Science.gov

Sample records for irrigation enhances food

  1. Solar-powered drip irrigation enhances food security in the Sudano–Sahel

    PubMed Central

    Burney, Jennifer; Woltering, Lennart; Burke, Marshall; Naylor, Rosamond; Pasternak, Dov

    2010-01-01

    Meeting the food needs of Africa’s growing population over the next half-century will require technologies that significantly improve rural livelihoods at minimal environmental cost. These technologies will likely be distinct from those of the Green Revolution, which had relatively little impact in sub-Saharan Africa; consequently, few such interventions have been rigorously evaluated. This paper analyzes solar-powered drip irrigation as a strategy for enhancing food security in the rural Sudano–Sahel region of West Africa. Using a matched-pair comparison of villages in northern Benin (two treatment villages, two comparison villages), and household survey and field-level data through the first year of harvest in those villages, we find that solar-powered drip irrigation significantly augments both household income and nutritional intake, particularly during the dry season, and is cost effective compared to alternative technologies. PMID:20080616

  2. Irrigation infrastructure and water appropriation rules for food security

    NASA Astrophysics Data System (ADS)

    Gohar, Abdelaziz A.; Amer, Saud A.; Ward, Frank A.

    2015-01-01

    In the developing world's irrigated areas, water management and planning is often motivated by the need for lasting food security. Two important policy measures to address this need are improving the flexibility of water appropriation rules and developing irrigation storage infrastructure. Little research to date has investigated the performance of these two policy measures in a single analysis while maintaining a basin wide water balance. This paper examines impacts of storage capacity and water appropriation rules on total economic welfare in irrigated agriculture, while maintaining a water balance. The application is to a river basin in northern Afghanistan. A constrained optimization framework is developed to examine economic consequences on food security and farm income resulting from each policy measure. Results show that significant improvements in both policy aims can be achieved through expanding existing storage capacity to capture up to 150 percent of long-term average annual water supplies when added capacity is combined with either a proportional sharing of water shortages or unrestricted water trading. An important contribution of the paper is to show how the benefits of storage and a changed water appropriation system operate under a variable climate. Results show that the hardship of droughts can be substantially lessened, with the largest rewards taking place in the most difficult periods. Findings provide a comprehensive framework for addressing future water scarcity, rural livelihoods, and food security in the developing world's irrigated regions.

  3. Arsenic Contamination in Food-chain: Transfer of Arsenic into Food Materials through Groundwater Irrigation

    PubMed Central

    Joardar, J.C.; Parvin, S.; Correll, Ray; Naidu, Ravi

    2006-01-01

    Arsenic contamination in groundwater in Bangladesh has become an additional concern vis-à-vis its use for irrigation purposes. Even if arsenic-safe drinking-water is assured, the question of irrigating soils with arsenic-laden groundwater will continue for years to come. Immediate attention should be given to assess the possibility of accumulating arsenic in soils through irrigation-water and its subsequent entry into the food-chain through various food crops and fodders. With this possibility in mind, arsenic content of 2,500 water, soil and vegetable samples from arsenic-affected and arsenic-unaffected areas were analyzed during 1999–2004. Other sources of foods and fodders were also analyzed. Irrigating a rice field with groundwater containing 0.55 mg/L of arsenic with a water requirement of 1,000 mm results in an estimated addition of 5.5 kg of arsenic per ha per annum. Concentration of arsenic as high as 80 mg per kg of soil was found in an area receiving arsenic-contaminated irrigation. A comparison of results from affected and unaffected areas revealed that some commonly-grown vegetables, which would usually be suitable as good sources of nourishment, accumulate substantially-elevated amounts of arsenic. For example, more than 150 mg/kg of arsenic has been found to be accumulated in arum (kochu) vegetable. Implications of arsenic ingested in vegetables and other food materials are discussed in the paper. PMID:17366772

  4. Food security, irrigation, climate change, and water scarcity in India

    NASA Astrophysics Data System (ADS)

    Hertel, T. W.; Taheripour, F.; Gopalakrishnan, B. N.; Sahin, S.; Escurra, J.

    2015-12-01

    This paper uses an advanced CGE model (Taheripour et al., 2013) coupled with hydrological projections of future water scarcity and biophysical data on likely crop yields under climate change to examine how water scarcity, climate change, and trade jointly alter land use changes across the Indian subcontinent. Climate shocks to rainfed and irrigated yields in 2030 are based on the p-DSSAT crop model, RCP 2.6, as reported under the AgMIP project (Rosenzweig et al., 2013), accessed through GEOSHARE (Villoria et al, 2014). Results show that, when water scarcity is ignored, irrigated areas grow in the wake of climate change as the returns to irrigation rise faster than for rainfed uses of land within a given agro-ecological zone. When non-agricultural competition for future water use, as well as anticipated supply side limitations are brought into play (Rosegrant et al., 2013), the opportunity cost of water rises across all river basins, with the increase ranging from 12% (Luni) to 44% (Brahmaputra). As a consequence, irrigated crop production is curtailed in most regions (Figure 1), with the largest reductions coming in the most water intensive crops, namely rice and wheat. By reducing irrigated area, which tends to have much higher yields, the combined effects of water scarcity and climate impacts require an increase in total cropped area, which rises by about 240,000 ha. The majority of this area expansion occurs in the Ganges, Indus, and Brahmari river basins. Overall crop output falls by about 2 billion, relative to the 2030 baseline, with imports rising by about 570 million. The combined effects of climate change and water scarcity for irrigation also have macro-economic consequences, resulting in a 0.28% reduction in GDP and an increase in the consumer price index by about 0.4% in 2030, compared the baseline. The national welfare impact on India amounts to roughly 3 billion (at 2007 prices) in 2030. Assuming a 3% social discount rate, the net present value of the

  5. Irrigation: Erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation is essential for global food production. However, irrigation erosion can limit the ability of irrigation systems to reliably produce food and fiber in the future. The factors affecting soil erosion from irrigation are the same as rainfall—water detaches and transports sediment. However, t...

  6. A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir).

    PubMed

    Jan, F Akbar; Ishaq, M; Khan, S; Ihsanullah, I; Ahmad, I; Shakirullah, M

    2010-07-15

    Food crops irrigated with wastewater are mostly contaminated with heavy metals and considered as a main pathway for human exposure. In this study, soil and food crops samples were collected from wastewater irrigated soils, background and relatively less polluted areas. Results of the sequential extraction and total metals concentrations in soils indicated that wastewater irrigation has significantly increased (p > or = 0.001) the bioavailable and total metal contents in wastewater irrigated soil as compared to background and control soils. Heavy metal concentrations in the food crops grown on wastewater irrigated soil were higher than those grown on background and control soils but were found within WHO/FAO permissible limits except for Zn. Health risk index values were less than 1 for both control and wastewater irrigated soils (except Mn). However, the food crops such as Brassica rapa, Spinacia oleracae L., Lycopersicum esculantum, Mentha viridis, Coriandum sativum and Lactuca sativa grown on wastewater irrigated soil can pose health risks because of the high concentration of Mn. PMID:20399016

  7. Rainfall consistently enhanced around the Gezira Scheme in East Africa due to irrigation

    NASA Astrophysics Data System (ADS)

    Alter, Ross E.; Im, Eun-Soon; Eltahir, Elfatih A. B.

    2015-10-01

    Land-use and land-cover changes have significantly modified regional climate patterns around the world. In particular, the rapid development of large-scale cropland irrigation over the past century has been investigated in relation to possible modification of regional rainfall. In regional climate simulations of the West African Sahel, hypothetical large-scale irrigation schemes inhibit rainfall over irrigated areas but enhance rainfall remotely. However, the simulated influence of large-scale irrigation schemes on precipitation patterns cannot be substantiated without direct comparison to observations. Here we present two complementary analyses: numerical simulations using a regional climate model over an actual, large-scale irrigation scheme in the East African Sahel--the Gezira Scheme--and observational analyses over the same area. The simulations suggest that irrigation inhibits rainfall over the Gezira Scheme and enhances rainfall to the east. Observational analyses of rainfall, temperature and streamflow in the same region support the simulated results. The findings are consistent with a mechanistic framework in which irrigation decreases surface air temperature, causing atmospheric subsidence over the irrigated area and clockwise wind anomalies (in background southwesterly winds) that increase upward vertical motion to the east. We conclude that irrigation development can consistently modify rainfall patterns in and around irrigated areas, warranting further examination of potential agricultural, hydrologic and economic implications.

  8. Purple phototrophic bacterium enhances stevioside yield by Stevia rebaudiana Bertoni via foliar spray and rhizosphere irrigation.

    PubMed

    Wu, Jing; Wang, Yiming; Lin, Xiangui

    2013-01-01

    This study was conducted to compare the effects of foliar spray and rhizosphere irrigation with purple phototrophic bacteria (PPB) on growth and stevioside (ST) yield of Stevia. rebaudiana. The S. rebaudiana plants were treated by foliar spray, rhizosphere irrigation, and spray plus irrigation with PPB for 10 days, respectively. All treatments enhanced growth of S. rebaudiana, and the foliar method was more efficient than irrigation. Spraying combined with irrigation increased the ST yield plant (-1) by 69.2% as compared to the control. The soil dehydrogenase activity, S. rebaudiana shoot biomass, chlorophyll content in new leaves, and soluble sugar in old leaves were affected significantly by S+I treatment, too. The PPB probably works in the rhizosphere by activating the metabolic activity of soil bacteria, and on leaves by excreting phytohormones or enhancing the activity of phyllosphere microorganisms. PMID:23825677

  9. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China.

    PubMed

    Khan, S; Cao, Q; Zheng, Y M; Huang, Y Z; Zhu, Y G

    2008-04-01

    Consumption of food crops contaminated with heavy metals is a major food chain route for human exposure. We studied the health risks of heavy metals in contaminated food crops irrigated with wastewater. Results indicate that there is a substantial buildup of heavy metals in wastewater-irrigated soils, collected from Beijing, China. Heavy metal concentrations in plants grown in wastewater-irrigated soils were significantly higher (Pfood crops grown in wastewater-irrigated soils ingest significant amount of the metals studied. However, health risk index values of less than 1 indicate a relative absence of health risks associated with the ingestion of contaminated vegetables. PMID:17720286

  10. Use of domestic greywater for small-scale irrigation of food crops: Effects on plants and soil

    NASA Astrophysics Data System (ADS)

    Rodda, N.; Salukazana, L.; Jackson, S. A. F.; Smith, M. T.

    Disposal of greywater presents a problem in areas served with on-site sanitation or in areas with poor service provision. Such areas often also face challenges with respect to food security. Use of greywater for irrigation of food crops represents a possible beneficial use of greywater which can contribute to household food supply and to informal income generation. In this study, an above-ground crop (Swiss chard, Betavulgaris var. cicla) and a below-ground crop (carrot, Daucus carota) were irrigated in pots with mixed greywater sourced from households in an informal settlement. A simple form of sub-surface irrigation was used. Plant growth, crop yield, and levels of macro- and micronutrients in crops and soil were monitored through six growth cycles. Equivalent treatments, irrigated with either tap water or a hydroponic nutrient solution, were conducted for comparison. The same soil was used throughout to allow accumulation of greywater-derived substances in soil to be detected. The results indicated that: (i) irrigation with greywater increased plant growth and yield relative to crops irrigated with tap water only, although crops irrigated with hydroponic nutrient solution yielded the highest growth and yield; (ii) irrigation with greywater improved plant nutrient content relative to crops irrigated with tap water; (iii) soil irrigated with greywater showed increased electrical conductivity and increased concentrations of metals over time, coupled with an increase in sodium and metal concentrations in crops. Thus, provided precautions are taken with regard to salt and metal accumulation, greywater offers a potential source of water for household crop irrigation which additionally shows some fertiliser properties.

  11. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    PubMed

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  12. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    PubMed Central

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  13. Increased textural complexity in food enhances satiation.

    PubMed

    Larsen, Danaé S; Tang, Jingyuan; Ferguson, Lynnette R; James, Bryony J

    2016-10-01

    For the first time this study has shown a direct effect of food textural complexity on satiation. Independent of oral processing time, increasing the textural complexity of a food significantly decreased food intake. Foods with complex textures stimulate many sensory perceptions during oral processing, with a succession of textures perceived between first bite and swallow. Previously the impact of texture on satiation (commonly tested by increasing viscosities of semi-solids) has been explained by texture's influence on oral processing time; a long oral processing time enhances satiation. The results of the current study show that subjects in a randomised cross-over trial who consumed a "starter" (preload) model food with high textural complexity went on to eat significantly less of a two course ad libitum meal. Subjects who consumed a "starter" model food with low textural complexity, but with the same flavour, energy density and oral processing time, ate significantly more of the same ad libitum meal. The results show that increasing the number of textures perceived during chewing of a solid food triggers the satiation response earlier than when chewing a less texturally complex food. Increasing textural complexity of manufactured foods, to allow for greater sensory stimulation per bite, could potentially be used as a tool to enhance the satiation response and decrease food intake. PMID:27235823

  14. Enhancing Adoption of Irrigation Scheduling to Sustain the Viability of Fruit and Nut Crops in California

    NASA Astrophysics Data System (ADS)

    Fulton, A.; Snyder, R.; Hillyer, C.; English, M.; Sanden, B.; Munk, D.

    2012-04-01

    Enhancing Adoption of Irrigation Scheduling to Sustain the Viability of Fruit and Nut Crops in California Allan Fulton, Richard Snyder, Charles Hillyer, Marshall English, Blake Sanden, and Dan Munk Adoption of scientific methods to decide when to irrigate and how much water to apply to a crop has increased over the last three decades in California. In 1988, less than 4.3 percent of US farmers employed some type of science-based technique to assist in making irrigation scheduling decisions (USDA, 1995). An ongoing survey in California, representing an industry irrigating nearly 0.4 million planted almond hectares, indicates adoption rates ranging from 38 to 55 percent of either crop evapotranspiration (ETc), soil moisture monitoring, plant water status, or some combination of these irrigation scheduling techniques to assist with making irrigation management decisions (California Almond Board, 2011). High capital investment to establish fruit and nut crops, sensitivity to over and under-irrigation on crop performance and longevity, and increasing costs and competition for water have all contributed to increased adoption of scientific irrigation scheduling methods. These trends in adoption are encouraging and more opportunities exist to develop improved irrigation scheduling tools, especially computer decision-making models. In 2009 and 2010, an "On-line Irrigation Scheduling Advisory Service" (OISO, 2012), also referred to as Online Irrigation Management (IMO), was used and evaluated in commercial walnut, almond, and French prune orchards in the northern Sacramento Valley of California. This specific model has many features described as the "Next Generation of Irrigation Schedulers" (Hillyer, 2010). While conventional irrigation management involves simply irrigating as needed to avoid crop stress, this IMO is designed to control crop stress, which requires: (i) precise control of crop water availability (rather than controlling applied water); (ii) quantifying crop

  15. Impacts of Change in Irrigation Water Availability on Food Production in the Yellow River Basin under Climate Change

    NASA Astrophysics Data System (ADS)

    Yin, Y. Y.; Tang, Q.

    2014-12-01

    Approximately 9 percent of China's population and 17 percent of its agricultural area are settled in the Yellow River Basins. Irrigation, which plays an important role in agricultural production, occupies the largest share of human consumptive water use in the basin. Given increasing water demands, the basin faces acute water scarcity. Previous studies have suggested that decrease in irrigation water availability under climate change might have an overall adverse impact on the food production of the basin. The timing and area that would face severe water stress are yet to be identified. We used a land surface hydrological model forced with the bias-corrected climatic variables from 5 climate models under 4 Representative Concentration Pathways (RCPs) to estimate total water availability in the sub-basins of the Yellow River basin. The future socioeconomic conditions, the Shared Socioeconomic Pathways (SSPs), were used to estimate the water requirement in the nonagricultural water use sectors. The irrigation water availability was estimated from the total water availability and nonagricultural water use, and the irrigation water demands were estimated based on the current irrigation project efficiencies. The timing and area of irrigation water shortage were shown and the implication of change in irrigation water availability on food production was assessed. The results show that the sub-basins with high population density and gross domestic product (GDP) are likely to confront severe water stress and reduction in food production earlier because irrigation water was to be appropriated by the rapid increase in nonagricultural water use sectors. The study stresses the need for adaptive management of water to balance agriculture and nonagricultural demands in northern China.

  16. Nutritionally enhanced food crops; progress and perspectives.

    PubMed

    Hefferon, Kathleen L

    2015-01-01

    Great progress has been made over the past decade with respect to the application of biotechnology to generate nutritionally improved food crops. Biofortified staple crops such as rice, maize and wheat harboring essential micronutrients to benefit the world's poor are under development as well as new varieties of crops which have the ability to combat chronic disease. This review discusses the improvement of the nutritional status of crops to make a positive impact on global human health. Several examples of nutritionally enhanced crops which have been developed using biotechnological approaches will be discussed. These range from biofortified crops to crops with novel abilities to fight disease. The review concludes with a discussion of hurdles faced with respect to public perception, as well as directions of future research and development for nutritionally enhanced food crops. PMID:25679450

  17. Nutritionally Enhanced Food Crops; Progress and Perspectives

    PubMed Central

    Hefferon, Kathleen L.

    2015-01-01

    Great progress has been made over the past decade with respect to the application of biotechnology to generate nutritionally improved food crops. Biofortified staple crops such as rice, maize and wheat harboring essential micronutrients to benefit the world’s poor are under development as well as new varieties of crops which have the ability to combat chronic disease. This review discusses the improvement of the nutritional status of crops to make a positive impact on global human health. Several examples of nutritionally enhanced crops which have been developed using biotechnological approaches will be discussed. These range from biofortified crops to crops with novel abilities to fight disease. The review concludes with a discussion of hurdles faced with respect to public perception, as well as directions of future research and development for nutritionally enhanced food crops. PMID:25679450

  18. Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR)

    NASA Astrophysics Data System (ADS)

    Cary, L.; Kloppmann, W.; Battilani, A.; Bertaki, M.; Blagojevic, S.; Chartzoulakis, K.; Dalsgaard, A.; Forslund, A.; Jovanovic, Z.; Kasapakis, I.

    2009-04-01

    The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops an soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). A work package in the EU FP5 project SAFIR is dedicated to study the impact of wastewater irrigation on the soil-water-plant-product system. Its monitoring program comprises pathogens and inorganic pollutants, including both geogenic and potentially anthropogenic trace elements in the aim to better understand soil-irrigation water interactions. The SAFIR field study sites are found in China, Italy, Crete, and Serbia. A performance evaluation of SAFIR-specific treatment technology through the monitoring of waste water and irrigation water quality was made through waste water chemical and microbiological qualities, which were investigated upstream and downstream of the SAFIR specific treatment three times per season. Irrigation water transits through the uppermost soil decimetres to the crop roots. The latter will become, in the course of the irrigation season, the major sink of percolating water, together with evaporation. The water saving irrigation techniques used in SAFIR are surface and subsurface drip irrigation. The investigation of the solid soil phase concentrates on the root zone as main transit and storage compartment for pollutants and, eventually, pathogens. The initial soil quality was assessed through a sampling campaign before the onset of the first year irrigation; the soil quality has been monitored throughout three years under cultivation of tomatoes or potatoes. The plot layout for each of the study sites

  19. Ensuring Food Security Through Enhancing Microbiological Food Safety

    NASA Astrophysics Data System (ADS)

    Mikš-Krajnik, Marta; Yuk, Hyun-Gyun; Kumar, Amit; Yang, Yishan; Zheng, Qianwang; Kim, Min-Jeong; Ghate, Vinayak; Yuan, Wenqian; Pang, Xinyi

    2015-10-01

    Food safety and food security are interrelated concepts with a profound impact on the quality of human life. Food security describes the overall availability of food at different levels from global to individual household. While, food safety focuses on handling, preparation and storage of foods in order to prevent foodborne illnesses. This review focuses on innovative thermal and non-thermal technologies in the area of food processing as the means to ensure food security through improving food safety with emphasis on the reduction and control of microbiological risks. The antimicrobial efficiency and mechanism of new technologies to extend the shelf life of food product were also discussed.

  20. [Yeast irrigation enhances the nutritional content in hydroponic green maize fodder].

    PubMed

    Bedolla-Torres, Martha H; Palacios Espinosa, Alejandro; Palacios, Oskar A; Choix, Francisco J; Ascencio Valle, Felipe de Jesús; López Aguilar, David R; Espinoza Villavicencio, José Luis; de Luna de la Peña, Rafael; Guillen Trujillo, Ariel; Avila Serrano, Narciso Y; Ortega Pérez, Ricardo

    2015-01-01

    The objective of this study was to evaluate the effect of irrigation with yeasts (Debaryomyces hansenii var. Fabry, Yarowia lipolytica YIBCS002, Yarowia lipolytica var. BCS and Candida pseudointermedia) on the final nutritional content of hydroponic green maize fodder (Zea Zea mays L.), applied at different fodder growth stages (1. seed-seedling stage, 2. seedling-plant 20cm, 3. during all the culture). Irrespective of the fodder growth stages at which they were applied, all yeasts tested enhanced the content of raw protein, lipids, ash, moisture and energy. The percentage of electrolytes (Na, K, Cl, sulphates, Ca and Mg) showed different responses depending on the kind of yeast applied; D. hansenii exhibited the highest increment in all electrolytes, except for phosphorous. We conclude that the addition of yeasts belonging to the genera Debaryomyces, Candida and Yarowia to the irrigation solution of hydroponic systems enhances the nutrient content of green fodder. This kind of irrigation can be applied to generate high commercial value cultures in limited spaces. PMID:26364185

  1. Can deficit irrigation techniques be used to enhance phosphorus and water use efficiency and benefit crop yields?

    NASA Astrophysics Data System (ADS)

    Wright, Hannah R.; Dodd, Ian C.; Blackwell, Martin S. A.; Surridge, Ben W. J.

    2015-04-01

    Soil drying and rewetting (DRW) affects the forms and availability of phosphorus (P). Water soluble P has been reported to increase 1.8- to 19-fold after air-drying with the majority of the increase (56-100%) attributable to organic P. Similarly, in two contrasting soil types DRW increased concentrations of total P and reactive P in leachate, likely due to enhanced P mineralisation and physiochemical processes causing detachment of soil colloids, with faster rewetting rates related to higher concentrations of P. The intensity of drying as well as the rate of rewetting influences organic and inorganic P cycling. How these dynamics are driven by soil water status, and impact crop P acquisition and growth, remains unclear. Improving P and water use efficiencies and crop yields is globally important as both P and water resources become increasingly scarce, whilst demand for food increases. Irrigation supply below the water requirement for full crop evapotranspiration is employed by agricultural practitioners where water supply is limited. Regulated deficit irrigation describes the scheduling of water supply to correspond to the times of highest crop demand. Alternate wetting and drying (AWD) is applied in lowland irrigated rice production to avoid flooding at certain times of crop development, and has benefited P nutrition and yields. This research aims to optimise the benefits of P availability and uptake achieved by DRW by guiding deficit irrigation management strategies. Further determination of underlying processes driving P cycling at fluctuating soil moisture status is required. Presented here is a summary of the literature on DRW effects on soil P availability and plant P uptake and partitioning, in a range of soil types and cropping systems, with emphasis on alternate wetting and drying irrigation (AWD) compared to continuous flooding in lowland irrigated rice production. Soil water contents and matric potentials, and effects on P dynamics, are highly variable

  2. Site-specific variable rate irrigation a means to enhance water use efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of irrigated cropland in the US is watered with sprinkler irrigation systems. These systems are inherently more efficient in distributing water than furrow or flood irrigation. Appropriate system design of sprinkler irrigation equipment, application methods, and farming practices (e.g. ...

  3. Soy Foods for Enhancing Women's Health.

    ERIC Educational Resources Information Center

    Fly, Alyce D.

    2002-01-01

    Describes the forms of soy available as food ingredients and foods, the components in soy that may be important to women's health, the FDA health claim permitted for soy foods and ingredients, and research studies examining the role of soy in reducing cholesterol, cancer risk, osteoporosis, and symptoms of menopause. (Contains references.) (SM)

  4. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce.

    PubMed

    Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying

    2015-10-01

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10(-4). However, the annual risk arising from P. aeruginosa was 9.55 × 10(-4), slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  5. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce

    PubMed Central

    Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying

    2015-01-01

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10−4. However, the annual risk arising from P. aeruginosa was 9.55 × 10−4, slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  6. Television and eating: repetition enhances food intake.

    PubMed

    Mathur, Utsa; Stevenson, Richard J

    2015-01-01

    Some studies find that eating with TV increases food intake while others do not. Some of this variability may reflect the engagingness of what is being watched (i.e., content). To test this we varied engagingness by manipulating content familiarity. Female participants undertook two sessions. In the "Different" session they watched two different episodes of the comedy Friends, with snack food presented during the second episode. In the "Same" session they viewed another episode of Friends twice in succession, with snack food presented during the second repeat showing. The three episodes of Friends used here were fully counterbalanced, so overall the only difference between the "Same" and "Different" sessions was whether the content of the second show was familiar or novel. As expected, 14% less was eaten in the "Different" session, suggesting that novel and presumably more engaging content can reduce intake relative to watching familiar and presumably less engaging content. These findings are consistent with the idea that the engagingness of TV can differentially affect food intake, although boredom or irritability resulting from repeat viewing might also explain this effect. PMID:26579040

  7. Television and eating: repetition enhances food intake

    PubMed Central

    Mathur, Utsa; Stevenson, Richard J.

    2015-01-01

    Some studies find that eating with TV increases food intake while others do not. Some of this variability may reflect the engagingness of what is being watched (i.e., content). To test this we varied engagingness by manipulating content familiarity. Female participants undertook two sessions. In the “Different” session they watched two different episodes of the comedy Friends, with snack food presented during the second episode. In the “Same” session they viewed another episode of Friends twice in succession, with snack food presented during the second repeat showing. The three episodes of Friends used here were fully counterbalanced, so overall the only difference between the “Same” and “Different” sessions was whether the content of the second show was familiar or novel. As expected, 14% less was eaten in the “Different” session, suggesting that novel and presumably more engaging content can reduce intake relative to watching familiar and presumably less engaging content. These findings are consistent with the idea that the engagingness of TV can differentially affect food intake, although boredom or irritability resulting from repeat viewing might also explain this effect. PMID:26579040

  8. Chelant-enhanced heavy metal uptake by Eucalyptus trees under controlled deficit irrigation.

    PubMed

    Fine, Pinchas; Paresh, Rathod; Beriozkin, Anna; Hass, Amir

    2014-09-15

    We tested the hypothesis that controlled deficit irrigation (CDI) of the fast growing, salinity resistant Eucalyptus camaldulensis tree with timely EDTA application can enhance sediment clean-up while minimizing leaching of metal complexes. 220-L lysimeters containing a sand-metal-polluted sludge mixture. Established saplings were irrigated with tap or desalinized (RO) water with/without 4-times daily addition of EDTA, EDDS and citric acid. In the 2nd season (2008/9) the chelates were added at 2 mM for ≈ 70 summer days. Diagnostic leaves and soil solution compositions were regularly monitored, the latter by applying prescribed leaching at an overall leaching percentage of ≈ 0.4%. While the three chelants solubilized sludge metals in batch extraction, EDDS often being the more efficient chelant, EDTA only was effective in the soil system. Leachate and leaves peak average concentrations in EDTA treatment vs. the control treatments were: Cd: 200 mg L(-1) vs. 1.0 and 67 vs. 21 mg kg(-1); Cu: 90 vs. 1.5 mg L(-1) and 17 vs. 3.0 mg kg(-1); Ni: 60 mg L(-1) vs. 14 and 20 vs. 6.0 mg kg(-1); Pb: >44 vs. 0.1 mg L(-1) and 9.0 vs. 1.0 mg kg(-1); and Zn: 650 vs. 4.0 mg L(-1) and 200 vs. 70 mg kg(-1), all respectively. Peak average leachate EDTA concentration was >60 mM, yet acclimating soil microflora gradually degraded most all the EDTA. In incubation study, EDDS and EDTA half-lives in acclimated lysimeter media were 5-11 days and ≥ 27 days, respectively. It suggests that sustainable phytoextraction of heavy metals is feasible under careful CDI with EDTA (yet not with biodegradable chelants) augmentation at low doses. Despite that the eucalypt was highly salinity (and EDTA) resistant, CDI using RO water further reduces soil solution salinity, thus increasing the usefulness of this remediation technique. PMID:25014186

  9. Surface-enhanced Raman spectroscopy applied to food safety.

    PubMed

    Craig, Ana Paula; Franca, Adriana S; Irudayaraj, Joseph

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) is an advanced Raman technique that enhances the vibrational spectrum of molecules adsorbed on or in the vicinity of metal particles and/or surfaces. Because of its readiness, sensitivity, and minimum sample preparation requirements, SERS is being considered as a powerful technique for food inspection. Key aspects of food-safety assurance, spectroscopy methods, and SERS are briefly discussed in an extended introduction of this review. The recent and potential advances in SERS are highlighted in sections that deal with the (a) detection of food-borne pathogenic microorganisms and (b) the detection of food contaminants and adulteration, concentrated specifically on antibiotics, drugs, hormones, melamine, and pesticides. This review provides an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for food-safety assessment. PMID:23297774

  10. Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium.

