrict biological usages. Improvements in biodegradability of ligno-cellulosic materials have been accomplished by gamma-ray and electron-beam irradiation at intermediate dosage (˜ 50 Mrad; .5 MGy); but applications of the technology have been hampered by questionable interpretations of results. Recent research with organic wastes such as sewage sludge and straw suggests opportunity for important applications of irradiation technology in enhancement of biomass conversion. Data from experiments using irradiated straw as feed for ruminants are presented and discussed in relation to research on prospective usage of sewage products as feed for ruminants. Findings are discussed in regard to prospective applications in industrial fermentation processes. Possible usage of irradiation technology for destruction of toxicants in exotic plants is considered in regard to prospective new feedstuffs.

  10. Irradiance Variability of the Sun

    NASA Technical Reports Server (NTRS)

    Froehlich, Claus

    1990-01-01

    Direct measurements of the solar constant--the total irradiance at mean Sun-Earth distance--during the last ten years from satellites show variations over time scales from minutes to years and decades. At high frequencies the spectral power is determined by granulation, super- and mesogranulation. In the 5-minute range, moreover, it is dominated by power from the solar p-mode oscillations. Their power and frequencies change with time, yielding information about changes in the convection zone. During periods of several hours, the power is steadily increasing and may be partly due to solar gravity modes. The most important variance is in the range from days to several months and is related to the photospheric features of solar activity, decrease of the irradiance during the appearance of sunspots, and increasing by faculae and the magnetic network. Long-term modulation by the 11-year activity cycle are observed conclusively with the irradiance being higher during solar maximum. All these variations can be explained--at least qualitatively--by their manifestation on the photosphere. For the long-term changes, the simultaneous changes of the frequencies of solar p-mode oscillations suggest a more global origin of the variations. Indeed, it seems that the observed irradiance modulation is a true luminosity change with the magnetic cycle of the Sun.

  11. Centurion — a revolutionary irradiator

    NASA Astrophysics Data System (ADS)

    McKinney, Dan; Perrins, Robert

    2000-03-01

    The facility characteristics for irradiation of red meat and poultry differ significantly from those of medical disposables. This paper presents the results of the market requirement definition which resulted in an innovative conceptual design. The process and the "state of the art tools" used to bring this abstract idea into a proof of concept are presented.

  12. Food irradiation research and technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food Irradiation is a safe and effective U.S. Food and Drug Administration (FDA) approved process that can be used to disinfest or delay the maturation of fruits and vegetables, improve the microbiological safety of shellfish, eggs, raw meat and poultry, spices, and seeds used for sprouting. FDA ap...

  13. Food irradiation: regulations and acceptance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food irradiation is an effective technology for reducing harmful pathogens and insect pests on meats, poultry, seafood and fruits and vegetables. Although it is one of the most extensively researched nonthermal food processing technologies, its commercial adoption remains relatively limited. Regulat...

  14. Solar Spectral Irradiance and Climate

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Woods, T.; Cahalan, R.

    2012-01-01

    Spectrally resolved solar irradiance is recognized as being increasingly important to improving our understanding of the manner in which the Sun influences climate. There is strong empirical evidence linking total solar irradiance to surface temperature trends - even though the Sun has likely made only a small contribution to the last half-century's global temperature anomaly - but the amplitudes cannot be explained by direct solar heating alone. The wavelength and height dependence of solar radiation deposition, for example, ozone absorption in the stratosphere, absorption in the ocean mixed layer, and water vapor absorption in the lower troposphere, contribute to the "top-down" and "bottom-up" mechanisms that have been proposed as possible amplifiers of the solar signal. New observations and models of solar spectral irradiance are needed to study these processes and to quantify their impacts on climate. Some of the most recent observations of solar spectral variability from the mid-ultraviolet to the near-infrared have revealed some unexpected behavior that was not anticipated prior to their measurement, based on an understanding from model reconstructions. The atmospheric response to the observed spectral variability, as quantified in climate model simulations, have revealed similarly surprising and in some cases, conflicting results. This talk will provide an overview on the state of our understanding of the spectrally resolved solar irradiance, its variability over many time scales, potential climate impacts, and finally, a discussion on what is required for improving our understanding of Sun-climate connections, including a look forward to future observations.

  15. Microstructural processes in irradiated materials

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald

    2016-04-01

    These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15-19, 2015.

  16. Food Irradiation Research and Technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food Irradiation is a safe and effective U.S. Food and Drug Administration (FDA) approved process that can be used to disinfest or delay the maturation of fruits and vegetables, improve the microbiological safety of shellfish, eggs, raw meat and poultry, spices, and seeds used for sprouting. FDA ap...

  17. Ultrasonic Transducer Irradiation Test Results

    SciTech Connect

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert; Chien, Hual-Te; Kohse, Gordon; Tittmann, Bernhard; Reinhardt, Brian; Rempe, Joy

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  18. Evaluation of irradiation hardening of proton irradiated stainless steels by nanoindentation

    NASA Astrophysics Data System (ADS)

    Yabuuchi, Kiyohiro; Kuribayashi, Yutaka; Nogami, Shuhei; Kasada, Ryuta; Hasegawa, Akira

    2014-03-01

    Ion irradiation experiments are useful for investigating irradiation damage. However, estimating the irradiation hardening of ion-irradiated materials is challenging because of the shallow damage induced region. Therefore, the purpose of this study is to prove usefulness of nanoindentation technique for estimation of irradiation hardening for ion-irradiated materials. SUS316L austenitic stainless steel was used and it was irradiated by 1 MeV H+ ions to a nominal displacement damage of 0.1, 0.3, 1, and 8 dpa at 573 K. The irradiation hardness of the irradiated specimens were measured and analyzed by Nix-Gao model. The indentation size effect was observed in both unirradiated and irradiated specimens. The hardness of the irradiated specimens changed significantly at certain indentation depths. The depth at which the hardness varied indicated that the region deformed by the indenter had reached the boundary between the irradiated and unirradiated regions. The hardness of the irradiated region was proportional to the inverse of the indentation depth in the Nix-Gao plot. The bulk hardness of the irradiated region, H0, estimated by the Nix-Gao plot and Vickers hardness were found to be related to each other, and the relationship could be described by the equation, HV = 0.76H0. Thus, the nanoindentation technique demonstrated in this study is valuable for measuring irradiation hardening in ion-irradiated materials.

  19. Biological effects of ultraviolet irradiation on bees

    SciTech Connect

    Es`kov, E.K.

    1995-09-01

    The influence of natural solar and artificial ultraviolet irradiation on developing bees was studied. Lethal exposures to irradiation at different stages of development were determined. The influence of irradiation on the variability of the morphometric features of bees was revealed. 5 refs., 1 fig.

  20. Food irradiation: research and technology, preface

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many interesting and exciting developments have occurred in the field of food irradiation since the publication of the first edition of Food Irradiation: Research and Technology in 2006. The 2nd edition of the book reviews our latest knowledge on food irradiation, highlights the current developments...

  1. Total Solar Irradiance Variability: A Review

    NASA Technical Reports Server (NTRS)

    Pap, Judit M.

    1996-01-01

    Observations of total solar irradiance from space within the last two decaades convinced the skeptics that total irradiance varies over a wide range of periodicities: from minutes to the 11-year solar activity cycle. Analyses based on these space-borne observations have demonstrated that the irradiance variations are directly related to changes at the photosphere and the solar interior.

  2. Irradiation hardening of reduced activation martensitic steels

    NASA Astrophysics Data System (ADS)

    Kimura, A.; Morimura, T.; Narui, M.; Matsui, H.

    1996-10-01

    Irradiation response on the tensile properties of 9Cr2W steels has been investigated following FFTF/MOTA irradiations at temperatures between 646 and 873 K up to doses between 10 and 59 dpa. The largest irradiation hardening accompanied by the largest decrease in the elongation is observed for the specimens irradiated at 646 K at doses between 10 and 15 dpa. The irradiation hardening appears to saturate at a dose of around 10 dpa at the irradiation temperature. No hardening but softening was observed in the specimens irradiated at above 703 K to doses of 40 and 59 dpa. Microstructural observation by transmission electron microscope (TEM) revealed that the dislocation loops with the a<100> type Burgers vector and small precipitates which were identified to be M 6C type carbides existed after the irradiation at below 703 K. As for the void formation, the average size of voids increased with increasing irradiation temperature from 646 to 703 K. No voids were observed above 703 K. Irradiation softening was attributed to the enhanced recovery of martensitic structure under the irradiation. Post-irradiation annealing resulted in hardening by the annealing at 673 K and softening by the annealing at 873 K.

  3. Schedule and status of irradiation experiments

    SciTech Connect

    Rowcliffe, A.F.; Grossbeck, M.L.

    1997-04-01

    To provide an updated summary of the status of irradiation experiments for the neutron-interactive materials program. The current status of reactor irradiation experiments is presented in tables summarizing the experimental objectives, conditions, and schedule. Currently, the program has two irradiation experiments in reactor; and 8 experiments in the planning or design stages. Postirradiation examination and testing is in progress on 18 experiments.

  4. Calculation of direct normal irradiation from global horizontal irradiation

    NASA Astrophysics Data System (ADS)

    Rodrigo, Pedro; Pérez-Higueras, Pedro J.; Almonacid, Florencia; Hontoria, Leocadio; Fernández, Eduardo F.; Rus, Catalina; Fernández, Juan I.; Gómez, Pedro; Almonacid, Gabino

    2012-10-01

    Concentrator Photovoltaic (CPV) systems only work with the Direct Normal Irradiance (DNI), so a knowledge of DNI data is required for the design and evaluation of these kinds of systems. DNI is not always measured at ground meteorological stations due to equipment costs. In recent years, several spatial databases that estimate DNI from satellite data have been developed. These databases are a very useful tool for CPV applications. However, the databases present uncertainty and provide different values of DNI. This lack of DNI data and the uncertainty of available data contrast with the availability of reliable global horizontal irradiation data, which is easy to find or measure. In this paper, a simple procedure for estimating DNI from global horizontal irradiation is presented. It does not try to improve the existing methods, but meets the basic requirements for the analysis of CPV systems. The method can be easily implemented in a spreadsheet or in computer programs in renewable energy and its accuracy is similar than that of the existing databases.

  5. Total Irradiance Monitor Observations of Total Solar Irradiance

    NASA Astrophysics Data System (ADS)

    Kopp, G.

    2007-12-01

    The Total Irradiance Monitor (TIM) is the most recent instrument launched to measure total solar irradiance (TSI) from space. This electrical substitution radiometer has on-orbit degradation tracking to provide very stable long- term measurements of the net solar radiation incident on the Earth, and the instrument continues the 29-year record of this natural driver of Earth climate. Currently flying on the SOlar Radiation and Climate Experiment (SORCE), the TIM has been providing stable, low-noise, and accurate measurements of TSI since early 2003. The TIM will next be flying on NASA's Glory climate mission and is one instrument of the Total Solar Irradiance Sensor (TSIS) selected to continue this important climate record well into the future. The SORCE/TIM has created renewed interest in the TSI absolute value and has acquired the first measurements of the total radiant energy released by large solar flares. Improvements in ground-based calibrations starting with the Glory/TIM will establish traceability linking current to upcoming measurements, solidifying the existing TSI climate data record in the undesirable event of a future data gap.

  6. Thematic Mapper bandpass solar exoatmospheric irradiances

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Barker, J. L.

    1987-01-01

    Based on solar irradiance data published by Neckel and Labs (1984) and Iqbal (1983), the solar exoatmospheric irradiances for Thematic Mapper (TM) bands 1, 2, 3, and 4 have been calculated. Results vary by up to 1 percent from previous published values, which were based on the earlier data of Neckel and Labs. For TM bands 5 and 7, integrated solar exoatmospheric irradiances have also been recalculated using solar irradiance data published by Labs and Neckel (1968), Arvesen et al. (1969), and Iqbal (1983). These irradiances vary by up to 6 percent from previously published results, which were based on data published by Thekaekara (1972).

  7. Design of YCF-1 mobile γ irradiator

    NASA Astrophysics Data System (ADS)

    Hehu, Zhang; Chuanzhen, Wang

    1993-07-01

    YCF-1 Mobile irradiator is designed by BINE of China. It has been put into running in YanJi city of Jilin province. It is able to be moved to border and distance places and area lumped and spreading out of agricultural products to service. It can play a important role in demonstration and extending irradiation technology in food irradiation, disinfestation, sterilization and quarantine, etc. This paper describes the features and design considerations of mobile irradiator. This irradiator adopted Cesium-137 source. The design capacity of loading source is 9.25PBq (250kCi), A half-time of Cs- 137 is 30.2 years long, exchanging source is not needed utilization rate of energy is higher, and the shielding is thinner, The Weight is lighter, The dose rate on the surface of it is 0.0025mSv/h in accordance with national standard. The internal size of irradiation room is 1800×1800×900mm (L×W×H), The sheilding of irradiation room is a steel shell filled with lead. The thickness of lead is 18cm. The irradiator is installed on a special flat truck. The size of the truck is 7000×3400×4200mm (L×W×H). The weight of irradiator is more than 80 150kw. The main components and parts of irradiator are: source, source racks and hoist, irradiation chamber, storage source chamber, the product's transport system, dose monitoring system, ventilation system and safety interlock system, etc.

  8. Irradiation effects on hydrases for biomedical applications

    NASA Astrophysics Data System (ADS)

    Furuta, Masakazu; Ohashi, Isao; Oka, Masahito; Hayashi, Toshio

    2000-03-01

    To apply an irradiation technique to sterilize "Hybrid" biomedical materials including enzymes, we selected papain, a well-characterized plant endopeptidase as a model to examine durability of enzyme activity under the practical irradiation condition in which limited data were available for irradiation inactivation of enzymes. Dry powder and frozen aqueous solution of papain showed significant durability against 60Co-gamma irradiation suggesting that, the commercial irradiation sterilizing method is applicable without modification. Although irradiation of unfrozen aqueous papain solution showed an unusual change of the enzymatic activity with the increasing doses, and was totally inactivated at 15 kGy, we managed to keep the residual activity more than 50% of initial activity after 30-kGy irradiation, taking such optimum conditions as increasing enzyme concentration from 10 to 100 mg/ml and purging with N 2 gas to suppress the formation of free radicals.

  9. Future Satellite Observations of Solar Irradiance

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; Rottman, G.; Woods, T.; Lawrence, G.; Harder, J.; McClintock, W.; Kopp, G.

    2003-01-01

    Required solar irradiance measurements for climate studies include those now being made by the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) onboard the SORCE satellite, part of the Earth Observing System fleet of NASA satellites. Equivalent or better measures of Total Solar Irradiance (TSI) and Spectral Solar Irradiance (SSI, 200 to 2000 nm) are planned for the post-2010 satellites of the National Polar-orbiting Operational Environmental Satellite System ("OESS). The design life of SORCE is 5 years, so a "Solar Irradiance Gap Filler" EOS mission is being planned for launch in the 2007 time frame, to include the same TSI and SSI measurements. Besides avoiding any gap, overlap of the data sources is also necessary for determination of possible multi-decadal trends in solar irradiance. We discuss these requirements and the impacts of data gaps, and data overlaps, that may occur in the monitoring of the critical solar radiative forcing.

  10. Comparison of Recent Total Irradiance Measurements

    NASA Astrophysics Data System (ADS)

    Helizon, R.; Pap, J.

    2002-12-01

    Total solar irradiance has been measured since 1978 from various satellites. Since the absolute accuracy of the current irradiance measurements is about 0.2%, one needs to compile composite irradiance time series to study long-term changes and to establish whether there are any secular variations over the last two and half decades. In this paper we compare the UARS/ACRIM II and SOHO/VIRGO total irradiance data as well as the SOHO/VIRGO and ACRIM III total irradiance. Our main goal is to validate the newly processed ACRIM II total irradiance. Comparison of the SOHO/VIRGO and ACRIM III data will also help to establish whether the high total irradiance values for the maximum of solar cycle 23 represent real solar, rather than, instrumental events.

  11. Food irradiation development in Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, I.

    The large scale trials were held to extend the storage life of potatoes, onions and dry fruits by gamma radiation. It was concluded that radiation preservation of potatoes and onions was much cheaper as compared to conventional methods. A dose of 1 kGy can control the insects in dry fruits and nuts. The consumers' acceptability and market testing performed during the last four years are also conducive to the commercialization of the technology in this country. The Government of Pakistan has accorded clearance for the irradiation of some food items like potatoes, onions, garlic and spices for human consumption. The Pakistan Radiation Services (PARAS), the commercial irradiator (200 Kci) at Lahore, has already started functioning in April, 1987. It is planned to start large scale sterilization of spices by gamma radiation in PARAS shortly.

  12. Mobile gamma-irradiation robot

    NASA Astrophysics Data System (ADS)

    Teply, J.; Franek, C.; Vocilka, J.; Stetka, R.; Vins, J.; Krotil, J.; Garba, A.

    1993-07-01

    The source container with 98 TBq of 137Cs and shielding made from depleted uranium has the total weight of 264 kg, height of 0.370 and diameter 0.272 m. The container is joined to accessories allowing movment of the radiation beam. The dose rate at a distance of 0.4 m in the beam axis is 50 Gy/h. Various technical means are available for manipulation and transport. The irradiation process proceeds according to a precalculated program. The safety measures have been taken to secure the possible application in historical buildings and similar objects. The licence from health physics authorities has been obtained. The first irradiation process performed is described.

  13. Proton Irradiation Creep in Pyrocarbon

    SciTech Connect

    Was, Gary S.; Campbell, Anne

    2011-10-01

    This project aims to understand irradiation creep in pyrocarbon using proton irradiation under controlled stresses and temperatures. Experiments will be conducted over a range of temperatures and stresses per the proposal submitted. The work scope will include the preparation of samples, measurement of deposition thickness, thickness uniformity, and anisotropy. The samples produced will be made in strips, which will be used for the creep experiments. Materials used will include pyrolytic carbon (PyC), Highly Oriented Pyrolytic Graphite (HOPG), or graphite strip samples in that order depending upon success. Temperatures tested under will range from 800°C to 1200°C, and stresses from 6MPa to 20.7MPa. Optional testing may occur at 900°C and 1100°C and stresses from 6MPa to 20.7MPa if funding is available.

  14. Hydrazine degradation by ultrasonic irradiation.

    PubMed

    Nakui, Hiroyuki; Okitsu, Kenji; Maeda, Yasuaki; Nishimura, Rokurou

    2007-07-31

    The influence of pH on the degradation of hydrazine with a concentration of 0.1mmol/L was investigated under the stirring (300rpm) and ultrasonic irradiation conditions (200kHz, 200W) in the pH range of 1-9. It was found that the hydrazine degradation depended greatly upon pH under the ultrasonic irradiation condition, while it did not take place over the whole pH range under the stirring condition. Although it has been known that OH radicals and hydrogen peroxide are sonochemically formed from water, it was considered that the OH radicals played an important role of the hydrazine degradation, but not hydrogen peroxide. The pH dependence of the hydrazine degradation was discussed in terms of the relationship between the chemical structure and the basic dissociation constants of hydrazine. PMID:17513042

  15. GTL-1 Irradiation Summary Report

    SciTech Connect

    D. M. Perez; G. S. Chang; N. E. Woolstenhulme; D. M. Wachs

    2012-01-01

    The primary objective of the Gas Test Loop (GTL-1) miniplate experiment is to confirm acceptable performance of high-density (i.e., 4.8 g-U/cm3) U3Si2/Al dispersion fuel plates clad in Al-6061 and irradiated under the relatively aggressive Booster Fast Flux Loop (BFFL) booster fuel conditions, namely a peak plate surface heat flux of 450 W/cm2. As secondary objectives, several design and fabrication variations were included in the test matrix that may have the potential to improve the high-heat flux, high-temperature performance of the base fuel plate design.1, 2 The following report summarizes the life of the GTL-1 experiment through end of irradiation, including as-run neutronic analysis, thermal analysis and hydraulic testing results.

