Sample records for ischemia research group

  1. Animal models of ischemia-reperfusion-induced intestinal injury: progress and promise for translational research

    PubMed Central

    Gonzalez, Liara M.; Moeser, Adam J.

    2014-01-01

    Research in the field of ischemia-reperfusion injury continues to be plagued by the inability to translate research findings to clinically useful therapies. This may in part relate to the complexity of disease processes that result in intestinal ischemia but may also result from inappropriate research model selection. Research animal models have been integral to the study of ischemia-reperfusion-induced intestinal injury. However, the clinical conditions that compromise intestinal blood flow in clinical patients ranges widely from primary intestinal disease to processes secondary to distant organ failure and generalized systemic disease. Thus models that closely resemble human pathology in clinical conditions as disparate as volvulus, shock, and necrotizing enterocolitis are likely to give the greatest opportunity to understand mechanisms of ischemia that may ultimately translate to patient care. Furthermore, conditions that result in varying levels of ischemia may be further complicated by the reperfusion of blood to tissues that, in some cases, further exacerbates injury. This review assesses animal models of ischemia-reperfusion injury as well as the knowledge that has been derived from each to aid selection of appropriate research models. In addition, a discussion of the future of intestinal ischemia-reperfusion research is provided to place some context on the areas likely to provide the greatest benefit from continued research of ischemia-reperfusion injury. PMID:25414098

  2. Hyperbaric oxygen in skeletal muscle of rats submitted to total acute left hindlimb ischemia: A research report.

    PubMed

    da Silva, Luis Gustavo Campos; Dalio, Marcelo Bellini; Joviliano, Edwaldo Edner; Feres, Omar; Piccinato, Carlos Eli

    2015-01-01

    Determine the effect of hyperbaric oxygen treatment in skeletal muscle of rats submitted to total acute left hindlimb ischemia. An experimental study was designed using 48 Wistar rats divided into four groups (n = 12): Control; Ischemia (I)--total hindlimb ischemia for 270 minutes; Hyperbaric oxygen treatment during ischemia (HBO2)--total hindlimb ischemia for 270 minutes and hyperbaric oxygen during the first 90 minutes; Pre-treatment with hyperbaric oxygen (PHBO2)--90 minutes of hyperbaric oxygen treatment before total hindlimb ischemia for 270 minutes. Skeletal muscle injury was evaluated by measuring levels of aspartate aminotransferase (AST), lactate dehydrogenase (LDH), total creatine phosphokinase (CPK); muscular malondialdehyde (MDA), muscular glycogen, and serum ischemia-modified albumin (IMA). AST was significantly higher in I, HBO2 and PHBO2 compared with control (P = .001). There was no difference in LDH. CPK was significantly higher in I, HBO2 and PHBO2, compared with control (p = .014). MDA was significantly higher in PHBO2, compared with other groups (p = .042). Glycogen was significantly decreased in I, HBO2 and PHBO2, compared with control (p < .001). Hyperbaric oxygen treatment in acute total hindlimb ischemia exerted no protective effect on muscle injury, regardless of time of application. When applied prior to installation of total ischemia, hyperbaric oxygen treatment aggravated muscle injury.

  3. Tumor Cold Ischemia | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In a recently published manuscript in the journal of Molecular and Cellular Proteomics, researchers from the National Cancer Institutes (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigated the effect of cold ischemia on the proteome of fresh frozen tumors.

  4. Effects of exercise preconditioning on intestinal ischemia-reperfusion injury.

    PubMed

    Gokbel, H; Oz, M; Okudan, N; Belviranli, M; Esen, H

    2014-01-01

    To investigate the effects of exercise preconditioning on oxidative injury in the intestinal tissue of rats. Sixty male Wistar rats were randomly divided into six groups as sham (n = 10), ischemia-reperfusion (n = 10), exercise (n = 10), exercise plus ischemia-reperfusion (n = 10), ischemic preconditioning (n = 10), and ischemic preconditioning plus ischemia-reperfusion groups (n = 10). Tissue levels of malondialdehyde and activities of myeloperoxidase and superoxide dismutase, and serum levels of tumor necrosis factor-alpha and interleukin-6 were measured. Intestinal tissue histopathology was also evaluated by light microscopy. Tumor necrosis factor-alpha concentrations significantly decreased in the exercise group compared to the sham group (p < 0.05). Myeloperoxidase activity significantly increased and superoxide dismutase activity significantly decreased in ischemia-reperfusion group compared to the sham group (p < 0.05). Superoxide dismutase activity in the ischemic preconditioning and ischemic preconditioning plus ischemia-reperfusion groups were significantly higher compared to the ischemia-reperfusion and exercise groups (p < 0.05). Histopathologically, intestinal injury significantly attenuated in the exercise plus ischemia-reperfusion group compared to the ischemia-reperfusion group. The results of the present study indicate that exercise training seems to have a protective role against intestinal ischemia-reperfusion injury (Tab. 3, Fig. 1, Ref. 35).

  5. Parecoxib reduces renal injury in an ischemia/reperfusion model in rats.

    PubMed

    Calistro Neto, José Pedro; Torres, Rômulo da Costa; Gonçalves, Giovanna Maria; Silva, Leopoldo Muniz da; Domingues, Maria Aparecida Custódio; Módolo, Norma Sueli Pinheiro; Barros, Guilherme Antonio Moreira de

    2015-04-01

    To evaluate the effect of parecoxib (an NSAID) on renal function by measuring plasma NGAL (serum neutrophil gelatinase-associated lipocalin) levels in an induced-ischemia rat model. Forty male Wistar rats were randomly assigned to one of four groups: Ischemia (I), Ischemia/parecoxib (IP), No-ischemia (NI), and No-ischemia/parecoxib (NIP). Body weight, mean arterial pressure, heart rate, body temperature, NGAL levels, and renal histology were compared across groups. The Ischemia (I) group, which did not receive parecoxib, showed the highest NGAL levels (p=0.001), while the IP group, which received the medication, had NGAL levels similar to those of the non-ischemic (NI and NIP) groups. Parecoxib resulted in renal protection in this experimental model.

  6. The protective effect of fasudil pretreatment combined with ischemia postconditioning on myocardial ischemia/reperfusion injury in rats.

    PubMed

    Li, W-N; Wu, N; Shu, W-Q; Guan, Y-E; Jia, D-L

    2014-01-01

    Ischemic postconditioning (IPO) and pharmacological pretreatment may reduce myocardial necrosis and apoptosis during ischemia/reperfusion. This study aimed to determine the protective effect of fasudil pretreatment combined with IPO on myocardial ischemia/reperfusion injury in rats and explore the possible mechanisms. The SD rats were induced by intraperitoneal injection of fasudil hydrochloride (1 or 10 mg/kg) 60 min before the initiation of ischemia, while the control rats were given the same volume of saline. The hearts were hung on the Langendorff perfusion apparatus and underwent 30 min global ischemia and 120 min reperfusion. The IPO protocol was induced by six cycles of 10 sec ischemia and 10 sec reperfusion at the onset of reperfusion. The hemodynamic changes were measured, myocardial infarct size was determined by triphenyltetrazolium chloride (TTC) staining, cardiomyocyte apoptosis was detected by TUNEL staining, lactate dehydrogenase (LDH) was analyzed from coronary effluents, phosphorylation of Akt and eNOS, as well as expression of Bcl-2 and Bax were measured by western blotting analysis. The high-dose fasudil (10 mg/kg) pretreatment group and IPO group significantly improved post-ischemia cardiac function, reduced myocardial infarct size, attenuated cardiomyocyte apoptosis, decreased the release of LDH, increased expression of phospho-Akt, phospho-eNOS and Bcl-2, and reduced expression of Bax compared with the control group (p < 0.05). In addition, the high-dose fasudil pretreatment combined with IPO group could further improved post-ischemia cardiac function, reduced myocardial infarct size, attenuated cardiomyocyte apoptosis, decreased the release of LDH, increased expression of phospho-Akt, phospho-eNOS and Bcl-2, and reduced expression of Bax compared with the single treatment groups (p < 0.05). The combination of high-dose fasudil pretreatment and IPO had a synergistic protective effect on myocardial ischemia/reperfusion injury, which was

  7. Investigation of ischemia modified albumin, oxidant and antioxidant markers in acute myocardial infarction

    PubMed Central

    Hazini, Ahmet; Işıldak, İbrahim; Alpdağtaş, Saadet; Önül, Abdullah; Şenel, Ünal; Kocaman, Tuba; Dur, Ali; Iraz, Mustafa; Uyarel, Hüseyin

    2015-01-01

    Introduction Acute myocardial infarction (AMI) is still one of the most common causes of death worldwide. In recent years, for diagnosis of myocardial ischemia, a new parameter, called ischemia modified albumin (IMA), which is thought to be more advantageous than common methods, has been researched. Aim In this study, systematic analysis of parameters considered to be related to myocardial ischemia has been performed, comparing between control and myocardial ischemia groups. Material and methods We selected 40 patients with AMI and 25 healthy controls for this study. Ischemia modified albumin levels, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) antioxidant enzyme activities and non-enzymatic antioxidants such as retinol, α-tocopherol, β-carotene and ascorbic acid levels were investigated in both groups. Glutathione (GSH) and malondialdehyde (MDA) levels, which are indicators of oxidative stress, were compared between patient and control groups. Results Ischemia modified albumin levels were found significantly higher in the AMI diagnosed group when compared with controls. The MDA level was elevated in the patient group, whereas the GSH level was decreased. SOD, GPx and CAT enzyme levels were decreased in the patient group, where it could be presumed that oxidative stress causes the cardiovascular diseases. Conclusions Due to the increased oxidative stress, non-enzymatic and enzymatic antioxidant capacity was affected. Systematic investigation of parameters related to myocardial infarction has been performed, and it is believed that such parameters can contribute to protection and early diagnosis of AMI and understanding the mechanism of development of the disease. PMID:26677379

  8. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats.

    PubMed

    Guven, Mustafa; Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-05-01

    The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future.

  9. The effects of epidural bupivacaine on ischemia/reperfusion-induced liver injury.

    PubMed

    Sarikus, Z; Bedirli, N; Yilmaz, G; Bagriacik, U; Bozkirli, F

    2016-01-01

    Several animal studies showed beneficial effects of thoracic epidural anesthesia (TEA) in hippocampal, mesenteric and myocardial IR injury (2-4). In this study, we investigated the effects of epidural bupivacaine on hepatic ischemia reperfusion injury in a rat model. Eighteen rats were randomly divided into three groups each containing 6 animals. The rats in Group C had sham laparotomy. The rats in the Group S were subjected to liver IR through laparotomy and 20 mcg/kg/h 0.9% NaCl was administered to these rats via an epidural catheter. The rats in the Group B were subjected to liver IR and were given 20 mcg/kg/h bupivacaine via an epidural catheter. Liver tissue was harvested for MDA analysis, apoptosis and histopathological examination after 60 minutes of ischemia followed by 360 minutes of reperfusion. Blood samples were also collected for TNF-α, IL-1β, AST and ALT analysis. The AST and ALT levels were higher in ischemia and reperfusion group, which received only normal saline via the thoracic epidural catheter, compared to the sham group. In the ischemia reperfusion group, which received bupivacaine via the epidural catheter, IL-1 levels were significantly higher than in the other groups. TNF-α levels were higher in the Groups S and B compared to the sham group. Bupivacaine administration induced apoptosis in all animals. These results showed that thoracic epidural bupivacaine was not a suitable agent for preventing inflammatory response and lipid peroxidation in experimental hepatic IR injury in rats. Moreover, epidural bupivacaine triggered apoptosis in hepatocytes. Further research is needed as there are no studies in literature investigate the effects of epidural bupivacaine on hepatic ischemia reperfusion injury (Tab. 3, Fig. 3, Ref. 34).

  10. Protective effects of osthole on intestinal ischemia-reperfusion injury in mice.

    PubMed

    Zhang, Zhen; Pan, Chen; Wang, Hong-zhi; Li, Yong-xiang

    2014-06-01

    The purpose of this study was to evaluate the effect of intravenous injection of osthole on intestinal ischemia-reperfusion injury and parameters of oxidative stress. In 45 Kunming male mice, treatment included sham surgery (15 mice); intestinal ischemia-reperfusion injury (clamping of the superior mesenteric artery, 2 h; clamp release, 1 h; 15 mice); or osthole treatment before and after ischemia-reperfusion injury (15 mice). Evaluation included histopathology, determination of intestinal wet/dry weight ratio, and measurement of levels of diamine oxidase, superoxide dismutase, malondialdehyde, interleukin 1β, tumor necrosis factor α, and interleukin 2. Intestinal barrier permeability was evaluated with Evans blue test. The mean wet-to-dry weight ratio, Evans blue content, and Chiu score were significantly greater in the ischemia-reperfusion than in the sham group and lower in the osthole-treated than the ischemia-reperfusion group. The mean serum diamine oxidase, malondialdehyde, interleukin 1β, and tumor necrosis factor α levels were significantly greater in the ischemia-reperfusion than in the sham group and lower in the osthole-treated than in the ischemia-reperfusion group. The mean superoxide dismutase activity and interleukin 2 levels were lower in the ischemia-reperfusion than in the sham group and greater in the osthole-treated than in the ischemia-reperfusion group. Treatment with osthole may protect against oxidative stress and tissue damage from intestinal ischemia-reperfusion injury.

  11. [Protective effect of octreotide on liver warm ischemia reperfusion injury].

    PubMed

    Li, Jie-qun; Qi, Hai-zhi; He, Zhi-jun; Hu, Wei; Si, Zhong-zhou; Li, Yi-ning

    2006-10-01

    To explore the protective effect of octreotide on liver warm ischemia-reperfusion injury and its possible mechanism. Pringle's maneuver liver ischemia-reperfusion models were established. Forty eight male Sprague Daweley rats were randomly divided into a sham operation group (S group, n=16), an ischemia-reperfusion group (I/R group, n=16) and an octreotide preconditioning group (OPC group, n=16). ALT and AST in the serum were measured at 30 min after the ischemia and 120 min after the reperfusion. The histomorphological changes and ultrastructure of hepatocellular were observed by optic and transmission electronic microscope. Hepatic adenine nucleotide levels and energy changes (EC) were determined by high performance liquid chromatography (HPLC). (1) At 30 min after the ischemia and 120 min after the reperfusion, the levels of ALT and AST in the serum of OPC group was lower than those in I/R group, whereas the levels of ATP and EC in the hepatic tissue were higher than those in the I/R group (P<0.01 or P<0.05). Compared with the I/R group, the injury of hepatocellular histomorphology and ultrastructure in the OPC group was abated. (2) At 30, 60, and 120 min after the reperfusion, the levels of ATP and EC in the OPC groups were higher than those in the I/R group. During the ischemia, the levels of ATP and EC in the OPC group dropped more slowly than those in the I/R group, but ATP and EC in the OPC groups rose more quickly than those in the I/R group during the reperfusion. Octreotide precondition can improve the hepatocellular energy reserve, and protect the liver from warm ischemia-reperfusion injury. The protective of octreotide on warm ischemia-reperfusion injury may be related to its influence on endocrine secretion.

  12. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-01-01

    Objective The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Methods Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. Results The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Conclusion Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future. PMID:26113960

  13. The effect of aloe vera on ischemia--Reperfusion injury of sciatic nerve in rats.

    PubMed

    Guven, Mustafa; Gölge, Umut Hatay; Aslan, Esra; Sehitoglu, Muserref Hilal; Aras, Adem Bozkurt; Akman, Tarik; Cosar, Murat

    2016-04-01

    Aloe vera is compound which has strong antioxidant and anti-inflammatory effects. We investigated the neuroprotective role of aloe vera treatment in rats with experimental sciatic nerve ischemia/reperfusion injury. Twenty-eight male Wistar Albino rats were divided equally into 4 groups. Groups; Control group (no surgical procedure or medication), sciatic nerve ischemia/reperfusion group, sciatic nerve ischemia/reperfusion+aloe vera group and sciatic nerve ischemia/reperfusion+methylprednisolone group. Ischemia was performed by clamping the infrarenal abdominal aorta. 24 hours after ischemia, all animals were sacrificed. Sciatic nerve tissues were also examined histopathologically and biochemically. Ischemic fiber degeneration significantly decreased in the pre-treated with aloe vera and treated with methylprednisolone groups, especially in the pre-treated with aloe vera group, compared to the sciatic nerve ischemia/reperfusion group (p<0.05). A significant decrease in MDA, an increase in NRF1 level and SOD activity were observed in the groups which obtained from the AV and MP groups when compared to the sciatic nerve ischemia/reperfusion group. When all results were analysed it was seen that the aloe vera group was not statistically different compared to the MP group (p>0.05). Aloe vera is effective neuroprotective against sciatic nerve ischemia/reperfusion injury via antioxidant and anti-inflammatory properties. Also aloe vera was found to be as effective as MP. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Clinical research on erythrocyte deformability with different doses of He-Ne exposure in patient with ischemia disease

    NASA Astrophysics Data System (ADS)

    Zhao, Yanping; Liu, Song-hao; Sun, Jinbo; Luo, Gangyue; Hua, Rong; Liu, Qianqin

    2005-01-01

    The aim of this study was to test human erythrocyte deformability with the exposure of erythrocyte from apoplexy patient and other ischemia diseases, contracted with normal donors' blood sample, and the doses-effect of Low-power He_Ne laser in vitro were discussed. Fresh blood sample from adult health donors and patients with different diseases such as apoplexy, diabetes, heart block etc in emergency department were collected and divided into different groups in which there were no less than 6 persons. Fresh human blood samples were irradiated with a He-Ne laser (Lamba=632.8nm), power output around 4.5MW, 9MW, 15mW, and 18mW, et al., exposure time from 7.5min, 15min, and 30min, operating in continuous wave. Measurements of human erythrocyte deformability were taken. Erythrocyte deformability appearance shown some different in the health contracted group and the other ischemia disease group. Some notice difference also shown among some disease group with nonirradiation and the same disease group with laser irradiation. The dose-effects of He-Ne laser therapy was discussed on the further research on the erythrocyte deformability of blood sample from patients with apoplexy disease treated with He-Ne laser at different doses, and a certain optimal doses which could take a beneficial effect in clinic were speculated on. This study revealed that the He-Ne laser have some different effects on erythrocyte deformability in vitro, which were related with the disease condition, red cell state, and outpower-doses, et al closely.

  15. Isoflurane administration before ischemia and during reperfusion attenuates ischemia/reperfusion-induced injury of isolated rabbit lungs.

    PubMed

    Liu, R; Ishibe, Y; Ueda, M; Hang, Y

    1999-09-01

    To investigate the effects of isoflurane on ischemia/ reperfusion (IR)-induced lung injury, we administered isoflurane before ischemia or during reperfusion. Isolated rabbit lungs were divided into the following groups: control (n = 6), perfused and ventilated for 120 min without ischemia; ISO-control (n = 6), 1 minimum alveolar anesthetic concentration (MAC) isoflurane was administered for 30 min before 120 min continuous perfusion; IR (n = 6), ischemia for 60 min, followed by 60 min reperfusion; IR-ISO1 and IR-ISO2, ischemia followed by reperfusion and 1 MAC (n = 6) or 2 MAC (n = 6) isoflurane for 60 min; ISO-IR (n = 6), 1 MAC isoflurane was administered for 30 min before ischemia, followed by IR. During these maneuvers, we measured total pulmonary vascular resistance (Rt), coefficient of filtration (Kfc), and lung wet to dry ratio (W/D). The results indicated that administration of isoflurane during reperfusion inhibited an IR-induced increase in Kfc and W/D ratio. Furthermore, isoflurane at 2 MAC, but not 1 MAC, significantly inhibited an IR-induced increase in Rt. The administration of isoflurane before ischemia significantly attenuated the increase in IR-induced Kfc, W/D, and Rt. Our results suggest that the administration of isoflurane before ischemia and during reperfusion protects against ischemia-reperfusion-induced injury in isolated rabbit lungs.

  16. Effect of hydrogen sulfide on inflammatory cytokines in acute myocardial ischemia injury in rats

    PubMed Central

    LIU, FANG; LIU, GUANG-JIE; LIU, NA; ZHANG, GANG; ZHANG, JIAN-XIN; LI, LAN-FANG

    2015-01-01

    Hydrogen sulfide (H2S) is believed to be involved in numerous physiological and pathophysiological processes, and now it is recognized as the third endogenous signaling gasotransmitter, following nitric oxide and carbon monoxide; however, the effects of H2S on inflammatory factors in acute myocardial ischemia injury in rats have not been clarified. In the present study, sodium hydrosulfide (NaHS) was used as the H2S donor. Thirty-six male Sprague Dawley rats were randomly divided into five groups: Sham, ischemia, ischemia + low-dose (0.78 mg/kg) NaHS, ischemia + medium-dose (1.56 mg/kg) NaHS, ischemia + high-dose (3.12 mg/kg) NaHS and ischemia + propargylglycine (PPG) (30 mg/kg). The rats in each group were sacrificed 6 h after the surgery for sample collection. Compared with the ischemia group, the cardiac damage in the rats in the ischemia + NaHS groups was significantly reduced, particularly in the high-dose group; in the ischemia + PPG group, the myocardial injury was aggravated compared with that in the ischemia group. Compared with the ischemia group, the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in the serum of rats in the ischemia + medium- and high-dose NaHS groups were significantly reduced, and the expression of intercellular adhesion molecule-1 (ICAM-1) mRNA and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) protein in the myocardial tissues of rats was significantly reduced. In the ischemia + PPG group, the TNF-α, IL-1β and IL-6 levels in the serum were significantly increased, the expression of ICAM-1 mRNA was increased, although without a significant difference, and the expression of NF-κB was increased. The findings of the present study provide novel evidence for the dual effects of H2S on acute myocardial ischemia injury via the modulation of inflammatory factors. PMID:25667680

  17. Postconditioning: "Toll-erating" mesenteric ischemia-reperfusion injury?

    PubMed

    Rosero, Olivér; Ónody, Péter; Kovács, Tibor; Molnár, Dávid; Fülöp, András; Lotz, Gábor; Harsányi, László; Szijártó, Attila

    2017-04-01

    Postconditioning may prove to be a suitable method to decrease ischemia-reperfusion injury of intestine after mesenteric arterial occlusion. Toll-like-receptor-4 is involved in the pathophysiology of organ damage after ischemia-reperfusion; therefore, the aim of our study was to investigate the effect of postconditioning on the mucosal expression of toll-like-receptor-4. Male Wistar rats (n = 10/group) underwent 60 minutes of superior mesenteric artery occlusion followed by 6 hours of reperfusion in 3 groups: sham-operated, ischemia-reperfusion, and a postconditioned group. Postconditioning was performed by 6 alternating cycles of 10 seconds of reperfusion/reocclusion. Blood and tissue samples were collected at the end of reperfusion. Intestinal histopathologic changes and immunohistochemical expression of mucosal caspase-3, antioxidant status, and protein levels of high-mobility group box-1 and toll-like-receptor-4 were assessed. Immunofluorescent labeling and confocal microscopic analysis of toll-like-receptor-4 were performed. Mucosal and serum levels of interleukin-6 and tumor necrosis factor-α protein were measured. Histologic alterations in the postconditioned group were associated with decreased caspase-3 positivity, less toll-like-receptor-4 mRNA, and less protein expression of high-mobility group box-1 and toll-like-receptor-4 in the intestinal villi compared with the ischemia-reperfusion group. Furthermore, a significantly improved antioxidant state of the intestinal mucosa and less mucosal and serum protein levels of interleukin-6 and tumor necrosis factor-α were detected in the postconditioned group. Small intestinal ischemia-reperfusion injury in male Wistar rats caused by the occlusion of the superior mesenteric artery was ameliorated by the use of postconditioning, showing a more favorable inflammatory response, which may be attributed to the decreased mucosal expression of toll-like-receptor-4. Copyright © 2016 Elsevier Inc. All rights

  18. [Ischemic postconditioning attenuates ischemia/reperfusion injury in isolated hypertrophied rat heart].

    PubMed

    Peng, Long-yun; Ma, Hong; He, Jian-gui; Gao, Xiu-ren; Zhang, Yan; He, Xiao-hong; Zhai, Yuan-sheng; Zhang, Xue-jiao

    2006-08-01

    To explore the effects of ischemic postconditioning on ischemia/reperfusion injury in isolated hypertrophied rat heart and investigate the signal transduction pathway changes induced by ischemia postconditioning. Cardiac hypertrophy was induced in rats by abdominal aortic banding, and isolated hypertrophied rat heart ischemia/reperfusion model was made by Langendorff technique to evaluate the effects of ischemia postconditioning on left ventricular systole pressure, coronary artery flow, creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) release, myocardial infarction size, and the level of myocardial phospho-protein kinase B/Akt (Ser473), phospho-glycogen synthase kinase-3beta (Ser9). Following groups were studied (n = 12 each group): IR, 30 min ischemia (I)/60 min Reperfusion (R); Post: 30 min ischemia, 6 circles of 10 s I/10 s R followed by 60 min R; Post Wort: 30 min ischemia, 6 circles of 10 s I/10 s R, wortmannin (10(-7) mol/L) followed by 60 min R; Wort: 30 min ischemia, wortmannin (10(-7) mol/L) followed by 60 min R. Left ventricular systolic pressure and coronary artery flow were significantly increased, myocardial infarction size and the release of CPK, LDH significantly reduced in Post group compared to that in IR group. Phospho-protein kinase B/Akt (Ser473) and phospho-glycogen synthase kinase-3beta (Ser9) levels were also significantly higher in Post group than that in IR group. Phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin prevented the increase of phospho-protein kinase B/Akt (Ser473) and phospho-glycogen synthase kinase-3beta (Ser9) induced by ischemic postconditioning, but only partly abolished the cardioprotection of ischemic postconditioning. Ischemic postconditioning attenuates ischemia/reperfusion injury in isolated hypertrophied rat heart. The cardioprotective effects of ischemic postconditioning were partly mediated through PI3K/Akt/GSK-3beta signaling pathway.

  19. Protective Effect of Platelet Rich Plasma on Experimental Ischemia/Reperfusion Injury in Rat Ovary.

    PubMed

    Bakacak, Murat; Bostanci, Mehmet Suhha; İnanc, Fatma; Yaylali, Asli; Serin, Salih; Attar, Rukset; Yildirim, Gazi; Yildirim, Ozge Kizilkale

    2016-01-01

    Ovarian torsion is a common cause of local ischemic damage, reduced follicular activity and infertility. Platelet-rich plasma (PRP) contains growth factors with demonstrated cytoprotective properties; so we evaluated PRP efficacy in a rat ischemia/reperfusion (I/R) model. Sixty adult female Sprague-Dawley albino rats were randomly assigned to 6 groups of 8 animals each: Sham, Ischemia, I/R, Sham + PRP, I + PRP and I/R + PRP; and the remaining 12 used to prepare PRP. Ischemia groups were subjected to bilateral adnexal torsion for 3 h, while I/R and I/R + PRP groups received subsequent detorsion for 3 h. Intraperitoneal PRP was administered 30 min prior to ischemia (Ischemia + PRP) or reperfusion (I/R + PRP). Total oxidant status (TOS), oxidative stress index (OSI) and total ovarian histopathological scores were higher in Ischemia and I/R groups than in the Sham group (p < 0.05). PRP decreased mean TOS, OSI and histopathological scores in I + PRP and I/R + PRP groups compared to the corresponding Ischemia and I/R groups (p < 0.001). There was a strong correlation between total histopathological score and OSI (r = 0.877, p < 0.001). Peritoneal vascular endothelial growth factor was significantly higher in PRP-treated groups than corresponding untreated groups (p < 0.05). PRP is effective for the prevention of ischemia and reperfusion damage in rat ovary. © 2015 S. Karger AG, Basel.

  20. Neuroprotective effect of p-coumaric acid in rat model of embolic cerebral ischemia

    PubMed Central

    Guven, Mustafa; Aras, Adem Bozkurt; Akman, Tarik; Sen, Halil Murat; Ozkan, Adile; Salis, Osman; Sehitoglu, Ibrahim; Kalkan, Yildiray; Silan, Coskun; Deniz, Mustafa; Cosar, Murat

    2015-01-01

    Objective(s): Stroke poses a crucial risk for mortality and morbidity. Our study aimed to investigate the effect of p-coumaric acid on focal cerebral ischemia in rats. Material and Methods: Rats were randomly divided into four groups, namely Group I (control rats), Group II (ischemia rats), Group III (6 hr ischemia + p-coumaric acid rats) and Group IV (24 hr ischemia + p-coumaric acid rats). Cerebral ischemia was induced via intraluminal monofilament occlusion model. In all groups, the brain was removed after the procedure and rats were sacrificed. Malondialdehyde, superoxide dismutase and nuclear respiratory factor-1 were measured in the ischemic hemisphere. The histopathological changes were observed in the right hemisphere within the samples. Functional assessment was performed for neurological deficit scores. Results: Following the treatment, biochemical factors changed significantly. Histopathologically, it was shown that p-coumaric acid decreased the oxidative damage. The neurological deficit scores of p-coumaric acid-treated rats were significantly improved after cerebral ischemia. Conclusion: Our results showed that p-coumaric acid is a neuroprotective agent on account of its strong anti-oxidant and anti-apoptotic features. Moreover, p-coumaric acid decreased the focal ischemia. Extra effort should be made to introduce p-coumaric acid as a promising therapeutic agent to be utilized for treatment of human cerebral ischemia in the future. PMID:26019798

  1. The effect of thalidomide on spinal cord ischemia/reperfusion injury in a rabbit model.

    PubMed

    Lee, C-J; Kim, K-W; Lee, H-M; Nahm, F S; Lim, Y-J; Park, J-H; Kim, C-S

    2007-02-01

    Randomized study. To evaluate the effects of thalidomide on spinal cord ischemia/reperfusion injury via reduced TNF-alpha production. Animal experimental laboratory, Clinical Research Institute of Seoul National University Hospital, Seoul, Korea. Spinal cord ischemia was induced in rabbits by occluding the infrarenal aorta. Rabbits in group N did not undergo ischemic insult, but rabbits in groups C (the untreated group), THA, and THB underwent ischemic insult for 15 min. The THA and THB groups received thalidomide (20 mg/kg) intraperitoneally (i.p.) before ischemia, but only the THB group received thalidomide (i.p., 20 mg/kg) after 24 and 48 h of reperfusion. After evaluating neurologic functions at 1.5 h, 3, and 5 days of reperfusion, rabbits were killed for histopathologic examination and Western blot analysis of TNF-alpha. The THA and THB groups showed significantly less neurologic dysfunction than the C group at 1.5 h, 3, and 5 days of reperfusion. The number of normal spinal motor neurons in ventral gray matter was higher in THA and THB than in C, but no difference was observed between THA and THB. Western blot analysis showed a significantly higher level of TNF-alpha in C than in THA and THB at 1.5 h of reperfusion, but no difference was observed between C, THA, or THB at 3 or 5 days of reperfusion. Thalidomide treatment before ischemic insult reduces early phase ischemia/reperfusion injury of the spinal cord in rabbits.

  2. The effect of repeated diazepam administration on myocardial function in the ischemia-reperfused isolated rat heart.

    PubMed

    Shackebaei, Dareuosh; Kayhani, Bijan; Godini, Aliashraf; Pourshanazari, Aliasghar; Reshadat, Sohyla

    2009-06-01

    To evaluate whether repeated diazepam administration affects the heart in ischemia-reperfusion. This study was performed at the Medical Biology Research Center, Kermanshah, Iran, from March to September 2008. Four groups of rats were subjected to a daily injection of diazepam (group 1 [0.5 mg/kg for 21 days], group II [2.5 mg/kg for 5 days], and group III [5 mg/kg for 5 days] intraperitoneally), and saline solution (21 days) in the control groups. Isolated, perfused hearts were subjected to 40 minutes global ischemia, and 45 minutes reperfusion. The left ventricular developed pressure (LVDP), heart rate, and coronary flow were measured. Rate pressure product (RPP) was calculated. In reperfusion, released lactate dehydrogenase (LDH) enzyme in effluent was measured. It was observed that the recovery of the RPP and LVDP in reperfusion significantly decreased in the test group III (n=9) in comparison to the control (n=8). During the reperfusion period, the released LDH significantly increased in test group II (n=8) and group III in comparison with the control. The results show that repeated administration of diazepam (5 mg/kg for 5 days) reduced the cardiac performance in reperfusion, and significantly exacerbated the ischemia-reperfusion injury. It is probably mediated by the changing of cardiac susceptibility in ischemia due to repeated administration of diazepam.

  3. A nationwide analysis of 30-day readmissions related to critical limb ischemia.

    PubMed

    Masoomi, Reza; Shah, Zubair; Quint, Clay; Hance, Kirk; Vamanan, Karthik; Prasad, Anand; Hoel, Andrew; Dawn, Buddhadeb; Gupta, Kamal

    2018-06-01

    Objectives There is paucity of information regarding critical limb ischemia-related readmission rates in patients admitted with critical limb ischemia. We studied 30-day critical limb ischemia-related readmission rate, its predictors, and clinical outcomes using a nationwide real-world dataset. Methods We did a secondary analysis of the 2013 Nationwide Readmissions Database. We included all patients with a primary diagnosis of extremity rest pain, ulceration, and gangrene secondary to peripheral arterial disease. From this group, all patients readmitted with similar diagnosis within 30 days were recorded. Results Of the total 25,111 index hospitalization for critical limb ischemia, 1270 (5%) were readmitted with a primary diagnosis of critical limb ischemia within 30 days. The readmission rate was highest (9.5%) for the group that did not have any intervention (revascularization or major amputation) and was lowest for surgical revascularization and major amputation groups (2.6% and 1.3%, P value <0.001 for all groups). Severity of critical limb ischemia at index admission was associated with a significantly higher rate of 30-day readmission. Critical limb ischemia-related readmission was associated with a higher rate of major amputation (29.6% vs. 16.2%, P<0.001), a lower rate of any revascularization procedure (46% vs. 62.6%, P<0.001), and a higher likelihood of discharge to a skilled nursing facility (43.2% vs. 32.2%, P<0.001) compared to index hospitalization. Conclusions In patients with primary diagnosis of critical limb ischemia, 30-day critical limb ischemia-related readmission rate was affected by initial management strategy and the severity of critical limb ischemia. Readmission was associated with a significantly higher rate of amputation, increased length of stay, and a more frequent discharge to an alternate care facility than index admission and thus may serve as a useful quality of care metric in critical limb ischemia patients.

  4. The effect of thalidomide on vascular endothelial growth factor and tumor necrosis factor-alpha levels in retinal ischemia/reperfusion injury.

    PubMed

    Aydoğan, Semih; Celiker, Ulkü; Türkçüoğlu, Peykan; Ilhan, Nevin; Akpolat, Nusret

    2008-03-01

    To evaluate the effects of thalidomide treatment on the temporal course of TNF-alpha, VEGF production and the histopathological changes in ischemia/reperfusion (I/R) injured guinea pigs retina. Control, ischemia, and thalidomide/ischemia groups including seven animals each were formed. Retinal ischemia was induced in male guinea pigs by cannulating anterior chambers and lifting the bottle to a height of 205 cm for 90 min in the ischemia and thalidomide/ischemia groups. The thalidomide/ischemia group received thalidomide (300 mg/kg/day) via nasogastric tube 24 h before ischemia and during 7 days of reperfusion. Guinea pigs were sacrificed for histopathological examination to evaluate the mean thickness of the inner plexiform layer (IPL), polymorphonuclear leukocyte (PMNL) infiltration, and biochemical analysis of retinal VEGF and TNF-alpha levels by ELISA. The mean retinal VEGF and TNF-alpha levels of the control, ischemia, and thalidomide/ischemia groups were 10.22 +/- 2.58 and 270.41 +/- 69.77 pg/ml; 35.80 +/- 5.97 and 629.93 +/- 146.41 pg/ml; 19.01 +/- 3.01 and 340.93 +/- 158.26 pg/ml, respectively. The retinal VEGF levels were significantly higher in I/R injured groups. The thalidomide/ischemia group retinal VEGF level was significantly lower versus the ischemia group. The retinal TNF-alpha levels were significantly elevated in the ischemia group, but no difference was observed between the thalidomide/ischemia and control groups. Also, the retinal TNF-alpha level was significantly lower in the thalidomide/ischemia group versus the ischemia group. The mean thickness of IPL and PMNL infiltration showed no difference between the control and thalidomide/ischemia groups. However, there was a significant difference between the control and ischemia groups. Thalidomide treatment decreases PMNL infiltration, retinal edema, VEGF, and TNF-alpha synthesis following I/R injury to the guinea pig retina.

  5. Effects of various timings and concentrations of inhaled nitric oxide in lung ischemia-reperfusion. The Paris-Sud University Lung Transplantation Group.

    PubMed

    Murakami, S; Bacha, E A; Mazmanian, G M; Détruit, H; Chapelier, A; Dartevelle, P; Hervé, P

    1997-08-01

    Experimental studies reveal that inhaled nitric oxide (NO) can prevent, worsen, or have no effect on lung injury in the setting of ischemia-reperfusion (I-R). We tested the hypothesis that these disparate effects could be related to differences in the timing of administration and/or concentration of inhaled NO during I-R. Isolated rat lungs were subjected to 1-h periods of ischemia followed by 1-h periods of blood reperfusion. We investigated the effects of NO (30 ppm) given during ischemia, NO (30 or 80 ppm) begun immediately at reperfusion, or NO (30 ppm) given 15 min after the beginning of reperfusion, on total pulmonary vascular resistance (PVR), the coefficient of filtration (Kfc), the lung wet/dry weight ratio (W/D) of lung tissue, and lung myeloperoxidase activity (MPO). A control group did not receive NO. NO given during ischemia had no effect on Kfc or MPO, but decreased PVR. NO (30 ppm) during reperfusion (early or delayed) decreased PVR, W/D, Kfc and MPO. NO at 80 ppm decreased PVR and MPO but not W/D or Kfc. In conclusion, NO at 30 ppm, given immediately or in a delayed fashion during reperfusion, attenuates I-R-induced lung injury. NO at 30 ppm given during ischemia or at 80 ppm during reperfusion is not protective.

  6. Quercetin dose affects the fate of hepatic ischemia and reperfusion injury in rats: An experimental research.

    PubMed

    Uylaş, Mustafa Ufuk; Şahin, Adnan; Şahintürk, Varol; Alataş, İbrahim Özkan

    2018-05-01

    Quercetin found in fruits and vegetables has an antioxidative effect. We aimed to investigate the protective effects of quercetin according to different doses on hepatic and ischemia-reperfusion (I/R) injury. Fifty mature male Sprague-Dawley rats were randomly divided into five groups (n = 10 for each). All the animal groups underwent laparotomy. Group 1 rats served as a sham-operated group. Groups 2-5 underwent 1 h hepatic ischemia and were followed by 2 h reperfusion. Group 3-5 animals received an additional intraperitoneal dose of 25, 50 or 100 mg/kg quercetin respectively before I/R operation. Blood samples were collected for determining serum aspartate transaminase (AST), alanine transaminase (ALT) and malondialdehyde (MDA) levels. Also, liver tissue samples were taken for measuring of liver MDA concentration and for histopathology assessment. The highest levels of biochemical parameters were observed in group 2. In quercetin-treated groups, serum AST, ALT, MDA levels, and tissue MDA concentration were decreased as inversely with increasing quercetin dose. Microscopic evaluation revealed that most conspicuous histological improvement was observed in 50 mg/kg quercetin co-treated rats. 25 and 100 mg/kg quercetin co-treatment could not protect completely against hepatic I/R injury. Quercetin can be effective in preventing of hepatic I/R injury when the correct dose was used. Copyright © 2018. Published by Elsevier Ltd.

  7. Increased E-selectin in hepatic ischemia-reperfusion injury mediates liver metastasis of pancreatic cancer

    PubMed Central

    YOSHIMOTO, KATSUHIRO; TAJIMA, HIDEHIRO; OHTA, TETSUO; OKAMOTO, KOICHI; SAKAI, SEISHO; KINOSHITA, JUN; FURUKAWA, HIROYUKI; MAKINO, ISAMU; HAYASHI, HIRONORI; NAKAMURA, KEISHI; OYAMA, KATSUNOBU; INOKUCHI, MASAFUMI; NAKAGAWARA, HISATOSHI; ITOH, HIROSHI; FUJITA, HIDETO; TAKAMURA, HIROYUKI; NINOMIYA, ITASU; KITAGAWA, HIROHISA; FUSHIDA, SACHIO; FUJIMURA, TAKASHI; WAKAYAMA, TOMOHIKO; ISEKI, SHOICHI; SHIMIZU, KOICHI

    2012-01-01

    Several recent studies have reported that selectins are produced during ischemia-reperfusion injury, and that selectin ligands play an important role in cell binding to the endothelium and in liver metastasis. Portal clamping during pancreaticoduodenectomy with vessel resection for pancreatic head cancer causes hepatic ischemia-reperfusion injury, which might promote liver metastasis. We investigated the liver colonization of pancreatic cancer cells under hepatic ischemia-reperfusion and examined the involvement of E-selectin and its ligands. A human pancreatic cancer cell line (Capan-1) was injected into the spleen of mice after hepatic ischemia-reperfusion (I/R group). In addition, to investigate the effect of an anti-E-selectin antibody on liver colonization in the IR group, mice received an intraperitoneal injection of the anti-E-selectin antibody following hepatic ischemia-reperfusion and tumor inoculation (IR+Ab group). Four weeks later, mice were sacrificed and the number of tumor nodules on the liver was compared to mice without hepatic ischemia-reperfusion (control group). The incidence of liver metastasis in the I/R group was significantly higher (16 of 20, 80%) than that in the control group (6 of 20, 30%) (P<0.01). Moreover, mice in the I/R group had significantly more tumor nodules compared to those in the control group (median, 9.9 vs. 2.7 nodules) (P<0.01). In the I/R+Ab group, only 2 of 5 (40%) mice developed liver metastases. RT-PCR and southern blotting of the liver extracts showed that the expression of IL-1 and E-selectin mRNA after hepatic ischemia-reperfusion was significantly higher than the basal levels. Hepatic ischemia-reperfusion increases liver metastases and E-selectin expression in pancreatic cancer. These results suggest that E-selectin produced due to hepatic ischemia-reperfusion is involved in liver metastasis. PMID:22766603

  8. The relation between persistent coma and brain ischemia after severe brain injury.

    PubMed

    Cheng, Quan; Jiang, Bing; Xi, Jian; Li, Zhen Yan; Liu, Jin Fang; Wang, Jun Yu

    2013-12-01

    To investigate the relation between brain ischemia and persistent vegetative state after severe traumatic brain injury. The 66 patients with severe brain injury were divided into two groups: The persistent coma group (coma duration ≥10 d) included 51 patients who had an admission Glasgow Coma Scale (GCS) of 5-8 and were unconscious for more than 10 d. There were 15 patients in the control group, their admission GCS was 5-8, and were unconscious for less than 10 d. The brain areas, including frontal, parietal, temporal, occipital lobes and thalamus, were measured by Single Photon Emission Computed Tomography (SPECT). In the first SPECT scan, multiple areas of cerebral ischemia were documented in all patients in both groups, whereas bilateral thalamic ischemia were presented in all patients in the persistent coma group and were absented in the control group. In the second SPECT scan taken during the period of analepsia, with an indication that unilateral thalamic ischemia were persisted in 28 of 41 patients in persistent coma group(28/41,68.29%). Persistent coma after severe brain injury is associated with bilateral thalamic ischemia.

  9. The effect of captopril and losartan on the electrophysiology of myocardial cells of myocardial ischemia rats.

    PubMed

    Shi, Xiangmin; Shan, Zhaoling; Yuan, Hongtao; Guo, Hongyang; Wang, Yutang

    2014-01-01

    This study aims to investigate the effect of captopril and losartan on the electrophysiology of myocardial cells parameters in ventricular vulnerable period and effective refractory period of myocardial ischemia rats. 96 wistar rats were enrolled in the study and divided into six groups: Captopril myocardial ischemia group, losartan myocardial ischemia group, myocardial ischemia control group, captopril normal group, losartan normal group and normal control group (n=16). We observed morphological changes of myocardial tissue in each group. The cardiac electrophysiological parameters in effective refractory period of each group were measured. Creatine kinase (CK), alanine aminotransferase (GOT), lactate dehydrogenase (LDH), the expression of Cardiotrophin 1 (CT-1) and malonaldehyde (MDA) were detected. Compared the losartan and captopril group with the control group, (P<0.05). Losartan and captopril can shorten the ventricular vulnerable period of the normal group and ischemic group. There was no interaction effect between losartan and captopril group and the acute myocardial ischemia group. The effect of losartan and captopril on time window in ventricular vulnerable period showed that compared with the control group (P<0.05). Losartan and captopril had a significant effect on prolonged effective refractory period of normal and ischemic rats. There was no interaction effect between losartan and captopril group and the acute myocardial ischemia group. Compared with the myocardial ischemia control group, CK, GOT, LDH and MDA decreased in captopril and losartan myocardial ischemia groups (P<0.05). Losartan and captopril had a significant effect on prolonged effective refractory period and shorten ventricular vulnerable period, they can also effectively prevent arrhythmias.

  10. Renoprotective Effect of Humic Acid on Renal Ischemia-Reperfusion Injury: An Experimental Study in Rats.

    PubMed

    Akbas, Alpaslan; Silan, Coskun; Gulpinar, Murat Tolga; Sancak, Eyup Burak; Ozkanli, Sidika Seyma; Cakir, Dilek Ulker

    2015-12-01

    Humic acid is an antioxidant molecule used in agriculture and livestock breeding, as well as in medicine. Our aim was to investigate the potential renoprotective effects of humic acid in a renal ischemia reperfusion model. Twenty-one rats were randomly divided into three equal groups. Intraperitoneal serum or humic acid was injected at 1, 12, and 24 h. Non-ischemic group I was evaluated as sham. The left renal artery was clamped in serum (group II) and intraperitoneal humic acid (group III) to subject to left renal ischemic reperfusion procedure. Ischemia and reperfusion time was 60 min for each. Total antioxidant status, total oxidative status, oxidative stress index, and ischemia-modified albumin levels were analyzed biochemically from the serum samples. Kidneys were evaluated histopatologically and immunohistochemically. Biochemical results showed that total oxidative status, ischemia-modified albumin, and oxidative stress index levels were significantly decreased, but total antioxidant status was increased in the humic acid group (III) compared with the ischemia group (II) On histopathological examination, renal tubular dilatation, tubular cell damage and necrosis, dilatation of Bowman's capsule, hyaline casts, and tubular cell spillage were decreased in the humic acid group (III) compared with the ischemia group (II). Immunohistochemical results showed that apoptosis was deteriorated in group III. Renal ischemia reperfusion injury was attenuated by humic acid administration. These observations indicate that humic acid may have a potential therapeutic effect on renal ischemia reperfusion injury by preventing oxidative stress.

  11. Protective effect of dexpanthenol on ischemia-reperfusion-induced renal injury in rats.

    PubMed

    Altintas, Ramazan; Parlakpinar, Hakan; Beytur, Ali; Vardi, Nigar; Polat, Alaadin; Sagir, Mustafa; Odabas, Gul Pelin

    2012-01-01

    This experimental study was designed to investigate protective and therapeutic effects of Dexpanthenol (Dxp), an alcoholic analogue of pantothenic acid, on kidney damage induced by ischemia-reperfusion (I/R) in rats. Forty rats were randomly divided into a control group and 4 I/R groups (1 h ischemia followed by 23 h reperfusion). Three I/R groups were treated by Dxp (500 mg/kg, i.p.) at 3 different time points (before ischemia, during ischemia and late reperfusion). The histopathological findings including apoptotic changes, and also tissue malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), blood urea nitrogen (BUN), serum creatinine (Cr) and albumin (Alb) levels were determined. Kidney tissue MDA levels were found to be significantly higher in the I/R group, whereas the values of GPX were lower when compared to the control group. The levels of SOD and CAT did not reach to statistical meaning level in I/R group. Dxp given during ischemia reduced the elevated MDA levels to the nearly control levels and this ameliorating effect was found as parallel to the result of GPX. Serum levels of BUN and Cr were significantly higher in I/R group. Dxp given during ischemia significantly reduced the elevated BUN and Cr levels when compared to I/R group. Renal I/R injury also induced extensive tubular necrosis, glomerular damage and apoptosis in the histological evaluation. Dxp ameliorated these histological damages in different amounts in all treatment groups. In this study the protective effects of Dxp against renal I/R injury has been evaluated for the first time. Copyright © 2012 S. Karger AG, Basel.

  12. Desflurane inhalation before ischemia increases ischemia-reperfusion-induced vascular leakage in isolated rabbit lungs.

    PubMed

    Oshima, Yoshiaki; Sakamoto, Seiji; Yamasaki, Kazumasa; Mochida, Shinsuke; Funaki, Kazumi; Moriyama, Naoki; Otsuki, Akihiro; Endo, Ryo; Nakasone, Masato; Takahashi, Shunsaku; Harada, Tomomi; Minami, Yukari; Inagaki, Yoshimi

    2016-01-01

    Isoflurane and sevoflurane protect lungs with ischemia-reperfusion (IR) injury. We examined the influence of desflurane on IR lung injury using isolated rabbit lungs perfused with a physiological salt solution. The isolated lungs were divided into three groups: IR, desflurane-treated ischemia-reperfusion (DES-IR), and ventilation/perfusion-continued control (Cont) groups (n = 6 per group). In the DES-IR group, inhalation of desflurane at 1 minimum alveolar concentration (MAC) was conducted in a stable 30-min phase. In the IR and DES-IR groups, ventilation/perfusion was stopped for 75 min after the stable phase. Subsequently, they were resumed. Each lung was placed on a balance, and weighed. Weight changes were measured serially throughout this experiment. The coefficient of filtration (K fc ) was determined immediately before ischemia and 60 min after reperfusion. Furthermore, bronchoalveolar lavage fluid (BALF) was collected from the right bronchus at the completion of the experiment. After the completion of the experiment, the left lung was dried, and the lung wet-to-dry weight ratio (W/D) was calculated. The K fc values at 60 min after perfusion were 0.40 ± 0.13 ml/min/mmHg/100 g in the DES-IR group, 0.26 ± 0.07 ml/min/mmHg/100 g in the IR group, and 0.22 ± 0.08 (mean ± SD) ml/mmHg/100 g in the Cont group. In the DES-IR group, the K fc at 60 min after the start of reperfusion was significantly higher than in the other groups. In the DES-IR group, W/D was significantly higher than in the Cont group. In the DES-IR group, the BALF concentrations of nitric oxide metabolites were significantly higher than in the other groups. In the DES-IR group, the total amount of vascular endothelial growth factor in BALF was significantly higher than in the Cont group. The pre-inhalation of desflurane at 1 MAC exacerbates pulmonary IR injury in isolated/perfused rabbit lungs.

  13. Functional Recovery From Extended Warm Ischemia Associated With Partial Nephrectomy.

    PubMed

    Zhang, Zhiling; Zhao, Juping; Velet, Lily; Ercole, Cesar E; Remer, Erick M; Mir, Carme M; Li, Jianbo; Takagi, Toshio; Demirjian, Sevag; Campbell, Steven C

    2016-01-01

    To evaluate the impact of extended warm ischemia on incidence of acute kidney injury (AKI) and ultimate functional recovery after partial nephrectomy (PN), incorporating rigorous control for loss of parenchymal mass, and embedded within comparison to cohorts of patients managed with hypothermia or limited warm ischemia. From 2007 to 2014, 277 patients managed with PN had appropriate studies to evaluate changes in function/mass specifically within the operated kidney. Recovery from ischemia was defined as %function saved/%parenchymal mass saved. AKI was based on global renal function and defined as a ≥1.5-fold increase in serum creatinine above the preoperative level. Hypothermia was utilized in 112 patients (median = 27 minutes) and warm ischemia in 165 (median = 21 minutes). AKI strongly correlated with solitary kidney (P < .001) and duration (P < .001) but not type (P = .49) of ischemia. Median recovery from ischemia in the operated kidney was 100% (interquartile range [IQR] = 88%-109%) for cold ischemia, with 6 (5%) noted to have <80% recovery from ischemia. For the warm ischemia group, median recovery from ischemia was 91% (IQR = 82%-101%, P < .001 compared with hypothermia), and 34 (21%) had recovery from ischemia <80% (P < .001). For warm ischemia subgrouped by duration <25 minutes (n = 114), 25-35 minutes (n = 35), and >35 minutes (n = 16), median recovery from ischemia was 92% (IQR = 86%-100%), 90% (IQR = 78%-104%), and 91% (IQR = 80%-96%), respectively (P = .77). Our results suggest that AKI after PN correlates with duration but not with type of ischemia. However, subsequent recovery, which ultimately defines the new baseline glomerular filtration rate, is most reliable with hypothermia. However, most patients undergoing PN with warm ischemia still recover relatively strongly from ischemia, even if extended to 35-45 minutes. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Sildenafil Attenuates Hepatocellular Injury after Liver Ischemia Reperfusion in Rats: A Preliminary Study

    PubMed Central

    Savvanis, Spyridon; Nastos, Constantinos; Tasoulis, Marios-Konstantinos; Papoutsidakis, Nikolaos; Demonakou, Maria; Karmaniolou, Iosifina; Arkadopoulos, Nikolaos; Smyrniotis, Vassilios; Theodoraki, Kassiani

    2014-01-01

    We evaluated the role of sildenafil in a rat liver ischemia-reperfusion model. Forty male rats were randomly allocated in four groups. The sham group underwent midline laparotomy only. In the sildenafil group, sildenafil was administered intraperitoneally 60 minutes before sham laparotomy. In the ischemia-reperfusion (I/R) group, rats were subjected to 45 minutes of hepatic ischemia followed by 120 minutes of reperfusion, while in the sild+I/R group rats were subjected to a similar pattern of I/R after the administration of sildenafil, 60 minutes before ischemia. Two hours after reperfusion, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured and histopathological examination of the lobes subjected to ischemia as well as TUNEL staining for apoptotic bodies was performed. Additionally, myeloperoxidase (MPO) activity and the expression of intercellular adhesion molecule-1 (ICAM-1) were analyzed. Serum markers of hepatocellular injury were significantly lower in the sild+I/R group, which also exhibited lower severity of histopathological lesions and fewer apoptotic bodies, as compared to the I/R group. The I/R group showed significantly higher MPO activity and higher expression of ICAM-1, as compared to the sild+I/R group. Use of sildenafil as a preconditioning agent in a rat model of liver I/R exerted a protective effect. PMID:24999378

  15. [Application of Ischemia Modified Albumin for Acute Ischemic Heart Disease in Forensic Science].

    PubMed

    Wang, P; Zhu, Z L; Zhu, N; Yu, H; Yue, Q; Wang, X L; Feng, C M; Wang, C L; Zhang, G H

    2017-10-01

    To explore the application value and forensic significance of ischemia modified albumin (IMA) in pericardial fluid to diagnose sudden cardiac death. IMA level in pericardial fluid was detected in acute ischemic heart disease group ( n =36), acute myocardial infarction group ( n =6), cardiomyopathy group ( n =4) and control group ( n =15) by albumin cobalt binding method. The levels of IMA were compared among these groups. The best cut-off IMA value was estimated and the sensitivity and specificity of acute myocardial ischemia group was distinguished from control group by receiver operating characteristics (ROC) curve. The IMA level in acute ischemic heart disease group was significantly higher than that of control group ( P <0.05). Compared with acute myocardial infarction group and cardiomyopathy group, the IMA level in acute ischemic heart disease group had no significant difference ( P >0.05). The cut-off value for the identification of acute myocardial ischemia which obtained by ROC analysis was 40.65 U/mL. And the sensitivity and specificity for distinguishing acute ischemia cardiac disease was 60.0% and 80.5%, respectively. The IMA value in pericardial fluid can be a reference marker for the diagnosis of acute myocardial ischemia, which also can provide objective basis for the forensic identification of sudden cardiac death. Copyright© by the Editorial Department of Journal of Forensic Medicine

  16. Expression of Bcl-2 and NF-κB in brain tissue after acute renal ischemia-reperfusion in rats.

    PubMed

    Zhang, Na; Cheng, Gen-Yang; Liu, Xian-Zhi; Zhang, Feng-Jiang

    2014-05-01

    To investigate the effect of acute renal ischemia reperfusion on brain tissue. Fourty eight rats were randomly divided into four groups (n=12): sham operation group, 30 min ischemia 60 min reperfusion group, 60 min ischemia 60 min reperfusion group, and 120 min ischemia 60 min reperfusion group. The brain tissues were taken after the experiment. TUNEL assay was used to detect the brain cell apoptosis, and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors. Renal ischemia-reperfusion induced apoptosis of brain tissues, and the apoptosis increased with prolongation of ischemia time. The detection at the molecular level showed decreased Bcl-2 expression, increased Bax expression, upregulated expression of NF-κB and its downstream factor COX-2/PGE2. Acute renal ischemia-reperfusion can cause brain tissue damage, manifested as induced brain tissues apoptosis and inflammation activation. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  17. Cerebral ischemia and neuroregeneration

    PubMed Central

    Lee, Reggie H. C.; Lee, Michelle H. H.; Wu, Celeste Y. C.; Couto e Silva, Alexandre; Possoit, Harlee E.; Hsieh, Tsung-Han; Minagar, Alireza; Lin, Hung Wen

    2018-01-01

    Cerebral ischemia is one of the leading causes of morbidity and mortality worldwide. Although stroke (a form of cerebral ischemia)-related costs are expected to reach 240.67 billion dollars by 2030, options for treatment against cerebral ischemia/stroke are limited. All therapies except anti-thrombolytics (i.e., tissue plasminogen activator) and hypothermia have failed to reduce neuronal injury, neurological deficits, and mortality rates following cerebral ischemia, which suggests that development of novel therapies against stroke/cerebral ischemia are urgently needed. Here, we discuss the possible mechanism(s) underlying cerebral ischemia-induced brain injury, as well as current and future novel therapies (i.e., growth factors, nicotinamide adenine dinucleotide, melatonin, resveratrol, protein kinase C isozymes, pifithrin, hypothermia, fatty acids, sympathoplegic drugs, and stem cells) as it relates to cerebral ischemia. PMID:29623912

  18. [Effect and mechanism of icariin on myocardial ischemia-reperfusion injury model in diabetes rats].

    PubMed

    Hu, Yan-wu; Liu, Kai; Yan, Meng-tong

    2015-11-01

    To study the therapeutic effect and possible mechanism of icariin on myocardial ischemia-reperfusion injury ( MIRI) model in diabetes rats. The model of diabetic rats were induced by Streptozotocin (STZ), then the model of MIRI was established by ligating the reversible left anterior descending coronary artery for 30 min, and then reperfusing for 120 min. totally 40 male SD were randomly divided into five groups: the control group (NS), the ischemia reperfusion group (NIR), the diabetes control group (MS), the diabetic ischemia reperfusion group (MIR) and the diabetic ischemia reperfusion with icariin group (MIRI). The changes in blood glucose, body weight and living status were observed; the enzyme activity of serum CK-MB, LDH, GSH-Px and myocardium SOD and the content MDA and NO in myocardium were detected; the myocardial pathological changes were observed by HE staining; the myocardial Caspase-3, the Bcl-2, Bax protein expressions were detected by Western blot. The result showed that the diabetes model was successfully replicated; myocardial ischemia-reperfusion injury was more serious in diabetes rats; icariin can increase NO, SOD, GSH-Px, Bcl-2 protein expression, decrease MDA formation, CK-MB and LDH activities and Caspase-3 and Bcl-2 protein expressions and myocardial damage. The result suggested that icariin may play a protective role against ischemia reperfusion myocardial injury in diabetes rats by resisting oxidative stress and inhibiting cell apoptosis.

  19. Thromboxane A2 moderates permeability after limb ischemia.

    PubMed Central

    Lelcuk, S; Alexander, F; Valeri, C R; Shepro, D; Hechtman, H B

    1985-01-01

    Reperfusion after limb ischemia results in muscle edema as well as excess secretion of thromboxane A2 (TxA2), an agent associated with permeability increase in other settings. This study tests whether TxA2 moderates the permeability following limb ischemia. A tourniquet inflated to 300 mmHg was applied for 2 hours around the hind limb of four groups of dogs. In untreated animals (N = 25), 2 hours following tourniquet release, plasma TxB2 values rose from 320 pg/ml to 2416 pg/ml (p less than 0.001), and popliteal lymph values rose from 378 pg/ml to 1046 pg/ml (p less than 0.001). Platelet TxB2 was unaltered and plasma 6-keto-PGF1 alpha levels did not vary. Following ischemia, lymph flow (QL) increased from 0.07 to 0.37 ml/h (p less than 0.05), while the lymph/plasma (L/P) protein ratio was unchanged at 0.41. These measurements indicate increased permeability since increase in hydrostatic pressure in a second group by tourniquet inflation to 50 mmHg (N = 7) led to a rise in QL from 0.07 to 0.22 ml/h, but a fall in the L/P ratio to 0.32, a value lower than the ischemic group (p less than 0.05). Pretreatment with the imidazole derivative ketoconazole (N = 11) reduced platelet Tx synthesis from 42 ng to 2 ng/10(9) platelets, but lymph TxB2 levels rose to 1703 pg/ml after ischemia, indicating an extravascular or vessel wall site of synthesis not inhibited by ketoconazole. Pretreatment with a lower molecular weight imidazole derivative OKY 046 (N = 9) inhibited all Tx synthesis after ischemia. Prior to tourniquet inflation, both OKY 046 and ketoconazole lowered plasma TxB2 levels as well as the L/P ratio (p less than 0.05). After ischemia, OKY 046, but not ketoconazole, maintained the L/P ratio at 0.33, a value below that of untreated animals (p less than 0.05). These results indicate that nonplatelet-derived TxA2 modulates both baseline and ischemia-induced increases in microvascular permeability in the dog hind limb. PMID:3840349

  20. Nigella sativa relieves the deleterious effects of ischemia reperfusion injury on liver

    PubMed Central

    Yildiz, Fahrettin; Coban, Sacit; Terzi, Alpaslan; Ates, Mustafa; Aksoy, Nurten; Cakir, Hale; Ocak, Ali Riza; Bitiren, Muharrem

    2008-01-01

    AIM: To determine whether Nigella sativa prevents hepatic ischemia-reperfusion injury to the liver. METHODS: Thirty rats were divided into three groups as sham (Group 1), control (Group 2), and Nigella sativa (NS) treatment group (Group 3). All rats underwent hepatic ischemia for 45 min followed by 60 min period of reperfusion. Rats were intraperitoneally infused with only 0.9% saline solution in group 2. Rats in group 3 received NS (0.2 mL/kg) intraperitoneally, before ischemia and before reperfusion. Blood samples and liver tissues were harvested from the rats, and then the rats were sacrificed. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) levels were determined. Total antioxidant capacity (TAC), catalase (CAT), total oxidative status (TOS), oxidative stress index (OSI) and myeloperoxidase (MPO) in hepatic tissue were measured. Also liver tissue histopathology was evaluated by light microscopy. RESULTS: The levels of liver enzymes in group 3 were significantly lower than those in the group 2. TAC in liver tissue was significantly higher in group 3 than in group 2. TOS, OSI and MPO in hepatic tissue were significantly lower in group 3 than the group 2. Histological tissue damage was milder in the NS treatment group than that in the control group. CONCLUSION: Our results suggest that Nigella sativa treatment protects the rat liver against to hepatic ischemia-reperfusion injury. PMID:18777598

  1. Hepatic ischemia

    MedlinePlus

    ... artery to the liver (hepatic artery) after a liver transplant Swelling of blood vessels leading to reduced blood ... the illness causing hepatic ischemia can be treated. Death from liver failure due to hepatic ischemia is ...

  2. The effects of Y-27632 on pial microvessels during global brain ischemia and reperfusion in rabbits.

    PubMed

    Shintani, Noriyuki; Ishiyama, Tadahiko; Kotoda, Masakazu; Asano, Nobumasa; Sessler, Daniel I; Matsukawa, Takashi

    2017-03-07

    Global brain ischemia-reperfusion during propofol anesthesia provokes persistent cerebral pial constriction. Constriction is likely mediated by Rho-kinase. Cerebral vasoconstriction possibly exacerbates ischemic brain injury. Because Y-27632 is a potent Rho-kinase inhibitor, it should be necessary to evaluate its effects on cerebral pial vessels during ischemia-reperfusion period. We therefore tested the hypotheses that Y-27632 dilates cerebral pial arterioles after the ischemia-reperfusion injury, and evaluated the time-course of cerebral pial arteriolar status after the ischemia-reperfusion. Japanese white rabbits were anesthetized with propofol, and a closed cranial window inserted over the left hemisphere. Global brain ischemia was produced by clamping the brachiocephalic, left common carotid, and left subclavian arteries for 15 min. Rabbits were assigned to cranial window perfusion with: (1) artificial cerebrospinal fluid (Control group, n = 7); (2) topical infusion of Y-27632 10 -6 mol · L -1 for 30 min before the initiation of global brain ischemia (Pre group, n = 7); (3) topical infusion of Y-27632 10 -6 mol · L -1 starting 30 min before ischemia and continuing throughout the study period (Continuous group, n = 7); and, (4) topical infusion of Y-27632 10 -6 mol · L -1 starting 10 min after the ischemia and continuing until the end of the study (Post group, n = 7). Cerebral pial arterial and venule diameters were recorded 30 min before ischemia, just before arterial clamping, 10 min after clamping, and 5, 10, 20, 40, 60, 80, 100, and 120 min after unclamping. Mean arterial blood pressure and blood glucose concentration increased significantly after global brain ischemia except in the Continuous group. In the Pre and Continuous groups, topical application of Y-27632 produced dilation of large (mean 18-19%) and small (mean; 25-29%) pial arteries, without apparent effect on venules. Compared with the Control and Pre groups

  3. DIFFERENT PROTOCOLS OF POSTCONDITIONING DOES NOT ATTENUATE MESENTERIC ISCHEMIA-REPERFUSION INJURY AFTER SHORT-TERM REPERFUSION

    PubMed Central

    BRITO, Marcus Vinicius Henriques; YASOJIMA, Edson Yuzur; MACHADO, Andressa Abnader; SILVEIRA, Matheus Paiva Pacheco Reis; TEIXEIRA, Renan Kleber Costa; YAMAKI, Vitor Nagai; COSTA, Felipe Lobato da Silva

    2017-01-01

    ABSTRACT Background: Mesenteric ischemia is a challenging diagnosis. Delay in diagnosis can lead to extent bowel necrosis and poor outcomes. Ischemia and reperfusion syndrome plays an important role in this scenario. Aim: To access effects of different post-conditioning cycles on mesenteric ischemia-reperfusion syndrome. Method: Twenty-five rats were assigned into five groups: Sham, used to establish normal parameters; control group, submitted to mesenteric ischemia for 30 min; in groups GP3, GP1 and GP30, ischemia was followed by post-conditioning protocol, which consisted of 1 cycle of 3 min (GP3), 3 cycles of 1 min (GP1) or 6 cycles of 30 s (GP30), respectively. Ileum samples were harvested after one hour of reperfusion. Intestinal mucosal injury was evaluated through histopathological analysis. Results: The average of mesenteric injury degree was 0 in the sham group, 3.6 in the control group, 3.4 in GP3, 3.2 in GP1, and 3.0 in GP30; villous length average was 161.59 in sham group, 136.27 in control group, 135.89 in GP3, 129.46 in GP1, and 135.18 in GP30. Was found significant difference between sham and other groups (p<0.05); however, there was no difference among post-conditioning groups. Conclusion: Post-conditioning adopted protocols were not able to protect intestinal mucosa integrity after mesenteric ischemia and short term reperfusion. PMID:28489164

  4. Ischemia-modified albumin levels in cerebrovascular accidents.

    PubMed

    Gunduz, Abdulkadir; Turedi, Suleyman; Mentese, Ahmet; Altunayoglu, Vildan; Turan, Ibrahim; Karahan, Suleyman Caner; Topbas, Murat; Aydin, Murat; Eraydin, Ismet; Akcan, Buket

    2008-10-01

    Previous studies have demonstrated that ischemia-modified albumin (IMA) is a useful marker for the diagnosis of ischemic events. It was also recently demonstrated that IMA levels increase in the acute phase of cerebrovascular diseases. Yet the data regarding IMA levels in various types of cerebrovascular events are insufficient. The aim of this study was to evaluate IMA levels in various types of cerebrovascular events such as ischemic stroke, subarachnoid hemorrhage (SAH), and intracranial hemorrhage. This case-controlled study consisted of 106 consecutive patients, 43 with brain infarction (BI), 11 with brain hemorrhage (ICH), 52 with SAH, and a 43-member control group. We investigated whether there was a statistical correlation between these 3 groups and the control group. The relations among the 3 groups were also examined. Comparisons among groups were done with analysis of variance. Mean serum IMA levels were 0.280 +/- 0.045 absorbance units (ABSU) for BI patients, 0.259 +/- 0.053 ABSU for ICH patients, 0.243 +/- 0.061 ABSU for SAH patients, and 0.172 +/- 0.045 ABSU for the control group.There was a statistically significant difference between the mean IMA levels of BI, ICH, and SAH patients and the mean control patient IMA levels (P b .0001). Ischemia-modified albumin levels are high in cerebrovascular diseases. Ischemia-modified albumin measurement can also be used to distinguish SAH from BI during the acute phase of cerebrovascular event in the emergency department.

  5. Effectiveness of sugammadex for cerebral ischemia/reperfusion injury.

    PubMed

    Ozbilgin, Sule; Yılmaz, Osman; Ergur, Bekir Ugur; Hancı, Volkan; Ozbal, Seda; Yurtlu, Serhan; Gunenc, Sakize Ferim; Kuvaki, Bahar; Kucuk, Burcu Ataseven; Sisman, Ali Rıza

    2016-06-01

    Cerebral ischemia may cause permanent brain damage and behavioral dysfunction. The efficacy and mechanisms of pharmacological treatments administered immediately after cerebral damage are not fully known. Sugammadex is a licensed medication. As other cyclodextrins have not passed the necessary phase tests, trade preparations are not available, whereas sugammadex is frequently used in clinical anesthetic practice. Previous studies have not clearly described the effects of the cyclodextrin family on cerebral ischemia/reperfusion (I/R) damage. The aim of this study was to determine whether sugammadex had a neuroprotective effect against transient global cerebral ischemia. Animals were assigned to control, sham-operated, S 16 and S 100 groups. Transient global cerebral ischemia was induced by 10-minute occlusion of the bilateral common carotid artery, followed by 24-hour reperfusion. At the end of the experiment, neurological behavior scoring was performed on the rats, followed by evaluation of histomorphological and biochemical measurements. Sugammadex 16 mg/kg and 100 mg/kg improved neurological outcome, which was associated with reductions in both histological and neurological scores. The hippocampus TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) and caspase results in the S 16 and S 100 treatment groups were significantly lower than those of the I/R group. Neurological scores in the treated groups were significantly higher than those of the I/R group. The study showed that treatment with 16 mg/kg and 100 mg/kg sugammadex had a neuroprotective effect in a transient global cerebral I/R rat model. However, 100 mg/kg sugammadex was more neuroprotective in rats. Copyright © 2016. Published by Elsevier Taiwan.

  6. The relationship between renal warm ischemia time and glomerular loss. An experimental study in a pig model.

    PubMed

    Damasceno-Ferreira, José Aurelino; Bechara, Gustavo Ruschi; Costa, Waldemar Silva; Pereira-Sampaio, Marco Aurélio; Sampaio, Francisco José Barcellos; Souza, Diogo Benchimol De

    2017-05-01

    To investigate the glomerular number after different warm ischemia times. Thirty two pigs were assigned into four groups. Three groups (G10, G20, and G30) were treated with 10, 20, and 30 minutes of left renal warm ischemia. The sham group underwent the same surgery without renal ischemia. The animals were euthanized after 3 weeks, and the kidneys were collected. Right kidneys were used as controls. The kidney weight, volume, cortical-medullar ratio, glomerular volumetric density, volume-weighted mean glomerular volume, and the total number of glomeruli per kidney were obtained. Serum creatinine levels were assessed pre and postoperatively. Serum creatinine levels did not differ among the groups. All parameters were similar for the sham, G10, and G20 groups upon comparison of the right and left organs. The G30 group pigs' left kidneys had lower weight, volume, and cortical-medullar ratio and 24.6% less glomeruli compared to the right kidney. A negative correlation was found between warm ischemia time and glomerular number. About one quarter of glomeruli was lost after 30 minutes of renal warm ischemia. No glomeruli loss was detected before 20 minutes of warm ischemia. However, progressive glomerular loss was associated with increasing warm ischemia time.

  7. Mesenchymal Stem Cell-Based Therapy Improves Lower Limb Movement After Spinal Cord Ischemia in Rats.

    PubMed

    Takahashi, Shinya; Nakagawa, Kei; Tomiyasu, Mayumi; Nakashima, Ayumu; Katayama, Keijiro; Imura, Takeshi; Herlambang, Bagus; Okubo, Tomoe; Arihiro, Koji; Kawahara, Yumi; Yuge, Louis; Sueda, Taijiro

    2018-05-01

    Spinal cord ischemia is a devastating complication after thoracic and thoracoabdominal aortic operations. In this study, we aimed to investigate the effects of mesenchymal stem cells (MSCs), which have regenerative capability and exert paracrine actions on damaged tissues, injected into rat models of spinal cord ischemia-reperfusion injury. Forty-five Sprague-Dawley rats were divided into sham, phosphate-buffered saline (PBS), and MSC groups. Spinal cord ischemia was induced in the latter two groups by balloon occlusion of the thoracic aorta. MSCs and PBS were then immediately injected into the left carotid artery of the MSC and PBS groups, respectively. Hindlimb motor function was evaluated at 6 and 24 hours. The spinal cord was removed at 24 hours after ischemia-reperfusion injury, and histologic and immunohistochemical analyses and real-time polymerase chain reaction assessments were performed. Rats in the MSC and PBS groups showed flaccid paraparesis/paraplegia postoperatively. Hindlimb function was significantly better at 6 and 24 hours after ischemia-reperfusion injury in the MSC group than in the PBS group (p < 0.05). The number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive neuron cells in the spinal cord and the ratio of Bax to Bcl2 were significantly larger (p < 0.05) in the PBS group than in the MSC group. The injected MSCs were observed in the spinal cord 24 hours after ischemia-reperfusion injury. The MSC therapy by transarterial injection immediately after spinal cord ischemia-reperfusion injury may improve lower limb function by preventing apoptosis of neuron cells in the spinal cord. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Effects of ischemic preconditioning and iloprost on myocardial ischemia-reperfusion damage in rats.

    PubMed

    Ay, Yasin; Kara, Ibrahim; Aydin, Cemalettin; Ay, Nuray Kahraman; Teker, Melike Elif; Senol, Serkan; Inan, Bekir; Basel, Halil; Uysal, Omer; Zeybek, Rahmi

    2013-01-01

    This study investigates the effects of cardiac ischemic preconditioning and iloprost on reperfusion damage in rats with myocardial ischemia/reperfusion. 38 male Wistar Albino rats used in this study were divided into 5 groups. The control group (Group 1) (n=6), ischemia/reperfusion (IR) group (Group 2) (n=8), cardiac ischemic preconditioning (CIP) group (Group 3) (n=8), iloprost (ILO) group (Group 4) (n=8), and cardiac ischemic preconditioning + iloprost (CIP+ILO) group (Group 5) (n=8). Pre-ischemia, 15 minutes post-ischemia, 45 minutes post-reperfusion, mean blood pressure (MBP), and heart rates (HR) were recorded. The rate-pressure product (RPP) was calculated. Post-reperfusion plasma creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), troponin (cTn) vlaues, and infarct size/area at risk (IS/AAR) were calculated from myocardial tissue samples. Arrhythmia and ST segment elevations were evaluated during the ischemia and reperfusion stages. Although the MBP, HR, RPP values, biochemical parameters of CK-MB and LDH levels, IS/AAR rates, ST segment elevation values were found to be similar in CIP and CIP+ILO groups and the IR and ILO groups (p>0.05), CIP-containing group values had a positively meaningful difference (p<0.05) compared with the IR and ILO group. While mild-moderate findings of damage were observed in Group 3 and Group 5, severely findings of damage were releaved in Group 2 and Group 4. The arrhythmia score of the ILO group was meaningfully lower (F: 41.4, p<0.001) than the IR group. We can conclude that the effects of myocardial reperfusion damage can be reduced by cardiac ischemic preconditioning, intravenous iloprost reduced the incidence of ventricular arrhythmia associated with reperfusion, and its use with CIP caused no additional changes.

  9. Renal ischemia induces an increase in nitric oxide levels from tissue stores.

    PubMed

    Salom, Miguel G; Arregui, Begoña; Carbonell, Luis F; Ruiz, Fernando; González-Mora, José Luis; Fenoy, Francisco J

    2005-11-01

    Tissue nitric oxide (NO) levels increase dramatically during ischemia, an effect that has been shown to be partially independent from NO synthases. Because NO is stored in tissues as S-nitrosothiols and because these compounds could release NO during ischemia, we evaluated the effects of buthionine sulfoximine (BSO; an intracellular glutathione depletor), light stimulation (which releases NO, decomposing S-nitrosothiols), and N-acetyl-L-cysteine (a sulfhydryl group donor that repletes S-nitrosothiols stores) on the changes in outer medullary NO concentration produced during 45 min of renal artery occlusion in anesthetized rats. Renal ischemia increased renal tissue NO concentration (+223%), and this effect was maintained along 45 min of renal arterial blockade. After reperfusion, NO concentration fell below preischemic values and remained stable for the remainder of the experiment. Pretreatment with 10 mg/kg nitro-L-arginine methyl ester (L-NAME) decreased significantly basal NO concentration before ischemia, but it did not modify the rise in NO levels observed during ischemia. In rats pretreated with 4 mmol/kg BSO and L-NAME, ischemia was followed by a transient increase in renal NO concentration that fell to preischemic values 20 min before reperfusion. A similar response was observed when the kidney was illuminated 40 min before the ischemia. The coadministration of 10 mg/kg iv N-acetyl-L-cysteine with BSO + L-NAME restored the increase in NO levels observed during renal ischemia and prevented the depletion of renal thiol groups. These results demonstrate that the increase in renal NO concentration observed during ischemia originates from thiol-dependent tissue stores.

  10. Effects of Aloe Vera on Spinal Cord Ischemia-Reperfusion Injury of Rats.

    PubMed

    Yuksel, Yasemin; Guven, Mustafa; Kaymaz, Burak; Sehitoglu, Muserref Hilal; Aras, Adem Bozkurt; Akman, Tarik; Tosun, Murat; Cosar, Murat

    2016-12-01

    The purpose of this study was to evaluate the possible protective/therapeutic effects of aloe vera (AV) on ischemia-reperfusion injury (I/R) of spinal cord in rats. A total of 28 Wistar Albino rats were divided into four random groups of equal number (n = 7). Group I (control) had no medication or surgery; Group II underwent spinal cord ischemia and was given no medication; Group III was administered AV by gastric gavage for 30 days as pre-treatment; Group IV was administered single dose intraperitoneal methylprednisolone (MP) after the ischemia. Nuclear respiratory factor-1 (NRF1), malondialdehyde (MDA) and superoxide dismutase (SOD) levels were evaluated. Tissue samples were examined histopathologically and neuronal nitric oxide synthase (nNOS) and nuclear factor-kappa B (NF-κB) protein expressions were assessed by immunohistochemical staining. NRF1 and SOD levels of ischemia group were found to be lower compared to the other groups. MDA levels significantly increased after I/R. Treatment with AV and MP resulted in reduced MDA levels and also alleviated hemorrhage, edema, inflammatory cell migration and neurons were partially protected from ischemic injury. When AV treatment was compared with MP, there was no statistical difference between them in terms of reduction of neuronal damage. I/R injury increased NF-κB and nNOS expressions. AV and MP treatments decreased NF-κB and nNOS expressions. It was observed that aloe vera attenuated neuronal damage histopathologically and biochemically as pretreatment. Further studies may provide more evidence to determine the additional role of aloe vera in spinal cord ischemia reperfusion injury.

  11. The Protective Effects of Lycium Barbarum Polysaccharides on Transient Retinal Ischemia

    PubMed Central

    Yang, Di; Li, Suk-Yee; Yeung, Chung-Man; Yu, Wing-Yan; Chang, Raymond Chuen-Chung; So, Kwok-Fai; Wong, David; Lo, Amy C. Y.

    2011-01-01

    Retinal ischemia/reperfusion (I/R) injury leads to irreversible neuronal death, glial activation, retinal swelling and oxidative stress. It is a common feature in various ocular diseases, such as glaucoma, diabetic retinopathy and amaurosis fugax. In the present study, we aimed to evaluate the effects of Lycium Barbarum Polysaccharides (LBP) in a murine retinal I/R model. Mice were orally treated with either vehicle (PBS) or LBP (1mg/kg) daily for 1 week before induction of retinal ischemia. Retinae were collected after 2 hours ischemia and 22 hours reperfusion. Paraffin-embedded sections were prepared for immunohistochemical analyses. Significantly fewer viable cells were found in vehicle-treated retinae comparing to LBP group. This finding was further confirmed by TUNEL assay where significantly fewer apoptotic cells were identified in LBP-treated retinae. Additionally, retinal swelling induced by retinal I/R injury in the vehicle-treated group was not observed in LBP-treated group. Moreover, intense GFAP immunoreactivity and IgG extravasation were observed in vehicle-treated group but not in LBP treated group. The results showed that pre-treatment with LBP was protective in retinal I/R injury via reducing neuronal death, apoptosis, retinal swelling, GFAP activation and blood vessel leakage. LBP may be used as a preventive agent for retinal ischemia diseases.

  12. Protective effect of remote ischemic per-conditioning in the ischemia and reperfusion-induce renal injury in rats.

    PubMed

    Yamaki, Vitor Nagai; Gonçalves, Thiago Barbosa; Coelho, João Vitor Baia; Pontes, Ruy Victor Simões; Costa, Felipe Lobato da Silva; Brito, Marcus Vinicius Henriques

    2012-12-01

    To evaluate the protective effect of remote ischemic per-conditioning in ischemia and reperfusion-induced renal injury. Fifteen rats (Rattus norvegicus) were randomized into three groups (n = 5): Group Normality (GN), Control Ischemia and Reperfusion (GIR) and Group remote ischemic per-conditioning (GPER). With the exception of the GN group, all others underwent renal ischemia for 30 minutes. In group GPER we performed the ischemic remote per-conditioning, consisting of three cycles of ischemia and reperfusion applied every five minutes during the ischemic period, to the left hindlimb of the rats by means of a tourniquet. To quantify the lesions we measured serum levels of creatinine and urea, as well as analyzed renal histopathology. The GPER group presented with better levels of urea (83.74 ± 14.58%) and creatinine (0.72 ± 26.14%) when compared to GIR group, approaching the GN group. Histopathologically, the lower levels of medullary congestion and hydropic degeneration were found in group GPER. The remote ischemic per-conditioning had a significant protective effect on renal ischemia and reperfusion.

  13. Forearm ischemia decreases endothelial colony-forming cell angiogenic potential.

    PubMed

    Mauge, Laetitia; Sabatier, Florence; Boutouyrie, Pierre; D'Audigier, Clément; Peyrard, Séverine; Bozec, Erwan; Blanchard, Anne; Azizi, Michel; Dizier, Blandine; Dignat-George, Françoise; Gaussem, Pascale; Smadja, David M

    2014-02-01

    Circulating endothelial progenitor cells and especially endothelial colony-forming cells (ECFCs) are promising candidate cells for endothelial regenerative medicine of ischemic diseases, but the conditions for an optimal collection from adult blood must be improved. On the basis of a recently reported vascular niche of ECFCs, we hypothesized that a local ischemia could trigger ECFC mobilization from the vascular wall into peripheral blood to optimize their collection for autologous implantation in critical leg ischemia. Because the target population with critical leg ischemia is composed of elderly patients in whom a vascular impairment has been documented, we also analyzed the impact of aging on ECFC mobilization and vascular integrity. After having defined optimized ECFC culture conditions, we studied the effect of forearm ischemia on ECFC numbers and functions in 26 healthy volunteers (13 volunteers ages 20-30-years old versus 13 volunteers ages 60-70 years old). The results show that forearm ischemia induced an efficient local ischemia and a normal endothelial response but did not mobilize ECFCs regardless of the age group. Moreover, we report an alteration of angiogenic properties of ECFCs obtained after forearm ischemia, in vitro as well as in vivo in a hindlimb ischemia murine model. This impaired ECFC angiogenic potential was not associated with a quantitative modification of the circulating endothelial compartment. The procedure of local ischemia, although reulting in a preserved endothelial reactivity, did not mobilize ECFCs but altered their angiogenic potential. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  14. The protective effect of diosmin on hepatic ischemia reperfusion injury: an experimental study

    PubMed Central

    Tanrikulu, Yusuf; Şahin, Mefaret; Kismet, Kemal; Kilicoglu, Sibel Serin; Devrim, Erdinc; Tanrikulu, Ceren Sen; Erdemli, Esra; Erel, Serap; Bayraktar, Kenan; Akkus, Mehmet Ali

    2013-01-01

    Liver ischemia reperfusion injury (IRI) is an important pathologic process leading to bodily systemic effects and liver injury. Our study aimed to investigate the protective effects of diosmin, a phlebotrophic drug with antioxidant and anti-inflammatory effects, in a liver IRI model. Forty rats were divided into 4 groups. Sham group, control group (ischemia-reperfusion), intraoperative treatment group, and preoperative treatment group. Ischemia reperfusion model was formed by clamping hepatic pedicle for a 60 minute of ischemia followed by liver reperfusion for another 90 minutes. Superoxide dismutase (SOD) and catalase (CAT) were measured as antioaxidant enzymes in the liver tissues, and malondialdehyde (MDA) as oxidative stress marker, xanthine oxidase (XO) as an oxidant enzyme and glutathione peroxidase (GSH-Px) as antioaxidant enzyme were measured in the liver tissues and the plasma samples. Hepatic function tests were lower in treatment groups than control group (p<0.001 for ALT and AST). Plasma XO and MDA levels were lower in treatment groups than control group, but plasma GSH-Px levels were higher (p<0.05 for all). Tissue MDA levels were lower in treatment groups than control group, but tissue GSH-Px, SOD, CAT and XO levels were higher (p<0.05 for MDA and p<0.001 for others). Samples in control group histopathologically showed morphologic abnormalities specific to ischemia reperfusion. It has been found that both preoperative and intraoperative diosmin treatment decreases cellular damage and protects cells from toxic effects in liver IRI. As a conclusion, diosmin may be used as a protective agent against IRI in elective and emergent liver surgical operations. PMID:24289756

  15. [Effect of progesterone on the expression of GLUT in the brain following hypoxic-ischemia in newborn rats].

    PubMed

    Li, Dong-Liang; Han, Hua

    2008-08-01

    To investigate the expression of GLUT1 and GLUT3 in the hippocampus after cerebral hypoxic-ischemia (HI) in newborn rats and the effect of progesterone (PROG) on them. Forty newborn SD rats were randomly divided into four groups: normal group, sham-operated group, hypoxic-ischemic group and progesterone group. Model of hypoxic-ischemia encephalopathy (HIE) was established in the 7-day-old newborn SD rats. Immunohistochemical method was applied to detect the expression of GLUT1 and GLUT3 in hippocampus. GLUT1 and GLUT3 were slightly seen in normal and sham operation group, there was no obviously difference between the two groups (P > 0.05). The expression of GLUT1 and GLUT3 in hypoxic-ischemia group were all higher than that in sham operated group (P < 0.05). Not only the expression of GLUT in progesterone group were significantly higher than that in sham operated group (P < 0.01), but also than that in hypoxic-ischemia group (P < 0.05). PROG could increase the tolerance of neuron to hypoxic-ischemia with maintaining the energy supply in the brain by up-regulating GLUT expression.

  16. Effect of flaxseed supplementation and exercise training on lipid profile, oxidative stress and inflammation in rats with myocardial ischemia.

    PubMed

    Nounou, Howaida A; Deif, Maha M; Shalaby, Manal A

    2012-10-05

    Flaxseed has recently gained attention in the area of cardiovascular disease primarily because of its rich contents of α-linolenic acid (ALA), lignans, and fiber. Although the benefits of exercise on any single risk factor are unquestionable, the effect of exercise on overall cardiovascular risk, when combined with other lifestyle modifications such as proper nutrition, can be dramatic.This study was carried out to evaluate the protective role of flaxseed and exercise on cardiac markers, lipids profile and inflammatory markers in isoproterenol (ISO)-induced myocardial ischemia in rats. The research was conducted on 40 male albino rats, divided into 4 groups (n=10): group I served as control, group II has acute myocardial ischemia induced by isoproterenol, groups III and IV have acute myocardial ischemia induced by isoproterenol pretreated with flaxseed supplementation orally for 6 weeks, additionally group IV practiced muscular exercise through swimming. Alterations of lipid profile, cardiac and inflammatory markers (Il-1β, PTX 3 and TNF- α) were observed in myocardial ischemia group. Flaxseed supplementation combined with exercise training showed significant increase of HDL and PON 1, on the other hand cardiac troponin, Il- 1β and TNF- α levels significantly decreased as compared to myocardial ischemic group. Receiver Operating Characteristics (ROC) analysis of cTnI, PTX 3, Il-1β and TNF- α revealed a satisfactory level of sensitivity and specificity. Regular exercise enhances the improvement in plasma lipoprotein levels and cardiovascular protection that results from flaxseed supplementation by mitigating the pathophysiology of atherosclerosis. Elevation of HDL, the antioxidant PON 1 and the cardioprotective marker PTX 3 emphasizes the protective effects of flaxseed and muscular exercise mutually against the harmful effects of acute myocardial ischemia.

  17. Sevoflurane pretreatment enhance HIF-2α expression in mice after renal ischemia/reperfusion injury

    PubMed Central

    Zheng, Beijie; Zhan, Qionghui; Chen, Jue; Xu, Huan; He, Zhenzhou

    2015-01-01

    Ischemia/reperfusion (I/R) injury often occurs, which is one of the major causes of acute kidney injury, thus increasing in-hospital mortality. HIF-2α has a protective role against ischemia of the kidney. Renal ischemia/reperfusion under sevoflurane anesthesia resulted in drastic improvements in renal function. We hypothesized that underlying mechanism responsible for renal protection from sevoflurane pretreatment involves the upregulation of HIF-2α. Sevoflurane pretreatment were performed on WT and HIF-2α knockout mice before renal ischemia/reperfusion. Levels of blood urea nitrogen (BUN) and serum creatinine (Cr) were determined with a standard clinical automatic analyzer. The left kidneys were taken for morphological examination. Expression of HIF-2α in kidney tissue was examined by western blotting. In WT mice, group I/R injury had significantly higher BUN and Cr levels than group control, whereas group I/R + Sev had significantly lower BUN and Cr levels than group I/R injury. Renal HIF-2α expression levels were significantly higher in WT mice of group I/R + Sev than group control and group I/R. In HIF-2α-/- mice, group I/R + Sev showed much higher BUN and Cr levels and severer histological damage than group I/R and group control. Renal HIF-2α expression levels were significantly higher in WT mice of group I/R + Sev than group control and group I/R. Our findings suggested that HIF-2α might contribute to the beneficial effect of sevoflurane in renal ischemia/reperfusion injury. PMID:26722509

  18. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group.

    PubMed

    Vergouwen, Mervyn D I; Vermeulen, Marinus; van Gijn, Jan; Rinkel, Gabriel J E; Wijdicks, Eelco F; Muizelaar, J Paul; Mendelow, A David; Juvela, Seppo; Yonas, Howard; Terbrugge, Karel G; Macdonald, R Loch; Diringer, Michael N; Broderick, Joseph P; Dreier, Jens P; Roos, Yvo B W E M

    2010-10-01

    In clinical trials and observational studies there is considerable inconsistency in the use of definitions to describe delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage. A major cause for this inconsistency is the combining of radiographic evidence of vasospasm with clinical features of cerebral ischemia, although multiple factors may contribute to DCI. The second issue is the variability and overlap of terms used to describe each phenomenon. This makes comparisons among studies difficult. An international ad hoc panel of experts involved in subarachnoid hemorrhage research developed and proposed a definition of DCI to be used as an outcome measure in clinical trials and observational studies. We used a consensus-building approach. It is proposed that in observational studies and clinical trials aiming to investigate strategies to prevent DCI, the 2 main outcome measures should be: (1) cerebral infarction identified on CT or MRI or proven at autopsy, after exclusion of procedure-related infarctions; and (2) functional outcome. Secondary outcome measure should be clinical deterioration caused by DCI, after exclusion of other potential causes of clinical deterioration. Vasospasm on angiography or transcranial Doppler can also be used as an outcome measure to investigate proof of concept but should be interpreted in conjunction with DCI or functional outcome. The proposed measures reflect the most relevant morphological and clinical features of DCI without regard to pathogenesis to be used as an outcome measure in clinical trials and observational studies.

  19. Is Chronic Curcumin Supplementation Neuroprotective Against Ischemia for Antioxidant Activity, Neurological Deficit, or Neuronal Apoptosis in an Experimental Stroke Model?

    PubMed

    Altinay, Serdar; Cabalar, Murat; Isler, Cihan; Yildirim, Funda; Celik, Duygu S; Zengi, Oguzhan; Tas, Abdurrahim; Gulcubuk, Ahmet

    2017-01-01

    To investigate the neuroprotective effect of chronic curcumin supplementation on the rat forebrain prior to ischemia and reperfusion. Forebrain ischemia was induced by bilateral common carotid artery occlusion for 1/2 hour, followed by reperfusion for 72 hours. Older rats were divided into five groups: Group I received 300 mg/kg oral curcumin for 21 days before ischemia and 300 mg/kg intraperitoneal curcumin after ischemia; Group II received 300 mg/kg intraperitoneal curcumin after ischemia; Group III received 300 mg/kg oral curcumin for 21 days before ischemia; Group IV had only ischemia; Group V was the sham-operated group. The forebrain was rapidly dissected for biochemical parameter assessment and histopathological examination. In forebrain tissue, enzyme activities of superoxide dismutase, glutathione peroxidase, and catalase were significantly higher in Group I than Groups II or III (p < 0.05) while xanthine dehydrogenase and malondialdehyde enzyme activities and concentrations of interleukin-6 and TNF-alpha were significantly lower in Group I when compared to Groups II and III (p < 0.05). A significant reduction in neurological score was observed after 24 and 72 hours in the curcumin-treated groups compared with the ischemic group. We also found a marked reduction in apoptotic index after 72 hours in the groups receiving curcumin. Significantly more TUNEL-positive cells were observed in the ischemic group compared to those treated with curcumin. We demonstrated the neuroprotective effect of chronic curcumin supplement on biochemical parameters, neurological scores and apoptosis following ischemia and reperfusion injury in rats.

  20. Pharmacological postconditioning with atorvastatin calcium attenuates myocardial ischemia/reperfusion injury in diabetic rats by phosphorylating GSK3β.

    PubMed

    Chen, Linyan; Cai, Ping; Cheng, Zhendong; Zhang, Zaibao; Fang, Jun

    2017-07-01

    Diabetes is an independent risk factor for myocardial ischemia, and many epidemiological data and laboratory studies have revealed that diabetes significantly exacerbated myocardial ischemia/reperfusion injury and ameliorated protective effects. The present study aimed to determine whether pharmacological postconditioning with atorvastatin calcium lessened diabetic myocardial ischemia/reperfusion injury, and investigated the role of glycogen synthase kinase (GSK3β) in this. A total of 72 streptozotocin-induced diabetic rats were randomly divided into six groups, and 24 age-matched male non-diabetic Sprague-Dawley rats were randomly divided into two groups. Rats all received 40 min myocardial ischemia followed by 180 min reperfusion, except sham-operated groups. Compared with the non-diabetic ischemia/reperfusion model group, the diabetic ischemia/reperfusion group had a comparable myocardial infarct size, but a higher level of serum cardiac troponin I (cTnI) and morphological alterations to their myocardial cells. Compared with the diabetic ischemia/reperfusion group, the group that received pharmacological postconditioning with atorvastatin calcium had smaller myocardial infarct sizes, lower levels of cTnI, reduced morphological alterations to myocardial cells, higher levels of p-GSK3β, heat shock factor (HSF)-1 and heat shock protein (HSP)70. The cardioprotective effect conferred by atorvastatin calcium did not attenuate myocardial ischemia/reperfusion injury following application of TDZD-8, which phosphorylates and inactivates GSK3β. Pharmacological postconditioning with atorvastatin calcium may attenuate diabetic heart ischemia/reperfusion injury in the current context. The phosphorylation of GSK3β serves a critical role during the cardioprotection in diabetic rats, and p-GSK3β may accelerate HSP70 production partially by activating HSF-1 during myocardial ischemic/reperfusion injury.

  1. Preconditioning of intravenous parecoxib attenuates focal cerebral ischemia/reperfusion injury in rats.

    PubMed

    Wang, Na; Guo, Qu-lian; Ye, Zhi; Xia, Ping-ping; Wang, E; Yuan, Ya-jing

    2011-07-05

    Several studies suggest that cyclooxygenase-2 (COX-2) contributes to the delayed progression of ischemic brain damage. This study was designed to investigate whether COX-2 inhibition with parecoxib reduces focal cerebral ischemia/reperfusion injury in rats. Ninety male Sprague-Dawley rats were randomly assigned to three groups: the sham group, ischemia/reperfusion (I/R) group and parecoxib group. The parecoxib group received 4 mg/kg of parecoxib intravenously via the vena dorsalis penis 15 minutes before ischemia and again at 12 hours after ischemia. The neurological deficit scores (NDSs) were evaluated at 24 and 72 hours after reperfusion. The rats then were euthanized. Brains were removed and processed for hematoxylin and eosin staining, Nissl staining, and measurements of high mobility group Box 1 protein (HMGB1) and tumor necrosis factor-α (TNF-α) levels. Infarct volume was assessed with 2,3,5-triphenyltetrazolium chloride (TTC) staining. The rats in the I/R group had lower NDSs (P < 0.05), larger infarct volume (P < 0.05), lower HMGB1 levels (P < 0.05), and higher TNF-α levels (P < 0.05) compared with those in the sham group. Parecoxib administration significantly improved NDSs, reduced infarct volume, and decreased HMGB1 and TNF-α levels (P < 0.05). Pretreatment with intravenous parecoxib was neuroprotective. Its effects may be associated with the attenuation of inflammatory reaction and the inhibition of inflammatory mediators.

  2. The Effect of Pentoxifylline on bcl-2 Gene Expression Changes in Hippocampus after Ischemia-Reperfusion in Wistar Rats by a Quatitative RT-PCR Method

    PubMed Central

    Sari, Soyar; Hashemi, Mehrdad; Mahdian, Reza; Parivar, Kazem; Rezayat, Mehdi

    2013-01-01

    Ischemia-reperfusion injury is the tissue damage caused when blood supply returns to the tissue after a period of ischemia or lack of oxygen. Ischemia-reperfusion brain injury initiates an inflammatory response involving the expression of adhesion molecules and cytokines. Twenty–four male Wistar rats (250-300 g body wt) were used in this study. The animals were divided into four groups of 6 rats each: I: Control group that was subjected to ischemia-reperfusion, II: Ischemia-reperfusion group that was subjected to all surgical procedures, III: Drug group that received pentoxifylline (200, 400 and 600 mg/kg) 60 min before and after ischemia and IV: Vehicle group that received saline. Seventy two h after ischemia-reperfusion, the hippocampus was taken for studying the changes in bcl-2 gene expression. We used quantitative real-time PCR for the detection of bcl-2 gene expression in ischemia and drug groups and then compared them to normal samples. The results showed the gene dosage ratio of 0.66 and 1.5 for ischemia group and the drug groups, respectively. The results also showed the bcl-2 gene expression declined in ischemia group as compared to the drug group. Furthermore, we observed a significant difference in the bcl-2 gene expression between ischemia and drug groups. These findings are consistent with anti-apoptotic properties of bcl-2 gene. Furthermore this method provides a powerful tool for the investigators to study brain ischemia and respond to the treatment drugs with anti-apoptotic agents. PMID:24250655

  3. Ischemic preconditioning protects neurons from damage and maintains the immunoreactivity of kynurenic acid in the gerbil hippocampal CA1 region following transient cerebral ischemia

    PubMed Central

    LEE, JAE-CHUL; TAE, HYUN-JIN; CHO, GEUM-SIL; KIM, IN HYE; AHN, JI HYEON; PARK, JOON HA; CHEN, BAI HUI; CHO, JEONG-HWI; SHIN, BICH NA; CHO, JUN HWI; BAE, EUN JOO; PARK, JINSEU; KIM, YOUNG-MYEONG; CHOI, SOO YOUNG; WON, MOO-HO

    2015-01-01

    Pyramidal neurons in region I of hippocampus proper (CA1) are particularly vulnerable to excitotoxic processes following transient forebrain ischemia. Kynurenic acid (KYNA) is a small molecule derived from tryptophan when this amino acid is metabolized through the kynurenine pathway. In the present study, we examined the effects of ischemic preconditioning (IPC) on the immunoreactivity and protein levels of KYNA following 5 min of transient forebrain ischemia in gerbils. The animals were randomly assigned to 4 groups (sham-operated group, ischemia-operated group, IPC + sham-operated group and IPC + ischemia-operated group). IPC was induced by subjecting the gerbils to 2 min of ischemia followed by 1 day of recovery. In the ischemia-operated group, we observed a significant loss of pyramidal neurons in the CA1 stratum pyramidale (SP) at 5 days post-ischemia; however, in the IPC + ischemia-operated group, the pyramidal neurons were well protected. KYNA immunoreactivity in the SP of the ischemia-operated group was significantly altered following ischemia-reperfusion and was very low 5 days following ischemia-reperfusion. In the IPC + ischemia-operated group, however, KYNA immunoreactivity was constitutively detected in the SP of the CA1 region after the ischemic insult. We also found that the alteration pattern of the KYNA protein level in the CA1 region following ischemia was generally similar to the immunohistochemical changes observed. In brief, our findings demonstrated that IPC maintained and even increased KYNA immunoreactivity in the SP of the CA1 region following ischemia-reperfusion. The data from the present study thus indicate that the enhancement of KYNA expression by IPC may be necessary for neuronal survival following transient ischemic injury. PMID:25872573

  4. Pretreatment of parecoxib attenuates hepatic ischemia/reperfusion injury in rats.

    PubMed

    Zhang, Tao; Ma, Yi; Xu, Kang-Qing; Huang, Wen-Qi

    2015-11-17

    Previous studies showed that cyclooxygenase(COX) was involved in ischemia/reperfusion (I/R) injuries. Parecoxib, a selective inhibitor for COX -2, has been shown to have protective properties in reducing I/R injury in the heart, kidney and brain. The aim of this study was to investigate the effects of parecoxib on hepatic I/R and to explore the underlying mechanisms. Fifty-two Sprague-Dawley rats were randomly divided into three groups: the sham-operation (Sham) group, the hepatic ischemia/reperfusion (I/R) group, and the parecoxib pretreated I/R (I/R + Pare) group. Partial warm ischemia was produced in the left and middle hepatic lobes of Sprague-Dawley rats for 60 min, followed by 6 h of reperfusion. Rats in the I/R + Pare group received parecoxib (10 mg/kg) intraperitoneally twice a day for three consecutive days prior to ischemia. Blood and tissue samples from the groups were collected 6 h after reperfusion, and a survival study was performed. Pretreatment with parecoxib prior to I/R insult significantly reduced I/R-induced elevations of aminotransferases, and significantly improved the histological status of the liver. Parecoxib significantly suppressed inflammatory cascades, as demonstrated by attenuations in TNF-α and IL-6. Parecoxib significantly inhibited iNOS and nitrotyrosine expression after I/R and significantly attenuated I/R-induced apoptosis. The 7-day survival rate was increased by pre-administration of parecoxib. Administration of parecoxib prior to hepatic I/R attenuates hepatic injury through inhibition of inflammatory response and nitrosative stress.