    PubMed

    Moreno-Jiménez, Eduardo; Meharg, Andrew A; Smolders, Erik; Manzano, Rebeca; Becerra, Daniel; Sánchez-Llerena, Javier; Albarrán, Ángel; López-Piñero, Antonio

    2014-07-01

    Previous studies have demonstrated that rice cultivated under flooded conditions has higher concentrations of arsenic (As) but lower cadmium (Cd) compared to rice grown in unsaturated soils. To validate such effects over long terms under Mediterranean conditions a field experiment, conducted over 7 successive years was established in SW Spain. The impact of water management on rice production and grain arsenic (As) and cadmium (Cd) was measured, and As speciation was determined to inform toxicity evaluation. Sprinkler irrigation was compared to traditional flooding. Both irrigation techniques resulted in similar grain yields (~3000 kg grain ha(-1)). Successive sprinkler irrigation over 7 years decreased grain total As to one-sixth its initial concentration in the flooded system (0.55 to 0.09 mg As kg(-1)), while one cycle of sprinkler irrigation also reduced grain total As by one-third (0.20 mg kg(-1)). Grain inorganic As concentration increased up to 2 folds under flooded conditions compared to sprinkler irrigated fields while organic As was also lower in sprinkler system treatments, but to a lesser extent. This suggests that methylation is favored under water logging. However, sprinkler irrigation increased Cd transfer to grain by a factor of 10, reaching 0.05 mg Cd kg(-1) in 7 years. Sprinkler systems in paddy fields seem particularly suited for Mediterranean climates and are able to mitigate against excessive As accumulation, but our evidence shows that an increased Cd load in rice grain may result. PMID:24742557

  11. Irrigation-dependent wetlands versus instream flow enhancement: economics of water transfers from agriculture to wildlife uses.

    PubMed

    Peck, Dannele E; McLeod, Doanald M; Hewlett, John P; Lovvorn, James R

    2004-12-01

    Irrigated agriculture throughout western North America faces increasing pressure to transfer water to nonagricultural uses, including instream flows for fish and wildlife management. In an important case, increased instream flows are needed in Nebraska's Platte River for recovery of threatened and endangered fish and wildlife species. Irrigated agriculture in the Laramie Basin of southeast Wyoming is a potential water source for the effort to enhance instream flow. However, flood irrigation of hayfields in the Laramie Basin has created many wetlands, both ephemeral and permanent, over the last century. Attempting to increase Platte River instream flows by purchasing water rights or improving irrigation efficiency in the Laramie Basin would transform irrigated agriculture, causing a substantial fraction of the Laramie Basin's wetlands to be lost. A creative solution is needed to prevent the sacrifice of one ecosystem on behalf of another. A rotating short-term water-leasing program is proposed. The program allows Laramie Basin producers to contribute to instream flows while continuing to support local wetlands. Permanent wetland desiccation is prevented and regional environmental water needs are met without impairing local ecological resources. Budget analysis is used to provide an initial cost estimate for acquiring water from agriculture through the short-term leasing program. The proposed approach is more expensive than traditional programs but allows contribution to instream flows without major wetland loss. Short-term leasing is a more efficient approach if benefits from wetlands exceed the difference in cost between the short-term lease program and programs that do not conserve wetlands. PMID:15633027

  12. Dentin wettability enhancement for three irrigating solutions and their effect on push out bond strength of gutta percha / AH Plus

    PubMed Central

    El Gendy, Abeer-Abdel-Hakim; El Ashry, Salma-Hassan

    2015-01-01

    Background The aim of this study was to investigate the effect of wettability enhancement for 17% EDTA, 2.5% sodium hypochlorite and 7% maleic acid solutions on push out bond strength of gutta percha /AH Plus to root dentin. Material and Methods One hundred and eight extracted single rooted human lower premolars were instrumented up to Protaper Universal F5 then irrigated with 3ml of 2.5% NaOCl after each file. Irrigants were prepared and a pilot study for determination of Tween 80 concentration yielding the lowest surface tension value in every solution was conducted. Samples were randomly divided into a control group and two experimental groups (17% EDTA and 7% Maleate), further split into eight subgroups (n=12), according to Tween 80 implementation sequence. Roots were obturated using gutta percha and AH plus by lateral condensation. Bond strength was measured by push out test. Mode of failure was then evaluated quantitatively by stereomicroscopy. Data were statistically analyzed using one way ANOVA followed by Tukey-Kramer for multiple comparisons. Results Control group showed the lowest values. Maleic acid subgroups showed significantly higher overall values than EDTA subgroups (P<0.05). Protocols implementing surfactant containing NaOCl showed significantly lower values than plain counterparts. Failure pattern was predominantly cohesive for plain regimens and the ones implementing Tween 80 in maleic acid solutions with plain NaOCl. Conclusions Tween 80 addition to demineralizing irrigants increased the bond strength values. Surfactant containing NaOCl solutions yielded lower bond strength than plain ones. Key words:Wettability enhancement for three irrigants vs. corresponding gutta percha/AH Plus bonding. PMID:26155339

  13. Considerations for Nanosciences in Food Science and Nutrition: "Enhanced Food Properties".

    PubMed

    Tekiner, Ismail H; Mutlu, Hayrettin; Algıngil, Selcuk; Dincerler, Elif

    2015-01-01

    The agro-food industries are one of the biggest manufacturing sectors worldwide with a turnover of US$4 trillion per year. Within the last decades, nanoscience has opened-up fantastic ways to challenge new sub-universes for exploring the interactions between physical, chemical and biological systems as well as agro-food and nutrition sectors. Among these potentials, there is the enhancement of food properties and constituents such as nanoparticulate delivery systems, food safety and food biosecurity. In the recent years, many patents were launched for edible coating agents, essential oils and emulsifiers, including agrochemical active ingredients, nanomaterials for agriculture, horticulture, aquaculture, and smart packaging materials. The aim of this review was to search for the recent applications of nanoscience in the agro-food science and nutrition area, including the launched patents in this field. PMID:25981496

  14. Chelant-enhanced heavy metals uptake by Eucalyptus trees under controlled deficit irrigation

    NASA Astrophysics Data System (ADS)

    Fine, Pinchas; Rathod, Paresh; Beriozkin, Anna; Ein-Gal, Oz; Hass, Amir

    2014-05-01

    Enhancement of phytoremediation of heavy metal polluted soils employs organic ligands, aimed to solubilize, phytoextract and translocate metals into the canopy. The use of more persistent chelants (e.g. EDTA) is phasing out due to concerns over their role in the environment. We tested the hypothesis that controlled deficit irrigation (CDI) of the fast growing, salinity resistant Eucalyptus camaldulensis coupled with timely EDTA application enhances sediment phytoremediation while minimizing leaching of metal complexes below the root-zone. This was tested in 220-L lysimeters packed with sand mixed with metals polluted biosolids. One year old trees were brought under CDI with tap or RO water for two growing seasons. EDTA, EDDS and citric acid fertigation at 2 mM started in each May for 2.5-3.5 months, and prescribed soil leaching and sampling of tree leaves started thereafter. While all 3 chelants solubilized biosolids metal in batch extraction (EDDS often being the more efficient), EDTA was the only to increased metal concentrations both in the soil solution and in the Eucalyptus leaves. The average concentrations in the soil solution and in the leaves, in the EDTA vs. control (chelant-free) treatments, all respectively, were: Cd - 200 mg L-1 vs. 1.0, and 67 vs. 21 mg kg-1; Cu: 90 vs. 1.5 mg L-1, and 17 vs. 3.0 mg kg-1; Cr: 4.0 vs. 1.4 mg L-1, and 3.0 vs. 1.0 mg kg-1; Ni: 60 mg L-1 vs. 14, and 20 vs. 6.0 mg kg-1; Pb: >44 vs. 0.1 mg L-1, and 9.0 vs. 1.0 mg kg-1; and Zn: 650 vs. 4.0 mg L-1 and 200 vs. 70 mg kg-1. While EDDS was undetectable in all the leachates, EDTA concentrated to up to 100 mM. At 10 mM soil solution concentration, EDDS half-life in acclimated lysimeter media was 5-11 days and that of EDTA was ≥27-d. The study suggests that sustainable phytostabilization and phytoextraction of heavy metals are achievable under CDI with EDTA augmentation at low dose. This was yet futile with the biodegradable EDDS and citric acid. CDI with RO water further widened

  15. Assessment of region, farming system, irrigation source and sampling time as food safety risk factors for tomatoes.

    PubMed

    Pagadala, Sivaranjani; Marine, Sasha C; Micallef, Shirley A; Wang, Fei; Pahl, Donna M; Melendez, Meredith V; Kline, Wesley L; Oni, Ruth A; Walsh, Christopher S; Everts, Kathryne L; Buchanan, Robert L

    2015-03-01

    In the mid-Atlantic region of the United States, small- and medium-sized farmers use varied farm management methods and water sources to produce tomatoes. It is unclear whether these practices affect the food safety risk for tomatoes. This study was conducted to determine the prevalence, and assess risk factors for Salmonella enterica, Shiga toxin-producing Escherichia coli (STEC) and bacterial indicators in pre-harvest tomatoes and their production areas. A total of 24 organic and conventional, small- to medium-sized farms were sampled for six weeks in Maryland (MD), Delaware (DE) and New Jersey (NJ) between July and September 2012, and analyzed for indicator bacteria, Salmonella and STEC. A total of 422 samples--tomato fruit, irrigation water, compost, field soil and pond sediment samples--were collected, 259 of which were tomato samples. A low level of Salmonella-specific invA and Shiga toxin genes (stx1 or stx2) were detected, but no Salmonella or STEC isolates were recovered. Of the 422 samples analyzed, 9.5% were positive for generic E. coli, found in 5.4% (n=259) of tomato fruits, 22.5% (n=102) of irrigation water, 8.9% (n=45) of soil, 3/9 of pond sediment and 0/7 of compost samples. For tomato fruit, farming system (organic versus conventional) was not a significant factor for levels of indicator bacteria. However, the total number of organic tomato samples positive for generic E. coli (1.6%; 2/129) was significantly lower than for conventional tomatoes (6.9% (9/130); (χ(2) (1)=4.60, p=0.032)). Region was a significant factor for levels of Total Coliforms (TC) (p=0.046), although differences were marginal, with western MD having the highest TC counts (2.6 log CFU/g) and NJ having the lowest (2.0 log CFU/g). Tomatoes touching the ground or plastic mulch harbored significantly higher levels of TC compared to vine tomatoes, signaling a potential risk factor. Source of irrigation water was a significant factor for all indicator bacteria (p<0.0001), and

  16. The Running Wheel Enhances Food Anticipatory Activity: An Exploratory Study.

    PubMed

    Flôres, Danilo E F L; Bettilyon, Crystal N; Jia, Lori; Yamazaki, Shin

    2016-01-01

    Rodents anticipate rewarding stimuli such as daily meals, mates, and stimulant drugs. When a single meal is provided daily at a fixed time of day, an increase in activity, known as food anticipatory activity (FAA), occurs several hours before feeding time. The factors affecting the expression of FAA have not been well-studied. Understanding these factors may provide clues to the undiscovered anatomical substrates of food entrainment. In this study we determined whether wheel-running activity, which is also rewarding to rodents, modulated the robustness of FAA. We found that access to a freely rotating wheel enhanced the robustness of FAA. This enhancement was lost when the wheel was removed. In addition, while prior exposure to a running wheel alone did not enhance FAA, the presence of a locked wheel did enhance FAA as long as mice had previously run in the wheel. Together, these data suggest that FAA, like wheel-running activity, is influenced by reward signaling. PMID:27458354

  17. The Running Wheel Enhances Food Anticipatory Activity: An Exploratory Study

    PubMed Central

    Flôres, Danilo E. F. L.; Bettilyon, Crystal N.; Jia, Lori; Yamazaki, Shin

    2016-01-01

    Rodents anticipate rewarding stimuli such as daily meals, mates, and stimulant drugs. When a single meal is provided daily at a fixed time of day, an increase in activity, known as food anticipatory activity (FAA), occurs several hours before feeding time. The factors affecting the expression of FAA have not been well-studied. Understanding these factors may provide clues to the undiscovered anatomical substrates of food entrainment. In this study we determined whether wheel-running activity, which is also rewarding to rodents, modulated the robustness of FAA. We found that access to a freely rotating wheel enhanced the robustness of FAA. This enhancement was lost when the wheel was removed. In addition, while prior exposure to a running wheel alone did not enhance FAA, the presence of a locked wheel did enhance FAA as long as mice had previously run in the wheel. Together, these data suggest that FAA, like wheel-running activity, is influenced by reward signaling. PMID:27458354

  18. Reducing Food Loss and Waste to Enhance Food Security and Environmental Sustainability.

    PubMed

    Shafiee-Jood, Majid; Cai, Ximing

    2016-08-16

    While food shortage remains a big concern in many regions around the world, almost one-third of the total food production is discarded as food loss and waste (FLW). This is associated with about one-quarter of land, water, and fertilizer used for crop production, even though resources and environmental constraints are expected to limit food production around the world. FLW reduction represents a potential opportunity to enhance both food security and environmental sustainability and therefore has received considerable attention recently. By reviewing the recent progress and new developments in the literature, this paper highlights the importance of FLW prevention as a complementary solution to address the Grand Challenge of global food security and environmental sustainability. However, raising awareness only is not enough to realize the expected FLW reduction. We identify the knowledge gaps and opportunities for research by synthesizing the strategies of FLW reduction and the barriers, including (1) filling the data gaps, (2) quantifying the socioeconomic and environmental impacts of FLW reduction strategies, (3) understanding the scale effects, and (4) exploring the impacts of global transitions. It is urgent to take more aggressive yet scientifically based actions to reduce FLW, which require everyone's involvement along the food supply chain, including policy makers, food producers and suppliers, and food consumers. PMID:27428555

  19. Community Gardening in Rural Regions: Enhancing Food Security and Nutrition.

    ERIC Educational Resources Information Center

    Sullivan, Ashley F.

    Community gardening projects can enhance community food security and improve the nutrition of project participants. However, limited information exists on the most effective models and methods for establishing community gardens in rural areas. A survey of 12 rural community gardening projects found a variety of program models: community gardens…

  20. Balancing ecosystem services with energy and food security - Assessing trade-offs from reservoir operation and irrigation investments in Kenya's Tana Basin

    NASA Astrophysics Data System (ADS)

    Hurford, A. P.; Harou, J. J.

    2014-08-01

    Competition for water between key economic sectors and the environment means agreeing allocations is challenging. Managing releases from the three major dams in Kenya's Tana River basin with its 4.4 million inhabitants, 567 MW of installed hydropower capacity, 33 000 ha of irrigation and ecologically important wetlands and forests is a pertinent example. This research seeks firstly to identify and help decision-makers visualise reservoir management strategies which result in the best possible (Pareto-optimal) allocation of benefits between sectors. Secondly, it seeks to show how trade-offs between achievable benefits shift with the implementation of proposed new rice, cotton and biofuel irrigation projects. To approximate the Pareto-optimal trade-offs we link a water resources management simulation model to a multi-criteria search algorithm. The decisions or "levers" of the management problem are volume-dependent release rules for the three major dams and extent of investment in new irrigation schemes. These decisions are optimised for eight objectives covering the provision of water supply and irrigation, energy generation and maintenance of ecosystem services. Trade-off plots allow decision-makers to assess multi-reservoir rule-sets and irrigation investment options by visualising their impacts on different beneficiaries. Results quantify how economic gains from proposed irrigation schemes trade-off against the disturbance of ecosystems and local livelihoods that depend on them. Full implementation of the proposed schemes is shown to come at a high environmental and social cost. The clarity and comprehensiveness of "best-case" trade-off analysis is a useful vantage point from which to tackle the interdependence and complexity of "water-energy-food nexus" resource security issues.

  1. Health risks of thallium in contaminated arable soils and food crops irrigated with wastewater from a sulfuric acid plant in western Guangdong province, China.

    PubMed

    Wang, Chunlin; Chen, Yongheng; Liu, Juan; Wang, Jin; Li, Xiangping; Zhang, Yongbo; Liu, Yimin

    2013-04-01

    Thallium (Tl) contamination in soils poses a significant threat to human health due to the high toxicity of Tl and its ready assimilation by crops. Consumption of food crops contaminated with Tl is a major food chain route for human exposure. The health risks of Tl in contaminated food crops irrigated with wastewater from a sulfuric acid factory were investigated in this paper. Results indicate that long-term Tl-containing wastewater irrigation resulted in Tl contamination of arable soils and crops. The pollution load index values indicated that the arable soils were moderately enriched with Tl. Tl was highly accumulated in the crops. The content of Tl in the edible plant portions of crops ranged from 1.2 mg/kg to 104.8 mg/kg, exceeding the recommended permissible limits for food crops. The daily intake of metals (DIM) values of Tl for both adults and children via the consumption of the food crops except soya beans were higher than the reference oral dose (RfD) limit recommend by the United States environmental protection agency (US-EPA). Health risk index (HRI) values were generally higher than 1, indicating that health risks associated with Tl exposure are significant and assumed to be dangerous to the health of local villagers. Therefore, much attention should be paid to avoid consumption of these Tl-contaminated crops that can cause great potential risks. PMID:23321363

  2. Wireless sensor networks for irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...

  3. Balancing ecosystem services with energy and food security - assessing trade-offs for reservoir operation and irrigation investment in Kenya's Tana basin

    NASA Astrophysics Data System (ADS)

    Hurford, A. P.; Harou, J. J.

    2014-01-01

    Competition for water between key economic sectors and the environment means agreeing on allocation is challenging. Managing releases from the three major dams in Kenya's Tana River basin with its 4.4 million inhabitants, 567 MW of installed hydropower capacity, 33 000 ha of irrigation and ecologically important wetlands and forests is a pertinent example. This research seeks to identify and help decision-makers visualise reservoir management strategies which result in the best possible (Pareto-optimal) allocation of benefits between sectors. Secondly we seek to show how trade-offs between achievable benefits shift with the implementation of new proposed rice, cotton and biofuel irrigation projects. To identify the Pareto-optimal trade-offs we link a water resources management model to a multi-criteria search algorithm. The decisions or "levers" of the management problem are volume dependent release rules for the three major dams and extent of investment in new irrigation schemes. These decisions are optimised for objectives covering provision of water supply and irrigation, energy generation and maintenance of ecosystem services which underpin tourism and local livelihoods. Visual analytic plots allow decision makers to assess multi-reservoir rule-sets by understanding their impacts on different beneficiaries. Results quantify how economic gains from proposed irrigation schemes trade-off against disturbance of the flow regime which supports ecosystem services. Full implementation of the proposed schemes is shown to be Pareto-optimal, but at high environmental and social cost. The clarity and comprehensiveness of "best-case" trade-off analysis is a useful vantage point from which to tackle the interdependence and complexity of water-energy-food "nexus" challenges.

  4. 78 FR 52899 - Supplemental Nutrition Assistance Program (SNAP) Enhancing Retail Food Store Eligibility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... regarding Supplemental Nutrition Assistance Program (SNAP) retailer eligibility requirements (78 FR 51136... Food and Nutrition Service Supplemental Nutrition Assistance Program (SNAP) Enhancing Retail Food Store Eligibility--Listening Sessions AGENCY: Food and Nutrition Service (FNS), USDA. ACTION: Notice. SUMMARY:...

  5. Smallholder Irrigation and Crop Diversification under Climate Change in sub-Saharan Africa: Evidence and Potential for Simultaneous Food Security, Adaptation, and Mitigation

    NASA Astrophysics Data System (ADS)

    Naylor, R.; Burney, J. A.; Postel, S.

    2011-12-01

    The poorest populations in sub-Saharan Africa live in rural areas and depend on smallholder agricultural production for their livelihoods. Over 90% of all farmed area in Sub-Saharan Africa is rainfed, with crop production centering on 3-5 months of rainfall. Rapid population growth is reducing land per capita ratios, and low yields for staple crops make food security an increasingly challenging goal. Malnutrition, most noticeable among children, peaks during the dry season. Recent data on aggregate economic growth and investment in Africa hide these patterns of seasonal hunger and income disparity. Perhaps most perversely, smallholder farmers in the dry tropical regions of sub-Saharan Africa are (and will continue to be) some of the earliest and hardest hit by climate change. Our research focuses on the role distributed, small-scale irrigation can play in food security and climate change adaptation in sub-Saharan Africa. As Asia's agricultural success has demonstrated, irrigation, when combined with the availability of inputs (fertilizer) and improved crop varieties, can enable year-round production, growth in rural incomes, and a dramatic reduction in hunger. The situation in Africa is markedly different: agroecological conditions are far more heterogeneous than in Asia and evaporation rates are relatively high; most smallholders lack access to fertilizers; and market integration is constrained by infrastructure, information, and private sector incentives. Yet from a resource perspective, national- and regional-level estimates suggest that Internal Renewable Water Resources (IRWR) are nowhere near fully exploited in Sub-Saharan Africa -- even in the Sudano-Sahel, which is considered to be one of the driest regions of the continent. Irrigation can thus be implemented on a much larger scale sustainably. We will present (a) results from controlled, experimental field studies of solar-powered drip irrigation systems in the rural Sudano-Sahel region of West Africa. We

  6. Enhancing TIR image resolution via bayesian smoothing for IRRISAT irrigation management project

    NASA Astrophysics Data System (ADS)

    Addesso, Paolo; Capodici, Fulvio; D'Urso, Guido; Longo, Maurizio; Maltese, Antonino; Montone, Rita; Restaino, Rocco; Vivone, Gemine

    2013-10-01

    Accurate estimation of physical quantities depends on the availability of High Resolution (HR) observations of the Earth surface. However, due to the unavoidable tradeoff between spatial and time resolution, the acquisition instants of HR data hardly coincides with those required by the estimation algorithms. A possible solution consists in constructing a synthetic HR observation at a given time k by exploiting Low Resolution (LR) and HR data acquired at different instants. In this work we recast this issue as a smoothing problem, thus focusing on cases in which observations acquired both before and after time k are available. The proposed approach is validated on a region of interest for the IRRISAT irrigation management project in which the surface thermal inertia estimation, requiring multiple HR images at specific instants, constitute a key step.

  7. Irrigated Agriculture, Saudi Arabia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In Saudi Arabia, center-pivot, swing-arm irrigated agriculture complexes such as the one imaged at Jabal Tuwayq (20.5N, 45.0 E) extract deep fossil water reserves to achieve food crop production self sufficiency in this desert environment. The significance of the Saudi expanded irrigated agriculture is that the depletion of this finite water resource is a short term solution to a long term need that will still exist when the water has been extracted.

  8. GLOBAL ASSESSMENT OF WASTEWATER IRRIGATION: UNDERSTANDING HEALTH RISKS AND CONTRIBUTIONS TO FOOD SECURITY USING AN ENVIRONMENTAL SYSTEMS APPROACH

    EPA Science Inventory

    This research will quantify the extent of de facto reuse of untreated wastewater at the global scale. Through the integration of multiple existing spatial data sources, this project will produce rigorous analyses assessing the relationship between wastewater irrigation, hea...

  9. Asian irrigation, African rain: Remote impacts of irrigation

    NASA Astrophysics Data System (ADS)

    Vrese, Philipp; Hagemann, Stefan; Claussen, Martin

    2016-04-01

    Irrigation is not only vital for global food security but also constitutes an anthropogenic land use change, known to have strong effects on local hydrological and energy cycles. Using the Max Planck Institute for Meteorology's Earth System Model, we show that related impacts are not confined regionally but that possibly as much as 40% of the present-day precipitation in some of the arid regions in Eastern Africa are related to irrigation-based agriculture in Asia. Irrigation in South Asia also substantially influences the climate throughout Southeast Asia and China via the advection of water vapor and by altering the Asian monsoon. The simulated impact of irrigation on remote regions is sensitive to the magnitude of the irrigation-induced moisture flux. Therefore, it is likely that a future extension or decline of irrigated areas due to increasing food demand or declining fresh water resources will also affect precipitation and temperatures in remote regions.

  10. Food-associated Stimuli Enhance Barrier Properties of Gastrointestinal Mucus

    PubMed Central

    Yildiz, Hasan M.; Speciner, Lauren; Ozdemir, Cafer; Cohen, David E.; Carrier, Rebecca L.

    2015-01-01

    Orally delivered drugs and nutrients must diffuse through mucus to enter the circulatory system, but the barrier properties of mucus and their modulation by physiological factors are generally poorly characterized. The main objective of this study was to examine the impact of physicochemical changes occurring upon food ingestion on gastrointestinal (GI) mucus barrier properties. Lipids representative of postprandial intestinal contents enhanced mucus barriers, as indicated by a 10 – 142-fold reduction in the transport rate of 200 nm microspheres through mucus, depending on surface chemistry. Physiologically relevant increases in [Ca2+] resulted in a 2 - 4-fold reduction of transport rates, likely due to enhanced cross-linking of the mucus gel network. Reduction of pH from 6.5 to 3.5 also affected mucus viscoelasticity, reducing particle transport rates approximately 5 – 10-fold. Macroscopic visual observation and micro-scale lectin staining revealed mucus gel structural changes, including clumping into regions into which particles did not penetrate. Histological examination indicated food ingestion can prevent microsphere contact with and endocytosis by intestinal epithelium. Taken together, these results demonstrate that GI mucus barriers are significantly altered by stimuli associated with eating and potentially dosing of lipid-based delivery systems; these stimuli represent broadly relevant variables to consider upon designing oral therapies. PMID:25907034

  11. Food-associated stimuli enhance barrier properties of gastrointestinal mucus.

    PubMed

    Yildiz, Hasan M; Speciner, Lauren; Ozdemir, Cafer; Cohen, David E; Carrier, Rebecca L

    2015-06-01

    Orally delivered drugs and nutrients must diffuse through mucus to enter the circulatory system, but the barrier properties of mucus and their modulation by physiological factors are generally poorly characterized. The main objective of this study was to examine the impact of physicochemical changes occurring upon food ingestion on gastrointestinal (GI) mucus barrier properties. Lipids representative of postprandial intestinal contents enhanced mucus barriers, as indicated by a 10-142-fold reduction in the transport rate of 200 nm microspheres through mucus, depending on surface chemistry. Physiologically relevant increases in [Ca(2+)] resulted in a 2-4-fold reduction of transport rates, likely due to enhanced cross-linking of the mucus gel network. Reduction of pH from 6.5 to 3.5 also affected mucus viscoelasticity, reducing particle transport rates approximately 5-10-fold. Macroscopic visual observation and micro-scale lectin staining revealed mucus gel structural changes, including clumping into regions into which particles did not penetrate. Histological examination indicated food ingestion can prevent microsphere contact with and endocytosis by intestinal epithelium. Taken together, these results demonstrate that GI mucus barriers are significantly altered by stimuli associated with eating and potentially dosing of lipid-based delivery systems; these stimuli represent broadly relevant variables to consider upon designing oral therapies. PMID:25907034

  12. 78 FR 51136 - Request for Information: Supplemental Nutrition Assistance Program (SNAP) Enhancing Retail Food...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... Food and Nutrition Service Request for Information: Supplemental Nutrition Assistance Program (SNAP) Enhancing Retail Food Store Eligibility AGENCY: Food and Nutrition Service, USDA. ACTION: Notice. SUMMARY: Sections 3(k), (p) and (r), Section 7, and Section 9 of the Food and Nutrition Act of 2008 (``the...

  13. 21 CFR 876.5895 - Ostomy irrigator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ostomy irrigator. 876.5895 Section 876.5895 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5895 Ostomy irrigator....

  14. 21 CFR 880.6960 - Irrigating syringe.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Irrigating syringe. 880.6960 Section 880.6960 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Miscellaneous Devices § 880.6960 Irrigating syringe....

  15. 21 CFR 876.5895 - Ostomy irrigator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ostomy irrigator. 876.5895 Section 876.5895 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5895 Ostomy irrigator....

  16. Successful Development of Satiety Enhancing Food Products: Towards a Multidisciplinary Agenda of Research Challenges

    PubMed Central

    Van Kleef, E.; Van Trijp, J.C.M.; Van Den Borne, J.J.G.C.; Zondervan, C.

    2012-01-01

    In the context of increasing prevalence of overweight and obesity in societies worldwide, enhancing the satiating capacity of foods may help people control their energy intake and weight. This requires an integrated approach between various food-related disciplines. By structuring this approach around the new product development process, this paper aims to present the contours of such an integrative approach by going through the current state of the art around satiety enhancing foods. It portrays actual food choice as the end result of a complex interaction between internal satiety signals, other food benefits, and environmental cues. Three interrelated routes to satiating enhancement are to change the food composition to develop stronger physiological satiation and satiety signals, anticipate and build on smart external stimuli at the moment of purchase and consumption, and improve palatability and acceptance of satiety enhanced foods. Key research challenges in achieving these routes in the field of nutrition, food technology, consumer, marketing, and communication are outlined. PMID:22530713

  17. Successful development of satiety enhancing food products: towards a multidisciplinary agenda of research challenges.

    PubMed

    Van Kleef, E; Van Trijp, J C M; Van Den Borne, J J G C; Zondervan, C

    2012-01-01

    In the context of increasing prevalence of overweight and obesity in societies worldwide, enhancing the satiating capacity of foods may help people control their energy intake and weight. This requires an integrated approach between various food-related disciplines. By structuring this approach around the new product development process, this paper aims to present the contours of such an integrative approach by going through the current state of the art around satiety enhancing foods. It portrays actual food choice as the end result of a complex interaction between internal satiety signals, other food benefits, and environmental cues. Three interrelated routes to satiating enhancement are to change the food composition to develop stronger physiological satiation and satiety signals, anticipate and build on smart external stimuli at the moment of purchase and consumption, and improve palatability and acceptance of satiety enhanced foods. Key research challenges in achieving these routes in the field of nutrition, food technology, consumer, marketing, and communication are outlined. PMID:22530713

  18. A global map of irrigated agriculture in dry areas.

    NASA Astrophysics Data System (ADS)

    Rowhani, P.; Linderman, M. A.