  16. RERTR-8 Irradiation Summary Report

    SciTech Connect

    D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2011-12-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-8, was designed to test monolithic mini-fuel plates fabricated via hot isostatic pressing (HIP), the effect of molybdenum (Mo) content on the monolithic fuel behavior, and the efficiency of ternary additions to dispersion fuel particles on the interaction layer behavior at higher burnup. The following report summarizes the life of the RERTR-8 experiment through end of irradiation, including as-run neutronic analysis, thermal analysis and hydraulic testing results.

  17. RERTR-13 Irradiation Summary Report

    SciTech Connect

    D. M. Perez; M. A. Lillo; G. S. Chang; D. M. Wachs; G. A. Roth; N. E. Woolstenhulme

    2012-09-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-13 was designed to assess performance of different types of neutron absorbers that can be potentially used as burnable poisons in the low enriched uranium-molybdenum based dispersion and monolithic fuels.1 The following report summarizes the life of the RERTR-13 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

  18. Microstructure evolution in irradiated materials

    SciTech Connect

    Caturla, M

    1999-11-30

    Study the interaction of defects produced during irradiation or deformation of a metal with the microstructure of that particular material, such as dislocations and grain boundaries. In particular we will study the interaction of dislocation with interstitial loops and stacking fault tetrahedral, and the production of displacement cascades close to dislocations and grain boundaries. The data obtained from these simulations will be used as input to diffusion models and dislocation dynamics models.

  19. Radioluminescence Investigation Of Ion-irradiated Phosphors

    SciTech Connect

    Jacobsohn, Luiz; Muenchausen, Ross; Bennett, Bryan

    2008-01-01

    Phosphors are materials that emit light under the excitation of incoming radiation. This property is used, among other applications, in radiation detection. Efficient energy transfer from the ionization track to the luminescent centers must occur to yield significant light output. Besides, the investigation of the effects of ion irradiation on the luminescence of phosphors is comparatively unexplored. In this work, we review radioluminescence (RL) investigation of ion-irradiated oxides and oxide phosphors, and present preliminary data on the effects of ion irradiation on the luminescence of intrinsic phosphor Bi{sub 4}Ge{sub 3}0{sub 12} (BGO). Commercial crystals were irradiated, and the irradiation effects characterized by means of RL measurements as a function of temperature, from 10K to room temperature (RT), and optical absorption measurements. Overall, surface modification induced by ion irradiation leads to higher luminescence output.

  20. Irradiation preservation of seafood: Literature review

    SciTech Connect

    Molton, P.M.

    1987-10-01

    The application of gamma-irradiation for extending the shelf life of seafood has been of interest for many years. This report reviews a number of studies on seafood irradiation conducted over the past several years. Topics covered include seafood irradiation techniques and dosages, species applicability and differences, the effects of packaging on seafood preservation, and changes in organoleptic acceptability as a result of irradiation. Particular attention is given to radiation effects (likely and unlikely) of concern to the public. These include the potential for generation of toxic chemical products, botulinum toxin production, and other health concerns. No scientifically defensible evidence of any kind was found for any harmful effect of irradiation of seafoods at the doses being considered (less than 300 krad), and all indications are that irradiation is an acceptable and needed additional tool for seafood preservation. 49 refs., 14 figs., 14 tabs.

  1. EPR Investigation of Irradiated Curry Powder

    SciTech Connect

    Duliu, O. G.; Ali, S. I.; Georgescu, R.

    2007-04-23

    Gamma-ray irradiated curry powder, a well priced oriental spice was investigated in order to establish the ability of EPR to detect the presence and time stability of free irradiation free-radicals. Accordingly, curry powder aliquots were irradiated with gradually increasing absorbed doses up to 11.3 kGy. The EPR spectra of all irradiated samples show the presence of al last two different species of free radicals, whose concentration increased monotonously with the absorbed doses. A 100 deg. C isothermal annealing of irradiated samples has shown a differential reduction of amplitude of various components of the initial spectra, but even after 3.6 h of thermal treatment, the remaining amplitude represents no less then 30% of the initial ones. The same peculiarities have been noticed after more than one year storage at room temperature, all of them being very useful in establishing the existence of any previous irradiation treatment.

  2. Renal graft irradiation in acute rejection

    SciTech Connect

    Pilepich, M.V.; Sicard, G.A.; Breaux, S.R.; Etheredge, E.E.; Blum, J.; Anderson, C.B.

    1983-03-01

    To evaluate the effect of graft irradiation in the treatment of acute rejection of renal transplants, a randomized study was conducted from 1978 to 1981. Patients with acute rejection were given standard medical management in the form of intravenous methylprednisolone, and were chosen randomly to receive either graft irradiation (175 rads every other day, to a total of 525 rads) or simulated (sham) irradiation. Eighty-three rejections occurring in 64 grafts were randomized to the protocol. Rejection reversal was recorded in 84.5% of control grafts and 75% of the irradiated grafts. Recurrent rejections were more frequent and graft survival was significantly lower in the irradiated group (22%) than in the control group (54%). Graft irradiation does not appear to be beneficial in the treatment of acute rejection of renal transplants when used in conjunction with high-dose steroids.

  3. HRB-22 irradiation phase test data report

    SciTech Connect

    Montgomery, F.C.; Acharya, R.T.; Baldwin, C.A.; Rittenhouse, P.L.; Thoms, K.R.; Wallace, R.L.

    1995-03-01

    Irradiation capsule HRB-22 was a test capsule containing advanced Japanese fuel for the High Temperature Test Reactor (HTTR). Its function was to obtain fuel performance data at HTTR operating temperatures in an accelerated irradiation environment. The irradiation was performed in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). The capsule was irradiated for 88.8 effective full power days in position RB-3B of the removable beryllium (RB) facility. The maximum fuel compact temperature was maintained at or below the allowable limit of 1300{degrees}C for a majority of the irradiation. This report presents the data collected during the irradiation test. Included are test thermocouple and gas flow data, the calculated maximum and volume average temperatures based on the measured graphite temperatures, measured gaseous fission product activity in the purge gas, and associated release rate-to-birth rate (R/B) results. Also included are quality assurance data obtained during the test.

  4. Calibration of an automatic TLD irradiator

    SciTech Connect

    Jang, J.C.; Pasciak, W.J. )

    1987-07-01

    The Panasonic UD-801 TLDs used in the U.S. Nuclear Regulatory Commission's environmental monitoring program are calibrated using the Williston Elin Model 2001 Irradiator. This article describes the procedure used to calibrate this irradiator for the delivery of exposures in the range of 40 to 1200 mR. A select group of TLDs, another source, and an NBS-calibrated ion chamber were used to perform a secondary calibration of the WE-2001. Extraneous exposure contributions (background radiation from the irradiator's source and exposure occurring during TLD travel into and out of the irradiation chamber) were measured and evaluated. The WE-2001 TLD Irradiator was calibrated to a total uncertainty of {plus minus}3.2%; however, TLD travel time exposures were found to be quite significant for the short irradiation times typically used in environmental applications.

  5. Irradiation embrittlement of neutron-irradiated low activation ferritic steels

    NASA Astrophysics Data System (ADS)

    Kayano, H.; Kimura, A.; Narui, M.; Sasaki, Y.; Suzuki, Y.; Ohta, S.

    1988-07-01

    Effects of neutron irradiation and additions of small amounts of alloying elements on the ductile-brittle transition temperature (DBTT) of three different groups of ferritic steels were investigated by means of the Charpy impact test in order to gain an insight into the development of low-activation ferritic steels suitable for the nuclear fusion reactor. The groups of ferritic steels used in this study were (1) basic 0-5% Cr ferritic steels, (2) low-activation ferritic steels which are FeCrW steels with additions of small amounts of V, Mn, Ta, Ti, Zr, etc. and (3) FeCrMo, Nb or V ferritic steels for comparison. In Fe-0-15% Cr and FeCrMo steels, Fe-3-9% Cr steels showed minimum brittleness and provided good resistance against irradiation embrittlement. Investigations on the effects of additions of trace amounts of alloying elements on the fracture toughness of low-activation ferritic steels made clear the optimum amounts of each alloying element to obtain higher toughness and revealed that the 9Cr-2W-Ta-Ti-B ferritic steel showed the highest toughness. This may result from the refinement of crystal grains and improvement of quenching characteristics caused by the complex effect of Ti and B.

  6. Safety Assurance for ATR Irradiations

    SciTech Connect

    S. Blaine Grover

    2006-10-01

    The Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL) is the world’s premiere test reactor for performing high fluence, large volume, irradiation test programs. The ATR has many capabilities and a wide variety of tests are performed in this truly one of a kind reactor, including isotope production, simple self-contained static capsule experiments, instrumented/controlled experiments, and loop testing under pressurized water conditions. Along with the five pressurized water loops, ATR may also have gas (temperature controlled) lead experiments, fuel boosted fast flux experiments, and static sealed capsules all in the core at the same time. In addition, any or all of these tests may contain fuel or moderating materials that can affect reactivity levels in the ATR core. Therefore the safety analyses required to ensure safe operation of each experiment as well as the reactor itself are complex. Each test has to be evaluated against stringent reactor control safety criteria, as well as the effects it could have on adjacent tests and the reactor as well as the consequences of those effects. The safety analyses of each experiment are summarized in a document entitled the Experiment Safety Assurance Package (ESAP). The ESAP references and employs the results of the reactor physics, thermal, hydraulic, stress, seismic, vibration, and all other analyses necessary to ensure the experiment can be irradiated safely in the ATR. The requirements for reactivity worth, chemistry compatibilities, pressure limitations, material issues, etc. are all specified in the Technical Safety Requirements and the Upgraded Final Safety Analysis Report (UFSAR) for the ATR. This paper discusses the ESAP process, types of analyses, types of safety requirements and the approvals necessary to ensure an experiment can be safely irradiated in the ATR.

  7. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  8. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2013-12-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  9. Irradiation effects in ferritic steels

    NASA Astrophysics Data System (ADS)

    Lechtenberg, Thomas

    1985-08-01

    Since 1979 the Alloy Development for Irradiation Performance (ADIP) task funded by the US Department of Energy has been studying the 2-12Cr class of ferritic steels to establish the feasibility of using them in fusion reactor first wall/breeding blanket (FW/B) applications. The advantages of ferritic steels include superior swelling resistance, low thermal stresses compared to austenitic stainless steels, attractive mechanical properties up to 600°C. and service histories exceeding 100 000 h. These steels are commonly used in a range of microstructural conditions which include ferritic, martensitic. tempered martensitic, bainitic etc. Throughout this paper where the term "ferritic" is used it should be taken to mean any of these microstructures. The ADIP task is studying several candidate alloy systems including 12Cr-1MoWV (HT-9), modified 9Cr-1MoVNb, and dual-phased steels such as EM-12 and 2 {1}/{4}Cr-Mo. These materials are ferromagnetic (FM), body centered cubic (bcc), and contain chromium additions between 2 and 12 wt% and molybdenum additions usually below 2%. The perceived issues associated with the application of this class of steel to fusion reactors are the increase in the ductile-brittle transition temperature (DBTT) with neutron damage, the compatibility of these steels with liquid metals and solid breeding materials, and their weldability. The ferromagnetic character of these steels can also be important in reactor design. It is the purpose of this paper to review the current understanding of these bcc steels and the effects of irradiation. The major points of discussion will be irradiation-induced or -enhanced dimensional changes such as swelling and creep, mechanical properties such as tensile strength and various measurements of toughness, and activation by neutron interactions with structural materials.

  10. Raman Spectroscopy of Irradiated Tissue Samples

    NASA Astrophysics Data System (ADS)

    Alexa, P.; Synytsya, A.; Volka, K.; de Boer, J.; Besserer, J.; Froschauer, S.; Loewe, M.; Moosburger, M.; Würkner, M.

    2003-06-01

    Tissue samples (skin of mice, normal and tumor, skin of a woman, normal and tumor) were irradiated by protons from the Munich tandem accelerator. The samples were analysed using Raman spectroscopy at the Institute of Chemical Technology in Prague by measuring the intensity of signals sensitive to radiation damage. Effects depending on the delivered dose were found. Proton-irradiation effects are then compared to those of gamma-irradiation.

  11. AFIP-6 Irradiation Summary Report

    SciTech Connect

    Danielle M Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2011-09-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-6 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a length prototypic to that of the ATR fuel plates (45 inches in length). The AFIP-6 test was the first test with plates in a swaged condition with longer fuel zones of approximately 22.5 inches in length1,2. The following report summarizes the life of the AFIP-6 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  12. Food irradiation and airline catering.

    PubMed

    Preston, F S

    1988-04-01

    Food poisoning from contaminated airline food can produce serious consequences for airline crew and passengers and can hazard flight. While irradiation of certain foodstuffs has been practised in a number of countries for some years, application of the process has not been made to complete meals. This paper considers the advantages, technical considerations, costs and possible application to airline meals. In addition, the need to educate the public in the advantages of the process in the wake of incidents such as Chernobyl is discussed. PMID:3370047

  13. Thymus irradiation for myasthenia gravis

    SciTech Connect

    Currier, R.D.; Routh, A.; Hickman, B.T.; Douglas, M.A.

    1983-01-01

    Twenty-eight patients with progressive myasthenia gravis without thymoma received treatment of 3000 rads (30 Gy) to the anterior mediastinum, and a followup was conducted for five to 18 years. Twenty-four patients had generalized myasthenia, and four had ocular myasthenia gravis. Twenty patients with generalized myasthenia survived the several month post-treatment period and improved, but four died during that period. The improvement lasted a median of 1.5 years, and older patients had longer remissions than younger patients. The four patients who had ocular myasthenia did not change after treatment. Mediastinal irradiation produces a temporary remission in generalized myasthenia.

  14. Grafting of styrene into pre-irradiated fluoropolymer films: Influence of base material and irradiation temperature

    NASA Astrophysics Data System (ADS)

    Lappan, Uwe; Geißler, Uwe; Gohs, Uwe; Uhlmann, Steffi

    2010-10-01

    In this study, the influence of irradiation temperature on mechanical properties of three fluoropolymers and on grafting of styrene into the polymers by the pre-irradiation method was investigated. Electron paramagnetic resonance spectroscopy and infrared spectroscopy were used to characterize the irradiated polymers regarding trapped radical species and changes in the chemical structure, respectively. For poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) the irradiation temperature was found to be an important factor for tensile strength and elongation at break of the pre-irradiated film. No strong effect of irradiation temperature on the mechanical properties was noticed for poly(tetrafluoroethylene-co-ethylene) (ETFE); however the yield of grafting drops at high irradiation temperatures. Finally, mechanical properties of poly(tetrafluoroethylene) (PTFE) were found to be dramatically altered, even if the film was irradiated at elevated temperature.

  15. Thermoluminescence analysis of irradiated oyster shells.

    PubMed

    Cruz-Zaragoza, E; Marcazzó, J; Della Monaca, S; Boniglia, C; Gargiulo, R; Bortolin, E

    2012-12-01

    This paper reports the thermoluminescence (TL) analysis performed on the oyster shells powder. TL response of (60)Co gamma-rays irradiated samples were studied in the range from 80 Gy to 8 kGy doses. TL signal of irradiated shell powder was higher as compared to the unirradiated control samples, which allowed to identify the irradiated oysters. Results show that the oyster shells have good TL properties and can be useful for the identification of irradiated seafood as well as for the evaluation of the treatment dose. PMID:22341648

  16. Study of irradiation creep of vanadium alloys

    SciTech Connect

    Tsai, H.; Strain, R.V.; Smith, D.L.

    1997-08-01

    Thin-wall tubing was produced from the 832665 (500 kg) heat of V-4 wt.% Cr-4 wt.% Ti to study its irradiation creep behavior. The specimens, in the form of pressurized capsules, were irradiated in Advanced Test Reactor and High Flux Isotope Reactor experiments (ATR-A1 and HFIR RB-12J, respectively). The ATR-A1 irradiation has been completed and specimens from it will soon be available for postirradiation examination. The RB-12J irradiation is not yet complete.

  17. Solar irradiance short wave radiation users guide

    NASA Astrophysics Data System (ADS)

    Martinolich, Paul; Arnone, Robert A.

    1995-05-01

    Solar irradiance for short wave radiation (400-700 nm) at the sea surface can be calculated using inputs obtained from satellite systems and model estimates. The short wave solar irradiance is important for estimating the surface heating that occurs in the near surface and estimating the available irradiance for biological growth in the upper ocean. The variability of the solar irradiance is believed to have significant influence on the global carbon cycle. This users guide provides an understanding of the models and operational procedures for using the software and understanding the results.

  18. Free radical kinetics on irradiated fennel

    NASA Astrophysics Data System (ADS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2008-09-01

    Herein, an electron spin resonance study on the behavior of organic radicals in fennel before and after irradiation is reported. The spectrum of irradiated fennel composed of the spectrum component derived from the un-irradiated sample (near g=2.005) and the spectra components derived from carbohydrates. The time decay of intensity spectral components was well explained by first-order kinetics with a variety of rate constants. Especially, the signal at near g=2.02 ascribed to stable cellulose-derivative components is expected to be a good indicator in the identification of irradiated plant samples.

  19. Comparison of irradiation creep and swelling of an austenitic alloy irradiated in FFTF and PFR

    SciTech Connect

    Garner, F.A.; Toloczko, M.B.; Munro, B.; Adaway, S.; Standring, J.

    1999-10-01

    comparative irradiation of identically constructed creep tubes in the Fast Flux Test Facility (FFTF) and the Prototypic Fast Reactor (PFR) shows that differences in irradiation conditions arising from both reactor operation and the design of the irradiation vehicle can have a significant impact on the void swelling and irradiation creep of austenitic stainless steels. In spite of these differences, the derived creep coefficients fall within the range of previously observed values for 316 SS.

  20. Spectroscopic analysis of irradiated erythrocytes

    NASA Astrophysics Data System (ADS)

    Selim, Nabila S.; Desouky, Omar S.; Ismail, Nagla M.; Dakrory, Amira Z.

    2011-12-01

    The aim of the present work is to study the effect of gamma radiation on the lipid part of the erythrocyte membrane, and to test the efficiency of lipoic acid as a radioprotector. This effect was evaluated using electron paramagnetic resonance (EPR), and Fourier transform infrared (FT-IR) spectroscopy. The results showed an increase in the number of spin density by 14%, 22% and 65% after exposure to 25, 50 and 100 Gy respectively; whereas there was a decline in the obtained density after incubation with lipoic acid by a factor of approximately 32%. The FT-IR spectra of the irradiated erythrocytes samples showed a marked decrease in the intensity of all characteristic peaks, which increased as the irradiation dose increased. The second-derivative of these spectra, allow the conformationally sensitive membrane acyl chain methylene stretching modes to be separated from the protein (mostly hemoglobin) vibrations that dominate the spectra of intact cells. The 2850 cm -1 band showed changes in the band shape and position after exposure to 50 and 100 Gy. Therefore it can be concluded that the band at 2850 cm -1 only is useful in monitoring the radiation effect of the lipids cell membrane intact cells.

  1. Food irradiation: Key research needs

    SciTech Connect

    Morehouse, K.M. )

    1993-01-01

    Treatment of foods with ionizing radiation reduces microbial infection and insect infestations, inhibits sprouting, and delays maturation, thereby extending the shelf life of foods. The treatment of different types of foods with ionizing radiation for specific purposes is accepted in several countries, although it is prohibited in others. The US Food and Drug Administration has established regulations to allow the treatment of several different foods with ionizing radiation and has received petitions for the approval of radiation treatment of additional foods. When carried out according to established good manufacturing practices, food irradiation yields safe, wholesome foods. The irradiated product may be often chemically or microbiologically [open quotes]safer[close quotes] than the nonirradiated product. This paper presents several areas of scientific research in which more information would facilitate the expansion of this technology and points out major areas of concern. The question of the public acceptance of foods that have been treated with ionizing radiation is discussed only briefly in order to make the presentation complete.