  5. Effects of angiotensin-converting enzyme inhibition on transient ischemia: the Quinapril Anti-Ischemia and Symptoms of Angina Reduction (QUASAR) trial.

    PubMed

    Pepine, Carl J; Rouleau, Jean-Lucien; Annis, Karen; Ducharme, Anique; Ma, Patrick; Lenis, Jacques; Davies, Richard; Thadani, Udho; Chaitman, Bernard; Haber, Harry E; Freedman, S Ben; Pressler, Milton L; Pitt, Bertram

    2003-12-17

    We sought to determine whether angiotensin-converting enzyme inhibition (ACE-I) (i.e., quinapril) prevents transient ischemia (exertional and spontaneous) in patients with coronary artery disease (CAD). It is known that ACE-I reduces the risk of death, myocardial infarction (MI), and other CAD-related outcomes in high-risk patients. Numerous studies have confirmed that ACE-I improves coronary flow and endothelial function. Whether ACE-I also decreases transient ischemia is unclear, because no studies have been adequately designed or sufficiently powered to evaluate this issue. Using a randomized, double-blinded, placebo-controlled, multicenter design, we enrolled 336 CAD patients with stable angina. None had uncontrolled hypertension, left ventricular (LV) dysfunction, or recent MI, and all developed electrocardiographic (ECG) evidence of ischemia during exercise. They were randomly assigned to one of two groups: 40 mg/day quinapril (n = 177) or placebo (n = 159) for 8 weeks. Patients then entered an additional eight-week treatment phase to examine the full dose range. Those assigned to 40 mg quinapril continued that dose and those assigned to placebo were titrated to 80 mg/day. Treadmill testing, the Seattle Angina Questionnaire, and ambulatory ECG monitoring were used to assess responses at baseline and at 8 and 16 weeks. The groups did not differ significantly at entry or in terms of indexes assessing myocardial ischemia at 8 or 16 weeks of treatment. In this low-risk population, ACE-I was not associated with serious adverse events. Our findings suggest short-term ACE-I in CAD patients without hypertension, LV dysfunction, or acute MI is not associated with significant effects on transient ischemia.

  6. Vagal modulation of high mobility group box-1 protein mediates electroacupuncture-induced cardioprotection in ischemia-reperfusion injury.

    PubMed

    Zhang, Juan; Yong, Yue; Li, Xing; Hu, Yu; Wang, Jian; Wang, Yong-qiang; Song, Wei; Chen, Wen-ting; Xie, Jian; Chen, Xue-mei; Lv, Xin; Hou, Li-li; Wang, Ke; Zhou, Jia; Wang, Xiang-rui; Song, Jian-gang

    2015-10-26

    Excessive release of high mobility group box-1 (HMGB1) protein from ischemic cardiomyocytes activates inflammatory cascades and enhances myocardial injury after reperfusion. Here we report evidence that electroacupuncture of mice at Neiguan acupoints can inhibit the up-regulation of cardiac HMGB1 following myocardial ischemia and attenuate the associated inflammatory responses and myocardial injury during reperfusion. These benefits of electroacupuncture were partially reversed by administering recombinant HMGB1 to the mice, and further potentiated by administering anti-HMGB1 antibody. Electroacupuncture-induced inhibition of HMGB1 release was markedly reduced by unilateral vagotomy or administration of nicotinic receptor antagonist, but not by chemical sympathectomy. The cholinesterase inhibitor neostigmine mimicked the effects of electroacupuncture on HMGB1 release and myocardial ischemia reperfusion injury. Culture experiments with isolated neonatal cardiomyocytes showed that acetylcholine, but not noradrenaline, inhibited hypoxia-induced release of HMGB1 via a α7nAchR-dependent pathway. These results suggest that electroacupuncture acts via the vagal nerve and its nicotinic receptor-mediated signaling to inhibit HMGB1 release from ischemic cardiomyocytes. This helps attenuate pro-inflammatory responses and myocardial injury during reperfusion.

  7. Vagal modulation of high mobility group box-1 protein mediates electroacupuncture-induced cardioprotection in ischemia-reperfusion injury

    PubMed Central

    Zhang, Juan; Yong, Yue; Li, Xing; Hu, Yu; Wang, Jian; Wang, Yong-qiang; Song, Wei; Chen, Wen-ting; Xie, Jian; Chen, Xue-mei; Lv, Xin; Hou, Li-li; Wang, Ke; Zhou, Jia; Wang, Xiang-rui; Song, Jian-gang

    2015-01-01

    Excessive release of high mobility group box-1 (HMGB1) protein from ischemic cardiomyocytes activates inflammatory cascades and enhances myocardial injury after reperfusion. Here we report evidence that electroacupuncture of mice at Neiguan acupoints can inhibit the up-regulation of cardiac HMGB1 following myocardial ischemia and attenuate the associated inflammatory responses and myocardial injury during reperfusion. These benefits of electroacupuncture were partially reversed by administering recombinant HMGB1 to the mice, and further potentiated by administering anti-HMGB1 antibody. Electroacupuncture-induced inhibition of HMGB1 release was markedly reduced by unilateral vagotomy or administration of nicotinic receptor antagonist, but not by chemical sympathectomy. The cholinesterase inhibitor neostigmine mimicked the effects of electroacupuncture on HMGB1 release and myocardial ischemia reperfusion injury. Culture experiments with isolated neonatal cardiomyocytes showed that acetylcholine, but not noradrenaline, inhibited hypoxia-induced release of HMGB1 via a α7nAchR-dependent pathway. These results suggest that electroacupuncture acts via the vagal nerve and its nicotinic receptor-mediated signaling to inhibit HMGB1 release from ischemic cardiomyocytes. This helps attenuate pro-inflammatory responses and myocardial injury during reperfusion. PMID:26499847

  8. Glomerular loss after arteriovenous and arterial clamping for renal warm ischemia in a swine model.

    PubMed

    Bechara, Gustavo Ruschi; Damasceno-Ferreira, José Aurelino; Abreu, Leonardo Albuquerque Dos Santos; Costa, Waldemar Silva; Sampaio, Francisco José Barcellos; Pereira-Sampaio, Marco Aurélio; Souza, Diogo Benchimol De

    2016-11-01

    To evaluate the glomerular loss after arteriovenous or arterial warm ischemia in a swine model. Twenty four pigs were divided into Group Sham (submitted to all surgical steps except the renal ischemia), Group AV (submitted to 30 minutes of warm ischemia by arteriovenous clamping of left kidney vessels), and Group A (submitted to 30 minutes of ischemia by arterial clamping). Right kidneys were used as controls. Weigh, volume, cortical volume, glomerular volumetric density (Vv[Glom]), volume-weighted glomerular volume (VWGV), and the total number of glomeruli were measured for each organ. Group AV showed a 24.5% reduction in its left kidney Vv[Glom] and a 25.4% reduction in the VWGV, when compared to the right kidney. Reductions were also observed when compared to kidneys of sham group. There was a reduction of 19.2% in the total number of glomeruli in AV kidneys. No difference was observed in any parameters analyzed on the left kidneys from group A. Renal warm ischemia of 30 minutes by arterial clamping did not caused significant glomerular damage, but arteriovenous clamping caused significant glomerular loss in a swine model. Clamping only the renal artery should be considered to minimize renal injury after partial nephrectomies.

  9. Ischemic preconditioning maintains the immunoreactivities of glucokinase and glucokinase regulatory protein in neurons of the gerbil hippocampal CA1 region following transient cerebral ischemia

    PubMed Central

    CHO, YOUNG SHIN; CHO, JUN HWI; SHIN, BICH-NA; CHO, GEUM-SIL; KIM, IN HYE; PARK, JOON HA; AHN, JI HYEON; OHK, TAEK GEUN; CHO, BYUNG-RYUL; KIM, YOUNG-MYEONG; HONG, SEONGKWEON; WON, MOO-HO; LEE, JAE-CHUL

    2015-01-01

    Glucokinase (GK) is involved in the control of blood glucose homeostasis. In the present study, the effect of ischemic preconditioning (IPC) on the immunoreactivities of GK and its regulatory protein (GKRP) following 5 min of transient cerebral ischemia was investigated in gerbils. The gerbils were randomly assigned to four groups (sham-operated group, ischemia-operated group, IPC + sham-operated group and IPC + ischemia-operated group). IPC was induced by subjecting the gerbils to 2 min of ischemia, followed by 1 day of recovery. In the ischemia-operated group, a significant loss of neurons was observed in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) at 5 days post-ischemia; however, in the IPC+ischemia-operated group, the neurons in the SP were well protected. Following immunohistochemical investigation, the immunoreactivities of GK and GKRP in the neurons of the SP were markedly decreased in the CA1, but not the CA2/3, from 2 days post-ischemia, and were almost undetectable in the SP 5 days post-ischemia. In the IPC + ischemia-operated group, the immunoreactivities of GK and GKRP in the SP of the CA1 were similar to those in the sham-group. In brief, the findings of the present study demonstrated that IPC notably maintained the immunoreactivities of GK and GKRP in the neurons of the SP of CA1 following ischemia-reperfusion. This indicated that GK and GKRP may be necessary for neuron survival against transient cerebral ischemia. PMID:26134272

  10. Effects of Chronic and Acute Zinc Supplementation on Myocardial Ischemia-Reperfusion Injury in Rats.

    PubMed

    Ozyıldırım, Serhan; Baltaci, Abdulkerim Kasim; Sahna, Engin; Mogulkoc, Rasim

    2017-07-01

    The present study aims to explore the effects of chronic and acute zinc sulfate supplementation on myocardial ischemia-reperfusion injury in rats. The study registered 50 adult male rats which were divided into five groups in equal numbers as follows: group 1, normal control; group 2, sham; group 3, myocardial ischemia reperfusion (My/IR): the group which was fed on a normal diet and in which myocardial I/R was induced; group 4, myocardial ischemia reperfusion + chronic zinc: (5 mg/kg i.p. zinc sulfate for 15 days); and group 5, myocardial ischemia reperfusion + acute zinc: the group which was administered 15 mg/kg i.p. zinc sulfate an hour before the operation and in which myocardial I/R was induced. The collected blood and cardiac tissue samples were analyzed using spectrophotometric method to determine levels of MDA, as an indicator of tissue injury, and GSH, as an indicator of antioxidant activity. The highest plasma and heart tissue MDA levels were measured in group 3 (p < 0.05). Group 5 had lower MDA values than group 3, while group 4 had significantly lower MDA values than groups 3 and 5 (p < 0.05). The highest erythrocyte GSH values were found in group 4 (p < 0.05). Erythrocyte GSH values in group 5 were higher than those in group 3 (p < 0.05). The highest GSH values in heart tissue were measured in group 4 (p < 0.05). The results of the study reveal that the antioxidant activity inhibited by elevated oxidative stress in heart ischemia reperfusion in rats is restored partially by acute zinc administration and markedly by chronic zinc supplementation.

  11. Transient ischemia reduces norepinephrine release during sustained ischemia. Neural preconditioning in isolated rat heart.

    PubMed

    Seyfarth, M; Richardt, G; Mizsnyak, A; Kurz, T; Schömig, A

    1996-04-01

    Endogenous catecholamine release may play a role in ischemic preconditioning either as a trigger or as a target within the process of myocardial preconditioning. Therefore, we investigated the effect of transient ischemia (TI) on norepinephrine release during sustained ischemia in isolated rat hearts. TI was induced by multiple cycles of global ischemia followed by reperfusion with a duration of 5 minutes each, comparable to ischemic preconditioning protocols. After TI, norepinephrine release was evoked by either sustained global ischemia, anoxia, cyanide intoxication, tyramine, or electrical stimulation. During TI, no washout of norepinephrine was observed, and tissue concentrations of norepinephrine were not changed. TI, however, reduced norepinephrine overflow after 20 minutes of sustained ischemia from 239 +/- 26 pmol/g (control) to 79+/-8 pmol/g (67% reduction, P <.01 ). A similar reduction of ischemia-induced norepinephrine release from 192 +/- 22 pmol/g (control) to 90 +/- 15 pmol/g was observed when hearts underwent transient anoxia without glucose (P < .05). When reperfusion between TI and sustained ischemia was prolonged from 5 to 90 minutes, the inhibitory effect of TI on norepinephrine release was gradually lost. Susceptibility to TI was a unique feature of norepinephrine release induced by sustained ischemia, since release of norepinephrine evoked by anoxia, cyanide intoxication, tyramine, or electrical stimulation remained unaffected by TI. We propose a protective effect of TI on neural tissue, which may reduce norepinephrine-induced damage during prolonged myocardial ischemia.

  12. Augmentation of systemic blood pressure during spinal cord ischemia to prevent postoperative paraplegia after aortic surgery in a rabbit model.

    PubMed

    Izumi, So; Okada, Kenji; Hasegawa, Tomomi; Omura, Atsushi; Munakata, Hiroshi; Matsumori, Masamichi; Okita, Yutaka

    2010-05-01

    Paraplegia from spinal cord ischemia remains an unresolved complication in thoracoabdominal aortic surgery, with high morbidity and mortality. This study investigated postoperative effects of systemic blood pressure augmentation during ischemia. Spinal cord ischemia was induced in rabbits by infrarenal aortic occlusion for 15 minutes with infused phenylephrine (high blood pressure group, n = 8) or nitroprusside (low blood pressure group, n = 8) or without vasoactive agent (control, n = 8). Spinal cord blood flow, transcranial motor evoked potentials, neurologic outcome, and motor neuron cell damage (apoptosis, necrosis, superoxide generation, myeloperoxidase activity) were evaluated. Mean arterial pressures during ischemia were controlled at 121.9 +/- 2.8, 50.8 +/- 4.3, and 82.3 +/- 10.7 mm Hg in high blood pressure, low blood pressure, and control groups, respectively. In high blood pressure group, high spinal cord blood flow (P < .01), fast recovery of transcranial motor evoked potentials (P < .01), and high neurologic score (P < .05) were observed after ischemia relative to low blood pressure and control groups. At 48 hours after ischemia, there were significantly more viable neurons, fewer terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling-positive neurons, and less alpha-fodrin expression in high blood pressure group than low blood pressure and control groups. Superoxide generation and myeloperoxidase activity at 3 hours after ischemia were suppressed in high blood pressure group relative to low blood pressure group. Augmentation of systemic blood pressure during spinal cord ischemia can reduce ischemic insult and postoperative neurologic adverse events. 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  13. Physical exercise prevents motor disorders and striatal oxidative imbalance after cerebral ischemia-reperfusion.

    PubMed

    Sosa, P M; Schimidt, H L; Altermann, C; Vieira, A S; Cibin, F W S; Carpes, F P; Mello-Carpes, P B

    2015-09-01

    Stroke is the third most common cause of death worldwide, and most stroke survivors present some functional impairment. We assessed the striatal oxidative balance and motor alterations resulting from stroke in a rat model to investigate the neuroprotective role of physical exercise. Forty male Wistar rats were assigned to 4 groups: a) control, b) ischemia, c) physical exercise, and d) physical exercise and ischemia. Physical exercise was conducted using a treadmill for 8 weeks. Ischemia-reperfusion surgery involved transient bilateral occlusion of the common carotid arteries for 30 min. Neuromotor performance (open-field and rotarod performance tests) and pain sensitivity were evaluated beginning at 24 h after the surgery. Rats were euthanized and the corpora striata was removed for assay of reactive oxygen species, lipoperoxidation activity, and antioxidant markers. Ischemia-reperfusion caused changes in motor activity. The ischemia-induced alterations observed in the open-field test were fully reversed, and those observed in the rotarod test were partially reversed, by physical exercise. Pain sensitivity was similar among all groups. Levels of reactive oxygen species and lipoperoxidation increased after ischemia; physical exercise decreased reactive oxygen species levels. None of the treatments altered the levels of antioxidant markers. In summary, ischemia-reperfusion resulted in motor impairment and altered striatal oxidative balance in this animal model, but those changes were moderated by physical exercise.

  14. Kidney ischemia and reperfunsion syndrome: effect of lidocaine and local postconditioning.

    PubMed

    Yamaki, Igor Nagai; Pontes, Ruy Victor Simões; Costa, Felipe Lobato DA Silva; Yamaki, Vitor Nagai; Teixeira, Renan Kleber Costa; Yasojima, Edson Yuzur; Brito, Marcus Vinicius Henriques

    2016-01-01

    to evaluate the effects of blocking the regulation of vascular tone on the ischemia and reperfusion syndrome in rats through the use of lidocaine in the postconditioning technique. we randomized 35 rats into seven groups of five animals: Group 1- Control; Group 2- Ischemia and Reperfusion; Group 3- Ischemia, Reperfusion and Saline; Group 4- Ischemic Postconditioning; Group 5- Ischemic Postconditioning and Saline; Group 6- Lidocaine; Group 7- Ischemic Postconditioning and Lidocaine. Except for the control group, all the others were submitted to renal ischemia for 30 minutes. In postconditioning groups, we performed ischemia and reperfusion cycles of five minutes each, applied right after the main ischemia. In saline and lidocaine groups, we instilled the substances at a rate of two drops per minute. To compare the groups, we measured serum levels of urea and creatinine and also held renal histopathology. The postconditioning and postconditioning + lidocaine groups showed a decrease in urea and creatinine values. The lidocaine group showed only a reduction in creatinine values. In histopathology, only the groups submitted to ischemic postconditioning had decreased degree of tubular necrosis. Lidocaine did not block the effects of postconditioning on renal ischemia reperfusion syndrome, and conferred better glomerular protection when applied in conjunction with ischemic postconditioning. avaliar os efeitos do bloqueio da regulação do tônus vascular por meio do uso da lidocaína na técnica de pós-condicionamento isquêmico na síndrome de isquemia e reperfusão renal em ratos. trinta e cinco ratos foram randomizados em sete grupos de cinco animais: Grupo 1- Controle; Grupo 2- Isquemia e Reperfusão; Grupo 3- Isquemia, Reperfusão e Solução Salina; Grupo 4- Pós-condicionamento Isquêmico; Grupo 5- Pós-condicionamento Isquêmico e Solução Salina; Grupo 6- Lidocaína; Grupo 7- Pós-condicionamento Isquêmico e lidocaína. Com exceção do grupo controle, todos

  15. Hemin offers neuroprotection through inducing exogenous neuroglobin in focal cerebral hypoxic-ischemia in rats

    PubMed Central

    Song, Xue; Xu, Rui; Xie, Fei; Zhu, Haiyuan; Zhu, Ji; Wang, Xin

    2014-01-01

    Objective: To investigate the inducible effect of hemin on exogenous neuroglobin (Ngb) in focal cerebral hypoxic-ischemia in rats. Methods: 125 healthy SD rats were randomly divided into five groups: sham-operation control group, operation group, hemin treatment group, exogenous Ngb treatment group, and hemin and exogenous Ngb joint treatment group. Twenty-four hours after focal cerebral hypoxic-ischemia, Ngb expression was evaluated by immunocytochemistry, RT-PCR, and western blot analyses, while the brain water content and infarct volume were examined. Results: Immunocytochemistry, RT-PCR, and western blot analyses showed more pronounced Ngb expression in the hemin and exogenous Ngb joint operation group than in the hemin or exogenous Ngb individual treatment groups, thus producing significant differences in brain water content and infarct volume (p < 0.05). Conclusions: Hemin may be beneficial in protecting against focal cerebral hypoxic-ischemia through inducing the expression of exogenous Ngb. PMID:24966924

  16. Influence of remote ischemic conditioning and tramadol hydrochloride on oxidative stress in kidney ischemia/reperfusion injury in rats.

    PubMed

    Oliveira, Rita de Cássia Silva de; Brito, Marcus Vinicius Henriques; Ribeiro, Rubens Fernando Gonçalves; Oliveira, Leonam Oliver Durval; Monteiro, Andrew Moraes; Brandão, Fernando Mateus Viegas; Cavalcante, Lainy Carollyne da Costa; Gouveia, Eduardo Henrique Herbster; Henriques, Higor Yuri Bezerra

    2017-03-01

    To evaluate the effects of tramadol hydrochloride associated to remote ischemic perconditioning on oxidative stress. Twenty five male rats (Wistar) underwent right nephrectomy and were distributed into five groups: Sham group (S); Ischemia/Reperfusion group (I/R) with 30 minutes of renal ischemia; Remote ischemic perconditioning group (Per) with three cycles of 10 minutes of I/R performed during kidney ischemia; Tramadol group (T) treated with tramadol hydrochloride (40mg/kg); remote ischemic perconditioning + Tramadol group (Per+T) with both treatments. Oxidative stress was assessed after 24 hours of reperfusion. Statistical differences were observed in MDA levels between I/R group with all groups (p<0.01), in addition there was difference between Tramadol with Sham, Per and Per+T groups (p<0.05), both in plasma and renal tissue. Remote ischemic perconditioning was more effective reducing renal ischemia-reperfusion injury than administration of tramadol or association of both treatments.

  17. Thymoquinone protects end organs from abdominal aorta ischemia/reperfusion injury in a rat model.

    PubMed

    Aydin, Mehmet Salih; Kocarslan, Aydemir; Kocarslan, Sezen; Kucuk, Ahmet; Eser, İrfan; Sezen, Hatice; Buyukfirat, Evren; Hazar, Abdussemet

    2015-01-01

    Previous studies have demonstrated that thymoquinone has protective effects against ischemia reperfusion injury to various organs like lungs, kidneys and liver in different experimental models. We aimed to determine whether thymoquinone has favorable effects on lung, renal, heart tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. Thirty rats were divided into three groups as sham (n=10), control (n=10) and thymoquinone (TQ) treatment group (n=10). Control and TQ-treatment groups underwent abdominal aorta ischemia for 45 minutes followed by a 120-min period of reperfusion. In the TQ-treatment group, thymoquinone was given 5 minutes. before reperfusion at a dose of 20 mg/kg via an intraperitoneal route. Total antioxidant capacity, total oxidative status (TOS), and oxidative stress index (OSI) in blood serum were measured and lung, kidney, and heart tissue histopathology were evaluated with light microscopy. Total oxidative status and oxidative stress index activity in blood samples were statistically higher in the control group compared to the sham and TQ-treatment groups (P<0.001 for TOS and OSI). Control group injury scores were statistically higher compared to sham and TQ-treatment groups (P<0.001 for all comparisons). Thymoquinone administered intraperitoneally was effective in reducing oxidative stress and histopathologic injury in an acute abdominal aorta ischemia-reperfusion rat model.

  18. Valeriana officinalis Extracts Ameliorate Neuronal Damage by Suppressing Lipid Peroxidation in the Gerbil Hippocampus Following Transient Cerebral Ischemia

    PubMed Central

    Yoo, Dae Young; Jung, Hyo Young; Nam, Sung Min; Kim, Jong Whi; Choi, Jung Hoon; Kwak, Youn-Gil; Yoo, Miyoung; Lee, Sanghee; Yoon, Yeo Sung

    2015-01-01

    Abstract As a medicinal plant, the roots of Valeriana officinalis have been used as a sedative and tranquilizer. In the present study, we evaluated the neuroprotective effects of valerian root extracts (VE) on the hippocampal CA1 region of gerbils after 5 min of transient cerebral ischemia. Gerbils were administered VE orally once a day for 3 weeks, subjected to ischemia/reperfusion injury, and continued on VE for 3 weeks. The administration of 100 mg/kg VE (VE100 group) significantly reduced the ischemia-induced spontaneous motor hyperactivity 1 day after ischemia/reperfusion. Four days after ischemia/reperfusion, animals treated with VE showed abundant cresyl violet-positive neurons in the hippocampal CA1 region when compared to the vehicle or 25 mg/kg VE-treated groups. In addition, the VE treatment markedly decreased microglial activation in the hippocampal CA1 region 4 days after ischemia. Compared to the other groups, the VE100 group showed the lowest level of lipid peroxidation during the first 24 h after ischemia/reperfusion. In summary, the findings in this study suggest that pretreatment with VE has protective effects against ischemic injury in the hippocampal pyramidal neurons by decreasing microglial activation and lipid peroxidation. PMID:25785762

  19. Valeriana officinalis Extracts Ameliorate Neuronal Damage by Suppressing Lipid Peroxidation in the Gerbil Hippocampus Following Transient Cerebral Ischemia.

    PubMed

    Yoo, Dae Young; Jung, Hyo Young; Nam, Sung Min; Kim, Jong Whi; Choi, Jung Hoon; Kwak, Youn-Gil; Yoo, Miyoung; Lee, Sanghee; Yoon, Yeo Sung; Hwang, In Koo

    2015-06-01

    As a medicinal plant, the roots of Valeriana officinalis have been used as a sedative and tranquilizer. In the present study, we evaluated the neuroprotective effects of valerian root extracts (VE) on the hippocampal CA1 region of gerbils after 5 min of transient cerebral ischemia. Gerbils were administered VE orally once a day for 3 weeks, subjected to ischemia/reperfusion injury, and continued on VE for 3 weeks. The administration of 100 mg/kg VE (VE100 group) significantly reduced the ischemia-induced spontaneous motor hyperactivity 1 day after ischemia/reperfusion. Four days after ischemia/reperfusion, animals treated with VE showed abundant cresyl violet-positive neurons in the hippocampal CA1 region when compared to the vehicle or 25 mg/kg VE-treated groups. In addition, the VE treatment markedly decreased microglial activation in the hippocampal CA1 region 4 days after ischemia. Compared to the other groups, the VE100 group showed the lowest level of lipid peroxidation during the first 24 h after ischemia/reperfusion. In summary, the findings in this study suggest that pretreatment with VE has protective effects against ischemic injury in the hippocampal pyramidal neurons by decreasing microglial activation and lipid peroxidation.

  20. Effects of Sildenafil and Tadalafil on Edema and Reactive Oxygen Species Production in an Experimental Model of Lung Ischemia-Reperfusion Injury.

    PubMed

    Guerra-Mora, J R; Perales-Caldera, E; Aguilar-León, D; Nava-Sanchez, C; Díaz-Cruz, A; Díaz-Martínez, N E; Santillán-Doherty, P; Torres-Villalobos, G; Bravo-Reyna, C C

    Lung ischemia-reperfusion injury is characterized by formation of reactive oxygen species and cellular swelling leading to pulmonary edema and primary graft dysfunction. Phosphodiesterase 5 inhibitors could ameliorate lung ischemia-reperfusion injury by interfering in many molecular pathways. The aim of this work was to evaluate and compare the effects of sildenafil and tadalafil on edema and reactive oxygen species formation in an ex vivo nonhuman animal model of lung ischemia-reperfusion injury. Thirty-two Wistar rats were distributed, treated, perfused and the cardiopulmonary blocks were managed as follows: control group: immediate excision and reperfusion without pretreatment; ischemia reperfusion group: treatment with dimethylsulfoxide 0.9% and excision 1 hour later; sildenafil group: treatment with sildenafil (0.7 mg/kg) and excision 1 hour later; and tadalafil group: treatment with tadalafil (0.15 mg/kg) and excision 2 hours later. All cardiopulmonary blocks except control group were preserved for 8 hours and then reperfused. Pulmonary arterial pressure, pulmonary venous pressure, and capillary filtration coefficient were measured. Reactive oxygen species were measured. Edema was similar between control and sildenafil groups, but significantly greater in the ischemia-reperfusion (P ≤ .04) and tadalafil (P ≤ .003) groups compared with the sildenafil group. The malondialdehyde levels were significantly lower in the sildenafil (P ≤ .001) and tadalafil (P ≤ .001) groups than the ischemia-reperfusion group. Administration of sildenafil, but not tadalafil, decreased edema in lung ischemia-reperfusion injury. Both drugs decreased reactive oxygen species formation in a lung ischemia-reperfusion injury model. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Cardioprotective effect of resistance training and Crataegus oxyacantha extract on ischemia reperfusion-induced oxidative stress in diabetic rats.

    PubMed

    Ranjbar, Kamal; Zarrinkalam, Ebrahim; Salehi, Iraj; Komaki, Alireza; Fayazi, Bayan

    2018-04-01

    Discovering an effective approach to limit infarction size after ischemia-reperfusion has a clinical importance in diabetics. We investigated the anti-myocardial ischemia-reperfusion injury effect of resistance training and Crataegus oxyacantha extract on diabetic rats. To this end, 50 male Wistar rats were randomly divided into 5 groups: the sedentary control (SC), sedentary diabetic (SD), resistance trained diabetic (RD), diabetic plus C. oxyacantha extract treatment (CD) and resistance trained diabetic plus C. oxyacantha extract treatment (RCD) groups. Animals in trained groups were subjected to progressive resistance training program with the use of a ladder (5 days/week, for 10 weeks). C. oxyacantha extract rats were treated with 100 mg/kg body weight of the extract using a gavage every day for 10 weeks. After treatments, rats were subjected to ischemia via LAD artery ligation for 30 min followed by 90 min reperfusion. The heart was collected following the ischemia-reperfusion and analyzed for oxidative stress and ischemia-reperfusion injury. Compared to the SC group, LDH, CK-MB and infarction size in the SD group were significantly higher, whereas injury indices in the RCD group were significantly lower than those in the SD group. GPx and MPO levels after reperfusion increased and decreased, respectively in response to training and C. oxyacantha. These findings suggest that 10 weeks resistance training and C. oxyacantha can synergistically decrease ischemia-reperfusion injury, and this mechanism may be related to a reduction in oxidative stress which is normally associated with ischemia-reperfusion. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Selenium effect on ischemia-reperfusion injury of gastrocnemius muscle in adult rats.

    PubMed

    Gholami, Mohammadreza; Zendedel, Abolfazl; Khanipour khayat, Zahra; Ghanad, Kourosh; Nazari, Afshin; Pirhadi, Atieh

    2015-04-01

    Selenium is a trace element that has antioxidant and neuroprotective effects. The aim of this study is to investigate the effects of selenium in reducing ischemia-reperfusion injury of the gastrocnemius muscle. In this experimental study, 80 adult male Wistar rats weighing 250-300 g were divided into ten groups (N = 8 per group). Group 1 is control group (without ischemia-reperfusion). Group 2 received 0.2 mg/kg selenium. Group 3 received ischemia + 3 d reperfusion + 0.2 mg/kg selenium, group 4 received ischemia + 3 d reperfusion + 0.2 mg/kg placebo, group 5 received ischemia + 7 d reperfusion + 0.2 mg/kg selenium, group 6 received ischemia + 7 d reperfusion + 0.2 mg/kg placebo, group 7 received ischemia + 14 d reperfusion + 0.2 mg/kg selenium, group 8 received ischemia + 14 d reperfusion + 0.2 mg/kg placebo, group 9 received ischemia + 28 d reperfusion + 0.2 mg/kg selenium and group 10 received ischemia + 3 d reperfusion + 0.2 mg/kg placebo. External iliac artery blocked for 3 h. After reperfusion, rats killed and gastrocnemius muscle removed, fixed, and tissue processing performed. Samples stained with hematoxylin-eosin for edema evaluation, toluidine blue for mast cell infiltration evaluation and immunohistochemistry for detection TNF-alpha and NF-kappa B proteins. Comparison of mast cell infiltration, edema of the interstitial fluid on the tissue, expression of TNF-alpha protein, and expression of NF-kappa B protein in the groups that received selenium with corresponding placebo group showed that selenium can reduce edema, mast cell infiltration, and TNF-alpha expression and inactivated NF-kappa B. The use of selenium simultaneously with creating ischemia can reduce ischemia-reperfusion injury of the gastrocnemius muscle.

  3. Effects of Urtica dioica on hepatic ischemia-reperfusion injury in rats.

    PubMed

    Kandis, Hayati; Karapolat, Sami; Yildirim, Umran; Saritas, Ayhan; Gezer, Suat; Memisogullari, Ramazan

    2010-01-01

    To evaluate the effects of Urtica dioica on hepatic ischemia-reperfusion injury. Thirty adult male Wistar albino rats were divided into three groups: sham group (group 1), control group (group 2), and Urtica dioica group (group 3). All the rats were exposed to hepatic ischemia for 60 min, followed by 60 min of reperfusion. In group 2, a total of 2 ml/kg 0.9% saline solution was given intraperitoneally. In group 3, a total of 2 ml/kg Urtica dioica was given intraperitoneally. At the end of the procedure, liver tissue and blood samples were taken from all rats. Serum aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, ceruloplasmin, catalase, paraoxonase, arylesterase, and lipid hydroperoxide levels were measured. Liver tissue histopathologies were also evaluated by light microscopy. Serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase levels were significantly higher in group 2 than in group 1, and significantly lower in group 3 than in group 2. Also, group 2 had higher serum lipid hydroperoxides and ceruloplasmin levels but lower catalase, paraoxonase, and arylesterase levels than group 1. In group 3, serum lipid hydroperoxides and ceruloplasmin levels were significantly lower, and catalase, paraoxonase, and arylesterase levels were higher than those in group 2. Histopathological examination showed that liver tissue damage was significantly decreased in group 3 compared with group 2. Urtica dioica has a protective effect on the liver in hepatic ischemia-reperfusion-injured rats.

  4. [Transfection of hBcl-2 gene protects the liver against ischemia/reperfusion injury in rats during liver transplantation].

    PubMed

    Liu, Ji-tong; Liu, Jing-shi; Jiang, Jin-yu; Zhou, Li-xue; Liang, Gang; Li, Yan-chun

    2010-12-01

    To study the effect of hBcl-2 gene transfer on rat liver against ischemia-reperfusion injury, and explore the feasibility of this approach to reduce ischemia-reperfusion injury in liver transplantation. We constructed the replication-deficient recombinant adenoviruses Adv-EGFP and Adv-Bcl-2 and transfected them into 293 cells and packaged into adenovirus particles for amplification and purification. The empty plasmid vector virus was constructed similarly. Male SD rats were randomized into Adv-Bcl-2-transfected group, Adv-EGFP-transfected group, ischemia-reperfusion group, and sham-operated group, and liver allograft transplantation model was established by sleeve method. In the transfected groups, the recombinant viruses were administered by perfusion through the portal vein, and the ischemia-reperfusion and sham-operated groups received no treatment. Real-time quantitative PCR and Western blotting were used to detect the mRNA and protein expressions of bcl-2 in the liver tissue of each group, and at 0, 60 and 180 min after reperfusion, serum AST, LDH, and MDA levels were measured. Histological changes of the liver cells were evaluated by HE staining. Bcl-2 mRNA and protein expressions in Adv-Bcl-2-transfected group, as compared with those in Adv-EGFP-transfected group and control group, were significantly increased (P<0.01); the serum levels of AST, LDH and MDA in Adv-Bcl-2-transfected group were significantly lower than those of Adv-EGFP-transfected group and ischemia-reperfusion group (P<0.05 or 0.01). Compared with the sham-operated group, Adv-Bcl-2 treatment group showed lessened edema and vacuolar degeneration of the liver cells without patches or spots of necrosis. In ischemia-reperfusion and Adv-EGFP group, HE staining revealed hepatic lobular destruction and extensive liver cell swelling, enlargement, vacuolar degeneration, edema and occasional focal necrosis. Adv-Bcl-2 transfection can induce the expression of bcl-2 gene to reduce ischemia

  5. Abate Cytochrome C induced apoptosome to protect donor liver against ischemia reperfusion injury on rat liver transplantation model.

    PubMed

    Zhuang, Zhuonan; Lian, Peilong; Wu, Xiaojuan; Shi, Baoxu; Zhuang, Maoyou; Zhou, Ruiling; Zhao, Rui; Zhao, Zhen; Guo, Sen; Ji, Zhipeng; Xu, Kesen

    2016-01-01

    Aim of this study is to protect donor liver against ischemia-reperfusion injury by abating Cytochrome C induced apoptosome on rat model. A total of 25 clean SD inbred male rats were used in this research. The rats in ischemia-reperfusion injury group (I/R group, n=5) were under liver transplantation operation; rats in dichloroacetate diisopropylamine group (DADA group, n=5) were treated DADA before liver transplantation; control group (Ctrl group, n=5); other 10 rats were used to offer donor livers. In DADA therapy group, Cytochrome C expression in donor hepatocellular cytoplasm was detected lower than that in I/R group. And the Cytochrome C induced apoptosome was also decreased in according to the lower expressions of Apaf-1 and Caspase3. Low level of cleaved PARP expression revealed less apoptosis in liver tissue. The morphology of donor liver mitochondria in DADA group was observed to be slightly edema but less than I/R group after operation 12 h. The liver function indexes of ALT and AST in serum were tested, and the results in DADA group showed it is significantly lower than I/R group after operation 12 h. The inflammation indexes of IL-6 and TNF-α expressions in DADA group were significantly lower than that in I/R group after operation 24 h. The dichloroacetate diisopropylamine treatment could protect the hepatocellular mitochondria in case of the spillage of Cytochrome C induced apoptosome, and protect the liver against ischemia-reperfusion injury. Thus, it may be a method to promote the recovery of donor liver function after transplantation.

  6. Chronotropic incompetence and a higher frequency of myocardial ischemia in exercise echocardiography

    PubMed Central

    Oliveira, Joselina LM; Góes, Thiago JS; Santana, Thaiana A; Travassos, Thiago F; Teles, Lívia D; Anjos-Andrade, Fernando D; Nascimento-Júnior, Adão C; Alves, Érica O; Barreto, Martha A; Barreto-Filho, José A; D'Oliveira, Argemiro; Sousa, Antônio CS

    2007-01-01

    Background Exercise echocardiography (EE) is an established method to diagnose coronary artery disease (CAD). Chronotropic incompetence (CI) during the EE may be a marker of myocardial ischemia. The purpose of this investigation was to evaluate the additive value of CI during EE in CAD diagnosis. Methods Between 2000 and 2006, 4042 patients (1900 men with a mean age of 56 ± 11 years) were evaluated by EE. Based on the heart rate (HR) reached during the exercise test, the subjects were divided into two groups: G1 group – 490 patients who failed to achieve 85% of the maximal age-predicted HR, and G2 group – 3552 patients who were able to achieve 85% of the maximal age-predicted HR. Clinical characteristics, left ventricular wall motion abnormalities – wall motion score index (WMSI) – and coronary angiography (CA) were the parameters compared between the two groups. Results The left ventricular wall motion abnormalities were more frequent in G1 group than in G2 group (54% versus 26%; P < 0.00001). WMSI was higher in G1 group than in G2 group, both at rest (1.06 ± 0.17 versus 1.02 ± 0.09; P < 0.0001) and after exercise (1.12 ± 0.23 versus 1.04 ± 0.21; P < 0.0001). In G1 group, 82% of the patients with positive EE for myocardial ischemia presented obstructive coronary, compared to 71% (P = 0.03) in G2 group. Conclusion CI is associated with a higher frequency of myocardial ischemia during EE, reinforcing the concept that CI is a marker of the severity of myocardial ischemia. PMID:17980022

  7. N-acetylcysteine ameliorates liver injury in a rat model of intestinal ischemia reperfusion.

    PubMed

    Kalimeris, Konstantinos; Briassoulis, Panagiotis; Ntzouvani, Agathi; Nomikos, Tzortzis; Papaparaskeva, Kleio; Politi, Aikaterini; Batistaki, Chrysanthi; Kostopanagiotou, Georgia

    2016-12-01

    N-acetylcysteine (NAC) is an antioxidant with direct and indirect antioxidant actions used in the clinical setting. Oxidative stress is known to play a pivotal role in the intestinal ischemia reperfusion (IIR). Therefore, we studied the effect of different pretreatment regimens with NAC on the IIR injury in rats. Thirty-five male Wistar rats were randomly assigned to five groups. In group sham, only laparotomy was performed. Group control underwent IIR without NAC. In the other groups, NAC was administered intraperitoneally with different regimens: 150 mg/kg before ischemia (NAC 150), 300 mg/kg before ischemia (NAC 300), and 150 mg/kg before ischemia plus 150 mg/kg 5 min before reperfusion (NAC 150 + 150). Measurements in tissues and blood were conducted at 4 h of reperfusion following exsanguination. Histological score of the liver was significantly improved in NAC 300 compared with control (1.7 ± 0.5 versus 2.9 ± 1.1, respectively, P = 0.05). In addition, NAC treatment significantly reduced liver transaminases in all groups of treatment, mostly in group NAC 300. Plasma malondialdehyde levels were lower with NAC treatment, although not statistically significant. Lung glutathione peroxidase was significantly increased in group NAC 300 (P = 0.04), while the other oxidation biomarkers showed no significant differences. NAC exerts a significant protective role in liver injury following IIR, which seems to be independent of an intestinal protective effect. Additional administration of NAC before reperfusion was of no further benefit. The most effective regimen among the compared regimens was that of 300 mg/kg before ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Biological and histopathological investigations of moclobemide on injured ovarian tissue following induction of ischemia-reperfusion in rats.

    PubMed

    Ingec, Metin; Calik, Muhammet; Gundogdu, Cemal; Kurt, Ali; Yilmaz, Mehmet; Isaoglu, Unal; Salman, Suleyman; Akcay, Fatih; Suleyman, Halis

    2012-04-01

    The effects of moclobemide on damaged ovarian tissue induced by ischemia- reperfusion and damaged contralateral ovarian tissue were investigated in rats, biochemically and histologically. In this experimental study, 40 rats were equally divided into four groups: 10 mg/kg moclobemide, 20 mg/kg moclobemide, ischemia/reperfusion control, and intact control groups. A 2-2.5-cm-long vertical incision was made in the lower abdomen of each rat in order to reach the ovaries, after which a vascular clip was placed on the lower side of the right ovary of each animal in the two treatment groups and the ischemia-reperfusion control group, but not in the healthy (intact control) animal group. The purpose of this procedure was to create ischemia over the course of three hours, then the clips were unclamped to provide reperfusion for the next two hours. At the end of the two hours of reperfusion, all the animals were killed by high-dose anaesthesia and their ovaries were taken and subjected to histological and biochemical (malondialdehyde, nitric oxide, glutathione) studies. The obtained results showed that moclobemide suppressed nitric oxide and malondialdehyde production in the ischemia-reperfusion damage area, and prevented the decrease in endogenous antioxidant levels (glutathione) in the rat ovarian tissue. Moclobemide also prevented infiltration of leukocytes to the ovarian tissue. These results showed that moclobemide protected ovarian tissue against ischemiareperfusion injury. This study shows that moclobemide represses malondialdehyde and nitric oxide production in the rat ovarian tissue subjected to ischemia-reperfusion injury and keeps the endogenous antioxidant glutathione level from decreasing. Moclobemide also inhibits leukocytic migration into ovarian tissue following ischemia-reperfusion injury. From these results, it is suggested that moclobemide can be used in the treatment of ovarian ischemia-reperfusion injury.

  9. Suppressing Receptor-Interacting Protein 140: a New Sight for Salidroside to Treat Cerebral Ischemia.

    PubMed

    Chen, Tong; Ma, Zhanqiang; Zhu, Lingpeng; Jiang, Wenjiao; Wei, Tingting; Zhou, Rui; Luo, Fen; Zhang, Kai; Fu, Qiang; Ma, Chunhua; Yan, Tianhua

    2016-11-01

    The purpose of the current study was to detect the effect of salidroside (Sal) on cerebral ischemia and explore its potential mechanism. Middle cerebral artery occlusion (MCAO) was performed to investigate the effects of Sal on cerebral ischemia. The rats were randomly divided into five groups: sham group, vehicle group, clopidogrel (7.5 mg/kg) group, Sal (20 mg/kg) group, and Sal (40 mg/kg) group. SH-SY5Y cells were exposed to ischemia-reperfusion (I/R) injury to verify the protective effect of Sal in vitro. We also built the stable receptor-interacting protein 140 (RIP140)-overexpressing SH-SY5Y cells. The results showed that Sal significantly reduces brain infarct size and cerebral edema. Sal could effectively decrease the levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in serum of the MCAO rats and supernatant of I/R-induced SH-SY5Y cells. Immunohistochemical and Western blot results demonstrated that Sal inhibited RIP140-mediated inflammation and apoptosis in the MCAO rats and SH-SY5Y cells. In addition, we further confirmed that RIP140/NF-κB signaling plays a crucial role by evaluating the protein expression in RIP140-overexpressing SH-SY5Y cells. Our findings suggested that Sal could be used as an effective neuroprotective agent for cerebral ischemia due to its significant effect on preventing neuronal cell injury after cerebral ischemia both in vivo and in vitro by the inhibitions of RIP140-mediated inflammation and apoptosis.

  10. Neuroprotective effects of pretreatment with minocycline on memory impairment following cerebral ischemia in rats.

    PubMed

    Naderi, Yazdan; Sabetkasaei, Masoumeh; Parvardeh, Siavash; Moini Zanjani, Taraneh

    2017-04-01

    Cerebral ischemia leads to memory impairment that is associated with loss of hippocampal CA1 pyramidal neurons. Neuroinflammation and oxidative stress may be implicated in the pathogenesis of ischemia/reperfusion damage. Minocycline has anti-inflammatory and antioxidant properties. We investigated the neuroprotective effects of minocycline in rats subjected to cerebral ischemia/reperfusion injury. Thirty male rats were divided into three groups: control, sham, and minocycline-pretreated group. Minocycline (40 mg/kg) was injected intraperitoneally immediately before surgery, and then ischemia was induced by occlusion of common carotid arteries for 20 min. Seven days after reperfusion, the Morris water-maze task was used to evaluate memory. Nissl staining was also performed to analyze pyramidal cell damage. We measured the contents of malondialdehyde and proinflammatory cytokines in the hippocampus by the thiobarbituric acid method and enzyme-linked immunosorbent assay, respectively. Microglial activation was also investigated by Iba1 immunostaining. The results showed that pretreatment with minocycline prevented memory impairment induced by cerebral ischemia/reperfusion. Minocycline pretreatment also significantly attenuated ischemia-induced pyramidal cell death and microglial activation in the CA1 region and reduced the levels of malondialdehyde and proinflammatory cytokines (interleukin-1β and tumor necrosis factor-α) in the hippocampus of ischemic rats. Minocycline showed neuroprotective effects on cerebral ischemia-induced memory deficit probably through its anti-inflammatory and antioxidant activities.

  11. The effects of sildenafil and n-acetylcysteine on ischemia and reperfusion injury in gastrocnemius muscle and femoral artery endothelium.

    PubMed

    Aksu, Volkan; Yüksel, Volkan; Chousein, Serchat; Taştekin, Ebru; İşcan, Şahin; Sağiroğlu, Gönül; Canbaz, Suat; Sunar, Hasan

    2015-02-01

    We aimed to examine the effects of sildenafil and n-acetylcystein on ischemia/reperfusion injury in femoral artery endothelium and gastrocnemius muscle. 32 rats of Sprague-Dawley breed were randomly divided into four groups (n=8). Median laparotomy was performed, then a 120-minute ischemia was created by microvascular clamping of infrarenal aorta, followed by the release of clamping. In sildenafil group, 1 mg/kg of sildenafil infusion and in the n-acetylcystein group, 100 mg/kg of n-acetylcystein infusion was administered after release of clamps. Blood samples and tissue samples of femoral artery and gastrocnemius muscle were extracted for a histopathological evaluation. Serum levels of malondialdehyde in ischemia/reperfusion group (6.16±0.79) were higher compared to the control group (4.69±0.33), whereas a significant decrease was detected in sildenafil (5.17±0.50) and n-acetylcystein (4.96±0.49) groups. Femoral artery tissue sections of the control group, mean tumor necrosis factor alpha and hypoxy-induced factor-1 alpha immunoreactivity were found to be negative. In the ischemia/reperfusion group, mean tumor necrosis factor α immunoreactivity was intense and mean hypoxy-induced factor-1 alpha immunoreactivity was 51-75%. In the ischemia/reperfusion+Sildenafil and ischemia/reperfusion+NAS groups, mean tumor necrosis factor α immunoreactivity was slight and mean hypoxy-induced factor-1 alpha immunoreactivity was 26-50%. In conclusion, sildenafil and n-acetylcystein may reduce femoral artery endothelium and gastrocnemius muscle injury following lower extremity ischemia/reperfusion. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Upregulation of heme oxygenase-1 protected against brain damage induced by transient cerebral ischemia-reperfusion injury in rats.

    PubMed

    Lu, Xiufang; Gu, Renjun; Hu, Weimin; Sun, Zhitang; Wang, Gaiqing; Wang, Li; Xu, Yuming

    2018-06-01

    The aim of the present study was to identify the effect of heme oxygenase (HO)-1 gene on cerebral ischemia-reperfusion injury. Sprague-Dawley rats were divided randomly into four groups: Sham group, vehicle group, empty adenovirus vector (Ad) group and recombinant HO-1 adenovirus (Ad-HO-1) transfection group. Rats in the vehicle, Ad and Ad-HO-1 groups were respectively injected with saline, Ad or Ad-HO-1 for 3 days prior to cerebral ischemia-reperfusion injury. Subsequently, the middle cerebral artery occlusion method was used to establish the model of cerebral ischemia-reperfusion injury. Following the assessment of neurological function, rats were sacrificed, and the infarction volume and apoptotic index in rat brains were measured. Furthermore, the protein expression levels of HO-1 in brain tissues were detected using western blot analysis. Results indicated that the neurological score of the Ad-HO-1 group was significantly increased compared with the Ad or vehicle groups, respectively (P<0.001). The volume of cerebral infarction and the index score of neuronal apoptosis in the vehicle and Ad groups was significantly increased compared with the Ad-HO-1 group (P<0.01). The death of neuronal cells following cerebral ischemia-reperfusion injury reduced remarkably induced by over-expression of HO-1. These findings suggest a neuroprotective role of HO-1 against brain injury induced by transient cerebral ischemia-reperfusion injury.

  13. Dragon's blood dropping pills have protective effects on focal cerebral ischemia rats model.

    PubMed

    Xin, Nian; Yang, Fang-Ju; Li, Yan; Li, Yu-Juan; Dai, Rong-Ji; Meng, Wei-Wei; Chen, Yan; Deng, Yu-Lin

    2013-12-15

    Dragon's blood is a bright red resin obtained from Dracaena cochinchinensis (Lour.) S.C.Chen (Yunnan, China). As a traditional Chinese medicinal herb, it has great traditional medicinal value and is used for wound healing and to stop bleeding. Its main biological activity comes from phenolic compounds. In this study, phenolic compounds were made into dropping pills and their protective effects were examined by establishing focal cerebral ischemia rats model used method of Middle Cerebral Artery Occlusion (MCAO), and by investigating indexes of neurological scores, infarct volume, cerebral index, cerebral water content and oxidation stress. Compared to model group, high, middle and low groups of Dragon's blood dropping pills could improve the neurological function significantly (p<0.01) and reduce cerebral infarct volume of focal cerebral ischemia rats remarkably (p<0.05-0.01). Meanwhile, each group could alleviate cerebral water content and cerebral index (p<0.05-0.01) and regulate oxidative stress of focal cerebral ischemia rats obviously (p<0.05-0.01). Activities of middle group corresponded with that treated with positive control drug. The results obtained here showed that Dragon's blood dropping pills had protective effects on focal cerebral ischemia rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Neuronal cell reconstruction with umbilical cord blood cells in the brain hypoxia-ischemia.

    PubMed

    Ghaffaripour, Hossein Ali; Jalali, Mehdi; Nikravesh, Mohammad Reza; Seghatoleslam, Masoumeh; Sanchooli, Javad

    2015-01-01

    Brain hypoxia-ischemia is a human neonatal injury that is considered a candidate for stem cell therapy. The possible therapeutic potential of human umbilical cord blood (HUCB) stem cells was evaluated in 14-day-old rats subjected to the right common carotid occlusion, a model of neonatal brain hypoxia-ischemia. Seven days after hypoxia-ischemia, rats received either saline solution or 4 × 105 HUCB cells i.v. Rats in control group did not receive any injection. After two weeks, rats were assessed using two motor tests. Subsequently, rats were scarified for histological and immunohistochemical analyses. Our immunohistochemical findings demonstrated selective migration of the injected HUCB cells to the ischemic area as well as reduction in infarct volume. Seven days after surgery, we found significant recovery in the behavioral performance in the test group (12.7 +/- 0.3) compared to the sham group (10.0 +/-0.05), a trend which continued to day 14 (15.3 ± 0.3 vs. 11.9 ± 0.5, P<0.05). Postural and motor asymmetries at days 7 and 14 in the test group showed a significant decrease in the percentage of right turns in comparison to the sham group (75% and 59% vs. 97% and 96%, P<0.05). The results show the potential of HUCB stem cells in reduction of neurologic deficits associated with neonatal hypoxia-ischemia.

  15. Silent ischemia: silent after all?

    PubMed

    D'Antono, Bianca; Dupuis, Gilles; Arsenault, André; Burelle, Denis

    2008-04-01

    To examine the association of nonpain symptoms in men and women with exercise-related silent ischemia, as well as the independence of these findings from other clinical factors. A prospective study of 482 women and 425 men (mean age 58 years) undergoing exercise stress testing with myocardial perfusion imaging. Analyses were performed on 60 women and 155 men with no angina but medical perfusion imaging evidence of ischemia during exercise. The presence of various non-pain-related symptoms. Ischemia is indicated by myocardial perfusion defects on exercise stress testing with single photon emission computed tomography. Women reported more nonangina symptoms than men (P<0.05). They experienced fatigue, hot flushes, tense muscles, shortness of breath and headaches more frequently (P<0.05). Symptoms relating to muscle tension and diaphoresis were associated with ischemia after controlling for pertinent clinical covariates. However, the direction of association differed according to sex and history of coronary artery disease events or procedures. Sensitivity of the detection models showed modest improvements with the addition of these symptoms. While patients who experience silent ischemia experience a number of nonpain symptoms, those symptoms may not be sufficiently specific to ischemia, nor sensitive in detecting ischemia, to be of particular help to physicians in the absence of other clinical information.

  16. Collateral circulation of the rat lower limb and its significance in ischemia-reperfusion studies.

    PubMed

    Rosero, Olivér; Németh, Károly; Turóczi, Zsolt; Fülöp, András; Garbaisz, Dávid; Győrffy, András; Szuák, András; Dorogi, Bence; Kiss, Mátyás; Nemeskéri, Ágnes; Harsányi, László; Szijártó, Attila

    2014-12-01

    Rats are the most commonly used animal model for studies of acute lower limb ischemia-reperfusion. The ischemia induced by arterial clamping may cause milder damage than the application of a tourniquet if the presence of a possible collateral system is considered. Male Wistar rats were randomized into three groups: in group A, the muscle weight affected by ischemia was measured; in group B, the severity of muscle damage caused by the application of a tourniquet and by infrarenal aortic occlusion was examined. Blood and muscle samples were taken from group B to assess the serum necroenzyme, potassium and TNF-α levels, as well as the muscle fiber viability and for histological examinations. In group C, the identification of the lower limb collateral system was performed using corrosion casting. Tourniquet application affected the lower muscle mass and resulted in significantly more severe injury compared to infrarenal aortic occlusion. This difference was reflected in the serum necroenzyme, potassium and TNF-α levels. The histological examination and viability assay confirmed these findings. The corrosion casts showed several anastomoses capable of supplying the lower limb. Tourniquet application proved to be capable of inducing absolute lower limb ischemia, in contrast to infrarenal aortic ligation, where a rich collateral system is considered to help mitigate the injury.

  17. [Anti-apoptosis and expression of microRNA-21 in rat myocardium during early ischemia-reperfusion injury].

    PubMed

    Yang, Qiong; Yang, Kan; Li, Anying; Tan, Wenpeng

    2013-05-01

    To observe the expression and anti-apoptosis of microRNA-21(miR-21) in rat myocardium during early ischemia-reperfusion injury (I/R). Sprague-Dawley rats were randomly divided into 5 groups: a control group (transfected with rAAV9-ZsGreen by coronary injection), a miR-21group (transfected rAAV9-ZsGreen-premiR- 21 by coronary injection), a sham group (open-chest only), an I/R group (I/R), and an I/ R+miR-21 (I/R after transfected rAAV9-ZsGreen-pre-miR-21 by coronary injection). Realtime PCR was used to assess the expression level of miR-21. Immunohistochemistry and Western blot were used to determine the expression of Bcl-2, Bax, caspase-3 and Bcl-2/Bax. MiR-21 was increased by 4.43 times in the miR-21 group (P<0.001). MiR-21 was downregulated in the ischemia zone after I/R compared with the sham group (P<0.05), but that in the non-ischemia zone was significantly increased compared with the sham group (P<0.01). MiR- 21 expression was decreased in the I/R group compared with that in the sham group at 1 h, 2 h and 6 h after I/R (P<0.05), and it was up-regulated in the I/R+miR-21 group at the same time point compared with the I/R group (P<0.01). The expression of Bcl-2, Bax, and caspase-3 was upregulated and Bcl-2/Bax was decreased in the ischemia zone in the I/R group and I/R+miR-21 group than the sham group(P<0.05). Compared with the I/R group, the expression of Bcl-2 and caspase-3 was down-regulated and Bcl-2/Bax was increased in the ischemia zone in the I/ R+miR-21 group (P<0.05). MiR-21 expression is down-regulated and cell apoptosis is increased in rat myocardium during early ischemia-reperfusion injury. Myocardial cell apoptosis may be alleviated by miR-21 over-expression.

  18. Protection of Hippocampal CA1 Neurons Against Ischemia/Reperfusion Injury by Exercise Preconditioning via Modulation of Bax/Bcl-2 Ratio and Prevention of Caspase-3 Activation.

    PubMed

    Aboutaleb, Nahid; Shamsaei, Nabi; Rajabi, Hamid; Khaksari, Mehdi; Erfani, Sohaila; Nikbakht, Farnaz; Motamedi, Pezhman; Shahbazi, Ali

    2016-01-01

    Ischemia leads to loss of neurons by apoptosis in specific brain regions, especially in the hippocampus. The purpose of this study was investigating the effects of exercise preconditioning on expression of Bax, Bcl-2, and caspase-3 proteins in hippocampal CA1 neurons after induction of cerebral ischemia. Male rats weighing 260-300 g were randomly allocated into three groups (sham, exercise, and ischemia). The rats in exercise group were trained to run on a treadmill 5 days a week for 4 weeks. Ischemia was induced by the occlusion of both common carotid arteries (CCAs) for 20 min. Levels of expression of Bax, Bcl-2, and caspase-3 proteins in CA1 area of hippocampus were determined by immunohistochemical staining . The number of active caspase-3-positive neurons in CA1 area were significantly increased in ischemia group, compared to sham-operated group (P<0.001), and exercise preconditioning significantly reduced the ischemia/reperfusion-induced caspase-3 activation, compared to the ischemia group (P<0.05). Also, results indicated a significant increase in Bax/Bcl-2 ratio in ischemia group, compared to sham-operated group (P<0.001). This study indicated that exercise has a neuroprotective effects against cerebral ischemia when used as preconditioning stimuli.

  19. Poloxamer 188 protects against ischemia-reperfusion injury in a murine hind-limb model.

    PubMed

    Murphy, Adrian D; McCormack, Michael C; Bichara, David A; Nguyen, John T; Randolph, Mark A; Watkins, Michael T; Lee, Raphael C; Austen, William G

    2010-06-01

    Ischemia-reperfusion injury can activate pathways generating reactive oxygen species, which can injure cells by creating holes in the cell membranes. Copolymer surfactants such as poloxamer 188 are capable of sealing defects in cell membranes. The authors postulated that a single-dose administration of poloxamer 188 would decrease skeletal myocyte injury and mortality following ischemia-reperfusion injury. Mice underwent normothermic hind-limb ischemia for 2 hours. Animals were treated with 150 microl of poloxamer 188 or dextran at three time points: (1) 10 minutes before ischemia; (2) 10 minutes before reperfusion; and (3) 2 or 4 hours after reperfusion. After 24 hours of reperfusion, tissues were analyzed for myocyte injury (histology) and metabolic dysfunction (muscle adenosine 5'-triphosphate). Additional groups of mice were followed for 7 days to assess mortality. When poloxamer 188 treatment was administered 10 minutes before ischemia, injury was reduced by 84 percent, from 50 percent injury in the dextran group to 8 percent injury in the poloxamer 188 group (p < 0.001). When administered 10 minutes before reperfusion, poloxamer 188 animals demonstrated a 60 percent reduction in injury compared with dextran controls (12 percent versus 29 percent). Treatment at 2 hours, but not at 4 hours, postinjury prevented substantial myocyte injury. Preservation of muscle adenosine 5'-triphosphate paralleled the decrease in myocyte injury in poloxamer 188-treated animals. Poloxamer 188 treatment significantly reduced mortality following injury (10 minutes before, 75 percent versus 25 percent survival, p = 0.0077; 2 hours after, 50 percent versus 8 percent survival, p = 0.032). Poloxamer 188 administered to animals decreased myocyte injury, preserved tissue adenosine 5'-triphosphate levels, and improved survival following hind-limb ischemia-reperfusion injury.

  20. Prophylactic Treatment with Cerium Oxide Nanoparticles Attenuate Hepatic Ischemia Reperfusion Injury in Sprague Dawley Rats.

    PubMed

    Manne, Nandini D P K; Arvapalli, Ravikumar; Graffeo, Vincent A; Bandarupalli, Venkata V K; Shokuhfar, Tolou; Patel, Sweetu; Rice, Kevin M; Ginjupalli, Gautam Kumar; Blough, Eric R

    2017-01-01

    Hepatic ischemia reperfusion is one the main causes for graft failure following transplantation. Although, the molecular events that lead to hepatic failure following ischemia reperfusion (IR) are diverse and complex, previous studies have shown that excessive formation of reactive oxygen species (ROS) are responsible for hepatic IR injury. Cerium oxide (CeO2) nanoparticles have been previously shown to act as an anti-oxidant and anti-inflammatory agent. Here, we evaluated the protective effects of CeO2 nanoparticles on hepatic ischemia reperfusion injury. Male Sprague Dawley rats were randomly assigned to one of the four groups: Control, CeO2 nanoparticle only, hepatic ischemia reperfusion (IR) group and hepatic ischemia reperfusion (IR) plus CeO2 nanoparticle group (IR+ CeO2). Partial warm hepatic ischemia was induced in left lateral and median lobes for 1h, followed by 6h of reperfusion. Animals were sacrificed after 6h of reperfusion and blood and tissue samples were collected and processed for various biochemical experiments. Prophylactic treatment with CeO2 nanoparticles (0.5mg/kg i.v (IR+CeO2 group)) 1 hour prior to hepatic ischemia and subsequent reperfusion injury lead to a decrease in serum levels of alanine aminotransaminase and lactate dehydrogenase at 6 hours after reperfusion. These changes were accompanied by significant decrease in hepatocyte necrosis along with reduction in several serum inflammatory markers such as macrophage derived chemokine, macrophage inflammatory protein-2, KC/GRO, myoglobin and plasminogen activator inhibitor-1. However, immunoblotting demonstrated no significant changes in the levels of apoptosis related protein markers such as bax, bcl2 and caspase 3 in IR and IR+ CeO2 groups at 6 hours suggesting necrosis as the main pathway for hepatocyte death. Taken together, these data suggest that CeO2 nanoparticles attenuate IR induced cell death and can be used as a prophylactic agent to prevent hepatic injury associated with graft

  1. Neutralizing anti-interleukin-1β antibodies modulate fetal blood-brain barrier function after ischemia.

    PubMed

    Chen, Xiaodi; Sadowska, Grazyna B; Zhang, Jiyong; Kim, Jeong-Eun; Cummings, Erin E; Bodge, Courtney A; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G; Gaitanis, John; Threlkeld, Steven W; Banks, William A; Stonestreet, Barbara S

    2015-01-01

    We have previously shown that increases in blood-brain barrier permeability represent an important component of ischemia-reperfusion related brain injury in the fetus. Pro-inflammatory cytokines could contribute to these abnormalities in blood-brain barrier function. We have generated pharmacological quantities of mouse anti-ovine interleukin-1β monoclonal antibody and shown that this antibody has very high sensitivity and specificity for interleukin-1β protein. This antibody also neutralizes the effects of interleukin-1β protein in vitro. In the current study, we hypothesized that the neutralizing anti-interleukin-1β monoclonal antibody attenuates ischemia-reperfusion related fetal blood-brain barrier dysfunction. Instrumented ovine fetuses at 127 days of gestation were studied after 30 min of carotid occlusion and 24h of reperfusion. Groups were sham operated placebo-control- (n=5), ischemia-placebo- (n=6), ischemia-anti-IL-1β antibody- (n=7), and sham-control antibody- (n=2) treated animals. Systemic infusions of placebo (0.154M NaCl) or anti-interleukin-1β monoclonal antibody (5.1±0.6 mg/kg) were given intravenously to the same sham or ischemic group of fetuses at 15 min and 4h after ischemia. Concentrations of interleukin-1β protein and anti-interleukin-1β monoclonal antibody were measured by ELISA in fetal plasma, cerebrospinal fluid, and parietal cerebral cortex. Blood-brain barrier permeability was quantified using the blood-to-brain transfer constant (Ki) with α-aminoisobutyric acid in multiple brain regions. Interleukin-1β protein was also measured in parietal cerebral cortices and tight junction proteins in multiple brain regions by Western immunoblot. Cerebral cortical interleukin-1β protein increased (P<0.001) after ischemia-reperfusion. After anti-interleukin-1β monoclonal antibody infusions, plasma anti-interleukin-1β monoclonal antibody was elevated (P<0.001), brain anti-interleukin-1β monoclonal antibody levels were higher (P<0

  2. Treatment with docosahexaenoic acid after hypoxia–ischemia improves forepaw placing in a rat model of perinatal hypoxia-ischemia

    PubMed Central

    Berman, Deborah R; Liu, YiQing; Barks, John; Mozurkewich, Ellen

    2010-01-01

    Objective Docosahexaenoic acid (DHA) is a dietary fatty acid with neuroprotective properties. We hypothesized that DHA treatment after hypoxia-ischemia (HI) would improve function and reduce brain volume loss in a perinatal rat model. Study design Seven-day-old Wistar rat pups from 7 litters (N=84) underwent right carotid ligation, followed by 8% O2 for 90 minutes. Fifteen minutes after HI, pups were divided into 3 treatment groups (intraperitoneal injections of DHA 1, 2.5 or 5 mg/kg) and 2 control groups (25% albumin or saline). At 14 days, rats underwent vibrissae-stimulated forepaw placing testing, and bilateral regional volumes were calculated for cortex, striatum, hippocampus, and hemisphere. Results Post HI treatment with DHA significantly improved vibrissae forepaw placing (complete responses: 8.5±2 treatment vs. 7.4±2 controls; normal=10; p = 0.032, t-test). Post injury DHA treatment did not attenuate brain volume loss in any region. Conclusion Post-hypoxia-ischemia DHA treatment significantly improves functional outcome. PMID:20691409

  3. Use of the Wound, Ischemia, foot Infection classification system in hemodialysis patients after endovascular treatment for critical limb ischemia.

    PubMed

    Tokuda, Takahiro; Hirano, Keisuke; Sakamoto, Yasunari; Mori, Shisuke; Kobayashi, Norihiro; Araki, Motoharu; Yamawaki, Masahiro; Ito, Yoshiaki

    2017-12-07

    The Wound, Ischemia, foot Infection (WIfI) classification system is used to predict the amputation risk in patients with critical limb ischemia (CLI). The validity of the WIfI classification system for hemodialysis (HD) patients with CLI is still unknown. This single-center study evaluated the prognostic value of WIfI stages in HD patients with CLI who had been treated with endovascular therapy (EVT). A retrospective analysis was performed of collected data on CLI patients treated with EVT between April 2007 and December 2015. All patients were classified according to their wound status, ischemia index, and extent of foot infection into the following four groups: very low risk, low risk, moderate risk, and high risk. Comorbidities and vascular lesions in each group were analyzed. The prognostic value of the WIfI classification was analyzed on the basis of the wound healing rate and amputation-free survival at 1 year. This study included 163 consecutive CLI patients who underwent HD and successful endovascular intervention. The rate of the high-risk group (36%) was the highest among the four groups, and the proportions of very-low-risk, low-risk, and moderate-risk patients were 10%, 18%, and 34%, respectively. The mean follow-up duration was 784 ± 650 days. The wound healing rates at 1 year were 92%, 70%, 75%, and 42% in the very-low-risk, low-risk, moderate-risk, and high-risk groups, respectively (P <.01). A similar trend was observed for the 1-year amputation-free survival among the groups (76%, 58%, 61%, and 46%, respectively; P = .02). The WIfI classification system predicted the wound healing and amputation risks in a highly selected group of HD patients with CLI treated with EVT, with a statistically significant difference between high-risk patients and other patients. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  4. Effects of Platelet-Rich Plasma (PRP) on a Model of Renal Ischemia-Reperfusion in Rats.

    PubMed

    Martín-Solé, Oriol; Rodó, Joan; García-Aparicio, Lluís; Blanch, Josep; Cusí, Victoria; Albert, Asteria

    2016-01-01

    Renal ischemia-reperfusion injury is a major cause of acute renal failure, causing renal cell death, a permanent decrease of renal blood flow, organ dysfunction and chronic kidney disease. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, and therefore able to promote tissue regeneration and angiogenesis. This product has proven its efficacy in multiple studies, but has not yet been tested on kidney tissue. The aim of this work is to evaluate whether the application of PRP to rat kidneys undergoing ischemia-reperfusion reduces mid-term kidney damage. A total of 30 monorrenal Sprague-Dawley male rats underwent renal ischemia-reperfusion for 45 minutes. During ischemia, PRP (PRP Group, n = 15) or saline solution (SALINE Group, n = 15) was administered by subcapsular renal injection. Control kidneys were the contralateral organs removed immediately before the start of ischemia in the remaining kidneys. Survival, body weight, renal blood flow on Doppler ultrasound, kidney weight, kidney volume, blood biochemistry and histopathology were determined for all subjects and kidneys, as applicable. Correlations between these variables were searched for. The PRP Group showed significantly worse kidney blood flow (p = 0.045) and more histopathological damage (p<0.0001). Correlations were found between body weight, kidney volume, kidney weight, renal blood flow, histology, and serum levels of creatinine and urea. Our study provides the first evidence that treatment with PRP results in the deterioration of the kidney's response to ischemia-reperfusion injury.

  5. Effects of Platelet-Rich Plasma (PRP) on a Model of Renal Ischemia-Reperfusion in Rats

    PubMed Central

    Martín-Solé, Oriol; Rodó, Joan; García-Aparicio, Lluís; Blanch, Josep; Cusí, Victoria; Albert, Asteria

    2016-01-01

    Renal ischemia-reperfusion injury is a major cause of acute renal failure, causing renal cell death, a permanent decrease of renal blood flow, organ dysfunction and chronic kidney disease. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, and therefore able to promote tissue regeneration and angiogenesis. This product has proven its efficacy in multiple studies, but has not yet been tested on kidney tissue. The aim of this work is to evaluate whether the application of PRP to rat kidneys undergoing ischemia-reperfusion reduces mid-term kidney damage. A total of 30 monorrenal Sprague-Dawley male rats underwent renal ischemia-reperfusion for 45 minutes. During ischemia, PRP (PRP Group, n = 15) or saline solution (SALINE Group, n = 15) was administered by subcapsular renal injection. Control kidneys were the contralateral organs removed immediately before the start of ischemia in the remaining kidneys. Survival, body weight, renal blood flow on Doppler ultrasound, kidney weight, kidney volume, blood biochemistry and histopathology were determined for all subjects and kidneys, as applicable. Correlations between these variables were searched for. The PRP Group showed significantly worse kidney blood flow (p = 0.045) and more histopathological damage (p<0.0001). Correlations were found between body weight, kidney volume, kidney weight, renal blood flow, histology, and serum levels of creatinine and urea. Our study provides the first evidence that treatment with PRP results in the deterioration of the kidney’s response to ischemia-reperfusion injury. PMID:27551718

  6. Usefulness of automatic QT dispersion measurement for detecting exercise-induced myocardial ischemia.

    PubMed

    Takase, Bonpei; Masaki, Nobuyuki; Hattori, Hidemi; Ishihara, Masayuki; Kurita, Akira

    2009-06-01

    The electrocardiographic index of QT dispersion (QTd) is related to the occurrence of arrhythmia. In patients with suspected or known coronary artery disease, QTd may be affected by exercise. We investigated whether QTd that is automatically calculated by a newly developed computer system could be used as a marker of exercise-induced myocardial ischemia. The design of this study was prospective and observational. Eighty-three consecutive patients were enrolled in this study. Their QTd was measured at rest and after 3 min of exercise during exercise-stress Thallium-201 scintigraphy and compared with conventional ST-segment changes. The patients were classified into 4 groups (normal group, redistribution group, fixed defect group, redistribution with fixed defect group) based on the result of single photon emission computed tomography. As statistical analysis, one-way ANOVA with post-hoc Scheffe's method, receiver-operating characteristics (ROC) and multiple logistic regression analysis were performed. At rest, QTd was significantly greater (p<0.05) in the fixed defect group (52+/-21 ms) and the redistribution with fixed defect group (53+/-20 ms) than in the normal group (32+/-14 ms) and the redistribution group (31+/-16 ms). However, QTd tended to increase after exercise in the redistribution group, while QTd tended to decrease in the normal group, the fixed defect group, and the redistribution with fixed defect group (QTd after exercise, normal group, 28+/-17 ms, redistribution group, 35+/-19 ms, fixed defect group, 43+/-25 ms, redistribution with fixed defect group, 49+/-27 ms). Exercise significantly increased QTcd (RR interval-corrected QT dispersion) in the redistribution group. The best cut-off values of QTd and QTcd obtained from ROC curves for exercise-induced myocardial ischemia were 41.6 ms and 40.4 ms, respectively (Qtd--AUC 0.68, 95%CI 0.53- 0.83 and QTcd--AUC 0.67, 95%CI 0.55-0.80). Using these values as cut-off ones, QTd, QTcd, and conventional ST

  7. Prevention of ischemia-induced myocardial platelet deposition by exogenous prostacyclin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aherne, T.; Price, D.C.; Yee, E.S.

    1986-07-01

    The antithrombotic effects of prostacyclin infusion on myocardial platelet deposition were studied in a canine model during and after global ischemia. Eleven isolated heart preparations were subjected to 1 hour of cardioplegic arrest under moderate hypothermia (27 to 28/sup 0/C), including a control group (n = 7) and a prostacyclin-treated group (n = 4). The hearts of four other dogs were continuously perfused for 180 minutes. Platelet deposition was measured at 15 minute intervals throughout the 3 hour study. Serial full-thickness myocardial biopsy specimens were analyzed for activity of /sup 111/In-labeled platelets with /sup 99m/Tc-labeled erythrocyte correction for tissue bloodmore » content. The pattern of platelet distribution was determined by scintiscans of each heart, taken with a gamma camera at the end of the 60 minute reperfusion period. Substantial myocardial platelet deposition was found in the control hearts after ischemia but not in the prostacyclin-treated group (p less than 0.05). Furthermore, prostacyclin infusion had a significant disaggregatory effect on intracoronary platelet deposits when the precardioplegic and postcardioplegic biopsy specimens were analyzed (p less than 0.05). Three hours of continuous perfusion did not increase tissue /sup 111/In-labeled platelet activity. Ex vivo images showed platelet deposition to be a diffuse patchy process with significantly more /sup 111/In activity in the endocardium than in the epicardium after global ischemia (p less than 0.05). These data show the potent antithrombotic properties of prostacyclin in preventing and disaggregating ischemia-induced intracoronary platelet deposition during and after cardioplegic arrest.« less

  8. Nampt/PBEF/visfatin exerts neuroprotective effects against ischemia/reperfusion injury via modulation of Bax/Bcl-2 ratio and prevention of caspase-3 activation.

    PubMed

    Erfani, Sohaila; Khaksari, Mehdi; Oryan, Shahrbanoo; Shamsaei, Nabi; Aboutaleb, Nahid; Nikbakht, Farnaz

    2015-05-01

    Nicotinamide phosphoribosyl transferase/pre-B cell colony-enhancing factor/visfatin (Nampt/PBEF/visfatin) is an adipocytokine. By synthesizing nicotinamide adenine dinucleotide (NAD(+)), Nampt/PBEF/visfatin functions to maintain an energy supply that has critical roles in cell survival. Cerebral ischemia leads to energy depletion and eventually neuronal death by apoptosis in specific brain regions specially the hippocampus. However, the role of Nampt/PBEF/visfatin in brain and cerebral ischemia remains to be investigated. This study investigated the role of administration Nampt/PBEF/visfatin in hippocampal CA3 area using a transient global cerebral ischemia model. Both common carotid arteries were occluded for 20 min followed by reperfusion. Saline as a vehicle and Nampt/PBEF/visfatin at a dose of 100 ng were injected intracerebroventricularly (ICV) at the time of cerebral reperfusion. To investigate the underlying mechanisms of Nampt/PBEF/visfatin neuroprotection, levels of expression of apoptosis-related proteins (caspase-3 activation, Bax protein levels, and Bcl-2 protein levels) 96 h after ischemia were determined by immunohistochemical staining. The number of active caspase-3-positive neurons in CA3 was significantly increased in the ischemia group, compared with the sham group (P < 0.001), and treatment with Nampt/PBEF/visfatin significantly reduced the ischemia/reperfusion-induced caspase-3 activation, compared to the ischemia group (P < 0.05). Also, results indicated a significant increase in Bax/Bcl-2 ratio in the ischemia group, compared with the sham group (P < 0.01). However, treatment with Nampt/PBEF/visfatin significantly attenuated the ischemia/reperfusion-induced increase in Bax/Bcl-2 ratio, compared with the ischemia group (P < 0.05). This study has indicated that Nampt/PBEF/visfatin entails neuroprotective effects against ischemia injury when used at the time of cerebral reperfusion. These neuroprotective mechanisms of Nampt

  9. Intraperitoneal Administration of Silymarin Protects End Organs from Multivisceral Ischemia/Reperfusion Injury in a Rat Model.

    PubMed

    Koçarslan, Aydemir; Koçarslan, Sezen; Aydin, Mehmet Salih; Gunay, Şamil; Karahan, Mahmut Alp; Taşkın, Abdullah; Üstunel, Murat; Aksoy, Nurten

    2016-01-01

    To determine whether intraperitoneal silymarin administration has favorable effects on the heart, lungs, kidney, and liver and on oxidative stress in a rat model of supraceliac aorta ischemia/reperfusion injury. Thirty male Wistar albino rats were divided equally into three groups: sham, control, and silymarin. The control and silymarin groups underwent supraceliac aortic occlusion for 45 min, followed by a 60 min period of reperfusion under terminal anesthesia. In the silymarin group, silymarin was administered intraperitoneally during ischemia at a dose of 200 mg/kg. Rats were euthanized using terminal anesthesia, and blood was collected from the inferior vena cava for total antioxidant capacity, total oxidative status, and oxidative stress index measurement. Lungs, heart, liver and kidney tissues were histologically examined. Ischemia/reperfusion injury significantly increased histopathological damage as well as the total oxidative status and oxidative stress index levels in the blood samples. The silymarin group incurred significantly lesser damage to the lungs, liver and kidneys than the control group, while no differences were observed in the myocardium. Furthermore, the silymarin group had significantly lower total oxidative status and oxidative stress index levels than the control group. Intraperitoneal administration of silymarin reduces oxidative stress and protects the liver, kidney, and lungs from acute supraceliac abdominal aorta ischemia/reperfusion injury in the rat model.

  10. Inhibition of Angiotensin-II Production Increases Susceptibility to Acute Ischemia/Reperfusion Arrhythmia

    PubMed Central

    Taskin, Eylem; Tuncer, Kadir Ali; Guven, Celal; Kaya, Salih Tunc; Dursun, Nurcan

    2016-01-01

    Background Myocardial ischemia and reperfusion lead to impairment of electrolyte balance and, eventually, lethal arrhythmias. The aim of this study was to investigate the effects of pharmacological inhibition of angiotensin-II (Ang-II) production on heart tissue with ischemia-reperfusion damage, arrhythmia, and oxidative stress. Material/Methods Rats were divided into 4 groups: only ischemia/reperfusion (MI/R), captopril (CAP), aliskiren (AL), and CAP+AL. The drugs were given by gavage 30 min before anesthesia. Blood pressure and electrocardiography (ECG) were recorded during MI/R procedures. The heart tissue and plasma was kept so as to evaluate the total oxidant (TOS), antioxidant status (TAS), and creatine kinase-MB (CK-MB). Results Creatine kinase-MB was not different among the groups. Although TAS was not affected by inhibition of Ang-II production, TOS was significantly lower in the CAP and/or AL groups than in the MI/R group. Furthermore, oxidative stress index was significantly attenuated in the CAP and/or AL groups. Captopril significantly increased the duration of VT during ischemia; however, it did not have any effect on the incidence of arrhythmias. During reperfusion periods, aliskiren and its combinations with captopril significantly reduced the incidence of other types of arrhythmias. Captopril alone had no effect on the incidence of arrhythmias, but significantly increased arrhythmias score and durations of arrhythmias during reperfusion. MAP and heart rate did not show changes in any groups during ischemic and reperfusion periods. Conclusions Angiotensin-II production appears to be associated with elevated levels of reactive oxygen species, but Ang-II inhibitions increases arrhythmia, mainly by initiating ventricular ectopic beats. PMID:27889788

  11. Dietary glutamine supplementation enhances endothelial progenitor cell mobilization in streptozotocin-induced diabetic mice subjected to limb ischemia.

    PubMed

    Su, Shiau-Tsz; Yeh, Chiu-Li; Hou, Yu-Chen; Pai, Man-Hui; Yeh, Sung-Ling

    2017-02-01

    Diabetes is a metabolic disorder with increased risk of vascular diseases. Tissue ischemia may occur with diabetic vascular complications. Bone marrow-derived endothelial progenitor cells (EPCs) constitute a reparative response to ischemic injury. This study investigated the effects of oral glutamine (GLN) supplementation on circulating EPC mobilization and expression of tissue EPC-releasing markers in diabetic mice subjected to limb ischemia. Diabetes was induced by a daily intraperitoneal injection of streptozotocin for 5 days. Diabetic mice were divided into 2 nonischemic groups and 6 ischemic groups. One of the nonischemic and 3 ischemic groups were fed the control diet, while the remaining 4 groups received diets with identical components except that part of the casein was replaced by GLN. The respective diets were fed to the mice for 3 weeks, and then the nonischemic mice were sacrificed. Unilateral hindlimb ischemia was created in the ischemic groups, and mice were sacrificed at 1, 7 or 21 days after ischemia. Their blood and ischemic muscle tissues were collected for further analyses. Results showed that plasma matrix metallopeptidase (MMP)-9 and the circulating EPC percentage increased after limb ischemia in a diabetic condition. Compared to groups without GLN, GLN supplementation up-regulated plasma stromal cell-derived factor (SDF)-1 and muscle MMP-9, SDF-1, hypoxia-inducible factor-1 and vascular endothelial growth factor gene expression. The CD31-immunoreactive intensities were also higher in the ischemic limb. These findings suggest that GLN supplementation enhanced circulating EPC mobilization that may promote endothelium repair at ischemic tissue in diabetic mice subjected to limb ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Blockade of Central Angiotensin II AT1 Receptor Protects the Brain from Ischemia/Reperfusion Injury in Normotensive Rats.

    PubMed

    Panahpour, Hamdolah; Nekooeian, Ali Akbar; Dehghani, Gholam Abbas

    2014-11-01

    Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor blockade by transient focal cerebral ischemia in normotensive rats. In this experimental study, 48 male Sprague-Dawley rats were randomly divided into four groups (n=12). Sham group, the control ischemic group, and two ischemic groups received candesartan at doses of 0.1 or 0.5 mg/kg at one hour before ischemia. Transient focal cerebral ischemia was induced by 60 minutes occlusion of the middle cerebral artery, followed by 24 h reperfusion. The neurological deficit score was evaluated at the end of the reperfusion period. The total cortical and striatal infarct volumes were determined using triphenyltetrazolium chloride staining technique. Tissue swelling was calculated for the investigation of ischemic brain edema formation. In comparison with the control ischemic group, AT1 receptor blockade with both doses of candesartan (0.1 or 0.5 mg/kg) significantly improved neurological deficit and lowered cortical and striatal infarct sizes. In addition, pretreatment with candesartan significantly reduced ischemia induced tissue swelling. Angiotensin II by stimulating AT1 receptors, participates in ischemia-reperfusion injuries and edema formation. AT1 receptor blockade with candesartan decreased ischemic brain injury and edema and improved neurological outcome.

  13. Folic acid deficiency increases delayed neuronal death, DNA damage, platelet endothelial cell adhesion molecule-1 immunoreactivity, and gliosis in the hippocampus after transient cerebral ischemia.

    PubMed

    Hwang, In Koo; Yoo, Ki-Yeon; Suh, Hong-Won; Kim, Young Sup; Kwon, Dae Young; Kwon, Young-Guen; Yoo, Jun-Hyun; Won, Moo-Ho

    2008-07-01

    Folic acid deficiency increases stroke risk. In the present study, we examined whether folic acid deficiency enhances neuronal damage and gliosis via oxidative stress in the gerbil hippocampus after transient forebrain ischemia. Animals were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to occlusion of both common carotid arteries for 5 min. Exposure to an FAD increased plasma homocysteine levels by five- to eightfold compared with those of animals fed with a control diet (CD). In CD-treated animals, most neurons were dead in the hippocampal CA1 region 4 days after ischemia/reperfusion, whereas, in FAD-treated animals, this occurred 3 days after ischemia/reperfusion. Immunostaining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) was performed to examine DNA damage in CA1 neurons in both groups after ischemia, and it was found that 8-OHdG immunoreactivity in both FAD and CD groups peaked at 12 hr after reperfusion, although the immunoreactivity in the FAD group was much greater than that in the CD group. Platelet endothelial cell adhesion molecule-1 (PECAM-1; a final mediator of neutrophil transendothelial migration) immunoreactivity in both groups increased with time after ischemia/reperfusion: Its immunoreactivity in the FAD group was much higher than that in the CD group 3 days after ischemia/reperfusion. In addition, reactive gliosis in the ischemic CA1 region increased with time after ischemia in both groups, but astrocytosis and microgliosis in the FAD group were more severe than in the CD group at all times after ischemia. Our results suggest that folic acid deficiency enhances neuronal damage induced by ischemia. 2008 Wiley-Liss, Inc.

  14. The Effect of Botulinum Toxin A on Ischemia-Reperfusion Injury in a Rat Model

    PubMed Central

    2017-01-01

    Introduction While studies using various materials to overcome ischemia-reperfusion (IR) injury are becoming increasingly common, studies on the effects of botulinum toxin A (BoTA) on IR injury in musculocutaneous flaps are still limited. The purpose of this study was to examine our hypotheses that BoTA provide protection of musculocutaneous flap from ischemia-reperfusion injury. Method Five days after pretreatment injection (BoTA versus normal saline), a right superior musculocutaneous flap (6 × 1.5 cm in size) was made. Ischemia was created by a tourniquet strictly wrapping the pedicle containing skin and muscle for 8 h. After ischemia, the tourniquet was cut, and the musculocutaneous flap was reperfused. Results The overall survival percentage of flap after 8 h of pedicle clamping followed by reperfusion was 87.32 ± 3.67% in the control group versus 95.64 ± 3.25% in the BoTA group (p < 0.001). The BoTA group had higher expression of CD34, HIF-1α, VEGF, and NF-kB comparing to control group in qRT-PCR analysis. Conclusions In this study, we found that local BoTA preconditioning yielded significant protection against IR injury in a rat musculocutaneous flap model. PMID:28589130

  15. Effect of Ischemia Duration and Protective Interventions on the Temporal Dynamics of Tissue Composition After Myocardial Infarction

    PubMed Central

    Fernández-Jiménez, Rodrigo; Galán-Arriola, Carlos; Sánchez-González, Javier; Agüero, Jaume; López-Martín, Gonzalo J.; Gomez-Talavera, Sandra; Garcia-Prieto, Jaime; Benn, Austin; Molina-Iracheta, Antonio; Barreiro-Pérez, Manuel; Martin-García, Ana; García-Lunar, Inés; Pizarro, Gonzalo; Sanz, Javier; Sánchez, Pedro L.; Fuster, Valentin

    2017-01-01

    Rationale: The impact of cardioprotective strategies and ischemia duration on postischemia/reperfusion (I/R) myocardial tissue composition (edema, myocardium at risk, infarct size, salvage, intramyocardial hemorrhage, and microvascular obstruction) is not well understood. Objective: To study the effect of ischemia duration and protective interventions on the temporal dynamics of myocardial tissue composition in a translational animal model of I/R by the use of state-of-the-art imaging technology. Methods and Results: Four 5-pig groups underwent different I/R protocols: 40-minute I/R (prolonged ischemia, controls), 20-minute I/R (short-duration ischemia), prolonged ischemia preceded by preconditioning, or prolonged ischemia followed by postconditioning. Serial cardiac magnetic resonance (CMR)-based tissue characterization was done in all pigs at baseline and at 120 minutes, day 1, day 4, and day 7 after I/R. Reference myocardium at risk was assessed by multidetector computed tomography during the index coronary occlusion. After the final CMR, hearts were excised and processed for water content quantification and histology. Five additional healthy pigs were euthanized after baseline CMR as reference. Edema formation followed a bimodal pattern in all 40-minute I/R pigs, regardless of cardioprotective strategy and the degree of intramyocardial hemorrhage or microvascular obstruction. The hyperacute edematous wave was ameliorated only in pigs showing cardioprotection (ie, those undergoing short-duration ischemia or preconditioning). In all groups, CMR-measured edema was barely detectable at 24 hours postreperfusion. The deferred healing-related edematous wave was blunted or absent in pigs undergoing preconditioning or short-duration ischemia, respectively. CMR-measured infarct size declined progressively after reperfusion in all groups. CMR-measured myocardial salvage, and the extent of intramyocardial hemorrhage and microvascular obstruction varied dramatically

  16. Ischemic Preconditioning Produces Comparable Protection Against Hepatic Ischemia/Reperfusion Injury Under Isoflurane and Sevoflurane Anesthesia in Rats.

    PubMed

    Jeong, J S; Kim, D; Kim, K Y; Ryu, S; Han, S; Shin, B S; Kim, G S; Gwak, M S; Ko, J S

    2017-11-01

    Various volatile anesthetics and ischemic preconditioning (IP) have been demonstrated to exert protective effect against ischemia/reperfusion (I/R) injury in liver. We aimed to determine whether application of IP under isoflurane and sevoflurane anesthesia would confer protection against hepatic I/R injury in rats. Thirty-eight rats weighing 270 to 300 grams were randomly divided into 2 groups: isoflurane (1.5%) and sevoflurane (2.5%) anesthesia groups. Each group was subdivided into sham (n = 3), non-IP (n = 8; 45 minutes of hepatic ischemia), and IP (n = 8, IP consisting of 10-minute ischemia plus 15-minute reperfusion before prolonged ischemia) groups. The degree of hepatic injury and expressions of B-cell lymphoma 2 (Bcl-2) and caspase 3 were compared at 2 hours after reperfusion. Hepatic ischemia induced significant degree of I/R injuries in both isoflurane and sevoflurane non-IP groups. In both anesthetic groups, introduction of IP dramatically attenuated I/R injuries as marked by significantly lower aspartate aminotransferase and aminotransferase levels and better histologic grades compared with corresponding non-IP groups. There were 2.3- and 1.7-fold increases in Bcl-2 mRNA levels in isoflurane and sevoflurane IP groups, respectively, compared with corresponding non-IP groups (both P < .05). Caspase 3 level was significantly high in the isoflurane non-IP group compared with the sham group; however, there were no differences among the sevoflurane groups. The degree of hepatic I/R injury was significantly high in both isoflurane and sevoflurane groups in rats. However, application of IP significantly protected against I/R injury in both volatile anesthetic groups to similar degrees, and upregulation of Bcl-2 might be an important mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Sirtinol abrogates late phase of cardiac ischemia preconditioning in rats.

    PubMed

    Safari, Fereshteh; Shekarforoosh, Shahnaz; Hashemi, Tahmineh; Namvar Aghdash, Simin; Fekri, Asefeh; Safari, Fatemeh

    2017-07-01

    The aim of this study was to investigate the effect of sirtinol, as an inhibitor of sirtuin NAD-dependent histone deacetylases, on myocardial ischemia reperfusion injury following early and late ischemia preconditioning (IPC). Rats underwent sustained ischemia and reperfusion (IR) alone or proceeded by early or late IPC. Sirtinol (S) was administered before IPC. Arrhythmias were evaluated based on the Lambeth model. Infarct size (IS) was measured using triphenyltetrazolium chloride staining. The transcription level of antioxidant-coding genes was assessed by real-time PCR. In early and late IPC groups, IS and the number of arrhythmia were significantly decreased (P < 0.05 and P < 0.01 vs IR, respectively). In S + early IPC, incidences of arrhythmia and IS were not different compared with the early IPC group. However, in S + late IPC the IS was different from the late IPC group (P < 0.05). In late IPC but not early IPC, transcription levels of catalase (P < 0.01) and Mn-SOD (P < 0.05) increased, although this upregulation was not significant in the S + late IPC group. Our results are consistent with the notion that different mechanisms are responsible for early and late IPC. In addition, sirtuin NAD-dependent histone deacetylases may be implicated in late IPC-induced cardioprotection.

  18. [Effects of the of renal warm ischemia time on the recovery of filtration function in the experiment].

    PubMed

    Guseinov, R G; Popov, S V; Gorshkov, A N; Sivak, K V; Martov, A G

    2017-12-01

    To investigate experimentally ultrastructural and biochemical signs of acute injury to the renal parenchyma after warm renal ischemia of various duration and subsequent reperfusion. The experiments were performed on 44 healthy conventional female rabbits of the "Chinchilla" breed weighted 2.6-2.7 kg, which were divided into four groups. In the first, control, group included pseudo-operated animals. In the remaining three groups, an experimental model of warm ischemia of renal tissue was created, followed by a 60-minute reperfusion. The renal warm ischemia time was 30, 60 and 90 minutes in the 2nd, 3rd and 4th groups, respectively. Electron microscopy was used to study ultrastructural disturbances of the renal parenchyma. Biochemical signs of acute kidney damage were detected by measuring the following blood serum and/or urine analytes: NGAL, cystatin C, KIM-1, L-FABP, interleukin-18. The glomerular filtration was evaluated by creatinine clearance, which was determined on days 1, 5, 7, 14, 21 and 35 of follow-up. A 30-minute renal warm ischemia followed by a 60-minute reperfusion induced swelling and edema of the brush membrane, vacuolation of the cytoplasm of the endothelial cells of the proximal tubules, and microvilli restructuring. The observed disorders were reversible, and the epithelial cells retained their viability. After 60 minutes of ischemia and 60 minutes of reperfusion, the observed changes in the ultrastructure of the epithelial cells were much more pronounced, some of the epithelial cells were in a state of apoptosis. 90 min of ischemia and 60 min of reperfusion resulted in electron-microscopic signs of the mass cellular death of the tubular epithelium. Concentration in serum and/or biochemical urine markers of acute renal damage increased sharply after ischemic-reperfusion injury. Restoration of indicators was observed only in cases when the renal warm ischemia time did not exceed 60 minutes. The decrease in creatinine clearance occurred in the

  19. Modulation of the oxidative stress by metformin in the cerebrum of rats exposed to global cerebral ischemia and ischemia/reperfusion.

    PubMed

    Abd-Elsameea, A A; Moustaf, A A; Mohamed, A M

    2014-08-01

    Oxidative stress plays a major role in the pathogenesis of ischemic and reperfusion injury to many organs, including the brain. Chronic metformin treatment is associated with a lower risk of stroke in clinical populations. The aim of the present study was to investigate the effect of metformin on the oxidative stress induced in experimental model of incomplete global cerebral ischemia and ischemia/reperfusion in adult male Wistar rats. Metformin was administered to rats orally by gavage 500 mg/kg once daily for one week before induction of cerebral ischemia (rats were subjected to 30 min of ischemia before decapitation) and ischemia/reperfusion (rats were subjected to 30 min of ischemia then 60 minutes of reperfusion before decapitation). The selected parameters for oxidative stress were the activities of the antioxidant enzymes: glutathione peroxidase (GSHPx), superoxide dismutase (SOD), and catalase as well as malondialdehyde (MDA) levels. Metformin reduced the elevated activites of GSHPx, SOD and catalase as well as MDA levels in cerebrum of rats exposed to ischemia and ischemia/reperfusion injures. Metformin improved the oxidative stress induced by ischemia and ischemia/reperfusion injuries. This may be a mechanism that explains the cerebroprotective effect of the drug.

  20. The Effects of Two Anesthetics, Propofol and Sevoflurane, on Liver Ischemia/Reperfusion Injury.

    PubMed

    Xu, Zhijie; Yu, Jingui; Wu, Jianbo; Qi, Feng; Wang, Huanliang; Wang, Zhigang; Wang, Zhou

    2016-01-01

    Propofol and sevoflurane are widely used in clinical anesthesia, and both have been reported to exert a protective effect in organ ischemia/reperfusion (IR). This study aims to investigate and compare the effects of propofol and sevoflurane on liver ischemia/reperfusion and the precise molecular mechanism. Rats were randomized into four groups: the sham group, I/R group, propofol treatment group (infused with 1% propofol at 500 μg· kg-1· min-1), and sevoflurane treatment group (infused with 3% (2 L/min) sevoflurane). The liver ischemia/reperfusion model was used to evaluate the hepatoprotective effect on ischemic injury. Liver enzyme leakage, liver cytokines and histopathological examination were used to evaluate the extent of hepatic ischemia/reperfusion injury. Oxidative stress was investigated by evaluating the levels of Malondialdehyde(MDA), Superoxide Dismutase(SOD) and NO. The terminal dexynucleotidyl transferase(TdT)-mediated dUTP nick end labeling (TUNEL) assay and western blot were applied to detect apoptosis in the ischemic liver tissue and its mechanism. Both propofol and sevoflurane attenuated the extent of hepatic ischemia/reperfusion injury which is evident from the hisopathological studies and alterations in liver enzymes such as AST and LDH by inhibiting Nuclear factor kappa B (NFx03BA;B) activation and subsequent alterations in inflammatory cytokines interleukin-1(IL-1), interleukin-6(IL-6), tumor necrosis factor-alpha (TNF-α) and increased IL10 release. Propofol exhibited a similar protective effect and a lower IL-1 release, while sevoflurane decreased TNF-α leakage more significantly. Meanwhile, oxidative stress was attenuated by reduced MDA and NO and elevated SOD release. The expression of antiapoptotic protein Bcl-2 and Bcl-xl were enhanced while that of apoptotic protein Bax and Bak were reduced by both propofol and sevoflurane to regulate hepatic apoptosis. In addition, propofol downregulated the phosphorylation of AKT and Bad protein

  1. Anatomic renal artery branch microdissection to facilitate zero-ischemia partial nephrectomy.

    PubMed

    Ng, Casey K; Gill, Inderbir S; Patil, Mukul B; Hung, Andrew J; Berger, Andre K; de Castro Abreu, Andre Luis; Nakamoto, Masahiko; Eisenberg, Manuel S; Ukimura, Osamu; Thangathurai, Duraiyah; Aron, Monish; Desai, Mihir M

    2012-01-01

    Robot-assisted and laparoscopic partial nephrectomies (PNs) for medial tumors are technically challenging even with the hilum clamped and, until now, were impossible to perform with the hilum unclamped. Evaluate whether targeted vascular microdissection (VMD) of renal artery branches allows zero-ischemia PN to be performed even for challenging medial tumors. A prospective cohort evaluation of 44 patients with renal masses who underwent robot-assisted or laparoscopic zero-ischemia PN either with anatomic VMD (group 1; n=22) or without anatomic VMD (group 2; n=22) performed by a single surgeon from April 2010 to January 2011. Zero-ischemia PN with VMD incorporates four maneuvers: (1) preoperative computed tomographic reconstruction of renal arterial branch anatomy, (2) anatomic dissection of targeted, tumor-specific tertiary or higher-order renal arterial branches, (3) neurosurgical aneurysm microsurgical bulldog clamp(s) for superselective tumor devascularization, and (4) transient, controlled reduction of blood pressure, if necessary. Baseline, perioperative, and postoperative data were collected prospectively. Group 1 tumors were larger (4.3 vs 2.6 cm; p=0.011), were more often hilar (41% vs 9%; p=0.09), were medial (59% and 23%; p=0.017), were closer to the hilum (1.46 vs 3.26 cm; p=0.0002), and had a lower C index score (2.1 vs 3.9; p=0.004) and higher RENAL nephrometry scores (7.7 vs 6.2; p=0.013). Despite greater complexity, no group 1 tumor required hilar clamping, and perioperative outcomes were similar to those of group 2: operating room time (4.7 and 4.1h), median blood loss (200 and 100ml), surgical margins for cancer (all negative), major complications (0% and 9%), and minor complications (18% and 14%). The median serum creatinine level was similar 2 mo postoperatively (1.2 and 1.3mg/dl). The study was limited by the relatively small sample size. Anatomic targeted dissection and superselective control of tumor-specific renal arterial branches facilitate

  2. Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes.