    2014-12-01

    With changing socio-economic environments and population growth, it is estimated that agricultural production levels need to double by 2050. One way to achieve this may be through agricultural expansion into drier regions, which cover about 41% of earth's land area. Currently, about 70% of freshwater withdrawals are used for irrigation, which in turn produces about 40% of global food. However, little is known about the global area under irrigated agriculture in these water-stressed, arid regions which host about 2 billion people. Here we estimate the global area under irrigation in the arid and hyperarid regions. To this end, we analyse the temporal signature of the Enhanced Vegetation Index (EVI) that was derived from the ~500m BRDF-adjusted reflectance data provided by the MODIS sensor since February 2000. This method does not rely on any external data sources and it allows to explore the temporal evolution of irrigation practices. Additionally, compared to other irrigation maps, our dataset can be quickly updated annually to provide the latest estimations. Initial results show that by using a combination of simple metrics quantifying each pixel's phenology we are able to clearly identify irrigated areas in these dry regions. Our results will be compared to existing global irrigation datasets as well as global land cover maps.

  19. Adapting to climate change for food security through supplementary irrigation and changing sowing dates in the Rift Valley dry lands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Muluneh Bitew, Alemayehu; Stroosnijder, Leo; keesstra, Saskia

    2015-04-01

    Studies on climate impacts and related adaptation strategies are increasingly becoming important to counteract the negative effects of climate change. In Ethiopia, climate change is likely to affect crop yields negatively. However, quantitative evidence is lacking about the ability of farm level adaptation options to offset negative impacts on food security. The MarkSimGCM weather generator was used to generate projected daily rainfall and temperature data originally taken from ECHAM5 general circulation model and ensemble mean of six models under A2 (high) and B1 (low) emission scenarios. We validated the FAO AquaCrop model and subsequently used it to predict maize yields and explore three adaptations options. Increasing plant density has the least effect on maize yield so that the density that is currently used by 'good' farmers (30,000) is recommended. The optimum level of supplemental irrigation (SI), in combination with this plant density, is application of SI when the percentage of soil water depletion reached 75% of the maximum available water in the root zone. In the future, dry spells during the Belg season increase and this has a negative effect on maize production. The predicted lower maize production due to the changing rainfall is only partly compensated by the expected increase in CO2 concentration. The shifting of sowing period of maize from the current Belg season (mostly April or May) to the first month of Kiremt season (June) can offset the predicted yield reduction caused by climate change. SI has a marginal effect in good rainfall years but using 94-111 mm of SI can avoid total crop failure in drought years. Hence, SI is an interesting option to improve food security in the Rift Valley dry lands of Ethiopia. Key words: Adaptation; Climate change; Central Rift Valley; Dry spell; Supplemental irrigation.

  20. Global effect of irrigation and its impact on the onset of the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Guimberteau, Matthieu; Laval, Katia; Perrier, Alain; Polcher, Jan

    2012-09-01

    In a context of increased demand for food and of climate change, the water consumptions associated with the agricultural practice of irrigation focuses attention. In order to analyze the global influence of irrigation on the water cycle, the land surface model ORCHIDEE is coupled to the GCM LMDZ to simulate the impact of irrigation on climate. A 30-year simulation which takes into account irrigation is compared with a simulation which does not. Differences are usually not significant on average over all land surfaces but hydrological variables are significantly affected by irrigation over some of the main irrigated river basins. Significant impacts over the Mississippi river basin are shown to be contrasted between eastern and western regions. An increase in summer precipitation is simulated over the arid western region in association with enhanced evapotranspiration whereas a decrease in precipitation occurs over the wet eastern part of the basin. Over the Indian peninsula where irrigation is high during winter and spring, a delay of 6 days is found for the mean monsoon onset date when irrigation is activated, leading to a significant decrease in precipitation during May to July. Moreover, the higher decrease occurs in June when the water requirements by crops are maximum, exacerbating water scarcity in this region. A significant cooling of the land surfaces occurs during the period of high irrigation leading to a decrease of the land-sea heat contrast in June, which delays the monsoon onset.

  1. Applications of advanced intervention technologies to enhance microbial food safety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food safety issues may arise due to chemical and/or microbial contaminations. Foodborne pathogens typically are the major reasons in food related outbreaks that result in human sickness/death, product disposal/waste and other economic losses. The food industry is continuously seeking better interv...

  2. 78 FR 64468 - Request for Information: Supplemental Nutrition Assistance Program (SNAP) Enhancing Retail Food...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... published on August 20, 2013 (78 FR 51136) has been extended from October 21, 2013 to November 6, 2013. To... Food and Nutrition Service Request for Information: Supplemental Nutrition Assistance Program (SNAP) Enhancing Retail Food Store Eligibility; Extension of Comment Period AGENCY: Food and Nutrition...

  3. Simultaneous irrigation and negative pressure wound therapy enhances wound healing and reduces wound bioburden in a porcine model.

    PubMed

    Davis, Kathryn; Bills, Jessica; Barker, Jenny; Kim, Paul; Lavery, Lawrence

    2013-01-01

    Infected foot wounds are one of the most common reasons for hospitalization and amputation among persons with diabetes. The objective of the study was to investigate a new wound therapy system that employs negative pressure wound therapy (NPWT) with simultaneous irrigation therapy. For this study, we used a porcine model with full-thickness excisional wounds, inoculated with Pseudomonas aeruginosa. Wounds were treated for 21 days of therapy with either NPWT, NPWT with simultaneous irrigation therapy using normal saline or polyhexanide biguanide (PHMB) at low or high flow rates, or control. Data show that NPWT with either irrigation condition improved wound healing rates over control-treated wounds, yet did not differ from NPWT alone. NPWT improved bioburden over control-treated wounds. NPWT with simultaneous irrigation further reduced bioburden over control and NPWT-treated wounds; however, flow rate did not affect these outcomes. Together, these data show that NPWT with simultaneous irrigation therapy with either normal saline or PHMB has a positive effect on bioburden in a porcine model, which may translate clinically to improved wound healing outcomes. PMID:24134060

  4. NUTRITIONALLY ENHANCED FOODS DEVELOPED VIA BIOTECHNOLOGY: STATUS AND FUTURE PERSPECTIVES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant kingdom offers a multitude of potential food products which humans have selected from and attempted to improve upon over the ages. As a group, plant-derived foods can supply almost all of the micro- and macronutrients established as essential for human existence (the exceptions being vita...

  5. Some aspects of South Asia's groundwater irrigation economy: analyses from a survey in India, Pakistan, Nepal Terai and Bangladesh

    NASA Astrophysics Data System (ADS)

    Shah, Tushaar; Singh, O. P.; Mukherji, Aditi

    2006-03-01

    Since 1960, South Asia has emerged as the largest user of groundwater in irrigation in the world. Yet, little is known about this burgeoning economy, now the mainstay of the region's agriculture, food security and livelihoods. Results from the first socio-economic survey of its kind, involving 2,629 well-owners from 278 villages from India, Pakistan, Nepal Terai and Bangladesh, show that groundwater is used in over 75% of the irrigated areas in the sample villages, far more than secondary estimates suggest. Thanks to the pervasive use of groundwater in irrigation, rain-fed farming regions are a rarity although rain-fed plots within villages abound. Groundwater irrigation is quintessentially supplemental and used mostly on water-economical inferior cereals and pulses, while a water-intensive wheat and rice system dominates canal areas. Subsidies on electricity and canal irrigation shape the sub-continental irrigation economy, but it is the diesel pump that drives it. Pervasive markets in tubewell irrigation services enhance irrigation access to the poor. Most farmers interviewed reported resource depletion and deterioration, but expressed more concern over the high cost and poor reliability of energy supply for groundwater irrigation, which has become the fulcrum of their survival strategy.

  6. Control of Growth Efficiency in Young Plantation Loblolly Pine and Sweetgum through Irrigation and Fertigation Enhancement of Leaf Carbon Gain

    SciTech Connect

    L. Samuelson

    1999-07-07

    The overall objective of this study was to determine if growth efficiency of young plantation loblolly pine and sweetgum can be maintained by intensive forest management and whether increased carbon gain is the mechanism controlling growth efficiency response to resource augmentation. Key leaf physiological processes were examined over two growing seasons in response to irrigation, fertigation (irrigation with a fertilizer solution), and fertigation plus pest control (pine only). Although irrigation improved leaf net photosynthesis in pine and decreased stomatal sensitivity to vapor pressure deficit in sweetgum, no consistent physiological responses to fertigation were detected in either species. After 4 years of treatment, a 3-fold increase in woody net primary productivity was observed in both species in response to fertigation. Trees supplemented with fertigation and fertigation plus pest control exhibited the largest increases in growth and biomass. Furthermore, growth efficiency was maintained by fertigation and fertigation plus pest control, despite large increases in crown development and self-shading. Greater growth in response to intensive culture was facilitated by significant gains in leaf mass and whole tree carbon gain rather than detectable increases in leaf level processes. Growth efficiency was not maintained by significant increases in leaf level carbon gain but was possibly influenced by changes in carbon allocation to root versus shoot processes.

  7. Water savings potentials of irrigation systems: dynamic global simulation

    NASA Astrophysics Data System (ADS)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-04-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatio-temporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a dynamic representation of the three major irrigation systems (surface, sprinkler, and drip) into a process-based bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded worldmap of dynamically retrieved irrigation efficiencies reflecting differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with lowest values (< 30%) in South Asia and Sub-Saharan Africa and highest values (> 60%) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2396 km3 (2004-2009 average); irrigation water consumption is calculated to be 1212 km3, of which 511 km3 are non-beneficially consumed, i.e. lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76%, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15%, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of

  8. Examining cassava's potential to enhance food security under climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent advances in the biofortification of cassava, a substantial yield gap and cassava's potential for increased productivity and its inherent potential to respond positively to globally increasing CO2 are synergistic and encouraging in an otherwise bleak global view of the future of food security ...

  9. Appraising options to reduce shallow groundwater tables and enhance flow conditions over regional scales in an irrigated alluvial aquifer system

    NASA Astrophysics Data System (ADS)

    Morway, Eric D.; Gates, Timothy K.; Niswonger, Richard G.

    2013-07-01

    Some of the world’s key agricultural production systems face big challenges to both water quantity and quality due to shallow groundwater that results from long-term intensive irrigation, namely waterlogging and salinity, water losses, and environmental problems. This paper focuses on water quantity issues, presenting finite-difference groundwater models developed to describe shallow water table levels, non-beneficial groundwater consumptive use, and return flows to streams across two regions within an irrigated alluvial river valley in southeastern Colorado, USA. The models are calibrated and applied to simulate current baseline conditions in the alluvial aquifer system and to examine actions for potentially improving these conditions. The models provide a detailed description of regional-scale subsurface unsaturated and saturated flow processes, thereby enabling detailed spatiotemporal description of groundwater levels, recharge to infiltration ratios, partitioning of ET originating from the unsaturated and saturated zones, and groundwater flows, among other variables. Hybrid automated and manual calibration of the models is achieved using extensive observations of groundwater hydraulic head, groundwater return flow to streams, aquifer stratigraphy, canal seepage, total evapotranspiration, the portion of evapotranspiration supplied by upflux from the shallow water table, and irrigation flows. Baseline results from the two regional-scale models are compared to model predictions under variations of four alternative management schemes: (1) reduced seepage from earthen canals, (2) reduced irrigation applications, (3) rotational lease fallowing (irrigation water leased to municipalities, resulting in temporary dry-up of fields), and (4) combinations of these. The potential for increasing the average water table depth by up to 1.1 and 0.7 m in the two respective modeled regions, thereby reducing the threat of waterlogging and lowering non-beneficial consumptive use

  10. Appraising options to reduce shallow groundwater tables and enhance flow conditions over regional scales in an irrigated alluvial aquifer system

    USGS Publications Warehouse

    Morway, Eric D.; Gates, Timothy K.; Niswonger, Richard G.

    2013-01-01

    Some of the world’s key agricultural production systems face big challenges to both water quantity and quality due to shallow groundwater that results from long-term intensive irrigation, namely waterlogging and salinity, water losses, and environmental problems. This paper focuses on water quantity issues, presenting finite-difference groundwater models developed to describe shallow water table levels, non-beneficial groundwater consumptive use, and return flows to streams across two regions within an irrigated alluvial river valley in southeastern Colorado, USA. The models are calibrated and applied to simulate current baseline conditions in the alluvial aquifer system and to examine actions for potentially improving these conditions. The models provide a detailed description of regional-scale subsurface unsaturated and saturated flow processes, thereby enabling detailed spatiotemporal description of groundwater levels, recharge to infiltration ratios, partitioning of ET originating from the unsaturated and saturated zones, and groundwater flows, among other variables. Hybrid automated and manual calibration of the models is achieved using extensive observations of groundwater hydraulic head, groundwater return flow to streams, aquifer stratigraphy, canal seepage, total evapotranspiration, the portion of evapotranspiration supplied by upflux from the shallow water table, and irrigation flows. Baseline results from the two regional-scale models are compared to model predictions under variations of four alternative management schemes: (1) reduced seepage from earthen canals, (2) reduced irrigation applications, (3) rotational lease fallowing (irrigation water leased to municipalities, resulting in temporary dry-up of fields), and (4) combinations of these. The potential for increasing the average water table depth by up to 1.1 and 0.7 m in the two respective modeled regions, thereby reducing the threat of waterlogging and lowering non-beneficial consumptive use

  11. Alternate partial root-zone irrigation reduces bundle-sheath cell leakage to CO2 and enhances photosynthetic capacity in maize leaves

    PubMed Central

    Wang, Zhenchang; Kang, Shaozhong; Jensen, Christian R.; Liu, Fulai

    2012-01-01

    The physiological basis for the advantage of alternate partial root-zone irrigation (PRI) over common deficit irrigation (DI) in improving crop water use efficiency (WUE) remains largely elusive. Here leaf gas exchange characteristics and photosynthetic CO2–response and light–response curves for maize (Zea mays L.) leaves exposed to PRI and DI were analysed under three N-fertilization rates, namely 75, 150, and 300 mg N kg−1 soil. Measurements of net photosynthetic rate (An) and stomatal conductance (gs) showed that, across the three N-fertilization rates, the intrinsic WUE was significantly higher in PRI than in DI leaves. Analysis of the CO2–response curve revealed that both carboxylation efficiency (CE) and the CO2-saturated photosynthetic rate (Asat) were significantly higher in PRI than in DI leaves across the three N-fertilization rates; whereas the N-fertilization rates did not influence the shape of the curves. The enhanced CE and Asat in the PRI leaves was accompanied by significant decreases in carbon isotope discrimination (Δ13C) and bundle-sheath cell leakiness to CO2 (Φ). Analysis of the light–response curve indicated that, across the three N-fertilization rates, the quantum yield (α) and light-saturated gross photosynthetic rate (Amax) were identical for the two irrigation treatments; whilst the convexity (κ) of the curve was significantly greater in PRI than in DI leaves, which coincided with the greater CE and Asat derived from the CO2–response curve at a photosynthetic photon flux density of 1500 μmol m−2 s−1. Collectively, the results suggest that, in comparison with the DI treatment, PRI improves photosynthetic capacity parameters CE, Asat, and κ of maize leaves and that contributes to the greater intrinsic WUE in those plants. PMID:22121199

  12. Enhancing Food and Nutrition Curricula in Higher Education by Assigning Collaborative Food System Assessment Projects

    ERIC Educational Resources Information Center

    Matthews, June

    2013-01-01

    Student engagement in higher education is important. Some professional healthcare programs, however, can become quite focused and competitive, limiting the potential for positive student engagement and for students to see how their field of study fits within larger systems. Food system assessments are an ideal way to see the interconnectedness of…

  13. 21 CFR 874.5550 - Powered nasal irrigator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered nasal irrigator. 874.5550 Section 874.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5550 Powered nasal irrigator....

  14. 21 CFR 874.5550 - Powered nasal irrigator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered nasal irrigator. 874.5550 Section 874.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5550 Powered nasal irrigator....

  15. 21 CFR 874.5550 - Powered nasal irrigator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered nasal irrigator. 874.5550 Section 874.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5550 Powered nasal irrigator....

  16. 21 CFR 874.5550 - Powered nasal irrigator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered nasal irrigator. 874.5550 Section 874.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5550 Powered nasal irrigator....

  17. 21 CFR 874.5550 - Powered nasal irrigator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered nasal irrigator. 874.5550 Section 874.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5550 Powered nasal irrigator....

  18. Electrostatic application of antimicrobial sprays to sanitize food handling and processing surfaces for enhanced food safety

    NASA Astrophysics Data System (ADS)

    Lyons, Shawn M.; Harrison, Mark A.; Law, S. Edward

    2011-06-01

    Human illnesses and deaths caused by foodborne pathogens (e.g., Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7, etc.) are of increasing concern globally in maintaining safe food supplies. At various stages of the food production, processing and supply chain antimicrobial agents are required to sanitize contact surfaces. Additionally, during outbreaks of contagious pathogenic microorganisms (e.g., H1N1 influenza), public health requires timely decontamination of extensive surfaces within public schools, mass transit systems, etc. Prior publications verify effectiveness of air-assisted, induction-charged (AAIC) electrostatic spraying of various chemical and biological agents to protect on-farm production of food crops...typically doubling droplet deposition efficiency with concomitant increases in biological control efficacy. Within a biosafety facility this present work evaluated the AAIC electrostatic-spraying process for application of antimicrobial liquids onto various pathogen-inoculated food processing and handling surfaces as a food safety intervention strategy. Fluoroanalysis of AAIC electrostatic sprays (-7.2 mC/kg charge-to-mass ratio) showed significantly greater (p<0.05) mass of tracer active ingredient (A.I.) deposited onto target surfaces at various orientations as compared both to a similar uncharged spray nozzle (0 mC/kg) and to a conventional hydraulic-atomizing nozzle. Per unit mass of A.I. dispensed toward targets, for example, A.I. mass deposited by AAIC electrostatic sprays onto difficult to coat backsides was 6.1-times greater than for similar uncharged sprays and 29.0-times greater than for conventional hydraulic-nozzle sprays. Even at the 56% reduction in peracetic acid sanitizer A.I. dispensed by AAIC electrostatic spray applications, they achieved equal or greater CFU population reductions of Salmonella on most target orientations and materials as compared to uncharged sprays and conventional full-rate hydraulic

  19. Irrigation System

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Under contract with Marshall Space Flight Center, Midwest Research Institute compiled a Lubrication Handbook intended as a reference source for designers and manufacturers of aerospace hardware and crews responsible for maintenance of such equipment. Engineers of Lindsay Manufacturing Company learned of this handbook through NASA Tech Briefs and used it for supplemental information in redesigning gear boxes for their center pivot agricultural irrigation system.

  20. Introducing Urban Food Forestry: A Multifunctional Strategy for Enhancing Urban Sustainability

    NASA Astrophysics Data System (ADS)

    Nicholas, K. A.; Clark, K.

    2012-12-01

    We propose combining elements of urban agriculture and urban forestry into what we call "urban food forestry" (UFF), the practice of growing perennial woody food-producing species ("food trees") in cities. We used four approaches at different scales to gauge the potential of UFF to enhance urban sustainability, in the context of trends including increasing urbanization, resource demands, and climate change. First, we analyzed 37 current international initiatives based around urban food trees, finding that core activities included planting, mapping, and harvesting food trees, but that only about a quarter of initiatives engaged in more than one of these activities necessary to fully utilize the food potential of urban trees. Second, we analyzed 30 urban forestry master plans, finding that only 13% included human food security among their objectives. Third, we used Burlington, Vermont as a case study to quantify the potential caloric output of publicly accessible open space if planted with Malus domestica (the common apple) under 9 different scenarios. We found that the entire caloric deficit of the very low food security population could be met on as few as 29 hectares (representing 16% of total open space), and that 98% of the daily recommended minimum intake of fruit for the entire city's population could be met under the most ambitious planting scenario. Finally, we developed a decision-making tool for selecting potential food trees appropriate for temperate urban environments, the Climate-Food-Species Matrix. We identified a total of 70 species, 30 of which we deemed "highly suitable" for urban food forestry based on their cold hardiness, drought tolerance, and edibility. We conclude that urban food forestry provides multiple pathways for building urban sustainability through local food production, and that our framework can be used to increase the coordination between and effectiveness of a growing number of related initiatives.

  1. Evolutionary engineering to enhance starter culture performance in food fermentations.

    PubMed

    Bachmann, Herwig; Pronk, Jack T; Kleerebezem, Michiel; Teusink, Bas

    2015-04-01

    Microbial starter cultures are essential for consistent product quality and functional properties such as flavor, texture, pH or the alcohol content of various fermented foods. Strain improvement programs to achieve desired properties in starter cultures are diverse, but developments in next-generation sequencing lead to an increased interest in evolutionary engineering of desired phenotypes. We here discuss recent developments of strain selection protocols and how computational approaches can assist such experimental design. Furthermore the analysis of evolved phenotypes and possibilities with complex consortia are highlighted. Studies carried out with mainly yeast and lactic acid bacteria demonstrate the power of evolutionary engineering to deliver strains with novel phenotypes as well as insight into underlying mechanisms. PMID:25269887

  2. 21 CFR 872.6510 - Oral irrigation unit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oral irrigation unit. 872.6510 Section 872.6510...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6510 Oral irrigation unit. (a) Identification. An oral irrigation unit is an AC-powered device intended to provide a pressurized stream of water...

  3. 21 CFR 876.5220 - Colonic irrigation system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Colonic irrigation system. 876.5220 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5220 Colonic irrigation system. (a) Identification. A colonic irrigation system is a device intended to instill water into the...

  4. 21 CFR 872.6510 - Oral irrigation unit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Oral irrigation unit. 872.6510 Section 872.6510...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6510 Oral irrigation unit. (a) Identification. An oral irrigation unit is an AC-powered device intended to provide a pressurized stream of water...

  5. 21 CFR 876.5220 - Colonic irrigation system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Colonic irrigation system. 876.5220 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5220 Colonic irrigation system. (a) Identification. A colonic irrigation system is a device intended to instill water into the...

  6. 21 CFR 876.5220 - Colonic irrigation system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Colonic irrigation system. 876.5220 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5220 Colonic irrigation system. (a) Identification. A colonic irrigation system is a device intended to instill water into the...

  7. 21 CFR 872.6510 - Oral irrigation unit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oral irrigation unit. 872.6510 Section 872.6510...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6510 Oral irrigation unit. (a) Identification. An oral irrigation unit is an AC-powered device intended to provide a pressurized stream of water...

  8. 21 CFR 872.6510 - Oral irrigation unit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oral irrigation unit. 872.6510 Section 872.6510...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6510 Oral irrigation unit. (a) Identification. An oral irrigation unit is an AC-powered device intended to provide a pressurized stream of water...

  9. 21 CFR 886.4360 - Ocular surgery irrigation device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ocular surgery irrigation device. 886.4360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4360 Ocular surgery irrigation device. (a) Identification. An ocular surgery irrigation device is a device intended to be suspended over...

  10. 21 CFR 876.5220 - Colonic irrigation system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Colonic irrigation system. 876.5220 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5220 Colonic irrigation system. (a) Identification. A colonic irrigation system is a device intended to instill water into the...

  11. 21 CFR 872.6510 - Oral irrigation unit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oral irrigation unit. 872.6510 Section 872.6510...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6510 Oral irrigation unit. (a) Identification. An oral irrigation unit is an AC-powered device intended to provide a pressurized stream of water...

  12. 21 CFR 886.4360 - Ocular surgery irrigation device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ocular surgery irrigation device. 886.4360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4360 Ocular surgery irrigation device. (a) Identification. An ocular surgery irrigation device is a device intended to be suspended over...

  13. 21 CFR 886.4360 - Ocular surgery irrigation device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ocular surgery irrigation device. 886.4360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4360 Ocular surgery irrigation device. (a) Identification. An ocular surgery irrigation device is a device intended to be suspended over...

  14. 21 CFR 886.4360 - Ocular surgery irrigation device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ocular surgery irrigation device. 886.4360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4360 Ocular surgery irrigation device. (a) Identification. An ocular surgery irrigation device is a device intended to be suspended over...

  15. 21 CFR 886.4360 - Ocular surgery irrigation device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ocular surgery irrigation device. 886.4360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4360 Ocular surgery irrigation device. (a) Identification. An ocular surgery irrigation device is a device intended to be suspended over...

  16. Decentralising Zimbabwe’s water management: The case of Guyu-Chelesa irrigation scheme

    NASA Astrophysics Data System (ADS)

    Tambudzai, Rashirayi; Everisto, Mapedza; Gideon, Zhou

    Smallholder irrigation schemes are largely supply driven such that they exclude the beneficiaries on the management decisions and the choice of the irrigation schemes that would best suit their local needs. It is against this background that the decentralisation framework and the Dublin Principles on Integrated Water Resource Management (IWRM) emphasise the need for a participatory approach to water management. The Zimbabwean government has gone a step further in decentralising the management of irrigation schemes, that is promoting farmer managed irrigation schemes so as to ensure effective management of scarce community based land and water resources. The study set to investigate the way in which the Guyu-Chelesa irrigation scheme is managed with specific emphasis on the role of the Irrigation Management Committee (IMC), the level of accountability and the powers devolved to the IMC. Merrey’s 2008 critique of IWRM also informs this study which views irrigation as going beyond infrastructure by looking at how institutions and decision making processes play out at various levels including at the irrigation scheme level. The study was positioned on the hypothesis that ‘decentralised or autonomous irrigation management enhances the sustainability and effectiveness of irrigation schemes’. To validate or falsify the stated hypothesis, data was gathered using desk research in the form of reviewing articles, documents from within the scheme and field research in the form of questionnaire surveys, key informant interviews and field observation. The Statistical Package for Social Sciences was used to analyse data quantitatively, whilst content analysis was utilised to analyse qualitative data whereby data was analysed thematically. Comparative analysis was carried out as Guyu-Chelesa irrigation scheme was compared with other smallholder irrigation scheme’s experiences within Zimbabwe and the Sub Saharan African region at large. The findings were that whilst the

  17. Enhanced Early Neuronal Processing of Food Pictures in Anorexia Nervosa: A Magnetoencephalography Study

    PubMed Central

    Scaife, Jessica C.; Park, Rebecca J.

    2016-01-01

    Neuroimaging studies in Anorexia Nervosa (AN) have shown increased activation in reward and cognitive control regions in response to food, and a behavioral attentional bias (AB) towards food stimuli is reported. This study aimed to further investigate the neural processing of food using magnetoencephalography (MEG). Participants were 13 females with restricting-type AN, 14 females recovered from restricting-type AN, and 15 female healthy controls. MEG data was acquired whilst participants viewed high- and low-calorie food pictures. Attention was assessed with a reaction time task and eye tracking. Time-series analysis suggested increased neural activity in response to both calorie conditions in the AN groups, consistent with an early AB. Increased activity was observed at 150 ms in the current AN group. Neuronal activity at this latency was at normal level in the recovered group; however, this group exhibited enhanced activity at 320 ms after stimulus. Consistent with previous studies, analysis in source space and behavioral data suggested enhanced attention and cognitive control processes in response to food stimuli in AN. This may enable avoidance of salient food stimuli and maintenance of dietary restraint in AN. A later latency of increased activity in the recovered group may reflect a reversal of this avoidance, with source space and behavioral data indicating increased visual and cognitive processing of food stimuli. PMID:27525258

  18. Audio-Enhanced Tablet Computers to Assess Children's Food Frequency From Migrant Farmworker Mothers.

    PubMed

    Kilanowski, Jill F; Trapl, Erika S; Kofron, Ryan M

    2013-06-01

    This study sought to improve data collection in children's food frequency surveys for non-English speaking immigrant/migrant farmworker mothers using audio-enhanced tablet computers (ATCs). We hypothesized that by using technological adaptations, we would be able to improve data capture and therefore reduce lost surveys. This Food Frequency Questionnaire (FFQ), a paper-based dietary assessment tool, was adapted for ATCs and assessed consumption of 66 food items asking 3 questions for each food item: frequency, quantity of consumption, and serving size. The tablet-based survey was audio enhanced with each question "read" to participants, accompanied by food item images, together with an embedded short instructional video. Results indicated that respondents were able to complete the 198 questions from the 66 food item FFQ on ATCs in approximately 23 minutes. Compared with paper-based FFQs, ATC-based FFQs had less missing data. Despite overall reductions in missing data by use of ATCs, respondents still appeared to have difficulty with question 2 of the FFQ. Ability to score the FFQ was dependent on what sections missing data were located. Unlike the paper-based FFQs, no ATC-based FFQs were unscored due to amount or location of missing data. An ATC-based FFQ was feasible and increased ability to score this survey on children's food patterns from migrant farmworker mothers. This adapted technology may serve as an exemplar for other non-English speaking immigrant populations. PMID:25343004

  19. Enhanced Early Neuronal Processing of Food Pictures in Anorexia Nervosa: A Magnetoencephalography Study.

    PubMed

    Godier, Lauren R; Scaife, Jessica C; Braeutigam, Sven; Park, Rebecca J

    2016-01-01

    Neuroimaging studies in Anorexia Nervosa (AN) have shown increased activation in reward and cognitive control regions in response to food, and a behavioral attentional bias (AB) towards food stimuli is reported. This study aimed to further investigate the neural processing of food using magnetoencephalography (MEG). Participants were 13 females with restricting-type AN, 14 females recovered from restricting-type AN, and 15 female healthy controls. MEG data was acquired whilst participants viewed high- and low-calorie food pictures. Attention was assessed with a reaction time task and eye tracking. Time-series analysis suggested increased neural activity in response to both calorie conditions in the AN groups, consistent with an early AB. Increased activity was observed at 150 ms in the current AN group. Neuronal activity at this latency was at normal level in the recovered group; however, this group exhibited enhanced activity at 320 ms after stimulus. Consistent with previous studies, analysis in source space and behavioral data suggested enhanced attention and cognitive control processes in response to food stimuli in AN. This may enable avoidance of salient food stimuli and maintenance of dietary restraint in AN. A later latency of increased activity in the recovered group may reflect a reversal of this avoidance, with source space and behavioral data indicating increased visual and cognitive processing of food stimuli. PMID:27525258

  20. Long-term impact of sewage irrigation on soil properties and assessing risk in relation to transfer of metals to human food chain.