  2. Updates to ISO 21348 (determining solar irradiances)

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    2012-07-01

    The ISO 21348 (Determining Solar Irradiances) International Standard is going through a document update. A consensus solar spectrum, solar indices/proxies descriptions, solar model descriptions, and solar measurement descriptions are among the Annexes that are proposed to the standard. These topics will be reviewed and described. The International Standards Organization (ISO) published IS 21348 in 2007 after 7 years of development by the international scientific community. In ISO, documents are reviewed on a regular basis and reaffirmed, updated, or deleted according to the votes of national delegations represented in ISO. IS 21348 provides guidelines for specifying the process of determining solar irradiances. Solar irradiances are reported through products such as measurement sets, reference spectra, empirical models, theoretical models and solar irradiance proxies or indices. These products are used in scientific and engineering applications to characterize within the natural space environment solar irradiances that are relevant to space systems and materials. Examples of applications using input solar irradiance energy include the determination of atmospheric densities for spacecraft orbit determination, attitude control and re-entry calculations, as well as for debris mitigation and collision avoidance activity. Direct and indirect pressure from solar irradiance upon spacecraft surfaces also affects attitude control separately from atmospheric density effects. Solar irradiances are used to provide inputs for a) calculations of ionospheric parameters, b) photon-induced radiation effects, and c) radiative transfer modeling of planetary atmospheres. Input solar irradiance energy is used to characterize material properties related to spacecraft thermal control, including surface temperatures, reflectivity, absorption and degradation. Solar energy applications requiring a standard process for determining solar irradiance energy include i) solar cell power

  3. 10 CFR 36.33 - Irradiator pools.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Irradiator pools. 36.33 Section 36.33 Energy NUCLEAR....02 millisievert (2 millirems) per hour. ... issued after July 1, 1993, irradiator pools must have no outlets more than 0.5 meter below the normal...

  4. A Retailer's Experience with Irradiated Foods

    SciTech Connect

    James P. Corrigan

    2000-11-12

    A food irradiation success story comes from Northbrook, Illinois, where Carrot Top, Inc., has been routinely carrying irradiated food for more than 7 yr. This paper presents the experiences of Carrot Top during those years, details the marketing approaches used, and summarizes the resulting sales figures.

  5. Identification of irradiated apples for phytosanitary purposes

    NASA Astrophysics Data System (ADS)

    Horak, Celina I.; Di Giorgio, Marina; Kairiyama, Eulogia

    2009-07-01

    The irradiation treatment of fresh fruits and vegetables for phytosanitary purposes is a satisfactory alternative method to others like fumigation and cold and hot treatments. Its use is increasing in several countries, and at present its approval is under revision by the National Regulatory Authorities. To verify the control process, apart from irradiation and dosimetry certificates, National Authorities require complementary evidence to show the efficacy of this treatment, especially when the documentation is not clear. The irradiation of fresh fruits produces single and double fragmentation in the DNA molecule, which can be measured using the microgel electrophoresis of individual cell (comet assay). The purpose of this work was to evaluate if it is possible to identify the irradiated apples for phytosanitary purposes from the others that were not treated. The possibility to estimate the absorbed dose was also evaluated. The methodology was carried out on the cell suspension obtained from irradiated seed cells with incremental doses (100, 200 and 300 Gy). The irradiation treatment for phytosanitary purposes to avoid emergency of codling moth ( Cydia pomonella) is 200 Gy. The fragmentation produced in the irradiated samples was proportional with the incremental doses applied. These results show that with this methodology it can be determined if the apple was irradiated or not. This comet assay is a simple, economical and interesting method that can be used, in case of necessity, by the National Authorities.

  6. Generic Irradiation Quarantine Treatments: The Next Steps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006, USDA-APHIS published a landmark rule providing generic irradiation quarantine treatments. The rule approved irradiation doses of 150 Gy for any tephritid fruit fly and 400 Gy for all other insects except the pupa and adult stages of Lepidoptera. Therefore, if a pest risk assessment demonstr...

  7. Schedule and status of irradiation experiments

    SciTech Connect

    Rowcliffe, A.F.; Grossbeck, M.L.; Robertson, J.P.

    1998-09-01

    The current status of reactor irradiation experiments is presented in tables summarizing the experimental objectives, conditions, and schedule. Currently, the program has one irradiation experiment in reactor and five experiments in the design or construction stages. Postirradiation examination and testing is in progress on ten experiments.

  8. Mechanical response of proton beam irradiated nitinol

    NASA Astrophysics Data System (ADS)

    Afzal, Naveed; Ghauri, I. M.; Mubarik, F. E.; Amin, F.

    2011-01-01

    The present investigation deals with the study of mechanical behavior of proton beam irradiated nitinol at room temperature. The specimens in austenitic phase were irradiated over periods of 15, 30, 45 and 60 min at room temperature using 2 MeV proton beam obtained from Pelletron accelerator. The stress-strain curves of both unirradiated and irradiated specimens were obtained using a universal testing machine at room temperature. The results of the experiment show that an intermediate rhombohedral (R) phase has been introduced between austenite and martensite phase, which resulted in the suppression of direct transformation from austenite to martensite (A-M). Stresses required to start R-phase ( σRS) and martensitic phase ( σMS) were observed to decrease with increase in exposure time. The hardness tests of samples before and after irradiation were also carried out using Vickers hardness tester. The comparison reveals that the hardness is higher in irradiated specimens than that of the unirradiated one. The increase in hardness is quite sharp in specimens irradiated for 15 min, which then increases linearly as the exposure time is increased up to 60 min. The generation of R-phase, variations in the transformation stresses σRS and σMS and increase in hardness of irradiated nitinol may be attributed to lattice disorder and associated changes in crystal structure induced by proton beam irradiation.

  9. TSIS: The Total Solar Irradiance Sensor

    NASA Astrophysics Data System (ADS)

    Sparn, T.; Pilewskie, P.; Harder, J.; Kopp, G.; Richard, E.; Fontenla, J.; Woods, T.

    2008-12-01

    The Total Solar Irradiance Sensor (TSIS) is a dual-instrument package that will acquire solar irradiance in the next decade on the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Originally de-manifested during the 2006 NPOESS restructuring, TSIS was restored following a decision by the NPOESS Executive Committee earlier this year because of its critical role in determining the natural forcings of the climate system and the high priority given it by the 2007 Earth Science Decadal Survey. TSIS is comprised of the Total Irradiance Monitor, or TIM, which measures the total solar irradiance (TSI) that is incident at the boundaries of the atmosphere; and the Spectral Irradiance Monitor, or SIM, which measures solar spectral irradiance (SSI) from 200 nm to 2400 nm (96 percent of the TSI). The TSIS TIM and SIM are heritage instruments to those currently flying on the NASA Solar Irradiance and Climate Experiment (SORCE). Both were selected as part of the TSIS because of their unprecedented measurement accuracy and stability, and because both measurements are essential to constraining the energy input to the climate system and interpreting the response of climate to external forcing. This paper will describe those attributes of TSIS which uniquely define its capability to continue the 30-year record of TSI and to extend the new 5-year record of SSI. The role of the solar irradiance data record in the present climate state, as well as in past and future climate change, will also be presented.

  10. Schedule and status of irradiation experiments

    SciTech Connect

    Rowcliffe, A.F.; Grossbeck, M.L.; Robertson, J.P.

    1998-03-01

    The current status of reactor irradiation experiments is presented in tables summarizing the experimental objectives, conditions, and schedule. Currently, the program has four irradiation experiments in reactor, and five experiments in the design or construction stages. Postirradiation examination and testing is in progress on ten experiments.

  11. Passive SiC irradiation temperature monitor

    SciTech Connect

    Youngblood, G.E.

    1996-04-01

    A new, improved passive irradiation temperature monitoring method was examined after an irradiation test at 627{degrees}C. The method is based on the analysis of thermal diffusivity changes during postirradiation annealing of polycrystalline SiC. Based on results from this test, several advantages for using this new method rather than a method based on length or lattice parameter changes are given.

  12. Extracorporeal Irradiation in Malignant Bone Tumors.

    PubMed

    Bhandari, R B; Jha, A K; Neupane, P; Chaurasia, P P; Sigdel, A

    2015-01-01

    Extracorporeal irradiation (ECI) is relatively a rare method used in the management of malignant bone tumors (MBT). It consists of en block removal of the tumor bearing bone segment, removal of the tumor from the bone, irradiation and re implantation back in the body. PMID:27549504

  13. In situ ion irradiation of zirconium carbide

    NASA Astrophysics Data System (ADS)

    Ulmer, Christopher J.; Motta, Arthur T.; Kirk, Mark A.

    2015-11-01

    Zirconium carbide (ZrC) is a candidate material for use in one of the layers of TRISO coated fuel particles to be used in the Generation IV high-temperature, gas-cooled reactor, and thus it is necessary to study the effects of radiation damage on its structure. The microstructural evolution of ZrCx under irradiation was studied in situ using the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory. Samples of nominal stoichiometries ZrC0.8 and ZrC0.9 were irradiated in situ using 1 MeV Kr2+ ions at various irradiation temperatures (T = 20 K-1073 K). In situ experiments made it possible to continuously follow the evolution of the microstructure during irradiation using diffraction contrast imaging. Images and diffraction patterns were systematically recorded at selected dose points. After a threshold dose during irradiations conducted at room temperature and below, black-dot defects were observed which accumulated until saturation. Once created, the defect clusters did not move or get destroyed during irradiation so that at the final dose the low temperature microstructure consisted only of a saturation density of small defect clusters. No long-range migration of the visible defects or dynamic defect creation and elimination were observed during irradiation, but some coarsening of the microstructure with the formation of dislocation loops was observed at higher temperatures. The irradiated microstructure was found to be only weakly dependent on the stoichiometry.

  14. Cherry Irradiation Studies. 1984 annual report

    SciTech Connect

    Eakin, D.E.; Hungate, F.P.; Tingey, G.L.; Olsen, K.L.; Fountain, J.B.; Burditt, A.K. Jr.; Moffit, H.R.; Johnson, D.A.; Lunden, J.D.

    1985-04-01

    Fresh cherries, cherry fruit fly larvae, and codling moth larvae were irradiated using the PNL cobalt-60 facility to determine the efficacy of irradiation treatment for insect disinfestation and potential shelf life extension. Irradiation is an effective disinfestation treatment with no significant degradation of fruit at doses well above those required for quarantine treatment. Sufficient codling moth control was achieved at projected doses of less than 25 krad; cherry fruit fly control, at projected doses of less than 15 krad. Dose levels up to 60 krad did not adversely affect cherry quality factors tested. Irradiation above 60 krad reduced the firmness of cherries but had no significant impact on other quality factors tested. Irradiation of cherries below 80 krad did not result in any significant differences in sensory evaluations (appearance, flavor, and firmness) in tests conducted at OSU. Irradiation up to 200 krad at a temperature of about 25/sup 0/C (77/sup 0/F) did not measurably extend shelf life. Irradiation at 500 krad at 25/sup 0/C (77/sup 0/F) increased mold and rotting of cherries tested. There is no apparent advantage of irradiation over low-temperature fumigation.

  15. IRRADIATION FOR POSTHARVEST CONTROL OF QUARANTINE INSECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in the use of irradiation as a phytosanitary treatment for agricultural commodities is growing worldwide, particularly since international IPPC and CODEX standards now endorse and facilitate trade based on this disinfestation method. Irradiation is broadly effective against insects and mite...

  16. Reprocessing technology development for irradiated beryllium

    SciTech Connect

    Kawamura, H.; Sakamoto, N.; Tatenuma, K.

    1995-09-01

    At present, beryllium is under consideration as a main candidate material for neutron multiplier and plasma facing material in a fusion reactor. Therefore, it is necessary to develop the beryllium reprocessing technology for effective resource use. And, we have proposed reprocessing technology development on irradiated beryllium used in a fusion reactor. The preliminary reprocessing tests were performed using un-irradiated and irradiated beryllium. At first, we performed beryllium separation tests using un-irradiated beryllium specimens. Un-irradiated beryllium with beryllium oxide which is a main impurity and some other impurities were heat-treated under chlorine gas flow diluted with Ar gas. As the results high purity beryllium chloride was obtained in high yield. And it appeared that beryllium oxide and some other impurities were removed as the unreactive matter, and the other chloride impurities were separated by the difference of sublimation temperature on beryllium chloride. Next, we performed some kinds of beryllium purification tests from beryllium chloride. And, metallic beryllium could be recovered from beryllium chloride by the reduction with dry process. In addition, as the results of separation and purification tests using irradiated beryllium specimens, it appeared that separation efficiency of Co-60 from beryllium was above 96%. It is considered that about 4% Co-60 was carried from irradiated beryllium specimen in the form of cobalt chloride. And removal efficiency of tritium from irradiated beryllium was above 95%.

  17. AGR-1 Post Irradiation Examination Final Report

    SciTech Connect

    Demkowicz, Paul Andrew

    2015-08-01

    The post-irradiation examination (PIE) of the Advanced Gas Reactor (AGR)-1 experiment was a multi-year, collaborative effort between Idaho National Laboratory (INL) and Oak Ridge National Laboratory (ORNL) to study the performance of UCO (uranium carbide, uranium oxide) tristructural isotropic (TRISO) coated particle fuel fabricated in the U.S. and irradiated at the Advanced Test Reactor at INL to a peak burnup of 19.6% fissions per initial metal atom. This work involved a broad array of experiments and analyses to evaluate the level of fission product retention by the fuel particles and compacts (both during irradiation and during post-irradiation heating tests to simulate reactor accident conditions), investigate the kernel and coating layer morphology evolution and the causes of coating failure, and explore the migration of fission products through the coating layers. The results have generally confirmed the excellent performance of the AGR-1 fuel, first indicated during the irradiation by the observation of zero TRISO coated particle failures out of 298,000 particles in the experiment. Overall release of fission products was determined by PIE to have been relatively low during the irradiation. A significant finding was the extremely low levels of cesium released through intact coatings. This was true both during the irradiation and during post-irradiation heating tests to temperatures as high as 1800°C. Post-irradiation safety test fuel performance was generally excellent. Silver release from the particles and compacts during irradiation was often very high. Extensive microanalysis of fuel particles was performed after irradiation and after high-temperature safety testing. The results of particle microanalysis indicate that the UCO fuel is effective at controlling the oxygen partial pressure within the particle and limiting kernel migration. Post-irradiation examination has provided the final body of data that speaks to the quality of the AGR-1 fuel, building

  18. AGC-1 Irradiation Experiment Test Plan

    SciTech Connect

    R. L. Bratton

    2006-05-01

    The Advanced Graphite Capsule (AGC) irradiation test program supports the acquisition of irradiated graphite performance data to assist in the selection of the technology to be used for the VHTR. Six irradiations are planned to investigate compressive creep in graphite subjected to a neutron field and obtain irradiated mechanical properties of vibrationally molded, extruded, and iso-molded graphites for comparison. The experiments will be conducted at three temperatures: 600, 900, and 1200°C. At each temperature, two different capsules will be irradiated to different fluence levels, the first from 0.5 to 4 dpa and the second from 4 to 7 dpa. AGC-1 is the first of the six capsules designed for ATR and will focus on the prismatic fluence range.

  19. Modeling of Irradiation Hardening of Polycrystalline Materials

    SciTech Connect

    Li, Dongsheng; Zbib, Hussein M.; Garmestani, Hamid; Sun, Xin; Khaleel, Mohammad A.

    2011-09-14

    High energy particle irradiation of structural polycrystalline materials usually produces irradiation hardening and embrittlement. The development of predict capability for the influence of irradiation on mechanical behavior is very important in materials design for next generation reactors. In this work a multiscale approach was implemented to predict irradiation hardening of body centered cubic (bcc) alpha-iron. The effect of defect density, texture and grain boundary was investigated. In the microscale, dislocation dynamics models were used to predict the critical resolved shear stress from the evolution of local dislocation and defects. In the macroscale, a viscoplastic self-consistent model was applied to predict the irradiation hardening in samples with changes in texture and grain boundary. This multiscale modeling can guide performance evaluation of structural materials used in next generation nuclear reactors.

  20. Production of modified starches by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Kang, Il-Jun; Byun, Myung-Woo; Yook, Hong-Sun; Bae, Chun-Ho; Lee, Hyun-Soo; Kwon, Joong-Ho; Chung, Cha-Kwon

    1999-04-01

    As a new processing method for the production of modified starch, gamma irradiation and four kinds of inorganic peroxides were applied to commercial corn starch. The addition of inorganic peroxides without gamma irradiation or gamma irradiation without the addition of inorganic peroxides effectively decreased initial viscosity, but did not sufficiently keep viscosity stable. The combination of adding ammonium persulfate (APS) and gamma irradiation showed the lowest initial viscosity and the best stability out of the tested four kinds of inorganic peroxides. Among the tested mixing methods of APS, soaking was found to be more effective than dry blending or spraying. Therefore, the production of modified starch with low viscosity as well as with sufficient viscosity stability became feasible by the control of gamma irradiation dose levels and the amount of added APS to starch.

  1. Li + grafting of ion irradiated polyethylene

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Rybka, V.; Vacík, J.; Hnatowicz, V.; Öchsner, R.; Ryssel, H.

    1999-02-01

    Foils of oriented polyethylene (PE) were irradiated with 63 keV Ar + and 155 keV Xe + ions to different fluences at room temperature and then doped from water solution of LiCl. The as irradiated and irradiated plus doped samples were examined by IR, EPR and neutron depth profiling (NDP) technique. The sheet resistance was also measured by the standard two points method. After Li salt doping of ion modified layer of PE, a reaction between degraded macromolecules and Li occur and thus a new chemical structure C-Li + is formed. Owing to the presence of these cations on the polymer chain, the irradiated plus doped layer exhibits higher electric conductivity compared to as-irradiated ones.

  2. Microbiological decontamination of natural honey by irradiation

    NASA Astrophysics Data System (ADS)

    Migdał, W.; Owczarczyk, H. B.; K ȩdzia, B.; Hołderna-K ȩdzia, E.; Madajczyk, D.

    2000-03-01

    Degree of microbiological decontamination, organoleptic and physico-chemical properties of natural honeys were investigated after radiation treatment. Seven kinds of honeys were irradiated with the beams of 10 MeV electrons from a 10 kW linear accelerator "Elektronika 10-10" at the dose 10 kGy. It was shown, that after irradiation, the total count of aerobic and anaerobic bacteria and moulds decrease by 99%. The antibiotic value in investigated honeys increased in turn from 1.67 to 2.67 after irradiation. Such factors and parameters of investigated honeys as their consistency, content of water and saccharose, acidity, the diastase and 5-HMF values were not changed significantly after irradiation. Decontamination by irradiation is a process which allows us to obtain high microbiological purity of honeys. It is especially needed, when honeys are used in surgical treatment of injuries and in nutrition of babies with food deficiency.

  3. Effects of irradiation on mandibular scintigraphy

    SciTech Connect

    Aitasalo, K.; Ruotsalainen, P.

    1985-11-01

    Technetium-99m methylene diphosphonate (Sn) scintigraphy with computer analysis was used to investigate alterations in the pathophysiology of the normal mandible and the pathologic mandible during and after irradiation. Slight but significant elevations of uptake levels were recorded as an early effect of irradiation. The elevations correlated with the duration of treatment and normalized over a follow-up period of 6 to 12 mo. Increased mandibular metabolism was found during irradiation and in osteomyelitis and osteoradionecrosis of the mandible. Scintigraphy with computer analysis proved a simple and valid method in the evaluation of early irradiation damage and pathophysiologic conditions of the mandible. The method can also be used to predict whether the irradiation damage will become irreversible.

  4. Significance of primary irradiation creep in graphite

    NASA Astrophysics Data System (ADS)

    Erasmus, Christiaan; Kok, Schalk; Hindley, Michael P.

    2013-05-01

    Traditionally primary irradiation creep is introduced into graphite analysis by applying the appropriate amount of creep strain to the model at the initial time-step. This is valid for graphite components that are subjected to high fast neutron flux fields and constant stress fields, but it does not allow for the effect of movement of stress locations around a graphite component during life, nor does it allow primary creep to be applied rate-dependently to graphite components subject to lower fast neutron flux. This paper shows that a differential form of primary irradiation creep in graphite combined with the secondary creep formulation proposed by Kennedy et al. performs well when predicting creep behaviour in experimental samples. The significance of primary irradiation creep in particular in regions with lower flux is investigated. It is shown that in low flux regions with a realistic operating lifetime primary irradiation creep is significant and is larger than secondary irradiation creep.