    PubMed

    Seo, Jeong Yeol; Lee, Choong Hyun; Cho, Jun Hwi; Choi, Jung Hoon; Yoo, Ki-Yeon; Kim, Dae Won; Park, Ok Kyu; Li, Hua; Choi, Soo Young; Hwang, In Koo; Won, Moo-Ho

    2009-10-15

    Seleno-organic compound, ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), is a substrate with radical-scavenging activity. In this study, we observed the neuroprotective effects of ebselen against ischemic damage and on GABA shunt enzymes such as glutamic acid decarboxylase 67 (GAD67), GABA transaminse (GABA-T) and succinic semialdehyde dehydrogenase (SSADH) in the hippocampal CA1 region after 5 min of transient forebrain ischemia in gerbils. For this, vehicle (physiological saline) or ebselen was administered 30 min before or after ischemia/reperfusion and sacrificed 4 days after ischemia/reperfusion. The administration of ebselen significantly reduced the neuronal death in the CA1 region induced by ischemia/reperfusion. In addition, treatment with ebselen markedly elevated GAD67, GABA-T and SSADH immunoreactivity and their protein levels compared to that in the vehicle-treated group, respectively. These results suggest that ebselen protects neurons from ischemic damage via control of the expressions of GABA shunt enzymes to enter the TCA cycle.

  3. Mucosal injury induced by ischemia and reperfusion in the piglet intestine: Influences of age and feeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crissinger, K.D.; Granger, D.N.

    1989-10-01

    The pathogenesis of neonatal necrotizing enterocolitis is unknown, but enteral alimentation, infectious agents, and mesenteric ischemia have been frequently invoked as primary initiators of the disease. To define the vulnerability of the intestinal mucosa to ischemia and reperfusion in the developing piglet, we evaluated changes in mucosal permeability using plasma-to-lumen clearance of chromium 51-labeled ethylenediaminetetraacetic acid in the ileum of anesthetized 1-day-, 3-day-, 2-wk-, and 1-mo-old piglets as a function of (a) duration of intestinal ischemia (20, 40, or 60 min of total superior mesenteric artery occlusion), (b) feeding status (fasted or nursed), and (c) composition of luminal perfusate (balancedmore » salt solution vs. predigested cow milk-based formula). Baseline chromium 51-labeled ethylenediaminetetraacetic acid clearance was not significantly altered by ischemia, irrespective of duration, or feeding in all age groups. However, clearances were significantly elevated during reperfusion after 1 h of total intestinal ischemia in all age groups, whether fasted or fed. Reperfusion-induced increases in clearance did not differ among age groups when the bowel lumen was perfused with a balanced salt solution. However, luminal perfusion with formula resulted in higher clearances in 1-day-old piglets compared with all older animals. Thus, the neonatal intestine appears to be more vulnerable to mucosal injury induced by ischemia and reperfusion in the presence of formula than the intestine of older animals.« less

  4. The Synergistic Neuroprotective Effects of Combined Rosuvastatin and Resveratrol Pretreatment against Cerebral Ischemia/Reperfusion Injury.

    PubMed

    Liu, Ying; Yang, HongNa; Jia, GuoYong; Li, Lan; Chen, Hui; Bi, JianZhong; Wang, CuiLan

    2018-06-01

    It is well accepted that both rosuvastatin and resveratrol exert neuroprotective effects on cerebral ischemia/reperfusion injury through some common pathways. Resveratrol has also been demonstrated to protect against cerebral ischemia/reperfusion injury through enhancing autophagy. Thus, we hypothesized that combined rosuvastatin and resveratrol pretreatment had synergistic effects on cerebral ischemia/reperfusion injury. Adult male Sprague Dawley rats receiving middle cerebral artery occlusion surgery as animal model of cerebral ischemia/reperfusion injury were randomly assigned to 4 groups: control, resveratrol alone pretreatment, rosuvastatin alone pretreatment, and combined rosuvastatin and resveratrol pretreatment. Rosuvastatin (10 mg/kg) or resveratrol (50 mg/kg) was administrated once a day for 7 days before cerebral ischemia onset. We found that combined rosuvastatin and resveratrol pretreatment not only significantly decreased the neurologic defective score, cerebral infarct volume, the levels of caspase-3, and Interleukin-1β (IL-1β) but also significantly increased the ratios of Bcl-2/Bax and LC3II/LC3I, as well as the level of Becline-1, compared with resveratrol alone or rosuvastatin alone pretreatment group. Rosuvastatin alone pretreatment significantly increased the ratio of LC3II/LC3I and the level of Beclin-1. However, there were no significant differences in the neurologic defective score, cerebral infarct volume, the levels of caspase-3, IL-1β, and Beclin-1, and the ratios of Bcl-2/Bax and LC3II/LC3I between resveratrol pretreatment group and rosuvastatin pretreatment group. Synergistically enhanced antiapoptosis, anti-inflammation, and autophagy activation might be responsible for the synergistic neuroprotective effects of combining rosuvastatin with resveratrol on cerebral ischemia/reperfusion injury. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  5. Isoflurane reduces the ischemia reperfusion injury surge: a longitudinal study with MRI.

    PubMed

    Taheri, Saeid; Shunmugavel, Anandakumar; Clark, Danielle; Shi, Honglian

    2014-10-24

    Recent studies show neuroprotective benefits of isoflurane (ISO) administered during cerebral ischemia. However, the available studies evaluated cerebral injury only at a single time point following the intervention and thus the longitudinal effect of ISO on ischemic tissues remains to be investigated. The objective of the present study was to investigate the longitudinal effect of ISO treatment in counteracting the deleterious effect of ischemia by evoking the transcription factor, hypoxia inducible factor-1 (HIF-1), and vascular endothelial growth factor (VEGF). Focal cerebral ischemia was induced in 70 rats by filament medial cerebral artery occlusion (MCAo) method. MCAo rats were randomly assigned to control (90 min ischemia) and MCAo+ISO (90 min ischemia+2% ISO) groups. Infarct volume, edema, intracerebral hemorrhage (ICH), and regional cerebral blood flow (rCBF) were measured in eight in vivo sequential MR imaging sessions for 3 weeks. Western blot analysis and immunofluorescence were used to determine the expression level of HIF-1α (the regulatable subunit of HIF-1) and VEGF proteins. ISO inhalation during ischemia significantly decreased the surge of infarct volume, edema, ICH, and reduced the mortality rate (p<0.01). ISO transiently altered the rCBF, significantly enhanced the expression of HIF-1α and VEGF, and decreased the immune cell infiltration. Locomotor dysfunction was ameliorated at a significantly faster pace, and the benefit was seen to persist up to three weeks. Treatment with ISO during ischemia limits the deadly surge in the dynamics of ischemia reperfusion injury with no observed long-term inverse effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. [Effect of curcumine on the nuclear pathway of JNK during hippocampal ischemia/reperfusion injury in SHR].

    PubMed

    Ye, Ke-Ping; Chen, Chun-Ru; Zheng, Jin-Wei; Cao, Hong; Ji, Bin; Zhou, Rui; Meng, Zhi-Yan; Li, Jun; Lian, Qing-Quan

    2010-11-01

    To investigate the diversify of the nuclear pathway of c-Jun NH2-terminal kinases (JNK) during transient brain ischemia/reperfusion injury in hippocampal neuron apoptosis in spontaneously hypertensive rats (SHR) and to test whether the neuroprotection of curcumine on transient brain ischemia/reperfusion injury in SHR is related to the nuclear pathway of JNK. Male Wistar-Kyoto (WKY) rats and SHR were randomly divided into five groups (n = 6): WKY sham group (W-Sham), WKY ischemia/reperfusion group (W-I/ R), SHR sham group (S-Sham), SHR ischemia/reperfusion group (S-I/R) and SHR curcumine (a chinese traditional medicine)100 mg/kg treatment group (S-Cur), which were sacrificed at 2 h, 6 h, 24 h, 3 d and 7 d after reperfusion. Global brain ischemic model was established by 4-VO method. The TdT-mediated dUTP nick end labeling (TUNEL) method was used to detect the neuron apoptosis in hippocampal CA1 region. The immunohistochemical method was applied to investigate the expressions of c-jun and c-fos in hippocampal CA1 region. The expressions of apoptosis and c-jun and c-fos in CA1 region in S-Sham group, W-I/R group and S-I/R group were more than those in W-Sham group (P < 0.05), were significantly increased in S-I/R group than those in W-I/R group (P < 0.05), and were significantly decreased in S-Cur group than those in S-I/R group (P < 0.05). Neuronal apoptosis and the expressions of c-jun and c-fos are more in SHR hippocampal. Global brain ischemia/reperfusion injury induces more expressions of apoptosis in hippocampal neuron in SHR, and the more expressions of c-jun and c-fos may participate in that process. The neuroprotection of curcumine in SHR is related to c-jun and c-fos.

  7. Lack of chlorpromazine effect on skeletal muscle metabolism after ischemia and a short reperfusion period.

    PubMed

    Piccinato, Carlos E; Salles Roselino, José E; Massuda, Carlos A; Cherri, Jesualdo

    2004-01-01

    The great resistance of muscle to ischemia was used to study blood flow-dependent phenomena produced by anesthetic drugs in this condition. A short reperfusion period was used in order to favor metabolic changes indicative of an effect of chlorpromazine (CPZ) on blood flow. Gracilis muscles of dogs were submitted to 5 h of ischemia and 30 min of reperfusion. CPZ-treated animals were injected I.V. (2 mg/kg) 10 min before the beginning of ischemia. Biopsies provided the material for tissue measurements. Lactate content and pH were determined in blood samples collected from a muscle efferent vein. In both the CPZ-treated and nontreated groups, ischemia induced a decline in muscle glycogen content, with a corresponding increase in muscle lactate and a decrease in mitochondrial respiratory control ratio. After 30 min of reperfusion, tissue levels of lactate did not attain preischemic values but showed a clear decline in the two experimental groups, evidencing the reversible state of the muscle. All other metabolic parameters remained unchanged. Mitochondrial respiratory control remained functional during ischemia and reperfusion. Blood pH displayed similar changes in both groups. There was no metabolic indication that the drug affected blood flow during early reperfusion and/or of a greater sensitivity of muscle endothelial cells to anesthetic drugs. Copyright 2004 Wiley-Liss, Inc.

  8. Effect of enriched environment on angiogenesis and neurological functions in rats with focal cerebral ischemia.

    PubMed

    Zhang, Xin; Chen, Xiu-Ping; Lin, Jun-Bin; Xiong, Yu; Liao, Wei-Jing; Wan, Qi

    2017-01-15

    The purpose of this study was to investigate the effect of enriched environment (EE) on cerebral angiogenesis after ischemia-reperfusion injury. Middle cerebral artery occlusion (MCAO) followed by reperfusion was performed in rats to set up an animal model of ischemia-reperfusion injury. In a set of behavioral tests, we demonstrated that the animals in the IEE (ischemia + enriched environment) group exhibited significantly improved neurological functions compared to those in the standard housing condition group. In consistent with the functional tests, smaller infarction volumes were observed in the animals of IEE group. Laser scanning confocal microscopy and 3D quantitative analysis of cerebral microvessels revealed that EE treatment increased the total vessel surface area and number of branch point in the ischemic boundary zone. IgG extraction assay showed that the blood brain barrier (BBB) leakage in the ischemic brain was attenuated after EE treatment. EE treatment also enhanced endothelial cells (ECs) proliferation and increased the expression levels of VEGF and its receptor Flk-1 after ischemia-reperfusion injury. Analyses of Spearman's correlation coefficients indicated a correlation of mNSS scores with enhanced cerebral angiogenesis. Together, the results suggest that EE treatment-induced cerebral angiogenesis may contribute to the improved neurological outcome of stroke animals after ischemia-reperfusion injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Neuroprotective Effect of Resveratrol on Acute Brain Ischemia Reperfusion Injury by Measuring Annexin V, p53, Bcl-2 Levels in Rats.

    PubMed

    Kizmazoglu, Ceren; Aydin, Hasan Emre; Sevin, Ismail Ertan; Kalemci, Orhan; Yüceer, Nurullah; Atasoy, Metin Ant

    2015-12-01

    Cerebral ischemia is as a result of insufficient cerebral blood flow for cerebral metabolic functions. Resveratrol is a natural phytoalexin that can be extracted from grape's skin and had potent role in treating the cerebral ischemia. Apoptosis, a genetically programmed cellular event which occurs after ischemia and leads to biochemical and morphological changes in cells. There are some useful markers for apoptosis like Bcl-2, bax, and p53. The last reports, researchers verify the apoptosis with early markers like Annexin V. We preferred in this experimental study a model of global cerebral infarction which was induced by bilateral common carotid artery occlusion method. Rats were randomly divided into 4 groups : sham, ischemia-reperfusion (I/R), I/R plus 20 mg/kg resveratrol and I/R plus 40 mg/kg resveratrol. Statistical analysis was performed using Sigmastat 3.5 ve IBM SPSS Statistics 20. We considered a result significant when p<0.001. After administration of resveratrol, Bcl-2 and Annexin levels were significantly increased (p<0.001). Depending on the dose of resveratrol, Bcl2 levels increased, p53 levels decreased but Annexin V did not effected. P53 levels were significantly increased in ishemia group, so apoptosis is higher compared to other groups. In the acute period, Annexin V levels misleading us because the apoptotic cell counts could not reach a certain level. Therefore we should support our results with bcl-2 and p53.

  10. Blockade of Central Angiotensin II AT1 Receptor Protects the Brain from Ischemia/Reperfusion Injury in Normotensive Rats

    PubMed Central

    Panahpour, Hamdolah; Nekooeian, Ali Akbar; Dehghani, Gholam Abbas

    2014-01-01

    Background: Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor blockade by transient focal cerebral ischemia in normotensive rats. Methods: In this experimental study, 48 male Sprague-Dawley rats were randomly divided into four groups (n=12). Sham group, the control ischemic group, and two ischemic groups received candesartan at doses of 0.1 or 0.5 mg/kg at one hour before ischemia. Transient focal cerebral ischemia was induced by 60 minutes occlusion of the middle cerebral artery, followed by 24 h reperfusion. The neurological deficit score was evaluated at the end of the reperfusion period. The total cortical and striatal infarct volumes were determined using triphenyltetrazolium chloride staining technique. Tissue swelling was calculated for the investigation of ischemic brain edema formation. Results: In comparison with the control ischemic group, AT1 receptor blockade with both doses of candesartan (0.1 or 0.5 mg/kg) significantly improved neurological deficit and lowered cortical and striatal infarct sizes. In addition, pretreatment with candesartan significantly reduced ischemia induced tissue swelling. Conclusion: Angiotensin II by stimulating AT1 receptors, participates in ischemia-reperfusion injuries and edema formation. AT1 receptor blockade with candesartan decreased ischemic brain injury and edema and improved neurological outcome. PMID:25429176

  11. Ischemia and No Obstructive Coronary Artery Disease (INOCA): Developing Evidence-based Therapies and Research Agenda for the Next Decade

    PubMed Central

    Merz, C. Noel Bairey; Pepine, Carl J.; Walsh, Mary Norine; Fleg, Jerome L.

    2017-01-01

    The Cardiovascular Disease in Women Committee of the American College of Cardiology, in conjunction with interested parties (from the National Heart, Lung, and Blood Institute, American Heart Association, European Society of Cardiology), convened a working group to develop a consensus on the syndrome of myocardial ischemia with no obstructive coronary arteries (INOCA). In general, these patients have elevated risk for a cardiovascular event (including acute coronary syndrome, heart failure hospitalization, stroke, and repeated cardiovascular procedures) vs reference subjects, and appear to be at higher risk for development of heart failure with preserved ejection fraction (HFpEF). A subgroup of these patients also has coronary microvascular dysfunction (CMD) and evidence of inflammation. This document provides a summary of findings and recommendations toward the development of an integrated approach for identifying and managing patients with INOCA, and outlining knowledge gaps in the area. Working group members critically reviewed available literature and current practices for risk assessment and state-of-the-science techniques in multiple areas, with a focus on next steps needed to develop evidence-based therapies. This report presents highlights of this working group review and a summary of suggested research directions to advance this field in the next decade. PMID:28289007

  12. Renal sympathetic denervation suppresses atrial fibrillation induced by acute atrial ischemia/infarction through inhibition of cardiac sympathetic activity.

    PubMed

    Zhou, Qina; Zhou, Xianhui; TuEr-Hong, ZuKe-la; Wang, Hongli; Yin, Tingting; Li, Yaodong; Zhang, Ling; Lu, Yanmei; Xing, Qiang; Zhang, Jianghua; Yang, Yining; Tang, Baopeng

    2016-01-15

    This study aims to explore the effects of renal sympathetic denervation (RSD) on atrial fibrillation (AF) inducibility and sympathetic activity induced by acute atrial ischemia/infarction. Acute ischemia/infarction was induced in 12 beagle dogs by ligating coronary arteries that supply the atria. Six dogs in the sham-RSD group did not undergo RSD, and six dogs without coronary artery ligation served as controls. AF induction rate, sympathetic discharge, catecholamine concentration and densities of tyrosine hydroxylase-positive nerves were measured. Acute atrial ischemia/infarction resulted in a significant increase of AF induction rate, which was decreased by RSD compared to controls (P<0.05). The root-mean-square peak value, peak area and number of sympathetic discharges were significantly augmented by atrial ischemia relative to the baseline and control (P<0.05). The number of sympathetic discharges was significantly reduced in the RSD group, compared to the control and sham-RSD groups (P<0.05). Norepinephrine and epinephrine concentrations in the atria, ventricle and kidney were elevated by atrial ischemia/infarction, but were reduced by RSD (P<0.05). Sympathetic hyperactivity was associated with pacing-induced AF after acute atrial ischemia/infarction. RSD has the potential to reduce the incidence of new-onset AF after acute atrial ischemia/infarction. The inhibition of cardiac sympathetic activity by RSD may be one of the major underlying mechanisms for the marked reduction of AF inducibility. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Use of OCTA, FA, and Ultra-Widefield Imaging in Quantifying Retinal Ischemia: A Review.

    PubMed

    Or, Chris; Sabrosa, Almyr S; Sorour, Osama; Arya, Malvika; Waheed, Nadia

    2018-01-01

    As ischemia remains a key prognostic factor in the management of various diseases including diabetic retinopathy, an increasing amount of research has been dedicated to its quantification as a potential biomarker. Advancements in the quantification of retinal ischemia have been made with the imaging modalities of fluorescein angiography (FA), ultra-widefield imaging (UWF), and optical coherence tomography angiography (OCTA), with each imaging modality offering certain benefits over the others. FA remains the gold standard in assessing the extent of ischemia. UWF imaging has allowed for the assessment of peripheral ischemia via FA. It is, however, OCTA that offers the best visualization of retinal vasculature with its noninvasive depth-resolved imaging and therefore has the potential to become a mainstay in the assessment of retinal ischemia. The primary purpose of this article is to review the use of FA, UWF, and OCTA to quantify retinal ischemia and the various methods described in the literature by which this is achieved. Copyright 2018 Asia-Pacific Academy of Ophthalmology.

  14. Intraperitoneal Administration of Silymarin Protects End Organs from Multivisceral Ischemia/Reperfusion Injury in a Rat Model

    PubMed Central

    Koçarslan, Aydemir; Koçarslan, Sezen; Aydin, Mehmet Salih; Gunay, Şamil; Karahan, Mahmut Alp; Taşkın, Abdullah; Üstunel, Murat; Aksoy, Nurten

    2016-01-01

    Objective To determine whether intraperitoneal silymarin administration has favorable effects on the heart, lungs, kidney, and liver and on oxidative stress in a rat model of supraceliac aorta ischemia/reperfusion injury. Methods Thirty male Wistar albino rats were divided equally into three groups: sham, control, and silymarin. The control and silymarin groups underwent supraceliac aortic occlusion for 45 min, followed by a 60 min period of reperfusion under terminal anesthesia. In the silymarin group, silymarin was administered intraperitoneally during ischemia at a dose of 200 mg/kg. Rats were euthanized using terminal anesthesia, and blood was collected from the inferior vena cava for total antioxidant capacity, total oxidative status, and oxidative stress index measurement. Lungs, heart, liver and kidney tissues were histologically examined. Results Ischemia/reperfusion injury significantly increased histopathological damage as well as the total oxidative status and oxidative stress index levels in the blood samples. The silymarin group incurred significantly lesser damage to the lungs, liver and kidneys than the control group, while no differences were observed in the myocardium. Furthermore, the silymarin group had significantly lower total oxidative status and oxidative stress index levels than the control group. Conclusion Intraperitoneal administration of silymarin reduces oxidative stress and protects the liver, kidney, and lungs from acute supraceliac abdominal aorta ischemia/reperfusion injury in the rat model. PMID:28076620

  15. Protective effect of Shenfu injection preconditioning on lung ischemia-reperfusion injury

    PubMed Central

    Zhang, Hong; Wan, Zhanhai; Yan, Xiang; Wang, De-Gui; Leng, Yufang; Liu, Yongqiang; Zhang, Yan; Zhang, Haijun; Han, Xuena

    2016-01-01

    Lung ischemia-reperfusion injury remains a problem in thoracic surgery, as minimal progress has been made concerning its prevention and control. In the present study, the protective effects and the underlying mechanism of Shenfu injection preconditioning on a rat lung ischemia-reperfusion model was investigated. Shenfu injection is a well-known Chinese traditional medicine, which is composed of Red Radix Ginseng and Radix Aconitum carmichaelii, with ginseng saponin and aconitum alkaloids as the active ingredients. A total of 72 specific pathogen-free, healthy male Wistar rats were randomly divided into control, model and Shenfu injection (10 ml/kg injection prior to injury) groups and were assessed at the following points: Ischemia 45 min; reperfusion 60 min; and reperfusion 120 min. Blood collected from the aorta abdominalis was cryopreserved at −70°C for the analysis of malondialdehyde (MDA) and superoxide dismutase (SOD) activity. Lung tissues were divided into three equal sections in order to assess the wet-to-dry (W/D) lung ratio, tumor necrosis factor (TNF)-α expression levels, myeloperoxidase (MPO) activity, alveolar damage, total protein and hematoxylin and eosin staining. The results demonstrated that the lung W/D weight ratio, TNF-α expression levels and SOD activity in the Shenfu group were significantly lower at 120 min reperfusion (P<0.05), as compared with the model group. MPO and MDA activity significantly decreased following reperfusion at 60 and 120 min (P<0.05), as compared with the model group. In addition, the degree of alveolar damage in the Shenfu group was significantly decreased (P<0.05), as compared with the model group. In addition, compared with the model group, the degree of alveolar damage in the Shenfu group was significantly lower (P<0.05); however, no significant changes in total protein were observed. The extent of alveolar structural damage and the proportion of interstitial neutrophils and alveolar and interstitial red blood

  16. Outcomes of lower extremity bypass performed for acute limb ischemia

    PubMed Central

    Baril, Donald T.; Patel, Virendra I.; Judelson, Dejah R.; Goodney, Philip P.; McPhee, James T.; Hevelone, Nathanael D.; Cronenwett, Jack L.; Schanzer, Andres

    2013-01-01

    Objective Acute limb ischemia remains one of the most challenging emergencies in vascular surgery. Historically, outcomes following interventions for acute limb ischemia have been associated with high rates of morbidity and mortality. The purpose of this study was to determine contemporary outcomes following lower extremity bypass performed for acute limb ischemia. Methods All patients undergoing infrainguinal lower extremity bypass between 2003 and 2011 within hospitals comprising the Vascular Study Group of New England were identified. Patients were stratified according to whether or not the indication for lower extremity bypass was acute limb ischemia. Primary end points included bypass graft occlusion, major amputation, and mortality at 1 year postoperatively as determined by Kaplan-Meier life table analysis. Multivariable Cox proportional hazards models were constructed to evaluate independent predictors of mortality and major amputation at 1 year. Results Of 5712 lower extremity bypass procedures, 323 (5.7%) were performed for acute limb ischemia. Patients undergoing lower extremity bypass for acute limb ischemia were similar in age (66 vs 67; P = .084) and sex (68% male vs 69% male; P = .617) compared with chronic ischemia patients, but were less likely to be on aspirin (63% vs 75%; P < .0001) or a statin (55% vs 68%; P < .0001). Patients with acute limb ischemia were more likely to be current smokers (49% vs 39%; P < .0001), to have had a prior ipsilateral bypass (33% vs 24%; P = .004) or a prior ipsilateral percutaneous intervention (41% vs 29%; P = .001). Bypasses performed for acute limb ischemia were longer in duration (270 vs 244 minutes; P = .007), had greater blood loss (363 vs 272 mL; P < .0001), and more commonly utilized prosthetic conduits (41% vs 33%; P = .003). Acute limb ischemia patients experienced increased in-hospital major adverse events (20% vs 12%; P < .0001) including myocardial infarction, congestive heart failure exacerbation

  17. Outcomes of lower extremity bypass performed for acute limb ischemia.

    PubMed

    Baril, Donald T; Patel, Virendra I; Judelson, Dejah R; Goodney, Philip P; McPhee, James T; Hevelone, Nathanael D; Cronenwett, Jack L; Schanzer, Andres

    2013-10-01

    Acute limb ischemia remains one of the most challenging emergencies in vascular surgery. Historically, outcomes following interventions for acute limb ischemia have been associated with high rates of morbidity and mortality. The purpose of this study was to determine contemporary outcomes following lower extremity bypass performed for acute limb ischemia. All patients undergoing infrainguinal lower extremity bypass between 2003 and 2011 within hospitals comprising the Vascular Study Group of New England were identified. Patients were stratified according to whether or not the indication for lower extremity bypass was acute limb ischemia. Primary end points included bypass graft occlusion, major amputation, and mortality at 1 year postoperatively as determined by Kaplan-Meier life table analysis. Multivariable Cox proportional hazards models were constructed to evaluate independent predictors of mortality and major amputation at 1 year. Of 5712 lower extremity bypass procedures, 323 (5.7%) were performed for acute limb ischemia. Patients undergoing lower extremity bypass for acute limb ischemia were similar in age (66 vs 67; P = .084) and sex (68% male vs 69% male; P = .617) compared with chronic ischemia patients, but were less likely to be on aspirin (63% vs 75%; P < .0001) or a statin (55% vs 68%; P < .0001). Patients with acute limb ischemia were more likely to be current smokers (49% vs 39%; P < .0001), to have had a prior ipsilateral bypass (33% vs 24%; P = .004) or a prior ipsilateral percutaneous intervention (41% vs 29%; P = .001). Bypasses performed for acute limb ischemia were longer in duration (270 vs 244 minutes; P = .007), had greater blood loss (363 vs 272 mL; P < .0001), and more commonly utilized prosthetic conduits (41% vs 33%; P = .003). Acute limb ischemia patients experienced increased in-hospital major adverse events (20% vs 12%; P < .0001) including myocardial infarction, congestive heart failure exacerbation, deterioration in renal function

  18. Exercise preconditioning improves behavioral functions following transient cerebral ischemia induced by 4-vessel occlusion (4-VO) in rats.

    PubMed

    Tahamtan, Mahshid; Allahtavakoli, Mohammad; Abbasnejad, Mehdi; Roohbakhsh, Ali; Taghipour, Zahra; Taghavi, Mohsen; Khodadadi, Hassan; Shamsizadeh, Ali

    2013-12-01

    There is evidence that exercise decreases ischemia/reperfusion injury in rats. Since behavioral deficits are the main outcome in patients after stroke, our study was designed to investigate whether exercise preconditioning improves the acute behavioral functions and also brain inflammatory injury following cerebral ischemia. Male rats weighing 250-300 g were randomly allocated into five experimental groups. Exercise was performed on a treadmill 30min/day for 3 weeks. Ischemia was induced by 4-vessel occlusion method. Recognition memory was assessed by novel object recognition task (NORT) and step-through passive avoidance task. Sensorimotor function and motor movements were evaluated by adhesive removal test and ledged beam-walking test, respectively. Brain inflammatory injury was evaluated by histological assessment. In NORT, the discrimination ratio was decreased after ischemia (P < 0.05) and exercise preconditioning improved it in ischemic animals. In the passive avoidance test, a significant reduction in response latency was observed in the ischemic group. Exercise preconditioning significantly decreased the response latency in the ischemic rats (P < 0.001). In the adhesive removal test, latency to touch and remove the sticky labels from forepaw was increased following induction of ischemia (all P < 0.001) and exercise preconditioning decreased these indices compared to the ischemic group (all P < 0.001). In the ledged beam-walking test, the slip ratio was increased following ischemia (P < 0.05).  In the ischemia group, marked neuronal injury in hippocampus was observed. These neuropathological changes were attenuated by exercise preconditioning (P < 0.001). Our results showed that exercise preconditioning improves behavioral functions and maintains more viable cells in the dorsal hippocampus of the ischemic brain.

  19. Failure of Ibuprofen to prevent progressive dermal ischemia after burning in guinea pigs.

    PubMed

    Tan, Qian; Lin, Zihao; Ma, Wenxi; Chen, Huairen; Wang, Lei; Ning, Guansen; Zhou, Xu

    2002-08-01

    It is controversial whether the use of prostaglandin inhibitors could prevent progressive dermal ischemia in the postburn stasis zone. This study evaluated the effect of Ibuprofen on preventing postburn dermal ischemia using an animal model of India ink perfusion and skin transparent preparation techniques. The closely clipped backs of the guinea pigs were bathed in 75 degrees C water for 10s. Ibuprofen-treated groups were fed intragastrically with Ibuprofen (12.5mg/kg) every 6h. All animals were perfused with 70% India ink via a cervical artery cannula at 16 kPa constant pressure at 0, 8, 16, 24h postburn. Skin transparent preparations were made, and 6-keto-PGF(1 alpha) and T x B(2) levels in skin tissue were assessed. India ink filling rates in skin capillary plexuses decreased gradually with postburn time elapsing (P<0.01). 6-keto-PGF(1 alpha) and T x B(2) levels in two groups increased. The increase of T x B(2) was dominant, which was related to postburn dermal ischemia (r=0.742, P<0.01). Though levels of 6-keto-PGF(1 alpha) and T x B(2) decreased in Ibuprofen-treated groups, India ink filling rates showed no significant difference between controls and experimental groups (P>0.05). The results were also confirmed by observation of skin transparent preparations. This study suggests that Ibuprofen has no preventive effect on progressive dermal ischemia after burning.

  20. Effect of short-term ornithine alpha-ketoglutarate pretreatment on intestinal ischemia-reperfusion in rats.

    PubMed

    Gonçalves, Eduardo Silvio Gouveia; Rabelo, Camila Menezes; Prado Neto, Alberico Ximenes do; Garcia, José Huygens Parente; Guimarães, Sérgio Botelho; Vasconcelos, Paulo Roberto Leitão de

    2011-01-01

    To investigate the effects of preventive enteral administration of ornithine alpha-ketoglutarate (OKG) in an ischemia-reperfusion rat model. Sixty rats were randomized into five groups (G1-G5, n = 12). Each group was divided into two subgroups (n = 6) and treated with calcium carbonate (CaCa) or OKG by gavage. Thirty minutes later, the animals were anesthetized with xylazine 15mg + ketamine 1mg ip and subjected to laparotomy. G1-G3 rats served as controls. Rats in groups G4 and G5 were subjected to ischemia for 30 minutes. Ischemia was achieved by clamping the small intestine and its mesentery, delimiting a segment of bowel 5 cm long and 5 cm apart from the ileocecal valve. In addition, G5 rats underwent reperfusion for 30 minutes. Blood samples were collected at the end of the laparotomy (G1), after 30 minutes (G2, G4) and 60 minutes (G3, G5) to determine concentrations of metabolites (pyruvate, lactate), creatine phosphokinase (CPK), thiobarbituric acid reactive substances (TBARS) and glutathione (GSH). There was a significant decrease in tissue pyruvate and lactate and plasma CPK levels in OKG-treated rats at the end of reperfusion period. GSH levels did not change significantly in ischemia and reperfusion groups. However, TBARS levels increased significantly (p<0.05) in tissue samples in OKG-treated rats subjected to ischemia for 30 minutes. Short-term pretreatment with OKG before induction of I/R decreases tissue damage, increases pyruvate utilization for energy production in the Krebs cycle and does not attenuate the oxidative stress in this animal model.

  1. Intraperitoneal administration of apigenin in liver ischemia/reperfusion injury protective effects.

    PubMed

    Tsaroucha, Alexandra K; Tsiaousidou, Anastasia; Ouzounidis, Nikolaos; Tsalkidou, Evanthia; Lambropoulou, Maria; Giakoustidis, Dimitrios; Chatzaki, Ekaterini; Simopoulos, Constantinos

    2016-11-01

    Hepatic injury caused by ischemia/reperfusion (I/R) is a clinical problem associated with major liver surgery. Among other flavonoids, apigenin has shown a promising effect on I/R cases. In this study, we have investigated the effects of apigenin after liver I/R injury in rats. Forty eight rats were randomized into the following eight groups: (1) Control-sham group: rats subjected to the surgical procedure, except for liver I/R; (2) DMSO group: rats subjected to surgery, except for liver I/R given the apigenin solvent dimethyl-sulfoxide intraperitoneally; (3) C60 group; (4) C120 group; (5) C240 group: rats underwent liver ischemia for 45 min followed by reperfusion for 60 min, 120 min, and 240 min; (6) AP60 group; (7) AP120 group; (8) AP240 group: rats underwent liver ischemia for 45 min, and then given apigenin (5 mg) intraperitoneally followed by reperfusion for 60 min, 120 min, and 240 min. Reverse transcription polymerase chain reaction was performed on liver tissues to measure BCL-2/BAX expression, enzyme-linked immunosorbent assay to measure M30/M65 and ICAM-1. Immunohistochemistry was used to identify M30 biomarker in liver tissues. Quantitative variables were tested by Kolmogorov-Smirnov test, repeated measures analysis of variance/Friedman test. Gene levels were assessed by Student's t-test/Mann-Whitney U-test. BCL-2 levels were significantly higher in I/R apigenin groups than in I/R control groups. BAX levels were lower in the AP240 group than in C240 group. Prolongation of reperfusion resulted in increased activation of M30. ICAM-1 levels were lower in the AP240 group than in C240 group. Apigenin seems to inhibit the process of apoptosis and ameliorate the hepatic I/R injury.

  2. Intra-Abdominal Cooling System Limits Ischemia-Reperfusion Injury During Robot-Assisted Renal Transplantation.

    PubMed

    Meier, R P H; Piller, V; Hagen, M E; Joliat, C; Buchs, J-B; Nastasi, A; Ruttimann, R; Buchs, N C; Moll, S; Vallée, J-P; Lazeyras, F; Morel, P; Bühler, L

    2018-01-01

    Robot-assisted kidney transplantation is feasible; however, concerns have been raised about possible increases in warm ischemia times. We describe a novel intra-abdominal cooling system to continuously cool the kidney during the procedure. Porcine kidneys were procured by standard open technique. Groups were as follows: Robotic renal transplantation with (n = 11) and without (n = 6) continuous intra-abdominal cooling and conventional open technique with intermittent 4°C saline cooling (n = 6). Renal cortex temperature, magnetic resonance imaging, and histology were analyzed. Robotic renal transplantation required a longer anastomosis time, either with or without the cooling system, compared to the open approach (70.4 ± 17.7 min and 74.0 ± 21.5 min vs. 48.7 ± 11.2 min, p-values < 0.05). The temperature was lower in the robotic group with cooling system compared to the open approach group (6.5 ± 3.1°C vs. 22.5 ± 6.5°C; p = 0.001) or compared to the robotic group without the cooling system (28.7 ± 3.3°C; p < 0.001). Magnetic resonance imaging parenchymal heterogeneities and histologic ischemia-reperfusion lesions were more severe in the robotic group without cooling than in the cooled (open and robotic) groups. Robot-assisted kidney transplantation prolongs the warm ischemia time of the donor kidney. We developed a novel intra-abdominal cooling system that suppresses the noncontrolled rewarming of donor kidneys during the transplant procedure and prevents ischemia-reperfusion injuries. © 2017 The Authors. American Journal of Transplantation published by Wiley Periodicals, Inc. on behalf of American Society of Transplant Surgeons.

  3. Controversies in cardiovascular care: silent myocardial ischemia

    NASA Technical Reports Server (NTRS)

    Hollenberg, N. K.

    1987-01-01

    The objective evidence of silent myocardial ischemia--ischemia in the absence of classical chest pain--includes ST-segment shifts (usually depression), momentary left ventricular failure, and perfusion defects on scintigraphic studies. Assessment of angina patients with 24-hour ambulatory monitoring may uncover episodes of silent ischemia, the existence of which may give important information regarding prognosis and may help structure a more effective therapeutic regimen. The emerging recognition of silent ischemia as a significant clinical entity may eventually result in an expansion of current therapy--not only to ameliorate chest pain, but to minimize or eliminate ischemia in the absence of chest pain.

  4. Delayed hippocampal neuronal death in young gerbil following transient global cerebral ischemia is related to higher and longer-term expression of p63 in the ischemic hippocampus

    PubMed Central

    Bae, Eun Joo; Chen, Bai Hui; Yan, Bing Chun; Shin, Bich Na; Cho, Jeong Hwi; Kim, In Hye; Ahn, Ji Hyeon; Lee, Jae Chul; Tae, Hyun-Jin; Hong, Seongkweon; Kim, Dong Won; Cho, Jun Hwi; Lee, Yun Lyul; Won, Moo-Ho; Park, Joon Ha

    2015-01-01

    The tumor suppressor p63 is one of p53 family members and plays a vital role as a regulator of neuronal apoptosis in the development of the nervous system. However, the role of p63 in mature neuronal death has not been addressed yet. In this study, we first compared ischemia-induced effects on p63 expression in the hippocampal regions (CA1–3) between the young and adult gerbils subjected to 5 minutes of transient global cerebral ischemia. Neuronal death in the hippocampal CA1 region of young gerbils was significantly slow compared with that in the adult gerbils after transient global cerebral ischemia. p63 immunoreactivity in the hippocampal CA1 pyramidal neurons in the sham-operated young group was significantly low compared with that in the sham-operated adult group. p63 immunoreactivity was apparently changed in ischemic hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. In the ischemia-operated adult groups, p63 immunoreactivity in the hippocampal CA1 pyramidal neurons was significantly decreased at 4 days post-ischemia; however, p63 immunoreactivity in the ischemia-operated young group was significantly higher than that in the ischemia-operated adult group. At 7 days post-ischemia, p63 immunoreactivity was decreased in the hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. Change patterns of p63 level in the hippocampal CA1 region of adult and young gerbils after ischemic damage were similar to those observed in the immunohistochemical results. These findings indicate that higher and longer-term expression of p63 in the hippocampal CA1 region of the young gerbils after ischemia/reperfusion may be related to more delayed neuronal death compared to that in the adults. PMID:26199612

  5. Revascularization and Muscle Adaptation to Limb Demand Ischemia in Diet Induced Obese Mice

    PubMed Central

    Albadawi, Hassan; Tzika, Aria; Rask-Madsen, Christian; Crowley, Lindsey M.; Koulopoulos, Michael W.; Yoo, Hyung-Jin; Watkins, Michael T.

    2016-01-01

    Background Obesity and type 2 diabetes are major risk factors for peripheral arterial disease (PAD) in humans which can result in lower limb demand ischemia and exercise intolerance. Exercise triggers skeletal muscle adaptation including increased vasculogenesis. The goal of this study was to determine whether demand ischemia modulates revascularization, fiber size, and signaling pathways in the ischemic hind limb muscles of mice with diet-induced obesity (DIO). Materials and Methods DIO mice (n=7) underwent unilateral femoral artery ligation (FAL) and recovered for 2-weeks followed by 4-weeks with daily treadmill exercise to induce demand ischemia. A parallel sedentary ischemia group (n=7) had FAL without exercise. The contralateral limb muscles of sedentary ischemia served as control. Muscles were examined for capillary density, myofiber cross-sectional area (CSA), cytokine levels, and phosphorylation of STAT3 and ERK1/2. Results Exercise significantly enhanced capillary density (p<0.01) and markedly lowered CSA (p<0.001) in demand ischemia compared to sedentary ischemia. These findings coincided with a significant increase in G-CSF (p<0.001) and IL-7 (p<0.01) levels. In addition, phosphorylation of STAT3 and ERK1/2 (p<0.01) were increased while UCP-1 and MCP-1 protein levels were lower (p<0.05) without altering VEGF and TNFα protein levels. Demand ischemia increased the PGC1α mRNA (p<0.001) without augmenting PGC1α protein levels. Conclusions Exercise induced limb demands ischemia in the setting of DIO causes myofiber atrophy despite an increase in muscle capillary density. The combination of persistent increase in TNFα, lower VEGF and failure to increase PGC1α protein may reflect a deficient adaption to demand ischemia in DIO. PMID:27620999

  6. Protective effect of FK506 on myocardial ischemia/reperfusion injury by suppression of CaN and ASK1 signaling circuitry.

    PubMed

    Feng, Xing; Li, Jing; Liu, Jinyu; Jin, Minghua; Liu, Xiaomei; Du, Haiying; Zhang, Long; Sun, Zhiwei; Li, Xiaoguang

    2011-03-01

    We investigated protective effect of FK506 on rat hearts subjected to ischemia/reperfusion (I/R) injury by regulating CaN and ASK1. Wistar rats were divided into four groups: Ischemia/reperfusion group (I/R), FK506 + Ischemia/reperfusion group (FK506-I/R), sham group, and FK506 + sham group (FK506-sham). Ischemia/reperfusion was achieved by occluding left coronary artery for 30 min and subsequently reperfusing for 120 min. FK506 was administered 15 min before ischemia. Rats in sham group and FK506-sham group were operated only by placing a ligature around the coronary artery, and the blood supply was not blocked. I/R group showed a rapid increase in TUNEL-positive cells and high risks of histopathological changes in damaged cardiac tissues. FK506 reduced the infarct size and inhibited the activation of CaN enzyme in FK506-I/R group. Increase in Bcl-2/Bax ratio in FK506-IR group indicated that FK506 protected myocardium from apoptosis induced by IR. The activity of CaN and ASK1 protein level decreased significantly after I/R injury in FK506-treated I/R heart. FK506 suppresses the activation of CaN and ASK1 through CaN-mediated apoptosis pathway, and ASK1 negatively regulates CaN activity. Suppression of CaN and ASK1 signaling circuitry are involved in protective effect of FK506 on rat myocardium I/R injury.

  7. Remifentanil ameliorates intestinal ischemia-reperfusion injury

    PubMed Central

    2013-01-01

    Background Intestinal ischemia-reperfusion injury (IRI) can occur in clinical scenarios such as organ transplantation, trauma and cardio-pulmonary bypass, as well as in neonatal necrotizing enterocolitis or persistent ductus arteriosus. Pharmacological protection by pretreating (“preconditioning”) with opioids attenuates IRI in a number of organs. Remifentanil appears particularly attractive for this purpose because of its ultra-short duration of action and favorable safety profile. To date, little is known about opioid preconditioning of the intestine. Methods Young adult C57BL/6J mice were randomly assigned to receive tail vein injections of 1 μg/kg of remifentanil or normal saline and underwent either ischemia-reperfusion of the intestine or a sham laparotomy. Under isoflurane anesthesia, the mice were subjected to intestinal ischemia-reperfusion by occlusion (clamping) of the superior mesenteric artery for 30 min, followed by unclamping and 60 min of reperfusion. After completion of this protocol, tissue injury and lipid peroxidation in jejunum and ileum were analyzed by histology and malondialdehyde (MDA), respectively. Systemic interleukin (IL)-6 was determined in the plasma by ELISA. Results Pretreatment with remifentanil markedly reduced intestinal IRI (P < 0.001): In the ileum, we observed a more than 8-fold decrease in injured villi (4% vs 34% in saline-pretreated animals). In fact, the mucosa in the remifentanil group was as healthy as that of sham-operated animals. This protective effect was not as pronounced in the jejunum, but the percentage of damaged villi was still reduced considerably (18% vs 42%). There was up to 3-fold more tissue MDA after intestinal ischemia-reperfusion than after sham laparotomy, but this increase in lipid peroxidation was prevented by preconditioning with remifentanil (P < 0.05). The systemic inflammatory response triggered by intestinal IRI was significantly attenuated in mice pretreated with remifentanil (159 vs 805

  8. Prolonged therapeutic hypothermia does not adversely impact neuroplasticity after global ischemia in rats

    PubMed Central

    Silasi, Gergely; Klahr, Ana C; Hackett, Mark J; Auriat, Angela M; Nichol, Helen; Colbourne, Frederick

    2012-01-01

    Hypothermia improves clinical outcome after cardiac arrest in adults. Animal data show that a day or more of cooling optimally reduces edema and tissue injury after cerebral ischemia, especially after longer intervention delays. Lengthy treatments, however, may inhibit repair processes (e.g., synaptogenesis). Thus, we evaluated whether unilateral brain hypothermia (∼33°C) affects neuroplasticity in the rat 2-vessel occlusion model. In the first experiment, we cooled starting 1 hour after ischemia for 2, 4, or 7 days. Another group was cooled for 2 days starting 48 hours after ischemia. One group remained normothermic throughout. All hypothermia treatments started 1 hour after ischemia equally reduced hippocampal CA1 injury in the cooled hemisphere compared with the normothermic side and the normothermic group. Cooling only on days 3 and 4 was not beneficial. Importantly, no treatment influenced neurogenesis (Ki67/Doublecortin (DCX) staining), synapse formation (synaptophysin), or brain-derived neurotropic factor (BDNF) immunohistochemistry. A second experiment confirmed that BDNF levels (ELISA) were equivalent in normothermic and 7-day cooled rats. Last, we measured zinc (Zn), which is important in plasticity, with X-ray fluorescence imaging in normothermic and 7-day cooled rats. Hypothermia did not alter the postischemic distribution of Zn within the hippocampus. In summary, cooling significantly mitigates injury without compromising neuroplasticity. PMID:22434072

  9. [Effects of xenon preconditioning against ischemia/reperfusion injury and oxidative stress in immature heart].

    PubMed

    Li, Qian; Lian, Chun-Wei; Fang, Li-Qun; Liu, Bin; Yang, Bo

    2014-09-01

    To investigate whether xenon preconditioning (PC) could protect immature myocardium against ischemia-reperfusion (I/R) injury in a dose-dependent manner and clarify the role of xenon PC on oxidative stress. Forty-eight isolated perfused immature rabbit hearts were randomly divided into four groups (n = 12): The sham group had the hearts perfused continuously for 300 min. In I/R group, the hearts were subjected to 60 min perfusion followed by 60 min ischemia and 180 min reperfusion. In 1 minimum alveolar concentration (MAC) and 0.5 MAC xenon PC groups, the hearts were preconditioned with 1 MAC or 0.5 MAC xenon respectively, following 60 min ischemia and 180 min reperfusion. The cardiac function, myocardial infarct size, mitochondrial structure, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in each group were determined after reperfusion. Compared with I/R group, both 1 MAC and 0. 5 MAC xenon preconditioning significantly improved cardiac function (P < 0.01), reduced myocardial infarct size (P < 0.01) and mitochondrial damage, increased SOD activity and decreased MDA level (P < 0.01). There were no differences between 1 MAC group and 0.5 MAC xenon group (P > 0.05). Xenon preconditioning at 0. 5 and 1 MAC produce similar cardioprotective effects against I/R injury in isolated perfused immature heart.

  10. Sevoflurane anesthesia during acute right ventricular ischemia in pigs preserves cardiac function better than propofol anesthesia.

    PubMed

    Haraldsen, Pernille; Metzsch, Carsten; Lindstedt, Sandra; Algotsson, Lars; Ingemansson, Richard

    2016-09-01

    The intention of the present study was to evaluate possible cardioprotective properties of inhalation anesthesia with sevoflurane. A porcine, open-chest model of right ventricular ischemia was used in 7 pigs receiving inhalation anesthesia with sevoflurane. The model was earlier developed and published by our group, using pigs receiving intravenous anesthesia with propofol. They served as controls. The animals were observed for three hours after the induction of right ventricular ischemia by ligation of the main branches supplying the right ventricular free wall. In the sevoflurane group, the cardiac output recovered 2 hours after the induction of ischemia and intact right ventricular stroke work was observed. In the propofol group, no such recovery occurred. The release of troponin T was significantly lower than in the sevoflurane group. Inhalation anesthesia with sevoflurane seems superior to intravenous anesthesia with propofol in acute right ventricular ischemic dysfunction. © The Author(s) 2016.

  11. A vigilant, hypoxia-regulated heme oxygenase-1 gene vector in the heart limits cardiac injury after ischemia-reperfusion in vivo.

    PubMed

    Tang, Yao Liang; Qian, Keping; Zhang, Y Clare; Shen, Leping; Phillips, M Ian

    2005-12-01

    The effect of a cardiac specific, hypoxia-regulated, human heme oxygenase-1 (hHO-1) vector to provide cardioprotection from ischemia-reperfusion injury was assessed. When myocardial ischemia and reperfusion is asymptomatic, the damaging effects are cumulative and patients miss timely treatment. A gene therapy approach that expresses therapeutic genes only when ischemia is experienced is a desirable strategy. We have developed a cardiac-specific, hypoxia-regulated gene therapy "vigilant vector'' system that amplifies cardioprotective gene expression. Vigilant hHO-1 plasmids, LacZ plasmids, or saline (n = 40 per group) were injected into mouse heart 2 days in advance of ischemia-reperfusion injury. Animals were exposed to 60 minutes of ischemia followed by 24 hours of reperfusion. For that term (24 hours) effects, the protein levels of HO-1, inflammatory responses, apoptosis, and infarct size were determined. For long-term (3 week) effects, the left ventricular remodeling and recovery of cardiac function were assessed. Ischemia-reperfusion resulted in a timely overexpression of HO-1 protein. Infarct size at 24 hours after ischemia-reperfusion was significantly reduced in the HO-1-treated animals compared with the LacZ-treated group or saline-treated group (P < .001). The reduction of infarct size was accompanied by a decrease in lipid peroxidant activity, inflammatory cell infiltration, and proapoptotic protein level in ischemia-reperfusion-injured myocardium. The long-term study demonstrated that timely, hypoxia-induced HO-1 overexpression is beneficial in conserving cardiac function and attenuating left ventricle remodelling. The vigilant HO-1 vector provides a protective therapy in the heart for reducing cellular damage during ischemia-reperfusion injury and preserving heart function.

  12. AMPD1 gene polymorphism and the vasodilatory response to ischemia.

    PubMed

    Hand, Brian D; Roth, Stephen M; Roltsch, Mark H; Park, Jung-Jun; Kostek, Matthew C; Ferrell, Robert E; Brown, Michael D

    2006-09-05

    Peripheral vasculature resistance can play an important role in affecting blood pressure and the development of cardiovascular disease. A better understanding of the genes that encode vasodilators, such as adenosine, will provide insight into the mechanisms underlying cardiovascular disease. We tested whether the adenosine monophosphate deaminase-1 (AMPD1) C34T gene polymorphism was associated with the vasodilatory response to ischemia in Caucasian females aged 18-35 years. Blood samples (n = 58) were analyzed for the C34T variant and resulted in the following genotype groups: CC (n = 45) and CT (n = 13). Mean blood pressure (MBP), heart rate, and forearm blood flow (FBF) measured by venous occlusion plethysmography were measured at baseline and at 1 (peak FBF), 2 and 3 min of vasodilation during reactive hyperemia following 5 min of arm ischemia. To control for interindividual variability in baseline FBF and forearm vascular resistance (FVR) the percent change in FBF and FVR were calculated for each min. The percent decrease in FVR was significantly greater in the CT compared to the CC genotype group (-40+/-4% vs. -24+/-3%, P = 0.01) during the 2nd min of reactive hyperemia. The percent increase in FBF tended to be greater in the CT compared to the CC genotype group (+69+/-9% vs. +42+/-9%, P = 0.07) during the 2nd min of reactive hyperemia after adjustment for percent body fat. Consistent with previous findings of increased production of adenosine during exercise in individuals carrying a T allele, our findings suggest that the AMPD1 C34T polymorphism is associated with vasodilatory response to ischemia in the peripheral vasculature because individuals with the T allele had a greater vasodilatory response to ischemia.

  13. Extending the duration of hypothermia does not further improve white matter protection after ischemia in term-equivalent fetal sheep.

    PubMed

    Davidson, Joanne O; Yuill, Caroline A; Zhang, Frank G; Wassink, Guido; Bennet, Laura; Gunn, Alistair J

    2016-04-28

    A major challenge in modern neonatal care is to further improve outcomes after therapeutic hypothermia for hypoxic ischemic encephalopathy. In this study we tested whether extending the duration of cooling might reduce white matter damage. Term-equivalent fetal sheep (0.85 gestation) received either sham ischemia followed by normothermia (n = 8) or 30 minutes of bilateral carotid artery occlusion followed by three days of normothermia (n = 8), three days of hypothermia (n = 8) or five days of hypothermia (n = 8) started three hours after ischemia. Histology was assessed 7 days after ischemia. Ischemia was associated with loss of myelin basic protein (MBP) and Olig-2 positive oligodendrocytes and increased Iba-1-positive microglia compared to sham controls (p < 0.05). Three days and five days of hypothermia were associated with a similar, partial improvement in MBP and numbers of oligodendrocytes compared to ischemia-normothermia (p < 0.05). Both hypothermia groups had reduced microglial activation compared to ischemia-normothermia (p < 0.05). In the ischemia-five-day hypothermia group, but not ischemia-three-day, numbers of microglia remained higher than in sham controls (p < 0.05). In conclusion, delayed cerebral hypothermia partially protected white matter after global cerebral ischemia in fetal sheep. Extending cooling from 3 to 5 days did not further improve outcomes, and may be associated with greater numbers of residual microglia.

  14. Effects of kefir on ischemia-reperfusion injury.

    PubMed

    Yener, A U; Sehitoglu, M H; Ozkan, M T A; Bekler, A; Ekin, A; Cokkalender, O; Deniz, M; Sacar, M; Karaca, T; Ozcan, S; Kurt, T

    2015-01-01

    We aimed to investigate the effect of kefir on Ischemia-Reperfusion (I/R) injury on rats. 24 male Sprague-Dawley rats between 250-350 g were selected. Rats were divided into three groups, and there were eight rats in each group. Rats were fed for 60 days. All of the rats were fed with the same diet for the first 30 days. In the second thirty days, kefir [10 cc/kg/day body weight (2 x 109 cfu/kg/day)] was added to the diet of the study group by gavage method. In all groups, lung and kidney tissues were removed after the procedure and rats were sacrificed. The biochemical and histopathological changes were observed in the lung and kidney within the samples. Serum urea, creatinine and tumor necrosis factor (TNF-α) were determined. Kefir + I/R groups was compared with I/R groups, a significant decrease (p < 0.05) was seen in Lipid peroxidation (MDA) levels of lung and renal tissues. Superoxide dismutase (SOD), Catalase (CAT) and Glutathione peroxidase (GSH-Px) activities of lung and kidney tissues decreased in I/R groups (p < 0.05). The enzyme activities in Kefir + I/R groups of renal tissues were significantly (p < 0.05) higher than I/R, not significantly different in lung tissues (p < 0.05). Kefir reduced the levels of serum urea, creatinine and TNF-α significantly.   This would be useful in this model against ischemia/reperfusion, and shows the protective effect of kefir in tissue and serum functions.

  15. Difference in transient ischemia-induced neuronal damage and glucose transporter-1 immunoreactivity in the hippocampus between adult and young gerbils

    PubMed Central

    Park, Seung Min; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich-Na; Cho, Jeong Hwi; Kim, In Hye; Park, Joon Ha; Won, Moo-Ho; Ahn, Ji Hyeon; Tae, Hyun-Jin; Shin, Myoung Cheol; Park, Chan Woo; Cho, Jun Hwi; Lee, Hui Young

    2016-01-01

    Objective(s): The alteration of glucose transporters is closely related with the pathogenesis of brain edema. We compared neuronal damage/death in the hippocampus between adult and young gerbils following transient cerebral ischemia/reperfusion and changes of glucose transporter-1(GLUT-1)-immunoreactive microvessels in their ischemic hippocampal CA1 region. Materials and Methods: Transient cerebral ischemia was developed by 5-min occlusion of both common carotid arteries. Neuronal damage was examined by cresyl violet staining, NeuN immunohistochemistry and Fluoro-Jade B histofluorescence staining and changes in GLUT-1 expression was carried out by immunohistochemistry. Results: About 90% of pyramidal neurons only in the adult CA1 region were damaged after ischemia/reperfusion; in the young, about 53 % of pyramidal neurons were damaged from 7 days after ischemia/reperfusion. The density of GLUT-1-immunoreactive microvessels was significantly higher in the young sham-group than that in the adult sham-group. In the ischemia-operated-groups, the density of GLUT-1-immunoreactive microvessels was significantly decreased in the adult and young at 1 and 4 days post-ischemia, respectively, thereafter, the density of GLUT-1-immunoreactive microvessels was gradually increased in both groups after ischemia/reperfusion. Conclusion: CA1 pyramidal neurons of the young gerbil were damaged much later than that in the adult and that GLUT-1-immunoreactive microvessels were significantly decreased later in the young. These data indicate that GLUT-1 might differently contribute to neuronal damage according to age after ischemic insults. PMID:27403259

  16. Role of sirtuins in ischemia-reperfusion injury.

    PubMed

    Pantazi, Eirini; Zaouali, Mohamed Amine; Bejaoui, Mohamed; Folch-Puy, Emma; Ben Abdennebi, Hassen; Roselló-Catafau, Joan

    2013-01-01

    Ischemia-reperfusion injury (IRI) remains an unresolved and complicated situation in clinical practice, especially in the case of organ transplantation. Several factors contribute to its complexity; the depletion of energy during ischemia and the induction of oxidative stress during reperfusion initiate a cascade of pathways that lead to cell death and finally to severe organ injury. Recently, the sirtuin family of nicotinamide adenine dinucleotide-dependent deacetylases has gained increasing attention from researchers, due to their involvement in the modulation of a wide variety of cellular functions. There are seven mammalian sirtuins and, among them, the nuclear/cytoplasmic sirtuin 1 (SIRT1) and the mitochondrial sirtuin 3 (SIRT3) are ubiquitously expressed in many tissue types. Sirtuins are known to play major roles in protecting against cellular stress and in controlling metabolic pathways, which are key processes during IRI. In this review, we mainly focus on SIRT1 and SIRT3 and examine their role in modulating pathways against energy depletion during ischemia and their involvement in oxidative stress, apoptosis, microcirculatory stress and inflammation during reperfusion. We present evidence of the beneficial effects of sirtuins against IRI and emphasize the importance of developing new strategies by enhancing their action.

  17. Capsaicin-sensitive muscle afferents modulate the monosynaptic reflex in response to muscle ischemia and fatigue in the rat.

    PubMed

    Della Torre, G; Brunetti, O; Pettorossi, V E

    2002-01-01

    The role of muscle ischemia and fatigue in modulating the monosynaptic reflex was investigated in decerebrate and spinalized rats. Field potentials and fast motoneuron single units in the lateral gastrocnemious (LG) motor pool were evoked by dorsal root stimulation. Muscle ischemia was induced by occluding the LG vascular supply and muscle fatigue by prolonged tetanic electrical stimulation of the LG motor nerve. Under muscle ischemia the monosynaptic reflex was facilitated since the size of the early and late waves of the field potential and the excitability of the motoneuron units increased. This effect was abolished after L3-L6 dorsal rhizotomy, but it was unaffected after L3-L6 ventral rhizotomy. By contrast, the monosynaptic reflex was inhibited by muscle fatiguing stimulation, and this effect did not fully depend on the integrity of the dorsal root. However, when ischemia was combined with repetitive tetanic muscle stimulation the inhibitory effect of fatigue was significantly enhanced. Both the ischemia and fatigue effects were abolished by capsaicin injected into the LG muscle at a dose that blocked a large number of group III and IV muscle afferents. We concluded that muscle ischemia and fatigue activate different groups of muscle afferents that are both sensitive to capsaicin, but enter the spinal cord through different roots. They are responsible for opposite effects, when given separately: facilitation during ischemia and inhibition during fatigue; however, in combination, ischemia enhances the responsiveness of the afferent fibres to fatigue.

  18. Diagnostic Performance of Artificial Neural Network for Detecting Ischemia in Myocardial Perfusion Imaging.

    PubMed

    Nakajima, Kenichi; Matsuo, Shinro; Wakabayashi, Hiroshi; Yokoyama, Kunihiko; Bunko, Hisashi; Okuda, Koichi; Kinuya, Seigo; Nyström, Karin; Edenbrandt, Lars

    2015-01-01

    The purpose of this study was to apply an artificial neural network (ANN) in patients with coronary artery disease (CAD) and to characterize its diagnostic ability compared with conventional visual and quantitative methods in myocardial perfusion imaging (MPI). A total of 106 patients with CAD were studied with MPI, including multiple vessel disease (49%), history of myocardial infarction (27%) and coronary intervention (30%). The ANN detected abnormal areas with a probability of stress defect and ischemia. The consensus diagnosis based on expert interpretation and coronary stenosis was used as the gold standard. The left ventricular ANN value was higher in the stress-defect group than in the no-defect group (0.92±0.11 vs. 0.25±0.32, P<0.0001) and higher in the ischemia group than in the no-ischemia group (0.70±0.40 vs. 0.004±0.032, P<0.0001). Receiver-operating characteristics curve analysis showed comparable diagnostic accuracy between ANN and the scoring methods (0.971 vs. 0.980 for stress defect, and 0.882 vs. 0.937 for ischemia, both P=NS). The relationship between the ANN and defect scores was non-linear, with the ANN rapidly increased in ranges of summed stress score of 2-7 and summed defect score of 2-4. Although the diagnostic ability of ANN was similar to that of conventional scoring methods, the ANN could provide a different viewpoint for judging abnormality, and thus is a promising method for evaluating abnormality in MPI.

  19. Oxidative stress gene expression profile in inbred mouse after ischemia/reperfusion small bowel injury.

    PubMed

    Bertoletto, Paulo Roberto; Ikejiri, Adauto Tsutomu; Somaio Neto, Frederico; Chaves, José Carlos; Teruya, Roberto; Bertoletto, Eduardo Rodrigues; Taha, Murched Omar; Fagundes, Djalma José

    2012-11-01

    To determine the profile of gene expressions associated with oxidative stress and thereby contribute to establish parameters about the role of enzyme clusters related to the ischemia/reperfusion intestinal injury. Twelve male inbred mice (C57BL/6) were randomly assigned: Control Group (CG) submitted to anesthesia, laparotomy and observed by 120 min; Ischemia/reperfusion Group (IRG) submitted to anesthesia, laparotomy, 60 min of small bowel ischemia and 60 min of reperfusion. A pool of six samples was submitted to the qPCR-RT protocol (six clusters) for mouse oxidative stress and antioxidant defense pathways. On the 84 genes investigated, 64 (76.2%) had statistic significant expression and 20 (23.8%) showed no statistical difference to the control group. From these 64 significantly expressed genes, 60 (93.7%) were up-regulated and 04 (6.3%) were down-regulated. From the group with no statistical significantly expression, 12 genes were up-regulated and 8 genes were down-regulated. Surprisingly, 37 (44.04%) showed a higher than threefold up-regulation and then arbitrarily the values was considered as a very significant. Thus, 37 genes (44.04%) were expressed very significantly up-regulated. The remained 47 (55.9%) genes were up-regulated less than three folds (35 genes - 41.6%) or down-regulated less than three folds (12 genes - 14.3%). The intestinal ischemia and reperfusion promote a global hyper-expression profile of six different clusters genes related to antioxidant defense and oxidative stress.

  20. Expression of HSP 70 and its mRNAS during ischemia-reperfusion in the rat bladder.

    PubMed

    Saito, Motoaki; Tominaga, Lika; Nanba, Eiji; Kinoshita, Yukako; Housi, Daisuke; Miyagawa, Ikuo; Satoh, Keisuke

    2004-08-27

    HSP 70 is an important protein that repairs damaged tissue after injury. In the present study, we investigated the expression of HSP 70 and its mRNAs during ischemia-reperfusion in the rat bladder. Rat abdominal aorta was clamped with a small clip to induce ischemia-reperfusion injury in the bladder dome. Male Wistar rats, 8 weeks old, were divided into six groups: controls, 30-min ischemia, 30-min ischemia and 30-, 60-minute, 1- and 7-day reperfusion, groups A, B, C, D, E, and F, respectively. In functional studies, contractile responses to carbachol were measured in these groups. The expression of HSP 70-1/2 mRNAs was quantified using a real-time PCR method, and that of HSP 70 proteins was measured using ELISA in the bladders. In the functional study, Emax values of carbachol to bladders in the A, B, C, D, E and F groups were 9.3 +/- 1.3, 7.9 +/- 1.7, 4.3 +/- 0.8, 4.2 +/- 0.7, 4.5 +/- 0.6, and 8.1 +/- 1.2 g/mm2, respectively. In the control group, the expression of HSP 70-1/2 mRNA was detected, and the expression of HSP 70-1 mRNAs was significantly higher than that of HSP 70-2 mRNAs in each group. The expression of HSP 70-1 mRNA increased in groups B and C, but decreased in groups D, E, and F. The expression of HSP 70-2 mRNA in group C was significantly higher than that of groups A, D, E, and F. The expression of HSP 70-1/2 mRNAs after 1 day or 1 week of reperfusion was similar to control levels. The expression of HSP 70 proteins was increased shortly after the expression of their mRNAs. The expression of HSP 70 after 1 day or 1 week of reperfusion was almost identical to control levels. Our data indicate that contractile responses of the bladder were decreased by ischemia reperfusion, and that expression of HSP 70 and its mRNAs appeared to increase after a short period of the insult.

  1. Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury.

    PubMed

    Imahashi, Kenichi; Schneider, Michael D; Steenbergen, Charles; Murphy, Elizabeth

    2004-10-01

    The antiapoptotic protein Bcl-2 is targeted to the mitochondria, but it is uncertain whether Bcl-2 affects only myocyte survival after ischemia, or whether it also affects metabolic functions of mitochondria during ischemia. Hearts from mice overexpressing human Bcl-2 and from their wild-type littermates (WT) were subjected to 24 minutes of global ischemia followed by reperfusion. During ischemia, the decrease in pH(i) and the initial rate of decline in ATP were significantly reduced in Bcl-2 hearts compared with WT hearts (P<0.05). The reduced acidification during ischemia was dependent on the activity of mitochondrial F1F0-ATPase. In the presence of oligomycin (Oligo), an F1F0-ATPase inhibitor, the decrease in pH(i) was attenuated in WT hearts, but in Bcl-2 hearts, Oligo had no additional effect on pH(i) during ischemia. Likewise, addition of Oligo to WT hearts slowed the rate of decline in ATP during ischemia to a level similar to that observed in Bcl-2 hearts, but addition of Oligo had no significant effect on the rate of decline in ATP in Bcl-2 hearts during ischemia. These data are consistent with Bcl-2-mediated inhibition of consumption of glycolytic ATP. Furthermore, mitochondria from Bcl-2 hearts have a reduced rate of consumption of ATP on uncoupler addition. This could be accomplished by limiting ATP entry into the mitochondria through the voltage-dependent anion channel, and/or the adenine nucleotide transporter, or by direct inhibition of the F1F0-ATPase. Immunoprecipitation showed greater interaction between Bcl-2 and voltage-dependent anion channel during ischemia. These data indicate that Bcl-2 modulation of metabolism contributes to cardioprotection.

  2. Moderate hypothermia suppresses jugular venous superoxide anion radical, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats.

    PubMed

    Koda, Yoichi; Tsuruta, Ryosuke; Fujita, Motoki; Miyauchi, Takashi; Kaneda, Kotaro; Todani, Masaki; Aoki, Tetsuya; Shitara, Masaki; Izumi, Tomonori; Kasaoka, Shunji; Yuasa, Makoto; Maekawa, Tsuyoshi

    2010-01-22

    The aim of this study was to assess the effect of moderate hypothermia (MH) on generation of jugular venous superoxide radical (O2-.), oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion (FBI/R) rats. Twenty-one Wistar rats were allocated to a control group (n=7, 37 degrees C), a pre-MH group (n=7, 32 degrees C before ischemia), and a post-MH group (n=7, 32 degrees C after reperfusion). MH was induced before induction of ischemia in the pre-MH group and just after reperfusion in the post-MH group. Forebrain ischemia was induced by occlusion of bilateral common carotid arteries with hemorrhagic hypotension for 10 min, followed by reperfusion. O(2)(-)(.) in the jugular vein was measured from the produced current using a novel O2-. sensor. The O2-. current showed a gradual increase during forebrain ischemia in the control and post-MH groups but was attenuated in the pre-MH group. Following reperfusion, the current showed a marked increase in the control group but was strongly attenuated in the pre- and post-MH groups. Concentrations of malondialdehyde, high-mobility group box 1 (HMGB1) protein, and intercellular adhesion molecule-1 (ICAM-1) in the brain and plasma 120 min after reperfusion in the pre- and post-MH groups were significantly lower than those in the control group, except for plasma HMGB1 in the post-MH group. In conclusion, MH suppressed O2-. measured in the jugular vein, oxidative stress, early inflammation, and endothelial injury in FBI/R rats. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Lipoate ameliorates ischemia-reperfusion in animal models.

    PubMed

    Freisleben, H J

    2000-01-01

    Ischemia and reperfusion were studied in isolated working rat hearts and in exarticulated rat hind limbs. Free radicals are known to be generated in ischemia/reperfusion and to propagate complications. To reduce reperfusion injury, conditions were ameliorated including the treatment with antioxidants, lipoate or dihydrolipoate. In isolated working rat hearts, cardiac and mitochondrial parameters are impaired during hypoxia and partially recover in reperfusion. Dihydrolipoate, if added into the perfusion buffer at 0.3 microM concentration, keeps the pH higher (7.15) during hypoxia, as compared to controls (6.98). This compound accelerates and stabilizes the recovery of the aortic flow. With dihydrolipoate, ATP synthesis is increased, ATPase activity (ATP hydrolysis) reduced, intracellular creatine kinase activity maintained and thus phosphocreatine contents are higher than in controls. For exarticulated rat hind limbs, the dihydrolipoate group contained 8.3 microM in the modified reperfusate. Recovery of the contractile function was 49% vs. 34% in controls and muscle flexibility was maintained whereas it decreased by 15% in the controls. Release of creatine kinase from cells was significantly lower with dihydrolipoate. Lipoate/dihydrolipoate effectively reduced reperfusion injury in isolated working rat hearts and in exarticulated rat hind limbs after extended ischemia. Finally, the compound was successfully applied in an in vivo pig hind limb model.

  4. Neuroprotective effects of ebselen following forebrain ischemia: involvement of glutamate and nitric oxide.

    PubMed

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Suehiro, Eiichi; Shirao, Satoshi; Suzuki, Michiyasu

    2011-01-01

    Ebselen is a mimic of glutathione peroxidase that reacts with peroxynitrite and inhibits nitric oxide (NO) synthase. Ebselen has beneficial effects on the neurological outcome of patients with stroke. In this study, the mechanisms by which ebselen can elicit neuroprotective effects against ischemic brain injury were investigated in male Wistar rats. Experimental forebrain ischemia was induced by bilateral common carotid artery occlusion with hemorrhagic hypotension. Ebselen was administered to animals in the treatment group 2 hours prior to the induction of forebrain ischemia, and placebo was administered in the control group. Cerebral blood flow (CBF) was measured by the hydrogen clearance method. Cortical extracellular levels of excitatory amino acids (EAAs) and NO were evaluated using in vivo microdialysis. Neuronal damage in the CA1 subfield of the hippocampus was assessed in brains harvested after a 24-hour period of survival. CBF did not recover to normal physiological levels after ischemic insults in either the control or treatment groups. The differences in the sequential changes in extracellular EAA and NO levels between groups were not statistically significant. There was a significantly larger mean density of intact, undamaged neurons in the CA1 subfield in the treatment group than in the control group. The neuroprotective effects of ebselen were reflected in the histological findings, without significant inhibition of glutamate release or NO synthesis during the acute phase of experimentally induced cerebral ischemia.

  5. Protective effect of Naringin on experimental hindlimb ischemia/reperfusion injury in rats.

    PubMed

    Gürsul, Cebrail; Ekinci Akdemir, Fazile Nur; Akkoyun, Turan; Can, İsmail; Gül, Mustafa; Gülçin, İlhami

    2016-01-01

    This study was designed to investigate the antioxidant effects of Naringin, in ischemia/reperfusion (I/R)-induced skeletal muscle injury in rats. The rats were randomly allocated into three groups including control, I/R and I/R + Naringin groups. Muscle tissues of I/R groups revealed significantly higher antioxidant enzyme activities, and increased levels of malondialdehyde, as specific a marker of the lipid peroxidation and tissue damage, compared to the control group (p < 0.05). Levels of these parameters in muscle revealed significant reductions in the I/R + Naringin group compared to the I/R group (p < 0.05). Histopathological examination of ischemia muscles in the I/R group showed significant degeneration and inflammation compared to the control group, whereas ischemic muscles of Naringin-administered group showed significant reduction in degeneration and inflammation compared to the I/R group (p < 0.05). We suggest that the protective effect of Naringin may reduce the I/R injury in cases of extremity injuries with acute vascular complications, extremity surgery with prolonged tourniquet application.

  6. Neuroprotective effect of humic Acid on focal cerebral ischemia injury: an experimental study in rats.

    PubMed

    Ozkan, Adile; Sen, Halil Murat; Sehitoglu, Ibrahim; Alacam, Hasan; Guven, Mustafa; Aras, Adem Bozkurt; Akman, Tarik; Silan, Coşkun; Cosar, Murat; Karaman, Handan Isin Ozisik

    2015-02-01

    Stroke is still a major cause of death and permanent neurological disability. As humic acids are well-known antioxidant molecules, the purpose of this study was to investigate the potential neuroprotective effects of humic acid in a focal cerebral ischemia model. Twenty-four rats were divided equally into three groups. A middle cerebral artery occlusion model was performed in this study where control (group II) and humic acid (group III) were administered intraperitoneally following an ischemic experimental procedure. Group I was evaluated as sham. Malondialdehyde (MDA), superoxide dismutase (SOD), and nuclear respiratory factor-1 (NRF-1) levels were analyzed biochemically on the right side of the ischemic cerebral hemisphere, while ischemic histopathological studies were completed on the left side to investigate the antioxidant status. Biochemical results showed that SOD and NRF-1 levels were significantly increased in the humic acid group (III) compared with the control group (II) while MDA levels were significantly decreased. On histopathological examination, cerebral edema, vacuolization, degeneration, and destruction of neural elements were decreased in the humic acid group (III) compared with the control group (II). Cerebral ischemia was attenuated by humic acid administration. These observations indicate that humic acid may have potential as a therapeutic agent in cerebral ischemia by preventing oxidative stress.

  7. Hypothermic machine perfusion permits extended cold ischemia times with improved early graft function.

    PubMed

    Guy, Alison; McGrogan, Damian; Inston, Nicholas; Ready, Andrew

    2015-04-01

    The logistics of deceased-donor renal transplants are largely affected by cold ischemia time. However, to attain successful outcomes, other issues must be considered. Extending cold ischemia time to accommodate these issues would be valuable. We investigated the role of hypothermic machine perfusion to extend cold ischaemia time. Deceased-donor kidneys were allocated to a storage method, depending on predicted time to operation. Kidneys to be transplanted from 8:00 AM to 8:00 PM in the transplant room remained in static cold storage. If predicted operating time was out of hours, the kidney was transferred to hypothermic machine perfusion and transplanted at the earliest opportunity on the dedicated transplant list. There were 74 kidneys transplanted from hypothermic machine perfusion and 101 kidneys from static cold storage. Median cold ischemia time was 23.85 hours in the hypothermic machine perfusion group, compared with 13 hours in the static cold storage group (P ≤ .0001). There were 20 kidneys (27%) from hypothermic machine perfusion that had delayed graft function, compared with 47 kidneys (47%) in the static cold storage group (P = .012). There were no other significant differences in graft or postoperative complications. This study demonstrated that improved early graft outcomes can be achieved following longer cold ischemia time by using hypothermic machine perfusion rather than static cold storage. This effect is likely multifactorial including the inherent effects of hypothermic machine perfusion, improved recipient preparation, and possibly better perioperative conditions.

  8. Repetitive postprandial hyperglycemia increases cardiac ischemia/reperfusion injury: prevention by the alpha-glucosidase inhibitor acarbose.

    PubMed

    Frantz, Stefan; Calvillo, Laura; Tillmanns, Jochen; Elbing, Inka; Dienesch, Charlotte; Bischoff, Hilmar; Ertl, Georg; Bauersachs, Johann

    2005-04-01

    Protective effects of the alpha-glucosidase inhibitor acarbose have been reported for various diabetic complications. In the STOP-NIDDM study, even patients without overt diabetes, but with impaired glucose tolerance, had a reduction in cardiovascular events when treated with acarbose. Therefore, we investigated the effect of repetitive postprandial hyperglycemia on the cardiac ischemia/reperfusion injury in vivo. Mice were treated daily by single applications of placebo, sucrose (4 g/kg body weight), or sucrose + acarbose (10 mg/kg body weight) by gavage for 7 days. Acarbose treatment significantly reduced the sucrose-induced increase in plasma glucose concentration. Subsequently, animals underwent 30 min of ischemia by coronary artery ligation and 24 h of reperfusion in vivo. In the sucrose group, ischemia/reperfusion damage was significantly increased (infarct/area at risk, placebo vs. sucrose, 38.8+/-7.5% vs. 62.2+/-4.8%, P<0.05). This was prevented by acarbose treatment (infarct/area at risk 30.7+/-7.2%). While myocardial inflammation was similar in all groups, oxidative stress as indicated by a significant increase in lipid peroxides was enhanced in the sucrose, but not in the sucrose + acarbose group. In summary, repetitive postprandial hyperglycemia increases ischemia/reperfusion damage. This effect can be prevented by treatment with the alpha-glucosidase inhibitor acarbose.

  9. Hemorheological changes in ischemia-reperfusion: an overview on our experimental surgical data.

    PubMed

    Nemeth, Norbert; Furka, Istvan; Miko, Iren

    2014-01-01

    Blood vessel occlusions of various origin, depending on the duration and extension, result in tissue damage, causing ischemic or ischemia-reperfusion injuries. Necessary surgical clamping of vessels in vascular-, gastrointestinal or parenchymal organ surgery, flap preparation-transplantation in reconstructive surgery, as well as traumatological vascular occlusions, all present special aspects. Ischemia and reperfusion have effects on hemorheological state by numerous ways: besides the local metabolic and micro-environmental changes, by hemodynamic alterations, free-radical and inflammatory pathways, acute phase reactions and coagulation changes. These processes may be harmful for red blood cells, impairing their deformability and influencing their aggregation behavior. However, there are still many unsolved or non-completely answered questions on relation of hemorheology and ischemia-reperfusion. How do various organ (liver, kidney, small intestine) or limb ischemic-reperfusionic processes of different duration and temperature affect the hemorheological factors? What is the expected magnitude and dynamics of these alterations? Where is the border of irreversibility? How can hemorheological investigations be applied to experimental models using laboratory animals in respect of inter-species differences? This paper gives a summary on some of our research data on organ/tissue ischemia-reperfusion, hemorheology and microcirculation, related to surgical research and experimental microsurgery.

  10. The effects of propofol on hippocampal caspase-3 and Bcl-2 expression following forebrain ischemia-reperfusion in rats.

    PubMed

    Li, Jun; Han, Baoqing; Ma, Xuesong; Qi, Sihua

    2010-10-14

    Transient cerebral ischemia may result in neuronal apoptosis. During this process, several apoptosis-regulatory genes are induced in apoptotic cells. Among these genes, cysteinyl aspartate-specific protease-3 (caspase-3) and B-cell leukemia-2 (Bcl-2) are the most effective apoptotic regulators because they play a decisive role in the occurrence of apoptosis. Research has shown that propofol, which is an intravenous anesthetic agent, exhibits neuroprotective effects against cerebral ischemia-reperfusion injury, although the neuroprotective mechanism is still unclear. In this study, we examined the effects of propofol in rats after forebrain ischemia-reperfusion. We assessed the expression of hippocampal caspase-3, which acts as an apoptotic activator, and Bcl-2, which acts as an apoptotic suppressor. Forebrain ischemia was induced in hypotensive rats by clamping the bilateral common carotid arteries for 10 min. Propofol was administered via a lateral cerebral ventricle injection using a microsyringe after the induction of ischemia. Neuronal damage was determined by histological examination of brain sections at the level of the dorsal hippocampus. Caspase-3 and Bcl-2 expression in the hippocampus were detected using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. We also used an immunohistochemical method after ischemia-reperfusion. In the hippocampus, caspase-3 and Bcl-2 mRNA were dramatically increased at 24h after forebrain ischemia. Following 6-24h of reperfusion, forebrain ischemia for 10 min induced a gradual increase in the expression of caspase-3 and Bcl-2 protein in the rat hippocampus, which peaked at 24h. In the propofol (1.0mg/kg) intervention group, the hippocampal expression of caspase-3 mRNA decreased significantly in rats 24h after ischemia; Bcl-2 mRNA was increased at the same time point. During the 24-h reperfusion period and after treatment with propofol, the level of caspase-3 protein expression

  11. Biochemical markers of acute limb ischemia, rhabdomyolysis, and impact on limb salvage.

    PubMed

    Watson, J Devin B; Gifford, Shaun M; Clouse, W Darrin

    2014-12-01

    Biochemical markers of ischemia reperfusion injury have been of interest to vascular surgeons and researchers for many years. Acute limb ischemia is the quintessential clinical scenario where these markers would seem relevant. The use of biomarkers to preoperatively or perioperatively predict which patients will not tolerate limb-salvage efforts or who will have poor functional outcomes after salvage is of immense interest. Creatinine phosphokinase, myoglobin, lactate, lactate dehydrogenase, potassium, bicarbonate, and neutrophil/leukocyte ratios are a few of the studied biomarkers available. Currently, the most well-studied aspect of ischemia reperfusion injury is rhabdomyolysis leading to acute kidney injury. The last 10 years have seen significant progression and improvement in the treatment of rhabdomyolysis, from minor supportive care to use of continuous renal replacement therapy. Identification of specific biomarkers with predictive outcome characteristics in the setting of ischemia reperfusion injury will help guide therapeutic development and potentially mitigate pathophysiologic changes in acute limb ischemia, including rhabdomyolysis. These may further lead to improvements in short- and long-term surgical outcomes and limb salvage, as well as a better understanding of the timing and selection of intervention. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Curcumin and dexmedetomidine prevents oxidative stress and renal injury in hind limb ischemia/reperfusion injury in a rat model.

    PubMed

    Karahan, M A; Yalcin, S; Aydogan, H; Büyükfirat, E; Kücük, A; Kocarslan, S; Yüce, H H; Taskın, A; Aksoy, N

    2016-06-01

    Curcumin and dexmedetomidine have been shown to have protective effects in ischemia-reperfusion injury on various organs. However, their protective effects on kidney tissue against ischemia-reperfusion injury remain unclear. We aimed to determine whether curcumin or dexmedetomidine prevents renal tissue from injury that was induced by hind limb ischemia-reperfusion in rats. Fifty rats were divided into five groups: sham, control, curcumin (CUR) group (200 mg/kg curcumin, n = 10), dexmedetomidine (DEX) group (25 μg/kg dexmedetomidine, n = 10), and curcumin-dexmedetomidine (CUR-DEX) group (200 mg/kg curcumin and 25 μg/kg dexmedetomidine). Curcumin and dexmedetomidine were administered intraperitoneally immediately after the end of 4 h ischemia, just 5 min before reperfusion. The extremity re-perfused for 2 h and then blood samples were taken and total antioxidant capacity (TAC), total oxidative status (TOS) levels, and oxidative stress index (OSI) were measured, and renal tissue samples were histopathologically examined. The TAC activity levels in blood samples were significantly lower in the control than the other groups (p < 0.01 for all comparisons). The TOS activity levels in blood samples were significantly higher in Control group and than the other groups (p <  0.01 for all comparison). The OSI were found to be significantly increased in the control group compared to others groups (p < 0.001 for all comparisons). Histopathological examination revealed less severe lesions in the sham, CUR, DEX, and CUR-DEX groups, compared with the control group (p < 0.01). Rat hind limb ischemia-reperfusion causes histopathological changes in the kidneys. Curcumin and dexmedetomidine administered intraperitoneally was effective in reducing oxidative stress and renal histopathologic injury in an acute hind limb I/R rat model.

  13. Comparison of erythropoietin and sildenafil protective role against ischemia/reperfusion injury of the testis in adult rats.

    PubMed

    Zavras, Nick; Kostakis, Ioannis D; Sakellariou, Stratigoula; Damaskos, Christos; Roupakas, Evangelos; Tsagkari, Eleni; Spartalis, Eleftherios; Velaoras, Konstantinos; Dontas, Ismene A; Karatzas, Theodore

    2014-04-01

    Tissue damage in testicular torsion/detorsion is caused not only by the ischemia, but also by the ischemia/reperfusion injury after detorsion. Erythropoietin and sildenafil are considered to protect against ischemia/reperfusion injury. Here, we studied and compared their actions in testicular torsion/detorsion in adult rats. Twenty-two adult male Wistar Albino rats were divided into four groups. Rats in group A (n = 5) were sham operated. Rats in group B (n = 5), group C (n = 6) and group D (n = 6) underwent torsion of the right testis and detorsion after 90 min. No pharmaceutical intervention was performed in group B. Erythropoietin (1,000 IU/kg) and sildenafil (0.7 mg/kg) were injected intraperitoneally in groups C and D, respectively, after 60 min of torsion. All animals were killed 24 h after detorsion, and their right testis was extracted, placed into 10 % formalin solution and sent for histopathological examination. The histological changes in the testes were scored according to the four-point grading system proposed by Cosentino et al. All rats in group A had normal testicular architecture (grade 1). The untreated group B had a mean grade of 3.81 (range 3.65-4). The treated groups C (mean grade 3.24; range 3.05-3.45) and D (2.69, range 2.4-2.9) presented statistically significant better results (lower grades) compared with the untreated group B. Group D had significantly better results (lower grades) than group C. The intraperitoneal injection of erythropoietin and sildenafil protects against ischemia/reperfusion injury after testicular torsion and detorsion. Sildenafil may have a stronger action than erythropoietin at the doses used in this study.

  14. The protective effect of prophylactic ozone administration against retinal ischemia-reperfusion injury.

    PubMed

    Kal, Ali; Kal, Oznur; Akillioglu, Ishak; Celik, Esin; Yilmaz, Mustafa; Gonul, Saban; Solmaz, Merve; Onal, Ozkan

    2017-03-01

    Retinal ischemia-reperfusion (IR) injury is associated with many ocular diseases. Retinal IR injury leads to the death of retinal ganglion cells (RGCs), loss of retinal function and ultimately vision loss. The aim of this study was to show the protective effects of prophylactic ozone administration against retinal IR injury. A sham group (S) (n = 7) was administered physiological saline (PS) intraperitoneally (i.p.) for 7 d. An ischemia reperfusion (IR) group (n = 7) was subjected to retinal ischemia followed by reperfusion for 2 h. An ozone group (O) (n = 7) was administered 1 mg/kg of ozone i.p. for 7 d. In the ozone + IR (O + IR) group (n = 7), 1 mg/kg of ozone was administered i.p. for 7 d before the IR procedure and at 8 d, the IR injury was created (as in IR group). The rats were anesthetized after second hour of reperfusion and their intracardiac blood was drawn completely and they were sacrificed. Blood samples were sent to a laboratory for analysis of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), total oxidant score (TOS) and total antioxidant capacity (TAC). The degree of retinal injury was evaluated according to changes in retinal cells and necrotic and apoptotic cells using the TUNEL method. Data were evaluated statistically with the Kruskal-Wallis test. The number of RGCs and the inner retinal thickness were significantly decreased after ischemia, and treatment with ozone significantly inhibited retinal ischemic injury. In the IR group, the degree of retinal injury was found to be the highest. In the O + IR group, retinal injury was found to be decreased in comparison to the IR group. In the ozone group without retinal IR injury, the retinal injury score was the lowest. The differences in the antioxidant parameters SOD, GSH-Px and TAC were increased in the ozone group and the lowest in the IR group. The oxidant parameters MDA and TOS were found to be the highest in the IR group and

  15. Effect of trapidil in myocardial ischemia-reperfusion injury in rabbit.

    PubMed

    Liu, Mingjie; Sun, Qi; Wang, Qiang; Wang, Xiuying; Lin, Peng; Yang, Ming; Yan, Yuanyuan

    2014-01-01

    To evaluate the cardioprotective effects of trapidil on myocardial ischemia-reperfusion injury (MIRI) in rabbits. Rabbits were subjected to 40 min of myocardial ischemia followed by 120 min of reperfusion. Blood for superoxide dismutase (SOD) and malondialdehyde (MDA) were estimated. At the end of reperfusion, the rabbits were sacrificed and the hearts were isolated for histological examination. An apoptotic index (AI) was determined using the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end-labeling (TUNEL) method. The expression of apoptosis-related proteins Bax and Bcl-2 was analyzed using immunohistochemistry. Statistical analyses were performed by one-way analysis of variance (ANOVA), P < 0.05 considered statistically significant. Trapidil caused a significant (P < 0.05) increase in SOD activity, as decreased MDA levels and significantly (P < 0.05) reduced the expression of Bax as compared with the ischemia-reperfusion (IR) control group. Trapidil may attenuate the myocardial damage produced by IR injury and offer potential cardioprotective action.

  16. The Effect of Rosa Damascena Extract on Expression of Neurotrophic Factors in the CA1 Neurons of Adult Rat Hippocampus Following Ischemia.

    PubMed

    Moniri, Seyedeh Farzaneh; Hedayatpour, Azim; Hassanzadeh, Gholamreza; Vazirian, Mahdi; Karimian, Morteza; Belaran, Maryam; Ejtemaie Mehr, Shahram; Akbari, Mohamad

    2017-12-01

    Ischemic stroke is an important cause of death and disability in the world. Brain ischemia causes damage to brain cell, and among brain neurons, pyramidal neurons of the hippocampal CA1 region are more susceptive to ischemic injury. Recent findings suggest that neurotrophic factors protect against ischemic cell death. A dietary component of Rosa damascene extract possibly is associated with expression of neurotrophic factors mRNA following ischemia, so it can have therapeutic effect on cerebral ischemia. The present study attempts to evaluate the neuroprotective effect of Rosa damascene extract on adult rat hippocampal neurons following ischemic brain injury. Forty-eight adult male Wistar rats (weighing 250±20 gr and ages 10-12 weeks) used in this study, animals randomly were divided into 6 groups including Control, ischemia/ reperfusion (IR), vehicle and three treated groups (IR+0.5, 1, 2 mg/ml extract). Global ischemia was induced by bilateral common carotid arteries occlusion for 20 minutes. The treatment was done by different doses of Rosa damascena extract for 30 days. After 30 days cell death and gene expression in neurons of the CA1 region of the hippocampus were evaluated by Nissl staining and real time PCR assay. We found a significant decrease in NGF, BDNF and NT3 mRNA expression in neurons of CA1 region of the hippocampus in ischemia group compared to control group (P<0.0001). Our results also revealed that the number of dark neurons significantly increases in ischemia group compared to control group (P<0.0001). Following treatment with Rosa damascene extract reduced the number of dark neurons that was associated with NGF, NT3, and BDNF mRNA expression. All doses level had positive effects, but the most effective dose of Rosa damascena extract was 1 mg/ml. Our results suggest that neuroprotective activity of Rosa damascena can enhance hippocampal CA1 neuronal survival after global ischemia.

  17. The effect of ozone and naringin on intestinal ischemia/reperfusion injury in an experimental model.

    PubMed

    Isik, Arda; Peker, Kemal; Gursul, Cebrail; Sayar, Ilyas; Firat, Deniz; Yilmaz, Ismayil; Demiryilmaz, Ismail

    2015-09-01

    The aim of the study was to evaulate the effect of ozone and naringin on the intestine after intestinal ischemia-reperfusion(II/R) injury. Thirty five rats divided into 5 groups of 7 animals: control, II/R, ozone, naringin and naringin + ozone. Only laparotomy and exploration of the superior mesenteric artery (SMA) were done in control group. In the experimental groups, SAM was occluded for 1 h and reperfused for 1 h. 15 min after ischemia, ozone (25 μg/ml, 0.5 mg/kg), naringin (80 mg/kg) and naringin + ozone(80 mg/kg + 25 μg/ml, 0.5 mg/kg) were infused intraperitoneally to each groups. Ileum tissues were harvested to determine intestinal mucosal injury and oxidative stress markers. For SMA occlusion, different than literature, silk suture binding was used. Oxidative stress markers were significantly low in experimental groups compared with II/R group (p < 0.05). Histopathologically, the injury score was significantly low at experimental groups compared with II/R group (p < 0.05). The lowest injury score was encountered at naringine + ozone group. Ozone alone or combined with naringin has a protective effect for mesenteric ischemia. Instead of using instruments such as clamps in the II/R rat model, silk binding may be used safely. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  18. Delayed brain ischemia tolerance induced by electroacupuncture pretreatment is mediated via MCP-induced protein 1

    PubMed Central

    2013-01-01

    Background Emerging studies have demonstrated that pretreatment with electroacupuncture (EA) induces significant tolerance to focal cerebral ischemia. The present study seeks to determine the involvement of monocyte chemotactic protein-induced protein 1 (MCPIP1), a recently identified novel modulator of inflammatory reactions, in the cerebral neuroprotection conferred by EA pretreatment in the animal model of focal cerebral ischemia and to elucidate the mechanisms of EA pretreatment-induced ischemic brain tolerance. Methods Twenty-four hours after the end of the last EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 90 minutes in male C57BL/6 mice and MCPIP1 knockout mice. Transcription and expression of MCPIP1 gene was monitored by qRT-PCR, Western blot and immunohistochemistry. The neurobehavioral scores, infarction volumes, proinflammatory cytokines and leukocyte infiltration in brain and NF-κB signaling were evaluated after ischemia/reperfusion. Results MCPIP1 protein and mRNA levels significantly increased specifically in mouse brain undergoing EA pretreatment. EA pretreatment significantly attenuated the infarct volume, neurological deficits, upregulation of proinflammatory cytokines and leukocyte infiltration in the brain of wild-type mice after MCAO compared with that of the non-EA group. MCPIP1-deficient mice failed to evoke EA pretreatment-induced tolerance compared with that of the control MCPIP1 knockout group without EA treatment. Furthermore, the activation of NF-κB signaling was significantly reduced in EA-pretreated wild-type mice after MCAO compared to that of the non-EA control group and MCPIP1-deficient mice failed to confer the EA pretreatment-induced inhibition of NF-κB signaling after MCAO. Conclusions Our data demonstrated that MCPIP1 deficiency caused significant lack of EA pretreatment-induced cerebral protective effects after MCAO compared with the control group and that MCPIP1 is

  19. Exercise-induced ischemia initiates the second window of protection in humans independent of collateral recruitment.

    PubMed

    Lambiase, Pier D; Edwards, Richard J; Cusack, Michael R; Bucknall, Clifford A; Redwood, Simon R; Marber, Michael S

    2003-04-02

    This study was designed to examine if exercise-induced ischemia initiated late preconditioning in humans that becomes manifest during subsequent exercise and serial balloon occlusion of the left anterior descending coronary artery (LAD). The existence of late preconditioning in humans is controversial. We therefore compared myocardial responses to exercise-induced and intracoronary balloon inflation-induced ischemia in two groups of patients subjected to different temporal patterns of ischemia. Thirty patients with stable angina secondary to single-vessel LAD disease underwent percutaneous coronary intervention (PCI) after two separate exercise tolerance test (ETT) protocols designed to investigate isolated early preconditioning (IEP) alone or the second window of protection (SWOP). The IEP subjects underwent three sequential ETTs at least two weeks before PCI. The SWOP subjects underwent five sequential ETTs commencing 24 h before PCI. During PCI there was no significant difference in intracoronary pressure-derived collateral flow index (CFI) between groups (IEP = 0.15 +/- 0.13, SWOP = 0.19 +/- 0.15). In SWOP patients, compared with the initial ETT, the ETT performed 24 h later had a 40% (p < 0.001) increase in time to 0.1-mV ST depression and a 60% (p < 0.05) decrease in ventricular ectopic frequency. During the first balloon inflation, peak ST elevation was reduced by 49% (p < 0.05) in the SWOP versus the IEP group, and the dependence on CFI observed in the IEP group was abolished (analysis of covariance, p < 0.05). The significant attenuation of ST elevation (47%, p < 0.005) seen at the time of the second inflation in the IEP patients was not seen in the SWOP patients. Exercise-induced ischemia triggers late preconditioning in humans, which becomes manifest during exercise and PCI. This is the first evidence that ischemia induced by coronary occlusion is attenuated in humans by a late preconditioning effect induced by exercise.

  20. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    PubMed Central

    Onal, Ozkan; Yetisir, Fahri; Sarer, A. Ebru Salman; Zeybek, N. Dilara; Onal, C. Oztug; Yurekli, Banu; Celik, H. Tugrul; Sirma, Ayse; Kılıc, Mehmet

    2015-01-01

    Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine. Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF) intraperitoneally (ip) for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR) group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD), catalase (CAT), glutathioneperoxidase (GSH-Px), malondyaldehide (MDA), and protein carbonyl (PCO) were analyzed in tissue samples. Total oxidant status (TOS), and total antioxidant capacity (TAC) were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test. Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group. Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy prevented

  1. Aspergillus fumigatus Invasion Increases with Progressive Airway Ischemia

    PubMed Central

    Hsu, Joe L.; Khan, Mohammad A.; Sobel, Raymond A.; Jiang, Xinguo; Clemons, Karl V.; Nguyen, Tom T.; Stevens, David A.; Martinez, Marife; Nicolls, Mark R.

    2013-01-01

    Despite the prevalence of Aspergillus-related disease in immune suppressed lung transplant patients, little is known of the host-pathogen interaction. Because of the mould’s angiotropic nature and because of its capacity to thrive in hypoxic conditions, we hypothesized that the degree of Aspergillus invasion would increase with progressive rejection-mediated ischemia of the allograft. To study this relationship, we utilized a novel orthotopic tracheal transplant model of Aspergillus infection, in which it was possible to assess the effects of tissue hypoxia and ischemia on airway infectivity. Laser Doppler flowmetry and FITC-lectin were used to determine blood perfusion, and a fiber optic microsensor was used to measure airway tissue oxygen tension. Fungal burden and depth of invasion were graded using histopathology. We demonstrated a high efficacy (80%) for producing a localized fungal tracheal infection with the majority of infection occurring at the donor-recipient anastomosis; Aspergillus was more invasive in allogeneic compared to syngeneic groups. During the study period, the overall kinetics of both non-infected and infected allografts was similar, demonstrating a progressive loss of perfusion and oxygenation, which reached a nadir by days 10-12 post-transplantation. The extent of Aspergillus invasion directly correlated with the degree of graft hypoxia and ischemia. Compared to the midtrachea, the donor-recipient anastomotic site exhibited lower perfusion and more invasive disease; a finding consistent with clinical experience. For the first time, we identify ischemia as a putative risk factor for Aspergillus invasion. Therapeutic approaches focused on preserving vascular health may play an important role in limiting Aspergillus infections. PMID:24155924

  2. Effects of hypothermia and cerebral ischemia on cold-inducible RNA-binding protein mRNA expression in rat brain.

    PubMed

    Liu, Aijun; Zhang, Zhiwen; Li, Anmin; Xue, Jinghui

    2010-08-06

    CIRP (cold-inducible RNA-binding protein) mRNA is highly expressed in hypothermic conditions in mammalian cells, and the relationship between CIRP and neuroprotection for cerebral ischemia under hypothermia has been focused upon. At present, however, the expression characteristics of CIRP under hypothermia and cerebral ischemia in vivo are not clearly elucidated. In this study, CIRP mRNA expression in various regions of rat brain was examined by reverse transcriptase polymerase chain reaction (RT-PCR). CIRP expression levels were found to be similar in the hippocampus and cortex. Real-time quantitative PCR analysis revealed increasing CIRP mRNA expression in the cortex during the 24-h observation period following treatment with hypothermia or cerebral ischemia, with a greater increase in the hypothermia group. When cerebral ischemia was induced following hypothermia, CIRP mRNA expression in the cortex again showed a significant increasing tendency, but ischemia delayed the appearance of this increase. To reveal the relationship between CIRP and energy metabolism in the rat brain, lactate and pyruvate concentrations in the cortex of the rats treated with hypothermia, ischemia and ischemia after hypothermia were determined by spectrophotometric assay, and levels of phosphofructokinas-1 (PFK-1), the major regulatory enzyme of the glycolytic pathway, in the rat cortex in the three groups was also analyzed by Western blot. Using linear correlation, lactate and pyruvate concentrations, and PFK-1 levels, were each analyzed in the three groups in association with CIRP mRNA expression levels. The analysis did not reveal any correlation between the three metabolic parameters and CIRP mRNA expression induced by hypothermia, suggesting that while playing a role in neuroprotection under hypothermia, CIRP does not affect cerebral energy metabolism. Copyright 2010. Published by Elsevier B.V.

  3. Allowable warm ischemic time and morphological and biochemical changes in uterine ischemia/reperfusion injury in cynomolgus macaque: a basic study for uterus transplantation.