    PubMed

    Meena, Ramu; Datta, S P; Golui, Debasis; Dwivedi, B S; Meena, M C

    2016-07-01

    A case study was undertaken to assess the risk of sewage-irrigated soils in relation to the transfer of trace elements to rice and wheat grain. For this purpose, peri-urban agricultural lands under the Keshopur Effluent Irrigation Scheme (KEIS) of Delhi were selected. These agricultural lands have been receiving irrigation through sewage effluents since 1979. Sewage effluent, groundwater, soil, and plant (rice and wheat grain) samples were collected with GPS coordinates from this peri-urban area. Under wheat crop, sewage irrigation for four decades resulted into a significant buildup of zinc (141 %), copper (219 %), iron (514 %), nickel (75.0 %), and lead (28.1 %) in sewage-irrigated soils over adjacent tube well water-irrigated ones. Under rice crop, there was also a significant buildup of phosphorus (339 %), sulfur (130 %), zinc (287 %), copper (352 %), iron (457 %), nickel (258 %), lead (136 %), and cadmium (147 %) in sewage-irrigated soils as compared to that of tube well water-irrigated soils. The values of hazard quotient (HQ) for intake of trace toxic elements by humans through consumption of rice and wheat grain grown on these sewage-irrigated soils were well within the safe permissible limit. The variation in Zn, Ni, and Cd content in wheat grain could be explained by solubility-free ion activity model (FIAM) to the extent of 50.1, 56.8, and 37.2 %, respectively. Corresponding values for rice grain were 49.9, 41.2, and 42.7 %, respectively. As high as 36.4 % variation in As content in rice grain could be explained by solubility-FIAM model. Toxic limit of extractable Cd and As in soil for rice in relation to soil properties and human health hazard associated with consumption of rice grain by humans was established. A similar exercise was also done in respect of Cd for wheat. The conceptual framework of fixing the toxic limit of extractable metals and metalloid in soils with respect to soil properties and human health hazard under the

  1. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate increases in irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2015-08-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and

  2. Enhanced anaerobic digestion of food waste by thermal and ozonation pretreatment methods.

    PubMed

    Ariunbaatar, Javkhlan; Panico, Antonio; Frunzo, Luigi; Esposito, Giovanni; Lens, Piet N L; Pirozzi, Francesco

    2014-12-15

    Treatment of food waste by anaerobic digestion can lead to an energy production coupled to a reduction of the volume and greenhouse gas emissions from this waste type. According to EU Regulation EC1774/2002, food waste should be pasteurized/sterilized before or after anaerobic digestion. With respect to this regulation and also considering the slow kinetics of the anaerobic digestion process, thermal and chemical pretreatments of food waste prior to mesophilic anaerobic digestion were studied. A series of batch experiments to determine the biomethane potential of untreated as well as pretreated food waste was carried out. All tested conditions of both thermal and ozonation pretreatments resulted in an enhanced biomethane production. The kinetics of the anaerobic digestion process were, however, accelerated by thermal pretreatment at lower temperatures (<120 °C) only. The best result of 647.5 ± 10.6 mlCH4/gVS, which is approximately 52% higher as compared to the specific biomethane production of untreated food waste, was obtained with thermal pretreatment at 80 °C for 1.5 h. On the basis of net energy calculations, the enhanced biomethane production could cover the energy requirement of the thermal pretreatment. In contrast, the enhanced biomethane production with ozonation pretreatment is insufficient to supply the required energy for the ozonator. PMID:25169646

  3. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration.

    PubMed

    Yao, Ye

    2016-07-01

    The physical mechanisms of heat and mass transfer enhancement by ultrasound have been identified by people. Basically, the effect of 'cavitation' induced by ultrasound is the main reason for the enhancement of heat and mass transfer in a liquid environment, and the acoustic streaming and vibration are the main reasons for that in a gaseous environment. The adsorbent regeneration and food drying/dehydration are typical heat and mass transfer process, and the intensification of the two processes by ultrasound is of complete feasibility. This paper makes an overview on recent studies regarding applications of power ultrasound to adsorbent regeneration and food drying/dehydration. The concerned adsorbents include desiccant materials (typically like silica gel) for air dehumidification and other ones (typically active carbon and polymeric resin) for water treatment. The applications of ultrasound in the regeneration of these adsorbents have been proved to be energy saving. The concerned foods are mostly fruits and vegetables. Although the ultrasonic treatment may cause food degradation or nutrient loss, it can greatly reduce the food processing time and decrease drying temperature. From the literature, it can be seen that the ultrasonic conditions (i.e., acoustic frequency and power levels) are always focused on during the study of ultrasonic applications. The increasing number of relevant studies argues that ultrasound is a very promising technology applied to the adsorbent regeneration and food drying/dehydration. PMID:26964979

  4. Ecohydrology of agroecosystems: quantitative approaches towards sustainable irrigation.

    PubMed

    Vico, Giulia; Porporato, Amilcare

    2015-02-01

    Irrigation represents one of the main strategies to enhance and stabilize agricultural productivity, by mitigating the effects of rainfall vagaries. In the face of the projected growth in population and in biofuel demands, as well as shifts in climate and dietary habits, a more sustainable management of water resources in agroecosystems is needed. The field of ecohydrology, traditionally focusing on natural ecosystems, has the potential to offer the necessary quantitative tools to assess and compare agricultural enterprises across climates, soil types, crops, and irrigation strategies, accounting for the unpredictability of the hydro-climatic forcing. Here, agricultural sustainability and productivity are assessed with reference to water productivity (defined as the ratio between yield and total supplied water), yields, water requirements, and their variability-a crucial element for food security and resource allocation planning. These synthetic indicators are quantified by means of a probabilistic description of the soil water balance and crop development. The model results allow the interpretation of patterns of water productivity observed in Zea mays (maize) and Triticum aestivum (wheat), grown under a variety of soils, climates, and irrigation strategies. Employing the same modeling framework, the impact of rainfall pattern and irrigation strategy on yield and water requirements is further explored. The obtained standard deviations of yield and water requirements suggest the existence of a nonlinear tradeoff between yield stabilization and variability of water requirements, which in turn is strongly impacted by irrigation strategy. Moreover, intermediate rainfall amounts are associated to the highest variability in yields and irrigation requirements, although allowing the maximum water productivity. The existence of these tradeoffs between productivity, reliability, and sustainability poses a problem for water management, in particular in mesic climates. PMID

  5. Detection of irrigation timing using MODIS and SAR: Effect of land cover heterogeneity

    NASA Astrophysics Data System (ADS)

    Seungtaek, J.; Keunchang, J.; Lee, H.; Seokyeong, H.; Kang, S.

    2010-12-01

    Rice is one of the world’s major staple foods. Paddy rice fields had unique biophysical characteristics that the rice is grown on flooded soils unlike other crops. Distribution and timing of irrigation of paddy rice fields are of importance to determine hydrological balance and efficiency of water resource. In this paper, we detected the distribution and timing of irrigation of paddy rice fields using the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the NASA EOS Aqua satellite. Previous researches demonstrated that MODIS data can be utilized to detect timing of irrigation by combining vegetation index and Land Surface Water Index (LSWI). Land cover heterogeneity, however, causes considerable uncertainty of the satellite-based detections. To evaluate and quantify the effect of land cover heterogeneity, Radarsat-1 Synthetic Aperture Radar (SAR) images were applied together with the MODIS images. Sub-pixel heterogeneity of MODIS image on land cover and irrigation was evaluated and quantified by using the Radarsat-1 SAR images. The degree of sub-pixel heterogeneity was related with detection of a threshold value of LSWI to determine the timing of irrigation. The threshold value with the degree of heterogeneity increased (R2=0.95), which was applied to detect the timing of irrigation over complex land cover areas. Reliable detecting of timing of irrigation could enhance reliability of MODIS-based estimation on evapotranspiration from paddy rice fields. In this presentation, we will demonstrate the enhancement of MODIS-based evapotranspiration by using our new algorithm on detection of timing of irrigation. Acknowledgement: This study was supported by National Academy of Agricultural Science, RDA, Republic of Korea.

  6. Biofilms in irrigation pipes affect the microbial quality of irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation is an essential element in the production of many food crops. Irrigation water is often delivered to fields from surface or subsurface sources via pipe-based systems. Surface waters are known to contain pathogenic microorganisms. Disease outbreaks in crops that are eaten raw (i.e. leafy g...

  7. Mapping Irrigation Potential in the Upper East Region of Ghana

    NASA Astrophysics Data System (ADS)

    Akomeah, E.; Odai, S. N.; Annor, F. O.; Adjei, K. A.; Barry, B.

    2009-04-01

    The Upper East Region together with the other two regions in Northern Ghana (Upper West and Northern Region) is seen as the locus of perennial food deficit (GPRS, 2003). Despite, the provision of over 200 small scale dams and various mechanisms aimed at poverty alleviation, the region is still plagued with poverty and yearly food shortages. To achieve food security and alleviate poverty in the region however, modernization of agriculture through irrigation is deemed inevitable. While it is true that considerable potential still exists for future expansion of irrigation, it cannot be refuted that water is becoming scarcer in the regions where the need for irrigation is most important, hence mapping the irrigation potential of the region will be the first step toward ensuring sound planning and sustainability of the irrigation developments. In this study, an attempt has been made to map out the irrigation potential of the Upper East Region. The river basin approach was used in assessing the irrigation potential. The catchments drained by The White Volta river, Red volta river, River Sissili and River Kulpawn were considered in the assessment. The irrigation potential for the sub basins was computed by combining information on gross irrigation water requirements for the selected cash crops, area of soil suitable for irrigation and available water resources. The capacity of 80%, 70%, 60% and 50% time of exceedance flow of the available surface water resources in the respective sub basins was estimated. The area that can be irrigated with this flow was computed with selected cropping pattern. Combining the results of the potential irrigable areas and the land use map of the respective sub basins, an irrigation potential map has been generated showing potential sites in the upper east region that can be brought under irrigation. Keywords: Irrigation potential, irrigation water requirement, land evaluation, dependable flow

  8. Inspection of pesticide residues on food by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shende, Chetan; Gift, Alan; Inscore, Frank; Maksymiuk, Paul; Farquharson, Stuart

    2004-03-01

    Modern agriculture depends on pesticides to curb infestations, increase crop yield and to produce the quantity and quality of food demanded by today's society. However, potential pesticide residue contamination of food is of critical concern to the food industry and the regulators responsible for health and safety. For example, many pesticides kill insects by attacking the central nervous system, and the use of these pesticides above the EPA set tolerance levels (from 0.1 to 50 ppm) could pose a threat to humans, in particular infants. Unfortunately, rapid, chemical analysis of pesticide residues is unavailable, and only a very small fraction of foods are inspected. The greatest concern is food imported from nations that simply ignore US regulations. In an effort to address this need, we have been developing a simple device to collect residues from food surfaces, perform a rapid chemical separation, and detect and identify pesticides by surface-enhanced Raman spectroscopy (SERS). Capillaries are coated with a metal-doped sol-gel that both separates chemicals and generates SER spectra when irradiated. SERS of pesticides at ppm concentrations, and a preliminary product to aid inspectors is presented.

  9. The Mississippi irrigation scheduling tool (MIST): Development and delivery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop producers in the mid-south are relying increasingly on irrigation to supplement the unpredictable and, in some years, insufficient rainfall. Use of irrigation can enhance yields and improve crop quality. However, little information is available on accurate timing and amount of irrigation applic...

  10. Dopaminergic enhancement of local food seeking is under global homeostatic control

    PubMed Central

    Beeler, Jeff A.; Frazier, Cristianne R.M.; Zhuang, Xiaoxi

    2011-01-01

    Recent work has implicated dopaminergic mechanisms in overeating and obesity with some researchers suggesting parallels between the dopamine dysregulation associated with addiction and an analogous dysregulation in obesity. The precise role of dopamine in mediating reward and reinforcement, however, remains controversial. In contrast to drugs of abuse, pursuit of a natural reward, such as food, is regulated by homeostatic processes that putatively maintain a stable energy balance keeping unrestrained consumption and reward pursuit in check. Understanding how the reward system is constrained by or escapes homeostatic regulation is a critical question. The widespread use of food restriction to motivate animal subjects in behavior paradigms precludes investigation of this relationship as the homeostatic system is locked into deficit mode. In the present study, we examine the role of dopamine in modulating adaptive feeding behavior in semi-naturalistic home cage paradigms where mice earn all their food from lever pressing. We compared consumption and meal patterning between hyperdopaminergic dopamine transporter knock-down mice (DATkd) with wild-type (WT) in two paradigms that introduce escalating costs for procuring food. We found that hyperdopaminergic mice exhibited similar demand elasticity, weight loss and energy balance in response to cost. However, the DATkd show clear differences in meal patterning. Consistent with expectations of enhanced motivation, elevated dopamine increased meal size and reduced intrameal cost sensitivity. Nonetheless, this did not alter overall energy balance. We conclude that elevated dopamine enhances incentive or willingness to work locally within meals without shifting energy balance, enhancing global food-seeking or generating an energy surplus. PMID:22118191

  11. Activation of Pyramidal Neurons in Mouse Medial Prefrontal Cortex Enhances Food-Seeking Behavior While Reducing Impulsivity in the Absence of an Effect on Food Intake

    PubMed Central

    Warthen, Daniel M.; Lambeth, Philip S.; Ottolini, Matteo; Shi, Yingtang; Barker, Bryan Scot; Gaykema, Ronald P.; Newmyer, Brandon A.; Joy-Gaba, Jonathan; Ohmura, Yu; Perez-Reyes, Edward; Güler, Ali D.; Patel, Manoj K.; Scott, Michael M.

    2016-01-01

    The medial prefrontal cortex (mPFC) is involved in a wide range of executive cognitive functions, including reward evaluation, decision-making, memory extinction, mood, and task switching. Manipulation of the mPFC has been shown to alter food intake and food reward valuation, but whether exclusive stimulation of mPFC pyramidal neurons (PN), which form the principle output of the mPFC, is sufficient to mediate food rewarded instrumental behavior is unknown. We sought to determine the behavioral consequences of manipulating mPFC output by exciting PN in mouse mPFC during performance of a panel of behavioral assays, focusing on food reward. We found that increasing mPFC pyramidal cell output using designer receptors exclusively activated by designer drugs (DREADD) enhanced performance in instrumental food reward assays that assess food seeking behavior, while sparing effects on affect and food intake. Specifically, activation of mPFC PN enhanced operant responding for food reward, reinstatement of palatable food seeking, and suppression of impulsive responding for food reward. Conversely, activation of mPFC PN had no effect on unconditioned food intake, social interaction, or behavior in an open field. Furthermore, we found that behavioral outcome is influenced by the degree of mPFC activation, with a low drive sufficient to enhance operant responding and a higher drive required to alter impulsivity. Additionally, we provide data demonstrating that DREADD stimulation involves a nitric oxide (NO) synthase dependent pathway, similar to endogenous muscarinic M3 receptor stimulation, a finding that provides novel mechanistic insight into an increasingly widespread method of remote neuronal control. PMID:27065827

  12. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-01

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety.

  13. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy.

    PubMed

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-25

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety. PMID:25300041

  14. Implications of Water Development for Food Security

    NASA Astrophysics Data System (ADS)

    Cai, X.; Rosegrant, M. W.

    2001-05-01

    Water development for agriculture-the major water user worldwide-is one of the most critical factors for food security in many regions of the world. The role of water withdrawals in irrigated agriculture and food security has been receiving substantial attention in recent years. This paper will address key questions regarding implications of water development for food security at both regional and global scale, including what is the current status of water availability for agriculture? How will water availability and water demand evolve over the next three decades, taking into account availability and variability in water resources, the water supply infrastructure, and irrigation and nonagricultural water demands? What is the role of irrigation in food production now and in the future? What risk will be put on regional and global food production, demand and trade if municipal and industrial water demand is high, environmental water requirement is increasing, or groundwater overdraft is phased off? What is the contribution of infrastructure investment in enhancing irrigation water supply capacity, improving water use efficiency, and increasing rainfall harvesting particularly in arid and semi-arid regions and countries? These questions are explored through a global modeling framework, IMPACT-Water, developed in the International Food Policy Research Institute. In general, the results show that, under plausible assumptions on developments in irrigation and water investment, the rapid growth in water demand, particularly for domestic and industrial purposes, coupled with the a continued slowdown in investments, could be a serious threat to future growth in food production, causing negative impacts on low-income developing countries and the poor consumers in these countries. Food production, demand and trade and food prices will be increasingly affected by declining water availibility for irrigation. Developing countries, especially those with arid climates, poor

  15. Irrigation as an Historical Climate Forcing

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2014-01-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  16. Irrigation As an Historical Climate Forcing

    NASA Astrophysics Data System (ADS)

    Cook, B.; Puma, M. J.; McDermid, S. P.; Nazarenko, L.

    2014-12-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  17. Irrigation as an historical climate forcing

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2015-03-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  18. Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods and during milk fermentation.

    PubMed Central

    Gahan, C G; O'Driscoll, B; Hill, C

    1996-01-01

    We have previously shown that tolerance to severe acid stress (pH 3.5) can be induced in Listeria monocytogenes following a 1-h adaptation to mild acid (pH 5.5), a phenomenon termed the acid tolerance response (ATR) (B. O'Driscoll, C. G. M. Gahan, and C. Hill, Appl. Environ. Microbiol. 62:1693-1698, 1966). In an attempt to determine the industrial significance of the ATR, we have examined the survival of adapted and nonadapted cells in a variety of acidic foods. Acid adaptation enhanced the survival of L. monocytogenes in acidified dairy products, including cottage cheese, yogurt, and whole-fat cheddar cheese. Acid-adapted L. monocytogenes cultures also demonstrated increased survival during active milk fermentation by a lactic acid culture. Similarly, acid-adapted cells showed greatly improved survival in low-pH foods (orange juice and salad dressing) containing acids other than lactic acid. However, in foods with a marginally higher pH, such as mozzarella cheese, a commercial cottage cheese, or low-fat cheddar cheese, acid adaptation did not appear to enhance survival. We have previously isolated mutants of L. monocytogenes that are constitutively acid tolerant in the absence of an induction step (O'Driscoll et al., Appl. Environ. Microbiol. 62:1693-1698, 1996). In the present study, one such mutant, ATM56, demonstrated an increased ability to survive in low-pH foods and during milk fermentation when compared with the wild-type strain. Significant numbers of ATM56 could be recovered even after 70 days in both whole-fat and low-fat cheddar cheese. Collectively, the data suggest that ATR mechanisms, whether constitutive or induced, can greatly influence the survival of L. monocytogenes in low-pH food environments. PMID:8795199

  19. Water savings potentials of irrigation systems: global simulation of processes and linkages

    NASA Astrophysics Data System (ADS)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-07-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatiotemporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a process-based representation of the three major irrigation systems (surface, sprinkler, and drip) into a bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded world map of irrigation efficiencies that are calculated in direct linkage to differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with the lowest values (< 30 %) in south Asia and sub-Saharan Africa and the highest values (> 60 %) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2469 km3 (2004-2009 average); irrigation water consumption is calculated to be 1257 km3, of which 608 km3 are non-beneficially consumed, i.e., lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76 %, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15 %, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global

  20. Limiting resources in sessile systems: food enhances diversity and growth of suspension feeders despite available space.

    PubMed

    Svensson, Robin J; Marshall, Dustin J

    2015-03-01

    Much of our understanding of competition comes trom onservations in sessue systems, such as rainforests and marine invertebrate communities. In terrestrial systems, sessile species often compete for multiple limiting resources (i.e., space, light, and nutrients), but in marine systems, space is viewed as the primary or sole limiting resource. Competition theory, on the other hand, suggests that competition for a single limiting resource is unlikely to maintain high species diversity, but manipulative tests of competition for other resources in marine benthic systems are exceedingly rare. Here, we manipulate the availability of food for a classic system, marine sessile invertebrate communities, and investigate the effects on species diversity, abundance, and composition during early succession as well as on the growth of bryozoan populations in the field. We found the number of species to be greater, available space to be lower, and the community composition to be different in assemblages subjected to increased food availability compared to controls. Similarly, laboratory-settled bryozoans deployed into the field grew more in the presence of enhanced food. Our results suggest that food can act as a limiting resource, affecting both diversity and abundance, even when bare space is still available in hard-substratum communities. Consequently, broadening the view of resource limitation beyond solely space may increase our understanding and predictability of marine sessile systems. PMID:26236877

  1. Irrigation water sources and irrigation application methods used by U.S. plant nursery producers

    NASA Astrophysics Data System (ADS)

    Paudel, Krishna P.; Pandit, Mahesh; Hinson, Roger

    2016-02-01

    We examine irrigation water sources and irrigation methods used by U.S. nursery plant producers using nested multinomial fractional regression models. We use data collected from the National Nursery Survey (2009) to identify effects of different firm and sales characteristics on the fraction of water sources and irrigation methods used. We find that regions, sales of plants types, farm income, and farm age have significant roles in what water source is used. Given the fraction of alternative water sources used, results indicated that use of computer, annual sales, region, and the number of IPM practices adopted play an important role in the choice of irrigation method. Based on the findings from this study, government can provide subsidies to nursery producers in water deficit regions to adopt drip irrigation method or use recycled water or combination of both. Additionally, encouraging farmers to adopt IPM may enhance the use of drip irrigation and recycled water in nursery plant production.

  2. Detection of chemical residues in food oil via surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Kexi; Huang, Qing

    2016-05-01

    Highly ordered hexagonally patterned Ag-nanorod (Ag-NR) arrays for surface-enhanced Raman scattering (SERS) detection of unhealthy chemical residues in food oil was reported, which was obtained by sputtering Ag on the alumina nanotip arrays stuck out of conical-pore anodic aluminum oxide (AAO) templates. SERS measurements demonstrate that the as-fabricated large-scale Ag-nanostructures can serve as highly sensitive and reproducible SERS substrates for detection of trace amount of chemicals in oil with the lower detection limits of 2×10-6 M for thiram and 10-7 M for rhodamine B, showing the potential of application of SERS in rapid trace detection of pesticide residues and illegal additives in food oils.

  3. Sediment and nutrient losses from an irrigated watershed.

    NASA Astrophysics Data System (ADS)

    Bjorneberg, D.; Ippolito, J.

    2011-12-01

    Irrigated agriculture is an essential part of stable food and fiber production. However, water returning from irrigated watersheds can contain excess sediment, nutrients and salts. Applying polyacrylamide to furrow irrigated fields reduces erosion 60 to 90%. Converting from furrow irrigation to sprinkler irrigation eliminates planned irrigation runoff necessary for uniform water application. Installing sediment ponds removes 50 to 80% of the suspended sediment from water before it flows back to major water bodies. In southern Idaho, irrigation watershed monitoring showed that implementing these conservation practices has reduced average suspended sediment loss from 460 kg/ha in 1970 to less than 100 kg/ha in 2005. These practices, however, have had less effect on soluble nutrients. Median nitrate concentrations have almost doubled from 1970 to 2005. Current research is focusing on identifying practices to reduce soluble nutrient losses.

  4. Residual pesticide detection on food with particle-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Ranjan, Bikas; Huang, LiChuan; Masui, Kyoko; Saito, Yuika; Verma, Prabhat

    2014-08-01

    Modern farming relies highly on pesticides to protect agricultural food items from insects for high yield and better quality. Increasing use of pesticide has raised concern about its harmful effects on human health and hence it has become very important to detect even small amount of pesticide residues. Raman spectroscopy is a suitable nondestructive method for pesticide detection, however, it is not very effective for low concentration of pesticide molecules. Here, we report an approach based on plasmonic enhancement, namely, particle enhanced Raman spectroscopy (PERS), which is rapid, nondestructive and sensitive. In this technique, Raman signals are enhanced via the resonance excitation of localized plasmons in metallic nanoparticles. Gold nanostructures are promising materials that have ability to tune surface plasmon resonance frequency in visible to near-IR, which depends on shape and size of nanostructures. We synthesized gold nanorods (GNRs) with desired shape and size by seed mediated growth method, and successfully detected very tiny amount of pesticide present on food items. We also conformed that the detection of pesticide was not possible by usual Raman spectroscopy.

  5. Historical influence of irrigation on climate extremes

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Davin, Edouard L.; Lawrence, Dave; Hauser, Mathias; Seneviratne, Sonia I.

    2016-04-01

    Land irrigation is an essential practice sustaining global food production and many regional economies. During the last decades, irrigation amounts have been growing rapidly. Emerging scientific evidence indicates that land irrigation substantially affects mean climate conditions in different regions of the world. However, a thorough understanding of the impact of irrigation on extreme climatic conditions, such as heat waves, droughts or intense precipitation, is currently still lacking. In this context, we aim to assess the historical influence of irrigation on the occurrence of climate extremes. To this end, two simulations are conducted over the period 1910-2010 with a state-of-the-art global climate model (the Community Earth System Model, CESM): a control simulation including all major anthropogenic and natural external forcings except for irrigation and a second experiment with transient irrigation enabled. The two simulations are evaluated for their ability to represent (i) hot, dry and wet extremes using the HadEX2 and ERA-Interim datasets as a reference, and (ii) latent heat fluxes using LandFlux-EVAL. Assuming a linear combination of climatic responses to different forcings, the difference between both experiments approximates the influence of irrigation. We will analyse the impact of irrigation on a number of climate indices reflecting the intensity and duration of heat waves. Thereby, particular attention is given to the role of soil moisture changes in modulating climate extremes. Furthermore, the contribution of individual biogeophysical processes to the total impact of irrigation on hot extremes is quantified by application of a surface energy balance decomposition technique to the 90th and 99th percentile surface temperature changes.

  6. Analysis of the impacts of well yield and groundwater depth on irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Foster, T.; Brozović, N.; Butler, A. P.

    2015-04-01

    Previous research has found that irrigation water demand is relatively insensitive to water price, suggesting that increased pumping costs due to declining groundwater levels will have limited effects on agricultural water management practices. However, non-linear changes in well yields as aquifer saturated thickness is reduced may have large impacts on irrigated production that are currently neglected in projections of the long-term sustainability of groundwater-fed irrigation. We conduct empirical analysis of observation data and numerical simulations for case studies in Nebraska, USA, to compare the impacts of changes in well yield and groundwater depth on agricultural production. Our findings suggest that declining well pumping capacities reduce irrigated production areas and profits significantly, whereas increased pumping costs reduce profits but have minimal impacts on the intensity of groundwater-fed irrigation. We suggest, therefore, that management of the dynamic relationship between well yield and saturated thickness should be a core component of policies designed to enhance long-term food security and support adaptation to climate change.

  7. Nitration of β-Lactoglobulin but Not of Ovomucoid Enhances Anaphylactic Responses in Food Allergic Mice

    PubMed Central

    Diesner, Susanne C.; Schultz, Cornelia; Ackaert, Chloé; Oostingh, Gertie J.; Ondracek, Anna; Stremnitzer, Caroline; Singer, Josef; Heiden, Denise; Roth-Walter, Franziska; Fazekas, Judit; Assmann, Vera E.; Jensen-Jarolim, Erika; Stutz, Hanno; Duschl, Albert; Untersmayr, Eva

    2015-01-01

    Background We revealed in previous studies that nitration of food proteins reduces the risk of de novo sensitization in a murine food allergy model. In contrast, in situations with preformed specific IgE antibodies, in vitro experiments suggested an increased capacity of effector cell activation by nitrated food proteins. Objective The aim of this study was to investigate the influence of protein nitration on the effector phase of food allergy. Design BALB/c mice were immunized intraperitoneally (i.p.) with the milk allergen β-lactoglobulin (BLG) or the egg allergen ovomucoid (OVM), followed by intragastric (i.g.) gavages to induce a strong local inflammatory response and allergen-specific antibodies. Subsequently, naïve and allergic mice were intravenously (i.v.) challenged with untreated, sham-nitrated or nitrated BLG or OVM. Anaphylaxis was monitored by measuring core body temperature and determination of mouse mast cell protease-1 (mMCP-1) levels in blood. Results A significant drop of body temperature accompanied with significantly elevated concentrations of the anaphylaxis marker mMCP-1 were only observed in BLG allergic animals challenged with nitrated BLG and not in OVM allergic mice challenged with nitrated OVM. SDS-PAGE and circular dichroism analysis of the differentially modified allergens revealed an effect of nitration on the secondary protein structure exclusively for BLG together with enhanced protein aggregation. Conclusion Our data suggest that nitration affects differently the food allergens BLG and OVM. In the case of BLG, structural changes favored dimerization possibly explaining the increased anaphylactic reactivity in BLG allergic animals. PMID:25955653

  8. Irrigation strategies using subsurface drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drip irrigation (SDI) is practiced on approximately 60,000 ha in the Texas High Plains region of the USA. Adoption of SDI continues to increase in the region. This has been attributed to record drought in Texas and the US Southwest in recent years, declining irrigation well yields, and ev...