  5. Relief of vasospasm by intravascular ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Nakai, Kanji; Morimoto, Yuji; Ito, Hirotaka; Kominami, Kimito; Matsuo, Hirotaka; Arai, Tsunenori; Kikuchi, Makoto

    1998-05-01

    We investigated the photovasorelaxation with intravascular transluminal irradiation using in vivo model. A 2.5 Fr. catheter was inserted in the femoral artery of a rabbit under anesthesia. A 400 micrometers diameter quartz fiber was inserted through the catheter. The catheter was withdrawn from the distal end to the proximal end of the exposed femoral artery without laser irradiation in order to observe the mechanical dilation by the procedure. The femoral artery lumen was irradiated by a Helium-Cadmium(He-Cd) laser (wavelength; 325 nm) with 8 mW through the fiber during 30 s. We carried out that the laser irradiation produced vasorelaxation (185% on the average) compared with mechanical vasodilation (150% on the average) with angiography. The results suggest that intravascular transluminal irradiation with low-power UV laser might be applicable to the relief of acute arterial vasospasm.

  6. Rapid differentiation between gamma-irradiated and non irradiated potato tubers

    NASA Astrophysics Data System (ADS)

    Jona, Roberto; Fronda, Anna

    The use of gamma irradiation as commercial method for the preservation of fruits and vegetables calls for methods of differentiation between irradiated and non-irradiated foodstuffs. In a previous research, the polysaccharidic content of cell walls of irradiated tissue has been investigated, but it required rather long time to reach the result. A method devised to ascertain the vitality of cells has been applied to distinguish irradiated from non-irradiated potato tubers. 500 mg of tissue excised from tubers have been infiltrated with tetrazolium chloride 0.6% in phosphate buffer, pH 7.4. After 15 hrs of incubation at 30°C the treated tissues have been extracted with 95% ethanol whose O.D. has been measured at 530 mμ wavelength. The colour intensity of the alcohol allowed a very clearcut recognition of the irradiated tubers.

  7. Variability of solar ultraviolet irradiance

    NASA Technical Reports Server (NTRS)

    Pap, J. M.; Donnelly, R. F.; Hudson, H. S.; Rottman, G. J.; Willson, R. C.

    1991-01-01

    A model of solar Lyman alpha irradiance developed by multiple linear regression analysis, including the daily values and 81-day running means of the full disk equivalent width of the Helium line at 1083 nm, predicts reasonably well both the short- and long-term variations observed in Lyman alpha. In contrast, Lyman alpha models calculated from the 10.7-cm radio flux overestimate the observed variations in the rising portion and maximum period of solar cycle, and underestimates them during solar minimum. Models are shown of Lyman alpha based on the He-line equivalent width and 10.7-cm radio flux for those time intervals when no satellite observations exist, namely back to 1974 and after April 1989, when the measurements of the Solar Mesosphere Satellite were terminated.

  8. AFIP-3 Irradiation Summary Report

    SciTech Connect

    Danielle M Perez

    2011-04-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-3 was designed to evaluate the performance of monolithic fuels at a prototypic scale of 2.25 inches x 21.5 inches x 0.050 inches (5.75 cm x 54.6 cm x 0.13cm). The AFIP-3 experiment was fabricated by hot isostatic pressing (HIP) and consists of two plates, one with a zirconium (Zr) diffusion barrier and one with a silicon (Si) enhanced fuel/clad interface1,2. The following report summarizes the life of the AFIP-3 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  9. AFIP-3 Irradiation Summary Report

    SciTech Connect

    Danielle M Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2012-03-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-3 was designed to evaluate the performance of monolithic fuels at a prototypic scale of 2.25 inches x 21.5 inches x 0.050 inches (5.75 cm x 54.6 cm x 0.13cm). The AFIP-3 experiment was fabricated by hot isostatic pressing (HIP) and consists of two plates, one with a zirconium (Zr) diffusion barrier and one with a silicon (Si) enhanced fuel/clad interface1,2. The following report summarizes the life of the AFIP-3 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  10. AFIP-2 Irradiation Summary Report

    SciTech Connect

    Danielle M Perez

    2011-04-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-2 was designed to evaluate the performance of monolithic fuels at a prototypic scale of 2.25 inches x 21.5 inches x 0.050 inches (5.75 cm x 54.6 cm x 0.13cm). The AFIP-2 experiment was fabricated by friction bond (FB) and consists of two plates, one with a zirconium (Zr) diffusion barrier and one with a silicon (Si) enhanced fuel/clad interface1,2. The following report summarizes the life of the AFIP-2 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results. The safety analyses performed for AFIP-2 are summarized in Table 5 of the following report.

  11. AFIP-3 Irradiation Summary Report

    SciTech Connect

    Danielle M Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2011-05-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-3 was designed to evaluate the performance of monolithic fuels at a prototypic scale of 2.25 inches x 21.5 inches x 0.050 inches (5.75 cm x 54.6 cm x 0.13cm). The AFIP-3 experiment was fabricated by hot isostatic pressing (HIP) and consists of two plates, one with a zirconium (Zr) diffusion barrier and one with a silicon (Si) enhanced fuel/clad interface1,2. The following report summarizes the life of the AFIP-3 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  12. AFIP-1 Irradiation Summary Report

    SciTech Connect

    D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2011-05-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-1 was designed to demonstrate the performance of second-generation dispersion fuels at a prototypic scale with a length of 21.5 inches (54.6 cm), width of 2.25 inches (5.75 cm) and a thickness of 0.050 inch (0.13 cm). The experiment was fabricated using commercially standard practices at BWX Technology, Inc. (BWXT). The U-7Mo fuel particles were supplied by the Korean Atomic Energy Research Institute (KAERI) using equipment intended for commercial supply. Two fuel plates were tested that incorporated two different matrix compositions, Al-2Si and Al-4043.1 The following report summarizes the life of the AFIP-1 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results

  13. AFIP-2 Irradiation Summary Report

    SciTech Connect

    Danielle M Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2011-05-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-2 was designed to evaluate the performance of monolithic fuels at a prototypic scale of 2.25 inches x 21.5 inches x 0.050 inches (5.75 cm x 54.6 cm x 0.13cm). The AFIP-2 experiment was fabricated by friction bond (FB) and consists of two plates, one with a zirconium (Zr) diffusion barrier and one with a silicon (Si) enhanced fuel/clad interface1,2. The following report summarizes the life of the AFIP-2 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results. The safety analyses performed for AFIP-2 are summarized in Table 5 of the following report.

  14. RERTR-7 Irradiation Summary Report

    SciTech Connect

    D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2011-12-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-7A, was designed to test several modified fuel designs to target fission densities representative of a peak low enriched uranium (LEU) burnup in excess of 90% U-235 at peak experiment power sufficient to generate a peak surface heat flux of approximately 300 W/cm2. The RERTR-7B experiment was designed as a high power test of 'second generation' dispersion fuels at peak experiment power sufficient to generate a surface heat flux on the order of 230 W/cm2.1 The following report summarizes the life of the RERTR-7A and RERTR-7B experiments through end of irradiation, including as-run neutronic analyses, thermal analyses and hydraulic testing results.

  15. RERTR-10 Irradiation Summary Report

    SciTech Connect

    D. M. Perez

    2011-05-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-10 was designed to further test the effectiveness of modified fuel/clad interfaces in monolithic fuel plates. The experiment was conducted in two campaigns: RERTR-10A and RERTR-10B. The fuel plates tested in RERTR-10A were all fabricated by Hot Isostatic Pressing (HIP) and were designed to evaluate the effect of various Si levels in the interlayer and the thickness of the Zr interlayer (0.001”) using 0.010” and 0.020” nominal foil thicknesses. The fuel plates in RERTR-10B were fabricated by Friction Bonding (FB) with two different thickness Si layers and Nb and Zr diffusion barriers.1 The following report summarizes the life of the RERTR-10A/B experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

  16. Pericardial Injury from Mediastinal Irradiation

    PubMed Central

    Kumar, P.P.

    1980-01-01

    The absence of radiation induced cardiac damage during the orthovoltage era, during which period much lower doses of radiation were delivered for mediastinal malignancies due to severe skin reactions, was misinterpreted as cardiac radioresistance. However, with the advent of supervoltage x-rays with skin sparing effect, much higher doses of irradiation have been given for mediastinal malignancies. This has resulted in higher doses of radiation to the heart resulting in various types of radiation induced cardiac damage. The most common site of damage is to the pericardium, resulting in pericardial effusion. The radiographic evidence of radiation induced pericardial effusion starts one to six months prior to signs and symptoms due to it. Most of the asymptomatic radiation induced pericardial effusions resolve spontaneously. The factors which appear to play a role in the development of radiation induced pericardial effusion are discussed. ImagesFigure 1Figure 2 PMID:7392078

  17. Irradiation creep of dispersion strengthened copper alloy

    SciTech Connect

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A.

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.

  18. Rapid detection of irradiated frozen hamburgers

    NASA Astrophysics Data System (ADS)

    Delincée, Henry

    2002-03-01

    DNA comet assay can be employed as a rapid and inexpensive screening test to check whether frozen ground beef patties (hamburgers) have been irradiated as a means to increase their safety by eliminating pathogenic bacteria, e.g. E. coli O157:H7. Such a detection procedure will provide an additional check on compliance with existing regulations, e.g. enforcement of labelling and rules in international trade. Frozen ready prepared hamburgers from the market place were `electron irradiated' with doses of 0, 1.3, 2.7, 4.5 and 7.2kGy covering the range of potential commercial irradiation. DNA fragmentation in the hamburgers was made visible within a few hours using the comet assay, and non-irradiated hamburgers could be easily discerned from the irradiated ones. Even after 9 months of frozen storage, irradiated hamburgers could be identified. Since DNA fragmentation may also occur with other food processes (e.g. temperature abuse), positive screening tests shall be confirmed using a validated method to specifically prove an irradiation treatment, e.g. EN 1784 or EN 1785.

  19. Spectroscopic investigation of UV irradiated enzymes

    SciTech Connect

    Ware, D.L.; Hibbard, L.B. )

    1993-01-01

    Trptophan (Trp) undergoes photolysis when exposed to light in the near UV region. The enzyme systems horse liver alcohol dehydrogenase (HLAD) and glyceraldehyde 3-phosphate dehydrogenase (G3PDH), which contain two and three Trps respectively, were chosen for analysis of Trp photolysis. Aqueous solutions of HLAD and G3PDH were irradiated at either 295 or 335nm with a xenon lamp. Tryptophan fluorescence was monitored at half hour intervals for two hours in the case of HLAD and one hour in the case of G3PDH. The decrease in fluorescence from 295 irradiation was compared to the fluorescence decrease from 335 irradiation and was found to be similar for both the HLAD and G3PDH samples irradiated at 295nm and for both samples irradiated at 335nm. It was found that, for HLAD, the 295 irradiation caused a decrease in fluorescence of 90% as compared to a decrease of only 12% of 335nm. Enzymatic assays were then performed to determine the enzymatic activity before and after irradiation.

  20. Urban tree influences on ultraviolet irradiance

    NASA Astrophysics Data System (ADS)

    Heisler, Gordon M.; Grant, Richard H.; Gao, Wei

    2002-01-01

    Many of the effects of ultraviolet radiation (UVR) on people and their environment--damage to various materials, survival of insects and microbial pathogens, growth of vegetation, and adverse or beneficial effects on human health--are modified by the presence of trees. Human epidemiological investigations generally consider exposure as given by indices of UVR irradiance on horizontal surfaces in the open. Though many people are exposed to UVR while reclining at a beach or swimming pool, thus experiencing irradiance on essentially horizontal surfaces in the open, exposure to UVR during daily routines in urban areas may also be important in affecting human health. Tree influences on UVR irradiance, particularly in the UVB, can differ substantially from influences on the visible portion of the solar spectrum. Trees greatly reduce UVB irradiance in their shade when they obscure both the sun and sky. Where trees obscure the sun but leave much of the sky in view, UVB irradiance will be greater than suggested by the visible shadow. In small sunny areas near trees that block much of the sky from view, UVB irradiance is reduced substantially, whereas visible irradiance may be nearly as great or slightly greater than in the open.

  1. Rheological changes in irradiated chicken eggs

    NASA Astrophysics Data System (ADS)

    Ferreira, Lúcia F. S.; Del Mastro, Nélida L.

    1998-06-01

    Pathogenic bacteria may cause foodborne illnesses. Humans may introduce pathogens into foods during production, processing, distribution and or preparation. Some of these microorganisms are able to survive conventional preservation treatments. Heat pasteurization, which is a well established and satisfactory means of decontamination/disinfection of liquid foods, cannot efficiently achieve a similar objective for solid foods. Extensive work carried out worldwide has shown that irradiation is efficient in eradicating foodborne pathogens like Salmonella spp. that can contaminate poultry products. In this work Co-60 gamma irradiation was applied to samples of industrial powder white, yolk and whole egg at doses between 0 and 25 kGy. Samples were rehydrated and the viscosity measured in a Brookfield viscosimeter, model DV III at 5, 15 and 25°C. The rheological behaviour among the various kinds of samples were markedly different. Irradiation with doses up to 5 kGy, known to reduced bacterial contamination to non-detectable levels, showed almost no variation of viscosity of irradiated egg white samples. On the other hand, whole or yolk egg samples showed some changes in rheological properties depending on the dose level, showing the predominance of whether polimerization or degradation as a result of the irradiation. Additionally, irradiation of yolk egg powder reduced yolk color as a function of the irradiation exposure implemented. The importance of these results are discussed in terms of possible industrial applications.

  2. Irradiation exposure modulates central opioid functions

    SciTech Connect

    Dougherty, P.M.; Dafny, N.

    1987-11-01

    Exposure to low doses of gamma irradiation results in the modification of both the antinociceptive properties of morphine and the severity of naloxone-precipitated withdrawal in morphine-dependent rats. To better define the interactions between gamma irradiation and these opiate-mediated phenomena, dose-response studies were undertaken of the effect of irradiation on morphine-induced antinociception, and on the naloxone-precipitated withdrawal syndrome of morphine-dependent rats. In addition, electrophysiologic studies were conducted in rats after irradiation exposure and morphine treatment correlating with the behavioral studies. The observations obtained demonstrated that the antinociceptive effects of morphine as well as naloxone-precipitated withdrawal were modified in a dose-dependent manner by irradiation exposure. In addition, irradiation-induced changes in the evoked responses obtained from four different brain regions demonstrated transient alterations in both baseline and morphine-treated responses that may reflect the alterations observed in the behavioral paradigms. These results suggest that the effects of irradiation on opiate activities resulted from physiologic alterations of central endogenous opioid systems due to alterations manifested within peripheral targets.

  3. [Near infrared light irradiator using halogen lamp].

    PubMed

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer. PMID:22860296

  4. Dental Implants Installed in Irradiated Jaws

    PubMed Central

    Chambrone, L.; Mandia, J.; Shibli, J.A.; Romito, G.A.; Abrahao, M.

    2013-01-01

    The aim of this study was to assess the survival rate of titanium implants placed in irradiated jaws. MEDLINE, EMBASE, and CENTRAL were searched for studies assessing implants that had been placed in nongrafted sites of irradiated patients. Random effects meta-analyses assessed implant loss in irradiated versus nonirradiated patients and in irradiated patients treated with hyperbaric oxygen (HBO) therapy. Of 1,051 potentially eligible publications, 15 were included. A total of 10,150 implants were assessed in the included studies, and of these, 1,689 (14.3%) had been placed in irradiated jaws. The mean survival rate in the studies ranged from 46.3% to 98.0%. The pooled estimates indicated a significant increase in the risk of implant failure in irradiated patients (risk ratio: 2.74; 95% confidence interval: 1.86, 4.05; p < .00001) and in maxillary sites (risk ratio: 5.96; 95% confidence interval: 2.71, 13.12; p < .00001). Conversely, HBO therapy did not reduce the risk of implant failure (risk ratio: 1.28; 95% confidence interval: 0.19, 8.82; p = .80). Radiotherapy was linked to higher implant failure in the maxilla, and HBO therapy did not improve implant survival. Most included publications reported data on machined implants, and only 3 studies on HBO therapy were included. Overall, implant therapy appears to be a viable treatment option for reestablishing adequate occlusion and masticatory conditions in irradiated patients. PMID:24158336

  5. AGR-1 Irradiation Experiment Test Plan

    SciTech Connect

    John T. Maki

    2009-10-01

    This document presents the current state of planning for the AGR-1 irradiation experiment, the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment will be irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). The test will contain six independently controlled and monitored capsules. Each capsule will contain a single type, or variant, of the AGR coated fuel. The irradiation is planned for about 700 effective full power days (approximately 2.4 calendar years) with a time-averaged, volume-average temperature of approximately 1050 °C. Average fuel burnup, for the entire test, will be greater than 17.7 % FIMA, and the fuel will experience fast neutron fluences between 2.4 and 4.5 x 1025 n/m2 (E>0.18 MeV).

  6. Influence of microwave irradiation on enzyme kinetics

    NASA Astrophysics Data System (ADS)

    Pavelkić, V. M.; Stanisavljev, D. R.; Gopčević, K. R.; Beljanski, M. V.

    2009-09-01

    The in vitro effect of 2.45 GHz microwave irradiation on porcine pepsin activity under controlled temperature and absorbed microwave power via kinetic parameters was evaluated. Kinetic study with respect of time of irradiation demonstrated the existence of an inactivation effect of microwaves at pH 2 on pepsin molecule. Bovine serum albumin (BSA)-bromphenol blue (BPB) complex was used as substrate for the assay of pepsin by kinetic method. Depending on absorbed microwave dose, the degree of caused inactivation varies from 39.11 to 45.91% for 5 and 20 min of pepsin MW irradiation, respectively. The V maxapp and K mapp were calculated for low (5 min of MW irradiation) and higher specific absorbed dose (20 min of MW irradiation), as well as for untreated enzyme, from double reciprocal Lineweaver-Burk plot. The effect of microwaves on substrate (BSA-BPB complex) was also investigated. For reaction performed with MW irradiated substrate for 5 min the reaction rate was decreased for 15.15%, while for 20 min of substrate irradiation reaction rate was decreased for 25.52% compared to the control reaction.

  7. Reconstruction of solar UV irradiance since 1974

    NASA Astrophysics Data System (ADS)

    Krivova, N. A.; Solanki, S. K.; Wenzler, T.; Podlipnik, B.

    2009-09-01

    Variations of the solar UV irradiance are an important driver of chemical and physical processes in the Earth's upper atmosphere and may also influence global climate. Here we reconstruct solar UV irradiance in the range 115-400 nm over the period 1974-2007 by making use of the recently developed empirical extension of the Spectral And Total Irradiance Reconstruction (SATIRE) models employing Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) data. The evolution of the solar photospheric magnetic flux, which is a central input to the model, is described by the magnetograms and continuum images recorded at the Kitt Peak National Solar Observatory between 1974 and 2003 and by the Michelson Doppler Imager instrument on SOHO since 1996. The reconstruction extends the available observational record by 1.5 solar cycles. The reconstructed Ly-α irradiance agrees well with the composite time series by Woods et al. (2000). The amplitude of the irradiance variations grows with decreasing wavelength and in the wavelength regions of special interest for studies of the Earth's climate (Ly-α and oxygen absorption continuum and bands between 130 and 350 nm) is 1-2 orders of magnitude stronger than in the visible or if integrated over all wavelengths (total solar irradiance).

  8. Influence of irradiation on stored platelets

    SciTech Connect

    Moroff, G.; George, V.M.; Siegl, A.M.; Luban, N.L.