    PubMed

    Kisu, Iori; Umene, Kiyoko; Adachi, Masataka; Emoto, Katsura; Nogami, Yuya; Banno, Kouji; Itagaki, Iori; Kawamoto, Ikuo; Nakagawa, Takahiro; Narita, Hayato; Yoshida, Atsushi; Tsuchiya, Hideaki; Ogasawara, Kazumasa; Aoki, Daisuke

    2017-10-01

    How long is the allowable warm ischemic time of the uterus and what morphological and biochemical changes are caused by uterine ischemia/reperfusion injury in cynomolgus macaques? Warm ischemia in the uterus of cynomolgus macaques is tolerated for up to 4 h and reperfusion after uterine ischemia caused no further morphological and biochemical changes. Uterus transplantation is a potential option for women with uterine factor infertility. The allowable warm ischemic time and ischemia/reperfusion injury of the uterus in humans and non-human primates is unknown. This experimental study included 18 female cynomolgus macaques with periodic menstruation. Animals were divided into six groups of three monkeys each: a control group and groups with uterine ischemia for 0.5, 1, 2, 4 and 8 h. Biopsies of uterine tissues were performed before blood flow blockage, after each blockage time, and after reperfusion for 3 h. Blood sampling was performed after each blockage time, and after reperfusion for 5, 15 and 30 min for measurement of biochemical data. Resumption of menstruation was monitored after the surgical procedure. Morphological, physiological and biochemical changes after ischemia and reperfusion were evaluated. Mild muscle degeneration and zonal degeneration were observed in all animals subjected to warm ischemia for 4 or 8 h, but there were no marked differences in the appearance of specimens immediately after ischemia and after reperfusion for 3 h in animals subjected to 4 or 8 h of warm ischemia. There were no significant changes in any biochemical parameters at any time point in each group. Periodical menstruation resumed in all animals with warm ischemia up to 4 h, but did not recover in animals with warm ischemia for 8 h with atrophic uteri. Warm ischemia in actual transplantation was not exactly mimicked in this study because uteri were not perfused, cooled, transplanted or reanastomosed with vessels. Results in non-human primates cannot always be extrapolated to

  4. Protective Effects of Hydrocortisone, Vitamin C and E Alone or in Combination against Renal Ischemia-Reperfusion Injury in Rat.

    PubMed

    Azari, Omid; Kheirandish, Reza; Azizi, Shahrzad; Farajli Abbasi, Mohammad; Ghahramani Gareh Chaman, Shahin; Bidi, Masoud

    2015-01-01

    Renal ischemia reperfusion injury may occur in a variety of clinical situations, following a transient drop in total or regional blood flow to the kidney. This study was performed to investigate the protective effects of different antioxidants such as vitamin C, vitamin E, hydrocortisone and combination of these agents against experimental renal ischemia-reperfusion injury. Thirty male rats were divided into six groups. Group Sham, Group I/R: (45 min of ischemia followed by 1h of reperfusion), Group I/R+Vit C: (50 mg/kg Vit C, IV, immediately after reperfusion), Group I/R+Vit E: (20 mg/kg Vit E, IM, 15 min before reperfusion), Group I/R+Hydrocortisone: (50 mg/kg, IV, immediately after reperfusion), and Group Combination: Ischemia-reperfusion plus combination of Vit C, E and hydrocortisone. After the experiments, the left kidney was removed and the tissues were processed for histopathological examination. Severe injuries such as necrosis of tubules, atrophy of glomerulus, and hemorrhage were observed in group I/R. Histological scores indicating tissue injury significantly decreased in all treatment groups compared to the group I/R. The renal tissue in group treatment was preserved in comparison with the group I/R. Comparison between the treatment groups showed that group combination was more effective and group vit E was less effective in protecting of renal tissue against I/R injuries. The results demonstrated simultaneous administration of combination of Vit C, E and hydrocortisone before reperfusion of blood flow to the ischemic tissue could show a synergy against deleterious effects of I/R injuries in kidney.

  5. Ischemia-reperfusion injury in rat fatty liver: role of nutritional status.

    PubMed

    Caraceni, P; Nardo, B; Domenicali, M; Turi, P; Vici, M; Simoncini, M; De Maria, N; Trevisani, F; Van Thiel, D H; Derenzini, M; Cavallari, A; Bernardi, M

    1999-04-01

    Fatty livers are more sensitive to the deleterious effects of ischemia-reperfusion than normal livers. Nutritional status greatly modulates this injury in normal livers, but its role in the specific setting of fatty liver is unknown. This study aimed to determine the effect of nutritional status on warm ischemia-reperfusion injury in rat fatty livers. Fed and fasted rats with normal or fatty liver induced by a choline deficient diet underwent 1 hour of lobar ischemia and reperfusion. Rat survival was determined for 7 days. Serum transaminases, liver histology and cell ultrastructure were assessed before and after ischemia, and at 30 minutes, 2 hours, 8 hours, and 24 hours after reperfusion. Survival was also determined in fatty fasted rats supplemented with glucose before surgery. The preischemic hepatic glycogen was measured in all groups. Whereas survival was similar in fasted and fed rats with normal liver (90% vs. 100%), fasting dramatically reduced survival in rats with fatty liver (14% vs. 64%, P <.01). Accordingly, fasting and fatty degeneration had a synergistic effect in exacerbating liver injury. Mitochondrial damage was a predominant feature of ultrastructural hepatocyte injury in fasted fatty livers. Glucose supplementation partially prevented the fasting-induced depletion of glycogen and improved the 7-day rat survival to 45%. These data indicate that rat fatty livers exposed to normothermic ischemia-reperfusion injury are much more sensitive to fasting than histologically normal livers. Because glucose supplementation improves both the hepatic glycogen stores and the rat survival, a nutritional repletion procedure may be part of a treatment strategy aimed to prevent ischemia-reperfusion injury in fatty livers.

  6. Comparison of Aerobic Preservation by Venous Systemic Oxygen Persufflation or Oxygenated Machine Perfusion of Warm-Ischemia-Damaged Porcine Kidneys.

    PubMed

    Kalenski, Julia; Mancina, Elina; Paschenda, Pascal; Beckers, Christian; Bleilevens, Christian; Tóthová, Ľubomíra; Boor, Peter; Gross, Dominik; Tolba, René H; Doorschodt, Benedict M

    2016-01-01

    The global shortage of donor organs for transplantation has necessitated the expansion of the organ pool through increased use of organs from less ideal donors. Venous systemic oxygen persufflation (VSOP) and oxygenated machine perfusion (OMP) have previously demonstrated beneficial results compared to cold storage (CS) in the preservation of warm-ischemia-damaged kidney grafts. The aim of this study was to compare the efficacy of VSOP and OMP for the preservation of warm-ischemia-damaged porcine kidneys using the recently introduced Ecosol preservation solution compared to CS using Ecosol or histidine-tryptophan-ketoglutarate solution (HTK). Kidneys from German Landrace pigs (n = 5/group) were retrieved and washed out with either Ecosol or HTK after 45 min of clamping of the renal pedicle. As controls, kidneys without warm ischemia, cold stored for 24 h in HTK, were employed. Following 24 h of preservation by VSOP, OMP, CS-Ecosol, or CS-HTK, renal function and damage were assessed during 1 h using the isolated perfused porcine kidney model. During reperfusion, urine production was significantly higher in the VSOP and OMP groups than in the CS-HTK group; however, only VSOP could demonstrate lower urine protein concentrations and fractional excretion of sodium, which did not differ from the non-warm-ischemia-damaged control group. VSOP, CS-Ecosol, and controls showed better maintenance of the acid-base balance than CS-HTK. Reduced lipid peroxidation, as reflected in postreperfusion tissue thiobarbituric acid-reactive substance levels, was observed in the VSOP group compared to the OMP group, and the VSOP and CS-Ecosol groups had concentrations similar to the controls. The ratio of reduced to oxidized glutathione was higher in the VSOP, OMP, and CS-Ecosol groups than in the CS-HTK group and controls, with a higher ratio in the VSOP than in the OMP group. VSOP was associated with mitigation of oxidative stress in comparison to OMP and CS. Preservation of warm-ischemia

  7. Protective effects of hydrogen enriched saline on liver ischemia reperfusion injury by reducing oxidative stress and HMGB1 release

    PubMed Central

    2014-01-01

    Background The nuclear protein high-mobility group box 1 (HMGB1) is a key trigger for the inflammatory reaction during liver ischemia reperfusion injury (IRI). Hydrogen treatment was recently associated with down-regulation of the expression of HMGB1 and pro-inflammatory cytokines during sepsis and myocardial IRI, but it is not known whether hydrogen has an effect on HMGB1 in liver IRI. Methods A rat model of 60 minutes 70% partial liver ischemia reperfusion injury was used. Hydrogen enriched saline (2.5, 5 or 10 ml/kg) was injected intraperitoneally 10 minutes before hepatic reperfusion. Liver injury was assessed by serum alanine aminotransferase (ALT) enzyme levels and histological changes. We also measured malondialdehyde (MDA), hydroxynonenal (HNE) and 8-hydroxy-guanosine (8-OH-G) levels as markers of the peroxidation injury induced by reactive oxygen species (ROS). In addition, pro-inflammatory cytokines including TNF-α and IL-6, and high mobility group box B1 protein (HMGB1) were measured as markers of post ischemia-reperfusion inflammation. Results Hydrogen enriched saline treatment significantly attenuated the severity of liver injury induced by ischemia-reperfusion. The treatment group showed reduced serum ALT activity and markers of lipid peroxidation and post ischemia reperfusion histological changes were reduced. Hydrogen enriched saline treatment inhibited HMGB1 expression and release, reflecting a reduced local and systemic inflammatory response to hepatic ischemia reperfusion. Conclusion These results suggest that, in our model, hydrogen enriched saline treatment is protective against liver ischemia-reperfusion injury. This effect may be mediated by both the anti-oxidative and anti-inflammatory effects of the solution. PMID:24410860

  8. [The influence with block the endotoxin signal transduction for ischemia/reperfusion injury of graft liver in rats].

    PubMed

    Liu, Zuo-jin; Li, Sheng-wei; Li, Xu-hong; Peng, Yong; You, Hai-bo; Li, Shou-bai; Gong, Jian-ping

    2006-09-01

    To explore the feasibility of interleukin 1 receptor associated kinase-4 (IRAK-4) as gene therapy target for liver ischemia/reperfusion injury (I/RI) and effective approach in vivo for short hairpin RNA (shRNA) interference used to gene therapy in liver graft hqappened. Sprague-Dawley rats were randomly divided into three groups: the control group, the in vivo transfection group (IVT) and the cold ischemia transfection group (CIT). Experiments of orthotopic liver transplantation were performed by two-cuff method. CIT were perfused with IRAK-4-shRNA plasmid (pSIIRAK-4) during cold ischemia phase, IVT received the equivalent volumes (2 mL) of pSIIRAK-4 after portal vein inosculated, and the control group leaved without any treatment. At 0 min, 60 min and 180 min after reperfusion, the expression of IRAK-4 gene and protein level were determined by RT-PCR and Western blot. The serum TNF-alpha level was detected by ELISA. Liver histopathological changes and cell apoptosis were observed by electron microscope and TUNEL. After reperfusion, the expression of IRAK-4 were largely depressed in CIT than that of IVT and the control group (P < 0.01), and furthermore, the serum TNF-alpha level, proportion of hepatocyte apoptosis and severity of hepatocyte injury were also lower than the latter. These results indicate that depression IRAK-4 expression with IRAK-4-shRNA through portal vein perfusion during cold ischemia phase could effectively blunt graft hepatic I/RI.

  9. [The role of Leptin on neuron apoptosis in mice with cerebral ischemia/reperfusion injury].

    PubMed

    Yan, Guang-tao; Si, Yi-ling; Zhang, Jin-ying; Deng, Zi-hui; Xue, Hui

    2011-06-01

    To study the effect of Leptin on neuron apoptosis in mice with cerebral ischemia injury and its mechanism. Seventy-five mice were randomly divided into three groups. Focal cerebral ischemia/reperfusion injury model in mice was reproduced by middle cerebral artery occlusion for 2 hours followed by reperfusion. In Leptin intervention group mice were given Leptin 1 μg/g during cerebral ischemia by intraperitoneal injection. Mice in the model group were given equal amount of phosphate buffer saline. After reperfusion for 24 hours, the neuron apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. The mRNA and protein expression of apoptosis relative gene caspase-3 and bcl-2 were determined by reverse transcription-polymerase chain reaction (RT-PCR) and immuno histochemistry. Most of neuron necrosis was observed in cerebral ischemia center in model group. Compared with sham-operation group, neuron apoptosis rate, mRNA and protein expression of caspase-3 and bcl-2 in model group increased significantly [apoptosis rate: (68.65 ± 0.79)% vs. (4.40 ± 0.00)%, caspase-3 mRNA: 2.563 ± 0.250 vs. 0.153 ± 0.020, bcl-2 mRNA: 0.337 ± 0.100 vs. 0.125 ± 0.030, caspase-3 protein (absorbance value, A value): 0.57 ± 0.05 vs. 0.37 ± 0.03, bcl-2 protein (A value): 0.51 ± 0.04 vs. 0.35 ± 0.01, all P<0.01]. The apoptosis rate of penumbra neurons was reduced in Leptin intervention group significantly compared with model group [(42.30 ± 8.45)% vs. (68.65 ± 0.79)%, P<0.01]. Compared with model group, the mRNA and protein expression of caspase-3 in Leptin intervention group were reduced significantly [caspase-3 mRNA: 2.267 ± 0.040 vs. 2.563 ± 0.250, caspase-3 protein (A value): 0.45 ± 0.04 vs. 0.57 ± 0.05, P>0.05 and P<0.01], and the mRNA and protein expression of bcl-2 in Leptin intervention group upregulated significantly [bcl-2 mRNA: 0.662 ± 0.040 vs. 0.337 ± 0.100, bcl-2 protein (A value): 0.76 ± 0.09 vs. 0.51 ± 0

  10. Zero Flow Global Ischemia-Induced Injuries in Rat Heart Are Attenuated by Natural Honey

    PubMed Central

    Najafi, Moslem; Zahednezhad, Fahimeh; Samadzadeh, Mehrban; Vaez, Haleh

    2012-01-01

    Purpose: In the present study, effects of preischemic administration of natural honey on cardiac arrhythmias and myocardial infarction size during zero flow global ischemia were investigated in isolated rat heart. Methods: The isolated hearts were subjected to 30 min zero flow global ischemia followed by 120 min reperfusion then perfused by a modified drug free Krebs-Henseleit solution throughout the experiment (control) or the solution containing 0.25, 0.5, 1 and 2% of natural honey for 15 min before induction of global ischemia (treated groups), respectively. Cardiac arrhythmias were determined based on the Lambeth conventions and the infarct size was measured by computerized planimetry. Results: Myocardial infarction size was 55.8±7.8% in the control group, while preischemic perfusion of honey (0.25, 0.5, 1 and 2%) reduced it to 39.3±11, 30.6±5.5 (P<0.01), 17.9±5.6 (P<0.001) and 8.7±1.1% (P<0.001), respectively. A direct linear correlation between honey concentrations and infarction size reduction was observed (R2=0.9948). In addition, total number of ventricular ectopic beats were significantly decreased by all used concentrations of honey (P<0.05) during reperfusion time. Honey (0.25, 0.5 and 1 %) also lowered incidence of irreversible ventricular fibrillation (P<0.05). Moreover, number and duration of ventricular tachycardia were reduced in all honey treated groups. Conclusion: Preischemic administration of natural honey before zero flow global ischemia can protect isolated rat heart against ischemia/reperfusion injuries as reduction of infarction size and arrhythmias. Maybe, antioxidant and free radical scavenging activities of honey, reduction of necrotized tissue and providing energy sources may involve in these cardioprotective effects of honey. PMID:24312788

  11. Intestinal Ischemia

    MedlinePlus

    ... and hormone medications, such as estrogen Cocaine or methamphetamine use Vigorous exercise, such as long-distance running ... anti-phospholipid syndrome. Illegal drug use. Cocaine and methamphetamine use have been linked to intestinal ischemia. Complications ...

  12. Protective effects of tempol in an experimental ovarian ischemia-reperfusion injury model in female Wistar albino rats.

    PubMed

    Pınar, Neslihan; Soylu Karapınar, Oya; Özcan, Oğuzhan; Atik Doğan, Esin; Bayraktar, Suphi

    2017-07-01

    The aim of this study was to investigate the antioxidant effects of tempol on ovarian ischemia-reperfusion (I/R) injury in rats. Forty female Wistar albino rats were randomly divided into 5 groups: Group I, sham; Group II, ischemia (I); Group III, I/R; Group IV, I/R + tempol 30 mg/kg i.p; Group V, I/R + tempol 50 mg/kg i.p. Oxidative stress index (OSI) was significantly higher in the ischemia group and the I/R group than in the sham group. Catalase levels were significantly lower in the I/R group than in the I/R + tempol 30 mg/kg i.p. and the I/R + tempol 50 mg/kg i.p. groups. Glutathione peroxidase levels were lower in the I/R group than in the I/R + tempol 30 mg/kg i.p. and the I/R + tempol 50 mg/kg i.p. groups. MDA levels were significantly lower in the I/R + tempol 30 mg/kg i.p. group and the I/R + tempol 50 mg/kg i.p. group than in the I/R group. The levels of the histopathological parameters were significantly decreased in the I/R + tempol 50 mg/kg i.p. group compared with the I/R group. Tempol can be used for reducing ovarian I/R injury.

  13. Protection of donor lung inflation in the setting of cold ischemia against ischemia-reperfusion injury with carbon monoxide, hydrogen, or both in rats.

    PubMed

    Meng, Chao; Ma, Liangjuan; Niu, Li; Cui, Xiaoguang; Liu, Jinfeng; Kang, Jiyu; Liu, Rongfang; Xing, Jingchun; Jiang, Changlin; Zhou, Huacheng

    2016-04-15

    Lung ischemia-reperfusion injury (IRI) may be attenuated through carbon monoxide (CO)'s anti-inflammatory effect or hydrogen (H2)'s anti-oxidant effect. In this study, the effects of lung inflation with CO, H2, or both during the cold ischemia phase on graft function were observed. Rat donor lungs, inflated with 40% oxygen (control group), 500ppm CO (CO group), 3% H2 (H2 group) or 500ppm CO+3% H2 (COH group), were kept at 4°C for 180min. After transplantation, the recipients' artery blood gas and pressure-volume (P-V) curves were analyzed. The inflammatory response, oxidative stress and apoptosis in the recipients were assessed at 180min after reperfusion. Oxygenation in the CO and H2 groups were improved compared with the control group. The CO and H2 groups also exhibited significantly improved P-V curves, reduced lung injury, and decreased inflammatory response, malonaldehyde content, and cell apoptosis in the grafts. Furthermore, the COH group experienced enhanced improvements in oxygenation, P-V curves, inflammatory response, lipid peroxidation, and graft apoptosis compared to the CO and H2 groups. Lung inflation with CO or H2 protected against IRI via anti-inflammatory, anti-oxidant and anti-apoptotic mechanisms in a model of lung transplantation in rats, which was enhanced by combined treatment with CO and H2. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. [Effects of tanshinone- II A sulfonate on expression of nuclear factor-kappaB, vascular cell adhesion molecule-1 and hemorrheology during spinal cord ischemia reperfusion injury].

    PubMed

    Zhang, Li; An, Guo-Yao; Zhang, Wen-Guang; Chen, Kai

    2012-12-01

    To observe effects of Tanshinone- II A sulfonate on expression of Nuclear factor-kappaB (NF-kappaB), Vascular Cell Adhesion Molecule-1 (VCAM-1) and hemorrheology during spinal cord ischemia reperfusion injury,and explore the function and mechnism. Fifty-four New Zealand rabbits (aged 3 months,weighted 2.0 +/- 0.2 kg) were randomly divided into 6 in sham group (lumbar artery were separated in operation,0.8 ml/kg saline were injected at 0.5 h before and after operation), 24 in ischemia group ( lumbar artery were clipped after seperation, and the same dose of saline), 24 in Tanshinone group (lumbar artery were clipped after seperation, and the same dose of Tanshinone- II A sulfonate) . Abdomincal aorta blood were drawed after treatment respectively at 0.5 h, 1 h, 4 h and 8 h, and tesetd whole blood viscosity [high cut (mpa.s)/150(l/s), middle cut (mpa.s)/60(l/s) and low cut (mpa.s)/10(l/s)], capillary plasma viscosity, red cell aggregation index, rigid index, deformation index and electrophoresis index. Spinal cord tissues were divided into two sections,one fixed in 4% paraformaldehyde, another stored in liquid nitrogen. Immunohistochemical method and ELISA were used to test change of content of NF-kappaB and VCAM-1. 1) The expression of NF-kappaB in Tanshinone group were lowest, and in ischemia group were highest. 2) Compared with sham group, VCAM-1 in ischemia group at different time were obviously increased,especially at 0.5, 1 and 4 h (P<0.01), and had meaning at 8 h (P<0.05). Compare between Tanshinone group and ischemia group, VCAM-1 at 0.5 h were obviously decreased (P<0.01), and had meaning at 1 h, 4 h and 8 h (P<0.05). 3) There were no postive vasvular expression in sham group, and at 0.5 h in Tanshinone group and ischemia group. The highest postive vasvular expression in ischemia group were at 1 h, 4 h and 8 h, and had significant meaning at 1 h and 4 h between ischemia group and Tanshinone group (P<0.05), and 8 h were obviously most. 4) The whole blood

  15. Low energy shock wave therapy induces angiogenesis in acute hind-limb ischemia via VEGF receptor 2 phosphorylation.

    PubMed

    Holfeld, Johannes; Tepeköylü, Can; Blunder, Stefan; Lobenwein, Daniela; Kirchmair, Elke; Dietl, Marion; Kozaryn, Radoslaw; Lener, Daniela; Theurl, Markus; Paulus, Patrick; Kirchmair, Rudolf; Grimm, Michael

    2014-01-01

    Low energy shock waves have been shown to induce angiogenesis, improve left ventricular ejection fraction and decrease angina symptoms in patients suffering from chronic ischemic heart disease. Whether there is as well an effect in acute ischemia was not yet investigated. Hind-limb ischemia was induced in 10-12 weeks old male C57/Bl6 wild-type mice by excision of the left femoral artery. Animals were randomly divided in a treatment group (SWT, 300 shock waves at 0.1 mJ/mm2, 5 Hz) and untreated controls (CTR), n = 10 per group. The treatment group received shock wave therapy immediately after surgery. Higher gene expression and protein levels of angiogenic factors VEGF-A and PlGF, as well as their receptors Flt-1 and KDR have been found. This resulted in significantly more vessels per high-power field in SWT compared to controls. Improvement of blood perfusion in treatment animals was confirmed by laser Doppler perfusion imaging. Receptor tyrosine kinase profiler revealed significant phosphorylation of VEGF receptor 2 as an underlying mechanism of action. The effect of VEGF signaling was abolished upon incubation with a VEGFR2 inhibitor indicating that the effect is indeed VEGFR 2 dependent. Low energy shock wave treatment induces angiogenesis in acute ischemia via VEGF receptor 2 stimulation and shows the same promising effects as known from chronic myocardial ischemia. It may therefore develop as an adjunct to the treatment armentarium of acute muscle ischemia in limbs and myocardium.

  16. Placental Growth Factor Administration Abolishes Placental Ischemia-Induced Hypertension.

    PubMed

    Spradley, Frank T; Tan, Adelene Y; Joo, Woo S; Daniels, Garrett; Kussie, Paul; Karumanchi, S Ananth; Granger, Joey P

    2016-04-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia because placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and vascular endothelial growth factor are both natural ligands for sFlt-1, vascular endothelial growth factor also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to 4 groups: normal pregnant or RUPP±infusion of recombinant human PlGF (180 μg/kg per day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than normal pregnant rats. Infusion of recombinant human PlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that recombinant human PlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. © 2016 American Heart Association, Inc.

  17. PLACENTAL GROWTH FACTOR ADMINISTRATION ABOLISHES PLACENTAL ISCHEMIA-INDUCED HYPERTENSION

    PubMed Central

    Spradley, Frank T.; Tan, Adelene Y.; Joo, Woo S.; Daniels, Garrett; Kussie, Paul; Karumanchi, S. Ananth; Granger, Joey P.

    2016-01-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia as placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and VEGF are both natural ligands for sFlt-1, VEGF also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to four groups: normal pregnant (NP) or RUPP ± infusion of rhPlGF (180 μg/kg/day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than NP rats. Infusion of rhPlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that rhPlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. PMID:26831193

  18. Bowel obstruction complicated by ischemia: analysis of CT findings.

    PubMed

    Cox, Veronica L; Tahvildari, Ali M; Johnson, Benjamin; Wei, Wei; Jeffrey, R Brooke

    2018-06-01

    To analyze CT signs of bowel ischemia in patients with surgical bowel obstruction, and thereby improve CT diagnosis in this common clinical scenario. Surgical and histopathological findings were used as the reference standard. We retrospectively analyzed CT findings in patients brought to surgery for bowel obstruction over 13 years. Etiology of obstruction (adhesion, hernia, etc.) was recorded. Specific CT features of acute mesenteric ischemia (AMI) were analyzed, including bowel wall thickening, mucosal hypoenhancement, and others. 173 cases were eligible for analysis. 21% of cases were positive for bowel ischemia. Volvulus, internal hernia, and closed-loop obstructions showed ischemia rates of 60%, 43%, and 43%; ischemia rate in obstruction from simple adhesion was 21%. Patients with bowel obstruction related to malignancy were never ischemic. Sensitivities and specificities for CT features predicting ischemia were calculated, with wall thickening, hypoenhancement, and pneumatosis showing high specificity for ischemia (86%-100%). Wall thickening, hypoenhancement, and pneumatosis are highly specific CT signs of ischemia in the setting of obstruction. None of the evaluated CT signs were found to be highly sensitive. Overall frequency of ischemia in surgical bowel obstruction is 21%, and 2-3 times that for complex obstructions (volvulus, closed loop, etc.). Obstructions related to malignancy virtually never become ischemic.

  19. DIGE Proteome Analysis Reveals Suitability of Ischemic Cardiac In Vitro Model for Studying Cellular Response to Acute Ischemia and Regeneration

    PubMed Central

    Haas, Sina; Jahnke, Heinz-Georg; Moerbt, Nora; von Bergen, Martin; Aharinejad, Seyedhossein; Andrukhova, Olena; Robitzki, Andrea A.

    2012-01-01

    Proteomic analysis of myocardial tissue from patient population is suited to yield insights into cellular and molecular mechanisms taking place in cardiovascular diseases. However, it has been limited by small sized biopsies and complicated by high variances between patients. Therefore, there is a high demand for suitable model systems with the capability to simulate ischemic and cardiotoxic effects in vitro, under defined conditions. In this context, we established an in vitro ischemia/reperfusion cardiac disease model based on the contractile HL-1 cell line. To identify pathways involved in the cellular alterations induced by ischemia and thereby defining disease-specific biomarkers and potential target structures for new drug candidates we used fluorescence 2D-difference gel electrophoresis. By comparing spot density changes in ischemic and reperfusion samples we detected several protein spots that were differentially abundant. Using MALDI-TOF/TOF-MS and ESI-MS the proteins were identified and subsequently grouped by functionality. Most prominent were changes in apoptosis signalling, cell structure and energy-metabolism. Alterations were confirmed by analysis of human biopsies from patients with ischemic cardiomyopathy. With the establishment of our in vitro disease model for ischemia injury target identification via proteomic research becomes independent from rare human material and will create new possibilities in cardiac research. PMID:22384053

  20. Intraperitoneal curcumin decreased lung, renal and heart injury in abdominal aorta ischemia/reperfusion model in rat.

    PubMed

    Aydin, Mehmet Salih; Caliskan, Ahmet; Kocarslan, Aydemir; Kocarslan, Sezen; Yildiz, Ali; Günay, Samil; Savik, Emin; Hazar, Abdussemet; Yalcin, Funda

    2014-01-01

    Previous studies have demonstrated that curcumin (CUR) has protective effects against ischemia reperfusion injury to various organs. We aimed to determine whether CUR has favorable effects on tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. Thirty rats were divided into three groups as sham, control and treatment (CUR) group. Control and CUR groups underwent abdominal aorta ischemia for 60 min followed by a 120 min period of reperfusion. In the CUR group, CUR was given 5 min before reperfusion at a dose of 200 mg/kg via an intraperitoneal route. Total antioxidant capacity (TAC), total oxidative status (TOS), and oxidative stress index (OSI) in blood serum were measured, and lung, renal and heart tissue histopathology were evaluated with light microscopy. TOS and OSI activity in blood samples were statistically decreased in sham and CUR groups compared to the control group (p < 0.001 for TOS and OSI). Renal, lung, heart injury scores of sham and CUR groups were statistically decreased compared to control group (p < 0.001 for all comparisons). Histopathological examination revealed less severe lesions in CUR group than in the control group. CUR administered intraperitoneally was effective in reducing oxidative stress and histopathologic injury in an acute abdominal aorta I/R rat model. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Acute mesenteric ischemia of arterial origin: importance of early revascularization.

    PubMed

    Plumereau, F; Mucci, S; Le Naoures, P; Finel, J B; Hamy, A

    2015-02-01

    The goal of our study was to show that survival was better when early revascularization was performed rather than gastrointestinal resection in the management of acute mesenteric ischemia of arterial origin. The reports of patients managed in our center between January 2005 and May 2012 for acute mesenteric ischemia of arterial origin were analyzed retrospectively. Data on clinical, laboratory and radiologic findings, the interval before treatment, the operative findings and the surgical procedures were collected. Follow-up information included the postoperative course, and mortality at 48 h, 30 days and 1 year, the latter being compared between patients undergoing revascularization versus gastrointestinal resection. Of 43 patients treated during this period, 20 had gastrointestinal lesions deemed to be beyond all therapeutic resources, 13 were treated with gastrointestinal resection without revascularization, while 10 underwent early revascularization. There were no statistically significant differences found in the extent of involvement between the two groups (P=0.22). Mortality at 48 h, 30 days and 1 year was 8% (n=1), 30% (n=4) and 68% (n=8) in patients who underwent enterectomy vs. 0% (n=0), 0% (n=0) and 10% (n=1) in patients who underwent revascularization procedures. The difference at 1 year was statistically significant (P=0.02). At 1 year, two patients in the revascularized group had a short bowel syndrome vs. one in the non-revascularized group. Acute mesenteric ischemia of arterial origin is associated with high morbidity and mortality. Optimal management should include early revascularization. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Milrinone-induced postconditioning reduces hepatic ischemia-reperfusion injury in rats: the roles of phosphatidylinositol 3-kinase and nitric oxide.

    PubMed

    Toyoda, Tomomi; Tosaka, Shinya; Tosaka, Reiko; Maekawa, Takuji; Cho, Sungsam; Eguchi, Susumu; Nakashima, Masahiro; Sumikawa, Koji

    2014-01-01

    Ischemic postconditioning (PostC) protects the liver against ischemia-reperfusion (IR) injury. Milrinone, a phosphodiesterase 3 inhibitor, has been reported to exhibit preconditioning properties against hepatic IR injury; however, its PostC properties remain unknown. This study investigated whether milrinone has PostC properties against hepatic IR injury and the roles of phosphatidylinositol 3-kinase (PI3K) and nitric oxide synthase (NOS). Male Wistar rats were separated into six groups: (1) group S: animals that underwent sham operation without ischemia, (2) group C: ischemia followed by reperfusion with no other intervention, (3) group M: milrinone administered immediately after reperfusion, (4) group MW: wortmannin, a PI3K inhibitor, injected before milrinone administration, (5) group MN: l-NAME, a NOS inhibitor, injected before milrinone administration, and (6) group MD, milrinone administered 30 min after reperfusion. Except for group S, all groups underwent 1 h of warm ischemia of median and left lateral lobes, followed by 5 h of reperfusion. Biochemical liver function analysis and histologic examination were performed. Serum aspartate aminotransferase, alanine aminotransferase, and lactic dehydrogenase levels, histologic damage scores, and apoptotic rate in group M were significantly lower than those in group C. The inhibition of PI3K or NOS prevented this protective effect. Milrinone administered 30 min after reperfusion did not show obvious protective effects. Milrinone-induced PostC protects against hepatic IR injury when it is administered immediately after reperfusion, and PI3K and NOS may play an important role in this protective effect. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Role of REM Sleep, Melanin Concentrating Hormone and Orexin/Hypocretin Systems in the Sleep Deprivation Pre-Ischemia

    PubMed Central

    Pace, Marta; Adamantidis, Antoine; Facchin, Laura; Bassetti, Claudio

    2017-01-01

    Study Objectives Sleep reduction after stroke is linked to poor recovery in patients. Conversely, a neuroprotective effect is observed in animals subjected to acute sleep deprivation (SD) before ischemia. This neuroprotection is associated with an increase of the sleep, melanin concentrating hormone (MCH) and orexin/hypocretin (OX) systems. This study aims to 1) assess the relationship between sleep and recovery; 2) test the association between MCH and OX systems with the pathological mechanisms of stroke. Methods Sprague-Dawley rats were assigned to four experimental groups: (i) SD_IS: SD performed before ischemia; (ii) IS: ischemia; (iii) SD_Sham: SD performed before sham surgery; (iv) Sham: sham surgery. EEG and EMG were recorded. The time-course of the MCH and OX gene expression was measured at 4, 12, 24 hours and 3, 4, 7 days following ischemic surgery by qRT-PCR. Results A reduction of infarct volume was observed in the SD_IS group, which correlated with an increase of REM sleep observed during the acute phase of stroke. Conversely, the IS group showed a reduction of REM sleep. Furthermore, ischemia induces an increase of MCH and OX systems during the acute phase of stroke, although, both systems were still increased for a long period of time only in the SD_IS group. Conclusions Our data indicates that REM sleep may be involved in the neuroprotective effect of SD pre-ischemia, and that both MCH and OX systems were increased during the acute phase of stroke. Future studies should assess the role of REM sleep as a prognostic marker, and test MCH and OXA agonists as new treatment options in the acute phase of stroke. PMID:28061506

  4. Ischemia/Reperfusion

    PubMed Central

    Kalogeris, Theodore; Baines, Christopher P.; Krenz, Maike; Korthuis, Ronald J.

    2017-01-01

    Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. PMID:28135002

  5. Is ursodeoxycholic acid crucial for ischemia/reperfusion-induced ovarian injury in rat ovary?

    PubMed

    Akdemir, Ali; Sahin, Cagdas; Erbas, Oytun; Yeniel, Ahmet O; Sendag, Fatih

    2015-08-01

    Ursodeoxycholic acid is frequently used in cholestatic liver diseases. Also, it protects hepatocytes against oxidative stress induced by hydrophobic bile acids. We investigated the anti-oxidative effect of ursodeoxycholic acid on ischemia/reperfusion injury after ovarian de-torsion in rats. We designed five study groups. Group 1 (n = 6): Sham-operated group; group 2 (n = 6): torsion group; group 3 (n = 6): torsion and ursodeoxycholic acid, group 4 (n = 7): torsion/de-torsion group; and group 5 (n = 7): torsion/de-torsion and ursodeoxycholic acid. After that, ovarian samples were obtained and examined histologically and tissue levels of malondialdehyde were measured. Follicular degeneration, edema and inflammatory cells were significantly decreased in groups 3 and 5 in comparison with groups 2 and 4. Also, groups 4 and 5 were compared in terms of vascular congestion and hemorrhage and these were found to be significantly decreased in group 5. In addition, levels of malondialdehyde were significantly decreased in groups 3 and 5 in comparison with groups 2 and 4. We concluded that ursodeoxycholic acid might be useful to protect the ovary against ischemia and reperfusion injury.

  6. Erythropoietin and sildenafil protect against ischemia/reperfusion injury following testicular torsion in adult rats.

    PubMed

    Kostakis, Ioannis D; Zavras, Nick; Damaskos, Christos; Sakellariou, Stratigoula; Korkolopoulou, Penelope; Misiakos, Evangelos P; Tsaparas, Petros; Vaos, George; Karatzas, Theodoros

    2017-06-01

    Testicular torsion/detorsion causes severe tissue damage due to ischemia/reperfusion injury. The present study investigated the protective effect of erythropoietin and sildenafil against ischemia/reperfusion injury following unilateral testicular torsion/detorsion in adult rats. A total of 28 adult male rats were included, and were divided into the following groups: Group A (n=5), sham operated; groups B (n=5), C (n=5), D (n=5) and E (n=8), undergoing right testis torsion and detorsion after 90 min. Group B received no drug treatment. Rats in the groups C and D received low-dose (1,000 IU/kg) or high-dose (3,000 IU/kg) erythropoietin, while those in group E received sildenafil (0.7 mg/kg), through intraperitoneal injection after 60 min of torsion. The right testis was extracted 24 h after detorsion, and the tissue was subjected to histopathological examination and immunohistochemical assessment of cleaved caspase-3 expression. Histological alterations and the quality of spermatogenesis were scored according to the Cosentino and the Johnsen scoring systems, respectively. The results demonstrated normal testicular architecture in group A, while the other groups showed ischemic cellular damages, with the worst scores observed in group B. Groups D and E presented better scores compared with group C. Regarding the quality of spermatogenesis, the best scores were observed in group A, and the worst in group B. Groups C, D and E presented similar results, which were improved in comparison to group B, however, not compared to group A. Furthermore, cleaved caspase-3 levels were lower in groups A, D and E, with equal results observed. Group C had higher levels of cleaved caspase-3 compared with these groups, but lower than group B, which presented the highest cleaved caspase-3 levels. In conclusion, erythropoietin and sildenafil protect testis from ischemia/reperfusion injury by decreasing cellular damage and attenuating apoptosis.

  7. Erythropoietin and sildenafil protect against ischemia/reperfusion injury following testicular torsion in adult rats

    PubMed Central

    Kostakis, Ioannis D.; Zavras, Nick; Damaskos, Christos; Sakellariou, Stratigoula; Korkolopoulou, Penelope; Misiakos, Evangelos P.; Tsaparas, Petros; Vaos, George; Karatzas, Theodoros

    2017-01-01

    Testicular torsion/detorsion causes severe tissue damage due to ischemia/reperfusion injury. The present study investigated the protective effect of erythropoietin and sildenafil against ischemia/reperfusion injury following unilateral testicular torsion/detorsion in adult rats. A total of 28 adult male rats were included, and were divided into the following groups: Group A (n=5), sham operated; groups B (n=5), C (n=5), D (n=5) and E (n=8), undergoing right testis torsion and detorsion after 90 min. Group B received no drug treatment. Rats in the groups C and D received low-dose (1,000 IU/kg) or high-dose (3,000 IU/kg) erythropoietin, while those in group E received sildenafil (0.7 mg/kg), through intraperitoneal injection after 60 min of torsion. The right testis was extracted 24 h after detorsion, and the tissue was subjected to histopathological examination and immunohistochemical assessment of cleaved caspase-3 expression. Histological alterations and the quality of spermatogenesis were scored according to the Cosentino and the Johnsen scoring systems, respectively. The results demonstrated normal testicular architecture in group A, while the other groups showed ischemic cellular damages, with the worst scores observed in group B. Groups D and E presented better scores compared with group C. Regarding the quality of spermatogenesis, the best scores were observed in group A, and the worst in group B. Groups C, D and E presented similar results, which were improved in comparison to group B, however, not compared to group A. Furthermore, cleaved caspase-3 levels were lower in groups A, D and E, with equal results observed. Group C had higher levels of cleaved caspase-3 compared with these groups, but lower than group B, which presented the highest cleaved caspase-3 levels. In conclusion, erythropoietin and sildenafil protect testis from ischemia/reperfusion injury by decreasing cellular damage and attenuating apoptosis. PMID:28587411

  8. SALVIANOLIC ACID B ALLEVIATING MYOCARDIUM INJURY IN ISCHEMIA REPERFUSION RATS.

    PubMed

    Qiao, Zengyong; Xu, Yawei

    2016-01-01

    Salvia miltiorrhiza (SM) Bunge is one of the widely-used Chinese medicinal herbs. Salvianolic acid B (Sal B), a bioactive compound isolated from the Chinese herb Radix Salviae Miltiorrhizae, has been reported to exhibit anti-inflammatory and anti-oxidantive effects. To study the cardioprotective effects of salvianolic acid B (Sal B) on acute myocardial ischemia reperfusion (MIR) injury rats, on the basis of this investigation, the possible mechanism of salvianolic acid B was elucidated. Male Sprague- Dawley rats (200-220 g) were randomly divided into five groups: sham-operated, MIR, MIR + Sal B (10 mg/kg/day, orally), MIR + Sal B (20 mg/kg/ day, orally) and MIR + Sal B (30 mg/kg/ day, orally). Before operation, the foregoing groups were pretreated with homologous drug once a day for 7 days, respectively. After twelve hours in MIR, the cardioprotective effects of SPJ were evaluated by infarct size, biochemical values, and the antioxidative and antiapoptotic relative gene expressions. Sal B significantly improved heart function and decreased infarct size; remarkably decreased levels of serum TNF-α and IL-Ιβ levels, increased contents of myocardium antioxidant enzymes activities; western blot results showed that Sal B ameliorate the increased Bax and caspase-3 protins expressions and decreased Bcl-2 proteins expression and ratios of Bcl-2 to Bax. In ischemic myocardium, oxidative stress caused the overgeneration and accumulation of reactive oxygen species (ROS), which was central of cardiac ischemic injury. Sal B exerted beneficially cardioprotective effects on myocardial ischemia injury rats, mainly scavenging oxidative stress-triggered overgeneration and accumulation of ROS, alleviating myocardial ischemia injury and cardiac cell death. List of abbreviations: salvianolic acid B (Sal B); myocardial ischemia reperfusion (MIR); reactive oxygen species (ROS); Left ventricular end-diastolic pressure (LVEDP); left ventricular end-diastolic volume (LVEDV

  9. [Activation of autophagy pathway in hippocampus and deterioration of learning and memory ability by intermittent hypoxia in rats after cerebral ischemia].

    PubMed

    Guo, Xiangfei; Zhao, Yaning; Li, Jianmin; Liu, Wenqian; Chen, Changxiang

    2016-09-01

    Objective To investigate the effects of different duration of intermittent hypoxia on the autophagy pathway in the hippocampus and the learning and memory ability after cerebral ischemia in rats. Methods 100 male Wistar rats were randomly divided into sham operation (SO) group, ischemia/reperfusion (I/R) group, intermittent hypoxia for 7 days combined with ischemia/reperfusion (IH7-I/R) group, intermittent hypoxia for 14 days combined with ischemia/reperfusion (IH14-I/R) group, intermittent hypoxia for 21 days combined with ischemia/reperfusion (IH21-I/R) group, n =20 in each group. The rats in IH7-I/R group, IH14-I/R group and IH21-I/R group were respectively subjected to intermittent hypoxia for 7, 14 and 21 days prior to I/R modeling by improved Pulsinelli four-vessel occlusion (4-VO). The morphological changes of nerve cells in the hippocampus of rat brain were detected by HE staining; the levels of mammalian target of rapamycin (mTOR) and beclin 1 mRNA in the hippocampus were determined by quantitative real-time PCR; the distribution of mTOR and beclin 1 in the hippocampus was observed by immunohistochemistry; the learning and memory ability of rats was assessed by the Morris water maze test. Results Compared with the SO group, the never cell morphology was damaged, the number of survival neurons in the hippocampus was reduced, the expressions of mTOR and beclin 1 in the hippocampus were strengthened, and the learning and memory ability declined in the I/R group. Compared with the I/R group, the never cell morphology was damaged seriously, the number of survival neurons in the hippocampus decreased, the expressions of mTOR and beclin 1 in the hippocampus increased, and the learning and memory ability dropped in the intermittent hypoxia groups. What's more, the above changes were dependent on the duration of intermittent hypoxia. Conclusion Intermittent hypoxia aggravates the dysfunction of learning and memory after cerebral ischemia and the damages increase

  10. Acetyl-L-carnitine and oxaloacetate in post-treatment against LTP impairment in a rat ischemia model. An in vitro electrophysiological study.

    PubMed

    Kocsis, K; Knapp, L; Mészáros, J; Kis, Z; Farkas, T; Vécsei, L; Toldi, J

    2015-06-01

    A high proportion of research relating to cerebral ischemia focuses on neuroprotection. The application of compounds normally present in the organism is popular, because they do not greatly influence the synaptic activity by receptor modulation, and can be administered without serious side effects. Oxaloacetate (OxAc) and acetyl-L-carnitine (ALC) are such favorable endogenous molecules. ALC can exert a protective effect by improving the energy state of the neurons under ischemic conditions. A promising neuroprotective strategy is glutamate scavenging, which can be achieved by the intravenous administration of OxAc. This study involved the possible protective effects of ALC and OxAc in different post-treatment protocols against long-term potentiation (LTP) impairment. Ischemia was induced in rats by 2-vessel occlusion, which led to a decreased LTP relative to the control group. High-dose (200 mg/kg) ALC or OxAc post-treatment resulted in a higher potentiation relative to the 2VO group, but it did not reach the control level, whereas low-dose ALC (100 mg/kg) in combination with OxAc completely restored the LTP function. Many previous studies have concluded that ALC can be protective only as pretreatment. The strategy described here reveals that ALC can also be neuroprotective when utilized as post-treatment against ischemia.

  11. Small Group Research

    ERIC Educational Resources Information Center

    McGrath, Joseph E.

    1978-01-01

    Summarizes research on small group processes by giving a comprehensive account of the types of variables primarily studied in the laboratory. These include group structure, group composition, group size, and group relations. Considers effects of power, leadership, conformity to social norms, and role relationships. (Author/AV)

  12. [Effects of pressure induced retinal ischemia on ERG in rabbit].

    PubMed

    Song, G; Yang, X; Zhang, Z; Zhang, D

    2001-12-01

    To observe the effects of pressure induced retinal ischemia on electroretinogram(ERG) in rabbit. Retinal ischemia was induced in rabbits by increasing intraocular pressure at 30 mmHg, 60 mmHg, 90 mmHg, 120 mmHg for 45 minutes, and retinal function was monitored by eletroretinography. There was no difference on ERG before or after the experiment both in 30 mmHg group and control one. In 60 mmHg pressure induced ischemia eyes, the amplitudes of the b-wave and OPs wave reduced significantly. Four hours after reperfusion, they were totally recovered. After an ischemic insult of 90 mmHg or 120 mmHg for 45 minutes, there was no response of ERG. Four hours later, the amplitudes of the b-wave and OPs wave were 66.912 +/- 20.157 and 16.423 +/- 3.965 the former, 38.852 +/- 23.438 and 8.610 +/- 12.090 the latter, respectively. These results suggest that higher intraocular pressure causes more severe retina ischemic damage, and less recovery ability.

  13. Effect of ischemic preconditioning on antioxidant status in the gerbil hippocampal CA1 region after transient forebrain ischemia

    PubMed Central

    Park, Seung Min; Park, Chan Woo; Lee, Tae-Kyeong; Cho, Jeong Hwi; Park, Joon Ha; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich-Na; Ahn, Ji Hyeon; Tae, Hyun-Jin; Shin, Myoung Cheol; Ohk, Taek Geun; Cho, Jun Hwi; Won, Moo-Ho; Choi, Soo Young; Kim, In Hye

    2016-01-01

    Ischemic preconditioning (IPC) is a condition of sublethal transient global ischemia and exhibits neuroprotective effects against subsequent lethal ischemic insult. We, in this study, examined the neuroprotective effects of IPC and its effects on immunoreactive changes of antioxidant enzymes including superoxide dismutase (SOD) 1 and SOD2, catalase (CAT) and glutathione peroxidase (GPX) in the gerbil hippocampal CA1 region after transient forebrain ischemia. Pyramidal neurons of the stratum pyramidale (SP) in the hippocampal CA1 region of animals died 5 days after lethal transient ischemia without IPC (8.6% (ratio of remanent neurons) of the sham-operated group); however, IPC prevented the pyramidal neurons from subsequent lethal ischemic injury (92.3% (ratio of remanent neurons) of the sham-operated group). SOD1, SOD2, CAT and GPX immunoreactivities in the sham-operated animals were easily detected in pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region, while all of these immunoreactivities were rarely detected in the stratum pyramidale at 5 days after lethal transient ischemia without IPC. Meanwhile, their immunoreactivities in the sham-operated animals with IPC were similar to (SOD1, SOD2 and CAT) or higher (GPX) than those in the sham-operated animals without IPC. Furthermore, their immunoreactivities in the stratum pyramidale of the ischemia-operated animals with IPC were steadily maintained after lethal ischemia/reperfusion. Results of western blot analysis for SOD1, SOD2, CAT and GPX were similar to immunohistochemical data. In conclusion, IPC maintained or increased the expression of antioxidant enzymes in the stratum pyramidale of the hippocampal CA1 region after subsequent lethal transient forebrain ischemia and IPC exhibited neuroprotective effects in the hippocampal CA1 region against transient forebrain ischemia. PMID:27630689

  14. [Acute mesenteric ischemia: do biomarkers contribute to diagnosis?].

    PubMed

    Rosero, Olivér; Harsányi, László; Szijártó, Attila

    2014-10-12

    Acute mesenteric ischemia is an emergency condition that requires immediate therapy. Despite advances in the fields of surgery and intensive therapy, the mortality of this condition remains high. This is due to the broad variability of clinical presentations and non-specific laboratory findings, which delay the diagnosis allowing the ischemia to progress and further worsening the patients' chances of survival. Thus, there is a significant need for reliable and enhanced serological markers of intestinal ischemia. The authors review the traditionally used and novel experimental serological markers for early diagnosis of mesenteric ischemia.

  15. Clinical Features and Outcomes of Gastric Ischemia.

    PubMed

    Sharma, Ayush; Mukewar, Saurabh; Chari, Suresh T; Wong Kee Song, Louis M

    2017-12-01

    Gastric ischemia is a rare condition associated with poor prognosis. Our study aim was to highlight the clinical features and outcomes of patients with gastric ischemia. A retrospective review of patients diagnosed with isolated gastric ischemia at our institution from January 1, 2000, to May 5, 2016, was performed. Demographic, clinical, endoscopic, radiologic, and outcome variables were abstracted for analysis. Seventeen patients (65% men) with mean age of 69.3 ± 11.3 years and body mass index of 28.8 ± 11.1 were identified. The etiologies for gastric ischemia included local vascular causes (n = 8), systemic hypoperfusion (n = 4), and mechanical obstruction (n = 5). The most common presenting symptoms were abdominal pain (65%), gastrointestinal bleeding (47%), and altered mental status (23%). The typical endoscopic appearance was mucosal congestion and erythema with or without ulceration. Gastric pneumatosis and portal venous air were more commonly seen on CT imaging. Radiologic and/or surgical intervention was needed in 9 patients, while the remaining 8 patients were managed conservatively with acid suppression, antibiotics, and nasogastric tube decompression. The median duration of hospital stay was 15 days (range 1-36 days). There were no cases of rebleeding and the mortality rate as a direct result of gastric ischemia was 24% within 6 months of diagnosis. Although uncommon, gastric ischemia is associated with significant mortality. Endoscopy and CT imaging play an important role in its diagnosis. The management of gastric ischemia is dictated by its severity and associated comorbidities.

  16. Comparison of protective effects of safflor injection and extract of Ginkgo biloba on lung ischemia/reperfusion injury in rabbits.

    PubMed

    Tian, Xiao-xi; Wang, Bo-liang; Cao, Yi-zhan; Zhong, Yue-xia; Tu, Yan-yang; Xiao, Jian-bo; He, Qian-feng; Zhai, Li-na

    2015-03-01

    To observe the protective effects of safflor Injection (SI) and extract of Ginkgo biloba (EGB) on lung ischemia-reperfusion injury (LIRI) and investigate its mechanism. In vivo rabbit model of LIRI was reconstructed. Forty rabbits were randomly and equally divided into four groups: sham-operation group (sham group), ischemia-reperfusion group (model group), ischemia-reperfusion plus SI group (safflor group) and ischemia-reperfusion plus EGB injection group (EGB group). Malondialdehyde (MDA) content, superoxide dismutase (SOD) and xanthine oxidase (XO) activity in serum were measured. The wet/dry weight ratio (W/D) of the lung tissue and activity of myeloperoxidase (MPO) were also tested. Ultrastructure change of the lung tissue was observed by the electron microscope. The expression of intercellular adhesion molecule-1 (ICAM-1) was measured by immunohistochemistry (IHC). In the model group, MDA and XO increased and SOD decreased in serum compared with the sham group (P<0.01). The values of W/D, MPO and ICAM-1 of the model group were higher than those of the sham group (P<0.01), but those of the safflor group and EGB group were significantly lower than those of the model group (P<0.01). The IHC demonstrated that ICAM-1 expression in lung tissue of the model group was significantly higher than those of the safflor group (P<0.01). Compared with safflor group, in the EGB group MDA, XO, MPO decreased, SOD and ICAM-1 expression increased (P<0.05), but the change of W/D was not statistically significant (P>0.05). SI and EGB may attenuate LIRI through antioxidation, inhibition of neutrophil aggregation and down-regulation of ICAM-1 expression. But EGB had more effect on the antioxidation, while SI did better on regulating ICAM-1 expression.

  17. Pharmacology of Ischemia-Reperfusion. Translational Research Considerations.

    PubMed

    Prieto-Moure, Beatriz; Lloris-Carsí, José M; Barrios-Pitarque, Carlos; Toledo-Pereyra, Luis-H; Lajara-Romance, José María; Berda-Antolí, M; Lloris-Cejalvo, J M; Cejalvo-Lapeña, Dolores

    2016-08-01

    Ischemia-reperfusion (IRI) is a complex physiopathological mechanism involving a large number of metabolic processes that can eventually lead to cell apoptosis and ultimately tissue necrosis. Treatment approaches intended to reduce or palliate the effects of IRI are varied, and are aimed basically at: inhibiting cell apoptosis and the complement system in the inflammatory process deriving from IRI, modulating calcium levels, maintaining mitochondrial membrane integrity, reducing the oxidative effects of IRI and levels of inflammatory cytokines, or minimizing the action of macrophages, neutrophils, and other cell types. This study involved an extensive, up-to-date review of the bibliography on the currently most widely used active products in the treatment and prevention of IRI, and their mechanisms of action, in an aim to obtain an overview of current and potential future treatments for this pathological process. The importance of IRI is clearly reflected by the large number of studies published year after year, and by the variety of pathophysiological processes involved in this major vascular problem. A quick study of the evolution of IRI-related publications in PubMed shows that in a single month in 2014, 263 articles were published, compared to 806 articles in the entire 1990.

  18. Sodium 4-phenylbutyrate protects against spinal cord ischemia by inhibition of endoplasmic reticulum stress.

    PubMed

    Mizukami, Taketomo; Orihashi, Kazumasa; Herlambang, Bagus; Takahashi, Shinya; Hamaishi, Makoto; Okada, Kenji; Sueda, Taijiro

    2010-12-01

    Delayed paraplegia after operation on the thoracoabdominal aorta is considered to be related to vulnerability of motor neurons to ischemia. Previous studies have demonstrated the relationship between neuronal vulnerability and endoplasmic reticulum (ER) stress after transient ischemia in the spinal cord. The aim of this study was to investigate whether sodium 4-phenylbutyrate (PBA), a chemical chaperone that reduces the load of mutant or unfolded proteins retained in the ER during cellular stress, can protect against ischemic spinal cord damage. Spinal cord ischemia was induced in rabbits by direct aortic cross-clamping (below the renal artery and above the bifurcation) for 15 minutes at normothermia. Group A (n = 6) was a sham operation control group. In group B (n = 6) and group C (n = 6), vehicle or 15 mg/kg/h of sodium 4-PBA was infused intravenously, respectively, from 30 minutes before the induction of ischemia until 30 minutes after reperfusion. Neurologic function was assessed at 8 hours, and 2 and 7 days after reperfusion with a Tarlov score. Histologic changes were studied with hematoxylin-eosin staining. Immunohistochemistry analysis for ER stress-related molecules, including caspase12 and GRP78 were examined. The mean Tarlov scores were 4.0 in every group at 8 hours, but were 4.0, 2.5, and 3.9 at 2 days; and 4.0, 0.7, and 4.0 at 7 days in groups A, B, and C, respectively. The numbers of intact motor neurons at 7 days after reperfusion were 47.4, 21.5, and 44.9 in groups A, B, and C, respectively. There was no significant difference in terms of viable neurons between groups A and C. Caspase12 and GRP78 immunoreactivities were induced in motor neurons in group B, whereas they were not observed in groups A and C. Reduction in ER stress-induced spinal cord injury was achieved by the administration of 4-PBA. 4-PBA may be a strong candidate for use as a therapeutic agent in the treatment of ischemic spinal cord injury. Copyright © 2010 Society for Vascular

  19. Pre-Treatment with Metformin in Comparison with Post-Treatment Reduces Cerebral Ischemia Reperfusion Induced Injuries in Rats.

    PubMed

    Karimipour, Mojtaba; Shojaei Zarghani, Sara; Mohajer Milani, Majid; Soraya, Hamid

    2018-04-01

    To explore the effects of pre versus post ischemic treatment with metformin after global cerebral ischemia in rats. Male Wister rats underwent forebrain ischemia by bilateral common carotid artery occlusion for 17 min. Metformin (200 mg/kg) or vehicle was given orally by gavage for 7-14 days. Rats were divided into: control, metformin pre-treatment, metformin post-treatment and metformin pre and post continuous treatment groups. Cerebral infarct size, histopathology, myeloperoxidase and serum malondialdehyde were measured 7 days after ischemia. Histopathological analysis showed that metformin pre-treatment significantly decreased leukocyte infiltration, myeloperoxidase activity and also malondialdehyde level. Metformin pre-treatment and metformin post-treatment reduced infarct size compared with the control group, but it was not significant in the pre and post continuous treatment group. Our findings suggest that pre-treatment with metformin in comparison with post-treatment in experimental stroke can reduce the extent of brain damage and is more neuroprotective at least in part by inhibiting oxidative stress and inflammation.

  20. ERK phosphorylation plays an important role in the protection afforded by hypothermia against renal ischemia-reperfusion injury.

    PubMed

    Choi, Dae Eun; Jeong, Jin Young; Choi, Hyunsu; Chang, Yoon Kyung; Ahn, Moon Sang; Ham, Young Rok; Na, Ki Ryang; Lee, Kang Wook

    2017-02-01

    Although hypothermia attenuates the renal injury induced by ischemia-reperfusion, the detailed molecular pathway(s) involved remains unknown. ERK phosphorylation is known to protect against ischemia-reperfusion injury. Also, it has been reported that hypothermia may induce ERK phosphorylation in the heart and brain. We evaluated the role played by ERK in hypothermic protection against renal ischemia-reperfusion injury. C57Bl/6 mice were divided into the following groups: sham-operated (cold, 32°C) vs normal temperature (37°C); ischemia-reperfusion mice (32°C vs 37°C); and PD98059- or vehicle-treated ischemia-reperfusion mice (32°C). Kidneys were harvested 10 and 27 minutes after induction of renal ischemia and 24 hours after ischemia-reperfusion injury. Functional and molecular markers of kidney injury were evaluated. To explore the molecular mechanism involved the expression levels of renal HIF-1 and associated proteins were evaluated. The blood urea nitrogen (BUN) and serum creatinine (s-Cr) levels and the histologic renal injury scores were significantly lower in 32°C ischemia-reperfusion than 37°C ischemia-reperfusion kidneys (all P values < .05). The expression levels of Bax and caspase-3 and the extent of TUNEL and 8-OHdG cell positivity decreased, whereas the renal Bcl-2 level increased, in 32°C ischemia-reperfusion compared to 37°C ischemia-reperfusion mice. The extent of renal ERK phosphorylation was significantly higher in ischemia-reperfusion than sham-operated kidneys. Also, ERK phosphorylation was significantly increased in the kidneys of 32°C compared to 37°C ischemia-reperfusion mice. PD98059 treatment of 32°C ischemia-reperfusion mice significantly decreased the renal HIF-1 level (P < .05) and increased the BUN, s-Cr, renal Bax, and caspase-3 expression levels; the tissue injury score; and the proportions of TUNEL- and 8-OHdG-positive cells. PD98059 also increased the renal Bcl-2 level in such mice. Hypothermia attenuates the renal

  1. Influence of physical preconditioning on the responsiveness of rat pulmonary artery after pulmonary ischemia/reperfusion.

    PubMed

    Delbin, Maria Andréia; Moraes, Camila; Camargo, Enilton; Mussi, Ricardo K; Antunes, Edson; de Nucci, Gilberto; Zanesco, Angelina

    2007-07-01

    The aim of this work was to evaluate the effect of physical preconditioning in the responsiveness of rat pulmonary rings submitted to lung ischemia/reperfusion (IR). Wistar rats were divided into three groups: Sedentary sham-operated (SD/SHAM); sedentary submitted to ischemia/reperfusion (SD/IR) and trained submitted to ischemia/reperfusion (TR/IR) animals. Exercise training consisted in sessions of 60 min/day running sessions, 5 days/week for 8 weeks. Left pulmonary IR was performed by occluding for 90 min and reperfusing for 120 min. After that, pulmonary arteries were isolated and concentration-response curves to acetylcholine (ACh), histamine (HIST), sodium nitroprusside (SNP), phenylephrine and U46619 were obtained. Neither potency (-log EC(50)) nor maximal responses (E(max)) were modified for ACh and HIST in all groups. On the other hand, the potency for SNP was significantly increased in TR/IR group (8.23+/-0.06) compared to SD/IR group (7.85+/-0.04). Contractile responses mediated by a-adrenergic receptor were markedly decreased in IR groups (SD/IR: 6.75+/-0.06 and TR/IR: 6.62+/-0.04) compared to SD/SHAM (7.33+/-0.05). No changes were seen for the U46619 in all groups. In conclusion, the present study shows that exercise training has no protective actions in the local blood vessel where the IR process takes place.

  2. [Myocardial mechanical injury in acute ischemia: a pathophysiologic and histopathologic review].

    PubMed

    Rossi, L; Matturri, L

    1986-03-01

    The recognition of histopathologic substrates of myocardial contractile damage in human acute ischemia is still very poor, notwithstanding the impressive advances in the inherent clinical diagnostic technology and concepts. The first and foremost inotropic abnormality ensuing ischemia, easily taken for atonic in origin, actually consists of a pathologic contracture of the injured myocardium, depending upon abrupt fall of ATP, and defective extrusion calcium pump with persistence of actomyosin rigor-complexes. In sustained ischemia, further membrane damage exposes the myocell to massive calcium intrusion, with eventual precipitation of it and cell death (reperfusion stone-heart). In case of transient, "hit and run" ischemia, the "stunned" myocardium undergoes prolonged contractile abnormalities. In keeping with fundamentals in pathophysiology of contraction, ischemic myofibrils in human hyperacute infarct, showed spare I bands, accounting for contracture and followed by loss of the regular cross-striation register; then, groups of adjacent sarcomeres were seen to join into true "contraction" bands, with Z lines impinging upon A bands and obliterating the I bands. Coagulative denaturation of contractile proteins follows, presenting as irregular, amorphous degeneration stripes astride irreversibly damaged myocells. As such, these cells can be passively overstretched by the nearby functioning muscle. In turn, the fixed waviness of viable, acutely ischemic myocardium was thought to configure, histologically, the loss of ATP-dependent "plasticity" of myofilaments, in a state of contracture. The "relaxant effect" of inotropic-chronotropic-positive catecholamines, favoring diastole, has been also pointed out. The present microscopic findings are cogent to clinicopathologic problems of coronary ischemia-reperfusion, and sudden death from cardiogenic shock.

  3. Analysis of temporal dynamics in imagery during acute limb ischemia and reperfusion

    NASA Astrophysics Data System (ADS)

    Irvine, John M.; Regan, John; Spain, Tammy A.; Caruso, Joseph D.; Rodriquez, Maricela; Luthra, Rajiv; Forsberg, Jonathon; Crane, Nicole J.; Elster, Eric

    2014-03-01

    Ischemia and reperfusion injuries present major challenges for both military and civilian medicine. Improved methods for assessing the effects and predicting outcome could guide treatment decisions. Specific issues related to ischemia and reperfusion injury can include complications arising from tourniquet use, such as microvascular leakage in the limb, loss of muscle strength and systemic failures leading to hypotension and cardiac failure. Better methods for assessing the viability of limbs/tissues during ischemia and reducing complications arising from reperfusion are critical to improving clinical outcomes for at-risk patients. The purpose of this research is to develop and assess possible prediction models of outcome for acute limb ischemia using a pre-clinical model. Our model relies only on non-invasive imaging data acquired from an animal study. Outcome is measured by pathology and functional scores. We explore color, texture, and temporal features derived from both color and thermal motion imagery acquired during ischemia and reperfusion. The imagery features form the explanatory variables in a model for predicting outcome. Comparing model performance to outcome prediction based on direct observation of blood chemistry, blood gas, urinalysis, and physiological measurements provides a reference standard. Initial results show excellent performance for the imagery-base model, compared to predictions based direct measurements. This paper will present the models and supporting analysis, followed by recommendations for future investigations.

  4. Effects of Postconditioning on Skeletal Muscle Injury and Apoptosis Induced by Partial Ischemia and Reperfusion in Rats.

    PubMed

    Lintz, José Alves; Dalio, Marcelo Bellini; Tirapelli, Luiz Fernando; Ribeiro, Maurício Serra; Joviliano, Edwaldo Edner; Piccinato, Carlos Eli

    2017-04-01

    Analyze the effects of ischemic postconditioning on skeletal muscle injury and apoptosis produced by partial ischemia and reperfusion in rats. An experimental study was designed using 70 Wistar rats divided in 3 groups: Sham; Control-submitted to ischemia and reperfusion; and Postconditioning-submitted to ischemia and reperfusion with ischemic postconditioning. Subgroups (n = 10) were divided by duration of ischemia (4, 5, or 6 hr). A partial ischemia model using aortic clamping was used. The postconditioning protocol consisted of 3 cycles of clamping the aorta for 1 min and releasing for another minute. Skeletal muscle injury was evaluated by measuring serum levels of releasing cytoplasmic enzymes: aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and total creatine phosphokinase (CPK). Lipid peroxidation was evaluated by muscular levels of malondialdehyde (MDA). Energetic cell storage was evaluated by muscular glycogen levels. Apoptosis was evaluated analyzing the expression of caspase 3 and protein B-cell lymphoma 2 (Bcl-2) by immunohistochemistry. AST levels in Sham group were 109.80 units/L, in Control subgroups were 4h 200.60 units/L/5h 392.30 units/L/6h 118.82 units/L, whereas in Postconditioning subgroups were: 4h 316.10 units/L/5h 268.40 units/L/6h 267.00 units/L. There was a 2-3-fold increase in Control and Postconditioning groups compared with Sham group (P = 0.003) There was no difference between groups with the same ischemic injury time. LDH, CPK, and MDA levels were similar in Sham, Control, and Postconditioning groups. Subgroups with the same ischemic injury time were also similar. Glycogen levels in Sham group were 0.629 mg%, in Control subgroups were 4h 0.323 mg%/5h 0.348 mg%/6h 0.183 mg%, whereas in Postconditioning subgroups were: 4h 0.443 mg%/5h 0.270 mg%/6h 0.324 mg%. Control and Postconditioning groups were decreased by half in relation with the Sham group (P = 0.002), with no difference between groups with the same

  5. Spinal cord ischemia following thoracotomy without epidural anesthesia.

    PubMed

    Raz, Aeyal; Avramovich, Aharon; Saraf-Lavi, Efrat; Saute, Milton; Eidelman, Leonid A

    2006-06-01

    Paraplegia is an uncommon yet devastating complication following thoracotomy, usually caused by compression or ischemia of the spinal cord. Ischemia without compression may be a result of global ischemia, vascular injury and other causes. Epidural anesthesia has been implicated as a major cause. This report highlights the fact that perioperative cord ischemia and paraplegia may be unrelated to epidural intervention. A 71-yr-old woman was admitted for a left upper lobectomy for resection of a non-small cell carcinoma of the lung. The patient refused epidural catheter placement and underwent a left T5-6 thoracotomy under general anesthesia. During surgery, she was hemodynamically stable and good oxygen saturation was maintained. Several hours following surgery the patient complained of loss of sensation in her legs. Neurological examination disclosed a complete motor and sensory block at the T5-6 level. Magnetic resonance imaging (MRI) revealed spinal cord ischemia. The patient received iv steroid treatment, but remained paraplegic. Five months following the surgery there was only partial improvement in her motor symptoms. A follow-up MRI study was consistent with a diagnosis of spinal cord ischemia. In this case of paraplegia following thoracic surgery for lung resection, epidural anesthesia/analgesia was not used. The MRI demonstrated evidence of spinal cord ischemia, and no evidence of cord compression. This case highlights that etiologies other than epidural intervention, such as injury to the spinal segmental arteries during thoracotomy, should be considered as potential causes of cord ischemia and resultant paraplegia in this surgical population.

  6. Global Cerebral Ischemia: Synaptic and Cognitive Dysfunction

    PubMed Central

    Neumann, Jake T.; Cohan, Charles H.; Dave, Kunjan R.; Wright, Clinton B.; Perez-Pinzon, Miguel A.

    2018-01-01

    Cardiopulmonary arrest is one of the leading causes of death and disability, primarily occurring in the aged population. Numerous global cerebral ischemia animal models induce neuronal damage similar to cardiac arrest. These global cerebral ischemia models range from vessel occlusion to total cessation of cardiac function, both of which have allowed for the investigation of this multifaceted disease and detection of numerous agents that are neuroprotective. Synapses endure a variety of alterations after global cerebral ischemia from the resulting excitotoxicity and have been a major target for neuroprotection; however, neuroprotective agents have proven unsuccessful in clinical trials, as neurological outcomes have not displayed significant improvements in patients. A majority of these neuroprotective agents have specific neuronal targets, where the success of future neuroprotective agents may depend on non-specific targets and numerous cognitive improvements. This review focuses on the different models of global cerebral ischemia, neuronal synaptic alterations, synaptic neuroprotection and behavioral tests that can be used to determine deficits in cognitive function after global cerebral ischemia. PMID:23170794

  7. Intratracheal Administration of Small Interfering RNA Targeting Fas Reduces Lung Ischemia-Reperfusion Injury.

    PubMed

    Del Sorbo, Lorenzo; Costamagna, Andrea; Muraca, Giuseppe; Rotondo, Giuseppe; Civiletti, Federica; Vizio, Barbara; Bosco, Ornella; Martin Conte, Erica L; Frati, Giacomo; Delsedime, Luisa; Lupia, Enrico; Fanelli, Vito; Ranieri, V Marco

    2016-08-01

    Lung ischemia-reperfusion injury is the main cause of primary graft dysfunction after lung transplantation and results in increased morbidity and mortality. Fas-mediated apoptosis is one of the pathologic mechanisms involved in the development of ischemia-reperfusion injury. We hypothesized that the inhibition of Fas gene expression in lungs by intratracheal administration of small interfering RNA could reduce lung ischemia-reperfusion injury in an ex vivo model reproducing the procedural sequence of lung transplantation. Prospective, randomized, controlled experimental study. University research laboratory. C57/BL6 mice weighing 28-30 g. Ischemia-reperfusion injury was induced in lungs isolated from mice, 48 hours after treatment with intratracheal small interfering RNA targeting Fas, control small interfering RNA, or vehicle. Isolated lungs were exposed to 6 hours of cold ischemia (4°C), followed by 2 hours of warm (37°C) reperfusion with a solution containing 10% of fresh whole blood and mechanical ventilation with constant low driving pressure. Fas gene expression was significantly silenced at the level of messenger RNA and protein after ischemia-reperfusion in lungs treated with small interfering RNA targeting Fas compared with lungs treated with control small interfering RNA or vehicle. Silencing of Fas gene expression resulted in reduced edema formation (bronchoalveolar lavage protein concentration and lung histology) and improvement in lung compliance. These effects were associated with a significant reduction of pulmonary cell apoptosis of lungs treated with small interfering RNA targeting Fas, which did not affect cytokine release and neutrophil infiltration. Fas expression silencing in the lung by small interfering RNA is effective against ischemia-reperfusion injury. This approach represents a potential innovative strategy of organ preservation before lung transplantation.

  8. Animal models of cerebral ischemia

    NASA Astrophysics Data System (ADS)

    Khodanovich, M. Yu.; Kisel, A. A.

    2015-11-01

    Cerebral ischemia remains one of the most frequent causes of death and disability worldwide. Animal models are necessary to understand complex molecular mechanisms of brain damage as well as for the development of new therapies for stroke. This review considers a certain range of animal models of cerebral ischemia, including several types of focal and global ischemia. Since animal models vary in specificity for the human disease which they reproduce, the complexity of surgery, infarct size, reliability of reproduction for statistical analysis, and adequate models need to be chosen according to the aim of a study. The reproduction of a particular animal model needs to be evaluated using appropriate tools, including the behavioral assessment of injury and non-invasive and post-mortem control of brain damage. These problems also have been summarized in the review.

  9. Protective effect of chlorogenic acid on the focal cerebral ischemia reperfusion rat models.

    PubMed

    Miao, Mingsan; Cao, Lihua; Li, Ruiqi; Fang, Xiaoyan; Miao, Yanyan

    2017-05-01

    The aim of the study was to investigate the protective characteristic of chlorogenic acid, a natural glucosyl xanthone found in Lonicera Japonica on the cerebral ischemia reperfusion injury and the underlying mechanism. Focal cerebral ischemia reperfusion model was built by blocking the left middle cerebral artery in rats by using the suture-occluded method. Before operation, the corresponding drugs were given for each group once a day for 7 days. After 1 h of final administration, the model was built, after operation, reperfusion was conducted for 22 h, Before the reperfusion 10 min tail vein injection of large, medium and small dose of chlorogenic acid and then mortality was calculated, and Neurological deficit score (NDS) was conducted, and serum was collected to measure the NSE level; a 2 mm thick brain slice located at the intersection of optic nerves was collected for TTC staining, and the percentage of cerebral infarction area was calculated; brain homogenate was collected to measure the ICAM-1, VCAM-1, EPO and HIF-1α levels in brain tissue of cerebral ischemia reperfusion rat models; NGF was detected using immunohistochemical method; the morphological changes in brain tissue was observed with HE staining. All focal cerebral ischemia reperfusion rat models were duplicated successfully. Every chlorogenic acid group with different dosage can significantly reduce the mortality, NDS and cerebral infarction area of rats, and significantly increase the EPO, HIF-1α and NGF levels in brain tissue; significantly improve the pathological lesions of hippocampus and cortex in brain tissue. The results showed that chlorogenic acid could protect the focal cerebral ischemia reperfusion injury rat models by adjusting the inflammatory factor, hypoxia factor and nerve growth factor.

  10. Effects of tadalafil on ischemia/reperfusion injury in rat brain.

    PubMed

    Altaş, Murat; Aras, M; Meydan, S; Nacar, E; Ulutaş, K T; Serarslan, Y; Yılmaz, N

    2014-03-01

    Cerebral ischemia-reperfusion (I/R) injury is caused by lack of blood supply to the brain. The accumulation of toxic products such as reactive oxygen species (ROS) occurs on reperfusion, when the occlusion is removed. The resulting oxidative stress results in the initiation of pathways leading to necrotic and apoptotic cell death. Tadalafil (TAD) prevents the accumulation of ROS and increases antioxidant cellular protective mechanisms. The aim of this study was to investigate the effect of TAD treatment against short-term global brain I/R injury in rats. The study was carried out on 30 Wistar-albino rats, which were divided into three groups including a control group (n = 10), an I/R group (n = 10) and an I/R + TAD group (n = 10) (2 mg/kg/day for 4 days before ischemia). At the end of the experiment, tissue samples were collected for both biochemical and histopathological analyses. Malondialdehyde was significantly lower in the TAD-administered group (9.06 ± 0.15) than in the I/R group (p < 0.05). However, no significant difference was observed in nitric oxide levels in the TAD-administered group compared to the I/R group. The mean superoxide dismutase level was significantly higher in the I/R-TAD group than the I/R group. There was no statistically significant difference in glutathione peroxidase levels in I/R + TAD group compared to I/R group. Histopathologically, TAD-administered group provided significant morphological improvement compared to the I/R group. We concluded that TAD prevented I/R-induced neurotoxicity as shown by obtained biochemical and histopathological findings.

  11. Astrocytic Acidosis in Hyperglycemic and Complete Ischemia

    PubMed Central

    Kraig, Richard P.; Chesler, Mitchell

    2011-01-01

    Summary Nearly complete brain ischemia under normoglycemic conditions results in death of only selectively vulnerable neurons. With prior elevation of brain glucose, such injury is enhanced to include pancel1ular necrosis (i.e., infarction), perhaps because an associated, severe lactic acidosis preferentially injures astrocytes. However, no direct physiologic measurements exist to support this hypothesis. Therefore, we used microelectrodes to measure intracellular pH and passive electrical properties of cortical astrocytes as a first approach to characterizing the physiologic behavior of these cel1s during hyperglycemic and complete ischemia, conditions that produce infarction in reperfused brain. Anesthesized rats (n = 26) were made extremely hyperglycemic (blood glucose, 51.4 ± 2.8 mM) so as to create potentially the most extreme acidic conditions possible; then ischemia was induced by cardiac arrest. Two loci more acidic than the interstitial space (6.17–6.20 pH) were found. The more acidic locus [4.30 ± 0.19 (n = 5); range: 3.82–4.89] was occasional1y seen at the onset of anoxic depolarization, 3–7 min after cardiac arrest. The less acidic locus [5.30 ± 0.07 (n = 53); range 4.46–5.93)] was seen 5–46 min after cardiac arrest. A smal1 negative change in DC potential [8 ± 1 mV (n = 5); range −3 to −12 mV and 7 ± 2 mV (n = 53); range +3 to −31 mV, respectively] was always seen upon impalement of acidic loci, suggesting cellular penetration. In a separate group of five animals, electrical characteristics of these cells were specifically measured (n = 17): membrane potential was −12 ± 0.2 mV (range −3 to −24 mY), input resistance was 114 ± 16 MΩ (range 25–250 MΩ), and time constant was 4.4 ± 0.4 ms (range 3.0–7.9 ms). Injection of horseradish peroxidase into cells from either animal group uniformly stained degenerating astrocytes. These findings establish previously unrecognized properties of ischemic astrocytes that may be

  12. Revascularization and muscle adaptation to limb demand ischemia in diet-induced obese mice.

    PubMed

    Albadawi, Hassan; Tzika, A Aria; Rask-Madsen, Christian; Crowley, Lindsey M; Koulopoulos, Michael W; Yoo, Hyung-Jin; Watkins, Michael T

    2016-09-01

    Obesity and type 2 diabetes are major risk factors for peripheral arterial disease in humans, which can result in lower limb demand ischemia and exercise intolerance. Exercise triggers skeletal muscle adaptation including increased vasculogenesis. The goal of this study was to determine whether demand ischemia modulates revascularization, fiber size, and signaling pathways in the ischemic hind limb muscles of mice with diet-induced obesity (DIO). DIO mice (n = 7) underwent unilateral femoral artery ligation and recovered for 2 wks followed by 4 wks with daily treadmill exercise to induce demand ischemia. A parallel sedentary ischemia (SI) group (n = 7) had femoral artery ligation without exercise. The contralateral limb muscles of SI served as control. Muscles were examined for capillary density, myofiber cross-sectional area, cytokine levels, and phosphorylation of STAT3 and ERK1/2. Exercise significantly enhanced capillary density (P < 0.01) and markedly lowered cross-sectional area (P < 0.001) in demand ischemia compared with SI. These findings coincided with a significant increase in granulocyte colony-stimulating factor (P < 0.001) and interleukin-7 (P < 0.01) levels. In addition, phosphorylation levels of STAT3 and ERK1/2 (P < 0.01) were increased, whereas UCP1 and monocyte chemoattractant protein-1 protein levels were lower (P < 0.05) without altering vascular endothelial growth factor and tumor necrosis factor alpha protein levels. Demand ischemia increased the PGC1α messenger RNA (P < 0.001) without augmenting PGC1α protein levels. Exercise-induced limb demand ischemia in the setting of DIO causes myofiber atrophy despite an increase in muscle capillary density. The combination of persistent increase in tumor necrosis factor alpha, lower vascular endothelial growth factor, and failure to increase PGC1α protein may reflect a deficient adaption to demand ischemia in DIO. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Rodent Hypoxia–Ischemia Models for Cerebral Palsy Research: A Systematic Review

    PubMed Central

    Rumajogee, Prakasham; Bregman, Tatiana; Miller, Steven P.; Yager, Jerome Y.; Fehlings, Michael G.

    2016-01-01

    Cerebral palsy (CP) is a complex multifactorial disorder, affecting approximately 2.5–3/1000 live term births, and up to 22/1000 prematurely born babies. CP results from injury to the developing brain incurred before, during, or after birth. The most common form of this condition, spastic CP, is primarily associated with injury to the cerebral cortex and subcortical white matter as well as the deep gray matter. The major etiological factors of spastic CP are hypoxia/ischemia (HI), occurring during the last third of pregnancy and around birth age. In addition, inflammation has been found to be an important factor contributing to brain injury, especially in term infants. Other factors, including genetics, are gaining importance. The classic Rice–Vannucci HI model (in which 7-day-old rat pups undergo unilateral ligation of the common carotid artery followed by exposure to 8% oxygen hypoxic air) is a model of neonatal stroke that has greatly contributed to CP research. In this model, brain damage resembles that observed in severe CP cases. This model, and its numerous adaptations, allows one to finely tune the injury parameters to mimic, and therefore study, many of the pathophysiological processes and conditions observed in human patients. Investigators can recreate the HI and inflammation, which cause brain damage and subsequent motor and cognitive deficits. This model further enables the examination of potential approaches to achieve neural repair and regeneration. In the present review, we compare and discuss the advantages, limitations, and the translational value for CP research of HI models of perinatal brain injury. PMID:27199883

  14. Ischemic preconditioning inhibits over-expression of arginyl-tRNA synthetase gene Rars in ischemia-injured neurons.

    PubMed

    Shen, Yin; Zhao, Hong-Yang; Wang, Hai-Jun; Wang, Wen-Liang; Zhang, Li-Zhi; Fu, Rong

    2016-08-01

    The expression changes of Rars gene in ischemia-injured neurons were investigated by detecting its translational product arginyl-tRNA synthetase (ArgRS), and the inhibitory effects of ischemic preconditioning (IPC) on Rars gene were explored. Both IPC model and prolonged ischemia (PI) model were established by using the classic oxygen glucose deprivation (OGD) method. The primary cultured neurons were assigned into the following groups: the experimental group (IPC+PI group), undergoing PI after a short period of IPC; the conditional control group (PI control group), subjected to PI without IPC; blank control group, the normally cultured neurons. The Rars transcriptional activities and ArgRS expression levels were measured at different time points after re-oxygenation (3 h/6 h/12 h/24 h). Data were collected and statistically analyzed. Compared to the blank control group, the Rars activities and ArgRS levels were significantly increased in PI control group, peaking at the time point of 6 h after re-oxygenation. Rars activities and ArgRS levels were significantly lower in the experimental group than in the PI control group at different time points after re-oxygenation. PI insult can induce an escalating activity of Rars and lead to ArgRS over-expression in primary cultured neurons. IPC can inhibit the increased Rars activity and down-regulate ArgRS expression of ischemia-insulted neurons. This mechanism may confer ischemic tolerance on neurons.

  15. Rearfoot Transcutaneous Oximetry is a Useful Tool to Highlight Ischemia of the Heel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izzo, Valentina, E-mail: valentina-izzo@virgilio.it; Meloni, Marco, E-mail: meloni.marco@libero.it; Fabiano, Sebastiano, E-mail: sebas575@yahoo.it

    PurposeTo demonstrate the usefulness of rearfoot transcutaneous oximetry to assess the peripheral arterial disease in diabetic patients with heel ulcer.MethodsFrom our database of 550 critical limb ischemia diabetic patients followed after a percutaneous transluminal angioplasty, we have selected patients with below the knee arterial disease. Patients were grouped according to the dorsal transcutaneous oximetry value (Group A < 30 mmHg; Group B ≥ 30 mmHg). Patients of Group B had a second oximetry performed at the rearfoot, close to the lesion localized in all cases at the heel. Finally, the analysis of the arterial pattern disease has been done.ResultsWe selected 191 patients: Group A (151 patients),more » dorsal transcutaneous oximetry of 11.8 ± 0.7 mmHg; Group B (40 patients), dorsal transcutaneous oximetry of 44.2 ± 10.1 mmHg. In Group B, rearfoot oximetry was 20.5 ± 5 mmHg, significantly lower than dorsal oximetry (p = 0.0179). The anterior tibial artery was involved in all patients of Group A. In Group B, the anterior tibial artery was involved in 15 subjects and never alone; the posterior tibial artery was involved in 20 subjects and in 11 cases alone. The peroneal artery was affected in 20 subjects and in 14 patients alone.ConclusionWhen a heel lesion is present and the transcutaneous oximetry recorded on the dorsum of the foot does not confirm the presence of critical limb ischemia (not ≤30 mmHg), a second oximetry recorded on the rearfoot is useful to point out ischemia of the peroneal artery and/or of the posterior tibial artery.« less

  16. Transport mechanism of L-[14C]glutamate in cortical slices and synaptosomes of rabbits exposed to brain ischemia and reperfusion.

    PubMed

    Solyakov, L; Dobrota, D; Drany, O; Vachova, M; Machac, S; Mezesova, V; Bachurin, S; Lombardi, V

    1995-01-01

    Changes in the functioning of the glutamatergic system in rabbit brain were studied after partial brain ischemia and reperfusion. In vitro studies were conducted relating to the release of L-[14C]glutamate from cortical brain slices, L-[14C]glutamate uptake in synaptosomes, and 45Ca uptake in synaptosomes. It was found that basal release of L-[14C]glutamate from rabbit brain cortical slices after 30 min of partial ischemia and 1 d of reperfusion was essentially without change compared to the control values. After 3 d of reperfusion, there was an increase in basal release of L-[14C]glutamate from rabbit brain cortical slices. K+ stimulated release of L-[14C]glutamate in normal Krebs-Ringer medium was essentially the same in the control group and in the experimental group after 30 min of ischemia. The K+ stimulated release of L-[14C]glutamate independent of calcium was increased to 145% after 30 min of ischemia and 1 d of reperfusion. The decreased Km value at the glutamate transporter may have contributed to this difference. Kinetic parameters of the L-[14C]glutamate uptake (Km and Vmax) in synaptosomes from rabbit brain were significantly lower after 30 min of ischemia. The authors discovered that during the reperfusion period, Vmax was almost the same as in the control group. The activity of the Na+/Ca2+ exchanger in synaptosomes of rat brain was about 70% of the control values after 30 min of ischemia and 72 h of reperfusion. According to our results, increased L-[14C]glutamate release after 30 min of ischemia appears to be the result of higher intracellular calcium concentration and possibly also of a higher uptake of glutamate.

  17. The effects of Mucuna pruriens extract on histopathological and biochemical features in the rat model of ischemia.

    PubMed

    Nayak, Vanishri S; Kumar, Nitesh; D'Souza, Antony S; Nayak, Sunil S; Cheruku, Sri P; Pai, K Sreedhara Ranganath

    2017-12-13

    Stroke is considered to be one of the most important causes of death worldwide. Global ischemia causes widespread brain injury and infarctions in various regions of the brain. Oxidative stress can be considered an important factor in the development of tissue damage, which is caused because of arterial occlusion with subsequent reperfusion. Kapikacchu or Mucuna pruriens, commonly known as velvet bean, is well known for its aphrodisiac activities. It is also used in the treatment of snakebites, depressive neurosis, and Parkinson's disease. Although this plant has different pharmacological actions, its neuroprotective activity has received minimal attention. Thus, this study was carried out with the aim of evaluating the neuroprotective action of M. pruriens in bilateral carotid artery occlusion-induced global cerebral ischemia in Wistar rats. The carotid arteries of both sides were occluded for 30 min and reperfused to induce global cerebral ischemia. The methanolic plant extract was administered to the study animals for 10 days. The brains of the Wistar rats were isolated by decapitation and observed for histopathological and biochemical changes. Cerebral ischemia resulted in significant neurological damage in the brains of the rats that were not treated by M. pruriens. The group subjected to treatment by the M. pruriens extract showed significant protection against brain damage compared with the negative control group, which indicates the therapeutic potential of this plant in ischemia.

  18. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  19. Intestinal Translocation of Clinical Isolates of Vancomycin-Resistant Enterococcus faecalis and ESBL-Producing Escherichia coli in a Rat Model of Bacterial Colonization and Liver Ischemia/Reperfusion Injury

    PubMed Central

    van der Heijden, Karin M.; van der Heijden, Inneke M.; Galvao, Flavio H.; Lopes, Camila G.; Costa, Silvia F.; Abdala, Edson; D’Albuquerque, Luiz A.; Levin, Anna S.

    2014-01-01

    The objectives of this study were to develop a rat model of gastrointestinal colonization with vancomycin-resistant Enterococcus faecalis (VRE) and extended-spectrum beta-lactamase (ESBL)-producing E. coli and to evaluate intestinal translocation to blood and tissues after total and partial hepatic ischemia. Methods - We developed a model of rat colonization with VRE and ESBL-E coli. Then we studied four groups of colonized rats: Group I (with hepatic pedicle occlusion causing complete liver ischemia and intestinal stasis); Group II (with partial liver ischemia without intestinal stasis); Group III (surgical manipulation without hepatic ischemia or intestinal stasis); Group IV (anesthetized without surgical manipulation). After sacrifice, portal and systemic blood, large intestine, small intestine, spleen, liver, lungs, and cervical and mesenteric lymph nodes were cultured. Endotoxin concentrations in portal and systemic blood were determined. Results – The best inocula were: VRE: 2.4×1010 cfu and ESBL-E. coli: 1.12×1010 cfu. The best results occurred 24 hours after inoculation and antibiotic doses of 750 µg/mL of water for vancomycin and 2.1 mg/mL for ceftriaxone. There was a significantly higher proportion of positive cultures for ESBL-E. coli in the lungs in Groups I, II and III when compared with Group IV (67%; 60%; 75% and 13%, respectively; p:0.04). VRE growth was more frequent in mesenteric lymph nodes for Groups I (67%) and III (38%) than for Groups II (13%) and IV (none) (p:0.002). LPS was significantly higher in systemic blood of Group I (9.761±13.804 EU/mL−p:0.01). No differences for endotoxin occurred in portal blood. Conclusion –We developed a model of rats colonized with resistant bacteria useful to study intestinal translocation. Translocation occurred in surgical procedures with and without hepatic ischemia-reperfusion and probably occurred via the bloodstream. Translocation was probably lymphatic in the ischemia-reperfusion groups

  20. An Automatic Occlusion Device for Remote Control of Tumor Tissue Ischemia

    PubMed Central

    El-Dahdah, Hamid; Wang, Bei; He, Guanglong; Xu, Ronald X.

    2015-01-01

    We developed an automatic occlusion device for remote control of tumor tissue ischemia. The device consists of a flexible cannula encasing a shape memory alloy wire with its distal end connected to surgical suture. Regional tissue occlusion was tested on both the benchtop and the animal models. In the benchtop test, the occlusion device introduced quantitative and reproducible changes of blood flow in a tissue simulating phantom embedding a vessel simulator. In the animal test, the device generated a cyclic pattern of reversible ischemia in the right hinder leg tissue of a black male C57BL/6 mouse. We also developed a multimodal detector that integrates near infrared spectroscopy and electron paramagnetic resonance spectroscopy for continuous monitoring of tumor tissue oxygenation, blood content, and oxygen tension changes. The multimodal detector was tested on a cancer xenograft nude mouse undergoing reversible tumor ischemia. The automatic occlusion device and the multi-modal detector can be potentially integrated for closed-loop feedback control of tumor tissue ischemia. Such an integrated occlusion device may be used in multiple clinical applications such as regional hypoperfusion control in tumor resection surgeries and thermal ablation processes. In addition, the proposed occlusion device can also be used as a research tool to understand tumor oxygen transport and hemodynamic characteristics. PMID:20082532

  1. Delayed Post-ischemic Conditioning Significantly Improves the Outcome after Retinal Ischemia

    PubMed Central

    Dreixler, John C.; Poston, Jacqueline N.; Shaikh, Afzhal R.; Alexander, Michael; Tupper, Kelsey Y.; Marcet, Marcus M.; Bernaudin, Myriam; Roth, Steven

    2011-01-01

    In previous studies, it was shown that post-conditioning, a transient period of brief ischemia following prolonged severe ischemia in the retina, could provide significant improvement in post-ischemic recovery, attenuation of cell loss, and decreased apoptosis. These studies showed that post-conditioning effectively prevented damage after retinal ischemia when it was instituted early (within one hour) in the post-ischemic period. While post-ischemic conditioning holds high promise of clinical translation, patients often present late after the onset of retinal ischemia and therefore immediate application of this anti-ischemic maneuver is generally not feasible. In this study, we examined the hypothesis that application of a post-conditioning stimulus at 24 h or greater following the end of prolonged ischemia would decrease the extent of ischemic injury. Ischemia was induced in rat retina in vivo. Recovery after ischemia followed by 5 minutes of post-conditioning brief ischemia 24 or 48 h after prolonged ischemia was assessed functionally (electroretinography) and histologically at 7 days after ischemia and post-conditioning or sham post-conditioning. We found that the brief ischemic stimulus applied 24, but not 48 h after prolonged ischemia significantly improved functional recovery and decreased histological damage induced by prolonged ischemia. We conclude that within a defined time window, delayed post-ischemic conditioning ameliorated post-ischemic injury in rats. Compared to earlier studies, the present work demonstrates for the first time the novel ability of a significantly delayed ischemic stimulus to provide robust neuroprotection in the retina following ischemia. PMID:21501608

  2. Cardioprotective effects of amlodipine on ischemia and reperfusion in two experimental models.

    PubMed

    Hoff, P T; Tamura, Y; Lucchesi, B R

    1990-11-20

    The cardioprotective effect of amlodipine, a long-acting dihydropyridine derivative, was studied in 2 experimental models of ischemia and reperfusion. Isolated and blood-perfused feline hearts were made globally ischemic for 60 minutes and then reperfused for 60 minutes. Alterations of left ventricular developed pressure and compliance were monitored in both amlodipine-treated hearts and saline-treated control animals. Changes in perfusion pressure indicated that amlodipine significantly reduced myocardial oxygen consumption and coronary vascular resistance. Furthermore, a progressive increase in resting left ventricular diastolic pressure indicated that amlodipine, administered before the onset of global ischemia, attenuated the development of ischemic contracture. Return of contractile function 60 minutes after reperfusion and maintenance of tissue concentrations of electrolytes were significantly better in the amlodipine-treated group than in the control animals. In intact canine hearts, regional myocardial ischemia was induced for 90 minutes, followed by 6 hours of reperfusion. Although the hemodynamic variables and the size of the region of risk did not differ significantly between treated animals and control animals, the infarct size was significantly smaller in the amlodipine-treated group than in the control animals, and a gradual reduction in coronary blood flow was observed in the control group that was prevented in the amlodipine group. A comparison of these findings with those observed with oxygen radical scavengers also is discussed. A detailed report of these studies was published in The American Journal of Cardiology (1989;64:101I-116I). This review is included here to maintain continuity of the symposium for the convenience of the reader.

  3. [Effect of danlou tablet on arrhythmia model rats induced by transient myocardial ischemia/ reperfusion].

    PubMed

    Guo, Li-Li; Wang, Jie; Lin, Fei; He, Yong-Xia

    2014-09-01

    To explore the effect of Danlou Tablet (DT) on arrhythmia model rats induced by transient myocardial ischemia/reperfusion (I/R). Totally 45 healthy Wistar rats were randomly divided into 3 groups, the sham-operation group, the model group, and the DT group, 15 in each group. Rats in the sham-operation group and the model group were administered with distilled water by gastrogavage at the daily dose of 0.1 mL/kg. Rats in the DT group was administered with 0.53 g/mL DT suspension by gastrogavage at the daily dose of 0.1 mL/kg. All medication was lasted for 10 successive days. The myocardial I/R experiment was performed at 1 h after the last gastrogavage. ECG was performed before ligation and at I/R. The jugular arterial blood pressure of all rats was measured during the whole course. ST segment changes were observed at each time point of I/R. The ventricular fibrillation, the premature ventricular, the number and the duration of ventricular tachycardia within 30 min reperfusion were also observed. Activities of Na(+)-K+ ATPase and Ca2+ ATPase in the myocardium homogenate were detected as well. The jugular arterial blood pressure and the heart rate were slightly lower in the DT group than in the model group, but with no statistical difference (P > 0.05). Compared with the sham-operation group, the degree of ST segment was obviously elevated in the model group at 0, 5, and 7 min (P < 0.05). It was significantly lower in the DT group than in the model group (P < 0.01). ST seg ment was more elevated at 5 min than at 0 min in the model group, but the degree of ST segment elevation was still obviously lower in the DT group than in the model group (P < 0.05). There was no statistical difference in the degree of ST segment elevation at 7 min between the two groups (P > 0.05). At 0 min when the decrement of ST segment exceeded one half the ischemia, there was no statistical difference in the degree of myocardial ischemia between the model group and the DT group (P > 0

  4. Inflation with carbon monoxide in rat donor lung during cold ischemia phase ameliorates graft injury

    PubMed Central

    Meng, Chao; Ma, Liangjuan; Liu, Jinfeng; Cui, Xiaoguang; Liu, Rongfang; Xing, Jingchun

    2015-01-01

    Carbon monoxide (CO) attenuates lung ischemia reperfusion injury (IRI) via inhalation, and as an additive dissolved in flush/preservation solution. This study observed the effects of lung inflation with CO on lung graft function in the setting of cold ischemia. Donor lungs were inflated with 40% oxygen + 60% nitrogen (control group) or with 500 ppm CO + 40% oxygen + nitrogen (CO group) during the cold ischemia phase and were kept at 4℃ for 180 min. Recipients were sacrificed by exsanguinations at 180 min after reperfusion. Rats in the sham group had no transplantation and were performed as the recipients. Compared with the sham group, the oxygenation determined by blood gas analysis and the pressure–volume curves of the lung grafts decreased significantly, while the wet weight/dry weight (W/D) ratio, inflammatory reaction, oxidative stress, and cell apoptosis increased markedly (P < 0.05). However, compared to the control group, CO treatment improved the oxygenation (381 ± 58 vs. 308 ± 78 mm Hg) and the pressure–volume curves (15.8 ± 2.4 vs. 11.6 ± 1.7 mL/kg) (P < 0.05). The W/D ratio (4.6 ± 0.6) and the serum levels of interleukin-8 (279 ± 46 pg/mL) and tumor necrosis factor-α (377 ± 59 pg/mL) in the CO group decreased significantly compared to the control group (5.8 ± 0.8, 456 ± 63 pg/mL, and 520 ± 91 pg/mL) (P < 0.05). In addition, CO inflation also significantly decreased malondialdehyde activity and apoptotic cells in grafts, and increased the superoxide dismutase content. Briefly, CO inflation in donor lungs in the setting of cold ischemia attenuated lung IRI and improved the graft function compared with oxygen. PMID:26290141

  5. Inflation with carbon monoxide in rat donor lung during cold ischemia phase ameliorates graft injury.

    PubMed

    Meng, Chao; Ma, Liangjuan; Liu, Jinfeng; Cui, Xiaoguang; Liu, Rongfang; Xing, Jingchun; Zhou, Huacheng

    2016-02-01

    Carbon monoxide (CO) attenuates lung ischemia reperfusion injury (IRI) via inhalation, and as an additive dissolved in flush/preservation solution. This study observed the effects of lung inflation with CO on lung graft function in the setting of cold ischemia. Donor lungs were inflated with 40% oxygen + 60% nitrogen (control group) or with 500 ppm CO + 40% oxygen + nitrogen (CO group) during the cold ischemia phase and were kept at 4℃ for 180 min. Recipients were sacrificed by exsanguinations at 180 min after reperfusion. Rats in the sham group had no transplantation and were performed as the recipients. Compared with the sham group, the oxygenation determined by blood gas analysis and the pressure-volume curves of the lung grafts decreased significantly, while the wet weight/dry weight (W/D) ratio, inflammatory reaction, oxidative stress, and cell apoptosis increased markedly (P < 0.05). However, compared to the control group, CO treatment improved the oxygenation (381 ± 58 vs. 308 ± 78 mm Hg) and the pressure-volume curves (15.8 ± 2.4 vs. 11.6 ± 1.7 mL/kg) (P < 0.05). The W/D ratio (4.6 ± 0.6) and the serum levels of interleukin-8 (279 ± 46 pg/mL) and tumor necrosis factor-α (377 ± 59 pg/mL) in the CO group decreased significantly compared to the control group (5.8 ± 0.8, 456 ± 63 pg/mL, and 520 ± 91 pg/mL) (P < 0.05). In addition, CO inflation also significantly decreased malondialdehyde activity and apoptotic cells in grafts, and increased the superoxide dismutase content. Briefly, CO inflation in donor lungs in the setting of cold ischemia attenuated lung IRI and improved the graft function compared with oxygen. © 2015 by the Society for Experimental Biology and Medicine.

  6. The effect of melatonin on bacterial translocation following ischemia/reperfusion injury in a rat model of superior mesenteric artery occlusion.

    PubMed

    Ozban, Murat; Aydin, Cagatay; Cevahir, Nural; Yenisey, Cigdem; Birsen, Onur; Gumrukcu, Gulistan; Aydin, Berrin; Berber, Ibrahim

    2015-03-08

    Acute mesenteric ischemia is a life-threatening vascular emergency resulting in tissue destruction due to ischemia-reperfusion injury. Melatonin, the primary hormone of the pineal gland, is a powerful scavenger of reactive oxygen species (ROS), including the hydroxyl and peroxyl radicals, as well as singlet oxygen, and nitric oxide. In this study, we aimed to investigate whether melatonin prevents harmful effects of superior mesenteric ischemia-reperfusion on intestinal tissues in rats. Rats were randomly divided into three groups, each having 10 animals. In group I, the superior mesenteric artery (SMA) was isolated but not occluded. In group II and group III, the SMA was occluded immediately distal to the aorta for 60 minutes. After that, the clamp was removed and the reperfusion period began. In group III, 30 minutes before the start of reperfusion, 10 mg/kg melatonin was administered intraperitonally. All animals were sacrified 24 hours after reperfusion. Tissue samples were collected to evaluate the I/R-induced intestinal injury and bacterial translocation (BT). There was a statistically significant increase in myeloperoxidase activity, malondialdehyde levels and in the incidence of bacterial translocation in group II, along with a decrease in glutathione levels. These investigated parameters were found to be normalized in melatonin treated animals (group III). We conclude that melatonin prevents bacterial translocation while precluding the harmful effects of ischemia/reperfusion injury on intestinal tissues in a rat model of superior mesenteric artery occlusion.