  9. WATER REQUIREMENT OF IRRIGATED GARLIC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A replicated field trial was conducted on the West side of the San Joaquin Valley to determine the crop coefficient and water requirements of irrigated garlic. Irrigation systems used included flood irrigation, subsurface drip irrigation, and surface drip irrigation. Irrigation levels were set at 5...

  10. Water Requirements Of Irrigated Garlic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A replicated field trial was conducted on the West side of the San Joaquin Valley to determine the crop coefficient and water requirements of irrigated garlic. Irrigation systems used included flood irrigation, subsurface drip irrigation, and surface drip irrigation. Irrigation levels were set at 5...

  11. Irrigation Systems Operation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective operation of an irrigation system requires matching the operational characteristics of a system to the soil, crop, field, and water supply. Each of these components will affect the quality of the irrigation system performance. The performance measures used to characterize the irrigation sy...

  12. Irrigation Monitoring Project Results

    NASA Technical Reports Server (NTRS)

    Terrie, Gregory; Berglund, Judith; Ryan, Robert; Harrington, Gary; Stewart, Randy; Spiering, Bruce

    2003-01-01

    The objective of this project is to investigate remote sensing requirements for irrigation scheduling to define future systems. Temperature-based crop stress indicators have been developed that could be used for irrigation management. This viewgraph presentation describes an experiment to use airborne and satellite thermal imagery to evaulate the water requirements of irrigated crops.

  13. Planning for deficit irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigators with limited water supplies that lead to deficit irrigation management need to make decisions about crop selection, water allocations to each crop, and irrigation schedules. Many of these decisions need to occur before the crop is planted and depend on yield-evapotranspiration (ET) and yi...

  14. ESTIMATING IRRIGATION COSTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Having accurate estimates of the cost of irrigation is important when making irrigation decisions. Estimates of fixed costs are critical for investment decisions. Operating cost estimates can assist in decisions regarding additional irrigations. This fact sheet examines the costs associated with ...

  15. Surface drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For many years, surface drip irrigation has been used to irrigation high value vegetable crops. In recent years, surface drip of row crops has been increasing throughout the United States. Surface drip irrigation can precisely deliver water and nutrients to the crop root zone. This article provides ...

  16. Sensitive detection of Ochratoxin A in food and drinks using metal-enhanced fluorescence.

    PubMed

    Todescato, Francesco; Antognoli, Agnese; Meneghello, Anna; Cretaio, Erica; Signorini, Raffaella; Bozio, Renato

    2014-07-15

    Easy, sensitive, rapid and low cost ochratoxin biosensors are strongly demanded in food analysis since Ochratoxin A (OTA) is a widely diffused food contaminant, highly detrimental for human health. In this work, a novel plasmonic based optical biosensor prototype for ochratoxin A is described. It exploits the metal-enhanced fluorescence phenomenon due to the silver film over nanosphere plasmonic substrate. Since ochratoxin A could be present in different food commodities, sensor performances have been tested on three different matrices (dried milk, juices, and wheat mix). Firstly, a common OTA extraction solvent and a labeling and detection protocol were defined for the analyzed matrices. Then, the efficiency of the Ag-FON surfaces in signal amplification for the detection of low ochratoxin A concentrations was defined. Using samples spiked with OTA-AF 647 or with unlabeled OTA we were able to detect the mycotoxin at concentrations lower than E.U. specifications of 0.5 μg/kg in wheat, milk and apple juice. The test performances are comparable to those of ELISA kits but the platform presented here, once optimized, present some perspective advantages, such as: low cost and time consuming, versatility of the protocol for the investigation of different matrices, employment also in non-qualified laboratories, small dimensions that allow its integration in a compact device for OTA on-site detection. PMID:24583316

  17. Intranasal Insulin Suppresses Food Intake via Enhancement of Brain Energy Levels in Humans

    PubMed Central

    Jauch-Chara, Kamila; Friedrich, Alexia; Rezmer, Magdalena; Melchert, Uwe H.; G. Scholand-Engler, Harald; Hallschmid, Manfred; Oltmanns, Kerstin M.

    2012-01-01

    Cerebral insulin exerts anorexic effects in humans and animals. The underlying mechanisms, however, are not clear. Because insulin physiologically facilitates glucose uptake by most tissues of the body and thereby fosters intracellular energy supply, we hypothesized that intranasal insulin reduces food consumption via enhancement of the neuroenergetic level. In a double-blind, placebo–controlled, within-subject comparison, 15 healthy men (BMI 22.2 ± 0.37 kg/m2) aged 22–28 years were intranasally administered insulin (40 IU) or placebo after an overnight fast. Cerebral energy metabolism was assessed by 31P magnetic resonance spectroscopy. At 100 min after spray administration, participants consumed ad libitum from a test buffet. Our data show that intranasal insulin increases brain energy (i.e., adenosine triphosphate and phosphocreatine levels). Cerebral energy content correlates inversely with subsequent calorie intake in the control condition. Moreover, the neuroenergetic rise upon insulin administration correlates with the consecutive reduction in free-choice calorie consumption. Brain energy levels may therefore constitute a predictive value for food intake. Given that the brain synchronizes food intake behavior in dependence of its current energetic status, a future challenge in obesity treatment may be to therapeutically influence cerebral energy homeostasis. Intranasal insulin, after optimizing its application schema, seems a promising option in this regard. PMID:22586589

  18. A review of evolving critical priorities for irrigated agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evolving roles and critical priorities of irrigated agriculture, as perceived by practitioners, researchers, and policy makers, were reviewed. Irrigated agriculture has played a vital role in meeting food and fiber demands on a relatively small proportion of total arable land. This role is prese...

  19. Maize and sunflower root distribution in response to deficit irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to meet world demand for food under anticipated water shortages, we need to increase crop productivity per evapotranspiration (ET), not just the amount of irrigation applied in agricultural systems. Quantifying root distribution in response to deficit irrigation is crucial to mechanistical...

  20. Status and migration of irrigation in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigated agriculture produces 49% of crop market value on 18% of cropped lands in the USA. Irrigation is essential to the most highly productive, intensely managed, and internationally competitive sectors of our agricultural economy, which play a key role in meeting growing global food, fiber, and ...

  1. Sucrose mixed with spinosad enhances kill and reduces oviposition of Rhagoletis indifferens (Diptera: Tephritidae) under low-food conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whether sugar mixed with insecticides enhances kill of western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), may depend on insecticide rate and food availability. Here, the hypothesis that sucrose mixed with the insecticide spinosad (in the Entrust® SC formulation) enhance...

  2. Pilot study of the effect of biofilms in irrigation pipes on the microbial water quality of irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation is an essential element in the production of many food crops. Irrigation water is often delivered to fields from surface or subsurface sources via pipe-based systems. Surface waters are known to contain pathogenic microorganisms. Disease outbreaks in crops that are eaten raw (i.e. leafy g...

  3. Deficit irrigation for enhancing sustainable water use: Comparison of cotton nitrogen uptake and prediction of lint yield in a multivariate autoregressive state-space model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant adaptation to a limited water supply may be associated with the soil's water holding capacity and landscape features that affect the hydrology. Knowing the response of a crop to water shortage and associated plant water stress symptoms is critical to manage deficit-irrigation, and minimize pla...

  4. Mediterranean agriculture: More efficient irrigation needed to compensate increases in future irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. Our research shows that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops (1). Also under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect (1). However, in some scenarios (in this case as combinations of climate change, irrigation technology, influence of population growth and CO2-fertilization effect) water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain (1). In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a

  5. Seismic Risk Management of Irrigation System in an Earthquake

    NASA Astrophysics Data System (ADS)

    Kobayashi, Akira; Hayashi, Takuma; Yamamoto, Kiyohito; Kiyama, Shoichi

    A risk analysis method of an irrigation system in an earthquake is proposed. The irrigation system consists of irrigation tanks and canals. The damage probability of the irrigation tanks and canals was obtained from both numerical simulation and actual disaster data from the Mid Niigata prefecture earthquake. The losses due to reduced crop yield, restoration and secondary disaster were considered in the risk assessment. The probability of annual peak ground acceleration was introduced from the earthquake records in Niigata prefecture. To reduce the damage probability, an enhanced foundation of canals on flat land and widening of the embankment were applied. It was found that the countermeasures for the irrigation tanks were more effective than those for the canals. In the case of a large secondary disaster of the irrigation system on flat land, the countermeasures for the irrigation system were very effective.

  6. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2016-03-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are taken into account, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL (Lund-Potsdam-Jena managed Land) after an extensive development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries such as Syria, Egypt and Turkey have a higher savings potential than others. Currently some crops, especially sugar cane and agricultural trees, consume on average more irrigation water per hectare than annual crops. Different crops show different magnitudes of changes in net irrigation requirements due to climate change, the increases being most pronounced in agricultural trees. The Mediterranean area as a whole may face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (4 and 18 % with 2 °C global warming combined with the full CO2-fertilization effect and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the southern and eastern Mediterranean. However, improved irrigation technologies and conveyance systems have a large water saving potential, especially in the eastern Mediterranean, and may be able to

  7. Survival of Escherichia coli O157:H7 on lettuce harvested from fields irrigated by different irrigation systems and stored under different conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli O157:H7 outbreaks associated with the consumption of leafy greens have increased food safety concerns in the food industry. Irrigation water could be a major potential source of microbial contamination to vegetables. The potential for irrigation water to contaminate vegetables with ...

  8. Satiety-enhancing products for appetite control: science and regulation of functional foods for weight management.

    PubMed

    Halford, Jason C G; Harrold, Joanne A

    2012-05-01

    The current review considers satiety-based approaches to weight management in the context of health claims. Health benefits, defined as beneficial physiological effects, are what the European Food Safety Authority bases their recommendations on for claim approval. The literature demonstrates that foods that target within-meal satiation and post-meal satiety provide a plausible approach to weight management. However, few ingredient types tested produce the sustainable and enduring effects on appetite accompanied by the necessary reductions in energy intake required to claim satiety/reduction in hunger as a health benefit. Proteins, fibre types, novel oils and carbohydrates resistant to digestion all have the potential to produce beneficial short-term changes in appetite (proof-of-concept). The challenge remains to demonstrate their enduring effects on appetite and energy intake, as well as the health and consumer benefits such effects provide in terms of optimising successful weight management. Currently, the benefits of satiety-enhancing ingredients to both consumers and their health are under researched. It is possible that such ingredients help consumers gain control over their eating behaviour and may also help reduce the negative psychological impact of dieting and the physiological consequences of energy restriction that ultimately undermine weight management. In conclusion, industry needs to demonstrate that a satiety-based approach to weight management, based on single-manipulated food items, is sufficient to help consumers resist the situational and personal factors that drive overconsumption. Nonetheless, we possess the methodological tools, which when employed in appropriate designs, are sufficient to support health claims. PMID:22401600

  9. Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways.

    PubMed

    Tan, Jian; McKenzie, Craig; Vuillermin, Peter J; Goverse, Gera; Vinuesa, Carola G; Mebius, Reina E; Macia, Laurence; Mackay, Charles R

    2016-06-21

    The incidence of food allergies in western countries has increased dramatically in recent decades. Tolerance to food antigens relies on mucosal CD103(+) dendritic cells (DCs), which promote differentiation of regulatory T (Treg) cells. We show that high-fiber feeding in mice improved oral tolerance and protected from food allergy. High-fiber feeding reshaped gut microbial ecology and increased the release of short-chain fatty acids (SCFAs), particularly acetate and butyrate. High-fiber feeding enhanced oral tolerance and protected against food allergy by enhancing retinal dehydrogenase activity in CD103(+) DC. This protection depended on vitamin A in the diet. This feeding regimen also boosted IgA production and enhanced T follicular helper and mucosal germinal center responses. Mice lacking GPR43 or GPR109A, receptors for SCFAs, showed exacerbated food allergy and fewer CD103(+) DCs. Dietary elements, including fiber and vitamin A, therefore regulate numerous protective pathways in the gastrointestinal tract, necessary for immune non-responsiveness to food antigens. PMID:27332875

  10. Root zone sensors for irrigation management in intensive agriculture.

    PubMed

    Pardossi, Alberto; Incrocci, Luca; Incrocci, Giorgio; Malorgio, Fernando; Battista, Piero; Bacci, Laura; Rapi, Bernardo; Marzialetti, Paolo; Hemming, Jochen; Balendonck, Jos

    2009-01-01

    Crop irrigation uses more than 70% of the world's water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower's experience or on the determination of soil water balance (weather-based method). An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS), such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS' (for both soil moisture and salinity) marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy) on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy. PMID:22574047

  11. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    PubMed Central

    Pardossi, Alberto; Incrocci, Luca; Incrocci, Giorgio; Malorgio, Fernando; Battista, Piero; Bacci, Laura; Rapi, Bernardo; Marzialetti, Paolo; Hemming, Jochen; Balendonck, Jos

    2009-01-01

    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method). An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS), such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity) marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy) on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy. PMID:22574047

  12. Comparison of Irrigation Water Use Estimates Calculated from Remotely Sensed Irrigated Acres and State Reported Irrigated Acres in the Lake Altus Drainage Basin, Oklahoma and Texas, 2000 Growing Season

    USGS Publications Warehouse

    Masoner, J.R.; Mladinich, C.S.; Konduris, A.M.; Smith, S. Jerrod

    2003-01-01

    Increased demand for water in the Lake Altus drainage basin requires more accurate estimates of water use for irrigation. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation, is investigating new techniques to improve water-use estimates for irrigation purposes in the Lake Altus drainage basin. Empirical estimates of reference evapotranspiration, crop evapotranspiration, and crop irrigation water requirements for nine major crops were calculated from September 1999 to October 2000 using a solar radiation-based evapotranspiration model. Estimates of irrigation water use were calculated using remotely sensed irrigated crop acres derived from Landsat 7 Enhanced Thematic Mapper Plus imagery and were compared with irrigation water-use estimates calculated from irrigated crop acres reported by the Oklahoma Water Resources Board and the Texas Water Development Board for the 2000 growing season. The techniques presented will help manage water resources in the Lake Altus drainage basin and may be transferable to other areas with similar water management needs. Irrigation water use calculated from the remotely sensed irrigated acres was estimated at 154,920 acre-feet; whereas, irrigation water use calculated from state reported irrigated crop acres was 196,026 acre-feet, a 23 percent difference. The greatest difference in irrigation water use was in Carson County, Texas. Irrigation water use for Carson County, Texas, calculated from the remotely sensed irrigated acres was 58,555 acrefeet; whereas, irrigation water use calculated from state reported irrigated acres was 138,180 acre-feet, an 81 percent difference. The second greatest difference in irrigation water use occurred in Beckham County, Oklahoma. Differences between the two irrigation water use estimates are due to the differences of irrigated crop acres derived from the mapping process and those reported by the Oklahoma Water Resources Board and Texas Water Development Board.

  13. Dietary supplementation with non-prey food enhances fitness of a predatory arthropod

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uncertainties exist about the value of non-prey food for natural enemies that are commonly food limited, and the dietary conditions where non-prey foods are beneficial for carnivorous species. We examined the nutritional role of a non-prey food using a ground dwelling, tangle web-building spider tha...

  14. Participatory approach: from problem identification to setting strategies for increased productivity and sustainability in small scale irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Habtu, Solomon; Ludi, Eva; Jamin, Jean Yves; Oates, Naomi; Fissahaye Yohannes, Degol

    2014-05-01

    Practicing various innovations pertinent to irrigated farming at local field scale is instrumental to increase productivity and yield for small holder farmers in Africa. However the translation of innovations from local scale to the scale of a jointly operated irrigation scheme is far from trivial. It requires insight on the drivers for adoption of local innovations within the wider farmer communities. Participatory methods are expected to improve not only the acceptance of locally developed innovations within the wider farmer communities, but to allow also an estimation to which extend changes will occur within the entire irrigation scheme. On such a base, more realistic scenarios of future water productivity within an irrigation scheme, which is operated by small holder farmers, can be estimated. Initial participatory problem and innovation appraisal was conducted in Gumselassa small scale irrigation scheme, Ethiopia, from Feb 27 to March 3, 2012 as part of the EAU4FOOD project funded by EC. The objective was to identify and appraise problems which hinder sustainable water management to enhance production and productivity and to identify future research strategies. Workshops were conducted both at local (Community of Practices) and regional (Learning Practice Alliance) level. At local levels, intensive collaboration with farmers using participatory methods produced problem trees and a "Photo Safari" documented a range of problems that negatively impact on productive irrigated farming. A range of participatory methods were also used to identify local innovations. At regional level a Learning Platform was established that includes a wide range of stakeholders (technical experts from various government ministries, policy makers, farmers, extension agents, researchers). This stakeholder group did a range of exercise as well to identify major problems related to irrigated smallholder farming and already identified innovations. Both groups identified similar problems

  15. Enhanced mesophilic anaerobic digestion of food waste by thermal pretreatment: Substrate versus digestate heating.

    PubMed

    Ariunbaatar, Javkhlan; Panico, Antonio; Yeh, Daniel H; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2015-12-01

    Food waste (FW) represents a source of high potential renewable energy if properly treated with anaerobic digestion (AD). Pretreating the substrates could yield a higher biomethane production in a shorter time. In this study, the effects of thermal (heating the FW in a separate chamber) and thermophilic (heating the full reactor content containing both FW and inoculum) pretreatments at 50, 60, 70 and 80°C prior to mesophilic AD were studied through a series of batch experiments. Pretreatments at a lower temperature (50°C) and a shorter time (<12h) had a positive effect on the AD process. The highest enhancement of the biomethane production with an increase by 44-46% was achieved with a thermophilic pretreatment at 50°C for 6-12h or a thermal pretreatment at 80°C for 1.5h. Thermophilic pretreatments at higher temperatures (>55°C) and longer operating times (>12h) yielded higher soluble chemical oxygen demand (CODs), but had a negative effect on the methanogenic activity. The thermal pretreatments at the same conditions resulted in a lower solubilization of COD. Based on net energy calculations, the enhanced biomethane production is sufficient to heat up the FW for the thermal, but not for the thermophilic pretreatment. PMID:26272711

  16. Enhanced bioelectricity harvesting in microbial fuel cells treating food waste leachate produced from biohydrogen fermentation.

    PubMed

    Choi, Jeongdong; Ahn, Youngho

    2015-05-01

    Microbial fuel cells (MFCs) treating the food waste leachate produced from biohydrogen fermentation were examined to enhance power generation and energy recovery. In batch mode, the maximum voltage production was 0.56 V and the power density reached 1540 mW/m(2). The maximum Coulombic efficiency (CEmax) and energy efficiency (EE) in the batch mode were calculated to be 88.8% and 18.8%, respectively. When the organic loading rate in sequencing batch mode varied from 0.75 to 6.2 g COD/L-d (under CEmax), the maximum power density reached 769.2 mW/m(2) in OLR of 3.1 g COD/L-d, whereas higher energy recovery (CE=52.6%, 0.346 Wh/g CODrem) was achieved at 1.51 g COD/L-d. The results demonstrate that readily biodegradable substrates in biohydrogen fermentation can be effectively used for the enhanced bioelectricity harvesting of MFCs and a MFC coupled with biohydrogen fermentation is of great benefit on higher electricity generation and energy efficiency. PMID:25723127

  17. Assessment of drainage water quality in pre- and post-irrigation seasons for supplemental irrigation use.

    PubMed

    Alexakis, Dimitris; Gotsis, Dimitris; Giakoumakis, Spyros

    2012-08-01

    Knowledge on hydrochemistry is very important to assess the quality of water for effective management of water resources or drainage water reuse. On this basis, an assessment of water quality was conducted in the Agoulinitsa district in Peloponnese (western Greece). Both drainage and irrigation channel water samples have been collected, treated, and subjected to chemical analysis. A characterization has been carried out using the Piper-trilinear diagram. Assessment of the water samples from the point of view of sodium adsorption ratio, Na(+)%, and residual sodium carbonate indicated that 60.0% and 83.3% of the drainage water samples during pre- and post-irrigation season, respectively, as well as the irrigation channel water samples, are chemically suitable for irrigation use. Moreover, assessment of the water samples by comparing quality parameters with the Food and Agriculture Organization guidelines indicated that 20.0% and 44.4% of the drainage water samples collected during pre- and post-irrigation season, respectively, as well as the irrigation channel water samples could cause slight to moderate problems to the plants. On the other hand, 80.0% and 55.6% of the drainage water samples collected during pre- and post-irrigation season, respectively, could cause immediate development of severe problems to the plants growth. PMID:21915601

  18. The occurrence of heavy metals in irrigated and non-irrigated arable soils, NW Albania.

    PubMed

    Kasa, Elian; Felix-Henningsen, Peter; Duering, Rolf-Alexander; Gjoka, Fran

    2014-06-01

    The study analysed the content of heavy metals in surface soil and sediment samples from the Bregu i Matit Plain in NW Albania in relation to irrigation in order to evaluate the soil pollution and the potential risk to human health. Evaluation of soil pollution was performed using the enrichment factor and geo-accumulation index. Contents of cadmium, chromium and nickel of irrigated soils were significantly higher than those of non-irrigated soil, while contents of lead (in three of the irrigated locations), zinc and arsenic (in one of the irrigated locations) were significantly lower. Correlation analysis (CA) and principal component analysis (PCA) indicated that the primary source of the first three metals was irrigation, and the last three metals were originated from other anthropic sources, like the use of chemicals, etc. Enrichment factor (E f) calculation showed that irrigated soils were most enriched in cadmium, chromium, copper and nickel. Index of geo-accumulation (I geo) revealed that arable soils of Bregu i Matit are unpolluted to moderately polluted with cadmium, chromium, copper and zinc and moderately to strongly polluted with nickel and arsenic. The presence of heavy metals in the studied soils indicates a potential risk of transfer of these elements in the food chain. Therefore, further studies on the speciation of heavy metals in the studied soils in order to evaluate their mobility are needed. PMID:24519635

  19. Irrigation water quality and the benefits of implementing good agricultural practices during tomato (Lycopersicum esculentum) production.

    PubMed

    Estrada-Acosta, M; Jiménez, M; Chaidez, C; León-Félix, J; Castro-Del Campo, N

    2014-07-01

    The implementation of good agricultural practices (GAP) from irrigation water to the tomato packaging process enhances the safety of fresh produce and its value throughout the food chain. The aim of the present study was to show that fresh produce farms that apply and enforce GAP could reduce the presence of Salmonella in finished produce. Samples were collected biweekly from six packing houses from the central region of Sinaloa, México, for the isolation of Salmonella spp by the ISO 6579:2002 method, and the isolated strains were serotyped and genotyped by the Kauffmman-White scheme and pulsed field gel electrophoresis (PFGE), respectively. Salmonella strains were detected in 13 (36.1 %) irrigation water samples, while only two tomato samples were positive (5.5 %). Eight different serotypes were identified in irrigation water, and Salmonella Oranienburg (34 %) was the most prevalent; however, only Salmonella Agona and Salmonella Weltevreden were present on tomatoes. Salmonella Oranienburg was the most widely dispersed and variable serotype, with 10 different PFGE profiles. Salmonella Weltevreden was isolated from both types of samples, albeit with distinct genetic profiles, implying that the sources of contamination differ. These results confirm the utility of implementing good agricultural practices to reduce Salmonella contamination in irrigation water and the packaging process. PMID:24682661

  20. Enhanced Radio Frequency Biosensor for Food Quality Detection Using Functionalized Carbon Nanofillers.

    PubMed

    Tanguy, Nicolas R; Fiddes, Lindsey K; Yan, Ning

    2015-06-10

    This paper outlines an improved design of inexpensive, wireless and battery free biosensors for in situ monitoring of food quality. This type of device has an additional advantage of being operated remotely. To make the device, a portion of an antenna of a passive 13.56 MHz radio frequency identification (RFID) tag was altered with a sensing element composed of conductive nanofillers/particles, a binding agent, and a polymer matrix. These novel RFID tags were exposed to biogenic amine putrescine, commonly used as a marker for food spoilage, and their response was monitored over time using a general-purpose network analyzer. The effect of conductive filler properties, including conductivity and morphology, and filler functionalization was investigated by preparing sensing composites containing carbon particles (CPs), multiwall carbon nanotubes (MWCNTs), and binding agent grafted-multiwall carbon nanotubes (g-MWCNTs), respectively. During exposure to putrescine, the amount of reflected waves, frequency at resonance, and quality factor of the novel RFID tags decreased in response. The use of MWCNTs reduced tag cutoff time (i.e., faster response time) as compared with the use of CPs, which highlighted the effectiveness of the conductive nanofiller morphology, while the addition of g-MWCNTs further accelerated the sensor response time as a result of localized binding on the conductive nanofiller surface. Microstructural investigation of the film morphology indicated a better dispersion of g-MWCNTs in the sensing composite as compared to MWCNTs and CPs, as well as a smoother texture of the surface of the resulting coating. These results demonstrated that grafting of the binding agent onto the conductive particles in the sensing composite is an effective way to further enhance the detection sensitivity of the RFID tag based sensor. PMID:25993041

  1. Using composite sinusoidal patterns in structured-illumination reflectance imaging (SIRI) for enhanced detection of defects in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study presented a first exploration of using composite sinusoidal patterns that integrated two and three spatial frequencies of interest, in structured-illumination reflectance imaging (SIRI) for enhanced detection of defects in food (e.g., bruises in apples). Three methods based on Fourier tra...

  2. Web based irrigation scheduler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing use of water in the Mid-South has led to depletion of water levels in aquifers, with few guidelines in place for farmers as to when and how much to irrigate. Irrigation can increase crop yields when water is applied correctly. Wise water management requires knowledge of how much water the...

  3. Irrigation water quality assessments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing demands on fresh water supplies by municipal and industrial users means decreased fresh water availability for irrigated agriculture in semi arid and arid regions. There is potential for agricultural use of treated wastewaters and low quality waters for irrigation but this will require co...

  4. Irrigation Without Waste

    ERIC Educational Resources Information Center

    Shea, Kevin P.

    1975-01-01

    A new means of irrigation, called the drip or trickle system, has been proven more efficient and less wasteful than the current system of flood irrigation. As a result of this drip system, fertilizer-use efficiency is improved and crop yield, though never decreased, is sometimes increased in some crops. (MA)

  5. Irrigation Systems. Student's Guide.

    ERIC Educational Resources Information Center

    Amarillo Coll., TX.

    This guide is intended for use by individuals preparing for a career in commercial and residential irrigation. The materials included are geared toward students who have had some experience in the irrigation business; they are intended to be presented in 10 six-hour sessions. The first two sections deal with using this guide and preparing for the…

  6. Irrigation Systems. Instructor's Guide.

    ERIC Educational Resources Information Center

    Amarillo Coll., TX.

    This guide is intended for use by licensed irrigators who wish to teach others how to design and install residential and commercial irrigation systems. The materials included in the guide have been developed under the assumption that the instructors who use it have little or no formal training as teachers. The first section presents detailed…

  7. 'Smart' Irrigation Systems

    SciTech Connect

    Hastbacka, Mildred; Dieckmann, John; Brodrick, James

    2012-08-31

    The article discusses the ASHRAE Standard 189, with mandatory and optional provisions related to water use efficiency, then focuses on the use of water efficient irrigation systems and the use of recycled water such as air conditioner condensate for landscaping irrigation. Benefits of such practices include both water and energy savings.

  8. Improving Surface Irrigation Performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface irrigation systems often have a reputation for poor performance. One key feature of efficient surface irrigation systems is precision (e.g. laser-guided) land grading. Poor land grading can make other improvements ineffective. An important issue, related to land shaping, is developing the pr...

  9. IRRIGATION SYSTEM COMPONENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The common components of a irrigation system are defined in terms of the diversion, delivery, distribution and drainage subsystems. Irrigation systems can be defined on at least three different levels: project, farm and field. Each level will have the same basic set of components regardless of sca...

  10. SDI versus MESA Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is known that irrigation application method can impact crop water use and water use efficiency, but the mechanisms involved are incompletely understood, particularly in terms of the water and energy balances during the growing season from pre-irrigation through planting, early growth and yield de...

  11. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    The risk of rice production has increased notably due to climate change in Taiwan. To respond to growing agricultural water shortage without affecting normal food production in the future, the application of water-saving irrigation will be a substantial resolution. However, the adoption of water-saving irrigation may result in the reducing of groundwater recharge because continuous flooding in the paddy fields could be regarded as an important source for groundwater recharge. The aim of this study was to evaluate the irrigation water-saving benefit and groundwater recharge deficit when adopting the System of Rice Intensification, known as SRI methodology, in the Choushui River alluvial fan (the largest groundwater pumping and the most important rice-cropping region in central Taiwan). The three-dimensional finite element groundwater model, FEMWATER, was applied to simulate the infiltration process and groundwater recharge under SRI methodology and traditional irrigation schemes including continuous irrigation, and rotational irrigation in two rice-crop periods with hydro-climatic data of 2013. The irrigation water use was then calculated by water balance. The results showed that groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reduced 3.6% and 1.6% in the first crop period, and reduced 3.2% and 1.6% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. However, the SRI methodology achieved notably water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The field irrigation requirement amount of SRI methodology was significantly lower than those of traditional irrigation schemes, saving 37% and 20% of irrigation water in the first crop period, and saving 53% and 35% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. Therefore, the amount of groundwater pumping for

  12. Gross primary production of a semiarid grassland is enhanced by six years of exposure to elevated atmospheric CO2, warming, and irrigation.