    1986-09-01

    Platelet concentrates intended for transfusion to immunosuppressed patients are irradiated to minimize transfusion-induced graft-versus-host disease. Because few reports describe how irradiation influences stored platelets, the authors studied whether 5000 rad of gamma irradiation, the maximum dose currently used clinically, altered platelets in vitro. Platelet concentrates were stored for either 1 day or 5 days in plastic (PL 732) containers before gamma irradiation. One unit of a pair of identical platelet concentrates was irradiated; the second unit served as a control. Irradiation did not alter platelet morphology, mean platelet volume, expression of platelet-factor-3 activity, response to hypotonic stress, extent of discharge of lactate dehydrogenase, release of beta-thromboglobulin, formation of thromboxane B2, nor the ability to undergo synergistic aggregation. The lack of any substantial change was observed whether the platelet concentrates were stored initially for either 1 day or 5 days. These results suggest that stored platelets are not altered deleteriously by irradiation with 5000 rad.

  9. AGC-1 Post Irradiation Examination Status

    SciTech Connect

    David Swank

    2011-09-01

    The Next Generation Nuclear Plant (NGNP) Graphite R&D program is currently measuring irradiated material property changes in several grades of nuclear graphite for predicting their behavior and operating performance within the core of new Very High Temperature Reactor (VHTR) designs. The Advanced Graphite Creep (AGC) experiment consisting of six irradiation capsules will generate this irradiated graphite performance data for NGNP reactor operating conditions. All six AGC capsules in the experiment will be irradiated in the Advanced Test Reactor (ATR), disassembled in the Hot Fuel Examination Facility (HFEF), and examined at the INL Research Center (IRC) or Oak Ridge National Laboratory (ORNL). This is the first in a series of status reports on the progress of the AGC experiment. As the first capsule, AGC1 was irradiated from September 2009 to January 2011 to a maximum dose level of 6-7 dpa. The capsule was removed from ATR and transferred to the HFEF in April 2011 where the capsule was disassembled and test specimens extracted from the capsules. The first irradiated samples from AGC1 were shipped to the IRC in July 2011and initial post irradiation examination (PIE) activities were begun on the first 37 samples received. PIE activities continue for the remainder of the AGC1 specimen as they are received at the IRC.

  10. The Next Spaceflight Solar Irradiance Sensor: TSIS

    NASA Astrophysics Data System (ADS)

    Kopp, Greg; Pilewskie, Peter; Richard, Erik

    2016-05-01

    The Total and Spectral Solar Irradiance Sensor (TSIS) will continue measurements of the solar irradiance with improved accuracies and stabilities over extant spaceflight instruments. The two TSIS solar-observing instruments include the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) for measuring total- and spectral- solar-irradiance, respectively. The former provides the net energy powering the Earth’s climate system while the latter helps attribute where that energy is absorbed by the Earth’s atmosphere and surface. Both spaceflight instruments are assembled and being prepared for integration on the International Space Station. With operations commencing in late 2017, the TSIS is intended to overlap with NASA’s ongoing SOlar Radiation and Climate Experiment (SORCE) mission, which launched in 2003 and contains the first versions of both the TIM and SIM instruments, as well as with the TSI Calibration Transfer Experiment (TCTE), which began total solar irradiance measurements in 2013. We summarize the TSIS’s instrument improvements and intended solar-irradiance measurements.

  11. Effects of carbon ion irradiation and X-ray irradiation on the ubiquitylated protein accumulation.

    PubMed

    Isozaki, Tetsuro; Fujita, Mayumi; Yamada, Shigeru; Imadome, Kaori; Shoji, Yoshimi; Yasuda, Takeshi; Nakayama, Fumiaki; Imai, Takashi; Matsubara, Hisahiro

    2016-07-01

    C-ion radiotherapy is associated with improved local control and survival in several types of tumors. Although C-ion irradiation is widely reported to effectively induce DNA damage in tumor cells, the effects of irradiation on proteins, such as protein stability or degradation in response to radiation stress, remain unknown. We aimed to compare the effects of C-ion and X-ray irradiation focusing on the cellular accumulation of ubiquitylated proteins. Cells from two human colorectal cancer cell lines, SW620 and SW480, were subjected to C-ion or X-ray irradiation and determination of ubiquitylated protein levels. High levels of ubiquitylated protein accumulation were observed in the C-ion-irradiated SW620 with a peak at 3 Gy; the accumulation was significantly lower in the X-ray-irradiated SW620 at all doses. Enhanced levels of ubiquitylated proteins were also detected in C-ion or X-ray-irradiated SW480, however, those levels were significantly lower than the peak detected in the C-ion-irradiated SW620. The levels of irradiation-induced ubiquitylated proteins decreased in a time-dependent manner, suggesting that the proteins were eliminated after irradiation. The treatment of C-ion-irradiated SW620 with a proteasome inhibitor (epoxomicin) enhanced the cell killing activity. The accumulated ubiquitylated proteins were co-localized with γ-H2AX, and with TP53BP1, in C-ion-irradiated SW620, indicating C-ion-induced ubiquitylated proteins may have some functions in the DNA repair system. Overall, we showed C-ion irradiation strongly induces the accumulation of ubiquitylated proteins in SW620. These characteristics may play a role in improving the therapeutic ratio of C-ion beams; blocking the clearance of ubiquitylated proteins may enhance sensitivity to C-ion radiation. PMID:27175736

  12. Effects of carbon ion irradiation and X-ray irradiation on the ubiquitylated protein accumulation

    PubMed Central

    ISOZAKI, TETSURO; FUJITA, MAYUMI; YAMADA, SHIGERU; IMADOME, KAORI; SHOJI, YOSHIMI; YASUDA, TAKESHI; NAKAYAMA, FUMIAKI; IMAI, TAKASHI; MATSUBARA, HISAHIRO

    2016-01-01

    C-ion radiotherapy is associated with improved local control and survival in several types of tumors. Although C-ion irradiation is widely reported to effectively induce DNA damage in tumor cells, the effects of irradiation on proteins, such as protein stability or degradation in response to radiation stress, remain unknown. We aimed to compare the effects of C-ion and X-ray irradiation focusing on the cellular accumulation of ubiquitylated proteins. Cells from two human colorectal cancer cell lines, SW620 and SW480, were subjected to C-ion or X-ray irradiation and determination of ubiquitylated protein levels. High levels of ubiquitylated protein accumulation were observed in the C-ion-irradiated SW620 with a peak at 3 Gy; the accumulation was significantly lower in the X-ray-irradiated SW620 at all doses. Enhanced levels of ubiquitylated proteins were also detected in C-ion or X-ray-irradiated SW480, however, those levels were significantly lower than the peak detected in the C-ion-irradiated SW620. The levels of irradiation-induced ubiquitylated proteins decreased in a time-dependent manner, suggesting that the proteins were eliminated after irradiation. The treatment of C-ion-irradiated SW620 with a proteasome inhibitor (epoxomicin) enhanced the cell killing activity. The accumulated ubiquitylated proteins were co-localized with γ-H2AX, and with TP53BP1, in C-ion-irradiated SW620, indicating C-ion-induced ubiquitylated proteins may have some functions in the DNA repair system. Overall, we showed C-ion irradiation strongly induces the accumulation of ubiquitylated proteins in SW620. These characteristics may play a role in improving the therapeutic ratio of C-ion beams; blocking the clearance of ubiquitylated proteins may enhance sensitivity to C-ion radiation. PMID:27175736

  13. Raman spectroscopy of C-irradiated graphite

    SciTech Connect

    Hembree, D.M. Jr.; Pedraza, D.F.; Romanoski, G.R.; Withrow, S.P.; Annis, B.K.

    1994-09-01

    Highly oriented pyrolytic graphite samples were irradiated with C{sup +} ions at 35 keV in a direction normal to the basal plane and subsequently annealed up to 1373 K. Substantial surface topography changes were observed at fluences of 5 {times} 10{sup 18} ions/m{sup 2} and higher using scanning electron and atomic force microscopies. Intricate networks of surface cracks and ridges developed after high dose implantation. A systematic study of the irradiation effects was conducted using Raman spectroscopy. Microstructural changes in irradiated regions were first detected at a dose of 1 {times} 10{sup 17} ions/m{sup 2} through the appearance of the Raman D-line at {approx}1360 cm{sup {minus}1}. The intensity of this line increases while that of the Raman G-line at 1580 cm{sup {minus}1} decreases as the irradiation dose is increased or the irradiation temperature is decreased. After irradiation at 280K to a fluence of 5 {times} 10{sup 19} ions/m{sup 2} or higher the first order spectrum exhibits one single line at a wavelength intermediate between the D- and G-lines. Damage recovery upon thermal annealing depends not only on the initial damage state but also on the annealing temperature sequence. Samples irradiated to a damage level where two distinct Raman peaks are no longer resolvable exhibited upon direct annealing at a high temperature two distinct Raman lines. By contrast, pre-annealing these highly irradiated specimens at lower temperatures produced less pronounced changes in the Raman spectra. Pre-annealing appears to stabilize damage structures that are more resistant to high-temperature annealing than those induced by irradiation.

  14. Neutron irradiation creep in stainless steel alloys

    NASA Astrophysics Data System (ADS)

    Schüle, Wolfgang; Hausen, Hermann

    1994-09-01

    Irradiation creep elongations were measured in the HFR at Petten on AMCR steels, on 316 CE-reference steels, and on US-316 and US-PCA steels varying the irradiation temperature between 300°C and 500°C and the stress between 25 and 300 MPa. At the beginning of an irradiation a type of "primary" creep stage is observed for doses up to 3-5 dpa after which dose the "secondary" creep stage begins. The "primary" creep strain decreases in cold-worked steel materials with decreasing stress and decreasing irradiation temperature achieving also negative creep strains depending also on the pre-treatment of the materials. These "primary" creep strains are mainly attributed to volume changes due to the formation of radiation-induced phases, e.g. to the formation of α-ferrite below about 400°C and of carbides below about 700°C, and not to irradiation creep. The "secondary" creep stage is found for doses larger than 3 to 5 dpa and is attributed mainly to irradiation creep. The irradiation creep rate is almost independent of the irradiation temperature ( Qirr = 0.132 eV) and linearly dependent on the stress. The total creep elongations normalized to about 8 dpa are equal for almost every type of steel irradiated in the HFR at Petten or in ORR or in EBR II. The negative creep elongations are more pronounced in PCA- and in AMCR-steels and for this reason the total creep elongation is slightly smaller at 8 dpa for these two steels than for the other steels.

  15. Influences of Microwave Irradiation on Environment

    NASA Astrophysics Data System (ADS)

    Murakami, H.; Abe, Y.; Iwata, T.; Kudo, I.; Saito, K.; Okuda, T.

    2004-12-01

    An experimental facility to evaluate the long-duration influence of microwave to environment, a so-called long duration microwave exposure facility (LDMEF), was constructed in Tsukuba in 1994, and so far irradiation tests on plants accumulated over 40,000 hours have been conducted with the aid of 2.45 GHz magnetron. The LDMEF consists of a pair of outdoor electromagnetically isolated areas, one under the influence of microwave irradiation with a 500 W magnetron and one without microwave irradiation. The growth rates of plants in both areas were compared and evaluated with the experimental data for the temperature distribution in the soil and power distribution of microwave. Although any appreciable influence of microwave was not noticed in the power density less than 10 mW/cm2 , the experimental results showed a significant growth rate enhancement when the power density became over 10 mW/cm2 . However, the growth was rather depressed when the power density increased over 15 mW/cm2 . These effects are well explained by the temperature and moisture in the soil which are also under an appreciable influence of microwave irradiation [1,2]. In this context, we newly constructed an indoor irradiation facility, in which the growth conditions of plants under a constant soil temperature can be maintained. In addition, irradiation with a 5.8 GHz magnetron will be conducted in the new facility. In parallel to a series of indoor and outdoor irradiation tests on plants, the influence of microwave irradiation on the growth pattern of albino mouse will be conducted. This experiment will be the first experimental evaluation for the influence of microwave irradiation on animals.

  16. Apparatus for irradiation with charged particle beams

    SciTech Connect

    Tamura, H.; Ishitani, T.; Shimase, A.

    1984-10-23

    An apparatus according to the present invention for irradiating a specimen with charged particle beams comprises a single charged particle generating source from which the charged particle beams formed of electrons and negative ions, respectively, can be simultaneously derived; a specimen holder on which the specimen is placed; and charged particle irradiation means which is interposed between the charged particle generating source and the specimen holder in order to focus the charged particle beams and to irradiate the surface of the specimen with the focused beams, and which includes at least one magnetic lens and at least one electrostatic lens that are individually disposed.

  17. Hyperparathyroidism following head and neck irradiation

    SciTech Connect

    Rao, S.D.; Frame, B.; Miller, M.J.; Kleerskoper, M.; Block, M.A.; Parfitt, A.M.

    1980-02-01

    A history of head and neck irradiation in childhood or adolescence was found in 22 of 130 patients with primary hyperparathyroidism compared with only 12 of 400 control patients. Among 200 patients with a known history of childhood irradiation, biochemical or surgical evidence of hyperparathyroidism was found in ten, a prevalence of 5%. This is at least 30 times the prevalence of hyperparathyroidism in the general population. The data indicate that head and neck irradiation should be regarded as an important risk factor in the subsequent development of hyperparathyroidism.

  18. Computerized implantology for the irradiated patient.

    PubMed

    Horowitz, Andrew; Orentlicher, Gary; Goldsmith, Douglas

    2009-03-01

    Reconstruction of the irradiated head and neck cancer patient continues to be a challenge. Conventional prosthodontics can be very unpredictable and difficult in these patients. Implant-supported fixed prostheses are good alternatives. It is well-accepted that maxillofacial surgery for the irradiated head and neck cancer patients should be performed in an atraumatic fashion to minimize postoperative complications. We propose the use of computer generated surgical guides and flapless surgery for the placement of dental implants in the irradiated head and neck cancer patient. With these techniques, implants can be placed in an atraumatic, predictable, and accurate manner, according to a prosthetically driven treatment plan. PMID:19231790

  19. RERTR-12 Insertion 2 Irradiation Summary Report

    SciTech Connect

    D. M. Perez; G. S. Chang; D. M. Wachs; G. A. Roth; N. E. Woolstenhulme

    2012-09-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-12 was designed to provide comprehensive information on the performance of uranium-molybdenum (U-Mo) based monolithic fuels for research reactor applications.1 RERTR-12 insertion 2 includes the capsules irradiated during the last three irradiation cycles. These capsules include Z, Y1, Y2 and Y3 type capsules. The following report summarizes the life of the RERTR-12 insertion 2 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

  20. Laser Irradiated Growth of Protein Crystal

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Takano, Kazufumi; Hosokawa, Youichiroh; Inoue, Tsuyoshi; Mori, Yusuke; Matsumura, Hiroyoshi; Yoshimura, Masashi; Tsunaka, Yasuo; Morikawa, Masaaki; Kanaya, Shigenori; Masuhara, Hiroshi; Kai, Yasushi; Sasaki, Takatomo

    2003-07-01

    We succeeded in the first ever generation of protein crystals by laser irradiation. We call this process Laser Irradiated Growth Technique (LIGHT). Effective crystallization was confirmed by applying an intense femtosecond laser. The crystallization period was dramatically shortened by LIGHT. In addition, protein crystals were obtained by LIGHT from normally uncrystallized conditions. These results indicate that intense femtosecond laser irradiation generates crystal nuclei; protein crystals can then be grown from the nuclei that act as seeds in a supersaturated solution. The nuclei formation is possible primarily due to nonlinear nucleation processes of an intense femtosecond laser with a peak intensity of over a gigawatt (GW).

  1. Infrared spectroscopy study of irradiated PVDF

    SciTech Connect

    Chappa, Veronica; Grosso, Mariela del; Garcia Bermudez, Gerardo; Behar, Moni

    2007-10-26

    The effects induced by 1 MeV/amu ion irradiations were compared to those induced by 4-12 MeV/amu irradiations. Structural analysis with infrared spectroscopy (FTIR) was carried out on PVDF irradiated using C and He beams with different fluences. From these spectra it was observed, as a function of fluence, an overall destruction of the polymer, amorphization of the crystalline regions and the creation of in-chain unsaturations. The track dimensions were determined using a previously developed Monte Carlo simulation code and these results were compared to a semiempirical model.

  2. Investigations on fiberoptic behaviour during gamma irradiation

    NASA Astrophysics Data System (ADS)

    Siehs, J.

    1980-12-01

    The behavior of bulk glasses and fiber optics under gamma irradiation and two types of annealing processes (thermal and optical) were investigated. The samples were irradiated in the thermal column of the TRIGA Mark II reactor. The irradiation induced losses of transmission were measured in a dual beam spectrophotometer. The transmission was measured one hour after reactor shut-down. Thermal annealing was done at 300, 400 and 500 C. Photo bleaching was investigated with a quartz-lamp, an arc-lamp and an UV-laser light.

  3. Total body calcium analysis. [neutron irradiation

    NASA Technical Reports Server (NTRS)

    Lewellen, T. K.; Nelp, W. B.

    1974-01-01

    A technique to quantitate total body calcium in humans is developed. Total body neutron irradiation is utilized to produce argon 37. The radio argon, which diffuses into the blood stream and is excreted through the lungs, is recovered from the exhaled breath and counted inside a proportional detector. Emphasis is placed on: (1) measurement of the rate of excretion of radio argon following total body neutron irradiation; (2) the development of the radio argon collection, purification, and counting systems; and (3) development of a patient irradiation facility using a 14 MeV neutron generator. Results and applications are discussed in detail.

  4. Green coffee decontamination by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Nemtanu, Monica R.; Brasoveanu, Mirela; Grecu, Maria Nicoleta; Minea, R.

    2005-10-01

    Microbiological load of green coffee is a real problem considering that it is extremely sensitive to contamination. Irradiation is a decontamination method for a lot of foodstuffs, being a feasible, very effective and environment friendly one. Beans and ground green coffee were irradiated with electron beams up to 40 kGy. Microbial load, rheological behavior, electron paramagnetic resonance (EPR) and visible spectroscopy were carried out. The results show that electron beam irradiation of green coffee could decontaminate it without severe changes in its properties.

  5. Measuring Degradation Rates Without Irradiance Data

    SciTech Connect

    Pulver, S.; Cormode, D.; Cronin, A.; Jordan, D.; Kurtz, S.; Smith, R.

    2011-02-01

    A method to report PV system degradation rates without using irradiance data is demonstrated. First, a set of relative degradation rates are determined by comparing daily AC final yields from a group of PV systems relative to the average final yield of all the PV systems. Then, the difference between relative and absolute degradation rates is found from a statistical analysis. This approach is verified by comparing to methods that utilize irradiance data. This approach is significant because PV systems are often deployed without irradiance sensors, so the analysis method described here may enable measurements of degradation using data that were previously thought to be unsuitable for degradation studies.

  6. Neutron Flux Characterization of Irradiation Holes for Irradiation Test at HANARO

    NASA Astrophysics Data System (ADS)

    Yang, Seong Woo; Cho, Man Soon; Choo, Kee Nam; Park, Sang Jun

    2016-02-01

    The High flux Advanced Neutron Application ReactOr (HANARO) is a unique research reactor in the Republic of Korea, and has been used for irradiation testing since 1998. To conduct irradiation tests for nuclear materials, the irradiation holes of CT and OR5 have been used due to a high fast-neutron flux. Because the neutron flux must be accurately calculated to evaluate the neutron fluence of irradiated material, it was conducted using MCNP. The neutron flux was measured using fluence monitor wires to verify the calculated result. Some evaluations have been conducted, however, more than 20% errors have frequently occurred at the OR irradiation hole, while a good agreement between the calculated and measured data was shown at the CT irradiation hole.