  7. [Evaluation of myocardial ischemia using Holter monitoring].

    PubMed

    Kodama, Y

    1995-07-01

    To establish the diagnostic criteria for myocardial ischemia, Holter monitoring and coronary angiography were performed on 46 cases (24 males (51.8 +/- 9.3 years), 22 females (47.5 +/- 10.5 years)). These patients were retrospectively selected from about 12000 patients who had the Holter monitorings from 1980 to 1993. The criteria for the entry were 1) reliable trend recordings of heart rate and 2) reliable recording of ST trend with accurate 1 mV calibration. The coronary stenosis greater than 75% in diameter was considered to be significant. Results were as follows: 1) ST trend pattern was classified into typical type, atypical type and box type. There were no significant differences in the incidence of typical and atypical types between ischemic and nonischemic groups, 2) Diagnostic accuracy of the criteria for myocardial ischemia, that is, the horizontal or downsloping ST segment depression with 0.1 mV at the point of 80 msec from the J point lasting for 1 minute, was higher in male than in female: the sensitivity was 93.3% and the specificity was 55.6% for men respectively, whereas the sensitivity was 66.7% and the specificity was 37.5% for women respectively, 3) Diagnostic accuracy of the ST/Heart rate ratio was 80.0% for the sensitivity and 64.7% for the specificity, indicating an improvement of specificity, 4) Maximal ST segment depression was accompanied by pain by 88.8% in true positive group (significant ST segment depression with significant coronary stenosis), whereas that was 28.6% in false positive group (significant ST segment depression without significant coronary stenosis), 5) Comparison of the degree of maximal ST segment depression, duration and frequency between computer and manual measurement showed a good correlation for the degree of maximal ST segment depression, whereas the duration and the frequency showed no significant correlations. The above results suggest that combined evaluation of the ST segment depression criteria (downsloping or

  8. The effects of L-carnitine on spinal cord ischemia/reperfusion injury in rabbits.

    PubMed

    Tetik, O; Yagdi, T; Islamoglu, F; Calkavur, T; Posacioglu, H; Atay, Y; Ayik, F; Canpolat, L; Yuksel, M

    2002-02-01

    Paraplegia after distal aortic aneurysm repair remains a persistent clinical problem. We hypothesized that the tolerance of the spinal cord to an ischemic period could be improved with hypothermic Ringer's Lactate containing L-Carnitine. Twenty-eight New Zealand white rabbits were used as spinal cord ischemia models. We separated rabbits into four equal groups and clamped each animal's abdominal aorta distal to the left renal artery. We occluded the aortas above the iliac bifurcation for 30 minutes. In group I, the infrarenal aorta was clamped without infusing any solution. In group II, Ringer's Lactate solution was infused at + 25degrees C for 3 minutes at a rate of 5 ml/min into the isolated aortic segments immediately after cross-clamping and the last 3 minutes of ischemia. In group III, Ringer's Lactate solution at +3 degrees C was given in the same method as that of group II. In group IV, Ringer's Lactate solution at +3 degrees C plus 100 mg/kg of L-carnitine was infused using the same technique. We assessed the neurological status of the hind limbs 24 and 48 hours after operation according to Tarlov's criteria. All animals were sacrificed and spinal cords were harvested for histological analyses. The neurological status in groups III and IV was significantly superior to that of groups I and II. All the animals in group I had complete hind-limb paraplegia. Complete hind-limb paraplegia occurred in 5 rabbits in group II. Two of the 7 animals in group III had spastic paraplegia, and none at all in group IV. Histological analysis of the cross-clamped segments of the rabbits with paraplegia in group I, II and III revealed changes consistent with ischemic injury, while findings were normal for the normal animals in group III and IV. In this model, the infusion of hypothermic Ringer's Lactate contained L-carnitine provided sufficient spinal cord protection against ischemia. Clinically, this may be a useful adjunct for prevention of paraplegia during surgery of the

  9. Neuroprotective effects of tanshinone I from Danshen extract in a mouse model of hypoxia-ischemia

    PubMed Central

    Lee, Jae-Chul; Park, Joon Ha; Park, Ok Kyu; Kim, In Hye; Yan, Bing Chun; Ahn, Ji Hyeon; Kwon, Seung-Hae; Choi, Jung Hoon

    2013-01-01

    Hypoxia-ischemia leads to serious neuronal damage in some brain regions and is a strong risk factor for stroke. The aim of this study was to investigate the neuroprotective effect of tanshinone I (TsI) derived from Danshen (Radix Salvia miltiorrhiza root extract) against neuronal damage using a mouse model of cerebral hypoxia-ischemia. Brain infarction and neuronal damage were examined using 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin histochemistry, and Fluoro-Jade B histofluorescence. Pre-treatment with TsI (10 mg/kg) was associated with a significant reduction in infarct volume 1 day after hypoxia-ischemia was induced. In addition, TsI protected against hypoxia-ischemia-induced neuronal death in the ipsilateral region. Our present findings suggest that TsI has strong potential for neuroprotection against hypoxic-ischemic damage. These results may be used in research into new anti-stroke medications. PMID:24179693

  10. Neuroprotective effect of oral choline administration after global brain ischemia in rats.

    PubMed

    Borges, Andrea Aurélio; El-Batah, Philipe Nicolas; Yamashita, Lilia Fumie; Santana, Aline dos Santos; Lopes, Antonio Carlos; Freymuller-Haapalainen, Edna; Coimbra, Cicero Galli; Sinigaglia-Coimbra, Rita

    2015-08-01

    Choline - now recognized as an essential nutrient - is the most common polar group found in the outer leaflet of the plasma membrane bilayer. Brain ischemia-reperfusion causes lipid peroxidation triggering multiple cell death pathways involving necrosis and apoptosis. Membrane breakdown is, therefore, a major pathophysiologic event in brain ischemia. The ability to achieve membrane repair is a critical step for survival of ischemic neurons following reperfusion injury. The availability of choline is a rate-limiting factor in phospholipid synthesis and, therefore, may be important for timely membrane repair and cell survival. This work aimed at verifying the effects of 7-day oral administration with different doses of choline on survival of CA1 hippocampal neurons following transient global forebrain ischemia in rats. The administration of 400 mg/kg/day divided into two daily doses for 7 consecutive days significantly improved CA1 pyramidal cell survival, indicating that the local availability of this essential nutrient may limit postischemic neuronal survival.

  11. Protective effect of agmatine on a reperfusion model after transient cerebral ischemia: Temporal evolution on perfusion MR imaging and histopathologic findings.

    PubMed

    Kim, D J; Kim, D I; Lee, S K; Suh, S H; Lee, Y J; Kim, J; Chung, T S; Lee, J E

    2006-04-01

    The goal of thrombolytic therapy in patients with acute ischemic stroke is early recanalization, but this may result in delayed reperfusion injury. The purpose of this study was to evaluate the neuroprotective effect of agmatine in a transient ischemic cat model by using MR perfusion imaging and histopathologic analyses. One-hour temporary occlusion of the left middle cerebral artery of cats was performed in the control ischemia group (n = 10), and 100 mg/kg of agmatine was intravenously injected immediately after recanalization in the agmatine-treated group (n = 15). MR imaging was performed at 1, 24, and 48 hours after recanalization, and the perfusion patterns were investigated. Terminal-deoxynucleotidyl transferase mediated nick and end-labeling (TUNEL) and hematoxylin-eosin (H&E) stainings were performed at the corresponding sections. In the control ischemia group, the number of TUNEL-positive cells was significantly increased in the areas with reperfusion hyperemia (P < .05). In the agmatine-treated group, no significant increase in the number of TUNEL-positive cells was noted in the areas of reperfusion hyperemia. The difference in the number of TUNEL-positive cells between the control ischemia and agmatine-treated group in the areas of reperfusion hyperemia was significant (P < .05). The total number of TUNEL-positive cells and the area of severe ischemic neuronal damage on H&E stain were also significantly attenuated in the agmatine-treated cats compared with the control ischemia cats (P < .05). Our results suggest that agmatine has neuroprotective effects against reperfusion injury and ischemia.

  12. Occurance of apoptosis during ischemia in porcine pancreas islet cells.

    PubMed

    Stadlbauer, V; Schaffellner, S; Iberer, F; Lackner, C; Liegl, B; Zink, B; Kniepeiss, D; Tscheliessnigg, K H

    2003-03-01

    Pancreas islet transplantation is a potential treatment of diabetes mellitus and porcine organs provide an easily available source of cells. Unfortunately quality and quantity of isolated islets are still not satisfactory. Apoptosis occurs in freshly isolated islets and plays a significant role in early graft loss. We evaluated the influence of four storage solutions on porcine pancreas islets. After warm ischemia of 15-20 minutes 12 organs were stored in 4 cold preservation solutions: Histidine-Tryptophan-Ketoglutarate solution (HTK), Hank's buffered saline solution (HBSS), University of Wisconsin (UW) solution and Ringer-Lactate (R). After cold ischemia for 100 minutes, organs were fixed in 3% formalin. Apoptotic cells were counted on hematocylin-eosin stainings. Most apoptotic cells were found in organs stored in R. Low numbers were found in the other groups. The difference between organs stored in R and organs stored in UW, HTK, or HBSS was highly significant. No significant difference could be found between UW, HTK and HBSS. Cold and warm ischemia of the pancreas seems to induce apoptosis in islet cells. Preservation solutions cause less apoptosis than electrolyte solution. No significant differences could be found among the preservation solutions.

  13. Protective effect of melatonin on experimental spinal cord ischemia.

    PubMed

    Erten, S F; Kocak, A; Ozdemir, I; Aydemir, S; Colak, A; Reeder, B S

    2003-10-01

    Experimental animal model to assess ischemic spinal cord injury following occlusion of the thoraco-abdominal aorta. To measure whether melatonin administered to rabbits before and after occlusion exerts an effect on the repair of ischemia-reperfusion (IR) injury. Medical Biology Laboratory, Inonu University, Malatya, Turkey. Rabbits were divided into three IR treatment groups and one sham-operated (ShOp) control group. The three treatment groups had their infrarenal aorta temporarily occluded for 25 min, while the ShOp group had laparotomy without aortic occlusion. Melatonin was administered either 10 min before aortic occlusion or 10 min after the clamp was removed. Physiologic saline was administered to the control animals. After treatment, the animals were euthanized and lumbosacral spinal cord tissue was removed for the determination of relevant enzyme activities. Malondialdehyde levels, indicating the extent of lipid peroxidation, were found to be significantly increased in the nonmelatonin treated (IR) group when compared to the ShOp group. Melatonin, whether given to pre- or post occlusion groups, suppressed malondialdehyde levels below that of the ShOp group. Catalase (CAT) and glutathione peroxidase (GSH-Px) enzyme activities were increased in the IR group compared to the ShOp group. Melatonin given preocclusion resulted in a significant decrease in both CAT and GSH-Px enzyme levels. The superoxide dismutase (SOD) enzyme activity was decreased in the ischemia-reperfusion treatment group. However, the melatonin treatment increased SOD enzyme activity to levels approximating that of the ShOp group. To our knowledge, this is the first study that shows the effects of melatonin administered both pre- and postischemia on induced oxidative damage to injured spinal cords. Our data also expands on reports that melatonin administration may significantly reduce the incidence of spinal cord injury following temporary aortic occlusion.

  14. Protective role of silymarin in a mouse model of renal Ischemia-Reperfusion injury.

    PubMed

    Tan, Jian; Hu, Jianpeng; He, Yonghui; Cui, Feilun

    2015-10-31

    We investigated the mechanism of action of silymarin in a mouse model of renal ischemia-reperfusion injury (I/R) to ascertain its role in the treatment of I/R injury. Twenty-four C57BL/6 male mice were divided randomly into three groups: control (sham); ischemia-reperfusion (I/R); silymarin + ischemia-reperfusion (silymarin + I/R). In sham mice, an abdominal incision was made, followed by dissection of the bilateral renal pedicle, with no further cross-clamping of arteries. Silymarin + I/R mice were administered 100 mg/kg silymarin daily for 7 consecutive days before surgery, whereas I/R mice were administered (i.g.) 0.9 % saline + 0.1 % (v/v) ethanol daily for 7 consecutive days before surgery. Silymarin + I/R and I/R mice were subjected to renal ischemia to induce acute kidney injury after 45-min clamping of bilateral renal arteries. Serum levels of creatinine and blood urea nitrogen levels were measured. Periodic acid-Schiff (PAS) staining was undertaken to detect damaged renal tissue. Myeloperoxidase (MPO) activity and immunofluorescent detection of CD68 expression was undertaken for each group. Levels of inflammatory cytokines secreted by renal tissue were monitored by ELISA. Apoptosis was detected by TUNEL staining. Expression of cleaved-caspase-3, Bcl-2 and Bax was detected by western blotting. Serum creatinine and blood urea nitrogen levels were elevated in silymarin + I/R and I/R groups compared with sham mice (p < 0.05), whereas those in the I/R group were significantly higher than in the silymarin + I/R group (p < 0.05). Number of damaged renal tubule cells and apoptotic cells in sham and silymarin + I/R groups was significantly lower than in I/R mice. MPO activity and secretion of inflammatory cytokines in silymarin + I/R and I/R groups was reduced (p < 0.05), and CD68 expression in silymarin + I/R mice was lower than in I/R mice (p < 0.05). Expression of cleaved-caspase-3 and Bax in the I/R group

  15. Beneficial effects of dexpanthenol on mesenteric ischemia and reperfusion injury in experimental rat model.

    PubMed

    Cagin, Yasir Furkan; Atayan, Yahya; Sahin, Nurhan; Parlakpinar, Hakan; Polat, Alaadin; Vardi, Nigar; Tagluk, Mehmet Emin; Tanbek, Kevser; Yildiz, Azibe

    2016-01-01

    It has been reported that intestinal ischemia-reperfusion (I/R) injury results from oxidative stress caused by increased reactive oxygen species. Dexpanthenol (Dxp) is an alcohol analogue with epitelization, anti-inflammatory, antioxidant, and increasing peristalsis activities. In the present study, the aim was to investigate protective and therapeutic effects of Dxp against intestinal I/R injury. Overall, 40 rats were assigned into five groups including one control, one alone Dxp, and three I/R groups (40-min ischemia; followed by 2-h reperfusion). In two I/R groups, Dxp (500 mg/kg, i.m.) was given before or during ischemia. The histopathological findings including apoptotic changes, and also tissue and serum biochemical parameters levels, were determined. Oxidative stress and ileum damage were assessed by biochemical and histological examination. In the control (n = 8) and alone Dxp (n = 8; 500 mg/kg, i.m. of Dxp was given at least 30 min before recording), groups were incised via laparotomy, and electrical activity was recorded from their intestines. In this experiment, the effect of Dxp on the motility of the intestine was examined by analyzing electrical activity. In ileum, oxidant levels were found to be higher, while antioxidant levels were found to be lower in I/R groups when compared with controls. Dxp approximated high levels of oxidants than those in the control group, while it increased antioxidant values compared with I/R groups. Histopathological changes caused by intestinal I/R injury and histological improvements were observed in both groups given Dxp. In the Dxp group, electrical signal activity markedly increased compared with the control group. Here, it was seen that Dxp had protective and therapeutic effects on intestinal I/R injury and gastrointestinal system peristaltism.

  16. Hydrogen-rich saline protects against small-scale liver ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress.

    PubMed

    Li, Hui; Bai, Ge; Ge, Yansong; Zhang, Qianzhen; Kong, Xiangdong; Meng, Weijing; Wang, Hongbin

    2018-02-01

    Our research investigated the role of Hydrogen-rich saline (HRS) on the Endoplasmic reticulum stress (ERS) pathway and the effect of HRS on tissue injury in small Bama pig model of hepatic ischemia-reperfusion combined with partial hepatectomy. Eighteen healthy Bama miniature pigs were randomly divided equally into three groups: Sham, IRI, and HRS. Laparoscopic technique was employed to establish the model of hepatic ischemia-reperfusion combined with partial hepatectomy. HRS (10mL/kg) was injected into the portal vein 10min before perfusion. Histological examinations of the liver tissues were performed after HE staining. Additionally, transmission electron microscopy was performed to detect liver cell microstructure. Real-time PCR, Western blotting, and immunohistochemical staining were performed to analyze various ERS molecules including GRP78, p-eIF2α, XBP-1s, Full-length ATF6α, p-JNK, ATF4, and CHOP. We observed that HRS visibly improved ischemia-reperfusion injury (IRI) by reducing various parameters of ERS stress as evidenced by down-regulation of the mRNA as well as protein levels of GRP78, p-eIF2α, XBP-1s, p-JNK, and CHOP, and reducing the cleavage of Full-length ATF6α. Our study demonstrates that HRS protects the liver from IRI by inhibiting ERS. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Non-occlusive Mesenteric Ischemia in Patients with Methamphetamine Use.

    PubMed

    Anderson, Jamie E; Brown, Ian E; Olson, Kristin A; Iverson, Katherine; Cocanour, Christine S; Galante, Joseph M

    2018-02-17

    Data suggest that methamphetamine may increase the risk of non-occlusive mesenteric ischemia (NOMI). We describe patterns of presentation and outcomes of patients with methamphetamine use who present with NOMI to a single institution. This is an observational study of patients from January 2015 to September 2017 with methamphetamine use who presented with NOMI at an academic medical center in Northern California. We summarize patient co-morbidities, clinical presentation, operative findings, pathologic findings, hospital course, and survival. Ten patients with methamphetamine use and severe NOMI were identified. One patient was readmitted with a perforated duodenal ulcer, for a total of 11 encounters. Most presented with acute (n=3) or acute-on-chronic (n=4) abdominal pain. Distribution of ischemia ranged from perforated duodenal ulcer (n=3), ischemia of the distal ileum (n=1), ischemia of entire small bowel (n=2), and patchy necrosis of entire small bowel and colon (n=5). Six patients died, three within one week of admission and three between 3-8 months. Methamphetamine use may be associated with significant microvascular compromise, increasing the risk of mesenteric ischemia. Providers in areas with high prevalence of methamphetamine use should have a high index of suspicion for intestinal ischemia in this patient population. Patients with methamphetamine use admitted for trauma or other pathology may be at particular risk of ischemia and septic shock, especially in the setting of dehydration. Use of vasoconstrictors in this patient population may also exacerbate intestinal ischemia. Level 5; Case series.

  18. L-Arginine Modulates Intestinal Inflammation in Rats Submitted to Mesenteric Ischemia-Reperfusion Injury.

    PubMed

    Taha, M O; de Oliveira, J V; Dias Borges, M; de Lucca Melo, F; Gualtieri, F G; E Silva Aidar, A L; Pacheco, R L; de Melo Alexandre E Silva, T; Klajner, R K; Iuamoto, L R; Munhoz Torres, L; Morais Mendes de Paula, B J; de Campos, K; Oliveira-Junior, I S; Fagundes, D J

    2016-03-01

    The goal of this study was to investigate whether exogenous offer of L-arginine (LARG) modulates the gene expression of intestinal dysfunction caused by ischemia and reperfusion. Eighteen Wistar-EPM1 male rats (250-300 g) were anesthetized and subjected to laparotomy. The superior mesenteric vessels were exposed, and the rats were randomized into 3 groups (n = 6): the control group (CG), with no superior mesenteric artery interruption; the ischemia/reperfusion group (IRG), with 60 minutes of ischemia and 120 minutes of reperfusion and saline injections; and the L-arginine group (IRG + LARG), with L-arginine injected in the femoral vein 5 minutes before ischemia, 5 minutes after reperfusion, and after 55 minutes of reperfusion. The total RNA was extracted and purified from samples of the small intestine. The concentration of each total RNA sample was determined by using spectrophotometry. The first-strand complementary DNA (cDNA) was synthesized in equal amounts of cDNA and the Master Mix SYBR Green qPCR Mastermix (SABiosciences, a Qiagen Company, Frederick, Md). Amounts of cDNA and Master Mix SYBR Green qPCR Mastermix were distributed to each well of the polymerase chain reaction microarray plate containing the predispensed gene-specific primer sets for Bax and Bcl2. Each sample was evaluated in triplicate, and the Student t test was applied to validate the homogeneity of each gene expression reaction (P < .05). The gene expression of Bax in IRG (+1.48) was significantly higher than in IRG-LARG (+9.69); the expression of Bcl2L1 in IRG (+1.01) was significantly higher than IRG-LARG (+22.89). The apoptotic cell pathway of 2 protagonists showed that LARG improves the gene expression of anti-apoptotic Bcl2l1 (Bcl2-like 1) more than the pro-apoptotic Bax (Bcl2-associated X protein). Copyright © 2016. Published by Elsevier Inc.

  19. Real-time monitoring of ischemia inside stomach.

    PubMed

    Tahirbegi, Islam Bogachan; Mir, Mònica; Samitier, Josep

    2013-02-15

    The low pH in the gastric juice of the stomach makes it difficult to fabricate stable and functional all-solid-state pH ISE sensors to sense ischemia, mainly because of anion interference and adhesion problem between the ISE membrane and the electrode surface. In this work, the adhesion of ISE membrane on solid surface at low pH was improved by modifying the surface with a conductive substrate containing hydrophilic and hydrophobic groups. This creates a stable and robust candidate for low pH applications. Moreover, anion interference problem at low pH was solved by integration of all-solid-state ISE and internal reference electrodes on an array. So, the same tendencies of anion interferences for all-solid-state ISE and all-solid-state reference electrodes cancel each other in differential potentiometric detection. The developed sensor presents a novel all-solid-state potentiometric, miniaturized and mass producible pH ISE sensor for detecting ischemia on the stomach tissue on an array designed for endoscopic applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Inhalation of water electrolysis-derived hydrogen ameliorates cerebral ischemia-reperfusion injury in rats - A possible new hydrogen resource for clinical use.

    PubMed

    Cui, Jin; Chen, Xiao; Zhai, Xiao; Shi, Dongchen; Zhang, Rongjia; Zhi, Xin; Li, Xiaoqun; Gu, Zhengrong; Cao, Liehu; Weng, Weizong; Zhang, Jun; Wang, Liping; Sun, Xuejun; Ji, Fang; Hou, Jiong; Su, Jiacan

    2016-10-29

    Hydrogen is a kind of noble gas with the character to selectively neutralize reactive oxygen species. Former researches proved that low-concentration of hydrogen can be used to ameliorating cerebral ischemia/reperfusion injury. Hydrogen electrolyzed from water has a hydrogen concentration of 66.7%, which is much higher than that used in previous studies. And water electrolysis is a potential new hydrogen resource for regular clinical use. This study was designed and carried out for the determination of safety and neuroprotective effects of water electrolysis-derived hydrogen. Sprague-Dawley rats were used as experimental animals, and middle cerebral artery occlusion was used to make cerebral ischemia/reperfusion model. Pathologically, tissues from rats in hydrogen inhalation group showed no significant difference compared with the control group in HE staining pictures. The blood biochemical findings matched the HE staining result. TTC, Nissl, and TUNEL staining showed the significant improvement of infarction volume, neuron morphology, and neuron apoptosis in rat with hydrogen treatment. Biochemically, hydrogen inhalation decreased brain caspase-3, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine-positive cells and inflammation factors concentration. Water electrolysis-derived hydrogen inhalation had neuroprotective effects on cerebral ischemia/reperfusion injury in rats with the effect of suppressing oxidative stress and inflammation, and it is a possible new hydrogen resource to electrolyze water at the bedside clinically. Copyright © 2016. Published by Elsevier Ltd.

  1. The Protective Effect of Curcumin on a Spinal Cord Ischemia-Reperfusion Injury Model.

    PubMed

    Akar, İlker; İnce, İlker; Arici, Akgül; Benli, İsmail; Aslan, Cemal; Şenol, Sefa; Demir, Osman; Altunkas, Fatih; Altındeger, Nuray; Akbas, Ali

    2017-07-01

    The purpose of this study is to investigate the neurological, biochemical, and histopathologic effects of both the acute and maintenance treatment of curcumin on an experimental spinal cord ischemia-reperfusion injury model in rats. The animals were randomly divided into 4 groups: (1) Sham, (2) ischemia-reperfusion (IR), (3) curcumin, and (4) solvent. Spinal cord ischemia was induced by clamping the aorta with minivascular clamps at a position just below the left renal artery and just proximal to the aortic bifurcation for 45 min. After 72 hr of reperfusion, neurological function was evaluated with a modified Tarlov score. In spinal cords, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), and nitric oxide (NO) levels were detected biochemically. Immunohistochemical staining was performed by antibodies against interleukin-6 (IL-6) and myeloperoxidase. Histopathologic changes were examined with hematoxylin and eosin staining. Although MDA tissue levels were elevated significantly in the IR group compared with the sham group, SOD and GPx levels decreased. After the administration of curcumin, MDA levels in the spinal cord decreased, and SOD and GPx levels increased. Those changes were statistically significant. There was no significance at NO levels. Among all groups, there was no difference in IL-6 and myeloperoxidase immunostaining. Histopathological analysis showed that histopathological changes in the IR group were improved by curcumin treatment. In the curcumin group, neurological outcome scores were significantly better statistically when compared with the IR group. We believe that curcumin possesses antioxidant, antiproliferative, and anticarcinogenic properties and may be an effective drug for the prevention of spinal cord IR injury in light of the neurologic, biochemical, and histopathological data of this study and published scientific literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Acute testicular ischemia caused by incarcerated inguinal hernia.

    PubMed

    Orth, Robert C; Towbin, Alexander J

    2012-02-01

    Acute testicular ischemia caused by an incarcerated inguinal hernia usually affects infants. There are few reports of diagnosis using US, and the effect of long-standing reducible hernias on testicular growth in infants and children is unknown. The objectives of this study were to determine the incidence of testicular ischemia secondary to an incarcerated inguinal hernia at scrotal sonography and to determine the effect on testicular size at diagnosis. A hospital database was used to locate scrotal sonography examinations documenting an inguinal hernia, and images were reviewed for signs of testicular ischemia. Testicular volumes were compared using the Wilcoxon signed rank test. A total of 147 patients were identified with an inguinal hernia (age 1 day to 23 years, average 6 years). Ten patients (6.8%) had associated testicular ischemia (age 3 weeks to 6 months, average 9 weeks) and showed a statistically significant increase in ipsilateral testicular size compared to the contralateral testicle (P = 0.012). Patients without testicular ischemia did not show a significant difference in testicular size, regardless of patient age. An incarcerated inguinal hernia should be considered as a cause of acute testicular ischemia in infants younger than 6 months of age.

  3. A Program for Solving the Brain Ischemia Problem

    PubMed Central

    DeGracia, Donald J.

    2013-01-01

    Our recently described nonlinear dynamical model of cell injury is here applied to the problems of brain ischemia and neuroprotection. We discuss measurement of global brain ischemia injury dynamics by time course analysis. Solutions to proposed experiments are simulated using hypothetical values for the model parameters. The solutions solve the global brain ischemia problem in terms of “master bifurcation diagrams” that show all possible outcomes for arbitrary durations of all lethal cerebral blood flow (CBF) decrements. The global ischemia master bifurcation diagrams: (1) can map to a single focal ischemia insult, and (2) reveal all CBF decrements susceptible to neuroprotection. We simulate measuring a neuroprotectant by time course analysis, which revealed emergent nonlinear effects that set dynamical limits on neuroprotection. Using over-simplified stroke geometry, we calculate a theoretical maximum protection of approximately 50% recovery. We also calculate what is likely to be obtained in practice and obtain 38% recovery; a number close to that often reported in the literature. The hypothetical examples studied here illustrate the use of the nonlinear cell injury model as a fresh avenue of approach that has the potential, not only to solve the brain ischemia problem, but also to advance the technology of neuroprotection. PMID:24961411

  4. Outcomes of Critical Limb Ischemia in Hemodialysis Patients After Distal Bypass Surgery - Poor Limb Prognosis With Stage 4 Wound, Ischemia, and Foot Infection (WIfI).

    PubMed

    Hoshina, Katsuyuki; Yamamoto, Kota; Miyata, Tetsuro; Watanabe, Toshiaki

    2016-10-25

    Distal bypass is the first-line treatment for patients with critical limb ischemia (CLI). In Japanese high-volume centers, approximately half of these patients are on hemodialysis (HD). We have treated such patients first with bypass using a multidisciplinary perioperative strategy. We reveal the recent characteristics of patients who underwent distal bypass and the surgical outcomes in Japan, especially focusing on the foot conditions by using the wound, ischemia, and foot infection (WIfI) classification.Methods and Results:The 152 patients underwent distal bypass in a tertiary center hospital, and we compared patients on HD (HD group) to those not on HD (non-HD group). There were significant differences between the 2 groups in the overall survival, major adverse cardiac event-free survival and amputation-free survival (AFS) rates (P<0.0001). The procedural outcomes were analyzed via primary and secondary patency, and there was no difference. In the subanalysis of limb status using WIfI stage, the AFS rate of the HD group was significantly worse than that of the non-HD group for WIfI stage 4 patients. The life and limb prognoses of patients with CLI and HD were worse than those of non-HD patients. There was no difference in surgical outcomes suggested by the graft patency rates between the 2 groups. AFS in WIfI stage 4 was significantly worse in the HD group, which indicated the importance of preoperative limb status. (Circ J 2016; 80: 2382-2387).

  5. Loss of c-Kit function impairs arteriogenesis in a mouse model of hindlimb ischemia.

    PubMed

    Hernandez, Diana R; Artiles, Adriana; Duque, Juan C; Martinez, Laisel; Pinto, Mariana T; Webster, Keith A; Velazquez, Omaida C; Vazquez-Padron, Roberto I; Lassance-Soares, Roberta M

    2018-04-01

    Arteriogenesis is a process whereby collateral vessels remodel usually in response to increased blood flow and/or wall stress. Remodeling of collaterals can function as a natural bypass to alleviate ischemia during arterial occlusion. Here we used a genetic approach to investigate possible roles of tyrosine receptor c-Kit in arteriogenesis. Mutant mice with loss of c-Kit function (Kit W/W-v ), and controls were subjected to hindlimb ischemia. Blood flow recovery was evaluated pre-, post-, and weekly after ischemia. Foot ischemic damage and function were assessed between days 1 to 14 post-ischemia while collaterals remodeling were measured 28 days post-ischemia. Both groups of mice also were subjected to wild type bone marrow cells transplantation 3 weeks before hindlimb ischemia to evaluate possible contributions of defective bone marrow c-Kit expression on vascular recovery. Kit W/W-v mice displayed impaired blood flow recovery, greater ischemic damage and foot dysfunction after ischemia compared to controls. Kit W/W-v mice also demonstrated impaired collateral remodeling consistent with flow recovery findings. Because arteriogenesis is a biological process that involves bone marrow-derived cells, we investigated which source of c-Kit signaling (bone marrow or vascular) plays a major role in arteriogenesis. Kit W/W-v mice transplanted with bone marrow wild type cells exhibited similar phenotype of impaired blood flow recovery, greater tissue ischemic damage and foot dysfunction as nontransplanted Kit W/W-v mice. This study provides evidence that c-Kit signaling is required during arteriogenesis. Also, it strongly suggests a vascular role for c-Kit signaling because rescue of systemic c-Kit activity by bone marrow transplantation did not augment the functional recovery of Kit W/W-v mouse hindlimbs. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Dexmedetomidine improves neurologic outcome from incomplete ischemia in the rat. Reversal by the alpha 2-adrenergic antagonist atipamezole.

    PubMed

    Hoffman, W E; Kochs, E; Werner, C; Thomas, C; Albrecht, R F

    1991-08-01

    Dexmedetomidine is an alpha 2-adrenergic agonist that decreases central sympathetic activity and reduces the anesthetic requirement for halothane. We evaluated the effect of dexmedetomidine on neurologic and histopathologic outcome from incomplete cerebral ischemia in the rat. Anesthesia was maintained with a 25-micrograms.kg-1.h-1 fentanyl infusion combined with 70% nitrous oxide. Incomplete ischemia was produced by unilateral carotid artery ligation combined with hemorrhagic hypotension to 35 mmHg for 30 min. Arterial blood gas tensions, pH, and head temperature were maintained at normal levels during the experiment. Four ischemic groups were tested: group 1 (n = 15) received an intraperitoneal (ip) saline injection (control); group 2 (n = 10) received an ip injection of 10 micrograms/kg dexmedetomidine 30 min before ischemia; group 3 (n = 10) received 100 micrograms/kg dexmedetomidine; and group 4 (n = 10) received 100 micrograms/kg dexmedetomidine plus 1 mg/kg atipamezole (an alpha 2-adrenergic antagonist). Neurologic outcome was evaluated for 3 days using a graded deficit score. Histopathology was evaluated in coronal section in caudate and hippocampal tissue segments. Dexmedetomidine (10 and 100 micrograms/kg) significantly decreased plasma catecholamines and improved neurologic and histopathologic outcome in a dose-dependent manner compared to control rats (P less than 0.05). Atipamezole abolished the decrease in catecholamines and the improvement in outcome seen with dexmedetomidine, confirming that these effects were mediated by alpha 2-adrenergic receptors. It is concluded that alpha 2-adrenoreceptor stimulation decreases sympathetic activity and decreases ischemic injury in a model of incomplete cerebral ischemia.

  7. HIF-1α signaling activation by post-ischemia treatment with astragaloside IV attenuates myocardial ischemia-reperfusion injury.

    PubMed

    Si, Jingwen; Wang, Ning; Wang, Huan; Xie, Juan; Yang, Jian; Yi, Hui; Shi, Zixuan; Ma, Jing; Wang, Wen; Yang, Lifang; Yu, Shiqiang; Li, Junchang

    2014-01-01

    In this study, we evaluated the effect of astragaloside IV (Ast IV) post-ischemia treatment on myocardial ischemia-reperfusion (IR) injury (IRI). We also examined whether hypoxia inducible factor-1α (HIF-1α) and its downstream gene-inducible nitric oxide (NO) synthase (iNOS) play roles in the cardioprotective effect of Ast IV. Cultured cardiomyocytes and perfused isolated rat hearts were exposed to Ast IV during reperfusion in the presence or absence of the HIF-1α inhibitor 2-methoxyestradiol (2-MeOE2). The post-ischemia treatment with Ast IV protected cardiomyocytes from the apoptosis and death induced by simulated IRI (SIRI). Additionally, in cardiomyocytes, 2-MeOE2 and HIF-1α siRNA treatment each not only abolished the anti-apoptotic effect of post-ischemia treatment with Ast IV but also reversed the upregulation of HIF-1α and iNOS expression. Furthermore, after treatment with Ast IV, post-ischemic cardiac functional recovery and lactate dehydrogenase (LDH) release in the coronary flow (CF) were improved, and the myocardial infarct size was decreased. Moreover, the number of apoptotic cells was reduced, and the upregulation of the anti-apoptotic protein Bcl2 and downregulation of the pro-apoptotic protein Caspase3 were reversed. 2-MeOE2 reversed these effects of Ast IV on IR-injured hearts. These results suggest that post-ischemia treatment with Ast IV can attenuate IRI by upregulating HIF-1α expression, which transmits a survival signal to the myocardium.

  8. Ursolic Acid Ameliorates Inflammation in Cerebral Ischemia and Reperfusion Injury Possibly via High Mobility Group Box 1/Toll-Like Receptor 4/NFκB Pathway.

    PubMed

    Wang, Yanzhe; Li, Lei; Deng, Shumin; Liu, Fang; He, Zhiyi

    2018-01-01

    Toll-like receptors (TLRs) play key roles in cerebral ischemia and reperfusion injury by inducing the production of inflammatory mediators, such as interleukins (ILs) and tumor necrosis factor-alpha (TNF-α). According to recent studies, ursolic acid (UA) regulates TLR signaling and exhibits notable anti-inflammatory properties. In the present study, we explored the mechanism by which UA regulates inflammation in the rat middle cerebral artery occlusion and reperfusion (MCAO/R) model. The MCAO/R model was induced in male Sprague-Dawley rats (MCAO for 2 h, followed by reperfusion for 48 h). UA was administered intragastrically at 0.5, 24, and 47 h after reperfusion. The direct high mobility group box 1 (HMGB1) inhibitor glycyrrhizin (GL) was injected intravenously after 0.5 h of ischemia as a positive control. The degree of brain damage was estimated using the neurological deficit score, infarct volume, histopathological changes, and neuronal apoptosis. We assessed IL-1β, TNF-α, and IL-6 levels to evaluate post-ischemic inflammation. HMGB1 and TLR4 expression and phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB) were also examined to explore the underlying mechanism. UA (10 and 20 mg/kg) treatment significantly decreased the neurological deficit scores, infarct volume, apoptotic cells, and IL-1β, TNF-α, and IL-6 concentrations. The infarct area ratio was reduced by (33.07 ± 1.74), (27.05 ± 1.13), (27.49 ± 1.87), and (39.74 ± 2.14)% in the 10 and 20 mg/kg UA, GL, and control groups, respectively. Furthermore, UA (10 and 20 mg/kg) treatment significantly decreased HMGB1 release and the TLR4 level and inactivated NFκB signaling. Thus, the effects of intragastric administration of 20 mg/kg of UA and 10 mg/kg of GL were similar. We provide novel evidence that UA reduces inflammatory cytokine production to protect the brain from cerebral ischemia and reperfusion injury possibly through the

  9. Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats.

    PubMed

    Ahmed, Maha A E; El Morsy, Engy M; Ahmed, Amany A E

    2014-08-21

    Interruption to blood flow causes ischemia and infarction of brain tissues with consequent neuronal damage and brain dysfunction. Pomegranate extract is well tolerated, and safely consumed all over the world. Interestingly, pomegranate extract has shown remarkable antioxidant and anti-inflammatory effects in experimental models. Many investigators consider natural extracts as novel therapies for neurodegenerative disorders. Therefore, this study was carried out to investigate the protective effects of standardized pomegranate extract against cerebral ischemia/reperfusion-induced brain injury in rats. Adult male albino rats were randomly divided into sham-operated control group, ischemia/reperfusion (I/R) group, and two other groups that received standardized pomegranate extract at two dose levels (250, 500 mg/kg) for 15 days prior to ischemia/reperfusion (PMG250+I/R, and PMG500+I/R groups). After I/R or sham operation, all rats were sacrificed and brains were harvested for subsequent biochemical analysis. Results showed reduction in brain contents of MDA (malondialdehyde), and NO (nitric oxide), in addition to enhancement of SOD (superoxide dismutase), GPX (glutathione peroxidase), and GRD (glutathione reductase) activities in rats treated with pomegranate extract prior to cerebral I/R. Moreover, pomegranate extract decreased brain levels of NF-κB p65 (nuclear factor kappa B p65), TNF-α (tumor necrosis factor-alpha), caspase-3 and increased brain levels of IL-10 (interleukin-10), and cerebral ATP (adenosine triphosphate) production. Comet assay showed less brain DNA (deoxyribonucleic acid) damage in rats protected with pomegranate extract. The present study showed, for the first time, that pre-administration of pomegranate extract to rats, can offer a significant dose-dependent neuroprotective activity against cerebral I/R brain injury and DNA damage via antioxidant, anti-inflammatory, anti-apoptotic and ATP-replenishing effects. Copyright © 2014 Elsevier Inc

  10. Insulin/NFκB protects against ischemia-induced necrotic cardiomyocyte death.

    PubMed

    Díaz, Ariel; Humeres, Claudio; González, Verónica; Gómez, María Teresa; Montt, Natalia; Sanchez, Gina; Chiong, Mario; García, Lorena

    2015-11-13

    In the heart, insulin controls key functions such as metabolism, muscle contraction and cell death. However, all studies have been focused on insulin action during reperfusion. Here we explore the cardioprotective action of this hormone during ischemia. Rat hearts were perfused ex vivo with an ischemia/reperfusion Langendorff model in absence or presence of insulin. Additionally, cultured rat cardiomyocytes were exposed to simulated ischemia in the absence or presence of insulin. Cytoprotective effects were measured by myocardial infarct size, trypan blue exclusion, released LDH and DNA fragmentation by flow cytometry. We found that insulin protected against cardiac ischemia ex vivo and in vitro. Moreover, insulin protected cardiomyocytes from simulated ischemia by reducing necrotic cell death. Protective effects of insulin were dependent of Akt and NFκB. These novel results show that insulin reduces ischemia-induced cardiomyocyte necrosis through an Akt/NF-κB dependent mechanism. These novel findings clarify the role of insulin during ischemia and further support its use in early GIK perfusion to treat myocardial infarction. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. [Adipose-derived stem cell transplantation promotes the expression of netrin-1 in the rat cortex after focal cerebral ischemia].

    PubMed

    Wang, Jiehua; Hong, Zhuquan; Pan, Ying; Li, Guoqian

    2017-01-01

    Objective To observe the effect of adipose-derived stem cells (ADSCs) transplantation on the expression of netrin-1 in rats after focal cerebral ischemia. Methods Male SD rats were randomly divided into control group, model group and ADSC group. ADSCs were harvested and purified. Focal cerebral ischemia models were established in rats by the suture method. ADSCs were injected into the lateral ventricle of ADSC group rats and the same does of PBS was given to model group rats. At day 4, 7 and 14 after reperfusion, six rats were sacrificed to remove the brain tissues at each time point. The expression of netrin-1 was detected by reverse-transcription PCR, Western blotting and immunohistochemistry. Results Compared with the control group, the expression of netrin-1 in the brain tissues of the model group increased after focal cerebral ischemia, reached the peak at 4 days, and the expression of netrin-1 was significantly higher than that of the control group at each time point. Compared with the model group, the expression of netrin-1 in the ADSC group increased further, reached the peak at 7 days, and the expression of netrin-1 in the ADSC group was significantly higher than that of the model group at each time point. Conclusion ADSC transplantation could up-regulate the expression of netrin-1, and promote axon regeneration and the recovery of neurological functions.

  12. Assessment of Renal Ischemia By Optical Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, J T; Demos, S; Michalopoulou, A

    2004-01-07

    Introduction: No reliable method currently exists for quantifying the degree of warm ischemia in kidney grafts prior to transplantation. We describe a method for evaluating pretransplant warm ischemia time using optical spectroscopic methods. Methods: Lewis rat kidney vascular pedicles were clamped unilaterally in vivo for 0, 5, 10, 20, 30, 60, 90 or 120 minutes; 8 animals were studied at each time point. Injured and contra-lateral control kidneys were then flushed with Euro-Collins solution, resected and placed on ice. 335 nm excitation autofluorescence as well as cross polarized light scattering images were taken of each injured and control kidney usingmore » filters of various wavelengths. The intensity ratio of the injured to normal kidneys was compared to ischemia time. Results: Autofluorescence intensity ratios through a 450 nm filter and light scattering intensity ratios through an 800 nm filter both decreased significantly with increasing ischemia time (p < 0.0001 for each method, one-way ANOVA). All adjacent and non-adjacent time points between 0 and 90 minutes were distinguishable using one of these two modalities by Fisher's PLSD. Conclusions: Optical spectroscopic methods can accurately quantify warm ischemia time in kidneys that have been subsequently hypothermically preserved. Further studies are needed to correlate results with physiological damage and posttransplant performance.« less

  13. Protective effect of edaravone for tourniquet-induced ischemia-reperfusion injury on skeletal muscle in murine hindlimb

    PubMed Central

    2013-01-01

    Background Studies have shown that ischemia-reperfusion (I/R) produces free radicals leading to lipid peroxidation and damage to skeletal muscle. The purposes of this study were 1) to assess the histological findings of gastrocnemius muscle (GC) and tibialis anterior muscle (TA) in I/R injury model mice, 2) to histologically analyze whether a single pretreatment of edaravone inhibits I/R injury to skeletal muscle in murine models and 3) to evaluate the effect of oxidative stress on these muscles. Methods C57BL6 mice were divided in two groups, with one group receiving 3 mg/kg intraperitoneal injections of edaravone (I/R + Ed group) and the other group receiving an identical amount of saline (I/R group) 30 minutes before ischemia. Edaravone (3-methy-1-pheny1-2-pyrazolin-5-one) is a potent and novel synthetic scavenger of free radicals. This drug inhibits both nonenzymatic lipid peroxidation and the lipoxygenase pathway, in addition to having potent antioxidant effects against ischemia reperfusion. The duration of the ischemia was 1.5 hours, with reperfusion at either 24 or 72 hours (3 days). Specimens of gastrocnemius (GC) and anterior tibialis (TA) were removed for histological evaluation and biochemical analysis. Results This model of I/R injury was highly reproducible in histologic muscle damage. In the histologic damage score, the mean muscle fibers and inflammatory cell infiltration in the I/R + Ed group were significantly less than the corresponding values of observed in the I/R group. Thus, pretreatment with edaravone was observed to have a protective effect on muscle damage after a period of I/R in mice. In addition, the mean muscle injury score in the I/R + Ed group was also significantly less than the I/R group. In the I/R + Ed group, the mean malondialdehyde (MDA) level was lower than in the I/R group and western-blotting revealed that edaravone pretreatment decreased the level of inducible nitric oxide synthase (iNOS) expression. Conclusions Edaravone

  14. Assessment of Myocardial Ischemia with Cardiovascular Magnetic Resonance

    PubMed Central

    Heydari, Bobak; Jerosch-Herold, Michael; Kwong, Raymond Y.

    2014-01-01

    Assessment of myocardial ischemia in symptomatic patients remains a common and challenging clinical situation faced by physicians. Risk stratification by presence of ischemia provides important utility for both prognostic assessment and management. Unfortunately, current noninvasive modalities possess numerous limitations and have limited prognostic capacity. More recently, ischemia assessment by cardiovascular magnetic resonance (CMR) has been shown to be a safe, available, and potentially cost-effective alternative with both high diagnostic and prognostic accuracy. Cardiovascular magnetic resonance has numerous advantages over other noninvasive methods, including high temporal and spatial resolution, relatively few contraindications, and absence of ionizing radiation. Furthermore, studies assessing the clinical utility and cost effectiveness of CMR in the short-term setting for patients without evidence of an acute myocardial infarction have also demonstrated favorable results. This review will cover techniques of ischemia assessment with CMR by both stress-induced wall motion abnormalities as well as myocardial perfusion imaging. The diagnostic and prognostic performance studies will also be reviewed, and the use of CMR for ischemia assessment will be compared with other commonly used noninvasive modalities. PMID:22014487

  15. Platelets, diabetes and myocardial ischemia/reperfusion injury.

    PubMed

    Russo, Isabella; Penna, Claudia; Musso, Tiziana; Popara, Jasmin; Alloatti, Giuseppe; Cavalot, Franco; Pagliaro, Pasquale

    2017-05-31

    Mechanisms underlying the pathogenesis of ischemia/reperfusion injury are particularly complex, multifactorial and highly interconnected. A complex and entangled interaction is also emerging between platelet function, antiplatelet drugs, coronary diseases and ischemia/reperfusion injury, especially in diabetic conditions. Here we briefly summarize features of antiplatelet therapy in type 2 diabetes (T2DM). We also treat the influence of T2DM on ischemia/reperfusion injury and how anti-platelet therapies affect post-ischemic myocardial damage through pleiotropic properties not related to their anti-aggregating effects. miRNA-based signature associated with T2DM and its cardiovascular disease complications are also briefly considered. Influence of anti-platelet therapies and different effects of healthy and diabetic platelets on ischemia/reperfusion injury need to be further clarified in order to enhance patient benefits from antiplatelet therapy and revascularization. Here we provide insight on the difficulty to reduce the cardiovascular risk in diabetic patients and report novel information on the cardioprotective role of widely used anti-aggregant drugs.

  16. Acute mesenteric ischemia after heart surgery.

    PubMed

    Goleanu, V; Alecu, L; Lazar, O

    2014-01-01

    Acute mesenteric ischemia (AMI) is a rare but very severe complication of heart surgery, due especially to the delay in setting the correct diagnosis and choosing the appropriate treatment. There are 4 types, but the most frequent is nonocclusive mesenteric ischemia (NOMI). The main mechanism is represented by great decrease or maldistribution of the splenic blood flow, with negative impact on the integrity of the intestinal mucosa, bacterial translocation and multiorganic failure. We present a retrospective study conducted on patients who underwent open heart surgery with cardiopulmonary bypass with non-pulsatile flow. 4 cases of angiographically confirmed NOMI (non-occlusive mesenteric ischemia) were identified. When, based on clinical examination and laboratory findings, acute mesenteric ischemia was suspicioned, superior mesenteric artery angiography was performed via the femoral artery. The main risk factors were represented by: age over 70 years old, left ventricle ejection fraction (LVEF) 35%,aortic clamping time 100 min., chronic kidney failure,counter-pulsation balloon implant, inotropic medication use,like levosimendan, use of blood components 1 unit of erythrocyte mass. Clinical signs were nonspecific. All patients presented hypoventilation, arterial hypotension, oliguria and,from a biological standpoint, metabolic acidosis and leucocytosis. Superior mesenteric artery angiography was the investigation method of choice. Treatment approach was initially medical, followed by resection of the intestine.Mortality was 100%. Acute mesenteric ischemia is a rare but very severe complication in cardiac surgery. It is primordial that the main risk factors be known, and in case of diagnosis suspicion, that it be set as early as possible, along with immediate initiation of an appropriate course of treatment. Celsius.

  17. Acute mesenteric ischemia: a vascular emergency.

    PubMed

    Klar, Ernst; Rahmanian, Parwis B; Bücker, Arno; Hauenstein, Karlheinz; Jauch, Karl-Walter; Luther, Bernd

    2012-04-01

    Acute mesenteric ischemia is still fatal in 50% to 70% of cases. This consensus paper was written with the participation of physicians from all of the involved specialties for the purpose of improving outcomes. Mesenteric ischemia must be recognized as a vascular emergency requiring rapid and efficient clinical evaluation and treatment. We reviewed pertinent literature that was retrieved by a PubMed search on the terms "mesenteric ischemia" AND "arterial" OR "venous" OR "clinical presentation" OR "diagnosis" OR "therapy" OR "surgery" OR " interventional radiology." Our review also took account of the existing guidelines of the American College of Cardiology/American Heart Association. Intensive discussions among the participating physicians, representing all of the specialties involved in the management of mesenteric ischemia, led to the creation of this interdisciplinary paper. Biphasic contrast-enhanced computerized tomography is the diagnostic tool of choice for the detection of arterial or venous occlusion. If non-occlusive mesenteric ischemia is suspected, angiography should be performed, with the option of intraarterial pharmacotherapy to induce local vasodilation. Endovascular techniques have become increasingly important in the treatment of arterial occlusion. Embolic central mesenteric artery occlusion requires surgical treatment; surgery is also needed in case of peritonitis. Portal-vein thrombosis can be treated by local thrombolysis through a transhepatically placed catheter. This should be done within 3 to 4 weeks of the event to prevent later complications of portal hypertension. Rapid diagnosis (within 4 to 6 hours of symptom onset) and interdisciplinary cooperation in the provision of treatment are required if the poor outcome of this condition is to be improved.

  18. Poloxamer-188 reduces muscular edema after tourniquet-induced ischemia-reperfusion injury in rats.

    PubMed

    Walters, Thomas J; Mase, Vincent J; Roe, Janet L; Dubick, Michael A; Christy, Robert J

    2011-05-01

    Skeletal muscle injury can result in significant edema, which can in turn lead to the development of acute extremity compartment syndrome (CS). Poloxamer-188 (P-188), a multiblock copolymer surfactant, has been shown to decrease edema by sealing damaged membranes in a number of tissues after a variety of injury modalities. The objective is to determine whether the administration of P-188 significantly reduces skeletal muscle edema associated with ischemia/reperfusion injury (I-R). Male Sprague-Dawley rats underwent 180 minutes of tourniquet-induced ischemia. Five minutes before tourniquet release, rats received either a bolus of (1) P-188 (150 mg/kg; P-188 group) or (2) vehicle (Vehicle group) via a jugular catheter (n=10 per group). After 240 minutes reperfusion, both groups received a second bolus of either P-188 (P-188) or vehicle (Vehicle) via a tail vein catheter. Sixteen hours later, rats were killed; muscle weights were determined, infarct size (2,3,5-triphenyltetrazolium chloride method), and blinded histologic analysis (hematoxylin and eosin) were performed on the gastrocnemius and tibialis anterior muscles, as well as indices of antioxidant status. P-188 resulted in significantly less edema (wet weight) and reduced an index of lipid peroxidation compared with Vehicle (p<0.05). Wet:dry weight ratios were less in the P-188 group (indicating less edema). Muscle viability as indicated by 2,3,5-triphenyltetrazolium chloride staining or routine histology did not reveal statistically significant differences between groups. P-188 significantly reduced ischemia-reperfusion-related muscle edema and lipid peroxidation but did not impact muscle viability. Excess edema can lead to acute extremity CS, which is associated with significant morbidity and mortality. P-188 may provide a potential adjunctive treatment for the reduction of CS.

  19. Induction of heme oxygenase-1 protects mouse liver from apoptotic ischemia/reperfusion injury

    PubMed Central

    Issan, Y.; Katz, Y.; Sultan, M.; Safran, M.; Michal, Laniado-Schwartzman; Nader, G. Abraham; Kornowski, R.; Grief, F.; Pappo, O.; Hochhauser, E.

    2017-01-01

    Ischemia/reperfusion (I/R) injury is the main cause of primary graft dysfunction of liver allografts. Cobalt-protoporphyrin (CoPP)–dependent induction of heme oxygenase (HO)-1 has been shown to protect the liver from I/R injury. This study analyzes the apoptotic mechanisms of HO-1-mediated cytoprotection in mouse liver exposed to I/R injury. HO-1 induction was achieved by the administration of CoPP (1.5 mg/kg body weight i.p.). Mice were studied in in vivo model of hepatic segmental (70 %) ischemia for 60 min and reperfusion injury. Mice were randomly allocated to four main experimental groups (n = 10 each): (1) A control group undergoing sham operation. (2) Similar to group 1 but with the administration of CoPP 72 h before the operation. (3) Mice undergoing in vivo hepatic I/R. (4) Similar to group 3 but with the administration of CoPP 72 h before ischemia induction. When compared with the I/R mice group, in the I/R+CoPP mice group, the increased hepatic expression of HO-1 was associated with a significant reduction in liver enzyme levels, fewer apoptotic hepatocytes cells were identified by morphological criteria and by immunohistochemistry for caspase-3, there was a decreased mean number of proliferating cells (positively stained for Ki67), and a reduced hepatic expression of: C/EBP homologous protein (an index of endoplasmic reticulum stress), the NF-κB’s regulated genes (CIAP2, MCP-1 and IL-6), and increased hepatic expression of IκBa (the inhibitory protein of NF-κB). HO-1 over-expression plays a pivotal role in reducing the hepatic apoptotic IR injury. HO-1 may serve as a potential target for therapeutic intervention in hepatic I/R injury during liver transplantation. PMID:23435964

  20. Induction of heme oxygenase-1 protects mouse liver from apoptotic ischemia/reperfusion injury.

    PubMed

    Ben-Ari, Z; Issan, Y; Katz, Y; Sultan, M; Safran, M; Michal, Laniado-Schwartzman; Nader, G Abraham; Kornowski, R; Grief, F; Pappo, O; Hochhauser, E

    2013-05-01

    Ischemia/reperfusion (I/R) injury is the main cause of primary graft dysfunction of liver allografts. Cobalt-protoporphyrin (CoPP)-dependent induction of heme oxygenase (HO)-1 has been shown to protect the liver from I/R injury. This study analyzes the apoptotic mechanisms of HO-1-mediated cytoprotection in mouse liver exposed to I/R injury. HO-1 induction was achieved by the administration of CoPP (1.5 mg/kg body weight i.p.). Mice were studied in in vivo model of hepatic segmental (70 %) ischemia for 60 min and reperfusion injury. Mice were randomly allocated to four main experimental groups (n = 10 each): (1) A control group undergoing sham operation. (2) Similar to group 1 but with the administration of CoPP 72 h before the operation. (3) Mice undergoing in vivo hepatic I/R. (4) Similar to group 3 but with the administration of CoPP 72 h before ischemia induction. When compared with the I/R mice group, in the I/R+CoPP mice group, the increased hepatic expression of HO-1 was associated with a significant reduction in liver enzyme levels, fewer apoptotic hepatocytes cells were identified by morphological criteria and by immunohistochemistry for caspase-3, there was a decreased mean number of proliferating cells (positively stained for Ki67), and a reduced hepatic expression of: C/EBP homologous protein (an index of endoplasmic reticulum stress), the NF-κB's regulated genes (CIAP2, MCP-1 and IL-6), and increased hepatic expression of IκBa (the inhibitory protein of NF-κB). HO-1 over-expression plays a pivotal role in reducing the hepatic apoptotic IR injury. HO-1 may serve as a potential target for therapeutic intervention in hepatic I/R injury during liver transplantation.

  1. Importance of compensatory heart rate increase during myocardial ischemia to preserve appropriate oxygen kinetics.

    PubMed

    Yoshida, Sadamitsu; Adachi, Hitoshi; Murata, Makoto; Tomono, Junichi; Oshima, Shigeru; Kurabayashi, Masahiko

    2017-09-01

    Myocardial ischemia induces cardiac dysfunction, resulting in insufficient oxygen supply to peripheral tissues and mismatched energy production during exercise. To relieve the insufficient oxygen supply, heart rate (HR) response is augmented; however, beta-adrenergic receptor blockers (BB) restrict HR response. Although BB are essential drugs for angina pectoris, the effect of BB on exercise tolerance in patients with angina has not been studied. The aim of this study was to clarify the importance of HR augmentation to preserve exercise tolerance in patients with angina pectoris. Forty-two subjects who underwent cardiopulmonary exercise testing (CPX) to detect myocardial ischemia were enrolled. CPX was performed until exhaustion or onset of significant myocardial ischemia using a ramp protocol. Subjects were assigned to three groups (Group A: with ST depression during CPX with significant coronary stenosis and taking BB; Group B: with ST depression and not taking BB; Group C: without ST depression and not taking BB). HR response to exercise was evaluated during the following two periods: below and above ischemic threshold (IT). In Group C, it was evaluated during the first 2min and the last 2min of a ramp exercise. No significant differences were observed among the three groups with regard to patients' basic characteristics. Below IT, there were no differences in oxygen pulse/watt (O 2 pulse increasing rate), HR/watt (ΔHR/ΔWR), and ΔV˙O 2 /ΔWR. Above IT, O 2 pulse increasing rate was greater in Group A than in Group B. ΔHR/ΔWR was smaller in Group A than in Group B. ΔV˙O 2 /ΔWR became smaller in Group A than in Group B. There was no difference in anaerobic threshold, and peak V˙O 2 was smaller in Group A than in Group B. Restriction of HR response by a BB is shown to be one of the important factors in diminished exercise tolerance. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  2. Mental stress-induced ischemia in patients with coronary artery disease: echocardiographic characteristics and relation to exercise-induced ischemia.

    PubMed

    Stepanovic, Jelena; Ostojic, Miodrag; Beleslin, Branko; Vukovic, Olivera; Djordjevic-Dikic, Ana; Dikic, Ana Djordjevic; Giga, Vojislav; Nedeljkovic, Ivana; Nedeljkovic, Milan; Stojkovic, Sinisa; Vukcevic, Vladan; Dobric, Milan; Petrasinovic, Zorica; Marinkovic, Jelena; Lecic-Tosevski, Dusica

    2012-09-01

    The aims of this study were to investigate the incidence and parameters associated with myocardial ischemia during mental stress (MS) as measured by echocardiography and to evaluate the relation between MS-induced and exercise-induced myocardial ischemia. Study participants were 79 patients (63 men; mean [M] [standard deviation {SD}] age = 52 [8] years) with angiographically confirmed coronary artery disease and previous positive exercise test result. The MS protocol consisted of mental arithmetic and anger recall task. The patients performed a treadmill exercise test 15 to 20 minutes after the MS task. Data of post-MS exercise were compared with previous exercise stress test results. The frequency of echocardiographic abnormalities was 35% in response to the mental arithmetic task, compared with 61% with anger recall and 96% with exercise (p < .001, exercise versus MS). Electrocardiogram abnormalities and chest pain were substantially less common during MS than were echocardiographic abnormalities. Independent predictors of MS-induced myocardial ischemia were: wall motion score index at rest (p = .02), peak systolic blood pressure (p = .005), and increase in rate-pressure product (p = .004) during MS. The duration of exercise stress test was significantly shorter (p < .001) when MS preceded the exercise and in the case of earlier exercise (M [SD] = 4.4 [1.9] versus 6.7 [2.2] minutes for patients positive on MS and 5.7 [1.9] versus 8.0 [2.3] minutes for patients negative on MS). Echocardiography can be successfully used to document myocardial ischemia induced by MS. MS-induced ischemia was associated with an increase in hemodynamic parameters during MS and worse function of the left ventricle. MS may shorten the duration of subsequent exercise stress testing and can potentiate exercise-induced ischemia in susceptible patients with coronary artery disease.

  3. Cofilin Inhibition Restores Neuronal Cell Death in Oxygen-Glucose Deprivation Model of Ischemia.

    PubMed

    Madineni, Anusha; Alhadidi, Qasim; Shah, Zahoor A

    2016-03-01

    Ischemia is a condition associated with decreased blood supply to the brain, eventually leading to death of neurons. It is associated with a diverse cascade of responses involving both degenerative and regenerative mechanisms. At the cellular level, the changes are initiated prominently in the neuronal cytoskeleton. Cofilin, a cytoskeletal actin severing protein, is known to be involved in the early stages of apoptotic cell death. Evidence supports its intervention in the progression of disease states like Alzheimer's and ischemic kidney disease. In the present study, we have hypothesized the possible involvement of cofilin in ischemia. Using PC12 cells and mouse primary cultures of cortical neurons, we investigated the potential role of cofilin in ischemia in two different in vitro ischemic models: chemical induced oxidative stress and oxygen-glucose deprivation/reperfusion (OGD/R). The expression profile studies demonstrated a decrease in phosphocofilin levels in all models of ischemia, implying stress-induced cofilin activation. Furthermore, calcineurin and slingshot 1L (SSH) phosphatases were found to be the signaling mediators of the cofilin activation. In primary cultures of cortical neurons, cofilin was found to be significantly activated after 1 h of OGD. To delineate the role of activated cofilin in ischemia, we knocked down cofilin by small interfering RNA (siRNA) technique and tested the impact of cofilin silencing on neuronal viability. Cofilin siRNA-treated neurons showed a significant reduction of cofilin levels in all treatment groups (control, OGD, and OGD/R). Additionally, cofilin siRNA-reduced cofilin mitochondrial translocation and caspase 3 cleavage, with a concomitant increase in neuronal viability. These results strongly support the active role of cofilin in ischemia-induced neuronal degeneration and apoptosis. We believe that targeting this protein mediator has a potential for therapeutic intervention in ischemic brain injury and stroke.

  4. A comparison of the effects of epidural and spinal anesthesia with ischemia-reperfusion injury on the rat transverse rectus abdominis musculocutaneous flap.

    PubMed

    Acar, Yusuf; Bozkurt, Mehmet; Firat, Ugur; Selcuk, Caferi Tayyar; Kapi, Emin; Isik, Fatma Birgul; Kuvat, Samet Vasfi; Celik, Feyzi; Bozarslan, Beri Hocaoglu

    2013-11-01

    The purpose of this study is to compare the effects of spinal and epidural anesthesia on a rat transverse rectus abdominus myocutaneous flap ischemia-reperfusion injury model.Forty Sprague-Dawley rats were divided into 4 experimental groups: group I (n = 10), sham group; group II (n = 10), control group; group III (n = 10), epidural group; and group IV (n = 10), spinal group. After the elevation of the transverse rectus abdominus myocutaneous flaps, all groups except for the sham group were subjected to normothermic no-flow ischemia for 4 hours, followed by a reperfusion period of 2 hours. At the end of the reperfusion period, biochemical and histopathological evaluations were performed on tissue samples.Although there was no significant difference concerning the malonyldialdehyde, nitric oxide, and paraoxonase levels in the spinal and epidural groups, the total antioxidant state levels were significantly increased, and the total oxidative stress levels were significantly decreased in the epidural group in comparison to the spinal group. The pathological evaluation showed that findings related to inflammation, nuclear change rates and hyalinization were significantly higher in the spinal group compared with the epidural group.Epidural anesthesia can be considered as a more suitable method that enables a decrease in ischemia-reperfusion injuries in the muscle flaps.

  5. Panic attack triggering myocardial ischemia documented by myocardial perfusion imaging study. A case report

    PubMed Central

    2012-01-01

    Background Chest pain, a key element in the investigation of coronary artery disease is often regarded as a benign prognosis when present in panic attacks. However, panic disorder has been suggested as an independent risk factor for long-term prognosis of cardiovascular diseases and a trigger of acute myocardial infarction. Objective Faced with the extreme importance in differentiate from ischemic to non-ischemic chest pain, we report a case of panic attack induced by inhalation of 35% carbon dioxide triggering myocardial ischemia, documented by myocardial perfusion imaging study. Discussion Panic attack is undoubtedly a strong component of mental stress. Patients with coronary artery disease may present myocardial ischemia in mental stress response by two ways: an increase in coronary vasomotor tone or a sympathetic hyperactivity leading to a rise in myocardial oxygen consumption. Coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. Possibly the carbon dioxide challenge test could trigger myocardial ischemia by the same mechanisms. Conclusion The use of mental stress has been suggested as an alternative method for myocardial ischemia investigation. Based on translational medicine objectives the use of CO2 challenge followed by Sestamibi SPECT could be a useful method to allow improved application of research-based knowledge to the medical field, specifically at the interface of PD and cardiovascular disease. PMID:22999016

  6. Panic attack triggering myocardial ischemia documented by myocardial perfusion imaging study. A case report.

    PubMed

    Soares-Filho, Gastão Luiz Fonseca; Mesquita, Claudio Tinoco; Mesquita, Evandro Tinoco; Arias-Carrión, Oscar; Machado, Sergio; González, Manuel Menéndez; Valença, Alexandre Martins; Nardi, Antonio Egidio

    2012-09-21

    Chest pain, a key element in the investigation of coronary artery disease is often regarded as a benign prognosis when present in panic attacks. However, panic disorder has been suggested as an independent risk factor for long-term prognosis of cardiovascular diseases and a trigger of acute myocardial infarction. Faced with the extreme importance in differentiate from ischemic to non-ischemic chest pain, we report a case of panic attack induced by inhalation of 35% carbon dioxide triggering myocardial ischemia, documented by myocardial perfusion imaging study. Panic attack is undoubtedly a strong component of mental stress. Patients with coronary artery disease may present myocardial ischemia in mental stress response by two ways: an increase in coronary vasomotor tone or a sympathetic hyperactivity leading to a rise in myocardial oxygen consumption. Coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. Possibly the carbon dioxide challenge test could trigger myocardial ischemia by the same mechanisms. The use of mental stress has been suggested as an alternative method for myocardial ischemia investigation. Based on translational medicine objectives the use of CO2 challenge followed by Sestamibi SPECT could be a useful method to allow improved application of research-based knowledge to the medical field, specifically at the interface of PD and cardiovascular disease.

  7. Protective effects of melatonin on ischemia-reperfusion induced myocardial damage and hemodynamic recovery in rats.

    PubMed

    Liu, L-F; Qin, Q; Qian, Z-H; Shi, M; Deng, Q-C; Zhu, W-P; Zhang, H; Tao, X-M; Liu, Y

    2014-01-01

    To investigate the mechanism of melatonin (MT) protection of adult rate myocardial ischemia-reperfusion injury and its influence on rat's hemodynamic recovery. 48 rats were randomly divided into MT group (n=36) and the control group (n=12), MT group was divided into three sub-groups according to different dosages: Group I (n=12) was administered with 2.5 mg/kg MT; Group II (n=12) was administered with 5 mg/kg MT; Group III (n=12) was administered with 10 mg/kg MT. The electrocardiogram of four groups was observed with the left coronary artery blocked for 10min at first and then reperfused for 15min. Hemodynamic evolving was observed and changes in energy metabolism of rat myocardium were monitored. TUNEL and immunohistochemistry were applied to detect the cell apoptosis index, protein expression of Bcl-2 and Bax. LVDP (left ventricular developed pressure) and ± dp/dt in MT group presented better recovery at various time points than the control group. Among them, Group III had the optimal recovery degree (p < 0.05). After MT administration, ATP content in myocardial cells in MT group was significantly higher than the control group. Compared with the control group, the concentration of mitochondrial MDA and Ca2+ in myocardial cells in MT group showed a downward trend. But its GSH concentration was significantly higher than the control group (p < 0.05). The improvement degree of ATP, MDA, GSH and Ca2+ concentration in Group II over-performed Group I (p < 0.05). MT-intervened myocardial apoptosis index (AI) and Bax positive expression index declined while Bcl-2 positive expression index increased (p < 0.01). MT effectively inhibited myocardial apoptosis during the myocardial ischemia-reperfusion of rats, protected the structural integrity of mitochondria in myocardial cells, promoted ATP synthesis, and avoided heart damage in many ways. This protection mechanism was related with anti-oxidative damage. Meanwhile, MT could promote the hemodynamic recovery after

  8. Curcumin inhibits endoplasmic reticulum stress induced by cerebral ischemia-reperfusion injury in rats

    PubMed Central

    Zhu, Haiying; Fan, Yanxia; Sun, Hongyu; Chen, Liyan; Man, Xiao

    2017-01-01

    The aim of the present study was to observe the dynamic changes of the growth arrest and DNA damage-inducible 153 (GADD153) gene and caspase-12 in the brain tissue of rats with cerebral ischemia-reperfusion injury (CIRI) and the impact of curcumin pretreatment. A total of 60 rats were randomly divided into the normal group (N), the sham operation group (S), the dimethyl sulfoxide control group (D) and the curcumin treatment group (C). For group D and C, 12 (T1), 24 (T2) and 72 h (T3) of reperfusion were performed after 2 h ischemia. The expression levels of GADD153 and caspase-12 in the brain tissue were detected and compared among the groups by immunohistochemistry, immunofluorescence double staining and western blotting. The expression levels of GADD153 and caspase-12 were increased at T1compared with groups N and S, and the expression of caspase-12 peaked at T2 in group D, while GADD153 was increased until T3 in group D. Compared with group D, the expression levels of GADD153 and caspase-12 in group C at T2 and T3 were significantly decreased (P<0.05). Endoplasmic reticulum stress is involved in the pathological process of CIRI. Curcumin may decrease the expression levels of the above two factors, thus exhibiting protective effects against CIRI in rats. PMID:29067098

  9. [Mechanism of vacuum sealing drainage therapy attenuating ischemia-reperfusion injury of skeletal muscle in rabbit].

    PubMed

    Wang, Xiang; Yang, Fan; Guan, Zhen; Wang, Dongfang; Bai, Xiangjun; Gao, Wei

    2016-04-01

    To investigate the mechanism of how vacuum sealing drainage (VSD) ameliorating ischemia reperfusion (I/R) injury in skeletal muscle I/R model. Thirty New Zealand white rabbits were divided into three groups: control (sham operation) group, I/R group, VSD+ I/R group.The ischemia of the left hind limb of the animal was induced by clamping the common femoral artery and vein. After 4 hours of ischemia, the clamp was removed and the hind limp underwent 6 hours reperfusion. VSD treated animals received the treatment at the beginning of reperfusion. The concentrations of myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) in muscular tissues were assayed. HE stained pathological section was used to evaluate the degree of edema of muscular tissues, and the immunohistochemistry was used to detect the percentage of positive cells expressing high mobility group protein B1 (HMGB1). Q-RT-PCR and Western Blot were used to detect the mRNA levels and protein expression of HMGB1 in myocyte respectively. The experimental data was tested using variance analysis. The levels of inflammatory factors and antioxidant factors in muscular tissues were significantly different in the I/R group compared to the VSD group and control group (the levels of MPO in I/R group, I/R+ VSD group and control group were 0.91±0.22, 0.53±0.08, 0.31±0.10, respectively, F=26.48, P=0.000; MDA were 2.04±0.92, 1.65±1.02, 1.01±0.12, F=4.250, P=0.040; SOD were 35.97±9.23, 55.99±18.97, 61.83±14.91, F=5.240, P=0.020; CAT were 31.42±16.27, 48.50±17.86, 75.95±13.09, F=9.720, P=0.002; GSH were 1.48±0.90, 3.54±1.88, 3.84±2.08, F=5.240, P=0.020). HE staining showed an increased intercellular space ratio in the I/R group (F=16.47, P<0.05). Immunohistochemistry staining showed that percentage of HMGB1 positive myocytes in control, I/R and I/R+ VSD group are 1.94%, 18.63% and 61.36%, respectively. There was significant difference among groups (F=853

  10. Effect of desipramine on spontaneous activity of hippocampal CA1 neuron after transient cerebral ischemia in rats.

    PubMed

    Zhu, Z T; Zhang, X X; Liu, J; Jin, G Z

    1996-01-01

    To study the spontaneous firing of CA1 neurons in rat hippocampus after transient cerebral ischemia and the effect of desipramine (Des) on the post-ischemic electric activity of CA1 neurons. Single-unit extracellular recordings were performed in rats on d 3 after 10 min of cerebral ischemia by occlusion of 4 arteries. Des and saline were injected into a tail vein. The histological changes of CA1 neurons was assessed by the neuronal density of the CA1 sector. The spontaneous firing rate of CA1 neurons on d 3 after ischemia was enhanced in comparison with the control value. Des (0.2 and 0.4 mg.kg-1, i.v., n = 5 & 6, respectively) reduced dose-dependently the increase of firing rate with maximal inhibition by 6 min (58% & 85%) to 9 min (69% & 94%) (vs vehicle group, P < 0.01). About 50% cells in CA1 region showed necrotic changes. Des antagonized the hyperexcitability of CA1 neurons after cerebral ischemia.

  11. Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury.

    PubMed

    Kalani, Anuradha; Chaturvedi, Pankaj; Kamat, Pradip K; Maldonado, Claudio; Bauer, Philip; Joshua, Irving G; Tyagi, Suresh C; Tyagi, Neetu

    2016-10-01

    We tested whether the combined nano-formulation, prepared with curcumin (anti-inflammatory and neuroprotective molecule) and embryonic stem cell exosomes (MESC-exo cur ), restored neurovascular loss following an ischemia reperfusion (IR) injury in mice. IR-injury was created in 8-10 weeks old mice and divided into two groups. Out of two IR-injured groups, one group received intranasal administration of MESC-exo cur for 7days. Similarly, two sham groups were made and one group received MESC-exo cur treatment. The study determined that MESC-exo cur treatment reduced neurological score, infarct volume and edema following IR-injury. As compared to untreated IR group, MESC-exo cur treated-IR group showed reduced inflammation and N-methyl-d-aspartate receptor expression. Treatment of MESC-exo cur also reduced astrocytic GFAP expression and alleviated the expression of NeuN positive neurons in IR-injured mice. In addition, MESC-exo cur treatment restored vascular endothelial tight (claudin-5 and occludin) and adherent (VE-cadherin) junction proteins in IR-injured mice as compared to untreated IR-injured mice. These results suggest that combining the potentials of embryonic stem cell exosomes and curcumin can help neurovascular restoration following ischemia-reperfusion injury in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. [Digital ischemia in two patients treated with gemcitabine].

    PubMed

    Viguier, J-B; Solanilla, A; Boulon, C; Constans, J; Conri, C

    2010-06-01

    A 73-year-old man with an urothelial carcinoma treated with gemcitabine and carboplatinium and an 84-year-old man with a mesothelioma treated with gemcitabine alone developed digital ischemia. In the first patient, the ischemia involved all fingers except the thumbs during the second cycle of treatment. The ischemia developed during the first cycle in the second patient and involved the right major and ring fingers. In the literature, gemcitabine vascular toxicity is probably potentialized by platinium salts. Several nosological entities occur simultaneously. The most widely described involve isolated digital ischemia for doses to the order of 3000mg, and a hemolytic and uremic thrombotic microangiopathy for gemcitabine doses above 10,000mg. The vascular toxicity of platinium salts is not dose-dependent. In these two patients, the clinical course was favorable with interruption of the chemotherapy, treatment by iloprost and aspirin.

  13. Human mesenchymal stromal cells decrease mortality after intestinal ischemia and reperfusion injury.

    PubMed

    Markel, Troy A; Crafts, Trevor D; Jensen, Amanda R; Hunsberger, Erin Bailey; Yoder, Mervin C

    2015-11-01

    Cellular therapy is a novel treatment option for intestinal ischemia. Bone marrow-derived mesenchymal stromal cells (BMSCs) have previously been shown to abate the damage caused by intestinal ischemia/reperfusion (I/R) injury. We therefore hypothesized that (1) human BMSCs (hBMSCs) would produce more beneficial growth factors and lower levels of proinflammatory mediators compared to differentiated cells, (2) direct application of hBMSCs to ischemic intestine would decrease mortality after injury, and (3) decreased mortality would be associated with an altered intestinal and hepatic inflammatory response. Adult hBMSCs and keratinocytes were cultured on polystyrene flasks. For in vitro experiments, cells were exposed to tumor necrosis factor, lipopolysaccharides, or 2% oxygen for 24 h. Supernatants were then analyzed for growth factors and chemokines by multiplex assay. For in vivo experiments, 8- to 12-wk-old male C57Bl6J mice were anesthetized and underwent a midline laparotomy. Experimental groups were exposed to temporary superior mesenteric artery occlusion for 60 min. Immediately after ischemia, 2 × 10(6) hBMSCs or keratinocytes in phosphate-buffered saline were placed into the peritoneal cavity. Animals were then closed and allowed to recover for 6 h (molecular/histologic analysis) or 7 d (survival analysis). After 6-h reperfusion, animals were euthanized. Intestines and livers were harvested and analyzed for inflammatory chemokines, growth factors, and histologic changes. hBMSCs expressed higher levels of human interleukin (IL) 6, IL-8, vascular endothelial growth factor (VEGF), and epidermal growth factor and lower levels of IL-1, IL-3, IL-7, and granulocyte-monocyte colony-stimulating factor after stimulation. In vivo, I/R resulted in significant mortality (70% mortality), whereas application of hBMSCs after ischemia decreased mortality to 10% in a dose-dependent fashion (P = 0.004). Keratinocyte therapy offered no improvements in mortality

  14. Protectant activity of defibrotide in cardioplegia followed by ischemia/reperfusion injury in the isolated rat heart.

    PubMed

    Rossoni, G; Pompilio, G; Biglioli, P; Alamanni, F; Tartara, P; Rona, P; Porqueddu, M; Berti, F

    1999-01-01

    Previous studies have shown that defibrotide, a polydeoxyribonucleotide obtained by depolymerization of DNA from porcine tissues, has important protective effects on myocardial ischemia, which may be associated with a prostacyclin-related mechanism. The purpose of this study was to investigate the direct effects of defibrotide (given in cardioplegia or after ischemia) on a model of rat heart recovery after cardioplegia followed by ischemia/reperfusion injury. Isolated rat hearts, undergoing 5 minutes of warm cardioplegic arrest followed by 20 minutes of global ischemia and 30 minutes of reperfusion, were studied using the modified Langendorff model. The cardioplegia consisted of St. Thomas' Hospital solution augmented with defibrotide (50, 100, and 200 microg/mL) or without defibrotide (controls). Left ventricular mechanical function and the levels of creatine kinase, lactate dehydrogenase, and 6-keto-prostaglandin F1alpha (6-keto-PGF1alpha; the stable metabolite of prostacyclin) were measured during preischemic and reperfusion periods. After global ischemia, hearts receiving defibrotide in the cardioplegic solution (n = 8) manifested in a concentration-dependent fashion lower left ventricular end-diastolic pressure (p < 0.001), higher left ventricular developed pressure (p < 0.01), and lower coronary perfusion pressure (p < 0.001) compared to the control group. After reperfusion, hearts receiving defibrotide in the cardioplegic solution also had, in a dose-dependent way, lower levels of creatine-kinase (p < 0.01), lactate dehydrogenase (p < 0.001), and higher levels of 6-keto-PGF1alpha (p < 0.001) compared to the control group. Furthermore, when defibrotide was given alone to the hearts at the beginning of reperfusion (n = 7), the recovery of postischemic left ventricular function was inferior (p < 0.05) to that obtained when defibrotide was given in cardioplegia. Defibrotide confers to conventional crystalloid cardioplegia a potent concentration

  15. Effects of ischemic preconditioning on PDGF-BB expression in the gerbil hippocampal CA1 region following transient cerebral ischemia

    PubMed Central

    Lee, Jae-Chul; Kim, Yang Hee; Lee, Tae-Kyeong; Kim, In Hye; Cho, Jeong Hwi; Cho, Geum-Sil; Shin, Bich-Na; Park, Joon Ha; Ahn, Ji Hyeon; Shin, Myoung Cheol; Cho, Jun Hwi; Kang, Il Jun; Won, Moo-Ho; Seo, Jeong Yeol

    2017-01-01

    Ischemic preconditioning (IPC) is induced by exposure to brief durations of transient ischemia, which results in ischemic tolerance to a subsequent longer or lethal period of ischemia. In the present study, the effects of IPC (2 min of transient cerebral ischemia) were examined on immunoreactivity of platelet-derived growth factor (PDGF)-BB and on neuroprotection in the gerbil hippocampal CA1 region following lethal transient cerebral ischemia (LTCI; 5 min of transient cerebral ischemia). IPC was subjected to a 2-min sublethal ischemia and a LTCI was given 5-min transient ischemia. The animals in all of the groups were given recovery times of 1, 2 and 5 days and change in PDGF-BB immunoreactivity was examined as was the neuronal damage/death in the hippocampus induced by LTCI. LTCI induced a significant loss of pyramidal neurons in the hippocampal CA1 region 5 days after LTCI, and significantly decreased PDGF-BB immunoreactivity in the CA1 pyramidal neurons from day 1 after LTCI. Conversely, IPC effectively protected the CA1 pyramidal neurons from LTCI and increased PDGF-BB immunoreactivity in the CA1 pyramidal neurons post-LTCI. In conclusion, the results demonstrated that LTCI significantly altered PDGF-BB immunoreactivity in pyramidal neurons in the hippocampal CA1 region, whereas IPC increased the immunoreactivity. These findings indicated that PDGF-BB may be associated with IPC-mediated neuroprotection. PMID:28627606

  16. Predictive Modeling of Cardiac Ischemia

    NASA Technical Reports Server (NTRS)

    Anderson, Gary T.

    1996-01-01

    The goal of the Contextual Alarms Management System (CALMS) project is to develop sophisticated models to predict the onset of clinical cardiac ischemia before it occurs. The system will continuously monitor cardiac patients and set off an alarm when they appear about to suffer an ischemic episode. The models take as inputs information from patient history and combine it with continuously updated information extracted from blood pressure, oxygen saturation and ECG lines. Expert system, statistical, neural network and rough set methodologies are then used to forecast the onset of clinical ischemia before it transpires, thus allowing early intervention aimed at preventing morbid complications from occurring. The models will differ from previous attempts by including combinations of continuous and discrete inputs. A commercial medical instrumentation and software company has invested funds in the project with a goal of commercialization of the technology. The end product will be a system that analyzes physiologic parameters and produces an alarm when myocardial ischemia is present. If proven feasible, a CALMS-based system will be added to existing heart monitoring hardware.

  17. Ischemic preconditioning enhances autophagy but suppresses autophagic cell death in rat spinal neurons following ischemia-reperfusion.

    PubMed

    Fan, Jin; Zhang, Zitao; Chao, Xie; Gu, Jun; Cai, Weihua; Zhou, Wei; Yin, Guoyong; Li, Qingqing

    2014-05-08

    Autophagy serves to eliminate damaged proteins and organelles under normal physiological conditions and can be accelerated by pathological stress, possibly as a cytoprotective mechanism. Brief periods of ischemia (ischemic preconditioning or IPC) can reduce neuronal death in response to subsequent severe ischemic insults. Ischemic preconditioning also induces autophagy, but the contribution of autophagy to IPC-associated neuroprotection remains unclear. We investigated the contribution of autophagy to IPC-mediated neuroprotection in rats subjected to ischemic spinal cord injury. Fifty adult rats were randomly assigned to either (1) a sham group receiving anesthesia and surgical preparation (n=5), (2) an ischemia/reperfusion (I/R) group (n=20) subjected to 0.5 h ischemia followed by 3, 6, 12, or 24 h reperfusion, (3) an IPC group receiving three cycles of 5 min ischemia followed by 5 min of reperfusion (n=5), or (4) an IPC+I/R group (n=20). Hematoxylin-eosin (HE) and immunohistochemical staining were performed to evaluate spinal neuron survival in the four treatment groups. Autophagic activity was investigated by electron microscopy and by immunohistochemical and Western blot analyses of the autophagosome marker LC3-II and the autophagy-associated BH3 protein Beclin-1. Changes in Bcl-2/Beclin-1 complex association and Bcl-2 phosphorylation (p-Bcl-2) were examined by co-immunoprecipitation and Western blot analyses. In the I/R group, LC3-II was significantly elevated after 3h of reperfusion, but declined significantly by 24 h. At 24 h, I/R rats exhibited extensive spinal damage and decreased neuronal survival. In the IPC+IR group, neuronal death was reduced and expression of LC3-II sustained throughout the 24 h reperfusion period. In the I/R group, expression of (inactive) p-Bcl-2(Ser70) was increased significantly during reperfusion and was accompanied by dissociation of the Bcl-2/Beclin-1 complex and increased Beclin-1 expression. Preconditioning inhibited these

  18. [Silent myocardial ischemia in patients with transient ischemic attacks].

    PubMed

    Sánchez Valiente, S; Mostacero, E; del Río, A; Morales, F

    1994-10-01

    Given evidence that ischemic heart disease is the most frequent cause of death in patients with cerebrovascular disease, we used ergometrics to screen 80 patients with TIA for silent myocardial ischemia (SMI) at the neurological unit of Hospital Clínico Universitario in Zaragoza, Spain. The patients were compared with a control group of 80 with no signs of heart disease. Neither the patients nor the controls had ever shown clinical signs of coronary ischemia and their baseline electrocardiograms were normal. Stress test results were positive in 25 (31%) of the TIA patients, and in 4 (5%) (p < 0.001) of the controls, showing that the prevalence of SMI is significantly higher in TIA patients than in the general population. Hiperlipidemia (75% testing positive versus 43% negative, p < 0.01) and diabetes (31% testing positive versus 13% negative, p < 0.01) were the risk factors statistically related with a positive stress test.

  19. The effect of hypericum perforatum on kidney ischemia/reperfusion damage.

    PubMed

    Cakir, Murat; Duzova, Halil; Baysal, Işil; Gül, Cemile Ceren; Kuşcu, Gülbahar; Kutluk, Fatma; Çakin, Hilal; Şeker, Şifanur; İlbeği, Esranur; Uslu, Seda; Avci, Umut; Demir, Samet; Akinci, Cihan; Atli, Sercan

    2017-11-01

    It has been revealed in recent studies that Hypericum Perforatum (HP) is influential on cancer, inflammatory diseases, bacterial and viral diseases, and has neuroprotective and antioxidant properties. In this study, we investigated the effect of HP, which is known to have antioxidant and anti-inflammatory effects, on kidney I/R damage. Male Sprague-Dawley rats were divided into three groups, and each of the groups had eight rats: The Control Group; the Ischemia/Reperfusion (I/R) Group; and the IR + HP Group which was treated with 50 mg/kg of HP. The right kidneys of the rats were removed, and the left kidney developed ischemia during the 45th min, and reperfusion occurred in the following 3rd h. The histopathological findings and also the level of Malondialdehyde (MDA), Glutathione (GSH) and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) enzyme activations in the renal tissues were measured. Blood Urea Nitrogen (BUN), Creatinin (Cre) from serum samples were determined. The levels of BUN, Cre, and kidney tissue MDA increased at a significant level, and the SOD, CAT, and GSH-PX enzyme activity decreased at a significant level in the I/R group, compared with the Control Group (p < 0.05). In the I/R + HP group, the levels of MDA decreased at a significant level compared to the I/R group, while the SOD, CAT, and GSH-PX activity increased (p < 0.05). In histopathological examinations, it was observed that the tubular dilatation and epithelial desquamation regressed in the IR + HP Group when compared with the I/R Group. It has been shown with the histological and biochemical results in this study that HP is protective against acute renal I/R.

  20. Zinc translocation accelerates infarction after mild transient focal ischemia.

    PubMed

    Lee, J-M; Zipfel, G J; Park, K H; He, Y Y; Hsu, C Y; Choi, D W

    2002-01-01

    Excess release of chelatable zinc (Zn(2+)) from central synaptic vesicles may contribute to the pathogenesis of selective neuronal cell death following transient forebrain ischemia, but a role in neurodegeneration after focal ischemia has not been defined. Adult male Long-Evans rats subjected to middle cerebral artery occlusion (MCAO) for 30 min followed by reperfusion developed delayed cerebral infarction reaching completion 3 days after the insult. One day after the insult, many degenerating cerebral neurons exhibited increased intracellular Zn(2+), and some labeled with the antibody against activated caspase-3. I.c.v. administration of the Zn(2+) chelator, EDTA saturated with equimolar Ca(2+) (CaEDTA), 15 min prior to ischemia attenuated subsequent Zn(2+) translocation into cortical neurons, and reduced infarct volume measured 3 days after ischemia. Although the protective effect of CaEDTA at this endpoint was substantial (about 70% infarct reduction), it was lost when insult severity was increased (from 30 to 60 min MCAO), or when infarct volume was measured at a much later time point (14 days instead of 3 days after ischemia). These data suggest that toxic Zn(2+) translocation, from presynaptic terminals to post-synaptic cell bodies, may accelerate the development of cerebral infarction following mild transient focal ischemia.

  1. Myocardial ischemia induced by nebulized fenoterol for severe childhood asthma.

    PubMed

    Zanoni, L Z; Palhares, D B; Consolo, L C T

    2005-10-01

    We examined for myocardial ischemia induced by continuous inhalation of fenoterol in children with severe acute asthma. Thirty children with severe acute asthma were evaluated for signs of myocardial ischemia when treated with 0.5 mg kg dose (maximum 15 mg) of inhaled fenoterol for one hour. The heart rate was measured before and after inhalation. Cardiac enzymes (creatine kinase, creatine kinase MB fraction and troponin levels) were measured at admission and 12 hours later. An EKG was recorded before inhalation was started and immediately after its completion to detect the presence of any evidence of myocardial ischemia. All patients developed significant increase in heart rate. Six patients showed EKG changes compatible with myocardial ischemia, despite normal enzyme levels. Patients with severe acute asthma show tachycardia and may show EKG changes of myocardial ischemia.

  2. Divergent systemic and local inflammatory response to hind limb demand ischemia in wild-type and ApoE-/- mice.

    PubMed

    Crawford, Robert S; Albadawi, Hassan; Robaldo, Alessandro; Peck, Michael A; Abularrage, Christopher J; Yoo, Hyung-Jin; Lamuraglia, Glenn M; Watkins, Michael T

    2013-08-01

    We designed studies to determine whether the ApoE-/- phenotype modulates the local skeletal muscle and systemic inflammatory (plasma) responses to lower extremity demand ischemia. The ApoE-/- phenotype is an experimental model for atherosclerosis in humans. Aged female ApoE-/- and C57BL6 mice underwent femoral artery ligation, then were divided into sedentary and demand ischemia (exercise) groups on day 14. We assessed baseline and postexercise limb perfusion and hind limb function. On day 14, animals in the demand ischemia group underwent daily treadmill exercise through day 28. Sedentary mice were not exercised. On day 28, we harvested plasma and skeletal muscle from ischemic limbs from sedentary and exercised mice. We assayed muscle for angiogenic and proinflammatory proteins, markers of skeletal muscle regeneration, and evidence of skeletal muscle fiber maturation. Hind limb ischemia was similar in ApoE-/- and C57 mice before the onset of exercise. Under sedentary conditions, plasma vascular endothelial cell growth factor and interleukin-6, but not keratinocyte chemoattractant factor (KC) or macrophage inflammatory protein-2 (MIP-2), were higher in ApoE (P < 0.0001). After exercise, plasma levels of vascular endothelial cell growth factor, KC, and MIP-2, but not IL-6, were lower in ApoE (P < 0.004). The cytokines KC and MIP-2 in muscle were greater in exercised ApoE-/- mice compared with C57BL6 mice (P = 0.01). Increased poly-ADP-ribose activity and mature muscle regeneration were associated with demand ischemia in the C57BL6 mice, compared with the ApoE-/- mice (P = 0.01). Demand limb ischemia in the ApoE-/- phenotype exacerbated the expression of select systemic cytokines in plasma and blunted indices of muscle regeneration. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Effect of N(G)-nitro-L-arginine methyl ester on intestinal permeability following intestinal ischemia-reperfusion injury in a rat model.

    PubMed

    Luo, C C; Chen, H M; Chiu, C H; Lin, J N; Chen, J C

    2001-07-01

    Subclinical intestinal ischemia-reperfusion injury (IRI) causes an increase in mucosal permeability and may represent an early event in the pathogenesis of necrotizing enterocolitis in premature infants. Previous studies suggested that continuous, endogenous formation of nitric oxide (NO) maintains the mucosal integrity of the intestine, thus protecting the gut from injuries from blood-borne toxins and tissue-destructive mediators. This study was undertaken to assess whether the inhibition of NO production causes an increase in intestinal permeability in rats following IRI. Sprague-Dawley rats weighing 200-300 g were divided into 4 groups: (1) untreated group (normal control); (2) ischemia-reperfusion group; (3) early N(G)-nitro-L-arginine methyl ester (L-NAME), a specific inhibitor of NO production, treatment group, and (4) late L-NAME treatment group. Transient IRI was induced by 30-min occlusion, followed by reperfusion of the isolated ileal loop. The L-NAME was administered 15 min before and after mesenteric ischemia as a 25-mg/kg bolus. Fluorescein isothiocyanate-dextran (FITC-D) was used to quantitatively assess the alteration in mucosal permeability of the intestine. There was no significant increase in the portal vein FITC-D level among normal controls, ischemia-reperfusion group and late L-NAME-treated group, but there was an approximately 6-fold increase in the early L-NAME treatment group. The pathological features of the intestine following IRI include denudation of the villus epithelium and reduction of villus height, associated with marked inflammatory cell infiltration over the lamina propria. These results suggest that endogenous NO may play a role in the protecting intestinal integrity after IRI. Copyright 2001 S. Karger AG, Basel

  4. Korean red ginseng protects against neuronal damage induced by transient focal ischemia in rats

    PubMed Central

    BAN, JU YEON; KANG, SUNG WOOK; LEE, JONG SEOK; CHUNG, JOO-HO; KO, YOUNG GWAN; CHOI, HAN SUNG

    2012-01-01

    In the present study, we investigated the neuroprotective effect of Korean red ginseng (KRG) following focal brain ischemia/reperfusion injury, in relation to its antioxidant activities. The middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats was employed. The KRG extract (100 mg/kg, perorally) was administered once daily for 7 days following MCAO/R. The elevated levels of lipid peroxidation in the MCAO/R group were attenuated significantly in the KRG-administered group. The significantly depleted activity of the antioxidant enzymes glutathione peroxidase, superoxide dismutase and catalase was prevented in the KRG-administered group. In the neurobehavioral evaluation expressed as the modified neurological severity score and corner-turn test, the daily intake of KRG showed consistent and significant improvement in the neurological deficits for 7 days following MCAO/R injury. These results indicate that KRG has a neuroprotective effect against ischemia/reperfusion brain injury by reducing the level of lipid peroxidation and increasing the endogenous antioxidant enzymatic activity. PMID:22969953

  5. LC-MS/MS profiling and neuroprotective effects of Mentat® against transient global ischemia and reperfusion-induced brain injury in rats.

    PubMed

    Viswanatha, Gollapalle Lakshminarayanashastry; Kumar, Lakkavalli Mohan Sharath; Rafiq, Mohamed; Kavya, Kethaganahalli Jayaramaiah; Thippeswamy, Agadi Hiremath; Yuvaraj, Huvvinamadu Chandrashekarappa; Azeemuddin, Mohammed; Anturlikar, Suryakanth Dattatreya; Patki, Pralhad Sadashiv; Babu, Uddagiri Venkanna; Ramakrishnan, Shyam

    2015-01-01

    The aim of this study was to evaluate the possible beneficial effects of Mentat against transient global ischemia and reperfusion-induced brain injury in rats. The neuroprotective effects of Mentat were evaluated against transient global ischemia and reperfusion (I/R)-induced brain injury in rats. Various neurobehavioral and biochemical parameters were assessed, followed by morphologic and histopathologic evaluation of brain tissue to conclude the protective effect of Mentat. Additionally, in vitro antioxidant assays were performed to explore the antioxidant capacity of Mentat and detailed liquid chromatography-mass spectrometry (LC-MS/MS) profiling was carried out to identify the active phytoconstituents responsible for the protective effects of Mentat. Sixty minutes of transient global ischemia followed by 24 h reperfusion (I/R) caused significant alterations in the cognitive and neurologic functions in the ischemia control group (P < 0.01) compared with the sham control. Furthermore, 2,3,5-triphenyltetrazolium chloride staining of the ischemia control group showed 20.85% ± 0.39% of cerebral infarct area (P < 0.01), increased brain volume (% edema 17.81% ± 1.576%; P < 0.01), and increased lipid peroxidation (P < 0.01) in the brain homogenate. Additionally, the histopathology of the ischemia control group showed severe brain injury compared with the sham control group. Interestingly, pretreatment with Mentat (250 and 500 mg/kg, p.o.) and quercetin (20 mg/kg, p.o.) for 7 d has alleviated all pathological changes observed due to I/R injury. Mentat also showed very good antioxidant activity in in vitro assays (2,2-diphenyl-l-picrylhydrazyl, ferric-reducing antioxidant power, and oxygen radical absorbance capacity assays). Furthermore, the detailed LC-MS/MS analysis of Mentat was performed and enclosed for identifying the actives responsible for its protective effects. These findings suggest that Mentat is a neuroprotective agent that may be a useful adjunct in the

  6. Hyperbaric oxygen modalities are differentially effective in distinct brain ischemia models

    PubMed Central

    Ostrowski, Robert P.; Stępień, Katarzyna; Pucko, Emanuela; Matyja, Ewa

    2016-01-01

    The effectiveness and efficacy of hyperbaric oxygen (HBO) preconditioning and post-treatment modalities have been demonstrated in experimental models of ischemic cerebrovascular diseases, including global brain ischemia, transient focal and permanent focal cerebral ischemia, and experimental neonatal hypoxia-ischemia encephalopathy. In general, early and repetitive post-treatment of HBO appears to create enhanced protection against brain ischemia whereas delayed HBO treatment after transient focal ischemia may even aggravate brain injury. This review advocates the level of injury reduction upon HBO as an important component for translational evaluation of HBO based treatment modalities. The combined preconditioning and HBO post-treatment that would provide synergistic effects is also worth considering. PMID:27826422

  7. Steatotic livers are susceptible to normothermic ischemia-reperfusion injury from mitochondrial Complex-I dysfunction

    PubMed Central

    Chu, Michael JJ; Premkumar, Rakesh; Hickey, Anthony JR; Jiang, Yannan; Delahunt, Brett; Phillips, Anthony RJ; Bartlett, Adam SJR

    2016-01-01

    AIM: To assess the effects of ischemic preconditioning (IPC, 10-min ischemia/10-min reperfusion) on steatotic liver mitochondrial function after normothermic ischemia-reperfusion injury (IRI). METHODS: Sixty male Sprague-Dawley rats were fed 8-wk with either control chow or high-fat/high-sucrose diet inducing > 60% mixed steatosis. Three groups (n = 10/group) for each dietary state were tested: (1) the IRI group underwent 60 min partial hepatic ischemia and 4 h reperfusion; (2) the IPC group underwent IPC prior to same standard IRI; and (3) sham underwent the same surgery without IRI or IPC. Hepatic mitochondrial function was analyzed by oxygraphs. Mitochondrial Complex-I, Complex-II enzyme activity, serum alanine aminotransferase (ALT), and histological injury were measured. RESULTS: Steatotic-IRI livers had a greater increase in ALT (2476 ± 166 vs 1457 ± 103 IU/L, P < 0.01) and histological injury following IRI compared to the lean liver group. Steatotic-IRI demonstrated lower Complex-I activity at baseline [78.4 ± 2.5 vs 116.4 ± 6.0 nmol/(min.mg protein), P < 0.001] and following IRI [28.0 ± 6.2 vs 104.3 ± 12.6 nmol/(min.mg protein), P < 0.001]. Steatotic-IRI also demonstrated impaired Complex-I function post-IRI compared to the lean liver IRI group. Complex-II activity was unaffected by hepatic steatosis or IRI. Lean liver mitochondrial function was unchanged following IRI. IPC normalized ALT and histological injury in steatotic livers but had no effect on overall steatotic liver mitochondrial function or individual mitochondrial complex enzyme activities. CONCLUSION: Warm IRI impairs steatotic liver Complex-I activity and function. The protective effects of IPC in steatotic livers may not be mediated through mitochondria. PMID:27217699

  8. Influence of sildenafil and donepezil administration on the serum redox balance in experimentally induced lower limb critical ischemia.