    NASA Astrophysics Data System (ADS)

    Ryan, E.; Ogle, K.; Peltier, D.; Williams, D. G.; Pendall, E.

    2014-12-01

    The goal of this study was to quantify interannual variation of gross primary production (GPP) and evaluate potential drivers of GPP with global change using the Prairie Heating and CO2 Enrichment (PHACE) experiment in semiarid grassland in southeastern Wyoming. PHACE consists of the treatments: control, warming only, elevated CO2 (eCO2) only, eCO2 and warming, and irrigation only. We expected that GPP would be most strongly influenced by interannual variability in precipitation under all PHACE treatments, soil water availability under eCO2, and nitrogen availability. GPP data were obtained from paired measurements of net ecosystem exchange (NEE) and ecosystem respiration (Reco; GPP = Reco - NEE) made on 2-4 week intervals over six growing seasons (2007-2012). Soil temperature (T), soil water content (SWC), vapor pressure deficit (VPD), and photosynthetically active radiation (PAR) were continuously recorded at the plot (T, SWC) and site (VPD, PAR) scales. Annual, plot-level aboveground plant nitrogen content (N) was measured during peak biomass. We fit a non-linear light-response model to the GPP data within a Bayesian framework, and modeled the maximum GPP rate (Gmax) and canopy light-use efficiency (Q) as functions of N and current and antecedent SWC, T, and VPD. The model fit the GPP data well (R2 = 0.64), and regardless of the PHACE treatment the most important drivers of GPP were N (for Gmax), VPD (Gmax and Q), antecedent T (Gmax), and antecedent VPD (Q). Model simulations predicted that annual GPP increased on average by about 16% with eCO2, 14% with warming, 12% with eCO2 and warming, and 23% with irrigation. For four of the six years, annual GPP was significantly affected by either eCO2 alone or when combined with warming. The increase in annual GPP under irrigation was similar to the increase under eCO2 during a dry year (2012), but irrigation stimulated GPP to a greater degree than eCO2 during wet years (2008, 2009). Hence, increases in GPP under eCO2

  13. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  14. Spatial dynamics of water management in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Muralidharan, Daya; Knapp, Keith C.

    2009-05-01

    Irrigated agriculture provides 40% of worldwide food supplies but uses large amounts of scarce freshwater and contributes to environmental degradation. At the very core of this problem lie decisions made by irrigators subject to biophysical relations. This research develops a microeconomic model of irrigation management taking into account the dynamics of plant growth over the season, spatial variability in infiltration of applied irrigation water, and fundamental principles from subsurface hydrology. The analysis shows that spatial variability in water infiltration common to traditional irrigation systems increases both applied irrigation water and deep percolation flows by very substantial amounts compared to uniform infiltration. The analysis demonstrates that efficient irrigation management can significantly reduce both applied water and deep percolation at relatively low costs, at least up to a certain level. A long-run analysis of optimal irrigation systems including capital costs indicates that traditional furrow systems are economically efficient over a wide range of water prices and deep percolation costs. Overall, the results indicate that optimal irrigation management can achieve significant resource conservation and pollution control with low loss in agricultural net benefits and without land retirement, investment in capital-intensive systems, or crop switching.

  15. Enhanced methane recovery by food waste leachate injection into a landfill in Korea.

    PubMed

    Behera, Shishir Kumar; Kim, Dong-Hoon; Shin, Hang-Sik; Cho, Si-Kyung; Yoon, Seok-Pyo; Park, Hung-Suck

    2011-01-01

    The current food waste leachate (FWL) disposal practice in Korea warrants urgent attention and necessary action to develop an innovative and sustainable disposal strategy, which is both environmentally friendly and economically beneficial. In this study, methane production by FWL injection into a municipal solid waste landfill with landfill gas (LFG) recovery facility was evaluated for a period of more than 4 months. With the target of recovering LFG with methane content ~50%, optimum LFG extraction rate was decided by a trial and error approach during the field investigation in five different phases. The results showed that, upon FWL injection, LFG extraction rate of ~20 m(3)/h was reasonable to recover LFG with methane content ~58%. Considering the estimated methane production potential of 31.7 m(3) CH(4) per ton of FWL, methane recovery from the landfill was enhanced by 14%. The scientific findings of this short-term investigation indicates that FWL can be injected into the existing sanitary landfills to tackle the present issue and such landfills with efficient liner and gas collection facility can be utilized as absolute and sustainable environmental infrastructures. PMID:21621994

  16. Enhancing the hydrolysis and methane production potential of mixed food waste by an effective enzymatic pretreatment.

    PubMed

    Kiran, Esra Uçkun; Trzcinski, Antoine P; Liu, Yu

    2015-05-01

    In this study, a fungal mash rich in hydrolytic enzymes was produced by solid state fermentation (SSF) of waste cake in a simple and efficient manner and was further applied for high-efficiency hydrolysis of mixed food wastes (FW). The enzymatic pretreatment of FW with this fungal mash resulted in 89.1 g/L glucose, 2.4 g/L free amino nitrogen, 165 g/L soluble chemical oxygen demand (SCOD) and 64% reduction in volatile solids within 24h. The biomethane yield and production rate from FW pretreated with the fungal mash were found to be respectively about 2.3 and 3.5-times higher than without pretreatment. After anaerobic digestion of pretreated FW, a volatile solids removal of 80.4±3.5% was achieved. The pretreatment of mixed FW with the fungal mash produced in this study is a promising option for enhancing anaerobic digestion of FW in terms of energy recovery and volume reduction. PMID:25722182

  17. Rapid detection of acetamiprid in foods using surface-enhanced Raman spectroscopy (SERS).

    PubMed

    Wijaya, Wisiani; Pang, Shintaro; Labuza, Theodore P; He, Lili

    2014-04-01

    Acetamiprid is a neonicotinoid pesticide that is commonly used in modern farming. Acetamiprid residue in food commodities can be a potential harm to human and has been implicated in the honey bee hive die off crisis. In this study, we developed rapid, simple, and sensitive methods to detect acetamiprid in apple juice and on apple surfaces using surface-enhanced Raman spectroscopy (SERS). No pretreatment of apple juice sample was performed. A simple surface swab method was used to recover acetamiprid from the apple surface. Samples were incubated with silver dendrites for several minutes and SERS spectra were taken directly from the silver surface. Detection of a set of 5 apple juice samples can be done within 10 min. The swab-SERS method took 15 min for a set of 5 samples. Resulting spectral data were analyzed using principal component analysis. The highest acetamiprid peak at 634 cm(-1) was used to detect and quantify the amount of acetamiprid spiked in 1:1 water-methanol solvent, apple juice, and on apple surface. The SERS method was able to successfully detect acetamiprid at 0.5 μg/mL (0.5 ppm) in solvent, 3 μg/mL (3 ppm) in apple juice, and 0.125 μg/cm(2) on apple surfaces. The SERS methods provide simple, rapid, and sensitive ways to detect acetamiprid in beverages and on the surfaces of thick skinned fruits and vegetables. PMID:24620941

  18. Simulating Irrigation Requirements And Water Withdrawals: The Role Of Agricultural Irrigation In Basin Hydrology And Non-Sustainable Water Use

    NASA Astrophysics Data System (ADS)

    Wisser, D.; Douglas, E. M.; Schumann, A. H.; Vörösmarty, C. J.

    2006-05-01

    The development of irrigation can cause drastic alterations of the water cycle both through changed evaporation patterns, water abstractions, and (in the case of paddy rice), increased percolation rates. The interactions of irrigation development and large-scale water cycles have traditionally not been accounted for in macroscale hydrological models. We use a modified version an existing water balance model (the WBM model) to explicitly consider the effects of irrigation on regional and continental water cycles. The irrigation module is based on the FAO-CROPWAT approach and uses a daily soil moisture balance to simulate crop consumptive water use. Time series of irrigated areas and the distribution of crops and cropping patterns are derived from a combination of remotely sensed data and national and sub-national statistics. An assessment is made of (1) how irrigation water is supplied and (2) how much of this water is abstracted in excess of the renewable water supply in the basin considering different time horizons. Using different scenarios of water availability and irrigation water demand, the response of irrigation water use to water supply and the potential threats to food security are investigated. Case studies in a few river basins that are heavily influenced by irrigated agriculture and that represent different regions of the world will be presented.

  19. Baicalein induces CD4+Foxp3+ T cells and enhances intestinal barrier function in a mouse model of food allergy

    PubMed Central

    Bae, Min-Jung; Shin, Hee Soon; See, Hye-Jeong; Jung, Sun Young; Kwon, Da-Ae; Shon, Dong-Hwa

    2016-01-01

    The incidence of food allergy, which is triggered by allergen permeation of the gastrointestinal tract followed by a T-helper (Th) 2-mediated immune response, has been increasing annually worldwide. We examined the effects of baicalein (5,6,7-trihydroxyflavone), a flavonoid from Scutellaria baicalensis used in oriental herbal medicine, on regulatory T (Treg) cell induction and intestinal barrier function through the regulation of tight junctions in a mouse model of food allergy. An allergic response was induced by oral challenge with ovalbumin, and the incidence of allergic symptoms and T cell-related activity in the mesenteric lymph nodes were analyzed with and without the presence of baicalein. Our results demonstrated that the administration of baicalein ameliorated the symptoms of food allergy and attenuated serum IgE and effector T cells. However, Treg-related factors were up-regulated by baicalein. Furthermore, baicalein was shown to enhance intestinal barrier function through the regulation of tight junctions. We also found that baicalein treatment induced the differentiation of Treg cells via aryl hydrocarbon receptors (AhRs). Thus, the action of baicalein as an agonist of AhR can induce Treg differentiation and enhance barrier function, suggesting that baicalein might serve as an effective immune regulator derived from foods for the treatment of food allergy. PMID:27561877

  20. Baicalein induces CD4(+)Foxp3(+) T cells and enhances intestinal barrier function in a mouse model of food allergy.

    PubMed

    Bae, Min-Jung; Shin, Hee Soon; See, Hye-Jeong; Jung, Sun Young; Kwon, Da-Ae; Shon, Dong-Hwa

    2016-01-01

    The incidence of food allergy, which is triggered by allergen permeation of the gastrointestinal tract followed by a T-helper (Th) 2-mediated immune response, has been increasing annually worldwide. We examined the effects of baicalein (5,6,7-trihydroxyflavone), a flavonoid from Scutellaria baicalensis used in oriental herbal medicine, on regulatory T (Treg) cell induction and intestinal barrier function through the regulation of tight junctions in a mouse model of food allergy. An allergic response was induced by oral challenge with ovalbumin, and the incidence of allergic symptoms and T cell-related activity in the mesenteric lymph nodes were analyzed with and without the presence of baicalein. Our results demonstrated that the administration of baicalein ameliorated the symptoms of food allergy and attenuated serum IgE and effector T cells. However, Treg-related factors were up-regulated by baicalein. Furthermore, baicalein was shown to enhance intestinal barrier function through the regulation of tight junctions. We also found that baicalein treatment induced the differentiation of Treg cells via aryl hydrocarbon receptors (AhRs). Thus, the action of baicalein as an agonist of AhR can induce Treg differentiation and enhance barrier function, suggesting that baicalein might serve as an effective immune regulator derived from foods for the treatment of food allergy. PMID:27561877

  1. Inter-annual changes in detritus-based food chains can enhance plant growth response to elevated atmospheric CO2.

    PubMed

    Hines, Jes; Eisenhauer, Nico; Drake, Bert G

    2015-12-01

    Elevated atmospheric CO2 generally enhances plant growth, but the magnitude of the effects depend, in part, on nutrient availability and plant photosynthetic pathway. Due to their pivotal role in nutrient cycling, changes in abundance of detritivores could influence the effects of elevated atmospheric CO2 on essential ecosystem processes, such as decomposition and primary production. We conducted a field survey and a microcosm experiment to test the influence of changes in detritus-based food chains on litter mass loss and plant growth response to elevated atmospheric CO2 using two wetland plants: a C3 sedge (Scirpus olneyi) and a C4 grass (Spartina patens). Our field study revealed that organism's sensitivity to climate increased with trophic level resulting in strong inter-annual variation in detritus-based food chain length. Our microcosm experiment demonstrated that increased detritivore abundance could not only enhance decomposition rates, but also enhance plant growth of S. olneyi in elevated atmospheric CO2 conditions. In contrast, we found no evidence that changes in the detritus-based food chains influenced the growth of S. patens. Considered together, these results emphasize the importance of approaches that unite traditionally subdivided food web compartments and plant physiological processes to understand inter-annual variation in plant production response to elevated atmospheric CO2. PMID:25953075

  2. Upgrading food wastes by means of bromelain and papain to enhance growth and immunity of grass carp (Ctenopharyngodon idella).

    PubMed

    Choi, W M; Lam, C L; Mo, W Y; Wong, M H

    2016-04-01

    The fast growing of global aquaculture industry accompanied with increasing pressure on the supply and price of traditional feed materials (e.g., fish meal and soy bean meal). This circumstance has urged the need to search alternative sources of feed stuff. Food waste was used as feed stuff in rearing fish which possess substantial protein and lipid. Grass carp are major species reared in Hong Kong with lower nutritional requirements; it is also an ideal species for investigating the feasibility of using food waste as fish feeds for local aquaculture industry. The growth and immunity, reflected by total protein, total immunologlobulin (IgI), and nitroblue tetrazolium (NBT) activity of grass carp blood, were depressed when feeding with food waste feeds without enzymes. However, the supplementation of bromelain and papain in fish feed enhanced the efficient use of food waste by grass carp, which in turn improved the fish immunity. The present results indicated that the addition of those enzymes could enhance the feed utilization by fish and hematological parameters of grass carp, and the improvement on growth and immunity superior to the control (commercial feed) was observed with the addition of bromelain and papain supplement. Addition of 1 and 2 % mixture of bromelain and papain could significantly enhance the lipid utilization in grass carp. PMID:26092357

  3. An Assessment of Global Net Irrigation Water Requirements from Various Water Supply Sources to Sustain Irrigation

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Sayaka; Cho, Jail; Yamada, Hannah; Khajuria, Anupam; Hanasaki, Naota; Kanae, Shinjiro

    2014-05-01

    Water supply sources for irrigation, such as rivers, reservoirs, and groundwater, are critically important for agricultural productivity. The current rapid increase in irrigation water use threatens sustainable food production. In this study, we estimated the time-varying dependence of irrigation water requirements from water supply sources, with a particular focus on variations in irrigation area during the period 1960-2050 using the global water resources model, H08. The H08 model simulates water requirements on a daily basis at a resolution of 1.0° × 1.0° . The sources of irrigation water requirements in the past simulations were specified using four categories: rivers (RIV), large reservoirs (LR) with a storage capacity greater than 1.0 km3, medium-size reservoirs (MSR) with storage capacities ranging from 1.0 km3 to 3.0 M m3, and non-local non-renewable blue water (NNBW). We also estimated future irrigation water requirements from the above four water supply sources and an additional water supply source (ADD) in three future simulation designs; irrigation area change, climate change, and changes in both irrigation area and climate. ADD was defined as the difference between NNBW in the 1990s and NNBW in the 2040s, because it was difficult to distinguish the types of future water supply sources except for RIV. The simulated results showed that RIV, MSR, and NNBW increased significantly through the 1960s to the early 1990s globally, but LR increased at a relatively low rate. After the early 1990s, RIV approached a critical limit due to the continued expansion of the irrigation area. Furthermore, MSR and NNBW increased significantly following the expansion of the irrigation area and the increased storage capacity of the medium-size reservoirs. After the 2020s, MSR could be expected to approach the critical limit without the construction of medium-size reservoirs. ADD would account for 11-23% of the total requirements in the 2040s. We found that an expansion of

  4. Advances in sprinkler irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sprinkler irrigation is being increasingly adopted in the US and worldwide because it offers increased crop water productivity over what is possible with gravity irrigation. Most sprinkler irrigation is by center pivot, which is presently used on about 50 and 80 percent of land irrigated in the US a...

  5. Zone edge effects with variable rate irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variable rate irrigation (VRI) systems may offer solutions to enhance water use efficiency by addressing variability within a field. However, the design of VRI systems should be considered to maximize application uniformity within sprinkler zones, while minimizing edge effects between such zones alo...

  6. Enhanced auditory arousal increases intake of less palatable and healthier foods.

    PubMed

    Privitera, Gregory J; Diaz, Melissa; Haas, Meagan C

    2014-05-01

    Two experiments were conducted to test a prediction of the arousal hypothesis that increased arousal will increase intake of less palatable and healthy foods. In both experiments, arousal was manipulated by adjusting the volume of a movie (soft, loud volume) while participants consumed foods. In Experiment 1, participants ate fresh (palatable) or stale (less palatable) popcorn during a 9-minute movie played at a soft or loud volume. Experiment 2 used the same procedures with healthier foods (carrot sticks and apple slices). Partial support for the arousal hypothesis in Experiment 1 showed that participants consumed more stale but not fresh popcorn in the loud (high arousal) versus soft (low arousal) volume group. These findings suggest that low but not high palatable foods are susceptible to manipulations of arousal. Consistent with this interpretation, Experiment 2 showed that high but not low environmental arousal increased intake of the fruits and vegetables, which are typically rated as lower in palatability compared to high fat foods. These results show that high arousal in an eating-typical environment increases intake of less palatable foods, and healthy foods (i.e., fruits and vegetables). Increasing the availability of healthier foods in a loud food environment can have a positive impact on increasing intake of fruits and vegetables in that environment. PMID:24762340

  7. The Fluorescence Enhancement of Mercury Detected in Food Based on Rhodamine Derivatives.

    PubMed

    Fan, Cai-ling; Xie, Pu-hui; Cui, Shu-min; Yang, Li-na; Sun, Qing; Ai, Zhi-lu

    2015-05-01

    Recently, the problem of food security is more and more serious, and people pay attention to mercury because of the toxic of it. A new approach for the determination of mercury content in foodstuff is devised. In this paper, first, we design and synthesis a new kind of fluorescent probe whose matrix based on rhodamine B, hydrazine hydrate and hydroxy benzaldehyde. Through the analysis of H-NMR spectra of the synthesized product L1, we confirm that the synthetic substance is the adjacent carboxyl benzaldehyde hydrazone structure generation of rhodamine B. Then, we measure the fluorescence signal intensity of the probe with different concentrations of mercury ions fully upon complexation by fluorescence spectrometer and we can study the relationship between the mercury ion concentration and the fluorescence intensity and draw the standard working curve. Following, It's time to discuss the microwave digestion processing of tea, after digestion we use the synthetic probe Li for determination of mercury content in tea. The experimental results show that the maximum excitation wavelength of the probe and coordination compound are 568. 05 and 560. 00 nm, the maximum emission wavelength are 587. 94 and 580. 00 nm. Then we can find the best testing conditions to improve the degree of accuracy, that is: room temperature, 50% the methanol solution, 3. 0 mL pH 4. 0 buffer solution, in the extent of 30 min. The experimental results show that Na+, K+, Ca2+, Cu2+, Zn2+, Al3+ have little impact on the fluorescence intensity of the:probe. Fe3+, Mg2+, Ba2+ has a weak enhancement to the fluorescence intensity of the probe. While a low concentrations of Hg2+ have an obviously enhanced effect on the fluorescence intensity of the probe. In contrast to other metal ions, the probe for Hg2+ has a good selectivity. Linear relationship between the magnitude of increase in fluorescence intensity and concentration of mercury ion was in the range of 5~20 ng . L-1 with detection limit (3S/N) of

  8. Irrigation on Topographic Maps.

    ERIC Educational Resources Information Center

    Raitz, Karl B.

    1979-01-01

    Describes how study of irrigation practices on topographic maps can help students in introductory high school and college geography courses understand man and land relationships to geography. (Author/DB)

  9. [Optimal allocation of irrigation water resources based on systematical strategy].

    PubMed

    Cheng, Shuai; Zhang, Shu-qing

    2015-01-01

    With the development of the society and economy, as well as the rapid increase of population, more and more water is needed by human, which intensified the shortage of water resources. The scarcity of water resources and growing competition of water in different water use sectors reduce water availability for irrigation, so it is significant to plan and manage irrigation water resources scientifically and reasonably for improving water use efficiency (WUE) and ensuring food security. Many investigations indicate that WUE can be increased by optimization of water use. However, present studies focused primarily on a particular aspect or scale, which lack systematic analysis on the problem of irrigation water allocation. By summarizing previous related studies, especially those based on intelligent algorithms, this article proposed a multi-level, multi-scale framework for allocating irrigation water, and illustrated the basic theory of each component of the framework. Systematical strategy of optimal irrigation water allocation can not only control the total volume of irrigation water on the time scale, but also reduce water loss on the spatial scale. It could provide scientific basis and technical support for improving the irrigation water management level and ensuring the food security. PMID:25985685

  10. Advances in Irrigation

    NASA Astrophysics Data System (ADS)

    Gardner, W. R.

    This is the first volume of Advances in Irrigation, a new serial publication by the publishers of Advances in Agronomy and Advances in Hydroscience and designed to follow the same format. The editor is a well-known researcher and writer on irrigation and related subjects and has assembled a collection of highly regarded and respected authors for the initial volume. The readership for this volume will probably be mainly specialists and students interested in irrigation and an occasional design engineer.The seven contributions in this volume fall roughly into two classes: research and practice. Three papers (“Conjunctive Use of Rainfall and Irrigation in Semi-arid Regions,” by Stewart and Musik, “Irrigation Scheduling Using Soil Moisture Measurements: Theory and Practice,” by G. S. and M. D. Campbell, and “Use of Solute Transport Models to Estimate Salt Balance Below Irrigated Cropland,” by Jury) cover topics that have been the subject of a number of reviews. The contributions here provide brief, well-written, and authoritative summaries of the chosen topics and serve as good introductions or reviews. They should lend themselves well to classroom use in various ways. They also should be helpful to the nonspecialist interested in getting a sense of the subject without going into great detail.

  11. A modeling study of irrigation effects on global surface- and groundwater resources under a changing climate

    NASA Astrophysics Data System (ADS)

    Leng, G.; Huang, M.; Tang, Q.; Leung, L. R.

    2014-12-01

    In this study, we investigate the effects of irrigation on global surface water (SW) and groundwater (GW) resources by performing simulations of the Community Land Model 4.0 (CLM4) at 0.5-degree resolution driven by downscaled/bias-corrected historical climate simulations and future projections from five General Circulation Models (GCMs) from 1950-2099. For each climate scenario, three sets of numerical experiments were configured: (1) a control experiment (CTRL) in which all crops are assumed to be rainfed; (2) an irrigation experiment (IRRIG) in which the irrigation module is activated; and (3) a groundwater pumping experiment (PUMP) in which a groundwater pumping scheme coupled with the irrigation module is activated. The parameters associated with irrigation and groundwater pumping were calibrated based on a global inventory of census-based SW and GW use compiled by the Food and Agricultural Organization (FAO). Our results suggest that irrigation could lead to two major opposing effects on SW/GW: SW depletion/GW accumulation in regions with irrigation primarily fed by SW, and SW accumulation/GW depletion in regions with irrigation fed primarily by GW. Furthermore, irrigation depending primarily on SW tends to have larger impacts on low-flow than high-flow conditions of SW, suggesting that intensive irrigation water use has the potential to further exacerbate low-flow conditions, increasing vulnerability to drought. By the end of the 21st century (2070-2099), climate change significantly increases (relative to 1971-2000) irrigation water demand in the regions equipped for irrigation across the world. The increase in demand combined with the increased temporal-spatial variability of water supply will cause more severe issues of local water scarcity for irrigation. Regionally, irrigation has the potential to aggravate climate-induced changes of SW/GW although the effects are negligible when averaged globally. Our results emphasize the importance of accounting for

  12. Enhancing Student Learning in Food Engineering Using Computational Fluid Dynamics Simulations

    ERIC Educational Resources Information Center

    Wong, Shin Y.; Connelly, Robin K.; Hartel, Richard W.

    2010-01-01

    The current generation of students coming into food science and engineering programs is very visually oriented from their early experiences. To increase their interest in learning, new and visually appealing teaching materials need to be developed. Two diverse groups of students may be identified based on their math skills. Food science students…

  13. Non-sustainable groundwater sustaining irrigation - a global assessment

    NASA Astrophysics Data System (ADS)

    Wada, Y.; van Beek, L. P. H.; Bierkens, M. F. P.

    2012-04-01

    Irrigated crops play a vital role in securing global food production. It is estimated that 17% of agricultural lands are irrigated, yet they account for 40% of the global food production, sustaining the livelihood of billions of people (Abdullah, 2006). At the same time, water used by irrigated crops (i.e., crop water demand) and irrigation water demand are responsible for about 70% of the global water withdrawal and account for about 90% of the global water consumption, i.e. water withdrawal minus return flow respectively. Water demand for irrigated crops can be met by three different sources: 1) green water, being water from local precipitation that is temporarily stored in the soil, 2) blue water, being surface freshwater available in rivers, lakes, reservoirs and wetlands, and renewable groundwater, and 3) non-renewable or non-sustainable groundwater and non-local water resources. Here, we quantify globally the amount of non-renewable groundwater abstraction to sustain current irrigation practice. We use the global hydrological model PCR-GLOBWB to simulate gross crop water demand for irrigated crops and available blue and green water to meet this demand. We downscale country statistics of groundwater abstraction by considering the part of net total water demand that cannot be met by surface freshwater. We subsequently confront these with simulated groundwater recharge including return flow from irrigation to estimate non-renewable groundwater abstraction. Results show that non-renewable groundwater abstraction contributes approximately 20% to the global gross irrigation water demand for the year 2000. The contribution of non-renewable groundwater abstraction to irrigation is largest in India (68 km3 yr-1) followed by Pakistan (35 km3/yr), USA (30 km3/yr), Iran (20 km3/yr), China (20 km3/yr), Mexico (10 km3/yr) and Saudi Arabia (10 km3/yr). Results also show that globally this contribution more than tripled from 75 to 234 km3/yr over the period 1960-2000. These

  14. Long-term moderate elevation of corticosterone facilitates avian food-caching behaviour and enhances spatial memory.

    PubMed

    Pravosudov, Vladimir V

    2003-12-22

    It is widely assumed that chronic stress and corresponding chronic elevations of glucocorticoid levels have deleterious effects on animals' brain functions such as learning and memory. Some animals, however, appear to maintain moderately elevated levels of glucocorticoids over long periods of time under natural energetically demanding conditions, and it is not clear whether such chronic but moderate elevations may be adaptive. I implanted wild-caught food-caching mountain chickadees (Poecile gambeli), which rely at least in part on spatial memory to find their caches, with 90-day continuous time-release corticosterone pellets designed to approximately double the baseline corticosterone levels. Corticosterone-implanted birds cached and consumed significantly more food and showed more efficient cache recovery and superior spatial memory performance compared with placebo-implanted birds. Thus, contrary to prevailing assumptions, long-term moderate elevations of corticosterone appear to enhance spatial memory in food-caching mountain chickadees. These results suggest that moderate chronic elevation of corticosterone may serve as an adaptation to unpredictable environments by facilitating feeding and food-caching behaviour and by improving cache-retrieval efficiency in food-caching birds. PMID:14728783

  15. Enhanced striatal dopamine release during food stimulation in binge eating disorder

    SciTech Connect

    Wang, g.j.; Wang, G.-J.; Geliebter, A.; Volkow, N.D.; Telang, F.W.; Logan, Jaynbe, M.C.; Galanti, K.; Selig, P.A.; Han, H.; Zhu, W.; Wong, C.T.; Fowler, J.S.

    2011-01-13

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [{sup 11}C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  16. Enhancing hepatic mitochondrial fatty acid oxidation stimulates eating in food-deprived mice

    PubMed Central

    Mansouri, Abdelhak; Pacheco-López, Gustavo; Ramachandran, Deepti; Arnold, Myrtha; Leitner, Claudia; Prip-Buus, Carina; Langhans, Wolfgang

    2014-01-01

    Hepatic fatty acid oxidation (FAO) has long been implicated in the control of eating. Nevertheless, direct evidence for a causal relationship between changes in hepatic FAO and changes in food intake is still missing. Here we tested whether increasing hepatic FAO via adenovirus-mediated expression of a mutated form of the key regulatory enzyme of mitochondrial FAO carnitine palmitoyltransferase 1A (CPT1mt), which is active but insensitive to inhibition by malonyl-CoA, affects eating and metabolism in mice. CPT1mt expression increased hepatocellular CPT1 protein levels. This resulted in an increase in circulating ketone body levels in fasted CPT1mt-expressing mice, suggesting an increase in hepatic FAO. These mice did not show any significant changes in cumulative food intake, energy expenditure, or respiratory quotient after 4-h food deprivation. After 24-h food deprivation, however, the CPT1mt-expressing mice displayed increased food intake. Thus expression of CPT1mt in the liver increases hepatic FAO capacity, but does not inhibit eating. Rather, it may even stimulate eating after prolonged food deprivation. These data do not support the hypothesis that an increase in hepatic FAO decreases food intake. PMID:25427767

  17. Irrigation in a changing world: a global systems analysis perspective

    NASA Astrophysics Data System (ADS)

    Doell, P.