  7. Processing Irradiated Beryllium For Disposal

    SciTech Connect

    T. J. Tranter; R. D. Tillotson; N. R. Mann; G. R. Longhurst

    2005-11-01

    The purpose of this research was to develop a process for decontaminating irradiated beryllium that will allow it to be disposed of through normal radwaste channels. Thus, the primary objectives of this ongoing study are to remove the transuranic (TRU) isotopes to less than 100 nCi/g and remove {sup 60}Co, and {sup 137}Cs, to levels that will allow the beryllium to be contact handled. One possible approach that appears to have the most promise is aqueous dissolution and separation of the isotopes by selected solvent extraction followed by precipitation, resulting in a granular form for the beryllium that may be fixed to prevent it from becoming respirable and therefore hazardous. Beryllium metal was dissolved in nitric and fluorboric acids. Isotopes of {sup 241}Am, {sup 239}Pu, {sup 85}Sr, and {sup 137}Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide (CCD) and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) in tributyl phosphate (TBP) diluted with dodecane for extracting the isotopes of Pu and Am. The results indicate that greater than 99.9% removal can be achieved for each isotope with only three contact stages.

  8. Irradiation for locoregionally recurrent, never-irradiated oral cavity cancers

    PubMed Central

    Lok, Benjamin H.; Chin, Christine; Riaz, Nadeem; Ho, Felix; Hu, Man; Hong, Julian C.; Shi, Weiji; Zhang, Zhigang; Sherman, Eric; Wong, Richard J.; Morris, Luc G.; Ganly, Ian; Wolden, Suzanne L.; Rao, Shyam S.; Lee, Nancy Y.

    2016-01-01

    Background The purpose of this study was to report the clinical outcomes and related prognostic factors of patients who underwent radiotherapy (RT) for the treatment of recurrent, never-irradiated oral cavity cancer (recurrent OCC). Methods The records of consecutive patients with nonmetastatic recurrent OCC who presented to and were treated with RT at our institution between 1989 and 2011 were reviewed. The Kaplan–Meier method was used to calculate overall survival (OS). The cumulative incidences of disease-specific death, local failure, regional failure, and distant metastasis were calculated with death as a competing risk. Results One hundred twenty-three patients were identified. Median follow-up for living patients was 54 months and 16 months for all patients. Ninety-one patients had salvage surgery followed by adjuvant RT. Definitive RT was utilized in the remaining 32 patients. The 5-year OS was 40%. The 5-year cumulative incidence of disease-specific death, local failure, regional failure, and distant metastasis was 55%, 34%, 22%, and 20%, respectively. Recurrent T classification and lack of salvage surgery were independently associated with worse disease-specific death and decreased OS, respectively. Subset analysis of patients who underwent salvage surgery demonstrated that age, recurrent T classification, and perineural invasion (PNI) were independently associated with decreased OS; recurrent T classification and thicker tumors were independently associated with worse disease-specific death; and positive/close margins and primary T classification were independently associated with increased local failure. Conclusion In this group of patients with recurrent OCC, clinical outcomes were similar or improved when compared with other recurrent OCC-specific reports. In the salvage surgery subset, tumor thickness and PNI are recurrent pathologic features associated with outcomes that were only previously demonstrated in studies of primary disease. Because of

  9. Surface Irradiances Consistent With CERES-Derived Top-of-Atmosphere Shortwave and Longwave Irradiances

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Loeb, Norman G.; Rose, Fred G.; Doelling, David R.; Rutan, David A.; Caldwell, Thomas E.; Yu, Lisan; Weller, Robert A.

    2013-01-01

    The estimate of surface irradiance on a global scale is possible through radiative transfer calculations using satellite-retrieved surface, cloud, and aerosol properties as input. Computed top-of-atmosphere (TOA) irradiances, however, do not necessarily agree with observation-based values, for example, from the Clouds and the Earth's Radiant Energy System (CERES). This paper presents amethod to determine surface irradiances using observational constraints of TOA irradiance from CERES. A Lagrange multiplier procedure is used to objectively adjust inputs based on their uncertainties such that the computed TOA irradiance is consistent with CERES-derived irradiance to within the uncertainty. These input adjustments are then used to determine surface irradiance adjustments. Observations by the Atmospheric Infrared Sounder (AIRS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), CloudSat, andModerate Resolution Imaging Spectroradiometer (MODIS) that are a part of the NASA A-Train constellation provide the uncertainty estimates. A comparison with surface observations from a number of sites shows that the bias [root-mean-square (RMS) difference] between computed and observed monthlymean irradiances calculated with 10 years of data is 4.7 (13.3) W/sq m for downward shortwave and 22.5 (7.1) W/sq m for downward longwave irradiances over ocean and 21.7 (7.8) W m22 for downward shortwave and 21.0 (7.6) W/sq m for downward longwave irradiances over land. The bias andRMS error for the downward longwave and shortwave irradiances over ocean are decreased from those without constraint. Similarly, the bias and RMS error for downward longwave over land improves, although the constraint does not improve downward shortwave over land. This study demonstrates how synergetic use of multiple instruments (CERES,MODIS, CALIPSO, CloudSat, AIRS, and geostationary satellites) improves the accuracy of surface irradiance computations.

  10. Polymer Morphological Change Induced by Terahertz Irradiation.

    PubMed

    Hoshina, Hiromichi; Suzuki, Hal; Otani, Chiko; Nagai, Masaya; Kawase, Keigo; Irizawa, Akinori; Isoyama, Goro

    2016-01-01

    As terahertz (THz) frequencies correspond to those of the intermolecular vibrational modes in a polymer, intense THz wave irradiation affects the macromolecular polymorph, which determines the polymer properties and functions. THz photon energy is quite low compared to the covalent bond energy; therefore, conformational changes can be induced "softly," without damaging the chemical structures. Here, we irradiate a poly(3-hydroxybutylate) (PHB) / chloroform solution during solvent casting crystallization using a THz wave generated by a free electron laser (FEL). Morphological observation shows the formation of micrometer-sized crystals in response to the THz wave irradiation. Further, a 10-20% increase in crystallinity is observed through analysis of the infrared (IR) absorption spectra. The peak power density of the irradiating THz wave is 40 MW/cm(2), which is significantly lower than the typical laser intensities used for material manipulation. We demonstrate for the first time that the THz wave effectively induces the intermolecular rearrangement of polymer macromolecules. PMID:27272984

  11. Thermoluminescence properties of irradiated chickpea and corn

    NASA Astrophysics Data System (ADS)

    Necmeddin Yazici, A.; Bedir, Metin; Bozkurt, Halil; Bozkurt, Hüseyin

    2008-02-01

    A study was carried out to establish a detection method for irradiated chickpea and corn by thermoluminescence (TL) method. The leguminous were packed in polyethylene bags and then the packets were irradiated at room temperature at different doses by 60Co gamma source at 1, 4, 8 and 10 kGy. Minerals extracted from the leguminous were deposited onto a clean aluminum disc and TL intensities of the minerals were measured by TL. It was observed that the extracted samples from both leguminous exhibit good TL Intensity and the TL intensity of glow curves of them increased proportionally to irradiation doses. The TL glow curve of both irradiated leguminous presents a single broad peak below 400 °C. The TL trapping parameters glow peaks were estimated by the additive dose (AD), Tm(Ea)-Tstop and computerized glow curve deconvolution (CGCD) methods. The fading characteristics of glow curves were also recorded up to 6 months.

  12. He-Ne laser extravascular irradiation therapy

    NASA Astrophysics Data System (ADS)

    Chen, Rong; Chen, Huifang; Xie, Shusen; Chen, Yanjiao; Zhang, Yanrong

    2000-10-01

    Based on the study of tissue optics related with the laser irradiation blood therapy, a new treatment method, extravascular low-level laser irradiation therapy (ELLLI) is developed. The veins of 30 patients with cerebrovascular disease combined with diabetes, asthma were treated by He-Ne laser (632.8nm, 25mW) which was delivered by an optics fiber. The fiber was outside the patient's skin and the laser irradiated on the blood vessel perpendicularly. The therapy time was 60 minutes each time and about 7-10 times a course of the treatment. The values of blood sugar, blood- fat and hemorrheology were measured as the effective indexes. After the treatment the effective indexes and the symptoms of the patients were all improved. With the advantages of simplicity and safety (no medical infection), laser extravascular irradiation therapy is likely to be a new medical method for heart brain and other diseases.

  13. Irradiation-related ischemic heart disease

    SciTech Connect

    Corn, B.W.; Trock, B.J.; Goodman, R.L. )

    1990-04-01

    An expectation for long-term survival has emerged among several groups of cancer patients treated with therapeutic irradiation (eg, Hodgkin's disease, early stage breast cancer). Therefore, the cardiovascular sequelae of thoracic irradiation have recently come under scrutiny. Animal models have demonstrated that cardiac irradiation can directly damage the myocardial microvasculature and can indirectly damage the coronary macrovasculature when coupled with cholesterol feeding. A clear association between thoracic radiotherapy and ischemic heart disease was observed among older clinical studies using radiotherapeutic techniques that are no longer optimal by today's standards. Such a relationship could not be confirmed in modern studies in which treatment factors (such as dose and volume of heart irradiated) were more carefully controlled. 56 references.

  14. Hardness Evolution of Gamma-Irradiated Polyoxymethylene

    NASA Astrophysics Data System (ADS)

    Hung, Chuan-Hao; Harmon, Julie P.; Lee, Sanboh

    2016-04-01

    This study focuses on analyzing hardness evolution in gamma-irradiated polyoxymethylene (POM) exposed to elevated temperatures after irradiation. Hardness increases with increasing annealing temperature and time, but decreases with increasing gamma ray dose. Hardness changes are attributed to defects generated in the microstructure and molecular structure. Gamma irradiation causes a decrease in the glass transition temperature, melting point, and extent of crystallinity. The kinetics of defects resulting in hardness changes follow a first-order structure relaxation. The rate constant adheres to an Arrhenius equation, and the corresponding activation energy decreases with increasing dose due to chain scission during gamma irradiation. The structure relaxation of POM has a lower energy barrier in crystalline regions than in amorphous ones. The hardness evolution in POM is an endothermic process due to the semi-crystalline nature of this polymer.

  15. Damage thresholds in laser irradiated optical materials

    SciTech Connect

    Guignard, F.; Autric, M.; Baudinaud, V.

    1997-12-01

    An experimental study on the damage induced by laser irradiation on different materials, borosilicate glass, fused silicate, moulded and stretched polymethylmethacrylate (PMMA), has been performed. The irradiation source is a 1KJ pulsed cold cathode electron gun preionized TEA CO{sub 2} laser. Damage mechanisms are controlled by the in-depth absorption of the 10,6 {mu}m radiation according to the Beer-Lambert law. The heating of the interaction area gives rise to thermal or thermo-mechanical damages. PMMA is damaged following a boiling process. Stretched PMMA is fractured first, releasing stresses, then boiled like moulded PMMA at higher energy. BK7 crazed after the irradiation due to thermomechanical stresses, silicate melt and vaporized. Optical damages have been characterized by measuring the contrast transfer function through the irradiated samples.

  16. IRRADIATION METHOD OF CONVERTING ORGANIC COMPOUNDS

    DOEpatents

    Allen, A.O.; Caffrey, J.M. Jr.

    1960-10-11

    A method is given for changing the distribution of organic compounds from that produced by the irradiation of bulk alkane hydrocarbons. This method consists of depositing an alkane hydrocarbon on the surface of a substrate material and irradiating with gamma radiation at a dose rate of more than 100,000 rads. The substrate material may be a metal, metal salts, metal oxides, or carbons having a surface area in excess of 1 m/sup 2//g. The hydrocarbons are deposited in layers of from 0.1 to 10 monolayers on the surfaces of these substrates and irradiated. The product yields are found to vary from those which result from the irradiation of bulk hydrocarbons in that there is an increase in the quantity of branched hydrocarbons.

  17. Neoplasia in fast neutron-irradiated beagles

    SciTech Connect

    Bradley, E.W.; Zook; B.C.; Casarett, G.W.

    1981-09-01

    One hundred fifty-one beagle dogs were irradiated with either photons or fast neutrons (15 MeV) to one of three dose-limiting normal tissues - spinal cord, lung, or brain. The radiation was given in four fractions per week for 5 weeks (spinal cord), 6 weeks (lung), 7 weeks (brain) to total doses encompassing those given clinically for cancer management. To date, no nonirradiated dogs or photon-irradiated dogs have developed neoplasms within the irradiated field. Of the neutron-irradiated dogs at risk, the incidence of neoplasia was 15%. The latent period for radiation-induced cancers has varied from 1 to 4 1/2 years at this time in the study.

  18. Neoplasia in fast neutron-irradiated beagles

    SciTech Connect

    Bradley, E.W.; Zook, B.C.; Casarett, G.W.; Deye, J.A.; Adoff, L.M.; Rogers, C.C.

    1981-09-01

    One hundred fifty-one beagle dogs were irradiated with either photons or fast neutrons (15 MeV) to one of three dose-limiting normal tissues--spinal cord, lung, or brain. The radiation was given in four fractions per week for 5 weeks (spinal cord), 6 weeks (lung), or 7 weeks (brain) to total doses encompassing those given clinically for cancer management. To date, no nonirradiated dogs or photon-irradiated dogs have developed any neoplasms. Seven dogs receiving fast neutrons have developed 9 neoplasms within the irradiated field. Of the neutron-irradiated dogs at risk, the incidence of neoplasia was 15%. The latent period for radiation-induced cancers has varied from 1 to 4 1/2 years at this time in the study.

  19. Wear-resistant polytetrafluoroethylene via electron irradiation

    SciTech Connect

    Blanchet, T.A.; Peng, Y.L.

    1996-06-01

    The sliding wear and friction behavior of irradiation-modified PTFE (by 10 MeV electrons in ambient air) against polished stainless steel is studied. Steady-state wear rate is shown to decrease monotonically by more than three orders of magnitude as the dose of the irradiation is increased from 0 to 30 Mrad. Friction initially increases with increasing dose, reaching a miximum value at 5 Mrad, then decreases with subsequent increases in dose, attaining a value similar to that of unirradiated PTFE at 30 Mrad. Hardness monotonically increases with increasing dose; however, irradiated PTFE was not found to abrasively damage the steel countersurface as many wear-resistant particle-filled PTFE composites do. Wear reduction is accomplished as debris production transforms from that of numerous large plate-like debris for unirradiated PTFE to that of very fine debris for irradiated PTFE. 26 refs., 6 figs.

  20. Total lymphoid irradiation in alloimmunity and autoimmunity

    SciTech Connect

    Strober, S.

    1987-12-01

    Total lymphoid irradiation has been used as an immunosuppressive regimen in autoimmune disease and organ transplantation. The rationale for its use originated from studies of patients with Hodgkin disease, in whom this radiotherapy regimen was noted to induce profound and long-lasting immune suppression and yet was well tolerated, with few long-term side effects. Total lymphoid irradiation is a unique immunosuppressive regimen that produces a selective (and long-lasting) reduction in the number and function of helper T cells and certain subsets of B cells. Conventional immunosuppressive drugs show little selectivity, and their effects are short-lived. The most important aspect of total lymphoid irradiation is the potential for achieving transplantation tolerance and permanent remissions in autoimmune disease in laboratory animals. Attempts are being made to achieve similar goals in humans given total lymphoid irradiation, so that immunosuppressive drugs can be ultimately withdrawn from transplant recipients and patients with lupus nephritis. 28 references.

  1. Correlations of solar cycle 22 UV irradiance

    NASA Technical Reports Server (NTRS)

    Floyd, L.; Brueckner, G.; Crane, P.; Prinz, D.; Herring, L.

    1997-01-01

    The solar ultraviolet spectral irradiance monitor (SUSIM) onboard the upper atmosphere research satellite (UARS) is an absolutely calibrated UV spectrometer which has measured the solar spectral irradiance over the wavelengths 115 nm to 410 nm since October 1991. This data set now extends for about six years from near the peak of solar cycle 22, through its minimum, to the initial rise associated with solar cycle 23. Generally, the time series of UV spectral irradiances obtained shows behavior similar to that of other solar activity indices. The conditions on the sun, which can in result in dominant 13.5-day periodicity, are analyzed and illustrated. It is found that any combination of presence or absence of dominant 13.5-day in UV irradiance and solar wind velocity is possible depending entirely on the particular surface distribution and orientation of solar active regions.

  2. Evolution Character Analysis of Total Solar Irradiance

    NASA Astrophysics Data System (ADS)

    Xiang, N. B.

    2013-05-01

    The significant periods of total solar irradiance are 35 days and 26 days in solar cycle 23 and 24, respectively. It is inferred that the solar quasi-rotation periods are 35 days and 26 days in solar cycle 23 and 24, respectively. The value of total solar irradiance in solar cycle 24 minimum should be close to the value of Maunder minimum. On short time scales, sunspots should be the main reason to cause variations of total solar irradiance on the scale of one solar rotation cycle to several months, but not the unique one, and the variations of total solar irradiance are notrelated with the Mg II index on the scale of a few days to one solar rotation cycle.

  3. Food Irradiation: Is It Safe and Wholesome?

    ERIC Educational Resources Information Center

    Rebus, Shirley

    1990-01-01

    Addresses some of the major issues of food irradiation with respect to safety and wholesomeness, including formation of radiolytic products, effects on nutrients, prevention of food-borne illness, development of radiation-resistant bacteria, and formation of afaltoxins. (Author)

  4. Gamma irradiation effects in W films

    SciTech Connect

    Claro, Luiz H.; Santos, Ingrid A.; Silva, Cassia F.

    2013-05-06

    Using the van Der Pauw methodology, the surface resistivity of irradiated tungsten films deposited on Silicon substrate was measured. The films were exposed to {gamma} radiation using a isotopic {sup 60}Co source in three irradiation stages attaining 40.35 kGy in total dose. The obtained results for superficial resistivity display a time annealing features and their values are proportional to the total dose.

  5. Blue irradiance intercomparison in the medical field

    NASA Astrophysics Data System (ADS)

    Ferreira, Antonio F. G.

    2012-10-01

    This work presents the results of a blue irradiance intercomparison among industrial laboratories of medical devices companies. This intercomparison aims to support the metrological issues of medical equipment manufactures regarding the blue irradiance infant phototherapy equipment requirements on the international standard IEC 60601-2-50:2000. The results showed a low agreement of participants' measurements according to normalized error criterion. The major explanation for this result is associated to an incorrect equipment choice and long recalibration period.

  6. Neutron Irradiation Resistance of RAFM Steels

    SciTech Connect

    Gaganidze, Ermile; Dafferner, Bernhard; Aktaa, Jarir

    2008-07-01

    The neutron irradiation resistance of the reduced-activation ferritic/martensitic (RAFM) steel EUROFER97 and international reference steels (F82H-mod, OPTIFER-Ia, GA3X and MANET-I) have been investigated after irradiation in the Petten High Flux Reactor up to 16.3 dpa at different irradiation temperatures (250-450 deg. C). The embrittlement behavior and hardening are investigated by instrumented Charpy-V tests with sub-size specimens. Neutron irradiation-induced embrittlement and hardening of EUROFER97 was studied under different heat treatment conditions. Embrittlement and hardening of as-delivered EUROFER97 steel are comparable to those of reference steels. Heat treatment of EUROFER97 at a higher austenitizing temperature substantially improves the embrittlement behaviour at low irradiation temperatures. Analysis of embrittlement vs. hardening behavior of RAFM steels within a proper model in terms of the parameter C={delta}DBTT/{delta}{sigma} indicates hardening-dominated embrittlement at irradiation temperatures below 350 deg. C with 0.17 {<=} C {<=} 0.53 deg. C/MPa. Scattering of C at irradiation temperatures above 400 deg. C indicates non hardening embrittlement. A role of He in a process of embrittlement is investigated in EUROFER97 based steels, that are doped with different contents of natural B and the separated {sup 10}B-isotope (0.008-0.112 wt.%). Testing on small scale fracture mechanical specimens for determination of quasi-static fracture toughness will be also presented in a view of future irradiation campaigns. (authors)

  7. Irradiation autogenous mandibular grafts in primary reconstructions

    SciTech Connect

    Hamaker, R.C.