    PubMed

    Constantinescu, Mihaela Ioana; Constantinescu, Dan Petru; Andercou, Aurel; Mironiuc, Ion Aurel

    2013-01-01

    Chronic lower limb ischemia (CLLI) leads to endothelial cell dysfunctions and endothelial lesions. The use of substances that release nitric oxide and activate endothelial nitric oxide synthase has proved to be useful in increasing angiogenesis and arteriogenesis under critical ischemia conditions. To investigate the therapeutic effect of Sildenafil and Donepezil with a vasodilating action in experimentally induced CLLI and on serum redox homeostasis. The research was performed in 3 groups of rats (n=10 animals/group) with experimentally induced CLLI: group I - control group; group II - animals treated postoperatively with a therapeutic dose of sildenafil, and group III - animals treated postoperatively with a therapeutic dose of donepezil. Oxidative stress (OS) indicators (malondialdehyde - MDA, protein carbonyls - PC), antioxidant (AO) defense indicators (reduced glutathione - GSH and oxidized glutathione - GSSH), and ceruloplasmin (CP) were determined on days 7, 14, 21 and 30. Statistical processing was performed using the Excel application (Microsoft Office 2007), with the StatsDirect v.2.7.2 software. Changes in OS were evidenced in all groups on account of a decrease in MDA and PC. The greatest OS decrease in all groups was on day 30. AO defence changes were represented by decreased levels of GSH and GSSG in all groups, at the studied moments. Intracellular AO defense in the cytosol, nucleus and mitochondria was similar in all groups, (decreased GSH, GSSG and GSH/GSSG ratio). We found increased extracellular levels of GSH, GSSG, and CP and increased extracellular GSH/GSSG ratio at level compared to values on day 7. 1) The administration of sildenafil (group II) and donepezil (group III) has favorable effects on reducing OS in experimentally induced CLLI. 2) Sildenafil and Donepezil administration stimulates extracellular AO defense on account of CP. 3) Sildenafil and Donepezil administration influences intracellular redox homeostasis on account of the GSH

  9. Association between aortic valve calcification and myocardial ischemia, especially in asymptomatic patients.

    PubMed

    Yamazato, Ryo; Yamamoto, Hideya; Tadehara, Futoshi; Teragawa, Hiroki; Kurisu, Satoshi; Dohi, Yoshihiro; Ishibashi, Ken; Kunita, Eiji; Utsunomiya, Hiroto; Oka, Toshiharu; Kihara, Yasuki

    2012-08-01

    Aortic valve calcification (AVC) is recognized as a manifestation of systemic arteriosclerosis. However, it is unclear whether AVC is associated with myocardial ischemia. Stress myocardial perfusion SPECT (MPS) is widely used for the diagnosis of myocardial ischemia. However, routine MPS is not recommended, particularly in asymptomatic patients. Accordingly, we investigated the hypothesis that the presence of AVC is strongly associated with inducible myocardial ischemia, even among asymptomatic patients. We investigated 669 consecutive patients who underwent both adenosine stress (201)Tl MPS and echocardiography. We evaluated the extent and severity of myocardial ischemia by the summed difference score (SDS). We defined the presence of myocardial ischemia as SDS ≥ 3 and moderate to severe ischemia as SDS ≥ 8. We classified the severity of AVC according to the number of affected aortic leaflets. We also compared the mean SDS and the prevalence of SDS ≥ 3 and SDS ≥ 8 among patients stratified by the severity of AVC. The presence of AVC was significantly associated with myocardial ischemia (odds ratio [OR], 1.56; 95% confidence interval [CI], 1.10-2.23; P = 0.013) and moderate to severe ischemia (OR, 2.16; 95% CI, 1.26-3.80; P = 0.0061). In 311 asymptomatic patients, AVC was strongly associated with moderate to severe ischemia (OR, 4.31; 95% CI, 1.67-12.8; P = 0.0043). However, the SDS value and the prevalence of SDS ≥ 3 and SDS ≥ 8 did not increase with increasing number of affected aortic leaflets. The presence of AVC may be associated with the presence of myocardial ischemia, particularly in asymptomatic patients. However, we found no association between the extent of AVC and inducible myocardial ischemia. The presence of AVC may be a useful anatomic marker to help identify patients at high risk of myocardial ischemia, particularly asymptomatic patients.

  10. Post-ischemic conditioning in the rat retina is dependent upon ischemia duration and is not additive with ischemic pre-conditioning.

    PubMed

    Dreixler, John C; Shaikh, Afzhal R; Alexander, Michael; Savoie, Brian; Roth, Steven

    2010-12-01

    determining the percentage of TUNEL-positive cells at 24 h after ischemia. Post-C attenuated apoptosis, but when combined with IPC, TUNEL was similar in the combined group to that of ischemia alone. We also examined the role of the recruitment of an inflammatory response in ischemia and Post-C. We found that inflammatory markers increased by ischemia were not altered by Post-C. We conclude that Post-C effectiveness depends upon the duration of ischemia; Post-C is not additive with IPC, and Post-C functions, in part, by preventing apoptotic damage to the inner retina. Post-C has considerable promise for clinical translation to eye diseases that cause blindness by ischemia. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Mesenchymal stem cells increase antioxidant capacity in intestinal ischemia/reperfusion damage.

    PubMed

    Inan, M; Bakar, E; Cerkezkayabekir, A; Sanal, F; Ulucam, E; Subaşı, C; Karaöz, E

    2017-07-01

    Mesenchymal stem cells (MSCs) may have beneficial effects in reversing intestinal damage resulting from circulatory disorders. The hypothesis of this study is that MSCs increase antioxidant capacity of small bowel tissue following intestinal ischemia reperfusion (I/R) damage. A total of 100 rats were used for the control group and three experimental groups, as follows: the sham control, local MSC, and systemic MSC groups. Each group consisted of 10 animals on days 1, 4, and 7 of the experiment. Ischemia was established by clamping the superior mesenteric artery (SMA) for 45min; following this, reperfusion was carried out for 1, 4, and 7days in all groups. In the local and systemic groups, MSCs were administered intravenously and locally just after the ischemia, and they were investigated after 1, 4, and 7days. The superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (Gpx) activities, as well as malondialdehyde (MDA) and total protein levels, were measured. Histopathological analysis was performed using light and electron microscopy. The indicators of proliferation from the effects of anti- and pro-inflammatory cytokines were evaluated using immunohistochemistry. MDA was increased (P<0.05) in the sham control group and decreased (P<0.05) in the MSC groups. SOD, CAT, and Gpx were decreased in the local MSC group (P<0.05). The highest level of amelioration was observed on day 7 in the local MSC group via light and electron microscopy. It was found that the MSCs arrived at the damaged intestinal wall in the MSC groups immediately after injection. Pro-inflammatory cytokines interleukin-1β (IL1β), transforming growth factor-β1 (TGFβ1), tumor necrosis factor-α (TNFα), IL6, MIP2, and MPO decreased (P<0.05), while anti-inflammatory cytokines EP3 and IL1ra increased (p<0.05) in the local and systemic MSC groups. In addition, proliferation indicators, such as PCNA and KI67, increased (P<0.05) in the local and systemic MSC groups. Parallel to our

  12. Minocycline Effectively Protects the Rabbit's Spinal Cord From Aortic Occlusion-Related Ischemia.

    PubMed

    Drenger, Benjamin; Fellig, Yakov; Ben-David, Dror; Mintz, Bella; Idrees, Suhel; Or, Omer; Kaplan, Leon; Ginosar, Yehuda; Barzilay, Yair

    2016-04-01

    To identify the minocycline anti-inflammatory and antiapoptotic mechanisms through which it is believed to exert spinal cord protection during aortic occlusion in the rabbit model. An animal model of aortic occlusion-related spinal cord ischemia. Randomized study with a control group and pre-ischemia and post-ischemia escalating doses of minocycline to high-dose minocycline in the presence of either hyperglycemia, a pro-apoptotic maneuver, or wortmannin, a specific phosphatidylinositol 3-kinase antagonist. Tertiary medical center and school of medicine laboratory. Laboratory animals-rabbits. Balloon obstruction of infrarenal aorta introduced via femoral artery incision. Severe hindlimb paralysis (mean Tarlov score 0.36±0.81 out of 3) was observed in all the control group animals (9 of 11 with paraplegia and 2 of 11 with paraparesis) compared with 11 of 12 neurologically intact animals (mean Tarlov score 2.58±0.90 [p = 0.001 compared with control]) in the high-dose minocycline group. This protective effect was observed partially during a state of hyperglycemia and was completely abrogated by wortmannin. Minocycline administration resulted in higher neurologic scores (p = 0.003) and a shift to viable neurons and more apoptotic-stained nuclei resulting from reduced necrosis (p = 0.001). In a rabbit model of infrarenal aortic occlusion, minocycline effectively reduced paraplegia by increasing the number of viable neurons in a dose-dependent manner. Its action was completely abrogated by inhibiting the phosphatidylinositol 3-kinase pathway and was inhibited partially by the pro-apoptotic hyperglycemia maneuver, indicating that the activation of cell salvage pathways and mitochondrial sites are possible targets of minocycline action in an ischemic spinal cord. Copyright © 2016. Published by Elsevier Inc.

  13. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-11-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia.

  14. Vitexin exerts cardioprotective effect on chronic myocardial ischemia/reperfusion injury in rats via inhibiting myocardial apoptosis and lipid peroxidation.

    PubMed

    Che, Xia; Wang, Xin; Zhang, Junyan; Peng, Chengfeng; Zhen, Yilan; Shao, Xu; Zhang, Gongliang; Dong, Liuyi

    2016-01-01

    The aim of this study was to explore the cardioprotective effect of vitexin on chronic myocardial ischemia/reperfusion injury in rats and potential mechanisms. A chronic myocardial ischemia/reperfusion injury model was established by ligating left anterior descending coronary for 60 minutes, and followed by reperfusion for 14 days. After 2 weeks ischemia/reperfusion, cardiac function was measured to assess myocardial injury. The level of ST segment was recorded in different periods by electrocardiograph. The change of left ventricular function and myocardial reaction degree of fibrosis of heart was investigated by hematoxylin and eosin (HE) staining and Sirius red staining. Endothelium-dependent relaxations due to acetylcholine were observed in isolated rat thoracic aortic ring preparation. The blood samples were collected to measure the levels of MDA, the activities of SOD and NADPH in serum. Epac1, Rap1, Bax and Bcl-2 were examined by using Western Blotting. Vitexin exerted significant protective effect on chronic myocardial ischemia/reperfusion injury, improved obviously left ventricular diastolic function and reduced myocardial reactive fibrosis degree in rats of myocardial ischemia. Medium and high-dose vitexin groups presented a significant decrease in Bax, Epac1 and Rap1 production and increase in Bcl-2 compared to the I/R group. It may be related to preventing myocardial cells from apoptosis, improving myocardial diastolic function and inhibiting lipid peroxidation. Vitexin is a cardioprotective herb, which may be a promising useful complementary and alternative medicine for patients with coronary heart disease.

  15. Zero ischemia anatomical partial nephrectomy: a novel approach.

    PubMed

    Gill, Inderbir S; Patil, Mukul B; Abreu, Andre Luis de Castro; Ng, Casey; Cai, Jie; Berger, Andre; Eisenberg, Manuel S; Nakamoto, Masahiko; Ukimura, Osamu; Goh, Alvin C; Thangathurai, Duraiyah; Aron, Monish; Desai, Mihir M

    2012-03-01

    We present a novel concept of zero ischemia anatomical robotic and laparoscopic partial nephrectomy. Our technique primarily involves anatomical vascular microdissection and preemptive control of tumor specific, tertiary or higher order renal arterial branch(es) using neurosurgical aneurysm micro-bulldog clamps. In 58 consecutive patients the majority (70%) had anatomically complex tumors including central (67%), hilar (26%), completely intrarenal (23%), pT1b (18%) and solitary kidney (7%). Data were prospectively collected and analyzed from an institutional review board approved database. Of 58 cases undergoing zero ischemia robotic (15) or laparoscopic (43) partial nephrectomy, 57 (98%) were completed without hilar clamping. Mean tumor size was 3.2 cm, mean ± SD R.E.N.A.L. score 7.0 ± 1.9, C-index 2.9 ± 2.4, operative time 4.4 hours, blood loss 206 cc and hospital stay 3.9 days. There were no intraoperative complications. Postoperative complications (22.8%) were low grade (Clavien grade 1 to 2) in 19.3% and high grade (Clavien grade 3 to 5) in 3.5%. All patients had negative cancer surgical margins (100%). Mean absolute and percent change in preoperative vs 4-month postoperative serum creatinine (0.2 mg/dl, 18%), estimated glomerular filtration rate (-11.4 ml/minute/1.73 m(2), 13%), and ipsilateral kidney function on radionuclide scanning at 6 months (-10%) correlated with mean percent kidney excised intraoperatively (18%). Although 21% of patients received a perioperative blood transfusion, no patient had acute or delayed renal hemorrhage, or lost a kidney. The concept of zero ischemia robotic and laparoscopic partial nephrectomy is presented. This anatomical vascular microdissection of the artery first and then tumor allows even complex tumors to be excised without hilar clamping. Global surgical renal ischemia is unnecessary for the majority of patients undergoing robotic and laparoscopic partial nephrectomy at our institution. Copyright © 2012 American

  16. Inhibition of apoptosis by the intrinsic but not the extrinsic apoptotic pathway in myocardial ischemia-reperfusion.

    PubMed

    Kristen, Arnt V; Ackermann, Katrin; Buss, Sebastian; Lehmann, Lorenz; Schnabel, Philipp A; Haunstetter, Armin; Katus, Hugo A; Hardt, Stefan E

    2013-01-01

    The detailed molecular mechanisms following activation of apoptosis in ischemia-reperfusion injury are unknown. This study using different transgenic mouse models provided first evidence that apoptosis in myocardial ischemia-reperfusion injury is rather linked to the mitochondrial pathway than to death receptor pathway. There is a wealth of evidence for activation of apoptosis in ischemia-reperfusion injury. However, the understanding of detailed molecular mechanism is lacking. The extent of myocardial infarction after ligation of the left anterior descending artery in mice carrying different transgenes for inhibition of either the intrinsic or the extrinsic or a combination of both apoptotic cascades was evaluated. The extent of myocardial damage was assessed by echocardiographic determination of left ventricular (LV) ejection fraction, LV hemodynamics, troponin T, and histology. The rate of apoptosis was analyzed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and caspase-3 staining. Highest perioperative rate of death was observed in the dominant-negative form of a truncated Fas-associated death domain (FADD-DN) group. Infarction size by 2,3,5-triphenyltetrazolium chloride (TTC) staining was smaller in the Bcl-2, but not in the other groups as compared to wild-type mice. This was accompanied by lower troponin T values in Bcl-2 transgenic mice as compared to the all other groups. Troponin T correlated well with macroscopic extent of myocardial infarction by TTC staining. A lower decline of LV ejection fraction was seen in the Bcl-2 as compared to wild-type or FADD-DN mice. A smaller number of TUNEL- and caspase-3-positive myocyte nuclei were observed in the Bcl-2 and FADD-DN group as compared to wild-type mice. We provide first evidence for protective effects on the myocardium in a transgenic mouse model of myocardial ischemia-reperfusion due to inhibition of the Bcl-2, but not the FADD pathway despite that reduced apoptotic cells were

  17. Effect on intensity of treadmill running on learning, memory and expressions of cell cycle-related proteins in rats with cerebral ischemia.

    PubMed

    Zhao, Ya-Ning; Li, Jian-Min; Chen, Chang-Xiang; Li, Shu-Xing; Xue, Cheng-Jing

    2017-06-20

    We discussed the intensity of treadmill running on learning, memory and expression of cell cycle-related proteins in rats with cerebral ischemia. Eighty healthy male SD rats were randomly divided into normal group, model group, intensity I group and intensity II group, with 20 rats in each group. The four-vessel occlusion method of Pulsinelli (4-VO) was used to induce global cerebral ischemia. Brain neuronal morphology was observed by hematoxylin-eosin (HE) staining at 3h, 6h, 24h and 48h after modeling, respectively. Hippocampal expressions of cyclin A and cyclin E were detected by immunohistochemistry. At 48h after modeling, the learning and memory performance of rats was tested by water maze experiment. Compared with the normal group, the other three groups had a significant reduction in surviving neurons, prolonging of escape latency and decreased number of passes over the former position of the platform (P<0.05). The number of surviving neurons and the number of passes over the former position of the platform were obviously lower in the model group than in intensity I group (P<0.05), but significantly higher compared with intensity II group (P<0.05). Escape latency of the model group was obviously prolonged as compared with intensity I group (P<0.05), but much shorter than that of intensity II group (P<0.05). Compared with the normal group, the expressions of cyclin A and cyclin E were significantly upregulated at different time points after modeling (P<0.05). The expression of the model group was higher than that of intensity I group, but lower than that of intensity II group (P<0.05). Moderate intensity of treadmill running can help protect brain neurons and improve learning and memory performance of rats with global cerebral ischemia. But high intensity of treadmill running has a negative impact, possibly through the regulation of cell cycle-related proteins in ischemia/reperfusion injury.

  18. Blood-brain barrier transport of an essential amino acid after cerebral ischemia reperfusion injury.

    PubMed

    Suzuki, Toyofumi; Miyazaki, Yumiko; Ohmuro, Aya; Watanabe, Masaki; Furuishi, Takayuki; Fukami, Toshiro; Tomono, Kazuo

    2013-01-01

    Under pathophysiological conditions such as -cerebral ischemia-reperfusion (IR), damage to cerebrovascular endothelial cells causes alterations in the blood-brain barrier (BBB) function that can exacerbate neuronal cell injury and death. Clarifying changes in BBB transport in the early period of IR is important for understanding BBB function during therapy after cerebral ischemia. The present study was aimed at clarifying changes during IR in the BBB transport of L-phenylalanine (Phe) as a substrate of L-type amino acid transporter 1. An IR model was produced in mice by blood recirculation following occlusion of the middle cerebral artery. Permeability of the BBB to [(3)H]Phe was measured after IR injury using the brain perfusion method. Confocal microscopy of the IR injury showed no brain penetration of fluorescent tracer, thus confirming BBB integrity during 45 min of ischemia. Tight junction opening was not observed at 30 min after reperfusion following ischemia for 45 min. At the time of IR, [(3)H]Phe uptake into the brain appeared saturated. The Michaelis constant and maximum transport velocity in the IR group was reduced by 22 % compared with those in controls. These results suggest that the intrinsic transport clearance of Phe is slightly decreased in the early phase of IR.

  19. [Application of locomotor activity test to evaluate functional injury after global cerebral ischemia in C57BL/6 mice].

    PubMed

    Zhang, Li-quan; Xu, Jia-ni; Wang, Zhen-zhen; Zeng, Li-jun; Ye, Yi-lu; Zhang, Wei-ping; Wei, Er-qing; Zhang, Qi

    2014-05-01

    To evaluate the application of locomotor activity test in functional injury after global cerebral ischemia (GCI) in C57BL/6 mice. GCI was induced by bilateral carotid arteries occlusion for 30 min in C57BL/6 mice. Mice were divided into sham group, GCI group and minocycline group. Saline or minocycline (45 mg/kg) was i.p. injected once daily for 6 d after ischemia. At Day 6 after ischemia, locomotor activity was recorded for 1 h in open field test. Total distance, central distance, central distance ratio, periphery distance, periphery distance ratio, central time and periphery time were used to evaluate the behavior characteristics of locomotor activity in C57BL/6 mice after ischemia. The survival neuron density was detected by Nissl staining in hippocampus, cortex and striatum. Compared with sham group, total distance, central distance and central time increased and periphery time decreased in C57BL/6 mice after GCI (Ps<0.05). However, minocycline significantly reduced the central distance and central time and increased the periphery time (Ps<0.05). Neurons were damaged in hippocampus, cortex and striatum after GCI, which manifested by decreased neurons and the most serious damage in hippocampal CA1 region. Minocycline significantly improved the neuron appearance and increased the neuron number in hippocampus and striatum (P<0.001 or P<0.05). Locomotor activity in open field test can objectively evaluate the behavior injury after GCI in mice. Central distance and central time can be used as indexes of quantitative assessment.

  20. Temporal relationship of serum markers and tissue damage during acute intestinal ischemia/reperfusion

    PubMed Central

    la Garza, Francisco Javier Guzmán-de; Ibarra-Hernández, Juan Manuel; Cordero-Pérez, Paula; Villegas-Quintero, Pablo; Villarreal-Ovalle, Claudia Ivette; Torres-González, Liliana; Oliva-Sosa, Norma Edith; Alarcón-Galván, Gabriela; Fernández-Garza, Nancy Esthela; Muñoz-Espinosa, Linda Elsa; Cámara-Lemarroy, Carlos Rodrigo; Carrillo-Arriaga, José Gerardo

    2013-01-01

    OBJECTIVE: It is essential to identify a serological marker of injury in order to study the pathophysiology of intestinal ischemia reperfusion. In this work, we studied the evolution of several serological markers after intestinal ischemia reperfusion injury in rats. The markers of non-specific cell damage were aspartate aminotransferase, alanine aminotransaminase, and lactic dehydrogenase, the markers of inflammation were tumor necrosis factor alpha, interleukin-6, and interleukin-1 beta, and the markers of intestinal mucosal damage were intestinal fatty acid binding protein and D-lactate. We used Chiús classification to grade the histopathological damage. METHODS: We studied 35 Wistar rats divided into groups according to reperfusion time. The superior mesenteric artery was clamped for 30 minutes, and blood and biopsies were collected at 1, 3, 6, 12, 24, and 48 hours after reperfusion. We plotted the mean ± standard deviation and compared the baseline and maximum values for each marker using Student's t-test. RESULTS: The maximum values of interleukin-1 beta and lactic dehydrogenase were present before the maximal histopathological damage. The maximum tumor necrosis factor alpha and D-lactate expressions coincided with histopathological damage. Alanine aminotransaminase and aspartate aminotransferase had a maximum expression level that increased following the histopathological damage. The maximum expressions of interluken-6 and intestinal fatty acid binding protein were not significantly different from the Sham treated group. CONCLUSION: For the evaluation of injury secondary to acute intestinal ischemia reperfusion with a 30 minute ischemia period, we recommend performing histopathological grading, quantification of D-lactate, which is synthesized by intestinal bacteria and is considered an indicator of mucosal injury, and quantification of tumor necrosis factor alpha as indicators of acute inflammation three hours after reperfusion. PMID:23917671

  1. [Effects of BNP preconditioning on myocardial cell apoptosis and expressions of bcl-2 and Bax during myocardial ischemia-reperfusion injury in rats].

    PubMed

    Deng, Yu-Jun; Tan, Ning; Zeng, Hong-Ke; Fu, Yong-Heng; Dong, Xiao-Li

    2010-12-28

    To study the effects of B-type natriuretic peptide (BNP) preconditioning on the apoptosis and expressions of Bcl-2 and Bax in rat cardiomyocytes during myocardial ischemia-reperfusion. Twenty-one male Sprague-Dawley rats weighing (250 ± 50) g were randomly divided into 3 groups of sham operation (SHAM), ischemia-reperfusion (I/R) and B-type natriuretic peptide (BNP). A rat model of in vivo myocardial ischemia-reperfusion injury was established by ligating the left anterior descending coronary artery for 35 minutes and then reperfusing for 240 minutes. The apoptosis of myocardial cell was determined by terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end-labeling (TUNEL) method. Real-time polymerase chain reaction and Western blot were used to detect the expression changes of Bcl-2 and Bax in rat ischemia myocardium. The apoptotic indices of SHAM, BNP and I/R groups were 5.4% ± 4.2%, 22.5% ± 9.5% and 45.2% ± 13.0% respectively (P < 0.05). The Bcl-2 protein expression of SHAM, BNP and I/R groups were 0.87 ± 0.09, 0.70 ± 0.07 and 0.38 ± 0.09 respectively (P < 0.05). The Bax protein expression of SHAM, BNP and I/R groups were 0.08 ± 0.04, 0.39 ± 0.09 and 0.71 ± 0.18 respectively (P < 0.01). The Bcl-2/Bax mRNA ratio of SHAN, BNP and I/R groups were 0.763 ± 0.154, 0.099 ± 0.025 and 0.022 ± 0.024 respectively (P < 0.05). The BNP preconditioning can decrease the myocardial apoptosis induced by ischemia-reperfusion injury. The mechanisms may be associated with an elevated expression of Bcl-2, an increased ratio of Bcl-2/Bax and a lowered expression of Bax.

  2. Effects of cyclooxygenase inhibition on cardiovascular function in a hypercholesterolemic swine model of chronic ischemia

    PubMed Central

    Chu, Louis M.; Robich, Michael P.; Bianchi, Cesario; Feng, Jun; Liu, Yuhong; Xu, Shu-Hua; Burgess, Thomas

    2012-01-01

    The cardiovascular effects of cyclooxygenase (COX) inhibition remain controversial, especially in the setting of cardiovascular comorbidities. We examined the effects of nonselective and selective COX inhibition on cardiovascular function in a hypercholesterolemic swine model of chronic ischemia. Twenty-four intact male Yorkshire swine underwent left circumflex ameroid constrictor placement and were subsequently given either no drug (HCC; n = 8), a nonselective COX inhibitor (440 mg/day naproxen; HCNS; n = 8), or a selective COX-2 inhibitor (200 mg/day celecoxib; HCCX; n = 8). After 7 wk, myocardial functional was measured and myocardium from the nonischemic ventricle and ischemic area-at-risk (AAR) were analyzed. Regional function as measured by segmental shortening was improved in the AAR of HCCX compared with HCC. There was no significant difference in perfusion to the nonischemic ventricle between groups, but myocardial perfusion in the AAR was significantly improved in the HCCX group compared with controls at rest and during pacing. Endothelium-dependent microvessel relaxation was diminished by ischemia in HCC animals, but both naproxen and celecoxib improved vessel relaxation in the AAR compared with controls, and also decreased the vasoconstrictive response to serotonin. Thromboxane levels in the AAR were decreased in both HCNS and HCCX compared with HCC, whereas prostacyclin levels were decreased only in HCNS, corresponding to a decrease in prostacyclin synthase expression. Chronic ischemia increased apoptosis in Troponin T negative cells and intramyocardial fibrosis, both of which were reduced by celecoxib administration in the AAR. Capillary density was decreased in both the HCNS and HCCX groups. Protein oxidative stress was decreased in both HCNS and HCCX, whereas lipid oxidative stress was decreased only in the HCCX group. Thus nonselective and especially selective COX inhibition may have beneficial myocardial effects in the setting of

  3. Effects of cyclooxygenase inhibition on cardiovascular function in a hypercholesterolemic swine model of chronic ischemia.

    PubMed

    Chu, Louis M; Robich, Michael P; Bianchi, Cesario; Feng, Jun; Liu, Yuhong; Xu, Shu-Hua; Burgess, Thomas; Sellke, Frank W

    2012-01-01

    The cardiovascular effects of cyclooxygenase (COX) inhibition remain controversial, especially in the setting of cardiovascular comorbidities. We examined the effects of nonselective and selective COX inhibition on cardiovascular function in a hypercholesterolemic swine model of chronic ischemia. Twenty-four intact male Yorkshire swine underwent left circumflex ameroid constrictor placement and were subsequently given either no drug (HCC; n = 8), a nonselective COX inhibitor (440 mg/day naproxen; HCNS; n = 8), or a selective COX-2 inhibitor (200 mg/day celecoxib; HCCX; n = 8). After 7 wk, myocardial functional was measured and myocardium from the nonischemic ventricle and ischemic area-at-risk (AAR) were analyzed. Regional function as measured by segmental shortening was improved in the AAR of HCCX compared with HCC. There was no significant difference in perfusion to the nonischemic ventricle between groups, but myocardial perfusion in the AAR was significantly improved in the HCCX group compared with controls at rest and during pacing. Endothelium-dependent microvessel relaxation was diminished by ischemia in HCC animals, but both naproxen and celecoxib improved vessel relaxation in the AAR compared with controls, and also decreased the vasoconstrictive response to serotonin. Thromboxane levels in the AAR were decreased in both HCNS and HCCX compared with HCC, whereas prostacyclin levels were decreased only in HCNS, corresponding to a decrease in prostacyclin synthase expression. Chronic ischemia increased apoptosis in Troponin T negative cells and intramyocardial fibrosis, both of which were reduced by celecoxib administration in the AAR. Capillary density was decreased in both the HCNS and HCCX groups. Protein oxidative stress was decreased in both HCNS and HCCX, whereas lipid oxidative stress was decreased only in the HCCX group. Thus nonselective and especially selective COX inhibition may have beneficial myocardial effects in the setting of

  4. Mechanism underlying impaired cardiac pacemaking rhythm during ischemia: A simulation study

    NASA Astrophysics Data System (ADS)

    Bai, Xiangyun; Wang, Kuanquan; Yuan, Yongfeng; Li, Qince; Dobrzynski, Halina; Boyett, Mark R.; Hancox, Jules C.; Zhang, Henggui

    2017-09-01

    Ischemia in the heart impairs function of the cardiac pacemaker, the sinoatrial node (SAN). However, the ionic mechanisms underlying the ischemia-induced dysfunction of the SAN remain elusive. In order to investigate the ionic mechanisms by which ischemia causes SAN dysfunction, action potential models of rabbit SAN and atrial cells were modified to incorporate extant experimental data of ischemia-induced changes to membrane ion channels and intracellular ion homeostasis. The cell models were incorporated into an anatomically detailed 2D model of the intact SAN-atrium. Using the multi-scale models, the functional impact of ischemia-induced electrical alterations on cardiac pacemaking action potentials (APs) and their conduction was investigated. The effects of vagal tone activity on the regulation of cardiac pacemaker activity in control and ischemic conditions were also investigated. The simulation results showed that at the cellular level ischemia slowed the SAN pacemaking rate, which was mainly attributable to the altered Na+-Ca2+ exchange current and the ATP-sensitive potassium current. In the 2D SAN-atrium tissue model, ischemia slowed down both the pacemaking rate and the conduction velocity of APs into the surrounding atrial tissue. Simulated vagal nerve activity, including the actions of acetylcholine in the model, amplified the effects of ischemia, leading to possible SAN arrest and/or conduction exit block, which are major features of the sick sinus syndrome. In conclusion, this study provides novel insights into understanding the mechanisms by which ischemia alters SAN function, identifying specific conductances as contributors to bradycardia and conduction block.

  5. Effect of Mailuoning injection on 8-iso-prostaglandin F2 alpha and superoxide dismutase in rabbits with extremity ischemia-reperfusion injury.

    PubMed

    Wang, Dai-Jun; Tian, Hua

    2014-12-01

    To date, there are no effective treatments for extremity ischemia-reperfusion (IR) injury. The objective of the present study was to explore the protective effect of Mailuoning on IR injury by investigating the plasma levels of 8-iso-prostaglandin F2 alpha (8-iso-PGF2α) and the activity of superoxide dismutase (SOD) in rabbits. The experimental models of posterior limb IR injury were established in thirty rabbits that were divided into three groups: the sham, IR, and IR + Mailuoning groups. At the end of ischemia, Mailuoning was injected intravenously into the rabbits in the IR + Mailuoning group, and normal saline solution was administered to the rabbits in the sham and IR groups. Venous blood samples were collected to measure the levels of 8-iso-PGF2α and the activity of SOD in the plasma at the following time points: at the onset of ischemia, the end of ischemia, and 2, 4, 8, 12, and 24 h after reperfusion. The skeletal muscles were harvested to examine the ultrastructure. The levels of 8-iso-PGF2α increased significantly and SOD activity decreased in the IR group at every time point after reperfusion (P <0.01 or P <0.05). In contrast, the levels of 8-iso-PGF2α and SOD activity were not significantly different after reperfusion in the IR + Mailuoning group (P >0.05) but were significantly different compared with the IR group (P <0.01). Using electron microscopy, the skeletal muscle injury was shown to be milder in the IR+ Mailuoning group after reperfusion compared with the IR group. The Mailuoning is capable of decreasing the excessive production of 8-iso-PGF2α and protecting SOD activity, thereby exhibiting a protective effect on extremity IR injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed Central

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-01-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia. PMID:26807119

  7. Livers from fasted rats acquire resistance to warm and cold ischemia injury.

    PubMed

    Sumimoto, R; Southard, J H; Belzer, F O

    1993-04-01

    Successful liver transplantation is dependent upon many factors, one of which is the quality of the donor organ. Previous studies have suggested that the donor nutritional status may affect the outcome of liver transplantation and starvation, due to prolonged stay in the intensive care unit, may adversely affect the liver. In this study we have used the orthotopic rat liver transplant model to measure how fasting the donor affects the outcome of liver transplantation. Rat livers were preserved with UW solution either at 37 degrees C (warm ischemia for 45-60 min) or at 4 degrees C (cold ischemia for 30 or 44 hr). After preservation the livers were orthotopically transplanted and survival (for 7 days) was measured, as well as liver functions 6 hr after transplantation. After 45 min of warm ischemia 50% (3 of 6) animals survived when the liver was obtained from a fed donor about 80% (4 of 5) survived when the liver was obtained from a three-day-fasted donor. After 60 min warm ischemia no animal survived (0 of 8, fed group). However, if the donor was fasted for 3 days 89% (8 of 9) of the animals survived for 7 days. Livers cold-stored for 30 hr were 50% viable (3 of 6) and fasting for 1-3 days did not affect this outcome. However, if the donor was fasted for 4 days 100% (9 of 9) survival was obtained. After 44-hr preservation only 29% (2/7) of the recipients survived for 7 days. If the donor was fasted for 4 days, survival increased to 83% (5/6). Liver functions, bile production, and serum enzymes were better in livers from the fasted rats than from the fed rats. Fasting caused a 95% decrease in liver glycogen content. Even with this low concentration of glycogen, liver viability (animal survival) after warm or cold ischemia was not affected, and livers with a low glycogen content were fully viable. Thus liver glycogen does not appear to be important in liver preservation. This study shows that fasting the donor does not cause injury to the liver after warm or cold

  8. Anticerebral Ischemia-Reperfusion Injury Activity of Synthesized Puerarin Derivatives

    PubMed Central

    Ji, Yubin; Yan, Xinjia

    2016-01-01

    When cerebral ischemia-reperfusion injury happened in patients, multiple pathological processes occur, such as leukocyte infiltration, platelet, and complement activation, which would result in cognitive dysfunction and inflammation. Puerarin has shown protective effect on injury of neural cell. In order to enhance this protective effect of puerarin, puerarin derivatives with different log⁡P values were designed and synthesized. The original phenolic hydroxyl in the puerarin molecules was substituted in order to change the blood-brain barrier permeability and thus enhance the efficacy for preventing cerebral ischemia/reperfusion injury. And the structure of the newly synthesized molecules was confirmed by 1H NMR spectroscopy and mass spectrometry. The mouse model of cerebral artery ischemia/reperfusion injury was established to test the anticerebral ischemia-reperfusion injury activity of the puerarin derivatives. The assays of the water maze, Y maze, brain cortex Ca2+-Mg2+-ATP enzyme, and iNOS enzyme activity were performed in this mouse model. The results showed that puerarin derivative P1-EA and P2-EA were resulting in an increased lipophilicity that enabled the derivatives to pass more efficiently through the blood-brain barrier, thus, improving the protective effects against cerebral ischemia/reperfusion injury. Therefore, derivatives of puerarin may serve as promising approach to improve neuron function in ischemia-reperfusion brain injury-related disorders. PMID:27807543

  9. Vinpocetine modulates metabolic activity and function during retinal ischemia.

    PubMed

    Nivison-Smith, Lisa; O'Brien, Brendan J; Truong, Mai; Guo, Cindy X; Kalloniatis, Michael; Acosta, Monica L

    2015-05-01

    Vinpocetine protects against a range of degenerative conditions and insults of the central nervous system via multiple modes of action. Little is known, however, of its effects on metabolism. This may be highly relevant, as vinpocetine is highly protective against ischemia, a process that inhibits normal metabolic function. This study uses the ischemic retina as a model to characterize vinpocetine's effects on metabolism. Vinpocetine reduced the metabolic demand of the retina following ex vivo hypoxia and ischemia to normal levels based on lactate dehydrogenase activity. Vinpocetine delivered similar effects in an in vivo model of retinal ischemia-reperfusion, possibly through increasing glucose availability. Vinpocetine's effects on glucose also appeared to improve glutamate homeostasis in ischemic Müller cells. Other actions of vinpocetine following ischemia-reperfusion, such as reduced cell death and improved retinal function, were possibly a combination of the drug's actions on metabolism and other retinal pathways. Vinpocetine's metabolic effects appeared independent of its other known actions in ischemia, as it recovered retinal function in a separate metabolic model where the glutamate-to-glutamine metabolic pathway was inhibited in Müller cells. The results of this study indicate that vinpocetine mediates ischemic damage partly through altered metabolism and has potential beneficial effects as a treatment for ischemia of neuronal tissues. Copyright © 2015 the American Physiological Society.

  10. Postsynaptic density protein (PSD)-95 expression is markedly decreased in the hippocampal CA1 region after experimental ischemia-reperfusion injury.

    PubMed

    Yan, Bing Chun; Park, Joon Ha; Ahn, Ji Hyeon; Lee, Jae-Chul; Won, Moo-Ho; Kang, Il-Jun

    2013-07-15

    Synaptic plasticity is important for functional recovery after cerebral ischemic injury. In the present study, we investigated chronological change in the immunoreactivity of PSD-95, a kind of postsynaptic density protein, in the hippocampus proper (CA1-3 regions) after 5 min of transient cerebral ischemia in gerbils. PSD-95 immunoreactivity was observed in MAP-2-immunoreactive dendrites in the CA1-3 regions of the sham group. The PSD-95 immunoreactivity was shown as beaded structure in the MAP-2-immunoreactive dendrites. However, PSD-95 immunoreactivity began to be dramatically decreased in MAP-2-immunoreactive dendrites in the CA1 region, not CA2-3 region, at early time after ischemia-reperfusion. At 5 days after ischemia-reperfusion, MAP-2 immunoreactivity almost disappeared in the ischemic CA1 region, and PSD-95 immunoreactivity was much lower than that in the sham group. In brief, PSD-95 immunoreactivity in the CA1 dendrites was markedly decreased at early time after ischemia-reperfusion. We suggest that decreased PSD-95 immunoreactivity in the ischemic CA1 region may lead to a deficit of postsynaptic plasticity in the brain. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Zinc mitigates renal ischemia-reperfusion injury in rats by modulating oxidative stress, endoplasmic reticulum stress, and autophagy.

    PubMed

    Hadj Abdallah, Najet; Baulies, Anna; Bouhlel, Ahlem; Bejaoui, Mohamed; Zaouali, Mohamed A; Ben Mimouna, Safa; Messaoudi, Imed; Fernandez-Checa, José C; García Ruiz, Carmen; Ben Abdennebi, Hassen

    2018-05-15

    Oxidative stress is a major factor involved in the pathogenesis of renal ischemia/reperfusion (I/R). Exogenous zinc (Zn) was suggested as a potent antioxidant; however, the mechanism by which it strengthens the organ resistance against the effects of reactive oxygen species (ROS) is not yet investigated. The present study aims to determine whether acute zinc chloride (ZnCl 2 ) administration could attenuate endoplasmic reticulum (ER) stress, autophagy, and inflammation after renal I/R. Rats were subjected to either sham operation (Sham group, n = 6), or 1 hr of bilateral ischemia followed by 2 hr of reperfusion (I/R groups, n = 6), or they received ZnCl 2 orally 24 hr and 30 min before ischemia (ZnCl 2 group, n = 6). Rats were subjected to 1 hr of bilateral renal ischemia followed by 2 hr of reperfusion (I/R group, n = 6). Our results showed that ZnCl 2 enhances renal function and reduces cytolysis (p < 0,05). In addition, it increased significantly the activities of antioxidant enzymes (SOD, CAT, and GPX) and the level of GSH in comparison to I/R (p < 0,05). Interestingly, ZnCl 2 treatment resulted in significant decreased ER stress, as reflected by GRP78, ATF-6,p-eIF-2α, XPB-1, and CHOP downregulaion. Rats undergoing ZnCl 2 treatment demonstrated a low expression of autophagy parameters (Beclin-1 and LAMP-2), which was correlated with low induction of apoptosis (caspase-9, caspase-3, and p-JNK), and reduction of inflammation (IL-1ß, IL-6, and MCP-1) (p < 0,05). In conclusion, we demonstrated the potential effect of Zn supplementation to modulate ER pathway and autophagic process after I/R. © 2018 Wiley Periodicals, Inc.

  12. Study on the effect of black cumin (Nigella sativa Linn.) on experimental renal ischemia-reperfusion injury in rats.

    PubMed

    Mousavi, Ghafour

    2015-08-01

    To evaluate the effect of Black cumin (Nigella sativa Linn.) pre-treatment on renal ischemia/reperfusion (I/R) induced injury in the rats. A total of 40 male Wistar rats were randomly allocated into five equal groups including Sham, I/R model and three I/R+ Black cumin (0.5, 1 and 2%)-treated groups. I/R groups' kidneys were subjected to 60 min of global ischemia at 37°C followed by 24 h of reperfusion. At the end of reperfusion period, the rats were euthanized. Superoxide dismutase, catalase and glutathione peroxidase activities as well as reduced glutathione and renal malondialdehyde contents were determined in renal tissues. Kidney function tests and histopathological examination were also performed. High serum creatinine, blood urea nitrogen and uric acid as well as malondialhehyde (MDA) levels, and low antioxidant enzyme activities were observed in I/R rats compared to the sham rats. Pre-treatment with Black cumin for three weeks prior to IR operation improved renal function and reduced I/R induced renal inflammation and oxidative injury. These biochemical observations were supported by histopathological test of kidney sections. Black cumin significantly prevented renal ischemia/reperfusion induced functional and histological injuries.

  13. Beneficial effects of remote organ ischemic preconditioning on micro-rheological parameters during liver ischemia-reperfusion in the rat.

    PubMed

    Magyar, Zsuzsanna; Mester, Anita; Nadubinszky, Gabor; Varga, Gabor; Ghanem, Souleiman; Somogyi, Viktoria; Tanczos, Bence; Deak, Adam; Bidiga, Laszlo; Oltean, Mihai; Peto, Katalin; Nemeth, Norbert

    2018-04-14

    Remote ischemic preconditioning (RIPC) can be protective against the damage. However, there is no consensus on the optimal amount of tissue, the number and duration of the ischemic cycles, and the timing of the preconditioning. The hemorheological background of the process is also unknown. To investigate the effects of remote organ ischemic preconditioning on micro-rheological parameters during liver ischemia-reperfusion in rats. In anesthetized rats 60-minute partial liver ischemia was induced with 120-minute reperfusion (Control, n = 7). In the preconditioned groups a tourniquet was applied on the left thigh for 3×10 minutes 1 hour (RIPC-1, n = 7) or 24 hours (RIPC-24, n = 7) prior to the liver ischemia. Blood samples were taken before the operation and during the reperfusion. Acid-base, hematological parameters, erythrocyte aggregation and deformability were tested. Lactate concentration significantly increased by the end of the reperfusion. Erythrocyte deformability was improved in the RIPC-1 group, erythrocyte aggregation increased during the reperfusion, particularly in the RIPC-24 group. RIPC alleviated several hemorheological changes caused by the liver I/R. However, the optimal timing of the RIPC cannot be defined based on these results.

  14. Ischemia-Reperfusion Injury and Volatile Anesthetics

    PubMed Central

    Erturk, Engin

    2014-01-01

    Ischemia-reperfusion injury (IRI) is induced as a result of reentry of the blood and oxygen to ischemic tissue. Antioxidant and some other drugs have protective effect on IRI. In many surgeries and clinical conditions IRI is counteract inevitable. Some anesthetic agents may have a protective role in this procedure. It is known that inhalational anesthetics possess protective effects against IRI. In this review the mechanism of preventive effects of volatile anesthetics and different ischemia-reperfusion models are discussed. PMID:24524079

  15. Effect of taurine on ischemia-reperfusion injury.

    PubMed

    Schaffer, Stephen W; Jong, Chian Ju; Ito, Takashi; Azuma, Junichi

    2014-01-01

    Taurine is an abundant β-amino acid that regulates several events that dramatically influence the development of ischemia-reperfusion injury. One of these events is the extrusion of taurine and Na+ from the cell via the taurine/Na+ symport. The loss of Na+ during the ischemia-reperfusion insult limits the amount of available Na+ for Na+/Ca2+ exchange, an important process in the development of Ca2+ overload and the activation of the mitochondrial permeability transition, a key process in ischemia-reperfusion mediated cell death. Taurine also prevents excessive generation of reactive oxygen species by the respiratory chain, an event that also limits the activation of the MPT. Because taurine is an osmoregulator, changes in taurine concentration trigger "osmotic preconditioning," a process that activates an Akt-dependent cytoprotective signaling pathway that inhibits MPT pore formation. These effects of taurine have clinical implications, as experimental evidence reveals potential promise of taurine therapy in preventing cardiac damage during bypass surgery, heart transplantation and myocardial infarction. Moreover, severe loss of taurine from the heart during an ischemia-reperfusion insult may increase the risk of ventricular remodeling and development of heart failure.

  16. Understanding STAT3 signaling in cardiac ischemia.

    PubMed

    O'Sullivan, K E; Breen, E P; Gallagher, H C; Buggy, D J; Hurley, J P

    2016-05-01

    Cardiovascular disease is the leading cause of death worldwide. It remains one of the greatest challenges to global health and will continue to dominate mortality trends in the future. Acute myocardial infarction results in 7.4 million deaths globally per annum. Current management strategies are centered on restoration of coronary blood flow via percutaneous coronary intervention, coronary artery bypass grafting and administration of anti-platelet agents. Such myocardial reperfusion accounts for 40-50 % of the final infarct size in most cases. Signaling transducer and activator of transcription 3 (STAT3) has been shown to have cardioprotective effects via canonical and non-canonical activation and modulation of mitochondrial and transcriptional responses. A significant body of in vitro and in vivo evidence suggests that activation of the STAT3 signal transduction pathway results in a cardio protective response to ischemia and attempts have been made to modulate this with therapeutic effect. Not only is STAT3 important for cardiomyocyte function, but it also modulates the cardiac microenvironment and communicates with cardiac fibroblasts. To this end, we here review the current evidence supporting the manipulation of STAT3 for therapeutic benefit in cardiac ischemia and identify areas for future research.

  17. K(ATP) channel blocker HMR 1883 reduces monophasic action potential shortening during coronary ischemia in anesthetised pigs.

    PubMed

    Wirth, K J; Uhde, J; Rosenstein, B; Englert, H C; Gögelein, H; Schölkens, B A; Busch, A E

    2000-02-01

    ATP-sensitive potassium channels (KATP) open during myocardial ischemia. The ensuing repolarising potassium efflux shortens the action potential. Accumulation of extracellular potassium is able to partially depolarise the membrane, reducing the upstroke velocity of the action potential and thereby impairing impulse conduction. Both mechanisms are believed to be involved in the development of reentrant arrhythmias during cardiac ischemia. The sulfonylthiourea HMR 1883 (1-[[5-[2-(5-chloro-O-anisamido)ethyl]-methoxyphenyl]sulfonyl]-3-m ethylthiourea) was designed as a cardioselective KATP channel blocker for the prevention of arrhythmic sudden death in patients with ischemic heart disease. The aim of this study was to show that this compound, which has already shown antifibrillatory efficacy in dogs and rats, is able to inhibit ischemic changes of the action potential induced by coronary artery occlusion in anesthetised pigs. Action potentials were taken in situ with the technique of monophasic action potential (MAP) recording. In a control group (n=7), three consecutive occlusions of a small branch of the left circumflex coronary artery resulted in reproducible reductions in MAP duration and a decrease in upstroke velocity. In a separate group (n=7), HMR 1883 (3 mg/kg i.v.) significantly (P<0.05) reduced the ischemia-induced shortening of the MAP: during the first and second control occlusion of the coronary artery in the HMR 1883-group, MAP50 duration shortened from 218.5 +/- 3.0 ms to 166.7 +/- 3.3 ms and from 219.7 +/- 4.5 ms to 164.9 +/- 1.8 ms, respectively. After HMR 1883, during the third occlusion, MAP duration decreased from 226.9 +/- 3.6 ms to 205.3 +/- 4.3 ms only corresponding to 59% inhibition. HMR 1883 also improved the upstroke velocity of the MAP, which was depressed by ischemia: in the two preceding control occlusions ischemia prolonged the time to peak of the MAP, an index for upstroke velocity, from 10.83 +/- 0.43 ms to 39.42 +/- 1.60 ms and from

  18. [Effects of sodium aescinate on the apoptosis-related genes in lung injury induced by intestinal ischemia reperfusion in rats].

    PubMed

    Wang, Yan-Lei; Jing, You-Ling; Cai, Qing-Yan; Cui, Guo-Jin; Zhang, Yi-Bing; Zhang, Feng-Yu

    2012-03-01

    To investigate the relationship between apoptosis-related genes and lung injury induced by intestinal ischemia reperfusion and to explore the effects and its possible mechanism of sodium aescinate. Rat model of intestinal I/R injury was established with clamping of the superior mesenteric artery for 60 min and then clamping was relieved for 60 min. Twenty-four SD rats were randomly divided into three groups with eight rats in each: sham group, intestinal ischemia/reperfusion group (I/R group) and sodium aescinate group (SA + I/R group). Lung wet/dry weight ratio, lung coefficient and Superoxide dismutase (SOD), malondialdehyde (MDA) in plasma and lung tissue were measured, as well as the expression levels of Bcl-2 and Bax proteins in lung tissue were examined using immunohistochemical method. Compared with sham group, lung wet/dry weight ratio, lung coefficient and MDA in plasma and lung tissue were significantly increased, and while the activity of SOD in plasma and lung tissue were decreased significantly in I/R group. At the same time, the protein expression level of Bcl-2 and Bax were significantly increased. But Bax protein expression was much greater than that of Bcl-2, the ratio of Bcl-2 to Bax was decreased significantly in I/R group than that in sham group. Compared with I/R group, lung wet/dry weight ratio, lung coefficient and MDA in plasma and lung tissue were significantly decreased, and while the activity of SOD in serum and lung tissue were significantly increased in SA + I/R group. At the same time, Bax protein expression was significantly decreased, both Bcl-2 protein expression and the ratio of Bcl-2 to Bax were significantly increased in SA + I/R group than that in I/R group. Lung injury induced by intestinal ischemia reperfusion is correlated with abnormal expression levels of Bcl-2 and Bax protein which is caused by oxidative injury. Sodium aescinate can protect the lung injury induced by intestinal ischemia/reperfusion (I/R), which may be

  19. Changes in muscle tissue oxygenation during stagnant ischemia in septic patients.

    PubMed

    Pareznik, Roman; Knezevic, Rajko; Voga, Gorazd; Podbregar, Matej

    2006-01-01

    To determine changes in the rate of thenar muscles tissue deoxygenation during stagnant ischemia in patients with severe sepsis and septic shock. Prospective observational study in the medical ICU of a general hospital. Consecutive patients admitted to ICU with septic shock (n=6), severe sepsis (n=6), localized infection (n=3), and healthy volunteers (n=15). Upper limb ischemia was induced by rapid automatic pneumatic cuff inflation around upper arm. Thenar muscle tissue oxygen saturation (StO2) was measured continuously by near-infrared spectroscopy before and during upper limb ischemia. StO(2) before intervention was comparable in patients with septic shock, severe sepsis, or localized infection and healthy volunteers (89 [65, 92]% vs. 82 [72, 91]% vs. 87 [85, 92]% vs. 83 [79, 93]%, respectively; p>0.1). The rate of StO(2) decrease during stagnant ischemia after initial hemodynamic stabilization was slower in septic shock patients than in those with severe sepsis or localized infection and in controls (-7.0 [-3.6, -11.0] %/min vs. -10.4 [-7.8, -13.3] %/min vs. -19.5 [-12.3, -23.3] vs. -37.4 [-27.3, -56.2] %/min, respectively; p=0.041). At ICU discharge the rate of StO2 decrease did not differ between the septic shock, severe sepsis, and localized infection groups (-17.0 [-9.3, -28.9] %/min vs. -19.9 [-13.3, -23.6] %/min vs. -23.1 [-20.7, -26.2] %/min, respectively), but remained slower than in controls (p<0.01). The rate of StO2 decrease was correlated with Sequential Organ Failure Assessment (SOFA) score (r=0.739, p<0.001). After hemodynamic stabilization thenar muscle tissue oxygen saturation during stagnant ischemia decreases slower in septic shock patients than in patients with severe sepsis or localized infection and in healthy volunteers. During ICU stay and improvement of sepsis the muscle tissue deoxygenation rate increases in survivors of both septic shock and severe sepsis and was correlated with SOFA score.

  20. Effect of infliximab on acute hepatic ischemia/reperfusion injury in rats.

    PubMed

    Yucel, Ahmet Fikret; Pergel, Ahmet; Aydin, Ibrahim; Alacam, Hasan; Karabicak, Ilhan; Kesicioglu, Tugrul; Tumkaya, Levent; Kalkan, Yildiray; Ozer, Ender; Arslan, Zakir; Sehitoglu, Ibrahim; Sahin, Dursun Ali

    2015-01-01

    This study aimed to investigate the hepatoprotective and antioxidant effects of infliximab (IFX) against liver ischemia/reperfusion (I/R) injury in rats. A total of 30 male Wistar albino rats were divided into three groups: sham, I/R, and I/R+IFX. IFX was given at a dose of 3 mg/kg for three days before I/R. Rat livers were subjected to 60 min of ischemia followed by 90 h of reperfusion. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), TNF-α, malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) levels were measured in the serum. The liver was removed to evaluate the histopathologic changes. The I/R group had a significant increase in AST, ALT, MDA, and TNF-α levels, and a decrease in GSH-Px activity compared with the sham group. The use of IFX significantly reduced the ALT, AST, MDA and TNF-α levels and significantly increased GSH-Px activity. IFX attenuated the histopathologic changes. IFX has a protective effect on liver I/R injury. This liver protective effect may be related to antioxidant and anti-TNF-α effects. We propose that, for the relief of liver injury subsequent to transplantation, liver resection, trauma, and shock, tentative treatments can be incorporated with IFX, which is already approved for clinical use.

  1. Effect of infliximab on acute hepatic ischemia/reperfusion injury in rats

    PubMed Central

    Yucel, Ahmet Fikret; Pergel, Ahmet; Aydin, Ibrahim; Alacam, Hasan; Karabicak, Ilhan; Kesicioglu, Tugrul; Tumkaya, Levent; Kalkan, Yildiray; Ozer, Ender; Arslan, Zakir; Sehitoglu, Ibrahim; Sahin, Dursun Ali

    2015-01-01

    This study aimed to investigate the hepatoprotective and antioxidant effects of infliximab (IFX) against liver ischemia/reperfusion (I/R) injury in rats. A total of 30 male Wistar albino rats were divided into three groups: sham, I/R, and I/R+IFX. IFX was given at a dose of 3 mg/kg for three days before I/R. Rat livers were subjected to 60 min of ischemia followed by 90 h of reperfusion. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), TNF-α, malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) levels were measured in the serum. The liver was removed to evaluate the histopathologic changes. The I/R group had a significant increase in AST, ALT, MDA, and TNF-α levels, and a decrease in GSH-Px activity compared with the sham group. The use of IFX significantly reduced the ALT, AST, MDA and TNF-α levels and significantly increased GSH-Px activity. IFX attenuated the histopathologic changes. IFX has a protective effect on liver I/R injury. This liver protective effect may be related to antioxidant and anti-TNF-α effects. We propose that, for the relief of liver injury subsequent to transplantation, liver resection, trauma, and shock, tentative treatments can be incorporated with IFX, which is already approved for clinical use. PMID:26885068

  2. Hypoxic-Preconditioned Bone Marrow Stem Cell Medium Significantly Improves Outcome After Retinal Ischemia in Rats

    PubMed Central

    Roth, Steven; Dreixler, John C.; Mathew, Biji; Balyasnikova, Irina; Mann, Jacob R.; Boddapati, Venkat; Xue, Lai; Lesniak, Maciej S.

    2016-01-01

    Purpose We have previously demonstrated the protective effect of bone marrow stem cell (BMSC)-conditioned medium in retinal ischemic injury. We hypothesized here that hypoxic preconditioning of stem cells significantly enhances the neuroprotective effect of the conditioned medium and thereby augments the protective effect in ischemic retina. Methods Rats were subjected to retinal ischemia by increasing intraocular pressure to 130 to 135 mm Hg for 55 minutes. Hypoxic-preconditioned, hypoxic unconditioned, or normoxic medium was injected into the vitreous 24 hours after ischemia ended. Recovery was assessed 7 days after injections by comparing electroretinography measurements, histologic examination, and apoptosis (TUNEL, terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling assay). To compare proteins secreted into the medium in the groups and the effect of hypoxic exposure, we used rat cytokine arrays. Results Eyes injected with hypoxic BMSC–conditioned medium 24 hours after ischemia demonstrated significantly enhanced return of retinal function, decreased retinal ganglion cell layer loss, and attenuated apoptosis compared to those administered normoxic or hypoxic unconditioned medium. Hypoxic-preconditioned medium had 21 significantly increased protein levels compared to normoxic medium. Conclusions The medium from hypoxic-preconditioned BMSCs robustly restored retinal function and prevented cell loss after ischemia when injected 24 hours after ischemia. The protective effect was even more pronounced than in our previous studies of normoxic conditioned medium. Prosurvival signals triggered by the secretome may play a role in this neuroprotective effect. PMID:27367588

  3. Divergent Systemic and Local Inflammatory Response to Hind Limb Demand Ischemia in Wild Type And ApoE−/− Mice

    PubMed Central

    Crawford, Robert S.; Albadawi, Hassan; Robaldo, Alessandro; Peck, Michael A.; Abularrage, Christopher J.; Yoo, Hyung-Jin; LaMuraglia, Glenn M.; Watkins, Michael T.

    2013-01-01

    Introduction Studies were designed to determine whether the ApoE−/− phenotype modulates the local skeletal muscle and systemic inflammatory (plasma) responses to lower extremity demand ischemia. The ApoE−/− phenotype is an experimental model for atherosclerosis in humans. Methods Aged female ApoE −/− and C57BL6 mice underwent femoral artery ligation, then divided into sedentary and demand ischemia (exercise) groups on day 14. Baseline and post exercise limb perfusion and hind limb function were assessed. On day 14, animals in the demand ischemia group underwent daily treadmill exercise through day 28. Sedentary mice were not exercised. On day 28, plasma and skeletal muscle from ischemic limbs were harvested from sedentary and exercised mice. Muscle was assayed for angiogenic and pro-inflammatory proteins, markers of skeletal muscle regeneration, and evidence of skeletal muscle fiber maturation. Results Hind limb ischemia was similar in ApoE −/− and C57 mice prior to the onset of exercise. Under sedentary conditions, plasma VEGF, IL-6, but not KC or MIP-2 were higher in ApoE (P<0.0001). Following exercise, plasma levels of VEGF, KC and MIP-2, but not IL-6 were lower in ApoE (P<0.004). The cytokines KC and MIP-2 in muscle was greater in exercised ApoE−/− mice as compared to C57BL6 mice (p=0.01). Increased PAR activity, and mature muscle regeneration was associated with demand ischemia in the C57BL6 mice as compared to the ApoE −/− mice (p=0.01). Conclusion Demand limb ischemia in the ApoE−/− phenotype exacerbated the expression of select systemic cytokines in plasma and blunted indices of muscle regeneration. PMID:23528286

  4. Acute tryptophan pretreatment protects against behavioral changes caused by cerebral ischemia.

    PubMed

    Carney, J M

    1986-05-15

    Male gerbils (Meronies ungulata) were treated with various doses of tryptophan and the changes in spontaneous motor activity determined. Tryptophan decreased behavior at a dose of 200 mg/kg. Cerebral ischemia was produced by bilateral carotid occlusion for 5 min. This duration of ischemia produced a large increase in activity at both 6 h and 24 h postischemia. Tryptophan (200 mg/kg) prevented the ischemia-induced increases in locomotor activity. These data suggest that dietary amino acids may play a role in determining the effects of ischemia.

  5. Neural correlates of brain state in chronic ischemia and stroke: combined resting state electroencephalogram and transcranial Doppler ultrasonographic study.

    PubMed

    Martynova, Olga V; Portnova, Galina V; Gladun, Ksenya V

    2017-02-08

    Clinical neurology is constantly searching for reliable indices of ischemic brain damage to prevent a possible development of stroke. We suggest that resting state electroencephalogram (rsEEG) with respect to other clinical data may provide important information about the severity of ischemia. We carried out correlation analysis of rsEEG, data of transcranial Doppler ultrasonography of head vessels, and clinical assessment scores collected from healthy volunteers and four groups of patients with mild chronic microvascular ischemia (CMI-1), moderate CMI (CMI-2), severe atrophy of the cerebral hemisphere, ischemic stroke in the left middle cerebral artery stroke, and ischemic stroke in the right middle cerebral artery stroke. Using independent component analysis and k-mean clustering of EEG data, we observed prominent changes in rsEEG reflected in specific distributions of spectral peaks in all groups of patients. We found a significant correlation of EEG spectral distribution and the blood flow velocity in coronal arteries, which was also affected by the severity of ischemia and the localization of stroke. Moreover, EEG spectral distribution was more indicative of early stages of ischemia than the blood flow velocity. Our data support the hypothesis that rsEEG may reflect altered neural activity caused by ischemic brain damage.

  6. IMM-H004, A New Coumarin Derivative, Improved Focal Cerebral Ischemia via Blood-Brain Barrier Protection in Rats.

    PubMed

    Niu, Fei; Song, Xiu-Yun; Hu, Jin-Feng; Zuo, Wei; Kong, Ling-Lei; Wang, Xiao-Feng; Han, Ning; Chen, Nai-Hong

    2017-10-01

    IMM-H004 (7-hydroxy-5-methoxy-4-methyl-3-[4-methylpiperazin-1-yl]-2H-chromen-2-one) is a novel coumarin derivative that showed better effect in improving global cerebral ischemia in rats. However, the effects and mechanisms in focal cerebral ischemia were not clear. Blood-brain barrier (BBB) protection is a vital strategy for the treatment of cerebral ischemia. This study is to investigate whether IMM-H004 improves brain ischemia injury via BBB protection. Focal brain ischemia model was induced by middle cerebral artery occlusion for 1 hour and reperfusion (MCAO/R) for 24 hours in rats. IMM-H004 (1.5, 3, 6 mg/kg) and edaravone (positive drug, 6 mg/kg) were administered after 5 minutes of occlusion. Neurological score and TTC staining were used to evaluate the effect of IMM-H004. Evans Blue (EB) staining and electron microscopy were used to assess BBB permeability. Western blot, reverse transcription-polymerase chain reaction, and immunohistochemistry were used to detect the expression of BBB structure-related proteins. Compared with the model group, IMM-H004 in the focal brain ischemia model improved neurological function and reduced cerebral infarction size and edema content. IMM-H004 sharply reduced the EB content and alleviated BBB structure. In addition, IMM-H004 increased the level of zonula occludens (ZO-1) and occluding, decreased the level of aquaporin 4 and matrix metalloproteinase 9, either in cortex or in hippocampus. And all of these changed were related to BBB protection. IMM-H004 improved cerebral ischemia injury via BBB protection. For a potential therapy drug of cerebral ischemia, IMM-H004 merits further study. Copyright © 2017. Published by Elsevier Inc.

  7. [Coenzyme Q10 enhances the expression of Bcl-2 and inhibits the expressions of Bax and GSK-3β in the hippocampus of rats exposed to ischemia/reperfusion injury].

    PubMed

    Tian, Shuang; Wang, Di; Li, Xiaodong; Tang, Jianjie; Han, Guang; Dai, Yongyi

    2013-07-01

    To investigate the effects of coenzyme Q10 pretreatment on the expressions of Bcl-2, Bax and glycogen synthase kinase-3β (GSK-3β) in rats suffering from ischemia/reperfusion injury. Thirty-six adult male SD rats were randomly assigned into 3 groups: sham-operated group (sham), ischemia/reperfusion group (I/R) and coenzyme Q10 preconditioning group (Q10). Focal cerebral ischemia/reperfusion models were established in experimental rats by blocking middle cerebral artery with suture. Histological changes of hippocampal neurons were observed by HE staining. The expressions of Bcl-2, Bax and GSK-3β were detected by immunohistochemistry and Western blotting. Immunohistochemistry showed that the percentage of Bcl-2 positive cells increased in the hippocampus, while the percentages of Bax and GSK-3β positive cells decreased in Q10 group compared with I/R group. Western blotting revealed that the expression level of Bcl-2 was higher and the expression levels of Bax and GSK-3β were lower in Q10 group than in I/R group. There were significant differences between the two groups (P<0.05). Coenzyme Q10 promoted the expression of Bcl-2 and suppressed the expressions of Bax and GSK-3β in the hippocampus of rats exposed to cerebral ischemia/reperfusion.

  8. [Cardiovascular effects of sodium chloride bath and underwater shower in coronary ischemia].

    PubMed

    Ghighineishvili, G R; Sirtori, P G; Balsamo, V; Miani, A; Di Francesco, A; Lanfranchi, M; Dagnoni, L; Mauro, F

    Two hundred and eighteen patients (209 males and 9 females, mean age 57.1 +/- 0.6 years) with I class coronary ischemia were subdivided into two groups of 109 subjects each. Group I received NaCl baths, group II underwater massage-showers. On days 2-3 and 23-24 of treatment all underwent incremental stress testing until exhaustion. In group I, only subjects with moderate maximal muscular power improved their stress endurance. In group II, stress endurance significantly improved in all subjects: all hemodynamic indices (cardiac, output, stroke volume, systemic vascular resistances) showed variations indicative of improved cardiorespiratory function and peripheral blood supply.

  9. Protective effect of Crataegus oxyacantha against reperfusion arrhythmias after global no-flow ischemia in the rat heart.

    PubMed

    al Makdessi, S; Sweidan, H; Dietz, K; Jacob, R

    1999-04-01

    The protective effect against reperfusion arrhythmias of a 3-month oral pretreatment with a dried extract of Crataegus oxyacantha (LI 132)(standardized to 2.2% flavonoids) was studied with the Langendorff heart of the rat after global no-flow ischemia. The heart was perfused with a modified Krebs-Henseleit solution in which the K+ content was reduced to 3.4 mmol/l in order to lower the fibrillation threshold. According to pilot experiments which considered various durations of global no-flow ischemia ranging from 10 to 20 minutes, two durations were chosen for the present study: 20 minutes (group 20) in which ventricular fibrillation (VF) was the predominant form of arrhythmias, and 18 minutes (group 18) in which the prevalence of VF was markedly lower despite the small difference in the duration of ischemia. Crataegus pretreatment significantly (p = 0.02) reduced the average prevalence of malignant arrhythmias (VF + Flutter) as observed during the 20-min-period of reperfusion as follows: group 20: from 89% (control, n = 9) to 51% (LI 132, n = 7), group 18: from 48% (control, n = 8) to 8% (LI 132, n = 8). In group 20, ventricular tachycardia (VT) could be observed only in the treated group, because of the predominance of VF in the control group. LI 132 pretreatment reduced the average prevalence of VT in group 18 in spite of the identical percentage of occurrence (6 out of 8 rats, with and without treatment) due to a shorter duration of the VT episodes. Thus, under the conditions of our experiments, effective prevention against reperfusion arrhythmias by Crataegus pretreatment was evident.

  10. [Keap1-tat peptide attenuates oxidative stress damage in hippocampal CA1 region and learning and memory deficits following global cerebral ischemia].

    PubMed

    Tu, Jing-yi; Zhu, Ying; Shang, Shu-ling; Zhang, Xi; Tang, Hui; Wang, Rui-min

    2016-02-18

    To design Keap1-tat peptide and explore its neuroprotective role on hipocampal CA1 neuron, as well as the effect on spacial learning and memory function following global cerebral ischemia. Adult male Sprague Dawley (SD) rats were subjected to global cerebral ischemia (GCI) by four-vessel occlusion for 15 min and randomly divided into five groups: sham, sham+Keap1-tat, ischemia/reperfusion (I/R), Keap1-tat peptide- and vehicle-administrated groups. For Keap1-tat or vehicle groups, the rats were treated with Keap1-tat (30, 50, 100 μg in 5 μL 0.9% saline) or the same volume vehicle by intracerebroventricular injection (icv) 30 min prior to ischemia. Cresyl violet staining was used to observe the surviving neurons and 4-hydroxy-2-noneal (4-HNE) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) immunostaining were used to detect the change of markers response to oxidative stress in hippocampal CA1 region. The spatial learning and memory function of the rats was evaluated using Morris water maze. Compared with sham group, the number of surviving neurons in ischemia-reperfusion and vehicle groups significantly decreased in the hippocampal CA1 region (P<0.05), while administration of Keap1-tat significantly decreased the damage following GCI (P<0.05), and the dose of 50 μg existed the most effective neuroprotective role. Furthermore, immunostaining intensity of 4-HNE and 8-OHdG, markers of oxidative stress damage attenuated by Keap1-tat peptide as compared with vehicle group in CA1 region. Of significant interest, the time of finding underwater platform in Keap1-tat group animals was significantly short, and after removing the platform, the probe time of Keap1-tat group animals in the original quadrant where the platform was significantly increased compared with that of vehicle and I/R group animals (P<0.05). Keap1-tat peptide can effectively attenuate neuronal damage in hippocampal CA1 region and improve learning and memory function, which might bedue to the attenuation of

  11. [Spectrum-Effect Relationship of GualouXiebai Dropping Pills on Myocardial Ischemia].

    PubMed

    Yan, Hai-yan; Zou, Chun-cai; Wei, Mei-ling; Yang, You-yun; Fei, Fu-qi; Xu, Xin-ying

    2015-09-01

    To study the relationship between HPLC characteristic spectrum and pharmacodynamics on anti-myocardial ischemia of GualouXiebai dropping pills. HPLC characteristic spectrum of GualouXiebai dropping pills was established, dropping pills were divided into five dose groups (3.75, 11.25, 22.5, 33.75 and 45 g/kg, equivalent to the crude herb g/kg), the mice were orally administered dropping pills once daily for 7 d, 90 min after the mice were given by intraperitoneal injection of isoprenaline to establish myocardial ischemia models, the level of CK in blood plasma were detected; Then, the correlation between characteristic spectrum and biochemical index CK was studied by grey relational analysis method. The correlation between each common peak and CK had gradually increased with the dose increased from 3.73 g/kg to 33.75 g/kg, but when the dose reached to 45 g/kg, the correlation between each common peak and CK had decreased. The variation trends of correlation of spectrum-effect relationship for different dose were similar,but the correlation variation trend of the efficacy on the No. 8 peak in 33.75 g/kg group with the other four groups in the opposite, the change trends of the No. 11 peak in 22.5 g/kg group, the No. 24 peak in 33. 75 g/kg group and the No. 37 peak in 45 g/ kg group with 3.75 g/kg group and 11.25 g/kg group on the contrary. The relational orders of spectrum-effect relationship were not consistent, respectively( the first 15 peaks) :11 > 37 > 24 > 30 > 8 > 21 > 2 > 16 > 1 > 3 > 20 > 15 > 12 > 19 > 7;11 > 37 > 30 > 8 > 21 > 24 > 2 > 1 > 16 > 3 > 27 > 12 > 22 > 20 >10; 8 > 30 > 1 > 2 > 21 > 27 > 31 > 22 > 16 > 12 > 3 > 10 > 9 > 20 > 4; 1 > 2 > 27 > 21 > 31 > 22 > 12 > 16 > 9 > 3 > 10 > 4 > 17 > 30 > 20; 8 > 30 > 1 > 2 > 2 > 2 > 7 > 31 > 22 > 16 > 12 > 3 > 9 > 10 > 20 > 17. Anti-myocardial ischemia effect of GualouXiebai dropping pills comes from the synergistic or antagonistic effect among various active ingredients related to the dose. With the

  12. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy.

    PubMed

    Xie, Min; Kong, Yongli; Tan, Wei; May, Herman; Battiprolu, Pavan K; Pedrozo, Zully; Wang, Zhao V; Morales, Cyndi; Luo, Xiang; Cho, Geoffrey; Jiang, Nan; Jessen, Michael E; Warner, John J; Lavandero, Sergio; Gillette, Thomas G; Turer, Aslan T; Hill, Joseph A

    2014-03-11

    Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor approved for cancer treatment by the US Food and Drug Administration, will blunt reperfusion injury. Twenty-one rabbits were randomly assigned to 3 groups: (1) vehicle control, (2) SAHA pretreatment (1 day before and at surgery), and (3) SAHA treatment at the time of reperfusion only. Each arm was subjected to ischemia/reperfusion surgery (30 minutes coronary ligation, 24 hours reperfusion). In addition, cultured neonatal and adult rat ventricular cardiomyocytes were subjected to simulated ischemia/reperfusion to probe mechanism. SAHA reduced infarct size and partially rescued systolic function when administered either before surgery (pretreatment) or solely at the time of reperfusion. SAHA plasma concentrations were similar to those achieved in patients with cancer. In the infarct border zone, SAHA increased autophagic flux, assayed in both rabbit myocardium and in mice harboring an RFP-GFP-LC3 transgene. In cultured myocytes subjected to simulated ischemia/reperfusion, SAHA pretreatment reduced cell death by 40%. This reduction in cell death correlated with increased autophagic activity in SAHA-treated cells. RNAi-mediated knockdown of ATG7 and ATG5, essential autophagy proteins, abolished SAHA's cardioprotective effects. The US Food and Drug Administration-approved anticancer histone deacetylase inhibitor, SAHA, reduces myocardial infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during ischemia/reperfusion occur, at least in part, through the induction of autophagic flux.

  13. [Effects of astragalus and its active ingredients on ischemia reperfusion injury in isolated guinea-pig heart].

    PubMed

    Zhang, Haining; Min, Dongyu; Fu, Mingyu; Tian, Jing; Wang, Qingwen; An, Xinjiang

    2014-09-01

    To explore the effects of astragalus (AST) , total flavone of astragalus (TFA), total saponins of astragalus (TSA) and astragalus polysaccharides (APS) on ischemia/reperfusion (40 min/60 min) injury in isolated guinea-pig heart. Isolated guinea-pig hearts underwent ischemia, then followed by K-H perfusion (I/R group), AST (60 mg/L),AST (60 mg/L), TFA (60 mg/L), TSA (60 mg/L) and APS (60 mg/L) perfusion (n = 6 each).Isolated hearts without ischemia serve as control group (n = 6). Activity of lactate dehydrogenas (LDH) and creatine kinase (CK) in effluent were measured.Infarct size, myocardial superoxide dismutase (SOD) activity and malondiadehyde (MDA) contents were also determined. Compared to control hearts, heart rate, coronary flow and myocardial superoxide dismutase (SOD) activity were significantly reduced, while LDH and CK in effluent as well as myocardial MDA were significantly increased in the I/R hearts during reperfusion (all P < 0.05), these changes could be partly reversed by AST and TFA perfusion.Infarct size was also significantly reduced in AST (11.9 ± 2.03) % and TFA (13.31 ± 1.17) % treated hearts compared to that in I/R group (18.9 ± 2.27) % (all P < 0.01). The findings indicate that AST and TFA could attenuate I/R injury in isolated guinea-pig heart possibly through enhancing the activity of SOD and reducing lipid peroxidation.

  14. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao Canxiang; Yang Qingwu; Lv Fenglin

    Inflammatory reaction plays an important role in cerebral ischemia-reperfusion injury, however, its mechanism is still unclear. Our study aims to explore the function of Toll-like receptor 4 (TLR4) in the process of cerebral ischemia-reperfusion. We made middle cerebral artery ischemia-reperfusion model in mice with line embolism method. Compared with C3H/OuJ mice, scores of cerebral water content, cerebral infarct size and neurologic impairment in C3H/Hej mice were obviously lower after 6 h ischemia and 24 h reperfusion. Light microscopic and electron microscopic results showed that cerebral ischemia-reperfusion injury in C3H/Hej mice was less serious than that in C3H/OuJ mice. TNF-{alpha} andmore » IL-6 contents in C3H/HeJ mice were obviously lower than that in C3H/OuJ mice with ELISA. The results showed that TLR4 participates in the process of cerebral ischemia-reperfusion injury probably through decrease of inflammatory cytokines. TLR4 may become a new target for prevention of cerebral ischemia-reperfusion injury. Our study suggests that TLR4 is one of the mechanisms of cerebral ischemia-reperfusion injury besides its important role in innate immunity.« less

  15. Vitexin exerts cardioprotective effect on chronic myocardial ischemia/reperfusion injury in rats via inhibiting myocardial apoptosis and lipid peroxidation

    PubMed Central

    Che, Xia; Wang, Xin; Zhang, Junyan; Peng, Chengfeng; Zhen, Yilan; Shao, Xu; Zhang, Gongliang; Dong, Liuyi

    2016-01-01

    Purpose: The aim of this study was to explore the cardioprotective effect of vitexin on chronic myocardial ischemia/reperfusion injury in rats and potential mechanisms. Methods: A chronic myocardial ischemia/reperfusion injury model was established by ligating left anterior descending coronary for 60 minutes, and followed by reperfusion for 14 days. After 2 weeks ischemia/reperfusion, cardiac function was measured to assess myocardial injury. The level of ST segment was recorded in different periods by electrocardiograph. The change of left ventricular function and myocardial reaction degree of fibrosis of heart was investigated by hematoxylin and eosin (HE) staining and Sirius red staining. Endothelium-dependent relaxations due to acetylcholine were observed in isolated rat thoracic aortic ring preparation. The blood samples were collected to measure the levels of MDA, the activities of SOD and NADPH in serum. Epac1, Rap1, Bax and Bcl-2 were examined by using Western Blotting. Results: Vitexin exerted significant protective effect on chronic myocardial ischemia/reperfusion injury, improved obviously left ventricular diastolic function and reduced myocardial reactive fibrosis degree in rats of myocardial ischemia. Medium and high-dose vitexin groups presented a significant decrease in Bax, Epac1 and Rap1 production and increase in Bcl-2 compared to the I/R group. It may be related to preventing myocardial cells from apoptosis, improving myocardial diastolic function and inhibiting lipid peroxidation. Conclusions: Vitexin is a cardioprotective herb, which may be a promising useful complementary and alternative medicine for patients with coronary heart disease. PMID:27648122

  16. Improvement of hepatic microhemodynamics by N-acetylcysteine after warm ischemia.

    PubMed

    Koeppel, T A; Thies, J C; Lehmann, T; Gebhard, M M; Herfarth, C; Otto, G; Post, S

    1996-01-01

    In this study we investigated the influence of N-acetylcysteine (NAC) on the hepatic microcirculation after warm ischemia by intravital fluorescence microscopy. Clamping of the left liver lobe was performed in 20 male Wistar rats for 70 min. The treatment group (n = 10) received 400 mg NAC/kg body weight 20 min prior to clamping. After reperfusion, acinar and sinusoidal perfusions were observed as well as the leukocyte-endothelium interaction. Phagocytic activity was assessed after application of latex beads. NAC reduced the number of nonperfused sinusoids in all acinar zones. A reduction in zone 1 (portal) was achieved from 15.5 to 7.1% (p < 0.0001), in zone 2 (midzonal) from 14.6 to 6.1% (p < 0.0001) and in zone 3 (central) from 11.9 to 2.9% (p < 0.0001). There were no significant differences in leukocyte adherence as well as in phagocytic activity detectable. We conclude that NAC improves hepatic microcirculation after warm ischemia by increasing sinusoidal blood flow.

  17. Rapamycin ameliorates brain metabolites alterations after transient focal ischemia in rats.

    PubMed

    Chauhan, Anjali; Sharma, Uma; Jagannathan, Naranamangalam R; Gupta, Yogendra Kumar

    2015-06-15

    Rapamycin has been shown to protect against middle cerebral artery occlusion (MCAo) induced ischemic injury. In this study, the neuroprotective effect of rapamycin on the metabolic changes induced by MCAo was evaluated using nuclear magnetic resonance (NMR) spectroscopy of brain tissues. MCAo in rats was induced by insertion of nylon filament. One hour after ischemia, rapamycin (250 µg/kg, i.p.) in dimethyl sulfoxide was administered. Reperfusion was done 2h after ischemia. Twenty-four hours after ischemia phospholipase A2 (PLA2) levels and metabolic changes were assessed. Perchloric acid extraction was performed on the brain of all animals (n=7; sham, vehicle; DMSO and rapamycin 250 µg/kg) and the various brain metabolites were assessed by NMR spectroscopy. In all 44 metabolites were assigned in the proton NMR spectrum of rat brain tissues. In the vehicle group, we observed increased lactate levels and decreased levels of glutamate/glutamine, choline containing compounds, creatine/phosphocreatine (Cr/PCr), taurine, myo-inositol, γ-amino butryic acid (GABA), N-aspartyl aspartate (NAA), purine and pyrimidine metabolites. In rapamycin treated rats, there was increase in the levels of choline containing compounds, NAA, myo-inositol, glutamate/glutamine, GABA, Cr/PCr and taurine as compared to those of vehicle control (P<0.05). Rapamycin treatment reduced PLA2 levels as compared to vehicle group (P<0.05). Our findings indicated that rapamycin reduced the increased PLA2 levels and altered brain metabolites after MCAo. These protective effects might be attributed to its effect on cell membrane metabolism; glutamate induced toxicity and calcium homeostasis in stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Minoxidil attenuates ischemia-induced apoptosis in cultured neonatal rat cardiomyocytes.

    PubMed

    Takatani, Tomoka; Takahashi, Kyoko; Jin, Chengshi; Matsuda, Takahisa; Cheng, Xinyao; Ito, Takashi; Azuma, Junichi

    2004-06-01

    The effects of minoxidil (a mitochondrial K+(ATP) channel opener) on ischemia-induced necrosis and apoptosis were examined using a cardiomyocyte model of simulated ischemia, since mitochondrial K+(ATP) channel openers have been suggested to be involved in the mechanisms of cardioprotective action against ischemia/reperfusion injury. In the absence of minoxidil, simulated ischemia led to cellular release of creatine phosphokinase (CPK), morphologic degeneration, and beating cessation within 24 to 72 hours. Based on the Hoechst 33258 staining pattern, a significant number of cells placed in sealed flasks underwent apoptosis. Myocytes treated with 5 microM of minoxidil failed to alter the degree of ischemia-induced CPK loss for 48 to 72 hours. However, minoxidil treatment prevented the loss of beating function in many of the ischemic cells, and attenuated the decline in intracellular ATP content after a 48-hour ischemic incubation. The number of nuclear fragmentation was significantly reduced in minoxidil-treated cells after a 72-hour ischemic insult compared with untreated ischemic cells. This effect was blocked by the mitochondrial K+(ATP) channel antagonist 5-HD. The data suggest that minoxidil renders the cell resistant to ischemia-induced necrosis and apoptosis. The beneficial effects of minoxidil appear to be related to the opening of mitochondrial K+(ATP) channels.

  19. Algorithms to identify colonic ischemia, complications of constipation and irritable bowel syndrome in medical claims data: development and validation.

    PubMed

    Sands, Bruce E; Duh, Mei-Sheng; Cali, Clorinda; Ajene, Anuli; Bohn, Rhonda L; Miller, David; Cole, J Alexander; Cook, Suzanne F; Walker, Alexander M

    2006-01-01

    A challenge in the use of insurance claims databases for epidemiologic research is accurate identification and verification of medical conditions. This report describes the development and validation of claims-based algorithms to identify colonic ischemia, hospitalized complications of constipation, and irritable bowel syndrome (IBS). From the research claims databases of a large healthcare company, we selected at random 120 potential cases of IBS and 59 potential cases each of colonic ischemia and hospitalized complications of constipation. We sought the written medical records and were able to abstract 107, 57, and 51 records, respectively. We established a 'true' case status for each subject by applying standard clinical criteria to the available chart data. Comparing the insurance claims histories to the assigned case status, we iteratively developed, tested, and refined claims-based algorithms that would capture the diagnoses obtained from the medical records. We set goals of high specificity for colonic ischemia and hospitalized complications of constipation, and high sensitivity for IBS. The resulting algorithms substantially improved on the accuracy achievable from a naïve acceptance of the diagnostic codes attached to insurance claims. The specificities for colonic ischemia and serious complications of constipation were 87.2 and 92.7%, respectively, and the sensitivity for IBS was 98.9%. U.S. commercial insurance claims data appear to be usable for the study of colonic ischemia, IBS, and serious complications of constipation. (c) 2005 John Wiley & Sons, Ltd.

  20. Left ventricular function abnormalities as a manifestation of silent myocardial ischemia.

    PubMed

    Lambert, C R; Conti, C R; Pepine, C J

    1986-11-01

    A large body of evidence exists indicating that left ventricular dysfunction is a common occurrence in patients with severe coronary artery disease and represents silent or asymptomatic myocardial ischemia. Such dysfunction probably occurs early in the time course of every ischemic episode in patients with coronary artery disease whether symptoms are eventually manifested or not. The pathophysiology of silent versus symptomatic left ventricular dysfunction due to ischemia appears to be identical. Silent ischemia-related left ventricular dysfunction can be documented during spontaneous or stress-induced perturbations in the myocardial oxygen supply/demand ratio. It also may be detected by nitroglycerin-induced improvement in ventricular function or by salutary changes in wall motion following revascularization. Silent left ventricular dysfunction is a very early occurrence during ischemia and precedes electrocardiographic abnormalities. In this light, its existence should always be kept in mind when dealing with patients with ischemic heart disease. It can be hypothesized that because silent ischemia appears to be identical to ischemia with symptoms in a pathophysiologic sense, prognosis and treatment in both cases should be the same.

  1. Aripiprazole prevents renal ischemia/reperfusion injury in rats, probably through nitric oxide involvement.

    PubMed

    Gholampour, Hanieh; Moezi, Leila; Shafaroodi, Hamed

    2017-10-15

    Renal ischemia/reperfusion (I/R) injury is strongly related to morbidity and mortality. Oxidative stress, inflammation, and apoptosis play key roles in renal dysfunction following renal I/R. Aripiprazole is an atypical antipsychotic which used for the treatment of schizophrenia and bipolar disorder. Recent studies have reported aripiprazole as displaying certain anti-inflammatory effects. Regarding the underlying mechanisms of renal ischemia-reperfusion, therefore, nephroprotective effects might be predicted to be seen with aripiprazole. I/R injury was induced by bilateral clamping of the renal pedicles (45min) followed by reperfusion (24h). The mechanism of aripiprazole-mediated nephroprotection was explored by a combined use of aripiprazole and L-NAME (non-selective nitric oxide synthase inhibitor). Animals were given aripiprazole (2.5, 5, 10 and 20mg/kg) intraperitoneally, 30min before ischemia. L-NAME was administered before the aripiprazole injection. Serum creatinine and blood urea nitrogen were assessed after 24h of reperfusion. Serum levels of malondialdehyde (MDA), TNF-α and IL-1β were measured for rats treated with aripiprazole. The extent of necrosis was measured by the stereology method. Ischemia/reperfusion caused significant renal dysfunction and marked renal injury. Aripiprazole reduced creatinine and blood urea nitrogen. Serum levels of MDA, IL-1β and TNF-α were significantly lower in the aripiprazole group. Aripiprazole treatment also decreased the volume of kidney necrosis. The administration of L-NAME reversed the renoprotective effect of aripiprazole on BUN and creatinine, but enhanced the anti-necrotic effect of aripiprazole. The results show that a single dose of aripiprazole significantly improved renal function following ischemia/reperfusion injury - probably through the involvement of nitric oxide. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Obesity Alters Molecular and Functional Cardiac Responses to Ischemia-Reperfusion and Glucagon-Like Peptide-1 Receptor Agonism

    PubMed Central

    Sassoon, Daniel J; Goodwill, Adam G; Noblet, Jillian N; Conteh, Abass M; Herring, B. Paul; McClintick, Jeanette N; Tune, Johnathan D; Mather, Kieren J

    2016-01-01

    This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miR) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-min coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca2+ binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion. PMID:27234258

  3. Validation of the Wound, Ischemia, foot Infection (WIfI) classification system in nondiabetic patients treated by endovascular means for critical limb ischemia.

    PubMed

    Beropoulis, Efthymios; Stavroulakis, Konstantinos; Schwindt, Arne; Stachmann, Arne; Torsello, Giovanni; Bisdas, Theodosios

    2016-07-01

    The Society for Vascular Surgery Lower Extremity Guidelines Committee developed the Wound, Ischemia, foot Infection (WIfI) a classification system to predict the amputation risk in patients with critical limb ischemia (CLI). A number of published studies have already evaluated its prognostic value. However, most of the included patients were diabetic, and the validation was done independent of the revascularization procedure. This single-center study evaluated the prognostic value of WIfI stages in nondiabetic patients treated by endovascular means. A retrospective analysis was performed of prospectively collected data of nondiabetic patients treated by endovascular means between January 2013 and September 2014. All patients were classified according to their wound status, ischemia index, and extent of foot infection to four classes: very low risk, low risk, moderate risk, and high risk. Comorbidities and vascular lesions for each group were analyzed. The prognostic value of WIfI was analyzed based on the amputation-free survival, overall survival rate, and freedom from amputation at 12 months. Data from 302 CLI patients treated in the study period were reviewed. A total of 219 patients (73%) underwent an endovascular intervention, and among them, 126 nondiabetic patients (58%) were enrolled in this study. Most patients were classified as low risk (33%), and the prevalence of very low-risk, moderate-risk, and very high-risk patients was 23%, 23%, and 21%, respectively. The modified Edifoligide for the Prevention of Infrainguinal Vein Graft Failure (PREVENT III) score was statistically significantly higher in the high-risk group (5.2 ± 2.4) than in the very low-risk, low-risk, and moderate-risk groups (4.3 ± 2.5, 3.5 ± 2.3, 4.5 ± 2.2, respectively; P = .048). One major amputation (1%) was performed during the hospital stay in a high-risk patient. Mean follow-up was 14 ± 8 months. The amputation-free survival at 12 months was 87%, 81%, 81%, and 62%, in

  4. Is Atherectomy the Best First-Line Therapy for Limb Salvage in Patients With Critical Limb Ischemia?

    PubMed Central

    Loor, Gabriel; Skelly, Christopher L.; Wahlgren, Carl-Magnus; Bassiouny, Hisham S.; Piano, Giancarlo; Shaalan, Wael

    2010-01-01

    Objective To determine the efficacy of atherectomy for limb salvage compared with open bypass in patients with critical limb ischemia. Methods Ninety-nine consecutive bypass and atherectomy procedures performed for critical limb ischemia between January 2003 and October 2006 were reviewed. Results A total of 99 cases involving TASC C (n = 43, 44%) and D (n = 56, 56%) lesions were treated with surgical bypass in 59 patients and atherectomy in 33 patients. Bypass and atherectomy achieved similar 1-year primary patency (64% vs 63%; P = .2). However, the 1-year limb salvage rate was greater in the bypass group (87% vs 69%; P = .004). In the tissue loss subgroup, there was a greater limb salvage rate for bypass patients versus atherectomy (79% vs 60%; P = .04). Conclusions Patients with critical limb ischemia may do better with open bypass compared with atherectomy as first-line therapy for limb salvage. PMID:19640919

  5. Association of left subclavian artery coverage without revascularization and spinal cord ischemia in patients undergoing thoracic endovascular aortic repair: A Vascular Quality Initiative® analysis.

    PubMed

    Teixeira, Pedro Gr; Woo, Karen; Beck, Adam W; Scali, Salvatore T; Weaver, Fred A

    2017-12-01

    Objectives Investigate the impact of left subclavian artery coverage without revascularization on spinal cord ischemia development in patients undergoing thoracic endovascular aortic repair. Methods The Vascular Quality Initiative thoracic endovascular aortic repair module (April 2011-July 2014) was analyzed. Patients undergoing left subclavian artery coverage were divided into two groups according to revascularization status. The association between left subclavian artery revascularization with the primary outcome of spinal cord ischemia and the secondary outcome of stroke was assessed with multivariable analysis adjusting for between-group baseline differences. Results The left subclavian artery was covered in 508 (24.6%) of the 2063 thoracic endovascular aortic repairs performed. Among patients with left subclavian artery coverage, 58.9% underwent revascularization. Spinal cord ischemia incidence was 12.1% in the group without revascularization compared to 8.5% in the group undergoing left subclavian artery revascularization (odds ratio (95%CI): 1.48(0.82-2.68), P = 0.189). Multivariable analysis adjustment identified an independent association between left subclavian artery coverage without revascularization and the incidence of spinal cord ischemia (adjusted odds ratio (95%CI): 2.29(1.03-5.14), P = 0.043). Although the incidence of stroke was also higher for the group with a covered and nonrevascularized left subclavian artery (12.1% versus 8.5%), this difference was not statistically significant after multivariable analysis (adjusted odds ratio (95%CI): 1.55(0.74-3.26), P = 0.244). Conclusion For patients undergoing left subclavian artery coverage during thoracic endovascular aortic repair, the addition of a revascularization procedure was associated with a significantly lower incidence of spinal cord ischemia.

  6. Intravenous acid fibroblast growth factor protects intestinal mucosal cells against ischemia-reperfusion injury via regulating Bcl-2/Bax expression.

    PubMed

    Chen, Wei; Fu, Xiao-Bing; Ge, Shi-Li; Sun, Tong-Zhu; Zhou, Gang; Han, Bing; Du, Yi-Ri; Li, Hai-Hong; Sheng, Zhi-Yong

    2005-06-14

    To detect the effect of acid fibroblast growth factor (aFGF) on apoptosis and gene expression of bax and bcl-2 gene in rat intestine after ischemia/reperfusion (I/R) injury, and to explore the protective mechanisms of aFGF. One hundred and eight Wistar rats were randomly divided into sham-operated control group (C) (n = 6), intestinal ischemia group (I) (n = 6), aFGF treatment group (A) (n = 48) and intestinal ischemia-reperfusion group (R) (n = 48). In group I, the animals were killed after 45 min of superior mesenteric artery (SMA) occlusion, while in groups R and A, the rats sustained 45 min of SMA occlusion and were then treated with normal saline and aFGF, respectively, sustained 15 min, 30 min, 1, 2, 6, 12, 24, or 48 h of reperfusion, respectively. In group C, SMA was separated, but without occlusion. Apoptosis in intestinal villus was determined with terminal deoxynucleotidyl transferase mediated dUTP-biotin nick-end labeling technique (TUNEL). Intestinal tissue samples were taken not only for detection of bax and bcl-2 gene expression by RT-PCR, but also for detection of bax and bcl-2 protein expression and distribution by immunohistochemical analysis. The rat survival rates in aFGF treated group were higher than group R (P<0.05) and the improvement of intestinal histological structures was observed at 2, 6, and 12 h after the reperfusion in group A compared with group R. The apoptotic rates were (41.17+/-3.49)%, (42.83+/-5.23)% and (53.33+/-6.92)% at 2, 6 and 12 h after reperfusion, respectively in group A, apparently less than those of group R at matched time points (50.67+/-6.95, 54.17+/-7.86, 64.33+/-6.47, respectively) (P<0.05). The bax gene transcription and translation were significantly decreased in group A vs group R, while mRNA and protein contents of Bcl-2 in group A were obviously higher than those in group R during 2-12 h period after reperfusion. The changes in histological structure and the increment of apoptotic rate indicated that the

  7. Prolonged Ischemia Triggers Necrotic Depletion of Tissue Resident Macrophages to Facilitate Inflammatory Immune Activation in Liver Ischemia Reperfusion Injury

    PubMed Central

    Yue, Shi; Zhou, Haoming; Wang, Xuehao; Busuttil, Ronald W.; Kupiec-Weglinski, Jerzy W.; Zhai, Yuan

    2017-01-01

    Although mechanisms of immune activation against liver ischemia reperfusion injury (IRI) have been studied extensively, questions regarding liver resident macrophages, i.e., Kupffer cells, remain controversial. Recent progress in the biology of tissue resident macrophages implicates homeostatic functions of KCs. This study aims to dissect responses and functions of KCs in liver IRI. In a murine liver partial warm ischemia model, we analyzed liver resident vs. infiltrating macrophages by fluorescence-activated cell sorting (FACS) and immunofluorescence staining. Our data showed that liver immune activation by IR was associated with not only infiltrations/activations of peripheral macrophages (iMØ), but also necrotic depletion of KCs. Inhibition of Receptor Interacting Protein 1 (RIP1) by necrostatin-1s protected KCs from ischemia-induce depletion, resulting in the reduction of iMØ infiltration, suppression of pro-inflammatory immune activation and protection of livers from IRI. The depletion of KCs by clodronate-liposomes abrogated these effects of Nec-1s. Additionally, liver reconstitutions with KCs post-ischemia exerted anti-inflammatory/cytoprotective effects against IRI. These results reveal a unique response of KCs against liver IR, i.e., RIP-1-dependent necrosis, which constitutes a novel mechanism of liver inflammatory immune activation in the pathogenesis of liver IRI. PMID:28289160

  8. Prolonged warm ischemia time is associated with graft failure and mortality after kidney transplantation.

    PubMed

    Tennankore, Karthik K; Kim, S Joseph; Alwayn, Ian P J; Kiberd, Bryce A

    2016-03-01

    Warm ischemia time is a potentially modifiable insult to transplanted kidneys, but little is known about its effect on long-term outcomes. Here we conducted a study of United States kidney transplant recipients (years 2000-2013) to determine the association between warm ischemia time (the time from organ removal from cold storage to reperfusion with warm blood) and death/graft failure. Times under 10 minutes were potentially attributed to coding error. Therefore, the 10-to-under-20-minute interval was chosen as the reference group. The primary outcome was mortality and graft failure (return to chronic dialysis or preemptive retransplantation) adjusted for recipient, donor, immunologic, and surgical factors. The study included 131,677 patients with 35,901 events. Relative to the reference patients, times of 10 to under 20, 20 to under 30, 30 to under 40, 40 to under 50, 50 to under 60, and 60 and more minutes were associated with hazard ratios of 1.07 (95% confidence interval, 0.99-1.15), 1.13 (1.06-1.22), 1.17 (1.09-1.26), 1.20 (1.12-1.30), and 1.23 (1.15-1.33) for the composite event, respectively. Association between prolonged warm ischemia time and death/graft failure persisted after stratification by donor type (living vs. deceased donor) and delayed graft function status. Thus, warm ischemia time is associated with adverse long-term patient and graft survival after kidney transplantation. Identifying strategies to reduce warm ischemia time is an important consideration for future study. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  9. Dietary broccoli sprouts protect against myocardial oxidative damage and cell death during ischemia-reperfusion.

    PubMed

    Akhlaghi, Masoumeh; Bandy, Brian

    2010-09-01

    Cruciferous vegetables are known for antioxidant and anti-carcinogenic effects. In the current study we asked whether dietary broccoli sprouts can protect the heart from ischemia-reperfusion. Rats were fed either control diet (sham and control groups) or a diet mixed with 2% dried broccoli sprouts for 10 days. After 10 days the isolated hearts were subjected to ischemia for 20 min and reperfusion for 2 h, and evaluated for cell death, oxidative damage, and Nrf2-regulated phase 2 enzyme activities. Broccoli sprouts feeding inhibited markers of necrosis (lactate dehydrogenase release) and apoptosis (caspase-3 activity) by 78-86%, and decreased indices of oxidative stress (thiobarbituric acid reactive substances and aconitase inactivation) by 82-116%. While broccoli sprouts increased total glutathione and activities of the phase 2 enzymes glutamate cysteine ligase and quinone reductase in liver, they did not affect these in ischemic-reperfused heart. While the mechanism is not clear, the results show that a relatively short dietary treatment with broccoli sprouts can strongly protect the heart against oxidative stress and cell death caused by ischemia-reperfusion.

  10. Dexamethasone prevents hypoxia/ischemia-induced reductions in cerebral glucose utilization and high-energy phosphate metabolites in immature brain.

    PubMed

    Tuor, U I; Yager, J Y; Bascaramurty, S; Del Bigio, M R

    1997-11-01

    We examined the potential importance of dexamethasone-mediated alterations in energy metabolism in providing protection against hypoxic-ischemic brain damage in immature rats. Seven-day-old rats (n = 165) that had been treated with dexamethasone (0.1 mg/kg, i.p.) or vehicle were assigned to control or hypoxic-ischemic groups (unilateral carotid artery occlusion plus 2-3 h of 8% oxygen at normothermia). The systemic availability of alternate fuels such as beta-hydroxybutyrate, lactate, pyruvate, and free fatty acids was not altered by dexamethasone treatment, and, except for glucose, brain levels were also unaffected. At the end of hypoxia, levels of cerebral high-energy phosphates (ATP and phosphocreatine) were decreased in vehicle- but relatively preserved in dexamethasone-treated animals. The local cerebral metabolic rate of glucose utilization (lCMRgl) was decreased modestly under control conditions in dexamethasone-treated animals, whereas cerebral energy use measured in a model of decapitation ischemia did not differ significantly between groups. The lCMRgl increased markedly during hypoxia-ischemia (p < 0.05) and remained elevated throughout ischemia in dexamethasone- but not vehicle-treated groups, indicating an enhanced glycolytic flux with dexamethasone treatment. Thus, dexamethasone likely provides protection against hypoxic-ischemic damage in immature rats by preserving cerebral ATP secondary to a maintenance of glycolytic flux.

  11. Independent cellular effects of cold ischemia and reperfusion: experimental molecular study.

    PubMed

    Lledó-García, E; Humanes-Sánchez, B; Mojena-Sánchez, M; Rodrígez, J C J; Hernández-Fernández, C; Tejedor-Jorge, A; Fernández, A L

    2013-04-01

    There is less information available on cell cultures on the exclusive effects of either duration of cold ischemia (CI) or rewarming-reperfusion in the kidney subjected to initial warm ischemia (WI). Therefore, the goals of our work were: (1) to evaluate the consequences on tubular cellular viability of different durations of CI on a kidney after an initial period of WI, and (2) to analyze the additional effect on tubular cell viability of rewarming of the same kidney. Sixteen mini-pig were used. All the animals were performed a right nephrectomy after 45-minute occlusion of the vascular pedicle. The kidneys were then divided into 2 groups (phase 1): cold storage in university of wisconsin (UW) solution for 3 hours (group A, n = 8) at 4°C, or cold storage in UW for 12 hours (group B, n = 8) at 4°C. Four organs of group A and four organs of group B were autotrasplanted (AT) and reperfused for 1 hour (phase 2). Nephrectomy was finally done. Biopsies were taken from all groups to perform cultures of proximal tubule epithelium cells. The biopsies were subjected to studies of cellular morphological viability (contrast phase microscopy [CPM]) and quantitative (confluence cell [CC]) parameters. Phase of pure CI effects (phase 1): Both CC rate and CPM parameters were significantly lower in group B compared with group A, where cell activity reached almost normal results. Phase of CI + AT (phase 2): At produced additional harmful effects in cell cultures compared with those obtained in phase 1, more evident in group B cells. The presence of cold storage followed by rewarming-reperfusion induces independent and cumulative detrimental effects in viability of renal proximal tubule cells. CI periods ≤ 3 hours may ameliorate the injuries secondary to reperfusion in comparison with longer CI periods. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Effect and mechanism of propofol on myocardial ischemia reperfusion injury in type 2 diabetic rats.