    2003-04-01

    The global issues of water security and food security are closely linked. Sustainable plant production requires a sustained provisioning of water, either in the form of "green" or of "blue" water (as introduced by Malin Falkenmark in 1993). Green water is defined as the fraction of water that is evapotranspirated, i.e. the water supply for all non-irrigated vegetation. Blue water refers to the water flows in groundwater and surface water. It represents the water that can be withdrawn, e.g. for irrigation. In areas without enough green water in the soil to achieve satisfactory crop growth, crops can be irrigated with blue water. The distinction between green and blue water helps to understand the linkages between rainfall, soil, land productivity and water availability for irrigation and other human uses. Today, about 67% of the current global water withdrawals and about 87% of the consumptive water use (withdrawal minus return flow) is for irrigation purposes. Irrigated land comprises less than one-fifth of all cropped area but produces about two-fifth of the world's cereals. Due to the high and reliable productivity of irrigated land, an extension of irrigation appears to be an appropriate strategy to feed the world's growing population However, will there be enough water available for the necessary extension? To assess this question, both water availability and demand must be analyzed. At the global scale, such an assessment is supported by the global model of water resources and use model WaterGAP 2, which, with a spatial resolution of 0.5 degrees, computes both water resources and water use by irrigation, livestock, households, manufacturing and thermal power plants. WaterGAP is applied to derive scenarios that show the impact of climate change as well as demographic, economic and technological changes. The Global Irrigation Model of WaterGAP computes, for example, the impact of climate change on irrigation requirements on net irrigation requirements. This is

  18. Empirical evidence for a recent slowdown in irrigation-induced cooling

    SciTech Connect

    Bonfils, C; Lobell, D

    2007-01-19

    Understanding the influence of past land use changes on climate is needed to improve regional projections of future climate change and inform debates about the tradeoffs associated with land use decisions. The effects of rapid expansion of irrigated area in the 20th century has remained unclear relative to other land use changes, such as urbanization, that affected a similar total land area. Using spatial and temporal variations in temperature and irrigation extent observed in California, we show that irrigation expansion has had a large cooling effect on summertime average daily daytime temperatures (-0.15 to -0.25 C.decade{sup -1}), which corresponds to a cooling estimated at -2.0 - -3.3 C since the introduction of irrigation practice. Irrigation has negligible effects on nighttime temperatures, leading to a net cooling effect of irrigation on climate (-0.06 to -0.19 C.decade{sup -1}). Stabilization of irrigated area has occurred in California since 1980 and is expected in the near future for most irrigated regions. The suppression of past human-induced greenhouse warming by increased irrigation is therefore likely to slow in the future, and a potential decrease in irrigation may even contribute to a more rapid warming. Changes in irrigation alone are not expected to influence broadscale temperatures, but they may introduce large uncertainties in climate projections for irrigated agricultural regions, which provide roughly 40% of global food production.

  19. An integrated approach to assess the dynamics of a peri-urban watershed influenced by wastewater irrigation

    NASA Astrophysics Data System (ADS)

    Mahesh, Jampani; Amerasinghe, Priyanie; Pavelic, Paul

    2015-04-01

    In many urban and peri-urban areas of India, wastewater is under-recognized as a major water resource. Wastewater irrigated agriculture provides direct benefits for the livelihoods and food security of many smallholder farmers. A rapidly urbanizing peri-urban micro-watershed (270 ha) in Hyderabad was assessed over a 10-year period from 2000 to 2010 for changes in land use and associated farming practices, farmer perceptions, socio-economic evaluation, land-use suitability for agriculture and challenges in potential irrigated area development towards wastewater use. This integrated approach showed that the change in the total irrigated area was marginal over the decade, whereas the built-up area within the watershed boundaries doubled and there was a distinct shift in cropping patterns from paddy rice to paragrass and leafy vegetables. Local irrigation supplies were sourced mainly from canal supplies, which accounted for three-quarters of the water used and was largely derived from wastewater. The remainder was groundwater from shallow hard-rock aquifers. Farmer perception was that the high nutrient content of the wastewater was of value, although they were also interested to pay modest amounts for additional pre-treatment. The shift in land use towards paragrass and leafy vegetables was attributed to increased profitability due to the high urban demand. The unutilised scrubland within the watershed has the potential for irrigation development, but the major constraints appear to be unavailability of labour and high land values rather than water availability. The study provides evidence to support the view that the opportunistic use of wastewater and irrigation practices, in general, will continue even under highly evolving peri-urban conditions, to meet the livelihood needs of the poor driven by market demands, as urban sprawl expands into cultivable rural hinterlands. Policy support is needed for enhanced recognition of wastewater for agriculture, with flow

  20. Enhanced motivation for food reward induced by stress and attenuation by corticotrophin-releasing factor receptor antagonism in rats: implications for overeating and obesity

    PubMed Central

    Liu, Xiu

    2014-01-01

    Rationale Overeating beyond individuals’ homeostatic needs critically contributes to obesity. The neurobehavioral mechanisms underlying the motivation to consume excessive foods with high calories are not fully understood. Objective The present study examined whether a pharmacological stressor, yohimbine enhances the motivation to procure food reward with an emphasis on comparisons between standard lab chow and high-fat foods. The effects of corticotropin-releasing factor receptor (CRF1) blockade by a CFR1 selective antagonist NBI on the stress-enhanced motivation for food reward were also assessed. Methods Male Sprague-Dawley rats with chow available ad libitum in their home cages were trained to press a lever under a progressive-ratio schedule for deliveries of either standard or high-fat food pellets. For testing yohimbine stress effects, rats received an intraperitoneal administration of yohimbine 10 min before start of the test sessions. For testing effects of CRF1 receptor blockade on stress responses, NBI was administered 20 min prior to yohimbine challenge. Results The rats emitted higher levels of lever responses to procure the high-fat food pellets compared with their counterparts on standard food pellets. Yohimbine challenge facilitated lever responses for the reward in all of the rats, whereas the effect was more robust in the rats on high-fat food pellets compared with their counterparts on standard food pellets. An inhibitory effect of pretreatment with NBI was observed on the enhancing effect of yohimbine challenge but not on the responses under baseline condition without yohimbine administration. Conclusions Stress challenge significantly enhanced the motivation of satiated rats to procure extra food reward, especially the high-fat food pellets. Activation of CRF1 receptors is required for the stress-enhanced motivation for food reward. These results may have implications for our better understanding of the biobehavioral mechanisms of overeating

  1. Irrigation efficiency and production energy efficiency of traditional and modern farms in the Al-Hassa Oasis, Saudi Arabia

    SciTech Connect

    Al-Taher, A.A.

    1987-01-01

    The Al-Hassa Oasis is located in eastern Saudi Arabia. The dry tropical climate requires irrigation throughout the year for agricultural crop production, which currently faces the following problems: declining groundwater tables, scarcity of surface water, high soil salinity in substantial parts of the districts serviced by the irrigation authority, low efficiency of irrigation water use in fields, rising costs for production inputs, and declining crop yields. The objectives of this research are to assess field irrigation efficiency under traditional, intermediate, and modern irrigation methods, to calculate energy efficiency under transitional, intermediate, and modern soil management practices, and to determine the relationship between irrigation efficiency and production energy efficiency within the current agricultural scenario of the Oasis. Analyses regarding the relationship between (1) food energy output and irrigation energy input, non-irrigation energy input and irrigation efficiency, (2) irrigation efficiency and total cultural energy input, (3) irrigation efficiency and irrigation energy input, (4) food energy output and cultural energy input, and (5) production energy efficiency and irrigation efficiency under tomatoes, cucumber, potatoes, other vegetables, alfalfa, wheat, dates, and rice indicate that the effect varies from one crop to another.

  2. Effects of Irrigation on Global Climate During the 20th Century

    NASA Technical Reports Server (NTRS)

    Puma, M. J.; Cook, B. I.

    2010-01-01

    Various studies have documented the effects of modern ]day irrigation on regional and global climate, but none, to date, have considered the time ]varying impact of steadily increasing irrigation rates on climate during the 20th century. We investigate the impacts of observed irrigation changes over this century with two ensemble simulations using an atmosphere general circulation model. Both ensembles are forced with transient climate forcings and observed sea surface temperatures from 1902 to 2000; one ensemble includes irrigation specified by a time ]varying data set of irrigation water withdrawals. Early in the century, irrigation is primarily localized over southern and eastern Asia, leading to significant cooling in boreal summer (June.August) over these regions. This cooling spreads and intensifies by century fs end, following the rapid expansion of irrigation over North America, Europe, and Asia. Irrigation also leads to boreal winter (December.February) warming over parts of North America and Asia in the latter part of the century, due to enhanced downward longwave fluxes from increased near ]surface humidity. Precipitation increases occur primarily downwind of the major irrigation areas, although precipitation in parts of India decreases due to a weaker summer monsoon. Irrigation begins to significantly reduce temperatures and temperature trends during boreal summer over the Northern Hemisphere midlatitudes and tropics beginning around 1950; significant increases in precipitation occur in these same latitude bands. These trends reveal the varying importance of irrigation ]climate interactions and suggest that future climate studies should account for irrigation, especially in regions with unsustainable irrigation resources.

  3. Prediction of positive food effect: Bioavailability enhancement of BCS class II drugs.

    PubMed

    Raman, Siddarth; Polli, James E

    2016-06-15

    High-throughput screening methods have increased the number of poorly water-soluble, highly permeable drug candidates. Many of these candidates have increased bioavailability when administered with food (i.e., exhibit a positive food effect). Food is known to impact drug bioavailability through a variety of mechanisms, including drug solubilization and prolonged gastric residence time. In vitro dissolution media that aim to mimic in vivo gastrointestinal (GI) conditions have been developed to lessen the need for fed human bioequivalence studies. The objective of this work was to develop an in vitro lipolysis model to predict positive food effect of three BCS Class II drugs (i.e., danazol, amiodarone and ivermectin) in previously developed lipolysis media. This in vitro lipolysis model was comparatively benchmarked against FeSSIF and FaSSIF media that were modified for an in vitro lipolysis approach, as FeSSIF and FaSSIF are widely used in in vitro dissolution studies. The in vitro lipolysis model accurately predicted the in vivo positive food effect for three model BCS class II drugs. The in vitro lipolysis model has potential use as a screening test of drug candidates in early development to assess positive food effect. PMID:27067239

  4. Changes in whole grain polyphenols and antioxidant activity of six sorghum genotypes under different irrigation treatments.

    PubMed

    Wu, Gangcheng; Johnson, Stuart K; Bornman, Janet F; Bennett, Sarita J; Fang, Zhongxiang

    2017-01-01

    Sorghum grain containing elevated polyphenolic antioxidant content may provide foods with benefits to human health. A study was undertaken to determine the potential role of irrigation on the content of polyphenols and antioxidant levels in sorghum grain. Bound, free and total polyphenols were investigated in six diverse sorghum genotypes grown under either full irrigation or a deficit irrigation regime. Results showed genotype, irrigation and their interaction had a significant effect on polyphenols and antioxidant activity (P⩽0.05). The deficit irrigation treatment significantly increased polyphenol content and antioxidant activity compared to the full irrigation treatment. Of the six genotypes Shawaya black short 1 and IS1311C (brown) showed the highest polyphenols levels and antioxidant activity. Therefore, both irrigation treatments and genotype need to be considered by sorghum breeders and farmers during sorghum production to produce grain with the required levels of polyphenolics and antioxidant activity for targeted end-use. PMID:27507466

  5. Application of ozone for enhancing the microbiological safety and quality of foods: a review.

    PubMed

    Kim, J G; Yousef, A E; Dave, S

    1999-09-01

    Ozone (O3) is a strong antimicrobial agent with numerous potential applications in the food industry. High reactivity, penetrability, and spontaneous decomposition to a nontoxic product (i.e., O2) make ozone a viable disinfectant for ensuring the microbiological safety of food products. Ozone has been used for decades in many countries and recently, the generally recognized as safe (GRAS) status of this gas has been reaffirmed in the United States. Ozone, in the gaseous or aqueous phases, is effective against the majority of microorganisms tested by numerous research groups. Relatively low concentrations of ozone and short contact time are sufficient to inactivate bacteria, molds, yeasts, parasites, and viruses. However, rates of inactivation are greater in ozone demand-free systems than when the medium contains oxidizable organic substances. Susceptibility of microorganisms to ozone also varies with the physiological state of the culture, pH of the medium, temperature, humidity, and presence of additives (e.g., acids, surfactants, and sugars). Ozone applications in the food industry are mostly related to decontamination of product surface and water treatment. Ozone has been used with mixed success to inactivate contaminant microflora on meat, poultry, eggs, fish, fruits, vegetables, and dry foods. The gas also is useful in detoxification and elimination of mycotoxins and pesticide residues from some agricultural products. Excessive use of ozone, however, may cause oxidation of some ingredients on food surface. This usually results in discoloration and deterioration of food flavor. Additional research is needed to elucidate the kinetics and mechanisms of microbial inactivation by ozone and to optimize its use in food applications. PMID:10492485

  6. Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste.

    PubMed

    Bajón Fernández, Y; Soares, A; Villa, R; Vale, P; Cartmell, E

    2014-05-01

    The increasing concentration of carbon dioxide (CO2) in the atmosphere and the stringent greenhouse gases (GHG) reduction targets, require the development of CO2 sequestration technologies applicable for the waste and wastewater sector. This study addressed the reduction of CO2 emissions and enhancement of biogas production associated with CO2 enrichment of anaerobic digesters (ADs). The benefits of CO2 enrichment were examined by injecting CO2 at 0, 0.3, 0.6 and 0.9 M fractions into batch ADs treating food waste or sewage sludge. Daily specific methane (CH4) production increased 11-16% for food waste and 96-138% for sewage sludge over the first 24h. Potential CO2 reductions of 8-34% for sewage sludge and 3-11% for food waste were estimated. The capacity of ADs to utilise additional CO2 was demonstrated, which could provide a potential solution for onsite sequestration of CO2 streams while enhancing renewable energy production. PMID:24632434

  7. Investigating irrigation scheduling for rice using variable rate irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because almost all US rice is produced with continuous flood irrigation, little information addresses irrigation scheduling for rice; however, successful production of rice without a continuous flood will require scheduling, or timely irrigation. A field study conducted at the University of Missouri...

  8. Variety enhances food intake in humans: role of sensory-specific satiety.

    PubMed

    Brondel, L; Romer, M; Van Wymelbeke, V; Pineau, N; Jiang, T; Hanus, C; Rigaud, D

    2009-04-20

    Twenty-one subjects were studied to evaluate the effect of renewal of sensory stimulations of previously eaten foods on sensory-specific satiety and intake. The subjects ate French fries then brownie cakes ad libitum in three situations: "monotonous" - fries then brownies were consumed alone; "simultaneous" - condiments (ketchup and mayonnaise for the fries, vanilla cream and whipped cream for the brownies) were added during intakes; "successive" - after intake of fries alone, ketchup then mayonnaise were available with fries and, after intake of brownies alone, vanilla cream then whipped cream were offered with brownies. The quantities eaten in the "simultaneous" and "successive" situations were higher (p<0.001) than those in the "monotonous" one (1485+/-582 and 1682+/-777 kcal vs 1195+/-552 kcal, respectively). In the "successive" situation, hedonic ratings for fries diminished during intake but increased after the introduction of ketchup, leading to additional intake of fries. Similarly, hedonic ratings for brownies diminished during intake and increased after the introduction of vanilla cream leading to additional brownie intake (mayonnaise and whipped cream had no significant effect). Food variety, obtained by adding condiments can increase food intake in the short term. The mechanism by which food consumption is increased after the addition of condiments is introduced is at least partly related to the attenuation of sensory-satiety for a given food. PMID:19419673

  9. Evaluation of zigzag furrow irrigation in Andean communities

    NASA Astrophysics Data System (ADS)

    Roldán Cañas, José; Chipana, Gladys; Chipana, René; Fátima Moreno Pérez, María

    2014-05-01

    It is estimated that the area under irrigation in Bolivia represents 9.7% of the cultivated area, ie 253,100 ha. Traditional surface irrigation is the main system used in Bolivia. Currently, 40,000 ha are irrigated in the La Paz Department. The largest irrigated surface and the areas that produce most food in the Department are located in the eastern and western mountain ranges. However, the region's abrupt terrain makes it impossible to use conventional surface irrigation methods. . As a result, farmers in the inter-Andean valleys have used other surface irrigation methods intensively for hundreds of years like zigzag furrow. In this study, we conducted field trials in the rural community of Cebollullo of the municipality of Palca of La Paz Department. Cebollullo is located at an altitude of 2,780 m above sea level. Its geographic coordinates are 16°41'90.1"S to 16°43'12"S latitude and 67°52'13"W to 67°59'15"W longitude. The irrigated area is characterized by its steep slopes and zigzag corrugated furrow irrigation method is used. The main objective of this study is to evaluate the performance of zigzag furrow irrigation in this community. The study plot has an area of 728 m2 and the average slope is 16.46%. For irrigation evaluation, the data of a middle furrow were taken to avoid boundary effects. Irrigation events recorded during the crop development were 21, with irrigation frequency of 2 to 3 days, of which 10 events were evaluated weekly. Due to the low flow rates used for irrigation, the inflow and outflow measurement of the furrows was made volumetrically. These flow measurements were made at five-minute intervals during irrigation. The zigzag corrugated irrigation method uses low flow discharges in order to decrease the rate of irrigation allowing infiltration of required volume by the crops and reducing soil erosion. Application efficiencies in the study plot ranged between 7.55% and 30.31%, with losses by surface runoff from 45.90% to 85.83% and

  10. Bacillus licheniformis Isolated from Traditional Korean Food Resources Enhances the Longevity of Caenorhabditis elegans through Serotonin Signaling.

    PubMed

    Park, Mi Ri; Oh, Sangnam; Son, Seok Jun; Park, Dong-June; Oh, Sejong; Kim, Sae Hun; Jeong, Do-Youn; Oh, Nam Su; Lee, Youngbok; Song, Minho; Kim, Younghoon

    2015-12-01

    In this study, we investigated potentially probiotic Bacillus licheniformis strains isolated from traditional Korean food sources for ability to enhance longevity using the nematode Caenorhabditis elegans as a simple in vivo animal model. We first investigated whether B. licheniformis strains were capable of modulating the lifespan of C. elegans. Among the tested strains, preconditioning with four B. licheniformis strains significantly enhanced the longevity of C. elegans. Unexpectedly, plate counting and transmission electron microscopy (TEM) results indicated that B. licheniformis strains were not more highly attached to the C. elegans intestine compared with Escherichia coli OP50 or Lactobacillus rhamnosus GG controls. In addition, qRT-PCR and an aging assay with mutant worms showed that the conditioning of B. licheniformis strain 141 directly influenced genes associated with serotonin signaling in nematodes, including tph-1 (tryptophan hydroxylase), bas-1 (serotonin- and dopamine-synthetic aromatic amino acid decarboxylase), mod-1 (serotonin-gated chloride channel), ser-1, and ser-7 (serotonin receptors) during C. elegans aging. Our findings suggest that B. licheniformis strain 141, which is isolated from traditional Korean foods, is a probiotic generally recognized as safe (GRAS) strain that enhances the lifespan of C. elegans via host serotonin signaling. PMID:26541069

  11. Ensuring equal opportunity sprinkler irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Equal opportunity for plants to sprinkler irrigation water must be carefully considered by crop producers, irrigation consultants, and the industry that supplies the irrigation equipment. Equal opportunity can be negated by improper marketing, design, and installation, as well as through improper f...

  12. Planning for an Irrigation System.

    ERIC Educational Resources Information Center

    Turner, J. Howard; Anderson, Carl L.

    The publication, with the aid of tables and colored illustrations and diagrams, presents information to help the farmer who is considering the installation of an irrigation system determine whether or not to irrigate, the type of system to use, and the irrigation cost and return on investment. Information is presented on the increase in yield to…

  13. Using the Melamine Contamination of Foods to Enhance the Chemistry Classroom

    ERIC Educational Resources Information Center

    Kimbrough, Doris Renate; Jensen, Anna Chick

    2010-01-01

    An introduction to the chemistry of the triazine compound, melamine, is presented as well as a brief discussion of the health impacts on humans and pets when melamine contaminates milk products and pet food. Melamine has repeatedly been in the news, and its topical nature provides an excellent springboard for applications of a variety of chemical…

  14. The use of silver nanorod array based surface enhanced Raman scattering sensor for food safety applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For the advancement of preventive strategies, it is critical to develop rapid and sensitive detection methods with nanotechnology for food safety applications. This article reports the recent development on the use of aligned silver nanorod (AgNR) arrays prepared by oblique angle deposition, as surf...

  15. Enhancing Food Safety: Reaching a Large and Diverse Population through Online Certification

    ERIC Educational Resources Information Center

    Reinhardt, Chris; Thomson, Dan

    2015-01-01

    Beef Quality Assurance (BQA) is a program designed to educate U.S. beef producers on best management practices to ensure production of a safe, wholesome beef product and humane animal care. The program must be sufficiently nimble to rapidly incorporate the demands of an ever-changing food system. Animal Care Training, an online system…

  16. Role of Service Learning Activities: Assessing and Enhancing Food Security in Low-Income Families

    ERIC Educational Resources Information Center

    Duerr, Lynn

    2007-01-01

    Many low-income families are at risk for food insecurity. In addition, with the aging of America, multigenerational families are becoming more prevalent, resulting in excessive strain and burden on the resources of low-income families. Family and consumer sciences educators need to teach their students about factors that contribute to food…

  17. Primary consumers enhance connectivity to marine and terrestrial ecosystems within estuarine food webs

    EPA Science Inventory

    The flux of organic matter (OM) across ecosystem boundaries can influence estuarine food web dynamics and productivity. However, this process is seldom investigated taking into account all the adjacent ecosystems (e.g. ocean, river, land) and different hydrological settings (i.e....

  18. Does further clean-up reduce the matrix enhancement effect in gas chromatographic analysis of pesticide residues in food?

    PubMed

    Schenck, F J; Lehotay, S J

    2000-01-28

    Sample extracts of apples, peas, green beans, oranges, raspberries, clementines, carrots, and wheat obtained using the Food and Drug Administration (acetone extraction) and Canadian Pest Management Regulatory Agency (acetonitrile extraction) multiresidue methods for pesticides were subjected to clean-up using different solid-phase extraction (SPE) cartridges in an attempt to reduce or eliminate the matrix enhancement effect. The matrix enhancement effect is related to the blocking of active sites on the injector liner by matrix components, thereby increasing signal in the presence of matrix versus standards in solvent in which the pesticides themselves interact with the active sites. Graphitized carbon black (GCB) was often used in combination with various anion-exchange SPE cartridges. The extracts were then spiked with organophosphorus insecticides. These process standards were then compared to standards in acetone of the same concentration using gas chromatography with flame photometric detection or ion trap mass spectrometric detection. Sample matrix enhancement varied from little to no effect for some pesticides (e.g. chlorpyrifos, malathion) to >200% in the case of certain susceptible pesticides. The GCB removed color components but showed little effect in reducing matrix enhancement by itself. The anion-exchange cartridges in combination with GCB or not, substantially reduced the matrix enhancement effect but did not eliminate it. PMID:10677079

  19. EROSION: IRRIGATION-INDUCED

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlling erosion on and soil loss from irrigated lands is critical to sustain agricultural production. Protecting and stabilizing the soil surface will minimize sediment detachment. Slowing or reducing overland flow will minimize sediment transport. Reducing or managing runoff is the key to co...

  20. Texas Irrigation Situation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The irrigation situation in Texas is an interaction between hydrology and water policies. In 2012, according to National Agricultural Statistical Service (NASS) four High Plains counties, Gainesville, Yoakum, Terry and Cochran, accounted for approximately 60% of the 150,000 acres of peanut productio...

  1. Erosion: Irrigation-induced

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil can be eroded by sprinkler or surface irrigation. Once sprinkler droplet kinetic energy detaches soil, overland flow transports the sediment downslope and off-site. Protecting the soil surface, increasing sprinkler wetted diameters, and tilling to increase infiltration and thereby lessen overla...

  2. The Arkansas Irrigation Scheduler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the U.S. Mid-South, annual rainfall is generally sufficient for limited crop production, but periods of drought during the growing season make irrigation essential for optimum yields. However, factors such as cloudy weather, rainfall, and temperature swings caused by the movement of weather front...

  3. Interactions between irrigation regimes and varieties result in altered cottonseed composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The value of whole cottonseed and cottonseed products has increased as demand has grown from the dairy and food related industries. Although cottonseed composition has previously been documented to be affected by variety, planting date, and irrigation, interactions between varieties and irrigation ...

  4. Economic impacts on irrigated agriculture of water conservation programs in drought

    NASA Astrophysics Data System (ADS)

    Ward, Frank A.

    2014-01-01

    This study analyzes vulnerability, impacts, and adaptability by irrigation to drought.It accounts for economic incentives affecting choices on irrigation technology, crop mix, and water sources.When surface water supplies fall, farmers increase pumping, even when pumping raises production costs.Conservation program subsidies raise the value of food production but can increase crop water depletions.

  5. Water quality criteria for use of saline/degraded water for irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current fresh water use in arid and semiarid lands is not sustainable, as use exceeds replenishment and demand for water continues to increase. Agriculture will either need to reduce acreage under irrigation, which is undesirable since it will reduce food supply, or irrigate with alternative water s...

  6. From rainfed agriculture to stress-avoidance irrigation: II. Sustainability, crop yield, and profitability

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2011-02-01

    The optimality of irrigation strategies may be sought with respect to a number of criteria, including water requirements, crop yield, and profitability. To explore the suitability of different demand-based irrigation strategies, we link the probabilistic description of irrigation requirements under stochastic hydro-climatic conditions, provided in a companion paper [Vico G, Porporato A. From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture. Adv Water Resour 2011;34(2):263-71], to crop-yield and economic analyses. Water requirements, application efficiency, and investment costs of different irrigation methods, such as surface, sprinkler and drip irrigation systems, are described via a unified conceptual and theoretical approach, which includes rainfed agriculture and stress-avoidance irrigation as extreme cases. This allows us to analyze irrigation strategies with respect to sustainability, productivity, and economic return, using the same framework, and quantify them as a function of climate, crop, and soil parameters. We apply our results to corn ( Zea mays), a food staple and biofuel source, which is currently mainly irrigated through surface systems. As our analysis shows, micro-irrigation maximizes water productivity, but more traditional solutions may be more profitable at least in some contexts.

  7. Irrigation Induced Surface Cooling in the Context of Modern and Increased Greenhouse Gas Forcing

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Puma, Michael J.; Krakauer, Nir Y.

    2010-01-01

    There is evidence that expected warming trends from increased greenhouse gas (GHG) forcing have been locally masked by irrigation induced cooling, and it is uncertain how the magnitude of this irrigation masking effect will change in the future. Using an irrigation dataset integrated into a global general circulation model, we investigate the equilibrium magnitude of irrigation induced cooling under modern (Year 2000) and increased (A1B Scenario, Year 2050) GHG forcing, using modern irrigation rates in both scenarios. For the modern scenario, the cooling is largest over North America, India, the Middle East, and East Asia. Under increased GHG forcing, this cooling effect largely disappears over North America, remains relatively unchanged over India, and intensifies over parts of China and the Middle East. For North America, irrigation significantly increases precipitation under modern GHG forcing; this precipitation enhancement largely disappears under A1B forcing, reducing total latent heat fluxes and the overall irrigation cooling effect. Over India, irrigation rates are high enough to keep pace with increased evaporative demand from the increased GHG forcing and the magnitude of the cooling is maintained. Over China, GHG forcing reduces precipitation and shifts the region to a drier evaporative regime, leading to a relatively increased impact of additional water from irrigation on the surface energy balance. Irrigation enhances precipitation in the Middle East under increased GHG forcing, increasing total latent heat fluxes and enhancing the irrigation cooling effect. Ultimately, the extent to which irrigation will continue to compensate for the warming from increased GHG forcing will primarily depend on changes in the background evaporative regime, secondary irrigation effects (e.g. clouds, precipitation), and the ability of societies to maintain (or increase) current irrigation rates.

  8. Impact of potential large-scale and medium-scale irrigation on the West African Monsoon and its dependence on location of irrigated area

    NASA Astrophysics Data System (ADS)

    Eltahir, E. A. B.; IM, E. S.