    1981-07-01

    The procedure, irradiated mandibular autografts, for primary reconstruction, is presented with an immediate success rate of 88%. Eight cases have undergone primary mandibular reconstruction with the tumorous mandible irradiated to 10,000 rads in a single dose. The longest follow-up is 2 3/4 years. The autograft has proven to be an ideal implant. Major resections of the mandible in conjunction with large myocutaneous flaps have been reconstructed utilizing this implant.

  8. Inert matrix fuel behaviour in test irradiations

    NASA Astrophysics Data System (ADS)

    Hellwig, Ch.; Streit, M.; Blair, P.; Tverberg, T.; Klaassen, F. C.; Schram, R. P. C.; Vettraino, F.; Yamashita, T.

    2006-06-01

    Among others, three large irradiation tests on inert matrix fuels have been performed during the last five years: the two irradiation tests IFA-651 and IFA-652 in the OECD Halden Material Test Reactor and the OTTO irradiation in the High Flux Reactor in Petten. While the OTTO irradiation is already completed, the other two irradiations are still ongoing. The objectives of the experiments differ: for OTTO, the focus was on the comparison of different concepts of IMF, i.e. homogeneous fuel versus different types of heterogeneous fuel. In IFA-651, single phase yttria stabilized zirconia (YSZ) doped with Pu is compared with MOX. In IFA-652, the potential of calcia stabilized zirconia (CSZ) as a matrix with and without thoria is evaluated. The design of the three experiments is explained and the current status is reviewed. The experiments show that the homogeneous, single phase YSZ-based or CSZ-based fuel show good and stable irradiation behaviour. It can be said that homogeneous stabilized zirconia based fuel is the most promising IMF concept for an LWR environment. Nevertheless, the fuel temperatures were relatively high due to the low thermal conductivity, potentially leading to high fission gas release, and must be taken into account in the fuel design.

  9. Irradiated Nuclear Fuel Management: Resource Versus Waste

    SciTech Connect

    Nash, Kenneth L.; Lumetta, Gregg J.; Vienna, John D.

    2013-01-01

    Management of irradiated fuel is an important component of commercial nuclear power production. Although it is broadly agreed that the disposition of some fraction of the fuel in geological repositories will be necessary, there is a range of options that can be considered that affect exactly what fraction of material will be disposed in that manner. Furthermore, until geological repositories are available to accept commercial irradiated fuel, these materials must be safely stored. Temporary storage of irradiated fuel has traditionally been conducted in storage pools, and this is still true for freshly discharged fuel. Criticality control technologies have led to greater efficiencies in packing of irradiated fuel into storage pools. With continued delays in establishing permanent repositories, utilities have begun to move some of the irradiated fuel inventory into dry storage. Fuel cycle options being considered worldwide include the once-through fuel cycle, limited recycle in which U and Pu are recycled back to power reactors as mixed oxide fuel, and advance partitioning and transmutation schemes designed to reduce the long term hazards associated with geological disposal from millions of years to a few hundred years. Each of these options introduces specific challenges in terms of the waste forms required to safely immobilize the hazardous components of irradiated fuel.

  10. Total lymphoid irradiation and discordant cardiac xenografts

    SciTech Connect

    Kaplan, E.; Dresdale, A.R.; Diehl, J.T.; Katzen, N.A.; Aronovitz, M.J.; Konstam, M.A.; Payne, D.D.; Cleveland, R.J. )

    1990-01-01

    Total lymphoid irradiation can prolong concordant cardiac xenografts. The effects of total lymphoid irradiation in a discordant xenograft model (guinea pig to rat) were studied with and without adjuvant pharmacologic immunosuppression. Inbred Lewis rats were randomly allocated to one of four groups. Group 1 (n = 6) served as a control group and rats received no immunosuppression. Group 2 (n = 5) received triple-drug therapy that consisted of intraperitoneal azathioprine (2 mg/kg), cyclosporine (20 mg/kg), and methylprednisolone (1 mg/kg) for 1 week before transplantation. Group 3 animals (n = 5) received 15 Gy of total lymphoid irradiation in 12 divided doses over a 3-week period. Group 4 (n = 6) received both triple-drug therapy and total lymphoid irradiation as described for groups 2 and 3. Complement-dependent cytotoxicity assay was performed to determine if a correlation between complement-dependent cytotoxicity and rejection-free interval existed. Rejection was defined as cessation of graft pulsation and was confirmed by histologic test results. Only groups 1 and 2 showed a difference in survival (group 1, 6.9 +/- 1.0 minutes; group 2, 14.2 +/- 2.7 minutes, p = 0.02). Although total lymphoid irradiation did decrease complement-dependent cytotoxicity, linear regression revealed no correlation between complement-dependent cytotoxicity and graft survival (coefficient of correlation, 0.30). Unlike concordant cardiac xenografts, total lymphoid irradiation with or without triple-drug therapy does not prolong graft survival.

  11. Evaluation of irradiation effects on concrete structure

    SciTech Connect

    Kontani, O.; Ishizawa, A.; Maruyama, I.; Takizawa, M.; Sato, O.

    2012-07-01

    In assessing the soundness of irradiated concrete of nuclear power plants operated for more than 30 years, reference levels are employed: 1x10{sup 20} n/cm{sup 2} for fast neutrons and 2x10{sup 10} rad (2x10{sup 5} kGy) for gamma rays. Concrete structures are regarded as sound when the estimated irradiance levels after 60 years of operation are less than the reference levels. The reference levels were obtained from a paper by Hilsdorf. It was found, however, that the test conditions in which data were obtained by the researchers referred in that paper are very different from the irradiation and heat conditions usually found in a Light Water Reactor (LWR), and therefore aren't appropriate for assessing the soundness of irradiated concrete of an LWR. This paper investigates the interactions between radiation and concrete and presents the results of gamma ray irradiation tests on cement paste samples in order to provide a better understanding of the irradiation effects on concrete. (authors)

  12. The effects of irradiation on blood components

    SciTech Connect

    Button, L.N.; DeWolf, W.C.; Newburger, P.E.; Jacobson, M.S.; Kevy, S.V.

    1981-01-01

    The functional properties of formed elements of whole blood were studied following irradiation doses of 500 to 20,000 rads. Irradiated lymphocytes retained only 1.5 per cent of their 3H thymidine uptake after a 5,000-rad exposure and none after 7,500 rads. Red blood cells stored for 21 days and then irradiated with 5,000 rads had the same survival as nonirradiated controls. In contrast, 5,000 rads reduced platelet yields. However, transfused irradiated platelets produced the expected increases in platelet counts and controlled hemostasis in thrombocytopenic patients. After 5,000 rads, granulocytes had normal bacterial killing capacity, chemotactic mobility, and normal superoxide production after high-dose stimulation. Nitroblue tetrazolium reduction and ingestion stimulated by complement opsonized oil droplets were not diminished by 5,000- and 10,000-rad irradiation. The functional qualities of cellular blood components other than lymphocytes are not compromised by 5,000 rads. This irradiation dose may be an effective means of controlling incidence of graft-vs-host disease in immunosuppressed patients.

  13. Solar EUV irradiance for space weather applications

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.

    2015-12-01

    Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.

  14. Irradiation of municipal sludge for agricultural use

    NASA Astrophysics Data System (ADS)

    Ahlstrom, Scott B.

    Research has demonstrated that irradiation is an effective means for reducing pathogens in sewage sludge to levels where sludge reuse in public areas meets criteria for protection of the public health. Complementary research has demonstrated the value of the irradiated sludge in both agronomic and animal science applications. The benefits of sludge application to cropland are well documented. The irradiation process does not increase the extractability and plant uptake of a broad range of nutrients and heavy metals from sludge-amended soils. However, it does eliminate the hazards associated with pathogen contamination when applying sludge to agricultural land. Irradiated sludge has also been evaluated as a supplemental foodstuff for cattle and sheep. The data indicate that products derived from raw sewage may have a substantial nutritive value for ruminant animals. Irradiation of sewage sludge is a practical means of sludge disinfection. Where a highly disinfected sludge is required, it should be considered as a viable sludge management alternative. Evaluation of sludge irradiation technology and its associated costs must be done with consideration of other sludge treatment processes to develop an acceptable sludge management system.

  15. [Light irradiator for various chronic pain].

    PubMed

    Ide, Yasuo

    2014-07-01

    Effects of light upon human tissue are divided into irreversible effects and reversible effects. Irreversible effects can be called as high level laser therapy (HLLT), and reversible effects can be called as low level light therapy (LLLT). Light irradiators for chronic pain act under principle of LLLT. Laser diode, halogen lamp and xenon lamp are used as light sources for light irradiator for various chronic pain. These days, light emitting diode (LED) is used as light source for light irradiator for various kinds of pain. Light irradiators are now divided into portable light weight low power machine and heavy weight, high power machine. In the dental area Nd : YAG laser is using as HLLT tool. But, now there are many reports about Nd : YAG laser used as anesthetic machine. In these reports, topical anesthetic effects of Nd : YAG laser are immediate and with fewer side effects compared with topical anesthetic agents. These effects are explained as LLLT. Halogen lamp and xenon lamp type irradiators were also introduced. MEDILASER SOFT PULSE10, an laser diode type irradiator was withdrawn from the market. PMID:25098134

  16. Comparison of Deuterium Retention for Ion-irradiated and Neutron-irradiated Tungsten

    SciTech Connect

    Yasuhisa Oya; Masashi Shimada; Makoto Kobayashi; Takuji Oda; Masanori Hara; Hideo Watanabe; Yuji Hatano; Pattrick Calderoni; Kenji Okuno

    2011-12-01

    The behavior of D retention for Fe{sup 2+}-irradiated tungsten with a damage of 0.025-3 dpa was compared with that for neutron-irradiated tungsten with 0.025 dpa. The D{sub 2} thermal desorption spectroscopy (TDS) spectra for Fe{sup 2+}-irradiated tungsten consisted of two desorption stages at 450 and 550 K, while that for neutron-irradiated tungsten was composed of three stages and an addition desorption stage was found at 750 K. The desorption rate of the major desorption stage at 550K increased as the displacement damage increased due to Fe{sup 2+} irradiation increasing. In addition, the first desorption stage at 450K was found only for damaged samples. Therefore, the second stage would be based on intrinsic defects or vacancy produced by Fe{sup 2+} irradiation, and the first stage should be the accumulation of D in mono-vacancy and the activation energy would be relatively reduced, where the dislocation loop and vacancy is produced. The third one was found only for neutron irradiation, showing the D trapping by a void or vacancy cluster, and the diffusion effect is also contributed to by the high full-width at half-maximum of the TDS spectrum. Therefore, it can be said that the D{sub 2} TDS spectra for Fe{sup 2+}-irradiated tungsten cannot represent that for the neutron-irradiated one, indicating that the deuterium trapping and desorption mechanism for neutron-irradiated tungsten is different from that for the ion-irradiated one.

  17. Investigation of the effect of some irradiation parameters on the response of various types of dosimeters to electron irradiation

    NASA Astrophysics Data System (ADS)

    Farah, K.; Kuntz, F.; Kadri, O.; Ghedira, L.

    2004-09-01

    Several undyed and dyed polymer films are commercially available for dosimetry in intense radiation fields, especially for radiation processing of food and sterilisation of medical devices. The effects of temperature during irradiation and post-irradiation stability, on the response of these dosimeters are of importance to operators of irradiation facilities. The present study investigates the effects of temperature during irradiation by 2.2 MeV electrons beam accelerator and post irradiation storage on the response of several types of dosimeter films. All dosimeters showed a significant effect of temperature during irradiation and post-irradiation storage.

  18. Removal of carbon-14 from irradiated graphite

    NASA Astrophysics Data System (ADS)

    Dunzik-Gougar, Mary Lou; Smith, Tara E.

    2014-08-01

    Approximately 250,000 tonnes of irradiated graphite waste exists worldwide and that quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation IV gas-cooled, graphite moderated reactors. This situation indicates the need for a graphite waste management strategy. On of the isotopes of great concern for long-term disposal of irradiated graphite is carbon-14 (14C), with a half-life of 5730 years. Study of irradiated graphite from some nuclear reactors indicates 14C is concentrated on the outer 5 mm of the graphite structure. The aim of the research presented here is to develop a practical method by which 14C can be removed. In parallel with these efforts, the same irradiated graphite material is being characterized to identify the chemical form of 14C in irradiated graphite. A nuclear-grade graphite, NBG-18, and a high-surface-area graphite foam, POCOFoam®, were exposed to liquid nitrogen (to increase the quantity of 14C precursor) and neutron-irradiated (1013 neutrons/cm2/s). During post-irradiation thermal treatment, graphite samples were heated in the presence of an inert carrier gas (with or without the addition of an oxidant gas), which carries off gaseous products released during treatment. Graphite gasification occurs via interaction with adsorbed oxygen complexes. Experiments in argon only were performed at 900 °C and 1400 °C to evaluate the selective removal of 14C. Thermal treatment also was performed with the addition of 3 and 5 vol% oxygen at temperatures 700 °C and 1400 °C. Thermal treatment experiments were evaluated for the effective selective removal of 14C. Lower temperatures and oxygen levels correlated to more efficient 14C removal.

  19. Quality of gamma ray-irradiated iceberg lettuce and treatments to minimize irradiation-induced disorders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irradiation of Iceberg lettuce was recently approved by the FDA to enhance microbial safety and to extend shelf-life at doses up to 4 kGy. However, the radiation tolerance of whole head lettuce is unclear. The present study was conducted to investigate the effects of irradiation on the quality of he...

  20. Embrittlernent of irradiated F82H in the absence of irradiation hardening

    SciTech Connect

    Klueh, Ronald L; Shiba, Kiyoyuki; Sokolov, Mikhail A

    2009-01-01

    Neutron irradiation of 7-12% Cr ferritic/martensitic steels below 425-450 C produces microstructural defects and precipitation that cause an increase in yield stress. This irradiation hardening causes embrittlement, which is observed in a Charpy impact or fracture toughness test as an increase in the ductile-brittle transition temperature. Based on observations that show little change in strength in steels irradiated above 425-450 C, the general conclusion has been that no embrittlement occurs above these temperatures. In a recent study of F82H steel, significant embrittlement was observed after irradiation at 500 C. This embrittlement is apparently due to irradiation-accelerated Laves-phase precipitation. Observations of the embrittlement in the absence of hardening has been examined and analyzed with thermal-aging studies and computational thermodynamics calculations to illuminate and understand the effect.

  1. Disinfestation of different cereal products by irradiation

    NASA Astrophysics Data System (ADS)

    Kovács, E.; Kiss, I.; Boros, A.; Horváth, Ny.; Tóth, J.; Gyulai, P.; Szalma, Á.

    The sensitivity of overlineTribolium confusum - small flour beetle - to radiation was studied in a dose range of 0-0.8 kGy. We found that the insect egg was the most sensitive to radiation, then larvae and pupae followed it. 0.2 kGy dose of irradiation kills these forms or their further development is inhibited. Imagoes do not immediately die after 0.8 kGy dose of irradiation; the young imagoes are more sensitive to radiation than the aged ones. 0.4 kGy average dose of irradiation is a suitable protection against overlineTribolium confusum. Disinfestation experiments were performed with wheat-germ and wheat-bran and parallelly the most important ingredients of the two products were analysed. The vitamin E content and the rate of lipid-oxidation of wheat germ were determined. The vitamin E content decreased after radiation treatment, however, during storage of at least 6 months, it remained at a level specified by food quality standards (higher than 10 mg%). Carbohydrate content of wheat-bran (water soluble carbohydrate content, crude-fibre and dietary fibre content) did not change at all. Storability of radiation disinfested wheat-germ was 8 months, wheat-bran 3-4 months. On the base of the results 2-2 tons of wheat-germ and wheat-bran were irradiated and trial marked in 1985. In 1986 the irradiation of 10 tons of wheat-germ is planned.

  2. Infrared Irradiation: Toward Green Chemistry, a Review.

    PubMed

    Escobedo, René; Miranda, René; Martínez, Joel

    2016-01-01

    This review provides a comprehensive overview of where infrared irradiation has been employed, mainly as regards activating green mode for natural products extractions, as well as to favor a reaction, highlighting its actual importance. It is also underlined that infrared irradiation heating has been around for a long time; however, only in the last eighteen years have many of its advantages been applied to satisfy a wide range of chemical processes, natural products extractions, and for the promotion of many kinds of reactions. In addition, it is brought to light that near infrared irradiation is more efficient than middle and far infrared irradiations, being easily controllable and with the quality of a fast responding heat source. Thus, the main objective of this review is to offer infrared irradiation as an alternative clean energy source to activate reactions, in addition to favor the selective extraction of natural products, all of which is within the Green Chemistry protocol. Some recent results from our laboratory are also included. PMID:27023535

  3. Effect of neutron irradiation on vanadium alloys

    SciTech Connect

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600/sup 0/C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520/sup 0/C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys.

  4. Sludge irradiation process made safe with lead

    SciTech Connect

    Not Available

    1983-03-01

    A process for disinfecting sewage sludge by irradiation is being promoted by the Department of Energy (DOE) as an efficient means of complying with Environmental Protection Agency (EPA) regulations requiring treatment of the waste material before it is recycled as a soil conditioner. The technique employs a heavy lead shutter and a generous helping of sheet lead to provide the necessary radiation shielding. For the past three years, DOE and EPA have been sponsoring a Municipal Sludge Irradiation Technology Transfer Program at Sandia National Laboratories in Albuquerque, N.M. Sandia has been operating an eight-ton-per-day pilot plant which routinely irradiates air-dried sludge for agricultural and biological studies at New Mexico State University. The objective of the program is to explore the economic and scientific aspects of irradiating sludge so it can be used as a soil additive, crop fertilizer or animal feed supplement. About 5 million tons of sludge are generated yearly in the United States. Because of the pathogenic organisms and fungi present in untreated sludge, there are health hazards associated with the recycling of sewage solids. Sandia has been investigating the types of bacteria, viruses, parasites and fungi found in sludge and the effect irradiation has on them.

  5. Measurement of Diameter Changes during Irradiation Testing

    SciTech Connect

    Davis, K. L.; Knudson, D. L.; Crepeau, J. C.; Solstad, S.

    2015-03-01

    New materials are being considered for fuel, cladding, and structures in advanced and existing nuclear reactors. Such materials can experience significant dimensional and physical changes during irradiation. Currently in the US, such changes are measured by repeatedly irradiating a specimen for a specified period of time and then removing it from the reactor for evaluation. The time and labor to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data and handling may disturb the phenomena of interest. In-pile detection of changes in geometry is sorely needed to understand real-time behavior during irradiation testing of fuels and materials in high flux US Material and Test Reactors (MTRs). This paper presents development results of an advanced Linear Variable Differential Transformer-based test rig capable of detecting real-time changes in diameter of fuel rods or material samples during irradiation in US MTRs. This test rig is being developed at the Idaho National Laboratory and will provide experimenters with a unique capability to measure diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  6. A New Look at Solar Irradiance Variation

    NASA Astrophysics Data System (ADS)

    Foukal, Peter

    2012-08-01

    We compare total solar irradiance (TSI) and ultraviolet ( F uv) irradiance variation reconstructed using Ca K facular areas since 1915, with previous values based on less direct proxies. Our annual means for 1925 - 1945 reach values 30 - 50 % higher than those presently used in IPCC climate studies. A high facula/sunspot area ratio in spot cycles 16 and 17 seems to be responsible. New evidence from solar photometry increases the likelihood of greater seventeenth century solar dimming than expected from the disappearance of magnetic active regions alone. But the large additional brightening in the early twentieth century claimed from some recent models requires complete disappearance of the magnetic network. The network is clearly visible in Ca K spectroheliograms obtained since the 1890s, so these models cannot be correct. Changes in photospheric effective temperature invoked in other models would be powerfully damped by the thermal inertia of the convection zone. Thus, there is presently no support for twentieth century irradiance variation besides that arising from active regions. The mid-twentieth century irradiance peak arising from these active regions extends 20 years beyond the early 1940s peak in global temperature. This failure of correlation, together with the low amplitude of TSI variation and the relatively weak effect of Fuv driving on tropospheric temperature, limits the role of solar irradiance variation in twentieth century global warming.