    PubMed

    Lin, Changfu; Sui, Haijing; Gu, Jie; Yang, Xue; Deng, Lin; Li, Wenzhi; Ding, Wengang; Li, Dongmei; Yang, Yingchun

    2013-11-01

    Propofol has been reported to have an inhibitory effect on ischemia/reperfusion (I/R) injury in various experimental models by reducing oxidative stress, protecting mitochondrial function and suppressing apoptosis. The aim of this study was to investigate the effect and mechanism of propofol on myocardial I/R injury in type 2 diabetic rats. A total of 24 streptozotocin (STZ)-induced diabetic rats were randomly divided into three equal groups as follows: the DI group with myocardial I/R, which was induced by occluding the left anterior descending coronary artery for 30min, followed by 2h of reperfusion; the DP group, which underwent I/R and propofol infusion at 6mg·kg(-1)·h(-1); and the DC group, which underwent sham operations without tightening of the coronary sutures. As a control, 24 healthy, age-matched, male Wistar rats were randomly divided into three equal groups: the CI, CP and CC groups. The injured cardiac tissues were removed for microscopic examination after reperfusion. The serum concentrations of nitric oxide (NO) and endothelin (ET-1); the expression of Bax, Bcl-2 and Caspase-3 within the cardiac structures; and the number of apoptotic myocardial cells were measured. Compared with the baseline levels before ischemia, the serum concentration of ET-1 after 2h of reperfusion was increased in the CI and DI groups, while the concentration of NO in these groups decreased after reperfusion. Compared with the I/R groups, propofol increased the content of NO and decreased the content of ET-1. Compared with the sham operation groups, I/R decreased the ratio of the anti-apoptotic protein Bcl-2 to the pro-apoptotic protein Bax, which resulted in an elevation of the index of apoptosis (AI). In contrast, compared with the I/R group, propofol increased the Bcl-2-to-Bax ratio and decreased the AI. I/R increased the expression of caspase-3 compared with the sham treatment groups, while treatment with propofol reduced caspase-3 expression relative to the I/R groups

  13. Liver ischemia and ischemia-reperfusion induces and trafficks the multi-specific metal transporter Atp7b to bile duct canaliculi: possible preferential transport of iron into bile.

    PubMed

    Goss, John A; Barshes, Neal R; Karpen, Saul J; Gao, Feng-Qin; Wyllie, Samuel

    2008-04-01

    Both Atp7b (Wilson disease gene) and Atp7a (Menkes disease gene) have been reported to be trafficked by copper. Atp7b is trafficked to the bile duct canaliculi and Atp7a to the plasma membrane. Whether or not liver ischemia or ischemia-reperfusion modulates Atp7b expression and trafficking has not been reported. In this study, we report for the first time that the multi-specific metal transporter Atp7b is significantly induced and trafficked by both liver ischemia alone and liver ischemia-reperfusion, as judged by immunohistochemistry and Western blot analyses. Although hepatocytes also stained for Atp7b, localized intense staining of Atp7b was found on bile duct canaliculi. Inductive coupled plasma-mass spectrometry analysis of bile copper, iron, zinc, and manganese found a corresponding significant increase in biliary iron. In our attempt to determine if the increased biliary iron transport observed may be a result of altered bile flow, lysosomal trafficking, or glutathione biliary transport, we measured bile flow, bile acid phosphatase activity, and glutathione content. No significant difference was found in bile flow, bile acid phosphatase activity, and glutathione, between control livers and livers subjected to ischemia-reperfusion. Thus, we conclude that liver ischemia and ischemia-reperfusion induction and trafficking Atp7b to the bile duct canaliculi may contribute to preferential iron transport into bile.

  14. Protective effect of curcumin against liver warm ischemia/reperfusion injury in rat model is associated with regulation of heat shock protein and antioxidant enzymes

    PubMed Central

    Shen, Shi-Qiang; Zhang, Yuan; Xiang, Jin-Jian; Xiong, Cheng-Long

    2007-01-01

    AIM: To investigate the hypothesis that the protective effects of curcumin in hepatic warm ischemia/reperfusion (I/R) injury are associated with increasing heat shock protein 70 (Hsp70) expression and antioxidant enzyme activity. METHODS: Sixty Sprague-Dawley male rats were randomly divided into sham, I/R, C + I/R groups. The model of reduced-size liver warm ischemia and reperfusion was used. Curcumin (50 mg/kg) was administered by injection through a branch of superior mesenteric vein at 30 min before ischemia in C + I/R group. Five rats were used to investigate the survival during 1 wk after operation in each group. Blood samples and liver tissues were obtained in the remaining animals after 3, 12, and 24 h of reperfusion to assess serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver tissue NO2- + NO3-, malondialdehyde (MDA) content, superoxide dismutase (SOD), catalase (CAT), nitricoxide synthase (NOS) and myeloperoxidase (MPO) activity, Hsp70 expression and apoptosis ratio. RESULTS: Compared with I/R group, curcumin pretreatment group showed less ischemia/reperfusion-induced injury. CAT and SOD activity and Hsp70 expression increased significantly. A higher rate of apoptosis was observed in I/R group than in C + I/R group, and a significant increase of MDA, NO2- + NO3- and MPO level in liver tissues and serum transaminase concentration was also observed in I/R group compared to C + I/R group. Curcumin also decreased the activity of inducible NO synthase (iNOS) in liver after reperfusion, but had no effect on the level of endothelial NO synthase (eNOS) after reperfusion in liver. The 7 d survival rate was significantly higher in C + I/R group than in I/R group. CONCLUSION: Curcumin has protective effects against hepatic I/R injury. Its mechanism might be related to the overexpression of Hsp70 and antioxidant enzymes. PMID:17461496

  15. Effects of Chronic Alcohol Exposure on the Modulation of Ischemia-Induced Glutamate Release via Cannabinoid Receptors in the Dorsal Hippocampus.

    PubMed

    Zheng, Lei; Wu, Xiaoda; Dong, Xiao; Ding, Xinli; Song, Cunfeng

    2015-10-01

    Chronic alcohol consumption is a critical contributing factor to ischemic stroke, as it enhances ischemia-induced glutamate release, leading to more severe excitotoxicity and brain damage. But the neural mechanisms underlying this phenomenon are poorly understood. We evaluated the effects of chronic alcohol exposure on the modulation of ischemia-induced glutamate release via CB1 and CB2 cannabinoid receptors during middle cerebral artery occlusion, using in vivo microdialysis coupled with high-performance liquid chromatography, in alcohol-naïve rats or rats after 1 or 30 days of withdrawal from chronic ethanol intake (6% v/v for 14 days). Intra-dorsal hippocampus (DH) infusions of ACEA or JWH133, selective CB1 or CB2 receptor agonists, respectively, decreased glutamate release in the DH in alcohol-naïve rats in a dose-dependent manner. Such an effect was reversed by co-infusions of SR141716A or AM630, selective CB1 or CB2 receptor antagonists, respectively. After 30 days, but not 1 day of withdrawal, ischemia induced an enhancement in glutamate release in the DH, as compared with non-alcohol-treated control group. Intra-DH infusions of JWH133, but not ACEA, inhibited ischemia-induced glutamate release in the DH after 30 days of withdrawal. Finally, 1 day of withdrawal did not alter the protein level of CB1 or CB2 receptors in the DH, as compared to non-alcohol-treated control rats. Whereas 30 days of withdrawal robustly decreased the protein level of CB1 receptors, but failed to alter the protein level of CB2 receptors, in the DH, as compared to non-alcohol-treated control rats. Together, these findings suggest that loss of expression/function of CB1 receptors, but not CB2 receptors in the DH, is correlated with the enhancement of ischemia-induced glutamate release after prolonged alcohol withdrawal. Copyright © 2015 by the Research Society on Alcoholism.

  16. Combined morphine and limb remote ischemic perconditioning provides an enhanced protection against myocardial ischemia/reperfusion injury by antiapoptosis.

    PubMed

    Wang, Shi-Yu; Cui, Xin-Long; Xue, Fu-Shan; Duan, Ran; Li, Rui-Ping; Liu, Gao-Pu; Yang, Gui-Zhen; Sun, Chao

    2016-05-01

    Both morphine and limb remote ischemic perconditioning (RIPer) can protect against myocardial ischemia/reperfusion injury (IRI). This experiment was designed to assess whether combined morphine and limb RIPer could provide and enhanced protection against myocardial IRI in an in vivo rat model. One hundred male Sprague-Dawley rats were randomly allocated to six groups: sham, ischemia/reperfusion (IR), ischemic preconditioning, RIPer, morphine (M), and combined morphine and remote ischemic perconditioning (M + RIPer). Ventricular arrhythmias that occurred during ischemia and early reperfusion were scored, and serum creatine kinase isoenzyme and cardiac troponin I levels were assayed. The infarct size was determined by Evans blue and triphenyl tetrazolium chloride staining. The apoptosis in the myocardial ischemic core, ischemic border, and nonischemic areas was assessed through real-time polymerase chain reaction for Bax and Bcl-2 and with the transferase-mediated deoxyuridine triphosphate-biotin nick end labeling assay. The infarct size, serum cardiac troponin I level, incidence, and score of the arrhythmias during the initial reperfusion were significantly reduced in the M + RIPer group compared with the IR group but did not differ significantly between the ischemic preconditioning and M + RIPer groups. Transferase-mediated deoxyuridine triphosphate-biotin nick end labeling-positive cells were significantly decreased, and the Bcl-2/Bax ratio was significantly increased in the M + RIPer group compared with the IR group. This experiment demonstrates that combined morphine and limb RIPer provides an enhanced protection against myocardial IRI by the Bcl-2-linked apoptotic signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    NASA Astrophysics Data System (ADS)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  18. [The effect of butylphthalide on expression of NGF and BDNF in ischemia stroke tissue of rat cerebrum].

    PubMed

    Kong, Shuang-yan; Li, Qi-fu; Yang, Jie; He, Li

    2007-06-01

    To study the expressions of BDNF, BDNF mRNA, NGF and NGF mRNA in the permanent focal cerebral ischemia tissues of rats. METHHODS: Healthy male Sprague-Dawley rats were taken for this study project. According to the procedure of Zea-Longa, the rat model with permanent cerebral ischemia was established by rat middle cerebral artery obstructed (MCAO) with a nylon thread, and the model rats of neurobehavioral evaluation as 1-3 grade were randomly divided into two groups: butylphthalide group (A group) and control group (B group). A group was given with 25 mg/kg butylphthalide, B group was given with edible oil, two times every day. 3 days after occlusion, all rats were sacrificed after evaluated the neurobehavioral scores, and the samples of cerebrum were obtained after in situ perfusion and fixation with 40 g/L paraformaldehyde. 5 rats in each group were taken to tetrazolium chloride (TTC) staining for macroscopic observation of cerebral infarction area, the rest samples were processed by immunohistochemistry to evaluate effects of butylphthalide on BDNF and NGF expression, hybridization in situ to evaluate effects of butylphthalide on BDNF mRNA and NGF mRNA expression. SPSS12. 0 for statistical analysis, it was P<0. 05 as having statistical significance. Comparing to control group (B group), butylphthalide group (A group) did not have significantly pathological difference, but the grade of behavior and infarction area were apparently reduced (P<0. 05). In butylphthalide group, there was a significant expression up-regulation to BDNF, NGF, BDNF mRNA and NGF mRNA in the peripheral around infarction and cornu ammonis or hippocampus area (P<0. 05). However in the infarction area, the expressions of BDNF, NGF, BDNF mRNA and NGF mRNA had no significantly statistical difference (P> 0. 05). Comparing to control group, butylphthalide can significantly up-regulate the expressions of BDNF and NGF in genetic transcription level, and protect from the ischemia injury.

  19. Progressive thermopreconditioning attenuates rat cardiac ischemia/reperfusion injury by mitochondria-mediated antioxidant and antiapoptotic mechanisms.

    PubMed

    Chien, Chen-Yen; Chien, Chiang-Ting; Wang, Shoei-Shen

    2014-08-01

    Progressive thermal preconditioning (PTP) provides vascular protection with less hemodynamic fluctuations, endoplasmic reticulum (ER), and oxidative stress compared with whole body hyperthermia. We suggest PTP might efficiently diminish cardiac ischemia/reperfusion-induced apoptosis and autophagy injury. A total of 67 male Wistar rats were divided into a non-PTP control group, 24 or 72 hours after a single cycle or 3 consecutive cycles of PTP in a 42°C water bath (1-24, 1-72, 3-24, and 3-72 groups). We measured the cardiac O2(-) amount in vivo in response to left anterior descending coronary artery ligation for 2 hours and reperfusion for 3 hours. Cardiac function and injury were determined by microcirculation, electrocardiography, and infarct size. The PTP-induced protective effects on nicotinamide adenine dinucleotide phosphate oxidase gp91-mediated oxidative stress, ER stress, and apoptosis- and autophagy-related mechanisms were examined using Western blot and immunohistochemistry. Coronary arterial ischemia/reperfusion depressed cardiac microcirculation, induced ST-segment elevation and increased infarct size in non-PTP and PTP rats. Ischemia/reperfusion enhanced the cardiac O2(-) levels by enhanced nicotinamide adenine dinucleotide phosphate oxidase gp91 expression, cytosolic cytochrome C release, and decreased mitochondrial Bcl-2 expression. Cardiac injury activated ER stress-78-kDa glucose-regulated protein expression, increased the Bax/Bcl-2 ratio, cleaved caspase 3 expression and poly-(ADP-ribose)-polymerase fragments, leading to apoptosis formation, and promoted LC3-II expression, resulting in autophagy formation. PTP treatment elevated heat shock protein 70, heat shock protein 32, Bcl-2, Bcl-xL, and manganese superoxide dismutase in the rat heart, especially in the 3-72 group. PTP treatment significantly restored cardiac microcirculation, decreased oxidative stress, ER stress, apoptosis, autophagy, and infarct size. PTP significantly reduced cardiac

  20. Comparison of the anti-apoptotic effects of 15- and 35-minute suspended moxibustion after focal cerebral ischemia/reperfusion injury.

    PubMed

    Xiao, Ai-Jiao; He, Lin; Ouyang, Xin; Liu, Jie-Min; Chen, Ming-Ren

    2018-02-01

    Heat-sensitive suspended moxibustion has a neuroprotective effect against focal cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. The duration of heat-sensitive suspended moxibustion (usually from 30 minutes to 1 hour) is longer than traditional suspended moxibustion (usually 15 minutes). However, the effects of 15- and 35-minute suspended moxibustion in rats with cerebral ischemia/reperfusion injury are poorly understood. In this study, we performed 15- or 35-minute suspended moxibustion at acupoint Dazhui (GV14) in an adult rat model of focal cerebral ischemia/reperfusion injury. Infarct volume was evaluated with the 2,3,5-triphenyltetrazolium chloride assay. Histopathological changes and neuronal apoptosis at the injury site were assessed by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Caspase-9 and caspase-3 expression at the injury site was detected using immunofluorescent staining. Bax and Bcl-2 expression at the injury site was assessed using western blot assay. In the 35-minute moxibustion group, infarct volume was decreased, neuronal apoptosis was reduced, caspase-9, caspase-3 and Bax expression was lower, and Bcl-2 expression was increased, compared with the 15-minute moxibustion group. Our findings show that 35-minute moxibustion has a greater anti-apoptotic effect than 15-minute moxibustion after focal cerebral ischemia/reperfusion injury.

  1. Magnolol attenuates the lung injury in hypertonic saline treatment from mesenteric ischemia reperfusion through diminishing iNOS.

    PubMed

    Shih, Hsin-Chin; Huang, Mu-Shun; Lee, Chen-Hsen

    2012-06-15

    Hypertonic saline (HTS) administration can decrease the inflammation following ischemia reperfusion. Magnolol is a potent antioxidant. The present study investigated whether combined treatment of magnolol and HTS could provide further protection in mesenteric ischemia reperfusion injury. Male C3H/HeOuJ mice were randomly segregated into the following groups: sham-operated (sham), vehicle treatment and mesenteric ischemia reperfusion (MSIR) (vehicle-treated), magnolol treatment and MSIR (magnolol-treated), HTS treatment and MSIR (HTS-treated), as well as co-administration of magnolol plus HTS and MSIR (combined-treated). In MSIR, mice were subjected to mesenteric ischemia for 60 min followed by reperfusion for 30 min. Lung injury was evaluated by lung edema (water ratio) and myeloperoxide (MPO) activity; RNA expression of inducible nitric oxide synthetase (iNOS), TNF-α, and IL-6 were assayed by real time RT-PCR. The formation of peroxynitrite in plasma was assayed by the peroxynitrite-dependent oxidation of dihydrorhodamine 123 (DHR 123) to rhodamine. Compared with those in the sham-treated group, lung edema and MPO activity, expressions of iNOS, TNF-α and IL-6, and plasma peroxynitrite were significantly increased in the vehicle-treated group. Significant attenuations of these parameters were found in the magnolol-treated or HTS-treated animals. Combined treatment of magnolol and HTS further suppressed the lung edema, iNOS, and TNF-α expressions, and plasma peroxynitrite, compared with the results of a single treatment of magnolol or HTS. Compared with single-agent use, co-administration of magnolol and HTS further decreases iNOS expression and plasma peroxynitrite as well as the degree of lung injury from MISR. These results may provide another treatment measure for post-injury immunomodulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Transduction of anti-cell death protein FNK protects isolated rat hearts from myocardial infarction induced by ischemia/reperfusion.

    PubMed

    Arakawa, Masayuki; Yasutake, Masahiro; Miyamoto, Masaaki; Takano, Teruo; Asoh, Sadamitsu; Ohta, Shigeo

    2007-05-08

    Artificial anti-cell death protein FNK, a Bcl-x(L) derivative with three amino acid-substitutions (Y22F, Q26N, and R165K) has enhanced anti-apoptotic and anti-necrotic activity and facilitates cell survival in many species and cell types. The objectives of this study were (i) to investigate whether the protein conjugated with a protein transduction domain (PTD-FNK) reduces myocardial infarct size and improves post-ischemic cardiac function in ischemic/reperfused rat hearts, and (ii) to understand the mechanism(s) by which PTD-FNK exerts a protective effect. Isolated rat hearts were subjected to 35-min global ischemia, followed by 120-min reperfusion using the Langendorff methods. PTD-FNK (a total of 30 microl) was injected intramuscularly into the anterior wall of the left ventricle either at 1 min after induction of global ischemia (group A) or at 30 min after induction of global ischemia (at 5 min before reperfusion) (group B). In group A, infarct size was significantly reduced from 47.8+/-6.8% in the control to 30.4+/-5.2, 28.7+/-3.8, and 30.4+/-6.8% with PTD-FNK at 5, 50, and 500 nmol/l, respectively (p<0.05). Temporal recovery of left ventricular developed pressure at 60 min and 120 min after reperfusion was significantly better in PTD-FNK (50 and 500 nmol/l)-treated groups than in the control (p<0.05). In contrast, PTD-FNK treatment had no effect on group B. Western blot analysis showed that PTD-FNK markedly inhibited procaspase-3 cleavage (activation of caspase-3) and reduced the number of nuclei stained by a terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphoshate nick-end labeling (TUNEL) assay. These findings suggest that PTD-FNK reduces the volume of myocardial infarction with corresponding functional recovery, at least in part, through the suppression of myocardial apoptosis following ischemia/reperfusion.

  3. Mannitol infusion immediately after reperfusion suppresses the development of focal cortical infarction after temporary cerebral ischemia in gerbils

    PubMed Central

    Ito, Umeo; Hakamata, Yoji; Watabe, Kazuhiko; Oyanagi, Kiyomitsu

    2014-01-01

    Previously we found that, after temporary cerebral ischemia, microvasculogenic secondary focal cerebral cortical ischemia occurred, caused by microvascular obstruction due to compression by swollen astrocytic end-feet, resulting in focal infarction. Herein, we examined whether mannitol infusion immediately after restoration of blood flow could protect the cerebral cortex against the development of such an infarction. If so, the infusion of mannitol might improve the results of vascular reperfusion therapy. We selected stroke-positive animals during the first 10 min after left carotid occlusion performed twice with a 5-h interval, and allocated them into four groups: sham-operated control, no-treatment, mannitol-infusion, and saline-infusion groups. Light- and electron-microscopic studies were performed on cerebral cortices of coronal sections prepared at the chiasmatic level, where the focal infarction develops abruptly in the area where disseminated selective neuronal necrosis is maturing. Measurements were performed to determine the following: (A) infarct size in HE-stained specimens from all groups at 72 and 120 h after return of blood flow; (B) number of carbon-black-suspension-perfused microvessels in the control and at 0.5, 3, 5, 8, 12 and 24 h in the no-treatment and mannitol-infusion groups; (C) area of astrocytic end-feet; and (D) number of mitochondria in the astrocytic end-feet in electron microscopic pictures taken at 5 h. The average decimal fraction area ratio of infarct size in the mannitol group was significantly reduced at 72 and 120 h, associated with an increased decimal fraction number ratio of carbon-black-suspension-perfused microvessels at 3, 5 and 8 h, and a marked reduction in the size of the end-feet at 5 h. Mannitol infusion performed immediately after restitution of blood flow following temporary cerebral ischemia remarkably reduced the size of the cerebral cortical focal infarction by decreasing the swelling of the end

  4. Lung inflation with hydrogen during the cold ischemia phase decreases lung graft injury in rats

    PubMed Central

    Liu, Rongfang; Fang, Xianhai; Meng, Chao; Xing, Jingchun; Liu, Jinfeng; Yang, Wanchao

    2015-01-01

    Hydrogen has antioxidant and anti-inflammatory effects on lung ischemia–reperfusion injury when it is inhaled by donor or/and recipient. This study examined the effects of lung inflation with 3% hydrogen during the cold ischemia phase on lung graft function in rats. The donor lung was inflated with 3% hydrogen, 40% oxygen, and 57% nitrogen at 5 mL/kg, and the gas was replaced every 20 min during the cold ischemia phase for 2 h. In the control group, the donor lung was inflated with 40% oxygen and 60% nitrogen at 5 mL/kg. The recipient was euthanized 2 h after orthotropic lung transplantation. The hydrogen concentration in the donor lung during the cold ischemia phase was 1.99–3%. The oxygenation indices in the arterial blood and pulmonary vein blood were improved in the hydrogen group. The inflammation response indices, including lung W/D ratio, the myeloperoxidase activity in the grafts, and the levels of IL-8 and TNF-α in serum, were significantly lower in the hydrogen group (5.2 ± 0.8, 0.76 ± 0.32 U/g, 340 ± 84 pg/mL, and 405 ± 115 pg/mL, respectively) than those in the control group (6.5 ± 0.7, 1.1 ± 0.5 U/g, 443 ± 94 pg/mL, and 657 ± 96 pg/mL, respectively (P < 0.05), and the oxidative stress indices, including the superoxide dismutase activity and the level of malonaldehyde in lung grafts were improved after hydrogen application. Furthermore, the lung injury score determined by histopathology, the cell apoptotic index, and the caspase-3 protein expression in lung grafts were decreased after hydrogen treatment, and the static pressure–volume curve of lung graft was improved by hydrogen inflation. In conclusion, lung inflation with 3% hydrogen during the cold ischemia phase alleviated lung graft injury and improved graft function. PMID:25662956

  5. Hemorheological and metabolic consequences of renal ischemia-reperfusion and their modulation by N,N-dimethyl-tryptamine on a rat model.

    PubMed

    Peto, Katalin; Nemeth, Norbert; Mester, Anita; Magyar, Zsuzsanna; Ghanem, Souleiman; Somogyi, Viktoria; Tanczos, Bence; Deak, Adam; Bidiga, Laszlo; Frecska, Ede; Nemes, Balazs

    2018-04-13

    Micro-rheological relations of renal ischemia-reperfusion (I/R) have not been completely elucidated yet. Concerning anti-inflammatory agents, it is supposed that sigma-1 receptor agonist N,N-dimethyl-tryptamin (DMT) can be useful to reduce I/R injury. To investigate the micro-rheological and metabolic parameters, and the effects of DMT in renal I/R in rats. In anesthetized rats from median laparotomy both kidneys were exposed. In Control group (n = 6) no other intervention happened. In I/R group (n = 10) the right renal vessels were ligated and after 60 minutes the organ was removed. The left renal vessels were clamped for 60 minutes followed by 120-minute reperfusion. In I/R+DMT group (n = 10) DMT was administered 15 minutes before the ischemia. Blood samples were taken before/after ischemia and during the reperfusion for testing hematological, metabolic parameters, erythrocyte deformability and aggregation. Lactate concentration significantly increased and accompanied with decreased blood pH. Enhanced erythrocyte aggregation and impaired deformability were observed from the 30th minute of reperfusion. In I/R+DMT group we found diminished changes compared to the I/R group (lactate, pH, electrolytes, red blood cell deformability and aggregation). Metabolic and micro-rheological parameters impair during renal I/R. DMT could reduce but not completely prevent the changes in this rat model.

  6. Isoflurane produces sustained cardiac protection after ischemia-reperfusion injury in mice.

    PubMed

    Tsutsumi, Yasuo M; Patel, Hemal H; Lai, N Chin; Takahashi, Toshiyuki; Head, Brian P; Roth, David M

    2006-03-01

    Isoflurane reduces myocardial ischemia-reperfusion injury within hours to days of reperfusion. Whether isoflurane produces sustained cardiac protection has never been examined. The authors studied isoflurane-induced cardiac protection in the intact mouse after 2 h and 2 weeks of reperfusion and determined the dependence of this protection on adenosine triphosphate-dependent potassium channels and the relevance of this protection to myocardial function and apoptosis. Mice were randomly assigned to receive oxygen or isoflurane for 30 min with 15 min of washout. Some mice received mitochondrial (5-hydroxydecanoic acid) or sarcolemmal (HMR-1098) adenosine triphosphate-dependent potassium channel blockers with or without isoflurane. Mice were then subjected to a 30-min coronary artery occlusion followed by 2 h or 2 weeks of reperfusion. Infarct size was determined at 2 h and 2 weeks of reperfusion. Cardiac function and apoptosis were determined 2 weeks after reperfusion. Isoflurane did not change hemodynamics. Isoflurane reduced infarct size after reperfusion when compared with the control groups (27.7 +/- 6.3 vs. 41.7 +/- 6.4% at 2 h and 19.6 +/- 5.9 vs. 28.8 +/- 9.0% at 2 weeks). Previous administration of 5-hydroxydecanoic acid, but not HMR-1098, abolished isoflurane-induced cardiac protection. At 2 weeks, left ventricular end-diastolic diameter was decreased significantly and end-systolic pressure and maximum and minimum dP/dt were improved by isoflurane. Isoflurane-treated mice subjected to ischemia and 2 weeks of reperfusion showed less expression of proapoptotic genes, significantly decreased expression of cleaved caspase-3, and significantly decreased deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling-positive nuclei compared with the control group. Cardiac protection induced by isoflurane against necrotic and apoptotic cell death is associated with an acute memory period that is sustained and functionally relevant 2 weeks after

  7. Acute Administration of Natural Honey Protects Isolated Heart in Normothermic Ischemia

    PubMed Central

    Gharekhani, Afshin; Najafi, Moslem; Ghavimi, Hamed

    2012-01-01

    This study intended to assess the efficacy of acute administration of natural honey on cardiac arrhythmias and infarct size when it is used during the normothermic ischemia in isolated rat heart. During 30 min of regional normothermic ischemia followed by 120 min of reperfusion, the isolated hearts were perfused by a modified drug free Krebs-Henseleit solution (control) or the solution containing 0.125, 0.25, 0.5 and 1% of freshly prepared natural honey (test groups), respectively. Cardiac arrhythmias were analyzed and determined through the recorded ECGs. The infarct size was measured using computerized planimetry package. At the ischemic phase, honey (0.25 and 0.5%) decreased the number and duration of ventricular tachycardia (VT), total number of ventricular ectopic beats (VEBs), duration and incidence of reversible ventricular fibrillation (VF) and total VF (p < 0.05 for all). During the reperfusion, concentrations of 0.125, 0.25 and 0.5% lowered the number of VT (p < 0.05), duration of reversible VF (p < 0.01) and total number of VEBs (p < 0.05). In addition, VT duration was reduced significantly with honey 0.125 and 0.25%. Moreover, the infarct size was 45.6 ± 3.4% in the control group, while the perfusion of honey (0.125, 0.25 and 0.5%) reduced it to 14.8 ± 5.1 (p < 0.001), 24.6 ± 7.3 (p < 0.01) and 31.4 ± 7.3% (p < 0.05), respectively. Regarding the results, it is concluded that the acute administration of natural honey in normothermic ischemia conditions can protect the rat heart as the reduction of infarct size and arrhythmias. Conceivably, the antioxidant and free radical scavenging activity, the reduction of necrotized tissue and the providence of rich energy source are more important mechanisms in cardioprotective effects of natural honey. PMID:24250562

  8. Placental Ischemia Impairs Middle Cerebral Artery Myogenic Responses in the Pregnant Rat

    PubMed Central

    Ryan, Michael J.; Gilbert, Emily L.; Glover, Porter H.; George, Eric M.; Masterson, C. Warren; McLemore, Gerald R.; LaMarca, Babbette; Granger, Joey P.; Drummond, Heather A.

    2011-01-01

    One potential mechanism contributing to the increased risk for encephalopathies in women with preeclampsia is altered cerebral vascular autoregulation resulting from impaired myogenic tone. Whether placental ischemia, a commonly proposed initiator of preeclampsia, alters cerebral vascular function is unknown. This study tested the hypothesis that placental ischemia in pregnant rats (induced by reducing uterine perfusion pressure, RUPP) leads to impaired myogenic responses in middle cerebral arteries (MCA). Mean arterial pressure (in mmHg) was increased by RUPP (135±3) compared with normal pregnant rats (NP, 103±2) and non-pregnant controls (Ctrl, 116±1). MCA from rats sacrificed on gestation day 19 were assessed in a pressure ateriograph under active (+ Ca2+) and passive (0 Ca2+) conditions while luminal pressure was varied between 25 and 150 mmHg. The slope of the relationship between tone and pressure in the MCA was 0.08±0.01 in CTRL rats and was similar in NP rats (0.05±0.01). In the RUPP model of placental ischemia, this relationship was markedly reduced (slope = 0.01±0.00, p<0.05). Endothelial dependent and independent dilation was not different between groups nor was there evidence of vascular remodeling assessed by the wall:lumen ratio and calculated wall stress. The impaired myogenic response associated with brain edema measured by % water content (RUPP p<0.05 vs. CTRL and NP). This study demonstrates that placental ischemia in pregnant rats leads to impaired myogenic tone in the MCA and that the RUPP model is a potentially important tool to examine mechanisms leading to encephalopathy during preeclamptic pregnancies. PMID:22068864

  9. Including Everyone in Research: The Burton Street Research Group

    ERIC Educational Resources Information Center

    Abell, Simon; Ashmore, Jackie; Wilson, Dorothy; Beart, Suzie; Brownley, Peter; Butcher, Adam; Clarke, Zara; Combes, Helen; Francis, Errol; Hayes, Stefan; Hemmingham, Ian; Hicks, Kerry; Ibraham, Amina; Kenyon, Elinor; Lee, Darren; McClimens, Alex; Collins, Michelle; Newton, John; Wilson, Dorothy

    2007-01-01

    In our paper we talk about what it is like to be a group of people with and without learning disabilities researching together. We describe the process of starting and maintaining the research group and reflect on the obstacles that we have come across, and the rewards such research has brought us. Lastly we put forward some ideas about the role…

  10. The protective effect of dexmedetomidine in a rat ex vivo lung model of ischemia-reperfusion injury.

    PubMed

    Zhou, Yan; Zhou, Xinqiao; Zhou, Wenjuan; Pang, Qingfeng; Wang, Zhiping

    2018-01-01

    To investigate the effect of dexmedetomidine (Dex) in a rat ex vivo lung model of ischemia-reperfusion injury. An IL-2 ex vivo lung perfusion system was used to establish a rat ex vivo lung model of ischemia-reperfusion injury. Drugs were added to the perfusion solution for reperfusion. Lung injury was assessed by histopathological changes, airway pressure (Res), lung compliance (Compl), perfusion flow (Flow), pulmonary venous oxygen partial pressure (PaO2), and lung wet/dry (W/D) weight ratio. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), 78 kDa glucose-regulated protein (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP) were measured, respectively. The introduction of Dex attenuated the post-ischemia-reperfusion lung damage and MDA level, improved lung histology, W/D ratio, lung injury scores and SOD activity. Decreased mRNA and protein levels of GRP78 and CHOP compared with the IR group were observed after Dex treatment. The effect of Dex was dosage-dependence and a high dose of Dex (10 nM) was shown to confer the strongest protective effect against lung damage (P<0.05). Yohimbine, an α2 receptor antagonist, significantly reversed the protective effect of Dex in lung tissues (P<0.05). Dex reduced ischemia-reperfusion injury in rat ex vivo lungs.

  11. [Activity of antioxidative enzymes of the myocardium during ischemia].

    PubMed

    Gutkin, D V; Petrovich, Iu A

    1982-01-01

    Activation of lipid peroxidation during myocardial ischemia may be determined by the reduction of the enzymatic antioxidant cell protection. Such a conclusion has been drawn on the basis of an analysis of variation in the activity of superoxide dismutase, glutathion peroxidase and catalase in experimental myocardial ischemia in rats, induced by ligation of the left descending artery of the heart. In the early period of ischemia (1-3 h) the activity of superoxide dismutase and glutation peroxidase markedly decreases. In the periischemic zone, the fall in the enzymatic activity is not so pronounced. The activity of the enzymes does not reach the basic level 5 days after the operation.

  12. PATHOPHYSIOLOGICAL CONSEQUENCES OF TAT-HKII PEPTIDE ADMINISTRATION ARE INDEPENDENT OF IMPAIRED VASCULAR FUNCTION AND ENSUING ISCHEMIA

    PubMed Central

    Nederlof, Rianne; Xie, Chaoqin; Eerbeek, Otto; Koeman, Anneke; Milstein, Dan MJ; Hollmann, Markus W; Mik, Egbert G; Warley, Alice; Southworth, Richard; Akar, Fadi G.; Zuurbier, Coert J

    2013-01-01

    Rationale We have shown that partial dissociation of HKII from mitochondria in the intact heart using low dose (200 nM) TAT-HKII prevents the cardioprotective effects of ischemic preconditioning (IPC) whereas high-dose (10 μM) TAT-HKII administration results in rapid myocardial dysfunction, mitochondrial depolarization and disintegration. In this issue of Circulation Research, Pasdois et al argue that the deleterious effects of TAT-HKII administration on cardiac function are likely due to vasoconstriction and ensuing ischemia. Objective To investigate whether altered vascular function and ensuing ischemia recapitulate the deleterious effects of TAT-HKII in intact myocardium. Methods and Results Using a variety of complementary techniques, including mitochondrial membrane potential (ΔΨm) imaging, high-resolution optical action potential (AP) mapping, analysis of lactate production, NADH epifluorescence, lactate dehydrogenase (LDH) release, and electron microscopy, we provide direct evidence that refutes the notion that acute myocardial dysfunction by high-dose TAT-HKII peptide administration is a consequence of impaired vascular function. Moreover, we demonstrate that low-dose TAT-HKII treatment, which abrogates the protective effects of IPC, is not associated with ischemia or ischemic-injury. Conclusions Our findings challenge the notion that the effects of TAT-HKII are attributable to impaired vascular function and ensuing ischemia; thereby, lending further credence to the role of mitochondria bound HKII as a critical regulator of cardiac function, ischemia-reperfusion (IR) injury, and cardioprotection by IPC. PMID:23329797

  13. Outcomes of Peripheral Vascular Interventions in Select Patients With Lower Extremity Acute Limb Ischemia.

    PubMed

    Inagaki, Elica; Farber, Alik; Kalish, Jeffrey A; Eslami, Mohammad H; Siracuse, Jeffrey J; Eberhardt, Robert T; Rybin, Denis V; Doros, Gheorghe; Hamburg, Naomi M

    2018-04-12

    Contemporary data on patients presenting with acute limb ischemia (ALI), who are selected for treatment with endovascular peripheral vascular interventions (PVI), are limited. Our study examined outcomes following endovascular PVI in patients with ALI by comparing with patients treated for chronic critical limb ischemia using a regional quality improvement registry. Of the 11 035 patients in the Vascular Study Group of New England PVI database (2010-2014), we identified 365 patients treated for lower extremity ALI who were 5:1 frequency matched (by procedure year and arterial segments treated) to 1808 patients treated for critical limb ischemia. ALI patients treated with PVI had high burden of atherosclerotic risk factors and were more likely to have had prior ipsilateral revascularizations. ALI patients were less likely to be treated with self-expanding stents and more likely to undergo thrombolysis than patients with critical limb ischemia. In multivariable analysis, ALI was associated with higher technical failure (odds ratio 1.7, 95% confidence interval, 1.1%-2.5%), increased rate of distal embolization (odds ratio 2.7, 95% confidence interval, 1.5%-4.9%), longer length of stay (means ratio 1.6, 95% confidence interval, 1.4%-1.8%), and higher in-hospital mortality (odds ratio 2.8, 95% confidence interval, 1.3%-5.9%). ALI was not associated with risk of major amputation or mortality at 1 year. In a multicenter cohort of patients treated with PVI, we found that ALI patients selected for treatment with endovascular techniques experienced greater short-term adverse events but similar long-term outcomes as their critical limb ischemia counterparts. Further studies are needed to refine the selection of ALI patients who are best served by PVI. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed themore » expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.« less

  15. Osthole ameliorates renal ischemia-reperfusion injury in rats.

    PubMed

    Zheng, Yi; Lu, Min; Ma, Lulin; Zhang, Shudong; Qiu, Min; Wang, Yunpeng

    2013-07-01

    Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury. The pathogenetic mechanisms underlying I/R injury involve oxidative stress and apoptosis. Osthole, a natural coumarin derivative, has been reported to possess antioxidant and antiapoptotic activities. This study aimed to investigate the potential effects of osthole on renal I/R injury in an in vivo rat model. We induced renal I/R injury by clamping the left renal artery for 45 min followed by reperfusion, along with a contralateral nephrectomy. We randomly assigned 54 rats to three groups (18 rats/group): sham-operated, vehicle-treated I/R, and osthole-treated I/R. We treated rats intraperitoneally with osthole (40 mg/kg) or vehicle (40 mg/kg) 30 min before renal ischemia. We harvested serum and kidneys at 1, 6, and 24 h after reperfusion. Renal function and histological changes were assessed. We also determined markers of oxidative stress and cell apoptosis in kidneys. Osthole treatment significantly attenuated renal dysfunction and histologic damage induced by I/R injury. The I/R-induced elevation in kidney malondialdehyde level decreased, whereas reduced kidney superoxide dismutase and catalase activities were markedly increased. Moreover, osthole-treated rats had a dramatic decrease in apoptotic tubular cells, along with a decrease in caspase-3 and an increase in the Bcl-2/Bax ratio. Osthole treatment protects murine kidney from renal I/R injury by suppressing oxidative stress and cell apoptosis. Thus, osthole may represent a novel practical strategy to prevent renal I/R injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Blood free Radicals Concentration Determined by Electron Paramagnetic Resonance Spectroscopy and Delayed Cerebral Ischemia Occurrence in Patients with Aneurysmal Subarachnoid Hemorrhage.

    PubMed

    Ewelina, Grzywna; Krzysztof, Stachura; Marek, Moskala; Krzysztof, Kruczala

    2017-12-01

    Pathophysiology of delayed cerebral ischemia and cerebral vasospasm following aneurysmal subarachnoid hemorrhage is still poorly recognized, however free radicals are postulated as one of the crucial players. This study was designed to scrutinize whether the concentration of free radicals in the peripheral venous blood is related to the occurrence of delayed cerebral ischemia associated with cerebral vasospasm. Twenty-four aneurysmal subarachnoid hemorrhage patients and seven patients with unruptured intracranial aneurysm (control group) have been studied. Free radicals in patients' blood have been detected by the electron paramagnetic resonance (CMH.HCl spin probe, 150 K, ELEXSYS E500 spectrometer) on admission and at least 72 h from disease onset. Delayed cerebral ischemia monitoring was performed by daily neurological follow-up and transcranial color coded Doppler. Delayed cerebral ischemia observed in six aneurysmal subarachnoid hemorrhage patients was accompanied by cerebral vasospasm in all six cases. No statistically significant difference in average free radicals concentration between controls and study subgroups was noticed on admission (p = .3; Kruskal-Wallis test). After 72 h free radicals concentration in delayed cerebral ischemia patients (3.19 ± 1.52 mmol/l) differed significantly from the concentration in aneurysmal subarachnoid hemorrhage patients without delayed cerebral ischemia (0.65 ± 0.37 mmol/l) (p = .012; Mann-Whitney test). These findings are consistent with our assumptions and seem to confirm the role of free radicals in delayed cerebral ischemia development. Preliminary results presented above are promising and we need perform further investigation to establish whether blood free radicals concentration may serve as the biomarker of delayed cerebral ischemia associated with cerebral vasospasm.

  17. Effects of anti-tumor necrosis factor-alpha and anti-intercellular adhesion molecule-1 antibodies on ischemia/reperfusion lung injury.

    PubMed

    Chiang, Chi-Huei

    2006-10-31

    Inhibition of neutrophil activation and adherence to endothelium by antibodies to tumor necrosis factor-alpha (TNF-alpha) and intercellular adhesion molecules (ICAM-1), respectively, might attenuate ischemia-reperfusion injury (I/R). I/R was conducted in an isolated rat lung model. Anti-TNF-alpha antibody and/or anti-ICAM-1 antibody were added before ischemia or after reperfusion. Hemodynamic changes, lung weight gain (LWG), capillary filtration coefficients (Kfc), and pathologic changes were assessed to evaluate the severity of I/R. The LWG, Kfc, pathological changes and lung injury score of treatment groups with anti-TNF-alpha antibody treatment, either pre-ischemia or during reperfusion, were less than those observed in control groups. Similar findings were found in group treated with anti-ICAM-1 antibody or combination therapy during reperfusion. In contrast, pre-I/R treatment with anti-ICAM-1 antibody induced severe lung edema and failure to complete the experimental procedure. No additional therapeutic effect was found in combination therapy. We conclude that TNF-alpha and ICAM-1 play important roles in I/R. Anti-TNF-alpha antibody has therapeutic and preventive effects on I/R. However, combined therapy with anti-TNF-alpha antibody and anti-ICAM-1 antibody may have no additive effect and need further investigation.

  18. Exertional headache and coronary ischemia despite normal electrocardiographic stress testing.

    PubMed

    Cutrer, F Michael; Huerter, Karina

    2006-01-01

    Exertional headaches may under certain conditions reflect coronary ischemia. We report the case of a patient seen in a neurology referral practice whose exertional headaches, even in the face of two normal electrocardiographic stress tests and in the absence of underlying chest pain were the sole symptoms of coronary ischemia as detected by Tc-99m Sestamibi testing SPECT stress testing. Stent placement resulted in complete resolution of headaches. Exertional headache in the absence of chest pain may reflect underlying symptomatic coronary artery disease (CAD) even when conventional electrocardiographic stress testing does not indicate ischemia.

  19. Chronic heat improves mechanical and metabolic response of trained rat heart on ischemia and reperfusion.

    PubMed

    Levy, E; Hasin, Y; Navon, G; Horowitz, M

    1997-05-01

    Cardiac mechanics and metabolic performance were studied in isolated perfused hearts of rats subjected to a combined chronic stress of heat acclimation and swimming training (EXAC) or swimming training alone (EX). Diastolic (DP) and systolic pressures (SP), coronary flow (CF), and oxygen consumption were measured during normoperfusion (80 mmHg), and the appearance of ischemic contracture (IC), DP, and SP were measured during progressive graded ischemia, total ischemia (TI), and reperfusion insults. ATP, phosphocreatine, and intracellular pH were measured during TI and reperfusion with 31P nuclear magnetic resonance spectroscopy. During normoperfusion, SP and cardiac efficiency (derived from rate-pressure product-oxygen consumption relationships) were the highest in the 2-mo EXAC hearts (P < 0.0001). During progressive graded ischemia, the development of IC (percentage of total hearts) was similar in both EXAC and EX hearts; the only significant difference was confined to the 1- vs. 2-mo groups. The onset of IC was delayed in the EXAC hearts and, on reperfusion, recovery, particularly of DP, was significantly improved in the latter. After TI, EXAC hearts retained 30% of the ATP pool and there was a delayed decline in intracellular pH. On reperfusion, these hearts also displayed improved ATP and phosphocreatine recovery, the 2-mo EXAC heart demonstrating significantly faster high-energy phosphate salvage, improved diastolic function, and pulse pressure recovery. The data attest to the beneficial effects of heat acclimation on cardiac mechanics of trained rats during normoperfusion and cardiac protection on ischemia and reperfusion. Possibly, energy sparing, lesser acidosis, and shorter duration of IC on ischemia and improved energy salvage on reperfusion contribute synergistically to this potent beneficial effect.

  20. Clonidine preconditioning improved cerebral ischemia-induced learning and memory deficits in rats via ERK1/2-CREB/ NF-κB-NR2B pathway.

    PubMed

    Li, Yanli; Yu, Min; Zhao, Bo; Wang, Yan; Zha, Yunhong; Li, Zicheng; Yu, Lingling; Yan, Lingling; Chen, Zhangao; Zhang, Wenjuan; Zeng, Xiaoli; He, Zhi

    2018-01-05

    Clonidine, a classical α-2 adrenergic agonists, has been shown to antagonize brain damage caused by hypoxia, cerebral ischemia and excitotoxicity and reduce cerebral infarction volume in recent studies. We herein investigate the regulatory effect and possible underlying mechanism of clonidine on learning and memory in rats with cerebral ischemia. The cerebral ischemia rat model was established by right middle cerebral artery occlusion for 2h and reperfusion for 28 days. Drugs were administrated to the rats for consecutive 7 days intraperitoneally and once again on the day of surgery. The learning and memory in rats was assayed by Morris water maze. Moreover, protein expression levels of NMDAR2B (NR2B)/ phosphor - NR2B, ERK1/2/phosphor- ERK1/2, CREB/phosphor-CREB and NF-κB/phosphor-NF-κB in the cortex and hippocampus of the rats were assayed by western blotting. Our results demonstrated that clonidine treatment significantly abrogated the negative effect induced by cerebral ischemia on the learning and memory in the rats. In the Western blotting assay, clonidine treatment led to significant up-regulation of the expression level of NR2B and Phospho-NR2B in the hippocampus of the rats when compared with the cerebral ischemia group. Furthermore, clonidine also significantly decreased the protein expression levels of ERK1/2, Phospho-ERK1/2, CREB, Phospho-CREB and Phospho-NF-κB in the hippocampus of the rats when compared with the cerebral ischemia group. In conclusion, clonidine could improve the learning and memory ability of rats with cerebral ischemia, and NR2B, ERK1/2, CREB, NF-κB were involved in this effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Neuroprotective capabilities of TSA against cerebral ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats.

    PubMed

    Ma, Xiao-Hui; Gao, Qiang; Jia, Zhen; Zhang, Ze-Wei

    2015-02-01

    Hundreds of previous studies demonstrated the cytoprotective effect of trichostatin-A (TSA), a kind of histone deacetylases inhibitors (HDACIs), against cerebral ischemia/reperfusion insult. Meanwhile, phosphatidylinositol-3 kinase/Akt (PI3K/Akt) is a well-known, important signaling pathway that mediates neuroprotection. However, it should be remains unclear whether the neuroprotective capabilities of TSA against cerebral ischemia/reperfusion is mediated by activation of the PI3K/Akt signaling pathway. Five groups rats (n = 12 each), with middle cerebral artery occlusion (MCAO) except sham group, were used to investigate the neuroprotective effect of certain concentration (0.05 mg/kg) of TSA, and whether the neuroprotective effect of TSA is associated with activation of the PI3K/Akt signaling pathway through using of wortmannin (0.25 mg/kg). TSA significantly increased the expression of p-Akt protein, reduced infarct volume, and attenuated neurological deficit in rats with transient MCAO, wortmannin weakened such effect of TSA dramatically. TSA could significantly decrease the neurological deficit scores and reduce the cerebral infarct volume during cerebral ischemia/reperfusion injury, which was achieved partly by activation of the PI3K/Akt signaling pathway via upgrading of p-Akt protein.

  2. Receptor for advanced glycation end products involved in lung ischemia reperfusion injury in cardiopulmonary bypass attenuated by controlled oxygen reperfusion in a canine model.

    PubMed

    Rong, Jian; Ye, Sheng; Liang, Meng-ya; Chen, Guang-xian; Liu, Hai; Zhang, Jin-Xin; Wu, Zhong-kai

    2013-01-01

    Controlled oxygen reperfusion could protect the lung against ischemia-reperfusion injury in cardiopulmonary bypass (CPB) by downregulating high mobility group box 1 (HMGB1), a high affinity receptor of HMGB1. This study investigated the effect of controlled oxygen reperfusion on receptor for advanced glycation end products (RAGE) expression and its downstream effects on lung ischemia-reperfusion injury. Fourteen canines received CPB with 60 minutes of aortic clamping and cardioplegic arrest followed by 90 minutes of reperfusion. Animals were randomized to receive 80% FiO2 during the entire procedure (control group) or to a test group receiving a controlled oxygen reperfusion protocol. Pathologic changes in lung tissues, RAGE expression, serum interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were evaluated. The lung pathologic scores after 25 and 90 minutes of reperfusion were significantly lower in the test group compared with the control group (p < 0.001). RAGE expression, TNF-α, and IL-6 were downregulated by controlled oxygen treatment (p < 0.001). RAGE might be involved in the lung ischemia-reperfusion injury in canine model of CPB, which was downregulated by controlled oxygen reperfusion.

  3. Notoginsenoside R1 attenuates renal ischemia-reperfusion injury in rats.

    PubMed

    Liu, Wen-Jun; Tang, Hong-Tai; Jia, Yi-Tao; Ma, Bing; Fu, Jin-Feng; Wang, Yu; Lv, Kai-Yang; Xia, Zhao-Fan

    2010-09-01

    Ischemia-reperfusion (I/R) injury of the kidney is a complex pathophysiological process and a major cause of acute renal failure. It has been shown that I/R injury is related to inflammatory responses and activation of apoptotic pathways. Inhibition of certain elements of inflammatory responses and apoptotic pathway seemed to ameliorate renal I/R injury. As an effective element of Panax notoginseng, NR1 has antioxidant, anti-inflammatory, antiapoptotic, and immune-stimulatory activities. Therefore, we speculate that NR1 can attenuate renal I/R injury. Ischemia-reperfusion injury was induced by renal pedicle ligation followed by reperfusion along with a contralateral nephrectomy. Male Sprague-Dawley rats were randomized to four groups: sham group, I/R control group, NR1-1 group (rats treated with NR1, 20 mg.kg.d) and NR1-2 group (rats treated with NR1, 40 mg.kg.d). All animals were killed 72 h after I/R induction. Blood and renal tissues were collected. Renal dysfunction was observed by the level of serum creatinine and histological evaluation. Apoptosis and inflammatory response in the tissue of kidney were detected mainly with molecular biological methods. NR1 attenuated I/R-induced renal dysfunction as indicated by the level of serum creatinine and histological evaluation. It prevented the I/R-induced increases in the levels of proinflammatory cytokine TNF-alpha, myeloperoxidase activity, phosphorylation of p38, and activation of nuclear factor kappaB with cell apoptosis in the kidney and enhanced expression of antiapoptosis cytokine bcl-2. Treatment with NR1 improves renal function after I/R associated with a significant reduction in cell apoptosis and inflammatory responses, which may be related to p38 and nuclear factor kappaB inhibition.

  4. Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries.

    PubMed

    Sakamula, Romgase; Thong-Asa, Wachiryah

    2018-06-01

    Cerebral ischemia reperfusion (IR) is associated with neuronal death, which leads to disability and cognitive decline. The pathomechanism occurs because ischemia is exacerbated during the reperfusion period. Neuronal damage susceptibility depends on the affected brain areas and the duration of ischemia. Prevention and supplementation to neurons may help them endure during IR and further benefit them in rehabilitation. We investigated the protective effect of p-coumaric acid (PC) on cerebral IR injuries in mice. We randomly divided 30 male ICR mice into 3 groups of Sham (received vehicle and not induced IR), Control-IR (received vehicle and induced IR) and PC-IR (received 100 mg/kg PC and induced IR). We orally administered vehicle or 100 mg/kg of p-coumaric acid for 2 weeks before inducing the cerebral IR injuries by using 30 min of a bilateral common carotid artery occlusion followed by a 45-min reperfusion. We induced the IR condition in the Control-IR and PC-IR groups but not the Sham group, and only the PC-IR group received p-coumaric acid. After IR induction, we sacrificed all the mice and collected their brain tissues to evaluate their oxidative statuses, whole brain infarctions and vulnerable neuronal deaths. We studied the whole-brain infarction volume by 2, 3, 5-triethyltetrazoliumchloride staining of sections. We performed a histological investigation of the vulnerable neuronal population in the dorsal hippocampus by staining brain sections with 0.1% cresyl violet. The results indicated that IR caused significant increases in calcium and malondialdehyde (MDA) levels, whole brain infarction volume and hippocampal neuronal death. Pretreatment with p-coumaric acid significantly reduced MDA levels, whole-brain infarction volume and hippocampal neuronal death together and increased catalase and superoxide dismutase activities. We conclude here that pretreating animals with p-coumaric acid can prevent IR-induced brain oxidative stress, infarction size and

  5. The effect of high intensity interval training on cardioprotection against ischemia-reperfusion injury in wistar rats

    PubMed Central

    Rahimi, Mostafa; Shekarforoush, Shahnaz; Asgari, Ali Reza; Khoshbaten, Ali; Rajabi, Hamid; Bazgir, Behzad; Mohammadi, Mohammad Taghi; Sobhani, Vahid; Shakibaee, Abolfazl

    2015-01-01

    The aims of the present study were to determine whether short term high intensity interval training (HIIT) could protect the heart against ischemia reperfusion (IR) injury; and if so, to evaluate how long the exercise-associated protection can be lasted. Sixty-three rats were randomly assigned into sedentary (n = 15), sham (n = 7), and exercise groups (n = 41). Rats in the exercise groups performed 5 consecutive days of HIIT on treadmill: 5 min warm up with 50 % VO2max, 6×2 min with 95-105 % VO2max (about 40 to 45 m/min), 5×2 min recovery with 65-75 % VO2max (about 28 to 32 m/min), and 3 min cool down with 50 % VO2max, all at 0 % grade. Animals exposed to an in vivo cardiac IR surgery, performed at days 1, 7, and 14 following the final exercise session. Ischemia-induced arrhythmias, myocardial infarct size (IS), plasma lactate dehydrogenase (LDH) and creatine kinase (CK) activities were measured in all animals. Compared to sedentary rats, exercised animals sustained less IR injury as evidenced by a lower size of infarction and lower levels of LDH and CK at day one and day 7 post exercise. In comparison of sedentary group, IS significantly decreased in EX-IR1 and EX-IR7 groups (50 and 35 %, respectively), but not in EX-IR14 group (19 %). The exercise-induced cardioprotection disappeared 14 days following exercise cessation. There were no significant changes in ischemia-induced arrhythmia between exercised and sedentary rats. The results clearly demonstrate that HIIT protects the heart against myocardial IR injury. This protective effect can be sustained for at least one week following the cessation of the training. PMID:26417361

  6. [Metabolic Characteristics of Lethal Bradycardia Induced by Myocardial Ischemia].

    PubMed

    Wu, J Y; Wang, D; Kong, J; Wang, X X; Yu, X J

    2017-02-01

    To explore the metabolic characteristics of lethal bradycardia induced by myocardial ischemia in rat's serum. A rat myocardial ischemia-bradycardia-sudden cardiac death (MI-B-SCD) model was established, which was compared with the sham-operation group. The metabolic profile of postmortem serum was analyzed by gas chromatography-mass spectrometry (GC-MS), coupled with the analysis of serum metabolic characteristics using metabolomics strategies. The serum metabolic profiles were significantly different between the MI-B-SCD rats and the control rats. Compared to the control rats, the MI-B-SCD rats had significantly higher levels of lysine, ornithine, purine, serine, alanine, urea and lactic acid; and significantly lower levels of succinate, hexadecanoic acid, 2-ketoadipic acid, glyceraldehyde, hexendioic acid and octanedioic acid in the serum. There were some correlations among different metabolites. There is obvious metabolic alterations in the serum of MI-B-SCD rat. Both lysine and purine have a high value in diagnosing MI-B-SCD. The results are expected to provide references for forensic and clinical applications of prevention and control of sudden cardiac death. Copyright© by the Editorial Department of Journal of Forensic Medicine

  7. Mental Stress-Induced-Myocardial Ischemia in Young Patients With Recent Myocardial Infarction: Sex Differences and Mechanisms.

    PubMed

    Vaccarino, Viola; Sullivan, Samaah; Hammadah, Muhammad; Wilmot, Kobina; Al Mheid, Ibhar; Ramadan, Ronnie; Elon, Lisa; Pimple, Pratik M; Garcia, Ernest V; Nye, Jonathon; Shah, Amit J; Alkhoder, Ayman; Levantsevych, Oleksiy; Gay, Hawkins; Obideen, Malik; Huang, Minxuan; Lewis, Tené T; Bremner, J Douglas; Quyyumi, Arshed A; Raggi, Paolo

    2018-02-20

    Mental stress-induced myocardial ischemia (MSIMI) is frequent in patients with coronary artery disease and is associated with worse prognosis. Young women with a previous myocardial infarction (MI), a group with unexplained higher mortality than men of comparable age, have shown elevated rates of MSIMI, but the mechanisms are unknown. We studied 306 patients (150 women and 156 men) ≤61 years of age who were hospitalized for MI in the previous 8 months and 112 community controls (58 women and 54 men) frequency matched for sex and age to the patients with MI. Endothelium-dependent flow-mediated dilation and microvascular reactivity (reactive hyperemia index) were measured at rest and 30 minutes after mental stress. The digital vasomotor response to mental stress was assessed using peripheral arterial tonometry. Patients received 99m Tc-sestamibi myocardial perfusion imaging at rest, with mental (speech task) and conventional (exercise/pharmacological) stress. The mean age of the sample was 50 years (range, 22-61). In the MI group but not among controls, women had a more adverse socioeconomic and psychosocial profile than men. There were no sex differences in cardiovascular risk factors, and among patients with MI, clinical severity tended to be lower in women. Women in both groups showed a higher peripheral arterial tonometry ratio during mental stress but a lower reactive hyperemia index after mental stress, indicating enhanced microvascular dysfunction after stress. There were no sex differences in flow-mediated dilation changes with mental stress. The rate of MSIMI was twice as high in women as in men (22% versus 11%, P =0.009), and ischemia with conventional stress was similarly elevated (31% versus 16%, P =0.002). Psychosocial and clinical risk factors did not explain sex differences in inducible ischemia. Although vascular responses to mental stress (peripheral arterial tonometry ratio and reactive hyperemia index) also did not explain sex differences in

  8. Oxidized LDL accumulation in experimental renal ischemia reperfusion injury model.

    PubMed

    Kulah, Eyup; Tascilar, Oge; Acikgoz, Serefden; Tekin, Ishak Ozel; Karadeniz, Guldeniz; Can, Murat; Gun, Banu; Barut, Figen; Comert, Mustafa

    2007-01-01

    The aim of this study was to identify oxidative damage of kidney during ischemia reperfusion injury (IRI) by evaluating changes in lipid peroxidation markers in tissue and blood by an experimental model. Oxidized LDL (ox-LDL) was used as an oxidative stress biomarker, whereas paraoxonase (PON-1) activity was used as an antioxidative biomarker. Sixty-three male Wistar rats were randomly assigned into three groups: renal IRI, sham, and control. In the renal IRI group, the right kidney was removed and the artery and vein of the left kidney were clamped for 90 minutes. The presence of ox-LDL in the kidney tissue sections was determined by using an immunofluorescent staining method. The plasma ox-LDL levels did not increase significantly at the 24th hour following IRI, made a peak at the 48th hour, and declined at the 72nd hour. Accumulation of ox-LDL was detected in the kidney tissue on the 24th, 48th, and 72nd hours of the renal IRI. Serum PON-1 levels have peaked on the 24th hour and then declined. This study demonstrates the accumulation of ox-LDL molecules in the renal tissues of the IRI model. Future strategies aimed to reduce the lipid peroxidation during the initial hours of renal IRI may be useful to prevent complications of ischemia.

  9. Chronic Mesenteric Ischemia: A Rare Cause of Chronic Abdominal Pain.

    PubMed

    Barret, Maximilien; Martineau, Chloé; Rahmi, Gabriel; Pellerin, Olivier; Sapoval, Marc; Alsac, Jean-Marc; Fabiani, Jean-Noël; Malamut, Georgia; Samaha, Elia; Cellier, Christophe

    2015-12-01

    Chronic mesenteric ischemia is a rare disease with nonspecific clinical symptoms, such as chronic postprandial abdominal pain and weight loss. Diagnostic modalities and revascularization techniques have evolved during the past 20 years. The significance of stenosis in a single splanchnic vessel remains unclear. Our aims were to assess the outcomes of 2 revascularization techniques and report on the diagnostic modalities of splanchnic vessel stenoses. The demographic data, medical history, technical characteristics, and outcomes of the revascularization procedures were recorded for all of the patients admitted for endovascular revascularization or open surgical revascularization of the splanchnic vessels as treatment for chronic mesenteric ischemia in our tertiary referral center since 2000. Fifty-four patients were included in this study: 43 received endovascular revascularization, and 11 had open surgical revascularization. The symptoms were abdominal pain, weight loss, and diarrhea in 98%, 53%, and 25% of the cases, respectively. Computed tomography angiography was the key diagnostic tool for 60% of the patients. A single-vessel stenosis was found in one-third of the patients. Endovascular and open revascularization had similar early and late outcomes, and no 30-day mortality was observed. However, we did observe higher morbidity in the open revascularization group (73% vs 19%, P <.03). Chronic mesenteric ischemia may be diagnosed in the presence of a splanchnic syndrome and stenosis of a single splanchnic vessel, typically assessed using computed tomography angiography. In selected patients, endovascular revascularization had similar efficacy as, and lower complication rates than open revascularization. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Pericardial fluid level of heart-type cytoplasmic fatty acid-binding protein (H-FABP) is an indicator of severe myocardial ischemia.

    PubMed

    Tambara, Keiichi; Fujita, Masatoshi; Miyamoto, Shoichi; Doi, Kazuhiko; Nishimura, Kazunobu; Komeda, Masashi

    2004-02-01

    Heart-type cytoplasmic fatty acid-binding protein (H-FABP) has been reported as a sensitive and specific marker for the early diagnosis of acute myocardial infarction. Our hypothesis was that serum or pericardial fluid levels of H-FABP can reflect not only myocardial infarction but also myocardial ischemia. A total of 34 patients with unstable angina, who had anginal symptoms and/or ST-changes in ECG monitoring within 24 h before operation, were classified into group A (n=17), and those without these symptoms and changes into group B (n=17). Blood and pericardial fluid samples were obtained immediately after median sternotomy, and serum and pericardial fluid levels of creatine kinase-MB, cardiac troponin-T, and H-FABP were measured. Serum H-FABP levels were slightly elevated compared with their normal values in both groups. While they showed no difference between groups A and B (group A vs. B: 8.5+/-1.0 vs. 7.1+/-0.7 ng/ml, P=0.25), pericardial fluid levels of H-FABP were significantly higher in group A than in group B (16.3+/-2.0 vs. 9.6+/-1.0 ng/ml, P=0.0046). H-FABP showed a weak correlation between its serum levels and pericardial fluid levels (r=0.40). Pericardial fluid levels of H-FABP reflect myocardial ischemia occurring within 24 h of their measurements. H-FABP may be secreted into the interstitial space by increased permeability of the myocardial cell membrane associated with severe myocardial ischemia. Thus, pericardial fluid reflects pathophysiological conditions of cardiomyocytes more sensitively than circulating blood.

  11. Methylene Blue Attenuates Lung Injury Induced by Hindlimb Ischemia Reperfusion in Rats

    PubMed Central

    Wang, Liangrong; Chen, Baihui; Lin, Bi; Ye, Yuzhu; Bao, Caiying; Zhao, Xiyue; Jin, Lida

    2018-01-01

    Objective This study was aimed to investigate the protective effect of methylene blue against lung injury induced by reperfusion of ischemic hindlimb in a rat model. Methods Twenty-four healthy adult male Sprague-Dawley rats were equally randomized into three groups: sham (SM) group, ischemia reperfusion (IR) group, and methylene blue (MB) group. Rats in both IR and MB groups were subjected to 4 h of ischemia by clamping the left femoral artery and then followed by 4 h of reperfusion. Treatment with 1% methylene blue (50 mg/kg) was administrated intraperitoneally at 10 min prior to reperfusion in the MB group. After 4 h of reperfusion, malondialdehyde (MDA) level, myeloperoxidase (MPO), and superoxide dismutase (SOD) activities in lung tissue were detected; inflammatory cytokines, including IL-1β and IL-6, were measured in bronchoalveolar lavage fluid (BALF); correspondingly, the morphological changes and water content in both gastrocnemius muscle and lung samples were evaluated. Results Hindlimb IR caused remarkable morphological abnormalities and edema in both muscle and lung tissues. SOD activity was decreased, both the MPO activity and MDA level in lung tissue, as well as IL-1β and IL-6 levels in BALF, were increased in the IR group (p < 0.05). Compared with the IR group, SOD activity was increased, whereas MPO activity and MDA level in lung tissue and IL-1β and IL-6 levels in BALF were decreased in the MB group (p < 0.05). Also, the histological damage and edema in both lung and muscle tissues were significantly attenuated by the treatment of methylene blue. Conclusion Methylene blue attenuates lung injury induced by hindlimb IR in rats, at least in part, by inhibiting oxidative stress. PMID:29713238

  12. Effect of intermittent hypoxia on neuro-functional recovery post brain ischemia in mice.

    PubMed

    Qiao, Yanxiang; Liu, Zhenfang; Yan, Xianliang; Luo, Chuanming

    2015-04-01

    Intermittent hypoxia was a simulation of a high-altitude environment. Neuro-inflammation post brain ischemia was considered as a vital impact which contributed to cognitive-functional deficit. The isoform of nitric oxide synthase (iNOS) was an inflammation factor secreted by microglias in neuro-inflammation. In this study, we established a high-altitude environment as the hypoxic condition. Twenty mice were selected and randomized into a hypoxia group (n = 10) or a normoxia group (n = 10) post three vessel occlusion-induced brain ischemia. An enhancement of cognitive-functional recovery was presented in the hypoxia group by survival neuron counting and revealed by the Morris water maze test. Meanwhile, a high level of hypoxia-inducable factor 1 (HIF-1) expression associated with a lower expression of iNOS was observed in the border between infarcts and normal tissue of the hippocampus in the hypoxia group. However, these phenomenons were blocked by HIF-1 inhibition. This suggested that the acceleration of cognitive-functional recovery induced by intermittent hypoxia may depend on HIF-1 activating. An imitation of the hypoxic condition with or without HIF-1 inhibition was operated on the BV-2 cell. A high level of HIF-1 expression associated with a lower-level expression of iNOS was performed in the hypoxic condition. These data suggested that intermittent hypoxia can accelerate cognitive function recovery through attenuating neuro-inflammation.

  13. Do Women With Anxiety or Depression Have Higher Rates of Myocardial Ischemia During Exercise Testing Than Men?

    PubMed

    Paine, Nicola J; Bacon, Simon L; Pelletier, Roxanne; Arsenault, André; Diodati, Jean G; Lavoie, Kim L

    2016-02-01

    Women diagnosed with coronary artery disease (CAD) typically experience worse outcomes relative to men, possibly through diagnosis and treatment delays. Reasons for these delays may be influenced by mood and anxiety disorders, which are more prevalent in women and have symptoms (eg, palpitations and fatigue) that may be confounded with CAD. Our study examined sex differences in the association between mood and anxiety disorders and myocardial ischemia in patients with and without a CAD history presenting for exercise stress tests. A total of 2342 patients (women n=760) completed a single photon emission computed tomographic exercise stress test (standard Bruce Protocol) and underwent a psychiatric interview (The Primary Care Evaluation of Mental Disorders) to assess mood and anxiety disorders. Ischemia was assessed using single photon emission computed tomography, with odds ratio used to calculate the effect of sex and mood/anxiety on the presence of ischemia during stress testing by CAD history in a stratified analyses, adjusted for relevant covariates. There was a sex by anxiety interaction with ischemia in those without a CAD history (P=0.015): women with anxiety were more likely to exhibit ischemia during exercise than women without anxiety (odds ratio, 1.75; 95% confidence interval, 1.05-2.89). No significant effects were observed for men nor mood. Women with anxiety and no CAD history had higher rates of ischemia than women without anxiety. Results suggest that anxiety symptoms, many of which overlap with those of CAD, might mask CAD symptoms among women (but not men) and contribute to referral and diagnostic delays. Further research is needed to confirm this hypothesis. © 2016 American Heart Association, Inc.

  14. Does lung ischemia and reperfusion have an impact on coronary flow? A quantitative coronary blood-flow analysis with inflammatory cytokine profile†

    PubMed Central

    Karapanos, Nikolaos Tsirikos; Wettstein, Peter J.; Li, Zhuo; Huebner, Marianne; Park, Soon J.; Deschamps, Claude; Cassivi, Stephen D.

    2012-01-01

    OBJECTIVE Ischemia-reperfusion (IR) injury remains a major cause of early morbidity and mortality after lung transplantation with poorly documented extrapulmonary repercussions. To determine the hemodynamic effect due to lung IR injury, we performed a quantitative coronary blood-flow analysis in a swine model of in situ lung ischemia and reperfusion. METHODS In 14 healthy pigs, blood flow was measured in the ascending aorta, left anterior descending (LAD), circumflex (Cx), right coronary artery (RCA), right common carotid artery (RCCA), and left internal mammary artery (LIMA), along with left-and right-ventricular pressures (LVP and RVP), aortic pressure (AoP), and pulmonary artery pressure (PAP). Cardiac Troponin (cTn), interleukin 6 and 10 (IL-6 and IL-10), and tumor necrosis factor A (TNF-A) were measured in coronary sinus blood samples. The experimental (IR) group (n = 10) underwent 60 min of lung ischemia followed by 60 min of reperfusion by clamping and releasing the left pulmonary hilum. Simultaneous measurements of all parameters were made at baseline and during IR. The control group (n = 4) had similar measurements without lung IR. RESULTS In the IR group, total coronary flow (TCF = LAD + Cx + RCA blood-flow) decreased precipitously and significantly from baseline (113 ± 41 ml min”1) during IR (p < 0.05), with the lowest value observed at 60 min of reperfusion (-37.1%, p < 0.003). Baseline cTn (0.08 ± 0.02 ng ml−1) increased during IR and peaked at 45 min of reperfusion (+138%, p < 0.001). Baseline IL-6 (9.2 ± 2.17 pg ml−1) increased during IR and peaked at 60 min of reperfusion (+228%, p < 0.0001). Significant LVP drop at 5 min of ischemia ( p < 0.05) was followed by a slow return to baseline at 45 min of ischemia. A second LVP drop occurred at reperfusion ( p < 0.05) and persisted. Conversely, RVP increased throughout ischemia (p < 0.05) and returned toward baseline during reperfusion. Coronary blood flow and hemodynamic

  15. Blood -brain barrier disruption was less under isoflurane than pentobarbital anesthesia via a PI3K/Akt pathway in early cerebral ischemia.

    PubMed

    Chi, Oak Z; Mellender, Scott J; Kiss, Geza K; Liu, Xia; Weiss, Harvey R

    2017-05-01

    One of the important factors altering the degree of blood-brain barrier (BBB) disruption in cerebral ischemia is the anesthetic used. The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway has been reported to be involved in modulating BBB permeability and in isoflurane induced neuroprotection. This study was performed to compare the degree of BBB disruption in focal cerebral ischemia under isoflurane vs pentobarbital anesthesia and to determine whether inhibition of PI3K/Akt would affect the disruption in the early stage of focal cerebral ischemia. Permanent middle cerebral artery (MCA) occlusion was performed in rats under 1.4% isoflurane or pentobarbital (50mg/kg i.p.) anesthesia with controlled ventilation. In half of each group LY294002, which is a PI3K/Akt inhibitor, was applied on the ischemic cortex immediately after MCA occlusion. After one hour of MCA occlusion, the transfer coefficient (K i ) of 14 C-α-aminoisobutyric acid ( 14 C-AIB) was determined to quantify the degree of BBB disruption. MCA occlusion increased the K i both in the isoflurane and pentobarbital anesthetized rats. However, the value of K i was lower under isoflurane (11.5±6.0μL/g/min) than under pentobarbital (18.3±7.1μL/g/min) anesthesia. The K i of the contralateral cortex of the pentobarbital group was higher (+74%) than that of the isoflurane group. Application of LY294002 on the ischemic cortex increased the K i (+99%) only in the isoflurane group. The degree of BBB disruption by MCA occlusion was significantly lower under isoflurane than pentobarbital anesthesia in the early stage of cerebral ischemia. Our data demonstrated the importance of choice of anesthetics and suggest that PI3K/Akt signaling pathway plays a significant role in altering BBB disruption in cerebral ischemia during isoflurane but not during pentobarbital anesthesia. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Combined metabolic and transcriptional profiling identifies pentose phosphate pathway activation by HSP27 phosphorylation during cerebral ischemia.

    PubMed

    Imahori, Taichiro; Hosoda, Kohkichi; Nakai, Tomoaki; Yamamoto, Yusuke; Irino, Yasuhiro; Shinohara, Masakazu; Sato, Naoko; Sasayama, Takashi; Tanaka, Kazuhiro; Nagashima, Hiroaki; Kohta, Masaaki; Kohmura, Eiji

    2017-05-04

    The metabolic pathophysiology underlying ischemic stroke remains poorly understood. To gain insight into these mechanisms, we performed a comparative metabolic and transcriptional analysis of the effects of cerebral ischemia on the metabolism of the cerebral cortex using middle cerebral artery occlusion (MCAO) rat model. Metabolic profiling by gas-chromatography/mass-spectrometry analysis showed clear separation between the ischemia and control group. The decreases of fructose 6-phosphate and ribulose 5-phosphate suggested enhancement of the pentose phosphate pathway (PPP) during cerebral ischemia (120-min MCAO) without reperfusion. Transcriptional profiling by microarray hybridization indicated that the Toll-like receptor and mitogen-activated protein kinase (MAPK) signaling pathways were upregulated during cerebral ischemia without reperfusion. In relation to the PPP, upregulation of heat shock protein 27 (HSP27) was observed in the MAPK signaling pathway and was confirmed through real-time polymerase chain reaction. Immunoblotting showed a slight increase in HSP27 protein expression and a marked increase in HSP27 phosphorylation at serine 85 after 60-min and 120-min MCAO without reperfusion. Corresponding upregulation of glucose 6-phosphate dehydrogenase (G6PD) activity and an increase in the NADPH/NAD + ratio were also observed after 120-min MCAO. Furthermore, intracerebroventricular injection of ataxia telangiectasia mutated (ATM) kinase inhibitor (KU-55933) significantly reduced HSP27 phosphorylation and G6PD upregulation after MCAO, but that of protein kinase D inhibitor (CID755673) did not affect HSP27 phosphorylation. Consequently, G6PD activation via ischemia-induced HSP27 phosphorylation by ATM kinase may be part of an endogenous antioxidant defense neuroprotection mechanism during the earliest stages of ischemia. These findings have important therapeutic implications for the treatment of stroke. Copyright © 2017 IBRO. Published by Elsevier Ltd. All

  17. Green tea polyphenols alleviate early BBB damage during experimental focal cerebral ischemia through regulating tight junctions and PKCalpha signaling.

    PubMed

    Liu, Xiaobai; Wang, Zhenhua; Wang, Ping; Yu, Bo; Liu, Yunhui; Xue, Yixue

    2013-07-21

    It has been supposed that green tea polyphenols (GTPs) have neuroprotective effects on brain damage after brain ischemia in animal experiments. Little is known regarding GTPs' protective effects against the blood-brain barrier (BBB) disruption after ischemic stroke. We investigated the effects of GTPs on the expression of claudin-5, occludin, and ZO-1, and the corresponding cellular mechanisms involved in the early stage of cerebral ischemia. Male Wistar rats were subjected to a middle cerebral artery occlusion (MCAO) for 0, 30, 60, and 120 min. GTPs (400 mg/kg/day) or vehicle was administered by intragastric gavage twice a day for 30 days prior to MCAO. At different time points, the expression of claudin-5, occludin, ZO-1, and PKCα signaling pathway in microvessel fragments of cerebral ischemic tissue were evaluated. GTPs reduced BBB permeability at 60 min and 120 min after ischemia as compared with the vehicle group. Transmission electron microscopy also revealed that GTPs could reverse the opening of tight junction (TJ) barrier at 60 min and 120 min after MACO. The decreased mRNA and protein expression levels of claudin-5, occludin, and ZO-1 in microvessel fragments of cerebral ischemic tissue were significantly prevented by treatment with GTPs at the same time points after ischemia in rats. Furthermore, GTPs could attenuate the increase in the expression levels of PKCα mRNA and protein caused by cerebral ischemia. These results demonstrate that GTPs may act as a potential neuroprotective agent against BBB damage at the early stage of focal cerebral ischemia through the regulation of TJ and PKCα signaling.

  18. Endogenous Agmatine Induced by Ischemic Preconditioning Regulates Ischemic Tolerance Following Cerebral Ischemia

    PubMed Central

    Kim, Jae Hwan; Kim, Jae Young; Jung, Jin Young; Lee, Yong Woo; Lee, Won Taek; Huh, Seung Kon

    2017-01-01

    Ischemic preconditioning (IP) is one of the most important endogenous mechanisms that protect the cells against ischemia-reperfusion (I/R) injury. However, the exact molecular mechanisms remain unclear. In this study, we showed that changes in the level of agmatine were correlated with ischemic tolerance. Changes in brain edema, infarct volume, level of agmatine, and expression of arginine decarboxylase (ADC) and nitric oxide synthases (NOS; inducible NOS [iNOS] and neural NOS [nNOS]) were analyzed during I/R injury with or without IP in the rat brain. After cerebral ischemia, brain edema and infarct volume were significantly reduced in the IP group. The level of agmatine was increased before and during ischemic injury and remained elevated in the early reperfusion phase in the IP group compared to the experimental control (EC) group. During IP, the level of plasma agmatine was increased in the early phase of IP, but that of liver agmatine was abruptly decreased. However, the level of agmatine was definitely increased in the ipsilateral and contralateral hemisphere of brain during the IP. IP also increased the expression of ADC—the enzyme responsible for the synthesis of endogenous agmatine—before, during, and after ischemic injury. In addition, ischemic injury increased endogenous ADC expression in the EC group. The expression of nNOS was reduced in the I/R injured brain in the IP group. These results suggest that endogenous increased agmatine may be a component of the ischemic tolerance response that is induced by IP. Agmatine may have a pivotal role in endogenous ischemic tolerance. PMID:29302205

  19. The administration of renoprotective agents extends warm ischemia in a rat model.

    PubMed

    Cohen, Jacob; Dorai, Thambi; Ding, Cheng; Batinic-Haberle, Ines; Grasso, Michael

    2013-03-01

    Extended warm ischemia time during partial nephrectomy leads to considerable renal injury. Using a rat model of renal ischemia, we examined the ability of a unique renoprotective cocktail to ameliorate warm ischemia-reperfusion injury and extend warm ischemia time. A warm renal ischemia model was developed using Sprague-Dawley rats, clamping the left renal artery for 40, 50, 60, and 70 minutes, followed by 48 hours of reperfusion. An improved renoprotective cocktail referred to as I-GPM (a mixture of specific renoprotective growth factors, porphyrins, and mitochondria-protecting amino acids) was administered -24 hours, 0 hours, and +24 hours after surgery. At 48 hours, both kidneys were harvested and examined with hematoxylin and eosin and periodic acid-Schiff stains for the analysis of renal tubular necrosis. Creatinine, protein, and gene expression levels were also analyzed to evaluate several ischemia-specific and antioxidant response markers. I-GPM treated kidneys showed significant reversal of morphologic changes and a significant reduction in specific ischemic markers lipocalin-2, galectin-3, GRP-78, and HMGB1 compared with ischemic controls. These experiments also showed an upregulation of the stress response protein, heat shock protein (HSP)-70, as well as the phosphorylated active form of the transcription factor, heat shock factor (HSF)-1. In addition, quantitative RT-PCR analyses revealed a robust upregulation of several antioxidant pathway response genes in I-GPM treated animals. By histopathologic and several molecular measures, our unique renoprotective cocktail mitigated ischemia-reperfusion injury. Our cocktail minimized oxidative stress in an ischemic kidney rat model while at the same time protecting the global parenchymal function during extended periods of ischemia.

  20. Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway.

    PubMed

    Wang, Qin; Lin, Ping; Li, Peng; Feng, Li; Ren, Qian; Xie, Xiaofeng; Xu, Jing

    2017-10-01

    The aim of this study was to investigate the cardioprotective effects of ghrelin against myocardial ischemia/reperfusion (I/R) injury and the underlying mechanism. Sprague-Dawley rats were randomized into Sham, I/R and I/R+ghrelin groups. After 30 minutes ischemia, ghrelin (8nmol/kg) was injected intraperitoneally at the time of reperfusion in the I/R+ghrelin group. Then hemodynamic parameters were observed at 24h after reperfusion. Ghrelin exhibited dramatic improvement in cardiac functions, as manifested by increased LVSP and ±dP/dt max and decreased LVDP. At 24h after reperfusion, ghrelin significantly attenuated the myocardial infarction area and apoptosis, accompanied with a decrease in the levels of the myocyte injury marker enzymes. Oxidative stress injury and inflammatory response were also relieved by ghrelin. Western blot showed that the expression of TLR4, NLRP3, and caspase-1 were obviously increased in I/R group, while ghrelin significantly inhibited the I/R-induced TLR4, NLRP3, and caspase-1 expression. Ghrelin could inhibit the increased protein levels of NLRP3, caspase-1, and IL-1β induced by lipopolysacharide in primary cultured cardiomyocytes of neonatal rats. Ghrelin protected the heart against I/R injury by inhibiting oxidative stress and inflammation via TLR4/NLRP3 signaling pathway. Our results might provide new strategy and target for treatment of myocardial ischemia/reperfusion injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Ionizing radiation as preconditioning against transient cerebral ischemia in rats.

    PubMed

    Kokošová, Natália; Danielisová, Viera; Smajda, Beňadik; Burda, Jozef

    2014-01-01

    Induction of ischemic tolerance (IT), the ability of an organism to survive an otherwise lethal ischemia, is the most effective known approach to preventing postischemic damage. IT can be induced by exposing animals to a broad range of stimuli. In this study we tried to induce IT of brain neurons using ionizing radiation (IR). A preconditioning (pre-C) dose of 10, 20, 30 or 50 Gy of gamma rays was used 2 days before an 8 min ischemia in adult male rats. Ischemia alone caused the degeneration of almost one half of neurons in CA1 region of hippocampus. However, a significant decrease of the number of degenerating neurons was observed after higher doses of radiation (30 and 50 Gy). Moreover, ischemia significantly impaired the spatial memory of rats as tested in Morris's water maze. In rats with a 50 Gy pre-C dose, the latency times were reduced to values close to the control level. Our study is the first to reveal that IR applied in sufficient doses can induce IT and thus allow pyramidal CA1 neurons to survive ischemia. In addition, we show that the beneficial effect of IR pre-C is proportional to the radiation dose.

  2. Gene expression in cerebral ischemia: a new approach for neuroprotection.

    PubMed

    Millán, Mónica; Arenillas, Juan

    2006-01-01

    Cerebral ischemia is one of the strongest stimuli for gene induction in the brain. Hundreds of genes have been found to be induced by brain ischemia. Many genes are involved in neurodestructive functions such as excitotoxicity, inflammatory response and neuronal apoptosis. However, cerebral ischemia is also a powerful reformatting and reprogramming stimulus for the brain through neuroprotective gene expression. Several genes may participate in both cellular responses. Thus, isolation of candidate genes for neuroprotection strategies and interpretation of expression changes have been proven difficult. Nevertheless, many studies are being carried out to improve the knowledge of the gene activation and protein expression following ischemic stroke, as well as in the development of new therapies that modify biochemical, molecular and genetic changes underlying cerebral ischemia. Owing to the complexity of the process involving numerous critical genes expressed differentially in time, space and concentration, ongoing therapeutic efforts should be based on multiple interventions at different levels. By modification of the acute gene expression induced by ischemia or the apoptotic gene program, gene therapy is a promising treatment but is still in a very experimental phase. Some hurdles will have to be overcome before these therapies can be introduced into human clinical stroke trials. Copyright 2006 S. Karger AG, Basel.

  3. Dictionary-Driven Ischemia Detection From Cardiac Phase-Resolved Myocardial BOLD MRI at Rest.

    PubMed

    Bevilacqua, Marco; Dharmakumar, Rohan; Tsaftaris, Sotirios A

    2016-01-01

    Cardiac Phase-resolved Blood-Oxygen-Level Dependent (CP-BOLD) MRI provides a unique opportunity to image an ongoing ischemia at rest. However, it requires post-processing to evaluate the extent of ischemia. To address this, here we propose an unsupervised ischemia detection (UID) method which relies on the inherent spatio-temporal correlation between oxygenation and wall motion to formalize a joint learning and detection problem based on dictionary decomposition. Considering input data of a single subject, it treats ischemia as an anomaly and iteratively learns dictionaries to represent only normal observations (corresponding to myocardial territories remote to ischemia). Anomaly detection is based on a modified version of One-class Support Vector Machines (OCSVM) to regulate directly the margins by incorporating the dictionary-based representation errors. A measure of ischemic extent (IE) is estimated, reflecting the relative portion of the myocardium affected by ischemia. For visualization purposes an ischemia likelihood map is created by estimating posterior probabilities from the OCSVM outputs, thus obtaining how likely the classification is correct. UID is evaluated on synthetic data and in a 2D CP-BOLD data set from a canine experimental model emulating acute coronary syndromes. Comparing early ischemic territories identified with UID against infarct territories (after several hours of ischemia), we find that IE, as measured by UID, is highly correlated (Pearson's r=0.84) with respect to infarct size. When advances in automated registration and segmentation of CP-BOLD images and full coverage 3D acquisitions become available, we hope that this method can enable pixel-level assessment of ischemia with this truly non-invasive imaging technique.

  4. Dictionary-driven Ischemia Detection from Cardiac Phase-Resolved Myocardial BOLD MRI at Rest

    PubMed Central

    Bevilacqua, Marco; Dharmakumar, Rohan; Tsaftaris, Sotirios A.

    2016-01-01

    Cardiac Phase-resolved Blood-Oxygen-Level Dependent (CP–BOLD) MRI provides a unique opportunity to image an ongoing ischemia at rest. However, it requires post-processing to evaluate the extent of ischemia. To address this, here we propose an unsupervised ischemia detection (UID) method which relies on the inherent spatio-temporal correlation between oxygenation and wall motion to formalize a joint learning and detection problem based on dictionary decomposition. Considering input data of a single subject, it treats ischemia as an anomaly and iteratively learns dictionaries to represent only normal observations (corresponding to myocardial territories remote to ischemia). Anomaly detection is based on a modified version of One-class Support Vector Machines (OCSVM) to regulate directly the margins by incorporating the dictionary-based representation errors. A measure of ischemic extent (IE) is estimated, reflecting the relative portion of the myocardium affected by ischemia. For visualization purposes an ischemia likelihood map is created by estimating posterior probabilities from the OCSVM outputs, thus obtaining how likely the classification is correct. UID is evaluated on synthetic data and in a 2D CP–BOLD data set from a canine experimental model emulating acute coronary syndromes. Comparing early ischemic territories identified with UID against infarct territories (after several hours of ischemia), we find that IE, as measured by UID, is highly correlated (Pearson’s r = 0.84) w.r.t. infarct size. When advances in automated registration and segmentation of CP–BOLD images and full coverage 3D acquisitions become available, we hope that this method can enable pixel-level assessment of ischemia with this truly non-invasive imaging technique. PMID:26292338

  5. Protective effects of vitamin E against myocardial ischemia/reperfusion injury in rats.

    PubMed

    Saleh, Nermine K; Saleh, Hanan A

    2010-02-01

    To clarify the cardioprotective effects of a short course of vitamin E treatment (vit E) as compared with a nitric oxide donor, nitroglycerin (GTN) against ischemia-reperfusion induced heart injury in rats. This randomized control study was conducted in the Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt from 1st June to 31 August 2009. This work was undertaken on 28 female Wistar rats weighing 150- 200 gm. Rats were allocated into 4 groups; control group (non-treated), GTN-treated group (rats received GTN intraperitoneally 25 minutes before sacrifice, in a dose of 120 ug/kg body weight), vit E-treated group (rat received vit E by oral tubal feeding 16-20 hours before sacrifice, in a dose of 250 mg/rat), and vit E and GTN-treated group (rats received vit E and GTN as in both GTN-treated group and vit E -treated group). After sacrifice, the hearts were excised and perfused in a Langendorff preparation and subjected to 30 minutes global ischemia and reperfused for 30 minutes. Following reperfusion, heart tissues were used for assessment of malondialdehyde (MDA) and nicotinamide adenine dinucleotide (NAD)+, and for histological examination. Vitamin E treatment resulted in an enhanced post-ischemic recovery of systolic function in vit E-treated groups (vit E-treated group, and vit E and GTN-treated group) compared to the control group. Post-ischemic recovery of coronary flow was enhanced in the vit E-treated group compared to the GTN-treated group. Post ischemic tissue degeneration indicators: MDA, and NAD+ indicated a cardioprotective effect of vit E. Histological study revealed marked improvement of myocytes and mitochondrial structure in the vit E-treated group as compared with the control group. Preconditioning with vit E treatment afforded substantial recovery of post-ischemic contractile, and vascular functions compared to GTN treatment, the mechanism might involve less opening of mitochondrial permeability transition during

  6. Perillaldehyde attenuates cerebral ischemia-reperfusion injury-triggered overexpression of inflammatory cytokines via modulating Akt/JNK pathway in the rat brain cortex.

    PubMed

    Xu, Lixing; Li, Yuebi; Fu, Qiang; Ma, Shiping

    2014-11-07

    Perillaldehyde (PAH), one of the major oil components in Perilla frutescens, has anti-inflammatory effects. Few studies have examined the neuroprotective effect of PAH on stroke. So the aim of our study is to investigate the effect of PAH on ischemia-reperfusion-induced injury in the rat brain cortex. Middle cerebral artery occlusion (MCAO) model was selected to make cerebral ischemia-reperfusion injury. Rats were assigned randomly to groups of sham, MCAO, and two treatment groups by PAH at 36.0, 72.0mg/kg. Disease model was set up after intragastrically (i.g.) administering for 7 consecutive days. The neurological deficit, the cerebral infarct size, biochemical parameters and the relative mRNA and protein levels were examined. The results showed that the NO level, the iNOS activity, the neurological deficit scores, the cerebral infarct size and the expression of inflammatory cytokines including interleukin (IL)-1β, interleukin (IL)-6 and tumor necrosis factor (TNF)-α were significantly decreased by PAH treatment. PAH also increased the Phospho-Akt level and decrease the Phospho-JNK level by Western blot analysis. Meanwhile, the PAH groups exhibited a dramatically decrease of apoptosis-related mRNA expression such as Bax and caspase-3. Our findings shown that PAH attenuates cerebral ischemia/reperfusion injury in the rat brain cortex, and suggest its neuroprotective effect is relate to regulating the inflammatory response through Akt /JNK pathway. The activation of this signalling pathway eventually inhibits apoptotic cell death induced by cerebral ischemia-reperfusion. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Is chlormethiazole neuroprotective in experimental global cerebral ischemia? A microdialysis and behavioral study.

    PubMed

    Thaminy, S; Reymann, J M; Heresbach, N; Allain, H; Lechat, P; Bentué-Ferrer, D

    1997-04-01

    Chlormethiazole, an anticonvulsive agent, has been shown to have a possible neuroprotective effect against cerebral ischemia. In addition, chlormethiazole inhibits methamphetamine-induced release of dopamine, protecting against this neurotransmitter's neurotoxicity. The aim of this work was to ascertain whether, in experimental cerebral ischemia, chlormethiazole administration attenuated the ischemia-induced rise of the extracellular concentration of aminergic neurotransmitters and whether it reduces ischemia-induced deficits in memory and learning. Histology for assessment of ischemic damage was a so included. The four-vessel occlusion rat model was used to induce global cerebral ischemia. Aminergic neurotransmitters and their metabolites in the striatal extracellular fluid obtained by microdialysis were assayed by high-performance liquid chromatography-electrochemical detection. The drug was administered either IP (50 mg/kg-1) or directly through the dialysis probe (30 microM) 80 min before ischemia. For the behavioral test and histology, the drug was given IP (100 mg/kg-1) 1 h postischemia. The results obtained did not demonstrate any statistically significant evidence that chlormethiazole has an effect on the ischemia-induced rise in extracellular dopamine and serotonin levels. There was also no variation in metabolite levels. Behavioral measures (learning, recall) were not changed appreciably by the treatment. We observed no significant cell protection in the hippocampus (CA1, CA1), striatum, and entorhinal cortex in animals treated with chlormethiazole. We conclude that, under our experimental conditions, chlormethiazole has little or no effect on the neurochemical, neurobehavioral, and histological consequences of global cerebral ischemia.

  8. Protective effects of propofol against whole cerebral ischemia/reperfusion injury in rats through the inhibition of the apoptosis-inducing factor pathway.

    PubMed

    Tao, Tao; Li, Chun-Lei; Yang, Wan-Chao; Zeng, Xian-Zhang; Song, Chun-Yu; Yue, Zi-Yong; Dong, Hong; Qian, Hua

    2016-08-01

    Cerebral ischemia/reperfusion (I/R) injury could cause neural apoptosis that involved the signaling cascades. Cytochrome c release from the mitochondria and the followed activation of caspase 9 and caspase 3 are the important steps. Now, a new mitochondrial protein, apoptosis-inducing factor (AIF), has been shown to have relationship with the caspase-independent apoptotic pathway. In this study, we investigated the protective effects of propofol through inhibiting AIF-mediated apoptosis induced by whole cerebral I/R injury in rats. 120 Wistar rats that obtained the permission of the animal care committee of Harbin Medical University were randomly divided into three groups: sham group (S group), cerebral ischemia/reperfusion injury group (I/R group), and propofol treatment group (P group). Propofol (1.0mg/kg/min) was administered intravenously for 1h before the induction of ischemia in P group. The apoptotic rate in three groups was detected by flow cytometry after 24h of reperfusion. The mitochondrial membrane potential (MMP) changes were detected via microplate reader. The expressions of B-cell leukemia-2 (Bcl-2), Bcl-2 associated X protein (Bax) and AIF were evaluated using Western blot after 6h, 24h and 48h of reperfusion. The results of our study showed that apoptotic level was lower in P group compared with I/R group and propofol could protect MMP. The ratio of Bcl-2/Bax was significantly higher in P group compared with I/R group. The translocation of AIF from mitochondrial to nucleus was lower in P group than that in I/R group. Our findings suggested that the protective effects of propofol on cerebral I/R injury might be associated with inhibiting translocation of AIF from mitochondrial to the nucleus in hippocampal neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Monitoring somatosensory evoked potentials in spinal cord ischemia-reperfusion injury

    PubMed Central

    Ji, Yiming; Meng, Bin; Yuan, Chenxi; Yang, Huilin; Zou, Jun

    2013-01-01

    It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30–180 minutes, the amplitude and latency began to gradually recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in-creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potential latency can reflect the degree of spinal cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury. PMID:25206629

  10. Oxidative and inflammatory biomarkers of ischemia and reperfusion injuries.

    PubMed

    Halladin, Natalie Løvland

    2015-04-01

    Ischemia-reperfusion injuries occur when the blood supply to an organ or tissue is temporarily cut-off and then restored. Even though the restoration of blood flow is absolutely essential in preventing tissue death, the reperfusion of oxygenated blood to the oxygen-deprived areas may in itself augment the tissue damage in excess of that produced by the ischemia alone. The process of ischemia-reperfusion is multifactorial and there are several mechanisms involved in the pathogenesis. Ample evidence shows that the injury is in part caused by an excessive generation of reactive oxygen species or free radicals. The free radicals consequently initiate an inflammatory response, which in some cases may affect distant organs, thus causing remote organ injuries. Ischemia-reperfusion injuries are a common complication in many diseases (acute myocardial infarctions, stroke) or surgical settings (transplantations, tourniquet-related surgery) and they have potential detrimental and disabling consequences. The tolerance of ischemia-reperfusion has proven to be time-of-day-dependent and the size of myocardial infarctions has proven to be significantly higher when occurring in the dark-to-light period. This period is characterized by and coincides with a rapid decrease in the plasma levels of the hormone melatonin. Melatonin is the body's most potent antioxidant and is capable of both direct free radical scavenging and indirect optimization of other anti-oxidant enzymes. It also possesses anti-inflammatory properties and is known to inhibit the mitochondrial permeability transition pore during reperfusion. This inhibiting property has been shown to be of great importance in reducing ischemia-reperfusion injuries. Furthermore, melatonin is a relatively non-toxic molecule, which has proven to be safe for use in clinical trials. Thus, there is compelling evidence of melatonin's effect in reducing ischemia-reperfusion injuries in many experimental studies, but the number of human

  11. Effects of N-Acetylcysteine Addition to University of Wisconsin Solution on the Rate of Ischemia-Reperfusion Injury in Adult Orthotopic Liver Transplant.

    PubMed

    Aliakbarian, Mohsen; Nikeghbalian, Saman; Ghaffaripour, Sina; Bahreini, Amin; Shafiee, Mohammad; Rashidi, Mohammad; Rajabnejad, Yaser

    2017-08-01

    One of the main concerns in liver transplant is the prolonged ischemia time, which may lead to primary graft nonfunction or delayed function. N-acetylcysteine is known as a hepato-protective agent in different studies, which may improve human hepatocyte viability in steatotic donor livers. This study investigated whether N-acetylcysteine can decrease the rate of ischemia-reperfusion syndrome and improve short-term outcome in liver transplant recipients. This was a double-blind, randomized, control clinical trial of 115 patients. Between April 2012 and January 2013, patients with orthotopic liver transplant were randomly divided into 2 groups; in 49 cases N-acetylcysteine was added to University of Wisconsin solution as the preservative liquid (experimental group), and in 66 cases standard University of Wisconsin solution was used (control group). We compared postreperfusion hypotension, inotrope requirement before and after portal reperfusion, intermittent arterial blood gas analysis and potassium measurement, pathological review of transplanted liver, in-hospital complications, morbidity, and mortality. There was no significant difference between the groups regarding time to hepatic artery reperfusion, hospital stay, vascular complications, inotrope requirement before and after portal declamping, and blood gas analysis. Hypotension after portal reperfusion was significantly more common in experimental group compared with control group (P = .005). Retransplant and in-hospital mortality were comparable between the groups. Preservation of the liver inside Univer-sity of Wisconsin solution plus N-acetylcysteine did not change the rate of ischemia reperfusion injury and short-term outcome in liver transplant recipients.

  12. Oleuropein, a natural extract from plants, offers neuroprotection in focal cerebral ischemia/reperfusion injury in mice.

    PubMed

    Yu, Hailong; Liu, Peipei; Tang, Hui; Jing, Jian; Lv, Xiang; Chen, Lanlan; Jiang, Li; Xu, Jun; Li, Jun

    2016-03-15

    Oleuropein (OLE) was found to have anti-inflammatory and anti-oxidant effects. The latest study has shown that it can resist myocardial injury that follows an acute myocardial infarction and can rescue impaired spinal nerve cells. In this study, we investigated the neuroprotective effects of OLE on cerebral ischemia and reperfusion injury in a middle cerebral artery occlusion model in mice.OLE (100 mg/kg) was injected intraperitoneally 1h before ischemia. We found that the volume of cerebral infarction was significantly reduced after 75 min of ischemia and 24 h of reperfusion compared with the I/R (ischemia/reperfusion) group. This protective function occurred in a dose-dependent manner. We also found that treatment with OLE could reduce the cerebral infarct volume. The neuroprotective effect was prolonged from 2 h to 4 h when we injected OLE intracerebroventricularly after reperfusion. We then found that OLE can decrease the level of cleavedcaspase-3, an important marker of apoptosis, in the ischemic mouse brain. Finally, we explored the role of OLE in providing anti-apoptotic effects through the increased expression of Bcl-2 and the decreased expression of Bax, which are important markers in apoptosis. As shown above, the function and safety of OLE in cardiovascular disease may indicate that it is a potential therapeutic for stroke. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Novel Biomarkers of Arterial and Venous Ischemia in Microvascular Flaps

    PubMed Central

    Nguyen, Gerard K.; Monahan, John F. W.; Davis, Gabrielle B.; Lee, Yong Suk; Ragina, Neli P.; Wang, Charles; Zhou, Zhao Y.; Hong, Young Kwon; Spivak, Ryan M.; Wong, Alex K.