    2014-12-01

    This study investigates the impact of potential large-scale (about 400,000 km2) and medium-scale (about 60,000 km2) irrigation on the climate of West Africa using the MIT Regional Climate Model. A new irrigation module is implemented to assess the impact of location and scheduling of irrigation on rainfall distribution over West Africa. A control simulation (without irrigation) and various sensitivity experiments (with irrigation) are performed and compared to discern the effects of irrigation location, size and scheduling. In general, the irrigation-induced surface cooling due to anomalously wet soil tends to suppress moist convection and rainfall, which in turn induces local subsidence and low level anti-cyclonic circulation. These local effects are dominated by a consistent reduction of local rainfall over the irrigated land, irrespective of its location. However, the remote response of rainfall distribution to irrigation exhibits a significant sensitivity to the latitudinal position of irrigation. The low-level northeasterly flow associated with anti-cyclonic circulation centered over the irrigation area can enhance the extent of low level convergence through interaction with the prevailing monsoon flow, leading to significant increase in rainfall. Despite much reduced forcing of irrigation water, the medium-scale irrigation seems to draw the same response as large-scale irrigation, which supports the robustness of the response to irrigation in our modeling system. Both large-scale and medium-scale irrigation experiments show that an optimal irrigation location and scheduling exists that would lead to a more efficient use of irrigation water. The approach of using a regional climate model to investigate the impact of location and size of irrigation schemes may be the first step in incorporating land-atmosphere interactions in the design of location and size of irrigation projects. However, this theoretical approach is still in early stages of development and

  9. Effect on Ca(OH)2 pretreatment to enhance biogas production of organic food waste

    NASA Astrophysics Data System (ADS)

    Junoh, H.; Yip, CH; Kumaran, P.

    2016-03-01

    This study investigated the effect of calcium hydroxide, Ca(OH)2 pretreatment in optimizing COD solubilisation and methane production through anaerobic digestion process. Two different parameters, chemical concentration (40-190 mEq/L) and pretreatment time (1-6 hours) were used to pretreat food waste. A central composite design and response surface methodology (RSM) was applied in obtaining the optimized condition for COD solubilisation. Result showed COD solubilisation was optimized at 166.98 mEq/L (equivalent to 6.1 g Ca(OH)2/L) for 1 hour. These conditions were applied through biomethane potential test with methane production of 864.19 mL/g VSdestructed and an increase of 20.0% as compared to untreated food waste.

  10. Enhancing anaerobic digestion of high-pressure extruded food waste by inoculum optimization.

    PubMed

    Kong, Xin; Xu, Shuang; Liu, Jianguo; Li, Huan; Zhao, Ke; He, Liang

    2016-01-15

    The inoculation for extruded food waste anaerobic digestion (AD) was optimized to improve methane (CH4) yield. The inoculum of acclimated anaerobic sludge resulted in high biodegradability, producing CH4 yields from 580 mLCH4 g(-1)·VSadded to 605 mLCH4 g(-1)·VSadded, with corresponding BDCH4 ranging from 90% to 94%. We also investigated inoculum to substrate ratios (ISRs). With regards to digested slurry as inoculum, we found that a decrease in ISR improved CH4 yield, while a lower ISR prolonged the lag time of the initial AD stage due to lipid inhibition caused by excessive food waste. These results demonstrate that minimal inocula are required to start the AD system for high-pressure extruded food waste because it is easily biodegraded. High ammonia concentration had a negative effect on CH4 production (i.e., when free ammonia nitrogen [FAN] increased from 20 to 30 mg L(-1) to 120-140 mg L(-1), the CH4 yield decreased by 25%), suggesting that FAN was a significant inhibitor in CH4 yield reduction. In terms of CH4 yield and lag time of the AD process, the optimal inoculation of digested slurry for the extruded food waste had an ISR of 0.33 with CH4 yield of 505 mLCH4 g(-1)VSadded, which was 20% higher than what was found for higher ISR controls of 2, 1 and 0.5. PMID:26468605

  11. Low hygroscopic spray-dried powders with trans-glycosylated food additives enhance the solubility and oral bioavailability of ipriflavone.

    PubMed

    Fujimori, Miki; Kadota, Kazunori; Kato, Kouki; Seto, Yoshiki; Onoue, Satomi; Sato, Hideyuki; Ueda, Hiroshi; Tozuka, Yuichi

    2016-01-01

    The improvement in the solubility and dissolution rate may promote a superior absorption property towards the human body. The spray-dried powders (SDPs) of ipriflavone, which was used as a model hydrophobic flavone, with trans-glycosylated rutin (Rutin-G) showed the highest solubilizing effect of ipriflavone among three types of trans-glycosylated food additives. The SDPs of ipriflavone with Rutin-G have both a significant higher dissolution rate and solubility enhancement of ipriflavone. This spray-dried formulation of ipriflavone with Rutin-G exhibited a low hygroscopicity as a critical factor in product preservation. In addition, an improvement in the oral absorption of ipriflavone was achieved by means of preparing composite particles of ipriflavone/Rutin-G via spray drying, indicating a 4.3-fold increase in the area under the plasma concentration-time curve compared with that of untreated ipriflavone. These phenomena could be applicable to food ingredients involving hydrophobic flavones for producing healthy food with a high quality. PMID:26213075

  12. A novel surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite.

    PubMed

    Xie, Yunfei; Li, Yan; Niu, Li; Wang, Heya; Qian, He; Yao, Weirong

    2012-10-15

    A novel surface-enhanced Raman scattering (SERS) sensor made up of a graphene and silver nanocomposite was developed for detecting prohibited colorants in food. This SERS platform exhibited an excellent enrichment effect between the colorant molecules and the graphene and an ability to enhance the Raman spectra of the silver nanoparticles. Detection of different concentrations of each prohibited colorant was carried out by SERS measurements on this novel substrate. In addition, from the SERS spectra of a mixture of four kinds of prohibited colorants, it was possible to easily distinguish each colorant by its characteristic peaks. A control experiment was also performed to compare the SERS spectra obtained using the graphene/silver nanocomposite substrate with spectra obtained using Ag alone as a substrate. The results showed that the SERS nanocomposite was better for detecting prohibited colorants. The proposed method has advantages in terms of providing a simple and rapid method for the sensitive analysis of prohibited additive colorants in food. PMID:23141308

  13. Soybean productivity under various rainfed conditions and irrigation levels determined by WinAPEX model in Blackland Prairie of East Central Mississippi State

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As shortage of irrigation water resources and food demand continuously increase, it is of great significance to produce the most crop yield with the least irrigation water. Assessment of crop productivity and development of crop water production functions (CWPFs) could help guide irrigation scheduli...

  14. Amelioration of the irrigated lands of the Vakhsh valley

    NASA Astrophysics Data System (ADS)

    Ikromov, Islomkul; Mirzoev, Mm

    2015-04-01

    In the agro-industrial country like Tajikistan, the efficient use of irrigation of arable land is important because it contributes to the solution of the State Program of the Food independence of the country, by increasing the yield of agricultural production per unit of irrigated area. The irrigated area in the Republic of Tajikistan as of 1.01.2014g. equal to about 750 thousand. ha, per capita, on average, less than 0.10 hectares. and its share in relation to agricultural land is only 10.5%. However, more than 90% of crop production are grown on these lands. Given the demographic growth of the population of the republic specific area of irrigated land from year to year is becoming less and less of that call into question the successful solution of the above program. Therefore, in our view, to ensure food independence of the country in addition to the development of land from the reserve, should focus on the amelioration of existing irrigated areas, improve the culture of land and water, on modernization of reclamation systems contribute to a high degree of adaptability based on a high degree of water metering, water distribution, water and resource conservation, the use of the latest technology and irrigation techniques. Condition of the soil is their estimated figures is mainly determined by its productivity. It is determined by the degree of salinity of soils, the depth of the groundwater level and salinity, erosion and on stony ground. Vakhsh valley in Tajikistan is one of the main oases, ensuring production of agricultural products but, in recent years due to a number of man-made reasons: Adherence crop irrigation, low technical condition of irrigation systems and as a consequence their efficiency and utilization of irrigation water and farming, inoperable drainage system, or lack of them all, the virtual absence of vodouchёta on the field, no use of it modern technology and irrigation techniques, etc., the level of both fresh and saline groundwater rose

  15. Enhancing the Detection of Giardia duodenalis Cysts in Foods by Inertial Microfluidic Separation

    PubMed Central

    Ganz, Kyle R.; Clime, Liviu; Farber, Jeffrey M.; Corneau, Nathalie

    2015-01-01

    The sensitivity and specificity of current Giardia cyst detection methods for foods are largely determined by the effectiveness of the elution, separation, and concentration methods used. The aim of these methods is to produce a final suspension with an adequate concentration of Giardia cysts for detection and a low concentration of interfering food debris. In the present study, a microfluidic device, which makes use of inertial separation, was designed and fabricated for the separation of Giardia cysts. A cyclical pumping platform and protocol was developed to concentrate 10-ml suspensions down to less than 1 ml. Tests involving Giardia duodenalis cysts and 1.90-μm microbeads in pure suspensions demonstrated the specificity of the microfluidic chip for cysts over smaller nonspecific particles. As the suspension cycled through the chip, a large number of beads were removed (70%) and the majority of the cysts were concentrated (82%). Subsequently, the microfluidic inertial separation chip was integrated into a method for the detection of G. duodenalis cysts from lettuce samples. The method greatly reduced the concentration of background debris in the final suspensions (10-fold reduction) in comparison to that obtained by a conventional method. The method also recovered an average of 68.4% of cysts from 25-g lettuce samples and had a limit of detection (LOD) of 38 cysts. While the recovery of cysts by inertial separation was slightly lower, and the LOD slightly higher, than with the conventional method, the sample analysis time was greatly reduced, as there were far fewer background food particles interfering with the detection of cysts by immunofluorescence microscopy. PMID:25841016

  16. Impact of foods nutritionally enhanced through biotechnology in alleviating malnutrition in developing countries.

    PubMed

    Gilani, G Sarwar; Nasim, Anwar

    2007-01-01

    According to United Nations (UN) projections, the world's population will grow from 6.1 billion in 2000 to 8 billion in 2025 and 9.4 billion in 2050. Most (93%) of the increase will take place in developing countries. The rapid population growth in developing countries creates major challenges for governments regarding food and nutrition security. According to current World Health Organization estimates, more than 3 billion people worldwide, especially in developing countries, are malnourished in essential nutrients. Malnutrition imposes severe costs on a country's population due to impaired physical and cognitive abilities and reduced ability to work. Little progress has been made in improving malnutrition over the past few decades. The Food and Agriculture Organization of the UN would like to see more nutrient-rich foods introduced into these countries, because supplements are expensive and difficult to distribute widely. Biofortification of staple crops through modern biotechnology can potentially help in alleviating malnutrition in developing countries. Several genetically modified crops, including rice, potatoes, oilseeds, and cassava, with elevated levels of essential nutrients (such as vitamin A, iron, zinc, protein and essential amino acids, and essential fatty acids); reduced levels of antinutritional factors (such as cyanogens, phytates, and glycoalkaloid); and increased levels of factors that influence bioavailability and utilization of essential nutrients (such as cysteine residues) are advancing through field trial stage and regulatory processes towards commercialization. The ready availability and consumption of the biofortified crops would have a significant impact in reducing malnutrition and the risk of chronic disease in developing countries. PMID:17955991

  17. Enhancing the Detection of Giardia duodenalis Cysts in Foods by Inertial Microfluidic Separation.

    PubMed

    Ganz, Kyle R; Clime, Liviu; Farber, Jeffrey M; Corneau, Nathalie; Veres, Teodor; Dixon, Brent R

    2015-06-15

    The sensitivity and specificity of current Giardia cyst detection methods for foods are largely determined by the effectiveness of the elution, separation, and concentration methods used. The aim of these methods is to produce a final suspension with an adequate concentration of Giardia cysts for detection and a low concentration of interfering food debris. In the present study, a microfluidic device, which makes use of inertial separation, was designed and fabricated for the separation of Giardia cysts. A cyclical pumping platform and protocol was developed to concentrate 10-ml suspensions down to less than 1 ml. Tests involving Giardia duodenalis cysts and 1.90-μm microbeads in pure suspensions demonstrated the specificity of the microfluidic chip for cysts over smaller nonspecific particles. As the suspension cycled through the chip, a large number of beads were removed (70%) and the majority of the cysts were concentrated (82%). Subsequently, the microfluidic inertial separation chip was integrated into a method for the detection of G. duodenalis cysts from lettuce samples. The method greatly reduced the concentration of background debris in the final suspensions (10-fold reduction) in comparison to that obtained by a conventional method. The method also recovered an average of 68.4% of cysts from 25-g lettuce samples and had a limit of detection (LOD) of 38 cysts. While the recovery of cysts by inertial separation was slightly lower, and the LOD slightly higher, than with the conventional method, the sample analysis time was greatly reduced, as there were far fewer background food particles interfering with the detection of cysts by immunofluorescence microscopy. PMID:25841016

  18. The Impact of Climate and Its Variability on Crop Yield and Irrigation

    NASA Astrophysics Data System (ADS)

    Li, X.; Troy, T.

    2014-12-01

    As the global population grows and the climate changes, having a secure food supply is increasingly important especially under water stressed-conditions. Although irrigation is a positive climate adaptation mechanism for agriculture, it has a potentially negative effect on water resources. It is therefore important to understand how crop yields due to irrigation are affected by climate variability and how irrigation may buffer against climate, allowing for more resilient agricultural systems. Efforts to solve these barely exposed questions can benefit from comprehending the influence of climate variability on crop yield and irrigation water use in the past. To do this, we use historical climate data,irrigation water use data and rainfed and irrigated crop yields over the US to analyze the relationship among climate, irrigation and delta crop yields, gained by subtracting rainfed yield from irrigated yield since 1970. We find that the increase in delta crop yield due to irrigation is larger for certain climate conditions, such that there are optimal climate conditions where irrigation provides a benefit and other conditions where irrigation proves to have marginal benefits when temperature increased to certain degrees. We find that crop water requirements are linked to potential evapotranspiration, yet actual irrigation water use is largely decoupled from the climate conditions but related with other causes. This has important implications for agricultural and water resource system planning, as it implies there are optimal climate zones where irrigation is productive and that changes in water use, both temporally and spatially, could lead to increased water availability without negative impacts on crop yields. Furthermore, based on the exposed relationship between crop yield gained by irrigation and climate variability, those models predicting the global harvest will be redress to estimate crop production in the future more accurately.

  19. Application of High-Pressure Treatment to Enhancement of Functional Components in Agricultural Products and Development of Sterilized Foods.

    PubMed

    Ohara, Eri; Kawamura, Mariko; Ogino, Miyuki; Hoshino, Eri; Kobayashi, Atsushi; Hoshino, Jun; Yamazaki, Akira; Nishiumi, Tadayuki

    2015-01-01

    addition, energy consumption in the high-pressure treatment is less than that in the heat treatment. For the reasons mentioned above, the high-pressure treatment has thus been regarded as suitable for future food processing, and much attention has been paid to the researches of high-pressure treatment again. Then, we reviewed the previous researches in which little interest had been taken because of imperfectness of non-heat sterilization. Surprisingly, we discovered some novel findings about the effect of high-pressure treatment, that is, pressure history on the subsequent event. Then, we decided to present two theses on the themes, "Application of High-pressure Treatment to Enhancement of Functional Components in Agricultural Products" and "Application of High-pressure Treatment to Development of Sterilized Foods". PMID:26174399

  20. A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate

    DOE PAGESBeta

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong; Leung, Lai-Yung R.

    2015-08-25

    In this paper, the effects of irrigation on global surface water (SW) and groundwater (GW) resources are investigated by performing simulations using Community Land Model 4.0 (CLM4) at 0.5-degree resolution driven by downscaled/bias-corrected historical simulations and future projections from five General Circulation Models (GCMs) for 1950-2099. For each climate scenario, three sets of numerical experiments were configured: (1) a control experiment (CTRL) in which all crops are assumed to be rainfed; (2) an irrigation experiment (IRRIG) in which the irrigation module using only SW for irrigation is activated; and (3) a groundwater pumping experiment (PUMP) in which a groundwater pumpingmore » scheme coupled with the irrigation module is activated for conjunctive use of SW and GW for irrigation. The parameters associated with irrigation and groundwater pumping are calibrated based on a global inventory of census-based SW and GW use compiled by the Food and Agricultural Organization (FAO). Our results suggest that irrigation could lead to two major opposing effects: SW depletion/GW accumulation in regions with irrigation primarily fed by SW, and SW accumulation/GW depletion in regions with irrigation fed primarily by GW. Furthermore, irrigation depending primarily on SW tends to have larger impacts on low-flow than high-flow conditions, suggesting the potential to increase vulnerability to drought. By the end of the 21st century (2070-2099), climate change significantly increases (relative to 1971-2000) irrigation water demand across the world. Combined with the increased temporal-spatial variability of water supply, this may lead to severe issues of local water scarcity for irrigation. Regionally, irrigation has the potential to aggravate/alleviate climate-induced changes of SW/GW although such effects are negligible when averaged globally. Our results emphasize the importance of accounting for irrigation effects and irrigation sources in regional climate change

  1. A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate

    SciTech Connect

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong; Leung, Lai-Yung R.

    2015-08-25

    In this paper, the effects of irrigation on global surface water (SW) and groundwater (GW) resources are investigated by performing simulations using Community Land Model 4.0 (CLM4) at 0.5-degree resolution driven by downscaled/bias-corrected historical simulations and future projections from five General Circulation Models (GCMs) for 1950-2099. For each climate scenario, three sets of numerical experiments were configured: (1) a control experiment (CTRL) in which all crops are assumed to be rainfed; (2) an irrigation experiment (IRRIG) in which the irrigation module using only SW for irrigation is activated; and (3) a groundwater pumping experiment (PUMP) in which a groundwater pumping scheme coupled with the irrigation module is activated for conjunctive use of SW and GW for irrigation. The parameters associated with irrigation and groundwater pumping are calibrated based on a global inventory of census-based SW and GW use compiled by the Food and Agricultural Organization (FAO). Our results suggest that irrigation could lead to two major opposing effects: SW depletion/GW accumulation in regions with irrigation primarily fed by SW, and SW accumulation/GW depletion in regions with irrigation fed primarily by GW. Furthermore, irrigation depending primarily on SW tends to have larger impacts on low-flow than high-flow conditions, suggesting the potential to increase vulnerability to drought. By the end of the 21st century (2070-2099), climate change significantly increases (relative to 1971-2000) irrigation water demand across the world. Combined with the increased temporal-spatial variability of water supply, this may lead to severe issues of local water scarcity for irrigation. Regionally, irrigation has the potential to aggravate/alleviate climate-induced changes of SW/GW although such effects are negligible when averaged globally. Our results emphasize the importance of accounting for irrigation effects and irrigation sources in regional climate change impact

  2. 21 CFR 876.5220 - Colonic irrigation system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., including colon cleansing routinely for general well being. (c) Date PMA or notice of completion of a PDP is required. A PMA or a notice of completion of a PDP is required to be filed with the Food and Drug... irrigation system shall have an approved PMA in effect before being placed in commercial distribution....

  3. Enhancement of biogas production from food waste and sewage sludge - Environmental and economic life cycle performance.

    PubMed

    Eriksson, Ola; Bisaillon, Mattias; Haraldsson, Mårten; Sundberg, Johan

    2016-06-15

    Management of municipal solid waste is an efficient method to increase resource efficiency, as well as to replace fossil fuels with renewable energy sources due to that (1) waste to a large extent is renewable as it consists of food waste, paper, wood etc. and (2) when energy and materials are recovered from waste treatment, fossil fuels can be substituted. In this paper results from a comprehensive system study of future biological treatment of readily degradable waste in two Swedish regions are presented. Different collection and separation systems for food waste in households have been applied as well as technical improvements of the biogas process as to reduce environmental impact. The results show that central sorting of a mixed fraction into recyclables, combustibles, biowaste and inert is a competitive option compared to source separation. Use of pellets is beneficial compared to direct spreading as fertiliser. Fuel pellets seem to be the most favourable option, which to a large extent depends on the circumstances in the energy system. Separation and utilisation of nitrogen in the wet part of the digestion residue is made possible with a number of technologies which decreases environmental impact drastically, however to a substantial cost in some cases. PMID:27038432

  4. Irrigation as an Adaptation Strategy to Climate Change: The Relative Influence of Groundwater and Canal Irrigation on Winter Crop Production and its Sensitivity to Weather Variability in India

    NASA Astrophysics Data System (ADS)

    Jain, M.; Fishman, R.; Mondal, P.; Galford, G. L.; Naeem, S.; Modi, V.; DeFries, R. S.

    2014-12-01

    India is a hotspot for food security issues over the upcoming decades, due to increasing population pressures, groundwater depletion, and climate change. Investing in additional irrigation infrastructure may bolster food security, however, the relative influence of different types of irrigation (e.g. groundwater versus canal) on agricultural production remains unclear. One reason that the relative impact of different irrigation strategies on agricultural production has not been analyzed across India is because national-scale data on crop production and the types of irrigation technologies used are typically available at too coarse of spatial and temporal resolutions to answer this question adequately. Thus, we develop a novel algorithm to map cropped area across India at a 1 x 1 km scale using MODIS satellite data, and link these high-resolution cropped area maps with village-level data (n = 600,000) on irrigation. This allowed us to assess the relative impact of groundwater (i.e. dug, shallow, and deep wells) and canal irrigation (i.e. surface lift and flow canals) on winter cropped area and its sensitivity to rainfall across India at the village-scale from 2000 to 2006. We find that deep well irrigation is both associated with the greatest amount of winter cropped area, and is also the least sensitive to monsoon and winter rainfall variability. However, the effectiveness of deep well irrigation varies across India, with the greatest benefits seen in the regions that are most at risk for losing groundwater as a possible source of irrigation over the upcoming decades (e.g. Northwest India). This work highlights the need to develop ways to use remaining groundwater more efficiently (e.g. drip irrigation, less water-intensive crops) given that canal irrigation is not an adequate substitute, particularly in the regions that are facing the greatest levels of groundwater depletion.

  5. Geospatial measurements of soil electrical conductivity to assess soil salinity and diffuse salt loading from irrigation

    NASA Astrophysics Data System (ADS)

    Rhoades, James D.; Corwin, Dennis L.; Lesch, Scott M.

    Irrigated agriculture is necessary to meet the food demands of the world, but excessive irrigation has wasted water and drainage from it has degraded the productivity and altered the ecology of vast areas of land. Irrigated agriculture also has polluted associated surface water and groundwater resources. The extent of soil degradation from salinization and waterlogging and, especially, the extent of water salinization resulting from excessive irrigation have not been well quantified. Additionally, the diffuse sources of deep percolation and salt loading from irrigation have not been well established. This paper describes basic principles of soil electrical conductivity, recent technology developed to assess the magnitude and distribution of soil salinity in fields, and ways to infer the areal sources and amounts of diffuse salt loading from irrigation.

  6. Combination of wet irrigation and nitrification inhibitor reduced nitrous oxide and methane emissions from a rice cropping system.

    PubMed

    Liu, Gang; Yu, Haiyang; Zhang, Guangbin; Xu, Hua; Ma, Jing

    2016-09-01

    To conserve water resources and guarantee food security, a new technology termed as "wet irrigation" is developed and practiced in rice fields; thus, its impact on radiative forcing derived from nitrous oxide (N2O) and methane (CH4) emissions merits serious attention. Dicyandiamide (DCD), a kind of nitrification inhibitor, is proposed as a viable means to mitigate greenhouse gas (GHG) emission while enhancing crop productivity. However, little is known about the response of GHG emission and grain yield to DCD application in a rice system under wet irrigation. In these regard, effects of water regime and DCD application on CH4 and N2O emissions, grain yield, global warming potential (GWP), and greenhouse gas intensity (GHGI) from rice fields were studied. For this study, a field experiment, designed: Treatment II (intermittent irrigation), Treatment WI (wet irrigation), Treatment IID (II plus DCD), and Treatment WID (WI plus DCD), was conducted in Jurong, Jiangsu Province, China, from 2011 to 2012. Relative to Treatment II, Treatment WI decreased CH4 emission significantly by 49-71 % while increasing N2O emission by 33-72 %. By integrating CH4 and N2O emissions and grain yield, Treatment WI was 20-28 and 11-15 % lower than Treatment II in GWP and GHGI, respectively. The use of DCD under wet irrigation reduced N2O emission significantly by 25-38 % (p < 0.05) and CH4 emission by 7-8 %, relative to Treatment WI, resulting in a decline of 18-30 % in GWP. Due to the increase in N use efficiency, maximal grain yield (6-7 %) and minimal GHGI (22-34 %) was observed in Treatment WID. These findings indicate that combined application of N fertilizer and DCD is a win-win strategy in water-saving high-yield rice production with less GHG emission. PMID:27230147

  7. Evaluation of techniques for mapping land and crops irrigated by center pivots from computer-enhanced Landsat imagery in part of the James River basin near Huron, South Dakota

    USGS Publications Warehouse

    Kolm, K.E.

    1985-01-01

    The objective of this study was to evaluate remote sensing techniques for mapping irrigated crop types and acreages in part of the James River basin of South Dakota, using Landsat imagery. The results demonstrated that a subtraction (band 7 minus band 4) method was best for identifying the location of cropland irrigated by groundwater. Two separate principal-spectral-components analyses (analysis of the second principal-spectral component and the simultaneous analysis of the first three principal-spectral components) were best for identifying the crop type and estimating crop acreages. However, only 50 percent of the irrigated lands could be identified and only 79 percent of these could be classified accurately by crop type. Therefore, a 39 percent overall accuracy was achieved in irrigated crop-type identification. (USGS)

  8. Superadditive opercular activation to food flavor is mediated by enhanced temporal and limbic coupling.

    PubMed

    Seubert, Janina; Ohla, Kathrin; Yokomukai, Yoshiko; Kellermann, Thilo; Lundström, Johan N

    2015-05-01

    Food perception is characterized by a transition from initially separate sensations of the olfactory and gustatory properties of the object toward their combined sensory experience during consumption. The holistic flavor experience, which occurs as the smell and taste merge, extends beyond the mere addition of the two chemosensory modalities, being usually perceived as more object-like, intense and rewarding. To explore the cortical mechanisms which give rise to olfactory-gustatory binding during natural food consumption, brain activation during consumption of a pleasant familiar beverage was contrasted with presentation of its taste and orthonasal smell alone. Convergent activation to all presentation modes was observed in executive and chemosensory association areas. Flavor, but not orthonasal smell or taste alone, stimulated the frontal operculum, supporting previous accounts of its central role in the formation of the flavor percept. A functional dissociation was observed in the insula: the anterior portion was characterized by sensory convergence, while mid-dorsal sections activated exclusively to the combined flavor stimulus. psycho-physiological interaction analyses demonstrated increased neural coupling between the frontal operculum and the anterior insula during flavor presentation. Connectivity was also increased with the lateral entorhinal cortex, a relay to memory networks and central node for contextual modulation of olfactory processing. These findings suggest a central role of the insular cortex in the transition from mere detection of chemosensory convergence to a superadditive flavor representation. The increased connections between the frontal operculum and medial temporal memory structures during combined olfactory-gustatory stimulation point to a potential mechanism underlying the acquisition and modification of flavor preferences. PMID:25545699

  9. Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI

    USGS Publications Warehouse

    Pervez, Md Shahriar; Budde, Michael; Rowland, James

    2014-01-01

    Agricultural production capacity contributes to food security in Afghanistan and is largely dependent on irrigated farming, mostly utilizing surface water fed by snowmelt. Because of the high contribution of irrigated crops (> 80%) to total agricultural production, knowing the spatial distribution and year-to-year variability in irrigated areas is imperative to monitoring food security for the country. We used 16-day composites of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to create 23-point time series for each year from 2000 through 2013. Seasonal peak values and time series were used in a threshold-dependent decision tree algorithm to map irrigated areas in Afghanistan for the last 14 years. In the absence of ground reference irrigated area information, we evaluated these maps with the irrigated areas classified from multiple snapshots of the landscape during the growing season from Landsat 5 optical and thermal sensor images. We were able to identify irrigated areas using Landsat imagery by selecting as irrigated those areas with Landsat-derived NDVI greater than 0.30–0.45, depending on the date of the Landsat image and surface temperature less than or equal to 310 Kelvin (36.9 ° C). Due to the availability of Landsat images, we were able to compare with the MODIS-derived maps for four years: 2000, 2009, 2010, and 2011. The irrigated areas derived from Landsat agreed well r2 = 0.91 with the irrigated areas derived from MODIS, providing confidence in the MODIS NDVI threshold approach. The maps portrayed a highly dynamic irrigated agriculture practice in Afghanistan, where the amount of irrigated area was largely determined by the availability of surface water, especially snowmelt, and varied by as much as 30% between water surplus and water deficit years. During the past 14 years, 2001, 2004, and 2008 showed the lowest levels of irrigated area (~ 1.5 million hectares), attesting to

  10. Combined heterogeneous distribution of salt and aroma in food enhances salt perception.

    PubMed

    Emorine, Marion; Septier, Chantal; Andriot, Isabelle; Martin, Christophe; Salles, Christian; Thomas-Danguin, Thierry

    2015-05-01

    Aroma-taste interactions and heterogeneous spatial distribution of tastants were used as strategies for taste enhancement. This study investigated the combination of these two strategies through the effect of heterogeneous salt and aroma distribution on saltiness enhancement and consumer liking for hot snacks. Four-layered cream-based products were designed with the same total amount of sodium and ham aroma but varied in their spatial distribution. Unflavoured products containing the same amount of salt and 35% more salt were used as references. A consumer panel (n = 82) rated the intensity of salty, sweet, sour, bitter and umami tastes as well as ham and cheese aroma intensity for each product. The consumers also rated their liking for the products in a dedicated sensory session. The results showed that adding salt-associated aroma (ham) led to enhancement of salty taste perception regardless of the spatial distribution of salt and aroma. Moreover, products with a higher heterogeneity of salt distribution were perceived as saltier (p < 0.01), whereas heterogeneity of ham aroma distribution had only a marginal effect on both aroma and salty taste perception. Furthermore, heterogeneous products were well liked by consumers compared to the homogeneous products. PMID:25856503