  7. COBALT-60 Gamma Irradiation of Shrimp.

    NASA Astrophysics Data System (ADS)

    Sullivan, Nancy L. B.

    Meta- and ortho-tyrosine were measured using high performance liquid chromatography (HPLC) in conjunction with electrochemical detection in shrimp irradiated using cobalt-60 gamma radiation in the absorbed dose range 0.8 to 6.0 kGy, in nonirradiated shrimp, and in bovine serum albumin (BSA) irradiated in dilute aqueous solution at 25.0 kGy. Ortho-tyrosine was measured in nonirradiated BSA. Para-, meta-, and ortho-tyrosine were measured using HPLC in conjunction with uv-absorption detection in dilute aqueous solutions of phenylalanine irradiated in the absorbed dose range 16.0 to 195.0 kGy. The measured yields of tyrosine isomers were approximately linear as a function of absorbed dose in shrimp, and in irradiated solutions of phenylalanine up to 37.0 kGy. The occurrence of meta- and ortho-tyrosine, which had formerly been considered unique radiolytic products, has not previously been reported in nonirradiated shrimp or BSA. The conventional hydrolyzation and analytical techniques used in the present study to measure meta- and ortho-tyrosine may provide the basis for a method to detect and determine the dose used in food irradiation.

  8. Ion irradiation effects on metallic nanocrystals

    NASA Astrophysics Data System (ADS)

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C. S.; Foran, G. J.; Cookson, D. J.; Byrne, A. P.; Ridgway, M. C.

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO2. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO2 interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  9. Carotid artery disease following external cervical irradiation

    SciTech Connect

    Elerding, S.C.; Fernandez, R.N.; Grotta, J.C.; Lindberg, R.D.; Causay, L.C.; McMurtrey, M.J.

    1981-01-01

    A retrospective study of 910 patients surviving at least five years after cervical irradiation for Hodgkin's disease, non-Hodgkin's lymphoma, or primary head an neck neoplasms showed the incidence of stroke following cervical irradiation was 63 of 910 patients (6.3%) during a mean period of observation of nine years. This represents a trend toward an increased risk for this population observed over the same period of time (p . 0.39). A prospective study of 118 similar patients currently living five years after cervical radiotherapy was performed to determine the incidence of carotid artery disease occurring as a consequence of neck irradiation. Abnormal carotid phonangiograms (CPA) were found in 25% of the patients and abnormal oculoplethysmographs (OPG) were found in 17%. These studies represent significant carotid lesions that are not expected in such a population. It is concluded that the carotid stenoses demonstrated are most likely a consequence of prior irradiation. Patients that are five-year survivors of cervical irradiation should have noninvasive vascular laboratory studies performed as part of their routine follow-up examinations in order to detect these carotid lesions while they are occult.

  10. Neoplasms in young dogs after perinatal irradiation

    SciTech Connect

    Benjamin, S.A.; Lee, A.C.; Angleton, G.M.; Saunders, W.J.; Miller, G.K.; Williams, J.S.; Brewster, R.D.; Long, R.I.

    1986-08-01

    For a study of the life-time effects of irradiation during development, 1,680 beagles were given single, whole-body exposures to /sup 60/Co gamma-radiation at one of three prenatal (preimplantation, embryonic, and fetal) or at one of three postnatal (neonatal, juvenile, and young adult) ages. Mean doses were 0, 0.16, or 0.83 Gy. For comparison with data on childhood cancer after prenatal irradiation, examination was made of tumors occurring in young dogs in this life-span experiment. Up to 4 years of age, 18 dogs had neoplasms diagnosed, 2 of these being in controls. Four dogs that were irradiated in the perinatal (late fetal or neonatal) period died of cancers prior to 2 years of age. This risk was of significant increase compared to the risks for other experimental groups and for the canine population in general. Overall, 71% (5 of 7) of all cancers and 56% (10 of 18) of all benign and malignant neoplasms seen in the first 4 years of life occurred in 29% (480 of 1680) of the dogs irradiated in the perinatal period. These data suggest an increased risk for neoplasia after perinatal irradiation in dogs.

  11. Irradiation creep of advanced silicon carbide fibers

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Youngblood, G. E.

    2000-12-01

    The bend stress relaxation (BSR) method was applied to study irradiation enhanced creep (IEC) of small diameter silicon carbide (SiC) fibers after 10 MeV proton irradiation. A first series of tests was conducted on Sylramic™ fibers irradiated at 600°C with average bending stresses of 400 and 667 MPa and for irradiation doses smaller than 0.04 dpa. The BSR results are compared to previously obtained torsional creep test results for the Textron SCS-6™ type SiC fibers by calculating the tensile equivalents for both testing methods. For the Sylramic fibers, the creep constant κ=4.7×10-6 Mpa-1 dpa-1, was a factor of 6 smaller than the κ-value determined for SCS-6 fibers at 600°C. In contrast, for T<900°C the κ-value determined by R.J. Price [Nucl. Technol. 35 (1977) 320] for high purity monolithic β-Si after 7.7 dpa neutron irradiation was only 0.4×10-6 MPa-1 dpa-1.

  12. Ion irradiation effects on metallic nanocrystals

    SciTech Connect

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C.S.; Foran, G.J.; Cookson, D.J.; Byrne, A.P.; Ridgway, M.C.

    2008-04-02

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO{sub 2}. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO{sub 2} interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  13. Infrared Irradiation: Toward Green Chemistry, a Review

    PubMed Central

    Escobedo, René; Miranda, René; Martínez, Joel

    2016-01-01

    This review provides a comprehensive overview of where infrared irradiation has been employed, mainly as regards activating green mode for natural products extractions, as well as to favor a reaction, highlighting its actual importance. It is also underlined that infrared irradiation heating has been around for a long time; however, only in the last eighteen years have many of its advantages been applied to satisfy a wide range of chemical processes, natural products extractions, and for the promotion of many kinds of reactions. In addition, it is brought to light that near infrared irradiation is more efficient than middle and far infrared irradiations, being easily controllable and with the quality of a fast responding heat source. Thus, the main objective of this review is to offer infrared irradiation as an alternative clean energy source to activate reactions, in addition to favor the selective extraction of natural products, all of which is within the Green Chemistry protocol. Some recent results from our laboratory are also included. PMID:27023535

  14. Cobalt-60 gamma irradiation of shrimp

    SciTech Connect

    Sullivan, N.L.B.

    1993-01-01

    Meta- and ortho-tyrosine were measured using high performance liquid chromatography (HPLC) in conjunction with electrochemical detection in shrimp irradiated using cobalt-60 gamma radiation in the absorbed dose range 0.8 to 6.0 kGy, in nonirradiated shrimp, and in bovine serum albumin (BSA) irradiated in dilute aqueous solution at 25.0 kGy. Ortho-tyrosine was measured in nonirradiated BSA. Para-, meta-, and ortho-tyrosine was measured using HPLC in conjunction with uv-absorption detection in dilute aqueous solutions of phenylalanine irradiated in the absorbed dose range 16.0 to 195.0 kGy. The measured yields of tyrosine isomers were approximately linear as a function of absorbed dose in shrimp, and in irradiated solutions of phenylalanine up to 37.0 kGy. The occurrence of meta- and ortho-tyrosine, which had formerly been considered unique radiolytic products, has not previously been reported in nonirradiated shrimp or BSA. The conventional hydrolyzation and analytical techniques used in the present study to measure meta- and ortho-tyrosine may provide the basis for a method to detect and determine the dose used in food irradiation.

  15. ESR spectroscopic properties of irradiated gum Arabic.

    PubMed

    Leonor, S J; Gómez, J A; Kinoshita, A; Calandreli, I; Tfouni, E; Baffa, O

    2013-12-01

    Electron spin resonance (ESR) spectra of irradiated gum Arabic with doses between 0.5 and 5 kGy were studied. A linear relationship between the absorbed dose and the intensities of the ESR spectra was observed. ESR spectra of irradiated gum Arabic showed a decay of relative concentrations of free radicals originated by radiation and the production of at least two species of free radicals with half-times: 3.3 and 125.4 h. The results of spectral simulations for these radical groups were giso=2.0046; A=1.2 mT and gx=gy=2.0062, gz=2.0025. Hydration and dehydration of irradiated gum Arabic returns the ESR spectrum to its initial state before irradiation. The results show that ESR can be used as simple and reliable method to detect irradiated gum Arabic up to 60 days after initial radiation with doses on the order of 5 kGy. PMID:23870902

  16. Effects of irradiation on platelet function

    SciTech Connect

    Rock, G.; Adams, G.A.; Labow, R.S.

    1988-09-01

    Current medical practice involves the irradiation of blood components, including platelet concentrates, before their administration to patients with severe immunosuppression. The authors studied the effect of irradiation on in vitro platelet function and the leaching of plasticizers from the bag, both immediately and after 5 days of storage. The platelet count, white cell count, pH, glucose, lactate, platelet aggregation and release reaction, and serotonin uptake were not altered by the irradiation of random-donor or apheresis units with 2000 rads carried out at 0 and 24 hours and 5 days after collection. The leaching of di(2-ethylhexyl)phthalate from the plastic bags followed by the conversion to mono(2-ethylhexyl)phthalate was not increased by irradiation. Therefore, it is possible to irradiate platelet concentrates on the day of collection and subsequently store them for at least 5 days while maintaining in vitro function. This procedure could have considerable benefit for blood banks involved in the provision of many platelet products.

  17. Dielectric relaxation of gamma irradiated muscovite mica

    SciTech Connect

    Kaur, Navjeet; Singh, Mohan; Singh, Lakhwant; Awasthi, A.M.; Lochab, S.P.

    2015-03-15

    Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, using the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.

  18. Mutation induced with ion beam irradiation in rose

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Nagatomi, S.; Morishita, T.; Degi, K.; Tanaka, A.; Shikazono, N.; Hase, Y.

    2003-05-01

    The effects of mutation induction by ion beam irradiation on axillary buds in rose were investigated. Axillary buds were irradiated with carbon and helium ion beams, and the solid mutants emerged after irradiation by repeated cutting back. In helium ion irradiation, mutations were observed in plants derived from 9 buds among 56 irradiated buds in 'Orange Rosamini' and in plants derived from 10 buds among 61 irradiated buds in 'Red Minimo'. In carbon ion, mutations were observed in plants derived from 12 buds among 88 irradiated buds in 'Orange Rosamini'. Mutations were induced not only in higher doses but also in lower doses, with which physiological effect by irradiation was hardly observed. Irradiation with both ion beams induced mutants in the number of petals, in flower size, in flower shape and in flower color in each cultivar.

  19. The effect of gamma irradiation on injectable human amnion collagen

    SciTech Connect

    Liu, B.C.; Harrell, R.; Davis, R.H.; Dresden, M.H.; Spira, M. )

    1989-08-01

    The effect of gamma irradiation on the physicochemical properties of injectable human amnion collagen was investigated. Pepsin-extracted human amnion collagen was purified, reconstituted, and irradiated with varying doses of gamma irradiation (0.25 Mrads to 2.5 Mrads). Gamma irradiation had a significant impact on the physical characteristics of the collagen. The neutral solubility of collagen in PBS at 45{degrees}C was decreased from 100% for the nonirradiated control sample to 16% for the 2.5 Mrads irradiated sample. SDS polyacrylamide gel electrophoresis also demonstrated the dose-dependent effect of gamma irradiation on collagen cross-links. Electron microscopic observation revealed that even at low irradiation dose (0.25 Mrads), collagen fibril diameter increased. The average diameter was 50 nm for nonirradiated control fibrils, while 4.4% of the irradiated collagen fibrils had a diameter greater than 100 nm. Irradiated collagen showed little evidence of damage. Well-preserved cross-striations were found in collagen fibrils at all doses of irradiation. Native amnion collagen irradiated with gamma rays demonstrated a slight increase in resistance to collagenase degradation compared with nonirradiated native collagen samples. Increased resistance to collagenase did not correlate with increasing irradiation dose. After 30 min of incubation at 37{degrees}C, both irradiated and nonirradiated collagen was completely digested by collagenase. However, gamma-irradiated collagen did become more sensitive to hydrolysis by trypsin. The higher the irradiation doses used, the greater sensitivity to trypsin was observed. At 0.25 Mrads irradiation only a slight increase was found. No marked differences in amino acid composition were noted among the high dose irradiated, low dose irradiated and control amnion collagen.

  20. Status of food irradiation in the world

    NASA Astrophysics Data System (ADS)

    Kume, Tamikazu; Furuta, Masakazu; Todoriki, Setsuko; Uenoyama, Naoki; Kobayashi, Yasuhiko

    2009-03-01

    The status of food irradiation in the world in 2005 was investigated using published data, a questionnaire survey and direct visits. The results showed that the quantity of irradiated foods in the world in 2005 was 405,000 ton and comprised 1,86,000 ton (46%) for disinfection of spices and dry vegetables, 82,000 ton (20%) for disinfestation of grains and fruits, 32,000 ton (8%) for disinfection of meat and fish, 88,000 ton (22%) for sprout inhibition of garlic and potato, and 17,000 ton (4%) of other food items that included health foods, mushroom, honey, etc. Commercial food irradiation is increasing significantly in Asia, but decreasing in EU.

  1. Enucleation versus plaque irradiation for choroidal melanoma

    SciTech Connect

    Straatsma, B.R.; Fine, S.L.; Earle, J.D.; Hawkins, B.S.; Diener-West, M.; McLaughlin, J.A.

    1988-07-01

    The Collaborative Ocular Melanoma Study (COMS) is an international, multicenter-controlled study. The organization includes an Executive Committee, Steering Committee, 6 Central Units, 32 Clinical Centers, and a Data and Safety Monitoring Committee. Scientifically, the COMS consists of (1) a randomized trial of patients with medium choroidal melanoma treated with enucleation versus iodine-125 plaque irradiation, (2) a randomized trial of patients with large choroidal melanoma treated with enucleation versus preenucleation external beam irradiation and enucleation, and (3) a prospective observational study of patients with small choroidal melanoma to determine whether a randomized trial of treatment is appropriate. In design and conduct of the COMS, special consideration is given to biostatistics and sample size considerations, iodine-125 plaque irradiation of choroidal melanoma, and coordinated ocular melanoma research. Recruitment is in progress. However, the pool of eligible patients is limited and the COMS needs the continued support and cooperation of ophthalmologists throughout the United States and Canada.

  2. Irradiated homologous costal cartilage for augmentation rhinoplasty

    SciTech Connect

    Lefkovits, G. )

    1990-10-01

    Although the ideal reconstructive material for augmentation rhinoplasty continues to challenge plastic surgeons, there exists no report in the literature that confines the use of irradiated homologous costal cartilage, first reported by Dingman and Grabb in 1961, to dorsal nasal augmentation. The purpose of this paper is to present a retrospective analysis of the author's experience using irradiated homologous costal cartilage in augmentation rhinoplasty. Twenty-seven dorsal nasal augmentations were performed in 24 patients between 16 and 49 years of age with a follow-up ranging from 1 to 27 months. Good-to-excellent results were achieved in 83.3% (20 of 24). Poor results requiring revision were found in 16.7% (4 of 24). Complication rates included 7.4% infection (2 of 27) and 14.8% warping (4 of 27). The resorption rate was zero. These results compare favorably with other forms of nasal augmentation. Advantages and disadvantages of irradiated homologous costal cartilage are discussed.

  3. Dosimetry procedures for an industrial irradiation plant

    NASA Astrophysics Data System (ADS)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  4. Nanoimprint lithography using IR laser irradiation

    NASA Astrophysics Data System (ADS)

    Grigaliūnas, V.; Tamulevičius, S.; Muehlberger, M.; Jucius, D.; Guobienė, A.; Kopustinskas, V.; Gudonytė, A.

    2006-11-01

    A new technique called "infrared laser-assisted nanoimprint lithography" was utilised to soften the thermoplastic polymer material mR-I 8020 during nanoimprint lithography. A laser setup and a sample holder with pressure and temperature control were designed for the imprint experiments. The polymer was spin coated onto crystalline Si <1 1 1> substrates. A prepatterned Si <1 1 1> substrate, which is transparent for the CO 2 laser irradiation, was used as an imprint stamp as well. It was shown, that the thermoplastic resist mR-I 8020 could be successfully imprinted using the infrared CW CO 2 laser irradiation ( λ = 10.6 μm). The etching rate of the CO 2 laser beam irradiated mR-I 8020 resist film under O 2 RF (13.56 MHz) plasma treatment and during O 2 reactive ion beam etching was investigated as well.

  5. The solar irradiance: observations and modelling

    NASA Astrophysics Data System (ADS)

    Cessateur, Gaël; Schmutz, Werner; Shapiro, Alexander

    2015-04-01

    The knowledge of the solar spectral irradiance (SSI) and its variability is an essential parameter for space weather and space climate studies. Many observations of the SSI have been performed in a recent past, but the level of confidence is rather low when considering long time scales, since space instruments are often suffering from degradation problems. Many SSI models have been also developed, and some of them are excellent inputs for many space climate models. We will then review the different data sets available of the SSI for the short term time-scales as well as for the long term, including both observations and models. We will also emphasize about our new irradiance model, COSIR for Code of Solar Irradiance Reconstruction, which is successful at reproducing the solar rotational modulation as seen in the PREMOS, Virgo and SORCE data.

  6. Laboratory for Characterization of Irradiated Graphite

    SciTech Connect

    Karen A. Moore

    2010-03-01

    The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Labs C19 and C20 of the Idaho National Laboratory Research Center (IRC). The CCL was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite and ceramic composite research and development activities. The research is in support of the Advanced Graphite Creep (AGC) experiment — a major material irradiation experiment within the NGNP Graphite program. The CCL is designed to characterize and test low activated irradiated materials such as high purity graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully capable of characterizing material properties for both irradiated and nonirradiated materials.

  7. Growth-irradiance relationships in phytoplankton

    SciTech Connect

    Falkowski, P.G.; Dubinsky, Z.; Wyman, K.

    1985-03-01

    The steady state growth rates of three species of marine phytoplankton, Thalassiosira weisflogii, Isochrysis galbana, and Prorocentrum micans, were followed in turbidostat culture. At each growth irradiance, photosynthesis and respiration were measured by following changes in oxygen. Together with measurements of optical absorption cross sections, cellular chlorophyll, carbon and nitrogen, and excretion rates as well as knowledge of the quantum flux, the quantum requirement for growth and photosynthesis were calculated. Our results suggest that variations in growth rate caused by changes in irradiance may be related to changes in respiration rates relative to growth as well as changes in optical absorption cross sections for a given species. Interspecific differences in growth rate at a given irradiance are not related to changes in respiration however, but are primarily attributable to differences in optical absorption cross sections normalized to chlorophyll and differences in chlorophyll:carbon ratios.

  8. Irradiation creep of vanadium-base alloys

    SciTech Connect

    Tsai, H.; Billone, M.C.; Strain, R.V.; Smith, D.L.; Matsui, H.

    1998-03-01

    A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the United States. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200--300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 {times} 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

  9. Horizontal modular dry irradiated fuel storage system

    DOEpatents

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  10. Electroslag remelt processing of irradiated vanadium alloys

    NASA Astrophysics Data System (ADS)

    Carmack, W. J.; Smolik, G. R.; McCarthy, K. A.

    1996-10-01

    This paper describes experimental efforts to investigate the potential of a slag remelting process for reducing radioactivity of irradiated vanadium alloys used in a fusion power production facility. The experiment determined the removal characteristics of four surrogate transmutation isotopes significant to accident safety expected in a V5Ti5Cr alloy irradiated under fusion conditions (Ca, Y, to simulate Sc, Mn, and Ar). Removal of these isotopes could decrease the accident risk of reprocessing irradiated vanadium and reusing it in fusion reactors. An electroslag remelt furnace was used in the experiment to melt and react the constituents using a calcium fluoride slag. The process achieved 90% removal of calcium and over 99% removal of yttrium. Analyses indicate that 40% of the manganese has been removed. Argon analysis of the refined ingots indicates that 99% of the argon was removed from the vanadium alloy.