    2013-01-01

    The field of reconstructive microsurgery is experiencing tremendous growth, as evidenced by recent advances in face and hand transplantation, lower limb salvage after trauma, and breast reconstruction. Common to all of these procedures is the creation of a nutrient vascular supply by microsurgical anastomosis between a single artery and vein. Complications related to occluded arterial inflow and obstructed venous outflow are not uncommon, and can result in irreversible tissue injury, necrosis, and flap loss. At times, these complications are challenging to clinically determine. Since early intervention with return to the operating room to re-establish arterial inflow or venous outflow is key to flap salvage, the accurate diagnosis of early stage complications is essential. To date, there are no biochemical markers or serum assays that can predict these complications. In this study, we utilized a rat model of flap ischemia in order to identify the transcriptional signatures of venous congestion and arterial ischemia. We found that the critical ischemia time for the superficial inferior epigastric fasciocutaneus flap was four hours and therefore performed detailed analyses at this time point. Histolgical analysis confirmed significant differences between arterial and venous ischemia. The transcriptome of ischemic, congested, and control flap tissues was deciphered by performing Affymetrix microarray analysis and verified by qRT-PCR. Principal component analysis revealed that arterial ischemia and venous congestion were characterized by distinct transcriptomes. Arterial ischemia and venous congestion was characterized by 408 and 1536>2-fold differentially expressed genes, respectively. qRT-PCR was used to identify five candidate genes Prol1, Muc1, Fcnb, Il1b, and Vcsa1 to serve as biomarkers for flap failure in both arterial ischemia and venous congestion. Our data suggests that Prol1 and Vcsa1 may be specific indicators of venous congestion and allow clinicians to

  14. Effect of systemic piracetam treatment on flap survival and vascular endothelial growth factor expression after ischemia-reperfusion injury.

    PubMed

    Tuncer, Serhan; Ayhan, Suhan; Findikcioglu, Kemal; Ergun, Hakan; Tuncer, Ilhan

    2011-09-01

    The effects of piracetam on flap survival, ischemia-reperfusion (I/R) injury, and vascular endothelial growth factor (VEGF) expression were evaluated in this study. Unipedicled epigastric flap model was used in 36 rats and was evaluated within 4 groups. The flap was elevated and untreated in Group 1. Postoperative piracetam treatment was given for 7 days in Group 2. In Group 3, 4 hours of ischemia and 2 hours of reperfusion were applied. I/R was applied to Group 4 and piracetam was given 30 minutes before reperfusion and postoperatively for 7 days. Laser Doppler flowmetry was used to measure blood flow changes. VEGF expression was determined using immunohistochemical methods on tissue samples taken after the completion of 2 hours reperfusion in groups 3 and 4. Flap necrosis was measured on the day 7 in all groups. Blood flow rates did not show significant difference between piracetam treated and untreated I/R groups. Piracetam significantly reduced necrosis area both in ischemic and nonischemic flaps ( P < 0.05). VEGF expression was significantly increased in piracetam-treated Group 4 compared with Group 3 ( P = 0.005). This experimental study demonstrates that systemic piracetam treatment improves survival of pedicled flaps, reduces necrosis amounts, and increases VEGF expression in I/R induced flaps. © Thieme Medical Publishers.

  15. [Antioxidant effects of antihypoxic drugs in cerebral ischemia].

    PubMed

    Plotnikov, M B; Kobzeva, E A; Plotnikova, T M

    1992-05-01

    Cerebral ischemia in rats (both carotid arteries occlusion) during 30 min, 3 hours and recirculation (1 hour) after ischemia (30 min) stimulated diene conjugates and fluorescent products accumulation in brain tissue. Intraperitoneal injection of sodium hydroxybutyrate (100 mg/kg), bemitil (50 mg/kg), ethomersol (50 mg/kg) reduced brain lipid peroxidation and did not yield in this respect to emoxypin (5 mg/kg). In contrast to emoxypin, sodium hydroxybutyrate, bemitil and ethomersol had no antiradical activity.

  16. Oxidized phosphatidylcholines are produced in renal ischemia reperfusion injury

    PubMed Central

    Solati, Zahra; Edel, Andrea L.; Shang, Yue; O, Karmin

    2018-01-01

    Background The aim of this study was to determine the individual oxidized phosphatidylcholine (OxPC) molecules generated during renal ischemia/ reperfusion (I/R) injury. Methods Kidney ischemia was induced in male Sprague–Dawley rats by clamping the left renal pedicle for 45 min followed by reperfusion for either 6h or 24h. Kidney tissue was subjected to lipid extraction. Phospholipids and OxPC species were identified and quantitated using liquid chromatography coupled to electrospray ionization tandem mass spectrometry using internal standards. Result We identified fifty-five distinct OxPC in rat kidney following I/R injury. These included a variety of fragmented (aldehyde and carboxylic acid containing species) and non-fragmented products. 1-stearoyl-2-linoleoyl-phosphatidylcholine (SLPC-OH), which is a non-fragmented OxPC and 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PAzPC), which is a fragmented OxPC, were the most abundant OxPC species after 6h and 24 h I/R respectively. Total fragmented aldehyde OxPC were significantly higher in 6h and 24h I/R groups compared to sham operated groups (P = 0.03, 0.001 respectively). Moreover, levels of aldehyde OxPC at 24h I/R were significantly greater than those in 6h I/R (P = 0.007). Fragmented carboxylic acid increased significantly in 24h I/R group compared with sham and 6h I/R groups (P = 0.001, 0.001). Moreover, levels of fragmented OxPC were significantly correlated with creatinine levels (r = 0.885, P = 0.001). Among non-fragmented OxPC, only isoprostanes were elevated significantly in 6h I/R group compared with sham group but not in 24h I/R group (P = 0.01). No significant changes were observed in other non-fragmented OxPC including long chain products and terminal furans. Conclusion We have shown for the first time that bioactive OxPC species are produced in renal I/R and their levels increase with increasing time of reperfusion in a kidney model of I/R and correlate with severity of I/R injury. Given the

  17. Protective effects of persian honey, Apis Mellifera Meda Skorikov on side effects of chemotherapy and ischemia/reperfusion induced testicular injury.

    PubMed

    Gholami, Mohammadreza; Abbaszadeh, Abolfazl; Baharvand, Parastoo; Hasanvand, Afshin; Hasanvand, Amin; Gharravi, Anneh Mohammad

    2018-05-23

    Introduction The aim of the present study was to survey the protective effect of pretreatment with Persian honey on amelioration of side effects of chemotherapy and ischemia/reperfusion induced testicular injury. Materials and methods Forty adult's male wistar rats were divided into four groups of ischemia-reperfusion (IR), honey + ischemia-reperfusion (HIR), Busulfan (B) and Busulfan intraperitoneally+ honey (BH). The seminiferous tubules were rated for their modified spermatogenesis index (SI) by Johnsons score. Detection of single- and double-stranded DNA breaks at the early stages of apoptosis was performed using the in-situ cell death detection kit. Total serum concentration of Follicle-stimulating hormone (FSH) , Luteinizing hormone (LH) and testosterone was measured using ELISA. All data were expressed as mean ± SD and significance was set at p≤0.05. Results Honey improved SI in the HIR and BH groups and serum levels of FSH and LH in the BH and HIR groups (p<0.001). Also, serum levels of testosterone were significantly higher in BH and HIR groups. But, apoptotic cells in IR and B groups significantly increased (p<0.001), while in HIR and BH groups, the number of apoptotic cells decreased and the positive cells of TUNEL (TdT-mediated dUTP-X nick end labelling) staining were detected in spermatocytes and spermatid. Discussion Pretreatment with honey protect testis against chemotherapy and testicular IR injury, increase FSH and LH and testosterone and decrease the cellular damage and apoptosis. Honey can decrease the side effects of chemotherapy on reproductive system and prevent sterility.

  18. Hydrogen-rich saline attenuates skin ischemia/reperfusion induced apoptosis via regulating Bax/Bcl-2 ratio and ASK-1/JNK pathway.

    PubMed

    Liu, Yun-Qi; Liu, Yi-Fang; Ma, Xue-Mei; Xiao, Yi-Ding; Wang, You-Bin; Zhang, Ming-Zi; Cheng, Ai-Xin; Wang, Ting-Ting; Li, Jia-La; Zhao, Peng-Xiang; Xie, Fei; Zhang, Xin

    2015-07-01

    Many pathways have been reported involving the effect of hydrogen-rich saline on protecting skin flap partial necrosis induced by the inflammation of ischemia/reperfusion injury. This study focused on the influence of hydrogen-rich saline treatment on apoptosis pathway of ASK-1/JNK and Bcl-2/Bax radio in I/R injury of skin flaps. Adult male Sprague-Dawley rats were divided into three groups. Group 1 was sham surgery group, Group 2 and 3 were ischemia/reperfusion surgery treated with physiological saline and hydrogen-rich saline respectively. Blood perfusion of flap was measured by Laser doppler flowmeters. Hematoxylin and eosin staining was used to observe morphological changes. Early apoptosis in skin flap was observed through TUNEL staining and presented as the percentage of TUNEL-positive cells of total cells. pASK-1, pJNK, Bcl-2 and Bax were examined by immunodetection. In addition Bcl-2, Bax and caspase-3 were detected by qPCR. Caspase-3 activity was also measured. Compared to the Group 2, tissues from the group 3 were observed with a high expression of Bcl-2 and a low expression of pASK-1, pJNK, and Bax, a larger survival area and a high level of blood perfusion. Hydrogen-rich saline ameliorated inflammatory infiltration and decreased cell apoptosis. The results indicate that hydrogen-rich saline could ameliorate ischemia/reperfusion injury and improve flap survival rate by inhibiting the apoptosis factor and, at the same time, promoting the expression of anti-apoptosis factor. Copyright © 2015. Published by Elsevier Ltd.

  19. The effect of pre- and after-treatment of sevoflurane on central ischemia tolerance and the underlying mechanisms

    PubMed Central

    2018-01-01

    In recent years, with continuous research efforts targeted at studying the effects of pre- and after-treatment of inhaled anesthetics, significant progress has been made regarding the common clinical use of low concentrations of inhaled sevoflurane and its effect on induced central ischemia tolerance by pre- and post-treatment. In this study, we collected, analyzed, classified, and summarized recent literature regarding the effect of sevoflurane on central ischemia tolerance and its related mechanisms. In addition, we provide a theoretical basis for the clinical application of sevoflurane to protect the central nervous system and other important organs against ischemic injury. PMID:29556553

  20. Conducting Research With Community Groups.

    PubMed

    Doornbos, Mary Molewyk; Ayoola, Adejoke; Topp, Robert; Zandee, Gail Landheer

    2015-10-01

    Nurse scientists are increasingly recognizing the necessity of conducting research with community groups to effectively address complex health problems and successfully translate scientific advancements into the community. Although several barriers to conducting research with community groups exist, community-based participatory research (CBPR) has the potential to mitigate these barriers. CBPR has been employed in programs of research that respond in culturally sensitive ways to identify community needs and thereby address current health disparities. This article presents case studies that demonstrate how CBPR principles guided the development of (a) a healthy body weight program for urban, underserved African American women; (b) a reproductive health educational intervention for urban, low-income, underserved, ethnically diverse women; and (c) a pilot anxiety/depression intervention for urban, low-income, underserved, ethnically diverse women. These case studies illustrate the potential of CBPR as an orientation to research that can be employed effectively in non-research-intensive academic environments. © The Author(s) 2015.

  1. Conducting Research with Community Groups

    PubMed Central

    Doornbos, Mary Molewyk; Ayoola, Adejoke; Topp, Robert; Zandee, Gail Landheer

    2016-01-01

    Nurse scientists are increasingly recognizing the necessity of conducting research with community groups to effectively address complex health problems and successfully translate scientific advancements into the community. While several barriers to conducting research with community groups exist, community based participatory research (CBPR) has the potential to mitigate these barriers. CBPR has been employed in programs of research that respond in culturally sensitive ways to identify community needs and thereby address current health disparities. This manuscript presents case studies that demonstrate how CBPR principles guided the development of: (a) a healthy body weight program for urban, underserved African-American women, (b) a reproductive health educational intervention for urban, low-income, underserved, ethnically diverse women, and (c) a pilot anxiety/depression intervention for urban, low-income, underserved, ethnically diverse women. These case studies illustrate the potential of CBPR as an orientation to research that can be employed effectively in non-research intensive academic environments. PMID:25724557

  2. Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on cerebral ischemia rats

    PubMed Central

    LIU, GUANGYI; WANG, TAO; WANG, TINGING; SONG, JINMING; ZHOU, ZHEN

    2013-01-01

    Neuron apoptosis is known to mediate a change of ethology following cerebral ischemia-reperfusion injury in rats. Additionally, Bcl-2, Bax and caspase-3 proteins may exert a significant effect on neuron injury. The aim of this study was to investigate the role, mechanism of action and clinical significance of these proteins in neuron apoptosis and functional impairment following cerebral ischemia-reperfusion injury in rats. Sixty male healthy adult Wistar rats were randomly assigned into control (n=6), sham operation (n=6) and experimental (n=48) groups. The model of rat cerebral ischemia-reperfusion injury was set up according to the method of Zea-Longa. Eight subsets of 6 rats-subset were designed according to time points (at 3, 6, 12, 24 and 48 h and at 3, 7 and 14 days). Nerve functional injury was evaluated and graded using nerve function score, balance, coordination function detection and measurement of forelimb placing. The neurons expressing caspase-3, Bax and Bcl-2 in the cortical area, CA3, CA1, stratum lucidum (Slu) and molecular layer of the dentate gyrus (MoDG) of the hippocampus were detected using immunohistochemistry or the TUNEL method. The expression of caspase-3, Bax and Bcl-2 genes was detected by the reverse transcriptase polymerase chain reaction (RT-PCR). The results indicated that, compared to the sham operation group, the score of nerve function and balance beam walking were distinctly higher (P<0.01) and the percentage of rat foreleg touching the angle or margin of the table was significantly lower in the experimental rat group (P<0.01) at 3 h following reperfusion. The expression of TUNEL-positive neurons was high in the cortical area and the CA3 region of the hippocampus (P<0.01), caspase-3 was at peak value in the cortical area and the CA1 region of the hippocampus (P<0.01), Bax was increased in the cortical area and the Slu of the hippocampus (P<0.01) and Bcl-2 was low in the cortical area and the MoDG of the hippocampus (P<0.01) in

  3. Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on cerebral ischemia rats.

    PubMed

    Liu, Guangyi; Wang, Tao; Wang, Tinging; Song, Jinming; Zhou, Zhen

    2013-11-01

    Neuron apoptosis is known to mediate a change of ethology following cerebral ischemia-reperfusion injury in rats. Additionally, Bcl-2, Bax and caspase-3 proteins may exert a significant effect on neuron injury. The aim of this study was to investigate the role, mechanism of action and clinical significance of these proteins in neuron apoptosis and functional impairment following cerebral ischemia-reperfusion injury in rats. Sixty male healthy adult Wistar rats were randomly assigned into control (n=6), sham operation (n=6) and experimental (n=48) groups. The model of rat cerebral ischemia-reperfusion injury was set up according to the method of Zea-Longa. Eight subsets of 6 rats-subset were designed according to time points (at 3, 6, 12, 24 and 48 h and at 3, 7 and 14 days). Nerve functional injury was evaluated and graded using nerve function score, balance, coordination function detection and measurement of forelimb placing. The neurons expressing caspase-3, Bax and Bcl-2 in the cortical area, CA3, CA1, stratum lucidum (Slu) and molecular layer of the dentate gyrus (MoDG) of the hippocampus were detected using immunohistochemistry or the TUNEL method. The expression of caspase-3, Bax and Bcl-2 genes was detected by the reverse transcriptase polymerase chain reaction (RT-PCR). The results indicated that, compared to the sham operation group, the score of nerve function and balance beam walking were distinctly higher (P<0.01) and the percentage of rat foreleg touching the angle or margin of the table was significantly lower in the experimental rat group (P<0.01) at 3 h following reperfusion. The expression of TUNEL-positive neurons was high in the cortical area and the CA3 region of the hippocampus (P<0.01), caspase-3 was at peak value in the cortical area and the CA1 region of the hippocampus (P<0.01), Bax was increased in the cortical area and the Slu of the hippocampus (P<0.01) and Bcl-2 was low in the cortical area and the MoDG of the hippocampus (P<0.01) in

  4. Extracranial-intracranial bypass surgery for stroke prevention in hemodynamic cerebral ischemia: the Carotid Occlusion Surgery Study randomized trial.

    PubMed

    Powers, William J; Clarke, William R; Grubb, Robert L; Videen, Tom O; Adams, Harold P; Derdeyn, Colin P

    2011-11-09

    Patients with symptomatic atherosclerotic internal carotid artery occlusion (AICAO) and hemodynamic cerebral ischemia are at high risk for subsequent stroke when treated medically. To test the hypothesis that extracranial-intracranial (EC-IC) bypass surgery, added to best medical therapy, reduces subsequent ipsilateral ischemic stroke in patients with recently symptomatic AICAO and hemodynamic cerebral ischemia. Parallel-group, randomized, open-label, blinded-adjudication clinical treatment trial conducted from 2002 to 2010. Forty-nine clinical centers and 18 positron emission tomography (PET) centers in the United States and Canada. The majority were academic medical centers. Patients with arteriographically confirmed AICAO causing hemispheric symptoms within 120 days and hemodynamic cerebral ischemia identified by ipsilateral increased oxygen extraction fraction measured by PET. Of 195 patients who were randomized, 97 were randomized to receive surgery and 98 to no surgery. Follow-up for the primary end point until occurrence, 2 years, or termination of trial was 99% complete. No participant withdrew because of adverse events. Anastomosis of superficial temporal artery branch to a middle cerebral artery cortical branch for the surgical group. Antithrombotic therapy and risk factor intervention were recommended for all participants. For all participants who were assigned to surgery and received surgery, the combination of (1) all stroke and death from surgery through 30 days after surgery and (2) ipsilateral ischemic stroke within 2 years of randomization. For the nonsurgical group and participants assigned to surgery who did not receive surgery, the combination of (1) all stroke and death from randomization to randomization plus 30 days and (2) ipsilateral ischemic stroke within 2 years of randomization. The trial was terminated early for futility. Two-year rates for the primary end point were 21.0% (95% CI, 12.8% to 29.2%; 20 events) for the surgical group and

  5. Photothrombosis-induced Focal Ischemia as a Model of Spinal Cord Injury in Mice

    PubMed Central

    Zhang, Nannan; Ding, Shinghua

    2015-01-01

    Spinal cord injury (SCI) is a devastating clinical condition causing permanent changes in sensorimotor and autonomic functions of the spinal cord (SC) below the site of injury. The secondary ischemia that develops following the initial mechanical insult is a serious complication of the SCI and severely impairs the function and viability of surviving neuronal and non-neuronal cells in the SC. In addition, ischemia is also responsible for the growth of lesion during chronic phase of injury and interferes with the cellular repair and healing processes. Thus there is a need to develop a spinal cord ischemia model for studying the mechanisms of ischemia-induced pathology. Focal ischemia induced by photothrombosis (PT) is a minimally invasive and very well established procedure used to investigate the pathology of ischemia-induced cell death in the brain. Here, we describe the use of PT to induce an ischemic lesion in the spinal cord of mice. Following retro-orbital sinus injection of Rose Bengal, the posterior spinal vein and other capillaries on the dorsal surface of SC were irradiated with a green light resulting in the formation of a thrombus and thus ischemia in the affected region. Results from histology and immunochemistry studies show that PT-induced ischemia caused spinal cord infarction, loss of neurons and reactive gliosis. Using this technique a highly reproducible and relatively easy model of SCI in mice can be achieved that would serve the purpose of scientific investigations into the mechanisms of ischemia induced cell death as well as the efficacy of neuroprotective drugs. This model will also allow exploration of the pathological changes that occur following SCI in live mice like axonal degeneration and regeneration, neuronal and astrocytic Ca2+ signaling using two-photon microscopy. PMID:26274772

  6. Ischemia causes muscle fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.

    2001-01-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.

  7. Repetitive ischemia increases myocardial dimethylarginine dimethylaminohydrolase 1 expression.

    PubMed

    Zhang, Ping; Fassett, John T; Zhu, Guangshuo; Li, Jingxin; Hu, Xinli; Xu, Xin; Chen, Yingjie; Bache, Robert J

    2017-06-01

    Pharmacologic inhibition of nitric oxide production inhibits growth of coronary collateral vessels. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is the major enzyme that degrades asymmetric dimethylarginine (ADMA), a potent inhibitor of nitric oxide synthase. Here we examined regulation of the ADMA-DDAH1 pathway in a canine model of recurrent myocardial ischemia during the time when coronary collateral growth is known to occur. Under basal conditions, DDAH1 expression was non-uniform across the left ventricular (LV) wall, with expression strongest in the subepicardium. In response to ischemia, DDAH1 expression was up-regulated in the midmyocardium of the ischemic zone, and this was associated with a significant reduction in myocardial interstitial fluid (MIF) ADMA. The decrease in MIF ADMA during ischemia was likely due to increased DDAH1 because myocardial protein arginine N-methyl transferase 1 (PRMT1) and the methylated arginine protein content (the source of ADMA) were unchanged or increased, respectively, at this time. The inflammatory mediators interleukin (IL-1β) and tumor necrosis factor (TNF-α) were also elevated in the midmyocardium where DDAH1 expression was increased. Both of these factors significantly up-regulated DDAH1 expression in cultured human coronary artery endothelial cells. Taken together, these results suggest that inflammatory factors expressed in response to myocardial ischemia contributed to up-regulation of DDAH1, which was responsible for the decrease in MIF ADMA.

  8. Microvascular stent anastomosis using N-fibroin stents: feasibility, ischemia time, and complications.

    PubMed

    Smeets, Ralf; Vorwig, Oliver; Wöltje, Michael; Gaudin, Robert; Luebke, Andreas M; Beck-Broichsitter, Benedicta; Rheinnecker, Michael; Heiland, Max; Grupp, Katharina; Gröbe, Alexander; Hanken, Henning

    2016-05-01

    To evaluate a novel microvascular anastomosis technique using N-fibroin stents. Cylinder stents of 1 mm diameter and 5 mm length were fabricated using N-fibroin from silkworms. In 22 rats, aortas were dissected, and the stent was inserted into the two ends of the aorta and fixed using methylmethacrylate. Stent anastomosis was successful in 21 (96%) rats. The mean ischemia time was 7.4 minutes, significantly shorter than the 15.9 minutes in the control group with conventional sutures (P < .0001). After 4 months, anastomosis was functionally patent in all cases. However, elastic fibers remained interrupted in all stent anastomosis cases, and marked host rejection was evident at the stent anastomosis sites. Around the stents, thrombi were frequent (52%). Our study demonstrated the basic feasibility of stent anastomosis using N-fibroin stents and reduced ischemia time. However, thrombus formation, frequent and severe abdominal infections, and heavy host rejection remain critical issues. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Ischemia/reperfusion-induced injury of forebrain mitochondria and protection by ascorbate.

    PubMed

    Sciamanna, M A; Lee, C P

    1993-09-01

    Complete, reversible forebrain ischemia was induced with a seven-vessel occlusion rat model. Previous studies of ischemic (M. A. Sciamanna, J. Zinkel, A. Y. Fabi, and C. P. Lee, 1992, Biochim. Biophys. Acta 1134, 223-232) rat brain mitochondria (RBM) showed that ischemia of 30 min caused an approximately 60% decrease in State 3 respiratory rates with both succinate and NAD-linked substrates and also in energy-linked Ca2+ transport. No significant change was seen in the State 4 rates. The inhibition of respiration could be prevented by EGTA or ruthenium red. In this paper it is shown that reperfusion (5 h) following ischemia (30 min) further impaired RBM respiratory activities (succinate and NAD-linked substrates). The presence of EGTA or ruthenium red in the assay medium did not protect against ischemia/reperfusion-induced injury. The effects of ascorbate, an oxygen radical scavenger, were studied. RBM isolated from ascorbate-treated animals (0.8 mg ascorbate/kg body weight) after ischemia (30 min) alone showed only a slight increase in State 3 (approximately 25%) and a decrease in State 4 (approximately 20%) activities with succinate, when compared to untreated 30-min ischemic animals, whereas, with glutamate+malate little or no effect was seen. The respiratory activities of RBM from ascorbate-treated, ischemic/reperfused (30 min/5 h) rats were restored to approximately 65% of controls levels. Ascorbate protection was dose-dependent with maximum protection at 0.8 mg ascorbate/kg body weight of rat. The k of succinate oxidase-supported Ca2+ uptake also returned to 62% of control values. Protection by ascorbate was most effective when administered prior to the onset of ischemia and provided partial protection when administered after the onset of reperfusion. These results suggest that ischemia-induced injury is primarily mediated by disruption of cellular Ca2+ homeostasis, and reperfusion-induced injury by peroxidative events.

  10. Cardioprotective activity of urocortin by preventing caspase-independent, non-apoptotic death in cultured neonatal rat cardiomyocytes exposed to ischemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takatani-Nakase, Tomoka, E-mail: nakase@mukogawa-u.ac.jp; Takahashi, Koichi, E-mail: koichi@mukogawa-u.ac.jp

    Research highlights: {yields} Ischemia induces high level of iPLA{sub 2} resulting in caspase-independent myocyte death. {yields} Urocortin causes iPLA{sub 2} down-regulation leading to avoidance of non-apoptotic death. {yields} The survival-promoting effect of urocortin is abrogated by CRH receptor antagonist. -- Abstract: Caspase-independent, non-apoptotic cell death in ischemic heart disease is considered to be one of the important therapeutic targets, however, the detailed mechanisms of this cell death process are not clear. In this study, we investigated the mechanisms of non-apoptotic cell death in cultured neonatal rat cardiomyocytes during ischemia, and the cardioprotection by preventing the mechanisms. We found that ischemiamore » caused elevation of the phospholipase A{sub 2} (iPLA{sub 2}) expression in the myocytes, leading to distinctive non-apoptotic nuclear shrinkage, and cell death. Moreover, we investigated whether the potent cardioprotective corticotropin-releasing hormone (CRH), urocortin, which had been less focused on non-apoptotic cell death, inhibits the ischemic myocyte death. Ischemia-augmented nuclear shrinkage of the myocytes was suppressed by the pretreatment of {approx}10 nM urocortin before the cells were exposed to ischemia. Urocortin could significantly suppress the expression and activity of iPLA{sub 2}, resulting in preventing the ischemia-induced cell death. The survival-promoting effect of urocortin was abrogated by the CRH receptor antagonist astressin. These findings provide the first evidence linking the targets of the urocortin-mediated cardioprotection to the suppression of the caspase-independent, non-apoptotic death in cardiac myocytes exposed to ischemia.« less

  11. Oxygen free radical induced damage in kidneys subjected to warm ischemia and reperfusion. Protective effect of superoxide dismutase.

    PubMed Central

    Baker, G L; Corry, R J; Autor, A P

    1985-01-01

    Superoxide anion free radical (O2-.) has been implicated in the pathogenesis of tissue injury consequent to ischemia/reperfusion in several different organs, including heart and bowel. Superoxide dismutase (SOD), an enzyme free radical scavenger specific for O2-., has been used successfully to protect these organs from structural damage during reoxygenation of ischemic tissue. It has been suggested that the catalytic action of xanthine oxidase in injured tissue is an important source of O2-. during reoxygenation. In order to evaluate the potential of SOD to protect against kidney damage resulting from transient ischemia followed by reperfusion with oxygenated blood, a model of warm renal ischemia was studied. LBNF1 rats underwent right nephrectomy and occlusion of the left renal artery for 45 minutes. Survival in the group of ischemic untreated rats (N = 30) was 56% at 7 days and serum creatinine was greatly elevated (p less than 0.01) in rats remaining alive over the full 7-day period. In strong contrast to these results, all of the animals treated with SOD before reperfusion (N = 18) were alive after 7 days similar to sham operated control rats (N = 8). Serum creatinine in the SOD treated rats was significantly elevated only to postoperative day 3 and thereafter returned to normal. Rats treated with inactive SOD (N = 4) or SOD before ischemia (N = 4) had decreased survival rates compared to ischemic untreated animals and prolonged elevation of serum creatinine. When the ischemia time was extended to 60 minutes, only 19% of the untreated animals (N = 16) survived at 7 days whereas nearly 60% of the SOD-treated animals survived (N = 19). Serum creatinine was greatly elevated during the full 7-day observation period in all surviving rats in the untreated ischemic group, whereas serum creatinine returned to normal (p less than 0.05) after 4 days in the surviving rats treated with SOD. To test whether the action of xanthine oxidase contributed to the kidney damage

  12. Heart failure hospitalization in women with signs and symptoms of ischemia: A report from the women's ischemia syndrome evaluation study.

    PubMed

    Bakir, May; Nelson, Michael D; Jones, Erika; Li, Quanlin; Wei, Janet; Sharif, Behzad; Minissian, Margo; Shufelt, Chrisandra; Sopko, George; Pepine, Carl J; Merz, C Noel Bairey

    2016-11-15

    Women with signs and symptoms of ischemia, no obstructive coronary artery disease, and preserved left ventricular ejection fraction enrolled in the National Heart Lung and Blood Institute (NHLBI) sponsored Women's Ischemia Syndrome Evaluation (WISE) study have an unexpectedly high rate of subsequent heart failure (HF) hospitalization. We sought to verify and characterize the HF hospitalizations. A retrospective chart review was performed on 223 women with signs and symptoms of ischemia, undergoing coronary angiography for suspected coronary artery disease followed for 6±2.6years. Data were collected from a single site in the WISE study. At the time of study enrollment, the women were 57±11years of age, all had preserved left ventricular ejection fraction, and 81 (36%) had obstructive CAD (defined as >50% stenosis in at least one epicardial artery). Among the 223 patients, 25 (11%) reported HF hospitalizations, of which 14/25 (56%) had recurrent HF hospitalizations (>2 hospitalizations). Medical records were available in 13/25 (52%) women. Left ventricular ejection fraction was measured in all verified cases and was found to be preserved in 12/13 (92%). HF hospitalization was not related to obstructive CAD. Among women with signs and symptoms of ischemia undergoing coronary angiography for suspected obstructive CAD, HF hospitalization at 6-year follow-up was predominantly characterized by a preserved ejection fraction and not associated with obstructive CAD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. The anti-oxidant and anti-apoptotic effects of nebivolol and zofenopril in a model of cerebral ischemia/reperfusion in rats.

    PubMed

    Uzar, Ertuğrul; Acar, Abdullah; Evliyaoğlu, Osman; Fırat, Uğur; Kamasak, Kağan; Göçmez, Cüneyt; Alp, Harun; Tüfek, Adnan; Taşdemir, Nebahat; Ilhan, Atilla

    2012-01-10

    The aim of this experiment was to investigate whether nebivolol and zofenopril have protective effects against oxidative damage and apoptosis induced by cerebral ischemia/reperfusion (I/R). There were seven groups of rats, with each containing eight rats. The groups were: the control group, I/R group, I/R plus zofenopril, I/R plus nebivolol, I/R plus nebivolol and zofenopril, zofenopril only and nebivolol only. Cerebral I/R was induced by clamping the bilateral common carotid artery and through hypotension. The rats were sacrificed 1h after ischemia, and histopathological and biochemical analyses were carried out on their brains. The total antioxidant capacity was evaluated by using an automated and colorimetric measurement method developed by Erel. I/R produced a significant increase in the levels of total oxidant status and malondialdehyde levels, the number of caspase-3 immunopositive cells and activities of prolidase and paraoxonase in brain when compared with the control group (p<0.05). A significant decrease in brain total antioxidant capacity and nitric oxide levels were found in I/R group when compared with the control group (p<0.05). Both nebivolol and zofenopril treatment prevented decreasing of the total antioxidant capacity and nitric oxide levels, produced by I/R in the brain (p<0.05). Both nebivolol and zofenopril treatment prevented the total oxidant status, malondialdehyde levels, activities of paraoxonase and prolidase from increasing in brains of rats exposed to I/R (p<0.05). In conclusion, both nebivolol and zofenopril protected rats from ischemia-induced brain injury. The protection may be due to the indirect prevention of oxidative stress and apoptosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. A novel vitamin E derivative (TMG) protects against gastric mucosal damage induced by ischemia and reperfusion in rats.

    PubMed

    Ichikawa, Hiroshi; Yoshida, Norimasa; Takano, Hiroshisa; Ishikawa, Takeshi; Handa, Osamu; Takagi, Tomohisa; Naito, Yuji; Murase, Hironobu; Yoshikawa, Toshikazu

    2003-01-01

    The aim of the present study was to investigate the antioxidative effects of water-soluble vitamin E derivative, 2-(alpha-D-glucopyranosyl)methyl-2,5,7,8-tetramethylchroman-6-ol (TMG), on ischemia-reperfusion (I/R) -induced gastric mucosal injury in rats. Gastric ischemia was induced by applying a small clamp to the celiac artery and reoxygenation was produced by removal of the clamp. The area of gastric mucosal erosion, the concentration of thiobarbituric acid-reactive substances, and the myeloperoxidase activity in gastric mucosa significantly increased in I/R groups compared with those of sham-operated groups. These increases were significantly inhibited by pretreatment with TMG. The contents of both mucosal TNF-alpha and CINC-2beta in I/R groups were also increased compared with the levels of those in sham-operated groups. These increases of the inflammatory cytokines were significantly inhibited by the treatment with TMG. It is concluded that TMG inhibited lipid peroxidation and reduced development of the gastric mucosal inflammation induced by I/R in rats.

  15. Practices for caring in nursing: Brazilian research groups.

    PubMed

    Erdmann, A L; de Andrade, S R; de Mello, A L Ferreira; Klock, P; do Nascimento, K C; Koerich, M Santos; Backes, D Stein

    2011-09-01

    The present study considers the production of knowledge and the interactions in the environment of research and their relationships in the system of caring in nursing and health. To elaborate a theoretical model of the organization of the practices used for caring, based on the experiences made by the research groups of administration and management in nursing, in Brazil. The study is based on grounded theory. Twelve leaders of research groups, working as professors in public universities in the south and the south-east of Brazil, distributed in sample groups, were interviewed. The core phenomenon 'research groups of administration and management in nursing: arrangements and interactions in the system of caring in nursing' was derived from the categories: conceptual bases and contexts of the research groups; experiencing interactions in the research groups; functionality of the research groups; and outputs of the research groups. The research groups are integrated in the system of caring in nursing. The activities of the Brazilian administration and management in nursing research groups are process oriented and in a process of constant renovation, socially relevant, operate in a complex scenario and contribute to the advancement of the organizations of the system of caring in nursing through strengthening the connection among academia, service and community. © 2011 The Authors. International Nursing Review © 2011 International Council of Nurses.

  16. Effect of chronic pre-treatment with angiotensin converting enzyme inhibition on skeletal muscle mitochondrial recovery after ischemia/reperfusion.

    PubMed

    Thaveau, Fabien; Zoll, Joffrey; Bouitbir, Jamal; N'guessan, Benoît; Plobner, Philippe; Chakfe, Nabil; Kretz, Jean-Georges; Richard, Ruddy; Piquard, François; Geny, Bernard

    2010-06-01

    Impaired skeletal muscle energetic participates in peripheral arterial disease (PAD) patient's morbidity and mortality. Angiotensin converting enzyme inhibition (ACEi), cornerstone for pharmacologic risk factor management in PAD patients, might also be interesting by protecting skeletal muscle energetic. We therefore determined whether chronic ACEi might reduce ischemia-induced mitochondrial respiratory chain dysfunction in the frequent setting of hindlimb ischemia-reperfusion. Ischemic legs of rats submitted to 5 h ischemia induced by a rubber band tourniquet applied on the root of the hindlimb followed by reperfusion without (IR, n = 11) or after ACEi (n = 14; captopril 40 mg/kg per day during 28 days before surgery) were studied and compared to that of sham-operated animals (n = 11). The effect of ACEi on the non-ischemic contralateral leg was also determined in the ACEi group. Maximal oxidative capacities (V(max)) and complexes I, II and IV activities of the mitochondrial respiratory chain of the gastrocnemius muscle were determined using glutamate-malate, succinate and TMPD-ascorbate substrates. Arterial blood pressure was significantly decreased after ACEi (124 +/- 2.8 vs. 108 +/- 4.19 mmHg; P = 0.01). Ischemia-reperfusion reduced V(max) (4.4 +/- 0.4 vs. 8.7 +/- 0.5 micromol O2/min/g dry weight, -49%, P < 0.001), affecting mitochondrial complexes I, II and IV activities. ACEi failed to modulate ischemia-induced dysfunction (V(max) 5.1 +/- 0.7 micromol O2/min/g dry weight) or the non-ischemic contralateral muscle respiratory rate. Ischemia-reperfusion significantly impaired the mitochondrial respiratory chain I, II and IV complexes of skeletal muscle. Pharmacologic pre-treatment with ACEi did not prevent or increase such alterations. Further studies might be useful to improve the pharmacologic conditioning of PAD patients needing arterial revascularization.

  17. Sex differences in nitrosative stress during renal ischemia.

    PubMed

    Rodríguez, Francisca; Nieto-Cerón, Susana; Fenoy, Francisco J; López, Bernardo; Hernández, Isabel; Martinez, Raquel Rodado; Soriano, Ma José González; Salom, Miguel G

    2010-11-01

    Females suffer a less severe ischemic acute renal failure than males, apparently because of higher nitric oxide (NO) bioavailability and/or lower levels of oxidative stress. Because the renal ischemic injury is associated with outer medullary (OM) endothelial dysfunction, the present study evaluated sex differences in OM changes of NO and peroxynitrite levels (by differential pulse voltammetry and amperometry, respectively) during 45 min of ischemia and 60 min of reperfusion in anesthetized Sprague-Dawley rats. Endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) protein expression and their phosphorylated forms [peNOS(Ser1177) and pnNOS(Ser1417)], 3-nitrotyrosine, reduced sulfhydryl groups (-SH), and glomerular filtration rate (GFR) were also determined. No sex differences were observed in monomeric eNOS and nNOS expression, NO, or 3-nitrotyrosine levels in nonischemic kidneys, but renal -SH content was higher in females. Ischemia increased dimeric/monomeric eNOS and nNOS ratio more in females, but the dimeric phosphorylated peNOS(Ser1177) and pnNOS(Ser1417) forms rose similarly in both sexes, indicating no sex differences in nitric oxide synthase activation. However, NO levels increased more in females than in males (6,406.0 ± 742.5 and 4,058.2 ± 272.35 nmol/l respectively, P < 0.05), together with a lower increase in peroxynitrite current (5.5 ± 0.7 vs. 12.7 ± 1.5 nA, P < 0.05) and 3-nitrotyrosine concentration, (28.7 ± 3.7 vs. 48.7 ± 3.7 nmol/mg protein, P < 0.05) in females than in males and a better preserved GFR after ischemia in females than in males (689.7 ± 135.0 and 221.4 ± 52.5 μl·min(-1)·g kidney wt(-1), P < 0.01). Pretreatment with the antioxidants N-acetyl-L-cysteine or ebselen abolished sex differences in peroxynitrite, nitrotyrosine, and GFR, suggesting that a greater oxidative and nitrosative stress worsens renal damage in males.

  18. [The relationship between ischemic preconditioning-induced infarction size limitation and duration of test myocardial ischemia].

    PubMed

    Blokhin, I O; Galagudza, M M; Vlasov, T D; Nifontov, E M; Petrishchev, N N

    2008-07-01

    Traditionally infarction size reduction by ischemic preconditioning is estimated in duration of test ischemia. This approach limits the understanding of real antiischemic efficacy of ischemic preconditioning. Present study was performed in the in vivo rat model of regional myocardial ischemia-reperfusion and showed that protective effect afforded by ischemic preconditioning progressively decreased with prolongation of test ischemia. There were no statistically significant differences in infarction size between control and preconditioned animals when the duration of test ischemia was increased up to 1 hour. Preconditioning ensured maximal infarction-limiting effect in duration of test ischemia varying from 20 to 40 minutes.

  19. Effects of long-term post-ischemic treadmill exercise on gliosis in the aged gerbil hippocampus induced by transient cerebral ischemia

    PubMed Central

    Ahn, Ji Hyeon; Shin, Myoung Cheol; Park, Joon Ha; Kim, In Hye; Cho, Jeong-Hwi; Lee, Tae-Kyeong; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich Na; Tae, Hyun-Jin; Park, Jinseu; Choi, Soo Young; Lee, Yun Lyul; Kim, Dae Won; Kim, Yang Hee; Won, Moo-Ho; Cho, Jun Hwi

    2017-01-01

    Therapeutic exercise is an integral component of the rehabilitation of patients who have suffered a stroke. The objective of the present study was to use immunohistochemistry to investigate the effects of post-ischemic exercise on neuronal damage or death and gliosis in the aged gerbil hippocampus following transient cerebral ischemia. Aged gerbils (male; age, 22–24 months) underwent ischemia and were subjected to treadmill exercise for 1 or 4 weeks. Neuronal death was detected in the stratum pyramidale of the hippocampal CA1 region and in the polymorphic layer of the dentate gyrus using cresyl violet and Fluoro-Jade B histofluorescence staining. No significant difference in neuronal death was identified following 1 or 4 weeks of post-ischemic treadmill exercise. However, post-ischemic treadmill exercise affected gliosis (the activation of astrocytes and microglia). Glial fibrillary acidic protein-immunoreactive astrocytes and ionized calcium binding adaptor molecule 1-immunoreactive microglia were activated in the CA1 and polymorphic layer of the dentate gyrus of the group without treadmill exercise. Conversely, 4 weeks of treadmill exercise significantly alleviated ischemia-induced astrocyte and microglial activation; however, 1 week of treadmill exercise did not alleviate gliosis. These findings suggest that long-term post-ischemic treadmill exercise following transient cerebral ischemia does not influence neuronal protection; however, it may effectively alleviate transient cerebral ischemia-induced astrocyte and microglial activation in the aged hippocampus. PMID:28440411

  20. In Potential Stroke Patients on Warfarin, the International Normalized Ratio Predicts Ischemia.

    PubMed

    Cao, Cathy; Martinelli, Ashley; Spoelhof, Brian; Llinas, Rafael H; Marsh, Elisabeth B

    2017-01-01

    Stroke can occur in patients on warfarin despite anticoagulation. Patients with a low international normalized ratio (INR) should theoretically be at greater risk for ischemia than those who are therapeutic. Therefore, INR may be able to indicate whether new neurological deficits are more likely strokes or stroke mimics in patients on warfarin. This study evaluates the association and predictive value of INR in determining the likelihood of ischemia. Patients were identified using the acute stroke registry at a Primary Stroke Center from January 2013 through December 2014. All adult patients undergoing evaluation for acute stroke with prior documented use of warfarin and an INR level at presentation were included. Data were collected regarding patient demographics, medical comorbidities, stroke severity, reason for anticoagulation, and laboratory studies including INR. Student t tests and χ2 analysis were used to evaluate factors associated with increased likelihood of ischemia (stroke or transient ischemic attack) versus mimic. Significant results were entered into a multivariable regression analysis. Sensitivity and specificity analyses were conducted to determine the predictive value of INR for ischemic risk. 116 patients were included; 46 were diagnosed with ischemia, 70 were diagnosed as mimics. 75% of patients were on warfarin for atrial fibrillation versus 25% for venous thrombosis. A statistically significant difference in mean INR for patients with ischemia (n = 46) versus mimics (n = 70) was observed (1.7 vs. 2.8; p < 0.001). In multivariable analysis, both sub-therapeutic INR (p < 0.001) and atrial fibrillation (p = 0.014) were predictors of ischemia. In patients with an INR ≥2, the predictive value of having a non-ischemic etiology was 79%. No patient with an INR of ≥3.6 was found to have ischemia. Sub-therapeutic INR and atrial fibrillation are strongly associated with ischemia in patients on warfarin presenting with acute neurologic symptoms

  1. Global brain ischemia and reperfusion.

    PubMed

    White, B C; Grossman, L I; O'Neil, B J; DeGracia, D J; Neumar, R W; Rafols, J A; Krause, G S

    1996-05-01

    Brain damage accompanying cardiac arrest and resuscitation is frequent and devastating. Neurons in the hippocampus CA1 and CA4 zones and cortical layers III and V are selectively vulnerable to death after injury by ischemia and reperfusion. Ultrastructural evidence indicates that most of the structural damage is associated with reperfusion, during which the vulnerable neurons develop disaggregation of polyribosomes, peroxidative damage to unsaturated fatty acids in the plasma membrane, and prominent alterations in the structure of the Golgi apparatus that is responsible for membrane assembly. Reperfusion is also associated with vulnerable neurons with prominent production of messenger RNAs for stress proteins and for the proteins of the activator protein-1 complex, but these vulnerable neurons fail to efficiently translate these messages into the proteins. The inhibition of protein synthesis during reperfusion involves alteration of translation initiation factors, specifically serine phosphorylation of the alpha-subunit of eukaryotic initiation factor-2 (elF-2 alpha). Growth factors--in particular, insulin--have the potential to reverse phosphorylation of elF-2 alpha, promote effective translation of the mRNA transcripts generated in response to ischemia and reperfusion, enhance neuronal defenses against radicals, and stimulate lipid synthesis and membrane repair. There is now substantial evidence that the insulin-class growth factors have neuron-sparing effects against damage by radicals and ischemia and reperfusion. This new knowledge may provide a fundamental basis for a rational approach to "cerebral resuscitation" that will allow substantial amelioration of the often dismal neurologic outcome now associated with resuscitation from cardiac arrest.

  2. Cardioprotective properties of Crataegus oxycantha extract against ischemia-reperfusion injury

    PubMed Central

    Swaminathan, Jayachandran Kesavan; Khan, Mahmood; Mohan, Iyappu K; Selvendiran, Karuppaiyah; Devaraj, S. Niranjali; Rivera, Brian K.; Kuppusamy, Periannan

    2010-01-01

    The aim of the study was to investigate the cardioprotective effect and mechanism of Crataegus oxycantha (COC) extract, a well-known natural antioxidant-based cardiotonic, against ischemia/reperfusion (I/R) injury. Electron paramagnetic resonance studies showed that COC extract was capable of scavenging superoxide, hydroxyl, and peroxyl radicals, in vitro. The cardioprotective efficacy of the extract was studied in a crystalloid perfused heart model of I/R injury. Hearts were subjected to 30 min of global ischemia followed by 45 min of reperfusion. During reperfusion, COC extract was infused at a dose rate of 1 mg/ml/min for 10 min. Hearts treated with COC extract showed a significant recovery in cardiac contractile function, reduction in infarct size, and decrease in creatine kinase and lactate dehydrogenase activities. The expressions of xanthine oxidase and NADPH oxidase were significantly reduced in the treated group. A significant upregulation of the anti-apoptotic proteins Bcl-2 and Hsp70 with simultaneous downregulation of the pro-apoptotic proteins cytochrome c and cleaved caspase-3 was observed. The molecular signaling cascade including phospho-Akt (ser-473) and HIF-1α that lead to the activation or suppression of apoptotic pathway also showed a significant protective role in the treatment group. No significant change in phospho-p38 levels was observed. The results suggested that the COC extract may reduce the oxidative stress in the reperfused myocardium, and play a significant role in the inhibition of apoptotic pathways leading to cardioprotection. PMID:20171068

  3. Molecular tissue changes in early myocardial ischemia: from pathophysiology to the identification of new diagnostic markers.

    PubMed

    Aljakna, Aleksandra; Fracasso, Tony; Sabatasso, Sara

    2018-03-01

    Diagnosing early myocardial ischemia (the initial 4 to 6 h after interruption of blood flow to part of the myocardium) remains a challenge for clinical and forensic pathologists. Several immunohistochemical markers have been proposed for improving postmortem detection of early myocardial ischemia; however, no single marker appears to be both sufficiently specific as well as sensitive. This review summarizes the diverse categories of molecular tissue markers that have been investigated in human autopsy samples with acute myocardial infarction as well as in the well-established and widely used in vivo animal model of early myocardial ischemia (permanent ligation of the coronary artery). Recently identified markers appearing during the initial 2 h of myocardial ischemia are highlighted. Among them, only six were tested for specificity (C5b-9, hypoxia-inducible factor 1-alpha, vascular endothelial growth factor, heart fatty acid binding protein, connexin 43, and JunB). Despite the discovery of several potentially promising markers (in terms of early expression and specificity), many of them remain to be tested and validated for application in routine diagnostics in clinical and forensic pathology. In particular, research investigating the postmortem stability of these markers is required before any might be implemented into routine diagnostics. Establishing a standardized panel of immunohistochemical markers may be more useful for improving sensitivity and specificity than searching for a single marker.

  4. Intermediate-term follow-up of chronically ill patients with digital ischemia treated with peripheral digital sympathectomy.

    PubMed

    Soberón, José R; Greengrass, Roy A; Davis, William E; Murray, Peter M; Feinglass, Neil

    2016-02-01

    Digital ischemia is commonly found in patients with scleroderma and has been shown to respond to peripheral digital sympathectomy. While favorable long- and intermediate-term results have been documented in the literature, minimal objective data are available and the mechanism of surgical sympathectomy has not been entirely elucidated. Patients with digital ischemia secondary to Raynaud's phenomenon that had undergone peripheral sympathectomy surgery between 2001 and 2009 were identified and contacted for participation. Radial artery Doppler ultrasound studies were performed and compared to those done at the time of their sympathectomy. Of 11 patients treated over a 9-year period, only two patients were available for detailed follow-up analysis. Four patients were deceased, and two were lost to follow-up. Four of the five remaining patients reported excellent use of the hand and no significant episodes of digital ischemia. Of the two patients studied, functional results were favorable and pain was markedly improved despite worsening of the digital flow resistance over time. We conclude that peripheral digital sympathectomy may provide favorable long-term results in patients with digital ischemia from autoimmune causes, although this intervention should be considered in the early stages once ischemic symptoms manifest. Interestingly, Doppler data did not appear to correlate with functional status and symptom severity in these two patients. Further research, particularly prospective studies, is warranted to guide clinical decisions in this patient population.

  5. Endothelin-a receptor antagonist treatment improves the periosteal microcirculation after hindlimb ischemia and reperfusion in the rat.

    PubMed

    Wolfárd, Antal; Császár, József; Gera, László; Petri, András; Simonka, János Aurél; Balogh, Adáa; Boros, Mihály

    2002-12-01

    To examine the microcirculatory changes in the rat tibial periosteum after hindlimb ischemia and reperfusion and to evaluate the effects of endothelin-A (ET-A) receptor antagonist therapy in this condition. The healing and functioning of vascularized bone autografts depend mainly on the patency of the microcirculation, and the activation of ET-A receptors may be an important component of the tissue response that occurs during ischemia-reoxygenation injuries. Wistar rats were subjected to 1 hour of hindlimb ischemia and 3 hours of reperfusion. The periosteal microcirculation was visualized by intravital fluorescence microscopy. The leukocyte rolling and adherence in the postcapillary venules and the functional capillary density of the periosteum were determined. Two separate groups were treated with the selective ET-A receptor antagonist BQ 610 or the novel ET-A receptor antagonist ETR-p1/fl peptide at the onset of reperfusion. Reperfusion was accompanied by a significant decrease in functional capillary density and by an increase in the primary and secondary leukocyte-endothelial cell interactions. ET-A receptor inhibition reduced the leukocyte rolling and firm adherence and attenuated the decrease in functional capillary density in both treated groups. ET-1 plays a major role in microvascular dysfunction in the periosteum during reperfusion. The ET-1-ET-A receptor system might be an important target for tissue salvage therapy in transplantation surgery.

  6. Effect of complete hilar versus only renal artery clamping on renal histomorphology following ischemia/reperfusion injury in an experimental model.

    PubMed

    Umul, M; Cal, A C; Turna, B; Oktem, G; Aydın, H H

    2016-01-01

    To evaluate the effect of temporary complete hilar versus only renal artery clamping with different duration of warm ischemia on renal functions, and possibly identify a "safe" clamping type and duration of renal ischemia. Fifty male rabbits have been incorporated to study. Rabbits were subjected to ischemia/reperfusion injury by temporary vascular clamping. Reagents were randomized to 3 experimental groups (only renal artery clamping, complete hilar clamping, sham surgery) and sub-groups were determined according to different clamping times (30 and 60 minutes). Median laparotomy and left renal hilus dissection were performed to sham group. Only artery or complete hilar clamping was performed for 30 or 60 minutes by microvascular bulldog clamps to other reagents. Rabbits were sacrificed 10 days after primary surgery and left nephrectomy performed. Nephrectomy materials were evaluated for the level of nitric-oxide synthase (NOS) immunoreactivity, malondialdehyde (MDA) level and superoxide dismutase (SOD) activity and an electron microscopic examination was performed. NOS immunoreactivity was correlated with the temporary clamping time. We also observed that complete hilar vascular clamping entails an increase on NOS immunoreactivity. MDA levels were similar for all experimental surgery groups (p = 0.42). The SOD activity was decreased among all subgroups compared with sham surgery. But the significant decrease occurred in 30 minutes only artery and 30 minutes complete hilar clamping groups in proportion to sham surgery (p = 0.026 and p = 0.019, respectively). This current study suggested that only renal artery clamping under 30 minutes is more appropriate during renal surgical procedures requiring temporary vascular clamping.

  7. Anti-inflammatory effects of Chinese medicinal herbs on cerebral ischemia.

    PubMed

    Su, Shan-Yu; Hsieh, Ching-Liang

    2011-07-09

    Recent studies have demonstrated the importance of anti-inflammation, including cellular immunity, inflammatory mediators, reactive oxygen species, nitric oxide and several transcriptional factors, in the treatment of cerebral ischemia. This article reviews the roles of Chinese medicinal herbs as well as their ingredients in the inflammatory cascade induced by cerebral ischemia. Chinese medicinal herbs exert neuroprotective effects on cerebral ischemia. The effects include inhibiting the activation of microglia, decreasing levels of adhesion molecules such as intracellular adhesion molecule-1, attenuating expression of pro-inflammatory cytokines such as interleukin-1β and tumor necrosis factor-α, reducing inducible nitric oxide synthase and reactive oxygen species, and regulating transcription factors such as nuclear factor-κB.

  8. Neuroprotective effect of Feronia limonia on ischemia reperfusion induced brain injury in rats.

    PubMed

    Rakhunde, Purushottam B; Saher, Sana; Ali, Syed Ayaz

    2014-01-01

    Brain stroke is a leading cause of death without effective treatment. Feronia limonia have potent antioxidant activity and can be proved as neuroprotective against ischemia-reperfusion induced brain injury. We studied the effect of methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) and Vitamin E as reference standard drug on 30 min induced ischemia, followed by reperfusion by testing the neurobehavioral tests such as neurodeficit score, rota rod test, hanging wire test, beam walk test and elevated plus maze. The biochemical parameters, which were measured in animals brain were catalase, superoxide dismutase (SOD), malondialdehyde and nitric oxide in control and treated rats. The methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) treated groups showed a statistically significant improvement in the neurobehavioral parameters such as motor performance (neurological status, significant increase in grasping ability, forelimb strength improvement in balance and co-ordination). The biochemical parameters in the brains of rats showed a significant reduction in the total nitrite (P < 0.01) and lipid peroxidation (P < 0.01), also a significant enhanced activity of enzymatic antioxidants such as catalase (P < 0.01) and SOD (P < 0.05). These observations suggest the neuroprotective and antioxidant activity of F. limonia and Vitamin E on ischemia reperfusion induced brain injury and may require further evaluation.

  9. Anti-inflammatory and neuroprotective effects of sanguinarine following cerebral ischemia in rats.

    PubMed

    Wang, Qin; Dai, Peng; Bao, Han; Liang, Ping; Wang, Wei; Xing, An; Sun, Jianbin

    2017-01-01

    Stroke is one of the leading causes of mortality worldwide. Protective agents that can diminish injuries caused by cerebral ischemia-reperfusion (I/R) are important in alleviating the harmful outcomes of stroke. The aim of the present study was to investigate the protective role of sanguinarine in cerebral I/R injury. A rat middle cerebral artery occlusion model was used to assess the clinical effect of sanguinarine, and inflammatory cytokines in the serum were detected by ELISA. Western blotting was performed to examine the change in levels of apoptosis-associated proteins in the injured brains. The results suggested that sanguinarine, an anti-inflammatory agent derived from the roots of Sanguinaria canadensis , improved the state of cerebral ischemia in a rat model. The data demonstrated that when rats were treated with sanguinarine prior to middle cerebral artery occlusion, the infarct volume was reduced significantly. The inflammatory factors tumor necrosis factor-α, interleukin (IL)-6 and IL-1β were measured in sanguinarine and vehicle-treated groups using an enzyme-linked immunosorbent assay, and the expression levels of the three factors were significantly reduced following treatment with sanguinarine (P<0.05). In addition, western blot analysis demonstrated that the ratio of B-cell lymphoma 2/Bcl-2-associated X protein was significantly increased following treatment with sanguinarine (P<0.05). The study demonstrated that sanguinarine exerts a protective effect in cerebral ischemia, and that this effect is associated with the anti-inflammatory and anti-apoptotic properties of sanguinarine.

  10. Erdosteine and ebselen as useful agents in intestinal ischemia/reperfusion injury.

    PubMed

    Tunc, Turan; Uysal, Bulent; Atabek, Cuneyt; Kesik, Vural; Caliskan, Bahadir; Oztas, Emin; Ersoz, Nail; Oter, Sukru; Guven, Ahmet

    2009-08-01

    Reactive oxygen and nitrogen species generated during reperfusion of the tissue are characteristic of ischemia/reperfusion (I/R) injury. The purpose of the present study was to investigate whether erdosteine and ebselen, molecules with antioxidant properties and peroxynitrite scavenging capability, respectively, can reduce oxidative stress and histological damage in the rat small bowel subjected to mesenteric I/R injury. Forty Sprague-Dawley rats were divided into five groups equally: sham, I/R, I/R plus erdosteine, I/R plus ebselen, and I/R plus erdosteine and ebselen. Intestinal ischemia for 45 min and reperfusion for 3 d were carried out. Ileal specimens were obtained to determine the tissue levels of malondialdehide (MDA), protein carbonyl content (PCC), superoxide dismutase (SOD), glutathione peroxidase (GPx), nitrite/nitrate (NO(x)) level and histological changes. Intestinal I/R resulted in increased tissue MDA, PCC, and NO(x) levels and decreased SOD and GPx activities. Both erdosteine and ebselen alone significantly decreased MDA, PCC, and NO(x) levels and increased antioxidant enzymes activities, but all values were different from control. These changes almost returned to control values in the group treated with erdostein and ebselen. Histopathologically, the intestinal injury in rats treated with erdosteine and ebselen as well as combination were less than I/R group. Both erdosteine and ebselen were able to attenuate I/R injury of the intestine via inhibition of lipid peroxidation and protein oxidation, maintenance of antioxidant, and free radical scavenger properties. Nevertheless, combination treatment showed more promising results, suggesting that scavenging peroxynitrite nearby antioxidant activity is important in preventing intestinal I/R injury.

  11. Summation and Cancellation Effects on QRS and ST-Segment Changes Induced by Simultaneous Regional Myocardial Ischemia.

    PubMed

    Vives-Borrás, Miquel; Jorge, Esther; Amorós-Figueras, Gerard; Millán, Xavier; Arzamendi, Dabit; Cinca, Juan

    2018-01-01

    Simultaneous ischemia in two myocardial regions is a potentially lethal clinical condition often unrecognized whose corresponding electrocardiographic (ECG) patterns have not yet been characterized. Thus, this study aimed to determine the QRS complex and ST-segment changes induced by concurrent ischemia in different myocardial regions elicited by combined double occlusion of the three main coronary arteries. For this purpose, 12 swine were randomized to combination of 5-min single and double coronary artery occlusion: Group 1: left Circumflex (LCX) and right (RCA) coronary arteries ( n = 4); Group 2: left anterior descending artery (LAD) and LCX ( n = 4) and; Group 3: LAD and RCA ( n = 4). QRS duration and ST-segment displacement were measured in 15-lead ECG. As compared with single occlusion, double LCX+RCA blockade induced significant QRS widening of about 40 ms in nearly all ECG leads and magnification of the ST-segment depression in leads V1-V3 (maximal 228% in lead V3, p < 0.05). In contrast, LAD+LCX or LAD+RCA did not induce significant QRS widening and markedly attenuated the ST-segment elevation in precordial leads (maximal attenuation of 60% in lead V3 in LAD+LCX and 86% in lead V5 in LAD+RCA, p < 0.05). ST-segment elevation in leads V7-V9 was a specific sign of single LCX occlusion. In conclusion, concurrent infero-lateral ischemia was associated with a marked summation effect of the ECG changes previously elicited by each single ischemic region. By contrast, a cancellation effect on ST-segment changes with no QRS widening was observed when the left anterior descending artery was involved.

  12. Ischemia-reperfusion of human skeletal muscle during aortoiliac surgery: effects of acetylcarnitine.

    PubMed

    Adembri, C; Domenici, L L; Formigli, L; Brunelleschi, S; Ferrari, E; Novelli, G P

    1994-10-01

    Our previous study on human skeletal muscle undergoing ischemia and reperfusion has revealed that granulocytes, which infiltrate the muscle tissue in large numbers, play an important role in mediating fibre injuries by producing superoxide anion (O2-) which is responsible for membrane lipid peroxidation. In the current study, five patients undergoing aortic reconstructive surgery were given acetyl-carnitine (2 mg/kg i.v. plus 1 mg/kg/min for 30 min) prior to the induction of ischemia. Muscle biopsies and blood samples were examined: a) after anaesthesia; b) at the end of ischemia; and c) 30 min after reperfusion, with the aim of elucidating whether acetylcarnitine could prevent the infiltration and/or the activation of granulocytes and eventually skeletal muscle injuries. During ischemia and reperfusion complement activation recruited numerous granulocytes into the muscle tissue, but, contrary to the untreated samples, the ability for O2(-)-generation of these cells remained at low levels and was comparable to that of ischemia even when molecular O2 was reintroduced to the tissue. Accordingly, the morphological changes of the postischemic muscle fibers were substantially reduced when compared to the untreated samples; in fact, the mitochondrial swelling was only moderate and the intramitochondrial dense bodies were small and scarce. The current findings support a positive role of acetyl-carnitine in ameliorating the ischemia-reperfusion (I-R)-induced damage of human skeletal muscle.

  13. Silybin Against Liver Ischemia-Reperfusion Injury: Something Old, Something New….

    PubMed

    Oltean, Mihai

    2017-09-13

    Ischemia reperfusion injury (IRI) is a life threatening condition that may develop after elective liver surgery or liver transplantation. Numerous surgical and pharmacological approaches have shown varying degrees of protection against liver IRI. A group of protective compounds are the flavonoids but their intestinal absorbtion and bioavailability are low and impredictible. In this issue Tsaroucha et al. reports significantly decreased hepatocellular injury, Fas/FasL expression and inhibited HMGB1 release in rats receiving a hydrosoluble, lyophilized complex of SLB and hydroxypropyl-β-cyclodextrin (SLB-HP-β-CD) intravenously.

  14. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death.

    PubMed

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion.

  15. [Identification of early irreversible damage area in a rat model of cerebral ischemia and reperfusion].

    PubMed

    Liu, S; Guo, Y

    2000-02-01

    To observe the early neuron ischemic damage in focal cerebral ischemia/reperfusion with histostaining methods of argyrophil III (AG III), Toludine blue(TB), and H&E, and to make out the 'separating line' between the areas of reversible and irreversible early ischemic damage. Forty-two male Wistar rats were randomly divided into the following groups: pseudo-surgical, blank-control, O2R0(occluded for 2 hours and reperfused for 0 hour), O2R0.5, O2R2, O2R4, O2R24. There were 6 rats in each group. Rats in experimental groups were suffered focal cerebral ischemia/reperfusion through a nylon suture method. After a special processor for tissue manage, the brain were coronal sectioned and stained with H&E, TB, and AG III. The area where dark neurons dwell in (ischemic core) were calculated with image analysis system. The success rate of ischemic model for this experiment is 90%. After being stained with argyrophil III method, normal neurons appear yellow or pale brown, which is hardly distinguished from the pale brown background. The ischemic neuron stained black, and has collapsed body and "corkscrew-like" axon or dentries, which were broken to some extent. The neuropil in the dark neurons dwelt area appears gray or pale black, which is apparently different from the pale brown neighborhood area. The distribution of dark neurons in cortex varies according to different layers, and has a character of columnar form. The dark neurons present as early as 2 hours ischemia without reperfusion with AG III method. AG III stain could selectively display early ischemic neurons, the area dwelt by dark neurons represent early ischemic core. Dark neuron is possibly the irreversibly damaged neuron. Identification of dark neurons could be helpful in the discrimination between early ischemic center and penumbra.

  16. The short term effects of resveratrol on ischemia-reperfusion injury in rat testis.

    PubMed

    Yuluğ, Esin; Türedi, Sibel; Karagüzel, Ersagun; Kutlu, Omer; Menteşe, Ahmet; Alver, Ahmet

    2014-03-01

    The purpose of this study was to identify changes taking place in the rat testis at the 24th hour of reperfusion following testicular torsion and to evaluate the effects of resveratrol (RSV), a powerful antioxidant, in preventing these changes using novel biochemical parameters and histopathology. Eighteen adult male rats were divided into three groups: Sham-operated (S), torsion/detorsion (T/D), and T/D+RSV groups. In the T/D group, testicular ischemia was achieved by rotating the left testis 720° clockwise for 4h. In the T/D+RSV group, 20mg/kg RSV was administered intraperitoneally 30 min before detorsion. All rats were sacrificed 24h after detorsion. Serum and tissue malondialdehyde (MDA) concentrations, ischemia modified albumin (IMA), total oxidative status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), and histopathological damage score were analyzed. Serum MDA, IMA, TOS, and OSI levels rose significantly in the T/D group. Serum MDA and IMA values were lower in the T/D+RES groups, but not significantly. OSI and TOS values were lower in the T/D+RES group, and the difference was significant. TAS values decreased significantly in the T/D group and rose in the T/D+RSV group, but not significantly. Ipsilateral tissue MDA values were significantly elevated in the T/D group and decreased in the T/D+RSV group, but not significantly. Apoptosis and histopathological damage increased significantly in the T/D group and decreased significantly in the T/D+RSV group. In the contralateral testis, apoptosis increased significantly in the T/D group. It decreased significantly in the T/D+RSV group. Our findings show that RSV had a protective effect against oxidative damage induced with a testicular T/D model, especially at the antiapoptotic and histopathological level. OSI may be a good guide to the clinical status of testicular T/D. © 2014.

  17. Protective effect of Malva sylvestris L. extract in ischemia-reperfusion induced acute kidney and remote liver injury

    PubMed Central

    Najafi, Houshang; Mohamadi Yarijani, Zeynab; Changizi-Ashtiyani, Saeed; Mansouri, Kamran; Modarresi, Masoud; Madani, Seyed Hamid

    2017-01-01

    Mallow (Malva sylvestris L.) has had medicinal and therapeutic uses in addition to its oral consumption. The present study was conducted to examine the protective effect of Malva sylvestris L. extract on ischemia-reperfusion-induced kidney injury and remote organ injuries in the liver. Before ischemia-reperfusion, rats in the different groups received intraperitoneal normal saline or mallow extract at the doses of 200, 400 or 600 mg/kg of body weight. After 30-minutes of bilateral renal ischemia followed by 24-hours of reperfusion, tissue damage in the kidney and liver samples were determined through studying H&E-stained slides under a light microscope. The degree of leukocyte infiltration and tissue mRNA expressions of TNF- and ICAM-1 were then measured to examine the degree of renal inflammation. The renal tissue MDA and FRAP levels were measured for determining the amount of oxidative stress. Plasma concentrations of creatinine, urea, ALT and ALP were also measured. Ischemia-reperfusion led to a significant increase in plasma concentrations of creatinine, urea, ALT and ALP, and renal tissue MDA, and a significant decrease in renal tissue FRAP. The expression of pro-inflammatory factors in the kidney tissue, the level of leukocyte infiltration and the amount of tissue damage in the kidney and liver also increased. Pretreatment by mallow extract led to a significant improvement in all the variables measured. The 200- and 400-mg doses yielded better results in most parameters compared to the 600-mg dose. The findings showed that mallow extract protects the kidney against ischemia-reperfusion and reduces remote organ injury in the liver. PMID:29155898

  18. Desert hedgehog promotes ischemia-induced angiogenesis by ensuring peripheral nerve survival.

    PubMed

    Renault, Marie-Ange; Chapouly, Candice; Yao, Qinyu; Larrieu-Lahargue, Frédéric; Vandierdonck, Soizic; Reynaud, Annabel; Petit, Myriam; Jaspard-Vinassa, Béatrice; Belloc, Isabelle; Traiffort, Elisabeth; Ruat, Martial; Duplàa, Cécile; Couffinhal, Thierry; Desgranges, Claude; Gadeau, Alain-Pierre

    2013-03-01

    Blood vessel growth and patterning have been shown to be regulated by nerve-derived signals. Desert hedgehog (Dhh), one of the Hedgehog family members, is expressed by Schwann cells of peripheral nerves. The purpose of this study was to investigate the contribution of Dhh to angiogenesis in the setting of ischemia. We induced hindlimb ischemia in wild-type and Dhh(-/-) mice. First, we found that limb perfusion is significantly impaired in the absence of Dhh. This effect is associated with a significant decrease in capillary and artery density in Dhh(-/-). By using mice in which the Hedgehog signaling pathway effector Smoothened was specifically invalidated in endothelial cells, we demonstrated that Dhh does not promote angiogenesis by a direct activation of endothelial cells. On the contrary, we found that Dhh promotes peripheral nerve survival in the ischemic muscle and, by doing so, maintains the pool of nerve-derived proangiogenic factors. Consistently, we found that denervation of the leg, immediately after the onset of ischemia, severely impairs ischemia-induced angiogenesis and decreases expression of vascular endothelial growth factor A, angiopoietin 1, and neurotrophin 3 in the ischemic muscle. This study demonstrates the crucial roles of nerves and factors regulating nerve physiology in the setting of ischemia-induced angiogenesis.

  19. Protective effect of embelin from Embelia ribes Burm. against transient global ischemia-induced brain damage in rats.

    PubMed

    Thippeswamy, B S; Nagakannan, P; Shivasharan, B D; Mahendran, S; Veerapur, V P; Badami, S

    2011-11-01

    Embelia ribes is being used in Indian traditional herbal medicine for the treatment of mental disorders and as brain tonic. The present study was designed to investigate the protective effects of embelin from E. ribes on global ischemia/reperfusion-induced brain injury in rats. Transient global ischemia was induced by occluding bilateral common carotid arteries for 30 min followed by 24-h reperfusion. Neurological functions were measured using sensorimotor tests. Ischemia/reperfusion-induced neuronal injury was assessed by cerebral infarct area, biochemical and histopathological examination. Pretreatment of embelin (25 and 50 mg/kg, p.o.) significantly increased locomotor activity and hanging latency time and decreased beam walking latency when compared with ischemic control. The treatment also reduced significantly the lipid peroxidation and increased the total thiol content and glutathione-S-transferase activity in brain homogenates. The decreased cerebral infarction area in embelin-treated groups and histopathological observations confirmed the above findings. These observations suggested that embelin is a neuroprotective agent and may prove to be useful adjunct in the treatment of stroke.

  20. [Effect of Tongluo Xingnao effervescent tablets on learning and memory dysfunction in rats with chronic cerebral ischemia].

    PubMed

    Hu, Yong; Ju, Shao-Hua; Zhang, Yin-Jie; Xiong, Min; Xu, Shi-Jun; Ma, Yun-Tong; Zhong, Zhen-Dong

    2014-05-01

    To study the effect of Tongluo Xingnao effervescent tablets on learning and memory capacity and expression of Na(+)-K(+)-ATPase in hippocampus of rats with chronic cerebral ischemia-induced learning and memory dysfunction model. The 2-VO method was used to establish sd rat model learning and memory dysfunction induced by chronic cerebral ischemia. The 50 rats in the successfully established model were randomly divided into the model control group, the Dihydroergotoxine Mesylate tablets group (0.7 mg x kg(-1), Tongluo Xingnao effervescent tablets high dose (7.56 g x kg(-1)), middle dose (3.78 g x kg(-1)) and low dose (1.59 g x kg(-1)) groups and the sham operation group (n = 10) as the control group. The groups were orally given 10 ml x kg(-1) x d(-1) drugs for consecutively 90 days. On the 86th day, Morris water maze was adopted for them. On the 90th day, a leaning and memory capacity test was held. The brain tissues were fixed with 10% formaldehyde and observed for pathomorphism after routine slide preparation and staining. The expression of hippocampal Na(+)-K(+)-ATPase was detected with immunohistochemistry and image quantitative analysis. Compared with the model group, all of Tongluo Xingnao effervescent tablets groups showed significant decrease in the escape latency at the 5th day in the Morris water maze, and notable increase in the frequency of the first quadrant dwell, the frequency passing the escape platform and the frequency entering effective area (p < 0.05). According to the pathomorphological detection, the control group showed a significantly higher pathological score than the sham operation group (p < 0.01), the middle dose group showed a significantly lower pathological score than the model group (p < 0.05). According to the immunohistochemistical detection, the model control group showed a remarkably lower mean OD value of Na(+)-K(+)-ATPase than the sham operation group (p < 0.05), high and middle dose groups showed a significantly higher mean od

  1. The Use of Milrinone in Patients with Delayed Cerebral Ischemia Following Subarachnoid Hemorrhage: A Systematic Review.

    PubMed

    Lannes, Marcelo; Zeiler, Frederick; Guichon, Céline; Teitelbaum, Jeanne

    2017-03-01

    The purpose of this article is to provide a systematic review of the evidence supporting the use of milrinone for the management of delayed cerebral ischemia (DCI) following subarachnoid hemorrhage (SAH). Primary outcomes were functional neurological status and the incidence of cerebral infarction. Search strategies adapted to the different databases were developed by a professional librarian. Medline, EMBASE, the Cochrane Library database, Web of Science, SCOPUS, BIOSIS, Global Health, Health Star, Open SIGLE, Google Scholar and the New York Academy of Medicine Gray Literature were searched as well as clinical trials databases and the proceedings of several scientific meetings. Quality of the evidence for these outcomes across studies was adjudicated using the GRADE Working Group criteria. The search resulted in 284 citations after elimination of duplicates. Of those 9 conference proceedings and 15 studies met inclusion criteria and consisted of case reports, case series and two comparative studies: one non-randomized study with physiological outcomes only and a case series with historical controls. There was considerable variation in dosing and in co-interventions and no case control or randomized controlled studies were found. There is currently only very low quality evidence to support the use of milrinone to improve important outcomes in patients with delayed cerebral ischemia secondary to subarachnoid hemorrhage. Further research is needed to clarify the value and risks of this medication in patients with SAH.

  2. Rat experimental model of myocardial ischemia/reperfusion injury: an ethical approach to set up the analgesic management of acute post-surgical pain.

    PubMed

    Ciuffreda, Maria Chiara; Tolva, Valerio; Casana, Renato; Gnecchi, Massimiliano; Vanoli, Emilio; Spazzolini, Carla; Roughan, John; Calvillo, Laura

    2014-01-01

    During the past 30 years, myocardial ischemia/reperfusion injury in rodents became one of the most commonly used model in cardiovascular research. Appropriate pain-prevention appears critical since it may influence the outcome and the results obtained with this model. However, there are no proper guidelines for pain management in rats undergoing thoracic surgery. Accordingly, we evaluated three analgesic regimens in cardiac ischemia/reperfusion injury. This study was strongly focused on 3R's ethic principles, in particular the principle of Reduction. Rats undergoing surgery were treated with pre-surgical tramadol (45 mg/kg intra-peritoneal), or carprofen (5 mg/kg sub-cutaneous), or with pre-surgical administration of carprofen followed by 2 post-surgery tramadol injections (multi-modal group). We assessed behavioral signs of pain and made a subjective evaluation of stress and suffering one and two hours after surgery. Multi-modal treatment significantly reduced the number of signs of pain compared to carprofen alone at both the first hour (61±42 vs 123±47; p<0.05) and the second hour (43±21 vs 74±24; p<0.05) post-surgery. Tramadol alone appeared as effective as multi-modal treatment during the first hour, but signs of pain significantly increased one hour later (from 66±72 to 151±86, p<0.05). Carprofen alone was more effective at the second hour post-surgery when signs of pain reduced to 74±24 from 113±40 in the first hour (p<0.05). Stress behaviors during the second hour were observed in only 20% of rats in the multimodal group compared to 75% and 86% in the carprofen and tramadol groups, respectively (p<0.05). Multi-modal treatment with carprofen and tramadol was more effective in preventing pain during the second hour after surgery compared with both tramadol or carprofen. Our results suggest that the combination of carprofen and tramadol represent the best therapy to prevent animal pain after myocardial ischemia/reperfusion. We obtained our results

  3. Inflammatory Responses in Brain Ischemia

    PubMed Central

    Kawabori, Masahito; Yenari, Midori A.

    2017-01-01

    Brain infarction causes tissue death by ischemia due to occlusion of the cerebral vessels and recent work has shown that post stroke inflammation contributes significantly to the development of ischemic pathology. Because secondary damage by brain inflammation may have a longer therapeutic time window compared to the rescue of primary damage following arterial occlusion, controlling inflammation would be an obvious therapeutic target. A substantial amount of experimentall progress in this area has been made in recent years. However, it is difficult to elucidate the precise mechanisms of the inflammatory responses following ischemic stroke because inflammation is a complex series of interactions between inflammatory cells and molecules, all of which could be either detrimental or beneficial. We review recent advances in neuroinflammation and the modulation of inflammatory signaling pathways in brain ischemia. Potential targets for treatment of ischemic stroke will also be covered. The roles of the immune system and brain damage versus repair will help to clarify how immune modulation may treat stroke. PMID:25666795

  4. Positron emission tomography imaging of angiogenesis in a murine hindlimb ischemia model with 64Cu-labeled TRC105.

    PubMed

    Orbay, Hakan; Zhang, Yin; Hong, Hao; Hacker, Timothy A; Valdovinos, Hector F; Zagzebski, James A; Theuer, Charles P; Barnhart, Todd E; Cai, Weibo

    2013-07-01

    The goal of this study was to assess ischemia-induced angiogenesis with (64)Cu-NOTA-TRC105 positron emission tomography (PET) in a murine hindlimb ischemia model of peripheral artery disease (PAD). CD105 binding affinity/specificity of NOTA-conjugated TRC105 (an anti-CD105 antibody) was evaluated by flow cytometry, which exhibited no difference from unconjugated TRC105. BALB/c mice were anesthetized, and the right femoral artery was ligated to induce hindlimb ischemia, with the left hindlimb serving as an internal control. Laser Doppler imaging showed that perfusion in the ischemic hindlimb plummeted to ∼ 20% of the normal level after surgery and gradually recovered to near normal level on day 24. Ischemia-induced angiogenesis was noninvasively monitored and quantified with (64)Cu-NOTA-TRC105 PET on postoperative days 1, 3, 10, 17, and 24. (64)Cu-NOTA-TRC105 uptake in the ischemic hindlimb increased significantly from the control level of 1.6 ± 0.2 %ID/g to 14.1 ± 1.9 %ID/g at day 3 (n = 3) and gradually decreased with time (3.4 ± 1.9 %ID/g at day 24), which correlated well with biodistribution studies performed on days 3 and 24. Blocking studies confirmed the CD105 specificity of tracer uptake in the ischemic hindlimb. Increased CD105 expression on days 3 and 10 following ischemia was confirmed by histology and reverse transcription polymerase chain reaction (RT-PCR). This is the first report of PET imaging of CD105 expression during ischemia-induced angiogenesis. (64)Cu-NOTA-TRC105 PET may play multiple roles in future PAD-related research and improve PAD patient management by identifying the optimal timing of treatment and monitoring the efficacy of therapy.

  5. Effect of activation of the Ca(2+)-permeable acid-sensing ion channel 1a on focal cerebral ischemia in diabetic rats.

    PubMed

    Wang, Jie; Wen, Chun-Yan; Cui, Cui-Cui; Xing, Ying

    2015-01-01

    We investigated the role of acid-sensing ion channel Ia (ASIC1a) expression and changes in intracellular Ca(2+) concentration ([Ca(2+)]) in focal cerebral ischemia after middle cerebral artery occlusion (MCAO) in a rat model of diabetes mellitus (DM). Male Wistar rats (n = 108) were divided into three groups: the MCAO, DM + MCAO, and DM + MCAO + fasudil groups (n = 36 each). Samples were obtained 1, 3, 6, and 24 h after ischemia induction (n = 9). Rats in the DM + MCAO + fasudil group were treated with 1 mg/kg fasudil, a Rho-kinase inhibitor, by caudal vein injection 30 min after MCAO was performed. ASIC1a expression gradually increased with time in the MCAO and DM + MCAO groups (0.71 ± 0.10 nM, 0.80 ± 0.11 nM, 0.86 ± 0.08 nM, 0.93 ± 0.09 nM; 0.86 ± 0.11 nM, 1.05 ± 0.51 nM, 2.42 ± 0.08 nM, 2.78 ± 0.04 nM; pairwise comparisons at each time point, P < 0.05), and was higher in the DM + MCAO than the MCAO group (P < 0.05). [Ca(2+)] gradually increased in the DM + MCAO group (106.32 ± 18.6 nM, 137.84 ± 14.32 nM, 151.94 ± 18.38 nM, 183.61 ± 7.96 nM, P < 0.05). ASIC1a expression and calcium currents were reduced in the DM + MCAO + fasudil group. The overload of intracellular [Ca(2+)] caused by ASIC1a activation could be one mechanism for the aggravation of focal cerebral ischemia in diabetes.

  6. Adrenalectomy prevents renal ischemia-reperfusion injury.

    PubMed

    Ramírez, Victoria; Trujillo, Joyce; Valdes, Rafael; Uribe, Norma; Cruz, Cristino; Gamba, Gerardo; Bobadilla, Norma A

    2009-10-01

    Spironolactone treatment prevents renal damage induced by ischemia-reperfusion (I/R), suggesting that renoprotection conferred by spironolactone is mediated by mineralocorticoid receptor (MR) blockade. It is possible, however, that this effect is due to other mechanisms. Therefore, this study evaluated whether adrenalectomy prevented renal damage induced by I/R. Three groups of Wistar rats were studied: 1) a group subjected to a sham surgery, 2) a group subjected to bilateral I/R, and 3) a group of rats in which adrenal glands were removed 3 days before induction of I/R. As expected, I/R resulted in renal dysfunction and severe tubular injury that was associated with a significant increase in tubular damage markers. In contrast, there was no renal dysfunction or tubular injury in rats that were adrenalectomized before I/R. These effects were demonstrated by normalization of glomerular filtration rate, markers of oxidative stress, and tubular injury markers in adrenalectomized rats. The renoprotection observed was associated with the reestablishment of nitric oxide metabolites, increased endothelial nitric oxide synthase expression and its activating phosphorylation, as well as normalization of Rho-kinase expression and ET(A) mRNA levels. Our results show that aldosterone plays a central role in the pathogenesis of renal damage induced by I/R and that MR blockade may be a promising strategy that opens a new therapeutic option for preventing acute renal injury.

  7. Propionyl-L-carnitine improves endothelial function, microcirculation and pain management in critical limb ischemia.

    PubMed

    De Marchi, S; Zecchetto, S; Rigoni, A; Prior, M; Fondrieschi, L; Scuro, A; Rulfo, F; Arosio, E

    2012-10-01

    Chronic critical limb ischemia (CLI) is a severe condition of hypo-perfusion of lower limbs, which is associated with inflammation and a pro-coagulative state. It is a disease at high risk of amputation and cardiovascular death. Propionyl-L-carnitine (PLC) is efficacious in improving pain free walking distance in peripheral arterial disease with claudication; it also exerts favorable effects on the arterial wall and on endothelial function. The purpose of this study was to evaluate the effects of PLC on microcirculation, endothelial function and pain relief in patients affected by CLI not suitable for surgical intervention. We enrolled 48 patients with CLI. Patients were randomized into two groups: the first group was treated with PLC, the second was treated with saline solution. All of them underwent the following tests: laser Doppler flowmetry at the forefoot at rest and after ischemia, trans cutaneous oxygen partial pressure and carbon dioxide partial pressure at the forefoot at rest and after ischemia, endothelium dependent dilation of the brachial artery. All tests were repeated after treatments. Pain was assessed by visual analog pain scale. Endothelium dependent dilation increased after PLC (9.5 ± 3.2 vs 4.9 ± 1.4 %; p < 0.05). Post-ischemic peak flow with laser-Doppler flow increased after PLC. TcPO2 increased, while TcPCO2 decreased after PLC; CO2 production decreased after PLC. VAS showed a significant reduction in pain perception after active treatment. In CLI patients, PLC can improve microcirculation (post ischemic hyperemia, TcPO2 and TcPCO2 production). PLC also enhances endothelium dependent dilation and reduces analgesic consumption and pain perception.

  8. Remote Sensing Information Sciences Research Group: Santa Barbara Information Sciences Research Group, year 4

    NASA Technical Reports Server (NTRS)

    Estes, John E.; Smith, Terence; Star, Jeffrey L.

    1987-01-01

    Information Sciences Research Group (ISRG) research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. Particular focus in on the needs of the remote sensing research and application science community which will be served by the Earth Observing System (EOS) and Space Station, including associated polar and co-orbiting platforms. The areas of georeferenced information systems, machine assisted information extraction from image data, artificial intelligence and both natural and cultural vegetation analysis and modeling research will be expanded.

  9. Groups That Work: Student Achievement in Group Research Projects and Effects on Individual Learning

    ERIC Educational Resources Information Center

    Monson, Renee

    2017-01-01

    Group research projects frequently are used to teach undergraduate research methods. This study uses multivariate analyses to examine the characteristics of higher-achieving groups (those that earn higher grades on group research projects) and to estimate the effects of participating in higher-achieving groups on subsequent individual learning…

  10. [Gene transfer-induced human heme oxygenase-1 over-expression protects kidney from ischemia-reperfusion injury in rats].

    PubMed

    Lü, Jin-xing; Yan, Chun-yin; Pu, Jin-xian; Hou, Jian-quan; Yuan, He-xing; Ping, Ji-gen

    2010-12-14

    To study the protection of gene transfer-induced human heme oxygenase-1 over-expression against renal ischemia reperfusion injury in rats. The model of kidney ischemia-reperfusion injury was established with Sprague-Dawley rats. In the therapy group (n=18), the left kidney was perfused and preserved with Ad-hHO-1 at 2.5×10(9) pfu/1.0 ml after flushed with 0-4°C HC-A organ storage solution via donor renal aorta. The rats in control groups were perfused with 0.9% saline solution (n=12) or the vector carrying no interest gene Ad-EGFP 2.5×10(9) pfu/1.0 ml (n=18) instead of Ad-hHO-1. BUN and Cr in serum were measured by slide chemical methods. The kidney samples of rats were harvested for assay of histology, immunohistochemistry and quantification of HO enzymatic activity. Apoptosis cells in the kidney were measured by TUNEL. Ad-hHO-1 via donor renal aorta could transfect renal cells of rats effectively, enzymatic activity of HO in treated group [(1.62±0.07) nmol×mg(-1)×min(-1)] is higher than in control groups treated with saline solution team [(1.27±0.07) nmol×mg(-1)×min(-1)] and vector EGFP team [(1.22±0.06) nmol×mg(-1)×min(-1)] (P<0.01). Immunohistochemically, we found that the rats treated with Ad-hHO-1 expressed hHO-1 in kidneys at a high level. Corresponding to this, the level of BUN and Cr, as well as the number of apoptosis cells, were decreased, and the damage in histology by HE staining was ameliorated. Over-expression of human HO-1 can protect the kidney from ischemia/reperfusion injury in rats.

  11. Using Human Inquiry Groups in Counselling Research.

    ERIC Educational Resources Information Center

    West, William

    1996-01-01

    Explores the nature of human inquiry groups and how such groups decide on a research agenda. Outlines the stages involved in the process and considers the value of human inquiry as a qualitative methodology for counseling research. Compares the roles of the human inquiry researcher and the counselor. (RJM)

  12. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death

    PubMed Central

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A.; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion. PMID:27529620

  13. Differential diagnosis of critical digital ischemia in systemic sclerosis: Report of five cases and review of the literature.

    PubMed

    Sharp, Charlotte A; Akram, Qasim; Hughes, Michael; Muir, Lindsay; Herrick, Ariane L

    2016-10-01

    Critical digital ischemia is a rare, but serious complication of systemic sclerosis (SSc) and is not always due solely to the non-inflammatory angiopathy that characterizes the SSc disease process. Our objective was to illustrate the range of presentations and causes of critical digital ischemia in patients with SSc in order to highlight how optimal management is dependent upon establishing the correct diagnosis. Five cases exemplifying differential diagnoses were identified and their case notes reviewed in order to extract clinically relevant data and images. A review of the literature was performed in PubMed in English. Causes of critical digital ischemia included typical micro-angiopathic changes and proximal (large vessel) disease. One case highlighted the difficulty of ascertaining whether an inflammatory cause is also present in SSc/SLE overlap syndrome. Two cases demonstrated embolic causes (thromboembolism due to atrial fibrillation and septic emboli). Critical digital ischemia in patients with SSc requires thorough investigation in order to avoid missing additional potentially modifiable causes including large vessel disease, inflammation, embolism, infection, and paraneoplastic syndromes. A firm evidence base for current medical and surgical interventions is lacking, highlighting the need for further research into the optimum management of this rare, but painful, debilitating, and limb-threatening complication of SSc. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Substance P induces cardioprotection in ischemia-reperfusion via activation of AKT.

    PubMed

    Jubair, Shaiban; Li, Jianping; Dehlin, Heather M; Manteufel, Edward J; Goldspink, Paul H; Levick, Scott P; Janicki, Joseph S

    2015-08-15

    Accumulating evidence indicates that substance P is cardioprotective following ischemia-reperfusion primarily due to its potent coronary vasodilator actions. However, an anti-apoptotic effect of substance P has been observed in tenocytes following ischemia, which involved activation of the AKT pathway. This suggests the possibility that substance P also provides cardioprotection via direct actions to activate AKT in myocardial cells. The purpose of this study was to test the hypothesis that substance P attenuates ischemia-related cell death via direct effects on myocardial cells by activating cell survival pathways. Seven-week-old male Sprague-Dawley rats, anesthetized with intraperitoneal pentobarbital sodium (100 mg/kg), were used. The ability of substance P to prevent cellular damage was assessed following ischemia-reperfusion in an isolated heart preparation and in short-term hypoxia without reperfusion using a left ventricular tissue slice culture preparation. In addition, the NK-1 receptor and AKT involvement was assessed using the NK-1 receptor antagonist L732138 and the AKT inhibitor LY294002. The results indicate that substance P reduced the ischemia-related release of lactate dehydrogenase in both preparations and the degree of apoptosis and necrosis in the hypoxic left ventricular slices, indicating its ability to attenuate cell damage; and induced AKT phosphorylation, with both the AKT inhibitor and NK-1 receptor antagonist preventing the increased phosphorylation of AKT and the ability of substance P to attenuate hypoxic cellular damage. It is concluded that substance P reduces ischemia/hypoxia-induced myocardial cell death by acting directly on cardiac cells to initiate cell survival pathways via the NK-1 receptor and AKT. Copyright © 2015 the American Physiological Society.

  15. Substance P induces cardioprotection in ischemia-reperfusion via activation of AKT

    PubMed Central

    Jubair, Shaiban; Li, Jianping; Dehlin, Heather M.; Manteufel, Edward J.; Goldspink, Paul H.; Levick, Scott P.

    2015-01-01

    Accumulating evidence indicates that substance P is cardioprotective following ischemia-reperfusion primarily due to its potent coronary vasodilator actions. However, an anti-apoptotic effect of substance P has been observed in tenocytes following ischemia, which involved activation of the AKT pathway. This suggests the possibility that substance P also provides cardioprotection via direct actions to activate AKT in myocardial cells. The purpose of this study was to test the hypothesis that substance P attenuates ischemia-related cell death via direct effects on myocardial cells by activating cell survival pathways. Seven-week-old male Sprague-Dawley rats, anesthetized with intraperitoneal pentobarbital sodium (100 mg/kg), were used. The ability of substance P to prevent cellular damage was assessed following ischemia-reperfusion in an isolated heart preparation and in short-term hypoxia without reperfusion using a left ventricular tissue slice culture preparation. In addition, the NK-1 receptor and AKT involvement was assessed using the NK-1 receptor antagonist L732138 and the AKT inhibitor LY294002. The results indicate that substance P reduced the ischemia-related release of lactate dehydrogenase in both preparations and the degree of apoptosis and necrosis in the hypoxic left ventricular slices, indicating its ability to attenuate cell damage; and induced AKT phosphorylation, with both the AKT inhibitor and NK-1 receptor antagonist preventing the increased phosphorylation of AKT and the ability of substance P to attenuate hypoxic cellular damage. It is concluded that substance P reduces ischemia/hypoxia-induced myocardial cell death by acting directly on cardiac cells to initiate cell survival pathways via the NK-1 receptor and AKT. PMID:26071541

  16. Effect of Coenzyme Q10 on ischemia and neuronal damage in an experimental traumatic brain-injury model in rats

    PubMed Central

    2011-01-01

    Background Head trauma is one of the most important clinical issues that not only can be fatal and disabling, requiring long-term treatment and care, but also can cause heavy financial burden. Formation or distribution of free oxygen radicals should be decreased to enable fixing of poor neurological outcomes and to prevent neuronal damage secondary to ischemia after trauma. Coenzyme Q10 (CoQ10), a component of the mitochondrial electron transport chain, is a strong antioxidant that plays a role in membrane stabilization. In this study, the role of CoQ10 in the treatment of head trauma is researched by analyzing the histopathological and biochemical effects of CoQ10 administered after experimental traumatic brain injury in rats. A traumatic brain-injury model was created in all rats. Trauma was inflicted on rats by the free fall of an object of 450 g weight from a height of 70 cm on the frontoparietal midline onto a metal disc fixed between the coronal and the lambdoid sutures after a midline incision was carried out. Results In the biochemical tests, tissue malondialdehyde (MDA) levels were significantly higher in the traumatic brain-injury group compared to the sham group (p < 0.05). Administration of CoQ10 after trauma was shown to be protective because it significantly lowered the increased MDA levels (p < 0.05). Comparing the superoxide dismutase (SOD) levels of the four groups, trauma + CoQ10 group had SOD levels ranging between those of sham group and traumatic brain-injury group, and no statistically significant increase was detected. Histopathological results showed a statistically significant difference between the CoQ10 and the other trauma-subjected groups with reference to vascular congestion, neuronal loss, nuclear pyknosis, nuclear hyperchromasia, cytoplasmic eosinophilia, and axonal edema (p < 0.05). Conclusion Neuronal degenerative findings and the secondary brain damage and ischemia caused by oxidative stress are decreased by CoQ10 use in rats with

  17. Neuroprotection and reduced gliosis by pre- and post-treatments of hydroquinone in a gerbil model of transient cerebral ischemia.

    PubMed

    Park, Joon Ha; Park, Chan Woo; Ahn, Ji Hyeon; Choi, Soo Young; Shin, Myoung Cheol; Cho, Jun Hwi; Lee, Tae-Kyeong; Kim, In Hye; Cho, Jeong Hwi; Lee, Jae-Chul; Kim, Yang Hee; Kim, Young-Myeong; Kim, Jong-Dai; Tae, Hyun-Jin; Shin, Bich Na; Bae, Eun Joo; Chen, Bai Hui; Won, Moo-Ho; Kang, Il Jun

    2017-12-25

    Hydroquinone (HQ), a major metabolite of benzene, exists in many plant-derived food and products. Although many studies have addressed biological properties of HQ including the regulation of immune responses and antioxidant activity, neuroprotective effects of HQ following ischemic insults have not yet been considered. Therefore, in this study, we examined neuroprotective effects of HQ against ischemic damage in the gerbil hippocampal cornu ammonis 1 (CA1) region following 5 min of transient cerebral ischemia. We found that pre- and post-treatments with 50 and 100 mg/kg of HQ protected CA1 pyramidal neurons from ischemic insult. Especially, pre- and post-treatments with 100 mg/kg of HQ showed strong neuroprotective effects against ischemic damage. In addition, pre- and post-treatments with 100 mg/kg of HQ significantly attenuated activations of astrocytes and microglia in the ischemic CA1 region compared to the vehicle-treated-ischemia-operated group. Briefly, these results show that pre- and post-treatments with HQ can protect neurons from transient cerebral ischemia and strongly attenuate ischemia-induced glial activation in the hippocampal CA1 region, and indicate that HQ can be used for both prevention and therapy of ischemic injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Monitoring of renal ischemia reperfusion injury in rabbits by ultrasonic contrast and its relationship with expression of VEGF in renal tissue.

    PubMed

    Hao, Peng

    2016-02-01

    To evaluate the renal ischemia reperfusion injury (IRI) in rabbits using the ultrasonic contrast technique and discuss the clinical value of ultrasonic contrast technique in the diagnosis of renal IRI by comparing the time-intensity curve of renal cortex and the expression of vascular endothelial growth factor (VEGF) of renal tissue. Twenty 3-month-old New Zealand rabbits were randomly divided into 4 groups, namely Ctrl group, IRI-12 h, IRI-24 h and IRI-48 h groups. The two dimensional gray-scale ultrasonography was employed to determine and mark the position of rabbit kidney. Rabbits were given the intraperitoneal anesthesia with 20% urethane with the dosage of 5 mL/kg. The aseptic operation was performed after the local skin disinfection in the area of both kidneys. The right kidney of animals in the control group was excised without any treatment for the left kidney. After excising the right kidney of animals in groups of IRI-12 h, IRI-24 h and IRI-48 h, the aneurysm clip was used to clip the renal pedicle vessel of left kidney, in order to simulate the ischemia. Because of the tissue ischemia, it could be seen that the color of kidney was changed from bright red to dark red, which indicated the successful modeling of ischemia. The aneurysm clip was released after one hour of maintaining the ischemia. Then the kidney turned out to be bright red from dark red, which indicated that the reperfusion was completed. Taking this moment as the time of ischemia reperfusion, the wound was stitched up. A total of 12, 24 and 36 h after the operation, the two-dimensional and color Doppler flow imaging and ultrasonic contrast were employed for the examination. The dynamic changes of ultrasonic contrast were recorded. The quantitative analysis software (QontraXt) was adopted to analyze the time-intensity curve of echo at different positions of renal cortex. After the ultrasonic contrast testing, rabbits were put to death. The renal cortex tissue was isolated and the

  19. Role of the plasma cascade systems in ischemia/reperfusion injury of bone.

    PubMed

    Zhang, Shengye; Wotzkow, Carlos; Bongoni, Anjan K; Shaw-Boden, Jane; Siegrist, Mark; Taddeo, Adriano; Blank, Fabian; Hofstetter, Willy; Rieben, Robert

    2017-04-01

    Ischemia/reperfusion (I/R) injury has been extensively studied in organs such as heart, brain, liver, kidney, and lung. As a vascularized organ, bone is known to be susceptible to I/R injury too, but the respective mechanisms are not well understood to date. We therefore hypothesized that, similar to other organs, plasma cascade-induced inflammation also plays a role in bone I/R injury. Reperfusion injury in rat tibia was induced by unilateral clamping of the femoral artery and additional use of a tourniquet, while keeping the femoral vein patent to prevent venous congestion. Rats were subjected to 4h ischemia and 24h reperfusion. Deposition of complement fragment C3b/c and fibrin as well as expression of tissue factor (TF), tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1), and E-selectin was detected by immunohistochemistry. In plasma, the levels of high mobility group box1 (HMGB1) were measured by ELISA. The total level of complement in serum was assessed by the CH50 test. Our results show that deposition of C3b/c was significantly increased with respect to healthy controls in cortical bone as well as in marrow of reperfused limbs. C3b/c deposition was also increased in cortical bone, but not in bone marrow, of contralateral limbs. Deposition of fibrin, as well as expression of PAI-1, was significantly increased in bone after ischemia and reperfusion, whereas expression of tPA was reduced. These differences were most prominent in vessels of bone, both in marrow and cortical bone, and both in reperfused and contralateral limbs. However, PAI-1, was only increased in vessels of reperfused cortical bone and there were no significant changes in expression of E-selectin. With respect to solid bone tissue, a significant increase of C3b/c and fibrin deposition was shown in osteocytes, and for fibrin also in the bone matrix, in both contralateral and reperfused cortical bone compared with normal healthy controls. A slight expression of TF was

  20. Remote limb ischemic preconditioning (rIPC) activates antioxidant and antiapoptotic genes and inhibits proinflammatory cytokine genes in renal ischemia/reperfusion injury.

    PubMed

    Hussein, Abdelaziz M; Harraz, Ahmed M; Awadalla, Amira; Barakat, Nashwa; Khater, Shery; Shokeir, Ahmed A

    2016-01-01

    The mechanisms underlying the renoprotective effect for remote limb ischemic preconditioning (rIPC) against renal ischemia/reperfusion injury need further elucidation. In our work, one hundred and twenty male Sprague Dawley rats were randomized into 3 groups; sham, I/R group (left renal 45 min ischemia) and rIPC (as I/R group with 3 cycles of left femoral ischemic PC just before renal ischemia). Rats were sacrificed at 2 h, 24 h, 48 h and 7 days. Serum creatinine and urea were measured at the baseline and endpoints. Also, histopathological examination and assessment of the expression of inflammatory cytokines e.g. TNF-α, IL-1β and ICAM-1 and antioxidant genes: Nrf2, HO-1 and NQO-1 and anti-apoptotic gene Bcl-2 in left kidney were done by the end of experiment. The results of this study demonstrated that, rIPC caused significant improvement in serum creatinine and BUN levels and in the expression of antioxidant genes and Bcl-2 antiapoptotic gene with significant attenuation of pro-inflammatory cytokines and histopathological damage score at all-time points compared to I/R group (p ≤ 0.05). In conclusion, inhibition of inflammatory cytokine (TNF-α, IL-1β and ICAM-1) formation and activation of antioxidant genes: Nrf2, HO-1 and NQO-1 and anti-apoptotic gene Bcl-2 could be possible underlying mechanisms for the renoprotective effect of rIPC.